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BCI2000Web and WebFM:
Browser-Based Tools for Brain
Computer Interfaces and Functional
Brain Mapping

Griffin Milsap 1*, Max Collard 2, Christopher Coogan 2 and Nathan E. Crone 2

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States, 2Department of Neurology,

Johns Hopkins University, Baltimore, MD, United States

BCI2000 has been a popular platform for development of real-time brain computer

interfaces (BCIs). Since BCI2000’s initial release, web browsers have evolved

considerably, enabling rapid development of internet-enabled applications and interactive

visualizations. Linking the amplifier abstraction and signal processing native to BCI2000

with the host of technologies and ease of development afforded by modern web

browsers could enable a new generation of browser-based BCIs and visualizations.

We developed a server and filter module called BCI2000Web providing an HTTP

connection capable of escalation into an RFC6455 WebSocket, which enables direct

communication between a browser and a BCI2000 distribution in real-time, facilitating

a number of novel applications. We also present a JavaScript module, bci2k.js, that

allows web developers to create paradigms and visualizations using this interface in an

easy-to-use and intuitive manner. To illustrate the utility of BCI2000Web, we demonstrate

a browser-based implementation of a real-time electrocorticographic (ECoG) functional

mapping suite called WebFM. We also explore how the unique characteristics of

our browser-based framework make BCI2000Web an attractive tool for future BCI

applications. BCI2000Web leverages the advances of BCI2000 to provide real-time

browser-based interactions with human neurophysiological recordings, allowing for

web-based BCIs and other applications, including real-time functional brain mapping.

Both BCI2000 andWebFM are provided under open source licenses. Enabling a powerful

BCI suite to communicate with today’s most technologically progressive software

empowers a new cohort of developers to engage with BCI technology, and could serve

as a platform for internet-enabled BCIs.

Keywords: electrocorticogram (ECoG), functional brain mapping, visualization, web browser, brain computer

interface (BCI)

1. INTRODUCTION

A brain-computer interface (BCI) is a system that translates brain activity into control signals for
a computer. Modern incarnations of BCIs rely on rapid and low-latency brain signal acquisition,
preprocessing, feature extraction, classification and/or regression, and frequently, postprocessing
of the resultant control signal (Wolpaw et al., 2002). In the case of closed-loop BCI, some
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form of visual or auditory feedback is given to the user
to inform them of their control performance, typically
requiring a low round-trip latency from signal acquisition
to output. BCI development typically requires performant
implementations of data acquisition and signal processing
algorithms, high precision synchronization of external
device telemetry, and typically, control of external software,
requiring inter-process control or device input emulation
(Wolpaw et al., 2000; Vaughan et al., 2003).

These technical requirements make the development of
software for this purpose extremely challenging; however, there
are a number of existing software platforms that bootstrap
this development endeavor. BCI2000 has been a standardized
research platform for BCI development for the last 15 years;
it has been used by over 400 labs, and has been cited in
numerous publications (Schalk et al., 2004). OpenViBE is another
platform that has been developed to support real-time BCI
research, offering a graphical programming language for signal
processing and visualization (Renard et al., 2010). Additionally, a
low-level communication protocol supporting signal acquisition
and synchronization, called LabStreamingLayer, allows for TCP
network streaming and synchronization of multi-modal data
streams (Kothe, 2016) and could form the foundation of a
BCI platform.

Widespread adoption and advancement of web browser
technology makes it an attractive target for a BCI platform.
Recent advancements in browser technology and standards
have enabled direct access to low-level system resources such
as graphics hardware and accelerometry/system sensors with
application programming interfaces (APIs) that have exposed
this hardware and software functionality via easy-to-use yet
powerful and performant JavaScript packages. Network-enabled
services also implement publicly available APIs that allow
developers to call upon remote computational resources, such
as Amazon web services (AWS), or to query information from
vast databases of indexed knowledge, such as Wikipedia and
Google Image Search.Moreover, many libraries supporting visual
presentation of user interfaces and data visualizations have
been developed. For example, d3.js (Bostock, 2011) has been
used to power interactive data visualizations with impressive
performance and an expressive yet functional API.

Many of the technologies readily available in the modern web
browser would be useful to have available for the development of
a contemporary BCI—for example, the ability to tag data in real-
time with a speech transcription, via the WebSpeech API (Shires
and Wennborg, 2012), or the ability to present stimuli in 3D
using a virtual reality headset, viaWebVR (Vukicevic et al., 2016)
and three.js (Cabello et al., 2010). Visualization of the resulting
data using d3.js (Bostock, 2011) or even sonification using the
WebAudio API (Adenot et al., 2018) are fruitful endeavors for
understanding realtime BCI output. Existing BCI software suites
generally provide some amount of interprocess communication,
typically exposed via user datagram protocol (UDP) or shared
memory. However, browsers do not typically allow web apps to
access UDP natively due to security concerns; further, existing
communication schemes like BCI2000’s AppConnector interface
do not scale well to high data volumes, like those required to

transmit human electrocorticography (ECoG) signals. BCI2000’s
existing interprocess communication tooling was designed with
the transmission of control signals in mind, communicating
signals using ASCII for simplicity instead of binary at the expense
of inflating the data rate by a factor of ∼8-fold—an approach
that was successful until the need to transmit raw and processed
ECoG data streams was desirable. Modern browsers implement
a protocol built on top of TCP called WebSocket (Fette, 2011)
that allows an HTTP client to escalate an existing connection
to a general purpose real-time bidirectional binary/ASCII
communication interface. WebSockets are perfectly situated to
facilitate the transfer of raw brain signals, extracted neural
features, and processed control signals from a BCI software suite
to a web app on a browser-enabled device, as well as the transfer
of auxiliary sensor information from the web app back to the
native software suite, all in real time. In this article, we present
an implementation of the aforementioned interface as a plugin to
BCI2000, which we call BCI2000Web.

1.1. ECoG Functional Mapping: A Testbed
for Web Technologies
In this report, we additionally demonstrate the utility of this new
BCI2000Web interface with an example application that shares
many technical requirements with a BCI: a functional mapping
tool capable of visualizing cortical activation derived from ECoG
recordings in real-time using local processing at the bedside or
in the operating room, and of synchronizing the final results to a
centrally hosted repository.

Functional mapping of eloquent cortex is a target application
of great scientific and clinical impact. About a third of patients
with epilepsy have seizures that are resistant to medication
therapy. In many of these patients, seizures arise from a focal
brain area, and if this area can be safely removed, seizure
control can be achieved. When non-invasive testing cannot
reliably identify the seizure onset zone as distinct from brain
regions needed for normal neurological function, clinicians may
choose to surgically implant electrodes in the depths of the
brain (stereo-EEG) or on its surface (electrocorticography, or
ECoG). These intracranial electrodes may be implanted for
a week or more in order to reliably localize the onset of
seizures. These electrodes also facilitate the identification of
eloquent cortex—i.e., regions that are implicated in speech
and language, as well as perception, movement, and other
important brain functions. A technique called electrocortical
stimulation mapping (ESM) is typically used to map these
regions. During ESM, pulse-trains of electrical current are passed
between pairs of the implanted electrodes to temporarily disable
a small patch of cortex while the patient performs a simple
language or motor task. A behavioral change elicited by this
temporary lesion indicates that the stimulated area of the brain
is necessary for task completion (Ojemann et al., 1989). This
testing procedure is time-consuming and uncomfortable for the
patient, sometimes eliciting after-discharges (Lesser et al., 1984;
Blume et al., 2004); these after-discharges can also evolve into
seizures, which can be of questionable utility for diagnosing ictal
cortex (Hamberger, 2007).
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The limitations of ESM have motivated a complementary
mapping technique based upon estimates of task-related changes
in the power spectra, especially in high frequencies, of passive
recordings of ECoG or stereo-EEG during behavioral tasks. This
mapping technique, hereafter referred to as ECoG functional
mapping, produces maps of task-related cortical activation,
which may include cortex that is recruited by a task but
not critical to task performance. In contrast, ESM uses a
temporary electrophysiological disruption of cortical function to
simulate the acute behavioral effects of tissue resection, and is
presumed to be specific to areas critical to task performance.
Nevertheless, a number of clinical studies have demonstrated
good correspondence between ECoG functional mapping and
ESM (Brunner et al., 2009; Wang et al., 2016). Moreover, several
studies have shown that ECoG functional mapping can be used
to predict post-resection neurological impairments, and in some
cases it has predicted impairments that were not predicted by
ESM (Wang et al., 2016). For these reasons, some epilepsy
surgery centers have begun to use ECoG functional mapping as
a complement to ESM, sometimes providing a preliminary map
of cortical function that guides the use of ESM. However, most
epilepsy centers have not yet adopted ECoG functional mapping
because of the lack of technical resources, especially software that
can be used with their clinical EEG monitoring systems.

Several ECoG functional mapping packages have been
developed in recent years. For example, SIGFRIED acquires a
large baseline distribution of neural activity in a calibration
block, then rapidly accumulates estimates of cortical activation
by averaging neural activity evoked by behavior in blocks
of time (Brunner et al., 2009). A commercial product called
cortiQ (Prueckl et al., 2013) is capable of performing this
block-based mapping paradigm, which makes it possible for
minimally trained clinical professionals to perform passive ECoG
mapping. Both SIGFRIED and cortiQ are built using the BCI2000
framework and take advantage of the extensive optimizations and
development legacy of the platform. A more nuanced mapping
technique, termed spatial-temporal functional mapping (STFM),
provides time-resolved, trial-locked results during a specific task
by collecting a pooled baseline activity from a pre-defined 1̃ s
period before the onset of a trial, then performing a statistical
test on each time/channel bin in a window of interest relative to
trial onset (Wang et al., 2016). Though the results of STFM are
more complicated and require more expertise to interpret than
the block-based mapping used by SIGFRIED or CortIQ, they
provide a more detailed map of the spatial-temporal evolution of
task-related activation, which can help clarify the role of different
areas activated by a given task, of clear utility in cognitive
neuroscience research and of potential clinical utility in planning
surgical resections.

ECoG functional mapping relies on high performance signal
processing and sophisticated real-time visualization, making it
a suitable application example for BCI2000 and BCI2000Web.
We saw an opportunity to build an easy-to-deploy-and-use
tool for both researchers and clinicians that delivers the
time-resolved, trial-locked results of STFM at the bedside
in a web application, using BCI2000Web as the underlying
communication technology to drive a browser-based interactive

visualization. As a demonstration of the potential of the
BCI2000Web plugin, in this report we also present WebFM,
a software suite built on top of Node.js and BCI2000Web for
performing real-time functional mapping in a web browser.

2. DESIGN AND IMPLEMENTATION

We chose to build our BCI WebSocket interface on top of
BCI2000 as opposed to the other aforementioned technologies
for many reasons, including support for acquisition devices
in common use within epilepsy monitoring units and
EEG research lab settings, high performance spectral
extraction implementations, pedigree within the research
community, highly accurate stimulus presentation capabilities,
comprehensive documentation, and its ability to replay
experimental sessions post hoc easily and accurately.

The BCI2000 environment is a general-purpose
computational framework, typically used to construct BCIs,
built upon four binary executables: the signal source module,
which acquires physiological data from a supported amplifier;
the signal processing module, which extracts neural features and
transforms those features into control signals; an application
module, which reacts to those control signals and provides
feedback to the subject; and an Operator module, which
orchestrates the behavior of all three functional submodules of
the system (see Figure 1). Signals propagate from the source
module to the processing module to the application module,
with interconnections facilitated by a network-based protocol
(in older versions of BCI2000) or a shared memory interface
(in more recent iterations). Each of the modules consists of a
series of signal “filters,” which accept an incoming signal (as
a channels-by-elements array) and output a derived signal,
potentially of different dimensionality. A built-in Operator
scripting language allows for setup and configuration of filters
within an experimental session to occur automatically, and
a Telnet interface exists in the Operator module, capable of
accepting textual commands in the Operator scripting language
from outside BCI2000.

2.1. BCI2000Web
To address remote control of BCI2000 and data transmission
between BCI2000 and browsers, we developed a Node.js
module called BCI2000Web that accepts Operator scripting
language commands via WebSocket and transmits them to
the Operator executable via Telnet, returning system output
back to the client. It is primarily used to control data
acquisition and signal processing parameters remotely via
a connected WebSocket-enabled client, typically a browser.
BCI2000Web has been developed as a service that runs
within the Node.js runtime. Upon starting, it opens a Telnet
connection to the Operator module and also functions as a
basic HTTP server. While BCI2000’s Telnet implementation
only supports one client sending one set of instructions that
are executed serially, BCI2000Web provides an interface that
allows multiple clients to make requests to send commands to
the Operator module; these commands are queued and executed
sequentially, with responses sent back to the appropriate client
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FIGURE 1 | A full BCI2000 stack including a Signal Source, Signal Processing, Application, and Operator module communicates with BCI2000Web, implemented as

a Node.js module, via Telnet. Browser-based remote control software and visualization tools interact with BCI2000Web, and receive raw and processed neural signals

directly from the BCI2000 system modules, via WebSockets, while the application module presents stimuli to the patient, in this case, the word stimulus “HEALTH” for

a word reading paradigm.

asynchronously. BCI2000Web is capable of interfacing with
an unmodified BCI2000 distribution and automating system
configuration without any further software or modifications to
BCI2000 modules.

In order to transmit the raw and processed signal from
the BCI2000 filter pipeline to the browser, however, source
modifications within the system modules are required. The raw
and processed signal is never sent directly to the Operator
module, so the signal can only be transmitted to a browser
by compiling secondary WebSocket servers into the existing
modules at specific locations within the filter chain. This
modification has been realized in our implementation as a
generic “WSIOFilter” (WebSocket Input/Output GenericFilter)
that can be instantiated multiple times into the BCI2000 filter
chain. Each WSIOFilter defines a parameter specifying the
address and port its WebSocket server is hosted on. Once an
incoming connection is escalated to a WebSocket, this filter
sends packets to the client in the BCI2000 binary format, first
describing the dimensionality of the signal and the system state
vector via a “SignalProperties” and “StateList” packet, then a
“GenericSignal” and “StateVector” packet for the current system
signal and state vector once per sample block. These filters
can be instantiated several times in the signal processing chain
for any particular signal processing module. This filter has
also been included as a source module extension that enables
transmission of the raw signal in all signal source modules, and
an application module extension that enables transmission of

the application module input—identical to the signal processing
output—in all application modules. In practice, the amount of
data being sent/received by instantiations of the WSIOfilter is
directly related to CPU usage on the sending and receiving
machines, while the latency of system throughput from recording
to browser is more a function of the network setup and the
number of network interface hops the data has to traverse.

AWebSocket-enabled client is unlikely to natively understand
the format of the incoming/outgoing messages on any of
the aforementioned connections: our implementation of
BCI2000Web adds some decorators to Operator scripting
commands and Operator outputs to handle multiple clients, and
the WSIOFilter output is implemented in the BCI2000 binary
protocol. A JavaScript library, bci2k.js—available as a package on
the Node package manager (NPM) registry—contains functions
that manage the BCI2000 WebSocket connections and translate
the binary BCI2000 format into readily usable data structures
within a JavaScript context. Non-browser WebSocket-enabled
clients will need to implement this functionality in order to
communicate using these interfaces.

2.2. WebFM: Browser-Based ECoG
Functional Mapping
Subdural ECoG recordings are the target modality for WebFM,
the aforementioned functional mapping application; this
modality has different signal processing requirements than scalp
EEG. The signal processing module used in the system in the
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Johns Hopkins Epilepsy Monitoring Unit is a modification of
the default SpectralSignalProcessing.exe module.
This signal processing module consists of a chain of filters, the
first of which is a spatial filter capable of applying a common
average reference, a frequently used spatial filter for ECoG
recordings (Liu et al., 2015). This is followed by a series of IIR
Butterworth filters, including a fourth order low pass at 110
Hz, followed by a second order high pass at 70 Hz and a 4th
order notch filter at 60 Hz. After the signal is downsampled to
500 Hz from the native sampling rate, it is passed through a
spectral estimator filter, which generates an autoregressive model
on a window of filtered data and uses the model coefficients to
form an estimate of the signal’s power spectrum, using the Burg
method (Burg, 1968). A WSIOFilter is instantiated at this point
in the filter chain, capable of streaming this estimated spectral
content of the neural signals in real-time. A system diagram and
description of the system topology is detailed in Figure 1.

A language or motor task is parameterized as a BCI2000 .prm
file and a collection of audio-visual stimuli in a git repository
hosted on GitHub, available as packages that remote-control
BCI2000 using the BCI2000Web server. Any number of these
tasks can be checked out into the BCI2000Web distribution, and
the server will automatically present them as startup options
within the built-in BCI2000Web browser interface, shown
and described in Figure 2. These paradigms typically specify
a parameterization for StimulusPresentation.exe, a
BCI2000 application module capable of presenting audio-visual
stimuli to the patient with high-precision timing and sequence
control. A browser is used to communicate to the bedside data-
collection and stimulus-presentation machine, and to set up this
system parameterization. (Because of this setup, it is notable
that, when high-precision control isn’t needed for stimulus
presentation, the tasks presented to patients may themselves be
interactive web applications, utilizing bci2k.js and BCI2000Web
to inject behavioral markers into the data recorded by BCI2000.)
A monitor and speaker connected to the bedside computer is set
up in front of the patient, and a microphone is connected to the
auxiliary analog inputs provided by the acquisition system, to be
digitized synchronously with the electrophysiology.

The WebFM/BCI2000Web system currently supports more
than 20 possible experimental paradigms, including a task battery
used for clinical assessment for functional localization. These
paradigms are currently versioned in GitHub repositories with
group permissions and access control managed by the authors. A
setup script is provided with BCI2000Web that accepts a GitHub
login and clones/updates all available task repositories into the
proper location.

2.2.1. Patients and Electrode Localization

All aspects of this study were carried out in accordance with
the recommendations of the Johns Hopkins Institutional Review
Board with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the Johns
Hopkins Institutional Review Board.

Before any functional mapping sessions occur with a patient, a
post-operative computed tomography scan containing electrode

locations is co-registered to a pre-operative magnetic resonance
imaging scan of sufficient resolution (typically with voxel
dimensions of 1 mm or less) to render the patient’s cortical
surface anatomy in high detail, using Freesurfer (Fischl, 2012)
or Bioimage Suite (Papademetris et al., 2006). These electrode
locations are overlaid on a 2D rendering of the cortical surface.
An image file depicting this cortical anatomy and electrode
layout, as well as a comma-separated value (.csv) file containing
the normalized image coordinates of each electrode, is uploaded
to the WebFM server via controls within the WebFM browser
interface. This layout doesn’t typically change during a patient’s
EMU stay, and it is referenced and retrieved by using a subject
identification code, effectively de-identifying the reconstruction
for research purposes.

2.2.2. Software

During an ECoG functional mapping session, a browser running
on the visualization device contacts the WebFM server and
queries the bedside machine for the subject’s identification code
and what task is currently running. The WebFM server then
serves the corresponding cortical reconstruction image and
sensor location file in addition to a bolus of javascript code that
is capable of opening WebSockets to the BCI2000Web server
and WSIOFilters running on the bedside machine. The code
also contains statistics packages and graphical libraries necessary
for acquiring, analyzing, and visualizing the data. The browser
then opens these data streaming WebSockets and performs the
mapping without further contacting the WebFM server. After
each trial of the task, the visualization is updated and once a
full task run has been collected, the resulting map can be saved
back to the WebFM server for indexing and post-hoc inspection,
available on the WebFM Landing page, detailed in Figure 3.

The statistics and visualization for WebFM are based on
the techniques and methods described in Wang et al. (2016).
The baseline window for the tasks is defined as a configurable
period from 1,000 to 200 ms before the trial onset and a
baseline distribution is formed per channel from the pooled high
gamma power values during this period. A two-way t-test is
performed between the distribution for each time-channel bin
and that channel’s baseline distribution. The resulting p-values
are corrected for multiple comparisons using the Benjamini-
Hochberg (BH) procedure, controlling the false discovery rate at
0.05 (Benjamini and Hochberg, 1995). This correction is used to
threshold the results displayed in the WebFM raster and spatial
plots: time-channel bins that did not survive the BH correction
are hidden from view. Any individual time point in this raster
can be dynamically selected and visualized by “scrubbing” the
mouse cursor over the raster display; this yields circles drawn
on a two dimensional representation of the electrode montage,
highlighting which cortical locations were active during that
particular time-point across trials. An options dialog allows
users to change baseline periods, modify visualization timing
parameters and amplitudes, as well as make comparisons across
task conditions and contrasts. The visualization is shown and
further described in Figure 4.

The visualization APIs exposed by WebFM can be used to
implement a number of other visualizations as well. One mode of
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FIGURE 2 | A screenshot of the BCI2000 remote control interface. The paradigm index is hosted by BCI2000Web over HTTP. This page is populated by the

experimental paradigms present on the host machine (center) with buttons to start sub-tasks and specific blocks (right). A pane in the top left reads out the current

BCI2000 system state, in addition to a system reset button. In the bottom left, a link to the system replay menu allows for recorded BCI2000 .dat file playback for

system testing and offline mapping.

FIGURE 3 | The landing page for WebFM. A pane in the top left shows system state and houses buttons that start trial-based functional mapping paradigms and a

“live” mode that visualizes neural activity on the brain in real-time, as visualized in prior studies (Lachaux et al., 2007). A list of subject identifiers on the bottom left

pane enables users to pull up previous/current subjects; a list of saved maps for the selected subject appears in the “Records” pane on the bottom right. The “+” in

the top left of the “Subjects” pane allows operators to add new subjects to the database, and the “Metadata” pane at the top right allows operators to upload brain

reconstruction images and normalized electrode locations for displaying functional mapping results. The brain images used for mapping are often overlaid with

information about seizures and/or ESM results, so that functional activation can be easily visually compared with these data; the image shown in the center includes

colored circles depicting the hypothesized spread of ictal activity during the subject’s seizures.

WebFM provides a visualization of raw high gamma activation in
real time, as in (Lachaux et al., 2007); other modifications have
also been used to visualize the propagation of interictal spiking
and seizure propagation across cortex.

2.3. Deployment
As of the time of writing, the WebFM system has been deployed
at two sites: the Johns Hopkins Hospital and the University
of Pittsburgh Medical Center. Across these sites, WebFM has
been used with three acquisition devices: the NeuroPort system

(Blackrock Microsystems, Salt Lake City, UT), a Grapevine
system (Ripple, Salt Lake City, UT), and the EEG1200 system
(Nihon Kohden, Tomioka, Japan). Between these sites and
amplifiers, WebFM has been used to create over 200 functional
maps across 33 subjects. The majority of these subjects (19)
were hospital inpatients undergoing epilepsy monitoring prior
to resective surgery. Clinical staff in the Johns Hopkins Epilepsy
Monitoring Unit have a link to the WebFM portal on their
desktop machines and frequently use the passive ECoG mapping
results when discussing surgical plans. The remaining 14 subjects
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FIGURE 4 | WebFM visualization description An example of WebFM results for an image naming task in a subject with high density (5-mm spacing)

temporal-parietal-occipital electrode coverage. A horizon raster Heer et al. (2009) to the left shows a time (x-axis) by channels (y-axis) plot of trial-averaged

task-modulated high gamma power, thresholded for statistical significance with BH correction for a FDR of <0.05. Warm colors represent a statistically significant

increase in task-modulated high gamma power, while cool colors indicate a statistically significant decrease in task-modulated high gamma power. The left black

vertical bar within the raster indicates the trial-start (t = 0 s) where StimulusCode transitioned from zero to a non-zero value, indicating that a stimulus was being

displayed. The right black vertical bar is a temporal cursor that interactively tracks the user’s mouse gestures; the current time it indexes is shown in the top left corner,

0.538 s after stimulus onset. Buttons next to the selected time manipulate visualization properties. The current temporal slice is visualized on the brain image (right) as

circles with size and color indicating the magnitude of the z-score, with the same coloration as in the horizon chart. A button in the top right maximizes the display to

occupy the full screen-space of the device; a gear icon next to the fullscreen icon presents a configuration dialog box containing options for saving results, changing

visualization parameters, configuring realtime signal or BCI2000 state trial-triggering, and visualizing the raw signal, amongst much more functionality. A drop down

menu next to the gear icon turns on/off multiple visualization layers, enabling/disabling display of ESM, functional mapping, connectivity metrics, evoked responses,

etc. A status message at the bottom right indicates WebFM has connected to BCI2000Web via bci2k.js and a trial counter, in this image represented with an “[n]”,

increments as trials are delivered to and visualized by WebFM.

were temporarily implanted with a 64-channel high density
ECoG strip during lead implantation for deep brain stimulation;
for these subjects, WebFM was used to map sensorimotor cortex
in the operating room. WebFM has even been used to generate
maps of activity recorded at one site by researchers at another
site in real time, utilizing virtual private networks.

3. DISCUSSION

BCI2000Web and WebFM take advantage of several recent
technological developments. First and foremost, these packages
capitalize on advancements in the modern web browser,
which is quickly becoming a platform capable of general
purpose computing. With a focus on frontend user interaction,
many packages have been written in JavaScript that support
the rapid implementation of interactive applications and
visualizations. WebFM in particular makes use of d3.js (Bostock,
2011) to provide a high-quality interactive visualization
of trial-averaged high gamma modulation directly on
the brain.

The key to taking advantage of these web-based technologies
is the implementation of BCI2000Web, which utilizes the
WebSocket API to transmit binary-formatted brain data
directly to the browser over TCP/HTTP, and which allows
direct communication to and from BCI2000. While the
experimental paradigms presented in conjunction with

WebFM utilized the native BCI2000 stimulus presentation
module to interact with the subject, the general-purpose
access to Operator scripting over WebSockets provided
by BCI2000Web easily lends itself to a different system
architecture, in which a browser application itself is responsible
for interacting with the subject and providing experimental
markers sent via WebSocket; this topology is depicted in
Figure 5. Several paradigm packages for BCI2000Web leveraging
this architecture have been authored to date. Some make
use of the WebSpeech API (Shires and Wennborg, 2012)
to do real-time speech tagging and segmentation for tasks
involving freely generated speech; another uses the WebMIDI
and WebAudio APIs (Wyse and Subramanian, 2013) to
register subject input on musical peripheral devices, and
perform high-performance audio synthesis in response.
Public JavaScript APIs allow for rich BCI interactions, and
experimental paradigms can pull upon web resources such
as Google Image search for providing varied and tailored
stimuli at run-time. Extending this idea, it is easy to envision
a system architecture in which users’ neural data is sent
to a browser application that communicates with a server
backend in real time, allowing cloud-based services to apply
sophisticated machine learning techniques that wouldn’t
be feasible otherwise on the client-side. Even further, one
could develop a browser-based application that transmits
multiple users’ neural data to each other’s clients, facilitating
brain-based communication.
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FIGURE 5 | A system diagram depicting an experiment implemented in browser JavaScript running on an independent mobile device. The mobile device is running

an experimenter-implemented web-page in fullscreen mode which communicates directly with BCI2000Web for event logging as well as the Signal Processing

module for receiving extracted neural control signals. A JavaScript package, bci2k.js, manages WebSocket connections that handle transmission of operator scripting

language commands and decodes neural control signals from a binary format. The mobile device is running a word reading paradigm (with the stimulus “HEALTH”

currently presented) that has defined asynchronous experimental states including markers for automated vocal transcription onsets using the WebSpeech API. A

query for system state is also relayed by the BCI2000Web server. The benefit of such an architecture is that the patient interface is separated from the bedside clinical

acquisition machine and can be left with the patient without concern of the patient manipulating the clinical datastream.

Cross-device compatibility is another advantage to using the
browser as a visualization and stimulus presentation platform.
Any browser-enabled device (smartphone, tablet, PC, or even
game console) can be used to present stimuli or visualize
output. Because of this “write-once, run-anywhere” development
process, WebFM can be used by clinicians to view mapping
results in real-time on their smartphones from outside the
patient’s room while ECoG functional mapping is being run
by technicians.

3.1. Drawbacks and Caveats
The rationale behind the division of processing using native
binaries and visualization using browser-interpreted javascript is
due to current limitations inherent to browsers. Browser-hosted
JavaScript is rapidly advancing as a next-generation efficient
computational platform with the advent of WebAssembly and
ASM.js (Herman et al., 2014), but at the time of writing it is
still too computationally demanding to perform real-time feature
extraction and signal processing in the browser. Furthermore,
browser access to low level computer hardware and connected
USB devices is only in the early development stages. Given these
limitations, BCI2000Web was designed to take advantage of the
device driver access and computational efficiency of the C++
code base that powers BCI2000 for acquisition device abstraction
and signal processing/feature extraction. This architecture frees
frontend developers from dealing with complicated signal

processing code in JavaScript, and instead enables them to focus
on user experience and design. In the future, a full-stack BCI2000
analog could be implemented directly within the browser, and
BCI2000Web is a glimpse of what that software could empower
for web developers with access to neural features.

A significant amount of the development effort for BCI2000

has been spent on implementing high-performance signal

processing and stimulus presentation software. Delivering audio-
visual stimuli to subjects with a consistent yet minimal latency is
a non-trivial task that BCI2000 has accomplished by interfacing
with low-level graphics drivers in a nuanced way. Operating
system version, bit-width (32 vs. 64), driver versions, compiler
optimizations, and varying hardware capabilities collude to make
this stimulus presentation problem a fragmented and moving
target—one which BCI2000 has historically hit with surprising
accuracy, achieving visual presentation latency on the order of
one to two frames at a 60 Hz monitor refresh rate and audio
latencies on par with modern audio production software (Wilson
et al., 2010). The BCI2000 core team encourage developers to
implement custom signal processing and stimulus presentation
paradigms within this BCI2000 environment using documented
C++ code templates in order to benefit from these optimizations.
That said, so long as tasks are designed properly and ground truth
stimulus and response signals are collected (e.g., screen mounted
photodiodes and patient facing microphones connected directly
to auxiliary inputs on the amplifier), it is still possible to collect

Frontiers in Neuroscience | www.frontiersin.org 8 February 2019 | Volume 12 | Article 103012

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Milsap et al. BCI2000Web and WebFM

data of high scientific quality using the browser as the primary
stimulus presentation software even if its stimulus display and
communication latency are in question.

We benchmarked the visual timing performance of a
system with and without BCI2000Web modifications using the
procedure in Wilson et al. (2010) on a platform comprising
Windows 7 64 bit with BCI2000 r5688, Google Chrome
67.0.3396.99, and a 256 channel 1,000 Hz recording from a
Blackrock NeuroPort running with a 20 ms sample-block size;
a standard configuration for a moderate-to-high channel-count
ECoG recording running on an up-to-date clinical machine as
of the time of writing. An unmodified BCI2000 distribution on
this system exhibits a visual latency (t3v, as expressed in Wilson
et al., 2010) of 52 ms with a standard deviation of 8.0 ms.
With BCI2000Web sending neural signals to a browser via
WebSocket on the same acquisition machine, a mean visual
latency of 60 ms with a standard deviation 9.4 ms was observed.
Using the hospital wireless network to send neural signals
via WebSocket to a tablet PC running Windows 10 and the
same version of Chrome results in a visual latency of 62 ms
with a standard deviation of 13.4 ms. These latency metrics
indicate a minimal impact to timing performance when using
BCI2000Web. In many real-time BCI implementations, spectral
feature extraction occurs in windows of 128–256 ms with a
slide of 16–32 ms, and single-trial visual timing differences
fall well within one windowing period. BCIs reliant upon
time-domain features—in particular those that perform trial-
averaging of evoked response potentials—will be more sensitive
to these latency differences, and it is critically important to
run timing benchmarks for specific hardware/software/network
configurations in these circumstances. It should be noted that
these performance metrics are configuration-specific and are
likely to vary significantly across use cases; BCI2000Web comes
bundled with an A/V timing paradigm that can be used to collect
timing-test data, but analyses of these latencies and interpretation
of what constitutes sufficient performance is application specific
and is left to the end-user.

4. CONCLUSIONS

The development of a communication protocol that connects
one of the most widely adopted BCI research and development
suites with the power of modern browser technologies is expected
to accelerate the pace of development for BCI technologies.
Newer software developers, primarily taught using these modern
software development paradigms, can now develop new BCI
applications and neural signal visualizations while leveraging the
legacy and performance of native BCI2000 modules. We have
developed and presented a web-based ECoG functional brain
mapping tool using this technology, and we have successfully
deployed it at two sites with a cohort of 33 patients over two
years. BCI2000Web and WebFM together utilize the relative
strengths of a highly optimized C++ code base in BCI2000 and
the high level visualization libraries within modern browsers to

demonstrate a clinically useful and modern functional mapping
tool. We have also used BCI2000Web for ongoing, albeit
unpublished, BCI research projects, and we describe herein the
advantages and potential uses of BCI2000Web in future BCI
applications. This software is documented and released under
permissive free and open source software licenses, and is put
forward by the authors for use in the research and development
of BCIs and multi-site studies on the clinical efficacy of ECoG
functional mapping.
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Neural keyword spotting could form the basis of a speech brain-computer-interface for

menu-navigation if it can be done with low latency and high specificity comparable to

the “wake-word” functionality of modern voice-activated AI assistant technologies. This

study investigated neural keyword spotting using motor representations of speech via

invasively-recorded electrocorticographic signals as a proof-of-concept. Neural matched

filters were created from monosyllabic consonant-vowel utterances: one keyword

utterance, and 11 similar non-keyword utterances. These filters were used in an analog

to the acoustic keyword spotting problem, applied for the first time to neural data.

The filter templates were cross-correlated with the neural signal, capturing temporal

dynamics of neural activation across cortical sites. Neural vocal activity detection

(VAD) was used to identify utterance times and a discriminative classifier was used

to determine if these utterances were the keyword or non-keyword speech. Model

performance appeared to be highly related to electrode placement and spatial density.

Vowel height (/a/ vs /i/) was poorly discriminated in recordings from sensorimotor cortex,

but was highly discriminable using neural features from superior temporal gyrus during

self-monitoring. The best performing neural keyword detection (5 keyword detections

with two false-positives across 60 utterances) and neural VAD (100% sensitivity, ~1 false

detection per 10 utterances) came from high-density (2 mm electrode diameter and 5

mm pitch) recordings from ventral sensorimotor cortex, suggesting the spatial fidelity

and extent of high-density ECoG arrays may be sufficient for the purpose of speech

brain-computer-interfaces.

Keywords: electrocorticography (ECoG), keyword spotting (KWS), automatic speech recognition (ASR), brain

computer interface (BCI), speech, sensorimotor cortex (SMC), superior temporal gyrus (STG), articulation

1. INTRODUCTION

Keyword spotting (KWS) has recently come to the forefront of human-computer-interaction with
the advent of voice-assist technologies such as Amazon Alexa, Apple’s Siri, and Google’s Assistant.
All of these systems employ local, low-resource acoustic keyword search in real-time to detect a
“wake word” that activates server-side speech recognition for interaction with an intelligent agent.
These systems have been commercially successful and lauded for their ease of use. There are
scenarios where voice-activated system interaction is suboptimal, especially when many speaking
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voices make the acoustic speech recognition less reliable and
socially awkward to use. The ability to trigger an intelligent agent
or perform menu selections with low latency and high specificity
using neural control is of great practical interest.

A number of studies of neural speech decoding motivate the
selection of electrocorticography (ECoG) for neural keyword
spotting. Bouchard et al. (2013) were the first to examine
the organization of articulation in ventral sensorimotor cortex
(vSMC) using high-density ECoG recordings. Their study
revealed that high frequency activity in the high-gamma range
(70–110 Hz) encodes precise movements of speech articulators
with a high degree of temporal specificity. Mugler et al. (2014,
2015) similarly characterized the articulatory representation in
this area and further showed that this activity is more related to
the gestural trajectories of specific muscles in the vocal tract than
it is related to the specific keywords or phonemes articulated.
Kanas et al. (2014) used high frequency content of speech-
active areas of the brain to perform voice-activity-detection, or
VAD—segmenting periods of speech from non-speech periods.
Moreover, high-gamma activity from ECoG arrays was used as
input to a language model and a small-vocabulary continuous
speech recognition from neural signals was created in a study
by Herff et al. (2015). Decoding of phonemic (Pei et al., 2011a;
Bouchard and Chang, 2014) and gestural (Lotte et al., 2015;
Mugler et al., 2015) content from vSMC has repeatedly been
shown as well. These studies provide evidence that the dynamics
of speech require the spatiotemporal resolution of intracortical
electrophysiological recordings; features derived from non-
invasive modalities do not modulate at rates necessary to make
short-time inferences about articulatory processes. This study
employs subdural ECoG recordings to determine the feasibility
of neural keyword spotting using high quality neural recordings
as a proof of concept.

In building a neural keyword spotter, we were inspired by
acoustic keyword spotting, where this has been accomplished
in a variety of ways. Hidden Markov Models (HMM) have
been applied to this problem extensively. HMM based real-time
keyword spotting tends to use a silent state, a keyword state
(or series of states) and a set of “garbage” states that capture
typical non-keyword speech. In “whole-word” approaches, each
state of the HMM represents an entire word (Rohlicek et al.,
1989; Rahim et al., 1997), whereas phonetic-based approaches
(Rohlicek et al., 1993; Bourlard et al., 1994; Manos and Zue,
1997) break down the keyword and non-keyword utterances
into sequences of phoneme sub-models. A keyword has been
identified in the window of interest if the state sequence
prediction proceeds through a keyword state (for whole-word
modeling) or sequence of phonetic states corresponding to
a keyword. Using a phonetic-based model to perform neural
keyword spotting is risky: according to Mugler et al. (2014), a
full set of American English phonemes has only been decoded
at 36% accuracy from implanted ECoG arrays, motivating a
whole-word approach.

Keshet et al. (2009) suggested a low-latency acoustic keyword
spotting using a discriminative approach rather than a HMM-
based probabilistic model. In this approach, a linear classifier
is trained to maximize the margin between acoustic feature

sequences containing keywords and others that don’t. As detailed
in the aforementioned study, this approach does not rely on
computationally intensive Viterbi decoding and achieves higher
keyword spotting performance than HMM-based systems.

We have chosen to use a neural voice-activity detection
combined with an adaptation of the aforementioned
discriminative (non-HMM-based) approach to perform
neural keyword spotting. A flowchart that describes the signal
processing chain and two-step discriminative decoding pipeline
is described in Figure 1. Application of neural features to
existing acoustic KWS approaches requires a few modifications.
For example, mel-frequency cepstral coefficients derived from
a single spectrally-rich microphone recording are sufficient
to perform acoustic keyword recognition; by contrast, there
are many electrodes in an ECoG recording, each with a single
time-varying “activation” signal, corresponding to changes
in neural population firing rates, in turn indexed by changes
in high frequency activity. These activations capture neural
processes necessary to sequence, control, and monitor the
production of speech, as opposed to acoustic features that
capture discriminable aspects of spoken acoustic waveforms.
The motor representations of speech that capture the dynamics
of articulators, and the auditory representations of speech
that capture phonetic content during self-monitoring but also
activate during perceived speech, are of particular interest to a
neural keyword spotting system.

A recent study by Ramsey et al. (2017) has significantly
influenced the approach we’ve developed to capture the
spatiotemporal dynamics of neural features for the purpose
of informing keyword discrimination. In the study, Ramsey
discriminated phonemes from high density ECoG recordings of
vSMC using the correlation of spatiotemporal matched filters
as a means of identifying when the spatiotemporal pattern
of high frequency activity matched stereotyped patterns for
articulations (or gestural sequence of articulations). This method
achieved 75% accuracy in a four-class phoneme discrimination
problem, and highlighted the importance of including temporal
relationships of high frequency activity between cortical sites
in decoding models. We extend this methodology here to
the creation of maximally discriminative “neural templates”
to identify consonant-vowel “keyword” utterances instead of
single phonemes.

“Wake-words” for voice-assist technologies are typically
chosen to be low-frequency and phonetically complex to reduce
the number of spontaneous detections. To simplify the problem
of producing a more neurally detectable keyword, we examine
monosyllabic, “consonant-vowel” keywords, varying the place
of articulation, the consonant voicing, and the vowel height
during phonation. Within the context of this study, any speech
following the presentation (either textual or auditory) of a CV
syllable stimulus is called an “utterance.” Keyword spottermodels
were trained/tested on one of those utterances, defined as the
“keyword” utterance for that particular model, with the rest
defined as non-keyword utterances—resulting in the creation
of 12 keyword spotter models per subject; each sensitive to
a specific monosyllabic keyword. We have chosen to examine
keyword detection accuracy with respect to non-keyword speech
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FIGURE 1 | A flowchart representation of the keyword-spotting signal processing pipeline. Red arrows indicate flow of data through the pipeline. Dotted lines with

circles indicate models that were trained on the training dataset are used in this step for both the training and testing data. Training is performed using a visually

presented keyword reading paradigm, and testing occurs across an auditory keyword repetition task. This study implements a two-stage detector; one neural VAD

template is correlated across the testing dataset, and peak-picking indicates a detected utterance. When an utterance is detected, a discriminative classifier is used to

decide if the utterance was a keyword or non-keyword speech. Channel downselection, normalization parameters, neural templates, feature dimensionality reduction,

and classifiers are all trained on the reading (training) task and applied to the repetition (testing) task to simulate how keyword spotting would realistically perform in a

separate recording session.

and silence, as opposed to a multi-keyword decode to further
simplify the problem and performance metrics. We will also
limit ourselves to causal methods of feature extraction and
classification for this study to realize how neural keyword
detection would perform if deployed in a low-resource real-
time scenario.

This is the first study of neural keyword spotting in ECoG
recordings that demonstrates low latency (~1 s) using causal
models and feature extraction methods akin to low-resource
acoustic KWS implementations. Application of spatiotemporal
matched filters, trained/tested in separate ECoG recordings,
appeared to strongly influence the specificity of the spotter
in single-trials. We found that spatial and temporal features
from vSMC can be used to discriminate place of articulation
and consonant voicing in monosyllabic keywords, and that
vowel height (/a/ vs /i/) is much more discriminable using
neural features from STG during self-monitoring of overtly
produced speech, as opposed to the motor representations that
are simultaneously present in vSMC.

2. MATERIALS AND METHODS

Please refer to Figure 1 for a brief overview of the methodology
used in this study, summarized here for convenience, but with
more detail provided in subsections 2.1-2.6. Two datasets were
collected in separate recording sessions; one used for training
model parameters and another used for performance validation.
The first step in the signal processing pipeline was a signal re-
referencing to the common average followed by amanual channel
downselection and spectral extraction of high gamma log-power.
High gammamodulation across the training task was normalized
(z-scored) per-channel to a pooled baseline period constructed
by segmenting baseline periods from across the training task.
Response periods in the training dataset were used to train
neural templates, and these templates were cross-correlated

over the normalized high gamma features before a principal
component analysis (PCA) was fit. Discriminative classifiers
for each keyword were fit on these “template-PC” features
and a decision boundary was chosen for each keyword spotter
individually. Similarly, a threshold parameter was selected for a
causal peak-picking algorithm applied to the cross-correlation of
the grand-average “VAD” template. The same preprocessing steps
were applied to the testing dataset, and high gamma log-power
was normalized across testing dataset. The templates and PCA
that were trained previously were then applied without further
calibration to the testing high gamma features, and template-
PC features corresponding to super-threshold peaks in the
VAD template output were classified using the aforementioned
discriminative classifiers.

2.1. Data Collection
Subdural electrocorticographic recordings were made in eight
subjects undergoing intracranial monitoring prior to resective
surgery for drug-resistant epilepsy. Electrocorticographic
(ECoG) arrays of platinum electrodes with varying exposed area
and spatial density were placed for a 1–2 week period according
to clinical requirements. Subjects performed both syllable-
reading and syllable-repetition paradigms as part of a protocol
approved by the Johns Hopkins University Institutional Review
Board. All subjects gave written informed consent in accordance
with the Declaration of Helsinki. Electrode localization was
performed by aligning electrode locations from a post-operative
computed tomography image with a pre-operative magnetic
resonance image using Bioimage Suite (Papademetris et al.,
2006). Neuroimaging and electrode locations are shown
in Figure 2.

Subjects performed two tasks wherein they were asked to
overtly produce monosyllabic consonant-vowel (CV) utterances.
In the (syllable) reading task, a textual representation of the
utterance was visually presented for 1 s (see Table 2 for details)
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FIGURE 2 | Neuroimaging and electrode localization for eight subjects implanted with subdural electrode arrays. Electrodes positioned over sensorimotor cortex are

highlighted in red and electrodes over superior temporal gyrus are highlighted blue. Biographical and experimental details for these subjects can be found in Table 1.

Subject 1 had a large lesion within pre-central gyrus, from which very little high frequency activity was recorded. Subject 3 had an ictal locus very near sensorimotor

cortex with substantial inter-ictal activity that limited observation of neural features in this area. Subject 8 had a lesion in the right supramarginal gyrus.

followed by an intertrial interval of 2–3 s during which the subject
was instructed to fixate on a visible fixation cross. The (syllable)
repetition paradigm was identical, except that the fixation cross
remained on screen throughout the task and the utterance was
aurally cued using a speaker. In both tasks, the subject was
instructed to speak the prompted syllable aloud after stimulus
delivery, and a microphone was used to record the subject’s
responses to a high quality digital audio file. A monitor-output
cable connected the microphone recording device (Zoom H2,
Zoom Corporation, Tokyo, Japan) to an auxiliary analog input
on the electrophysiological amplifier (Neuroport, Blackrock
Microsystems, Salt Lake City, UT; and EEG1200, Nihon Kohden,
Tomioka, Japan), recording a lower-resolution version of the
subject’s speech synchronized with the ECoG data at 1,000
samples per second. BCI2000 (Mellinger and Schalk, 2007) was
used to present stimuli and record the data from the amplifier
into a standardized format for offline analysis. Data was collected
in blocks of 60 trials; 5 trials each for all 12 utterances in a
randomized order. The paradigm was split across two blocks of
reading and two blocks of repetition for each subject, but time
and clinical constraints limited collection to one-block of the
tasks for some subjects. Details of data collection for each subject
is documented in Table 1.

2.2. Preprocessing and Segmentation
Seventy one channels across all subjects (1–18 per subject) were
identified as noisy/bad by a neurologist via visual inspection of
the raw ECoG signals and were removed from further analysis.
Spatial filters were applied to re-reference recordings to the
common-average of the included channels. Trial markers from
BCI2000 that designated stimulus presentation (auditory or
visual) were used to define the trial onset points. The 250–450
Hz band-power in the synchronized low-fidelity microphone
recording captured the first formant of speech in each subject,
and was thresholded to detect the voice onset time for each
trial. These threshold crossings tend to be associated with the
voice-onset-time in CV keywords containing a voiced consonant
and the plosive release in CV keywords containing an unvoiced
consonant, due to the silent nature of consonant articulation.

Templates were generated from a 1-s “response” period centered
around this threshold crossing to capture differences in the
timing of neural features relative to the response onset (Mugler
et al., 2014; Jiang et al., 2016; Ramsey et al., 2017). Neural
features were normalized within each task individually to a
pooled “baseline” period which was created from a 1-s period
prior to stimulus presentation across all trials within a single
task. All trials from the reading dataset were used for training
templates and classifiers that were applied across the repetition
dataset. In this way, the training data were entirely separate from
the testing data, and the templates generalized feature extraction
across tasks.

2.3. Feature Extraction and Electrode
Downselection
Electrodes over sensorimotor cortex and superior temporal gyrus
were manually identified by a neurologist; see Figure 2 for a
summary. Electrodes lying outside these areas were excluded
from further analysis. A 128ms window sliding by 16ms
increments was used to perform spectral decomposition via
the fast Fourier transform. Spectral power was log-transformed
and z-scored to the baseline period, per-frequency. Frequency
bins between 70 and 110 Hz were averaged together to form
a time-varying feature capturing the band power modulations
in the “high-gamma” range, a frequency range highly correlated
with the firing of local neural populations (Ray et al.,
2008). This feature was then re-normalized to the baseline
period per-electrode.

2.4. Template Generation and Voice Activity
Detection
Previous studies indicate that the timing of high gamma activity
contributes significantly to decoding of speech from vSMC (Jiang
et al., 2016; Ramsey et al., 2017). Neural templates were trained
to capture spatiotemporal relationships of high gamma activity
in an efficient, but causal representation. A “response template”
was created by calculating the mean of the neural responses
from all trials (N = 60–120) in the training dataset. A “keyword
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TABLE 1 | Biographical and experimental details for subjects.

ID Side Age Sex Reading

trials

Repetition

trials

Grid specifications

1 R 17 M 120 60* vSMC: 85 (85 HD-5)

STG: 2 (2 HD-5)

Total: 87

2 L 37 F 60 120 vSMC: 36 (32 µ, 4 SD)

STG: 57 (57 HD-5)

Total: 93

3 L 25 M 105** 120 vSMC: 30 (30 HD-5)

STG: 32 (16 µ, 16 SD)

Total: 62

4 L 39 M 120 120 vSMC: 14 (14 SD)

STG: 48 (32 µ, 16 SD)

Total: 62

5 L 40 M 120 120 vSMC: 13 (13 SD)

STG: 9 (9 SD)

Total: 22

6 L 40 F 60 120 vSMC: 4 (4 SD)

STG: 87 (81 HD-3, 6 SD)

Total: 91

7 R 27 M 120 60 vSMC: 5 (5 SD)

STG: 12 (12 SD)

Total: 17

8 R 19 M 120 120 vSMC: 52 (43 HD-5, 9 SD)

STG: 19 (HD-5)

Total: 7

The implant hemisphere (side), age, sex, number of reading/repetition trials, and grid

specifications for all eight subjects in the study are listed here. Associated neuroimaging

and electrode localization can be found in Figure 2. Channels are delineated by region

of interest, and further by the diameter of the electrode’s exposed area, then by the inter-

electrode spacing. SD: Standard macro-array (2 mm diameter, 1 cm pitch). HD-5: High

density array (2 mm diameter, 5 mm pitch). HD-3: High density array (1 mm diameter, 3

mm pitch). µ: Micro-ECoG array (75 µm diameter, 1 mm pitch). *120 trials were recorded,

but the synchronized microphone recording failed for the second set of 60 trials. Neural

keyword spotting can be applied to this second block, but ground truth timing metrics are

unavailable. **Recording session ended early.

template” for each keyword was also created by calculating
the mean of the neural responses for each of the keywords
individually (5–10 trials). We additionally took advantage of
our keyword design to create neural templates composed of
higher trial counts across axes of articulation, as described in
Table 2. The response template was then subtracted from each of
these keyword templates, the resulting “discrimination template”
captured spatiotemporal relationships that differed from the
mean neural responses in the response template. A significance
mask was created by z-scoring the condition mean (prior to
subtraction of the response template) relative to the baseline
period. A temporal smoothing kernel (hamming, 0.1 s) was
applied to reduce noise in the template before the significance
mask was applied; elements with a z-score of <3.0 were set
to zero to further reduce noise. The smoothed and regularized
discrimination templates were correlated with the corresponding
high-gamma features in both testing and training datasets—
these features were further smoothed (hamming, 0.25 s) to
reduce the influence that slight timing mismatches could have
on keyword discrimination. An example visualization of the

TABLE 2 | Utterances and associated axes of articulation.

/IPA/ (“Stim”) Bilabial Alveolar Velar

Voiced /ba/ (“BAH”) /da/ (“DAH”) /ga/ (“GAH”)

Unvoiced /pa/ (“PAH”) /ta/ (“TAH”) /ka/ (“KAH”)

/IPA/ (“Stim”) Bilabial Alveolar Velar

Voiced /bi/ (“BEE”) /di/ (“DEE”) /gi/ (“GEE”)

Unvoiced /pi/ (“PEE”) /ti/ (“TEE”) /ki/ (“KEE”)

Utterances vary on three axes; three places of articulation, two ways of consonant voicing,

and two vowel heights. Utterances are shown with their IPA notation as well as the textual

prompt as shown in the reading paradigm. “GEE” would typically be pronounced /Ãi/ but

subjects were instructed to respond with /gi/ instead.

generation of a discrimination template for bilabial keywords
can be found in Figure 4A. A PCA was fit to identify linear
combinations of template output features that accounted for
90% of the variance across the entire reading task. Principle
components of template outputs were calculated for both the
reading and repetition datasets, reducing covariance in the
template outputs and creating neural features which can be used
for keyword discrimination.

Electrodes from STG were excluded from the response
template; the resulting template was used as the neural VAD
template. Auditory representations of speech in STG tend to have
less specificity to self-generated speech and their inclusion in
the VAD model can result in false-positive detections coincident
with the perception of speech, whether or not it was produced by
the subject. Neural VAD was calculated as the squared temporal
correlation between the VAD template and the normalized high-
gamma power. VAD output was further smoothed using a
temporal smoothing kernel (hamming, 1.0 s). A causal peak-
picking algorithmwas applied to identify utterance onset times—
the derivative of the neural VAD signal was thresholded and
the zero-crossing that follows a threshold crossing was chosen
as the utterance detection time. Example templates and their
corresponding correlational output are shown in Figure 4.
Application of these templates to live neural features results in
exactly 1 s of latency for neural VAD and keyword discrimination.

2.5. Discriminative Classification
A discriminative classifier similar to SVM, as described in
great mathematical detail by Keshet et al. (2009), was trained
on the reading dataset. In broad strokes, the training step
attempted to designate a linear discrimination boundary that
maintains a constant margin of separation between pairs of
feature-vectors corresponding to keyword and non-keyword
utterances. For each pair, the training step searched for the
feature-vector within ±100 ms of the alignment time for
the non-keyword utterance that looked maximally “keyword-
like,” given the current discrimination boundary. The learning
step adjusted the discrimination boundary using the difference
between that maximized non-keyword feature-vector and the
ground-truth keyword feature-vector. A significant advantage of
this classifier is that it can be trained online as new observations
become available.
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FIGURE 3 | High-gamma single-trial rasters across the reading task from four manually selected electrodes in Subject 1. Trials, plotted along the Y axis, were sorted

first by the place of articulation for the consonant, then by consonant voicing. Trials were aligned with response-onset time set to 0 s, denoted by a black vertical line

at the center of each raster. Color denotes the high-gamma feature z-score normalized to a pooled pre-trial baseline period. Activity in electrode (A) appears to

represent a bilabial place of articulation, whereas activity in electrode (B) appears to indicate an alveolar place of articulation. Timing differences of high-gamma activity

relative to the voice onset time encoded the voicing of bilabial and alveolar consonants in these areas. Electrode (C) exhibited consistent high-gamma amplitude and

timing for all utterances; informing neural VAD but less useful for keyword discrimination. Electrode (D) appeared to encode consonant voicing across all places of

articulation. No clear patterns emerged if the trials were sorted by vowel height (/a/ vs /i/) for any electrodes in Subject 1.

Pairs of feature-vectors associated with keyword and non-
keyword utterances were assigned within stimulus blocks.
Additionally, feature-vectors associated with keyword utterances
were paired with feature-vectors corresponding to silent periods
(1.0 s before stimulus onset) to adapt the classifier boundary to
VAD false-detections during silent periods. In Figure 5, classifier
output was calculated using ground-truth utterance detections
derived from the microphone. During simulated testing, results
of which are shown in Figure 6, the classifier output was
calculated at times when the neural VAD model identified an
utterance. The slight temporal misalignments between neural
VAD and microphone-derived timing accounts for the different
classifier performances between these figures.

2.6. Testing and Performance Metrics
The templates, principle components, and discriminative
classifiers were trained on all trials of the reading task. Testing
and performance metrics were calculated from the application
of these models to the repetition task. A VAD performance
metric was calculated by sweeping the aforementioned VAD
threshold value from 0 to 20 standard deviations (relative to
baseline periods) and comparing the utterance detection times to
the ground-truth microphone threshold crossings. An utterance
detection within ±100 ms of a microphone event was classified
as a true-positive, but subsequent detections for that utterance
were considered false-positives.

An ROC curve was created for each of the keyword classifiers
using microphone-derived voice onsets in the repetition task. A
classifier threshold was swept from −10 to 10 and the resulting
keyword detections and false-positives were used to create an
ROC curve and derive area-under-curve (AUC) metrics for
each keyword classifier. Significance of the AUC statistic was
calculated by scrambling the ground-truth utterance labels while
training keyword detectors. A bootstrapped null-distribution of
1000 AUC metrics was generated for each keyword classifier,
from which statistical significance thresholds for the metric were

calculated. Keyword spotting performance using neural VAD
times was also calculated for each classifier using a threshold
that was chosen to maximize sensitivity while minimizing false
detections’ in particular, equalizing the error rates for false-
negatives and false-positives, the so-called “equal error rate”
condition (Motlicek et al., 2012)—on the training dataset.

3. RESULTS

Within the context of this methodology, discrimination between
keyword and non-keyword speech relies upon differences in
timing and/or amplitude of high-gamma activity. Differences in
high-gamma amplitude across keywords are useful in traditional
decoding approaches where only single time-points of high-
gamma activity are used to make classification decisions. Single-
trial plots, as seen in Figure 3, suggest high-gamma amplitude in
vSMC can be sufficient to decide the place-of-articulation for an
utterance. Consonant voicing appears to be encoded in the timing
of high-gamma activity relative to voice onset time. The sensation
of pressure build-up in the vocal tract prior to plosive release is a
plausible explanation for the timing of this discriminable neural
activation in electrodes a and b, especially given the placement of
these electrodes in postcentral gyrus; an area typically associated
with sensation.

The correlation of neural templates with high-gamma activity
created high-level features that appeared to be useful for
clustering utterances using these spatiotemporal relationships,
as shown in Figure 4. The discriminative quality of a neural
template appeared to rely primarily upon the number of trials
used to create it; a decrease in the template noise was associated
with a higher number of trials. A neural template for a particular
contrast highlights the difference from the mean template, which
can be a problem if there is no discriminable difference between
the contrasts. As seen in Figure 4, Subject 1 had very little
discriminable activity within the vowel height condition (/a/ vs
/i/), meaning the trial average across the ‘/a/’ condition and
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FIGURE 4 | Example neural templates and utterance discrimination in Subject 1. (A) From left to right: the response spatiotemporal matched filter; an average of all

keyword utterances, the bilabial spatiotemporal matched filter (STMF); an average of just keyword utterances with a bilabial place of articulation, the difference

template; the subtraction of the response spatiotemporal matched filter from the bilabial spatiotemporal matched filter, and the discrimination template; the regularized

and smoothed/denoised discrimination template for bilabial keywords. (B) Neural templates, created as a trial-average of particular keywords or phonemic contrasts

followed by regularization and normalization, are shown for the four electrodes (a, b, c, and d) depicted in Figure 3. The VAD template, shown at the bottom, is the

mean across all 120 trials in the task. The correlation of these templates with the high-gamma activity in the same task is shown in the plot to the right of the

templates for a contiguous period of ~95 to ~125 s into the reading task. Vertical gray lines in this plot indicate ground truth utterance times as recorded by a

microphone, and the associated utterance is indicated at the bottom of these lines. Peaks of the neural VAD output closely matched the utterance times. (C) The

values of these template features across all templates (including many not pictured) at the utterance onset times were collected and reduced to two dimensions using

multi-dimensional scaling, then plotted in the scatter plot, highlighting how these features clearly discriminate place of articulation and consonant voicing.

the ‘/i/’ condition were very similar to the trial grand-average.
Subtracting the trial-average from the two condition averages
resulted in a template that introduced significant noise to the
feature set. The inclusion of these templates was less of a
problem due to the following decomposition of these features
into principal components; the noisy template outputs tended to
be de-emphasized as they did not explain much of the variance
of the features across time. Noting that template output appeared
to fluctuate around neural VAD timings, temporal alignment was
absolutely critical when interpreting these features.

Neural VAD and keyword discriminability appeared to
be somewhat decoupled; several subjects showed consistent
high-gamma modulation across utterances that was useful for
performing VAD, but these features were less useful for keyword
discrimination, as shown in Figure 5. Subject 1 exhibited
exceptional VADwith highly significant discrimination of several
keywords. Subject 2 showed similar VAD performance, but
demonstrated relatively poor keyword discrimination. Classifiers
in Subject 1 leveraged neural features that discriminated
consonants well (shown in Figure 3), whereas classifiers from
Subject 2 were only informed by features that discriminated
vowel height and alveolar place of articulation, shown in

Figure 7. VAD and keyword discrimination results for all subjects
are shown in Supplementary Material.

4. DISCUSSION

This study is the first to examine keyword spotting using
ECoG. A neural keyword spotter could form the basis of a
menu-selection BCI for disabled users, or a low latency “neural
click” in a virtual reality context where the user is unable to
see/use a real-world input device. A BCI-enabled keyword spotter
could respond selectively to the user whereas acoustic keyword
spotters struggle to operate in multi-speaker conditions. These
results were obtained by performing a two-step classification
procedure involving neural VAD and keyword vs. non-keyword-
speech classification. As mentioned previously, neural voice
activity detection has been performed before using spectral
decomposition techniques and a discriminative classifier by
Kanas et al. (2014). Performing VAD using this method of
template-based “matched filtering” has a number of benefits
over this prior work. Due to the fact that all utterances are
roughly the same length and surrounded by silence, cross

Frontiers in Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 6021

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Milsap et al. ECoG Keyword Spotting

FIGURE 5 | Isolated VAD and keyword discriminability for two subjects. The left-most panel shows the electrodes highlighted in red and blue that were used to

discriminate syllables. Only electrodes highlighted in red were used to perform VAD. The center panel shows the VAD performance in sensitivity (percentage of

utterance timings correctly identified) against the number of false detections per utterance for various VAD thresholds. The right-most panel shows ROC curves for all

12 keyword detectors. ROC curves with AUC values were significant at the 95% confidence interval are highlighted in red. The keyword detector that produced the

highest AUC is highlighted in bold-red and indicated via annotation under the curves, followed by an asterisk that indicates significance at the p < 0.05 level with

respect to the distribution of maximum AUC models.

FIGURE 6 | Simulated keyword spotting performance on the testing dataset for all spotters across all subjects. For each subject, two boxplots relating the

performance of all 12 keyword spotters are shown; a blue boxplot to the left indicating the percentage of correct keyword detections with a value ideally closer to 1.0,

and a red boxplot to the right indicating the percentage of false keyword detections per utterance with a value ideally closer to 0.0. These performance metrics are

coupled to neural VAD performance, which is shown in the Supplementary Material for all subjects.
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FIGURE 7 | Vowel-specific high gamma activity from Subject 2 (top) and Subject 6 (bottom). Single-trial high-gamma rasters to the left are sorted first by place of

articulation, then by vowel height. Electrode (D) and (H) appear to encode vowel height, in similar areas of STG. Electrode (A) and (B) are micro-ECoG electrodes over

vSMC that appear to encode place of articulation. Electrodes (C), (F), and (G) appear to modulate consistently with all utterances and are more useful for VAD, but

provide little discriminative information. Modulation recorded by electrode (E) appears to be consistently related to articulation, but does not appear to discriminate

utterances by place of articulation or vowel height.

correlation with the neural VAD template actually provides a
good alignment point for the application of a discriminative
classifier. Furthermore, the cross correlation is computationally
efficient and only relies on a peak-picking implementation
to find utterances. The second-stage discriminative classifier
tends to classify VAD false detections as “non-keyword
utterances,” and serves as a secondary filter before detecting
keyword events.

Acoustic “wake word” spotting typically relies on keywords
that are low frequency and dissimilar from typical non-
keyword utterances, the most popular wake words being
words/phrases like “Alexa,” “Hey Siri,” and “Okay Google.” In
this study, monosyllabic keywords were chosen to examine
what makes keywords more distinguishable neurally as opposed
to acoustically. The utterances used in our experiment were
exceptionally similar to each-other, varying only by 1–3
distinctive articulatory features. Indeed, a particularly important
feature—keyword length—was the same across all utterances,
making the keyword detection problem significantly more
difficult. The simulated keyword spotting performance for all
keyword spotters in Subject 1 is shown in Supplementary Figure,
and the simulated keyword spotting summary performance

metrics are shown for all subjects in Figure 6. While this
performance is not comparable with the current state of the art in
acoustic keyword spotting, neural VAD alone appears to provide
a temporally precise 1-bit (silent vs. speech) BCI and the addition
of keyword discrimination would allow the user to trigger the
BCI while not restricting speech between intended triggerings.

The most striking finding from this study was that vowel
height was poorly represented in vSMC. This is consistent
with the findings of Bouchard et al. (2013) in which syllable
discrimination using a high-density grid in vSMC achieved lower
cluster separability of vowel height than manner of consonant
articulation. This result also corroborates a finding from Ramsey
et al. (2017) that vowels are the least distinguishable phonemes in
their test set; the authors speculated that lacking plosives, vowels
differ only in lip positions, which may not be well-represented
in this area. Our findings suggest that vowel height is well
represented in auditory association cortex areas STG, presumably
due to self-monitoring, shown in Figure 7.

None of the subjects in the study exhibited high gamma
activity that significantly encoded vowel height within vSMC.
Many studies indicate vowel phones may be decoded from
vSMC (Pei et al., 2011a; Bouchard and Chang, 2014; Mugler
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et al., 2014; Ramsey et al., 2017), although some studies
also note that decoding accuracy is generally worse than
consonant phones (Mugler et al., 2014; Ramsey et al., 2017).
None of the aforementioned studies report a failure to
decode vowel phones from vSMC, which is contrary to our
findings. This may be due to the fact that the vowels chosen
for this study, /a/ and /i/, result from a slight variation
in tongue height and do not involve differential activation
of the lips, such as with the vowel contrasts selected for
the aforementioned studies, /a/ and /u/, which can recruit
sensorimotor areas related to the face. This said, STG has been
shown to consistently modulate with differences in vowel height
(Mesgarani et al., 2014) during audition and self monitoring.
Practically, our results suggest that discrimination of vowels
during keyword spotting with a neural interface may be
improved by including auditory representations from STG with
sensorimotor representations from vSMC. This finding also
suggests that modulation and control of vowel height relies on
interactions between auditory areas and motor areas more than
consonant articulation which seems to be well represented in just
suprasylvian cortex.

The subject with electrode coverage most analogous to the
implant detailed in Bouchard et al. (2013) had a high-density
grid with 2-mm electrode diameter and 5-mm interelectrode
distance over somatosensory cortex. Although we showed no
significant neural differences between low and high vowel height
with this grid placement, the grid in Bouchard et. al. had a slightly
smaller pitch and this higher resolution may have captured more
information about vowel height than we observed. Similarly,
we showed significantly worse performance with lower density
coverage of vSMC, demonstrated by subjects with only standard-
density (2 mm electrode diameter and 1 cm pitch) coverage,
indicating that standard ECoG arrays are likely insufficient for
a comprehensive speech neuroprosthesis. Some subjects were
also implanted with microelectrode array grommets (75 µm
electrode diameter and 1 mm pitch); these arrays have a sensor
density similar to what is thought to be the spatial limit of
subdural neural recordings (Slutzky et al., 2010). Micro-ECoG
was useful in discriminating place of articulation for utterances
from Subject 2, but its utility was greatly dependent on placement
due to its limited spatial extent. An ideal ECoG array would
probably cover all of vSMC with the same 1 mm pitch, but
this is not yet technically feasible with clinically approved
ECoG electrodes and their connectors. Although our best results
came from a subject with a high density grid over vSMC,
our inability to observe neural activity associated with velar
consonants indicates that even these high density arrays do not
capture sufficient detail to distinguish all articulators (and hence,
all phones) necessary for a speech neuroprosthesis. Further
research into recording devices that cover a similar spatial extent
but with higher sensor density and channel counts might be
fruitful, but our results indicate that neural features recorded
from high density ECoG arrays can, at a minimum, produce
a usable neural interface for whole-word keyword spotting in
overt speech.

Correlating spatiotemporal templates with streaming high
gamma features was primarily motivated by existing keyword

FIGURE 8 | Keyword discrimination ROC curves for Subject 1 before (to the

left) and after (to the right) replacement of neural templates with rectangular

smoothing windows. Keyword discrimination performance dropped across all

models suggesting inclusion of spatiotemporal relationships using neural

templates aids keyword discrimination.

search methodology, as well as a recent study by Ramsey
et al. (2017). The temporal encoding of consonant voicing
in Subject 1 (see Figure 3) further motivated the application
of spatiotemporal template methodology. To evaluate the
contribution of neural templates to keyword discrimination,
the templates were replaced with a rectangular window of
the same size, resulting in smoothing of the high gamma
features on the same order as that of the templates. After
making this change, we observed a marked drop in keyword
discrimination, highlighted in Figure 8, suggesting that temporal
relationships between high-gamma events provide information
useful for discriminating keywords, and that these templates
are an effective way of quantifying these relationships in
single trials.
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A rational application of neural keyword spotting would
detect keywords that would have more contextual relevance
in the presence of continuous speech. Commercial keyword
spotting systems tend to select low-frequency words with more
discriminable acoustic features that maximize the probability
of keyword detection while minimizing the number of false-
positive detections during typical non-keyword speech. The
keywords chosen for this particular study were not selected with
these considerations in mind, but rather highlight how keyword
spotting performance varies primarily with the articulatory
representations sampled. For Subject 1, there were no electrodes
that showed high gamma modulation during the articulation of
syllables with a velar place of articulation—yet within the context
of this study—these articulations were readily discriminable
because of this lack of neural activity. Within the context of
Figure 3, a keyword that only modulated electrodes c and d, and
not a or b, can be reasonably deduced to have a velar consonant,
but if the keywords were downselected to just “GAH, KAH, GEE,
and KEE,” these keywords would not be sufficiently discriminable
using the coverage from Subject 1. As described earlier, Subject
1 also had no discriminable neural modulation across the vowel
contrast in the keyword set, with false detections tending to
trigger for the alternative vowel height (see simulated KWS
performance for Subject 1 in Supplementary Material). These
observations demonstrate why whole-word keyword spotting
approaches are better suited for neural data. Some phonemic
representations may not be sampled by a particular electrode
coverage even with high-density spatial sampling—particularly
if the neural populations associated with those articulators are
located in a sulcus, which surface ECoG has difficulty sampling.
They further demonstrate the inherent difficulty of performing
phonemic-based automatic speech recognition ala (Herff et al.,
2015) using even the high density neural recordings from our
best-performing subjects.

Critically, the results of this study suggest that the precise
temporal sequencing of neural activity correlated with the subset
of neural articulator representations that are sampled can be
sufficient to discriminate a keyword from non-keyword speech.
Furthermore, neural keyword spotting has several significant
advantages to an acoustic keyword spotting system. Neural
keyword spotting is capable of activating selectively to the
intended speaker even in the presence of multiple speakers,
and it performs keyword discrimination using features that
can discriminate acoustically similar words like “Alexa” and
“Balexa” which most commercial keyword spotting systems
would struggle with using acoustic features alone—especially in
the presence of noise. Although utterance detection using the
peak-picking algorithm described in this study would likely need
modification to properly trigger for keywords that occur mid-
vocalization, our results suggest that neural VAD as described by
this study would perform well for interaction with a virtual agent,
wherein a period of silence is followed first by the keyword, then
the command for the agent. We further propose that our results
demonstrate encouraging performance that motivates a follow-
up study using practical keywords in a less constrained scenario
involving continuous speech.

5. CONCLUSIONS

This study suggests that a high-sensitivity/specificity one-bit
neural keyword spotting BCI can be created using ECoG
recordings from vSMC and STG. Neural signals capturing speech
motor representations from vSMC appear to be useful for low-
latency (~1 s) and high-specificity VAD, while a combination
of neural signals from vSMC and auditory representations
from STG may be useful for discriminating keyword utterances
from non-keyword speech. Spatiotemporal relationships of
high gamma activity across electrodes, captured and efficiently
quantified using a method of neural template correlation, appear
to be instrumental for keyword discrimination. In this study,
keyword-spotting performance depended on several factors
including electrode density and the number of electrodes within
vSMC and STG. Our results suggest that high-density ECoG grids
may be necessary and sufficient for capturing the spatial layout
of cortical speech representations needed for a keyword-spotting
neural interface. Neural features that provide information about
consonant articulation appear to be best represented in vSMC,
with place of articulation primarily encoded by the spatial
location of high-gamma activity and consonant voicing encoded
by the temporal dynamics of this activity. Vowel height during
overt speech appeared to be poorly encoded by vSMC, but
better represented in traditionally auditory areas along STG
during self-monitoring. Although we did not test whether neural
activity in STG during covert speech was sufficient for decoding
vowel height, other studies have indicated that this may be
possible (Pei et al., 2011b; Leuthardt et al., 2012). Together with
these and other studies, our findings support the feasibility of
keyword spotting with an ECoG BCI provided that relevant
cortical areas are recorded with sufficient spatial sampling
and that keywords are composed of neurally discriminable
articulatory gestures.
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Brain–computer interfaces (BCIs) benefit greatly from performance feedback, but
current systems lack automatic, task-independent feedback. Cortical responses elicited
from user error have the potential to serve as state-based feedback to BCI decoders.
To gain a better understanding of local error potentials, we investigate responsive
cortical power underlying error-related potentials (ErrPs) from the human cortex during
a one-dimensional center-out BCI task, tracking the topography of high-gamma (70–
100 Hz) band power (HBP) specific to BCI error. We measured electrocorticography
(ECoG) in three human subjects during dynamic, continuous control over BCI cursor
velocity. Subjects used motor imagery and rest to move the cursor toward and
subsequently dwell within a target region. We then identified and labeled epochs
where the BCI decoder incorrectly moved the cursor in the direction opposite of the
subject’s expectations (i.e., BCI error). We found increased HBP in various cortical
areas 100–500 ms following BCI error with respect to epochs of correct, intended
control. Significant responses were noted in primary somatosensory, motor, premotor,
and parietal areas and generally regardless of whether the subject was using motor
imagery or rest to move the cursor toward the target. Parts of somatosensory, temporal,
and parietal areas exclusively had increased HBP when subjects were using motor
imagery. In contrast, only part of the parietal cortex near the angular gyrus exclusively
had an increase in HBP during rest. This investigation is, to our knowledge, the first
to explore cortical fields changes in the context of continuous control in ECoG BCI.
We present topographical changes in HBP characteristic specific to the generation
of error. By focusing on continuous control, instead of on discrete control for simple
selection, we investigate a more naturalistic setting and provide high ecological validity
for characterizing error potentials. Such potentials could be considered as design
elements for co-adaptive BCIs in the future as task-independent feedback to the
decoder, allowing for more robust and individualized BCIs.

Keywords: brain–computer interface, electrocorticography, error-related potential, error potential, execution
error, low-level error
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INTRODUCTION

Everyone makes mistakes and can learn from them. But the
neurophysiological mechanisms behind how we recognize and
use these mistakes to learn is still not completely understood.
Prior studies have focused on the error-related potential (ErrP),
an event-locked electrophysiological response generated during
task rule violations. The vast majority of our understanding
to date of the ErrP originates from electroencephalography
(EEG) studies (Ferrez and Millan, 2008; Iturrate et al., 2013;
Spüler and Niethammer, 2015; Zhang et al., 2015; Kreilinger
et al., 2016). The typical coverage and high temporal resolution
of EEG, relative to fMRI, allow for the identification of
wide-spread voltage changes in response to error. However,
because EEG is non-invasive, electrical signals from the cortex
attenuate and diffuse as they travel up through the skull,
leading to lower signal-to-noise ratio (SNR) and challenges
in source localization (Jatoi et al., 2014; Olson et al., 2016).
To circumvent some of these limitations, we investigate
error-related potentials in a one-dimensional brain–computer
interface (BCI) task using subdural electrocorticography (ECoG)
in human subjects.

Brain–computer interfaces represent a particularly useful
opportunity to characterize error-related brain responses. BCIs
rely on closed-loop (typically) visual feedback to inform the
user of their control and on-going performance. This feedback
is hypothesized to be key to the BCI learning process and
performance improvement (Green and Kalaska, 2011), analogous
to the utility of somatosensory feedback during the acquisition of
new motor skills (Newell, 1991). BCI decoders have traditionally
been static, in the sense that initial parameters in the algorithm
would be set and only changed by manual updates performed
by the BCI technician. Recently, however, there has been a push
to develop dynamic feedback systems that automatically update
over time based on pre-task parameters (DiGiovanna et al., 2009;
Orsborn et al., 2014; Pohlmeyer et al., 2014; Merel et al., 2015).
However, most efforts so far rely on knowledge of the task and
of actuator kinematics, thus limiting BCI co-adaptation to the
research setting and do not allow for automatic updating based
on signals generated by the user. A co-adaptive BCI may improve
the user experience by promoting faster mastery of the BCI and
by allowing longer term use through accounting for changes in
the brain due to plasticity.

Our motivation in this report was to gain a better
understanding of the electrophysiological signatures of error
potentials in BCI and whether this will serve to better inform
unsupervised co-adaptive BCIs. Specifically, relying on ErrPs
as a feedback source to inform adaptive BCI decoders, rather
than on specific task data, will allow for BCI use in less
constrained environments.

Previous work suggests there are different types of error-
related potentials which manifest in different contexts (Milekovic
et al., 2012; Spüler and Niethammer, 2015). Such potentials
are generally categorized into two classes, high-level error and
low-level error (Krigolson and Holroyd, 2007). Krigolson and
Holroyd distinguish the two on temporal disparities. Specifically,
low-level errors are those immediately correctable in control, and

high-level errors as not immediately correctable, which prevent
the achievement of a desired goal (Krigolson and Holroyd,
2007). For example, a reactionary turn of the steering wheel to
adjust for an unseen bump in the road would be considered
low-level error, and failing to reach your destination would be
considered high-level error. High-level error, also called outcome
error, is thought to be represented by the error-related negativity
(ERN), which is often localized to the medial-frontal cortex
(Krigolson and Holroyd, 2007; Wessel, 2012) and is believed to
be essential to reinforcement learning (Nieuwenhuis et al., 2004).
The reinforcement learning theory of the ERN suggests the error
signals are generated in the basal ganglia and propagate to the
cortex through the anterior cingulate cortex (ACC). Localization
of the cortical error-related potentials to the ACC has been
suggested in EEG (Krigolson and Holroyd, 2007; O’Connell et al.,
2007) and confirmed through ECoG (Bechtereva et al., 2005).

Low-level error, known as target error (Krigolson and
Holroyd, 2007; Krigolson et al., 2008) or execution error
(Milekovic et al., 2012, 2013), is believed to be represented
by positive deflections originating from the posterior parietal
cortex (PPC) following commitment of a behaviorally-defined
error (Krigolson and Holroyd, 2007; Ladouceur et al., 2007;
Krigolson et al., 2008). Although the exact role of this positive
activity over PPC is not completely agreed upon, the extent
literature converges on a general hypothesis that the PPC is
involved with action conflict monitoring, including movement
correction (Falkenstein et al., 2000; Nieuwenhuis et al., 2001;
Van Veen and Carter, 2002; Krigolson and Holroyd, 2007).

Various EEG studies have identified and investigated ErrPs
in the form of ERN (Nieuwenhuis et al., 2001; Ullsperger
and von Cramon, 2006; Ladouceur et al., 2007; Krigolson
et al., 2008; Iannaccone et al., 2015), PE (Nieuwenhuis et al.,
2001; Ladouceur et al., 2007; Navarro-Cebrian et al., 2016),
P300 (Krigolson et al., 2008; MacLean et al., 2015), and
other signals (Krigolson and Holroyd, 2007; Ferrez and Millan,
2008; Chavarriaga and Millan, 2010; Kim and Kirchner, 2013;
Spüler and Niethammer, 2015).

Here we aimed to expand upon our understanding of ErrPs
by bridging EEG efforts and characterizing time-frequency
responses through ECoG, cross-referencing evoked power effects
to the common cortical-localized sites of evoked response ErrPs.
We focus on low-level error and its presentation in the parietal
cortex, as clinical requirements of electrode placement often
constrain consistent frontal coverage. In addition, low-level error
is ultimately more relevant in influencing real-time BCI control
on a finer time scale than high-level error, which can only be used
to provide feedback on longer time-scales (e.g., once per trial).

A previous ECoG study by Milekovic and colleagues
demonstrated the presence of ErrPs across multiple cortical
regions in a continuous, overt-movement task in human ECoG
(Milekovic et al., 2012, 2013). The researchers observed low-level
and high-level ErrPs, described as execution and outcome errors,
respectively, in the motor, somatosensory, parietal, temporal, and
pre-frontal areas. Here, we utilize ECoG to investigate whether
errors induced during a motor-imagery BCI task would also
result in the typical ErrP profile. We focused exclusively on high-
gamma (70–100 Hz) activity. High frequency broadband power
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(HBP) is thought to best reflect local activity (Ray et al., 2008;
Manning et al., 2009; Miller et al., 2009) and is reliably recorded
through ECoG. We are particularly interested in examining local
response activity for error-processing across the surface of the
human brain. Rather than examining errors resultant from (1)
failed trial outcomes, (2) induced error, or (3) unexpected stimuli
beyond the user’s control, we took a novel approach by examining
naturally occurring errors in the BCI decoder’s performance in a
continuous control one-dimensional center-out task.

We hypothesize significant HBP changes in error-related
detection cortex. This is built on literature and computational
models describing ErrPs as a mismatch between sensory
expectation from an efference copy and from actual sensory input
(in this case, visual) (Holroyd and Coles, 2002; Nieuwenhuis
et al., 2004). This mismatch can be thought of as the sensory
discrepancy described in Miall and Wolpert’s forward model,
which is the difference between actual sensory feedback and
expected sensory feedback from an efference copy (Miall and
Wolpert, 1996). By gaining a better understanding of the
contribution of HBP to ErrPs, we eventually hope to enable
unsupervised reinforcement learning in the BCI decoder allowing
for robust co-adaptation and improvement of BCI usability.

MATERIALS AND METHODS

Participants
Three patients with medically intractable epilepsy (mean age:
19.67 years, one male), undergoing clinical seizure monitoring
at either Harborview Medical Center or Seattle Children’s
Hospital, consented and volunteered to participate in research
in accordance with the University of Washington Institutional
Review Board (see Table 1 for demographics).

Data Recording and Electrode
Localization
The electrocorticogram was acquired from subdural macro-
scale grid electrodes (Ad-Tech 8 × 8 platinum, 10 mm contact
spacing). Cortical potentials were recorded at 1200 Hz using
g.USBamps (GugerTec, Graz, Austria) through the BCI2000
software suite (Schalk et al., 2004). Pre-operative T1 MRI scans
were co-registered with post-operative CT scans (SPM8) to allow
for individualized electrode localization through BioImageSuite
software imaging package (Papademetris et al., 2006) in
accordance with previously published reports (Casimo et al.,
2016). Each subjects’ electrodes were then normalized to the
1 mm MNI 251 brain coordinate system (Evans et al., 1993)
using Freesurfer’s ReconAll for multi-subject analysis (Fischl,
2012) and a secondary transform through FSL FLIRT (part of the
FMRIB Software Library – FSL1) algorithms. Center value MNI
coordinates for each electrode were transformed to Talairach
space using the MNI anatomical labeling atlas, and Brodmann
area (BA) labels were estimated using the Talairach Daemon
Client (Talairach and Tournoux, 1988).
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BCI Task
Subjects were instructed to control the vertical velocity of a cursor
in a one-dimensional center-out BCI task, to reach and dwell
within a trial target for 1 s using motor imagery (Figure 1A).
Although trial success was determined by whether the cursor
dwelled within the target for 1 s, our investigation focuses on
correct and erroneous movements made toward or away from the
target (specific details provided below). The control electrode was
selected through a prior motor screening task, which was used
to identify the channel exhibiting the strongest HBP response
to a cued imagined movement task of the contralateral hand
or tongue (depending on electrode coverage) as previously
described (Wander, 2015; Table 1). Consequently the control
electrode was always localized to the primary motor cortex.

Each BCI run consisted of four blocks of eight randomly
ordered trials. Targets were placed either above or below the
starting center point, either large or small (35 or 20% of screen
height, respectively) and placed either near or far from the
starting center point (20 or 16% of screen height, respectively).
This resulted in eight unique trial configurations per block. Each
trial was structured to include a 1 s rest period where neither
the cursor nor target were displayed [inter-trial interval (ITI)],
followed by a 2 s cue period where the target was visible, followed
by a feedback period of up to 6 s where subjects would attempt
to reach and dwell within the trial target for 1 s. Each trial would
terminate either when dwell time was reached or the trial timed
out, whichever came first.

For the purposes of these analyses, we grouped trial
configurations to only distinguish between trials where the
target was placed above or below the starting point, reflecting
differences in behavioral task demands.

To drive the cursor up, subjects were required to increase
HBP in their control electrode using motor imagery. HBP was
estimated using BCI2000’s auto-regressive filter on the preceding
500 ms of data. HBP was normalized to 6 s of pre-trial data using
the BCI2000 built-in normalizer, and were linearly mapped to
cursor velocity as described in Wolpaw and McFarland (2004).
To drive the cursor down, they were instructed to rest. The cursor
velocity would update every 40 ms.

Offline Analysis for Error-Related
Potentials
All signal processing and statistical analyses were conducted in
MATLAB (MathWorks, Natick, MA, United States) computing
environment. For each subject, we performed common average
referencing to account for common noise across all channels
in the grid. We then removed 60 Hz noise and isolated the
high-gamma frequency band activity (HG, 70–100 Hz) using
4th order Butterworth filters (non-causal), and estimated the
amplitude envelope of the signals using a Hilbert transform.
Power was calculated by taking the absolute square of the
analytical amplitude across the full time series. Then the power
for each trial was normalized with respect to the preceding ITI
(baseline) by calculating the z-score specifically for HBP. The
full normalized power time series was smoothed using a sliding
Gaussian window with a window width of 40 samples to match
the update rate of the task ran in BCI2000.

Error and Correct Window Extraction
We were specifically interested in the topography of the
responsive HBP during periods of BCI error. To accomplish
this, we first grouped subject’s electrodes by identified Brodmann

FIGURE 1 | Task structure and epoch conditions. (A) Subjects modulated cursor velocity in a one-dimensional center-out BCI task using imagined hand or tongue
movement (Table 1) in order to reach and dwell within a target. Cursor was re-centered prior to each trial and was not displayed during the inter-trial interval (ITI) and
cue period. Trials were randomized to have the target located above or below the start position, near or far, and small or large. Trials were organized into four blocks,
each containing eight randomized trials. (B) Within trials, data were binned into epochs based on four movement conditions: cursor moved up correctly (I, light blue),
moved up erroneously (II, yellow), moved down correctly (III, navy blue), or moved down erroneously (IV, orange).
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Areas. Second, we defined decoder error as a mismatch between
the decoder assessment of HBP and the subject’s goal-directed
intention. This was defined operationally as when the slope of the
cursor movement (at any junction across the 6000 ms duration
of a trial) was in the direction opposite of the target position
for a continuous period of 400 ms. This definition allowed for
the identification of improper decoding under the assumption
that subjects intend to move the cursor toward a target during
trial feedback (for clarification, see Figure 1B). We reasoned
400 ms duration is sufficient time for the subjects to realize
error during real-time continuous feedback (Gerson et al., 2005).
We then identified the beginning of this period as t = 0 in
error identification. Likewise, correct performance windows were
extracted where the cursor movement was in the direction toward
the target for a 400 ms period, with t = 0 at the start of this period.
We then extracted error and correct epochs from these error and
correct windows, respectively.

To prevent overlap between epochs, we extracted only one
epoch per window, where we defined windows of 1000 ms
starting from 200 ms prior to our t = 0 time points to 800 ms
after, based on previously published reports investigating error-
related potentials in an overt-movement ECoG task (Milekovic
et al., 2012). Figure 2 shows data of one full length trial
from an example electrode with example windows and example
epochs. Note that there are often multiple error and/or correct
epochs within any given trial, based on our pre-defined states
described below.

From these defined windows, we classify epochs into the four
conditions presented in Figure 1B. Specifically, error epochs were
classified as when the cursor moves incorrectly upwards when
located above a target (Condition II) and when the cursor moves
incorrectly downwards when located below a target (Condition
IV). Finally, correct epochs were defined as when the cursor
moves correctly upwards when located below a target (Condition
I) and when the cursor moves correctly downwards when located
above a target (Condition III).

Statistical Analysis Epochs From Windows
To contrast HBP behavior across the cortical sampling space
during real-time continuous error detection, we generated
statistical analysis epochs from error and correct windows. These
epochs were defined as the samples from t = 100–500 ms in
their respective 1000 ms windows (where t = 0 corresponds
to the start of 400 ms consecutive movement in one direction,
as described above). Previous ErrP work by Milekovic et al.
(2012) observed that the window from 100 to 800 ms after
error onset engendered ECoG, error-related components during
an overt motor control task. We used the length and range
of t = 100–500 ms after error onset to characterize responsive
HBP behavior based on (1) a relatively short, continuous trial
period (6000 ms) and (2) previous EEG observations of typical
higher-order processing time of visual cues ranging from 150
to 500 ms, depending on the cortical area being examined
(Gerson et al., 2005).

FIGURE 2 | HBP throughout one trial. In this parietal channel in one subject (shown in black), we see a decrease in HBP as the cursor moves correctly toward the
target and increase when the cursor is no longer moving as intended. The highlighted light red sections shows example error windows, where their t = 0 time points
are defined by 400 ms of continuous movement away from the target. The darker red areas represent example error epochs. Likewise, the highlighted light blue
sections show example correct windows, and the dark blue sections show example correct epochs, as detailed in Section “Offline Analysis for Error-Related
Potentials.”
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FIGURE 3 | Time series of mean HBP during motor imagery in the decoder error and correct conditions in the parietal lobe (BA 40, highlighted in the brain inset). In
these conditions, the subjects were attempting to move the cursor toward the target through eliciting motor imagery. In the erroneous condition, the BCI mistakenly
decoded the subject’s intention as wanting to move downwards with rest. Error onset begins at time t = 0 ms for the Condition IV plot. Statistical analyses were
performed using the time window of t = 100–500 ms (i.e., the statistical analysis window), as indicated by the window on the figure. Shaded region shows standard
error of the mean. Dashed gray line represents baseline.

Statistical Analysis
At the group analysis level, we conducted a two-way ANOVA
by extracting mean HBP from our defined statistical analysis
epochs and estimating main effects of trial type (whether the
target was located above or below the center starting position,
requiring motor imagery or rest, respectively) and performance
[whether the epoch was a correct epoch (Conditions I and III)
or an error epoch (Conditions II and IV)] on HBP for each
Brodmann Area available.

We utilized post hoc two-sample t-tests (FDR corrected) to
identify significant interactions of correct and erroneous decoder
behavior epochs by subject action type (active motor imagery or
rest). We present our findings through exploring Error-related
Potentials as changes in HBP across cortical areas. That is, our
post hoc approach compares (1) HBP of all error epochs and (2)
HBP of all correct epochs from all channels falling within each
Brodmann Area of interest. Finally, at the individual level, we
utilized these two-sample t-tests.

RESULTS

Task Performance
As common with motor imagery controlled BCIs, the users
experienced difficulty in achieving high task performance
without an extensive calibration period (Wolpaw and McFarland,
2004; Blankertz et al., 2007, 2008, 2010). The low overall trial

success of the subjects (average trial success 30.67%, Table 1)
may be due to the difficulty of the task requirement to dwell
within the target, and the limited amount of time we had with
each subject for training (Table 1). Overall, all three subjects
had greater trial success when the target was below the cursor
starting position (average trial success 37.93%, Table 1). The
effects of task performance on error potentials is discussed in
Section “Discussion.”

Effect of Trial Type and Performance on
Group HBP Responses
To determine the HBP response topography of error
performance (whether the cursor moved accurately toward
or away from the target) we conducted a two-way ANOVA on
HBP across BA regions. Results from all available BA regions are
presented in Supplementary Table 2. Here we focus on specific
BA regions of interest related to ErrPs. Supplementary Table 1
denotes the number of contributing electrodes from each subject
within each BA investigated.

A significant main effect of trial type was observed in BA
4 [primary motor cortex – F(1,999) = 4.49, p = 0.0343], BA 6
[premotor cortex – F(1,4258) = 14.01, p = 0.0002], BA 40
([inferior parietal lobule – F(1,4918) = 7.21, p = 0.0073], and
BA 43 [F(1,161) = 7.59, p = 0.0065]. A significant main effect
of performance was observed in BA 3 [primary somatosensory
cortex, F(1,912) = 5.92, p = 0.00152], BA 40 [F(1,4918) = 4.48,
p = 0.0342], and BA 4 [F(1,999) = 4.49, p = 0.0343].
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FIGURE 4 | Increased HBP in multiple cortical areas during motor imagery error. The brain in the center shows the spatial range for each Brodmann Area available in
our subject population, with each area labeled by their corresponding number. Each plot shows the average response within the specified Brodmann Area during
erroneous decoding (red) and during correct decoding (blue), 100 to 500 ms after error onset (indicated by the vertical dashed line).

Importantly, we noted a statistically significant interaction
between the trial type, control requirement and performance
in primary somatosensory cortex [BA 3; F(1,912) = 3.97,
p = 0.0466], in primary motor cortex [BA 4; F(1,999) = 8.46,
p = 0.0037] as well in the inferior parietal cortex [BA 40;
F(1,4918) = 6.09, p = 0.0136]. For all ANOVA results, please refer
to Supplementary Table 2.

Error-Related HBP Time Series by
Brodmann Areas
To illustrate our overall HBP response profiles, we plotted the
mean time-series for all four epoch conditions generated by
averaging the responses of all constituent electrodes from all
subjects for significant BA regions. Figure 3 shows the mean
time-series during the correct and error windows used to extract
our Conditions I and IV epochs in all electrodes placed over
the inferior parietal lobule (BA 40). We observed increased
HBP after error onset at t = 0 ms (red) when the decoder
failed to recognize the subject’s motor imagery as intent to
move the cursor upwards toward the target (Condition IV).
Contrarily, we did not see a general increase in HBP when
the decoder was correctly decoding the subject’s motor imagery
(Condition I). During rest, we did not see a change in HBP
relative to error onset (Supplementary Figure 1). We generated
similar plots for all available BAs during both motor imagery

and during rest. Note, that t = 0 ms is a window-unique
classification based on our behavioral mismatch between cursor
trajectory and decoder output. Our t = 0 is not a phase-resetting,
evoked boundary event in the classic sense of evoked potentials.
Importantly, because there were typically multiple error and
correct epochs within any given trial, t < 0 reflects behaviorally
heterogeneous conditions.

Collectively, this approach provides a useful description of
the overall responsive cortical regions generating ErrPs. We next
used post hoc tests to determine the specific nature of HBP activity
as a function of error and correct condition type. We contrasted
two different populations for a given action type, motor imagery
or rest for significantly responsive regions: (1) the mean value
for each error epoch 100–500 ms following error onset from
all electrodes within the specified BA, and (2) the mean value
for each epoch during correct decoder performance 100–500 ms
following the start of recognized correct performance, from all
electrodes within the specified BA. We applied a one-sided t-test
to test the specific hypothesis that HBP is greater in error than
in correct epochs.

When comparing average responses following error onset
(100–500 ms) during motor imagery (Condition IV–Condition
I), we found motor, somatosensory, temporal, and parietal areas
as having greater HBP in error epochs than in correct epochs
(Figure 4). Specifically, HBP in Condition IV (motor imagery
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FIGURE 5 | HBP during correct and erroneous BCI decoder performance per individual subject. Difference in high-gamma power during correct and error epochs
100–500 ms after error onset for each subject. Top row shows power of Condition IV–Condition I, bottom row shows power of Condition II–Condition III. Heat maps
were scaled to visualize the most robust effects.

error) were significantly greater than in Condition I (motor
imagery correct) in BAs 4 and 40 (one-sided Student’s t-test, FDR-
adjusted p < 0.05). During rest error (Condition II–Condition
III), BA 4 was statistically significant (Supplementary Figure 2).

Low Frequency Error-Related Potentials
by Brodmann Areas
In addition to investigating increases in HBP in error
epochs as compared to correct epochs, we also observed
increases in spectral power in lower frequency bands in these
same conditions. Although lower frequency activity is not
as localized as high-gamma activity, some lower frequency
bands have played an important role in ErrP investigations
in EEG work (Trujillo and Allen, 2007; Atchley et al., 2017;
Glazer et al., 2018).

Like with HBP, we compared the band power between 100
and 500 ms after error onset and correct performance using
one-sided Student’s t-tests (alpha = 0.05) and correcting for
multiple comparisons using FDR-adjusted p-values. For the delta
band (<4 Hz), we observed significantly greater power in error
epochs compared to in correct epochs, regardless of movement
direction, posterior to the temporoparietal junction (BA 39).
For the theta band (4–8 Hz), we observed significantly greater
power in error epochs compared to in correct epochs, regardless
of movement direction, in Brodmann Area 9 (frontal) and in
the temporal lobe (BAs 21, 22, and 37). For the alpha band
(8–13 Hz), we observed significantly greater power in error
epochs compared to in correct epochs, regardless of movement
direction, posterior to the temporoparietal junction (BA 39) and
in the temporal lobe (BAs 21 and 22). Lastly, for the beta band
(13–30 Hz), we observed significantly greater power in error
epochs compared to in correct epochs, regardless of movement
direction, only in the temporal lobe (BA 21). For a full table of
t-test results for all available Brodmann Areas and bands, see
Supplementary Table 3.

Error-Related Potentials in Individual
Subjects
Beyond region of interest event-related error analysis, we also
explored individual electrode response topography for each
subject. Contributions from each electrode are presented in
Figure 5 as the difference in mean HBP 100–500 ms following
error onset in erroneous and correct decoding, during motor
imagery. To visualize this topography, we used a Gaussian spatial
smoothing kernel across electrodes allowing for the visualization
of cortical-response ‘heat maps’ at the individual level. Warm
colors indicate a positive difference where HBP during error is
greater than HBP during correct decoding.

As seen in Figures 5, 6A, electrode coverage per subject varies
thus yielding variable number of electrodes per Brodmann Area
(Supplementary Table 1). Similar to the group-wide analysis, we
also determined significance of BAs within individual subjects by
comparing the respective error and correct epochs applying one-
sided Student’s t-tests (alpha = 0.05) and correcting for multiple
comparisons using FDR-adjusted p-values.

For Subject 1 (11 years old), the majority of electrodes present
within the following areas had statistically significantly greater
HBP during error than during correct in the motor imagery
case (Condition IV–Condition I): BAs 1, 3, 5–7, and 40 (one-
sided Student’s t-test, FDR-adjusted p < 0.05). Brodmann Areas
2 and 4 had a few significant electrodes. There was at least one
significant electrode for all observable areas in this subject during
motor imagery. During rest (Condition II–Condition III), the
number of significant electrodes per respective area was lower
than during motor imagery, except for in BA 4. Like during motor
imagery, there was always at least one electrode per area that
was significant.

For Subject 2 (13 years old), 50% or more of electrodes present
within the following areas had statistically significantly greater
HBP during error than during correct in the motor imagery
case: BAs 2–4, 9, 21, 37, 40, and 42 (one-sided Student’s t-test,
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FIGURE 6 | HBP during correct and erroneous BCI decoder performance. (a) Electrode coverage by subjects in the left (n = 3), separated by color (Subject 1 in
blue, Subject 2 in purple, Subject 3 in pink). (b) Difference in high-gamma power during correct and error epochs 100–500 ms after error onset. Left shows power of
Condition IV–Condition I, right shows power of Condition II–Condition III. Heat maps were scaled to visualize the most robust effects.

FDR-adjusted p < 0.05). Brodmann Area 6 had one significant
electrode, BA 22 had three significant electrodes, and BAs 39
and 43 did not have any. During rest, the number of significant
electrodes per respective area was typically lower than during
motor imagery. Some areas, which had most of their electrodes
significant during motor imagery, do not have any significant
differences during rest (BAs 3–4, 9, 42).

For Subject 3 (35 years old), 50% or more of electrodes
present within the following areas had statistically significantly
greater HBP during error than during correct in the motor
imagery case: BAs 4 and 5 (one-sided Student’s t-test, FDR-
adjusted p < 0.05). Brodmann Areas 1, 6, 21, and 40 had
at least one significant electrode each, and areas 2, 3, 7, 9,
22, 39, 42, 44, and 45 had no significant differences. During
rest, the number of significant electrodes per respective area
was typically higher than during motor imagery. With the
exception of BA 7, all the areas which had no significant
electrodes during motor imagery had at least one significant
electrode during rest.

Group Analysis: Cortical Topography of
Error-Related HBP Responses
Using the data from each electrode of all subjects (Figure 5), we
generated cortical heat maps to observe the overall activity of the
group. Figure 6 serves to show the contributions by electrodes
instead of presenting the mean response of any given Brodmann
Area. As seen when we project each subject’s electrodes
onto the MNI brain, each subject has different coverage and
therefore contributes a different number of electrodes to each
area of interest.

The areas with the most common coverage were BA 40 (part of
the parietal cortex) and BA 6 (posterior-most part of the frontal
cortex), with 42 and 38 total electrodes per area, respectively.
Areas 2–4 also had common coverage but had 10 electrodes
or less per area.

We zoom-in to a portion of the parietal lobe in Figure 7
to show examples of individual electrode contributions from all
subjects in BA 40, one of the few areas with multiple electrodes
from each subject.

DISCUSSION

We present the brain topography of HBP changes associated with
error processing in the context of visual feedback, closed-loop,
motor-imagery BCI. Our novel approach to extracting epochs
of behaviorally defined error within a free-running BCI context
is likely to be more reflective of naturalistic error processing,
provides high ecological validity and is specifically relevant to
contemporary co-adaptive BCI design. That is, our post hoc
identification of error epochs, based on violations of intention,
circumvent limitations of artificially-induced error events which
do not take subject intention into account. To this end, our
results are in agreement with a previous study investigating
error-related potentials in ECoG in an overt movement task
(Milekovic et al., 2012).

Our BCI task involved using both active motor imagery
and rest to control the vertical velocity of a cursor to reach
and dwell within a target. We investigated the involvement
of different Brodmann Areas and individual electrodes across
subjects for these two different control paradigms when the
decoder incorrectly decodes the subject’s intention and moves the
cursor away from the target.

Interpreting Effects of Trial Type and
Performance on HBP
The interaction of trial control requirement (whether the subject
needed to bring the cursor up to a target placed above the
center starting position using motor imagery) and performance
(whether the cursor moved correctly toward or erroneously away
from the target) had a statistically significant interaction on
HBP in Brodmann Areas 3, 4, 40, and 43. In other words, the
difference in HBP between correct performance and erroneous
performance were affected by whether motor imagery or rest
was required as the initial action to reach the target in the trial.
The specificity of this significant interaction was clarified by
post hoc t-test results for the motor imagery conditions and the
rest conditions.

Importantly, we noted a statistically significant effect of trial
control requirement on HBP in the primary motor cortex (BA 4)
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FIGURE 7 | Increased HBP in multiple cortical areas during motor imagery error (parietal). Each plot shows the average response of a single electrode (from one
subject, each) within Brodmann Area 40 during erroneous decoding (red) and during correct decoding (blue).

and premotor cortex (BA 6), providing internal validity for our
statistical approach. Specifically, the control electrode, located in
primary motor cortex, moved the cursor up or down through
increasing or decreasing HBP.

Broader Response Observed for Motor
Imagery Error Than for Rest Error
Overall, more areas of the cortex exhibited significantly greater
HBP during error in motor imagery cursor control rather than in
rest cursor control. BA regions which showed more significant
HBP changes in both the motor imagery and rest cases, when
including all subjects, were the somatosensory (BAs 1 and 5),
motor (BA 4), and parietal (BA 7) cortices. Areas which were
exclusively significant during motor imagery include part of
somatosensory (BAs 2 and 3), temporal (BAs 21 and 37), and
parietal (BA 40) cortices. The only area which was significant
during rest but not motor imagery was near the angular gyrus in
the parietal lobe (BA 39). Note that we did not have much frontal
coverage from any of the subjects, preventing investigation
of common areas of interest associated with outcome (not
execution) error, such as the ACC (Figure 6A). In Milekovic
and colleagues overt movement ECoG study, ErrPs in the motor,
somatosensory, parietal, temporal, and pre-frontal areas were
observed when an execution error was induced in the subject’s
joystick control (Milekovic et al., 2012, 2013).

ErrPs in the motor and somatosensory areas are not
unexpected considering they are directly involved in the control
and immediate feedback associated with the control. Involvement
of other areas may not be as obvious. Previous work has suggested

that the parietal lobe is involved with low-level error processing,
which cursor control error can be considered (Krigolson and
Holroyd, 2007). Although not traditionally explored for error
analyses, as there is typically a focus on the ACC and other frontal
areas, previous fMRI work suggests the temporal lobe is also
involved in error processing (Stevens et al., 2009).

Corrective Movement
The extent literature also suggests the parietal lobe may be
involved in the execution of corrective movements in response
to error or low-level error (Calhoun et al., 2006; Krigolson
et al., 2008; Navarro-Cebrian et al., 2016). It is of note that the
temporoparietal junction (TPJ; BA 40) only had significant HBP
during motor imagery error, but the more posterior and superior
area of the parietal lobe (BA 7) had significant HBP during both
motor imagery and rest error conditions. Krigolson et al. (2008)
suggest that low-level errors are mediated in the PPC, which
may be reflected by the increased HBP in BA 7 for both error
conditions. Interestingly, the same group showed that a P300
response from the TPJ would immediately precede corrective
movements in response to error in an earlier study (Krigolson
and Holroyd, 2007). Instead of being directly responsible for the
corrective movement, Krigolson et al. (2008) postulate that the
P300 indicates the updating of an internal model of the task
at hand. Navarro-Cebrian et al. (2016) instead suggest the PE
from the parietal lobe indicates that enough error information
has been gathered to make a decision to change motor output
in order to correct for the error. In our current work, the TPJ
had significant increases in HBP during motor imagery error, but
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not during rest error. This may imply that the parietal lobe elicits
a greater response when the corrective action to take requires
an increase or change in motor output, in this case, increased
motor imagery. Rest error may not have resulted in increased
local activity in the TPJ because the corrective action to take
would be to suppress motor imagery.

Low Performance and Error Elicitation
Error-related potentials are typically investigated in settings
where instances of correct performance greatly outnumber the
instances of error. However, recent work by Pezzetta et al. (2018)
reverses the correct/error ratio by inducing error events for
70% of the task. In their study, Pezzetta et al. (2018) find that
error-related potentials are still elicited even when error occurs
during the majority of the task, confirming that the performance-
monitoring system engages in the presence of error and not just
in the presence of uncommon stimuli.

The subjects of this present investigation had relatively low
task performance, with an average trial success rate of 30.67%
(Table 1). This low trial success rate can be partially explained
by task difficulty and/or BCI task novelty, as the targets would
be placed at varying distances from the center and would also
vary in size. In particular, the success condition of having to
dwell within the target made the task more difficult than similar
one dimensional cursor control tasks, such as the Right-Justified
Box task. Note that our behavioral definition of low-level error
is not dependent on trial success, but instead on successful
cursor movements within each trial. Overall, subjects performed
marginally better on trials where the target was placed below the
cursor starting position (Table 1). Even with this generally poor
performance, we believe our investigation to still be valid as error-
related potentials are still elicited in tasks where the majority of
actions are erroneous (Pezzetta et al., 2018).

Impact of Age on Error Potentials
Two of the subjects in this investigation were early adolescents of
the ages 11 and 13 years old (Subjects 1 and 2, respectively), and
the other subject was 35 years old (Subject 3) (Table 1). Human
brain maturation from childhood to adulthood is characterized
by changes in the structure of and activation of various brain
structures, including in the ACC in the prefrontal cortex (Casey
et al., 1997; Adleman et al., 2002), a structure essential to
conflict monitoring.

Previous work by Ladouceur et al. (2007) found that with a
more developed ACC, adults (19+ years old) and late adolescents
(14–18 years old) had stronger ERN responses than early
adolescents (9–13 years old), however, the PE responses did not
differ significantly between any of the groups.

Although most subjects exhibited greater HBP in more areas
during motor imagery error, Subject 3 had more electrodes
with significantly greater HBP differences between error and
correct in rest rather than in motor imagery. While this does not
seem to be directly related to the aforementioned developmental
changes, it is still possible that error presentation in Subject 3
differed from the younger subjects due to processes related to
cortical maturation.

Error Presentation in the Time Domain
Unlike with well-established error potentials in EEG, which are
often measured as particular phase-locked negative and positive
deflections in the time domain, we explored ErrPs related to
specific changes in the band-limited time-frequency domain due
to the high temporal/spatial resolution inherent to ECoG. Our
use of a post hoc defined behavioral marker for detecting error-
onset instead of a controlled, elicited error in control may have
also led to less distinct, non-event locked ErrP waveforms. As
discussed, analyses in the frequency domain do not provide a
clean time-stamped waveform present in multiple electrodes in
or across any of the subjects. The higher spatial resolution of
ECoG, in addition to our unique epoch boundary markers were
determined, contributed to the difficulty of relying on time-
domain data for ErrP identification in this study.

Regardless, we attempted to compare topographical results
more directly with EEG literature by investigating changes in
the raw voltage potentials recorded per channel per subject in
all conditions. Due to the nature of our task not having an
experimentally controlled induced onset of error, we did not
expect, nor did we see, as robust a response as in EEG. We
only saw significantly greater voltage amplitude during error than
during correct in a few select electrodes in two subjects.

Implications for BCI
Although this investigation focused on identifying cortical
error-related potentials post hoc, online classification of error-
related potentials have been demonstrated in a few EEG studies
(Iturrate et al., 2015; Zander et al., 2016; Cruz et al., 2018).
With online ErrP monitoring, future cortical BCI can infer
BCI performance without explicit task information, allowing
for automatic adaptation of the system based on estimated
performance. The task-independent nature of this method could
allow for robust adaptive systems that allow for long-term use of
BCI that account for changes in recorded brain signals over time.

As this was a preliminary investigation into error-related
potentials in cortical BCI, we did not employ online classification
methods. The methods presented here could be adapted to work
for online classification by continually calculating HBP via a
sliding window, and setting a threshold for channels located on
particular regions of interest, such as over BA 7. The baseline
may be set as the data prior to the start of the sliding window,
of a length longer than the sliding window itself. Alternatively,
a machine learning model could be developed and trained to
classify error and non-error signals and fed the necessary sliding
window information for continual classification.

CONCLUSION

In this study, we examined the cortical activity of human subjects
during a one-dimensional center-out BCI task and investigated
how different areas of the cortex behaved during erroneous
BCI decoding versus during correct performance. Of all the
cortical areas available for analysis, the somatosensory (BAs 1
and 5), motor (BA 4), and the parietal lobe (BA 7) showed
significantly greater HBP 100–500 ms after error onset than
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during correct behavior, regardless of whether the subject was
actively imagining movement or resting to achieve their goal.
During motor imagery, parts of the somatosensory (BAs 2 and
3), the temporal lobe (BAs 21 and 37), and part of the parietal
cortex (BA 40) were exclusively significant. During rest, only
part of the parietal cortex near the angular gyrus (BA 39) was
exclusively significant. Overall, more areas were involved in
error processing during the motor imagery error cases rather
than during rest error, although there were differences between
subjects, with one subject having more significant electrodes
during rest. The observed activity of these areas agrees with
previous work suggesting the involvement of the parietal and
temporal areas in error processing.

Although our results generally agree with previous work
performed with overt movement in ECoG (Milekovic et al.,
2012), our error-related potentials (ErrPs) do not present
themselves as the well-defined waveforms discussed in the EEG
literature, likely due to the diffuse timing of our error events.
The presence of ErrPs in both overt- and imagined-movement
controlled ECoG tasks suggests error processing is impartial to
the method of control in a task.

Our investigation is the first to explore ErrPs in the context
of continuous control in a cortical BCI. As the BCI field delves
further into understanding error and reinforcement learning,
it is critical that we understand error processing at various
spatial and temporal levels in a multitude of conditions. This
study contributes to the field by focusing on continuous control
(instead of discrete control for simple selection) representing a
more naturalistic setting for characterizing error potentials in
the brain. Additionally, we report the first description of the
responsive local high-frequency activity using high-gamma band
power in a BCI, instead of more global signals such as theta band
activity in EEG.

In addition to exploring error processing in the context of
motor BCI, we are also interested in the effects of different forms
of feedback during continuous control, not just visual (as is
typical with most current BCIs). In the future of BCIs and their
adoption into neuroprostheses, we will need to understand the
effect of other forms of feedback, which inform volitional control,
on BCI learning. Ultimately, the use of ErrPs as an automatic
feedback signal to future BCIs will allow for co-adaptation,
leading to better and longer-lasting control. Greater performance
and longer ability of use will allow these co-adaptive BCIs to
break out of the confines of the research setting and make their
way into clinics and home settings.

We would like to explore the long-term effects of learning on
the error-related potentials, but our limited time with research
subjects renders this nearly impossible. A better understanding of
ErrPs and their usability over time is crucial for implementing co-
adaptive BCI systems which rely on ErrPs for feedback. Longer
use in the experimental setting may allow for the development
of robust classification techniques which can assist in real-time
error detection in the future.
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Recently, efforts to produce artificial sensation through cortical stimulation of primary
somatosensory cortex (PSC) in humans have proven safe and reliable. Changes in
stimulation parameters like frequency and amplitude have been shown to elicit different
percepts, but without clearly defined psychometric profiles. This study investigates the
functionally useful limits of frequency changes on the percepts felt by three epilepsy
patients with subdural electrocorticography (ECoG) grids. Subjects performing a hidden
target task were stimulated with parameters of constant amplitude, pulse-width, and
pulse-duration, and a randomly selected set of two frequencies (20, 30, 40, 50, 60,
and 100 Hz). They were asked to decide which target had the “higher” frequency.
Objectively, an increase in frequency differences was associated with an increase in
perceived intensity. Reliable detection of stimulation occurred at and above 40 Hz with a
lower limit of detection around 20 Hz and a just-noticeable difference estimated at less
than 10 Hz. These findings suggest that frequency can be used as a reliable, adjustable
parameter and may be useful in establishing settings and thresholds of functionality in
future BCI systems.

Keywords: somatosensation, cortical stimulation, brain computer interface, brain machine interface, sensory
feedback control, electrocorticography, frequency

INTRODUCTION

For the millions of patients with somatosensory deficits from stroke, paralysis, or limb-loss,
restoration of function has vast implications for health, and independence recovery. Somatosensory
brain-computer interface (BCI) presents a means to restore function in such individuals, where
somatosensory input can potentially improve motor BCI (Andersen et al., 2004, 2010; Suminski
et al., 2010; Fifer et al., 2012; Chestek et al., 2013; Lee et al., 2013; Aflalo et al., 2015; Bundy et al.,
2016; Flesher et al., 2016; Hollins and Risner, 2016; Armenta Salas et al., 2018), or restore basic
functions like bladder control. Although stimulation of peripheral nerves can potentially reproduce
somatosensation (Raspopovic et al., 2014; Tan et al., 2014), to fully restore function in stroke
patients or paralyzed individuals, cortical stimulation would be required. However, somatosensory
BCI is at an early stage with limited work establishing the basic utility (Flesher et al., 2016;
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Armenta Salas et al., 2018; Lee et al., 2018), functionality
(Baumgartner et al., 1991; Tan et al., 2014; Collins et al., 2017),
and modalities (Raspopovic et al., 2014; Tan et al., 2014; Vidal
et al., 2016; Collins et al., 2017; Armenta Salas et al., 2018;
Lee et al., 2018).

Trained non-human primate (NHP) studies have helped
to establish foundational parameters and feasibility of
discriminating between sensations arising from intracortical
micro-stimulation (ICMS) with microelectrodes in the primary
somatosensory cortex (PSC). These techniques have produced
behavioral responses comparable to those produced by real
tactile stimuli (Romo et al., 1998, 2000; O’Doherty et al.,
2012; Klaes et al., 2014). Through alterations in amplitude and
location of an ICMS, NHPs have demonstrated an ability to
differentiate pressure, location, and timing on par with that of
tactile stimulation. By varying frequency in ICMS (10–30 Hz,
with a minimum absolute difference in comparative frequencies
of 2 Hz), NHPs showed similar accuracy to natural sensation
produced by mechanical stimulation (80% vs. 89% accuracy)
(Romo et al., 1998, 2000). O’Doherty et al. (2012) demonstrated
that NHPs could differentiate between periodic and aperiodic
pulse-trains in an active exploration task, suggesting that
temporally patterned stimulation can lead to noticeable, unique
sensations. Stimulation as low as 6 Hz produced perceptible
sensations based on behavioral responses (Romo et al., 2000).
They also identified that quickly adapting neurons were
important in frequency discrimination, and discrimination
between sensations was based on frequency alone. When slowly
adapting neurons were stimulated, monkeys’ performances
decreased and were not comparable to mechanical stimulation
(Romo et al., 2000).

While NHP studies have demonstrated that artificial sensation
through cortical stimulation is achievable (O’Doherty et al.,
2011; Tabot et al., 2013, 2015; Kim et al., 2015a,b; Overstreet
et al., 2016), clinical studies in humans are needed to fully
understand the subjective quality of sensations evoked by
modulating these parameters and verify the generalizability.
Direct electrical stimulation of PSC, with ICMS and surface
electrodes, have yielded reliable and safe results (Flesher et al.,
2016; Armenta Salas et al., 2018; Lee et al., 2018) and established
basic stimulation parameters (Lee et al., 2018). Changes in
amplitude and frequency are primarily perceived as increased
intensity, with occasional enlargement of dermatomal areas
involved, and rarely a change in perceptual quality (Armenta
Salas et al., 2018; Lee et al., 2018). Amplitude increase was most
consistent in producing increased intensity (Lee et al., 2018).
A study utilizing ECoG electrodes at three frequencies (50, 75,
and 100 Hz) exemplified that sensation arising from stimulation
at different frequencies can be differentiated in humans when
there is at least a 25 Hz difference between frequencies and
frequencies are greater than 50 Hz (Johnson et al., 2013). In
addition, another high density ECoG study noted that perceiving
somatosensation was inconsistent below 20 Hz for absolute
perceptual threshold from a single stimuli (Lee et al., 2018).
Although lower vibrotactile frequencies are better sensed in
the skin (Vardar and Guclu, 2017), and have a wider range of
responses (Griffin, 2012), earlier work by this group established a

lower threshold in cortical stimulation of 20 Hz in which greater
than 50% sensed the stimulation, and subject-described percepts
reflected increased intensity and speed from increased cortical
stimulation frequencies (Lee et al., 2018). Since the results of
cortical stimulation on individual neurons is not well understood,
the difference in frequency ranges and percepts likely reflects a
difference in how cortical stimulation is interpreted compared to
skin-sensed stimulation.

Going forward with BCI, establishing the psychometric
thresholds for parameters like frequency will set the groundwork
for what “degrees of freedom” are possible in subjects. Here
we attempt to establish the perceptual limits of one specific
parameter, frequency, during direct cortical stimulation of
PSC using ECoG grids in humans with intact somatosensory
pathways. We aim to estimate lower limits, and reliable degrees of
freedom for frequency changes in stimulation parameters, for the
purpose of using ECoG as a delivery method in somatosensory
BCI in the future. We also aim to explore the usable limits for
detecting the absolute difference between two frequencies.

MATERIALS AND METHODS

Subjects and Implantation
Three patients with intractable epilepsy, of normal intelligence
on neuropsychiatric testing, normal somatosensation, and
undergoing implantation of subdural ECoG with coverage over
PSC, were enrolled in this study (see Table 1 for demographic
details). These patients, as part of their care for epilepsy,
required ECoG for seizure localization, and were to receive
a craniotomy with access to the PSC hand region. S12 had
a cavernous malformation in the parietal lobe. Based on the
mapping of PSC, imaging, and results from invasive monitoring,
the cavernoma was separate from the PSC hand area, and the
seizure focus was not near PSC. S18 was found to have a
seizure focus in the interhemispheric portion of the parietal
lobe, also distinct from PSC. S30 was found to have seizure
foci in the frontal and temporal lobes, also distinct from PSC.
This study was approved by the USC Institutional Review Board
and all subjects provided written consent. Surgical technique
was standard, and has been described elsewhere (Lee et al.,
2018), but briefly, a craniotomy was to be performed with
access to the frontal, temporal, and parietal regions. Prior to
surgery, the motor cortex hand area was identified based on
anatomic landmarks, and the hand representation in PSC was
marked, using neuronavigation software. During surgery, grids
were placed to center over the PSC hand area. This area was
not under direct visualization. Grids were high-density, “mini”-
ECoG grids (mECoG) with 2 mm contacts, with 1.2 mm
exposed surface of platinum-iridium electrodes between silastic
sheeting, spaced 3 mm apart from center-to-center (FG64C-
MP03, Ad-Tech Medical Instrument Corporation, Wisconsin,
WI, United States), except in S12 where a standard spaced ECoG
grid (sECoG) was used with 4 mm contacts, with 2.4 mm exposed
surface, spaced 10 mm apart from center-to-center (AU4 × 5P2,
Integra Life Sciences Corporation, New Jersey, United States).
Following implantation, the grids were secured to the dura,
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TABLE 1 | Patient Demographics.

Subject Seizure foci Radiographic abnormalities Epilepsy duration
(years)

Age
(years)

Sex Dominant
hand

Dermatome chosen
for stimulation

S12 Right parietal Prior surgery for right parietal
cavernous malformation

3 25 M R Digit 5 medial surface

S18 Posterior interhemispheric strip,
lateral parietal

N/A 11 32 F R Medial palm

S30 Left interhemispheric frontal
cortex in area of
encephalomalacia

Left frontal/temporal
encephalomalacia

11 24 F R Medial palm and wrist

Subjects were epilepsy patients who underwent subdural electrode placement for the purpose of seizure localization. An electrocorticography grid was placed over
primary somatosensory cortex. Dermatomes for stimulation testing were chosen after mapping by an epileptologist, where the bipolar electrodes had stable dermatomal
percepts upon multiple repeat stimulations.

tunneled through the scalp, and secured to the scalp with suture.
The dura was closed, bone replaced, and scalp closed; the patient
was transported to the epilepsy monitoring unit in the intensive
care unit (ICU).

Experimental Set Up
Location of the implanted grid was confirmed by imaging with
a computed tomography scan fused to a preoperative magnetic
resonance imaging scan (Figure 1). Superimposition of grid
placement was made using Freesurfer and Statistical Parametric
Mapping software SPM12 with the img_pipe package described
in Hamilton et al. (2017). Functional location of electrodes was
confirmed by mapping with cortical stimulation while subjects
were in the ICU. Electrode pairs were stimulated with a range
of amplitudes, at the discretion of the epileptologist, between
0.5 and 12 mA, with a frequency of 50 Hz, pulse-width of
250 µs, and duration of 1 s. Areas with pure sensory responses
(self-reported by the subject), underwent steady increases in
amplitude until motor responses were noted. Following mapping,
electrode pairs with sensory only responses at 4 mA were
retested 25 times to confirm that repeat stimulation did not
(1) alter the percept by the subject, (2) alter the location or
region of perception, (3) result in motor activity, (4) cause
seizures or seizure-like activity, or (5) cause discomfort. All
subjects had at least one electrode pair that met these criteria.
If more than one electrode pair met these criteria, there was
a preference for the ventral side of the hand and for digits
on the lateral side of the hand over the medial (see Table 1).
This electrode pair was then chosen for repeat stimulation
with our paradigm.

Subjects explored a 2-dimensional space consisting of a
sheet with two circles on it, which the subject placed at a
comfortable distance for exploring with the hand contralateral to
the implanted grid. The two circles corresponded to two different
stimulation frequencies. As the subject moved one hand over the
two circles, an epileptologist stimulated PSC with the associated
frequency using an FDA-approved, clinically available stimulator
(Natus Neurology Incorporated, Warwick, United States). The
current, pulse-width, and pulse-duration were held stable (4 mA,
250 µs, and 1 s, respectively). In a two-alternative forced-
choice task design, subjects were instructed to report which
circle corresponded to the higher frequency, whether they were

“guessing” (meaning they were not sure which one was the higher
frequency), and whether they felt both stimulations (see Figure 2
for experimental setup). Frequencies included 20, 30, 40, 50, 60,
and 100 Hz and were chosen pseudorandomly. The stimulator
did not have parameters between 60 and 100 Hz. Because subjects
moved at their own speed, the time between stimuli ranged from
1 to 6 s. Statistical analysis was performed using Matlab software
(The Mathworks, Natick, MA, United States). Thresholds and
differences in detection were compared using Fisher’s exact test.

RESULTS

Electrodes used for stimulation were determined after cortical
mapping and somatosensory percepts were reported by the
subject and remained stable after repeat stimulations (>50
stimulations). Stimulation parameters included pulse-width of
250 µs, duration of 1 s, and a square-wave, and were chosen based
on prior literature (Lee et al., 2018) and to minimize the interplay
of the other parameters with frequency (i.e., low, but reliably
detected on 25 repeat stimulations at 50 Hz). Amplitude was
chosen to be the lowest value that elicited reliable somatosensory
percepts on the 50 prior stimulations with a 50 Hz frequency,
and that did not elicit motor activity (2 mA for S12, 3 mA for
S18, and 5 mA for S30). Selected dermatomes were the medial
surface of digit 5 for S12, medial surface of the palm for S18,
and medial palm and wrist for S30 (Table 1). Twenty-five trials
were completed for S12 and 50 trials for S18 and S30. For S12, 50
trials were planned, however, the patient chose to stop half-way
through testing due to fatigue. No adverse events occurred. With
increased frequency, patients described the sensation as “more
intense,” “faster,” and “faster buzzing.”

Overall Accuracy
Altogether, participants identified the higher frequency with
89.76% accuracy. To explore whether the first stimulation might
alter the perception of the second stimulation, trials were grouped
based on which condition occurred first. Correct responses were
statistically equivalent between these groups (91.9% when the
higher frequency occurred first vs. 86.8% when it occurred
second; p = 0.39, Fisher’s exact test). The accuracy of trials broken
down into the individual categories is included in Figure 3.
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FIGURE 1 | Electrocorticography grid placement. (A) 3-dimensional images of each subject’s brain from a magnetic resonance image, with the location of the
electrodes superimposed. The central sulcus is outlined in purple and electrodes of the grid are shown in red. The electrodes chosen for stimulation in this
experimental model are highlighted in yellow. S12 had electrodes with 1 cm of spacing, and S18 and S30 had electrodes with 3 mm of spacing (center-to-center).
(B) The dermatomal distribution of the percepts used for testing after grid mapping for each subject.

FIGURE 2 | Experimental paradigm and hand receptive fields. Schematic of a typical session. Subjects received stimulation at one of two pseudorandomly
determined frequencies when searching for targets in a 2-dimensional space, and reported which target had the higher frequency, whether or not they guessed, and
whether or not both stimulations were perceived.

Next, we focused on the absolute difference between two
frequencies (see Figures 4, 5). When the frequency difference
was equal to 10 Hz, the mean accuracy was 74.29% (S12 71.4%;
S18 88.9%; S30 68.4%, see Figure 5) compared to a difference
larger than 10 Hz, where accuracy increased to 95.65% (p < 0.001,
individually: S12 100%; S18 100%; S30 87.1%). For S12 and S18,
incorrect responses only occurred at a difference of 10 Hz, when
both frequencies were equal to or less than 40 Hz.

Using 40 Hz as a cutoff of lower frequencies and higher
frequencies, we examined whether small absolute differences
were easier to differentiate at lower frequencies or higher
frequencies. Separating the trials into those with both frequencies
40 Hz or less vs. those with either frequency greater than
40 Hz, accuracy was 77.8% vs. 93.0% (p < 0.05). However, this
difference was largely explained by the larger absolute differences
of frequencies above 40 Hz. Comparing the absolute difference of
20 Hz or less (since the frequencies at or below 40 Hz had a max

absolute difference of 20 Hz) the accuracy was 77.8% vs. 80.0%
(p = 1.0) for below 40 Hz and above 40 Hz, respectively. When
isolating the trials in which the frequency difference was 10 Hz,
and then separating them into those with both frequencies 40 Hz
or less vs. those with one or both greater than 40 Hz, accuracy
was 77.3% vs. 69.2% (p = 0.69), respectively. At a frequency
difference of 20 Hz, accuracy was 80% when both frequencies
were 40 Hz or less compared to 88.2% when at least one was
greater than 40 Hz (p = 0.66) (Figure 5). Frequency differences
of 20 Hz had an accuracy of 86.4%, and differences of 30 Hz had
an accuracy of 95.0%. All other differences had an accuracy of
100% (see Figure 5).

Patient Reported “Guessing”
Subjects reported when they were “guessing,” defined as when
they could not tell which stimulus was higher. Of all trials,
guessing occurred in 18.1% of trials. When subjects reported
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FIGURE 3 | Responses at different frequencies tested. Percentage correct for all trials based on the frequencies being compared, color coded based on the higher
frequency. Correct responses were high with larger frequency differences.

FIGURE 4 | Correct responses organized by absolute difference between two frequencies. All trials separated by the absolute difference in frequency. Correct and
incorrect responses, guessing, and whether or not the patient felt both stimuli were recorded for each frequency difference. Most incorrect trials, guessing, and
inability to feel both frequencies occurred at or below a difference of 20 Hz.

Frontiers in Neuroscience | www.frontiersin.org 5 August 2019 | Volume 13 | Article 83245

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00832 August 6, 2019 Time: 17:19 # 6

Kramer et al. Frequency in Human Somatosensory Stimulation

FIGURE 5 | Accuracy at tested frequency differences. (A) Overall accuracy for each subject, at each frequency difference. The average of their results is in blue.
Above a 30 Hz difference, accuracy was 100%, and well above chance at or below 30 Hz. (B) Response accuracy and guessing rate when the tested frequencies
were both 40 Hz and below vs. when one or more of the tested frequencies was above 40 Hz. Here the blue and green represent which portions of correct
responses were self-reported as a guess, or not a guess, respectively. Overall, subjects were equally accurate regardless of whether the frequencies were above or
below 40 Hz, and were more likely to guess if the difference was 10 Hz.

guessing, accuracy was 69.6% vs. 94.2% when they did not report
guessing (p < 0.01). Limited to trials in which the difference was
20 Hz or less, guessing occurred 36.8% of the time, vs. 2.9% of
the time when the difference was greater than 20 Hz (p < 0.001).
Accuracy for only trials in which the difference was 20 Hz or less
was 66.7% when guessing vs. 86.1% when not guessing (p = 0.10).

Further, to examine if guessing was more frequent when the
frequencies were both low vs. when they were high, we split
the 20 Hz differences into those both at or below 40 Hz vs. the
rest (see Figure 4). For a difference of 20 Hz or less, when both
frequencies were at or below 40 Hz, guessing occurred 48.1% of
the time vs. 26.7% when one or more frequencies was above 40 Hz
(p = 0.10), and correct responses were given 77.8% of the time at
or below 40 Hz vs. 80.0% of the time above 40 Hz (p = 1.0).

When the difference was equal to 10 Hz, guessing occurred
48.6% of the time, vs. 6.5% of the time when the frequency
difference was greater than 10 Hz (p < 0.001). Among trials
with a difference of 10 Hz, accuracy was 64.7% when guessing
vs. 83.3% when not guessing (p = 0.26). Again, we examined if
having both frequencies lower than 40 Hz affected the rate of
accuracy or guessing among those that were 10 Hz apart. No
difference was seen among subjects’ rate of guessing when both
frequencies were at or below 40 Hz vs. one or more above 40 Hz
(46.1% vs. 50.0%, p = 1.0), or subjects’ accuracy when guessing
(77.2% vs. 69.2%, p = 0.70).

Thresholds of Detection
To understand the lower limits of detection thresholds, subjects
were asked to report on whether they felt both stimulations,
of which 69.3% of trials were reported as perceived for both

stimulations (see Figure 4). Of the 30.7% in which one or
more stimulations were not perceived, 82.1% had one or both
frequencies at or below 30 Hz, and 92.3% had one or both
frequencies at or below 40 Hz. Correct responses were not
significantly different when subjects felt both stimulations (89.8%
when both were felt vs. 89.7% when one or both were not
felt). No difference was found in whether both stimulations
were felt when split for both stimulation frequencies being
below 50 Hz vs. both being above 50 Hz (60.0% vs. 75.3%,
p = 0.079) or both being below 40 Hz vs. both being above 40 Hz
(63.0% vs. 71.0%, p = 0.483).

DISCUSSION

Here we build upon prior work using ECoG electrodes to
establish the thresholds of functionality for somatosensory BCI
by adjusting frequency and discerning discrimination thresholds.
The ability to detect a difference in frequency from cortical
stimulation using an ECoG grid adds an adjustable parameter
to the prospect of somatosensory BCI. To this end, we sought
to explore the basic psychometric parameters of frequency
discrimination in epilepsy patients with already implanted ECoG
grids over PSC. Subjectively, when frequency increased, patients
perceived a more intense stimulus, similar to other stimulation
studies in humans (Johnson et al., 2013; Hiremath et al., 2017;
Lee et al., 2018). Even when subjects reported guessing on a
forced choice between stimulations of two different frequencies,
accuracy was 69.6%. Finally, we show detection of absolute
differences between stimulation frequencies above chance at
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10 Hz, with reliable differentiation of frequencies at or above
20 Hz and near perfect detection at or above 40 Hz.

Prior ECoG work with cortical stimulation tested frequencies
of 50, 75, and 100 Hz and noted that patients were able to
identify and differentiate between sensations elicited by these
frequencies (Johnson et al., 2013). Our own work showed that
intensity was altered with an increase in frequency, but detecting
differences was not explicitly tested (Lee et al., 2018). These
studies investigating the frequency component of stimulation
have mostly studied the feasibility and subjective quality of
modulating frequency to produce different sensations, as well
as the threshold required for somatosensory percepts (Johnson
et al., 2013; Hiremath et al., 2017; Lee et al., 2018). Prior
studies in microelectrode stimulation have focused on amplitude,
demonstrating alterations in somatosensory category, with the
higher amplitudes leading to more proprioceptive sensations,
and lower amplitudes leading to cutaneous sensations (Armenta
Salas et al., 2018). Further intracortical stimulation with
microelectrodes in humans suggested that the “just-noticeable
difference” (JND) of amplitude is around 15.4 ± 3.9 µA with a
detection threshold of 39.4 µA (Flesher et al., 2016).

To establish similar baseline parameters in frequency
alterations, we built off prior work. With preliminary testing we
noted that frequencies below 20 Hz were generally undetectable
(Lee et al., 2018), and thus explored 10 Hz differences from
20 to 100 Hz (except 70–90 Hz due to technical constraints).
Above a 30 Hz difference, accuracy was 100%, with a high degree
of accuracy at all tested differences below 30 Hz. Frequency
differences of 20 Hz led to an accuracy of 86.4%, and differences
of 10 Hz were still well above chance at 74.3%. S12 and S18 had
only two incorrect responses each, both at a 10 Hz difference, with
both frequencies at or below 40 Hz. S30 was more varied, but had
most incorrect responses at a difference of 10 Hz (60%), and all
were when both frequencies were less than 60 Hz.

Although it was more difficult to detect a difference of 10 Hz
compared to 20 or 30 Hz, accuracy at a 10 Hz difference was
well above chance, and thus we estimate a JND below 10 Hz for
cortical stimulation through ECoG electrodes. One exception to
this, in Figure 3, 40 Hz vs. 50 Hz has a 33.3% accuracy, and
may reflect a limited number of trials at that frequency pair, or
reflect a true difference. The edges of detection for Meissener
corpuscles (flutter sensations at frequencies 10–60 Hz) and
Pacinian afferents (vibrational sensations 60–400 Hz) are right
around 40 and 50 Hz (Mountcastle et al., 1969), and therefore this
may reflect a difficulty in this frequency range for both cortical
and peripheral stimulation. Further testing may be warranted.

Weber’s law would indicate that the JND would increase
proportionally to the increase in the base frequency.
Indeed, Weber’s law is noted in studies comparing tactile
somatosensation (Francisco et al., 2017), however it is not
clear if this follows in cortical stimulation. Limited by the
testing capabilities of our stimulator, we were unable to explore
smaller differences, and thus unable to find a true JND, or
the adherence of PSC stimulation to Weber’s law. In a NHP
microstimulation study, the JND was 3.73 Hz with cortical
stimulation (Romo et al., 2000), which may be closer to the real
JND or may represent a difference in species, electrode type, or

both. Compared to vibrational frequencies of mechanical stimuli,
the JND was similar between the two (2.88 Hz for mechanical
stimuli). JND could be different with ECoG electrode stimulation
vs. microelectrode stimulation given changes in the spread of
electricity (bipolar vs. unipolar), size of the electrode (mm vs.
µm), or other differences (e.g., mA vs. µA). The JND estimated
in this study (<10 Hz) is not far from the JNDs reported
for microelectrode stimulation and mechanical stimuli, and
although it may abide by Weber’s law, all that we can conclude
here is that between 50 and 60 Hz (the largest base frequency with
the smallest absolute difference), accuracy was well above chance
at 80%. Since microelectrode, macroelectrode, and mechanical
stimulation appear to have similar JNDs, it may be that the
encoding of vibrational frequencies is tied to the frequency of
the electrical activity in PSC whether from peripheral nerves
or direct stimulation. Indeed, lower vibrational frequencies of
mechanical stimuli (<100 Hz) have been seen to stimulate PSC
neuron spike rates (Mountcastle et al., 1969; Salinas et al., 2000;
Hernandez et al., 2005; Luna et al., 2005). Further testing with
stimulators with more finely tuned adjustments will be necessary
in the future, and may need to rely on concepts that compare
tactile and cortical stimulation thresholds like “psychometric
equivalence functions,” already shown to be able to estimate these
thresholds in amplitude and frequency stimulations in rodents
(Devecioglu and Guclu, 2005).

Subject-reported guessing was also evaluated, showing a low
rate of guessing across all trials at 18.1%. Most guessing occurred
at the lower range of differences, 10 and 20 Hz, however, accuracy
was not significantly altered, and correct responses were above
50%. This result indicates that despite self-reports, subjects were
still able to differentiate between frequencies. Similarly, subjects
reported they could not feel both stimulations approximately
1/3 of the time. Again, this outcome did not diminish correct
responses, which were similar when comparing those in which
they reported feeling both to those in which they did not (see
Figure 3). Ninety-two percent of the time that subjects did not
sense the stimulation, one frequency was at or below 40 Hz. Taken
together, accuracy decreased and guessing increased when both
frequencies were less than 30 Hz, and inconsistencies were seen
at 30 and 40 Hz. Given these results, 40 Hz is likely the threshold
for consistent sensation, and would be a reasonable lower limit
for a somatosensory BCI system. From these results, an ECoG
BCI system would likely be able to manipulate frequencies at
20 Hz differences from 40 Hz and above, with a high degree of
reliability. With training and more fine adjustments, differences
of 10 Hz would likely be sufficient. We did see a difference
between subjects, with one subject showing decreased accuracy
above 30 Hz, suggesting intersubject variability. Additionally, the
thresholds were based on fixed parameters of amplitude, pulse-
width, and pulse-duration, all factors which independently (Lee
et al., 2018), and jointly influence thresholds (Devecioglu and
Guclu, 2005). Likely an increased amplitude or pulse-duration
would alter the thresholds of frequency discrimination, as well
as the perception of the stimulus [as evidenced by changes in
the strength of the stimulus noted by Lee et al. (2018)]. A great
deal more testing in future studies will be required to elucidate
the psychophysical results of the combining parameter variations
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and a future BCI system will likely need a range of possible
frequencies to adjust for individual variation.

This study has several limitations. First, the stimulator used,
an FDA-approved clinical stimulator, can only test differences
as small as 10 Hz. Therefore, while the “just-noticeable”
difference most likely lies below 10 Hz, we were unable to
stimulate smaller changes given that the stimulator settings
are unalterable (see Figure 4). Similarly, the parameters are
limited, without options between 60 and 100 Hz. Testing
was carried out in the ICU, limiting time and control, and
preventing more trials and further paradigms. Subjects all
suffered from epilepsy, which may alter cortical networks in PSC.
However, our subjects were still able to perceive sensation in
a consistent dermatome upon stimulation and had no known
pathology affecting PSC. The other stimulation parameters were
not consistent between patients (but rather consistent within
patients), introducing bias. Electrode size was different for S12
than S18 and S30, which may have introduced differences into
the spread of electricity. Each session only took place in a
single day and the results are therefore not generalizable to
chronic stimulation. The stability of chronic stimulation for
producing somatosensation is unknown, however, reports of
chronic stimulation of motor cortex in NHPs shows stability of
mapping (Craggs et al., 1976), the safety profile from chronically
implanted, stimulating, and surface electrodes in responsive
neural stimulators is quite robust (Heck et al., 1976; Bergey
et al., 2015; Lee et al., 2015). ICMS use in PSC exhibits stability
at 10–12 weeks, without any safety concerns. Since ICMS is
invasive, it is likely that the safety profile would be similar or
better, but the decay may be more severe (Callier et al., 2015;
Chen et al., 2015).

Overall, this study uses ECoG grids to investigate the
frequency component of cortical stimulation for use in BCI
systems. We estimate a JND value near or below 10 Hz, and show
that even when guessing, subjects could correctly identify the
higher frequency better than chance. Furthermore, these findings
suggest reliable discrimination above 40 Hz, with a difference
between frequencies of 20 Hz or above. Future BCI systems

utilizing cortical stimulation to produce artificial sensation
can utilize frequency to produce a wider range of percepts,
empowering users to make better use of artificial sensations.
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Electrocorticographic brain computer interfaces (ECoG-BCIs) offer tremendous
opportunities for restoring function in individuals suffering from neurological damage
and for advancing basic neuroscience knowledge. ECoG electrodes are already
commonly used clinically for monitoring epilepsy and have greater spatial specificity
in recording neuronal activity than techniques such as electroencephalography (EEG).
Much work to date in the field has focused on using ECoG signals recorded
from cortex as control outputs for driving end effectors. An equally important
but less explored application of an ECoG-BCI is directing input into cortex using
ECoG electrodes for direct electrical stimulation (DES). Combining DES with ECoG
recording enables a truly bidirectional BCI, where information is both read from
and written to the brain. We discuss the advantages and opportunities, as well
as the barriers and challenges presented by using DES in an ECoG-BCI. In this
article, we review ECoG electrodes, the physics and physiology of DES, and the
use of electrical stimulation of the brain for the clinical treatment of disorders such
as epilepsy and Parkinson’s disease. We briefly discuss some of the translational,
regulatory, financial, and ethical concerns regarding ECoG-BCIs. Next, we describe
the use of ECoG-based DES for providing sensory feedback and for probing and
modifying cortical connectivity. We explore future directions, which may draw on
invasive animal studies with penetrating and surface electrodes as well as non-invasive
stimulation methods such as transcranial magnetic stimulation (TMS). We conclude by
describing enabling technologies, such as smaller ECoG electrodes for more precise
targeting of cortical areas, signal processing strategies for simultaneous stimulation and
recording, and computational modeling and algorithms for tailoring stimulation to each
individual brain.

Keywords: electrocorticography, brain–computer interface (BCI), direct electrical stimulation, intracranial
electrodes, plasticity induction, neuroprosthetic, sensory restoration, neuromodulation
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INTRODUCTION

Electrocorticography (ECoG) is used clinically as a recording
modality for diagnosing specific spatial regions of focal epilepsy
onset in individuals suffering from medically intractable epilepsy.
By using invasive monitoring, the origins of seizures can
be identified, and subsequent surgical removal of the seizure
foci can reduce the frequency of or eliminate seizures. After
surgical resection, approximately 50% or greater of patients
experience significantly improved seizure control following
surgical treatment (Englot and Chang, 2014). For monitoring,
patients are routinely implanted for 1–2 weeks with electrodes
either directly on top of the dura (epidural), beneath the dura
(subdural), or implanted in cortex [depth electrodes, or stereo
electroencephalography (sEEG)]. The term intracranial EEG, or
iEEG, is often used to describe all implanted electrodes. We will
use the term ECoG electrodes in this article to encompass surface
as well as penetrating depth electrodes. Following electrode
implantation, patients remain in the hospital under clinical
monitoring by a team of neurologists and epilepsy technicians,
until the clinical team has collected enough data to precisely
localize the focal seizure zones for surgical resection.

To complement the passive recording of epileptic events,
direct electrical stimulation (DES) (Vincent et al., 2016b)
[or when applied particularly to cortex, known as direct
cortical stimulation (DCS) (Giussani et al., 2010), or direct
electrical cortical stimulation (DECS)] through ECoG electrodes
is commonly performed for clinical mapping purposes, both
intraoperatively and during the patients’ clinical observation.
For clinical mapping the clinical team electrically stimulates
different brain regions to delineate regions of cortex important
for language, motor, and sensory function. By stimulating
particular brain areas and observing the effects by querying the
patient, the clinical team can avoid resecting areas important for
cognitive function and preserve these functions in an individual
after surgical resection. The combination of recording and
mapping through stimulation enables the clinical team to be
best informed when making clinical decisions regarding reducing
or eliminating seizures through resection, while maintaining
cortical function. Clinical teams perform stimulation of both
cortical and subcortical structures and pathways. We use
the term DES here to refer to general electrical stimulation
of any brain region through implanted electrodes, while we
consider DCS a subcategory specifically describing stimulation of
surface gray matter.

Direct electrical stimulation for clinical uses goes beyond
delineating cortical regions of activity. For example, deep
brain stimulation (DBS) is a therapy currently being used for
therapeutic treatment of movement disorders and psychiatric
illnesses. Electrodes similar to those used for sEEG are implanted
into deep brain structures, and stimulation helps ameliorate
clinical symptoms. The space of DBS research is vast, and we will
not go into extensive detail in this review. Instead, we highlight
the widespread use of DBS as a demonstration of the therapeutic
use of clinical stimulation through implanted electrodes, and we
draw from current research in the DBS field to frame future
directions for DES.

In this article, we first review the characteristics of implanted
electrodes, the effect of electrical stimulation through them on
cortex, and the nature of signals recorded through them. We then
discuss current clinical uses of DES for disorders such as epilepsy,
and briefly cover DBS and its applications for diseases such as
Parkinson’s disease and essential tremor. We also discuss some
of the translational, regulatory, financial, and ethical concerns
with ECoG-BCIs. We subsequently describe how ECoG-based
DES can be used to provide sensory feedback and to probe and
modify cortical connectivity. We then review future applications
of DES in ECoG-BCIs, which may draw from invasive animal
studies with penetrating and surface electrodes and non-invasive
stimulation methods such as transcranial magnetic stimulation
(TMS) and transcranial electrical stimulation (TES). We discuss
how enabling technologies, such as smaller ECoG electrodes for
more precise targeting on smaller spatial scales, software and
hardware that allow simultaneous stimulation and recording, and
computational modeling for tailoring stimulation to individual
patients, could enable the realization of full-fledged bidirectional
ECoG-BCIs for a variety of applications.

THE ELECTRICAL-NEURAL INTERFACE

Electrodes
Current clinically used ECoG electrodes are often embedded in a
silicone sheet and are made of platinum or stainless steel. The
electrodes are 1.5 mm diameter circular contacts with 4 mm
spacing (“micro”-ECoG electrodes)1, to 2.3–3 mm diameter
contacts with 10 mm spacing for “macro”-ECoG electrodes
(Chang, 2015). Depth electrodes are frequently comprised of
platinum, with cylindrical contacts, and can be inserted with
or without stereotactic guidance. These are commonly used to
localize seizures coming from deep brain structures, such as the
hippocampus. DBS electrodes are similar to depth electrodes in
that they are linear probes with cylindrical contacts, although
they can be of smaller diameter, with tighter electrode spacing
and fewer contacts.

Stimulation
Implanted electrodes can be used for direct modulation of
neural activity through electrical stimulation. In order to better
understand the underlying mechanisms of stimulation, we
first consider the effects of stimulation on a single neuron.
At the single neuron level, the redistribution of charge, and
subsequent depolarization, where the inside of the cell becomes
more positive relative to the extracellular fluid, can cause an
action potential to be generated which propagates down the
cell’s axon. Hyperpolarization, which occurs when the inside
of the cell becomes more negative relative to the outside of
the cell, can inhibit action potentials. Electrical stimulation,
through a redistribution of charge within an axon, can result
either in hyperpolarization or depolarization. When sufficient

1We discuss advances in research-grade microECoG electrodes with much smaller
electrode contact size and tighter spacing in the section “Enabling Technologies –
Materials and Electronics.”
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depolarization is achieved, an action potential is generated
through the diffusion of ions through sodium, potassium,
and calcium channels (Bean, 2007). Subthreshold intracellular
stimulation, where an action potential is not generated, can result
in the potentiation of synaptic strength with NMDA receptor
mediation in the neuron’s synapses (Alonso et al., 1990).

In solutions, electrical stimulation results in the redistribution
of ions through non-Faradaic reactions, and the transfer of
electrons to electrolytes in the solution through Faradaic
reactions (Merrill et al., 2005). There exist both reversible and
irreversible Faradaic reactions: which one occurs depends on
the rate of the electron transfers relative to the mass transport
of the reactant. We discuss these reactions further and the
impact of stimulation parameters on them in the section
“Limitations and Considerations.” Through these mechanisms,
charge is redistributed. When this redistribution of charge
causes depolarization directly beneath the electrode, for the
case of a single neuron, the stimulation is often referred to as
cathodal stimulation, while electrical stimulation which causes
hyperpolarization directly beneath the electrode is referred to as
anodal stimulation (Figure 1A). On the scale of larger electrodes,
such as with ECoG arrays, cathodal stimulation often refers to
negative voltages and currents directly beneath the electrode,
while anodal stimulation refers to positive voltages and currents.

Stimulation on a local scale can be achieved through
intracortical microstimulation (ICMS), where electrical
stimulation activates neurons primarily through their axons
passing through the region of cortex stimulated (Nowak and
Bullier, 1998; Tehovnik et al., 2006). However, other regions of
the cell such as the cell body and dendrites may also be activated
depending on stimulus polarity and orientation. Anodal pulses
best activate cell bodies and terminals, compared to cathodal
pulses which best activate axons (McIntyre and Grill, 2000).
In both cases, it is the outward flowing current at the axon
initial segment or nodes of Ranvier along the axon that results
in neuronal excitation (McIntyre and Grill, 2000; Tehovnik
et al., 2006). ICMS is thought to sparsely activate a population
of cortical neurons, rather than just ones proximal to the
stimulation electrode tip (Histed et al., 2009).

The distance of neuron elements from the stimulation source
changes whether or not these elements will be hyperpolarized
or depolarized by a corresponding cathodic or anodic stimulus.
Directly beneath a cathode, a membrane will become depolarized,
and hence can generate an action potential. During the case
of anodal stimulation, the area directly beneath the electrode
is hyperpolarized, but further away from the anode, action
potentials may be generated, resulting in a “virtual cathode”
(Merrill et al., 2005) (Figure 1A). Stimulation beneath the anode
can occur with surface anodal stimulation of neocortical cells,
where current hyperpolarizes apical dendrites, and subsequently
leaves through the axon resulting in depolarization (Ranck, 1975)
(Figure 1B). For the case of bipolar stimulation, an axon is
generally depolarized beneath the cathode and hyperpolarized
beneath the anode (Ranck, 1975).

Physiologically, ICMS is thought to activate both inhibitory
and excitatory populations of cells (Butovas and Schwarz,
2003), and is not thought to evoke natural patterns of cortical

activity (Millard et al., 2015). Functional magnetic resonance
imaging (fMRI) along with microstimulation has demonstrated
that microstimulation, at least in the visual cortical pathway,
suppresses the output activity of neurons which have their
afferents stimulated (Logothetis et al., 2010). Further work in
microstimulation of the visual cortex has demonstrated that
microstimulation in V1 may locally activate cells, but silence
neurons further downstream (Klink et al., 2017).

The frequency of ICMS also has an impact on whether
neurons are excited or inhibited. High frequency stimulation
(>10 Hz) is thought to potentiate neural activity (long-term
potentiation) (Bliss and Lomo, 1973; Douglas, 1977), while low
frequency stimulation (<1 Hz) is thought to depress neural
activity (long-term depression) (Mulkey and Malenka, 1992).

Compared to ICMS, DES of human cortex using larger
electrodes, such as ECoG or DBS electrodes, injects current
over a larger surface area, and subsequently large amounts of
current could lead to greater activation with the potential to
spread to a larger area (Vincent et al., 2016a) (Figures 1C,D).
Additionally, depending on the anatomic location of DES,
stimulation can either evoke or inhibit neural activity (Borchers
et al., 2012). For example, DES of language areas during a
language task can disrupt speech production while DES of
somatosensory cortex can evoke sensations and DES of motor
cortex can evoke movements. In terms of subdural ECoG
stimulation in humans, the patterns and types of cells activated
are thought to depend on the intricate details of cortical
geometry, cell fiber orientation (Kudela and Anderson, 2015),
and whether the pulses are anodal or cathodal (Seo et al., 2015)
(Figures 1C,D). A finite element model (FEM) of subdural
cortical stimulation with integrated neuron models was used
to demonstrate that neurons deeper in the bank (buried in
cortex) are more activated during cathodal subdural stimulation,
while those in the wider crown are activated during anodal
stimulation (Seo et al., 2015). DES through ECoG electrodes can
result in both local effects, and effects remote to stimulation.
The resultant signals at other electrodes are often referred
to as cortico-cortico evoked potentials (CCEP) (Keller et al.,
2014b). These have been reviewed thoroughly by Keller et al.
(2014b, for more details). We will therefore only review some
of the relevant physiology here. Pyramidal cells, which are the
source of the majority of cortical output, and lie in cortical
layers 2, 3, 5, and 6 can have their superficial dendritic trees
depolarized. Layer 2/3 inhibitory GABA interneurons can be
depolarized, which then synapse preferentially near the soma
of pyramidal cells (Brill and Huguenard, 2009) and cause
a decrease in pyramidal cell activity due to the inhibitory
nature of GABA signaling. If there are axons passing through
the region of stimulation, both orthodromic and antidromic
stimulation can occur (Keller et al., 2014b). The measured surface
potentials are therefore a combination of the initial monosynaptic
connections, cortico-cortical pathways, and cortico-subcortical
pathways which would explain the polymorphic response lasting
hundreds of milliseconds (Matsumoto et al., 2006).

The mechanisms of DBS stimulation are not yet currently
understood, and are thought to involve the modulation of the
networks targeted by the stimulation, rather than involving solely
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FIGURE 1 | Effect of stimulation on a single neuron and on a population of neurons. (A) Stimulation along a nerve fiber results in depolarization beneath the cathode,
and hyperpolarization beneath an anode. (B) Single neurons can be stimulated by both anodal and cathodal stimulation depending on their orientation. In this
example, anodal current enters the dendrites of the neuron and leaves through the axon, which results in depolarization of the axon and an action potential. (C) In
the case of stimulation through ECoG electrodes, a large population of neurons can be activated by stimulation. Shown are approximate scales of an ECoG
electrode relative to the precentral and postcentral gyrus, along with a representative mixed population of pyramidal neurons potentially depolarized by stimulation. In
the zoomed-in region, we highlight the multiple orientations of neurons that could be activated. (D) An axial slice in a co-registered CT and MRI image following
implantation with an ECoG array shows the potential current paths that different stimulation configurations would have to pass through, illustrating the large
populations of neurons present within the potential current path. (A,B) Inspired by Ranck (1975).

immediate inhibitory effects on the targeted anatomic region
(Montgomery and Gale, 2008; Ashkan et al., 2017).

In summary, the results reviewed in this section speak to the
immense complexities of engineering stimulation in humans and
the work that remains to be done in understanding both its
physical and neural effects.

Sensing
A key part of a BCI is the recording of neural activity to use
as a control signal in order to successfully modulate the system
using stimulation. The summed activity of many hundreds of
thousands of neurons in the cortical tissue under an ECoG
electrode contributes to the electric voltage recorded from the
electrode. The increased firing rate of populations of neurons
results in a broad increase in power across all frequencies,
which is more easily separable in the broadband gamma band
(above 50 Hz), rather than the lower frequency bands (Miller
et al., 2008). This is because other frequency bands modulate
up and down independently during different tasks and brain
states, masking the broadband increase in power. The higher
frequency components are more asynchronous, and therefore
are not as subject to this masking effect (Hermes et al., 2017).
Lower frequency bands, such as the alpha (8–12 Hz) and beta
(13–30 Hz) band, are thought to represent pulsed inhibition that
serves to gate and coordinate neuronal firing (Schalk, 2015).

Therefore, analysis of broadband gamma activity reveals the local
neuronal firing dynamics, while analysis of theta (4–8 Hz), alpha,
and beta frequency regimes yields insight into the coordinating
mechanisms across the brain.

The different oscillatory features discussed above have been
explored for advancing our understanding of how different
cortical regions function during motor movement and language
function (Bouchard et al., 2013; Flint et al., 2017). Measurements
of these signals during motor and speech imagery have been
employed in ECoG brain–computer interfaces to drive end
effectors such as computer cursors (Leuthardt et al., 2004,
2006a,b) and robotic arms (Hotson et al., 2016). Furthermore,
non-motor regions can be used to drive ECoG-BCIs as well,
illustrating the general utility of oscillatory band driven BCIs
(Ramsey et al., 2006; Wilson et al., 2006).

CURRENT CLINICAL USES OF DIRECT
ELECTRICAL STIMULATION

Functional Mapping for Epilepsy and
Tumors
As detailed in the introduction, DES is frequently used both
intraoperatively and during a patient’s stay at the hospital for
functional mapping and identifying areas of cortex associated
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with important cognitive functions (Berger et al., 1989; Ojemann
et al., 1989; Berger and Ojemann, 1992). These mapping
procedures are done both for epilepsy surgery and tumor
resections (Berger et al., 1989; Ojemann et al., 1989; Berger and
Ojemann, 1992). Clinicians, using implanted ECoG electrodes
or stimulators in the operating room, apply DES to various
cortical and subcortical structures and pathways, and observe
location dependent effects, including speech arrest in language
regions, motor movements in motor cortex, and sensory percepts
in somatosensory cortex. The results of these stimulation studies
inform where the surgeons will plan to resect; for example, if the
seizure focus is close to a language region, the surgeon and patient
may decide the surgery is not worth the risk of a permanent
language deficit.

Deep Brain Stimulation
Deep brain stimulation is a prominent example of electrical
stimulation of the brain. It is currently being used for
therapeutic treatment of movement disorders [Parkinson’s
disease (Bronstein et al., 2011) and Essential Tremor (Della Flora
et al., 2010)], and is also being explored for treating psychiatric
illnesses (post-traumatic stress disorder, depression, obsessive
compulsive disorder, Tourette syndrome, Schrock et al., 2015)
and epilepsy treatment. Traditionally, linear probes of cylindrical
contacts are inserted into deep brain structures such as the
globus pallidus internus (GPi), subthalamic nucleus (STN), or
ventral intermediate nucleus of the thalamus (VIM). Following
implantation, clinicians may either be guided by intraoperative
CT imaging, or wake the patient up intraoperatively to test
for adverse effects of stimulation on different contacts, using
a monopolar (one stimulating electrode and a distant return
electrode), bipolar (two similarly sized electrodes), or multipolar
arrangement of electrodes for the steering of current.

Advances in BCI related to DBS have explored the use
of closed loop DBS to trigger stimulation of deep brain
structures in response to signals recorded from the surface
of the cortex (Herron et al., 2017). Herron et al. used
threshold crossing in the beta-band regime of recorded
ECoG signals over motor cortex as a control decision
to trigger DBS stimulation. This enables control of DBS
stimulation solely through recorded neural signals. Besides
potentially reducing the side-effects of open-loop stimulation,
such closed-loop control of stimulation conserves power
and helps extend the life of the DBS device, reducing the
number of replacement surgeries needed over the life of a
user. Adaptive DBS based on recordings in STN has been
demonstrated to improve motor scores over traditional open-
loop DBS (Little et al., 2013). In addition, primate models
of Parkinson’s disease demonstrate that closed-loop DBS has
a greater effect than open-loop DBS on akinesia and on the
neuronal output in both cortical and subcortical structures
(Rosin et al., 2011).

Finally, DBS is also being explored for the treatment of
particular types of epilepsy. Partial onset seizures often spread
through the circuitry of the basal ganglia, and therefore could
be controlled using DBS strategies similar to those used for
movement disorders (Halpern et al., 2008; Lega et al., 2010).

Closed Loop Stimulation for Epilepsy
Closed loop stimulation to control seizures is currently clinically
available to epilepsy patients through the Neuropace RNS system
(Morrell, 2011; Lee et al., 2015). A neurosurgeon implants ECoG
electrodes either on the cortical surface or in deeper structures
near the putative seizure focus. If an impending seizure is
detected, high frequency stimulation is triggered near the seizure
focus to control the seizure. This is a demonstration of clinically
effective and already implemented DES in an ECoG-BCI, where
neural control signals are acquired in real time from the brain and
used to trigger stimulation.

ADVANTAGES OF DES RELATIVE TO
OTHER STIMULATION TECHNIQUES

An advantage of DES relative to non-invasive electrical
stimulation modalities is the delivery of much greater amounts
of the applied current to neurons. During TES2, as much as
75% of the current is shunted through the scalp and the skull
(Vöröslakos et al., 2018; Widge, 2018). This greatly blunts the
efficacy of cortical stimulation, and suggests that some of the
published results using TES are due to mechanisms other than
direct neuronal excitation. In contrast, by directly stimulating the
brain and bypassing the skull and scalp, DES delivers current to
cortical structures more effectively. Although the currents applied
during TES could be raised to a high enough level to reach a
desired electric field strength at a target location in the brain,
there would be potential off-target effects and skin damage due
to the amount of current required, in contrast to DES through
electrodes implanted precisely at the targeted site for this same
electric field strength. This reinforces a large advantage of the
DES relative to TES, which is the ability to place electrodes close
to the target structures, and consequently minimize the amount
of current passing through off-target structures.

Even with epidural and subdural stimulation, not all current
reaches neurons in the cortex. Epidural stimulation results
in current shunting by the dura (Wongsarnpigoon and Grill,
2008), while both epidural and subdural stimulation have some
degree of cerebrospinal fluid (CSF) shunting depending on the
characteristics of the CSF beneath or surrounding the electrodes
(Wongsarnpigoon and Grill, 2008; Guler et al., 2018).

A factor in epidural and subdural stimulation is the presence
of pain receptors within the dura which can be activated
with dural stimulation (Wirth and Van Buren, 1971). However,
previous clinical trials with epidural stimulation made no reports
of dural pain with stimulation up to 6.5 mA and 250 µs pulse
widths (Levy et al., 2008).

Transcranial magnetic stimulation has primarily been used to
induce motor movements, rather than isolated sensory percepts
(although phosphenes can often be produced via TMS, and
tapping sensations and auditory clicks can accompany TMS)
(Sliwinska et al., 2014). A method such as DES affords the ability

2We use this term to encompass transcranial direct current stimulation (tDCS)
and transcranial alternating current stimulation or (tACS).
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to focally and specifically produce sensations that would not be
achievable through TMS.

Additionally, traditional figure-8 TMS coils are currently
unable to target cortical structures beyond 2–3 cm deep (Roth
et al., 1991; Wagner et al., 2009). DES electrodes, on the other
hand, can be physically placed in deeper regions of interest in
order to elicit the desired stimulation effects. Another advantage
of DES over TMS is the fact that the maximum of the electric
field strength induced by TMS has to occur at the cortical
surface rather than deeper structures (Heller and van Hulsteyn,
1992). This means that off-target effects in cortical layers near
the surface are possible when targeting deeper structures. Even
with more sophisticated coils, such as the H-coil, the maximum
stimulation strength still occurs at the surface and greater depth
of stimulation (4–6 cm) is achieved with a loss of focality (Zangen
et al., 2005; Wagner et al., 2009). Although the field strength
is greatest at the cortical surface for TMS, the orientation of
neurons is a critical component in the activation of neurons, as
both experimental and modeling work has shown that electric
fields tangential to the sulcal walls can activate neurons oriented
perpendicularly to them (Fox et al., 2004; Silva et al., 2008;
Seo et al., 2016). Similarly, different layered pyramidal neurons
are activated differently between the gyral crown and sulcus
walls (Silva et al., 2008; Seo et al., 2016). This in total points
to the complex physiologic effects of TMS, and the potential
difficulties in activating groups of neurons both on the crown of
the gyrus and within the sulcus together. A further disadvantage
of TMS is that with current hardware, use outside of the lab
is limited due to the bulky hardware and the need to maintain
a precise spatial relationship between the coil and the head
for stimulation.

The fact that DES electrodes can be placed near the deeper
structures of interest is vital for the treatment of Parkinson’s
and Essential Tremor through DBS. As these structures cannot
currently be effectively stimulated through alternative methods
such as TMS, effective clinical treatment relies upon DES via
electrodes near the desired brain regions.

FINANCIAL, TRANSLATIONAL,
REGULATORY, AND ETHICAL
CONCERNS FOR DES IN ECOG-BCIS

Translational, Regulatory, and Financial
Concerns
We expect early applications of ECoG-BCIs to leverage existing
clinical devices. This has been a pathway forward for many
prior medical devices. Advances in early DBS devices were
based largely off of prior work in cardiac pacemaker and spinal
cord stimulation devices (Coffey, 2009). We imagine a similar
trajectory for DES in ECoG-BCIs. Preliminary use of DES has
been enabled by investigational device exemptions (Harvey and
Winstein, 2009). Further iterations of Medtronic DBS devices,
such as the PC + S device, have been granted an investigational
device exemption in research studies, and are improvements
upon an already clinically approved device (Herron et al., 2017).

Whenever new technology is implemented for clinical
treatment, a question of cost efficacy is raised. However,
we suggest that ECoG-BCIs have the potential to be cost
effective long-term devices if clinical efficacy is demonstrated, as
illustrated by examples such as vagus nerve stimulators and DBS.
Vagus nerve stimulation for epilepsy has been show to be effective
long-term, and cost benefit analysis has shown that the cost of
the treatment pays off within a 2 year period (Boon et al., 1999).
Although it is not universally the case, DBS in general is thought
to be cost effective, when looking at studies across European and
North American Centers (Pereira et al., 2007). It has been noted
that during the adoption of DBS large-volume hospitals had lower
prices and superior short-term outcomes, which is something
to be aware of in the translation of ECoG-BCIs into the clinic
(Eskandar et al., 2009).

Ethical Concerns
Ethical concerns are critical to address for any engineered device
which is implanted in a patient. A previous review has explored
some of the ethical concerns for BCIs (Klein and Ojemann, 2016),
and we seek here to highlight some of the concerns which are
particularly relevant to ECoG-BCIs with DES.

Articulating the potential risks and long-term requirements
for an ECoG-BCI, particularly with DES, is essential for
appropriate informed consent. Biologic risks such as infection,
seizures, and tissue damage from stimulation (Cogan et al., 2016)
are accompanied by technological concerns such as repeated
surgeries for battery replacements, heating due to potential
wireless charging, and lifetime electrode wear from repeated
stimulation (Klein and Ojemann, 2016).

Privacy and security are another key aspect in implantable
medical devices, particularly with any BCIs that communicate
signals wirelessly or can be programed wirelessly. One can
imagine situations where a stimulator could be set to either
less than therapeutic levels or to unsafe levels, by malware
transmitted to the ECoG-BCI device. Research efforts that build
on current security and privacy protocols for medical devices are
required to ensure neural signal security and protection against
malevolent programing.

RESEARCH DIRECTIONS FOR DES IN
ECOG-BCI

We discuss various research directions for ECoG-BCIs, with
an emphasis on future engineered applications. A previous
review (Wander and Rao, 2014) has explored the use of brain–
computer interfaces for investigating scientific questions in the
nervous system. Further information on classical ECoG-BCIs and
comparison to other types of BCIs can be found in Rao (2013).

Sensory Feedback Through DES
One potential use of ECoG-based stimulation currently being
explored is the restoration of sensory feedback for those suffering
from disorders such as paralysis. There is a large clinical need,
as it is estimated that 5.4 million Americans are living with
paralysis, with an estimated 41.8% of people with paralysis unable
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to work (Christopher and Dana Reeve Foundation, 2013). The
restoration of sensation is a priority for prosthetics users (Biddiss
et al., 2007) as well as potential BCI end users such as individuals
with paralysis (Anderson, 2004; Collinger et al., 2013). Sensory
feedback to cortex would enhance the efficacy of a prosthetic
arm to aid with independent tasks, or help an individual better
interpret data from body mounted sensors. The lack of sensory
feedback in many existing brain–computer interfaces (BCIs) may
limit performance (Bensmaia and Miller, 2014; Delhaye et al.,
2016). Indeed, integration of somatosensory feedback into BCIs
has been demonstrated to improve task performance with BCIs
(Suminski et al., 2010; Klaes et al., 2014; Dadarlat et al., 2015;
Pistohl et al., 2015; Schiefer et al., 2016).

Prior work has shown that humans can respond to DES of
the surface of the primary somatosensory (S1) cortex (Ray et al.,
1999; Libet et al., 1964; Johnson et al., 2013; Hiremath et al.,
2017), which results in an artificial sensory percept organized
according to the standard somatotopy of cortex. Cronin et al.
(2016) demonstrated that DES of S1 could be used by an
individual in the absence of visual feedback to perform a motor
task. Although these percepts would not be mistaken by the
individuals for natural touch (Johnson et al., 2013; Cronin et al.,
2016; Collins et al., 2017), they are useful for performing closed-
loop BCI tasks. An open question is how using DES for feedback
compares to a normal somatosensory pathway. One way of
assessing this is through response times, which have recently
been demonstrated to be slower for DES relative to natural
touch (Caldwell et al., 2019). This speaks to the complex effects
of stimulation and requires further exploration. Another key
consideration for neuroprosthetic use is the embodiment of the
prosthetic device. DES through ECoG has been shown to induce
prosthetic hand ownership, suggesting that prostheses could be
made to feel more natural as a result of DES (Collins et al., 2017).

With recent advances in materials and manufacturing,
spatially smaller microECoG arrays are able to target smaller
volumes of cortex. More targeted DES through microECoG grids
allows higher spatial selectivity relative to larger clinical electrode
grids (Hiremath et al., 2017; Lee et al., 2018), opening up the
possibility of encoding more complex percepts compared to
larger electrodes.

Although short term studies have demonstrated that these
percepts induced by DES do not feel natural, the principles of
neuroplasticity, which are prevalent in somatosensory cortex and
other associated regions, and adaptation within the cortex (Miller
and Weber, 2011; Weber et al., 2012; Thomson et al., 2013) will be
relevant in the long-term implementation of DES in ECoG-BCIs
for sensory restoration.

A BCI application with DES (Figure 2) could use signals
from motor cortex to drive a sensorized prosthetic arm, which
could provide feedback about the task via DES of primary
somatosensory cortex (Figure 2A). Depending on the potential
parameter space of discernible stimulation percepts, a user
could learn to map physical contact locations on the prosthetic
arm to distinct stimulation percepts (Figure 2B) providing
feedback from external sensors directly to the brain The recent
demonstrations of usable sensory signals in humans via DES
brings us a step closer to such closed-loop human BCIs.

Quantification of Cortical Connectivity
An additional application of DES is in quantifying cortical
connectivity. DES of a cortical site can produce a cortico-
cortical evoked potential (CCEP) at local and remote sites
depending on the cortical area stimulated and the intensity of
stimulation (Keller et al., 2014b). Studies have explored CCEPs
in the context of different cortical networks, including language
(Matsumoto et al., 2004) and motor regions (Matsumoto et al.,
2006). The connections probed with CCEPs correspond well
with known functional networks observed through fMRI as
well as white matter pathways confirmed by diffusion tensor
imaging (DTI) (Keller et al., 2014a). Such evoked potentials
could have utility in BCI applications where depending on
the presence or modulation of these CCEPs, an algorithmic
decision could be made.

Modification of Cortical Excitability and
Induction of Plasticity
Another use for DES currently being explored is the induction
of cortical plasticity. This refers to enhancement or other
modification of connectivity between different cortical regions,
which could aid in the recovery of individuals suffering from
disrupted neuronal communication due to injuries such as
stroke. To put the clinical need in perspective, there are
millions of individuals worldwide who are disabled due to
stroke. It is estimated that in the US alone for the year
2016, healthcare and economic costs related to stroke disability
totaled $34 billion with stroke being a leading cause of serious
long-term disability (CDC, 2015). 50–70% of stroke survivors
reach functional independence, but 15–30% of survivors are
permanently disabled (Lloyd-Jones et al., 2010). Therapies
using targeted activity-dependent neuromodulation may help
restore motor recovery (Harvey et al., 2009) but the biological
effects of cortical stimulations are not well understood, and
the parameters for potentially effective stimulation protocols
need further development. Studies with smaller populations of
neurons, animal models, and non-invasive stimulation may lend
insight into the optimal protocols for plasticity induction.

A persistent theme in cortical connectivity is the idea of
Hebbian plasticity, a type of synaptic plasticity first proposed
by Hebb (1949): presynaptic firing of one neuron (site A) can
strengthen the connection between it and a postsynaptic neuron
(site B) that fires soon after A. Bi and Poo demonstrated a
version of this plasticity rule, known as spike timing dependent
plasticity (STDP), in rat hippocampal slice cells: consistent firing
of a presynaptic cell (site A) within a time window of 20–30 ms
before another postsynaptic cell (site B) led to a strengthened
connection (LTP) from A to B, while B firing in a time window
of 20–30 ms before A led to a weakened connection (LTD) (Bi
and Poo, 1998). Both of these mechanisms were determined to be
dependent on NMDA receptors.

These principles have been applied to induce plasticity in non-
human primate (NHP) motor cortex (Jackson et al., 2006) and
rodent rehabilitation experiments, where triggering stimulation
in somatosensory cortex several milliseconds after premotor
cortex firing in rats that suffered from damage to motor
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FIGURE 2 | Somatosensory BCI with closed-loop stimulation. (A) Neural signals recorded from cortical regions such as primary motor cortex could be used to drive
a sensorized prosthetic arm. Feedback about task performance or object manipulation could then be conveyed to the user by DES of primary somatosensory
cortex. (B) Different stimulation parameters, such as amplitude, frequency, and carrier frequency shape, could convey different percepts which a user could learn to
map to locations on the neuroprosthetic arm.

cortex resulted in increased functional performance (Guggenmos
et al., 2013). Other work has explored the use of paired-
pulse paradigms in NHPs to induce plasticity: where concurrent
surface to depth stimulation at one site was consistently followed
by stimulation at another site with a fixed time lag (Seeman
et al., 2017). The optimal time lag for potentiation was found
to be between 10–30 ms, with longer delays not resulting in
potentiation. Only a fraction of the sites in this study were
potentiated, and effects were often seen globally, illustrating the
complex factors influencing cortical plasticity. A recent study
in NHPs examined the timing of DES relative to the aggregate
activity of neurons: DES delivered during beta oscillations during
the depolarizing potential (negative peak as recorded through
LFPs) caused potentiation of cortical connectivity, while DES
delivered during the hyperpolarizing potential caused depression
of cortical connectivity as assessed through cortically evoked
potentials (Zanos et al., 2018).

Beyond work in animals, and importantly, for applications
such as stroke rehabilitation, recent work has reported
improvements in physiological measures of motor function
with non-invasive stimulation such as movement triggered
TMS compared to random TMS stimulation (Buetefisch et al.,
2011). Adding further support to the importance of brain
state dependent stimulation for rehabilitation is a recent study
that demonstrated TMS delivery during movement-related
beta-band (16–22 Hz) desynchronization caused a significant
increase in corticospinal excitability, as evaluated through motor
evoked potentials, lasting beyond the period of stimulation
(Kraus et al., 2016).

Keller et al. (2018) demonstrated that repetitive 10 Hz
DES using subdural electrodes induced both potentiation and

suppression in different cortical sites, depending on the baseline
network characteristics. This suggests that plasticity can indeed
be modulated through DES in humans, and that individual
patient models of connectivity may inform the optimal sites to
target to either enhance or decrease connection strength.

An example BCI application for neuromodulation (Figure 3)
could include an oscillatory feature at a surface electrode, such
as activity in the beta band or high gamma activity representing
coordinated neuronal firing, driving stimulation at a damaged
cortical region to enhance cortical connectivity and help restore
motor function. This activity dependent stimulation could be
similar to the activity-dependent DBS paradigms being explored
(Herron et al., 2017). A more sophisticated approach, based on
the concept of neural co-processors (Rao, 2019), could utilize
artificial neural networks to map complex ECoG activity patterns
at multiple recording sites to stimulation patterns at multiple
stimulation sites to achieve goal-directed rehabilitation.

The combination of theoretical, animal, and human data
discussed above suggests that activity-dependent DES is a
promising approach to enhance and modify connectivity in
humans, offering a new type of therapy for targeted restoration
of function after neural injury. ECoG-BCIs are well-suited to
acquiring and decoding appropriate control signals and when
coupled with DES, can be used to influence cortical activity and
induce activity-dependent plasticity.

LIMITATIONS AND CONSIDERATIONS

While ECoG based bi-directional BCIs offer several advantages
over other types of BCIs, there are limitations and considerations
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FIGURE 3 | Neural plasticity induction through neuromodulation via DES in ECoG-BCIs. (A) The basic principles of neural plasticity involve the timing of activity
between neurons resulting in the strengthening of connections, where potentiation occurs if the neurons fire with the appropriate timing in a causal manner, and
depression occurs if neurons do not fire with the appropriate timing. (B) These principles could be used for neuromodulation through DES and ECoG-BCIs by
stimulating near a particular damaged cortical region (purple), based on activity at a spared cortical region (gray). This activity could be a marker of neuronal firing, or
a local field potential representing when neurons are more likely to be firing synchronously. Appropriately timed stimulation could then result in increased connectivity,
measured through markers such as evoked potentials, and restored motor function relative to baseline. A damaged region not undergoing neuromodulation is
shown in red, where evoked potentials are not positively modulated and motor function is not restored.

that must be taken into account. For either subdural or
epidural electrodes, neurosurgery is required. The size of
the electrodes, relative to other invasive methods such as
ICMS, results in larger population of neurons being targeted.
Furthermore, there is no ability to target specific types of
cells. Additionally, larger neurons with larger diameter axons
are more likely to be activated by electrical stimulation
(Tehovnik et al., 2006).

The developing field of optogenetics (Deisseroth, 2011;
Yizhar et al., 2011) describes the use of genetic modification
and optical methods to either activate or inactivate specific
neurons in vivo. Optogenetics has been demonstrated to
change functional connectivity in sensorimotor cortex in NHPs

(Yazdan-Shahmorad et al., 2018). Although optogenetics may
offer a more targeted approach to activating neurons, progress
to humans may be slow due to the technique’s reliance on genetic
modification of neurons.

Another current consideration when developing technologies
and protocols to induce plasticity is our current lack of
understanding of the mechanisms of plasticity induction
(Feldman, 2012). Beyond the single neuron spiking level,
plasticity is a complex phenomenon as discussed above, and
in a human brain, the potential factors influencing plasticity
can be complex and numerous. Optogenetics, with its ability
to selectively target different populations of neurons will help
provide critical insight into the mechanisms of plasticity.
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Although DES may offer a promising approach to inducing
plasticity, it has yet to be demonstrated to be unequivocally
effective in a stroke model. Limited subgroups of stroke patients
with residual motor function were shown to benefit from open-
loop DES in the EVEREST trial, but other groups showed no
benefit (Levy et al., 2016). As better animal models of stroke
are developed (Sommer, 2017), one can hope to gain a better
mechanistic understanding of how DES can be used for stroke
rehabilitation, leading to optimized therapies for maximizing
functional recovery following cortical injury.

The issue of particular patient subgroup benefit as discussed
above speaks to the broader issue of patient variability. Due
to anatomic or surgical variations, results from one group
of subjects may not necessarily apply to another. Careful
consideration of these individual factors will be important for
future bidirectional ECoG-BCIs.

An additional consideration is the durability of electrodes with
repeated stimulation. As mentioned in section “The Electrical-
Neural Interface” above, charge transfer can occur through
irreversible Faradaic reactions, where electrolysis occurs, and
depending on the polarity of stimulation, either hydrogen gas
or oxygen gas are the by products (Merrill et al., 2005). In
this electrolytic window, accelerated corrosion and electrode
damage can occur. Even below the voltage required for
the electrolysis of water, detrimental byproducts such as the
formation of metal chloride and hydrogen peroxide can occur,
leading to electrode corrosion. Therefore, long-term use of
stimulating ECoG electrodes will require careful selection of
stimulation parameters and materials to minimize adverse
effects. Relative to monophasic pulses, both charge balanced
and imbalanced biphasic waveforms result in less electrode
potential shift and accumulation of charge. Accumulation of
charge during monophasic stimulation can result in additional
undesirable Faradaic reactions, and the formation of reactive
oxygen species which can cause tissue damage (Merrill et al.,
2005). When comparing charge balanced and charge imbalanced
biphasic waveforms, charge imbalanced waveforms have the
advantage that at the end of each stimulation pulse, the
electrode potential is closer to that of the open-circuit potential,
resulting in less charge going to irreversible oxidation reactions
(Merrill et al., 2005).

Beyond electrode damage, tissue damage induced by
stimulation is a key consideration for long-term use of DES.
The study of electrical stimulation through platinum electrodes
in cats (McCreery et al., 1990) was used to define the Shannon
equation (Shannon, 1992), which has been used frequently for
assessing safe stimulation levels. Earlier research established a
30 µC/cm2 limit on the charge per phase of stimulation for
macro-scale electrodes (in particular, DBS electrodes) (Kuncel
and Grill, 2004), but tissue damage can occur above and below
this threshold (Cogan et al., 2016). There are factors influencing
whether or not tissue damage occurs that are not included in the
Shannon equation, for example, the scale of the electrode (macro
vs. micro), the current density, duty cycle, pulse frequency, and
the uniformity of current distribution (Cogan et al., 2016). These
complex factors will require further modeling and laboratory
testing to establish what the appropriate stimulation parameters

are to minimize tissue damage, particularly with the use of novel
materials and stimulation patterns.

With penetrating microelectrodes (such as with the Utah
array), there is a significant change in the electrode-tissue
interface over time (Williams et al., 2007). In addition,
stimulation can change the characteristics of the electrode-tissue
interface. A recent study analyzing the impedance characteristics
of DBS electrodes following implantation and stimulation
has shown that DBS electrode impedance increases after
implantation and decreases with clinically relevant stimulation
(Lempka et al., 2009). Other work has shown that the stimulation
parameters used affect the impedance measured for DBS
electrodes (Wei and Grill, 2009). ECoG electrode impedance
measurements from 191 persons implanted with the Neuropace
RNS system, over a median time period of 802 days, did not reveal
significant differences between stimulating and non-stimulating
electrodes in peri-implant changes in impedance or impedance
stability (Ryapolova-Webb et al., 2014). In this study, while there
were statistically significant short-term changes in impedance
following implantation, long-term impedances were stable. These
results suggest that ECoG-BCIs with concurrent DES may prove
viable as chronic implants.

ENABLING TECHNOLOGIES

Materials and Electronics
Advances in materials science and electronics are enabling
the creation of robust intracranial arrays with thousands of
electrode contacts, with closer spacing than is currently used
clinically. Current ECoG arrays based on silicone and platinum
have been extended to microECoG arrays (Chao et al., 2010).
Further reductions in electrode diameter and increases in
array density are enabled by micromanufacturing techniques,
and in particular, microelectricomechanical systems (MEMS)
technologies. Platinum electrodes and polyimide foil substrates
similarly have been patterned using micromachining, allowing
for electrode contact diameters of 1 mm with electrode spacings
between 2 and 3 mm (Rubehn et al., 2009). Through these MEMS
technologies, electrode arrays with tighter spacings and smaller
diameters can be constructed and placed across large regions
of cortex and within sulci (Fukushima et al., 2014). Fukushima
et al. (2014) created an array with 0.8 mm diameter electrodes
and 1.8 mm spacing.

MicroECoG arrays have recently been used to resolve finer
features of cortical activity, particularly in the broadband gamma
range, for measurement of phonetic features in single electrodes
(Mesgarani et al., 2014). Arrays with electrode diameters of
0.87 mm and spacings of 1.68 mm have resolved cortical
activity patterns with response peaks less than the standard
clinical spacing of 1 cm apart, pointing to the advantages seen
with smaller electrode arrays (Wang et al., 2017). Novel, thin
film MEMS arrays are being implanted in humans (Muller
et al., 2016), illustrating the translation of these materials
and manufacturing techniques to humans. The ability to place
more electrodes within a given area could allow for finer
patterning of stimulation.
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Advances in materials science are enabling electrodes and
arrays made of other materials, such as glassy carbon (Kassegne
et al., 2015; Goshi et al., 2018). Glassy carbon electrodes have
higher charge injection capacities (CIC, which is the amount of
charge that can be injected before irreversible chemical reactions
take place) than traditional platinum electrodes, and require less
stimulation current to activate neurons (Kassegne et al., 2015).

Combinations of ECoG and penetrating electrode arrays are
also being constructed for recording and stimulating both surface
and deeper structures simultaneously (Orsborn et al., 2015; Goshi
et al., 2018; Kleinbart et al., 2018). Currently being used in animal
models, such arrays will open the door to a better understanding
of network-wide and across cortex effects of stimulation.

Computational Modeling
Computational modeling may help inform the design of DES
targeting strategies by delineating which areas of cortex are
activated during different polarities of stimulation, and which
combinations of electrodes may prove effective. For example,
a computational model of subdural cortical stimulation based
on anisotropy estimates from DTI revealed that neurons deeper
in the cortex are activated more during cathodal subdural
stimulation, while those in the wider crown are activated during
anodal stimulation (Seo et al., 2015). The influence of anisotropy
on neuronal excitation from DES illustrates the importance of
detailed, accurate anatomy for understanding and predicting
the effects of DES.

A multicompartment computational model for subdural
DES illustrated the effect of the neuronal structure, size, and
orientation on activation thresholds (Kudela and Anderson,
2015). In the model, the specific parameters of stimulation
and structure of the axons influenced the presynaptic
terminal activation.

The combination of FEM and patient specific CT and MRI
imaging has enabled the optimization of current delivery to
various cortical regions depending on desired parameters, such
as minimizing current density in particular regions (Guler
et al., 2018). Combining individual patient MRIs with accurate
computational models of how neurons are activated will allow
precise DES targeting, with potentially fewer off-target effects.

The DBS field is replete with examples of new modeling
techniques to optimize stimulation of deep cortical targets. These
advances could carry over more generally to DES in ECoG-
BCIs. Patient specific models of the volume of tissue activated
(VTA) enable better understanding of the effects of stimulation
at various locations in a given individual (Butson et al., 2007).
With the advent of electrodes with many contacts and different
geometries, an open question is how to best target the region
of interest. Recent algorithmic advances combine electrodes with
different contact geometries, including cylindrical and directional
leads, and patient specific models, including tissue anisotropy,
to best target the sub-thalamic nucleus (STN) (Anderson et al.,
2018). A multi-objective particle swarm optimization technique
to select a combination of stimulation electrodes was found
to be more effective than a single monopolar electrode in
targeting the desired efferents from the STN (Peña et al.,
2018). As ECoG electrodes become smaller and more numerous,

algorithmic techniques such as the ones described above and
more advanced ones based on artificial neural networks (Rao,
2019) would enable precisely targeted DES with the right
combination of electrodes.

Concurrent Recording and Stimulation
In any closed-loop application involving concurrent stimulation
and recording, the electrical artifact due to stimulation is
many orders of magnitude greater than the neural signals
being recorded. Disentangling the volume conduction of the
stimulation pulse from the neural responses is a topic of active
research. Different approaches have been used for handling
artifacts, ranging from hardware approaches to mitigate artifacts
before signal acquisition to post-processing techniques to
minimize artifacts after the signals have been acquired.

An example system manufactured with CMOS technology
enables both common mode and differential real time artifact
cancelation (Smith et al., 2017). In combination with this, new
CMOS stimulator front-ends are being developed which could
allow for more scalable, integrated BCI devices with wireless,
signal processing, and stimulator blocks (Pepin et al., 2016).
Advances in this area will permit a better understanding of how
the brain responds to electrical stimulation, as well as permit
more complex closed loop applications (Zhou et al., 2018a) where
neural activity in close temporal and spatial relation to the site of
stimulation can be integrated into the control system.

Recent technology development in industry for simultaneous
stimulation and recording in DBS applications both illustrates
widespread interest in the development of concurrent
stimulation and recording devices, and suggests potential
combined hardware and software solutions for ECoG-BCIs
(Stanslaski et al., 2012; Herron et al., 2018). These techniques
include careful consideration of the stimulation and recording
configuration to mitigate the measured artifact, front-end
filtering, heterodyning to minimize stimulation harmonics
in neural frequency bands of interest, and selection of
stimulation parameters to aid in the separation of neural
signals from stimulation artifacts (Stanslaski et al., 2012).
Medtronic’s Summit RC + S system extends the previously
mentioned approaches to simultaneous stimulation and
recording, and further includes oversampling to reduce noise
in the signal bands of interest, decimators designed to filter
out higher-order harmonics from stimulation, as well as
options to only suggest sense-friendly stimulation parameters
to the researcher or clinician (Herron et al., 2018). Such
techniques could be applied more broadly to include ECoG-BCI
systems with DES.

Wireless Technologies
Recent advances in hardware have allowed both real time artifact
cancelation and wireless communication with 128 channels of
local field potential recording in NHPs (Zhou et al., 2018b). Other
implantable devices with microelectrode arrays in NHP model
have included wireless charging and data transfer capabilities
(Borton et al., 2013), which are critical for an out-of-hospital
device. The development of wireless technologies, as well as
real time simultaneous stimulation and recording techniques,
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opens the door to explorations of the neural basis of naturalistic
behavior and long-term effects of closed-loop stimulation. Recent
work in non-human primates has demonstrated both wireless
recording and stimulation of motor regions over a 6 months
time period, with no observed neurological or behavioral
consequences (Romanelli et al., 2018). This points to the future
translatability of wireless long-term ECoG implants with both
recording and stimulation.

CONCLUSION

Direct electrical stimulation of the human brain is currently
used clinically for functional mapping, as well as therapeutic
treatment of disorders such as epilepsy and movement
disorders. In this article, we have explored DES can
also be used as a new modality for providing input to
cortex in electrocorticographic (ECoG) brain computer
interfaces (BCIs). DES offers distinct advantages over other
stimulation modalities such as TES and TMS by virtue
of delivering electrical stimulation directly to the brain.
We discussed some of the barriers for DES translation
to ECoG-BCIs, and highlighted the progress being made
in the use of DES for restoration of somatosensation and
induction of cortical plasticity for targeted rehabilitation
in stroke. We also have reviewed how advances in
technology, including new materials for electrode design,
manufacturing techniques for smaller electrode arrays, and
computational modeling for tailoring stimulation to the
patient’s needs offer opportunities for radically expanding the
applications of DES in bi-directional ECoG-BCIs for restoring
neurological function.
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This article deals with the long-term preclinical validation of WIMAGINE
R©

(Wireless
Implantable Multi-channel Acquisition system for Generic Interface with Neurons),
a 64-channel wireless implantable recorder that measures the electrical activity at the
cortical surface (electrocorticography, ECoG). The WIMAGINE

R©

implant was designed
for chronic wireless neuronal signal acquisition, to be used e.g., as an intracranial
Brain–Computer Interface (BCI) for severely motor-impaired patients. Due to the size
and shape of WIMAGINE

R©

, sheep appeared to be the best animal model on which
to carry out long-term in vivo validation. The devices were implanted in two sheep for
a follow-up period of 10 months, including idle state cortical recordings and Somato-
Sensory Evoked Potential (SSEP) sessions. ECoG and SSEP demonstrated relatively
stable behavior during the 10-month observation period. Information recorded from the
SensoriMotor Cortex (SMC) showed an SSEP phase reversal, indicating the cortical
site of the sensorimotor activity was retained after 10 months of contact. Based on
weekly recordings of raw ECoG signals, the effective bandwidth was in the range of
230 Hz for both animals and remarkably stable over time, meaning preservation of the
high frequency bands valuable for decoding of the brain activity using BCIs. The power
spectral density (in dB/Hz), on a log scale, was of the order of 2.2, –4.5 and –18 for
the frequency bands (10–40), (40–100), and (100–200) Hz, respectively. The outcome
of this preclinical work is the first long-term in vivo validation of the WIMAGINE

R©

implant,
highlighting its ability to record the brain electrical activity through the dura mater and to
send wireless digitized data to the external base station. Apart from local adhesion of
the dura to the skull, the neurosurgeon did not face any difficulty in the implantation of
the WIMAGINE

R©

device and post-mortem analysis of the brain revealed no side effect
related to the implantation. We also report on the reliability of the system; including the
implantable device, the antennas module and the external base station.

Keywords: long-term implantation, wireless communications, brain–computer interface, electrocorticogram
(ECoG), signal quality, local tolerance, sheep
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INTRODUCTION

Brain–Computer Interface (BCI) encompass various types of
system, which have the common function of establishing a
direct communication link between the brain and an external
device. The large majority of these systems are non-invasive
using a wearable cap to record brain activity from the scalp
using either wet or dry Electroencephalography (EEG) electrodes.
These systems have become very popular and range from single
electrode systems (NeuroSky MindWave; Katona et al., 2016),
to high-density EEG [up to 256 contacts (He and Sohrabpour,
2016)]. Among the BCI community, a large number of
researchers are struggling to meet the needs of biofeedback-based
applications and/or of clinical research, using non-invasive EEG
recording systems with centimeter pitched contacts (Schwartz
et al., 2006). These contacts record noisy signals generated by
large cortical surfaces. In contrast, microelectrode-based systems
tend to record single neurons or multi-unit activity. These
systems became popular due to the first chronically implanted
patients in the Braingate

R©

project (Hochberg et al., 2006), using
UTAH arrays (Maynard et al., 1997) and the Cereport

R©

connec-
tor now retailed by BlackRock (Salt Lake City, UT, United States).
However, due to mechanical mismatch between silicon and
brain tissues, and volume displacement of the tissue following
silicon needle introduction, glial encapsulation of the probe and
neurodegeneration are likely (Schwartz et al., 2006). Accordingly,
the number of usable contacts decreases dramatically with time
(Rousche and Normann, 1998). Presenting a trade-off between
invasiveness and signal quality, surface electrodes placed above
(epidural) and below (subdural) the dura mater [electrocorticog-
raphy (ECoG)] were reported to provide promising performances
in BCI (Chao et al., 2010; Eliseyev and Aksenova, 2013; Wang
et al., 2013). More recently in the framework of clinical trials,
ECoG devices long-term assessment or set-up were reported,
respectively for epileptic seizure detection (Cook et al., 2013;
Sillay et al., 2013), closed-loop DBS (Swann et al., 2017) or BCI
for a locked-in syndrome patient (Vansteensel et al., 2016).

Our team decided to explore the potential of epidural
ECoG for chronic medical applications (e.g., motor BCI) using
implanted electrodes at the surface of the dura mater to reduce
glial reactions produced by penetrating microelectrodes, and to
mitigate the lack of resolution of scalp electrodes (Schwartz
et al., 2006). For the sake of patient safety and comfort, the
implantable BCI recording device should be without wires.
Consequently, we designed the wireless ECoG recording implant
WIMAGINE

R©

using two antennas, one for the remote power
supply at 13.56 MHz and the other for data communication
in the Medical Implant Communication Service (MICS) band
(402–405) MHz. Thanks to an overmolding of silicone rubber,
the titanium housing looks like a cylinder of 50 mm in diameter,
whose thickness varies between 7.5 and 12 mm at the center
of the pseudo-spherical top surface, whereas the flat bottom
surface is covered by 64 contacts for epidural ECoG plus 5
references. The WIMAGINE

R©

implant was developed as the
starting point of a BCI platform which includes data process-
ing, a Virtual Reality avatar and finally complex effectors such
as a four-limb exoskeleton. The implant’s detailed description

is given in a previous article (Mestais et al., 2015), includ-
ing biocompatibility data resulting from the implantation of
a semi-scaled and passive device over a 6-month period in a
non-human primate model.

This article presents the ultimate step toward a clinical
trial, the evaluation of a set of WIMAGINE

R©

implants for
long-term functional assessment, and determination of the
performance and stability of the WIMAGINE

R©

implant with a
remote power supply and wireless data communication during
chronic implantation in a large animal model. Experiments
were carried out for more than 10 months, in freely moving
animals to ensure stable functioning and to evaluate the
signal quality.

To assess both the signal and the influence of surgical
strategy on signal resolution, several long-term studies of
epidural/subdural (Sillay et al., 2013; Gierthmuehlen et al., 2014;
Ryapolova-Webb et al., 2014; Schendel et al., 2014; Degenhart
et al., 2016; Kohler et al., 2017; Swann et al., 2017; Nurse et al.,
2018), and even endovascular electrodes were carried out on large
animals (Oxley et al., 2016). These studies lasted at least 4 months
and could continue for up to 2 years. Considering the shape and
size of the implant, we chose sheep for long-term implantation
and monitoring, inspired by a previous 4-month sheep implan-
tation experiment (Gierthmuehlen et al., 2014). Skull size in the
adult sheep allows easy surgical implantation of WIMAGINE

R©

on the dura mater above sensorimotor areas. Moreover, these
animals are easy to handle and are used to men, which allowed
us to perform weekly recordings without anesthesia.

The quality of the signal recorded with a WIMAGINE
R©

implant and its evolution over time were investigated and
compared to published clinical ECoG based studies (Sillay et al.,
2013; Oxley et al., 2016; Swann et al., 2017; Nurse et al., 2018).
Using the same experimental platform as that developed for
the clinical trial, we recorded weekly raw ECoG signals and
additional Somatosensory Evoked Potential sessions (SSEPs)
every other month.

MATERIALS AND METHODS

Wireless ECoG Recorder
The WIMAGINE

R©

implant (Figure 1), consists of an array of
64 biocompatible epidural electrodes (Platinum iridium 90/10,
2.3 mm in diameter, pitches of 4 and 4.5 mm on the lateral
and antero-posterior directions, respectively) fixed under a
titanium housing including electronic boards, and two antennas
for wireless transmission of data and a remote power supply.
For this purpose, our team designed and handled the implant
manufacture according to ISO 13485, as well as qualification
tests according to the European directive 2007/47/EC and ISO
standards (risk analysis ISO 14971, ISO14708-1 for electrical and
mechanical safety of implantable devices, NF EN 60601-1 for
electrical safety and electromagnetic compatibility of the external
unit). A complete description of the WIMAGINE

R©

implant is
given in Mestais et al. (2015).

The design of the WIMAGINE
R©

implant is adapted to a
craniotomy with a trephine (50 mm in diameter) and the upper
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FIGURE 1 | (A) View of the cortical electrode array. (B) Lateral implantation of

a WIMAGINE
R©

implant on an anatomical model.

surface of the implant has a spherical shape (90 mm in curvature)
that matches most of the patient’s skull. The implant is designed
to replace the bone of the craniotomy. Four little titanium wings
were added to prevent any mechanical damage to the brain
in the case of mechanical pressure or shocks to the implant
through the skin.

Antenna Adaptation to Sheep
In Figure 2, we sketched the experimental set-up of the ovine
campaign. This consisted of a base station enabling communica-
tion between the implant and a laptop running the data recording
software (WISCI) developed for the WIMAGINE

R©

platform: a
telemetric antenna (402–405 MHz) and a remote power antenna
(13.56 MHz) both included in a leather pocket attached to
the sheep’s front to allow the recording awake animals in an
idle state.

Animals
Chronic implantation experiments were conducted on two
female sheep (Ovis Aries) (Charollais breed, 80–90 kg, 5 and
8 years old). All experiments were carried out following
the recommendations of the European Community Council
Directives of 1986 (86/609/EEC), the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
The Ethics Committee COMETH of Lyon, France approved
the experimental protocol which was registered to the national
committee under reference number 1504_V2.

Animals were housed and kept together in an air-conditioned
room under stable conditions of temperature (20 ± 2◦C),
humidity (50%), light (12 h light/dark cycle) and food/water was
available ad libitum.

Sheep were observed daily and were clinically evaluated and
weighed once a week by veterinary personnel.

Implantation (Surgical Procedure)
After premedication (Diazepam 4.5 ml and Morphine 0.9 ml),
anesthesia was induced with intravenously applied Propofol
(4 mg/kg, 1/4 dose) and maintained using vaporized isoflurane
(2%) in oxygen. Following endotracheal intubation, animals were
maintained in volume-controlled ventilators at a respiratory rate
of 12–14 breaths per minute. Fluid requirements were substi-
tuted by Ringer’s solution (Baxter, Deer Field, IL, United States)
infused at 10 mg/kg. ECG, rectal body temperature and oxygen
saturation were all monitored and the sheep were kept in a prone
position during the procedure. A local anesthetic (2% Lidocaine)
was injected prior to skin incision.

Only one device could be implanted – partially covering
left and right hemispheres because of the implant size

FIGURE 2 | Experimental set-up for ovine experiments. The connection from the stimulator to the base station in dashed blue since it was only used to trig the
stimulations to the recordings during the SSEP sessions.
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FIGURE 3 | Surgery for WIMAGINE
R©

implantation in the ovine model. (A,B) Trepanation and division of the bone disk into 3 parts (A: sheep#1, B: sheep#2); (C,D)
WIMAGINE

R©
implant craniotomy fixation during surgery (C: sheep#1, D: sheep#2). (R: right side, L: left side).

(50 mm in diameter). The craniotomy to expose the epidural
space was carried out in several steps. After antisepsis and
draping, a linear incision was made between the nasion and
the occipital bone in the midline, and the bone surface was
extensively exposed. Using the midline and Bregma as an
anatomical reference, we performed the craniotomy with a
custom-made bone trephine (50 mm in diameter; SMAO, France)
with a 1 cm shift for sheep#1 and centered for sheep#2. Because
of the presence of the Superior Sagittal Sinus (SSS), the trephine
was only used to cut the external table of the skull. The rest of
the craniotomy was divided into three parts using a drill (Midas
Rex

R©

; Medtronic Inc.) so as to isolate the SSS and to avoid
vascular damage (see Figures 3A,B). In sheep, the SSS has a deep
groove in the internal table of the skull, presenting an additional
risk of bleeding. Finally, the dura mater was adherent in several
places, requiring careful removal of the last part of the disk and
repairs after bone extraction.

After appropriate drilling to avoid any skull fragment between
the electrodes and the dura mater, the WIMAGINE

R©

implant
was inserted into the craniotomy and the antennas were aligned
between the sheep orbits. The small lateral titanium wings
helped to keep the implant in position, avoiding rotation of
the device. As shown in Figures 3C,D, additional fixation
points were provided using custom-made titanium screws
and Prolene

R©

2.0 sutures (Ethicon
R©

, Johnson & Johnson,

NJ, United States). Control ECoG recordings were performed
throughout the surgery, both before and after skin closure. Using
a sterile pouch for the base station antenna, we performed
intraoperative communication tests. The implant was success-
fully powered and communication functions were checked.
Analgesia (Buprenorphine 0.1 mg/kg) and prophylactic antibi-
otics (Borgal 24% trimethoprim/sulfadoxine 1 ml/15 kg) were
also used postoperatively.

After hemostasis and suture of the surgical plans, a dressing
(10 mm thick compress) was applied with Betadine and
Tensoplast

R©

at the end of surgery. Finally, we checked the wireless
communication after extubation and once the animal woke.

Brain scans were carried out under anesthesia 3 days after
surgery (see Figure 4), 6 months later, and just before euthana-
sia at 10 months. There is slight angular tilt on the CT scan but it
is still possible to check the position of the WIMAGINE

R©

implant
in the skull. In addition, we display on this figure the locations of
the four 16-contact phases.

Experimental Design
Sessions started on the first day after surgery. Two different
protocols were applied. First, once a week, we performed a
session in which awake animals were trained to be calm in a
sheep enclosure. In such a session, a 12-min electrocorticogram
was recorded in an idle state. Second, every 2 months a SSEP
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FIGURE 4 | Scanner controls 3 days after surgery: Left sagittal view and right bottom view. Panels (A,B) for sheep #1 and Panels (C,D) for sheep #2. (R: right side,
L: left side).

session was performed under general anesthesia. We kept the
anesthetic protocol chosen for the implantation since according
to Baines et al. (1985), halothane which is similar to isoflu-
rane has a limited impact on SSEP magnitude (10 to 30%
decrease on peak magnitude for less than 35% of the sheep).
Consequently, premedication was started with Diazepam 4.5 ml
and Morphine 0.9 ml, anesthesia was induced with intravenously
applied Propofol (4 mg/kg, 1/4 dose) and maintained using
vaporized isoflurane (2%) in oxygen.

The tibial and median nerves of each limb were stimulated
by a peripheral nerve stimulator (Energy Light©, MicroMED

R©

,
Italy) using two subdermal electrodes (anode proximal, cathode
distal) and the SSEP were recorded using WIMAGINE

R©

. For
electrical stimulation, we increased the amplitude of the current
until visible limb contraction was obtained between 2 and 20 mA,
100 µs pulse width and 2 Hz-train of 150–350 biphasic stimuli.

After a 10-month implantation period, the WIMAGINE
R©

implants were explanted and the brains fixed for immunohisto-
chemical analysis.

Signal Recording and Analysis
Signal Recording
Both cortical activity in an idle state and evoked potentials were
recorded using the platform approved for CLINATEC’s clinical
trial (Mestais et al., 2015). To ensure a robust RF communica-
tion link, we chose the 2-FSK mode of the Microsemi component
(ZL70102). In this configuration the wireless data transmis-
sion is about 250 kb/s. As the Analog Digital Converter has a
12-bit resolution and the sampling frequency (SF) 976 Hz, we

decided to sequentially record four 3-min long sessions for each
16-contact phases.

Chronic signal quality was quantified using raw signal power
spectral density (PSD) (Bundy et al., 2014), signal-to-noise ratios
(SNRs) (Nurse et al., 2018), group level signal power (Pband)
(Nurse et al., 2018), and maximum/effective bandwidth (BW)
(Oxley et al., 2016; Nurse et al., 2018).

Raw Signal Power Spectral Density
Power spectral density of raw signal was estimated
(pwelch spectral analysis, 5-s window length, 80% overlap)
for each channel. The mean PSD across channels was
computed for implants.

Group Level Signal Power Pband
Group level signal power Pband was computed as the mean PSD
per band for the frequency bands (0–10), (10–40), (40–100), and
(100–200) Hz. The Pband was averaged across channels for each
Phase (Phases 1–4) of each implant and is presented in 10 log10
scale. Frequency bands are chosen following to previous studies
(Nurse et al., 2018), and as relevant frequency bands for ECoG
based BCI (Wang et al., 2013).

Group Signal-to-Noise Ratio (SNRband)
Group signal-to-noise ratio (SNRband) was calculated as ratio
of mean PSD per band Pband and mean PSD of noise Pnoise in
10 log10 scale:

SNRband = 10 log10
Pband

Pnoise
.
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We estimate Pnoise in (250–260) Hz band due to the digital
filter of the Integrated Circuit (cut-off frequency 300 Hz) which
start altering the signal above ∼250/260 Hz (Figure 6). The
use of higher band may bias the SNRs. 10 Hz large bandwidth
corresponds to Nurse et al. (2018).

Finally, the Effective BW was computed. Upper limit was
estimated (Nurse et al., 2018) for cumulative/total noise power
CPnoise, calculated for band (250 – f max) Hz, f max is a
Nyquist frequency:

CP+noise = 1.5 [Q75 (CPnoise)− Q25 (CPnoise)]+ Q75 (CPnoise) ,

where Qn() is nth quantile. Then the frequency, below which x
percent (x = (P – CP+noise)/P) of the total power P of the signal are
located, is computed. Effective BW is thus similar to the Spectral
Edge Frequency SEFx1 .

All statistical analyses were undertaken using GraphPad Prism
(version 7.00 for Windows; GraphPad Software, La Jolla, CA,
United States). In comparison to Nurse’s work for each spectro-
gram measured and classified in frequency bands [(0–10), (10–
40), (40–100), and (100–200) Hz], a linear regression model was
used to determine a linear model of the measure as a function
of time (Nurse et al., 2018). The coefficients of the linear fit
(intercept and slope) were then analyzed to determine the rate
of change with time.

Tissue Preparation and Histological
Analysis of Brain Reactivity
At the end of this chronological study, histological investi-
gations were performed post mortem to evaluate long-term
effects of implantation. After freezing, two device areas were
cut coronally using a freezing microtome (Leica Microsystem).
Sections were collected and processed for Nissl staining and
immunohistochemistry for glial fibrillary acidic protein (GFAP),
and macrophage detection and microglial activation (CD11b).
For the measurement of Dura mater thickness, a sample of
Dura mater distant from the implantation area served as a
control for the implant-covered Dura mater analysis. Three
sections of Dura mater from the implant-covered area and three
sections from control Dura mater were cut (30 µm thick) for
Nissl staining. A measurement of the dura mater thicknesses
(n = 100 per group) was performed using Cell Sens Science
Imaging Software (Olympus). The results were represented
as mean ± SD. For immunohistochemical analysis, sections
were incubated with the following primary antibody solutions
overnight at 4◦C: anti-GFAP (1:500, monoclonal mouse IgG2b;
BioRad Hercules, CA, United States) to identify astrocytes,
and anti-CD11b (1/500, monoclonal mouse IgG2b; BioRad
Hercules, CA, United States) to identify macrophage/microglia.
Secondary antibodies (Molecular Probes – Alexa 488) were
diluted to detect anti-GFAP and anti-CD11b antibodies. All
sections were counterstained by incubation with the nuclear dye
Propidium Iodide (Sigma-Aldrich). Sections treated only with
secondary antibody served to determine non-specific binding.
Tissue sections were mounted with Fluorsave reagent (Merck

1https://en.wikipedia.org/wiki/Spectral_edge_frequency

Millipore, France) and bound primary antibodies were visualized
on a set of arbitrary defined slices, using a confocal microscope.

RESULTS

In vivo Recording Evaluation
Idle State ECoG Recordings
WIMAGINE

R©

allowed us to perform wireless chronic ECoG
recordings up until the end of the scheduled period of
300 days. The procedure and post-operatory events proceeded
without problems. The sheep recovered immediately and
were able to resume all their normal activities (walking
and feeding unassisted) within a few hours. An example
of the time-course ECoG is shown in Figure 5. We faced
no difficulties either to connect the base station to the
implant or to record from the ECoG electrodes, except for
chewing artifacts (Supplementary Figure S1). Signal review
demonstrated little effect of line noise in the 50 Hz band
(confirmed by Figure 6) and in harmonics, so we did not
apply a notch filter.

Four and a half months after implantation, sheep #2 acciden-
tally hit one of the bars of its enclosure. The increased overall
noise in ECoG recordings was a clue of implant dislodgement.
From CT scans, we confirmed a significant reduction in the
contact between electrode array and the dura mater. We decided
to explant this WIMAGINE

R©

device, ending recording sessions
with this implant at day-135 for sheep#2, which stayed until the
end of the 10-month period to keep company to sheep#1 in
accordance with animal husbandry best practices.

Power Spectral Density and Signal to
Noise Ratio
To estimate signal quality, we plotted the mean PSD for the two
sheep, and compared these signals to the baseline, which consists
of the intrinsic noise of the electronic components. Application
Specific Integrated Circuit [ASIC named Cinesic and described
in Robinet et al. (2011)] stands for the electronic components in
Figure 6. The Nyquist frequency is 488 Hz (SF = 976 Hz) but
above 250 Hz the signal spectrum is impaired by the digital band
pass filter of the ASIC, and cannot be discriminate from noise.

The median signal power and SNR, calculated weekly across
the 16 channels for each phase of each animal are shown in
Figure 7 demonstrating moderate decrease in high frequencies
(Supplementary Tables S1, S2).

Effective Bandwidth
The effective bandwidth is in the range of 230 Hz for sheep #1
and #2 (Figure 8). We end the plot for sheep#2 after day 135,
when the animal hit its head on one bar of the enclosure, as this
dislodged the implant from the craniotomy which corresponds to
a dramatic drop of the effective bandwidth. The trends of effective
bandwidth for sheep #1 and #2 remained remarkably steady
throughout the experiment (at least until day 135); slopes are not
significantly different from zero (Supplementary Table S2).
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FIGURE 5 | Examples of ECoG recordings in awake sheep, using the WIMAGINE
R©

platform.

FIGURE 6 | Example of 64 averaged electrode power spectral densities of ECoG during a period without chewing. X-axis: frequencies in Hertz, Y-axis: logarithm of
spectral power in dB. Mean value for sheep in blue, black curves stand for the standard deviation for both animals compared to the intrinsic noise of the electronic
components (labeled ASIC) with grounded electrodes.
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FIGURE 7 | Median normalized power spectral density (solid line) and SNR (dashed line) showing their respective 95% confidence intervals (pointed lines) for each
phase across four frequency bands as a function of time. All values are normalized to the size of the band. Estimated noise band: 250–260 Hz. Each line represents
the median of the 16 channels across the given bands. Phase 1: left anterior, Phase 2: right anterior, Phase 3: left posterior, and Phase 4: right posterior area of the
electrode array.

FIGURE 8 | Median effective bandwidth for each phase and animal as a function of time. Areas in orange represent the 95% confidence intervals. Dotted line
represents linear regression fit for each phase. Phase 1: left anterior, Phase 2: right anterior, Phase 3: left posterior, and Phase 4: right posterior area of the electrode
array.

Somato Sensory Evoked Potentials
Somato sensory evoked potentials are likely to arise with a
latency of about 25 ms for thoracic limb stimulation according
to Sanborn et al. (2011). Moreover, an inversion of the signal
is expected when comparing the lower and the upper side of
Rolando’s sulcus. In Figure 9 (left), a right thoracic limb activa-
tion triggered the SSEP peaks and the expected inversion in the
proper cortical areas. This confirms the biological relevance of
the recorded signal, in particular when studying an implant for
a BCI. The location of the area recorded by the WIMAGINE

R©

implant is symbolized by a dotted rectangle (Figure 9, right).
A set of three SSEP experiments with sheep#1 is presented (see
Supplementary Table S3).

Long-Term Biocompatibility Evaluation
Histological examinations were performed post-mortem,
10 months after implantation. After euthanasia of animals and
removal of skin and muscles covering the implants, observa-
tion of the implantation sites showed no encapsulation of the
WIMAGINE

R©

implants (Figure 10B). Interestingly the implants
were still functional after explantation. The adhesion of the
electrode array and the MED-6210 over-molding silicone with
tissues in contact was also tested. The WIMAGINE

R©

implants
could be freely removed without damaging the dura mater. As is
shown in Figure 10C, we did not observe any macroscopic sign
of tissue defect but only surgical sutures used to repair adhesion
spots of dura mater when the bone flap was removed. After
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FIGURE 9 | (Left): SSEP at 2 months on sheep #1, right thoracic limb (right forelimb) stimulation on sheep #1: 100 µs, 2 Hz, 4 mA (Right): Brain after explantation
the dashed blue circle represents the contact with the inferior face of WIMAGINE

R©
with projection of the recording contacts in red and reference electrodes in green.

The black curve and the dashed vertical orange line locate, respectively the central sulcus and the SSS. Primary motor cortex and somatosensory cortex are
represented in transparency in yellow and gray, respectively.

FIGURE 10 | (A) WIMAGINE
R©

before implantation, (B) WIMAGINE
R©

before explantation, (C) aspect of the duramater after implant withdrawal, (D) duramater after
chemical fixation. Microscopic analysis Nissl staining (E) control of the thickness of the duramater (F) cross section of the brain under the device. Data of sheep #1
after a 10-month implantation.

removal of the skull, brain tissues were prepared by chemical
fixation for microscopic examination in order to evaluate tissue
response in contact with the WIMAGINE

R©

implant (dura mater
and leptomeninges structures) and at distance (glia limitans and
brain cortex). On the first part of the brain below the implant, the
dura mater was removed from the brain surface and transver-
sally cut to evaluate its thickness. As shown in Figure 10D,
observations of the dura mater and the leptomeninges covered
by the epidural implant revealed histopathological changes. The

thickness of the implant covered dura mater was 799 ± 167 mm,
whereas that of the implant-uncovered dura mater was 265 ± 53
mm (Figures 10A,E,F). As shown in Figure 10D, we observed
calcification areas extending from the edges of the craniotomy to
the center and these covered nearly 50% of the surface under the
electrode array.

A second part of the histological studies was conducted
to evaluate brain cortex reactions beneath the epidural
WIMAGINE

R©

implant and to detect signs of inflammation.
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FIGURE 11 | Representative glial fibrillary acidic protein (GFAP) expression patterns in implant-covered brain cortex (A,B) and in control brain cortex (C). Scale
bar = 100 µm. Representative CD11b expression patterns in implant-covered brain cortex (D,E) and uncovered brain cortex (F). Scale bar = 20 µm (D,E), 50 µm
(F). GL: glia limitans.

Reactive gliosis is the endogenous response of brain tissue to
aggression and this corresponds to the accumulation and/or
recruitment of glial cells (astrocytes and microglia). Glial activa-
tion is the release of glial factors that will act on target cells in the
same way as the cellular immune response, and thus promote
peripheral monocyte infiltration (especially macrophages and
lymphocytes). Immunohistochemical studies were performed to
detect signs of reactive gliosis and monocyte infiltration in the
brain cortex. The results are shown in Figure 11.

GFAP is a commonly used marker to evaluate reactive gliosis
as an astrocytic reaction to injury. Implant-covered brain cortex
areas were characterized by elevated GFAP intensity in Glia
Limitans and in layer I of the brain cortex, compared to normal
cortical tissue far away from contact areas. As presented in
Figures 11A,B, implant-covered brain cortex areas showed a
substantial increase in GFAP reactivity, extending from Glia
Limitans to layer I of the cerebral cortex. Staining revealed that
astrocytes became hypertrophic; elongated with thick processes
(Figures 11A,B) as compared to those in the intact brain region,
which were more stellate in appearance (Figure 11C). GFAP
immunoreactivity was maximum at the periphery of the contact
site (Figure 11B) and declined progressively as a function of the
distance from the periphery to the center of the contact area. Such
elevation was observed up to 400 µm from the cortical surface.

Activated microglia and macrophages were identified via
CD11b staining. The implant-covered site was character-
ized by a substantial increase in CD11b reactivity above
Glia Limitans (Figure 11D). As is shown in Figure 11E,
CD11b reactivity was increased in the peripheral contact area
revealing macrophages and activated microglial cells. Some
of the CD11b + cells had the appearance of large, round,
blood-borne monocytes/macrophages. Smaller, process-bearing

microglia were also seen at various distances from the contact site.
Staining in the intact brain zone revealed resting microglia with
small rod-shaped somata from which numerous thin and highly
ramified processes emerged (Figure 11F).

DISCUSSION

The design and manufacture of cortical implants for medical
use required long and expensive endeavors. Kohler et al. (2017)
only identified seven teams world-wide at this level of techno-
logical readiness. Indeed, for a device to be approved for clinical
trials, it is mandatory to justify the compliance of the design
and manufacturing standards. In particular, Active Implantable
Medical Devices directive 90/385/EEC or ISO14708-1 and ISO
13485 for quality management must be respected. Moreover,
while accelerated aging tests may be interesting to determine
the physical limits of the materials or the packaging hermetic-
ity, long-term preclinical tests are mandatory to assess the
implant behavior in real conditions in vivo. In this study, our
first goal was a long-term validation of the functionality of the
WIMAGINE

R©

implant and the assessment of the quality of the
ECoG signal with time.

Kohler et al.’s study shares many similarities with ours. After a
previous mapping experiment on sheep, this species was chosen
as a model for long-term assessment of their wireless device,
for which recording performances were assessed using SSEP or
Auditory Evoked Potential (Gierthmuehlen et al., 2014). As far as
we are concerned, we successfully recorded SSEP.

In previous preclinical studies, we published validation results
of the electrode array using a semi-scale device (without electron-
ics) on non-human primates. The signal quality and the
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algorithms were tested in depth using epidural electrode arrays
that were wired to external WIMAGINE

R©

implants (Mestais
et al., 2015). In addition, inspired by implantation for 4 months
in the sheep model (Oxley et al., 2016; Torres et al., 2017)
and clinical studies (Nurse et al., 2018), we extensively investi-
gated ECoG signals over time (SNR, effective bandwidth) to
validate its compliance with long-term implantation and with
our final goal: enabling the “BCI and tetraplegia” clinical trial at
CLINATEC (NCT02550522).

Sheep Model Relevance for
WIMAGINE

R©

Testing
In preclinical testing, implant size is important when evaluat-
ing a clinical device: a scaled-down version adapted to fit small
animal models does not usually fully reflect final human models.
Device size reduction could have been detrimental when extract-
ing general conclusions prior to clinical trials. Hence, there is
a need for the use of larger species when dealing with medical
devices (Torres et al., 2017).

Minipigs are commonly used for preclinical studies of
cuff electrodes (Bonnet et al., 2013) or brain recordings
(Gierthmuehlen et al., 2011). Unfortunately, for chronic experi-
ments in minipigs, the frontal sinus, which is an open cavity
connected to the paranasal sinuses above the brain is a major
technical problem for the neurosurgeon and is an obvious
source of infection.

The main advantage of the sheep model is the relative compat-
ibility of the sheep skull (biparietal distance of 80 mm) with
WIMAGINE

R©

(50 mm in diameter). This set-up mimicked
the implantation of the clinical device, even if only one
WIMAGINE

R©

implant was placed above the sagittal sinus instead
of a bilateral implantation in the clinical protocol which may limit
the interest of the phases above the sinus (phase 2 for sheep#1
and phase 1 and 3 for sheep#2, see Figure 4). Moreover, the
mismatch between the electrode array planar surface and the
curvature of the sheep brain is more than three times larger
than for human brain. Consequently the contact between the
electrode array and the dura is less homogeneous. However,
there is no significative difference in the effective bandwidth of
the four phases.

Even though the sheep head size was adequate, cranial implan-
tation was more arduous than expected. Indeed, the craniotomy
was initiated with a 50 mm large trephine, but finished with
a small drill, to smoothen the relatively rough edges of the
craniotomy. Moreover, the thickness of sheep skulls ranged
from 4 to 7 mm at the edges of the craniotomy, the greater
thickness lying above the parietal cortex. As a consequence,
the contact between the electrode array and the cortex is
less homogeneous than expected for humans. Furthermore, we
reported a strong adhesion of the dura to the bone flap. These
difficulties are unlikely to be encountered in human surgery,
because the craniotomy does not cross the midline, avoiding
additional manipulations.

We oriented the implants so that the implant antennas are
placed anteriorly between the eyes. In this configuration the
distance between the primary (external) and secondary (implant)

was less than 20 mm, whereas the wireless link was designed for a
distance of between 20 and 30 mm. We never faced communica-
tion issues either in post-operative conditions or during record-
ing sessions: wireless links sent usable neural signals during
the whole protocol.

ECoG Quality Assessment
To compare this result to the literature, we list several articles
dealing with ECoG results either in preclinical or clinical long-
term implantation. Using the Activa PC+S from Medtronic Inc.,
Swann et al. (2017) reported a decrease of the signal power
for the beta and gamma band on a 1 year timeframe. Ung
et al. (2017) using the NeuroVista device with subdural strip
electrodes also reported a decrease in the mean values that
reaches an inflection point roughly 100 days after implanta-
tion. Nurse et al. (2018) who also used subdural electrodes
and the NeuroVista

R©

device reported on mean power relatively
steady behavior with low variation but individual changes
are far more complex, highlighting the influence of electrode
location on the cortex or contact quality. Sillay et al. (2013)
using RNS

R©

from NeuroPace
R©

and subdural strip reported, on
a median 868-day timeframe, an impedance increase within
the first 84 days followed by a stabilization of the subdural
electrode impedance. Apart Schendel et al. (2014), there are
very few long-term assessment of epidural signal quality in
the literature. For macrocontacts (2 mm in diameter), Bundy
et al. (2014) reported significantly higher PSD for epidural
recordings compared to epidural between 0 and 60 Hz and
the opposite above 100 Hz. But this comparison was limited
to a few weeks since their patients underwent temporary
placement of intracranial electrode grids to identify epilep-
tic seizure foci.

Firstly, once implanted the WIMAGINE
R©

devices had a low
sensitivity to the 50 Hz noise and its harmonics artifacts; artifacts
did not increase with time. The main artifact recorded by
the implant was muscular chewing activity, see Supplementary
Figure S1. This is a specific characteristic of all ruminant species
and was recently well-described (Oxley et al., 2016). Obviously,
clinical extrapolation of the chewing artifact is not relevant.

Secondly, tissue reaction surrounding WIMAGINE
R©

did not
significantly alter ECoG signals over 10 months. The ECoG signal
amplitude remained relatively stable during the 10-month period
(see Figure 7 and Supplementary Table S1).

The analysis of the maximum effective bandwidth showed a
stable longitudinal behavior at levels of 230 Hz for both animals
(Supplementary Table S2) and compare favorably with those
described in the literature [level of 230 Hz vs. 100 Hz (Nurse et al.,
2018); and vs. 200 Hz (Oxley et al., 2016) for epidural recording]
and SNR for higher frequencies (2.6 vs. ∼1 for (40–100) Hz; 1.4
vs∼0.2 for (100–200) Hz).

At the same time, eligibility of SNR comparison or effective
bandwidth is limited by the difference in the recording device
features, such as sampling rate, integrated digital filters, etc.
It may be less favorable for lower sampling rate systems,
or lower-pass filter (both influencing noise level estimation).
Indeed, WIMAGINE device was designed for ECoG record-
ing in the (0.5–300) Hz bandwidth. Figure 6 shows that the
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digital low pass filter alters the recordings above 250 Hz,
300 Hz being the cut-off frequency of this filter. Whereas Oxley
et al. (2016) reported 227 and 200 ± 6 Hz, respectively for
subdural and epidural contact using a Twente Medical Systems
International (TMSI, Netherlands) amplifier with a low-pass filter
of 553 Hz (Tinkhauser et al., 2018). Nurse et al. (2018) used
the NeuroVista

R©

device with a sampling frequency of 400 Hz
and band-pass filter (0.1–195) Hz and obtained an effective
bandwidth in the range of 100 Hz.

SSEP Assessment
The analysis of time evolution of epidural ECoG demonstrated a
stable behavior. As the electrodes recorded information from the
sensorimotor cortex (SMC) we tried to show – with anesthetized
animals- phase reversal in SSEP, allowing identification of the
central sulcus. We were able to identify evoked potentials on
several SSEP sessions at months 2, 4 and 6 (see Supplementary
Table S3). Topographical areas belonging to hind limbs and fore
limbs were detected and central sulcus were also delineated at
month 2 as shown in Figure 9.

Biocompatibility Evaluation
Macroscopic post-mortem analysis confirmed the presence of
tissue reactions, as previously seen in several implantable neural
devices (Kozai et al., 2015). The tissue response represented
here has an increase in the dura mater thickness (by a factor
of 3 compared to the control), separating the recording matrix
from the signal source. As discussed above, signal attenuation in
this case did not alter the transmission of relevant physiological
information (SSEP).

These in vivo trials enabled us to demonstrate the benefits of
epidural implantation for an appropriate brain tissue response.
The end-stage healing response to materials is usually a fibrous
reaction reducing device performances. We only observed a
dura mater reaction consisting of a significant thickening of
this external meningeal layer. This thickening may be due to
the fact that the dura mater was injured and sutured when
the bone flap was removed and meningeal fibroblasts were
activated. The presence of fibrotic scar tissue was confirmed by
microscopic investigation. In addition to dura mater changes
below the WIMAGINE

R©

implant, we observed calcifications
extending from the edges of the craniotomy to the center. These
calcifications could be a consequence of the craniotomy and
could be explained by an osteogenic action via osteoforming-
cells, namely osteoblasts. These cells are present in the internal
periosteum and could be activated during removal of the bone
flap by a regenerative process including blood factors (released
upon injury of blood vessels). Due to the small curvature of sheep
brain, the contact between the implant and the dura was probably
too weak at the edges of the craniotomy. This could also explain
the calcification.

Then we studied the effect of the WIMAGINE
R©

implant on
astrocytes and microglia/macrophages in vivo. To study the brain
cortex response below the WIMAGINE

R©

implant, we performed
GFAP and CD11b labeling to detect astrogliosis and microglial
activation, respectively. In this study, we observed the presence
of reactive astrocytes and macrophages/activated microglia at the

implantation site. In our study, GFAP + astrocytes and CD11-
B + macrophages/activated microglia were observed predomi-
nantly in the periphery of the contact area and at a depth which
did not exceed cortical layer 1. As a result of vascular damage,
macrophages derived from the bloodstream are recruited to the
injury site, and microglia – the resident immune cells of the brain-
become activated.

Importantly, the effective ECoG signal bandwidth remained
remarkably stable despite this observed partial calcification,
combined with dura-mater thickening and superficial astroglio-
sis (Figure 8).

CONCLUSION

This article deals with the first long-term implantation of
WIMAGINE

R©

, a proprietary fully implantable wireless ECoG
device which compliance with the safety requirements was
previously described (Mestais et al., 2015).

We highlight:

• Surgery was successfully performed on two large animals
(adult sheep) and ECoG signals were recorded weekly for
10 months. For the first time, long-term SSEP and signal
recordings were obtained using the WIMAGINE

R©

implant
in an awake ovine model, using the acquisition platform
developed for clinical trials;
• Relatively stable power spectra and SNRs of these epidural

recordings. The effective bandwidth was observed at a level
of 230 Hz, meaning that the high frequency bands useful for
BCI decoding were preserved;
• Post-mortem analysis was carried out and showed as

expected a thickening of the dura-mater below the
implant but no significant inflammation or glial activation
in the cortex.

The sheep animal model is different from humans in terms of
anatomy and brain activity. Even if, the reported analysis of signal
quality cannot be directly translated to human studies, similar
methodology could be carried out on human ECoG. The outcome
of this preclinical work is the first long-term in vivo validation of
the WIMAGINE

R©

implant, confirming its ability to record brain
electrical activity through the dura mater, and send digitized data
wirelessly through the skin. It represents a major step toward
conducting clinical trials.
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Electrical stimulation of the primary somatosensory cortex using intracranial electrodes
is crucial for the evocation of artificial somatosensations, typically tactile sensations
associated with specific regions of the body, in brain-machine interface (BMI)
applications. The qualitative characteristics of these artificially evoked somatosensations
has been well documented. As of yet, however, the quantitative aspects of these
evoked somatosensations, that is to say the quantitative relationship between intensity
of electrical stimulation and perceived intensity of the resultant somatosensation remains
obscure. This study aimed to explore this quantitative relationship by surface electrical
stimulation of the primary somatosensory cortex in two human participants undergoing
electrocorticographic monitoring prior to surgical treatment of intractable epilepsy.
Electrocorticogram electrodes on the primary somatosensory cortical surface were
stimulated with varying current intensities, and a visual analogue scale was employed
to provide a quantitative measure of intensity of the evoked sensations. Evoked
sensations included those of the thumb, tongue, and hand. A clear linear relationship
between current intensity and perceived intensity of sensation was observed. These
findings provide novel insight into the quantitative nature of primary somatosensory
cortex electrical stimulation-evoked sensation for development of somatosensory
neuroprosthetics for clinical use.

Keywords: artificial sensation, primary somatosensory cortex, electrocorticography, electrical stimulation,
human

INTRODUCTION

Artificial somatosensory feedback will be critical for execution of fine motor control using brain-
machine interface (BMI). Under natural conditions, the brain relies on online somatosensory
feedback to guide limb movements. Those with impaired somatosensory function often make
gross errors in motor output (Gandevia et al., 1990; Sainburg et al., 1993, 1995; Darian-Smith and
Ciferri, 2005). Moreover, spinal cord injury and stroke, which are major targets for clinical BMI
(Yanagisawa et al., 2011, 2012), are common causes of somatosensory as well as motor impairment
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(Yanagisawa et al., 2016). Artificial somatosensory feedback via
neuroprosthesis is necessary in order to accomplish natural
movements with a clinically plausible BMI (Suminski et al., 2010;
Dadarlat et al., 2015; Pistohl et al., 2015; Schiefer et al., 2016).

Human and animal studies have indicated that somatosensory
function can be restored using neuroprosthetics. Electrical
stimulation of S1 evokes artificial somatosensation (Penfield
and Boldrey, 1937; Lueders et al., 1983; Johnson et al., 2013).
Some studies using monkeys implanted with intra-cortical micro-
electrodes demonstrated that electrical stimulation through
the electrodes allowed the monkey to discriminate different
stimulation frequencies to S1 (Romo et al., 1998; O’Doherty et al.,
2011). Further work in humans using electrodes implanted in
the somatosensory cortex allowed patients with lost sensation in
the hand to discriminate sensations on different fingers (Johnson
et al., 2013; Flesher et al., 2016; Hiremath et al., 2017; Caldwell
et al., 2019). For both intracortical microelectrodes and surface
planar electrodes, electrical stimulation has been successfully
used to evoke sensation of the upper limbs dependent on
stimulus parameters such as frequency and intensity (Flesher
et al., 2016; Hiremath et al., 2017). However, the nature of this
artificially evoked somatosensation for different body parts, such
as the hand and tongue, and its relationship to the physiological
somatosensation experienced as a result of peripheral sensory
inputs have yet to be fully elucidated.

In order to design somatosensory neuroprosthesis for long
term use in human patients, it is critical to fully characterize
the subjective sensation evoked by S1 stimulation. However,
a quantitative psychophysical analysis of these S1 electrical
stimulation-evoked sensations for different body parts remain
obscure. The present study employed a visual analogue scale
(VAS) (Zealley and Aitken, 1969; McCormack et al., 1988;
Bijur et al., 2001) to quantify the strength of somatosensation
experienced by two participants, who were undergoing ECoG
monitoring prior to surgical treatment of intractable epilepsy,
during electrical stimulation of S1, in order to elucidate
the quantitative relationship between S1 stimulation current
intensity and perceived intensity of evoked sensation. It
was found that stimulation current intensity shares a linear
relationship with perceived intensity of somatosensation, within
the ranges of current intensities tested, for both the hand and
tongue. These results advance toward the goal of understanding
the subjective experience of S1 electrical stimulation in order to
realize a clinically plausible BMI.

MATERIALS AND METHODS

Participants
Two participants undergoing pre-operative electrocorticographic
(ECoG) examination for surgical treatment of intractable epilepsy
took part in this study. This experimental protocol was approved
by the Ethics Committees of the Osaka University Hospital
(Approval No. 14353), the National Institutes for Physiological
Sciences (Approval No. 16B004), and the Tokyo Metropolitan
Institute of Medical Science (Approval No. 17-2) and carried
out in accordance with the Declaration of Helsinki. Participants

or their guardians provided written, informed consent to
the experimental procedures and to the use of their data
for academic study.

Participant A, age 35–40 years old, was undergoing treatment
for epilepsy due to cavernous malformation on his left precentral
gyrus. Participant B, age 15–20 years old, was undergoing
treatment for right frontal lobe epilepsy. Subdural ECoG arrays
were implanted across the primary somatosensory (S1) and
primary motor (M1) cortices. Participant A was implanted with
ECoG arrays on the left hemisphere (Figure 1A) and participant
B (Figure 1B) on the right hemisphere. Throughout this report,
participant B’s data is mirrored to match participant A’s for the
sake of comparison. The ECoG electrodes used in this study
were implanted exclusively under clinical considerations for the
treatment of participants’ diseases. Electrical stimulation to the
sensorimotor cortex was performed under the clinical necessity
to map the sensorimotor cortex.

Electrode Localization
The ECoG electrode arrays analyzed in this study were composed
of grids of 20 planar-surface 3 mm diameter platinum electrodes
with 1 cm grid spacing. S1 and M1 mapping and identification
of electrode location were performed based on preoperative MRI
scans, postoperative CT scans, and neurophysiological evidence.
First, the preoperative MRI scans were coregistered with
postoperative CT scans using established techniques (Dykstra
et al., 2012) via EpiSurg software in an anatomical assessment
of electrode location (Figure 1). To identify the central sulcus
and to map and identify the locations of electrodes on S1 and
M1 (Figures 2B–D, 3A–D, 5A,B), peripheral transcutaneous
electrical stimulation and/or mechanical stimulation to the
surface of the body was/were applied. Peripheral mechanical
stimulation experiments were carried out for both participants
while recording ECoG signals. These signals were analyzed
to find electrodes that detected an increase in neural activity
a response to the peripheral mechanical stimulation, and

FIGURE 1 | Locations of electrocorticogram electrodes on participants’
cortical surfaces as determined by coregistration of MRI and CT images.
Electrode locations are visualized with dots, with different electrode grids
distinguished by the presence of grid lines between those dots. (A) Electrode
locations in participant A. (B) Electrode locations in participant B. In (A,B), red
outlines indicate the electrode grids analyzed in the current study. The outlined
electrode grid was on the left hemisphere of the brain for participant A, and
the right hemisphere for participant B; participant B’s data has been mirrored
throughout this report for comparison. Axes labels indicate medial (M) and
posterior (P) directions.
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FIGURE 2 | Cortical responses to peripheral mechanical stimulation.
(A) Average cortical responses upon mechanical stimulation of the thumb in
participant A (n = 50 trials). Participant A’s thumb were rubbed by a cotton
swab. Black vertical lines indicate stimulus instruction onset (Stim. cue).
(B) Distribution of cortical responses (n = 50 trials) to mechanical stimulation
of the thumb in participant A. White dashed circle indicates the electrode
whose cortical response is detailed in (A). (C) Distribution of cortical
responses (n = 50 trials) to mechanical stimulation of the tongue in participant
A. (D) Distribution of cortical responses (n = 40 trials) to mechanical
stimulation of the hand in participant B. Gray lines indicate estimated location
of central sulci (CS). Black filled circles indicate electrodes where cortical
responses were calculated. White solid circles indicate electrodes where the
signal was corrupted by noise, and for where for display purposes the cortical
response was taken as the mean of the neighboring electrodes’ responses.
Axes labels indicate medial (M) and posterior (P) directions. The color scale in
(B–D) is the same as in (A). A.U. stands for arbitrary units.

thus to help ascertain the location of the electrodes with
S1 (Figure 2). Participant A also underwent transcutaneous
electrical stimulation of the median nerve, which innervates
the palmar surface of the thumb, as an additional localization
technique. By analyzing the results of obtained by these various
experiments together, the locations of the electrodes relative
to the central sulcus, S1, and M1 were ascertained. These

peripheral mechanical stimulation experiments are explained in
more detail below.

Peripheral Mechanical Stimulation
To identify S1 somatotopy, peripheral mechanical stimulation
tests were performed while recording participants’
cortical responses. Every 2 s, the software Presentation R©

(Neurobehavioral Systems, Albany, CA, United States) generated
a TTL pulse signaling stimulus instruction onset (Stim. Cue
in Figure 2A) and presented the experimenter with one of
two instructions: “Stim” or “Rest.” These indicated whether
to mechanically stimulate the participant or to refrain from
doing so, respectively. “Stim” and “Rest” instructions were
presented randomly. During “Stim” trials, Participant A’s
thumb (n = 50 trials) or tongue (n = 50 trials) were rubbed
by a cotton swab, in two separate tests. Participant B’s hand
was tapped by the fingers of an experimenter (n = 40).
The TTL pulses marking stimulus instruction onset (stim.
Cue in Figure 2A), the point at which the experimenter
was presented with the “Stim” or “Rest” instruction,
were recorded alongside the physiological data described
below and used to align said physiological data indirectly
with the onset of the peripheral mechanical stimulation
for each 2 s trial.

During the peripheral mechanical stimulation test, ECoG
signals were recorded at 1000 Hz via EEG-2000 (Nihon
Kohden, Tokyo, Japan). The ECoG signals during the mechanical
stimulation were analyzed from -250 ms before to 750 ms after
each stimulus instruction onset. The signals for each trial were
transformed into the frequency-time domain through a 512 point
(512 ms at a 1000 Hz sampling rate) fast Fourier transform (FFT)
sliding window that passed down the length of each trial. For
speed of computation, FFT was only calculated for every 10th
point of the data. This resulted in a 2-dimensional time series
representing neural activity, represented in logarithmic scale,
over time across the range of frequencies between 0 and 200 Hz.
For each frequency in this range, the baseline activity, defined
as the mean value of that particular frequency’s activity during
the baseline time window of -250 to 0 ms prior to stimulus
instruction onset, was calculated. This frequency-specific baseline
value was then subtracted from the corresponding frequency-
time signal, for every individual frequency, in order to normalize
the data relative to the pre-stimulus baseline activity (Figure 2A).
Then, the neural response to the mechanical stimulation was
calculated as the average neural activity between 200 and 700 ms
post stimulus instruction onset and between 80 and 160 Hz;
the high-gamma activity band associated with activation in
response to somatosensory stimulation in S1 (Figures 2B–D).
Power was normalized within each experiment to the range
−1 to 1, in arbitrary units, such that the electrode with
the highest neural response to mechanical stimulation was 1
and the lowest was −1, for purposes of simplicity in the
localization process.

S1 Electrical Stimulation
Pairs of electrodes in which at least one electrode was located
on S1 were selected based on the results of the anatomical
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FIGURE 3 | Thresholds for perception and movement evoked by S1
stimulation. (A,B) Perception thresholds (PT) at different electrodes for
participants A (A) and B (B) in mA. Arrows point from anode to cathode
indicating stimulation polarity (blue: the electrode pairs which induced thumb
sensation, red: the electrode pairs which induced tongue sensation, black: no
response). Gray line indicates estimated location of central sulcus, dividing M1
and S1. (C,D) As in (A,B), but with movement threshold (MT) under S1
stimulation. Axes labels indicate medial (M) and posterior (P) directions for
(A–D). (E) Comparison of perception (PT) and movement (MT) thresholds in
S1 for participant A using a two-tailed Mann–Whitney U-test with a
significance criterion of p < 0.05. Bars and error bars indicate mean and
standard error respectively. (F) As in (E), for participant B. ∗ Indicates
significance at the 0.05 level, and N.S. indicates non-significance.

electrode localization. These electrode pairs were electrically
stimulated one at a time at a range of current intensities with
bipolar 50 Hz pulse trains of 200 µs biphasic pulse width
pulses lasting for 3 s each. During the stimulation test, the
ECoG signals of all non-stimulated electrodes were monitored
to assess the presence of after-discharges. If after-discharges
occurred following stimulation, the examination was stopped
until a few minutes after the after-discharges disappeared,
in order to prevent evoking an epileptic seizure. In general,
stimulus current intensity was incrementally increased from
low to high. Current intensity ranged from 1.0 to 3.2 mA
in participant A and from 0.5 to 3.5 mA in participant B.
Notably, we did not perform catch trials (stimulation with 0 mA),

although the sensory threshold might be biased without the
catch trials. Because we did this experiment as a part of the
clinical evaluation, making the implementation of the catch
trials difficult. The initial maximum current intensity was set
at 3.0 mA for both participants, but when after-discharges
were not observed, current intensity was increased beyond
this limit after getting permission from the doctors caring for
the participants. The current intensity was set to less than
10.0 mA, which corresponds to the charge of 2 µC/phase and
charge density of 28.3 µC/phase∗cm2, so as not to exceed
the Shannon criteria (1.75 < 1.85; Shannon, 1992). A reversal
of polarity in an electrode pair was considered a distinct
electrode pair; any two electrodes could produce two electrode
pairs taking polarity into account. Any movement apparently
evoked by the stimulation was recorded via video. Furthermore,
experimenters visually observing the participant during the
electrical stimulation watched for any movements apparently
evoked by the stimulation and made note of the qualitative nature
of said movements.

During this test, participants were instructed to verbally
describe the sensations they felt upon stimulation and to mark
on a 100 mm VAS the intensity of any sensations they felt
upon stimulation. The VAS was a horizontal line with the left
side endpoint labeled “no sensation” and the right endpoint
labeled “strongest sensation”. Participant A was instructed to
mark the weakest perceivable sensation at a pre-marked point
10 mm from the left “no sensation” endpoint. This was not done
with participant B.

The lowest stimulus current to a given electrode pair at which
participants gave a VAS score above 0 mm was defined as the
perception threshold (PT) for that electrode pair. The lowest
stimulus current to a given electrode pair that apparently evoked
visible movement in the participant was defined as the movement
threshold (MT) for that electrode pair.

Analysis of VAS Response
Characteristics
VAS scores corresponding to S1 electrical stimulation-evoked
sensation were linearly fitted for each electrode pair. Electrode
pairs that lacked sub-threshold data, defined as current intensities
that resulted in 0 mm VAS scores, or that lacked any VAS
score above 0 mm, indicating no sensation was perceived,
were ignored for this analysis. For fitting purposes, only the
highest sub-threshold current intensity was used to calculate
the best fit line. The slopes of these best fit lines were
defined as the sensitivities of VAS score to current intensity.
Electrode pairs in participant A were divided into thumb-
related and tongue-related electrode pairs based on verbal
descriptions of the electrically evoked sensations given by
that participant.

Statistics
PT and MT were tested for mean difference, in participant A
(PT: n = 7 electrode pairs, MT: n = 7), participant B (PT:
n = 5, MT: n = 3), and in the population of both participants
(PT: n = 12, MT: n = 10), using two-tailed Mann–Whitney
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FIGURE 4 | Relationship between S1 stimulation current intensity and VAS score of evoked sensation. (A) Electrode pair showing a linear relationship between visual
analogue scale (VAS) score, which corresponded to sensation of a hard object on the tongue, and current intensity in participant A. Inset indicates location of
stimulated electrode pair. Black arrow points from anode to cathode indicating stimulation polarity. Gray line indicates estimated location of central sulcus. Numerals
in inset indicate coefficient of correlation (r2) and p-value (p). Equation describes VAS score (y) in mm as a function of current intensity (x) in mA. The slope of the line
is the sensitivity of the electrode pair in mm/mA. ∗ Indicates significance at the p < 0.05 level. Fitting ignores redundant-pre threshold points, indicated by hollow
circles. Axes labels indicate medial (M) and posterior (P) directions. (B) VAS score versus current intensity for electrodes across both participants. (C) VAS score
versus current intensity for electrodes in participant A, differentiated by perceived body area (blue: thumb, red: tongue). (D) VAS score versus current intensity for
electrodes in participant B, corresponding to hand sensation. In (B,D), horizontal gray line indicates the 100 mm “strongest sensation” endpoint of the VAS. In (C,D),
redundant pre-threshold points (open circles in A) have been removed for clarity. (E) Comparison of sensitivities between thumb and tongue areas in participant A
using a two-tailed Mann–Whitney U-test with a significance criterion of p < 0.05. Bars and error bars indicates mean and standard error, respectively. N.S. indicates
non-significance.

U-tests with a significance criterion of p < 0.05. This non-
parametric test was selected due to its applicability to data with
small sample sizes.

Sensitivities of thumb-related (n = 3) and tongue-related
(n = 4) electrode pairs in participant A were tested for mean

difference using a two-tailed Mann–Whitney U-test with a
significance criterion of p < 0.05.

Correlation coefficients and corresponding significance values
between stimulation current intensity and VAS scores were
calculated using Pearson correlation for all electrode pairs that
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FIGURE 5 | Electrode pairs selected for samples of participants’ verbal
description of stimulation-evoked sensation (see Table 1). (A) Selected
electrode pairs for participant A. (B) Selected electrode pairs for participant B.
In (A,B), arrows point from anode to cathode indicating stimulation polarity
and gray lines indicate estimated locations of central sulci (CS). Axes labels
indicate medial (M) and posterior (P) directions.

had at least two supra-threshold VAS scores and at least one sub-
threshold VAS score of 0 mm. Within each electrode pair, all
sub-threshold VAS scores except that with the highest current
intensity were ignored for statistical purposes.

RESULTS

Electrode Localization
Peripheral mechanical stimulation evoked clear cortical
responses in both participants (Figure 2A), allowing estimation
of the functional locations of electrodes. The cortical responses
(thumb sensation in Figure 2B; tongue sensation in Figure 2C)
in participant A demonstrated a clear division between the more
medial thumb-associated area and the more lateral tongue-
associated area. Also, the types of somatosensations evoked by
electrical stimulation to the different electrodes in participant
A demonstrated a similar division between thumb-associated
(blue arrows in Figure 3A) and tongue-associated (red arrows in
Figure 3A) areas. PTs in participant A ranged from 1.9 to 2.2 mA
(Figure 3A). PTs in participant B ranged from 1.6 to 2.1 mA, and
3 out of 8 electrode pairs stimulated did not evoke any reported
sensation (Figure 3B).

Even under S1 stimulation, higher current intensities evoked
movements which might be a result of current spread to the
motor cortex. Evoked movements were typically muscle twitches
or small movements. MTs in participant A ranged from 2.0 to
2.6 mA (Figure 3C). MTs in participant B ranged from 2.0 to
2.3 mA, and 5 of the 8 electrode pairs stimulated did not evoke
any visible movement (Figure 3D).

In participant A, polarity-dependent differences in both
PTs and MTs, of up to 0.3 and 0.4 mA, respectively, were
observed within particular pairs of electrodes (Figures 3A,C).
In participant A, PTs (mean ± SE 2.06 ± 7.19E-2 mA) were
lower than MTs (2.43 ± 9.18E-2 mA) (two-tailed Mann–
Whitney U-test, p = 0.0175, U = 6.00) (Figure 3E). Participant
B’s PTs (1.94 ± 9.27E-2 mA) tended to be lower than her

MTs (2.20 ± 0.100 mA), but the mean difference did not
meet significance (two-tailed Mann–Whitney U-test, p = 0.143,
U = 2.5) (Figure 3F).

Linear Relationship Between Current
Intensity and VAS Score
There was a clear, positive linear relationship between current
intensity and VAS score in both participants within the range of
current intensities tested (Figure 4). Out of all 11 electrode pairs
analyzed, 10 were significantly correlated at the p < 0.05 level,
while 1, which had three VAS-current intensity data points, did
not. In all significantly correlated electrode pairs, r was greater
than 0.9, and r2 was greater than 0.85, indicating a strong, positive
linear relationship. In participant A, thumb sensation-related
electrode pairs (mean ± SE 58.9 ± 7.10 mm/mA) tended to
be more sensitive to current intensity than tongue sensation-
related electrode pairs (42.4 ± 6.64 mm/mA) (Figure 4E),
though this difference did not meet significance at the p < 0.05
level (two-tailed Mann–Whitney U-test, p = 0.229, U = 2.00).
For electrode pair B1 (Figure 5), participant B exceeded the
“strongest sensation” endpoint of the VAS, reporting a sensation
corresponding to 109 mm at 3.5 mA (Figure 4D). Some electrode
pairs, particularly those associated with tongue sensation, seemed
to exhibit a saturation effect around the higher end of the range of
the current intensities tested, showing a decreasing sensitivity as
current intensity increased. However this phenomenon was not
robust enough in the range of current intensities tested to warrant
further analysis.

Current Intensity-Dependent Differences
in Evoked Sensation
Participant A described electrically-evoked sensations largely in
terms of feelings of touch and numbness. He described qualitative
features of the sensations that changed with current intensity,
for both thumb-related and tongue-related sites. Participant
B described electrically-evoked sensations largely in terms of
pressure on the hand. Increases to current intensity generally
caused her to describe increases in the intensity of the sensation;
increased current would evoke sensation of stronger, wider, or
faster pressure on the hand. It was demonstrated that current
intensity has an impact on both intensity-related features such
as and size and pressure, as well as more qualitative aspects
corresponding to different types of somatosensation (Figure 5
and Table 1).

DISCUSSION

These results demonstrate a quantitative analysis of sensation
evoked by S1 electrical stimulation using ECoG arrays in humans.
A linear relationship between stimulation current intensity
and intensity of sensation was observed in both for hand
and tongue representation of S1; increasing supra-threshold
stimulation current intensity resulted in a proportional increase
in intensity of sensation. This opens the potential for clinical
application in developing somatosensory neuroprosthetics for
clinically plausible BMI.
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TABLE 1 | Selected verbal descriptions of stimulation-evoked sensation given
by participants.

Participant Electrode
pair

Current
intensity

(mA)

Description of sensation

A A1 1.8T Sense of a flick on a narrow portion
of the right side of the tip of my
tongue. Feels like movement [on
my tongue].

A A1 2.0 The surface of the right side of the
tip of my tongue feels numb. It’s as
if I’m eating pineapple, but there’s
no taste. The surface feels numb.

A A1 2.2 The feeling [of numbness] on the
right-side of the tip of my tongue
spread from front to back.

A A1 2.8 It feels like my tongue is swollen like
after being bitten.

A A2 1.9T Not a feeling of being touched; a
bad feeling [around the second joint
of the thumb].

A A2 2.0 Feels like a blood vessel pulsing [in
my thumb], not like anything I’ve felt
in the past. Feels like stimulation by
a low frequency electrical
stimulation therapy device around
the second joint of the thumb.

A A2 2.5 Outer side of my thumb feels
anaesthetized.

A A2 2.7 A slow dull touch on the opposite
hand. Also, my finger feels swollen
and thick.

B B1 1.9T The palm under my left little finger is
being pressed. The spot moved a
little inwards [to the center of my
palm].

B B1 2.0 It’s being pressed down in a few
spots [on my palm] but the overall
width is the same [as 1.9 mA].

B B1 2.5 It feels faster. The width is the
same.

B B1 3.0 The width increased.

B B2 1.6T [no verbal description given by
participant; VAS response only]

B B2 1.7 I feel pressure at two spots on the
[ulnar] side of my palm.

B B2 2.3 It sped up, and got stronger [than
at 1.9 mA]. The width is unclear.

B B2 2.7 It got even faster, but the width is
the same. It feels like something is
really strongly pressing [into my
skin].

For electrode pair definitions (see Figure 5). Original responses were given in
Japanese. Text in square brackets was not said by participants but is included
for clarity. T Indicates PT for that electrode pair.

VAS response curves enable a quantitative determination
of what intensity of sensation should be expected for a given
stimulation current intensity before stimulation is applied,
allowing for easier calibration of stimulation parameters in
design of somatosensory neuroprosthetics. The sensitivity of
VAS response to current intensity could inform what current

intensity to use in different somatotopic regions of S1 to evoke
sensation of a particular desired intensity; the non-significant
tendency in participant A of thumb-related electrode pairs to
be more sensitive than tongue-related electrode pairs suggests
that different somatotopic regions of S1 may have different
sensitivities to electrical stimulation (Figure 4), although a larger
sample size and testing of more somatotopic regions of S1
are needed to elucidate this phenomenon more fully. Although
ethical and safety considerations, including avoiding inducing
epilepsy by monitoring for after-discharges, necessitated the
current intensity be generally increased from low to high, it is
possible that randomizing the order of the current intensities
to be tested may provide more robust results. Furthermore,
especially for the evaluation of sensory threshold, more detailed
psychophysical methods, such as two-alternative forced-choice or
yes/no task (Flesher et al., 2016; Devecioglu and Guclu, 2017),
might be used to derive psychometric functions and to minimize
or control cognitive bias. However, because such psychophysical
methods necessitate a larger number of stimulation trials and
a longer experiment time, such methods may be difficult to
implement, both practically and ethically, in the clinical context
of epilepsy patients with implanted electrodes for preoperative
evaluation. Additionally, VAS was suitable here because this
experiment focused on the quantitative relationship between the
intensity of electrical stimulation and the perceived intensity and
quality of the evoked sensation. Perhaps in future experiments
a range of non-epileptogenic current intensities could be
preliminarily ascertained by gradual increase of the current
intensity as was done here, and then current intensities could be
randomly selected from within that range for another round of
stimulation, the results of which could then be used to construct
the VAS response curve and/or another psychophysical method.

A study on S1 stimulation via ECoG in humans (Johnson
et al., 2013) found that changing either stimulation frequency
or current intensity changed only the intensity of the sensation,
without significant change in the quality of the sensation. The
results in this study seem to partially conflict with those findings;
participant B indeed described mainly changes to intensity, but
participant A described clear differences in quality of sensation
as current intensity was varied (Figure 5 and Table 1). These
results are commonly observed in some recent studies using
intracortical microelectrode and surface microelectrode (Flesher
et al., 2016; Hiremath et al., 2017). More rigorous investigation
of the relationship between stimulation parameters, electrode
characteristics, and stimulation sites, neural recruitment by
stimulation, and quality of evoked sensation is needed to
determine the factors that contribute to the presence or absence
of these qualitative changes at a given stimulation site.

Ethical and clinical considerations limited the range of current
intensities that could be used for S1 stimulation. Despite the
overall linearity of VAS response to current intensity, there
was some indication toward the upper limit of the ranges
of current intensity tested that as current intensity increased,
there was a decrease in slope of the VAS response curve,
especially in participant A’s tongue-related sites (Figure 4C) and
participant B (Figure 4D). This is suggestive of a saturation
effect; as current intensity increases and a wider area of the
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S1 containing the somatotopy of the associated body area is
activated (Haglund et al., 1993), the number of somatotopically
relevant neurons still available for recruitment may decrease as
the percentage of recruited neurons tends toward 100%. The
resultant decrease in the number of additional neurons recruited
by every increase in stimulation current intensity, then, may lead
to a decrease in the perceived difference in intensity of subsequent
evoked sensations. This could explain why, in participant A, this
saturation phenomenon was observed more in tongue-related
electrode pairs than in thumb-related ones: the tongue-related
area in the human S1 is physically smaller than the thumb-related
area (Nakamura et al., 1998), and thus would approach 100%
recruitment at a lower current intensity.

In addition to evoking sensation of particular body areas,
S1 electrical stimulation also drove small movements of the
same general body areas, in accordance with previous findings
(Penfield and Boldrey, 1937). In participant A the threshold
current intensity for evoked movement was higher than that for
evoked sensation (Figure 3E). In participant B this relationship
appeared to exist as in participant A, but, likely owing to
the relatively small number of electrodes pairs that evoked
either sensation or movement, this relationship was not found
to be statistically significant (Figure 3F). Assessment of this
phenomenon could prove critical in the calibration of S1
stimulation parameters for neuroprosthetics or psychophysical
experiments; to produce a target level of sensation per unit of
input sensory signal, the mathematical transformation of that
sensory signal into current intensity would require knowledge
of the sensitivity of the VAS response curve, including any non-
linearity such as saturation effects. The potential for a motor
response puts a limit on the current intensity that can be applied
when the only desired effect of stimulation is evoked sensation.
This, along with the saturation considerations detailed above,
could be crucial factors to consider in designing future S1
stimulation experiments or neuroprosthetics for clinical use.

It should be noted that some of the stimulation below the
motor threshold might have evoked some very weak muscle
contractions which that were not noticed by the experimenter.
Although the possibility that the evoked sensations originated
from these weak muscle contractions cannot be ruled out
completely, the verbal descriptions of the evoked sensations
seem consistent with pressure or cutaneous mechanoreceptor-
type sensations, which are unlikely to be stimulated by such weak
muscle contractions. Furthermore, the established physiological
role of S1 suggests that the evoked sensations at least primarily
originated from the electrical stimulation to S1.

Notably, some electrode pairs did not induce artificial
sensation. Electrical conditions may differ between electrode
pairs. For example, some electrodes might not contact the cortical
well as well as others. This larger distance between the electrode
and the cortical surface might lead to more current spread over
the cortex via the cerebrospinal fluid. Moreover, as seen in the
case of stimulation using intracortical electrodes, stimulation in
deeper layer tends to decrease detection thresholds (DeYoe et al.,
2005; Tehovnik and Slocum, 2009; Koivuniemi and Otto, 2012).
The distance between the cortex and the electrode might also
affect the effective depth of the electrical stimulation. For these

electrode pairs, artificial sensation might have been potentially
evoked using higher current intensity. However, stimulation
current intensity was limited by the clinical factors such as the
need to avoid epileptic discharges as a result of stimulation.
Although in practice it is difficult to control surface electrode
location precisely, these results demonstrated that electrical
stimulation via surface electrodes induced artificial sensation
with properties similar to those of artificial sensation induced by
electrical stimulation via intracortical microelectrodes.

In participant A, S1 stimulation revealed a clear division
between more medial thumb-related areas and more lateral
tongue-related areas (Figures 3A,C), corresponding to the
widely known somatosensory homunculus (Penfield and
Boldrey, 1937). This general layout was also observed in the
spatial distribution of cortical responses evoked by mechanical
stimulation (Figures 2B,C). However it is clear that the
tongue-related areas as determined by cortical responses
to mechanical stimulation were more medial than those
determined by S1 electrical stimulation. There is a reasonable
explanation for this discrepancy. At some cortical sites, for
example the more posterior electrodes in participant A,
the cortical response to mechanical stimulation appeared
to be a decrease in high-gamma power (Figure 2D), rather
than the increase observed elsewhere. Further, stimulation
via ECoG electrodes recruits a large number of neurons en
masse, whereas external mechanical stimulation produces
more nuanced recruitment patterns, which may include the
aforementioned suppression effects, which correspond to
physiological somatosensation. Thus, it is difficult to compare,
from both mathematical and physiological perspectives, the
recording of physiological activity at single electrodes versus data
based on bipolar stimulation of electrode pairs. This difference
can also explain the somewhat unusual sensations evoked by
S1 stimulation (Table 1). The polarity-dependent differences
in both PT and MT in individual electrode pairs observed in
subject A (Figures 3A,C) suggest that stimulation polarity
has an effect on neural recruitment, presumably based on the
cytoarchitecture of the cortex.

It is difficult to induce artificial somatosensation using non-
invasive percutaneous cortical stimulation such as transcranical
magnetic or electrical stimulation. Invasive cortical stimulation
using penetrating electrodes has been demonstrated to induce
artificial sensation in a spinal cord injury patient (Flesher
et al., 2016). Electrical stimulations through the intracortical
micro-electrode arrays requires a lower current intensity less
than 100 µA to evoke somatosensory sensations (Flesher
et al., 2016), while cortical surface stimulations required mA
order to induce somatosensory sensation (Figure 3). The
intracortical micro-electrodes were also useful to evoke precise
and discrete somatosensory sensations (Flesher et al., 2016) and
to decode motor information, but the stability of the electrodes
makes their implementation in a clinical context difficult.
The stimulation area is also limited with intracortical micro-
electrodes while ECoG allows coverage of a larger cortical area
beyond different body representations. ECoG therefore appears
to be a well-balanced technique that allows greater cortical
coverage while remaining less invasive than cortex-penetrating
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needle electrodes, and as such is useful in medical contexts
where minimal invasiveness is desired (Yanagisawa et al., 2012;
Matsushita et al., 2018). Therefore, ECoG offers one of the
most clinically feasible options, being less invasive, having
superior long-term stability, and being less technically difficult
to implement (Rubehn et al., 2009; Chao et al., 2010; Shin
et al., 2012; Nakanishi et al., 2017) compared with other invasive
stimulation methods. These advantages should facilitate the
development of the clinically plausible somatosensory BMI.
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Invasive brain-computer interfaces yield remarkable performance in a multitude of

applications. For classification experiments, high-gamma bandpower features and linear

discriminant analysis (LDA) are commonly used due to simplicity and robustness.

However, LDA is inherently static and not suited to account for transient information

that is typically present in high-gamma features. To resolve this issue, we here present

an extension of LDA to the time-variant feature space. We call this method time-variant

linear discriminant analysis (TVLDA). It intrinsically provides a feature reduction stage,

which makes external approaches thereto obsolete, such as feature selection techniques

or common spatial patterns (CSPs). As well, we propose a time-domain whitening

stage which equalizes the pronounced 1/f-shape of the typical brain-wave spectrum.

We evaluated our proposed architecture based on recordings from 15 epilepsy

patients with temporarily implanted subdural grids, who participated in additional

research experiments besides clinical treatment. The experiments featured two different

motor tasks involving three high-level gestures and individual finger movement. We

used log-transformed bandpower features from the high-gamma band (50–300 Hz,

excluding power-line harmonics) for classification. On average, whitening improved the

classification performance by about 11%. On whitened data, TVLDA outperformed LDA

with feature selection by 11.8%, LDA with CSPs by 13.9%, and regularized LDA with

vectorized features by 16.4%. At the same time, TVLDA only required one or two internal

features to achieve this. TVLDA provides stable results even if very few trials are available.

It is easy to implement, fully automatic and deterministic. Due to its low complexity,

TVLDA is suited for real-time brain-computer interfaces. Training is done in less than

a second. TVLDA performed particularly well in experiments with data from high-density

electrode arrays. For example, the three high-level gestures were correctly identified at a

rate of 99% over all subjects. Similarly, the decoding accuracy of individual fingers was

96% on average over all subjects. To our knowledge, these mean accuracies are the

highest ever reported for three-class and five-class motor-control BCIs.

Keywords: brain-computer interface, electrocorticography, movement decoding, linear discriminant analysis,

spectral whitening
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1. INTRODUCTION

A brain-computer interface (BCI) establishes a communication
pathway from a person’s mind to the environment via brain
activity alone (Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012).
BCIs operate on brain waves that are usually recorded from the
electroencephalogram (EEG), the electrocorticogram (ECoG), or
depth electrodes. Many types of task-related information (or
features) can be extracted from brain waves, depending on the
specific experimental protocol and expected neurophysiological
activation pattern. Prominent examples include event-related
potentials (ERP) (Blankertz et al., 2011), steady-state evoked
potentials (SSEP) (Prueckl and Guger, 2009), event-related
(de-)synchronization (Pfurtscheller and Lopes da Silva, 1999),
and high-gamma activation (Miller et al., 2009; Kapeller et al.,
2018). The latter refers to power changes in frequencies above
50 Hz, which can only be computed from invasively recorded
data, such as from ECoG or depth electrodes. Invasive BCIs that
operate on high-gamma based features have gained considerable
attention and are subject to intensive research. For example, this
encompasses real-time passive functional mapping in the course
of surgery planning (Ogawa et al., 2014), visual categorization
tasks (Kapeller et al., 2018), or the development of BCI prototypes
for prosthetic limb, hand, or finger control (Shenoy et al., 2007;
Kubánek et al., 2009; Onaran et al., 2011; Yanagisawa et al., 2011;
Pistohl et al., 2012; Chestek et al., 2013; Kapeller et al., 2014; Xie
et al., 2015; Bleichner et al., 2016; Hotson et al., 2016; Branco et al.,
2017; Jiang et al., 2017; Li et al., 2017; Pan et al., 2018).

It is known that high-gamma based invasive BCIs can yield
very high classification accuracies, depending on the complexity
of the experiment, the electrode location and density, and the
processing methods and parameters. For example, Yanagisawa
et al. (2011) classified hand movement vs. rest in one patient
with an accuracy of 79.6%. Pistohl et al. (2012) achieved an
average accuracy of 87.8% over three subjects for two different
types of grasp movements. In another study, two high-level hand
gestures were correctly identified at an average rate of 95.5%
over four subjects (Xie et al., 2015). All these results entailed
standard ECoG grids. Performance increases considerably when
high-density electrode arrays are employed. Among others, this
was shown by Jiang et al. (2017), who achieved 100% accuracy for
two subjects in a two-class experiment involving hand gestures.

Three or more different hand gestures can also be identified
by high-gamma based BCIs. Yanagisawa et al. (2011) reported
68.3% in one subject for three different hand postures. For the
same experiment, Kapeller et al. (2014) published accuracies
up to 95.9% averaged over two subjects, and Li et al. (2017)
scored on average 80.0% in three subjects. In a similar setup,
Xie et al. (2015) obtained correct classification rates of 92.7%
over three hand gestures in four subjects on average. Whereas,
these experiments were obtained from standard ECoG grids,
several studies with hand posture classification were conducted
with subjects having high-density grids implanted. Using both
high-density and standard electrode arrays, Chestek et al. (2013)
conducted experiments to discriminate four hand postures and
rest at an accuracy rate of 77.7% on average over three subjects.
Using only high-density grids, Pan et al. (2018) reported up to

90% for three different hand gestures over 5 subjects. Involving
four different hand gestures, Bleichner et al. (2016) achieved
85.5% accuracy over two subjects, and Branco et al. (2017)
attained 85.0% over five subjects.

Many efforts have also gone into decoding individual finger
movements. Using standard ECoG grids, Shenoy et al. (2007)
achieved an average accuracy of 77.0% for classifying each of the
five fingers over six subjects. Kubánek et al. (2009) reported 80.3%
over five subjects for the same experiment, whereas Onaran et al.
(2011) got 86.3% over three subjects. Four fingers vs. rest were
correctly decoded at a rate of 79.3% in three subjects by Chestek
et al. (2013). One subject with high-density electrodes implanted
achieved 96.5% accuracy for each finger in a study conducted by
Hotson et al. (2016).

Table 1 summarizes these results and provides a
comprehensive overview of the state of the art.

A variety of classifiers for both offline and real-time BCIs
exist. Besides linear programmingmachines (Shenoy et al., 2007),
Bayesian approaches (Chestek et al., 2013), pattern matching
(Bleichner et al., 2016; Branco et al., 2017; Kapeller et al., 2018),
neural networks (Pan et al., 2018), and support vector machines
(Onaran et al., 2011; Yanagisawa et al., 2011; Li et al., 2017), linear
discriminant analysis (LDA) is widely used for both non-invasive
and invasive BCI and all types of features (Bostanov, 2004;
Scherer et al., 2004; Blankertz et al., 2008, 2011; Hoffmann et al.,
2008; Prueckl and Guger, 2009; Onaran et al., 2011; Yanagisawa
et al., 2011; Pistohl et al., 2012; Kapeller et al., 2014; Xu et al., 2014;
Lotte et al., 2015; Xie et al., 2015; Hotson et al., 2016; Gruenwald
et al., 2017a; Jiang et al., 2017; Li et al., 2017). LDA is robust, has
low complexity due to linearity and performs well in line with
more sophisticated methods (Garrett et al., 2003; Lee et al., 2005;
Lotte et al., 2007).

If the dimension of the feature space is high, a spatial filter
must be employed to reduce the number of features and to
prevent the classifier from overfitting. The most straightforward
approach is feature selection, either manual from a-priori data
inspection or automatized via statistical algorithms (Kapeller
et al., 2014; Xie et al., 2015; Bleichner et al., 2016; Hotson et al.,
2016; Li et al., 2017; Pan et al., 2018). Another approach for
feature reduction in invasive and non-invasive bandpower-based
BCIs is common spatial patterns (CSPs), a linear projection
scheme that optimizes class separation within a pre-defined
window (Blankertz et al., 2008; Onaran et al., 2011; Wu et al.,
2013; Kapeller et al., 2014, 2018; Lotte et al., 2015; Gruenwald
et al., 2017a).

To underline the popularity of the aforementioned methods,
5 out of 14 setups as listed in Table 1 utilize LDA while scoring
top results, and all feature reduction approaches (9 out of 15) are
either selection-based or CSP-based.

Despite their striking advantages, all of the three outlined
techniques (LDA, CSP, and feature selection) suffer from
substantial drawbacks.

First of all, LDA is inherently static, since it is designed to
operate on two multidimensional point clouds. However, the
trials of (synchronous) BCIs are usually given as spatiotemporal
feature matrices that also contain transient information. This
transient information cannot be exploited by LDA in a
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TABLE 1 | State-of-the art summary of hand-motor decoding experiments involving high-gamma based invasive BCIs.

Reference No. of

subjects

Electrode

spacinga
Frequency

bands (Hz)

Feature

reductionb
Classifierc Trial

alignment

Trial

length (s)d
Protocole Classesf Mean

accuracy

(%)

Shenoy et al., 2007 6 Macro 11− 40

71− 100

101− 150

None LPM None Not reported Finger 5 77.0

Kubánek et al., 2009 5 Macro 8− 12

18− 24

75− 115

125− 159

159− 175

None LMD Data glove [−1.0,+1.0] Finger 5 80.3

Onaran et al., 2011 3 Macro 65− 200 CSP SVM Data glove [−0.75,+1.0] Finger 5 86.3

Yanagisawa et al.,

2011

1 Macro 1− 8

25− 40

80− 150

None SVM None n/a (online) Move

RPS

1+ 1

3

79.6

68.3

Pistohl et al., 2012 3 Macro 2− 6

14− 46

54− 114

None rLDA Data glove [−1.0,+0.5] Grasp 2 87.8

Chestek et al., 2013 3 Mixed 66− 114 None NB Data glove [−0.5,+1.5] Gesture

Finger

4+ 1

4+ 1

77.7

79.3

Kapeller et al., 2014 2 Macro 60− 90

110− 140

160− 190

FS

CSP

LDA None [−0.5,+1.5] RPS 3 83.8

95.8

Xie et al., 2015 4 Macro Auto FS LDA None Various Gesture 2

3

95.5

92.7

Bleichner et al.,

2016

2 Micro 70− 125 FS PM Data glove [−1.0,+2.0] Gesture 4 85.5

Hotson et al., 2016 1 Micro 72− 110 FS LDA Data glove [−0.4,+1.0] Finger 5 96.5

Branco et al., 2017 5 Micro 70− 125 None PM High-gamma [−1.0,+2.6] Gesture 4 85.0

Jiang et al., 2017 2 Micro 60− 200 CSP LDA Not reported [−0.15,+0.35] Gesture 2 100.0

Li et al., 2017 3 Macro 4− 12

70− 135

FS SVM None [±0.0,+0.9] RPS 3 80.0

Pan et al., 2018 5 Micro 4− 12

12− 40

40− 70

70− 135

135− 200

FS RNN Data glove [±0.0,+0.5]

[±0.0,+1.2]

RPS 3 ≈ 80

≈ 90

aMacro, standard ECoG grid; Micro, high-density ECoG grid; Mixed, standard and high-density ECoG grids.
bCSP, common spatial patterns; FS, algorithm-based or manual channel/feature selection.
cLPM, linear programming machine; LMD, linear multivariate decoder; SVM, support vector machine; (r)LDA, (regularized) LDA; NB, naive Bayes; PM, pattern matching; RNN, recurrent

neural network.
dSpecified relative to cue, movement onset, or high-gamma onset (depending on trial alignment).
eFinger, finger movement or tapping; Move, movement vs. rest; RPS, rock-paper-scissors; Gesture, arbitrary hand gestures.
f Inclusion of a resting-state class denoted by “+1”.

straightforward manner. Sometimes, it is feasible to vectorize
the feature matrices and apply LDA on the resulting vectors.
This approach however inflates the dimension of the feature
space dramatically. It therefore requires a large amount of trials
to maintain statistical robustness, which are only available in
particular BCI protocols (such as in P300-based experiments;
Hoffmann et al., 2008). If the statistics are too weak for this
approach, a regularized version of LDA may be used. In the
current context of invasive BCIs for motor control, this approach
was followed by Li et al. (2017), whose feature space was spanned
by the vectorized power samples from the time × frequency ×

channel cube. Another attempt to explicitly account for feature

transients was pursued by Pan et al. (2018), who employed
recursive neural networks. In general, however, LDA is usually
employed such that it is applied to the features at a given point
in time within the trial that promises to yield good performance.
In turn, this creates the challenge of robustly identifying this time
point. Furthermore, the features are usually temporally smoothed
to enhance performance—the appropriate smoothing level must
thus be found empirically as well.

To reduce the dimension of the feature space, feature selection
is straightforward and seems to deliver satisfying performance.
However, the nature of selecting a feature entirely dismisses
information in unselected features. Moreover, feature selection
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is unable to combine joint information from coherent features,
leading to redundancy in the final feature set. The search for
the optimal set of features may be computationally demanding,
if statistically robust results should be obtained. In any case, not
only identifying the features themselves, but also determining the
appropriate number of features is an additional degree of freedom
of this method that must be properly taken care of.

In contrast to feature selection, CSPs inherently overcome
the two main issues of feature selection, such as information
redundancy and feature dismissal. However, finding the optimal
location and size of the CSP window may be challenging and
requires manual intervention. To the best of our knowledge,
no automatized approaches thereto exist. As well, the optimal
number of features to be selected for optimal performance needs
to be determined in advance.

In view of the shortcomings of state-of-the art methods
delineated above, we here present a novel classification method
for machine-learning systems with spatiotemporal features in
general, and for high-gamma based invasive BCIs for motor
control in particular. Our method extends LDA such that it
accounts for the time-varying nature of features, we thus name
it time-variant linear discriminant analysis (TVLDA). Since
TVLDA is applied to one trial as a whole, it avoids the need
of estimating the optimal time point for classification as was
necessary for LDA. We will also describe an intrinsic property
of TVLDA that allows for straightforward and powerful feature
reduction via principal component analysis (PCA). Additionally,
we investigate the impact of a simple time-domain spectral
whitening stage during preprocessing. The resulting system is
still linear and of low complexity, which enables it for future
real-time experiments. We quantitatively assess and compare the
performance of our method by means of recordings from 15
subjects with temporarily implanted ECoG electrodes.

2. MATERIALS AND METHODS

2.1. Subjects
2.1.1. Original Study
In the original study conducted for this publication, we evaluated
data from six epilepsy patients undergoing surgical treatment at
Asahikawa Medical University, Asahikawa, Japan. For surgery
planning, the patients had a variety of ECoG grids of different
types, sizes, and channel counts implanted over the course of
several weeks. Besides the standard clinical procedure, all of them
volunteered to participate in additional research experiments.
The study was approved by the institutional review board of
Asahikawa Medical University and received certificate number
245 in June 2012. Written informed consent was obtained from
each patient before participating in the study.

Table 2 summarizes the most important data and recordings
from the patients, which we subsequently refer to as subjects S1
through S6. Their ages ranged between 17 and 37 years at the
day of electrode implantation. S1 and S4 (one third) are female,
whereas S2, S3, S5, and S6 are male. S4 is the only left-handed
subject. Covered hemispheres are left for S3 and S4 and right for
the others.

From the total number of implanted ECoG grids, we only
used the ones covering sensorimotor areas for further evaluation.
These were standard 20-channel grids (UniqueMedical Co., Ltd.,
Tokyo, Japan; diameter 3 mm, spacing 10 mm, geometry 4 × 5)
for S1 and S6, and 60-channel high-density ECoG grids (Unique
Medical Co., Ltd.; diameter 1.5 mm, spacing 5 mm, geometry 6×
10) for the others. Based on MRI and CT scans, we reconstructed
a three-dimensional model of the brain via FreeSurfer (Martinos
Center for Biomedical Imaging, Harvard University) and co-
registered electrode locations. Based on this and a functional
parcellation of the brain, we roughly estimated the electrode
coverage on the primary motor cortex and the somatosensory
cortex. At this stage, it turned out that the electrodes of S5 were
actually only covering somatosensory areas. Figure 1 provides an
overview of the electrode placement.

2.1.2. Public Dataset
In order to make our analyses reproducible by other researchers,
we also evaluated the publicly available fingerflex dataset1 from
Kai Miller.

2.1.2.1. Ethics statement
All patients participated in a purely voluntary manner,
after providing informed written consent, under experimental
protocols approved by the Institutional Review Board of
the University of Washington (no. 12193). All patient data
was anonymized according to IRB protocol, in accordance
with HIPAA mandate. These data originally appeared in
the manuscript Human Motor Cortical Activity Is Selectively
Phase- Entrained on Underlying Rhythms published in PLoS
Computational Biology in 2012 (Miller et al., 2012).

This dataset contains nine subjects, which we integrate as
S7 through S15 in this context. A brief summary is given in
Table 3. All subjects used implanted platinum arrays (Ad-Tech
Medical Instrument Corporation, Wisonsin, USA) with 2.3 mm
exposed surface and 10mm inter-electrode distance. The datasets
comprised a variable number of channels, which all seemed to
contain good ECoG data. In contrast to the data from our study
in Asahikawa, it was difficult to assess the exact coverage of S7–
S15; we thus used all channels for further processing. Please
see the original publication for more details regarding the exact
electrode locations.

We recognized that the recordings from S7 to S9 are
identical with Subject 1–3 from the BCI Competition IV,
respectively, which is another highly popular public ECoG
dataset (Tangermann et al., 2012).

2.2. Experiments
Table 2 summarizes the conducted experiments, which all
relate to hand motor functions at different abstraction levels.
The rock-paper-scissors (RPS) experiment addresses high-level
gestures, whereas the finger-tapping experiment aims at decoding
individual finger movement. The latter is divided into the two
variants palm down (FTPD) and palm up (FTPU). We will use

1https://stacks.stanford.edu/file/druid:zk881ps0522/fingerflex.zip
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TABLE 2 | Subjects S1–S6 and experiment overview of the original study conducted in Asahikawa, Japan.

ID Age Gender
Handed- Covered Electrode Electrodes Electrodes Coverage Coverage

Protocolc
Trials

ness hemisphere spacinga total selected motorb somatosensoryb per class

S1 35 Female Right Right Macro 98 20 7–8 5–7 RPS 30

26 Male Right Right Micro 140 60 26–32 19–24
FTPU 40

S2
RPS 40

S3 26 Male Right Left Micro 187 60 29–36 22–26 FTPU 20

17 Female Left Left Micro 164 60 29–37 12–17

FTPD 75

FTPU 86S4

RPS 65

FTPU 97
S5 22 Male Right Right Micro 158 60 5–7 27–34

RPS 76

S6 37 Male Right Right Macro 100 18 7–9 4–7 RPS 60

aMacro, standard ECoG grid; Micro, high-density ECoG grid.
bEstimated number of electrodes, based on Figure 1.
cRPS, rock-paper-scissors; FTPD, finger tapping, palm down; FTPU, finger tapping, palm up.

FIGURE 1 | Electrode placement overview. Electrodes reported in Table 2 are highlighted in red. Not all of the remaining electrodes in the top row are visible due to

occlusion. In the close-up view, the central sulcus is indicated in yellow and the identified gyri are shaded in respective colors.

TABLE 3 | Subjects S7–S15 and experiment overview of the public ECoG dataset (S7–S9 are identical with Subject 1–3 from the BCI Competition IV, respectively).

ID
Patient BCI

Age Gender
Handed- Covered Electrode No. of

Protocolc
Trials

codea comp. IV ness hemisphere spacingb electrodes per class

S7 bp Subject 1 18 Female Right Left Macro 46 FTPU 28

S8 cc Subject 2 21 Male Right Right Macro 63 FTPU 28

S9 zt Subject 3 27 Female Right Left Macro 61 FTPU 28

S10 jp 35 Female Right Left Macro 58 FTPU 18

S11 ht 26 Male Right Left Macro 64 FTPU 27

S12 mv 45 Female Right Left Macro 43 FTPU 6

S13 wc 32 Male Right Left Macro 64 FTPU 28

S14 wm 19 Female Right Right Macro 38 FTPU 14

S15 jc 18 Female Right Left Macro 47 FTPU 23

aAs stated in the dataset documentation.
bMacro, standard ECoG grid.
cFTPU, finger tapping, palm up.
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FIGURE 2 | Setup of the rock-paper-scissors experiment.

the terms finger movement and finger tapping interchangeably
throughout this publication.

All experiments were conducted at the bedside of the
patient. Before each experiment, the patients received and
confirmed all necessary instructions to successfully perform it.
The respective tasks were triggered by a visual cue, shown
on a computer monitor placed in front of the patient. A
data glove (5DT Inc., Florida, USA) was used to capture
the hand movements of all subjects. In all experiments, the
contralateral hand relative to the implantation site carried out the
movements. Figure 2 gives a visual impression of the setup. The
experiments conducted with S1–S6 were repeated over the course
of several days, depending on the condition and motivation of
the subjects.

In the following, we describe the individual experiments more
in detail.

2.2.1. Rock-Paper-Scissors
The different hand poses involved in this experiment were
inspired by the well-known hand game rock-paper-scissors (RPS),
constituting a three-class experiment. The visual cues were shown
on the screen for one second, interleaved by a scrambled picture
distractor of randomized duration between 1.5 and 2.5 seconds.
The subjects were instructed to form the requested gesture with
their hand once the stimulus appeared, and to return into a
relaxed hand position once the distractor showed up. One run
included 20 trials per class. The rock-paper-scissors experiment
was only conducted with S1–S6.

2.2.2. Finger Tapping, Palm Down and Palm Up

2.2.2.1. Original study (S1–S6)
Here, the subjects were asked to perform two taps with the finger
indicated on the screen for one second. Between the cues, a
scrambled picture was shown for a randomized duration between
1.7 and 2.5 seconds, indicating that the subject should stay at rest.
In the easier version, the palm-up version (FTPU), the subjects

executed two repeated finger flexions, whereas in the palm-down
version (FTPD), the subjects performed actual taps on a solid,
planar surface. One run of this five-class experiment consisted of
10 trials per class. The palm-down version turned out to require
a certain level of fine motor skills that was not present in all
subjects, so only S4 completed it successfully.

Due to misunderstanding of the task instructions, S3 executed
this experiment differently: instead of executing two discrete taps,
he kept flexing the finger until a new instruction showed up on
the screen. As described below, this required some additional
processing steps to obtain usable data.

2.2.2.2. Public dataset (S7–S15)
As described in Miller et al. (2012), the subjects were
cued with a word shown on a bedside monitor, indicating
which finger to move. Each task lasted for two seconds,
during which the subjects typically performed between two
and five repeated finger flexions. A blank screen, shown for
another two seconds, was interleaved between each task as
a resting trial. Only the palm-up variant of the experiment
was performed.

2.3. Data Acquisition
2.3.1. Original Study (S1–S6)
We captured the raw ECoG data with the g.HIamp biosignal
amplifier (g.tec medical engineering GmbH, Austria) and used
Simulink (The MathWorks, Inc., Massachusetts, USA) as the
recording environment. Depending on the overall number of
channels, we set the sampling rate to either 1.2 or 2.4 kHz.
We used the g.HIsys Highspeed Online Processing toolbox (g.tec
medical engineering GmbH) for the stimulus presentation
and synchronous data acquisition and storage. The recorded
data were saved on a hard drive and re-processed offline in
MATLAB (The MathWorks, Inc.) for this study as described in
this section.

2.3.2. Public Dataset (S7–S15)
As communicated by Miller et al. (2012), the ECoG data were
recorded with the Synamps 2 biosignal amplifier (Compumedics
Neuroscan, North Carolina, USA) at a sampling rate of 1 kHz
and internal bandpass-filter from 0.3 to 200 Hz. The general-
purpose software environment BCI2000 was used for stimulus
presentation and synchronous data acquisition.

2.4. Preprocessing and Feature Extraction
This subsection closely follows the concept of Gruenwald et al.
(2017b), which outlines optimal bandpower estimation for real-
time BCIs. If not otherwise mentioned, we processed data from
all subjects regardless of their origin in the exactly same manner.

After excluding channels that were notably bad due to
high impedance, we re-referenced the data by the common
average. After that, a notch-filter cascade (recursive 6th-order
Butterworth, bandwidth: 5 Hz) up to the 6th harmonic was
used to remove interference peaks from the spectrum at integer
multiples of the power line frequency.

Next, an optional spectral whitening filter (Oppenheim
and Schafer, 2010) was applied to each channel. While the
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concept of whitening (or spectral equalization) is frequently
used in time-frequency analysis (Miller et al., 2009; Yanagisawa
et al., 2011; Pistohl et al., 2012), it is less known that it
can also be performed in time domain by a simple finite-
impulse response filter. This enables whitening for real-
time applications, where time-frequency transformation is not
an option.

The underlying principle of a whitening filter is that the
input signal can be modeled as a Pth-order autoregressive (AR)
process, e.g.,

P
∑

p = 0

apy[n− p] = v[n] (1)

with v[n] ∼ N(0, σ 2
v ) i.i.d. being a zero-mean white Gaussian

noise with variance σ
2
v . In this publication, we use the tilde

notation to link a random variable with its particular distribution
and the term i.i.d. to indicate independent and identically
distributed samples. The AR coefficients ap can be determined by
the Yule-Walker equations that are applied to a sufficiently long
signal fragment of y[n] (e.g., a few seconds). Equation 1 can now
be seen as a linear time-invariant filter with impulse response ap:

ȳ[n] =

P
∑

p = 0

apy[n− p] . (2)

It is intuitive that the filter output ȳ[n] resembles the white noise
v[n] and therefore has a flat spectrum.

The positive effect of whitening on the signal-to-noise
ratio of ECoG bandpower features was anticipated previously
(Gruenwald et al., 2017b). Figure 3 provides an illustration,
where the dynamic range of the signal within the cut-off
frequencies can be roughly estimated to 25 dB. Whitening
equalizes the pronounced 1/f -shape of the spectrum, which
balances the frequency-specific contributions to the overall
bandpower and thus increases signal fidelity.

Since an ECoG spectrum is rather smooth in absence of
interference peaks, the filter order can be low. In practice, we
found a 10th-order whitening filter sufficient.

After the optional whitening stage, we band-passed the signal
(recursive 6th-order Butterworth) to our high-gamma frequency
band of interest. We assessed several bands with respect to
classification performance, and finally chose 50 to 300 Hz as our
target. This may seem inappropriate in view of the fact that the
data of S7–S15 was pre-filtered by a bandpass between 0.3 and
200 Hz. However, we observed that the whitening procedure was
able to recover high-gamma components well above 200 Hz.

Given the bandpass signals, we then estimated the bandpower
via a sliding variance window of 50 ms length, without overlap.
A log-transform was appended, to improve signal stationarity
and Gaussianity.

Then, the data were triggered, i.e., cut into signal fragments
for each trial and class. Since S3 and S7–S15 exhibited a large
movement onset jitter, we applied a trial-based correction. To this
end, we used the signals captured by the data glove for aligning
the individual trials of S3. Likewise, we corrected the onset jitter

FIGURE 3 | Illustration of the whitening procedure by means of power spectral

densities of the preprocessed bandpass signals (S6, RPS, exemplary channel).

To illustrate the benefits of whitening, the two conditions rest vs. movement

(any class) are shown separately. Upper and lower corner frequencies of the

bandpass filter are indicated by the vertical dashed lines.

of S7 to S15 by a movement trigger already contained in the
data. For the other subjects (S1, S2, and S4–S6), no explicit trial
alignment was performed, since the onset jitter was already small
enough for good classification results. However, we compensated
for the systematic reaction and execution latency by shifting the
grand average high-gamma onset to the center of the trial to
guarantee symmetry.

We set our trial length to 0.75 seconds pre- and post-onset,
respectively. Trials that were contaminated with pathological
brain activity (such as inter-ictal spiking) were removed. No
further trial exclusion was performed.

At this point, it is reasonable to establish a mathematical
model that facilitates subsequent methodological derivations. To
this end, we refer to the number of samples and channels as
NS and NCh, respectively. The preprocessed and triggered data

then constitute spatiotemporal feature matrices Y
(i)
c ∈ R

NS×NCh

for trials i and classes c. Both trials and classes are expected to
stem from a pool of NT trials and NC classes, respectively, e.g.,
T = {1, . . . ,NT} and C = {A,B,C, . . . } with |C| = NC. For the
typical machine-learning scenario, we are further partitioning the
set of trials into a training set TTrain (with known class labels) and
a test set TTest (with unknown class labels), which are disjoint.
Formally, these sets can be expressed as

YTrain =

{

Y
(i)
c

∣

∣ c ∈ C, i ∈ TTrain

}

(3)

YTest =
{

Y
(i)
c

∣

∣ c ∈ C, i ∈ TTest

}

. (4)

Toward mathematical tractability, we decompose Y
(i)
c into row

vectors y
(i)
c [n] with discrete-time index n:

(

Y
(i)
c

)

n,·
= y

(i)
c [n], n ∈ {0, 1, . . . ,NS − 1} . (5)

2.5. Feature Reduction (Standard)
The number of recorded channels may be high, particularly
in ECoG experiments. This increases the computational
demands and the risk of classifier overfitting. Consequently,
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a feature projection or selection stage usually precedes the
classifier. Especially for ECoG, this can decrease dimensionality
tremendously without losing information, since (1) only a limited
amount of channels significantly contributes to class separation
and (2) correlation across contributing channels may be high.
Mathematically, this feature projection is implemented by a
generic matrix P ∈ R

NCh×NF with NF ≪ NCh, such that

x
(i)
c [n] = y

(i)
c [n]P . (6)

Following a likewise decomposition as in (5), we denote the

contracted spatiotemporal featurematrices byX
(i)
c ∈ R

NS×NF and
write for the training and test sets

XTrain =

{

X
(i)
c

∣

∣ c ∈ C, i ∈ TTrain

}

(7)

XTest =
{

X
(i)
c

∣

∣ c ∈ C, i ∈ TTest

}

. (8)

The subsections below describe strategies how to populate the
projection matrix P.

2.5.1. Common Spatial Patterns
Common spatial patterns (CSPs) are the de-facto standard for
dimension reduction in EEG signal processing (Blankertz et al.,
2008; Lotte et al., 2015) and are also popular in ECoG signal
processing (Onaran et al., 2011; Kapeller et al., 2014; Xie et al.,
2015; Jiang et al., 2017). This approach expects multivariate
distributions of two classesA andBwith covariances6A and6B,
respectively. The CSP transformationmatrix then simultaneously
diagonalizes both6A and6B, where the element-wise ratio along
the diagonals is strictly monotonic. Consequently, the first and
the last CSP component maximize the variance for one class,
while minimizing it for the other. Additional CSP components
further contribute to this.

In the given context, CSPs operate on the triggered
bandpass data within a pre-defined window, i.e., before power
computation. For all datasets, we have located the peak of
the grand high-gamma activation over trials and classes, and
centered the CSP window about this peak. We set the window
length to 0.3 seconds, since this yielded the best classification
results. Denoting the CSP transformation by R ∈ N

NCh×NCh ,
the projection matrix PCSP is then column-wise populated with
the first ⌈NF/2⌉ and the last ⌊NF/2⌋ columns of R. As will be
discussed in section 2.8, we computed CSPs pairwise for each
binary classification in a multi-class scenario.

2.5.2. Feature Selection
Another common approach to reduce the dimensionality is
a discrete feature (or channel) selection process. While the
individual implementations differ considerably, feature selection
is heavily used in the ECoG community (Kapeller et al., 2014; Xie
et al., 2015; Bleichner et al., 2016; Hotson et al., 2016; Li et al.,
2017; Pan et al., 2018).

Here, we use a straightforward approach for feature selection.
First, we compute an activation score for each class and channel,
which is the trial-averaged relative band-power increase from
baseline (before high-gamma onset) to activation (after high-
gamma onset). For each pair of classes, we then calculate the

absolute difference of this activation score for each channel
and sort the result in descending order. This way, the channels
exhibiting the largest high-gamma activation difference for the
two classes are ranked top. Consequently, the projection matrix
PFS (which ismore a selectionmatrix now) is established such that
its NF columns logically index the first NF channels in the given
ranking, respectively.

2.6. Classification
We now assume that, for each class, the feature matrices X

(i)
c

comprise a unique underlying activation pattern that is identical
over trials. However, each repetition is subject to noise, most
prominently from imperfect task execution and the uncertainty
of feature estimation. We thus employ a multivariate Gaussian
distribution to describe these components as follows:

x
(i)
c [n] ∼ N

(

µc[n],6c[n]
)

i.i.d. (9)

In general, µc[n] ∈ R
1×NF and 6c[n] ∈ R

NF×NF are not known.
The independence constraint is expected to hold over samples

n, trials i and classes c. While this requirement is intuitively hold
over trials and classes, in fact it may be violated over samples. We
have shown in Gruenwald et al. (2017b) that the signal processing
pipeline yields high-gamma features with estimation noise that
can be considered white; however, imperfect trial execution may
impose temporally correlated noise on the data. We will also
address this issue in section 4.

2.6.1. Linear Discriminant Analysis
A standard tool to separate features of two classes is linear
discriminant analysis (LDA). In a nutshell, LDA expects
multivariate Gaussian distributions from two classes A and B

and finds a projection vector that simultaneously maximizes the
mean distance whilst minimizing the individual variances of the
projected populations (Bishop, 2006). LDA-based classifiers are
optimal in the maximum-likelihood sense if the two distributions
are homoscedastic.

For convenience and if applicable, we hereafter use the generic
class label c ∈ {A,B} to denote either of the two classes. In case
we know the class associated with a particular variable, we denote
this by subscript notation.

A common approach to classify spatiotemporal features with
LDA is the training of several LDA instances over time and
selecting the classifier which yields best performance. Thus, after
introducing the well-known difference of means and pooled
covariance matrix

1µ[n] = µB[n]− µA[n] (10)

6[n] = 1
2

(

6A[n]+ 6B[n]
)

, (11)

the standard LDA projection vector equates to

w[n] = 1µ[n]6−1[n] . (12)

Given an arbitrary input x(i)[n], the symmetric LDA score p(i)[n]
is computed as

p(i)[n] = w[n]x(i)[n]T − d[n] , (13)
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where the superscript ( · )T denotes matrix transposition and
the offset

d[n] = 1
2w[n] (µA[n]+ µB[n])

T (14)

centers the two projected class populations about zero.
This can be verified by equating the means µpc [n] =

E{p
(i)
c [n]} via Equations (13) and (14), where E{·} denotes

the expectation operator over trials. It is now evident that
µpA [n] = −µpB [n], since

µpA [n] = −
1
2w[n]1µ[n]T (15)

µpB [n] = +
1
2w[n]1µ[n]T . (16)

2.6.1.1. Training
There are different approaches to apply an LDA classifier to
spatiotemporal features. The most common strategy is to smooth
the features over time, train the LDA classifier for each point
in time, and then select the one which gives best performance.
In the present context, best performance for LDA was achieved
if the features within a trial were symmetrically smoothed by
three samples in each direction. Toward the decision which
classification time point to use, we investigated several options.
Most robust results were obtained by adaptively selecting the
time point of maximum high-gamma activation over all classes
and trials. We subsequently denote this time point as nLDA.

Summarizing the LDA training procedure, the sample means

µ̂c[nLDA] and covariances 6̂c[nLDA] are computed first, given

labeled training data X
(i)
c ∈ XTrain. Via Equations (10), (11),

(12), and (14), the set {ŵ[nLDA], ˆd[nLDA]} then constitutes the
LDA classifier.

2.6.1.2. Test
Given a test trial X(i)

∈ XTest and {ŵ[nLDA], ˆd[nLDA]} as the
classifier, the LDA score p̂(i) is simply computed analogously
to (13):

p̂(i) = ŵ[nLDA]x
(i)[nLDA]

T
−

ˆd[nLDA] . (17)

Since the two classes in question lead to LDA scores symmetric
about zero, the natural threshold for classification is zero as well:

ĉ
(i)
LDA =

{

A p̂(i) < 0

B p̂(i) ≥ 0
. (18)

2.6.2. Regularized Linear Discriminant Analysis
Computing the LDA weight vector requires the inversion of
the pooled covariance matrix. This can become numerically
unstable if the number of samples is not much larger than the
feature dimensionality. To overcome this problem, a regularized
LDA (rLDA) can be used where only the main diagonal of
the sample covariance matrices is accounted for (also known
as shrinking). Since this allows stable inversion even in high-
dimensional feature space, rLDA is particularly appealing when

applied to vectorized features x
(i)
c ∈ R

1×NSNF , such that

x
(i)
c =

[

x
(i)
c [0], x

(i)
c [1], . . . , x

(i)
c [NS − 1]

]

(19)

∼ N
(

µc,6c

)

i.i.d. (20)

to account for all spatiotemporal information at once.

2.6.2.1. Training
Training the rLDA classifier is straightforward. After computing
sample means and sample covariance matrices from the
vectorized training data, the off-diagonal elements of the sample
covariance matrices are set to zero. Equations (10), (11), (12),

and (14) yield the rLDA classifier {ŵ⋆, ˆd⋆
}. Note that the temporal

index n has now vanished.

2.6.2.2. Test
Applying the rLDA classifier {ŵ⋆, ˆd⋆

} to test data follows
analogously to section 2.6.1.2.

2.6.3. Time-Variant Linear Discriminant Analysis
The major improvement of time-variant linear discriminant
analysis (TVLDA) over standard LDA is that it utilizes
information of all individually trained LDA classifiers over the
whole trial, which makes it inherently time-variant. To derive the
concept of TVLDA mathematically, we first interpret p(i)[n] (13)
as an NS-dimensional vector:

p(i) =
[

p(i)[0], p(i)[1], . . . , p(i)[NS − 1]
]T

. (21)

In this notation, each class establishes the multivariate
Gaussian distribution

p
(i)
c ∼ N

(

µpc ,6pc

)

i.i.d. (22)

with means µpc ∈ R
NS×1 and covariances 6pc ∈ R

NS×NS

equating to

µpc =

[

µpc [0],µpc [1], . . . ,µpc [NS − 1]
]T

(23)

6pc = diag
{[

σ
2
pc
[0], σ 2

pc
[1], . . . , σ 2

pc
[NS − 1]

]}

. (24)

The assumed temporal independence of the feature noise (cf. (9))
implicates the fact that 6pc must be diagonal. The elements of
µpc are given by Equations (15) and (16), and the elements of
6pc are obtained after short calculus as

σ
2
pc
[n] = w[n]6c[n]w[n]

T . (25)

We now want to separate the two class populations
{

p
(i)
A

}

and
{

p
(i)
B

}

again in the LDA-sense. Consequently, the difference of
means and pooled covariance are given as

1µp = µpB
− µpA

(26)

6p =
1
2

(

6pA + 6pB

)

. (27)

To find an expression for the LDA projection vector6
−1
p 1µp, we

trace back Equations (23) and (24), Equations (15), (16), and (25),
and Equations (11) and (12), to finally arrive at the elegant result

6
−1
p 1µp = 1 . (28)

In other words, the overall TVLDA score, denoted by z(i), is
simply the sum of all intermediate LDA scores (13):

z(i) =

NS−1
∑

n = 0

p(i)[n] . (29)
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It is evident that µpB [n] − µpA [n] = 1µ[n]6−1[n]1µ[n]T,
which can be shown by inserting (12) into Equations (15) and
(16). Consequently, the difference of the expected TVLDA scores
yields via (29)

E

{

z
(i)
B

}

− E

{

z
(i)
A

}

=

NS−1
∑

n = 0

1µ[n]6−1[n]1µ[n]T , (30)

which is the accumulated Kullback-Leibler divergence of the
classes A and B under the homoscedasticity assumption of the
(TV)LDA.

2.6.3.1. Training

From the training data X
(i)
c ∈ XTrain, the TVLDA parameters

{ŵ[n], ˆd[n]} are computed based on the sample means µ̂c[n] and

covariances 6̂c[n] via Equations (10), (11), (12), and (14).

2.6.3.2. Test
For a test trial X(i)

∈ XTest and a set of TVLDA parameters

{ŵ[n], ˆd[n]}, the TVLDA score ẑ(i) follows according to
Equations (29) and (13):

ẑ(i) =

NS−1
∑

n=0

ŵ[n]x(i)[n]T −
ˆd[n] . (31)

Evidently, also the TVLDA score is symmetric about zero, which
leads to the classification scheme

ĉ
(i)
TVLDA =

{

A ẑ(i) < 0

B ẑ(i) ≥ 0
. (32)

2.7. Feature Reduction (TVLDA-Specific)
We here resume section 2.5 by proposing a novel feature
dimensionality reduction approach that is intrinsic to TVLDA,
based on principal component analysis (PCA).

We can interpret the time-variant TVLDA weight vector as
a spatiotemporal weight matrix W ∈ R

NS×NF , whose rows are
given by w[n]:

(

W
)

n,·
= w[n] . (33)

Motivated by the nature of PCA, we now restrict the generic
transformation matrix P to be orthogonal, i.e., P ∈ R

NCh×NF with
NF = NCh and P−1

= PT. Consequently, any transformation of

y
(i)
c [n] by P transparently affects the TVLDA weight matricesWx

andWy:

x
(i)
c [n] = y

(i)
c [n]P ⇒ Wx = WyP , (34)

where the subscripts indicate which variableW is associated with.
This relationship can be shown by substituting the projection
scheme into the computation of the weight vector (12) via
Equations (10) and (11).

The idea now is to find P, such that the weights in Wy

are compressed into very few columns of Wx. Only these
columns of Wx are then kept, leading to an effective reduction
in dimensionality.

FIGURE 4 | Column-wise visualization of the original and PCA-transformed

spatiotemporal weight matrices Wy (left) and Wx (right), respectively. As

illustrated in the right subplot, only few principal components with large

amplitudes remain. This allows for substantial dimension reduction, as detailed

in the text.

The standard solution to this problem is PCA, which we
implement as a singular value decomposition (SVD) of Wy. In

short, we factorize Wy = USVT where U ∈ R
NS×NS and

V ∈ R
NCh×NCh are orthogonal matrices, and S ∈ R

NS×NCh

is a matrix with zeros, except for the non-negative, decreasing
singular values on the diagonal. The desired scores in the
principal-component space of Wx are now given by the product
US, such that we require

Wx = USVTP
!
= US (35)

and obtain simply

P = V . (36)

Since V establishes an orthonormal projection, which
can be seen as a rotation in high-dimensional space,
all information is preserved. The principal components
are ordered by their impact, so the projection matrix
PPCA is simply populated by the first NF columns of V.
Figure 4 provides an example of the PCA-based feature
reduction method.

Importantly, the number of channels may be too high to
yield invertible covariance matrices (i.e., NCh ≫ NT). Even if
the covariance matrices are nonsingular, their inversion may be
numerically unstable. To find a robust PCA decomposition and
unless many more trials than channels are available, we therefore
recommend smoothing the sample means and covariances over
time before computing the weight matrix Wy that is subject
to the SVD. In our case, we used bidirectional averaging of
two samples in each direction to obtain the best results. For
datasets comprising many trials, this bidirectional averaging
did not impair results, and hence we recommend using it
whenever applicable.

The number of trials may be extremely low, and thus even
temporal averaging does not yield a usable PCA decomposition.
In this case—and only in this case—we suggest adding a certain
level of regularization to PCA: here, the off-diagonal elements
of the TVLDA sample covariances are weighted with a factor
between 0 and 1, where 0 is identical to complete diagonalization.
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We have observed that setting this factor to 0.75 (which equals
a regularization of 25%) can substantially improve results,
especially for datasets with particularly low trial count and a small
number of channels capturing task-related activation. We will
address this issue further in section 4.

Note that the proposed temporal averaging and regularization
only apply for computing the initial Wy, but not for Wx

after transformation.

2.8. Multi-Class Extension
So far, we have only addressed binary classification problems.
Since many experiments entail more than two classes, the
decision rules defined in Equations (18) and (32) must be
extended. We do so by employing a one-vs.-one classification
scheme. Consequently, each class is tested against each other
class, yieldingNC(NC−1)/2 binary classification results. It would
be straightforward to implement a voting approach that elects the
winner based on the most votes; however, this approach would
lead to frequent ties. Moreover, the quantitative information in
the (TV)LDA scores would be lost.We thus propose to use amin-
max approach formulti-class discrimination. First, we refer to the

(TV)LDA score for class cp vs. cq as ẑ
(i)
cpcq

(cp, cq ∈ C, cp 6= cq).

The smaller this value gets, the more certain (TV)LDA is that
trial i belongs to class cp rather than to class cq. Taking the worst

score over all classes (i.e., the maximum of ẑ
(i)
cpcq

over all q) then

indicates how likely it is that trial i stems from class cp, relative to
all other classes (the lower the more likely). Finally, the class that
minimizes this score is elected:

ĉ
(i)
(TV)LDA = argmin

cp

{max
p6=q

{ẑ
(i)
cpcq

}} . (37)

Evidently, the feature-reduction techniques discussed in
sections 2.5 and 2.7 follow this one-vs.-one scheme as well.

2.9. Performance Evaluation
Here, we describe our framework for performance evaluation.

2.9.1. Cross-Validation
We performed 20 repetitions of a randomized 10×10 cross-
validation to assess the expected performance of the system. All
components (such as feature reduction and classification) were
subject to this cross-validation to ensure that testing was done on
completely unseen data.

2.9.2. Assessed Method Variants
In this publication, we mainly want to investigate the potentials
of our proposed improvements, such as (1) spectral whitening,
(2) PCA-based feature reduction instead of CSP and feature
selection, and (3) TVLDA instead of LDA or rLDA. To this end,
we identified seven method variants (or simply methods) that
logically follow this path: for LDAwith CSP and feature selection,
we investigate the effect of whitening. Then, for whitened data,
we incorporate rLDA and PCA as a feature reduction technique
for LDA. Finally, for whitened data and PCA-based feature
reduction, LDA is switched to TVLDA to arrive at the complete
set of proposed improvements.

2.9.3. Performance Quantification
We quantify the performance of the respective methods by
means of accuracy rates (or simply accuracies). This is the true
positive rate, defined as the ratio between correctly classified
trials and total number of trials, averaged over all classes.
Since our evaluation framework is of statistical nature, a
rigorous comparison between methods by means of accuracies
is inappropriate. To resolve this, we here define a margin, within
which we consider two methods to perform equal. Intuitively, we
set this margin to 1/NT [%], since this represents the accuracy
range that relates to one trial per class. This in turn is the actual
quantization level of the respective dataset, and we hereafter refer
to it as the quantization margin.

To facilitate interpretation and comparison further, we also
introduce the term representative accuracy. The representative
accuracy is an acceptable trade-off between classification
accuracy and number of features needed. Since, at some
point, increasing NF may only marginally contribute to better
performance, we chose the smallestNF whose corresponding (i.e.,
representative) accuracy still lies within the quantization margin
of the best result.

3. RESULTS

In this section, we present the results of the classifier performance
evaluation. For the most comprehensive comparison, we
included the number of features NF from 1 to 15 and evaluated
the accuracies for each method variant and dataset.

Figure 5 gives a qualitative overview of the performance
evaluation for S1–S6. At this stage, it is already evident
that whitening dramatically improves decoding performance,
regardless of the feature reduction technique. For CSP and
feature selection, a gradual improvement can be observed inmost
datasets as NF increases. This is plausible as new information
is added to the system. It is remarkable that this characteristic
is different for PCA-based feature reduction: more features only
slightly improve performance, if there is any improvement at all.
For many datasets, the best performance is already achieved for
very few PCA components and degrades as more are added to the
system. The representative accuracy is indicated by the large dots.
Note that the concept of representative accuracy does not apply
to rLDA, since it directly operates on the vectorized feature space.

Table 4 lists the representative mean accuracies, standard
deviations, and respective number of features versus methods
and datasets. For better reading, we ordered the presentation by
protocol and electrode grid density. Below, we summarize the
most important findings. For brevity, we refer to TVLDA with
PCA-based feature reduction and whitening just as TVLDA.

3.1. Relative Performance
As summarized in Table 4, the accuracies increase systematically
from the standard methods to TVLDA. Whitening already has
a dramatic impact on the performance. For CSP and LDA, the
improvement peaks at +22.9% (S6, RPS) with +12.3% on average.
A similar trend can be observed for feature selection and LDA,
where we improved by up to +20.3% (S6, RPS) and +10.4%
on average.
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FIGURE 5 | Classification accuracies versus number of features NF for selected finger-tapping (left) and rock-paper-scissors (right) datasets. Results for rLDA are

not shown since NF does not apply. The dots represent the average of 20 repetitions of the randomized cross-validation, and the shaded area indicates the standard

deviation. The pronounced dots relate to the representative accuracy, which is defined in the text. Feature selection is abbreviated by “FS” in the legend. The

quantization margin is abbreviated by “QM”.
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TABLE 4 | Performance overview of all assessed methods on all datasets.

No Whitening Whitening

Dataset LDA
rLDAc LDA TVLDA

CSP Channel Sel. CSP Channel Sel. PCAd PCAd

Protocola Gridsb ID Acc. (%) NF Acc. (%) NF Acc. (%) Acc. (%) NF Acc. (%) NF Acc. (%) NF Acc. (%) NF

RPS Macro S1 63.8± 3.0 2 52.2±3.1 4 68.8±2.5 73.8±2.0 1 69.1±0.9 1 65.4± 1.5 1 82.4±2.0 1

RPS Macro S6 53.6± 2.2 3 57.3±1.5 9 79.9±0.8 76.5±1.4 8 77.6±1.0 8 79.2± 0.8 1 91.3±0.9 2

Average 58.7± 2.6 2.5 54.7±2.4 6.5 74.4±1.9 75.2±1.7 4.5 73.4±0.9 4.5 72.3± 1.2 1.0 86.9±1.6 1.5

RPS Micro S2 75.9± 1.7 4 77.3±2.2 8 89.2±1.0 91.7±1.2 3 82.0±2.4 11 91.6± 0.8 1 99.0±0.3 1

RPS Micro S4 77.4± 2.3 6 79.8±1.2 4 67.8±1.5 90.7±1.0 11 90.3±1.0 13 92.5± 0.7 2 98.9±0.2 1

RPS Micro S5 87.4± 1.8 5 89.0±1.1 7 96.3±0.4 95.0±0.6 4 95.7±0.6 5 98.4± 0.3 1 99.0±0.4 1

Average 80.2± 2.0 5.0 82.0±1.6 6.3 84.4±1.1 92.5±1.0 6.0 89.4±1.5 9.7 94.2± 0.7 1.3 99.0±0.3 1.0

FTPU Macro S7 54.9± 3.6 4 60.2±3.0 7 79.3±1.7 65.3±3.5 2 65.6±2.3 4 76.0± 2.1 1 89.4±1.3 1

FTPU Macro S8 56.6± 1.7 1 63.5±2.3 4 71.8±1.9 75.6±2.4 2 79.4±1.6 5 69.1± 2.2 1 82.8±1.2 1

FTPU Macro S9 53.5± 3.4 1 70.8±3.6 7 83.3±1.1 72.9±2.1 2 75.4±2.1 3 78.6± 2.3 1 85.7±1.2 1

FTPU Macro S10 55.8± 3.2 4 62.8±2.1 2 60.8±1.6 57.7±1.9 1 73.9±1.8 2 71.0± 1.9 1 77.3±2.0 1 ⋆

FTPU Macro S11 27.0± 2.9 1 38.0±2.5 3 50.4±1.6 39.3±2.1 1 50.8±2.7 5 50.4± 1.9 1 64.5±3.2 1

FTPU Macro S12 40.0± 0.0 1 53.3±0.0 1 70.0±0.0 60.0±0.0 1 63.3±0.0 1 80.0± 0.0 1 90.0±0.0 1 ⋆

FTPU Macro S13 49.9± 2.7 3 57.4±2.0 1 74.6±1.8 66.0±1.5 1 72.4±1.8 3 68.1± 2.8 1 80.1±1.7 2

FTPU Macro S14 55.7± 0.0 2 67.1±0.0 2 71.4±0.0 60.0±0.0 3 64.3±0.0 5 78.6± 0.0 1 81.4±0.0 1 ⋆

FTPU Macro S15 53.5± 1.7 1 58.9±2.3 2 58.9±2.0 68.7±1.4 1 68.9±1.8 2 70.9± 1.4 1 77.5±1.7 1 ⋆

Average 49.6± 2.8 2.0 59.1±2.6 3.2 68.9±1.7 62.8±2.2 1.6 68.2±2.1 3.3 71.4± 2.1 1.0 81.0±1.9 1.1

FTPU Micro S2 77.8± 1.5 5 80.9±1.4 4 80.2±1.3 79.8±1.7 7 85.3±1.2 7 87.5± 1.1 1 97.2±0.6 1

FTPU Micro S3 93.3± 1.8 2 83.8±1.1 3 85.8±1.2 95.3±0.6 2 93.1±0.7 3 91.0± 1.4 2 93.8±1.4 1

FTPD Micro S4 67.7± 2.4 12 65.3±1.3 8 50.5±0.9 85.3±0.9 5 85.0±0.7 10 89.3± 0.5 1 97.9±0.3 1

FTPU Micro S4 71.0± 1.1 7 75.0±0.9 5 51.7±1.0 89.0±0.7 4 88.8±0.6 9 89.2± 0.6 1 96.6±0.3 2

FTPU Micro S5 58.1± 1.5 12 55.4±1.0 9 68.2±0.9 64.3±1.1 8 65.2±0.9 12 70.6± 0.8 1 85.3±0.8 2

Average 73.6± 1.7 7.6 72.1±1.2 5.8 67.3±1.1 82.7±1.0 5.2 83.5±0.9 8.2 85.5± 0.9 1.2 94.2±0.8 1.4

The table is organized in four blocks, such that the rock-paper-scissor experiments with standard and high-density electrode grids are clustered in the first and second block, respectively. Likewise, the finger-tapping experiments with

standard and high-density electrode grids are presented in the third and fourth block, respectively. Accuracies and corresponding number of features NF are representative values, as described in the text. The percentages are given

as means ± standard deviation over 20 cross-validation repetitions. If the standard deviation is missing, it was zero due to the low number of trials. Emphasized values are considered the best for each dataset, which lie within the

quantization margin of the best result (cf. section 2.9.3).
aRPS, rock-paper-scissors; FTPD, finger tapping, palm down; FTPU, finger tapping, palm up.
bMacro, standard ECoG grid; Micro, high-density ECoG grid.
crLDA operates on vectorized features, so NF is not applicable (cf. section 2.6.2).
dFor rows marked with an asterisk (⋆), a regularization of 25% was used for PCA (cf. section 2.7).
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For whitened data, rLDA performed worst on average with
71.5%. LDA with CSP and feature selection was slightly better
with 74.0 and 76.1% on average. LDA with PCA was the best
on average with 78.8%. At the same time, PCA turned out to
be the most efficient feature reduction technique by far, needing
only 1.1 components on average instead of 3.5 (CSP), 5.7 (feature
selection), or the whole vectorized feature space (rLDA).

Overall, the best results were seen for whitened data and
TVLDA, where TVLDA outperformed rLDA by +16.4%, LDA
and CSP by +13.9%, and LDA and feature selection by +11.8% on
average. Investigating the impact of using TVLDA instead of LDA
for PCA-based feature reduction and whitened data, we obtained
an improvement of +9.1% on average. To assess the robustness
of each evaluated method, we computed the standard deviation
of the accuracies over 20 repetitions of the randomized cross-
validation. For the non-whitened data and LDA, we obtained
an average standard deviation of ±2.2 and ±2.0% for CSP and
feature selection, respectively. Whitening decreased these values
to ±1.6% and ±1.5%, respectively, whereas rLDA showed an
overall standard deviation of ±1.4%. TVLDA slightly diminished
the overall standard deviation further to ±1.3%.

3.2. Absolute Performance
TVLDA performed best not only on average, but for every single
dataset (within the quantization margin relative to the overall
maximum). Only one or two PCA features (1.1 on average)
are needed to achieve top performance. For the subsequent
discussion, we thus refer to the results yielded by TVLDA.

Combining the results of the rock-paper-scissors experiment
for the subjects with standard ECoG grids implanted, an overall
accuracy of 86.9% was achieved. In contrast, the accuracy
increases tremendously for subjects with high-density grids
implanted, who scored 99.0% on average.

S7–S15, all with standard electrode grids implanted, scored
81.0% on average in the finger-tapping experiments. In general,
all these data comprised fewer trials; for S12, even only 6 trials
were available. The entries marked with an asterisk in Table 4

were thus obtained with a regularized PCA to avoid overfitting
(cf. section 2.7).

For the patients with high-density grids implanted, the
classification accuracy in the finger-tapping experiment was
94.2% over all subjects. Accounting only for the subjects with
substantial sensorimotor coverage (thus excluding S5), the
overall score increased to 96.4%.

4. DISCUSSION

4.1. Classification Performance
Spectral whitening during the preprocessing stage has a
tremendous impact on decoding performance. On average, the
accuracy rises by +12.3% for CSP and LDA and by +10.4% for
feature selection and LDA. Figure 3 illustrates the reason for
this huge leap: whitening balances the information with respect
to frequency and therefore substantially increases the signal-to-
noise ratio. Employing multi-band features in the high-gamma
band (Shenoy et al., 2007; Kubánek et al., 2009; Kapeller et al.,
2014; Pan et al., 2018) may have a similar positive effect on the

classification performance as whitening, but this comes at the cost
of an expanded feature space.

When ECoG signals are offline analyzed in the time-frequency
domain, spectral whitening is well established (Miller et al.,
2009). Yanagisawa et al. (2011) and Pistohl et al. (2012) directly
extracted bandpower features for classification from a time-
frequency signal representation (such as short-time Fourier or
wavelet transforms). However, this approach is computationally
demanding and may not meet real-time constraints. We
therefore strongly promote the proposed time-domain whitening
filter to save valuable resources.

The evidence that TVLDA outperforms LDA on high-
gamma features is overwhelming: for every single dataset,
TVLDA delivers the best results. The grand average accuracy
improvement relative to standard methods is +16.4% (vs. rLDA),
+13.9% (vs. CSP and LDA) and +11.8% (vs. feature selection and
LDA). These results were obtained with mostly one (sometimes
two) internal PCA components for TVLDA, whereas CSP and
feature selection require 3.5 and 5.7 components, respectively.
Performance thus not only gets better, but is also achieved
at lower system complexity. The fact that only few PCA
components are necessary to achieve maximum performance
leads to remarkable robustness against overfitting; TVLDA with
PCA delivers 10×10 cross-validation results with a standard
deviation of ±1.3% on average. If very few trials are available,
a regularization term to PCA as discussed in section 2.7 can be
applied to further enhance stability.

Before putting our results into the context of state-of-the art
research, we want to emphasize that it was not our focus to
maximize the absolute performance of our system, but rather to
investigate the impact of structural and methodological advances
proposed in this manuscript. In other words, we did not employ
multiple frequency bands or add other features to improve overall
performance, unlike other studies to which we compare our
results. We did not reject badly or differently executed trials
from the datasets. In view of good responsiveness of a real-time
BCI, we kept our trial window short (±0.75 seconds, relative to
movement onset), whereas longer trials would have increased
classification accuracies for some datasets most certainly.

The three-class rock-paper-scissors experiment with standard
electrodes yielded an average accuracy of 86.9%. In view of the
experiment settings, this compares best to 68.3% (Yanagisawa
et al., 2011), 83.8% and 95.8% (Kapeller et al., 2014), 92.7%
(Xie et al., 2015), and 80.0% (Li et al., 2017). Whereas the cited
reference results relate to the same protocol in general, they
were obtained from multi-band features and substantially longer
trial durations. Xie et al. (2015) also used alternative features
besides bandpower.

For the rock-paper-scissors experiment with high-density
electrodes, TVLDA delivered almost perfect accuracies of 99.0%
on average over three subjects. A similar experiment was recently
conducted by Pan et al. (2018), who reported an accuracy of up
to 90%. Bleichner et al. (2016) achieved 85.5% and Branco et al.
(2017) attained 85.0% accuracy with high-density grids, but for
an experiment involving four gestures.

For standard electrode grids and the finger-tapping
experiment, TVLDA scored 81.0% on average over all subjects.
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This is well in line with state-of-the art results, such as such
as 86.3% (Onaran et al., 2011), 80.3% (Kubánek et al., 2009),
and 77.0% (Shenoy et al., 2007). For solid differentiation of five
individual fingers, however, the spatial sampling of standard-
sized grids may be too coarse. In particular, we observed
considerable confusion between the ring finger and little finger,
which are in fact difficult to move independently. Combining
these two classes improved decoding performance to 88.1% in
a four-class scenario, which seems a more usable setup in this
context. Interestingly, this result with 88.1% is higher than the
86.9% we obtained for only three classes. We thus suspect that
the electrode coverage of S1 was not particularly fortunate for
the rock-paper-scissors experiment, or the movements were
not executed consistently or pronounced enough. Based on our
experimental evidence, we believe that the rock-paper-scissors
experiment with proper sensorimotor coverage of standard-sized
electrodes and good subject participation should yield around
90% accuracy and above with TVLDA (as in S6).

The finger-tapping experiment with high-density
sensorimotor coverage resulted in 96.4% on average. This
is comparable to Hotson et al. (2016), who scored a maximum of
96.5% in a single subject, but with posterior selection of the best
LDA evaluation time point. With both standard and high-density
electrodes implanted, Chestek et al. (2013) reported 79.3% in a
similar experiment.

TVLDA with PCA has further advantages beyond high
classification accuracy. The architecture needs only minor
extensions compared to standard LDA. Additionally required
components encompass a time-domain whitening filter for
preprocessing, the summation over several LDA scores, temporal
smoothing of sample means and covariances for PCA, and an
SVD of the spatiotemporal TVLDA weight matrix. All of these
elements are strictly deterministic and can be implemented easily.
Training a system that implements TVLDA is fully automatic
and done in less than a second. Moreover, all shortcomings and
difficulties of CSPs and feature-selection approaches disappear,
since no external feature reduction is required. TVLDA is more
robust than any other assessed approach, even when only few
trials are available. With only one or two PCA components,
TVLDA already attains maximum performance.

4.2. Extensions, Limitations, and Outlook
Choosing the optimal number of principal components for
TVLDA may be straightforward in the given context, where
performance vs. number of features was evaluated via cross-
validation. In fact, one could have chosen just the first principal
component for all datasets with still very good results. TVLDA
may however be applied to more complicated datasets, where
more than one principal component is required. In this case,
cross-validation is still an option to determine the optimal
number of principal components. A more theoretical approach
that efficiently estimates the true number of underlying principal
components via Bayesian model selection was proposed by
Minka (2001).

We already mentioned that the temporal independence of
the noise as stated in (9) may be violated by inconsistent trial
repetitions of the subject. In this case, the assumptions of a

diagonal covariance matrix for TVLDA as in (24) is not justified
any more. In fact, a good estimate of the true covariance matrix
can be obtained from the training statistics of the LDA scores
(22) with considerable effort. We tested this option, but it did
not yield any improvements. On the contrary, TVLDA turned
out to become less stable. We therefore resorted to the variant
proposed in this manuscript, which can also be seen as a
form of regularization.

As evidenced by Figure 3, our high-gamma band of choice
covered several harmonics of the power-line frequency. Since
power-line interference can be huge, especially for ECoG data,
it must be addressed. Applying notch filters is a robust solution,
although they remove the complete signal within the specified
frequency band. As a consequence, we expect to have lost up
to 10% of the signal power (harmonic spacing: 50/60 Hz, notch
filter bandwidth: 5 Hz). In reality, it may be much less than 10%
though, since the filter cut-offs are not infinitely steep. A more
sophisticated interference cancelation approach that removes
only unwanted signal components could have maintained a
higher signal-to-noise ratio. This may have led to slightly better
performance, especially for whitened data.

Our evaluation is based on retrospective analysis of offline
data. However, since the signal processing pipeline is strictly
causal, we are confident that the whole system can be put to the
online context in a straightforward manner, yielding comparable
results. Based on the experimental evidence and our experience
with TVLDA, 20 trials per class for training should already
be enough for reasonable online classification performance,
provided that the coverage is good and high-density grids are
used. Of course, more training data can often improve results.

It should be noted that TVLDA is trial-based per se, so it needs
a trigger to perform classification. An interesting undertaking
would be the adaptation of TVLDA for asynchronous BCIs. For
training, triggered and labeled data will still be necessary (as for
most supervised classifiers). During a free run, the previously
trained, asynchronous TVLDA may then continuously process
the incoming data stream in sliding windows. This yields one
classification result at a time, including idle time periods. To
reduce this large number of produced false positives, we suggest
two strategies. First, the TVLDA scores themselves may be taken
into account, such that only scores that exceed a minimum of
certainty actually trigger a classifier output. This threshold may
be determined during training. As an alternative, a baseline class
could be added to the framework to explicitly account for the
idle state.

In any case, TVLDA is a window-based classifier and
thus requires a consistent spatiotemporal activation pattern for
successful classification. Truly continuous BCI control may be
difficult to implement with TVLDA.

In its design as proposed here, TVLDA requires each trial to
be completed until it is classified. For real-time applications, the
trial window should therefore be as short as possible. We can
imagine however an adaptive TVLDA that does not necessarily
accumulate the LDA scores over the whole trial. Rather, it would
raise a classification output whenever the accumulated LDA
scores up to the current time point exceed a certain threshold that
allows a reliable decision.
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TVLDA may also find usage in different application fields
apart from classification. For example, as shown in (30),
the TVLDA score relates to the accumulated Kullback-Leibler
divergence, which can be used for statistical evaluation such as
in trial-based functional brain mapping. Here, a particular task
is usually compared to a resting condition. Applying TVLDA at
each channel separately would then yield a robust measure how
much the respective channel is involved in carrying out the task.

Another potential use case of TVLDA would be the
reconstruction of task-related activation patterns. The PCA of
the TVLDA weight matrix readily provides a decoupled spatial
and temporal representation of the underlying cortical processes
that are specifically discriminating between the two classes. A
similar tool was published by Kobak et al. (2016), who proposed
a demixing PCA (dPCA). Here, PCA was extended with task-
related information to reduce data dimensionality and to reveal
unique activation patterns specific to each task. Unlike TVLDA,
dPCA was designed to simplify the analysis and visualization of
multi-dimensional neural recordings in animals, but it may also
be used for classification.

One fundamental assumption of TVLDA is that each trial
is the exact repetition of each other trial. While this leads to a
convenient signal model, it may not reflect reality. Most likely,
the overall amplitude of the underlying activation curve may
vary over trials due to adaptation, high-gamma attenuation,
learning, or fatigue. It may be worthwile to study a potential
extension of TVLDA that allows for these fluctuations or
trends. This may be inspired by Williams et al. (2018), who
have recently shown that tensor component analysis (TCA)—a
multilinear extension of PCA—provides a powerful framework
for decomposing triggered neural data into electrode factors,
time factors, and trial factors.

5. CONCLUSIONS

In this work, we have outlined a novel classification method for
invasive motor-control BCIs that extends LDA to account for
time-variant features. We named it TVLDA, for time-variant
linear discriminant analysis. At the same time, we proposed an
optimized feature extraction path for high-gamma bandpower
that utilizes time-domain whitening for improved performance.
We assessed the performance of TVLDA by evaluating data
from 15 epilepsy patients with implanted subdural grids. Based
on 19 experiments involving three high-level gestures and
individual finger movement, we systematically demonstrated the
superiority of TVLDA over several reference methods based
on LDA.

TVLDA establishes a new benchmark for invasive motor-
control BCIs, especially for those with high-density electrodes
implanted on sensorimotor areas. To our knowledge, 99.0%
for the recognition of three high-level gestures and 96.4%
for individual finger identification are the highest consistent
accuracies ever reported for these kinds of experiments.

Among the strengths of TVLDA is its ability to dramatically
reduce feature dimensionality through a novel projection scheme
based on PCA. This leads to robust performance, even for

experiments with very few trials. As a valuable consequence,
TVLDA makes any preceding feature reduction stage obsolete.
The implementation of TVLDA is straight forward and requires
only few adaptations compared to standard LDA.

It is evident that TVLDA is not limited to motor-
based classification tasks. Rather, it can be used for any
experimental setup that produces spatio-temporal activation
patterns for classification—potentially even in EEG or other non-
brain imaging approaches, such as electrooculography (EOG),
electrocardiography (ECG), electromyography (EMG), and the
like. TVLDA may also find use in different ECoG applications,
such trial-based functional brain mapping.

Overall, we believe that we have developed a valuable tool that
will open the door for invasive brain-computer interfaces with
almost perfect multi-class control in the near future. However,
additional work is necessary to further validate TVLDA with
different ECoG environments, as well as with EEG and other
imaging methods for clinical and scientific applications.
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The studies described in this paper for the first time characterize the acute and chronic
performance of optically transparent thin-film micro-electrocorticography (µECoG) grids
implanted on a thinned skull as both an electrophysiological complement to existing
thinned skull preparation for optical recordings/manipulations, and a less invasive
alternative to epidural or subdurally placed µECoG arrays. In a longitudinal chronic
study, µECoG grids placed on top of a thinned skull maintain impedances comparable
to epidurally placed µECoG grids that are stable for periods of at least 1 month.
Optogenetic activation of cortex is also reliably demonstrated through the optically
transparent µECoG grids acutely placed on the thinned skull. Finally, spatially distinct
electrophysiological recordings were evident on µECoG electrodes placed on a thinned
skull separated by 500–750 µm, as assessed by stimulation evoked responses using
optogenetic activation of cortex as well as invasive and epidermal stimulation of the
sciatic and median nerve at chronic time points. Neural signals were collected through
a thinned skull in mice and rats, demonstrating potential utility in neuroscience research
applications such as in vivo imaging and optogenetics.

Keywords: thinned skull, µECoG, local field potenitals, optogenetics, somatosensory evoked potentials

INTRODUCTION

Electrophysiological recordings of brain activity using high density electrode arrays are a staple of
neuroscience research and have become increasingly prevalent for the clinical diagnosis of epileptic
seizure foci as well as the clinical deployment of brain–machine interfaces (BMI) (Osorio et al.,
2002; Leuthardt et al., 2004, 2006; Viventi et al., 2011). Traditional electrophysiological recording
methods involve the implantation of invasive electrode arrays either indwelling within cortex
(Kipke et al., 2003; Normann and Fernandez, 2016), beneath the dura (subdural) (Wyler et al.,
1984; Henle et al., 2011; Khodagholy et al., 2014), on top of the dura (epidural) (Thongpang et al.,
2011; Park et al., 2014; Spuler et al., 2014), or non-invasively on the skin directly above the exterior
of the skull (Myrden and Chau, 2015). It is generally accepted that electrode placement closer to
the neural signal sources of interest within the brain yields a more information rich and spatially
distinct signal (Fernández et al., 2014), whereas activity measured at a distance non-invasively is
attenuated in part by the high impedance skull, yielding less spatially distinct information in the
recorded signal from electrode to electrode (Grill et al., 2009; Uriguen and Garcia-Zapirain, 2015).
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More recently, there has been a growing appreciation that
surgical methods to open the skull, and/or the placement of an
indwelling electrode grid on or within cortex, may cause adverse
effects that impact the neural circuitry of interest (Fernández
et al., 2014; Goss-Varley et al., 2017; Falcone et al., 2018).
For example, increased glial scarring (Grill et al., 2009; Marin
and Fernández, 2010; Salatino et al., 2017), large increases
in temperature of cortex (Shoffstall et al., 2018), changes in
intracranial pressure (Onal et al., 2003), intracranial hemorrhage
and/or physical depression of cortex (Onal et al., 2003; Marin and
Fernández, 2010; Degenhart et al., 2016), and bacterial infection
(Onal et al., 2003) have all been linked to the surgical procedure
and implantation of electrocorticography (ECoG) or indwelling
cortical arrays. These adverse events cause subtle changes to the
neural circuitry of interest that have been shown to cause long-
lasting deficit in performance of fine motor tasks among other
consequences (Goss-Varley et al., 2017).

Concurrently there has been an increasing interest in
neuroscience experiments that thin the skull instead of removing
it, and that use optical methods to record and manipulate both
neuronal and non-neuronal cells within the brain (Yang et al.,
2010; Shih et al., 2012; Bonder and McCarthy, 2014). Removal
of the skull in rodents has been shown to create glial scarring
in the area under the craniotomy (Yang et al., 2010). Unlike the
outer compact layer of the skull which has low conductivity, the
spongy bone of the skull closer to the brain is low impedance
(Akhtari et al., 2002) and if thinned appropriately is optically
transparent (Drew et al., 2010). However, the performance of
µECoG grids placed chronically on a thinned skull preparation
has yet to be evaluated.

To address this gap, a series of acute and chronic studies
was performed where the skull was thinned to a translucent
layer and implanted with a µECoG electrode array. µECoG
arrays were used in the experiments described because of
their flexibility, transparency, and well-characterized epidural
signal profile (Thongpang et al., 2011; Park et al., 2014). In
rats chronically implanted for 1 month, impedance values
and somatosensory evoked potentials (SSEPs) were recorded
at regular intervals to assess stability of electrical function
and spatial resolution of recordings through the thinned skull.
Cortical signals from optogenetic stimulation in a ChR2 mouse
were recorded in an acute terminal session through a thinned
skull and were compared to recordings through the dura after
removal of the thinned skull. These studies tested multiple
common stimulation paradigms for neuroscience research in
multiple species, mice, and rats, to characterize the reliability
and spatial resolution of electrophysiological recordings through
a thinned skull.

MATERIALS AND METHODS

Ethics Statement
All animal procedures were approved by the Institutional
Animal Care and Use Committee (IACUC) at the University
of Wisconsin–Madison, Madison, WI, United States. All efforts
were made to minimize animal discomfort.

Device Fabrication
Micro-electrocorticography array advanced measurement testing
has been published previously and validated to record neural
signals (Thongpang et al., 2011; Park et al., 2014; Richner
et al., 2014). µECoG devices were fabricated following protocols
previously described for polyimide (Thongpang et al., 2011) and
parylene C (Schendel et al., 2013) arrays. Briefly, photodefinable
polyimide was used to pattern polyimide and a chemical
vapor deposition system was used to pattern parylene C onto
silicon wafers. Photolithography, metal deposition (Cr/Au/Pt),
and lift off and plasma etching allowed for patterning of
the electrodes, traces, and array shape. Final thickness of
arrays was 25 µm. Rat sized polyimide (spacing between
recording sites: 750 µm, 250 µm site diameter) (Figures 1A,B)
or parylene C (spacing between recording sites: 750 µm,
200 µm site diameter) (Figure 1C)-based µECoG electrode
arrays were custom fabricated with 16 platinum sites (one
or two 4 mm × 4 mm grids) and implanted unilaterally or
bilaterally between bregma and lambda in Sprague-Dawley rats.
Similarly, for experiments with mice, a smaller, 2 mm × 2 mm
16 platinum site parylene-C µECoG array (500 µm spacing,
150 µm site diameter) (Figure 2) was fabricated and used
for optogenetic experiments (Figures 2A,B). Parylene C was
chosen for optogenetic and imaging studies due to its flexibility
and translucent properties (Figure 2C). A density of 16
electrode sites was chosen along with specific interelectrode
site spacings in order to visualize the somatosensory cortex
forelimb and hindlimb areas, and to visualize where signals
were no longer recorded on the periphery of the array (Sakatani
et al., 1990). Extensive bench top testing of µECoG arrays

FIGURE 1 | (A) Diagram illustrating chronic placement of 16-channel bilateral
µECoG array, and ZIF connector on thinned skull surface over sensorimotor
cortex in a rat. (B) Polyimide-based platinum µECoG array with 16 channels
(750 µm spacing, 250 µm site diameter). (C) Surgical photograph of bilateral
parylene C-based platinum µECoG array being placed over a thinned skull
(top of photograph) and on the dural surface (bottom of photograph). Scale
bars in panels (B,C) represent 2 mm.
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FIGURE 2 | (A) Illustration of µECoG electrode array placement over a thinned skull in a mouse with optical fiber positioning. (B) Optogenetic stimulation of cortex
with optical fiber placed on a µECoG array over thinned skull. (C) Parylene C-based platinum µECoG array with 16 channels (500 µm spacing, 150 µm site
diameter) and ZIF connector. Scale bar in panel (C) represents 2 mm.

has been preformed in previous publications to validate neural
signal recordings.

Surgical Preparation
Chronic Experiments
Male Sprague-Dawley rats (n = 7, Envigo, Indianapolis, IN,
United States) 2–4 months old were chronically implanted with
custom built polyimide or parylene C µECoG arrays with metal
electrodes (Figure 1A). Three rats were implanted with bilateral
arrays over thinned skull, three rats were implanted with bilateral
arrays over the dural surface, and one rat was implanted with
a bilateral array, one over thinned skull and one over the dura.
The electrode array on the dural hemisphere for this animal

was damaged during implantation and not viable therefore
electrophysiology and impedance data were not included in
this paper; however, histological staining was performed and
included. One possible failure mechanism may have been that
the flat-flex connector between the array and PCB resulted in the
signals of the epidural array being an open circuit and therefore
noisy. Surgical procedures were based on previously published
methods (Park et al., 2016). Before surgery, buprenorphine
hydrochloride (0.05 mg kg−1, Reckitt Benckiser Healthcare)
was administered for analgesia and dexamethasone (2 mg kg−1,
AgriLabs) to prevent cerebral edema. Rats were induced with 5%
isoflurane gas in O2 and maintained on 1.0–2.5% throughout the
duration of the surgery. Following induction, rats were placed
into a stereotaxic frame with the scalp shaved and prepped
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with alternating povidone iodine and alcohol. The skin was
incised, and the exposed skull was cleaned and dried. Three
stainless steel screws (stainless steel, 00–80 × 1/8 inch), two
for attachment of a ground wire, and another for reference and
mechanical support, were attached to the rostral and caudal areas
of the skull. Next, UV curable dental acrylic (Fusio, Pentron
Clinical) was placed on the periphery of the exposed skull to
provide an anchor for the attachment of future acrylic, and two
craniotomies (∼5 mm × 5 mm) or thin skull areas were drilled
over somatosensory cortex. A thinned skull area was made by
drilling through the top layer of compact bone, through the
spongy layer, and slightly into the lower compact bone where
it became transparent. We estimate the final thickness of the
lower compact bone layer as ∼100–200 µm as the adult rat
skull at 90 days is ∼700 µm thick (Gefen et al., 2004). #106
and #107 spherical drill burrs were used. Saline irrigation was
used to remove debris and to lessen the effect of heating from
the drill. The µECoG arrays were placed epidurally or over a
thinned skull area and covered with a thin layer of GelFoam
(Pharmacia and Upjohn Co., New York, NY, United States) and
saline before being covered by dental acrylic. GelFoam was used
to prevent acrylic from covering the electrode array and was
only placed on top of the arrays and not beneath. The ZIF
connector was then secured to the skull and a purse string suture
(3–0 vicryl) closed the skin wound. Triple antibiotic ointment
was applied to the wound during closing to prevent infection.
Rats were monitored post-surgically until they were ambulatory
and showed no signs of pain or distress. Another dose of
buprenorphine was administered 8–12 h after the initial dose to
relieve any pain the animal may have been experiencing following
the surgery. Ampicillin [50 mg kg−1 subcutaneous injection (SC),
Sage Pharmaceutical] was administered twice daily for 7 days
postoperatively to prevent infection.

Acute Terminal Experiments
Three Thy1::ChR2/H134R-YFP (ChR2) mice (Jackson
Laboratory; stock number 012350) ∼6–16 weeks old were
implanted during acute terminal recording sessions with
clear parylene C µECoG arrays implanted over the dura
or a thinned skull area to compare neural signals recorded
from light stimulation (Figures 2A,B). Evoked potential
data from optogenetic stimulation were collected from
three mice and strength duration curve data were collected
from one mouse. Arrays were placed onto a thinned skull
first, and then placed epidurally after removing the thinned
skull. Mouse surgical procedures were similar to previously
published methods (Richner et al., 2014). Briefly, mice were
administered buprenorphine hydrochloride (0.05 mg kg−1) and
dexamethasone (1 mg kg−1 SC) before induction, induced, and
maintained with 1–2.5% isoflurane. The animal was placed in
a stereotaxic-like frame and a craniotomy or thinned skull was
performed. A µECoG array was placed on the dura or thinned
skull and ground and reference wires were coiled and placed on a
small area of thinned skull on the contralateral hemisphere. The
skull was thinned in the mice to the lower compact bone similar
to the rat but using #105 and #106 spherical drill burrs. After
drilling the skull was optically transparent and thickness was

∼50 µm or thinner (Shih et al., 2012). GelFoam was not used in
optogenetic studies. Instead the cortical surface was continually
kept wet with a saline drip.

Heart rate and blood oxygen concentration in both species
were monitored throughout the surgery using a pulse oximeter.
Body temperature was monitored with a digital thermometer and
regulated with a water-circulated heating blanket.

Electrophysiological Testing
Periodic Chronic Electrophysiology Testing
Sensorimotor evoked potentials were recorded periodically for up
to 1 month under sedation in rats with chronic µECoG implants
to assess signal stability and uniqueness/spatial resolution
of information recorded on nearby sites. Dexmedetomidine
(50 µg/kg SC) was used to achieve sedation. Atipamezole
(0.5 mg/kg SC) was administered at the end of the procedure as
a reversal agent. Dexmedetomidine sedation was supplemented
with small amounts of isoflurane (0–0.5%) throughout the
procedure to deepen sedation. The sciatic or median nerve,
hindlimb or forelimb, respectively, were stimulated weekly to
evoke SSEPs. Needle or surface stimulation electrodes were
used. Needle electrodes were placed on either side of the
sciatic nerve, 3 mm apart. Surface electrodes were placed on
shaved skin above the sciatic or median nerve, with a reference
electrode placed below the leg. Stimulation pulses were applied
using needle electrodes (monophasic 0–0.8 mA for 2 ms), or
surface electrodes (monophasic 0.5–3.5 mA for 1 ms) both at
approximately 0.5 Hz. The cortical responses were recorded and
digitized simultaneously at 3 kHz using a PZ2 Preamplifier and
a RZ2 BioAmp Processor (Tucker-Davis Technologies, Alachua,
FL, United States).

Acute Terminal Optogenetic Electrophysiological
Testing
Optogenetically evoked potentials were recorded during a
terminal procedure by shining light through a fiber-coupled
LASER system or LED through an optically transparent parylene
µECoG onto the dura or thinned skull of ChR2 mice using
previously reported methods (Uriguen and Garcia-Zapirain,
2015; Figure 2). Photostimulation was accomplished by using
an optical fiber (200 µm in diameter, 0.22 NA, flat cleaved, and
polished, Thorlabs, Newton, NJ, United States) connected to a
100 mW 473 nm LASER (Laserglow, Toronto, ON, Canada)
and controlled by a multichannel system (TDT, Alachua, FL,
United States). 2.5 ms pulses, varying power settings, and random
interstimulus intervals were used. Power 1 mm from the tip of
the optical fiber was approximately 80 mW/mm2. The optical
fiber was placed approximately 1 mm from the cortical or
thinned skull surface. 3 kHz recordings were obtained and
digitized using a PZ2 Preamplifier and a RZ2 BioAmp Processor
(Tucker-Davis Technologies, Alachua, FL, United States), and
sampled with a high impedance headstage. A photostimulus
delivered by an LED (465 nm, RGB MC-E, Cree, Durham,
NC, United States) approximately 2 cm away from the cortical
or thinned skull surface was used to create photostimulus
duration vs. amplitude peak to peak potential contour plots
(Figure 7). Voltage pulses were changed to current pulses
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FIGURE 3 | Somatosensory evoked potentials (SSEPs) recorded on week 3 post-implantation from a rat implanted with a 16-channel µECoG array placed on
thinned skull over left sensorimotor cortex. Biphasic current pulses (1 ms, varied amplitude) were used to stimulate the right hindlimb with surface electrodes over the
sciatic nerve. (A) Stainless-steel bone screw, (B) common average, and (C) small Laplacian referencing strategies are shown to increase the signal-to-noise ratio,
and to reveal spatial signaling from the predicted hindlimb anatomical region. Dashed lines represent onset of electrical stimulus.

FIGURE 4 | Somatosensory evoked potentials (SSEPs) on day 38 post-implantation with small Laplacian referencing from forelimb and hindlimb electrical surface
stimulation using a 16-channel µECoG array placed over a thinned skull portion of rat sensorimotor cortex. Plots represent spatial recordings from the same
electrode array, demonstrating LFPs from (A) biphasic forelimb stimulation and (B) monophasic hindlimb stimulation. Stimuli were applied for 1ms at 1.25 mA.
Activity is represented by 2D interpolated heat maps. The portions closer to the red spectrum show evoked activity higher than baseline when averaged over at least
25 trials, and closer to blue shows negative activity. The x scale bar, 20 ms; y scale bar, 20 µV. Dashed lines represent onset of electrical stimulus.

(0–1000 mA, 0.5–12 ms) with an LED driver (BuckBlock,
LEDdynamics, Randolph, VT, United States). Irradiance was
calculated by measuring optical power (PM100D, S130C, Thor
Labs, Newton, NJ, United States) 2 cm from the LED, and the
result was divided by the commercially available photo sensor’s
area (S370 Optometer, United Detector Technology, Hawthorne,
CA, United States).

Electrophysiology Analysis
To examine the efficacy of the evoked responses through the thin
skull prep, local-field potentials (LFPs) obtained from varying
stimulation, both optogenetic and electric, were analyzed and
checked against epidural implants. LFPs were band limited
using a combination of a second order, Butterworth lowpass
filter (cutoff frequency = 1000 Hz), a Butterworth high pass

filter (cutoff frequency = 3Hz), and a third order notch filter
(cutoff frequencies = 55 and 65 Hz) to remove line noise.
Evoked potentials were computed from the average of evoked
responses from the same stimulus amplitude and channel.
Positive signal amplitudes reflected positive voltages. To increase
signal-to-noise ratios, two known post processing referencing
techniques, common average referencing (CAR) and small
Laplacian referencing, were employed and compared (Figure 3).
Each were incorporated as described in the literature (McFarland
et al., 1997; Ludwig et al., 2009). Heatmaps were created to
describe the spatial organization of the cortical activity based
on the small Laplacian referencing technique (Figures 4, 7).
Each heatmap was obtained by taking the maximum peak to
peak SSEP from each µECoG electrode. Peaks were defined as
the average of seven data points centered on the maximums
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FIGURE 5 | Chronic impedance spectral data at 1 kHz from thinned skull
(blue) and epidurally (red) implanted µECoG electrodes in rats. Each
interpolation curve represents three animals per group, and 32 electrode sites
per animal. Individual data points represent individual electrode site
impedance spectra measurements. Each shape represents an individual
animal. Epidural impedances increase until ∼2 weeks and plateau, while
thinned skull impedances remain lower and more stable.

of the response from a given response window (latency of 10–
35 ms). Responses were interpolated using a cubic interpolation
algorithm (Matlab griddata) to a meshgrid with 1 µm resolution
(Sakatani et al., 1990; Bazley et al., 2012). Peak latencies were
measured as the time from the onset of the stimulus to the first
contralateral potential peak. We manually selected the peak using
a custom GUI in Matlab.

Channels above 600 k� were considered to be non-functional
and removed from analysis. For the 2 day map interpolation plot
(Figure 7), 30 pulse shapes with varying width and duration were
applied with interleaved trials. Each pulse shape was repeated
at least 20 times. The averaged optogenetic evoked potentials
were calculated for each pulse shape and the peak amplitude
was measured. The contour plots were then interpolated to find
isopotential lines.

Chronic Impedance Recordings and
Analysis
Electrical impedance spectra were collected from arrays before
implantation, and periodically after implantation to assess
electrical characteristics using a potentiostat (Autolab PGSTAT
128N, Metrohm, Riverview, FL, United States) and following
previously published methods (Figure 5; Williams et al., 2007).
Arrays that were determined viable for implantation had values
of approximately 50–100 k� at 1 kHz. Animals were trained to sit
still with treats and were not anesthetized or sedated for chronic
impedance measurements. Analysis consisted of data from six
rats, three with thinned skull implants and three with epidural
implants for comparison. Each rat had a bilateral implant
consisting of 32 electrode sites. Impedance measurements were
gathered from each electrode for 30 days post implantation.
Resistive values at 1 kHz were plotted for each of the 32

channels corresponding to length of time of the implant. Single
channels with a resistance >600 k� were considered outliers
and eliminated from calculations for that day. Outliers were
considered to be broken or due to an inadequate connection.
Average resistance was plotted for each day and fitted to a
curve across days using cubic spline interpolation to account
for measurements potentially not lining up exactly on individual
days across animals. The thinned skull implants interpolation
curves were averaged together and plotted against the epidural
implants averaged interpolation curves. Impedance values were
not recorded after implantation in acute mice experiments,
although pre-implantation impedance values were comparable to
those of the devices implanted for chronic recordings in rats.

RESULTS AND DISCUSSION

Chronic Periodic Sensory Evoked
Potential Recordings in Rats
Chronic SSEP recordings were obtained weekly during electrical
stimulation of the sciatic or median nerve in three rats to
compare the spatial resolution of thinned skull µECoG arrays
vs. traditional epidural arrays. Thinned skull µECoG arrays
were implanted bilaterally in sensorimotor cortex in each rat
and SSEPs were recorded in each contralateral hemisphere
from a cutaneous electrical stimulus of hindlimb or forelimb.
A representative plot of thinned skull SSEPs on the left
hemisphere from right hindlimb stimulation is shown in
Figure 3. Using the stainless-steel bone screw as a reference,
which was implanted cranial and contralateral to the µECoG
array (Figure 3A), recorded signals contained common noise,
and differences in SSEPs from nearby electrode locations were
not readily apparent. Two post process referencing techniques
were used to reduce both common noise and common signal
to highlight spatially distinct differences in neural signals.
Employing a common average reference (CAR) (Figure 3B)
successfully recovered spatially distinct hindlimb SSEPs on
adjacent electrode sites. Similarly, employing a small Laplacian
(Figure 3C) reference post hoc further highlighted spatially
distinct SSEP responses on adjacent sites. Consequently, we chose
to use the small Laplacian post hoc referencing strategy for the
remainder of the recording data, because it visually increased
unique highlighted spatial information present in the SSEP on
adjacent sites (McFarland et al., 1997). Epidural signals are
similarly plotted in Supplementary Figure S1, although they are
recorded at slightly different post-operative time periods and use
different stimulation amplitudes.

Distinct somatotopic signals were recorded 38 days post-
implantation from µECoG arrays placed on a thinned skull area
of the rat’s right sensorimotor cortex from both left hindlimb
and forelimb stimulation (Figure 4). Small Laplacian referencing
methods were also applied. Highest peak to peak SSEP values
from forelimb stimulation, according to the heatmap, are
positioned at the anterior portion of the electrode with peaks
spanning both medially and laterally (Figure 4A). When
switching the area of stimulation to the hindlimb, SSEPs shifted
medially similar to previously mapped rat sensorimotor cortex
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FIGURE 6 | Optically evoked local field potentials from (A) thinned skull and (B) epidurally implanted µECoG arrays in an acute, terminal Thy1-ChR2 mouse.
Amplitude heat maps show the 545.5 mW/mm2 optically evoked potentials using small Laplacian referencing from both the (C) thin skull and (D) epidural
preparations. Each can be processed to illustrate the spatial resolution of the recordings, although the difference in scale is smaller in the thinned skull preparation by
approximately a magnitude of 10. Dashed lines represent onset of electrical stimulus.

(Figure 4B; Sakatani et al., 1990). The recorded sensory responses
are consistent with the response latencies for myelinated sensory
fiber conduction, around 13 ms for forelimb and 17 ms for
hindlimb according to previously published data (Sakatani et al.,
1990; Bazley et al., 2012).

Thinned skull µECoG electrode arrays not surprisingly have
lower signal amplitudes recorded during evoked responses in
comparison to historical studies using the same arrays placed
epidurally which are closer to the source of the neural signal
(Park et al., 2014). As a result, it becomes more important
to employ CAR and small Laplacian referencing strategies to
eliminate common signal/noise to uncover spatially distinct
spatial information for neuroscience applications. Given a similar
SSEP was recorded across all electrode sites with appropriate
conduction latency prior to post hoc referencing, this may
suggest the common signal was recorded at the stainless-steel
bone screws in contact with the surface of the brain used
for the reference and ground, respectively. This referencing
strategy was utilized because the ECoG signal recorded from

the bone screws has historically been insignificant compared to
signals recorded epidurally from µECoG. Therefore, in previous
studies post hoc referencing was not required to reveal spatially
distinct information from site to site. The attenuation of signal
through the thin skull in studies described here made the
small common signal putatively recorded from the stainless-steel
screws more problematic. Consequently, post hoc referencing
was necessary before spatially distinct SSEPs were observed on
adjacent electrode sites.

Thinned skull µECoG electrode arrays also have been shown
in this study to record information on a temporal scale similar to
epidurally placed arrays. At the relatively low frequencies found
in electrophysiological signals, the temporal resistive-capacitive
filtering of the bone under the array is minimal. For example,
the timing of the SSEP peaks were not appreciably delayed
when compared to epidural. Currently, GCaMP6f is a popular
genetically coded calcium indication (GECI) that is commonly
used to observe neural activity at an onset of approximately
45 ms (Wang et al., 2019). This suggests that the incorporation
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FIGURE 7 | Photostimulus duration vs. amplitude peak potential 2D interpolated contour plot. Stimulus strength is plotted against stimulus duration. Interpolated
curves denoting the peak depolarization amplitudes (in µV) for the stimulus strength/duration are shown for (A) epidural and (B) thinned skull µECoG recordings in
an acute terminal Thy1-ChR2 mouse. Longer stimulus durations and stimulus strength (power) are needed to evoke similar sized neural signal amplitudes in the
thinned skull vs. epidural preparations. The stainless-steel skull screw reference was used for this analysis. No additional software referencing techniques were used.

of an optically transparent µECoG array with common thinned
skull experiments for optical imaging would provide unique,
complementary temporal information.

Chronic Periodic Impedance Spectra
Recordings in Rats
To compare the electrical performance of epidural vs. thinned
skull placed electrodes in rats over time, we measured the
impedance spectra of electrodes on each array at 1 kHz
periodically over the chronic implantation period (Figure 5).
Impedance plots from µECoG arrays implanted on a thinned
skull preparation showed slightly different patterns of change
over time than those implanted epidurally (Figure 5). Initial
electrode impedances were similar when measured in 0.9% w/v
phosphate-buffered NaCl saline (∼25–125 m� at 1 KHz). After
approximately 14 days of implantation as shown in Figure 5,
the impedances of the electrodes on the epidural surface were
higher on average than that of the electrodes on the thinned
skull surface. The epidural impedance interpolation curve shows
rise in impedance around 1 week after implantation and lasting
for approximately 14 days, similar to other microelectrodes
implanted in or on cortex in other studies (Ludwig et al., 2006;
Williams et al., 2007). This may be attributed to a central
nervous system immune response and new tissue formation
and follows previous intracortical and epidural implantation
impedance results (Williams et al., 2007; Park et al., 2014).
Impedances of epidural implants reached a steady state between
2 and 4 weeks post-implant reflecting decelerated wound healing.
In contrast, the thinned skull impedance interpolation curve
remained relatively stable for the 30-day period, slowly rising

throughout. The difference in shape of the impedance curves
suggests the chronic thinned skull electrode/tissue interface is
slightly different in composition than the epidural grids. Even
though the curve shapes differed, the beginning and end point
of data collection (days 0 and 30) between the thinned skull
and epidural groups were similar (within ∼50 k� of each
other). This demonstrates that bone regrowth/scarring under the
thinned skull electrodes does not grossly increase the impedance
by comparison. Supplementary Figure S2 shows line plots of
individually recorded impedance values from each rat over a time
period of 1 month.

Decreased impedances during the first few weeks of thinned
skull electrode implantation may suggest edema, and that fluid
remained at the electrode/tissue interface without clearing. Extra
fluid could have hypothetically caused shunting of current and
increased distance between the electrode array and the thinned
skull. Regardless, we were still able to record spatially and
temporally accurate SSEPs and optogenetically induced field
potentials from thinned skull electrodes in rats and mice with
relatively low impedance values (impedance values not acquired
post-implantation in acute mice studies).

Comparison of Thinned Skull vs. Epidural
Recordings From Optogenetic Light
Stimulation in Acute Terminal Mice
To further investigate the spatial resolution of information on
nearby electrodes given a thinned skull recording approach,
a light stimulus was applied through a clear parylene C
µECoG array and thinned skull to optogenetically activate
neurons expressing light sensitive proteins. Optogenetically
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evoked potentials were recorded in ChR2 mice through a thinned
skull (Figure 6A) and epidurally using a smaller 2 mm × 2 mm
clear µECoG array to generate a consistent focal activation
of cortex for comparison. Even though the array’s substrate
(parylene C) was clear, the metal electrodes and traces were not
and blocked some portions of light. All optogenetic experiments
used the same type of devices and had the same amount of light
loss from metal. Using clear electrode sites and traces made of
materials like In tin oxide, ITO, or graphene may help alleviate
this problem in the future.

A comparison of signals from these two groups did present
some confounds. Most likely there was a different scattering of
light that arrived at the cortex in the thinned skull vs. the epidural
cohorts. While quantifying this scattering of light through the
thinned skull would be interesting, it would not be trivial to
measure or model the light exiting the skull in each individual
animal since the thinning technique which drills to the most
transparent bone layer leaves the bone not completely uniform
in thickness. Also, we wanted to demonstrate that even without
an exact measurement of uniform bone, a simple thinning
procedure could be performed to record useful neural signals.

Evoked responses through the thinned skull showed the
highest peak responses near the foci of optogenetic stimulation
after small Laplacian referencing, further demonstrating the
spatial recording ability of the preparation (Figure 6A).
Increasing 473 nm laser power also increased evoked potential
peak amplitudes. A similar response paradigm occurs with
epidural stimulation and recording (Figure 6B), however, we
obtain a much larger signal possibly due to lack of spatial
filtration of signal through the skull. The additional layer of thin
bone also caused additional scattering of the blue light before
it reached cortex, slightly changing the optogenetic stimulus
between the two conditions. Figures 6C,D use a 2D interpolated
heat map to show differences in peak to peak amplitudes at a
stimulation laser power of 545.5 mW/mm2. Both thinned skull
and epidural heat maps display spatial distinct recordings on
nearby electrode sites. Due to the presumed filtration/attenuation
of signal through the skull and other tissues, the thinned skull
recording (Figure 6C) is approximately 10 times less in peak-
to-peak amplitude than the epidural recording (Figure 6D). The
thinned skull signal also seems to be slightly more diffuse given
appropriate referencing strategies. This may also be due to the
scattering of light through the skull. Future studies could test
different electrode diameter sizing and inter-site spacing to better
specify the spatial properties of the signals recorded through
a thinned skull.

One ChR2 mouse underwent an acute procedure where the
skull was thinned, and a 465 nm LED was positioned 2 cm
away from the thinned skull with the light power and duration
values varied to generate photostimulus strength vs. duration
curves (Figure 7). The resulting illumination covered most
of the cortical area under the µECoG array. Stimuli strength
and duration were applied randomly, and peak amplitudes
of signals recorded. The thinned skull was then removed
exposing the dural surface and stimulation procedure repeated.
Figure 7A depicts a contour plots for signals recorded from
the dura, whereas Figure 7B depicts the same plot from the

thinned skull. The stainless-steel skull screw reference was
used for Figure 7 analysis. No additional software referencing
techniques were used.

The optogenetically evoked µECoG signal on both the
epidural and thinned skull grids demonstrated spatially distinct
information, with waveform reversals often apparent on
two adjacent sites. These reversals, in conjunction with the
waveshape of the evoked response, demonstrated that the
electrophysiological recordings were not photoelectric artifacts.
Although the magnitude in µVolts of the evoked signal was
approximately 10× less with the thinned skull preparation than
with the epidurally placed grids, the spatial information as
assessed by differences in recordings at adjacent electrode sites
was highly similar after post hoc small Laplacian referencing.

Imaging of Immune Response in Neural
Tissue to Thinned Skull and Epidural
µECoG Implantations
Given the impedance responses over time in all animals,
histology was performed on rat M32 to compare histology
to the impedance measurement of approximately 50 k� at
timepoint 32 days post-implantation. Histologic sectioning
and immunochemical staining for glial fibrillary acidic protein
(GFAP) for astrocytes and Iba-1 for microglia and/or infiltrating
macrophages were performed with perfused neural tissue in
the single rat with bilateral thinned skull/epidural µECoG
arrays (Supplementary Figure S3). The cortical region directly
beneath the epidural preparation showed putative increase
in GFAP immunoreactivity and projection of astrocytic
processes toward the cortical surface (Supplementary Figure
S3C). Iba-1 staining did not reveal any obvious increases in
microglial immunoreactivity within the brain tissue on either
the epidural or thinned skull hemispheres (Supplementary
Figure S3D). However, an apparent thickening of the dura
on the epidural side was observed (Supplementary Figure
S3F) which contained a higher density of Iba-1-positive
cells, either microglia or infiltrating macrophages, that
was not present on the thinned skull side of the animal
(Supplementary Figure S3E). Previous studies have also
reported thickening of the dura under the µECoG array
consisting primarily of collagen (Schendel et al., 2014;
Degenhart et al., 2016).

The main benefit of the thinned skull preparation is that
the skull remains partially intact. When the skull is completely
removed many side effects can occur which may impact
the interpretation of behavioral results. Previous studies in
the field of in vivo imaging have showed increased glial
reaction (microglia and astrocytes) under an open craniotomy
window preparation compared to a thinned skull window
preparation in mice (Yang et al., 2010). Pneumocephalus can
occur after craniotomy in a clinical setting which involves air
being trapped in the cranial cavity (Reasoner et al., 1994).
Also, dendritic spine plasticity has been shown to differ in
thinned vs. open-skull window preparations, emphasizing that
the neural environment under a craniotomy may be changed
by the craniotomy itself (Xu et al., 2007; Yang et al., 2010).
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Another benefit the thinned skull recording technique might
offer is improved implant mechanical stability, and the lack
of direct contact with the surface of the brain or dura. The
latter may reduce the risk of injury to neural tissue or device
failure due to the lack of device movement on the surface
of the brain, although this will need to be investigated in
further studies.

CONCLUSION

In summary, the studies described in this paper for the first
time demonstrate that µECoG grids placed on a thinned
skull can provide stable, spatially distinct electrophysiological
information out to periods in excess of a month in rats. Mice
implanted with a clear polymer µECoG array allowed for
simultaneous electrophysiology and optical access through a
thinned skull, although these studies were performed acutely.
Chronic studies of these type would need to be performed
to ensure similar results. Our chronic thinned skull neural
recordings in conjunction with previously published chronic
thinned skull window imaging (Shih et al., 2019) suggests that
collecting these chronic data may be possible.

Neural recordings through a thinned skull is complementary
to optical imaging techniques in a number of ways. First
and perhaps foremost, ECoG is an established clinically viable
diagnostic and therapeutic technique in human patients (Tripathi
et al., 2010). The ability to combine optogenetics and optical
recordings with µECoG allows for one to better understand
and optimize the clinically viable ECoG system. Secondly,
optical imaging is limited by the temporal resolution of the
fluorescent indicator. This makes it difficult to infer number
of synapses involved when a specific pathway is activated, such
as is commonly done in SSEPs. Moreover, many studies look
at pathological oscillations at higher frequencies, such as up
to 30 Hz for tremor (Schnitzler and Gross, 2005), where the
temporal resolution of the optical indicator becomes a potential
confound due to undersampling the intrinsic oscillation. µECoG
serves as a complement to more accurately measure the frequency
component of intrinsic oscillations. Finally, unlike optical
recording techniques that measure from superficial regions of
cortex, ECoG is known to record activity originating from
deeper areas of the brain (Ojemann et al., 2013; Richner et al.,
2019). Future improvements to this method would include
using optically transparent electrode sites and traces made out
of transparent metals or other materials such as graphene.
This would allow for complete light transmission through the
µECoG array.

The ability to record neural signals through a thinned skull
with µECoG recording grids may provide a useful balance
between invasiveness, information content, and day to day
stability that could be important for future neuroprosthetics
applications. In addition, this novel method may be critically
enabling for neuroscience studies in which minimizing the
trauma to the underlying neural or non-neuronal cells of interest
is necessary to avoid potential confounds given the fundamental
hypothesis to be tested.
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FIGURE S1 | Somatosensory evoked potentials (SSEPs) recorded on week 5
post-implantation from a rat implanted with a 16-channel µECoG array placed
epidurally over right sensorimotor cortex. Biphasic current pulses (1 ms, varied
amplitude) were used to stimulate the left hindlimb with surface electrodes over
the sciatic nerve. (A) Stainless-steel bone screw, (B) Common average, and (C)
small Laplacian referencing strategies are shown to increase the signal-to-noise
ratio, and to reveal spatial signaling from the predicted hindlimb anatomical region.
Dashed lines represent onset of electrical stimulus.

FIGURE S2 | Line plots of individual impedance values recorded at 1 kHz of rats
implanted with µECoG arrays over (A) thinned skull and implanted (B) epidurally.
Each color represents an individual animal. Data shown here is from the same
animals as used in Figure 5 main text.
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FIGURE S3 | Immunohistology of astrocytes and microglia under a µECoG
thinned skull implant (left hemisphere) and µECoG epidural implant (right
hemisphere) after 1 month of implantation in the same rat. (A) GFAP
(in green) shows astrocyte distribution and boxes indicate where the
µECoG arrays were placed. (B) Astrocyte densities comparable to the area
outside the implant are seen under a thinned skull implant. (C) Possible

increased astrocyte densities and elongated processes are seen in
the area beneath the epidural implant. (D) IBA-1 staining (in red) labeled
microglia distribution. (E) Microglia staining comparable to the area outside
the implant are seen under a thinned skull implant. (F) Possible increased
microglia densities and thickened dura can be seen on the epidural
implant hemisphere.

REFERENCES
Akhtari, M., Bryant, H. C., Mamelak, A. N., Flynn, E. R., Heller, L., Shih, J. J.,

et al. (2002). Conductivities of three-layer live human skull. Brain Topogr. 14,
151–167.

Bazley, F. A., Hu, C., Maybhate, A., Pourmorteza, A., Pashai, N., Thakor, N. V., et al.
(2012). Electrophysiological evaluation of sensory and motor pathways after
incomplete unilateral spinal cord contusion. J. Neurosurg. Spine 16, 414–423.
doi: 10.3171/2012.1.SPINE11684

Bonder, D. E., and McCarthy, K. D. (2014). Astrocytic Gq-GPCR-Linked IP3R-
Dependent Ca2+ signaling does not mediate neurovascular coupling in mouse
visual cortex in vivo. J. Neurosci. 34, 13139–13150. doi: 10.1523/JNEUROSCI.
2591-14.2014

Degenhart, A. D., Eles, J., Dum, R., Mischel, J. L., Smalianchuk, I., Endler,
B., et al. (2016). Histological evaluation of a chronically-implanted
electrocorticographic electrode grid in a non-human primate. J. Neural.
Eng. 13:046019. doi: 10.1088/1741-2560/13/4/046019

Drew, P. J., Shih, A. Y., Driscoll, J. D., Knutsen, P. M., Blinder, P., Davalos, D., et al.
(2010). Chronic optical access through a polished and reinforced thinned skull.
Nat. Methods 7, 981–984. doi: 10.1038/nmeth.1530

Falcone, J. D., Carroll, S. L., Saxena, T., Mandavia, D., Clark, A., Yarabarla, V.,
et al. (2018). Correlation of mRNA expression and signal variability in chronic
intracortical electrodes. Front. Bioeng. Biotechnol. 6:26. doi: 10.3389/fbioe.2018.
00026

Fernández, E., Greger, B., House, P. A., Aranda, I., Botella, C., and Albisua, J.
(2014). Acute human brain responses to intracortical microelectrode arrays:
challenges and future prospects. Front. Neuroeng. 7:24. doi: 10.3389/fneng.2014.
00024

Gefen, A., Gefen, N., Zhu, Q., Raghupathi, R., and Margulies, S. S. (2004). Age-
dependent changes in material properties of the brain and braincase of the rat.
J. Neurotrauma 20, 1163–1177. doi: 10.1089/089771503770802853

Goss-Varley, M., Dona, K. R., McMahon, J. A., Shoffstall, A. J., Ereifej, E. S.,
Lindner, S. C., et al. (2017). Microelectrode implantation in motor cortex causes
fine motor deficit: implications on potential considerations to brain computer
interfacing and human augmentation. Sci. Rep. 7:15254. doi: 10.1038/s41598-
017-15623-y

Grill, W. M., Norman, S. E., and Bellamkonda, R. V. (2009). Implanted neural
interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11,
1–24. doi: 10.1146/annurev-bioeng-061008-124927

Henle, C., Raab, M., Cordeiro, J. G., Doostkam, S., Schulze-Bonhage, A., Stieglitz,
T., et al. (2011). First long term in vivo study on subdurally implanted
micro-ECoG electrodes, manufactured with a novel laser technology. Biomed.
Microdevices 13, 59–68. doi: 10.1007/s10544-010-9471-9

Khodagholy, D., Gelinas, J. N., Thesen, T., Doyle, W., Devinsky, O., Malliaras,
G. G., et al. (2014). NeuroGrid: recording action potentials from the surface
of the brain. Nat. Neurosci. 18, 310–315. doi: 10.1038/nn.3905

Kipke, D. R., Vetter, R. J., Williams, J. C., and Hetke, J. F. (2003). Silicon-substrate
intracortical microelectrode arrays for long-term recording of neuronal spike
activity in cerebral cortex. IEEE Trans. Neural. Syst. Rehabil. Eng. 11, 151–155.
doi: 10.1109/tnsre.2003.814443

Leuthardt, E. C., Schalk, G., Moran, D., and Ojemann, J. G. (2006). The emerging
world of motor neuroprosthetics: a neurosurgical perspective. Neurosurgery 59,
1–14. doi: 10.1227/01.neu.0000221506.06947.ac

Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., and Moran, D. W.
(2004). A brain-computer interface using electrocorticographic signals in
humans. J. Neural. Eng. 1, 63–71. doi: 10.1088/1741-2560/1/2/001

Ludwig, K. A., Miriani, R. M., Langhals, N. B., Joseph, M. D., Anderson, D. J.,
and Kipke, D. R. (2009). Using a common average reference to improve cortical
neuron recordings from microelectrode arrays. J. Neurophysiol. 101, 1679–1689.
doi: 10.1152/jn.90989.2008

Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C., and Kipke, D. R. (2006). Chronic
neural recordings using silicon microelectrode arrays electrochemically
deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural.
Eng. 3, 59–70. doi: 10.1088/1741-2560/3/1/007

Marin, C., and Fernández, E. (2010). Biocompatibility of intracortical
microelectrodes: current status and future prospects. Front. Neuroeng.
3:8. doi: 10.3389/fneng.2010.00008

McFarland, D. J., McCane, L. M., David, S. V., and Wolpaw, J. R. (1997).
Spatial filter selection for EEG-based communication. Electroencephalogr. Clin.
Neurophysiol. 103, 386–394. doi: 10.1016/s0013-4694(97)00022-2

Myrden, A., and Chau, T. (2015). Effects of user mental state on EEG-BCI
performance. Front. Hum. Neurosci. 9:308. doi: 10.3389/fnhum.2015.00308

Normann, R. A., and Fernandez, E. (2016). Clinical applications of penetrating
neural interfaces and utah electrode array technologies. J. Neural. Eng.
13:061003. doi: 10.1088/1741-2560/13/6/061003

Ojemann, G. A., Ojemann, J., and Ramsey, N. F. (2013). Relation between
functional magnetic resonance imaging (fMRI) and single neuron, local field
potential (LFP) and electrocorticography (ECoG) activity in human cortex.
Front. Hum. Neurosci. 7:34. doi: 10.3389/fnhum.2013.00034

Onal, C., Otsubo, H., Araki, T., Chitoku, S., Ochi, A., Weiss, S., et al. (2003).
Complications of invasive subdural grid monitoring in children with epilepsy.
J. Neurosurg. 98, 1017–1026. doi: 10.3171/jns.2003.98.5.1017

Osorio, I., Frei, M. G., Giftakis, J., Peters, T., Ingram, J., Turnbull, M., et al. (2002).
Performance reassessment of a real-time seizure-detection algorithm on long
ECoG series. Epilepsia 43, 1522–1535. doi: 10.1046/j.1528-1157.2002.11102.x

Park, D. W., Brodnick, S. K., Ness, J. P., Atry, F., Krugner-Higby, L., Sandberg, A.,
et al. (2016). Fabrication and utility of a transparent graphene neural electrode
array for electrophysiology. Nat. Protoc. 11, 2201–2222. doi: 10.1038/nprot.
2016.127

Park, D. W., Schendel, A. A., Mikael, S., Brodnick, S. K., Richner, T. J., Ness,
J. P., et al. (2014). Graphene-based carbon-layered electrode array technology
for neural imaging and optogenetic applications. Nat. Commun. 5:5258.
doi: 10.1038/ncomms6258

Reasoner, D. K., Todd, M. M., Scamman, F. L., and Warner, D. S. (1994). The
incidence of pneumocephalus after supratentorial craniotomy. Observations
on the disappearance of intracranial air. Anesthesiology 80, 1008–1012.
doi: 10.1097/00000542-199405000-00009

Richner, T. J., Brodnick, S. K., Thongpang, S., Sandberg, A. A., Krugner-
Higby, L., and Williams, J. C. (2019). Phase relationship between micro-
electrocorticography and cortical neurons. J. Neural. Eng. doi: 10.1088/1741-
2552/ab335b [Epub ahead of print].

Richner, T. J., Thongpang, S., Brodnick, S. K., Schendel, A. A., Falk, R. W.,
Krugner-Higby, L. A., et al. (2014). Optogenetic micro-electrocorticography for
modulating and localizing cerebral cortex activity. J. Neural. Eng. 11:016010.
doi: 10.1088/1741-2560/11/1/016010

Sakatani, K., Iizuka, H., and Young, W. (1990). Somatosensory evoked potentials
in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke
21, 124–132. doi: 10.1161/01.str.21.1.124

Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y., and Purcell, E. K. (2017). Glial
responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877.
doi: 10.1038/s41551-017-0154-1

Schendel, A. A., Nonte, M. W., Vokoun, C., Richner, T. J., Brodnick, S. K., Atry, F.,
et al. (2014). The effect of micro-ECoG substrate footprint on the meningeal
tissue response. J. Neural. Eng. 11:046011. doi: 10.1088/1741-2560/11/4/
046011

Schendel, A. A., Thongpang, S., Brodnick, S. K., Richner, T. J., Lindevig,
B. D., Krugner-Higby, L., et al. (2013). A cranial window imaging method
for monitoring vascular growth around chronically implanted micro-ECoG
devices. J. Neurosci. Methods 218, 121–130. doi: 10.1016/j.jneumeth.2013.
06.001

Frontiers in Neuroscience | www.frontiersin.org 11 October 2019 | Volume 13 | Article 1017118

https://doi.org/10.3171/2012.1.SPINE11684
https://doi.org/10.1523/JNEUROSCI.2591-14.2014
https://doi.org/10.1523/JNEUROSCI.2591-14.2014
https://doi.org/10.1088/1741-2560/13/4/046019
https://doi.org/10.1038/nmeth.1530
https://doi.org/10.3389/fbioe.2018.00026
https://doi.org/10.3389/fbioe.2018.00026
https://doi.org/10.3389/fneng.2014.00024
https://doi.org/10.3389/fneng.2014.00024
https://doi.org/10.1089/089771503770802853
https://doi.org/10.1038/s41598-017-15623-y
https://doi.org/10.1038/s41598-017-15623-y
https://doi.org/10.1146/annurev-bioeng-061008-124927
https://doi.org/10.1007/s10544-010-9471-9
https://doi.org/10.1038/nn.3905
https://doi.org/10.1109/tnsre.2003.814443
https://doi.org/10.1227/01.neu.0000221506.06947.ac
https://doi.org/10.1088/1741-2560/1/2/001
https://doi.org/10.1152/jn.90989.2008
https://doi.org/10.1088/1741-2560/3/1/007
https://doi.org/10.3389/fneng.2010.00008
https://doi.org/10.1016/s0013-4694(97)00022-2
https://doi.org/10.3389/fnhum.2015.00308
https://doi.org/10.1088/1741-2560/13/6/061003
https://doi.org/10.3389/fnhum.2013.00034
https://doi.org/10.3171/jns.2003.98.5.1017
https://doi.org/10.1046/j.1528-1157.2002.11102.x
https://doi.org/10.1038/nprot.2016.127
https://doi.org/10.1038/nprot.2016.127
https://doi.org/10.1038/ncomms6258
https://doi.org/10.1097/00000542-199405000-00009
https://doi.org/10.1088/1741-2552/ab335b
https://doi.org/10.1088/1741-2552/ab335b
https://doi.org/10.1088/1741-2560/11/1/016010
https://doi.org/10.1161/01.str.21.1.124
https://doi.org/10.1038/s41551-017-0154-1
https://doi.org/10.1088/1741-2560/11/4/046011
https://doi.org/10.1088/1741-2560/11/4/046011
https://doi.org/10.1016/j.jneumeth.2013.06.001
https://doi.org/10.1016/j.jneumeth.2013.06.001
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01017 September 27, 2019 Time: 16:29 # 12

Brodnick et al. Thinned Skull µECoG

Schnitzler, A., and Gross, J. (2005). Normal and pathological oscillatory
communication in the brain. Nat. Rev. Neurosci. 6, 285–296. doi: 10.1038/
nrn1650

Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., and Kleinfeld, D.
(2012). A polished and reinforced thinned-skull window for long-
term imaging of the mouse brain. J. Vis. Exp. 7:3742. doi: 10.3791/
3742

Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., and Kleinfeld, D. (2019). A polished
and reinforced thinned-skull window for long-term imaging of the mouse
brain. J. Vis. Exp. 7:3742. doi: 10.3791/3742

Shoffstall, A. J., Paiz, J. E., Miller, D. M., Rial, G. M., Willis, M. T., Menendez,
D. M., et al. (2018). Potential for thermal damage to the blood-brain
barrier during craniotomy: implications for intracortical recording
microelectrodes. J. Neural. Eng. 15:034001. doi: 10.1088/1741-2552/
aa9f32

Spuler, M., Walter, A., Ramos-Murguialday, A., Naros, G., Birbaumer, N.,
Gharabaghi, A., et al. (2014). Decoding of motor intentions from epidural
ECoG recordings in severely paralyzed chronic stroke patients. J. Neural. Eng.
11:066008. doi: 10.1088/1741-2560/11/6/066008

Thongpang, S., Richner, T. J., Brodnick, S. K., Schendel, A., Kim, J., Wilson, J. A.,
et al. (2011). A micro-electrocorticography platform and deployment strategies
for chronic BCI applications. Clin. EEG Neurosci. 42, 259–265. doi: 10.1177/
155005941104200412

Tripathi, M., Garg, A., Gaikwad, S., Bal, C. S., Chitra, S., Prasad, K., et al.
(2010). Intra-operative electrocorticography in lesional epilepsy. Epilepsy Res.
89, 133–141. doi: 10.1016/j.eplepsyres.2009.12.007

Uriguen, J. A., and Garcia-Zapirain, B. (2015). EEG artifact removal-state-of-the-
art and guidelines. J. Neural. Eng. 12:031001. doi: 10.1088/1741-2560/12/3/
031001

Viventi, J., Kim, D. H., Vigeland, L., Frechette, E. S., Blanco, J. A., Kim, Y. S., et al.
(2011). Flexible, foldable, actively multiplexed, high-density electrode array for
mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605. doi: 10.1038/nn.
2973

Wang, W., Kim, C. K., and Ting, A. Y. (2019). Molecular tools for imaging and
recording neuronal activity. Nat. Chem. Biol. 15, 101–110. doi: 10.1038/s41589-
018-0207-0

Williams, J. C., Hippensteel, J. A., Dilgen, J., Shain, W., and Kipke, D. R. (2007).
Complex impedance spectroscopy for monitoring tissue responses to inserted
neural implants. J. Neural. Eng. 4, 410–423. doi: 10.1088/1741-2560/4/4/007

Wyler, A. R., Ojemann, G. A., Lettich, E., and Ward, A. A. Jr. (1984). Subdural
strip electrodes for localizing epileptogenic foci. J. Neurosurg. 60, 1195–1200.
doi: 10.3171/jns.1984.60.6.1195

Xu, H. T., Pan, F., Yang, G., and Gan, W. B. (2007). Choice of cranial window type
for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci.
10, 549–551. doi: 10.1038/nn1883

Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J., and Gan, W. B. (2010). Thinned-
skull cranial window technique for long-term imaging of the cortex in live mice.
Nat. Protoc. 5, 201–208. doi: 10.1038/nprot.2009.222

Conflict of Interest: JW and KL are scientific board members and have stock
interests in NeuroOne Medical Inc., a company developing next generation
epilepsy monitoring devices. JW also has an equity interest in NeuroNexus
Technology Inc., a company that supplies electrophysiology equipment and
multichannel probes to the neuroscience research community. KL is a co-founder
and has an equity interest in Neuronoff, Inc. KL is also a paid member of
the scientific advisory board of Cala Health, Blackfynn, and Battelle, and a paid
consultant for Galvani. Outside of NeuroOne and NeuroNexus where the potential
conflict is described in more detail here for transparency, none of these companies
at present is developing technology that overlaps with the data discussed in this
manuscript.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Brodnick, Ness, Richner, Thongpang, Novello, Hayat, Cheng,
Krugner-Higby, Suminski, Ludwig and Williams. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 October 2019 | Volume 13 | Article 1017119

https://doi.org/10.1038/nrn1650
https://doi.org/10.1038/nrn1650
https://doi.org/10.3791/3742
https://doi.org/10.3791/3742
https://doi.org/10.3791/3742
https://doi.org/10.1088/1741-2552/aa9f32
https://doi.org/10.1088/1741-2552/aa9f32
https://doi.org/10.1088/1741-2560/11/6/066008
https://doi.org/10.1177/155005941104200412
https://doi.org/10.1177/155005941104200412
https://doi.org/10.1016/j.eplepsyres.2009.12.007
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1088/1741-2560/12/3/031001
https://doi.org/10.1038/nn.2973
https://doi.org/10.1038/nn.2973
https://doi.org/10.1038/s41589-018-0207-0
https://doi.org/10.1038/s41589-018-0207-0
https://doi.org/10.1088/1741-2560/4/4/007
https://doi.org/10.3171/jns.1984.60.6.1195
https://doi.org/10.1038/nn1883
https://doi.org/10.1038/nprot.2009.222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01058 October 14, 2019 Time: 17:8 # 1

ORIGINAL RESEARCH
published: 16 October 2019

doi: 10.3389/fnins.2019.01058

Edited by:
Christoph Guger,

g.tec Medical Engineering GmbH,
Austria

Reviewed by:
Tonio Ball,

University Medical Center Freiburg,
Germany

Sebastian Halder,
University of Essex, United Kingdom

*Correspondence:
Nick F. Ramsey

n.f.ramsey@umcutrecht.nl

Specialty section:
This article was submitted to

Neuroprosthetics,
a section of the journal

Frontiers in Neuroscience

Received: 28 February 2019
Accepted: 20 September 2019

Published: 16 October 2019

Citation:
Freudenburg ZV, Branco MP,

Leinders S, Vijgh BHvd, Pels EGM,
Denison T, Berg LHvd, Miller KJ,

Aarnoutse EJ, Ramsey NF and
Vansteensel MJ (2019) Sensorimotor

ECoG Signal Features for BCI
Control: A Comparison Between

People With Locked-In Syndrome
and Able-Bodied Controls.
Front. Neurosci. 13:1058.

doi: 10.3389/fnins.2019.01058
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The sensorimotor cortex is a frequently targeted brain area for the development of
Brain-Computer Interfaces (BCIs) for communication in people with severe paralysis
and communication problems (locked-in syndrome; LIS). It is widely acknowledged that
this area displays an increase in high-frequency band (HFB) power and a decrease in
the power of the low frequency band (LFB) during movement of, for example, the hand.
Upon termination of hand movement, activity in the LFB band typically shows a short
increase (rebound). The ability to modulate the neural signal in the sensorimotor cortex
by imagining or attempting to move is crucial for the implementation of sensorimotor BCI
in people who are unable to execute movements. This may not always be self-evident,
since the most common causes of LIS, amyotrophic lateral sclerosis (ALS) and brain
stem stroke, are associated with significant damage to the brain, potentially affecting
the generation of baseline neural activity in the sensorimotor cortex and the modulation
thereof by imagined or attempted hand movement. In the Utrecht NeuroProsthesis
(UNP) study, a participant with LIS caused by ALS and a participant with LIS due
to brain stem stroke were implanted with a fully implantable BCI, including subdural
electrocorticography (ECoG) electrodes over the sensorimotor area, with the purpose
of achieving ECoG-BCI-based communication. We noted differences between these
participants in the spectral power changes generated by attempted movement of the
hand. To better understand the nature and origin of these differences, we compared the
baseline spectral features and task-induced modulation of the neural signal of the LIS
participants, with those of a group of able-bodied people with epilepsy who received a
subchronic implant with ECoG electrodes for diagnostic purposes. Our data show that
baseline LFB oscillatory components and changes generated in the LFB power of the
sensorimotor cortex by (attempted) hand movement differ between participants, despite
consistent HFB responses in this area. We conclude that the etiology of LIS may have
significant effects on the LFB spectral components in the sensorimotor cortex, which is
relevant for the development of communication-BCIs for this population.

Keywords: brain-computer interface, implant, sensorimotor cortex, amyotrophic lateral sclerosis, brain stem
stroke, electrocorticography, high-frequency band, low-frequency band
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INTRODUCTION

The sensorimotor areas of the brain are a promising target area
for the control of Brain-Computer Interfaces (BCIs) that aim
to provide people with severe paralysis (locked-in syndrome,
LIS) a channel for communication and environmental control.
A wealth of electroencephalography (EEG) literature shows that
movement is associated with decreases in the spectral power
measured from the sensorimotor regions, specifically in the
alpha/mu (8–12 Hz) and beta (13–30 Hz) frequency bands
(Jasper and Penfield, 1949; Chatrian et al., 1959; Neuper and
Pfurtscheller, 2001), commonly referred to as event-related
desynchronization (ERD). The end of movement is typically
associated with a short-lasting increase in beta power (event-
related synchronization, ERS) (Pfurtscheller et al., 1996). These
low-frequency band (LFB) EEG signal changes have been used to
accomplish BCI control in able-bodied study participants (e.g.,
Wolpaw et al., 2000; Scherer et al., 2007; Blankertz et al., 2010;
Thomas et al., 2013) as well as in several people with severe
paralysis (e.g., Neuper et al., 2003; Kübler et al., 2005; Bai et al.,
2010; Daly et al., 2013).

Over the past decades, subdural electrocorticography (ECoG)
has received increasing attention as a signal acquisition
technology for BCI purposes. In BCI research settings, ECoG
signals are typically recorded from able-bodied people with
refractory epilepsy who are temporarily fitted with these
electrodes for clinical diagnostic purposes. Also in the ECoG-
BCI research field, the sensorimotor cortex is recognized as an
especially interesting source of signals to enable BCI control
(Leuthardt et al., 2004; Hermes et al., 2011). Since ECoG allows
one to capitalize on the detailed spatial organization of the
sensorimotor cortex, multiple independent control signals may
conceptually be extracted from this area using high-spatial-
density ECoG grids (Slutzky et al., 2010; Branco et al., 2017).
Importantly, research on implantable ECoG-based BCIs often
focuses on movement-related increases in High-Frequency Band
(HFB, >30 Hz) power (Crone et al., 1998; Chestek et al., 2013;
Blakely et al., 2014; Branco et al., 2017), which are thought to
reflect local processing and are considered to be more spatially
focal than changes in LFB power (Miller et al., 2009; Hermes
et al., 2012), potentially providing a more specific, and therefore
more reliable, BCI control signal (Schalk and Leuthardt, 2011).
Yet, it has also been shown that changes in LFB power may
contribute to accurate decoding and reliable ECoG-BCI control
(Schalk et al., 2007; Nakanishi et al., 2014; Vansteensel et al., 2016;
Flint et al., 2017). Indeed, HFB activity in the sensorimotor cortex
is thought to be highly correlated to lower frequency bands, with
the amplitude of HFB activity being coupled to the phase of LFB
oscillations during rest (Yanagisawa et al., 2012).

For sensorimotor BCIs to become of value for people with
LIS, it is essential for them to be able to generate reliable
responses in the sensorimotor cortex by imagining or attempting
to move. Two common causes for LIS are amyotrophic lateral
sclerosis (ALS) and brain stem stroke (Patterson and Grabois,
1986; Hayashi and Kato, 1989; Pels et al., 2017). Both of
these conditions are associated with brain damage: ALS causes
predominantly motor neuron loss in the motor cortex and spinal

cord (see for review Agosta et al., 2018), whereas brain stem
strokes that lead to LIS typically involve damage to the ventral
pons (Patterson and Grabois, 1986; de Mendivil et al., 2013).
It can be surmised that brain damage can result in changes
in the sensorimotor neuroelectrical signal used for ECoG-BCI,
potentially affecting the baseline spectral characteristics as well
as the signal changes induced by attempts to move the hand.
As stated above, most ECoG sensorimotor BCI research has so
far been performed in able-bodied participants (i.e., people with
epilepsy). Therefore, the extent to which the sensorimotor ECoG-
BCI control signal is affected by ALS and by brain stem stroke
remains unclear.

Within the Utrecht NeuroProsthesis (UNP) study, we aim
to evaluate the usability of a fully implantable ECoG-based
communication-BCI for daily life by people with LIS. Two
participants with LIS (one due to ALS, see Vansteensel et al.,
2016; one due to brain stem stroke) have been implanted with
the system, including electrodes over the sensorimotor hand area.
Interestingly, we noted differences between these participants in
the spectral responses induced by attempted hand movement.
Here, we aimed to evaluate whether or not the different ECoG
response profiles observed in these two LIS participants are
part of the normal distribution of response profiles in the
general population. The implanted system provides extensive
data on the controllability of the spectral signals, from which
we can learn about the LFB and HFB spectral components
in LIS. To investigate normalcy, ECoG data from the LIS
participants need to be compared to those of a control group
of able-bodied individuals. The only suitable population for this
purpose consists of people who suffer from refractory epilepsy
and temporarily receive subdural electrodes for diagnostic
purposes. Therefore, we compared spectral oscillations during
rest, and modulation of LFB and HFB features by (attempted)
hand movement, between the LIS participants and able-bodied
people with epilepsy.

MATERIALS AND METHODS

This study was carried out in accordance with the Declaration
of World Medical Association (2013). Epilepsy participants
gave written informed consent to participate in the study.
LIS participants gave informed consent via a dedicated
procedure (see Vansteensel et al., 2016 for details). The
protocol was approved by the Medical Research and Ethics
Committee Utrecht.

Participants
LIS Participants
The first participant with LIS (UNP1; described in Vansteensel
et al., 2016) is a woman, 58 years old at the time of informed
consent in 2015, who had been diagnosed with ALS in 2008.
She is severely paralyzed and anarthric as a result of her
disease, but sensibility was intact during pre- and post-surgical
neurological evaluation. For communication, she uses an eye
gaze device for typing, as well as eye blinks, and more recently
small movements of the corner of her mouth, to answer closed
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questions. In addition, she uses the implanted UNP device
for communication. For that, she attempts to move the right
hand and thereby generates reliable signal changes in the
sensorimotor cortex, which are converted into “brain-clicks”
to control communication software (Communicator 5, Tobii
Dynavox, Danderyd, Sweden). The second participant with LIS
(UNP4) is a woman who suffered from a brain stem stroke in
2004 and who has been severely paralyzed and anarthric as a
result. Pre- and post-surgical neurological evaluation showed that
sensibility was globally intact. She was 39 years old at the time
of informed consent in August 2017. She uses a head switch
to control scanning software for typing, and horizontal and
vertical eye and head movements for answering closed questions.
Both participants with LIS were implanted with subdural ECoG
strips (Resume II, Medtronic, 4 circular contact points per
strips, 1 cm inter-electrode distance, off-label use) over the left
dorsolateral prefrontal cortex and over the hand region of the
left sensorimotor cortex. The target location of the electrodes
was determined using the results of an fMRI scan, which was
conducted several weeks before surgery. Here, we describe results
obtained from the sensorimotor electrodes (Figure 1). The
participants have used the signal from sensorimotor electrodes
for regular BCI training for 105 weeks (UNP1) and 61 weeks
(UNP4), respectively, until the last datapoint included in this
report. For analysis, the precise location of the subdural
electrodes was assessed by co-registration of a post-operative CT
scan with a pre-operative T1 MRI scan and a correction for brain
shift, using the procedures described in Hermes et al. (2010) and
Branco et al. (2018). Notably, two other LIS participants (UNP2
and UNP3) were included in this study, but died before surgery
(Vansteensel et al., 2016).

Epilepsy Participants
Data from the participants with LIS were compared with data
acquired from a group of 9 adult individuals (EP1-EP9; Table 1)
with severe refractory epilepsy, who were temporarily implanted
with subdural ECoG grids (Ad-Tech, Racine, United States,
1 cm inter-electrode distance) for clinical reasons. Individuals
studied here had electrodes over the sensorimotor hand area
(Figure 1), but the source of their epilepsy did not include this
region in most cases. Note that in EP1 and EP8, the source
of the epilepsy was located in the central areas, but the signal
acquired during the Localizer task runs (see below) did not
show interictal activity. All participants were MRI negative (i.e.,
no detectable structural or anatomical anomalies in the brain).
Electrode localization was accomplished using a post-operative
CT scan and a pre-operative T1 MRI scan, similarly as described
for the LIS participants.

Signal Acquisition
LIS Participants
The implanted electrodes (1 dorsolateral prefrontal strip and
1 sensorimotor strip) were connected via subdural leads to
an implantable amplifier/transmitter device (Activa PC + S,
Medtronic; Rouse et al., 2011; Afshar et al., 2013; off-label use),
which was placed subcutaneously under the clavicle. This device
is able to relay filtered spectral power signals from multiple

bipolar pairs of electrodes to a tablet computer at a rate of 5 Hz
for BCI control (see Vansteensel et al., 2016 for more details). In
addition, the raw time-domain signal of a single bipolar electrode
pair of each strip can be transmitted at 200 Hz. This setting
is more energy consuming and is therefore only used during
research visits. Here, we report on analyses of the time-domain
signal recorded from single pairs of the sensorimotor electrode
strip during repeated Baseline and Localizer tasks (see below)
performed by the LIS participants.

Epilepsy Participants
Time-domain data from all implanted ECoG electrodes was
continuously and simultaneously recorded using a clinical
recording system (Micromed, Treviso, Italy, band pass filter
0.15–134.4 Hz) at a sampling frequency of 512 Hz. Epilepsy
participants performed one or more runs of a Localizer task
(see below), during which the ECoG signal was spliced to a
computer running the BCI2000 software package (Schalk et al.,
2004), where it was stored for offline signal processing.

Tasks
Localizer Task
Locked-in syndrome participants periodically conducted a
Localizer task that involved making repetitive attempted right
hand movements or relaxing for alternating periods of 15 s.
During each run of the Localizer task, the ECoG time-domain
signal of one single electrode pair of the sensorimotor cortex strip
was recorded (see Tables 2, 3 for the number of runs acquired per
electrode pair). In both participants, one of the pairs was studied
more frequently because it showed the most reliable responses
(e1-e2 and e2-e3 for UNP1 and UNP4 respectively).

Five of the epilepsy participants performed a Localizer
task that involved three different conditions in random order:
rest, move (finger tapping of the hand contralateral to the
implanted electrodes) and imagine (imagined finger tapping).
Each trial had a duration of 15 s. For this study, only the
move and rest conditions were analyzed. The other four epilepsy
participants performed a task that contained alternating 30 s
blocks of finger tapping and rest. Although the task performed
by these four participants differed from the task performed
by the other five participants in terms of the block-duration,
the movement conditions of both tasks involved exactly the
same action (finger tapping). Therefore, we did not distinguish
between data acquired with the two paradigms. Instructions
for the tasks were presented on a computer screen that was
placed at the bedside (Presentation, Neurobehavioral Systems,
Berkeley, CA, United States). Notably, the epilepsy participants
were not involved in BCI feedback sessions before the Localizer
task was acquired, except one participant, who did feedback
sessions on 3 days.

Baseline Task
UNP1 and UNP4 regularly performed a Baseline task (2–5 min
per run), in which they gazed at an image of a circle on a computer
screen and were instructed to think of nothing in particular. Data
from 52 to 32 runs (UNP1 and UNP4, respectively) recorded
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FIGURE 1 | Location of the electrodes. (A) All selected rows of sensorimotor electrodes (black circles connected by black lines) in all epilepsy participants
(EP1-EP9). Single electrodes showing a significant HFB response (p < 0.05) are indicated in color. (B) Sensorimotor electrode strip of UNP1. The electrodes marked
with a white circle represent the most frequently studied electrode pair (e1-e2). (C) Sensorimotor electrode strip of UNP4. The electrodes marked with a white circle
represent the most frequently studied electrode pair (e2-e3).

from the most frequently studied pair (e1-e2 for UNP1 and e2-
e3 for UNP4) were analyzed in terms of spectral content of the
LFB (see below).

Signal Analysis: Presence and
Consistency of LFB and HFB Features
LIS Participants
For every time sample of each time-domain data file, spectral
power (6–100 Hz, 1 Hz bins) was computed using the real
component of the convolution with a complex Gabor wavelet
(Bruns, 2004; span 4 cycles at full width half max). The LFB and

HFB responses over time where then computed as the sum over
the log of the time varying amplitudes for two frequency ranges:
6–30 Hz (LFB) and 31–100 Hz (HFB). Subsequently, based on the
well-described phenomena that occur in the sensorimotor cortex
upon (attempted) movement (Jasper and Penfield, 1949; Chatrian
et al., 1959; Pfurtscheller et al., 1996; Neuper and Pfurtscheller,
2001; Miller et al., 2007, 2010; Hermes et al., 2012; Vansteensel
et al., 2016), we defined three movement-related signal features:
(1) the increase in HFB (31–100 Hz; mean over time) power
during active trials versus rest, (2) the decrease in LFB (6–30 Hz)
power during active trials versus rest, and (3) the increase in LFB
(6–30 Hz) power during the first 3 s following an active trial (i.e.,
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TABLE 1 | Demographics of the able-bodied epilepsy participants.

Participant# Hemi Focus # 4-electrode
rows

# HFB significant
single electrodes

EP1 L L Central 3 5

EP2 L L Superior Frontal 4 8

EP3 L L Parietal-temporal-
occipital

2 2

EP4 L L Parietal 4 10

EP5 L L Frontobasal 2 2

EP6 L L Perisylvian 2 2

EP7 L L Frontal Medial 4 5

EP8 R R Central 4 12

EP9 R R Frontal
Parasagittal

2 4

Hemi, hemisphere covered by ECoG electrodes; Focus, Location of the source of
the epilepsy. Notably, on request of the journal, age and gender of the epilepsy
participants are not included in this table.

TABLE 2 | For UNP1, the number of Localizer tasks runs acquired per bipolar
electrode pair and percentage of these runs with a significant response in each of
the three features studied.

UNP1 Number
of runs

% significant
HFB increase

% significant
LFB decrease

% significant
LFB rebound

e0-e1 8 100 88 100

e0-e2 9 89 100 100

e0-e3 8 88 100 100

e1-e2 50 100 98 90

e1-e3 8 100 100 100

e2-e3 8 100 100 100

The most frequently studied electrode pair is highlighted in gray.

TABLE 3 | For UNP4, the number of Localizer tasks runs acquired per bipolar
electrode pair and percentage of these runs with a significant response in each of
the three features studied.

UNP4 Number
of runs

% significant
HFB increase

% significant
LFB decrease

% significant
LFB rebound

e0-e1 11 0 0 0

e0-e2 10 70 50 20

e0-e3 13 69 62 46

e1-e2 15 53 20 20

e1-e3 10 100 40 30

e2-e3 46 98 22 35

The most frequently studied electrode pair is highlighted in gray.

the rebound period) versus rest. In all cases, rest was taken as the
period after the rebound period (i.e., from 3 s after the onset until
the end of a rest-trial). For each of these features, we computed
the coefficient of determination (signed R2 value) per task run.

Epilepsy Participants
Data from all implanted subdual electrodes (excluding inter-
hemispheric contacts and electrodes showing excessive noise
or a flat signal, based on visual inspection) were common
average re-referenced and evaluated in terms of response to
the Localizer task, using the coefficient of determination (R2)

between the mean 65–95 Hz power log amplitudes (maximum
entropy method; Schalk et al., 2004) per-trial and the active and
rest trials of the task design. To compare the data of the epilepsy
participants with those of the LIS participants, we selected for
each epilepsy participant one or more sets of four neighboring
electrodes that were comparable to the electrode strips of the LIS
participants, located over the superior part of the sensorimotor
cortex and more or less perpendicular to the central sulcus
where possible. The sets additionally contained at least one
single electrode with a significant positive signed R2 (p < 0.05,
Bonferroni corrected for multiple comparisons; see Table 1 for
the number of “rows” selected for each epilepsy participant
and the number of single HFB significant electrodes; see
Figure 1 for the location of the selected rows). For each pair
of selected rows of electrodes (i.e., six pairs per row), the
LFB and HFB responses of the bipolar referenced signal were
computed according to the same procedure as used for the
participants with LIS.

Comparing LIS Participants With Epilepsy
Participants
To investigate the co-occurrence of LFB with HFB power
changes, we first determined the electrode pairs and runs that
resulted in a significant change in the per-trial mean HFB power
between active trials versus rest (significant positive signed R2

value, p < 0.05). This screening resulted in 18, 14, 5, 17, 1,
4, 27, 22, and 13 data points (electrode pairs and runs) for
epilepsy participants EP1-9, and 89 and 79 data points for
UNP1 and UNP4, respectively. For these pairs and runs, we
computed, per participant, the mean signed R2 value for each of
the three movement-related signal features, resulting in a single
mean value per feature per participant. To evaluate whether
the LFB responses of UNP1 and UNP4 fell in the normal
range as observed in the epilepsy participants, we compared the
mean signed R2 per LFB feature of UNP1 and UNP4 to the
distributions of mean signed R2 values over epilepsy participants
using z-scores.

Signal Analysis: Oscillatory Components
To further investigate the spectral changes that lead to the LFB
functional responses, we analyzed the spectral content of the
Baseline task of UNP1 and UNP4, and of the active and rest
periods of the Localizer task of all participants.

For each run of the Baseline task of UNP1 and UNP4
(only recorded from the most frequently studied electrode pair
of each participant), we computed the spectral amplitude (1–
100 Hz) over time. Then, the mean and standard deviation of the
amplitude profile was computed per run.

For each active and rest period of the Localizer task
of all participants (UNP1, UNP4, and epilepsy participants,
only runs/electrode pairs with significant HFB response), we
separated the oscillatory spectral peaks, which are attributed to
rhythmic local field potential fluctuations, from the scale-free
or fractal component by applying irregular-resampling auto-
spectral analysis (IRASA; Wen and Liu, 2016). This procedure
corrects for differences in mixed spectra profiles, for example
caused by differences in electrode impedance over runs or in
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amplifiers between participants, and therefore allows for a direct
comparison of the LFB oscillatory profiles. Rest and active data
were split into smaller bins by applying a 3 s moving window
with a step size of 1 s. Windows that overlapped the transition
between active and rest or that included data from the rebound
period (i.e., the first 3 s after the cue to stop moving) were
excluded. The windows were irregularly resampled and for each
resampling the auto-power spectra was computed, using methods
described earlier (Wen and Liu, 2016). The fractal component
was estimated by computing the median spectral profile for
each of the resampled windows. The fractal component was
subsequently subtracted from the non-resampled (or mixed)
profile, resulting in the “oscillatory spectral profile” for each
window. We then computed the means (over windows) of the
mixed, fractal, and oscillatory profiles for both the active and rest
task periods separately.

To compare the spectral content of the LFB of the
LIS participants to those of the epilepsy participants, the
difference between the normalized (z-scored over frequencies
per participant) mean active and mean rest oscillatory profiles
was computed and plotted. In this way the oscillatory functional
changes of the UNP participants can be visually compared
to those of the epilepsy participants. In addition, the UNP
participants’ LFB (6–30 Hz) oscillatory profiles were compared
per 1 Hz frequency bin with a one-sample student’s t-test to the
mean epilepsy participant profiles.

RESULTS

Presence and Consistency of LFB and
HFB Features
For all bipolar electrode pairs of UNP1 and for 5 out of 6
electrode pairs of UNP4, performance of the attempted hand
movement Localizer task-induced a clear HFB response with high
R2 values (median R2 value higher than 0.6; Figure 2A). For
UNP1, these HFB responses were all accompanied by a consistent
decrease in LFB power during the active trials and LFB rebound
responses immediately thereafter. In contrast, the R2 values of the
LFB decreases and LFB rebound responses of UNP4 were more
variable and closer to zero (median typically smaller than 0.6;
Figure 2C), even in the electrode pairs that showed the highest
HFB R2 values. Notably, further splitting the LFB band into mu
(8–12 Hz) and beta (13–30 Hz) frequency bands did not lead to
larger or more consistent R2 values (Figures 2B,D).

We subsequently studied the consistency of the LFB and HFB
response features. In UNP1, all pairs showed a significant HFB
increase, LFB decrease and LFB rebound in 88% or more of the
runs (Table 2). In contrast, for UNP4, for the two pairs that
showed the most consistent HFB responses (e1-e3 and e2-e3), a
significant LFB decrease or LFB rebound was obtained in 40% or
less of the runs (Figure 3 and Table 3). Overall, a significant LFB
response was obtained in only 62% or less of the runs.

Comparison of the mean R2 values of the LFB decrease and
LFB rebound responses of all runs/pairs with significant HFB
changes between UNP1, UNP4, and the epilepsy participants
revealed that the LFB decrease R2 value of UNP4 was smaller (i.e.,

closer to 0) than the range of LFB decrease R2 values observed in
the epilepsy participants (z-score 2.14; Figure 4A). In addition,
UNP1 and UNP4 had a rebound response that was among the
25% highest (UNP1; z-score 0.98) and 25% lowest (UNP4; z-score
−1.04) values observed in able-bodied participants. Also looking
at the (normalized) power traces reveals that UNP1 has large and
UNP4 has small LFB responses (Figure 4B).

Oscillatory Components
The mean spectra of the Baseline runs of electrode pair e1-e2 of
UNP1 showed a broad peak between ∼10 and 28 Hz (Figure 5).
In addition, also the mixed spectra of the rest periods of the
Localizer task (all runs/pairs with a significant HFB response)
showed this clear and broad peak (Figure 6). Subtraction of the
fractal component revealed the presence of a clear oscillatory
component between 10 and 28 Hz that disappeared during the
active periods of the Localizer task. In frequencies lower than
10 Hz, however, attempted hand movement did not seem to
generate a decrease in power.

For UNP4, the Baseline spectra (electrode pair e2-e3) and
the mixed spectra of the rest periods of the Localizer task
(all pairs/run with a significant HFB response) showed a peak
between 6 and 22 Hz (Figure 6). The oscillatory spectral profile,
however, clearly peaked between 6 and 10 Hz during rest and,
on average, did not show distinct peaks in low frequencies above
10 Hz. Importantly, the 6–10 Hz peak was hardly affected by
attempted movement.

The oscillatory spectral profiles of the epilepsy participants
typically included two peaks during the rest periods of
the Localizer task, one between ∼5 and 8 Hz, and one
between ∼12 and 22 Hz (Figure 7). During movement,
power in both peaks decreased strongly (compare Figure 7
with Figure 8A).

Visual comparison, between UNP1 and the epilepsy
participants, of the difference between the active and rest
spectra showed the absence (in UNP1) of task-modulation in
the <10 Hz range and large amplitude differences between rest
and attempted movement in a beta range that was broader than
observed in the epilepsy participants. Indeed, a one-sample t-test
showed a significantly higher normalized mean amplitude in
UNP1 for the range 19–30 Hz (p < 0.05, Bonferroni corrected;
Figure 8B). For UNP4, visual comparison revealed some level
of task-related modulation in the 6–10 Hz range. The beta
range seemed entirely devoid of task-related changes in power,
in contrast to what was observed in the epilepsy participants
(except EP5, who also showed only minor modulation in
the beta range).

DISCUSSION

We investigated the characteristics of three different
sensorimotor ECoG signal features that are regularly targeted for
BCI control purposes, and compared these features between two
participants with LIS from different etiologies and able-bodied
participants with epilepsy. Our data reveal important differences
between participants in the LFB changes generated in the
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FIGURE 2 | R2 values of HFB and LFB feature responses in UNP1 and UNP4. (A,C) Boxplot of the signed R2 values of each of the three studied features for each of
the six electrode pairs of the sensorimotor electrode strip of UNP1 (A) and UNP4 (C). Red, HFB increase; Blue, LFB decrease; Green, LFB rebound. The number of
runs per pair is described in Tables 2, 3. The location of the electrodes is indicated in Figures 1B,C. (B,D) Boxplot of the signed R2 values of mu (8–12 Hz, light
blue) and beta (13–30 Hz, dark blue) power decrease of UNP1 (B) and UNP4 (D), per electrode pair. (A–D) The horizontal dashed lines indicate the lowest (absolute
value) R2 value that was significant (p < 0.05) per participant. The solid black line indicates the value R2 = 0.

sensorimotor cortex by (attempted) hand movement, despite
consistent HFB responses in this area.

Two participants with LIS, UNP1, and UNP4, received a
fully implantable ECoG-based BCI system, including a subdural
electrode strip over the sensorimotor hand area, as part of a
study that aims to evaluate the usability of the BCI for day-
to-day communication at home. In both participants, most
electrode pairs of the sensorimotor electrode strip showed a clear
HFB power increase upon attempted hand movement. Yet, only
for UNP1 this HFB response was consistently accompanied by
a movement-related LFB decrease and a post-movement LFB
rebound response. In UNP4, changes in LFB power were smaller
on average and electrode pairs and runs that responded with
a consistent HFB increase in UNP4 did not necessarily display
a significant LFB decrease or rebound. These data suggest that

there are important differences in the sensorimotor ECoG signal
features between the individuals with LIS. Comparison of the
LFB responses of UNP1 and UNP4 with those of a group of
epilepsy participants revealed that electrode pairs and runs that
display a significant increase in HFB power during (attempted)
movement show, on average, a strong LFB decrease and LFB
rebound in the epilepsy participants and in UNP1. In UNP4,
however, the mean LFB decrease R2 value was smaller (i.e., closer
to 0) than the range of LFB decrease R2 values observed in the
epilepsy participants.

To further investigate the LFB responses, we examined the
spectral changes underlying the LFB functional responses by
computing the oscillatory spectral profiles during (attempted)
hand movement and during rest, for all electrode pairs and runs
with a significant HFB response. In the epilepsy participants,
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FIGURE 3 | Consistency of LFB and HFB feature responses. Each panel shows, for each electrode pair of UNP1 (left column) and UNP4 (right column), the
signed R2 values of the three studied features for all runs acquired with that pair (1 symbol per run). Red, HFB increase; Blue, LFB decrease; Green, LFB rebound.
Time on the x-axis indicates weeks since implantation. The panels with the diamond symbols indicate the data from the most frequently studied electrode pair.

two peaks were typically observed that were both strongly
modulated by hand movement: one around 5–8 Hz and one
around 12–22 Hz. Importantly, the center frequency of the 5–
8 Hz peak was lower than classically reported in scalp EEG
studies for the alpha/mu band oscillations over the central areas
(Chatrian et al., 1959). This finding corresponds with results of

a comprehensive investigation of the dominant frequencies in
baseline ECoG recordings (Groppe et al., 2013). In that study,
it was demonstrated that while beta (centered around 17 Hz)
is clearly present in the ECoG measured from sensorimotor
areas, alpha/mu activity is hardly observed in this region, and
theta activity (4–8 Hz) is a dominant feature throughout the
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FIGURE 4 | Comparison of R2 values of the HFB and LFB features between the LIS and epilepsy participants. (A) Per participant, the mean signed R2 value of each
of the three features was computed for all runs/electrodes with a significant HFB response. For UNP1 (triangles) and UNP4 (squares), this mean signed R2 value is
plotted. For the epilepsy participants, the distribution of the R2 values is given in a boxplot: horizontal line represents the median; the rectangle indicates the 50% of
the distribution; the dashed lines indicate the maximum and minimum values; and the outliers are indicated by crosses “+.” The shaded areas indicate, per feature,
the range of values observed among epilepsy participants. Red, HFB increase; Blue, LFB decrease; Green, LFB rebound. (B) Normalized (z-scored) power traces for
each of the two UNP participants and the epilepsy participants (lower panels, where thin lines represent individual participants and the thick line the mean of all
epilepsy participants). Left panels indicate HFB (red) and LFB decrease (blue) responses, locked to the onset of the active blocks in the Localizer task. Right panels
indicate the LFB rebound responses (green), locked to the offset of the active blocks. Black and gray parts of the traces represent rest. Note that for the computation
of the LFB rebound, only the first 3 s of the rest-trials were used, whereas for the HFB and LFB decrease responses, the entire active trial was included. Shaded bars
next to the graphs are given for ease of comparison and indicate the variation of the (mean) responses (minimum until maximum value) for the given time window.
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FIGURE 5 | Baseline spectra for UNP1 and UNP4. Each black line indicates the normalized mean power spectrum over time of one Baseline task run of UNP1
(upper panel) and UNP4 (lower panel) as a function of frequency (Hz). Each subplot was normalized (between 0 and 1) separately to the maximum and minimum
value of the black lines. The gray shading and lines indicates the standard deviation over time of each run. The blue and red blocks indicate the frequency ranges
used for the LFB and HFB analysis, respectively.

brain. Since hand movement by able-bodied people induced
a clear power attenuation in the 5–8 Hz range in our data,
it may be hypothesized that this ECoG feature represents the
same phenomenon as described by the alpha/mu band in EEG
studies. In contrast to the oscillatory spectral profiles of epilepsy
participants, the rest profile of UNP1 showed a single, broad
peak spanning a large part of the LFB range. In the beta band,
power was strongly modulated by attempted movement, but
not in lower frequencies. In UNP4, LFB oscillatory activity was
limited to a peak in the 6–10 Hz range, which, however, was only
minimally modulated by attempts to move the hand.

Our data suggest that the neuroelectrical ECoG features in
the sensorimotor cortex of people with LIS display important
differences with those of able-bodied people with epilepsy.
Whereas both people with LIS were able to generate the well-
described changes in the HFB upon attempted movement, LFB
features were atypical. It could be surmised that the differences
between the LIS participants and the epilepsy participants
were related to the large differences in BCI training: both LIS
participants have been involved in BCI feedback sessions for
many months, whereas ECoG recordings in epilepsy patients
typically last about one week and most participants did not
have feedback training before the Localizer task was acquired.
Importantly, however, already in the first measurements of the
LIS participants, the differences in the LFB features were clear
(Figure 3). In addition, we recently showed that long-term BCI
use is not associated with significant changes in the control
signal (Pels et al., 2019). Therefore, we believe that differences
in training are unlikely to be associated with the atypical LFB
features we observed. Instead, we postulate that these findings are

suggestive of an effect of the underlying etiology of LIS on LFB
baseline power in the sensorimotor cortex and on the modulation
thereof by attempted hand movement. One important difference
between ALS and brain stem stroke is the temporal aspect of the
condition that leads to the locked-in state: whereas brain stem
stroke is an event that suddenly disrupts motor function, ALS is
a progressive disease that causes increasing muscle function loss
over the course of months or years. Conceptually, there may be
more room and time for adaptive changes and compensation in
the case of ALS than for brain stem stroke, but it could also be
reasoned that the longer period UNP4 has been in the locked-in
state would allow for these changes. Alternatively, the difference
in the location of the damage to the brain may underlie the
different brain signal features we observed. Below, we discuss our
results in the context of reported effects of brain stem stroke and
ALS on the neuroelectrical signal.

Amyotrophic Lateral Sclerosis
Previous reports about the effects of ALS on the neuroelectrical
signal are relatively scarce and equivocal. Some EEG studies have
reported a decrease in baseline alpha (Mai et al., 1998; Santhosh
et al., 2005) and theta (Jayaram et al., 2015) power in people with
ALS compared to controls, while others indicated heightened
baseline alpha/mu power (Iyer et al., 2015; Maležič et al., 2016)
or no difference (Geronimo et al., 2016). In contrast to some
EEG studies where modulation of the alpha/mu frequency band
has been used for sensorimotor BCI control by individuals with
ALS (Wolpaw et al., 1997; Kübler et al., 2005), we observed
that frequencies lower than 10 Hz were not modulated by
attempted hand movement in UNP1. Possibly, the level of disease
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FIGURE 6 | Oscillatory components of UNP1 and UNP4. (A) For UNP1 and UNP4, the mixed normalized power profile of the active and rest periods of the Localizer
tasks are plotted in solid red and blue lines, respectively. The fractal normalized power profiles of the active and rest periods are given with dashed red and blue lines,
respectively. The power profiles are plotted as a function of frequency (in Hz). Fractal and mixed components were normalized (between 0 and 1) by the maximum
and minimum of the traces of both subjects (UNP1 and UNP4). (B) Subtraction of the fractal from the mixed spectra results in the oscillatory spectra. Blue solid line
denotes the mean oscillatory spectral profile (across runs/electrode pairs) of the rest period. Red indicates the mean oscillatory spectral profile of the attempted hand
movement (active) periods. The shaded regions indicate the standard deviation (across runs/electrode pairs) of each trace. Plots were normalized (between 0 and 1)
by the minimum and maximum of the mean ± standard deviation traces of both subjects (UNP1 and UNP4).

progression is related to this difference: the participants in the
earlier studies were more recently diagnosed with ALS and still
had some control over their limbs. Other possible explanations
for the absence of modulation in frequencies lower than 10 Hz in
UNP1, in the presence of clear ERD in higher LFB frequencies,
is that the specific cortical area from which the electrode strip of
UNP1 measures does not show this modulation or that there are
individual differences in the modulation of this frequency range.
Indeed, mu and beta desynchronization in the EEG signal often
co-occur, but beta ERD may be observed without accompanying
mu desynchronization and the two bands are thought to have
distinct functional significance (Pfurtscheller, 1981).

Recently, Proudfoot et al. (2017) reported stronger
movement-induced beta ERD in MEG recordings of people
with ALS, compared to healthy controls. This result did not
agree with earlier studies showing similar-sized beta ERD
between patients and healthy controls (Riva et al., 2012) or a
decreased ERD in patients (Kasahara et al., 2012), but does
seem to correspond with our data of UNP1. Whereas the R2

value of the total LFB decrease (6–30 Hz) of HFB significant
channels/runs of UNP1 was within the range observed for the
epilepsy participants, the results of the oscillatory component
analysis suggest that the LFB response of UNP1 is largely driven
by frequencies larger than 10 Hz, rather than by a combination
of the 5–8 and 12–22 Hz changes, as was typically observed in
the epilepsy participants.

With respect to the beta rebound, there is evidence for a
delayed (Proudfoot et al., 2017) or a smaller amplitude response
(Riva et al., 2012) in people with ALS, but also for a preservation
of beta ERS (Bai et al., 2010). In our study, the R2 value of the LFB
rebound of UNP1 was among the 25% highest values observed in
the epilepsy participants, which agrees with a preservation of beta
ERS. Since we used the aggregate signal of the entire 3 s window
post-movement-termination, we cannot draw any conclusions on
the presence or absence of a delay in the LFB rebound response.

Previously, Jayaram et al. (2015) reported elevated baseline
EEG HFB power in people with ALS, except in one, most severely
motor impaired, patient. In another study, baseline ECoG HFB
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FIGURE 7 | Oscillatory components of epilepsy participants. For each of the epilepsy participants (EP1-9), normalized power of the oscillatory component of the rest
(solid line) and the active (dashed line) period of the Localizer task is given. In order to compare the shape of the traces across subjects, each plot was normalized
(between 0 and 1) separately by the minimum and maximum of each subjects trace. Note the presence of two LFB peaks during rest in most participants and the
decrease in power during the active period.

power was studied in an individual with ALS who transitioned
from LIS to Complete LIS (CLIS). HFB power was present
during LIS, but the transition to CLIS was accompanied by a
sharp drop in this feature (Bensch et al., 2014). Although we
did not quantify baseline HFB power in this study, the earlier
findings on measurable HFB signal in people with ALS are in
general agreement with our findings of clear and consistent
HFB responses to attempted movement in UNP1. Whether
or not a decrease in baseline HFB power is a general aspect
of very late stages of ALS and the transition to CLIS (or of
possible changes in alertness or cognition in this state) remains
to be determined.

Taken together, our results indicate that HFB and LFB
responses may be preserved in at least part of the ALS population
and, therefore, present highly usable neuroelectrical signal
features that are relevant for BCI control in this population.

Indeed, these features have been used to accomplish BCI control
in several non-invasive (Wolpaw et al., 1997; Kübler et al., 2005;
Bai et al., 2010) and implanted (Vansteensel et al., 2016; Milekovic
et al., 2018) BCI studies in people with ALS.

Brain Stem Stroke
UNP4 showed a clear oscillation between 6 and 10 Hz, but
oscillations between 10 and 30 Hz were virtually absent.
In addition, none of the LFB frequency ranges showed
consistent modulation by attempted hand movement in this
LIS participant. One possible explanation for the small or
absent modulation in LFB power may be an impaired ability
to focus on the task, as a result of the brain stem lesion.
Indeed, it has been reported that pontine lesions may lead
to a deficit in mental imagery of hand rotation (Conson
et al., 2008). However, since the analysis of the LFB oscillatory
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FIGURE 8 | Oscillatory differences. (A) For each of the epilepsy participants (EP1-9), the mean difference between the active and rest oscillatory profile across
runs/electrode pairs is given. Shaded regions indicate the standard deviation. In order to compare the shape of the traces across subjects, each plot was normalized
(between 0 and 1) separately by the minimum and maximum of each subjects trace. (B) Each colored line indicates the difference between the active and rest
oscillatory profile of each epilepsy participant. Light gray shading indicates standard deviation. For comparison, the mean difference profile (across runs/electrode
pairs) of UNP1 (left) and UNP4 (right) is plotted in black, with dark gray shading indicating standard deviation. All traces were normalized (between 0 and 1) by the
minimum and maximum of the mean ± standard deviation of the traces of all subjects (EP1-EP9, UNP1 and UNP4). Frequency bins that showed significant
(one-sample t-test; p < 0.05; Bonferroni corrected) difference between UNP participants (black line) and epilepsy participants (colored lines) are indicated with
white dots.
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components was conducted only using runs/electrode pairs
that showed a significant HFB response, poor or variable
(mental) task performance is unlikely to have caused the lack of
clear LFB responses.

It should be considered that atypical baseline LFB oscillations
and an inability to generate motor-related changes in LFB power
may be generalized features of individuals who suffered from a
brain stem stroke. Earlier studies of the effects of brain stem
stroke on the baseline neural signal indicate a fairly normal
EEG with a clear alpha peak and some slowing in the low
frequencies (Chase et al., 1968; Hawkes and Bryan-Smyth, 1974;
Markand, 1976; Patterson and Grabois, 1986; Babiloni et al.,
2010; Kotchoubey and Lotze, 2013). Indeed, in our study,
UNP4 presented a clear 6–10 Hz peak during rest, which is in
agreement with these earlier findings. However, our finding that
the spectrum of UNP4 does not contain a clear oscillation in
the 12–22 Hz range, as opposed to what was typically observed
in the epilepsy participants, does not agree with a previous
report that showed no difference in beta power between people
with brain stem stroke and healthy controls (Babiloni et al.,
2010). Unfortunately, existing evidence on the consistency of
LFB modulation in people with brain stem stroke is scarce.
In one EEG study, a participant who was paralyzed because
of a brain stem stroke (but could produce speech and had
some control over the upper limbs) used the beta rebound
for BCI control (Höhne et al., 2014). In addition, in two
brain stem stroke participants of the BrainGate study, reliable
offline decoding was accomplished using LFB and HFB power
changes induced by attempted arm movements (Perge et al.,
2014). Interestingly, both these studies reported that frequent
calibration was necessary to maintain reliable decoding, as there
was substantial variability in the anatomical location of the beta

rebound (Höhne et al., 2014) or in the neural signals (Perge et al.,
2014). Taken together, it seems that the characteristics of the LFB
features of UNP4 are not entirely representative of the brain stem
stroke population.

It may be hypothesized that the specific anatomic location
of the brain stem damage is related to the presence or absence
of cortical oscillation in the beta range. Indeed, beta oscillation
has typically been attributed to the corticobasal ganglial-thalamic
feedback loop (DeLong and Wichmann, 2007; McCarthy et al.,
2011; Miller et al., 2012; Basha et al., 2014). Lack of this feature
in the setting of brainstem stroke suggests that the wider motor
circuit plays a role (Figure 9). We examined the specific anatomic
lesion caused by the brain stem stroke of UNP4. Because both
UNP1 and UNP4 exhibit a loss of functional connection with
the spinal cord, it is not the likely reason for the virtual
absence of oscillations in the beta range in only UNP4. The
pedunculopontine nucleus (PPN) has reciprocal connections
with cortical, basal ganglial, thalamic, and cerebellar structures,
and it exhibits robust beta range oscillations (Shimamoto
et al., 2010), making it a reasonable candidate structure.
However, the PPN appears to be anatomically preserved in
UNP4 (Figure 9). Ascending projections from the cerebellum
to the thalamus (dentatothalamic/dentatorubrothalamic tract;
Mollink et al., 2016) appear to be intact as well. However,
descending cortical and thalamic projections to rostral and
caudal pontine nuclei (which, in turn, project to the cerebellum
via the middle cerebral peduncle; Evarts and Thach, 1969; Salmi
et al., 2009; Kamali et al., 2010; Grimaldi and Manto, 2012)
are completely obliterated in UNP4. We therefore consider it
most likely that the absence of oscillations in the beta range
in UNP4 are the result of the specific location of damage in
the motor network.

FIGURE 9 | An anatomic interpretation for the lack of beta oscillation in UNP4. (A) A simplified diagram of the relevant structures of the motor circuit. MCP denotes
the middle cerebral peduncle. DRTT denotes dentatorubrothalamic tract. For panels (B–D), the upper brain images are for participant UNP1 (ALS) and the lower are
for participant UNP4 (pontine stroke). (B) Axial sections at the level of the MCP. White arrows indicate the location of pontine nuclei, receiving input from cortex and
thalamus, and projecting (via the MCP) to the cerebellum. Note the absence of pontine structures in participant UNP4. (C) Midsagittal sections, with insets showing
magnification of the brainstem. White arrows again indicate the location of pontine nuclei. The asterisks denote the approximate location of the pedunculopontine
nucleus (PPN), a structure exhibiting prominent beta oscillations that is involved in movements and locomotion (amongst other modalities) with widespread
projections. Note that the PPN appears structurally intact for both participants. (D) Sections through the DRTT (shown for one side in green), beginning in the
dentate nucleus of the cerebellum, passing through the superior cerebellar peduncle and then the red nucleus, terminating in the ventrolateral nucleus of the
thalamus. Section plane shown on midsagittal image with red line in inset. Note that the DRTT appears structurally intact for both participants.
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Limitations
The present work has several limitations. First is the small
number of people with LIS included in the study. It will be
necessary to assess whether our findings on the LFB and HFB
ECoG features are specific to the participants included here, or
whether they present more generalized phenomena intrinsic to
the different underlying etiologies of LIS. Yet, given the fact that
our findings are corroborated by a substantial amount of data
for each of the LIS participants, we believe that the results of
this study are valuable for determining the most promising signal
features for BCI control in people with LIS.

Second, intrinsic aspects of the reported ECoG data are the
sparse sampling of the brain, due to the relatively large inter-
electrode distance (1 cm) and the subject-specific electrode
locations. As a result, there are inevitable differences in the
exact neural populations recorded and used for the analyses
across participants. Importantly, the location of the electrodes
of UNP1 and UNP4 was driven by the fMRI activation pattern
generated by attempted hand movement and the sampled neural
populations should therefore be functionally comparable. The
most frequently studied electrode pair of both UNP1 and UNP4
included an electrode over the precentral gyrus and one more
posterior, over the central sulcus/postcentral gyrus. For the
epilepsy participants, we attempted to sample the same functional
region as for the LIS participants by using anatomical (the
superior part of the sensorimotor cortex), directional (rows
perpendicular as possible to the central sulcus) and signal
(significant changes in HFB power induced by hand movement)
constraints to select the electrode strips for analysis (see
Figure 1). In addition, we studied a relatively large population of
epilepsy participants. Despite these efforts, it cannot be entirely
excluded that differences in the specific electrode locations over
the sensorimotor hand area are associated with some level of
variability in the LFB and HFB responses.

Third, it should be noted that the analyses conducted here
are based on bipolar referenced signals. Since bipolar referencing
is the method the implanted device of the LIS participants
uses to measure signals from the subdural electrodes, the
data of the epilepsy participants was analyzed using similar
referencing, to make sure that the data of able-bodied and LIS
participants could be accurately compared. It may be speculated
that bipolar signals have fundamentally different characteristics
than the unipolar signals typically reported in EEG and ECoG
literature. In theory, the lack of a typical mu-oscillation in
our bipolar ECoG data may even be explained by a complete
in-phase synchronization of the area measured by the bipolar
pair. However, since the LFB phenomena we observed in the
bipolar referenced signals of the epilepsy participants largely
corresponded with features observed for single ECoG electrodes
in an earlier study (Groppe et al., 2013), we believe that the
effect of the bipolar signal processing on our results is of
limited significance.

Finally, as the low frequency band was the main focus of the
current study, we did not investigate whether or not different
aspects of the high-frequency band showed different responses.
It will be interesting to investigate this topic in future work.

CONCLUSION

Attempted hand movement by two people with LIS generates
consistent HFB power changes in the sensorimotor cortex, while
baseline oscillations in the low frequencies, and modulation
thereof by attempted hand movement, may be substantially
affected by the underlying etiology of the motor impairment of
people with LIS. These results bear relevance for the development
of BCIs for this population, but should be confirmed in larger
numbers of individuals.

DATA AVAILABILITY STATEMENT

The datasets for this study will not be made publicly available
because some participants did not consent for public sharing of
their data. Part of the data is available upon request.

ETHICS STATEMENT

This study was carried out in accordance with the Declaration
of World Medical Association (2013). Epilepsy participants
gave written informed consent to participate in the study.
LIS participants gave informed consent via a dedicated
procedure (see Vansteensel et al., 2016 for details). The
protocol was approved by the Medical Research and Ethics
Committee Utrecht.

AUTHOR CONTRIBUTIONS

ZF, MV, EA, and NR designed the study. TD led the team who
designed the implanted device and provided technical support of
the BCI system. SL and EP acquired the data. ZF, SL, and MB
analyzed the data. ZF and MV drafted the manuscript. All authors
interpreted the data and revised the manuscript.

FUNDING

This study was funded by grants from the European Union
(ERC-Adv 320708), the Van Wagenen Foundation, the Dutch
Technology Foundation STW (grant 14906), and the National
Institute On Deafness and Other Communication Disorders of
the National Institutes of Health (U01DC016686). The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.

ACKNOWLEDGMENTS

We thank the participants for their participation in this research.
Also, we thank the clinical staff at the Department of Neurology
and Neurosurgery for their contribution to our research, Stavrina
Devetzoglou-Toliou for their help with data analysis and Eric
Wolters for their help with literature research.

Frontiers in Neuroscience | www.frontiersin.org 15 October 2019 | Volume 13 | Article 1058134

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01058 October 14, 2019 Time: 17:8 # 16

Freudenburg et al. Sensorimotor ECoG Signal Features for BCI

REFERENCES
Afshar, P., Khambhati, A., Stanslaski, S., Carlson, D., Jensen, R., Dani,

S., et al. (2013). A translational platform for prototyping closed-loop
neuromodulation systems. Front. Neural Circuits 6:117. doi: 10.3389/fncir.2012.
00117

Agosta, F., Spinelli, E. G., and Filippi, M. (2018). Neuroimaging in amyotrophic
lateral sclerosis: current and emerging uses. Expert Rev. Neurother. 18, 395–406.
doi: 10.1080/14737175.2018.1463160

Babiloni, C., Pistoia, F., Sarà, M., Vecchio, F., Buffo, P., Conson, M., et al. (2010).
Resting state eyes-closed cortical rhythms in patients with locked-in-syndrome:
an eeg study. Clin. Neurophysiol. 121, 1816–1824. doi: 10.1016/j.clinph.2010.04.
027

Bai, O., Lin, P., Huang, D., Fei, D.-Y., and Floeter, M. K. (2010). Towards
a user-friendly brain–computer interface: initial tests in ALS and PLS
patients. Clin. Neurophysiol. 121, 1293–1303. doi: 10.1016/j.clinph.2010.
02.157

Basha, D., Dostrovsky, J. O., Lopez Rios, A. L., Hodaie, M., Lozano, A. M., and
Hutchison, W. D. (2014). Beta oscillatory neurons in the motor thalamus of
movement disorder and pain patients. Exp. Neurol. 261, 782–790. doi: 10.1016/
j.expneurol.2014.08.024

Bensch, M., Martens, S., Halder, S., Hill, J., Nijboer, F., Ramos, A., et al.
(2014). Assessing attention and cognitive function in completely
locked-in state with event-related brain potentials and epidural
electrocorticography. J. Neural Eng. 11:026006. doi: 10.1088/1741-2560/11/2/02
6006

Blakely, T. M., Olson, J. D., Miller, K. J., Rao, R. P. N., and Ojemann, J. G.
(2014). Neural correlates of learning in an electrocorticographic motor-imagery
brain-computer interface. Brain Comput. Interfaces 1, 147–157. doi: 10.1080/
2326263X.2014.954183

Blankertz, B., Tangermann, M., Vidaurre, C., Fazli, S., Sannelli, C., Haufe,
S., et al. (2010). The Berlin brain–computer interface: non-medical
uses of BCI technology. Front. Neurosci. 4:198. doi: 10.3389/fnins.2010.
00198

Branco, M. P., Freudenburg, Z. V., Aarnoutse, E. J., Bleichner, M. G., Vansteensel,
M. J., and Ramsey, N. F. (2017). Decoding hand gestures from primary
somatosensory cortex using high-density ECoG. Neuroimage 147, 130–142.
doi: 10.1016/j.neuroimage.2016.12.004

Branco, M. P., Gaglianese, A., Glen, D. R., Hermes, D., Saad, Z. S., Petridou,
N., et al. (2018). ALICE: a tool for automatic localization of intra-cranial
electrodes for clinical and high-density grids. J. Neurosci. Methods 301, 43–51.
doi: 10.1016/j.jneumeth.2017.10.022

Bruns, A. (2004). Fourier-, Hilbert- and wavelet-based signal analysis: are they
really different approaches? J. Neurosci. Methods 137, 321–332. doi: 10.1016/j.
jneumeth.2004.03.002

Chase, T. N., Moretti, L., and Prensky, A. L. (1968). Clinical and
electroencephalographic manifestations of vascular lesions of the pons.
Neurology 18, 357–368.

Chatrian, G. E., Petersen, M. C., and Lazarte, J. A. (1959). The blocking of
the rolandic wicket rhythm and some central changes related to movement.
Electroencephalogr. Clin. Neurophysiol. 11, 497–510. doi: 10.1016/0013-
4694(59)90048-90043

Chestek, C. A., Gilja, V., Blabe, C. H., Foster, B. L., Shenoy, K. V., Parvizi, J., et al.
(2013). Hand posture classification using electrocorticography signals in the
gamma band over human sensorimotor brain areas. J. Neural Eng. 10:026002.
doi: 10.1088/1741-2560/10/2/026002

Conson, M., Sacco, S., Sarà, M., Pistoia, F., Grossi, D., and Trojano, L. (2008).
Selective motor imagery defect in patients with locked-in syndrome.
Neuropsychologia 46, 2622–2628. doi: 10.1016/j.neuropsychologia.2008.
04.015

Crone, N. E., Miglioretti, D. L., Gordon, B., and Lesser, R. P. (1998). Functional
mapping of human sensorimotor cortex with electrocorticographic spectral
analysis. II. Event-related synchronization in the gamma band. Brain 121,
2301–2315. doi: 10.1093/brain/121.12.2301

Daly, B. M., Laparra-Hernández, J., Aloise, F., García, M. L., and Faller, J.
(2013). On the control of brain-computer interfaces by users with cerebral
palsy. Clin. Neurophysiol. 124, 1787–1797. doi: 10.1016/j.clinph.2013.
02.118

de Mendivil, A. O., Alcalá-Galiano, A., Ochoa, M., Salvador, E., and
Millán, J. M. (2013). Brainstem stroke: anatomy, clinical and radiological
findings. Semin. Ultrasound CT MRI 34, 131–141. doi: 10.1053/j.sult.2013.
01.004

DeLong, M. R., and Wichmann, T. (2007). Circuits and circuit disorders
of the basal ganglia. Arch. Neurol. 64, 20–24. doi: 10.1001/archneur.
64.1.20

Evarts, E. V., and Thach, W. T. (1969). Motor mechanisms of the CNS:
cerebrocerebellar interrelations. Annu. Rev. Physiol. 31, 451–498. doi: 10.1146/
annurev.ph.31.030169.002315

Flint, R. D., Rosenow, J. M., Tate, M. C., and Slutzky, M. W. (2017).
Continuous decoding of human grasp kinematics using epidural and
subdural signals. J. Neural Eng. 14:016005. doi: 10.1088/1741-2560/14/1/01
6005

Geronimo, A., Simmons, Z., and Schiff, S. J. (2016). Performance predictors
of brain–computer interfaces in patients with amyotrophic lateral
sclerosis. J. Neural Eng. 13:026002. doi: 10.1088/1741-2560/13/2/02
6002

Grimaldi, G., and Manto, M. (2012). Topography of cerebellar deficits
in humans. Cerebellum 11, 336–351. doi: 10.1007/s12311-011-024
7-244

Groppe, D. M., Bickel, S., Keller, C. J., Jain, S. K., Hwang, S. T., Harden, C., et al.
(2013). Dominant frequencies of resting human brain activity as measured by
the electrocorticogram. Neuroimage 79, 223–233. doi: 10.1016/j.neuroimage.
2013.04.044

Hawkes, C. H., and Bryan-Smyth, L. (1974). The electroencephalogram in the
“locked-in” syndrome. Neurology 24, 1015–1018.

Hayashi, H., and Kato, S. (1989). Total manifestations of amyotrophic lateral
sclerosis: ALS in the totally locked-in state. J. Neurol. Sci. 93, 19–35. doi: 10.
1016/0022-510X(89)90158-90155

Hermes, D., Miller, K. J., Noordmans, H. J., Vansteensel, M. J., and Ramsey, N. F.
(2010). Automated electrocorticographic electrode localization on individually
rendered brain surfaces. J. Neurosci. Methods 185, 293–298. doi: 10.1016/j.
jneumeth.2009.10.005

Hermes, D., Miller, K. J., Vansteensel, M. J., Aarnoutse, E. J., Leijten,
F. S. S., and Ramsey, N. F. (2012). Neurophysiologic correlates of fMRI in
human motor cortex. Hum. Brain Mapp. 33, 1689–1699. doi: 10.1002/hbm.
21314

Hermes, D., Vansteensel, M. J., Albers, A. M., Bleichner, M. G., Benedictus,
M. R., Orellana, C. M., et al. (2011). Functional MRI-based identification of
brain areas involved in motor imagery for implantable brain–computer
interfaces. J. Neural Eng. 8:025007. doi: 10.1088/1741-2560/8/2/02
5007

Höhne, J., Holz, E., Staiger-Sälzer, P., Müller, K.-R., Kübler, A., and
Tangermann, M. (2014). Motor imagery for severely motor-impaired patients:
evidence for brain-computer interfacing as superior control solution. PLoS One
9:e104854. doi: 10.1371/journal.pone.0104854

Iyer, P. M., Egan, C., Pinto-Grau, M., Burke, T., Elamin, M., Nasseroleslami, B.,
et al. (2015). Functional connectivity changes in resting-state EEG as potential
biomarker for amyotrophic lateral sclerosis. PLoS One 10:e0128682. doi: 10.
1371/journal.pone.0128682

Jasper, H., and Penfield, W. (1949). Electrocorticograms in man: effect
of voluntary movement upon the electrical activity of the precentral
gyrus. Arch. Für Psychiatr. Nervenkr. 183, 163–174. doi: 10.1007/BF0106
2488

Jayaram, V., Widmann, N., Förster, C., Fomina, T., Hohmann, M., Hagen, J. M.,
et al. (2015). “Brain-computer interfacing in amyotrophic lateral sclerosis:
implications of a resting-state EEG analysis,” in Proceedings of the 2015 37th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Milan.

Kamali, A., Kramer, L. A., Frye, R. E., Butler, I. J., and Hasan, K. M. (2010).
Diffusion tensor tractography of the human brain cortico-ponto-cerebellar
pathways: a quantitative preliminary study. J. Magn. Reson. Imaging 32, 809–
817. doi: 10.1002/jmri.22330

Kasahara, T., Terasaki, K., Ogawa, Y., Ushiba, J., Aramaki, H., and Masakado,
Y. (2012). The correlation between motor impairments and event-related
desynchronization during motor imagery in ALS patients. BMC Neurosci. 13:66.
doi: 10.1186/1471-2202-13-66

Frontiers in Neuroscience | www.frontiersin.org 16 October 2019 | Volume 13 | Article 1058135

https://doi.org/10.3389/fncir.2012.00117
https://doi.org/10.3389/fncir.2012.00117
https://doi.org/10.1080/14737175.2018.1463160
https://doi.org/10.1016/j.clinph.2010.04.027
https://doi.org/10.1016/j.clinph.2010.04.027
https://doi.org/10.1016/j.clinph.2010.02.157
https://doi.org/10.1016/j.clinph.2010.02.157
https://doi.org/10.1016/j.expneurol.2014.08.024
https://doi.org/10.1016/j.expneurol.2014.08.024
https://doi.org/10.1088/1741-2560/11/2/026006
https://doi.org/10.1088/1741-2560/11/2/026006
https://doi.org/10.1080/2326263X.2014.954183
https://doi.org/10.1080/2326263X.2014.954183
https://doi.org/10.3389/fnins.2010.00198
https://doi.org/10.3389/fnins.2010.00198
https://doi.org/10.1016/j.neuroimage.2016.12.004
https://doi.org/10.1016/j.jneumeth.2017.10.022
https://doi.org/10.1016/j.jneumeth.2004.03.002
https://doi.org/10.1016/j.jneumeth.2004.03.002
https://doi.org/10.1016/0013-4694(59)90048-90043
https://doi.org/10.1016/0013-4694(59)90048-90043
https://doi.org/10.1088/1741-2560/10/2/026002
https://doi.org/10.1016/j.neuropsychologia.2008.04.015
https://doi.org/10.1016/j.neuropsychologia.2008.04.015
https://doi.org/10.1093/brain/121.12.2301
https://doi.org/10.1016/j.clinph.2013.02.118
https://doi.org/10.1016/j.clinph.2013.02.118
https://doi.org/10.1053/j.sult.2013.01.004
https://doi.org/10.1053/j.sult.2013.01.004
https://doi.org/10.1001/archneur.64.1.20
https://doi.org/10.1001/archneur.64.1.20
https://doi.org/10.1146/annurev.ph.31.030169.002315
https://doi.org/10.1146/annurev.ph.31.030169.002315
https://doi.org/10.1088/1741-2560/14/1/016005
https://doi.org/10.1088/1741-2560/14/1/016005
https://doi.org/10.1088/1741-2560/13/2/026002
https://doi.org/10.1088/1741-2560/13/2/026002
https://doi.org/10.1007/s12311-011-0247-244
https://doi.org/10.1007/s12311-011-0247-244
https://doi.org/10.1016/j.neuroimage.2013.04.044
https://doi.org/10.1016/j.neuroimage.2013.04.044
https://doi.org/10.1016/0022-510X(89)90158-90155
https://doi.org/10.1016/0022-510X(89)90158-90155
https://doi.org/10.1016/j.jneumeth.2009.10.005
https://doi.org/10.1016/j.jneumeth.2009.10.005
https://doi.org/10.1002/hbm.21314
https://doi.org/10.1002/hbm.21314
https://doi.org/10.1088/1741-2560/8/2/025007
https://doi.org/10.1088/1741-2560/8/2/025007
https://doi.org/10.1371/journal.pone.0104854
https://doi.org/10.1371/journal.pone.0128682
https://doi.org/10.1371/journal.pone.0128682
https://doi.org/10.1007/BF01062488
https://doi.org/10.1007/BF01062488
https://doi.org/10.1002/jmri.22330
https://doi.org/10.1186/1471-2202-13-66
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01058 October 14, 2019 Time: 17:8 # 17

Freudenburg et al. Sensorimotor ECoG Signal Features for BCI

Kotchoubey, B., and Lotze, M. (2013). Instrumental methods in the diagnostics of
locked-in syndrome. Restor. Neurol. Neurosci. 31, 25–40. doi: 10.3233/RNN-
120249

Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G.,
et al. (2005). Patients with ALS can use sensorimotor rhythms to operate
a brain-computer interface. Neurology 64, 1775–1777. doi: 10.1212/01.WNL.
0000158616.43002.6D

Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., and Moran,
D. W. (2004). A brain–computer interface using electrocorticographic
signals in humans. J. Neural Eng. 1, 63–71. doi: 10.1088/1741-2560/1/
2/001

Mai, R., Facchetti, D., Micheli, A., and Poloni, M. (1998). Quantitative
electroencephalography in amyotrophic lateral sclerosis. Electroencephalogr.
Clin. Neurophysiol. 106, 383–386. doi: 10.1016/S0013-4694(97)0015
9-154
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Neural interfaces that directly produce intelligible speech from brain activity would

allow people with severe impairment from neurological disorders to communicate more

naturally. Here, we record neural population activity in motor, premotor and inferior frontal

cortices during speech production using electrocorticography (ECoG) and show that

ECoG signals alone can be used to generate intelligible speech output that can preserve

conversational cues. To produce speech directly from neural data, we adapted a method

from the field of speech synthesis called unit selection, in which units of speech are

concatenated to form audible output. In our approach, which we call Brain-To-Speech,

we chose subsequent units of speech based on the measured ECoG activity to generate

audio waveforms directly from the neural recordings. Brain-To-Speech employed the

user’s own voice to generate speech that sounded very natural and included features

such as prosody and accentuation. By investigating the brain areas involved in speech

production separately, we found that speech motor cortex provided more information for

the reconstruction process than the other cortical areas.

Keywords: ECoG, BCI, brain-computer interface, speech, synthesis, brain-to-speech

INTRODUCTION

Brain-computer interfaces (BCIs; Wolpaw et al., 2002) that process natural speech present a very
intuitive paradigm for direct machine-mediated human communication and have the potential
to restore intuitive communication for people unable to speak due to paralysis. In recent years,
impressive advances in the decoding of speech processes from neural signals have been achieved.
Electrocorticographic (ECoG) signals recorded from the cortical surface are well-suited for this
purpose due to the broad coverage of multiple cortical areas (Herff and Schultz, 2016). Using ECoG,
laryngeal activity (Dichter et al., 2018), phonetic features (Mesgarani et al., 2014; Lotte et al., 2015),
articulatory gestures (Chartier et al., 2018; Mugler et al., 2018), phonemes (Mugler et al., 2014;
Ramsey et al., 2017), words (Kellis et al., 2010; Milsap et al., 2019), and continuous sentences (Herff
et al., 2015; Moses et al., 2016, 2018) have been investigated. To provide speech-impaired patients

138

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01267
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01267&domain=pdf&date_stamp=2019-11-22
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:c.herff@maastrichtuniversity.nl
https://doi.org/10.3389/fnins.2019.01267
https://www.frontiersin.org/articles/10.3389/fnins.2019.01267/full
http://loop.frontiersin.org/people/108055/overview
http://loop.frontiersin.org/people/848409/overview
http://loop.frontiersin.org/people/732991/overview
http://loop.frontiersin.org/people/140227/overview
http://loop.frontiersin.org/people/483532/overview
http://loop.frontiersin.org/people/12050/overview
http://loop.frontiersin.org/people/45236/overview
http://loop.frontiersin.org/people/73438/overview
http://loop.frontiersin.org/people/748491/overview


Herff et al. Generating Intelligible Speech From ECoG

with the full expressive power of speech, it is crucial to include
acoustic, prosodic, and linguistic cues. These cues include, but
are not limited to, pitch (intonation), timing, stress, emphasis,
and pauses, which are required to discriminate statements from
questions, differentiate words and meaning, carry emotions, and
to convey humor and sarcasm, to name only a few. Furthermore,
the decoding of sentences or words into textual representations
always introduces a delay of at least the length of the smallest
recognizable speech unit, which could potentially lead to severe
articulatory disturbances (Stuart et al., 2002) when playing back
the delayed audible feedback to the user. In contrast, the direct
conversion of brain activity into audible speech can enable
natural conversation, as it can provide rapid auditory feedback.

The speech production process has been widely studied (Tian
and Poeppel, 2010; Tourville and Guenther, 2011; Hickok, 2012),
and while it is not fully understood, a number of brain areas
are known to be involved at the level of producing articulation.
These areas include the inferior frontal gyrus (Okada et al., 2018),
the pre-motor cortex (Glanz et al., 2018), and the speech motor
cortex (Bouchard et al., 2013; Ramsey et al., 2017). Other areas
such as superior temporal gyrus also show activity during speech
production (Kubanek et al., 2013; Brumberg et al., 2016), but
it is unclear whether these areas are involved in articulatory or
semantic processing.

Previous studies have reconstructed perceived audio from
ECoG (Pasley et al., 2012) and spectrotemporal modulations of
real-life sounds from fMRI (Santoro et al., 2017). Martin et al.
reconstructed spectrotemporal features of speech from speech
production and perception areas (Martin et al., 2014), but did
not synthesize audio waveforms from these features. Akbari and
colleagues extended these findings and synthesized high quality
audio from cortical areas involved in speech perception using
Deep Neural Networks (Akbari et al., 2019). In an online study
in motor-intact patients, Leuthardt and colleagues demonstrated
one-dimensional cursor control using ECoG activity during the
production of two isolated phonemes (Leuthardt et al., 2011).
The first study presenting real-time, closed-loop synthesis of
speech from cortical spikes in a paralyzed patient demonstrated
accurate reconstruction of formant frequencies in attempted
vowel production (Guenther et al., 2009) and thereby laid the
foundations for speech neuroprostheses.

Recently, two different approaches synthesizing speech from
neural activity during speech production have been presented.
Both achieve very high quality audio by employing deep
neural networks and an intermediate representation of speech,
one study uses articulatory representations of the speech
production process (Anumanchipalli et al., 2019), which are
then transformed into audio output, the other (performed
on the same dataset as this study) transforms the neural
recordings to a spectral representation first, which is then
transformed to an audio waveform with a second neural
network (Angrick et al., 2019).

Here, we present an alternative approach which directly
reconstructs intelligible, naturalistic speech (that is, speech with
prosody and accentuation) from speech-related motor cortical
activity using a very simple pattern matching approach from the
speech synthesis community. The presented approach is simple

to implement, requires little training data, is real-time ready, and
does not require the design of deep learning architectures.

MATERIALS AND METHODS

Experiment Design
Participants in our study were asked to read words shown to them
on a computer screen aloud (Figure 1). Most presented words
were monosyllabic and followed a consonant-vowel-consonant
(CVC) structure. This set of words primarily comprised of
the Modified Rhyme Test presented in House et al. (1963)
and supplemented with additional words to better reflect the
phoneme distribution of American English (Mines et al., 1978).
Words were displayed one at a time at rate of one word every
2 s in a randomized order. Participants read between 244 and
372 words resulting in 8.3 to 11.7 min of recordings each.
Table 1 summarizes recording length (in seconds) and number
of repeated words for all participants. The data used in this study
were also used in Mugler et al. (2018) and Angrick et al. (2019).

Participants
Patients undergoing awake craniotomy with cortical stimulation
and recording as part of normal clinical care were selected for
enrollment. All participants gave written informed consent to
participate in the study prior to surgery. The study design was
approved by the Institutional Review Board of Northwestern
University. We recorded ECoG activity from six patients (1
female, 55.5 ± 10.1 yo) undergoing awake craniotomies for
glioma resection. Tumors locations lay at least two gyri (2–3
cm) away from the recording sites. All participants were native
English speakers.

Cortical Mapping
All participants were implanted with grids on the left hemisphere.
The experimental grids were specifically placed to cover areas
involved in the speech production process. Electrode grids were
placed based on functional responses to cortical stimulation and
on anatomical mapping. Final locations were confirmed using
intraoperative navigation software (Brainlab), preoperative MRI,
and intraoperative photography (Hermes et al., 2010).

To map the eloquent cortex, electrocortical stimulation
was used. Areas producing speech or anomia arrest during
stimulation were labeled as language associated, while areas
producing movement of tongue and articulators during
stimulation were labeled as functional speech motor areas.

Grid locations were different for each participants based
on craniotomy location but always covered targeted areas of
ventral motor cortex (M1v), premotor cortex (PMv), and inferior
frontal gyrus pars opercularis (IFG). Since there is no clear
cytoarchitectural difference between M1v and PMv, we defined
PMv as the anterior half of the precentral gyrus and M1v
as the posterior half of the precentral gyrus. Table 1 provides
information about the number of electrodes in each specific
region for each participant. Grid locations for our six participants
can be found in Figure 2.
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FIGURE 1 | Experimental Setup: ECoG and audible speech (light blue) were measured simultaneously while participants read words shown on a computer screen.

We recorded ECoG data on inferior frontal (green), premotor (blue), and motor (purple) cortices.

TABLE 1 | Participant demographics and electrode information.

Participant #Words Recording time (s) #IFG #PMv #M1v

1 368 752.8 12 19 18

2 370 761.7 8 15 19

3 249 509.2 16 21 20

4 249 571.5 11 29 18

5 244 499.2 0 19 19

6 372 760.8 15 18 12

Data Recording
We recorded ECoG using an 8 x 8, 64-channel electrode grid
(Integra, 4 mm spacing) and a Neuroport data acquisition system
(BlackrockMicrosystems, Inc.). ECoG data was sampled at 2 kHz
and bandpass-filtered between 0.5 and 300 Hz.

Audio data was recorded in parallel using a unidirectional
lapel microphone (Sennheiser) and wirelessly transmitted to a
recording station (Califone). Audio data was sampled at 48
kHz. Stimulus presentation and synchronous data recording was
facilitated using BCI2000 (Schalk et al., 2004).

ECoG Signal Processing
To extract meaningful information from the recorded ECoG
activity, we extracted logarithmic high-gamma power. The
gamma-band is known to reflect ensemble spiking (Ray et al.,
2008) and contain localized information for motor (Miller et al.,
2007) and speech (Crone et al., 2001; Leuthardt et al., 2012)
tasks. To remove slow drifts in the data, we first applied
linear detrending to the raw ECoG data. The signal was
then downsampled from 2 kHz to 600 Hz to reduce dataset
size. We then forward-backward filtered the signals of all 64
electrodes using elliptic IIR low-pass (170 Hz cut-off, filter order
14) and high-pass (70 Hz cut-off, filter order 13) filters to
represent the high-gamma band. To reduce the first harmonic
of the 60 Hz line noise, we applied an elliptic IIR notch
filter (118–122 Hz, filter order 13). Logarithmic high-gamma
power was calculated by taking the logarithm of the squared

signal. As the speech production process includes complex
temporal dynamics (Sahin et al., 2009; Brumberg et al., 2016),
a 450 ms long window centered on the current sample was
considered and downsampled to 20 Hz. The resulting matrix of
64 channels×9 time points was flattened to form a feature vector
of 64 channels× 9 time points = 576 features. Extracted features
were normalized to zero mean and unit variance. To capture the
fast dynamics of speech, a new feature vector was extracted every
10 ms. We generated speech using either all 64 electrodes or the
electrodes from individual areas separately (IFG, PMv and M1v,
mean of 12.4, 20.2 and 17.7 electrodes, respectively).

Audio Signal Processing
We downsampled the recorded audio data to 16 kHz and
extracted raw waveforms in 150 ms windows centered on the
corresponding frame of ECoG data. Windows were extracted
with a 10 ms frameshift to maintain alignment to the intervals
of neural activity. We extracted the 150 ms long windows using
Hanning window functions to guarantee smooth transitions (Wu
et al., 2013) even with the large overlap between neighboring
windows. Each of these 150 ms windows of raw audio data were
considered as one speech unit in our decoding approach. Due
to the long speech unit size in combination with the windowing
function, no problems with pitch synchronization arise, so more
complex approaches such as pitch-synchronous overlap-add
(PSOLA, Moulines and Charpentier, 1990) provided no increase
in reconstruction quality. The shorter speech unit length in
the audio data, as compared to the high-gamma windows, was
chosen as it provides a good compromise between smoothness of
output and capability to capture the fast dynamics of speech. The
direct mapping between speech units and corresponding high-
gamma windows is necessary for our reconstruction approach.

Decoding Approach
We reconstructed natural audio from the measured ECoG
activity by applying a technique from the speech synthesis
community called unit selection (Hunt and Black, 1996). Unit
selection was originally used in text-to-speech (TTS) synthesis of
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FIGURE 2 | Electrode grid positions for all six participants. Grids always covered areas in inferior frontal gyrus pars opercularis (IFG, green), ventral premotor cortex

(PMv, blue), and ventral motor cortex (M1v, purple).

audio waveforms and relies on selecting and concatenating well-
fitting units of speech from a large training database of speech
units. The same approach was later used for voice conversion
(Sundermann et al., 2006), where speech of one person is
transformed to the voice of another speaker. Further extending
upon this idea, unit selection was used in electromyography
(EMG)-based silent speech interfaces (Zahner et al., 2014),
where facial muscle movements are transformed into an audio
waveform. The same approach can also be applied to other
types of silent speech interfaces (Schultz et al., 2017). In all unit
selection approaches, the next speech unit to concatenate to the
output is chosen based on two different cost terms. The first
one is how well the speech unit fits the current input, being the
current phoneme in TTS or the current frame of EMG activity.
This cost term is referred to as the target cost. The second cost
function estimates how well the speech unit fits the previously
selected speech units and is usually referred to as concatenation
cost. Optimizing both cost functions together requires an iterative
algorithm such as Viterbi decoding (Lou, 1995). Unit selection is
known to perform well for small amounts of data, as is the case in
our study. Limited datasets might not be sufficient to train more
complex models with many free parameters.

In our decoding approach, we used unit selection to select
the best fitting unit of speech, based on the high-gamma
ECoG feature vectors (Figure 3). Our speech units were 150 ms
intervals of plain audio waveforms extracted using a Hanning
window function. To make sure that we selected speech units
based only on the neural data and do not include any semantic
information, we disregarded the concatenation cost for this

proof-of-concept study. This speeds up the decoding process
as new speech units can be selected based only on the current
frame of high-gamma activity. Additionally, this allowed us to
reformulate the selection approach as a maximization problem
to find the ECoG feature vector B̂ in the training data, that has
the highest similarity with the current feature vector A:

B̂ = argmax
B

{similarity(A,B)} (1)

As ECoG data and audio data are aligned, the corresponding
speech unit to B̂, from the training data, could then be selected.
Figure 3 explains the decoding process: For each window of high-
gamma power in the test data (top right), the cosine similarity
with every window in the training data (bottom center) was
computed. For the training data windowA of high-gamma power
with the highest cosine similarity to the test window B̂, the
corresponding speech unit of audio data in the training data (top
center) was chosen. This process is repeated for all intervals in
the test data. The chosen speech units (top right) were combined
to form the generated speech (bottom right). The strongly
overlapping audio data were combined by simply adding the
waveforms; the Hanning windowing ensures that the resulting
output is smooth. This approach is agnostic to categories of
speech, such as phones, or any syntactic and semantic knowledge.
It simply chooses the best fitting speech unit out of over 50,000
units (500 s / 0.01 s frameshift) instead of choosing a generalized
representation, such as a phoneme or even word. This way, the
speech unit with the best matching prosody and accentuation is
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FIGURE 3 | Speech Generation Approach: For each window of high gamma activity in the test data (top left), the cosine similarity to each window in the training data

(center bottom) was computed. The window in the training data that maximized the cosine similarity was determined and the corresponding speech unit (center top)

was selected. The resulting overlapping speech units (top right) were combined using Hanning windows to form the generated speech output (bottom right). Also see

Supplementary Video 1.

chosen and no labeling of the data with regards to phonemes, or
words is used or necessary. As our approach concatenates units
of natural speech, it conserves the spectrotemporal dynamics of
human speech.

This decoding approach can be likened to a very simple
pattern matching approach or nearest-neighbor regression, but
provided superior results than more complex approaches for our
limited dataset size.

While a number of different similarity measures can be used,
we applied the cosine similarity that has proven to provide good
results in a number of document clustering (Steinbach et al.,
2000) and computer vision applications (Nguyen and Bai, 2010).
The cosine similarity between vectors A and B is defined as :

similarity(A,B) =
A · B

‖A‖‖B‖
=

n
∑

i=1
AiBi

√

n
∑

i=1
A2
i

√

n
∑

i=1
B2i

The cosine similarity is invariant to gamma scaling, only the
power distribution between electrodes influences the similarity

score. By precomputing the Euclidean norm ‖B‖ =

√

n
∑

i=1
B2i

for all feature vectors in the training data, the cosine similarity
can be computed fast enough on standard hardware to allow for
real-time decoding for our data set sizes. This can be further
sped up by clustering speech units together (Black and Taylor,
1997) resulting in fewer comparisons necessary. Once the high-
gamma feature vector with the highest cosine similarity B̂ was
found, the corresponding speech unit in its original waveform
was concatenated to the reconstructed output.

We applied our unit selection approach in a 5-fold cross-
validation manner in which in each iteration 80% of the data
were used as training data and the remaining 20% as testing data
until all data were used as the test set exactly once. The set of
spoken words in training and test set were always disjoint. To
reduce the feature space, we used principal component analysis
to select principal components that explain at least 70% of the
total variance in the ECoG training data. The same feature space
compression was than applied to the testing data, as well. This
approach selected 108.1 ± 36.3 components for all electrodes,
15.9± 9.7 for IFG, 44± 15.5 for PMv, and 41.53± 6.8 for M1v.

Randomization Tests
To establish a baseline for our decoding approach, we used
a randomization approach. Instead of using the speech unit
corresponding to the high-gamma feature vector with the highest
cosine similarity, we picked a random speech unit in the
randomization condition. We combined the speech units in the
same manner as the real decoding approach. We repeated this
approach 1,000 times for each participant to establish a baseline
of randomized reconstruction. We denoted the maximum of
these randomizations as chance level in Figure 6B.

Correlation Analysis
To compare original and reconstructed audio waveforms, we
transformed the waveforms into the spectral domain. This was
done in 50 ms windows with 10 ms overlap. To only judge
the frequency information that is important to human listeners,
we transformed the magnitude spectrograms onto the mel-
scale (Stevens et al., 1937) using 40 overlapping triangular filter
banks. A logarithm was then applied to bring the distribution
of spectral coefficients closer to a normal distribution. Pearson
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correlation coefficients were then computed between the
original and reconstruction for each logarithmic mel-scaled
coefficient. We calculated the correlations for each word
individually. Significance levels are established if resulting
correlations were larger than 95, 99, or 99.9% of the randomized
controls, respectively.

Averaging over all 40 logarithmic mel-scaled coefficients we
can look at overall correlation coefficients for the reconstruction
for each of the participants. Figure 6A shows correlation
coefficient for all participants using all electrodes, only IFG
electrodes, only PMv electrodes and only M1v electrodes.

Listening Tests
To evaluate the intelligibility of our synthesized audio, we
conducted an online forced-choice listening test with 55 (15
female) healthy volunteers. In the test, volunteers heard the 30
synthesized words with the highest spectral correlations and were
given four options, the correct answer plus three distractors,
to choose from. Volunteers had to pick the option which they
thought the synthesized audio resembled the most. One of
the four answers always needed to be selected (forced-choice).
Distractor words were chosen randomly from the complete
set of words used in our study, resulting in similar word
length (as most words follow the CVC structure) and similar
distribution of phonemes. Word order and the order of the
options was randomized for each volunteer individually.We used
the beagleJS framework (Kraft and Zölzer, 2014) to build our
listening test.

After the listening test, we asked the volunteers to give
information about their gender (15 female, 40 male), age
(34.9 ± 14.1) and whether they were English native speakers (27
native speakers).

All volunteers achieved accuracies well above chance level in
identification of the correct word (66.1%± 6%) with relative low
variance. These results show that our approach is very promising
to generate natural, intelligible output for future voice prosthesis
from neural data.

Objective Intelligibility Measure
In addition to the subjective listening tests, we calculated an
objective intelligibility measure, namely the short-term objective
intelligibility (STOI) measure (Taal et al., 2011) that is known to
correlate well with subjective intelligibility. The STOI employs
simple discrete Fourier transformation-based Time-frequency-
decomposition. The STOI score (ranging from 0 to 1) can
be mapped to an subjective intelligibility probability d in a
transcription intelligibility test (ρ = 0.95). Taal et al. (2011)
provides the formula:

STOI =
100

1+ exp(ad + b)

with a = −13.1903 and b = 6.5192. Reformulating this,
we can estimate the subjective intelligibility probability d in a
transcription intelligibility test given the calculated STOI with:

d =

loge(
100
STOI − 1)− b

a

Objective measures of intelligibility, as well as spectral
correlations, are notoriously unreliable in judging speech
synthesis output for its intelligibility, we therefore believe our
listening test provides a more realistic estimation of intelligibility
for our data set, but report the STOI values for completeness. As
our approach does not operate in the cepstral domain, we do not
report Mel Cepstral Distortion (MCD) measures, which suffer
from the same limitations as correlations.

RESULTS

Brain-to-Speech Reconstructs
High-Quality Audio
The Brain-To-Speech approach concatenates natural units of
speech and is thereby capable of creating completely unseen
words, without the need to define a dictionary of recognizable
words. The resulting waveforms sound very natural, as
the user’s own voice is employed. Many of the original
spectrotemporal dynamics of speech are reconstructed. Figure 4
shows examples of generated and actual speech in audio and
spectral representations. The spectral representation is only used
for illustration and analysis purposes, the approach concatenated
speech units in their original waveform.

We evaluated the performance of Brain-To-Speech for each of
the six participants by computing correlations between original
and generated audio spectrograms using 5-fold cross-validation.
Word lists in training and test set were disjoint. Models are
trained participant dependent, as brain anatomy and electrode
grid locations are strongly participant dependent.

To better represent the human perception of speech, we
compressed the speech spectrogram to the Mel-scale (Stevens
et al., 1937) using 40 logarithmically-spaced triangular filter
banks. Correlations were calculated for each mel-scaled spectral
coefficient between the original and reconstruction individually
and then averaged across spectral coefficients.

High correlations were achieved for all of the six
participants (best participant r = 0.574 ± 0.088 STD, average
r = 0.246 ± 0.075) when using all electrodes (Figure 5A).
Intelligible speech was obtained for many examples. To establish
chance level correlations, we conducted randomization tests. A
randomized baseline was established by selecting random speech
intervals instead of the best fitting speech unit and repeating
this procedure 1,000 times for each participant. Correlation
coefficients were higher than chance level for all participants
when using all electrodes (highest randomized r = 0.04). Our
reconstruction resulted in significantly higher than chance level
correlations across all spectral coefficients (Figure 6B).

M1v Provides Most Information to
Decoding Process
Examining the three functional areas of interest independently,
all three regions achieved correlations above the level of
random chance. Ventral primary motor cortex (M1v) clearly
outperformed the other two regions (significant differences,
paired t-test p < 0.001), performing almost as well as all
electrodes combined (r = 0.235±0.012). Inferior Frontal Cortex
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FIGURE 4 | Generation example: Examples of actual (top) and generated (bottom) audio waveforms (A) and spectrograms (B) of seven words spoken by participant

5. Similarities between the generation and actual speech are striking, especially in the spectral domain (B). These generated examples can be found in the

Supplementary Audio 1.

FIGURE 5 | Performance of our generation approach. (A) Correlation coefficients between the spectrograms of original and generated audio waveforms for the best

(purple) and average (green) participant. While all regions yielded better than randomized results on average, M1v provided most information for our reconstruction

process. (B) Results of listening test with 55 human listeners. Accuracies in the 4-option forced intelligibility test were above chance level (25%, dashed line) for all

listeners.

yielded lowest results of r = 0.067 ± 0.004. Activity from the
premotor cortex yield an average of r = 0.132± 0.008.

These results show that speech motor cortex (M1v) contains
most information for our reconstruction approach. Comparing
the correlation coefficients for each individual participant with
the randomized baseline (Figure 6A), we can see that the
reconstruction using all electrodes is significantly better than
chance level (p < 0.05) for all participants and highly significant
(p < 0.001) for all but one participant. The reconstruction from
IFG is significantly better than randomized baseline for only two
participants. Information from premotor cortex (PMv) could be
used to significantly reconstruct speech from 4 participants and
speech motor cortex (M1v) yielded the best results with highly

significant reconstruction for all 6 participants. The results for the
best participant (5) show no significant difference between using
all electrodes and only using information from M1v. Given the
small amount of training data, the similar levels of performance
between all electrodes and only M1v could also be due to the
larger feature space size in the first condition.

Reconstructed Speech Is Intelligible
To investigate the intelligibility of the Brain-To-Speech approach,
we conducted a listening test with 55 human listeners.
The listeners were presented with individual generated audio
waveforms and were required to select the most likely perceived
word from a list of four word options. All listeners achieved
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FIGURE 6 | Detailed decoding results. (A) Correlations between original and reconstructed spectrograms (melscaled) for all participants and electrode locations. Stars

indicate significance levels (* Larger than 95% of random activations, *** Larger than 99.9% of random activations). M1v contains most information for our decoding

approach. (B) Detailed results for best participant using all electrodes and the entire temporal context (blue) and only using activity prior to the current moment (cyan)

across all frequency coefficients. Shaded areas denote 95% confidence intervals. Reconstruction is reliable across all frequency ranges and above chance level

(maximum of all randomizations, red) for all frequency ranges.

well above chance level performance (25%) in this listening test
(average of 66.1 ± 5.9%, Figure 5B).

In addition to the listening test, we calculated an objective
measure of intelligibility. Our approach achieved an average
Short-Term Objective intelligibility (STOI) measure (Taal et al.,
2011) of 0.15, corresponding to an subjective intelligibility
probability of 36%. This would mean that subjects would be
able to identify the correct word in a transcription test 36% of
the time. Our best participant reached a mean STOI of 0.25
corresponding to 41% intelligibility.

Approach Is Real-Time Ready
For future applications, it is important that our approach is
real-time ready. While computing times for our limited dataset
size are fast enough for real-time processing (less than 1ms
for each new window every 10 ms), the long temporal context
automatically induces an offset equivalent to the length of
temporal context in the future. We therefore repeated our
experiments using only ECoG features prior to the current time
point (Figure 6B). We found that results only decreased mildly
(best r = 0.57 for all temporal context, best r = 0.528 ± 0.088
using only preceding feature vectors, Figure 6B) when using no
information from the future. This emphasizes that our approach
can be integrated into a closed-loop system, as preceding
information is sufficient to reconstruct high-quality audio.

DISCUSSION

Brain-To-Speech generated speech from the user’s own voice,
leading to output that sounded very natural. Reconstructed audio
was of high-quality and the best examples were intelligible to
human listeners. Our simple approach, based on unit selection,
made no assumptions about the form, syntax or even language

of the reconstructed speech. It therefore should be able to

reconstruct words other than the ones used in our experiment
and even sentences and continuous speech. In fact, among the
words that were correctly identified by all human listeners is

“Persian,” which does not follow the CVC structure. Nevertheless,

Brain-To-Speech requires further testing with spontaneous,
continuous speech in a closed-loop fashion. Our analyses are
performed offline on previously collected data, but we show
that Brain-To-Speech is capable of real-time processing, as
information preceding the current moment is sufficient to
generate high-quality audio. Comparing our results in terms of
correlation coefficients to those achieved in the reconstruction
of perceived speech from STG (Pasley et al., 2012), we achieve
higher correlations for our best participants, but a lower mean r.
However, we reconstructed articulated speech from motor areas,
while Pasley et al. (2012) employed activity in auditory areas
during speech perception for their approach. Martin et al. (2014)
achieved higher mean correlations with their reconstruction of
spectrotemporal features of speech, but lower correlations for
their best participant. Their approach did not reproduce the
audio waveform of the reconstruction, however. In our approach,
the spectral correlations were only a secondary outcome, as we
reconstructed audio waveforms directly, of which correlations
were then calculated. This is distinctly different from using an
approach that is directly tailored to maximize correlations.

Comparing the results of Brain-To-Speech to recent deep
neural network based approaches (Akbari et al., 2019; Angrick
et al., 2019; Anumanchipalli et al., 2019), our approach yields
slightly lower correlations and STOI values, but does not require
the huge computational costs of deep neural networks and is
in fact fast enough for real-time processing. The formulation
of our unit selection approach allows to easily integrate
prior information about long term dependencies in speech
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and language in the future, while not requiring bi-directional
processing. This can allow the Brain-To-Speech approach to
produce good quality output with very little data, while two of
the other studies (Akbari et al., 2019; Anumanchipalli et al., 2019)
used significantly more data per participant.

Primary motor cortex (M1v) provided the most informative
activity for decoding speech and performed as highly as
electrodes from all three cortices in our best participant.
Recent studies showing robot arm control in paralyzed patients
(Hochberg et al., 2006) utilize electrode arrays implanted
into M1 and thereby purely relying on activity generated
in attempted movement. We hope that our results are also
extensible to attempted speech in patients with speech deficits.
It is not surprising that M1v provided the most information
about speech acoustics, given recent results showing M1v
contains themost information about speech kinematics (Chartier
et al., 2018; Mugler et al., 2018) and results showing that
speech acoustics are highly correlated with articulation (Wang
et al., 2015). Additionally, our results show that high quality
speech generation can be achieved with a small number of
electrodes (between 12 and 20). The rapid feedback of Brain-
To-Speech is capable of could also enable the user to learn
to operate the speech prosthesis in the future, as has been
demonstrated for neural upper-limb prostheses (Hochberg et al.,
2006).

The intelligibility analyses indicate that the generated speech
can be intelligible to human listeners despite the fact that our
synthesis approach ignores semantic and linguistic knowledge.
Given more training data and the opportunity for listeners to
gain more experience with perceiving the idiosyncrasies of the
generation, we are confident that the Brain-To-Speech approach
would allow a BCI to generate naturalistic speech. The inclusion
of prior information is known to increase the intelligibility of unit
selection approaches (Hunt and Black, 1996) and could also be
beneficial to our approach. In the future, a closed-loop feedback
of audible speech could put the speaker in the loop, thus giving
paralyzed individuals the chance to adapt their brain activity to
further improve the audio output.

LIMITATIONS

Currently, our approach relies on simultaneous recording of
audible speech and ECoG activity. To adapt this approach
for locked-in patients, we envision the following possibilities:
Audible speech could be recorded before the patient loses
the ability to speak, for example earlier in the course of
a motor neuron disease. Alternatively, paralyzed patients
could attempt to speak along with audio recordings of
other people speaking (referred to as shadowing) and
thereby generate a parallel recording of audio and brain
activity data. This limitation highlights the long road toward
usable BCIs based on speech processes. In the meantime,
approaches based on typing activity (Pandarinath et al., 2017;
Nuyujukian et al., 2018) already provide high performance
communication for paralyzed patients, with an only slightly less
natural paradigm.

A clear limitation of our study is the small dataset size
and the intraoperative recording setup. The background
noise levels and the patients’ general state during an awake
surgery will result in suboptimal data that are not directly
transferable to the target population. However, the intraoperative
setup allowed us to place the high-density grids on relevant
areas for speech production and thereby investigate this
process thoroughly. Longer term recordings of relevant
areas, including spike recordings from intracortical arrays,
are needed to bring the envisioned technology to patients.
Especially recent findings of speech representations in the
hand knob of the dorsal motor cortex (Stavisky et al., 2018a,b;
Willett et al., 2019) might bring Brain-To-Speech to those
in need.

Another limitation in our experimental design is the lack
of control stimuli, including non-speech articulation and
speech perception. The inclusion of these control stimuli in
future experiments will help to identify aspects exclusive to
speech production.

CONCLUSION

In conclusion, we present a simple pattern matching approach
for the direct synthesis of comprehensible audible speech from
cortical activity in motor, premotor and inferior frontal gyri. Our
approach could restore a voice and natural means of conversation
to completely paralyzed patients.
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Brain–Computer Interfaces (BCI) aim to bypass the peripheral nervous system to link

the brain to external devices via successful modeling of decoding mechanisms. BCI

based on electrocorticogram or ECoG represent a viable compromise between clinical

practicality, spatial resolution, and signal quality when it comes to extracellular electrical

potentials from local neuronal assemblies. Classic analysis of ECoG traces usually

falls under the umbrella of Time-Frequency decompositions with adaptations from

Fourier analysis and wavelets as its most prominent variants. However, analyzing such

high-dimensional, multivariate time series demands for specialized signal processing

and neurophysiological principles. We propose a generative model for single-channel

ECoGs that is able to fully characterize reoccurring rhythm–specific neuromodulations

as weighted activations of prototypical templates over time. The set of timings, weights

and indexes comprise a temporal marked point process (TMPP) that accesses a set of

bases from vector spaces of different dimensions—a dictionary. The shallow nature of

the model admits the equivalence between latent variables and representations. In this

way, learning the model parameters is a case of unsupervised representation learning.

We exploit principles of Minimum Description Length (MDL) encoding to effectively

yield a data-driven framework where prototypical neuromodulations (not restricted to

a particular duration) can be estimated alongside the timings and features of the TMPP.

We validate the proposed methodology on discrimination of movement-related tasks

utilizing 32-electrode grids implanted in the frontal cortex of six epileptic subjects. We

show that the learned representations from the high-gamma band (85–145 Hz) are not

only interpretable, but also discriminant in a lower dimensional space. The results also

underscore the practicality of our algorithm, i.e., 2 main hyperparameters that can be

readily set via neurophysiology, and emphasize the need of principled and interpretable

representation learning in order to model encoding mechanisms in the brain.

Keywords: brain-computer interfaces, electrocoticogram (ECoG), generative model, minimum description length

(MDL), representation learning, temporal marked point process
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1. INTRODUCTION

Brain-Computer Interfaces (BCI) strive to surpass the need for
any measure of muscle control in order to provide patients
suffering from severe neuromuscular disabilities with the ability
to interact with the external world. These systems are anchored
on principled analysis of the electrical activity of the brain
during movement or movement intent; successful decoding of
such neurophysiological processes is then relayed to external
devices that execute the desired motor activity (Lebedev and
Nicolelis, 2006). Recent technological and scientific advances
in BCI systems have extended its application from enabling
communication for completely “locked in” patients (Kübler
et al., 2001; Vansteensel et al., 2016; Chaudhary et al., 2017), to
restoration of motor control for patients with severe disabilities
(Pfurtscheller et al., 2000; Hochberg et al., 2012; Yanagisawa et al.,
2012; Ajiboye et al., 2017), and neurorehabilitation where BCIs
are doubled as therapeutic devices (Dobkin, 2007; Soekadar et al.,
2015; Bundy et al., 2017).

Current BCIs most commonly depend on scalp
electroencephalogram (EEG) to record the combined electrical
potentials of massive neuronal populations. While EEG is a
non-invasive and cost-effective alternative, it is limited both in
terms of spatial and temporal resolutions due to the overlapping
activity of different cortical generators. In addition, the passive
conductance through brain tissue, bone, and skin restrict the
effective spectral support of the EEGs (Lebedev and Nicolelis,
2006). BCI systems depending on other non-invasive methods
like magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) provide finer spatiotemporal and
spatial resolution, respectively (Weiskopf et al., 2004; Mellinger
et al., 2007). However, besides being technically exhaustive,
these methods are not cost effective. Moreover, the dependence
of fMRI and positron emission tomography (PET) techniques
on blood flow causes these systems to have very long time
constants deeming them impractical for rapid communication
and closed-loop applications (Vaughan, 2003).

Invasive methods involving single and multiunit recordings
circumvent all the above mentioned drawbacks while delivering
outstanding performance (Serruya et al., 2002; Taylor et al.,
2002; Lebedev et al., 2005; Hochberg et al., 2012; Collinger
et al., 2013; Bouton et al., 2016). However, these methods
require that the cortex be penetrated which brings into
question the safety of such technologies. Further, glial scars may
develop overtime decreasing accessibility of units and inducing
complex histological activity, simultaneously debilitating neural
recordings. Finally, spatial resolution is inherently limited due
to the restricted surface area covered by the recording electrodes
(Abdulkader et al., 2015; Waldert, 2016).

Considering the disadvantages of both invasive and non-
invasive BCIs and keeping in mind the ultimate aim of designing
a durable, fully-implantable BCI system, many research groups
have suggested Electrocorticogram (ECoG) as a more practical
solution. These signals are acquired by implanting a grid of
flat electrodes either above or below the dura mater, while
never actually penetrating the brain parenchyma. Number of
electrodes in these grids vary between 4 and 256, each having a

diameter between 70 and 2 mm and an inter-electrode spacing
between 1 and 10 mm depending on the extent of coverage and
precision appropriate for analysis (Schalk and Leuthardt, 2011).
Commonly used for invasivemonitoring in patients with epilepsy
(Reddy et al., 2009; Tangermann et al., 2012; Arya et al., 2017),
these electrodes measure the cumulative activity of multiple
neurons present in a small radius (∼ 50–350 µm) around the
tip of the electrode. Given their proximity to the brain surface,
ECoG recordings not just provide better spatial resolution (1.2–
1.4 mm compared to several cm in EEG), improved SNR and
larger spectral support (0–500 vs. 0–40 Hz in EEG), they have
also been found to be more robust to electrooculographic (EOG)
and electromyographic (EMG) artifacts (Freeman et al., 2000;
Ball et al., 2009). Moreover, while fidelity and durability of
these electrodes have been positively tested in macaques for
several months (Chao et al., 2010; Mestais et al., 2015; Degenhart
et al., 2016), further evaluation on a group of patients implanted
with subdural electrodes is under experimentation (Delavallée
et al., 2008). ECoG recordings, therefore, strike a perfect balance
between clinical practicality and signal quality, consequently
delivering prominence in performance (Leuthardt et al., 2006;
Schalk et al., 2008; Kubanek et al., 2009; Brunner et al., 2011;
Yanagisawa et al., 2012; Hotson et al., 2016; Degenhart et al.,
2018).

The broad spectral support available via ECoG recordings
has important implications for BCI applications pertaining to
encoding and decoding motor tasks. For instance, increased
modulatory activity of faster rhythms (75–100 Hz) in the motor
cortex of patients performing sustained muscle contractions has
shown specific somatotopic organization (Crone et al., 1998;
Miller et al., 2007). Several ECoG-based studies have confirmed
the correlation between spatially focused gamma activity and
motor function (Aoki et al., 1999; Miller et al., 2010; Leuthardt
et al., 2012; Gunduz et al., 2016). Although advances in recording
technology has allowed for similar EEG-based (Jokeit and
Makeig, 1994; Darvas et al., 2010), the recordings usually suffer
from severe contamination due to muscle artifacts (Goncharova
et al., 2003).

In addition to the BCI recording paradigm, appropriate signal
processing and feature extraction are paramount for designing
effective BCIs. Extracellular electrical potentials from the brain—
such as EEG, ECoG, and Local Field Potentials (LFP)—are
usually deemed as either chaotic deterministic or stochastic
non–stationary sequences; hence, they require principled and
distinct processing that needs to incorporate neurophysiological
principles into the modeling framework. Neuromodulations, also
known as phasic events, wave packets, or micro-events constitute
an order parameter of neuronal assemblies in the sense that
the population imposes order by regulated synaptic interactions,
i.e., they reflect the spatiotemporal interplay of local neuronal
populations (Freeman and Quiroga, 2012). These textured
images (as coined by Walter J. Freeman) appear in the recorded
trace as organized, transient patterns and differ statistically from
the featureless noisy background known to be characterized
by a 1/f power spectrum (Freeman, 1975). Moreover, phasic
events and deviation of Normality are the telltale signs of self-
organized criticality—a metastable state of the brain that allows
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shifting between dynamical states (Buzsaki, 2006). The goal
of signal processing is, then, to discriminate between relevant
neuromodulations and the temporally disorganized but spatially
structured background activity in order to elucidate the encoding
mechanisms that arise during BCI tasks.

A vast majority of ECoG-based BCIs exploit Time-Frequency
(TF) decompositions to build multiscale representations (Dat
et al., 2006; Zhao et al., 2010; Aydemir and Kayikcioglu,
2011; Herff et al., 2016), while the more advanced population
algorithms incorporate spatial information to account for
propagation and dependencies across electrodes (Ince et al.,
2008; Chao et al., 2010; Onaran et al., 2011; Ramsey et al.,
2018). However, TF methods are limited in their performance
pertaining to the uncertainty principle (Gabor, 1946) which lower
bounds the product of time and frequency resolutions. That is,
in order to efficiently capture short locally stationary segments
from non-stationary ECoGs, one must utilize small evolving
windows, which, then, compromises the frequency resolution
of the representation and blurs the phase information of
potential phasic events inside the processing window in question.
Although, wavelets attempt to alleviate this shortcoming (Unser
and Aldroubi, 1996; Mallat, 1999), the output still suffers due
to the imposition of fixed structures on the analysis of the
input signal, i.e., the inference is generic by nature due to
the templates of the underlying imposed generative model.
Lastly, the background activity (which is sometimes deemed
as “noise” by the signal processing algorithms applied to
each lead) demands for application-specific frameworks that
explicitly model the physiological regimes embedded in the
temporal traces. The resolution constraints of TF methods and
the inference on generic generative models that disregard the
complex dynamics of ECoG (e.g., linear projections onto preset
sinusoids in the case of Fourier analysis) are the two main
deterrents of TF decompositions. It is imperative to exploit the
neurophysiology behind ECoG in order to propose principled
generative models that would not only advance signal processing
applied to Neuroengineering, but also exploit the multivariate
nature of the ensembles in order to improve performance and
interpretability of ECoG-based BCIs.

We exploit a data-driven framework based on a generative
model for single-channel ECoGs which is able to fully
characterize each scale-specific neuromodulation by its timing,
amplitude, and duration (Loza et al., 2017). One of the main
advantages of the generative model is its exceptional temporal
resolution limited only by the sampling rate, i.e., no windowing is
necessary. Inference on the model can be viewed as either classic
feature engineering or sampling of a Temporal Marked Point
Process (TMPP) (Daley and Vere-Jones, 2007) fully characterized
by the intensity function of the timings and the joint probability
density function (pdf) of the amplitudes and durations—the
“features” of the TMPP. This dual interpretation opens the door
to uncover novel encoding mechanisms beyond the pervasive
power-modulation-based techniques. Learning on the model
invokes neurophysiological principles to restrict the search space
of potential phasic events by isolating the pervasive background
component of extracellular electrical potentials (Freeman and
Quiroga, 2012). Then, the resulting vector space is partitioned

in a top-down approach by means of a greedy clustering scheme
based on the principle of Minimum Description Length (MDL)
(Grünwald, 2007). The outcome is a set of prototypical vectors
from different vector spaces (i.e., durations)—a collection of
cluster centroids that represent bona fide transient events. Lastly,
the learning process is virtually parameter free: it only requires
two main hyperparameters; however, they are tightly connected
to the oscillatory rhythm under consideration and, thus, can be
selected based on empirical rules fully supported by clinical and
research fields.

The present study integrates the advantages of an ECoG-
based BCI and the proposed unsupervised learning framework
to discriminate movement-related tasks in six patients. Each
subject was requested to perform a motor task involving moving
a joystick in one of four directions (up, down, left, or right) and
an additional finger movement “trigger” task while ECoG activity
from twomain areas are recorded. Labeled single-channel, multi-
trial ensembles go through the learning and inference processes
on the generative model with a focus on the high-gamma
band (85–145 Hz). The results in terms of movement direction
separability not only confirm the plausibility of the methods,
but they also reveal a novel cortical encoding mechanism taking
place during movement-related tasks. The rest of the paper
continues as follows: section 2 explains the generative model
for ECoG alongside the proposed learning mechanisms. Section
3 details the experimental setting, while section 4 summarizes
the main results. Section 5 offers discussion, limitations, and
perspective. Lastly, section 6 concludes the paper and proposes
future work.

2. EXPERIMENTAL SETTING

The study comprised of 3 male and 3 female participants
in the age range of 22–40 years. All six subjects, suffering
from medically intractable epilepsy, were undergoing invasive
subdural electrode monitoring before resection. A standard
(1 cm interelectrode spacing) 32-contact frontal grid and a high-
density (0.5 cm interelectrode spacing) 96-contact temporal grid
were used to ensure unilateral, frontotemporal, subdural grid
coverage on the side corresponding to suspected seizure onset.
Altogether, there were three patients with left coverage while the
rest had right coverage. Patients did not incur additional risk by
participating in these studies. Research protocols were approved
by the University of Iowa Human Subjects Review Board.

During the trials, each participant was instructed to move a
joystick in one of the four cardinal directions (up, down, left,
right) in response to a visual display of an arrow pointing toward
the target location. A fifth display in the form of a square was
also included as a “trigger condition” where in response to the
cue, the participant was required to click the trigger button on the
joystick with the tip of the index finger. All cues were randomly
interleaved and no bias was introduced during their presentation.
Further, the patient was required to hold the joystick in the
target location until the visual display was replaced with a blank
screen, following which the patient was asked to either release the
joystick or bring it to a neutral position (Figure 1).
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FIGURE 1 | Experimental paradigm of ECoG–based BCI.

All trials lasted∼4 s. where the initial∼2.8 s involved stimulus
presentation and joystick maneuvers, while in the remaining
∼ 1.2 s the patient returned the joystick to its neutral position. All
participants performed an average of 50 trials for each direction
and “trigger” condition and all the trials were performed with
the hand contralateral to the grid placement. Table S1 details the
number of trials for each joystick direction under consideration
in our study. All signals were acquired at a sampling rate of 2034.5
Hz, which were later downsampled to 500 Hz for analysis.

3. METHODS

3.1. Generative Model for ECoG
Observable ECoG traces are the result of an underlying
multiscale system that describes large-scale function of neuronal
populations. One of the consequences of the structural fractal
nature of the cortex is reflected on the very own fractal, scale-free
nature of its observable variables (Buzsaki, 2006), being ECoG—
with its characteristic 1/f law—one of the most representatives
at a mesoscopic level. Self organized-criticality (Linkenkaer-
Hansen et al., 2001; Freeman et al., 2003; Stam and De Bruin,
2004; Bak, 2013) further formalizes these concepts posing
that brain dynamics remain at a complex state at the border
between unpredictable chaos and predictable periodic behavior.
The former representing a hypersensitive metastable state of
the network near phase transitions, whereas the latter brings
organization and transient stability by oscillations (Buzsaki,
2006). This type of micro-events have been well documented in
the literature under the umbrella of induced potentials or event-
related oscillations (Tallon-Baudry and Bertrand, 1999; Freeman
and Quiroga, 2012), e.g., the occipital alpha rhythm (Berger,
1929), K-complexes, sleep spindles (Rechtschaffen et al., 1968),

gamma oscillations in the olfactory bulb of cats and rabbits
(Freeman, 1975), high-frequency oscillations correlated to the
binding of perceptual information (Rodriguez et al., 1999), and
hippocampal sharp-wave ripples (Buzsáki, 2015) to name a few.
There are also so-called pathological patterns that are associated
to particular states in a pathological setting, e.g., in epilepsy, inter-
ictal spikes and high-frequency oscillations (HFO) or ripples have
been deemed as biomarkers and even potential predictors of
seizures (Worrell et al., 2004; Staley et al., 2011; Jacobs et al.,
2012). The challenge of principled signal analysis lies on the
detection, modeling, and further unveiling of the behavioral
correlates of said events.

Walter J. Freeman posited that the physiological regimes
of the generating local neural assembly are reflected on the
statistical properties of its observable EEG traces (Freeman and
Quiroga, 2012). If the network is at rest, the resulting EEG
is featureless, unorganized, and with amplitudes that closely
resemble a Gaussian distribution—a critical state characterized
by expectation in the form of hypersensitivity to perturbations,
such as sensory stimuli or motor output. Transition to an active
or work state shifts the network dynamics, which is revealed
by transient stability, and, in turn, derives in deviation form
Gaussianity (according to higher–order statistical moments). The
generating mechanisms behind extracellular electrical potentials
guarantees seamless translation of Freeman’s theories from
EEG to more local (and invasive) electrophysiology, such as
ECoG and LFP (Niedermeyer and da Silva, 2005; Buzsáki
et al., 2012). Let ỹ(t) be the result of linear filtering a single-
channel, single-trial ECoG trace. Linear filtering is necessary so
that the Gaussian/Non-Gaussian regimes are preserved through
linear operators on the raw signal. According to Freeman’s
experimental results and the theory of self-organized criticality of
neuronal assemblies, ỹ(t) can be decomposed into two sequences:

ỹ(t) =

{

y(t) if Network is Active (Y State)
z(t) if Network is at Rest (Z State)

(1)

where y(t) is the phasic event component—an ideal, noiseless
sequence that includes scale-specific neuromodulations over
time. On the other hand, z(t) is the filtered version of the
underlying ongoing activity, i.e., a background component.

The background component, z(t), ongoing or spontaneous
activity is associated to rest regimes of the generating neural
network. From a signal processing point of view, it can be
regarded as noise due to its featureless nature. However, it should
not be confused with interfering and external sources usually
mixed and superimposed in ECoG recordings—the so-called
artifacts, e.g., ocular and muscle activity, movement-related
activity, signal degradation as a byproduct of variable electrode
impedance, and so on (Niedermeyer and da Silva, 2005). Also,
noise might imply a complete divorce from behavior, yet, several
studies have confirmed the encoding nature of the ongoing
EEG by regulating response variability and imposing priors for
induced potentials (Başar, 1980; Buzsaki, 2006; Hanslmayr et al.,
2006; Busch et al., 2009; Luczak et al., 2009). Moreover, the
background component is essential tomaintain cortical functions
in a linear dynamic range (Freeman and Quiroga, 2012).
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FIGURE 2 | Generative model for ECoG. A bandpassed, single–channel,

single–trial ECoG trace, ỹ(t), is modeled as the noisy addition of weighted,

scale–specific, shifted filters over time. Temporal Marked Point Process

(TMPP) samples sparsely activate dictionary atoms to yield the phasic event

component y(t). Atom corresponding to ω1 appears twice in the TMPP.

* represents indexed convolution according to Equation (2).

The phasic event component is modeled taking inspiration
from the shot noise model (Davenport and Root, 1958). y(t) is the
result of a Temporal Marked Point Process (TMPP) with timings
τ and marks (features) α and ω activating filters, d, over time:

y(t) =

K
∑

ω=1

nω
∑

i=1

α
ω

i dω(t − τ
ω

i )+ ǫ(t) (2)

where D = {dω}
K
ω=1 is a set of filters, kernels or atoms known

as dictionary. τω

i and α
ω

i are the timing and encoding coefficient
of the i–th instance of filter dω, respectively. ǫ(t) is the additive
noise sequence (possibly resulting from thermal noise, variation
in electrode impedance, and propagation losses through tissue).
nω indicates the number of instances of dω, which is not restricted
to be the same across filters. ω basically constitutes an assigning
set (i.e., index) between observed micro–events and modeled
dictionary atoms, i.e., ω ∈ {1, 2, 3, . . . ,K}. The resolution of τ

is limited only by the recording sampling rate; for instance for
500 Hz, one can determine the occurrence of a neuromodulation
with a 2 ms. resolution. In theory, the support of α is IR; however,
practical constraints are imposed by the power of the rhythm
under consideration. Figure 2 illustrates the encoding from
TMPP samples to noisy single-channel, bandpassed ECoG trace.

The model in (2) can be alternatively interpreted as y(t) being
the observable variable from a generative model with latent
variables Y and Z. Y is parameterized as 2Y , {τ ,α,ω,D},
whereas Z, being Gaussian in nature, is fully characterized

by the mean and standard deviation of the background EEG,
i.e. 2Z , {µZ , σZ}. A multiple input single output (MISO)
framework (Brockmeier and Príncipe, 2016) is the basis of the
current generative model for ECoG; however, training was not
scalable due to the amount of free hyperparameters. Then, a
single-rhythm approach was adopted by Loza et al. (2017), where
learning focused on scale-specific patterns of fixed duration by
means of shift-invariant time series clustering techniques. The
current work goes one step further and learns kernels of different
lengths. Similar models have been proposed in neuroscience
and statistics under the connotation of convolutional sparse
coding (Lewicki, 2002; Smith and Lewicki, 2006; Balcan and
Lewicki, 2009; Ekanadham et al., 2011). Their results highlight
the need of principled priors and constraints to tackle an inherent
combinatorial problem.

Given an ensemble of single-channel ECoG recordings,
{ỹi(t)}

N
i=1. Learning on the model implies estimating the

dictionary D whose elements, in general, are not restricted in
duration—they represent bases from vector spaces of different
dimensions. On the other hand, inference or encoding is posed
as learning the set of timings and marks of the TMPP, i.e.,
sampling from a point process. The shallow nature of the model
admits the equivalence between latent variables and features
or representations. D also encodes features of its own, such
as duration, central frequency, and Q-factor. Estimating 2Y ,
then, can be posed as a case of unsupervised representation
learning for ECoG (Bengio et al., 2013). The shallow
generative framework and physiological-based constraints
of the model guarantee that the learned dictionary and densities
of timings, marks, and representations lead to meaningful and
interpretable encoding mechanisms of the network without
imposing handpicked signatures, as in the case of wavelets or
Gabor bases.

3.2. Learning on the Model
Estimating the latent variables of this type of generative models
usually falls into two categories depending whether the sources
are explicitly estimated or not during learning. Bell and Sejnowski
(1996), Davies and James (2007), Lucena et al. (2011), and
Brockmeier and Príncipe (2016) showcase the potential of
learning the bases without appealing to reconstruction cost
functions or explicitly estimating the sources, i.e., marks of
the TMPP, by using Independent Component Analysis off–the–
shelf implementations, such as FastICA (Hyvarinen, 1999). The
alternative approach (adopted here) is to exploit block coordinate
descent optimization to iteratively estimate the sources while
keeping the filters fixed, and then, learn the dictionary atoms
while keeping {τ ,α,ω} fixed. The result is a local optimum
in solution space with the added bonus of less computational
demands. For a comparison of both approaches applied to a
MISO model on synthetic and real EEG, refer to Brockmeier
and Príncipe (2016). Achieving the global optimum is impossible
in practice because it would require combinatorial analysis,
which is simply intractable, i.e., it would require checking all
the possible different combinations of dictionary atoms (with
different dimensionalities) until optima are found; hence, here we
opt for the tractable, albeit suboptimal solution to the problem
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FIGURE 3 | Learning of generating dictionary and TMPP features. The

discriminative embedding transform (DET) isolates potential M–snippets

generated by the Y (active) state and collects them in the matrix X.

MDL–based hierarchical clustering estimates TMPP timings and marks as well

as bases from vector spaces of different dimensions, D.

at hand. For our case, learning takes place in two very distinctive
sequential stages: discrimination between dynamical regimes and
hierarchical partitioning of the data (Figure 3).

3.2.1. Discrimination of Dynamical Regimes: From

Traces to M–Snippets
We take advantage of the architectural constraints and
neurophysiology of the ECoG to render the learning more
tractable, alleviate the computational complexity, and, most
importantly, facilitate the interpretation of the learned
prototypes. This is accomplished by bandpass filtering the
traces according to the clinical EEG rhythms (Niedermeyer and
da Silva, 2005). The result is a natural grouping of scale-specific
neuromodulations. Then, sparsity is leveraged by associating a
single dictionary atom to an observed, noisy micro-event. This
will further prevent overfitting and overlapped occurrences of
TMPP samples; it also emphasizes the temporal sparsity of the
sources. Then, there is major deviation from the approaches
adopted in classic convolutional sparse coding applied to time
series (Lewicki, 2002; Smith and Lewicki, 2006; Mailhé et al.,
2008; La Tour et al., 2018). Instead of performing iterative
template matching over time, e.g., Matching Pursuit (Mallat and
Zhang, 1993), that attempts to reconstruct the entire input, we
exploit Freeman’s theories and the concept of self-organized
criticality to map the ECoG to a surrogate space of constrained
ℓ2-norms where discrimination between rest and active stages
is plausible. Let the M-sample-long subsequence from ỹ[n]

centered at the time instance t = i be aM-snippet:

ỹi = ỹ(i−M/2 : i+M/2)

s.t i = M/2,M/2+ 1, . . . , η −M/2 (3)

where η is the number of sampled values in ỹ(t). One of
the intermediate goals of learning on the generative model is
to effectively discriminate between M-snippets generated by
Z (background subsequences) and M-snippets with embedded
phasic events generated by Y . The advantages of principled
discrimination is two-fold: decrease likelihood of biased atoms
and improved convergence rates by effective restriction of the
input space to subsequences from the active stage, i.e., the
learning is not reconstructive in nature because the entire ECoG
trace, ỹ(t), is not worth encoding. The learning falls more into the
hierarchical partitioning category. In this regard, the embedding
transform (Loza and Principe, 2018)—introduced as a novel tool
to assess non–stationarity of single-channel EEG ensembles—
maps the input according to the ℓ2-norms of its constituent M-
snippets. The M-snippets are built sequentially: first, modulated
patterns are extracted (peak detection via moving averages or
instantaneous amplitudes), then, the rest of the unmodulated
patters complete the set of M-snippets. The middle points from
each sample is collected in the set 5 = {πi}. Powers of the M-
dimensional vectors are calculated, and, the resulting ℓ2-norms
comprise the surrogate variable βM . If ỹ(t) is strictly generated
by Z, its amplitudes will resemble a Gaussian density, which
derives in βM being a chi-distribution withM degrees of freedom.
Invoking the Central Limit Theorem, if M is large enough
(which is satisfied for high sampling rates), the chi-distribution
resolves to a Gaussian density. Conversely, M-snippets from Y
interspersed between Z counterparts will drive the shape of βM

by enlarging the tails and skewing the distribution. βM is then
a surrogate variable of the dynamic stages of the network. The
discriminative embedding transform (DET) goes one step further
and proposes a threshold in the βM space between potential
M-snippets from different regimes. Specifically, the matrix X

with columns xi collects all the M-snippets larger than the
hyperparameter γ :

xi = ỹ(πi −M/2 :πi +M/2)T (4)

s.t. ||ỹ(πi −M/2 :πi +M/2)||2 ≥ γ

The case for a set of multi-trial recordings is straightforward, i.e.,
X ∈ IRM×9 where 9 is the total number of M-snippets from
{ỹi(t)}

N
i=1 generated by Y . In short,X collects potential embedded

M-sample-long micro-events of single-channel, multi-trial traces
according to a non-linear mapper with hyperparameters M
and γ .

3.2.2. Learning Bases of Different Dimensions
After X is computed, the naive solution to extract centers of
mass in IRM would involve classic static clustering algorithms,
e.g., k-means. Yet, the shift-invariance of embedded phasic
events would most likely derive in meaningless clusters as
noted in Keogh and Lin (2005). Most importantly, if prototypes
of different durations are present, k-means would blur their
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contributions by grouping them in M-dimensional vectors. The
former problem is addressed by cross-correlation operators:
distances between prospective cluster centers and samples from
X can now be estimated over lags (similar to Matching Pursuit
implementations on time series). The latter problem is far more
challenging; it demands for principled measures between centers,
and vectors in general, of different dimensions, which is clearly
prohibitive under Euclidean distance regimes. We exploit the
parsimony principles of Minimum Description Length (MDL)
coding to build a hierarchical partitioning in IRM where the
learned atoms are not restricted to a fixed dimensionality.

The MDL principle is invoked to cluster reoccurring
patterns embedded in the columns of X. The goal is to
attempt to compress the data in a lossless manner by finding
repeated structures (or regularities) in it. Due to inherent
noise and response variability, we practically aim to discover
repeated structure and encode the differences. For instance,
the conditional description length of a sequence A after being
encoded with a hypothesisH is given by DL(A|H) = DL(A−H);
this can be interpreted as the cost of the encoding. DL(T) is the
bit level representation of time series T, which is defined as the
entropy of T times its lengthm, i.e.,:

DL(T) = −m
∑

t

P(T = t) log2 P(T = t) (5)

We exploit a cost function based on bit level representations
to decide among three basic clustering operations: creating a
cluster, adding a subsequence to an existing cluster, and merging
clusters. This approach was first introduced in Rakthanmanon
et al. (2011) under the term time series epenthesis as a virtually
parameter-free framework to find repeated subsequences in time
series without necessarily explaining all the data. In a similar
manner, we sequentially build a hierarchical partition of the
patterns embedded in X by greedily selecting the clustering
operation that reduces the total number of bits saved after being
applied, i.e., the difference in the number of bits before and
after applying an operator—a bitsave (BS) cost function. At each
iteration, one operator is selected and the updated set goes
through the same process until the set X is exhausted. The BS
corresponding to the three clustering operators are:

BS after creating cluster C from subsequences A and B:

BS = DL(A)+ DL(B)− DLC(C) (6)

where DLC(C) = DL(H) +

∑

A∈C
DL(A|H) − max

A∈C
DL(A|H)

is the number of bits needed to represent all subsequences
assigned to cluster C. H is the center subsequence of the cluster
under consideration.

BS after adding subsequence A to cluster C:

BS = DL(A)+ DLC(C)− DLC(C′) (7)

where C′ is the new cluster after adding A to C.
BS after merging clusters C1 and C2 into new cluster C′:

BS = DLC(C1)+ DLC(C2)− DLC(C′) (8)

Euclidean distance is used to initialize prospective clusters and
find the closest subsequence from a given cluster center. Cross-
correlation provides an intuitive extension to Euclidean distance
over lags for both tasks and is, therefore, exploited in the current
work. Consequently, the shift-invariance nature of the micro-
events is explicitly modeled. Additional practical implementation
details include quantizing the normalized inputs to a 64-bit
representation so thatDLs from different clusters and dimensions
can be effectively compared. Also, the algorithm requires priors
in the form of a set of prospective durations, δ ∈ 1, in
order to initialize cluster centers and initiate the optimization.
Nevertheless, these priors are not rigid because cross-correlation
operators are flexible enough to discover patterns beyond the
grid imposed by 1. Learning begins by finding the set of
pairs mostly correlated in X—a sort of motif finding routine—
for each δ. Querying these sets can be effectively executed
by building matrices of sizes IRδ×δ with maximal pairwise
cross–correlation as their elements. Initial cluster centers are
merely the average between these motifs. Then, the operators
of adding subsequences to existing clusters, merging clusters,
and adding an existing motif to the active set are evaluated
at each iteration. In summary, 1 are mere suggestions of
dimensions to be explored initially, but, later during learning,
the algorithm is free to venture into different dimensions
up until the practical limit imposed by M. The timings, τ ,
are estimated as the lags corresponding to maximum cross–
correlations with respect to the time stamp of xi in the original
time series. The encoding amplitudes or weights, α, are simply
the aforementioned maximum cross-correlation values.

The proposed algorithm alternatively estimates the TMPP
marks and learns bases from vector spaces of different
dimensions. In this way, it resembles greedy block coordinate
descent approaches. However, it is conceptually different from
previous attempts to learn generating dictionaries for time series.
First, it resembles the work in Rakthanmanon et al. (2011),
in that we exploit MDL for hierarchical partitioning; yet, our
implementation is significantly faster due to the pre-processing
and discrimination of dynamical regimes provided by the DET.
Second, clustering of shift-invariant patterns usually either fixes
the support of possible discoverable patterns (Mailhé et al., 2008),
or adapt this parameter in a semi-supervised manner (Lewicki,
2002; Smith and Lewicki, 2006; Loza et al., 2017). We propose
a flexible initial grid that is free to be explored and shaped
during learning as long as the bitsave is minimized. Lastly, and
more importantly, the proposed clustering technique greedily
selects the number of clusters, K, needed, i.e., model selection is
a natural byproduct. This is a major improvement over classic
convolutional sparse coders where K is left as a hyperparameter.
The final implementation takes three main hyperparameters:
γ , the threshold of dynamical regimes in the βM space, M,
the embedding dimension of the DET, and 1, the duration
prior. However, the last two are strictly tied to the rhythm
under consideration; they can both be set according to previous
studies, analysis of TF decompositions, or neurophysiology. γ

is parameterized by the mean and standard deviation of the
fitted Gaussian corresponding to Z in the βM space, i.e., γ =

µZM + γ
′
× σZM where µZM and σZM are the mean and
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standard deviation of the set of M–snippets generated from
Z, respectively.

3.3. Additional Analysis Methods
Discriminability of movement direction is assessed via two
methods: the one-way variant of multivariate analysis of variance
(MANOVA) and the silhouette indicator.

Simply put, MANOVA (O’Brien and Kaiser, 1985) is the
generalization of the well–known analysis of variance (ANOVA)
methodology. While the latter performs statistical tests regarding
univariate sample means, the former compares multivariate
sample means. MANOVA exploits covariance matrices to unveil
correlations between dependent variables instead of the sum of
squares estimator in ANOVA, which is sufficient in the univariate
case. In the present work, MANOVA is utilized to determine the
discriminability of movement direction based on ECoG features
(either power-based or representations derived from learning on
the proposed model). In particular given the four movement
directions under study, MANOVA poses the null hypothesis that
the multivariate means either lie on a line, on a plane or on a
3-dimensional hyperplane, being this last alternative the most
discriminant option.

Silhouette values (Rousseeuw, 1987) estimate the separability
of clusters of points given their labels. In the present
work, average silhouette values determine the separability of
movement–related representations in a 3-dimensional space. In
particular for the i-th point, its silhouette Si, is defined as:

Si =
bi − ai

max{ai, bi}
(9)

where bi is the smallest average Euclidean distance of i to all
points in any other cluster (where i is not a member), and ai
is the average distance between i and all other points belonging
to the same cluster. Si provides a bounded ([−1, 1]) measure of
separability—average values close to −1 imply a poor clustering
solution, i.e., low discrimination of features, while averages close
to 1 guarantee high discriminability.

3.4. Parameter Selection
The proposed algorithm learns representations from ECoG
ensembles in a single-channel, task-by-task basis per subject.
Only the 32 channels across the frontal grid are part of the
current study. To ensure a reliable baseline for the estimation of
σZM , the processing comprises the interval starting at 0.5 s before
visual cue to 4 s after; yet, the subsequent statistical tests consist
of timings from −0.5 to 2 s relative visual cue to emphasize
TMPP samples around motor tasks (see Figure 6). According
to previous studies related to encoding of movement-related
cortical potentials (Reddy et al., 2009; Zhao et al., 2010), we focus
on bursts in the high-gamma band (85–145 Hz)—a Butterworth
filter with quality factor Q ∼ 2 is utilized for this purpose. Then,
M is set equal to 50 samples, or 100ms, 1 = [50 : 10 : 100] ms,
and γ

′
= 1. The first two hyperparameters are set based on

the physiology of cortical gamma rhythms and visual inspection
of the traces in the time domain. The last hyperparameter is a
recording-specific compromise between true and false positive

detection rates in the βM space, i.e., a value of γ = µZM + σZM

guarantees a theoretical 66% of excluded M-snippets generated
by Z from subsequent learning (according to an ideal Gaussian
density for Z). All trials in the study are used for learning
the prototypical high-gamma profiles. Lastly, for the present
study we implement all the learning pipeline—bandpass filtering,
hierarchical clustering per subject, task and channel, and feature
engineering, e.g., neuromodulation rates and average timings and
amplitudes—in an offline fashion.

4. RESULTS

First, we investigate the statistics of the TMPP samples
and the descriptors of the learned generating dictionaries.
Table 1 emphasizes the data-driven nature of the framework: it
enumerates the average number of dictionary atoms or clusters
over electrodes learned by the proposed method in a subject-
task-specific manner. It is worth noting that no further pruning
nor post-processing of the cluster centers were performed. In
terms of the learned dictionaries, Figure 4 illustrates some of the
learned prototypical high-gamma micro-events for a particular
channel and all subjects (one waveform permovement direction).
Figure S1 highlights the variety of atoms in terms of estimated
durations with respect to motor task type.

Next, spatial distributions are summarized; namely, Figure 5B
shows the average rate of gamma bursts over channels for all
movement directions. The rate statistic serves as a surrogate
of the modulated power during motor tasks. This is readily
confirmed in Figure 5A where average high–gamma power is
illustrated instead (both features will be later used to assess and
compare movement direction capabilities). Figure 6A illustrates
exemplary raster plots of the timings from Subject 153, channel
113 (associated with left hand tingling according to functional
mapping). An increase in firing of gamma events is clear
around the 0.75 s—mark with respect to visual cue. Figure 6B
corroborates such phenomenon by means of corresponding
spectrograms (250ms.–long segments with 50 % overlap). A
clear increase in modulated high–frequency power is observed
around the same 0.75 s—mark. For proper context, average
joystick movement onsets are also depicted. We quantify the
correlation between extracted TMPP timings and modulated

TABLE 1 | Average number of learned dictionary atoms per subject and task over

recording electrodes.

Subject Task

Up Right Down Left

146 27.15 26.28 23.59 22.87

147 32.03 32.68 28.93 27.59

149 28.87 28.00 25.28 23.84

153 32.06 34.21 36.75 36.25

154 49.90 47.34 46.00 41.87

156 29.28 30.12 31.06 30.15

High–gamma rhythm (85–145 Hz).
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FIGURE 4 | Learned sample cluster centers from high–gamma generating dictionaries. SX stands for Subject X according to the identifiers of the study. One atom per

movement direction. Channel 105. All atoms have unit ℓ2–norm.

FIGURE 5 | Correlation between modulated power and rate of neuromodulations in the high–gamma band (85–145 Hz). (A) Average high–gamma power over sensor

space for each movement direction. (B) Average rate of high–gamma micro–events (from proposed generative model) over sensor space for each movement direction.

Anterior channels (e.g., 105) display relative increase in both descriptors, yet only rate appears to be modulated depending on the movement direction. Subject 153.

gamma power by means of normalized Pearson correlation
coefficients across trials, electrodes, and tasks. In particular,
the correlation is performed between running sums for τ

and running variances for the bandpassed traces (sliding
250ms). Table 2 presents the means and standard deviations
per subject alongside measures across patients. A similar
correlation analysis (Table S2) between τ and the raw, unfiltered
recordings confirm a statistically significant positive correlation
between the extracted TMPP timings and the modulated
high-gamma power (right-tailed two-sample t-test of Pearson
correlation coefficients, p = 7.71 × 10−263). Lastly, the
gamma firing seems to be spatially selective; for instance,
channel 101 of the same subject does not display a bursting
preference or clear increase in gamma power (Figure 7). This

can be explained as τ being a proxy for modulated power
(estimation of τ demands for power-based measures addressed
in the DET).

Even though Figure 5B is informative, a more compelling
picture needs to incorporate amplitude information in the form
of the α feature. Figure 8 summarizes the learned TMPP timings
(τ ) and weight marks (α) over electrodes for each movement
direction task (Subject 153). The topographical plots depict the
deviations from the globals means over space, i.e., a motor task-
specific spatiotemporal marked point process over the ECoG
recording grid. The figures are also a succinct summary of a
multidimensional array or tensor: time× amplitude× electrodes
× movement direction. Similar plots for the rest of the subjects
are included as Figures S2–S6.
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FIGURE 6 | (A) Raster plot of high–gamma bursts (timings of TMPP, τ ) per movement direction. Red ticks signal joystick movement onset for each trial. Vertical blue

line is the average joystick movement onset across trials. (B) Corresponding spectrogram (STFT). Vertical white line is the average joystick movement onset across

trials. Zero–mark indicates visual cue before movement. Motor activity lasts ∼ 2.8 s. Higher rates of gamma micro–events around the 0.75 s–mark are reflected as

larger densities of TMPP samples in the raster plots as well as increase of modulated high–frequency power in the spectrogram. Subject 153, channel 113.

TABLE 2 | Pearson correlation coefficients between extracted TMPP timings, τ ,

and modulated high–gamma power (85–145 Hz) across channels, trials, and

tasks.

Subject Average

146 147 149 153 154 156

Mean 0.63 0.59 0.61 0.63 0.38 0.47 0.55

Standard deviation 0.18 0.25 0.19 0.29 0.27 0.26 0.26

We begin the discriminant analysis of the learned
representations in an incremental fashion. First, we focus
on the timings of gamma bursts, τ . One-way MANOVA
confirms that the TMPP timings are not discriminative enough
for the movement direction tasks under study. Figure 9C

illustrates the linear projections from the original 32-channel
space to a 2-dimensional space that maximizes the separation
between groups or, in this case, directions (TMPP timings from
each trial are collapsed as their mean in the design matrix).
Two dimensions are plotted for visual purposes. In actuality, the
MANOVA results fail to reject the null hypothesis that the group
means lie on a line (p = 0.90).

Being a point process, the micro-events might encode
information in timing-dependent measures, such as inter-event
intervals (or IBI—inter-bursts interval), or event rates in a similar
manner as spikes in units recordings (Reich et al., 2000). Average
log-IBIs constitute the labeled design matrices for the MANOVA
test (log-transform to encourage normality). In particular, IBIs
are calculated as the intervals (in seconds) between consecutive
gamma events for a given trial. Then, the average of the logarithm
of such IBIs constitute the feature for the channel/trial/task under
consideration. Figure 9D shows a similar 2–dimensional linear
projection that maximizes separation according to theMANOVA
test. The results effectively reject the null hypothesis that the
group means lie on a line (p = 0.0009); yet, they fail to reject
the coplanar null (p = 0.19). Similarly, Figure 9E summarizes
the linear projections corresponding to the micro-event rates,
i.e., the feature for a given channel/trial/task is defined as the

number of gamma bursts over the 2.5 s—interval of interest.
For this case, the test rejects the null hypothesis that the means
lie on a 3-dimensional hyperplane (p = 0.001), which is the
largest possible dimension for the case of four groups. Thus, high-
gamma burst rates are the most discriminative timing–related
features for movement directions.

Next, we incorporate α as an additional feature. From a
generative model instance, α represents the inner product
between observed micro-events and closest latent dictionary
atoms. We now utilize the couple {τ ,α} as a 2-dimensional
feature vector (TMPP timings and amplitudes from each trial are
collapsed as their corresponding means in the design matrix).
This novel feature can be rightfully regarded as a more refined
measure of modulated power, i.e., usual TF-based feature vectors
do not exploit the concept of sparse neuromodulations with
localized modulated power with respect to the background and,
therefore, are more likely to introduce noise to subsequent stages.
Figures 9A,B confirm this limitation; the former exploits log–
gamma power whereas the latter utilizes modulated gamma
power over time after STFT (Short-Time Fourier Transform)
decomposition (85-145 Hz for proper comparisons). On the
other hand, Figure 9F shows the linear projections from the 64-
bivariate ({τ , log(α2)}) feature space to a 2-dimensional space
after the one-way MANOVA test. Classic log-gamma power
features fail to reject the null hypothesis that the means lie on
a 3-dimensional hyperplane (p = 0.20), the STFT case results
in a value of p = 0.51, whereas a combination of timings
and encoding amplitudes of the TMPP yields a rejection of said
null (p = 3 × 10−5). Table 3 summarizes the p-values from
similar one-way MANOVAs for all subjects across movement
directions. In general, high-gamma rates and bivariate TMPP
features are the most discriminant approaches while STFT power
is generally more discriminant than gamma power alone. In
order to normalize results across subjects, Table 4 outlines the
average silhouette values for the same experiments and confirms
the three most discriminant features (in descending order):
bivariate TMPP features {τ , log(α2)}, neuromodulation rates, and
Time-Frequency-based power.
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FIGURE 7 | (A) Raster plot of high–gamma bursts (timings of TMPP, τ ) per movement direction. Red ticks signal joystick movement onset for each trial. Vertical blue

line is the average joystick movement onset across trials. (B) Corresponding spectrogram (STFT). Vertical white line is the average joystick movement onset across

trials. Zero–mark indicates visual cue before movement. Motor activity lasts ∼ 2.8 s. No clear indication of high–rates epochs in both raster plots and spectrograms.

Subject 153, channel 101.

FIGURE 8 | Visualization of high–gamma (85–145 Hz) Temporal Marked Point Process (TMPP) statistics over sensor space for each movement direction. Subject

153. Color scale indicates the deviation of the timings τ from the global, task–specific mean over electrodes. Radii of circles represent deviations of the weights α from

the global, task–specific mean over electrodes. Log–transform of squared weight feature to encourage normality, i.e., log(α2 ).

Lastly, sensitivity to hyperparameters is studied. Namely, γ ′ is
varied in the interval [0:0.5:2] and the grand average of silhouette
values are reported in Table 5. This is equivalent to modulate the
sparsity of the resulting TMPP samples, i.e., smaller values of γ

′

will yield dense neuromodulations over time while a higher γ
′

further prunes the TMPP at expense of decreasing TPR. Yet once
again, τ alone is not discriminant enough regardless of γ ′. On the
other hand, IBI, τ rate, and {τ ,α}, show more discriminability
and a slight dependency on γ

′ (especially for values on the

extremes of the plausible threshold interval). However, the
bivariate (τ ,α) features remain the most discriminant case with
respect to its peers for a given noise threshold γ

′.

5. DISCUSSION

MDL principles are key in the current representation learning
framework. Centroid-based clustering usually requires model
selection techniques or hyperparameter tuning based on
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FIGURE 9 | Linear projections to a 2–dimensional space that maximizes Mahalanobis distance between groups (movement directions). Byproduct of multivariate

analysis of variance (MANOVA) in the interval −0.5 to 2 s relative to visual cue. (A) 32–dimensional log gamma power features. (B) 64–dimensional STFT–based power

features. (C) 32–dimensional TMPP timing (τ ) features. (D) 32–dimensional TMPP inter–bursts intervals (IBI) features. (E) 32–dimensional TMPP phasic event rate

features. (F) 64–dimensional TMPP timing and weight (τ ,α) features. Subject 153. 2–dimensional projections presented for visual purposes only. Tables 2, 3

summarize the results of similar linear projections to 3–dimensional spaces.

performance measures. For our case, the latter option is
impractical and intractable: reconstructive cost functions such as
mean-squared error between inputs and reconstructions imply
the need of encoding the entire sequences in X ∈ IRM×9

when, in reality, only subsequences embedded in each sample
from X are worth encoding. In addition, hyperparameter tuning
of such a large space would be infeasible, e.g., for 10 possible
number of clusters per channel, there are a total of 1032 =

possible hyperparameter settings for the frontal ECoG grid under
analysis. MDL provides a principled model selection heuristic
that is able to partition the input in a hierarchical manner.Table 1
emphasizes this advantage, while at the same time, highlights the
data-driven nature of the proposed algorithms. The fact that the
number of dictionary atoms is different across subjects and tasks
implies that diverse generative models are responsible for the
inherent variability of the ECoG traces. Setting a fixed number

of clusters (as is customary in centroid-based clustering) would
certainly bias the learned representations. Another alternative is
to compare solutions according to performance measures based
on labels in a supervised fashion as in Loza et al. (2017).

5.1. Validation
The learning framework was initially proposed in Loza and
Principe (2019) as a generalized sleep spindles detector for single-
channel EEG recordings. Essentially, classic detectors either
estimate the set of timings, {τ }, and a surrogate of the set of
durations of the micro-events in questions (sleep spindles) or
obtain amplitude, {α}, and duration features as a post-processing
step (Huupponen et al., 2007; Devuyst et al., 2011; Purcell et al.,
2017). Either way, both views lack the underlying generative
nature the dictionary, D, entails.
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TABLE 3 | p-values from one–way MANOVA tests exploiting different types of

features during the interval −0.5–2 s relative to visual cue.

Subject Feature

Power STFT power τ IBI Rate τ ,α

146 8.7× 10−1 8.4× 10−1 9.9× 10−1 8.2 × 10−3 5.2 × 10−6 2.8 × 10−2

147 7.3× 10−1 3.7 × 10−2 6.9× 10−1 9.5× 10−1 2.4 × 10−3 3.2 × 10−2

149 5.8× 10−1 2.1× 10−1 7.6× 10−1 2.2 × 10−2 1.1 × 10−9 5.6× 10−2

153 2.0× 10−1 5.1× 10−1 9.9× 10−1 4.7× 10−1 1.1 × 10−3 3.0 × 10−5

154 5.5× 10−1 3.0× 10−1 7.8× 10−1 8.3× 10−1 4.9× 10−1 4.3 × 10−3

156 9.6× 10−1 7.1× 10−1 9.2× 10−1 1.7× 10−1 1.0 × 10−5 3.3 × 10−3

Rate refers to high–gamma burst rate from TMPP framework. Null hypothesis: group

(movement direction) multivariate means lie on the same 3–dimensional hyperplane.

p-values that lead to hypothesis rejection are marked in bold.

TABLE 4 | Average silhouette values exploiting different types of features during

the interval −0.5–2 s relative to visual cue.

Subject Feature

Power STFT power τ IBI Rate τ ,α

146 0.39 0.72 0.20 0.46 0.70 0.88

147 0.02 0.34 −0.004 0.16 0.48 0.44

149 0.12 0.65 0.10 0.35 0.71 0.78

153 0.03 0.14 −0.05 0.01 0.16 0.36

154 −0.03 0.03 −0.05 −0.06 −0.03 0.12

156 −0.02 0.25 −0.003 0.16 0.49 0.46

Average 0.08 0.35 0.03 0.18 0.42 0.51

Rate refers to high–gamma burst rate from TMPP framework. Analysis on a three–

dimensional space after MANOVA projections.

TABLE 5 | Grand average silhouette values of TMPP–based features during the

interval −0.5–2 s relative to visual cue with respect to hyperparameter γ
′.

Feature γ
′

0.0 0.5 1.0 1.5 2.0

τ 0.06 0.04 0.03 0.03 0.06

IBI 0.21 0.22 0.17 0.12 0.06

Rate 0.31 0.41 0.42 0.40 0.32

τ ,α 0.47 0.44 0.51 0.51 0.51

The DREAMS database (Devuyst, 2011) was utilized to
validate the methods. Single-channel (either CZ-A1 or C3-
A1), 30-min-long EEG recordings from 8 subjects were made
available with corresponding ground truth as visual scorings
of sleep spindles from two different experts. M is set equal to
the sample equivalent of 1.5 s while 1 is set to [0.5:0.1:1.5]
s. according to scoring criteria of sleep spindles (Rechtschaffen
et al., 1968; Niedermeyer and da Silva, 2005; Purcell et al., 2017).
Lastly, detection performance with respect to γ

′ is compared
to the visual scoring annotations of expert 1. Expert 2 did not
provide scorings for two subjects; therefore, it is excluded from
the analysis.

Receiver operating characteristics (ROC) curves quantify the
grand averages of True Positive Rates (TPR) and False Positive
Rates (FPR) across subjects for a γ

′ range of [−3:0.5:3] (Figure
3 in Loza and Principe, 2019). Namely, expert 1 provided ground
truth as his assessment of the temporal timestamps and durations
of each putative sleep spindle. On the other hand, our proposed
learning algorithm returns the sets {τ ,α,ω,D} alongside the
durations of each dictionary atom or kernel in an unsupervised
fashion. A true positive (TP) appears when a time sample in the
EEG recording is deemed as part of a micro–event by the visual
scorer and our learning algorithm simultaneously. Conversely,
a false negative (FN) occurs when a time sample is deemed as
part of a sleep spindle by the expert, but it is missed by the
learningmethod. False positives and true negatives can be defined
analogously. Then, TPR and FPR are calculated as:

TPR =

TP

TP + FN
(10)

FPR =

FP

FP + TN
(11)

In addition due to the inherent noisy and artifact–prone nature
of EEG, the sigma index (Huupponen et al., 2000, 2007) is
exploited to further reduce the FPR by filtering alpha intrusions
and Electromyography (EMG) interference. Best cases of our
approach correspond to a global sensitivity of 67.7% and FPR
= 0.154 compared to 70.2% and 0.264 from the original report
(Devuyst et al., 2011), respectively. Essentially, the proposed
algorithm is able to significantly improve specificity while
compromising a few TPR percentage points. At the same time,
the results go beyond classic detectors by estimating generating
dictionaries and features in a completely data–driven fashion.
The main scope of the current manuscript is not sleep spindles
detection nor optimal conditions for learning on the generative
model. Yet, interested readers are referred to Loza and Principe
(2019) for further information and heuristics regarding the
generalized sleep spindle detector as an application of the
proposed model on single-channel EEG traces.

5.2. Analysis of Results
Before addressing the quantitative results of our study, we
devote some time to a particular set of neuromodulations that
usually appear in ECoG-based epileptic studies: high-frequency
oscillations (HFO) or ripples—modulated activity in the 60–100
Hz range that has been used as a biomarker to localize seizure
onset zones for potential subsequent resection in medicine
resistant patients (Bragin et al., 1999; Worrell et al., 2004). Even
though the HFO band is a subset of the high-gamma band under
study here, we believe there is no real chance of HFO leaking into
our detector. Namely, as mentioned in the Experimental Setting
section, all of the epilepsy patients in our study had a temporal
lobe onset of epilepsy and none had a frontal neocortical onset
(our 32-channel analysis takes place in the frontal grid). Also,
none of the patients had a Rolandic focus of their epilepsy, which
is where the recordings were taken from. Lastly, it HFO were
actually leaking into the learning framework, they likely would
not be synchronized to the motor tasks and would serve more as
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random background noise which would actually hurt, rather than
strengthen our analysis.

Figure 4 underscores the data-driven solutions of the
proposed methods. The learned filters are rich in terms of
duration, symmetry, frequency, and modulatory patterns. This
highlights the data-driven nature of the proposed framework;
for instance, classic wavelets or complex sinusoids restrict
the time-frequency plane to specific subsets; conversely, our
learned dictionaries reflect the inherent non-stationarity of the
ECoG with exceptional temporal resolution (only limited by the
sampling frequency). The cluster centers depicted in Figure 4

can also be regarded as the mean values of the distributions of
a mixture model that gives rise to the phasic event component in
Equation (2). MDL guarantees that said clusters will not merely
fit the data, but they will capture the regularity of the ECoG
traces, while at the same time, keeping the model as simple as
possible (simplicity is quantified here in terms of compression-
based measures). Classic shift-invariant dictionary learning
solutions, also deemed as convolutional sparse coding, applied
to time series either require careful hyperparameter tuning or
fixing the number and dimensionality of the learned atoms
(Lewicki, 2002; Smith and Lewicki, 2006; Mailhé et al., 2008;
La Tour et al., 2018). Our approach provides an unsupervised
framework where none of those constraints are required (as
previously noted,1 is a mere blueprint for the learning algorithm
to explore different dimensions, however, it is not a restrictive
grid of possible phasic event durations). The price we pay,
though, comes in the specialization of the EEG spectrum, i.e.,
all the learning is rhythm-specific (high-gamma in this case).
Figure S1 summarizes the duration distributions and stands
in stark contrast to traditional decomposition methods where
the dictionary waveforms (e.g., complex sinusoids in Fourier
analysis) have a predetermined set duration that is usually
regarded as a free hyperparameter of the decomposition, e.g.,
window size in TF decompositions. Our proposed methods
bypass this limitation by learning these duration profiles in a
data-driven fashion. Further work will contemplate the potential
of novel discriminative mechanisms based on the duration of
gamma bursts.

Figure 5 illustrates the correlation between the high–gamma
power profile and the rate of extracted micro-events over
channels for each movement direction. While the power features
suggest specialization over space, it does not fully indicate
discriminant areas with respect to motor task type. On the other
hand, the estimated rate provides a richer feature space where
the neuromodulation density seems to be modulated according
to movement direction. This is one of the main reasons why
power-based features seem to fall short when compared to more
elaborate descriptors that harness the inherent sparse nature
of the phasic events (Tables 3, 4). Also, Figure 5 is a proof of
concept of the proposed methods—a case in point is channel
105 where the power profile suggests an area of high local
synchronization. The same channel displays high rate levels as
well; however for the “up” direction, the high-gamma density
slightly decreases suggesting potential discriminant behavior.
Lastly, Figure 5B depicts smooth transitions in general, i.e.,
non-abrupt local spatial correlations that can further indicate

discriminant regions (not only single electrodes) in terms of
neuromodulation rates. This hypothesis is left as further work.

Figures 6A, 7A suggest specialization of gamma bursting
over the cortex. Some channels increase their bursting around
specific time instances, while some others do not seem to display
particular distinctive patterns. This suggests a selective spectral-
spatiotemporal organization of local neuronal populations in
order to encode motor tasks. Similar results are observed via
averaged TF decompositions, such as STFT (Figures 6B, 7B),
however, the introduction of a windowing parameter blurs
the temporal information encoded in the timings. Conversely,
our approach provides a temporal resolution limited only by
the sampling frequency: 2ms for the current work, although
the original 2034.5 Hz sampling frequency could have been
used as well (yielding a ∼ 0.5ms temporal resolution with
the added computational load that comes with working on
higher dimensions). The MANOVA results, silhouette values and
exemplary 2-D projections in Figure 9C confirm that timing
information alone is not sufficient to discriminate movement
directions. Yet, further work will investigate if τ might be enough
to distinguish between movement and rest stages.

Figures 6, 7 also illustrate the correlation between extracted
TMPP timings, τ , and modulated high-gamma power over time.
Even though the recordings are aligned to the visual cue, the
density of estimated gamma micro-events grows larger around
the average joystick movement onset (blue lines in Figure 6).
This suggests that the rate of gamma neuromodulations increases
before and around movement onset on a trial-by-trial basis
(see red ticks in Figure 6). The measures in Table 2 confirm
the positive correlation between extracted TMPP timings and
modulated high–gamma power. On the other hand, the estimated
set of τ ’s bear no correlation (in a linear scheme) with the
raw ECoG traces—average of −0.06. Comparison of these two
samples (τ correlations with high-gamma filtered and raw
recordings) by means of a right-tailed two-sample t-test confirms
that the extracted phasic events follow the profile of actual high-
gamma power.

A spatiotemporal marked point process succinctly
summarizes the network dynamics during motor tasks. Figure 8
exemplifies a novel graphical depiction of discrete micro-events
in terms of their timings and weights. Unlike TF decompositions,
the topographical plots quantitatively emphasize the concept of
neuromodulations and gamma bursts. For instance, electrode
105 seems to encode motor activity via large timing and weight
deviations (with respect to global mean over electrodes); yet, the
activity does not seem to support discrimination of movement.
On the other hand, electrode 124 modulates gamma burst firing
with respect tomovement while keeping the amplitudes relatively
the same. Most sensors seem to fall into three categories, they
resemble the activity of either electrode 105 or electrode 124,
or they remain relatively unaffected by the motor task, e.g.,
electrode 97. However, there are no regions with clear weight
modulation (variability of radii across tasks). If the weight α is
devised as a surrogate of power with respect to normalized bases,
then the results in Tables 3, 4 and Figure 9A are completely
justified—power-based measures alone that disregard timing
information are not discriminant when it comes to encoding
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movement direction of motor tasks. This conclusion goes along
the lines of Reddy et al. (2009) and Zhao et al. (2010). In the
case of the two electrodes depicted in Figures 6, 7, their TMPP
representations emphasize the fact that channel 101 does not
actively encode motor activity—both its τ and α deviations lie
close to the zeros marks, i.e., electrode 101 resembles the average
global activity of the grid. On the other hand, channel 113 clearly
deviates from both global trends; namely, its smaller radii suggest
relatively smaller α’s (again with respect to the global average
of the grid for a particular task). Similarly, positive deviations
from the zero-timing-mark indicate slight latencies (roughly
in the order of 50ms) with respect to the entire local neuronal
population under study. This empirical analysis highlights one
of the main features of the proposed algorithm: the ability to
analyze EEG recordings exploiting fine temporal resolutions
only limited by the sampling frequencies. Similar plots from the
remaining subjects are included as Supplementary Material.

IBI and micro-event rates seem to be more suitable
features to linearly separate the classes. Both features are
a direct consequence of working under the premise of
discrete reoccurring wave packets throughout the cortex. These
representations would be infeasible for classic TF decompositions
where there is no explicit notion of micro-events. While IBI
estimates the average interval between gamma bursts, micro-
event rates indicate the density of neuromodulations during
the specified 2.5 s window. The former seems to be more
discriminant than τ alone; however, the latter is consistently
superior. If Figure 6 suggests a specialization in spectral-
spatiotemporal organization of local assemblies, Tables 3, 4 and
Figure 9E suggest a collaborative effort of the entire frontal
network tomodulate high-gamma burst densities at a macro level
in order to sparsely encode movement direction. This conclusion
could potentially lead to effective online classifiers where it would
be only necessary to estimate the density of high-gamma bursts to
predict motor tasks.

The incorporation of TMPP weight marks, α, into the
modeling framework improves the separability of the classes
and consistently outperforms all previous approaches, including
classic TF-based frameworks. This last addition emphasizes
the need of a generative model to encode neuromodulations
as the noisy addition of weighted prototypical templates over
time. STFT performs a similar generative assumption, however
the basis is generic and not overcomplete; in addition, the
unconstrained STFT decomposition does not encourage sparse
solutions. Encoding high-gamma bursts as multimodal features
not only reduces the dimensionality of the inputs, but also
provides interpretable representations that can be fully validated.
The bimodal representation (per channel) achieves the highest
average silhouette values, signaling a proper clustering solution
that can be further exploited in supervised learning frameworks,
such as online BCI.

The main hyperparameter of the learning framework
is the threshold γ

′ of the DET. Table 5 summarizes the
average silhouette values as a surrogate of the discriminability
among movement directions (larger values imply better class
separability). In general, τ–based results are unaffected by the
choice of γ

′, i.e., they all yield a poor clustering solution. When

IBIs are utilized as features there is an inverse relationship
between performance and γ

′; this is a direct consequence of
the increase in sparseness that larger γ

′’s entail, i.e., temporally
sparser events lead to biased IBI estimates (the same logic can
be applied to τ rates). Lastly, bivariate features are not only the
most discriminant solutions for a given γ

′ in a consistentmanner,
but they also register robust intervals of the hyperparameter;
consequently, this combination of features should be preferred
in practice.

Now we address the concept of overfitting, i.e., merely
“memorizing” the data and fitting underlying noise rather than
actual trends in the ECoG. First, one of MDL’s main applications
is model selection (Stine, 2004; Grünwald, 2007); hence, it
provides a principled framework to choose an appropriate
hypothesis (or set of hypotheses) that not only explains the
regularities in the data, i.e., fit it properly according to a specified
criterion, but also complies with a parsimony principle that
controls the complexity of such hypothesis. In this way, MDL
is an explicit tool to avoid overfitting. Second, we exploit a
randomization test (1,000 independent runs) that randomly
shuffles the labels and proceeds to compute the MANOVA p-
values (null hypothesis that the means lie on a 3-dimensional
hyperplane) and average silhouette values for each subject.
Table 6 summarizes the results and clearly indicates that no
significant p-values emerge; silhouette-based measures are also
lower than their counterparts on Table 4. In fact, the average
silhouette values of Table 4 surpass the 95th percentile of
the corresponding randomization test distributions in all cases
except for subject 154 exploiting IBI (Table S3). In this way,
we provide a proof of concept that no overfitting takes place in
our study.

In the previous paragraphs we glossed over an important
concept for BCI deployment in real settings—online classifiers.
Now, we explain in-depth how our framework can be adapted
to the supervised learning setting alongside the associated
theoretical and practical implications of such change. In this
study, we basically clustered relevant subsequences of different
lengths from single-channel, multi-trial ECoG traces. This

TABLE 6 | Mean p-values (from MANOVA) and average silhouettes (denoted by S)

after randomization test.

Subject Feature

IBI Rate τ ,α

p S p S p S

146 0.83 0.17 0.83 0.17 0.66 0.73

147 0.85 0.00 0.84 0.00 0.83 0.19

149 0.84 0.11 0.84 0.11 0.77 0.54

153 0.84 −0.04 0.85 −0.03 0.84 0.07

154 0.84 −0.07 0.83 −0.05 0.84 0.00

156 0.84 0.00 0.85 0.00 0.84 0.20

Average 0.84 0.02 0.84 0.03 0.79 0.28

Interval from −0.5 to 2 s relative to visual cue. One thousand runs of random trial shuffling

were performed. γ ′
= 1.
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learning is executed task by task, and the associated TMPP
features and subsequent timing-related characteristics (IBI and
rate) are found to be discriminant according to statistical tests
and silhouette values. However, during learning, there is no
cost function that maximizes discriminability (exploiting label
information) and, at the same time, estimates the dictionaries and
TMPP features; we only focused on the latter task. An apt analogy
comes in handy here: in the computer vision field, dictionary
learning is widely used; specifically, the K-SVD technique learns
overcomplete, redundant dictionaries under the umbrella of
sparse modeling (Aharon et al., 2006). This technique was
initially utilized for compression, denoising, and demosaicking
of digital images (Elad, 2010), i.e., unsupervised learning tasks
similar to our framework in the present manuscript. Later,
variations of K-SVD emerged in the supervised setting by
exploiting label information and proposing novel cost functions
(and consequently novel optimization techniques) (Zhang and
Li, 2010; Jiang et al., 2013). We believe our contribution—
likewise K-SVD—is the first step toward explicit discriminant
models for ECoG-based BCI that exploit representation learning.
To this end, the cost functions in Equations (6–8) should be
modified to accommodate separability among classes (possibly
via a linear classifier); then, appropriate optimization techniques
(almost inevitably more complex than the algorithms presented
here) would be proposed in order to estimate dictionaries that
are not only adaptive, but also discriminant. If such dictionary
is attainable, then online classifiers can be built on top of its
atoms; for instance, a simple pipeline would assign any incoming
trial to the class that minimizes the residual norm (after TMPP
features estimation) according to a learned linear classifier. The
computational burden and latency of said simple framework
would be proportional to the added complexities of the following
routines: online bandpass filtering, parallel convolutions with all
of the dictionary atoms, online computation of the residue norm
(per channel), and linear classifier. Clearly, more sophisticated
classifiers can be built on top of such discriminant dictionary,
but our goal here was to simply illustrate the point that our
contribution focuses on fitting multivariate ECoG data to the
proposedmodel (with the addedmodel selection feature ofMDL)
in an unsupervised scheme, and yet, discriminability still arises
as a property of the representation. In addition, this supervised
learning framework would potentially allow the use of “global”
dictionaries learned from a population of subjects in order to
encode ECoG traces from a novel patient.

Lastly, as previously mentioned, the proposed learning
algorithm is rhythm-specific. It was devised as an estimator
of dictionary atoms that represent event–related oscillations at
small time scales, i.e., higher frequencies. The DET exploits this
constraint alongside the inherent sparsity of short-lived bursts to
extract micro-events with prominent modulated envelopes. Even
though the generative model of Equation (1) is general enough to
explain the generative mechanisms of phasic events in the cortex,
other learning frameworks are certainly needed to model non-
oscillatory events (e.g., K-complexes), desynchronization type of
activity (such as the decrease in beta and mu powers observed in
Figure 6 prior and during joystick movement onset), and dense
low-frequency events at larger time scales (e.g., phase shifts in
theta and delta waves). All these cases constitute attractive new

avenues of research and are left as further work. In the spirit of
openness and to encourage reproducibility, the MATLAB code
corresponding to the proposed methods are available at https://
github.com/carlosloza/EEGMDL.

6. CONCLUSION

We proposed a generative model and learning algorithm for
single-channel, multi-trial ECoG recordings that can be either
posed as a convolutional variant of the sparse modeling
problem where both inference and learning are attained or
as an estimation of temporal marked point processes and
associated prototypical activation filters. MDL is successfully
exploited to render a data-driven methodology where model
selection and discovery of bases from vector spaces of different
dimensions are plausible. Our approach learns representations
per label and models the separability among classes via optimal
linear projections that maximize the Mahalanobis distance
between groups. Timings and weight features of the marked
point process are the most discriminative representations and
outperform methodologies that do not encourage sparsity and
rely on power–based measures. Further work will expand the
framework to predictive modeling, i.e., jointly learning the
representations as well as a classifier to effectively generalize
the encoding mechanisms at work during movement direction-
related motor tasks.
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Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions

for people suffering from neurological disabilities. This recording technique combines

adequate temporal and spatial resolution with the lower risks of medical complications

compared to the other invasive methods. ECoG is routinely used in clinical practice for

preoperative cortical mapping in epileptic patients. During the last two decades, research

utilizing ECoG has considerably grown, including the paradigms where behaviorally

relevant information is extracted from ECoG activity with decoding algorithms of different

complexity. Several research groups have advanced toward the development of assistive

devices driven by brain-computer interfaces (BCIs) that decode motor commands from

multichannel ECoG recordings. Here we review the evolution of this field and its recent

tendencies, and discuss the potential areas for future development.

Keywords: electrocorticography, ECoG, brain-computer interface, BCI, movement decoding

1. INTRODUCTION

The brain is a unique organ of the human body. Containing myriads of neurons, the brain
circuits continuously process multiple sensory, motor and cognitive signals, generate thoughts and
decisions, and produce a subjective feeling of being conscious and free-willed. The brain enables
us with the capacity to effortlessly control such complex behaviors as voluntary movements of
body parts, maintenance of posture and balance, speech production, and perception of the external
world. Unfortunately, neurological disease or trauma may cause dramatic disruptions of these
neuronal mechanisms, making an individual unable to move, feel and communicate. Many of such
devastating neurological conditions currently have no cure, including amyotrophic lateral sclerosis
(ALS), stroke, and spinal cord injury (SCI).

BCIs, also called brain-machine interfaces (BMIs) and neural prostheses, hold promise to
provide revolutionary solutions to the treatment of brain disorders. BCIs connect neural circuits
to external devices, such as prosthetic limbs, means of communication, computers, appliances for
functional electrical stimulation, and even the other parts of the brain (Lebedev and Nicolelis,
2006). Medical applications of BCIs strive to restore functions lost to neurological disorders and aid
in rehabilitation. For example, BCI approach to SCI consists of directly connecting the unaffected
brain regions, such as the sensorimotor cortex, to a limb prosthesis (Hochberg et al., 2006, 2012;
Collinger et al., 2013; Bouton et al., 2016). Many neuroprosthetic components have been proposed
and developed over the last two decades. These are biocompatible implants for neural recordings,
devices for stimulating neural circuits, and wireless recording systems. BCIs can connect the brain
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to computer cursors (Carmena et al., 2003; Lebedev et al., 2005),
text generators (Pan et al., 2013; Akram et al., 2014), arm
prostheses (Carmena et al., 2003; Velliste et al., 2008; Collinger
et al., 2013), exoskeletons for assisted walking (Gancet et al., 2011;
Contreras-Vidal and Grossman, 2013; Kwak et al., 2015), virtual-
reality objects (Badia et al., 2013), powered wheelchairs (Galán
et al., 2008; Chai et al., 2014), drones (LaFleur et al., 2013), and
automobiles (Göhring et al., 2013). Recently, futuristic BCIs have
emerged that merge several individual brains into a brain-net
(Pais-Vieira et al., 2013; Rao et al., 2014).

Among different classes of BCIs, BCIs that operate in
the motor domain have underwent a particularly extensive
development because of the expectation that they could treat
paralysis by enabling voluntary control of prosthetic limbs.
Motor BCIs have been developed that enable movements of
the arms (Wessberg et al., 2000; Carmena et al., 2003; Velliste
et al., 2008; Collinger et al., 2013) and legs (Fitzsimmons et al.,
2009). In addition to BCIs that enact movements, BCIs have
emerged that handle cognitive functions, like executive control,
attention, and decision making (Andersen et al., 2004, 2010;
Mirabella and Lebedev, 2016). In the sensory domain, BCIs
have been developed that apply stimulation to peripheral and
central structures of the nervous system to evoke percepts
mimicking natural senses, including hearing (House, 1976),
vision (Dobelle, 2000; Normann et al., 2009), and touch
(Bensmaia and Miller, 2014).

In this review, we focus on BCIs that are based on an
invasive recording method called ECoG. We argue that ECoG
could provide efficient solutions for many clinical cases because,
first, ECoG grids sample neural signals with better spatial
and temporal resolution compared to non-invasive recording
methods, such as electroencephalography (EEG), and second,
ECoG electrodes do not penetrate into the brain and thus
offer a safer solution compared to the techniques that require
insertion of recording sensors into the nervous tissue (Leuthardt
et al., 2004; Hill et al., 2012; Petroff et al., 2016). The studies
conducted up to date have demonstrated that ECoG-based BCIs
are applicable to motor tasks. Yet, we suggest that accuracy of
such motor BCIs could be improved by the implementation of
more advanced neural decoding algorithms, particularly the ones
based on deep neural networks.

We start with an overview of ECoG recording methods.
Next, we review the motor tasks that have been utilized in
ECoG decoding studies. Finally, we discuss the relevant decoding
algorithms and software.

2. ECOG METHODOLOGY AND ITS
ADVANTAGES COMPARED TO THE OTHER
RECORDING METHODS

A multitude of methods for recording of brain activity have
been developed during the last several decades. Depending on
the biological and physical principles employed, these methods
have different spatial and temporal resolution. The recording
methods range from classical single-unit techniques, where
microelectrodes are inserted into the brain tissue, to non-invasive

approaches, such as EEG, magnetoencephalography (MEG),
near-infrared spectroscopy and functional magnetic resonance
imaging. The choice of method in each concrete case is based
on a number of requirements, including an assessment of risk to
human subjects.

With the advancement of BCIs, we have seen a development
of multichannel recording methods that allow sampling signals
from many brain regions simultaneously (Nicolelis and Lebedev,
2009). To build clinically relevant neural prostheses, such
recording methods should be viable for long periods of time.
Chronically implanted multielectrode arrays (MEAs) measure
brain activity at high spatial (at the level of single neurons) and
temporal (at the level of neuronal spikes) resolution. MEAs-
based BCIs have been implemented in rats (Chapin et al., 1999;
Song et al., 2009), non-human primates (Taylor et al., 2002;
Carmena et al., 2003; Gilja et al., 2012; Schaffelhofer et al.,
2015) and humans (Hochberg et al., 2006; Collinger et al., 2013;
Gilja et al., 2015; Brandman et al., 2017). The number of motor
degrees of freedom that such BCIs could handle has been steadily
growing (Hochberg et al., 2012; Collinger et al., 2013; Wodlinger
et al., 2014; Vaskov et al., 2018). Recordings with MEAs are,
however, not without problems, particularly when utilized in
humans, since intracortical electrodes may provoke infection,
tissue damage and scarring – the factors that contribute to
deterioration of recording quality over time (Perge et al., 2013;
Nuyujukian et al., 2014; Murphy et al., 2016; Kim et al., 2018).

While non-invasive BCIs do not have appreciable health
risks, they have limitations of their own. Thus, EEG-based
BCIs, which are currently prevalent because of their ease
of use (Nicolas-Alonso and Gomez-Gil, 2012), have a lower
information transfer rate compared to invasive BCIs (Lebedev
and Nicolelis, 2006). Signal to noise ratio and spatial resolution
are low for EEG recordings because with this method electrical
potentials are sampled at a distance from their source, get
smeared due to propagation through brain meninges and
skull, and are susceptible to contamination with mechanical,
electrooculographic (EOG), and electromyographic (EMG)
artifacts (Cooper et al., 1965). Classification of several discrete
motor states can be achieved with EEG recordings (for example,
detecting the presence or absence of an actual or imagined
limb movement). However, accurate decoding of fine movement
characteristics is difficult with this method.

ECoG alleviates several problems related to using the other
recordingmethods.With ECoG, electrical signal is recorded from
the surface of the brain either epidurally (i.e., the electrodes are
placed on the surface of the dura mater), or subdurally (i.e.,
the electrodes are placed underneath the dura mater.) While
ECoG signals resemble EEG data (Kellis et al., 2016), they
have greater amplitude, higher spatial resolution and broader
frequency range (Schalk and Leuthardt, 2011). ECoG is superior
to EEG for recordings of both cortical low-frequency oscillations
(Hughes and Crunelli, 2005) and high-frequency activity in
the gamma-range (Manning et al., 2009; Schalk and Leuthardt,
2011). The superior spatial and frequency resolution of ECoG
enables obtaining detailed cortical maps, for example motor and
sensory maps of individual fingers, while sampling electrical
activity from many cortical areas simultaneously. Additionally,
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ECoG recordings are stable long-term (Blakely et al., 2009). By
contrast, recordings of multiple single units with MEAs are not
so stable, even though they could be considered a BCI control
signal of superior quality. Although in the majority of studies
ECoG grids have been implanted for a few days to minimize
the infection risks associated to the use of tethered cables, it
has been also shown that chronic ECoG implants are viable
(Wyler et al., 1991; Weinand et al., 1994) and progress has
beenmade toward the development of wireless, fully-implantable
technologies (Vansteensel et al., 2016; Benabid et al., 2019). Based
on these trends, it is reasonable to expect that clinically relevant,
chronically implanted ECoG-based neural prostheses will emerge
in the future for assisting patients suffering from neurological
disorders. In summary, ECoG approach has multiple advantages
for BCI applications, including an adequately high information
transfer rate, stability of recordings, and a lower risk of medical
complications. These features make ECoG method attractive for
the developers of practical neuroprosthetic devices.

In clinical applications, ECoG electrodes are typically
arranged into rectangular grids (for example, 6 × 8 or 8
× 8) or strips containing several electrodes in a single row.
Platinum-iridium electrodes are often used, with the diameter
of 4 mm most common for clinical applications. The commonly
used 1-cm interelectrode distance yields an appropriate spatial
resolution in many cases. Yet, the physical limit for resolution
that could be achieved by decreasing the interelectrode distance
is ∼1.25 mm for subdural recordings (Freeman et al., 2000) and
∼1.4 mm for epidural recordings (Slutzky et al., 2010). As a
step toward reaching these limits of spatial resolution, ECoG
grids with the spacing of 3–5 mm have been introduced and
tested in a handful of studies conducted during the last decade
(Wang et al., 2016). In such grids, neighboring electrodes carry
sufficiently different information in the high gamma frequency
range, as evident from the low coherence (∼ 0.3) between their
signals (Wang et al., 2009). These grids have a superior spatial
resolution compared to the 1-cm spaced grids not only because
of the narrower inter-electrode spacing but also because of the
smaller electrode size, which aids sampling local activity. With
the 3–5 mm electrode spacing, accurate classification of finger
movements and multiple hand gestures has been achieved, as
well as real-time control of a hand prosthesis (Wang et al.,
2013; Bleichner et al., 2016; Hotson et al., 2016). More recently,
even denser micro-ECoG grids have emerged with 40–80-micron
wires and 1–3 mm spacing; these grid can occasionally sample
activity of single cortical neurons (Khodagholy et al., 2015).

ECoG grids implanted for clinical reasons have been used
as a testbed for different types of BCIs. With epidural
ECoG recordings (a safer option for clinical assessment),
BCIs have been implemented for reliably detecting movements
(Chavarriaga et al., 2016), recognizing different movement
types (Spüler et al., 2014b) and decoding movement time-
course (Flint et al., 2016). For widely spaced ECoG electrodes,
decoding accuracy with epidural grids is similar to that achieved
with subdural electrodes (Spüler et al., 2014a). Yet, if high-
density ECoG grids are used, they work better when implanted
subdurally (Bundy et al., 2014). In theory, it is desirable to
place ECoG implants over as many cortical sites as possible

because motor planning and execution engage multiple cortical
areas. However, using many implants increases the health risk.
Several studies have attempted to optimize the number and
placement of ECoG electrodes (Bleichner et al., 2016; Li et al.,
2017). Intraoperative assessment of electrical activity at different
cortical sites, before an ECoG grid is implanted (Xie et al.,
2015), is one way to decrease the implant size and reduce the
health risk.

3. MOTOR PARADIGMS

Movements can be decoded from the brain electrical activity
owing to the existence of correlation between neural modulations
and motor parameters, for a range of motor tasks (Lebedev,
2014). Thus, ECoG modulations are correlated with the
movements of both the upper and lower limbs (Toro et al., 1994b;
McCrimmon et al., 2017). BCI decoding algorithms convert
neural modulations into the output signals of interest, such as
limb position in space. While decoding algorithms are often
evaluated offline using previously collected neuronal data, their
ultimate testing should be conducted in real-time settings, where
subjects control actions performed by an external device directly
with their brain activity.

The development of new decoding algorithms not only
advances BCIs by improving their accuracy of performance and
versatility, but also leads to new fundamental insights regarding
the brain motor, sensory and cognitive mechanisms, the insights
that emerge during BCI experiments and their trouble shooting
(Nicolelis and Lebedev, 2009). Specifically, research on ECoG-
based BCIs provides insights on the encoding of movements
and sensations by the collective activity of cortical neuronal
populations, functional significance of different cortical rhythms,
somatotopic representation of body parts, as evident from ECoG
activity at different cortical sites and frequency bands, and the
capacity of the brain to plastically adapt to novel BCI tasks.

A variety of movement types can be decoded from ECoG
signals. These are wrist flexion and extension (Satow et al., 2003;
Gharabaghi et al., 2014; Spüler et al., 2014a; Jiang et al., 2015,
2017), various grasp types (Graimann et al., 2003; Miller et al.,
2007; Pistohl et al., 2012; Chestek et al., 2013; Xie et al., 2015)
hand gestures and postures (Graimann et al., 2003; Chestek et al.,
2013; Bleichner et al., 2016; Li et al., 2017), individual finger
movement (Graimann et al., 2003; Kubanek et al., 2009; Miller
et al., 2009; Samiee et al., 2010; Wang et al., 2011; Elghrabawy
and Wahed, 2012; Flamary and Rakotomamonjy, 2012; Liang
and Bougrain, 2012; Chestek et al., 2013; Chen et al., 2014; Xie
et al., 2018), tongue and lip protrusion (Graimann et al., 2003;
Satow et al., 2003; Miller et al., 2007; Paul et al., 2017), and
foot movements (Toro et al., 1994b; Satow et al., 2003). While
cortical areas contralateral to the moving body part are usually
used for decoding, the option of using ipsilateral cortex has been
considered as well (Hotson et al., 2014).

In real-time BCIs, signals representing movements or their
imagery are decoded from ECoG activity and sent as control
signals to external devices, such as screen cursor. Cursor control
has been implemented in one (Leuthardt et al., 2004, 2006), two
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FIGURE 1 | Experimental paradigms for decoding of movements from ECoG. (A) An arbitrary mapping paradigm, where the task performed by the subject and BCI

output are dissimilar. In the illustrated example, clenching of the fist produces an upward movement of the pointer. (B) A discrete classification paradigm, where a BCI

recognizes a posture or movement performed by the subject and reproduces it with an external device. The case is illustrated, where a subjects shapes his/her hand

in one of three gestures, and the BCI generates a gesture of a virtual hand shown on the screen. (C) Continuous decoding paradigm, where movement parameters

are decoded continuously (as a function of time or some other parameter) and reproduced by an external device. In the illustrated example, a virtual finger reproduces

the trajectory of the subject’s finger.

(Schalk et al., 2008), and three (Wang et al., 2013) dimensions.
Additionally, ECoG-based BCIs have been demonstrated for the
tasks of controlling a prosthetic hand (Yanagisawa et al., 2011;
Chestek et al., 2013;Wang et al., 2013; Hotson et al., 2016; Li et al.,
2017), enabling exoskeleton-assisted walking (Benabid et al.,
2019), and selecting font characters with a speller application
(Vansteensel et al., 2016).

Here we focus on ECoG-based motor BCIs, which are
BCIs where users modulate their cortical activity to generate
movements of external devices. Such BCIs can be grouped
into three main categories by the relationship between the task
performed by the subject and BCI output (Figure 1) (while
this classification can be applied to other types of BCIs, for
example the ones based on EEG recordings, our review is
restricted to ECoG-based systems). In the first category, there
is an arbitrary relationship between the subject’s action and
the resulting movement of an external effector. For example,
a subject imagines moving the hand to generate an upward
movement of the pointer and imagines moving the tongue to
move the pointer downward (Leuthardt et al., 2006). In the
second category, a discrete classifier recognizes a motor action
performed or imagined by the subject, for example moving one
of the fingers. Next, an external device executes the same action.
The third category of BCIs decode different motor parameters,
such as movement direction, speed, acceleration, and force.
The parameters are treated by the mathematical algorithm as
continuous variables. An external device then reconstructs the
movement from the decoded motor parameters.

3.1. Arbitrary-Mapping Paradigms
The arbitrary-mapping paradigm was the earliest to be
implemented with ECoG recordings. The early studies employed
event-related potentials for extracting motor commands (Toro
et al., 1994b; Huggins et al., 1999; Levine et al., 1999). Later, ECoG
spectral changes during real or imagined movements were used
for BCI control (Leuthardt et al., 2004). In both groups of studies,

actions performed by the subjects were mapped in an arbitrary
way to actions executed by external devices.

To identify the most efficient control strategy for such an
arbitrary-mapping BCI, Leuthardt et al. (2004) introduced a
pre-screening procedure, which has become a common practice
(Leuthardt et al., 2006; Miller et al., 2007; Schalk et al., 2008).
During pre-screening, subjects perform a range of tasks so that
ECoG features with the most prominent modulations could be
identified and used for BCI control. The tasks are performed
with the body parts represented by the cortical areas covered
by the implanted ECoG electrodes (Schalk et al., 2008). Subjects
perform or imaginemotor acts like opening and closing the hand,
protruding and retracting the tongue, flexing, and extending
individual fingers, pursing and unpursing the lips, moving
the arm, leg or foot (Miller et al., 2007), moving the jaw,
shrugging the shoulders (Schalk et al., 2008), and pronouncing
words (Leuthardt et al., 2004, 2006). Based on ECoG activity
patterns exhibited during these tasks, subsets of ECoG features
(e.g., frequency bands and electrodes with the most prominent
modulations) are selected for implementing a BCI.

With the pre-screening approach, actions causing the largest
ECoGmodulations could be quickly selected to improve accuracy
of BCI control. In a pioneering study (Leuthardt et al., 2004),
subjects reached the success rates of 74–100% after 3–24 min
of training in closed-loop experiments where they performed or
imagined a preselected action (like opening and closing the hand,
protruding the tongue or saying the word “move”) to move a
screen cursor in the vertical dimension. In these experiments,
ECoG grids were placed over frontal, parietal and temporal
cortical areas. In the next study (Leuthardt et al., 2006), the
same group added to the experimental design an adjustment
procedure, where the decoder settings were updated using the
data from the initial online session. This adjustment accounted
for the differences between ECoG modulations exhibited during
the pre-screening procedure and the online control.

Schalk et al. (2008) designed an arbitrary-mapping approach
for the case of two-dimensional cursor movements. ECoG
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recordings were conducted from the frontal, temporal, and/or
parietal cortex. During the pre-screening procedure, two
tasks were selected that yielded the least correlated signal
features (frequency bands and electrode locations) that were
then used to independently control two coordinates of the
cursor. After a training period of 12–26 min, five subjects
achieved accuracy of 53–73% (with a 25% chance level) in a
four-target task.

Wang et al. (2013) expanded the degrees of freedom of

cursor movements to three dimensions. A tetraplegic subject
with C4 level spinal cord injury underwent training for several

weeks. ECoG activity was recorded using a high-density 32-
electrode grid with 4-mm spacing; electrode diameter was 2

or 3 mm. The grid was implanted over the hand and arm
representing areas of the left sensorimotor cortex. The subject

learned to activate his sensorimotor cortex by attempting
voluntary movements. Distinct cortical modulations occurred

for attempted movements of different segments of the patient’s
upper limb. The BCI control consisted of assigning of each
type of attempted movement to a particular direction of cursor
movement. The decoder processed ECoG modulations in the
gamma band. An adapting decoding scheme was used, where
the decoder alternated between the periods when the decoder
weights were fixed and when they underwent adjustments. The
subject first learned a two-dimensional control of the cursor in
a virtual environment, then the third dimension was added by
gradually merging the weights calculated for the attempted three-
dimensional task with the weights previously calculated for the
two-dimensional control. The subject reached the success rate of
80% in the cursor control task, and also learned to control three-
dimensional reachingmovements performed by a prosthetic arm.
In the next study conducted by the same group (Degenhart
et al., 2018), two additional subjects with arm paralysis were
tested, one with ALS and the other with brachial plexus injury.
The subjects used a somatotopic control strategy to operate a
virtual cursor in two or three dimensions. In this strategy, spatio-
temporal patterns of gamma-band cortical activity evoked by
different attempted upper-limb movements were converted into
the direction of cursor movement. Cursor velocity was generated
from ECoG gamma activity with an optimal linear estimator
algorithm (Salinas and Abbott, 1994). Both subjects achieved
control with up to three degrees of freedom.

Overall, the arbitrary-mapping approach has been shown
suitable for building practical BCIs for the paralyzed patients
capable of voluntarily modulating activity in the brain areas
representing their paralyzed body parts (Spüler et al., 2014b;
Chaudhary et al., 2016). Thus, Vansteensel et al. (2016) recently
demonstrated a practical, a fully implanted ECoG-based BCI,
where a patient with ALS learned to control a computer typing
program by attempting voluntary hand movements. The ECoG
grid was implanted subdurally over the motor cortex. This BCI
enabled communication with a rate of two letters per minute.
Notwithstanding the slow operation, BCIs of this kind offer a
practical solution for functional restoration, communication and
rehabilitation of neurologically impaired patients. As such, this
approach needs to be further developed.

3.2. Classification and Reproduction of
Movements
The second class of ECoG-based BCIs reproduces the same
movements that subjects perform or imagine, which are
recognized using a discrete classifier. High spatial and temporal
resolution of ECoG allows recognizing a sufficiently large
repertoire of movement types and executing them with an
external device. Thus, areas corresponding to individual fingers
can be discerned with ECoG recordings (Miller et al., 2009),
which allows implementing a BCI that recognizes the finger being
moved or imagined beingmoved with a classifier like Naïve Bayes
(Chestek et al., 2013), linear discriminant analysis (LDA) (Wang
et al., 2009; Hotson et al., 2016), or support vector machine
(SVM) (Liu et al., 2010). Several studies have demonstrated that
such classification can be performed with high accuracy based
on ECoG recordings from the hemisphere contralateral to the
working hand. Wang et al. (2009) decoded the finger being
moved from the signals recorded with a micro-ECoG grid that
was placed over the contralateral motor cortex. In this study,
one subject performed self-paced finger flexions and extensions
for ∼10 s. The active finger was identified with an accuracy
of 73% with both LDA that processed the ECoG data reduced
to the first eight principal components and an SVM classifier
without dimensionality reduction. In the study by Kubanek et al.
(2009) subjects responded to a cue by flexing an individual
finger 3–5 times over a time period of 1.5–3 s. ECoG activity
was recorded from the frontal or temporal cortical areas. The
relationship between the poser in different ECoG spectral bands
and finger trajectories was modeled using a linear decoder called
PaceRegression. The active finger was then determined as the
finger with the highest decoded flexion amplitude. The across-
subject average classification accuracy was 77.1% when ECoG
activity recorded at movement onset was analyzed. The accuracy
increased to 80.3% when the analysis interval was optimized
for each subject. Hotson et al. (2016) applied a hierarchical
LDA classification scheme to detect the finger being moved,
reaching an accuracy of 76%. Furthermore, Liu et al. (2010)
showed that ECoG activity in the sensorimotor cortex ipsilateral
to the working hand could be used to determine the finger being
moved. Their decoder incorporated logistic regression (LR) and
a binary SVM.

Several studies have classified hand configuration from ECoG
recordings. Yanagisawa et al. (2011) recorded ECoG activity
in the sensorimotor cortex of a subject performing three
types of hand movements: grasping, hand-opening, and scissor-
mimicking movements. With these tasks, they implemented
online control of a prosthetic hand based on a two-step
classification scheme, where the first step consisted of detecting
movement intention and the second step was the decoding of
movement type. Linear SVM was used as classification algorithm
for both steps. The intention to move was detected on average
37 ms earlier than the actual movement onset. Movement type
was classified with the accuracy of 69.2%, which significantly
exceeded the 33.3% chance level. Pistohl et al. (2008) employed
regularized LDA to decode two types of grasping movements
from the ECoG recorded over the motor cortex. They decoded
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the intention to move from ECoG 125-250 ms earlier than
the actual movement onset. The subjects performed self-paced
relocation of an object between several positions using either
precision grip or whole-hand grasping. The grasp type was
decoded with 93% accuracy based on the analysis of the time
interval starting 1s before grasp till 0.5s after. Recording sites
located anterior to the central sulcus were used for decoding
whereas the sites posterior to the central sulcus were excluded
as representing sensory responses.

Chestek et al. (2013) further increased the number of hand
configurations decoded from the ECoG recorded over the
sensorimotor-cortex. Their subjects configured the hands into
one of four isometric postures: fist, pinch, point or five-finger
spray. Additionally, the subjects flexed one or several fingers.
The interval −0.5–1.5s relative to movement onset was used in
this analysis. Classification was performed with a Naïve Bayes
decoder applied to the gamma band of the ECoG. Four hand
postures were classified with an accuracy of 68–81%, and 66–
98% accuracy was achieved in a five-class classification, where
classes represented four finger movements and a resting state.
The same decoding methods were then utilized in the online
sessions where subjects controlled a hand prosthesis with a
BCI. Kapeller et al. (2014) classified three hand gestures: “open,”
“peace,” and “fist.” In their decoding method, the presence of
handmovement was classified first with a two-class LDA classifier
(with an accuracy of 86.6 and 97.7% in their first and second
subjects, respectively), and then a multi-class LDA detected the
gesture (with an accuracy of 93.8 and 98.8%).

Furthermore, hand-gesture tasks have been used to investigate
the ways the number of implanted electrodes could be reduced
and confined to a smaller cortical area. Bleichner et al. examined
two subjects with high-density ECoG grids implanted over
a small area (2.5–5.2 cm2) in the hand-representing area.
Four hand gestures corresponded to letters D, F, V, and Y
of the American sign language (ASL) (Bleichner et al., 2016).
Gesture classification was performed using a pattern-matching
classification algorithm that was applied to ECoG spectral bands
and local motor potentials (LMPs). An accuracy of 97 and 74%
was reached for their first and second subjects, respectively. It
was found that a selected electrode subset (two thirds of the
total) was sufficient to reach the same classification accuracy
as the accuracy achieved with all electrodes. In the study of Li
et al. (2017), participants produced three hand gestures (“scissor,”
“rock,” and “paper”). Classification accuracy with SVM classifier
applied to spectral features was in the range 69.7–85.7% when
performed offline and 80–82% during the online control of a
prosthetic hand. The number of channels was reduced with
a greedy algorithm. It was found that a subset of electrodes
confined to a small cortical area was sufficient to maintain good
decoding performance.

Xie et al. (2015) decoded different finger and handmovements
from ECoG signals recorded intraoperatively in the motor
cortex of awake subjects. They used an LDA classifier applied
to the features extracted with an autoregressive model, and
a waveform length feature that represented signal complexity.
The intraoperative decoding accuracy (91.8 and 93.0% in two
subjects) was comparable to the accuracy reached with the ECoG

grids implanted for seizure monitoring (90.2 and 96.0% in the
other two subjects). These results suggest that implementing BCI
tasks during the implantation surgery could be useful for the
adjustment of ECoG grid placement.

For proper reproduction of movements, movement onset
needs to be decoded from neural activity in addition to the
decoding of movement type. Early detection of the intention
to move is important for BCI applications because it allows
decreasing the delay between the brain activity and the response
of the prosthetic device (Lebedev et al., 2008; Yanagisawa et al.,
2011). Classification algorithms, such as LDA (Kapeller et al.,
2014; Hotson et al., 2016) and SVM (Yanagisawa et al., 2011) have
been used to detect movement onset based on ECoG recordings.

In conclusion, the classification and reproduction approach
is suitable for neuroprosthetic applications where a finite set
of motor outputs is sufficient, such as BCIs that enable sign
language-like communications (Bleichner et al., 2016; Branco
et al., 2017). Studies have shown that restoration of a finite set of
movements is a practical BCI solution for amputees (Bruurmijn
et al., 2017), and patients with hand paralysis (Shoham et al.,
2001; Yanagisawa et al., 2012). Such BCIs could implement
a shared control principle, where a general motor command
is extracted from brain activity whereas the fine details of
movements are handled by the controller of a prosthetic limb
(Li et al., 2014).

3.3. Decoding of Motor Parameters as
Continuous Variables
The third class of ECoG-based BCIs treats the parameters of
movements, such as limb position and velocity, as continuous
variables that are decoded from brain activity. Many studies have
employed a center-out task for continuous decoding. During
this task, subjects repeatedly perform cued or self-paced arm or
hand movements from a center into different directions. These
movements are usually converted into 2D or 3D movements of a
cursor. The center-out task gained popularity after the studies of
Georgopoulos et al. (1982) of the directional tuning properties
of monkey motor cortical neurons. In ECoG studies with this
design, four (Leuthardt et al., 2004; Reddy et al., 2009), six (Toro
et al., 1994a), and eight (Leuthardt et al., 2004; Sanchez et al.,
2008; Ball et al., 2009; Anderson et al., 2012; Wang et al., 2012;
Nurse et al., 2015; Gunduz et al., 2016) targets locations have been
used, all equidistant from the center. Center-out movements can
be performed with a joystick (Reddy et al., 2009; Anderson et al.,
2012; Wang et al., 2012), computer mouse (Kellis et al., 2012),
stylus (Nurse et al., 2015), or the index finger moving on the
surface of a touchscreen (Sanchez et al., 2008).

In a pioneering study that combined a center-out task
with ECoG recordings in humans, Toro et al. (Toro et al.,
1994a) evaluated tuning of ECoG in the 8–12 Hz band to
the direction of arm movements. ECoG was sampled from
the sensorimotor cortex and adjacent regions. Ten years later
Leuthardt et al. (2004) analyzed a wider (0–200 Hz) range of
frequencies and discovered directional tuning for various ECoG
spectral bands. The center-out task was performed with a hand-
held joystick and incorporated four or eight targets. Ball et al.
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(2009) decoded movement direction from ECoG during the
execution of a center-out task and assessed the representation of
directional information in different cortical areas. Their subjects
performed self-paced center-out movements with their arms to
four target locations. Decoding was performed with regularized
linear discriminant analysis (RLDA) applied to either smoothed
ECoG signals or different frequency bands. Decoding accuracy
of 75% was achieved using the features calculated over the
movement-execution period whereas 45% accuracy was achieved
using the pre-movement period. ECoG channels corresponding
to the hand and arm representing areas of the primary motor
cortex were the most informative for the decoding. The analysis
of additional data from a subject performing an eight-target
task showed that ECoG activity (in the low-frequency and
high-gamma bands) was cosine-tuned to the direction of arm
movements. Anderson et al. (2012) investigated ECoG tuning to
movement speed and velocity for center-out and tracing tasks
performed with a force feedback joystick. ECoG recordings were
conducted in multiple cortical areas. The strongest modulations
to direction, speed, and velocity were observed in the primary
motor cortex.

Wang et al. (2012) decoded movement direction with a time-
varying dynamic Bayesian network. Center-out movements were
performed with a joystick toward eight targets. Accuracy was
quantified as the mean angular error between the actual and
decoded direction; it was <90◦ in all subjects. Gunduz et al.
(2016) reported a similar experimental design with center-out
movements performed with a joystick, and eight targets. The task
incorporated a delay period when the subjects prepared to move
while holding the joystick still, which allowed decoding a person’s
planned direction of movement. Direction was decoded with a
stepwise multilinear regression applied to high gamma activity
and/or LMPs. The median angular error was in the range 62–
70◦ across subjects. The authors observed directionally specific
modulations of both high-gamma ECoG and LMPs during the
delay and movement periods. Directionally tuned high-gamma
activity was most prominent in the sensorimotor cortex whereas
LMP modulations occurred in prefrontal cortices. The authors
concluded that sampling directionally tuned ECoG frommultiple
cortical areas could improve the decoding of both planned and
executed movements.

Reddy et al. (2009) enriched the center-out task with a
tapping condition, which allowed testing how well center-
out movements could be distinguished from the other types
of movements. Center-out movements were performed with
a joystick in response to arrows pointing in four possible
directions. Additionally, subjects responded to a trigger cue (a
square shown on the screen) by clicking on top of the joystick
with the index finger. Decoding was performed using Naïve
Bayes classifier applied to time-frequency features. Decoding
accuracy for movement direction was in the range 83–96% for
the preparatory period and 58–86% for the movement period.
The trigger condition was distinguished with 72–93% accuracy
from the center-out conditions.

Bundy et al. (2016) added the third dimension to the center-
out task. Their subjects performed arm reaching movements
with the starting position located at the center of a cube and

cube vertices serving as targets. The kinematic parameters of
movements were decoded with a hierarchical partial-least squares
regression model. Correlation coefficients between the true and
predicted kinematic parameters ranged 0.31–0.80 across subjects
for speed, 0.27–0.54 for velocity and 0.22–0.57 for position. The
final position was reconstructed with an accuracy of 49.0–66.2%.

Several studies employed reaching tasks that differed from the
classical center-out paradigm. In the study of Kellis et al. (2012),
patients moved a cursor with a computer mouse from an initial
position at the bottom of the screen to the upper right or upper
left corner; trajectories were decoded from ECoG with a Kalman
filter. Sanchez et al. (2008) continuously decoded kinematic
parameters in two tasks: a center-out task where subjects tracked
smoothly varying trajectories extending from the center to
predefined locations, and a target selection task where subjects
performed reaches toward color-coded targets placed along the
top edge of the screen. Cursor movements were decoded from
ECoG frequency bands with a Wiener filter. Pistohl et al. (2008)
had subjects acquire targets randomly positioned on a plane;
hand coordinates were decoded with a Kalman filter. Schalk et al.
(2007) reported highly accurate decoding of position and velocity
using linear models for the task, performed with a joystick, where
subjects pursued a target that moved counterclockwise along
a circular trajectory. ECoG activity was cosine tuned to target
angle, and decoding accuracy was comparable to the accuracy
reported for monkeys implanted with MEAs.

In several studies, kinematics of finger movements was
decoded from ECoG. Kubanek et al. (2009) extracted the time-
course of finger movements from motor cortical activity. The
subjects repeatedly flexed individual fingers in response to
a visual cue. Decoding was performed with PaceRegression
algorithm. Several other decoding algorithms of different
complexity have been used for reproducing finger movements
from ECoG, including switching linear model (Flamary and
Rakotomamonjy, 2012; Liang and Bougrain, 2012) empirical
mode decomposition (Hazrati and Hofmann, 2012), logistic-
weighted regression (Chen et al., 2014), and LSTM (Du et al.,
2018; Xie et al., 2018).

In addition to the aforementioned reaching tasks and finger-
movement tasks, more complex motor tasks have been used in
ECoG-BCI studies. Hammer et al. (2013) employed a game-
like continuous one-dimensional motor task where subjects
controlled the horizontal position of a car with a steering wheel.
Position, velocity and acceleration were decoded with a linear
regression algorithm. In the study of Nakanishi et al. (2013),
participants repositioned blocks on a board. ECoG features were
transformed into a three-dimensional arm trajectory with a
sparse linear regression algorithm. In the subsequent study by
the same group, subjects repositioned blocks with three different
masses (Nakanishi et al., 2017). With this design, representations
of intrinsic (e.g., muscle force) and extrinsic (e.g., target location)
parameters of movements could be compared. ECoG recorded
in the primary motor cortex was correlated mostly with the
intrinsic parameters whereas ECoG recorded in pre-motor cortex
was correlated with the extrinsic parameters. Wang et al. (2014)
varied movement duration to investigate whether the entire
movement course could be decoded from ECoG or only the
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values of motor parameters at movement onset. Wu et al.
(2016) implemented a three-dimensional isometric force task
where subjects exerted force in different directions without
moving their arms. Directional information was extracted from
the fronto-parietal ECoG recorded during both preparation
and execution of the isometric task. The decoding algorithm
incorporated a jPCA reduced-rank hiddenMarkovmodel (jPCA-
RR-HMM), regularized shrunken centroid discriminant analysis,
and LASSO regression.

Continuous-decoding BCIs based on ECoG recordings hold
promise of eventually satisfying the requirements of paralyzed
patients who need high-performance neuroprosthetic devices
for restoration of mobility of their limbs. With a continuous-
decoding neural prosthesis, patients would be able to execute
a variety of movements in a near-normal way, where limb
kinematics is constantly under the user’s voluntary control and
fine modifications of motor parameters could be done. Although
a BCI with such an ideal control has not been demonstrated
yet, recent advances in building fully implantable ECoG systems
that perform continuous decoding (Vansteensel et al., 2016;
Benabid et al., 2019) suggest that patients could improve in such
BCI control through long-term practice that engages cortical
plasticity mechanisms.

4. DECODING ALGORITHMS

In this section, we describe in more detail the decoding
algorithms used in ECoG-based BCIs. These algorithms bear
similarity to the decoders for EEG-based interfaces, which have
been covered in several review articles (Lotte et al., 2007,
2018; McFarland and Wolpaw, 2017). Here we review only the
literature on the decoding of movements from ECoG.

ECoG recordings capture electrical potentials of large
neuronal populations formed by synchronous dendritic
potentials and spikes (Buzsáki et al., 2012). Decoding of motor
parameters from ECoG is possible because modulations of
neuronal population activity are consistently correlated with
task events and changes in motor parameters (Anderson et al.,
2012; Lebedev, 2014). Multichannel ECoG data contains spatial
(i.e., where in the cortex) and temporal (i.e., when and how)
information that could be used for decoding of movement
characteristics. Spatial ECoG components reflect, according
to the somatotopic cortical map of the body, the body part
engaged in a motor action. Temporal ECoG components reflect
the time-dependent changes of motor parameters, such as limb
position, speed, and acceleration.

An ECoG decoder takes multichannel ECoG data as the
input and returns the signals of interest (the presence of
movement, movement type, body part being moved, kinematic
parameters, etc.) as the output. Many machine learning methods
are applicable to this problem. The signal processing chain of a
neural decoding algorithm comprises several blocks (Figure 2A).
First, the raw data is transformed into features that contain
information relevant to the BCI tasks. Ideally, these features
should not contain redundant information. Next, a learning
algorithm forms a decision rule that solves either a classification

or regression problem. Classification algorithms solve the
problem of matching an input with one of the predefined discrete
classes. Regression algorithms match the input signals to the
output continuously. For example, identification of the finger
being moved is a classification problem, whereas decoding finger
trajectory is a regression problem.

To properly set the decoder parameters, training data are
needed that contain a sufficient number of examples of the inputs
and their corresponding outputs. Based on the training data, a
function is formed that, given the inputs from the dataset, returns
values that are close to the corresponding desired outputs. A
practicable decoder should be able to generalize to new data,
that is, it should remain accurate when applied to the inputs
not included in the training dataset. The case where decoding
performs well for the training data but fails to work for the
new data is called overfitting (Babyak, 2004). Overfitting often
occurs when the decoder uses too many adjustable parameters,
such as weights of the multiple linear regression. The presence of
overfitting indicates that the transfer function is narrowly tuned
to the anecdotal correlations between the input and output values
taken from the training data rather than implements a generic
transfer rule that reflects consistent input-output relationships.
To avoid overfitting, feature space dimension reduction and
appropriate regularization techniques should be employed. Thus,
if an iterative approach is used to optimize decoder parameters, a
proper stopping rule should be used to avoid overfitting.

Decoding algorithms have been developed that maintain
generalization even when the sampled neural signals drift
over time. Thus, Paul et al. (2017) used the higher-order
statistics of ECoG bispectrum to overcome the difficulties
decoding signals that were recorded during multiple task
sessions. Their algorithm extracted signal features that were
retained after a session-to-session transfer. This finding is
consistent with the results of previous EEG-based studies
(Shahid and Prasad, 2011; Das et al., 2016).

An additional important requirement is the versatility of
training data, which means that the space of movements should
be covered during sampling in such a way that the decoder
interpolates to new data points rather than extrapolating to them.
Practically, this means that experimental settings used to collect
training data should be similar to the settings for online BCI
control, including both the characteristics of movements and
neural activity patterns. In the case of a mismatch between the
training and online-BCI conditions, adjustments of the decoder
may be needed to improve BCI performance.

4.1. Spectral Features
An important advantage of ECoG recordings compared to EEG
is the wider range of signal frequencies that contain information
useful for BCI control. ECoG activity comprises multiple
frequency bands, from the low frequency activity (below 1 Hz)
to high gamma (50–400 Hz). Some of these spectral components
are clearly rhythmic, with clear peaks present in ECoG spectra
(Miller et al., 2007). Each frequency band has specific functional
correlates, which allows implementing decoders that capture
different aspects of the behavioral tasks, such as responses to
stimuli, transition from rest to movement, characteristics of limb
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FIGURE 2 | Types of data processing chains employed in ECoG-based BCIs. (A) Classical approach, where preselected features are extracted from ECoG

recordings, followed by a classification or regression algorithm that generates BCI output. (B) Deep learning approach that handles both feature selection and

decoding. (C) Hierarchical scheme with multiple decoders and processing chains that perform switching or relative weights adjustment.

kinematics, and engaging different body parts. An ECoG decoder
that uses multiple frequency bands simultaneously is potentially
more accurate and versatile compared to the decoder based on a
single spectral band.

To extract task-related spectral features, ECoG signal is either
bandpass filtered (Liang and Bougrain, 2012; Chestek et al., 2013;
Nakanishi et al., 2013) or converted into the frequency domain
using non-parametric methods, such as Fourier transform (Chin
et al., 2007; Miller et al., 2007; Blakely et al., 2009; Reddy

et al., 2009; Ryun et al., 2014), multitaper methods (Ball et al.,
2009; Kellis et al., 2012; Pistohl et al., 2012; Elgharabawy and
Wahed, 2016), parametric techniques, such as autoregressive
model estimation (Leuthardt et al., 2004; Schalk et al., 2007;
Kubanek et al., 2009; Wang et al., 2012; Xie et al., 2015), and
the maximum entropy approach (van Vugt et al., 2007; Collinger
et al., 2014; Bundy et al., 2016; Gunduz et al., 2016). Spectral
features can be also extracted with filter bank methods, such
as Gabor filters (Liu et al., 2010; Elghrabawy and Wahed, 2012;

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2019 | Volume 13 | Article 74176

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Volkova et al. Decoding Movement From ECoG

FIGURE 3 | Typical changes in ECoG activity that occur during the execution of a motor task (in this case, finger flexion). Task-related activity is compared to ECoG

activity recorded during a rest period. (A) Channel index × spectral frequency diagram with the color-coded values representing desynchronization index calculated as

2 Ptask−Prest
Ptask+Prest

. (B–D) Cortical distribution of desynchronization index for different ECoG frequency bands. (B) Data for the alpha band. It can be seen that, during a motor

task, alpha-band activity is desynchronized over a large portion of the sensorimotor cortex. (C) Data for the beta band. Beta band activity is desychronization over a

more compact cortical area as compared to the alpha-band. (D) Data for the beta band for the high frequency gamma activity (40–60 Hz), which exhibits a

pronounced synchronization over a small cortical area. The light-gray shaded spot shows the localization of the hand-related sensorimotor are obtained with fMRI.

Elgharabawy and Wahed, 2016; Wu et al., 2016). Ideally, neural
signals should be processed in such a way that an optimal trade-
off is reached between the temporal and spectral resolution.

ECoG mu (8–12 Hz) and beta (18–26 Hz) rhythms recorded
in the sensorimotor are commonly used for decodingmovements
from ECoG. These oscillations are thought to reflect the activity
in corticothalamic loops (Schalk and Leuthardt, 2011). The mu
and beta rhythms are typically not confined to local cortical
areas but rather occur over large surfaces (Brunner et al.,
2009). Movement and motor imagery cause desynchronization
(i.e., decrease in amplitude) of these rhythms, which allows
implementing BCIs that detect movement onset and time course.
While ECoG recordings are useful for measuring the mu and
beta activity, approximately the same measurements, albeit with
a lower spatial resolution, could be accomplished with EEG
recordings, which are suitable for monitoring cortical rhythms
below 40 Hz. By contrast, gamma-band activity (40 Hz and
higher) cannot be reliably recorded with EEG due to signal
contamination by facial EMG activity that belongs to the same

frequency range. Yet, gamma activity is reliably sampled with
ECoG. ECoG activity in the gamma band matches the activity of
single neurons in the same area (Buzsáki et al., 2012) and, unlike
the slower rhythms, it is not widespread but rather occurs in local
cortical areas (Schalk and Leuthardt, 2011). These properties
make ECoG gamma activity suitable for decoding based on
cortical location and for decoding specific aspects of movement
planning and execution with the accuracy comparable to the
decoding from neuronal spikes (Anderson et al., 2012; Gunduz
et al., 2016). ECoG gamma recordings are also useful to study
cognitive mechanisms (Sturm et al., 2014). Thus, high-frequency
ECoG components are especially valuable for implementing BCIs
of different kinds. Figure 3 shows the typical changes that occur
in different ECoG frequency bands during the execution of a
motor task.

At the lower end of ECoG spectrum (<2 Hz), ECoG low-
frequency component (LFC) has been shown to be applicable for
BCI decoding because it contains information about movement
timecourse and kinematics (Mehring et al., 2003; Rickert et al.,

Frontiers in Neuroinformatics | www.frontiersin.org 10 December 2019 | Volume 13 | Article 74177

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Volkova et al. Decoding Movement From ECoG

2005; Pistohl et al., 2008; Ball et al., 2009; Hammer et al., 2013).
LFC can be extracted, for example, by smoothing the signal
with Savitzky-Golay filters (Pistohl et al., 2008, 2012; Ball et al.,
2009). Schalk et al. (2007) called this component local motor
potential (LMP) and computed it as a running average. LMP is
modulated duringmotor behaviors, so it can be used for decoding
limb kinematics (Kubanek et al., 2009; Acharya et al., 2010; Fifer
et al., 2012; Wang et al., 2012; Chen et al., 2014; Hotson et al.,
2014; Bleichner et al., 2016; Bundy et al., 2016; Wu et al., 2016).
Hammer et al. suggested that LFC phase is more informative
for motor decoding than LFC magnitude (Hammer et al., 2013).
While LFC is highly informative for decoding, it can be easily
contaminated by mechanical and electrical artifacts caused by the
movements of the limbs and recording equipment. Because of
this issue, a special care should be taken to minimize the artifacts,
remove them from the data programmatically and ensure that
they are not utilized for decoding.

Besides spectral band power modulations, within-band and
across-band coupling features appear to be informative on
movement intentions. Thus, Brunner et al. (2005) found extra
information in the phase coupling between different ECoG
channels, measured as phase locking value (PLV). This method
worked well when applied to the beta and gamma bands.

Several connectivity measures have been applied to the
analysis of ECoG. Bayesian networks (TV-DBN) and eigenvector
centrality analysis have been used to identify brain regions
relevant to motor tasks (Newman et al., 2015). Benz et al. (2012)
used TV-DBN to quantify task-related changes in connectivity
and to decode hand kinematics. With this approach, higher
accuracy was achieved compared to spectral feature decoders.
Babiloni et al. (2017) utilized lagged linear connectivity (LLC)
between several cortical areas in the delta-theta (<8 Hz) band to
distinguish action execution from action observation.

4.2. Spatial Features
Decoder accuracy is known to improve with increasing number
of recording channels (Nicolelis and Lebedev, 2009). In addition
to the mere number of channels, improvements in decoding
can be gained by accounting for the spatial arrangement of
recording sensors, such as the arrangement of electrodes in
an ECoG grid. The procedure that improves decoding using
the information about the electrode locations is referred to as
spatial filtering. Spatial filters treat different ECoG channels
as coordinates for multivariate data sampling. This coordinate
system is transformed by the filter to improve decoding.
For example, spatial filtering could be used to reduce data
dimensionality or improve separability of different observations.

The initial spatial filtering is usually accomplished with the
reference schemes utilized during ECoG recordings. Common
average reference (CAR) is typically used as a simple denoising
technique (Schalk et al., 2007; Kubanek et al., 2009; Wang
et al., 2012). This method reduces noise that is common to all
recording channels but it does not handle channel-specific noise
and it may also introduce noise into otherwise clean channels.
Several alternative filtering techniques have been proposed to
address these problems. Morales-Flores et al. (2014) developed
a non-supervised algorithm where the spatial filter coefficients

are adjusted using a steepest descent method that minimizes
the variance on differences of the linear combination of ECoG
channels. This approach improved the decoding of finger flexions
from ECoG when compared to the data produced by CAR.
Liu et al. (2015) considered the problem of the introduction
of channel-specific noise when CAR is applied to the channel
sets containing noisy channels. They tested several types of
unsupervised spatial filters and techniques for detecting artifacts.
After the noisy channels were automatically removed, data
contamination was reduced. Moreover, they developed a median
average reference filter that reduced channel-specific noise even
when the noisy channels remained in the set.

Principal component analysis (PCA) is widely used in
conjunction with spatial filtering, primarily for dimensionality
reduction (Freeman et al., 2000; Boye et al., 2008). This method
transforms the original data into principal components, which
are uncorrelated with each other and are created in such a way
that the first several components capture the largest possible
amount of variance in the data. The principal components are
quantitatively characterized in terms of how much variance (i.e.,
information contained in the data) they comprise. After the
PCA transformation, the least informative (or least powerful)
components can be discarded, reducing data dimensionality.
This approach is, however, not optimal in the cases where
information is present in the low-power features of the ECoG
signal. In some cases, dimensionality reduction techniques, such
as PCA, are applied not only to ECoG signals but also to
motor parameters (Liu et al., 2010; Samiee et al., 2010; Hotson
et al., 2014). This is particularly useful when movements are
unconstrained. In this algorithm, the decoder first generates
output in PCA coordinates, and this output is then converted
into the original coordinates. Canonical correlation analysis is
another technique that can handle high multidimensionality of
both ECoG and movement data. This method performs a linear
transformation thatmaximizes the correlation between the ECoG
activity and movements (Spüler et al., 2016).

Common spatial patterns (CSP) is a spatial filtering technique
that is often used in EEG- and ECoG-based BCIs to extract
features that are useful for classification (Kapeller et al., 2014,
2015; Xie et al., 2015; Jiang et al., 2017). When two classes
of observations are used, CSP maximizes the ratio of their
variances to increase the separability of the two classes. After
the CSP transformation, dimensionality reduction can be carried
out based on the separability of the two classes in different
dimensions. Additionally, CSP performs more robustly and
exhibits better generalization properties when preceded by a
separate dimension reduction step (Nicolae et al., 2017).

Source reconstruction methods are applicable to improve
the performance of ECoG-based BCIs. The use of dynamical
spatial features obtained from the reconstructed cortical current
source density has been already shown to drastically improve
the decoding accuracy in the MEG and EEG based BCIs where
subjects generate outputs using motor imagery (Lin et al., 2013;
Edelman et al., 2019). Raw ECoG recordings better reflect the
surface distribution of cortical sources compared to non-invasive
measurements (Schalk and Leuthardt, 2011). Yet, the activity of
sources located deep in the sulci spreads into several recording
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channels and therefore can not be assessed selectively in the raw
data. As a solution to this problem, a sufficiently fine model can
be built that describes the relationship between the activity of
neuronal sources and the ECoG measurements (Gramfort et al.,
2010). Based on such forward model, reasonably accurate current
source density reconstructions can be obtained for neuronal
sources located within 1 cm from the cortical surface (Zhang
et al., 2008; Pascarella et al., 2016; Todaro et al., 2018). We foresee
that such reconstruction of sources from ECoG will be useful for
BCI decoding by providing decoding algorithms with the inputs
that discern the activity of more compact cortical areas compared
raw ECoG data. To fully benefit from this approach, care needs
to be taken to accurately determine grid location with respect
to the cortical surface. In addition to geometric calculations, the
techniques exploiting functional data-driven methods based on
maximizing model evidence (Henson et al., 2009) could improve
the performance of these methods.

In addition to the methods described above that perform
spatial filtering and/or reduce data dimensionality (Gu et al.,
2012), the decoding accuracy benefits from techniques to
determine the most informative features for classification, such
as requesting a certain separation in power for a certain ECoG
spectral band for different movements (Ryun et al., 2014),
choosing features strongly correlated with the task (Leuthardt
et al., 2004), successively adding features correlated to the class
and not correlated to the previously selected features (Schalk
et al., 2007), or choosing features according to a scatter-matrix
based separability (Samiee et al., 2010). Several filter selection
algorithms utilize a wrapper-based approach, where features
are scored using the learning algorithm that is then used for
regression or classification (Gu et al., 2012). In this approach,
the feature set is enhanced in consecutive steps, where features
are added to the previous feature set to improve decoding
accuracy estimated with cross-validation (Liang and Bougrain,
2012; Wang et al., 2012; Elgharabawy and Wahed, 2016; Li
et al., 2017). When following these strategies, one should bear
in mind that ECoG features assumed to be useful could be
contaminated by noise that is accidentally correlated to the
parameters being decoded.

4.3. Classification and Regression
Starting with the report of Levine et al. (1999) on movement-
related ECoG patterns, pattern matching techniques have been
applied to derivemotor commands from ECoG recordings. Thus,
movement-related ECoG desynchronization was detected using
an average ECoG template and cross-correlating it with ECoG
samples (Huggins et al., 1999). More complex features can be
used for the same purpose (Graimann et al., 2003). Such pattern-
matching approach has been successfully used to classify multiple
movement types (Bleichner et al., 2016) and to implement BCI
control (Levine et al., 2000).

As explained above, the capacity to generalize to new data is
essential for both classification and regression algorithms. Since
the number of features is often large, regularization methods are
applied to prevent overfitting. Algorithms with fewer parameters
are less susceptible to overfitting and often perform no worse
than more complex algorithms (Marjaninejad et al., 2017).

For decoding ECoG into discrete classes, linear discriminant
analysis (LDA) is often used (Ball et al., 2009; Samiee et al., 2010;
Pistohl et al., 2012; Xie et al., 2015; Bleichner et al., 2016; Jiang
et al., 2017). Classification can be performed as well using other
algorithms, such as k-nearest neighbor method (Chin et al., 2007;
Samiee et al., 2010; Paul et al., 2017) and Naïve Bayes classifier
(Chestek et al., 2013).

Support vector machines (SVM) is another class of models
that solve the problem of separating samples of different
classes by maximizing the margin between them. This group
of algorithms is versatile and allows constructing highly non-
linear decision surfaces. Linear kernel is often used to prevent
overfitting and ensure robustness (Yanagisawa et al., 2009, 2011;
Ryun et al., 2014; Elgharabawy and Wahed, 2016). Additionally,
radial basis functions can be employed (Wang et al., 2012). The
disadvantage of this approach is that kernel selection remains
largely heuristic and is usually performed via some sort of cross-
validation that requires additional data.

For continuous decoding of motor parameters from ECoG,
linear models are often used, including linear regression (Schalk
et al., 2007; Liang and Bougrain, 2012; Hammer et al., 2013;
Hotson et al., 2014; Gunduz et al., 2016) and its modifications
designed to reduce overfitting (Kubanek et al., 2009; Nakanishi
et al., 2013). Sanchez et al. used the Wiener filter, a linear
model, to decode movement trajectory (Sanchez et al., 2008).
Pistohl et al. (2008) and Kellis et al. (2012) utilized the
Kalman filter, which better handles non-stationary inputs. Wang
et al. (2012) employed a modification of dynamic Bayesian
network to capture non-stationarity in the temporal and spatial
ECoG characteristics.

Several studies utilized prior knowledge of the task
performance to improve decoding. Schalk and Leuthardt
(2011) developed a Bayesian decoding model that incorporated
constraints on finger flexion. Wu et al. (2016) employed a hidden
Markov model that highlighted rhythmic task behavior. Saa et al.
(2016) enhanced their decoding algorithms with the assumption
that subjects do not perform rapid changes between movement
and rest.

Hierarchical algorithms (i.e., the ones that stack several
models) are often used to enable online BCI tasks. In
these schemes, different regression and classification tasks are
performed in a certain order (Figure 2C). Yanagisawa et al.
(2011) and Hotson et al. (2016) used a hierarchical algorithm,
where one model classified between rest and movement and
detected movement onset and the second model classifies
movement type. In several studies, switching between regression
models was performed based on a classification algorithm
(Flamary and Rakotomamonjy, 2012; Bundy et al., 2016;
Elgharabawy and Wahed, 2016). Additionally, Chen et al.
developed an algorithm where the output of one model was used
to weigh the output of the other model to improve prediction
accuracy (Chen et al., 2014).

Artificial neural networks are the class of algorithms that
handle complex, non-stationary patterns of brain activity. They
can be applied to both classification and regression problems. The
primary advantage of artificial neural networks is their versatility.
With sufficient number of model parameters (units or neurons),
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complex neural patterns can be processed. While shallow neural
networks with few layers are useful for decoding, during the
last several years deep neural networks containing many layers
have significantly advanced. Advantages of deep learning models
include their ability to automatically extract features useful for
decoding rather than hand-engineering them (Figure 2B) and to
generate representations at multiple levels of abstraction.

Deep learning is rapidly gaining popularity as a BCI decoding
method. In the last few years, deep learning algorithms have
been applied to ECoG data processing (Roy et al., 2019),
seizure forecasting (Meisel and Bailey, 2019), language mapping
(RaviPrakash et al., 2018), and speech decoding (Livezey et al.,
2018; Angrick et al., 2019a,b). Several studies have already
employed deep learning for decoding movements from ECoG.
Xie et al. (2018) decoded finger trajectory with high accuracy
using LSTM recurrent neural network. Du et al. (2018) applied
LSTM to the same data and implemented real-time control
of a robotic arm. Wang et al. (2018) employed a deep model
to detect the upper body joints movement based on both
ECoG recordings and video data. Pan et al. used recurrent
neural networks that recognized temporal dependencies in
ECoG signal for rapid and robust gesture decoding (Pan
et al., 2018). We foresee further and fruitful development
of deep learning approaches for ECoG-based BCIs. This is
because of several advantages of this approach. Deep learning
architectures applied to electrophysiological data (Roy et al.,
2019) perform on par or slightly better than the classical
algorithms and do not require neural features to be defined
upfront. While such automated processing can be considered
as an advantage, BCI researchers still would want to better
understand the processing chain performed by a deep learning
algorithm, and ideally to relate the processing steps to certain
physiological characteristics of the recorded neural signals.
Such understanding of the representation of information deep
architectures employed for decoding purposes is crucial in order
to assess validity of the obtained solutions (Hammer et al., 2013).
Thus, it is important to understand the contribution to decoding
from different types of neuronal activity, such high-frequency
ECoG components better corresponding to neuronal discharges
and low-frequency ECoG reflecting synchronization of large
neuronal populations (Aoki et al., 1999; Chestek et al., 2013).
Additionally, one needs to be able to distinguish causal decoding
that captures commands generated by the brain from the
decoding based on the peripheral reafferent signals resulting from
overt behaviors (Livezey et al., 2019).With a better understanding
of these functional relationships, BCI developers can make full
use of the information carried by the neural signals, avoid
inadvertent uses of informational confounds, establish practical
utility of their algorithmic solutions, and gain fundamental
neurophysiological insights.

5. SOFTWARE

ECoG-based BCIs can be implemented using several currently
available software packages that perform real-time processing
of multichannel neural data. OpenVIBE (Renard et al., 2010)

is one popular project that offers tools for visual programming
and scripting signal processing pipelines. Experimental task
descriptions are saved as XML files. OpenVIBE is closed
source software. Another popular closed source package for
implementing BCIs is BCI2000 (Schalk et al., 2004). BCI2000
is written in C/C++. It incorporates several algorithms for
processing multichannel recordings. In our laboratory, we have
recently developed NFBLab1, an open-source software written
in Python for implementing a variety of BCI designs (Smetanin
et al., 2018b). This software accepts ECoG signals as inputs,
as well as EEG and MEG recordings and synchronizes them
with motion-tracking information and other multimodal data.
Lab Streaming Layer2 protocol is used to interface NFBLab
to data acquisition devices. NFBLab implements temporal and
spatial filters for selecting signal feature and removing artifacts.
Inverse solvers that generate source-space representation of
multichannel inputs are implemented via an interface to
MNE-Python software (Gramfort et al., 2014). Additionally,
NFBLab incorporates algorithms that reduce processing latency
(Smetanin et al., 2018a).

Several standard general purpose libraries are available for
implementing deep learning approaches, such as PyTorch,
TensorFlow, and Keras. Currently, only a few wrappers
are available implementing specific functions that facilitate
electrophysiological data processing. The Braindecode toolbox by
Schirrmeister et al. (2017) is based on PyTorch and supports trial-
wise and cropped decoding of raw EEG data. This toolbox is
applicable to ECoG data. A novel software package MNEFlow
for dealing with EEG/MEG data is currently being developed3

with three architectures implemented so far: LFCNN, VARCNN
(Zubarev et al., 2018), and EEGNet. The latter architecture
(Lawhern et al., 2018) implements a compact convolutional
network; it is available for download4. While these libraries have
not been developed to specifically process ECoG, they can be
rapidly adapted to process ECoG data.

The developers of decoding algorithms can utilize open ECoG
datasets containing data from movement and motor imagery
tasks. For instance, dataset 4 from international BCI competition
IV5 contains data for finger movements. This dataset is often
used as a benchmark for BCI decoders that classify the finger
beingmoved and/or perform continuous reconstruction of finger
movements. The other ECoG dataset from BCI competition
III6 contains recordings from several experimental sessions, so
it is useful for testing how well a BCI decoder generalizes
from one session to another. Researches from Brunton Lab
made available a large annotated dataset7 containing long-
term ECoG recording along with joint kinematics. Stanford
Collection of ECoG Data8 includes recordings from 250 subjects
conducted over an 8-years period. This dataset includes ECoG

1https://github.com/nikolaims/nfb/wiki/Experiment-file-structure
2https://github.com/sccn/labstreaminglayer
3https://mneflow.readthedocs.io
4https://github.com/vlawhern/arl-eegmodels
5http://www.bbci.de/competition/iv/
6http://www.bbci.de/competition/iii/
7https://www.bingbrunton.com/data
8https://purl.stanford.edu/zk881ps0522
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recordings from the sensorimotor cortex in patients performing
motor tasks.

6. DISCUSSION

Over the last two decades we observe a growing number
of ECoG-based BCI studies in patients who underwent
implantation for clinical purposes. This research is clinically
relevant and holds promise to provide new treatments for people
suffering from severe motor and sensory disabilities caused by
such conditions as spinal cord injury, stroke and amyotrophic
lateral sclerosis. At the same time, these studies have already
provided benefits to the patients and materialized in take-home
BCI systems for text-dialing purposes (Brunner et al., 2011),
novel safer solutions for passive speech mapping of eloquent
cortex during neurosurgery (Taplin et al., 2016; Sinkin et al.,
2019) and wireless ECoG devices (Matsushita et al., 2018) that
reduce septic risks and can be employed for chronic monitoring
of patients with epilepsy. In recent years, it has become clear
that ECoG-based BCIs are a viable approach to restoration and
rehabilitation of motor functions. ECoG recordings are useful
for decoding such motor parameters as movement onset (Wang
et al., 2012; Pistohl et al., 2013), movement type (Pistohl et al.,
2012; Ryun et al., 2014), and limb trajectory (Pistohl et al.,
2008; Nakanishi et al., 2013; Eliseyev and Aksenova, 2014; Xie
et al., 2018). These decoded signals can be then sent to external
devices, such as hand prosthesis with many degrees of freedom
(Yanagisawa et al., 2011; Hotson et al., 2016) or a lower-limb
exoskeleton (Vansteensel et al., 2016; Benabid et al., 2019). ECoG-
based BCIs can control two-dimensional and three-dimensional
movements of a cursor or a prosthetic arm (Anderson et al.,
2012; Yanagisawa et al., 2012). Several kinematic parameters
can be extracted from ECoG, including position, velocity, and
acceleration (Hammer et al., 2013). Extrinsic variables, such as
target location, can also be also decoded from ECoG and utilized
for BCI control (Nakanishi et al., 2017). The recently developed
fully implantable ECoG-based BCIs (Vansteensel et al., 2016;
Benabid et al., 2019) have extended the functionality of such
systems as they enable long-term operations and engage cortical
plasticity. With the rapid development of new technologies for
high-fidelity ECoG recordings (Viventi et al., 2011; Akinwande
et al., 2014; Khodagholy et al., 2015) and of neural decoding
methods (Faust et al., 2018; Richards et al., 2019), ECoG-based
BCIs will likely continue to improve.

ECoG-based BCIs are clinically relevant due to their safety
as compared to the intracortical implants (e.g., Utah array)
and have a better spatial and temporal resolution than non-
invasive, EEG-based BCIs. At the same time, the ECoG grids
cover relatively cortical areas which allows to take advantage
of the spatial-temporal encoding principles implemented by the
brain. Such large-scale recordings improve BCI accuracy by
allowing for simultaneous access to the information processed
by many brain regions involved in programming and execution
of movements.

Broad spectral and spatial extent of ECoG recordings open the
opportunity to explore at various scales interregional interactions
between and within several frequency bands from delta-band
(Gunduz et al., 2016) correlates of movement, desynchronization
in the alpha and beta bands in spatially distributed task-
relevant cortical areas to more localized synchronization in
the high gamma range and cross-frequency coupling between
bands and specific cytoarchitectonic assemblies. This flexibility
leads to significant variability in the choice of features,
decoded parameters and decoding models witnessed in the
range of described ECoG studies. Thus, depending on the
clinical needs, different ECoG components and associated
neurophysiological phenomena can be utilized in practical
BCI system.

In recent years, an active development of the decoding
algorithms is underway. Several strategies have been particularly
useful, including switching models, adapting algorithms,
and the decoders utilizing prior information on movement
characteristics and the nature of physiological processes.
Even more versatile methods are currently being developed,
such as those based on deep learning which allows for
capturing complex relationship between motor parameters
and ECoG characteristics.

We foresee that the next series of major advances will be
made in bidirectional BCI technology that combines motor-
control loops with sensory feedback provided by cortical
stimulation and/or sensory substitution methods (Wilson
et al., 2012; Cronin et al., 2016; Hiremath et al., 2017).
The development of bidirectional ECoG-based BCIs will
bring new challenges for modeling the complex relationships
between ECoG signals and different motor and sensory
parameters. Previous studies have reported a range of promising
results regarding the possibility of building BCIs that employ
ECoG recordings to enable motor functions. With the rapid
developments in ECoG technologies (Shokoueinejad et al.,
2019), surgical implantation procedures and mathematical
algorithms for neural decoding, it is reasonable to expect
that a variety of practical, fully-implantable (Vansteensel
et al., 2016) ECoG-based neural prostheses will emerge
for enabling motor and sensory functions to neurologically
impaired patients.
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Neural oscillations originate predominantly from interacting cortical neurons and

consequently reflect aspects of cortical information processing. However, their functional

role is not yet fully understood and their interpretation is debatable. Amplitude

modulations (AMs) in alpha (8–12 Hz), beta (13–30 Hz), and high gamma (70–150 Hz)

band in invasive electrocorticogram (ECoG) and non-invasive electroencephalogram

(EEG) signals change with behavior. Alpha and beta band AMs are typically suppressed

(desynchronized) during motor behavior, while high gamma AMs highly correlate with the

behavior. These two phenomena are successfully used for functional brain mapping and

brain-computer interface (BCI) applications. Recent research found movement-phase

related AMs (MPA) also in high beta/low gamma (24–40 Hz) EEG rhythms. These MPAs

were found by separating the suppressed AMs into sustained and dynamic components.

Sustained AM components are those with frequencies that are lower than the motor

behavior. Dynamic components those with frequencies higher than the behavior. In

this paper, we study ECoG beta/low gamma band (12–30 Hz/30–42 Hz) AM during

repetitive finger movements addressing the question whether or not MPAs can be found

in ECoG beta band. Indeed, MPA in the 12–18 Hz and 18–24 Hz band were found. This

additional information may lead to further improvements in ECoG-based prediction and

reconstruction of motor behavior by combining high gamma AM and beta band MPA.

Keywords: electrocorticogram, brain-computer interface, beta band, high gamma, movement-phase related

amplitude modulation

1. INTRODUCTION

Functional brain mapping (fBM) and brain-computer interface (BCI) technologies identify
behavior—cognitive and motor—by interpretation of brain signal patterns. For example, invasive
electrocorticogram (ECoG) high gamma band (70–150 Hz) activity (γH) strongly correlates with
motor behavior (Crone et al., 1998; Edwards et al., 2005; Miller et al., 2007, 2014; Schalk et al., 2007;
Scherer et al., 2009; Martin et al., 2016) and was suggested to contain similar information as firing
rates on a intermediate spatial scale (Ray et al., 2008; Manning et al., 2009; Miller et al., 2009b).
The single-trial signal-to-noise ratio (SNR) of γ

H is high, which is essential for robust and timely
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FIGURE 1 | ECoG and EEG envelopes of known oscillatory phenomena

during single-trial motor behavior (idealized). The top plot shows a typical

times series recorded from data glove sensors during, for example, index

finger extension and flexion movements. Below characteristic γ
H (70–150 Hz)

and µ/β (8–12 Hz/13–30 Hz) activities for invasive ECoG and noninvasive

EEG, respectively, are shown. EEG βH-γL (24–40 Hz) MPA is shown in the

dotted box. corr, Pearson Correlation Coefficient; ERD, Event-Related

Desynchronization; MPA, Movement Phase related Amplitude modulation.

online BCI performance. γH can also be found in the noninvasive
electroencephalogram (EEG) (Ball et al., 2008; Darvas et al.,
2010; Grosse-Wentrup et al., 2011; Seeber et al., 2015); However,
the single-trial SNR is low in non-invasive EEG. In contrast,
oscillations over sensorimotor areas in the µ (8–12 Hz) and
β (13–30 Hz) frequency range are much more pronounced
in EEG recordings on a single-trial level. The suppression
of theses rhythms—a phenomenon known as event-related
desynchronization (ERD) (Pfurtscheller and Da Silva, 1999)—
were suggested to represent increased excitability in underlying
neural circuitry (Neuper and Pfurtscheller, 2001) or a release
of inhibition facilitating movement initiation (Hermes et al.,
2012). Sensorimotor µ and β band suppression during motor
behavior is also characteristic for ECoG. A simplified, idealized
representation of event-related µ, β , and γ

H activity patterns
during movement are summarized in Figure 1. Since these
patterns are well described in the literature, they are commonly
used in BCI. Currently a precise reconstruction of the behavior
from these macroscopic recordings is, however, only possible to a
limited extent. To improve fBM/BCI performance, it is essential
to deepen our understanding of signals recorded as local field
potentials (LFP), ECoG, and EEG.

Recently, we started to systematically study EEG source
dynamics during upright gait (Wagner et al., 2012; Seeber
et al., 2014). Results confirmed a sustained µ and β band ERD
and γ

H activity during walking when compared to standing.
Additionally, we found EEG source amplitudes in the high β-
low γ (βH-γL) frequency range (24–40 Hz) that are modulated
in relation to the gait cycle (Wagner et al., 2012, 2016; Seeber
et al., 2014, 2015). These movement-phase related amplitude

modulations (MPA, see Figure 1) showed different spectral
profiles than classical ERD and event-related synchronization
(ERS) phenomena (Pfurtscheller and Da Silva, 1999; Neuper
and Pfurtscheller, 2001). We found β

H-γL MPA being present
during rhythmic finger extension and flexion movements using
EEG source reconsturction (Seeber et al., 2016). Because
spectral profiles were suggested to be characteristic for specific
large-scale networks (Donner and Siegel, 2011; Siegel et al.,
2012), we interpreted MPA to represent different frequency-
specific networks than classical ERD/ERS (Seeber et al., 2014,
2016). Moreover, following previous literature (Neuper and
Pfurtscheller, 2001; Hermes et al., 2012) sustained ERD/ERS
phenomena, i.e., different synchrony states in sensorimotor
populations, during repetitive movements indicate the contrast
between non-movement and active movement states. The
functional meaning of MPA is less clear so far. Based on their
time-frequency properties and cortical location we suggested
that they might reflect processes linked to the prediction and
integration of sensorimotor information (Seeber et al., 2016). Yet,
more work is needed to falsify or support this viewpoint.

Since µ, β , and γ
H are phenomena found during repetitive

finger extension and flexion movements in both ECoG and
EEG, in this work, we investigate whether MPA in βH-γL
range can also be found in ECoG. This would complement
the gap in Figure 1. As outlined above, our hypothesis is that
βH-γL envelopes, i.e., band-pass filtered power signals tat are
commonly used for movement decoding, are composed by
superposition of functionally different frequency-specific cortical
networks. The first class of networks provides information
on the movement state (motor system “active” or “inactive”).
These networks contribute elements of sustained amplitude
modulation during repetitive movements and are linked to
classical ERD/ERS. The second class of networks provide
information on functional aspects of the motor behavior
(movement phases). These networks contribute elements of
dynamic amplitude modulations and are linked to MPAs. Note
that interpretation of MPAs is only meaningful when the motor
system is “active.” To test this perspective, we split up β and γ

envelopes in sustained and dynamic components, and compare
their correlation with behavior, precisely movement trajectories
recorded with a data glove. Sustained and dynamic components
can be decomposed by low and high pass filters, respectively. The
movement pace defines the filter cut-off frequency. Modulation
frequencies close to, but below the movement pace reflect
ERD/ERS. Modulation frequencies close to, but above the
movement pace might show MPAs.

2. METHODS

2.1. Patients, Data Acquisition, and
Experimental Paradigm
The study participants were six neurosurgical patients with
intractable epilepsy (Patient ID: BP, CC, MN, OJ, ES, and DJ).
They underwent temporary placement of a subdural electrode
array (8 × 8 grid, 1 cm horizontal and vertical inter-electrode
distance) to localize the epileptic seizure focus and map brain
function prior to surgical resection. Electrode placement was
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determined by clinical considerations, with the necessity and
location of the electrodes determined by the interdisciplinary
conference of the Regional Epilepsy Center, Harborview Medical
Center, University of Washington. The patients gave informed
consent prior to participation in a manner approved by the
Human Studies Division (Institutional Review Board) of the
University of Washington.

ECoG signals were recorded on a Synamp2 amplifier
(Compumedics Neuroscan) at a sampling rate of 2,000 samples
per second (1,000 for patients BP and CC) and band-pass filtered
between 1 and 500 (200 for patients BP and CC) Hz. The position
of each finger was registered through a 5-degrees of freedom data
glove device (Fifth Dimension Technologies, Inc.) with a rate of
25 samples per second.

Participants were asked to perform a cue-guided repetitive
motion task of individual finger movements. Two-second-long
visual cues for thumb, index finger and a pinching motion
(involving thumb and index finger movement as well as middle
finger, ring finger and pinky) were randomly interleaved and
separated by 2-s rest intervals. The cues were delivered visually
on a 10 by 10-cm presentation window at a distance of 70 cm
from the subject, using the BCI2000 software (Schalk et al., 2004).
In total there were 29–31 cue presentations per type of visual cue
(except for one subject which was only presented with 23–26 cues
per type of visual cue). The results in this paper focus on thumb
and index finger movements only.

2.2. Data Analysis
ECoG time series were down-sampled to 1,000 samples
per second and visually inspected for the presence of artifacts.
Noisy segments and malfunctioning channels were removed.
Overall, 92.6% of channels and 91.5% of movement trials were
retained for further analysis. The down-sampled ECoG data was
band pass filtered between 0.1 and 200 Hz (8th order Butterworth
IIR filter) and re-referenced with respect to the common average.
Data glove recordings were up-sampled by zero-order-hold
interpolation to 1000 samples per second. Thumb and index
finger movement onset and movement duration were selected by
visual inspection.

The β-γL frequency range was subdivided into five non-
overlapping sub-bands β1 = 12 − 18 Hz, β2 = 18− 24 Hz,
β3 = 24 − 30 Hz, γ1 = 30 − 36 Hz, γ2 = 36− 42 Hz.
The Hilbert transform was applied to the βi and γi

band pass filtered re-referenced ECoG signals (6th order
Butterworth IIR filter) to compute the time varying analytical
amplitude Âj (j = [thumb, index]), which is a measure of
amplitude modulation (AM). Additionally, the analytical
amplitude Âj in the high γ

H
= 70 − 150 Hz frequency

band was computed. This resulted in six (frequency band
fb = [β1,β2,β3, γ1, γ2, γ

H]) analytical amplitude Âj,ch,fb time
series per channel ch = 1, 2, . . . 64.

Study participants performed between 1 and 6 finger
movement cycles per trial (see Figure 2A for finger movement
trajectories). This corresponds tomovement frequencies from 0.5
to 3 Hz. In order to sufficiently separate sustained (condition
SUS) and dynamic (condition DYN) components, a cut-off
frequency of 0.4 Hz was selected. Hence, each Âj,ch,fb was

further divided into sustained ÂSUS
j,ch,fb

and dynamic ÂDYN
j,ch,fb

AM

components by applying a 0.4 Hz low pass and high pass filter,
respectively. Data glove time series Gj (j = [thumb, index]) was

also subdivided into sustained GSUS
j (≤ 0.4 Hz) and dynamic

GDYN
j (> 0.4 Hz) elements. A 6th order Butterworth IIR low

(high) pass filter was used. From each of the calculated time
series, 4 s segments were extracted from

[

− 1.0 . . . 3.0
]

s
with respect to movement onset t = 0 and concatenated.
Further analyses weremade with these new time series. Figure 2B
summarizes the signal processing pipeline.

Pearson correlation coefficients corr(GSUS
j , ÂSUS

j,ch,fb
), and

corr(GDYN
j , ÂDYN

j,ch,fb
) were computed for each finger j, frequency

band fb and channel ch. As reference, gold standard correlations
corr(Gj, Âj,ch,fb) were calculated, without separating sustained
and dynamic AM.

The entire correlation-analysis was repeated with N = 1, 000
random time-domain permutations of common-average re-
referenced channel data. The obtained correlation values
where then pooled and permutation distribution for the
different conditions and frequency bands was evaluated.
Permutation distribution showed to be normal for all patients
for each frequency band and condition. Nonetheless sub-
band standard deviation showed to be higher compared to
γ
H and random permutations of corr(Gj, Âj,ch,fb) exhibited the

lowest and corr(GSUS
j , ÂSUS

j,ch,fb
) the highest standard deviations

over-all. To gain comparability between frequency bands and
conditions, Pearson-correlation coefficients were converted into
z-scores zj,ch,fb, z

SUS
j,ch,fb

and zDYN
j,ch,fb

by subtracting the mean and

dividing by the standard deviation of the underlying pooled
permutation distribution. Z-scores give the distance from the
mean and are measured in standard deviations. The 2.5% and
97.5% quantile were selected as subject-specific chance level
for negative and positive z-scores, respectively, conforming
with two times the standard deviation, hence a z-score of
approximately two.

Z-scores that exceed chance level show a significant relation
between ECoG AM envelopes and finger movement trajectories.
We defined these AM envelopes as MPAs. For visual presentation
envelopes of the channel with the highest z-score located
over movement-related areas were averaged after trial-wise
segmentation for each patient and frequency band.

3. RESULTS

ERD/ERS time-frequency maps (Graimann et al., 2002) were
computed for each patient to obtain a reference image of β

and γ
H activity. ERD/ERS maps are time-frequency plots that

display significant ERD and ERS in predefined frequency bands.
Topographically arranged, they give a clear overview of the
movement-related behavior of the non-phase locked activity over
a broad frequency range. Figure 3A shows example ERD/ERS
maps for patient BP index finger and thumb movement. The
maps show widespread β band ERD during finger flexion and
extension over sensorimotor areas and more focal high γ activity
over cortical index finger and thumb representation areas. This
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FIGURE 2 | (A) Individual thumb and index finger trajectories recorded with the 5-DOF data-glove for one patient in a time window of 120 s. (B) Signal analysis

pipeline.

pattern was visible in all patients. For patient ES the pattern was
widespread and distributed over the whole grid.

For all patients and conditions significant negative z-scores
were calculated for β1, β2, β3, γ1, and γ2 sub-bands. High positive
z-scores were found in γ

H . zDYN
j,ch,fb

showed to be much more

focal than zSUS
j,ch,fb

and zj,ch,fb; z
SUS
j,ch,fb

values were comparably lower.

Overall z-score magnitude decreases and spatial distribution gets
more focal with increasing frequency. The spatial distribution of

positive and negative z-scores conforms with the spatial location

of ERD and ERS activity. Figure 3B summarizes these findings

in detail for patients BP. For each frequency band and condition
z-scores are topographically arranged in form of bubble plots.

For the remaining subjects only bubble plots for γ
H and the

sub-band with the highest negative z-score over sensorimotor

areas are presented (Figures 4, 5). Bubble plots for the remaining

frequency bands can be found as Supplementary Information.
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FIGURE 3 | Results for subject BP. (A) ERD/ERS time-frequency maps. The plots show, topographically arranged (8 × 8 grid), significant ERD and ERS activity plots

for index finger (left) and thumb (right). Electrode locations are marked by star symbol on standard brain. (B) Correlation analysis and MPA. Significant z-score

transformed Pearson correlation coefficients, computed between corresponding digit trajectory and ECoG envelope components, are displayed for index finger (left)

and thumb (right) movements. Z-scores are topographically arranged for each condition (columns, sustained, dynamic, and standard) and frequency band (rows,

(Continued)
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FIGURE 3 | β1 = 12− 18 Hz, β2 = 18− 24 Hz, β3 = 24− 30 Hz, γ1 = 30− 36 Hz, γ2 = 36− 42 Hz, and γ
H

= 70− 150 Hz) independently. Size and color of

bubbles correspond to z-score values. A black “x” symbol marks channels with z-scores below chance level. A black annulus marks channels with the highest

absolute value for each frequency band. Blank spaces in the 8 × 8 electrode grid mark channels excluded from the analysis. Note that negative correlations were

smaller than positive correlations. To enhance readability of the bubble plots negative correlations are doubled in size. For selected sensorimotor channels curves of

averaged amplitude envelopes of filtered ECoG and averaged data-glove trajectory for β1 (bottom) and γ
H (top) frequency bands are plotted. The number next to the

line connecting channels and plots are the corresponding z-scores. β1 MPAs are drawn with thicker lines and highlighted in gray background color.

Averaged amplitude envelope curves for selected channels and
the conditions standard and dynamic are shown in Figures 3B,
4, 5. Channel selection was based on location (only channels
located over sensorimotor areas were considered) and maximum
absolute z-score magnitude. As reference the averaged original
data glove trajectories are visualized. The curves for the standard
condition show a sustained decrease during movement. The
curves for the dynamic condition show β1 MPA and β2

MPA. Corresponding z-score values for zDYN
j,ch,fb

are summarized

in Table 1.

4. DISCUSSION

The aim of this study is to investigate whether β
H
− γL MPA,

previously observed in EEG (Seeber et al., 2016), are similarly
present in ECoG recordings during finger extension and flexion.
To tackle this question, ECoG activity and data glove trajectories
were split into sustained and dynamic components. The latter
was expected to show MPA. Correlations between ECoG and
corresponding data glove components were computed. In
addition to prominent ERD/ERS phenomena, we indeed found
significant correlation between the dynamic ECoG and the
dynamic glove data component as shown in Figures 3–5 for
index finger and thumb movement, respectively.

ERD/S time-frequency maps (Figure 3A) show the well
established patterns of β ERD and high γ ERS (Crone et al.,
1998; Pfurtscheller et al., 2003; Scherer et al., 2003; Miller et al.,
2007). High gamma activity showsmovement relatedmodulation
patterns in agreement with previous literature (Schalk et al., 2007;
Miller et al., 2009a; Scherer et al., 2009; Hermes et al., 2012).

The position of channels showing significant correlation with
behavior were determined based on Talairach coordinates and
are located over sensorimotor areas. Using the classical approach
of using solely band pass filtered envelope ECoG AMs Âch,fb,
represented by our standard condition, results in higher z-scores
compared to sustained ÂSUS

ch,fb
and dynamic ÂDYN

ch,fb
AMs. For the

interpretation of the reported z-scores it is relevant to take
into account which component (condition) of the data glove
signal is compared to which frequency-specific brain feature. For
instance, one can find that the high positive correlation for γ

H

standard condition mostly stem from the dynamic movement
components. High z-scores in the sub bands standard condition
are mainly caused by the rather strong sustained suppression.
For the latter high z-scores represent the similarity of the
ERD/ERS feature and glove data in general. This distinctions
are only possible by decomposing AMs in different components
(conditions). There is considerable variability between subjects,

but as shown in Figures 3–5 dynamic condition, not only
in γ

H , but also in β range sub-bands are modulated by
movement. This is in agreement with findings from EEG studies
investigating walking (Wagner et al., 2012) and finger tapping
(Seeber et al., 2016).

All z-score normalized correlation values reported above
were computed at zero-lag between amplitude envelopes and
glove data. The impact of time lags on the robustness of the
results was analyzed by computing cross-correlation at varying
lags. For sustained and standard condition 0s lag showed to
result in the highest z-scores whereas for dynamic condition no
clear relation could be obtained for all frequency bands. Thus
temporal dynamics were analyzed by averaging with 0 s lag.
Because of the variability in task execution (high variability in
timing and number of finger movements per trial, as can be
seen in Figure 2A and in the averaged data glove trajectories
¯Ĝj in Figures 4, 5 for patients CC and DJ) we shall focus our
interpretation of results to the period from 0.5 s before start
of movement and during the first finger movement cycle. As
excepted γ

H AMs show clear modulation with the movement
pace and are thereby highly positively correlated with the finger
trajectories. Interestingly for every subject individual electrodes
were found with high negative z-values. Corresponding γ

H AM
curves peak directly before movement onset and resemble a
rather flat line during the rest of the movement period. An
example of an averaged amplitude envelope curve illustrating
this phenomena for subject BP thumb movement is presented
in Figure 3B. This activity seems to coincide with movement
planning. β1 AMs in subjects BP, MN and OJ and β2 AMs
in subjects CC and ES anticipate the motor behavior and are
negatively correlated to the first cycle of thumb and index finger
movement. These results suggest that β rhythms not only show
sustained decrease in amplitude, but that they are superimposed
with dynamic modulations that are somewhat correlated with
behavior and thus indeed show MPA.

Data analyzed in this paper were originally recorded to study
temporal dynamics of γ

H activity during movement (Scherer
et al., 2010) and not to research MPAs. This results in some
limitations. Limitations include the short movement duration
(∼ 2 s), the high variability of motor execution and small
number of movement cycles per finger movement (1–6 cycles
per trial), the small number of movement trials (23–31) and
the short inter-cue interval. We expect that longer trials and
larger number of rhythmic finger movements per trial would
result in visually much clearer and more consistent dynamic
modulations. The use of a general cut-off frequency of 0.4
Hz based on movement speed for low- and high-pass filtering
with such a high variability in movement-speed holds another
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FIGURE 4 | Correlation analysis results and MPA for subjects CC, ES, and MN. Significant z-score transformed Pearson correlation coefficients for each channel,

topographically arranged in bubble plots, for index finger (left) and thumb (right) are displayed. For each subject all conditions (columns, sustained, dynamic, and

standard) of γ H
= 70− 150 Hz and the sub-band β1 = 12− 18 Hz or β2 = 18− 24 Hz with the highest significant z-scores are displayed. Bubble size and color is

not directly comparable from subject to subject due to different color-bar ranges. For more detailed description see Figure 3.
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FIGURE 5 | Correlation analysis results and MPA for subjects OJ and DJ. Significant z-score transformed Pearson correlation coefficients for each channel,

topographically arranged in bubble plots, for index finger (left) and thumb (right) are displayed. For each subject all conditions (columns, sustained, dynamic, and

standard) of γ H
= 70− 150 Hz and the sub-band β1 = 12− 18 Hz or β2 = 18− 24 Hz with the highest significant z-scores are displayed. Bubble size and color is

not directly comparable from subject to subject due to different color-bar ranges. For more detailed description see Figure 3.
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TABLE 1 | Highest most significant negative z-score for dynamic condition (zDYNj,ch,fb )

and corresponding frequency band (fb) for each subject and finger movement.

Subject Index finger Thumb

(zDYN
j,ch,fb, fb) (zDYN

j,ch,fb, fb)

BP −2.2, β1 −5.3, β1

CC −3.5, β2 −3.8, β2

ES −4.9, β2 −5.1, β2

MN −2.3, β1 −2.3, β1

OJ −2.6, β1 −3.6, β2

DJ −3.1, β1 −2.6, β1

limitation and could further be improved by individualized
selection of filter stop/pass bands likely resulting in higher
correlation values.

Nonetheless we find and report for the first time dynamic
β1 and β2 modulations that are significantly, but rather loosely,
correlated with finger flexion and extension. Yet, their time
course and location suggest that they contain information that is
different and potentially supplementary to the information that
γ
H modulations provide. Additionally to these novel findings

in ECoG, we replicated activity patterns in β and γ
H that are

in agreement to previous literature (Schalk et al., 2007; Miller
et al., 2009a; Scherer et al., 2009; Hermes et al., 2012). The
model of interpretation of β activity we suggest in this paper may
pave the way to gaining a more comprehensive understanding of
brain activity in the context of motor behavior. Sound in-depth

knowledge of brain activity will lead to more informative BCI
features, which represents one essential component toward the
improvement of BCI pattern recognition performance in BCI
and fBM applications.
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Stereotactic electroencephalogaphy (sEEG) utilizes localized, penetrating depth

electrodes to measure electrophysiological brain activity. It is most commonly used in

the identification of epileptogenic zones in cases of refractory epilepsy. The implanted

electrodes generally provide a sparse sampling of a unique set of brain regions including

deeper brain structures such as hippocampus, amygdala and insula that cannot be

captured by superficial measurement modalities such as electrocorticography (ECoG).

Despite the overlapping clinical application and recent progress in decoding of ECoG

for Brain-Computer Interfaces (BCIs), sEEG has thus far received comparatively little

attention for BCI decoding. Additionally, the success of the related deep-brain stimulation

(DBS) implants bodes well for the potential for chronic sEEG applications. This article

provides an overview of sEEG technology, BCI-related research, and prospective future

directions of sEEG for long-term BCI applications.

Keywords: electrocorticography, ECoG, brain-computer interface, BCI, stereotactic EEG, depth electrodes,

intracranial, iEEG

1. INTRODUCTION

Brain-Computer Interfaces (BCIs, Wolpaw et al., 2002) have rapidly advanced in recent years,
employing a wide variety of communication and control paradigms (Huggins et al., 2017). Notably,
BCIs based on electrocorticography (ECoG, Schalk and Leuthardt, 2011) have demonstrated
reliable decoding of a number of cortical processes. Compared to surface electroencephalography
(EEG), the superior decoding results of ECoG can be attributed to its millimeter-spatial and
millisecond-temporal resolution (Parvizi and Kastner, 2018). Furthermore, ECoG is unaffected by
movement artifacts and allows for the measurement of higher-frequency activity, such as the high
gamma-band (>70 Hz), as it is unfiltered by dura, skull and scalp tissues. The high-gamma band
might correlate with ensemble spiking (Ray et al., 2008) and contain very localized information for
a variety of motor (Miller et al., 2007) (including smiling Kern et al., 2019) and speech tasks (Crone
et al., 2001; Leuthardt et al., 2012).

ECoG is routinely utilized for monitoring of medication-resistant epilepsy in which the
electrodes are implanted for the localization of the seizure origin. The procedure involves a
craniotomy to place strips or grids of electrodes directly on the cortex. The electrodes generally
remain implanted for a period of one to two weeks during which the brain signals are recorded
and monitored to localize the seizure origin. The ECoG electrodes are also used for functional
mapping of the eloquent cortex via electrical cortical stimulation (Arya et al., 2018). In addition
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to epilepsy procedures, ECoG can also be collected
intraoperatively during awake craniotomies for brain tumor
resection surgeries.

Patients undergoing these procedures are recruited to
voluntarily participate in neuroscientific research and, more
recently, BCI research. These investigations have allowed for
tremendous advances both in the understanding of cortical
processes as well as BCI technology. However, as ECoG
electrodes are typically placed over specific, localized regions of
the cortex based on the clinical needs of the patients, broad
coverage is generally not achieved. Furthermore, ECoG only
provides access to the cortical surface and not key deeper
structures such as the hippocampus, insula, Herschl’s gyrus and
basal ganglia.

Another method for intracranial seizure localization employs
penetrating depth electrodes that are implanted through small
burr holes in the skull. These electrodes are positioned using
stereotactic guidance, thus the modality is referred to as
stereotactic EEG (sEEG). sEEG allows for the measurement of
neural activity in deeper structures of the brain. The cortical
sampling of sEEG is generally much sparser than ECoG, leading
to regular combined implantation of sEEG and ECoG in the
same patient. However, it is believed that sEEG alone leads to
fewer surgical complications than the craniotomies required for
ECoG (Iida and Otsubo, 2017). As in ECoG, the usage in epilepsy
monitoring opens a window to conduct neuroscientific or BCI
research with these intracranial recordings without putting
any additional burden on the patient. In fact, many patients
welcome participation in the experiments as a diversion from
the tedium of waiting in the hospital room for the occurrence
of a spontaneous seizure. While sEEG is being increasingly
utilized for neuroscientific research, it has received relatively little
attention for BCI research. This article provides an overview of
sEEG technology, BCI-related research, and prospective future
directions of sEEG for long-term BCI applications.

2. STEREOTACTIC EEG

The implantation of depth electrodes guided by a stereotactic
frame is called stereotactic/stereo electroencephalography
(sEEG) and was first developed by Talairach and Bancaud in
Paris in the late 1950s (Bancaud, 1959; Talairach and Bancaud,
1966). The procedure has become a common practice to identify
epileptogenic zones in refactory elipepsy (Chassoux et al.,
2018). After the patient has been identified as a candidate
for invasive recordings, the epileptologist and neurosurgeon
plan the trajectory of typically 5–15 cylindrical sEEG electrode
shafts containing 8–18 contacts, each. Typical contacts are
made from platinum/iridium, have a length of roughly 2 mm, a
diameter of 1 mm and a resulting total surface area of 10 mm2

(suppliers include e.g., Dixi Medical, Beçanson, France and
Ad-tech Medical, Oak Creek, U.S.A.). The typical inter-electrode
distance is roughly 1.5–3.5 mm (van der Loo et al., 2017), which
generally provides localized sampling of sparse brain regions.
This can result in a total of hundreds of distinct recording sites
across the brain, allowing for simultaneous recording within

and across various brain structures. Less sEEG electrodes are
usually implanted when sEEG is used in combination with
ECoG. Figure 1 shows an example of the implantation of 8 sEEG
electrode shafts.

sEEG electrodes are generally preferred over ECoG grids
when the lateralization of the seizures is unknown or is
expected to be in deeper brain structures, such as insula or
hippocampus (Parvizi and Kastner, 2018). This preference results
in regular targeting of limbic structures including the medial
temporal, orbitofrontal, cingulate, and insular regions. As the
electrode positioning along the trajectory spans from the skull
to these deeper areas, cortical regions can also be captured.
This sampling of very different areas along one electrode shaft
results in special requirements for electrode referencing (Li
et al., 2018). Figure 1 shows an example of a typical sEEG
implantation. Red electrodes are planned (Figure 1A) to target
the hippocampus and a heterotopia in the right hemisphere.
Other trajectories are mainly targeting a heterotopia. Electrodes
positioned along the trajectory of the planned surgical target
(Figure 1B) can also capture other brain regions which can be
effective for BCI applications. For example, the blue electrode
trajectory is proximal to the primary motor cortex. Such coverage
highlights one of the major differences between sEEG and ECoG.
While ECoG provides higher density coverage over a limited
cortical region (typically unilateral), sEEG provides sparser
coverage spanning more, bilateral brain regions including deeper
structures. As with ECoG, because the targeted areas for the
electrode implants are solely determined based on clinical needs,
BCI investigations in sEEG must be designed to accommodate
the patient-specific montages.

Because the clinical intent is to capture epileptic activity,
sampling rates between 1 and 3 kHz are commonly used, giving
a temporal resolution in the sub-millisecond range. In addition
to the standard frequency ranges investigated in surface EEG,
namely delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–
20 Hz), and gamma (21–50 Hz), sEEG allows the measurement
of the high gamma band (> 70 Hz), which is highly attenuated
by skull and scalp in surface EEG recordings. The high-gamma
band activity has been shown to be highly correlated with task-
related signals (Miller et al., 2007) and ensemble spiking of
cells in the close proximity of the electrode contact (Ray et al.,
2008). The high-gamma band is also known to be strongly
correlated to the BOLD signal (Logothetis et al., 2001; Mukamel
et al., 2005). In addition to the access to the high-gamma band,
sEEG also provides higher signal amplitude (about ten times
higher) and a resulting increase in Signal-Noise-Ratio up to
100 times higher (Ball et al., 2009) compared to scalp EEG.
Additionally, sEEG provides very localized information, with
superior spatial resolution compared to surface EEG (Parvizi and
Kastner, 2018). Estimates place the number of cells measurable
by an individual contact at ~500,000 (Miller et al., 2009).
Artifacts such as electrocardiogram, movement artifacts and skin
potentials are also significantly attenuated or even absent in
sEEG recordings.While surface EEG recordings can degrade over
time and show large inter-session variability due to impedance
issues, intracranial recordings appear to be much more stable
over extended periods of time (Chao et al., 2010).
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FIGURE 1 | (A) Trajectory planning for 8 sEEG electrode shafts. (B) Computer Tomography showing implanted electrode shaft locations. (C) Implanted electrode

shafts. sEEG requires only small, localized burr holes compared to the comparatively large craniotomies required for ECoG implants.

These advantages of sEEG combined with the relative low
risk profile (Cardinale et al., 2012; Hader et al., 2013; Mullin
et al., 2016) associated with the small burr holes (diameter
of 1.2 mm) as opposed to the full craniotomy necessary for
ECoG, make sEEG a desirable modality for electrophysiological
investigations. The leads employed in sEEG and the associated
surgery are akin to those used for Deep Brain Stimulation
(DBS) procedures, which is widely-used as a treatment for
tremors, dystonia and Parkinson’s Disease, with more recent
application to obsessive-compulsive disorder (Greenberg et al.,
2006), Tourette’s syndrome (Martinez-Ramirez et al., 2018), and
epilepsy (Pycroft et al., 2018). While DBS electrodes are primarily

used for electric stimulation of the brain, the demonstrated long-
term efficacy of chronic DBS electrodes suggests the possibility of
chronic sEEG for BCI applications.

3. DECODING SEEG SIGNALS FOR BCI

Significant BCI advances have been achieved with other
intracranial (Schalk and Leuthardt, 2011) and intracortical
(Bensmaia and Miller, 2014) recording modalities. Penetrating
microarrays implanted on the cortex have achieved robust
control of commercial tablets (Nuyujukian et al., 2018), robotic
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arms (Hochberg et al., 2006, 2012) and even allowed paralyzed
patients to regain control of their own arms using functional
electric stimulation (Ajiboye et al., 2017). ECoG arrays implanted
over the cortex have achieved remarkable results in a wide variety
of BCI tasks. See Schalk and Leuthardt (2011) for a review.
While it is unlikely that the standard sparse sEEG implants
will exhibit superior decoding performance to microarrays and
ECoG for the aforementioned applications, sEEG recordings can
be used in isolation or to uniquely complement these cortical
recording modalities to access information from multiple sub-
cortical regions. Specific regions of interest for BCI that cannot
be accessed with other modalities are the limbic system and
insula for memory, emotion, place cells, etc. and deeper brain
regions such as the basal ganglia and subthalamic nucleus that
might help to further define motor decoding. sEEG also has
the unique potential to simultaneously target multiple brain
networks, bilaterally. Initial investigations in the decoding of
mental processes highlight the potential for targeting unique,
bilateral combinations of cortical and deeper brain structures.
In the following sections, we will highlight decoding results
achieved with sEEG.

3.1. Motor BCI
A number of studies have demonstrated decoding of motor
signals for BCI using sEEG. Vadera et al. (2013) demonstrate
two-dimensional cursor control from depth electrodes implanted
in hand and foot cortical areas. While imagined movements
were not investigated, this study highlights one of the advantages
of sEEG - the opportunity to record foot cortical areas that
reside in the longitudinal fissure that cannot be attained with
surface measurements.

Another study (Li et al., 2017b) investigates the control of a
prosthetic hand using sEEG electrodes in the central sulcus. The
investigators were able to decode three different hand gestures
and a resting state with good accuracies. Another robotic upper
limb prosthetic employed a hybrid BCI using ECoG and sEEG,
eye tracking and computer vision in two patients (McMullen
et al., 2014). Two recent studies investigated the decoding of grip
strength for potential use in hand prosthesis. In Murphy et al.
(2016), the investigators decoded the grip strength of imagined
and executed grip movements from subsurface sEEG electrodes
in the central sulcus and the insular cortex and conclude that
“depth electrodes could be useful tools for investigating the
functions of deeper brain structures as well as showing that
central sulcus and insular cortex may contain neural signals that
could be used for control of a grasp force BMI.” Fischer et al.
(2017) also showed that beta and gamma activity in the STN is
modulated depending on the level of imagined grip force. Their
study is based on electrodes implanted for DBS in the treatment
of Parkinson’s disease.

3.2. Visual Speller BCI
Studies have successfully decoded different visual-evoked
potentials from sEEG recordings. In Krusienski and Shih (2011)
depth electrodes in and adjacent to the hippocampus were
used to successfully operate a visual speller using the P300
response. With decoding accuracies at or near 100% using less

than 15 visual stimulations, achieved results were similar to
those achieved with ECoG (Krusienski and Shih, 2011). This
performance can be attributed to the existence of the P300
in the hippocampus (McCarthy et al., 1989) and that several
of the posterior electrodes were bordering the occipital lobe.
Additionally, the same group showed that similar performance
could also be achieved using electrodes that were located in the
lateral ventricle (Shih and Krusienski, 2012). By employing a
motion-onset VEP (Kuba et al., 2007) and sEEG electrodes in
middle temporal regions, Li et al. (2017a) showed that up to 14
characters per minute could be typed.

3.3. Speech BCI
Another type of BCI that has rapidly developed are interfaces
that aim to restore the ability to speak (Herff and Schultz, 2016;
Schultz et al., 2017). Studies have shown that it is possible
to decode ECoG activity into text (Herff et al., 2015; Moses
et al., 2016, 2019) and speech output (Herff et al., 2016; Angrick
et al., 2019; Anumanchipalli et al., 2019). Using depth electrodes,
Chrabaszcz et al. (2019) showed that STN is also active during
speech production. Two recent advances showed that decoding
of speech perception from depth electrodes is also possible. In
Akbari et al. (2019) perceived speech was decoded from sEEG
electrodes in auditory cortex into an audible waveform. In this
approach, sEEG electrodes even yielded slightly better results
than ECoG recordings. In Han et al. (2019), the authors decoded
the attended speaker for intelligent hearing aids. In this study,
one participant was implanted with bilateral temporal depth
electrodes covering left and right auditory cortex. The goal of this
line of research it to be able to increase intelligibility of attended
speaker for smart hearing aids.

3.4. Navigational BCI
The discovery of place and grid cells in the hippocampus
(Maguire et al., 1998; Moser et al., 2008) has greatly advanced our
understanding of human spatial navigation. As sEEG electrodes
can sample from the hippocampus and epilepsy monitoring
often requires electrodes in the hippocampus, an unparalleled
opportunity to decode navigational parameters from sEEG
activity arises. Several different aspects of navigation have been
decoded from sEEG electrodes in the hippocampus. Aghajan
et al. (2017) used neural networks to decode movement speed.
Another study (Vass et al., 2016) showed successful decoding
of teleportation distance from hippocampus, highlighting that
location is well-represented in these recordings. Watrous et al.
(2018) extended these findings by showing that even the
navigational goal can be decoded from single united activity
recorded from microelectrodes at the tip of sEEG electrodes.

3.5. Passive BCI
Instead of directly controlling computers, the idea of passive
BCIs (Zander and Kothe, 2011) is to adapt interfaces to a user’s
mental state such as stress, workload, drowsiness, or emotion,
which the user may or may not be consciously aware of. As
sEEG targets deeper brain structures including limbic regions
such as the amygdala, it is well-suited to detect and decode brain
activity associated with such user states. Alasfour et al. (2019)
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demonstrated the classification of abstract naturalistic behavioral
contexts from ECoG and sEEG recordings, which could be used
to adapt interfaces to the coarse behavioral context of users in
the future. Sani et al. (2018) showed that mood variations during
natural behavior can be decoded from intracranial recordings
(including sEEG). Their classifiers relied mostly on electrodes
in limbic regions. These findings could one day help in the
development of closed-loop systems to treat neuropsychiatric
disorders. Yamin et al. (2017) investigate online neurofeedback in
depth electrodes with a virtual reality interface. Their preliminary
results show that users were able to reliably downregulate their
amygdala activity.

Another aspect of cognition that could be useful for passive
BCI is the encoding and retrieval of memory that could for
example inform an interface which information needs to be
presented again. Initial investigations highlight the feasibility of
decoding aspects of memory from sEEG recordings (Song et al.,
2016, 2017). Hampson et al. (2018) extended these findings and
demonstrated that the typical activity pattern during successful
memory encoding could also be used in stimulation to increase
memory performance.

4. FUTURE DIRECTIONS

Despite the impressive results achieved in decoding of mental
processes from sEEG recordings, there are still numerous
practical issues that must be addressed before sEEG BCIs can be
considered for long-term, clinical applications. Figure 2 shows
the standard processing pipeline of an sEEG-based BCI. At each

individual stage of this pipeline there are unique challenges and
opportunities for achieving a practical BCI.

For data acquisition, current clinical sEEG implants can
be modified in a multitude of ways to improve the spatial
resolution and target sampling. By maintaining the same shaft
size, the contact size and density can be reduced to be able
to record local field potentials along the entire length of the
shaft (Pothof et al., 2016). Additionally, microwires can be
placed at the tip of the shaft for recording single-units (Pothof
et al., 2016). Such modifications are expected to yield significant
improvements in BCI decoding performance as observed when
using micro-ECoG in comparison to standard clinical ECoG
(Slutzky et al., 2010; Wang et al., 2013; Kellis et al., 2016;
Muller et al., 2016). Furthermore, the sEEG shafts can be
designed to have custom electrode placement or directional
electrodes (Tinkhauser et al., 2018) to strategically target multiple
brain locations or networks using a single shaft and trajectory
planning. Such sampling of multiple brain networks, including
cortical and subcortical targets, would significantly increase
the decoding potential for many complex functions such as
language and memory. Since sEEG is well-suited for bilateral
implantation, there is significant potential for investigating
network coordination across hemispheres. Leveraging the clinical
success of DBS based on electrical stimulation, there is also
the possibility of developing bidirectional BCIs using sEEG
(Wander and Rao, 2014). Additionally, the long term stability
of sEEG recordings needs to be investigated. While studies
show that ECoG grids provide reliable long-term measurements
(Vansteensel et al., 2016; Pels et al., 2019), similar evidence for
sEEG is currently lacking.

FIGURE 2 | Envisioned pipeline for sEEG BCI. Each of the involved stages poses open challenges before successful dissemination to patients. Example applications

include (from left to right) robotic arm control, memory prosthesis, wheelchair control, and speller interfaces.
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While DBS devices present fully implanted solutions, sEEG
measurements still rely on externalized leads connected to bulky
amplifiers. For realistic BCI applications, a fully implanted
solution should be targeted placing new requirements on
(wireless) amplifiers. Advances from other types of neural
implants might be harnessed for these data acquisition challenges
(Eftekhar et al., 2010; Liu et al., 2017).

The sparse sampling of sEEG across different brain regions
requires specific signal processing, as well as feature extraction.
For example, while high-gamma has been the focus of many
intracranial BCI studies and are also found in e.g., hippocampus
(Colgin and Moser, 2010), other frequency ranges such as theta
might be better suited for decoding activity (Stavisky et al.,
2015) from deeper structures (Buzsáki, 2002). Furthermore,
sEEG provides an excellent opportunity to explore more global
phenomena such as traveling waves (Nunez and Srinivasan, 2006;
Muller et al., 2018), connectivity (Van Mierlo et al., 2013), and
frequency-coupling (Maris et al., 2011).

In addition to the common applications mentioned in
Figure 2, sEEG provides a unique opportunity to enhance
existing or develop new applications by harnessing brain activity
from limbic and memory-related brain activity. For instance, this
information could conceivably be used to convey emotion or
affect in a speech neuroprosthetic. As with other measurement
modalities, different requirements for the decoding procedures
will arise depending on the envisioned application (Borton et al.,
2013; Bensmaia and Miller, 2014).

Overall, sEEG exhibits several unique advantages of other
intracranial monitoring methods. In addition to the capability
of sampling subcortical regions, sEEG implantation is a less
traumatic procedure that exhibits a lower risk of infection. Since
the hardware and procedures for sEEG and DBS implantation
are effectively identical, the success and precedent established
by DBS suggests that sEEG could also be chronically implanted
for BCIs. Ultimately, the BCI field needs to further develop and

test new sEEG electrode/shaft designs and develop paradigms
that exploit sEEG’s unique capability of recording from multiple
cortical and subcortical targets. It is also prudent to explore sEEG
in conjunction with microarrays and ECoG to evaluate whether
the addition of subcortical targets and networks can further refine
the decoding performance and capabilities of these already-
successful approaches. It is feasible that future BCIs will require
a hybrid of cortical (Microarrays and ECoG) and subcortical
(sEEG) sampling on the path to achieving fully-transparent and
natural operation.

5. CONCLUSION

In this review article, we briefly introduced sEEG and compared
its characteristics with ECoG, another intracranial measurement
modality. We reviewed initial decoding work using sEEG and
highlighted further potential and future directions of BCI
research using sEEG.

We believe that sEEG holds great potential for BCI as it offers
the measurement of brain structures that are not reachable with
ECoG and supplying a very broad sampling of neural activity.
In particular, sEEG provides an unparalleled opportunity for
the decoding of memory-related processes and limbic activity,
which can also be incorporated to supplement or further enhance
decoding of other cognitive processes.
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Prediction of successful memory encoding is important for learning. High-frequency
activity (HFA), such as gamma frequency activity (30–150 Hz) of cortical oscillations, is
induced during memory tasks and is thought to reflect underlying neuronal processes.
Previous studies have demonstrated that medio-temporal electrophysiological
characteristics are related to memory formation, but the effects of neocortical neural
activity remain underexplored. The main aim of the present study was to evaluate the
ability of gamma activity in human electrocorticography (ECoG) signals to differentiate
memory processes into remembered and forgotten memories. A support vector
machine (SVM) was employed, and ECoG recordings were collected from six subjects
during verbal memory recognition task performance. Two-class classification using an
SVM was performed to predict subsequently remembered vs. forgotten trials based on
individually selected frequencies (low gamma, 30–60 Hz; high gamma, 60–150 Hz) at
time points during pre- and during stimulus intervals. The SVM classifier distinguished
memory performance between remembered and forgotten trials with a mean maximum
accuracy of 87.5% using temporal cortical gamma activity during the 0- to 1-s interval.
Our results support the functional relevance of ECoG for memory formation and suggest
that lateral temporal cortical HFA may be utilized for memory prediction.

Keywords: memory prediction, successful memory encoding, electrocorticography, high-frequency activity,
memory formation, gamma frequency

INTRODUCTION

Memory formation is an important cognitive process that enables the identification of traces
of individual episodic memories and learning from experiences to guide behavior (Chadwick
et al., 2010). Understanding the neural correlates of memory formation is essential to identify
the brain mechanisms underpinning memory processes, which can be further applied to predict
subsequent memories or even improve memory (Ezzyat et al., 2017). The decoding of neural
activity during memory processing has garnered substantial interest in the cognitive neuroscience
community. Neural activity relevant to memory formation measured with electrocorticography
(ECoG) provides a valuable window into the neural correlates of underlying cognitive processes
(Fell et al., 2011). The field potential of ECoG activity interacts with neural membrane potentials
and, thus, modulates the degree of neuronal excitability and influences their discharge times
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(Anastassiou et al., 2010; Hohne et al., 2016). As such, these
studies have provided evidence for the role of the amplitude of
cortical oscillatory activities in neural processing.

There has been growing interest in human brain oscillations
and their possible role in memory processes. Low-frequency
activity (i.e., theta rhythm, 4–8 Hz) and high-frequency activity
(HFA) (i.e., gamma rhythm, >30 Hz) have received attention
in the context of understanding human memory function
(Sederberg et al., 2003, 2007; Kahana, 2006). In particular, HFA
is a brain response with ECoG signals for episodic memory
formation, which provides spatiotemporal properties of memory
encoding with millisecond temporal resolution. The neural
substrates that produce such fast activity is a topic of ongoing
research. HFA has been linked to asynchronous signals related
to increased multi-unit activity (Manning et al., 2009; Milstein
et al., 2009; Ray and Maunsell, 2011). An increasing number of
studies have leveraged HFA as a marker of underlying neural
activation (Miller et al., 2008; Shenoy et al., 2008; Lachaux et al.,
2012), and HFA is, thus, considered to reflect regional activation
during memory encoding (Burke et al., 2014). HFA has been
reported to be a potential biomarker for mapping, targeting, and
modulating neuronal assemblies at a high temporal resolution
during memory formation (Lachaux et al., 2012; Burke et al.,
2015; Johnson and Knight, 2015). In particular, these oscillations
spanning a 30- to 150-Hz range were proposed to set an ideal
frame for neuronal interactions underlying memory formation
(Jensen et al., 2007; Duzel et al., 2010). Thus, studies investigated
to detect discrete events induced during memory formation of
word encoding in different gamma band activities—low gamma
(30–60 Hz) and high-gamma (>60 Hz) (Colgin et al., 2009;
Buzsaki and Silva, 2012). Separating different types of gamma
activities (30–150 Hz) is a crucial electrophysiological biomarker
of memory formation and applications (Kucewicz et al., 2017).

Extant evidence suggests that prevalent HFA from structures
outside the medial temporal lobe (MTL) is critical for memory
formation (Buzsaki, 1996; Eichenbaum, 2000; Poldrack et al.,
2001; Ritchey et al., 2015; Moscovitch et al., 2016). Neuroimaging
studies have provided evidence for the neural correlates of
episodic encoding within the hippocampus and functional
networks spanning prefrontal, medial temporal, lateral temporal,
and parietal cortical regions (Kim et al., 2010). Similarly,
successful memory processing relies on coherent oscillations of
multiple temporal and neocortical regions at varying frequencies.
For instance, increased coherence between brain regions,
particularly the hippocampus and prefrontal cortex, is associated
with better memory (Fell et al., 2008; Benchenane et al., 2010;
Watrous et al., 2013). Especially, gamma oscillatory power
increases with memory task in the hippocampus, and this gamma
pattern (28–40 Hz and 90–100 Hz) was observed in other
memory-related regions such as frontal and temporal cortical
regions (van Vugt et al., 2010). The neural correlates of HFA
of successful memory processing in neocortical regions may,
therefore, provide insight into the roles of specific regions in
memory performance, and characterizing these features may
facilitate the evaluation of memory performance. However, the
effect of HFA in human ECoG signals to differentiate memory
prediction has been little explored.

The core aim in this study is to provide novel evidence on how
HFA in the temporal cortex is associated with success of memory
formation in human ECoG signals and to differentiate memory
process into remembered and forgotten memories with HFA.
We evaluated temporal cortical HFA, which was accompanied by
successful memory formation relative to unsuccessful encoding.
We hypothesized that the difference in HFA would enable
differentiation of successful encoding trials from unsuccessful
ones. In the first step, we identified time windows (i.e.,
pre-stimulus vs. during-stimulus) referenced by the human
single-unit activity and HFA with statistically significant power
clustering across subjects. We delegated the HFA to low gamma
(30–60 Hz) and high gamma (60–150 Hz) based on previous
literature, revealing a sequential memory effect (SME) during the
encoding phase (Sederberg et al., 2007; van Vugt et al., 2010).
We then determined the brain regions and frequencies for which
the amplitude differences differed between the remembered
and forgotten conditions in order to analyze encoding-related
activities for subsequently remembered and forgotten words.
Finally, a support vector machine (SVM) was trained using the
power in the selected time windows and frequencies.

MATERIALS AND METHODS

Subjects
The present study included six subjects (four women; mean
age: 34.2 ± 11.6 years) with drug-resistant epilepsy who had
been implanted with intracranial electrodes to determine the
area of the seizure onset zone. The local institutional review
board (IRB) approved the study protocol (H-1407-115-596). All
subjects provided written informed consent to participate in the
present study. Subject characteristics are presented in Table 1.
Most of the subjects underwent neuropsychological assessments
including IQ and MQ to confirm that the subjects were within a
normal cognitive category.

Electrode Localization
The locations of the electrodes were determined by clinical
diagnosis. The electrodes (AdTech Medical Instrument
Corporation, Racine, WI, United States) were positioned
for subdural electrocorticography (ECoG) on the cortical
surface (diameter of 4 mm, placed 10-mm apart) with stainless
steel contacts. Prior to electrode implantation, each subject
underwent a preoperative magnetic resonance imaging (MRI)
scan in a Magnetom Trio, Magnetim Verio 3-tesla (Siemens,
München, Germany) or Signa 1.5-Tesla scanner (GE, Boston,
MA, United States). Computed tomography (CT) scans were
performed following electrode implantation using a Somatom
sensation device (64 eco; Siemens München, Germany). For
visualization, CT and MRI images were co-registered as
previously described (Avants et al., 2008). The brain model
and implanted electrodes were reconstructed from individual
preoperative MRI and postoperative CT images using CURRY
software version 7.0 (Compumedics Neuroscan, Charlotte, NC,
United States) (Figure 1). A neuroradiologist and neurosurgeon
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TABLE 1 | Subject demographics, clinical characteristics, and electrode locations.

Subject Demographics Clinical characteristics

Age IQ/MQ Seizure onset Pathology Resection Seizure type Electrode Type

Sub1 50–55 77/94 ATG, TP PHG reactive gliosis PHG TLE Subdural

Sub2 30–35 N/A TP, STG Temporal lobe Focal cortical dysplasia L. ITG Bilateral TLE Subdural

Sub3 20–25 89/92 Amygdala FCD Heteropia PHG, Amygdala TLE Subdural

Sub4 40–45 85/85 STG HP neuronal loss ATL, AH TLE Subdural

Sub5 25–30 N/A PHG DG dispersion, HP neuronal loss HP TLE Subdural

Sub6 25–30 N/A ATG, TP PHG reactive gliosis PHG TLE Depth

IQ, intelligence quotient; MQ, memory quotient; R, right; L, left; HP, hippocampus; mHP, middle hippocampus; LWM, limbic white matter; PHG, parahippocampal gyrus;
DG, dentate gyrus; aTG, anterior temporal gyrus; STG, superior temporal gyrus; ITG, inferior temporal gyrus; TP, temporal pole; TLE, temporal lobe epilepsy; FCD, focal
cortical dysplasia; N/A, not applicable.
Subject demographic data are presented together with clinical observations from clinically identified seizure onset zones, pathology in subjects who underwent
corresponding surgery and showed neuropsychological results. A clinical psychologist employed the Wechsler Adult Intelligence Scale—Korean version (K-WAIS-IV)
and the MQ of the Rey–Kim Memory test to assess IQ. Most of the subjects underwent neuropsychological assessment including IQ and MQ, providing that the subjects
were within a normal cognitive category.

FIGURE 1 | Aggregate electrode rendering. Grid electrodes from all six subjects rendered on normalized cortical surfaces. Lateral sagittal (upper) and coronal (lower)
views from left (A) to right (B).

performed electrode localization based on thin-section post-
implantation CT scans and co-registered MR images. BrainNet
Viewer (Xia et al., 2013) was used to visualize the electrodes.

Verbal Memory Task
All stimuli were presented on a laptop computer with a
Stim 2 Gentask (Neuroscan, Charlotte, NC, United States).
We used a word memory task (Figure 2), which is known
to recruit the medial temporal lobe during memory encoding
(Axmacher et al., 2008; Hamani et al., 2008; Jun et al., 2020).
All words consisted of concrete Korean nouns according to
the Korean Category Norms: Survey on Exemplar Frequency
Norm, Typicality, and Features (Rhee, 1991) and the second
version of the Modern Korean Words database (Kim, 2005).

Prior to the main experiment, a brief practice set of trials was
conducted to ensure that the subjects understood the task. For
the task, subjects were instructed to memorize the presented
words. The subjects were instructed to study 60 words across
two sessions. Each session consisted of 30 words. In total, 60
concrete nouns were individually presented in a random manner.
The presentation of each word commenced with a fixation cross
appearing on the screen for 1 s during the pre-stimulus time
period, followed by the word that was displayed for 4 s. To ensure
deep encoding, subjects were instructed to report whether they
judged the word on the screen as “pleasant” or “unpleasant” by
pressing a keyboard button with their index finger (de Vanssay-
Maigne et al., 2011). Following presentation of the final word of
the encoding block, subjects were allowed a 10-min break and
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FIGURE 2 | Verbal memory task paradigm. Example of the timeline of the word memory paradigm. The entire task consisted of three study periods: encoding, rest
(distractor), and retrieval.

subsequently performed a 30 s distractor task consisting of a
series of arithmetic problems for “A− B= ?” where A and B were
randomly chosen integers ranging from 1 to 100. In the item task,
a total of 90 words were used, including 30 new words and 60
old words. Subjects were instructed to respond whether the word
had been presented before (“old”; button #1), new (“new”; button
#2), or no idea (“no idea”; button #3). For the main experimental
session, none of the words were presented twice, and subjects
were not exposed to the same experimental task more than once.

Data Acquisition and Analysis
ECoG and depth electrodes were recorded using a 64-channel
digital video monitoring system (Telefactor Beehive Horizon
with an AURA LTM 64- and 128-channel amplifier system;
Natus Neurology, West Warwick, RI, United States) digitized at a
sampling rate of 1,600 Hz and filtered from 0.1 to 150 Hz. These
ECoG data were analyzed using MATLAB software (version
2015b, Mathworks, Natick, MA, United States). The depth
electrode was implanted only in Subject 6, and it covered the
temporal white matter. The depth electrode did not cover the
region of interest in the present study, and we excluded the
depth electrode from further analysis. We first performed manual
artifact rejection of the signal for every electrode. Channels
affected by artifacts were excluded from subsequent analyses.
Individual stimulus response trials were marked and precluded if
motion artifacts were present. Signals exhibiting motion artifacts
and epileptic-form spikes were also marked and excluded from
further analyses. The recorded data were re-referenced to the
common average reference. To quantify specific changes in
frequency bands during stimulation for the encoding period of
the memory task, time-frequency analysis with Morlet wavelet
transformation (wave number: 2.48) was applied to obtain a
continuous-time complex value representation of the signal.
The effective window length (95% confidence interval of the
Gaussian kernel, seven cycles) was 80 ms at 50 Hz. Transformed
data were squared to calculate the power value and normalized
by the mean of the pre-stimulus baseline power (i.e., resting
periods prior to the task) for each frequency. The resting
periods prior to the memory task was 5-min duration, and
it was equal to every subject. During the resting periods, the
subjects were instructed to keep their eyes open, while fixating
a white cross in the notebook. A fixation cross, on which
subjects were instructed to focus their gaze, was presented to
minimize eye movement. The electrophysiological data were

divided into epochs that onset 1 s pre-stimulus and continued
to 1 and 1.5 s of during stimulus from the onset of the word
trials and sorted according to subsequent memory performance.
The averaged power of each condition was compared across
a frequency range of 30–150 Hz for correctly and incorrectly
encoded memory items. Normalized data were averaged across all
trials for correct and incorrect trials according to each condition.
To test the significance between subsequently remembered and
subsequently forgotten words at encoding, independent two-
sample t-tests were performed.

Feature Selection
Figure 3 presents the selected features for each phase and
frequency band. Table 2 presents the t-statistic values and regions
of the selected features. The most informative frequency values
with the top 20% of t-statistics were selected as the features in
each phase and frequency band.

Classification Problem
The classification problem was set up. Trials that were
presented in the encoding phase were labeled according to the
results of recognition phase. Remembered and forgotten were
labeled. There were two labels: remembered and forgotten. The
remembered class consisted of trials where the subjects pressed
the buttons “Old” (old words correctly recognized as old), and
the forgotten class consisted of trials where the subjected pressed
the buttons “New” (old words incorrectly recognized as new).
Since all subjects only responded as “old” and “new,” we could
not get “no idea” trials. Furthermore, new trials were not included
to maximize the difference in encoding process. Sets of labeled
trials were acquired from two different periods: pre- and during
stimulus. These spectral classifier learned the power differences
between the remembered and forgotten trials from the three
separate time windows (i.e., −500 to stimulus onset, stimulus
onset to 1 s, and stimulus onset to 1.5 s).

Classification
For classification between remembered and forgotten trials from
low- and high-gamma band signals, features from the single-trial
low- and high-gamma power (dashed line in Figures 3A,B) of
all electrodes located in Figures 3A,B were first extracted. The p-
values were then calculated by comparing the remembered and
forgotten items. To confirm whether the features based on the
HFA difference in the single-trial conditions represented their
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FIGURE 3 | (A) Electrodes in cortical regions exhibiting across-subject differences between successful memory encoding (SME) for the −0.5- to 1.5-s time bins. The
color intensity indicates the direction of the effect (yellow = low gamma, red = high gamma) with a significance threshold of p < 0.05. Blue denotes regions that did
not exhibit a significant effect among subjects. (B) Time course of significant oscillatory activity in SMEs for lateral temporal cortices from four individuals (Subject 1
to Subject 4, left to right, respectively). Each panel shows the t-transformed significance value of the difference in power between remembered and forgotten
memories. The left and right temporal cortices both exhibit heightened low-gamma power (30–60 Hz) and high-gamma oscillation (∼150 Hz) increases during pre-
and during-stimulus intervals in SME. The dashed white line indicates p < 0.05 significance threshold.

respective successful memory encoding (SME), simple linear
SVM analyses were performed. The selected feature sets were
entered into a supervised linear classification procedure using
an SVM algorithm to assess whether subsequently remembered
trials could differentiate subsequently forgotten trials. A data-
driven feature-filtering step was performed before SVM learning.
The most informative power with statistical significance was
within the high-frequency power (low gamma, 30–60 Hz; high
gamma, 60–150 Hz) as identified using the subsequent memory
effect (SME) procedure in the encoding phase (Sederberg et al.,
2007; van Vugt et al., 2010). The most informative power was
selected as a candidate feature for SVM learning to identify
the optimal classifier modified from a previous study (Jin and
Chung, 2017). SVM group classification analyses were performed
using the Statistics Toolbox in Matlab software (version R2018b;
MathWorks Inc., Natick, MA, United States). The nonlinear
radial basis function kernel (sigma= 2) and constant soft margin
(cost = 1) were applied for the SVM training, as recommended
previously, showing high gamma time features with an SVM
model that classified individual words from a pair of words
(Martin et al., 2016). In the SVM training procedure, the
decision boundary formulated using a candidate feature set was
optimized to maximize group classification accuracy using 80%
of trials randomly selected from the total trials (Dosenbach et al.,
2010). All SVM procedures, testing, and iterative group classifier
performance evaluation (with random permutation of subjects
into training and testing sets for cross-validation) were repeated
10,000 times per candidate feature set. The most accurate group
classifier with the highest overall mean accuracy across the 10,000

cross-validation procedures was selected as the optimal SVM
group classifier.

Statistical Analysis
Statistical tests were performed using the Statistical Package
for Social Sciences v12.0 K (SPSS) and MATLAB (Mathworks).
Our primary measurement of memory performance was the
percentage of correctly recognized trials in each block. Paired
non-parametric rank-sum tests were used to compare behavioral
performance between conditions. For activity in the lateral
temporal cortex, independent two-sample t-statistics (∗∗p < 0.01
or ∗p < 0.05) were used to compare the average power amplitudes
of ECoG waveforms between correctly and incorrectly recognized
trials. Prior to significance testing, normality was assessed using
the Lilliefors test (p > 0.01, for all datasets). For multiple
comparisons among gamma power levels, the Bonferroni
correction procedure was employed. The level of statistical
significance was set at p < 0.05.

RESULTS

On average, subjects successfully remembered 81.19 ±5.79%
(standard error of the mean; SEM) of the words, with a mean
response time of 1,277.45 ± 315.28 ms (1,076.26 ±181.82 ms
for remembered trials and 1,478.64 ± 475.34 ms for
forgotten trials, p > 0.05). Full-scale IQ (FSIQ) and memory
quotation (MQ) were measured in six subjects before electrode
implantation as part of the routine clinical preoperative
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TABLE 2 | Results of the t-test for the difference between the remembered and
forgotten conditions.

Time Band Feature set t-value

Pre-stimulus interval Low gamma (30–60 Hz) ITG (L) 2.828**

MTG (R) 1.618*

MTG (L) 1.315*

STG (R) 2.358*

High gamma (60–150 Hz) ITG (R) 2.158**

PFC (R) 1.785*

MTG (R) 2.215**

IPL (R) 1.582*

Time Band Feature set t-value

During-stimulus interval Low gamma (30–60 Hz) ITG (L) 3.515*

MTG (R) 2.357**

MTG (L) 1.298**

STG (R) 1.685*

High gamma (60–150 Hz) ITG (R) 2.553**

PFC (R) 1.699*

MTG (R) 2.288*

IPL (R) 1.453*

*p < 0.05, **p < 0.01.
ITC, inferior temporal cortex; PFC, prefrontal cortex; IFG, inferior frontal gyrus; IPL,
inferior parietal lobule; L, left; R, right.
The t-statistic values and regions of the selected features. The most informative
frequency values with the top four ranked of t-statistics were selected as the
features in each phase and frequency band. The pre-stimulus interval showed
positive spectral SME in the low-gamma bands (i.e., 38–50, 35–48, 32–40, and
38–54 Hz, respectively) and in the high-gamma band (65–70, 81–90, 78–95, and
81–93 Hz, respectively). The during-stimulus interval showed positive spectral SME
in the low-gamma (38–59, 35–54, 42–54, and 38–55 Hz) and high-gamma band
(82–90, 78–150, 80–150, and 82–109 Hz, respect.

evaluation. Subjects had an average preoperative FSIQ of 83 ± 8
(mean ± SEM) and MQ of 85.6 ± 8.45. No significant
correlations were observed between preoperative FSIQ and
accuracy during the task (r = −0.300, p = 0.624, N = 5)
(r=−0.200, p= 0.747, N= 5) across all sessions for each subject,
suggesting that task performance was associated with normal
psychometric measurements.

Temporal and Spectral Successful
Memory Effects
Previous memory studies have compared signals during learning
of visual items that are subsequently remembered to items that
will be forgotten to assess differences in brain activity, yielding
an outcome termed the SME. Positive and negative SMEs have
been reported in different frequency bands (Hanslmayr et al.,
2012). Interpretation of these effects suggests that the power
increase for remembered items typically occurs in positive high-
frequency SMEs (Sederberg et al., 2003; Burke et al., 2014, 2015).
In our study, SMEs in the pre- and during-stimulus intervals
were identified using the methods described in the Classification
section. Oscillatory power in the pre- and during-stimulus
intervals was examined separately for two nonoverlapping sub-
bands (low gamma, 30–60 Hz; high gamma, 60–150 Hz). For a
given sub-band, within-subject averages of the power difference

between the remembered and forgotten trials were calculated
for all electrode positions. An independent two-sample t-test
was performed to identify differences in gamma power between
the remembered and forgotten trials. Multiple comparisons
confirmed that the during-stimulus period exhibited consistent
positive spectral SME across subjects in the low- and high-gamma
bands in the left and right temporal cortical electrodes, as shown
in Figure 3B.

Predictive Performance of Pre- and
During-Stimulus Intervals
We next evaluated the type of ECoG signals that contributed
to memory performance prediction. ECoG signals from the
two different intervals were considered separately as input
from all electrodes for the classification of statistical differences
in gamma power from left to right hemispheres (Figure 3A;
yellow and red dots, respectively). Performance during the pre-
stimulus interval (−0.5 to 0 s) was compared with that for
the first and second during-stimulus epochs (0–1 and 0–1.5 s,
respectively) (Table 3), revealing the predictive accuracy and
final included number of trials for each participant. The optimal
SVM group classifier with the top 10 ranked features among
the 20 significantly different frequency bands according to the
averaged t-statistics distinguished correct versus incorrect trials.
The overall predictive performance with pre-stimulus signals was
78.5% (averaged over six subjects) (Figure 4A) and that of the
during-stimulus intervals was approximately 88.5% (Figure 4B)
and 85.5% for the first and second epochs, respectively (averaged
over six subjects). The accuracy of each subject was significantly
greater than chance levels (50%) for the entire period. Compared
with the average accuracy using the pre-stimulus interval of
ECoG data, the average accuracy using the first epoch of the
during-stimulus interval increased to 88.5%, which was similar
to that for the second epoch of the during-stimulus interval.

Comparison With Other Approaches
Four other approaches were implemented and tested on the
outperformed data set of the during-stimulus interval (0–1 s)
using the same experimental protocols for comparison. As shown

TABLE 3 | Prediction accuracy using two different periods of during stimulus.

Subject Pre-stimulus interval During-stimulus interval # trials
(REM/FOR)

−0.5 to 0 s 0 to 1 s 0 to 1.5 s

Sub1 80 91 80 45/10

Sub2 78 95 96 41/11

Sub3 97 81 97 40/16

Sub4 66 95 70 36/9

Sub5 84 97 84 49/9

Sub6 66 72 86 48/5

Average 78.5 (10.7) 88.5 (9.05) 85.5 (9.27) 43/10

The mean scores given by high-frequency power spectral classifiers trained from
the pre- and two during-stimulus intervals in each subject. Overall accuracy given
in the last row are the accuracies over all subjects considered for classification.
REM, remembered; FOR, forgotten.
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FIGURE 4 | The maximum accuracy of successful memory classification by simple SVM using the pre-stimulus interval [(A): −0.5–0 s] and during-stimulus interval
[(B): 0–1 s]. The x-axis indicates subjects, and y-axis indicates the classification accuracy (%). The chance level is 50% (dashed line). The dark gray bars in both (A)
and (B) indicate the average accuracy. Error bars indicate the standard error of the mean.

in Supplementary Table 1, two different classifiers performed
over chance level predictions. Among these approaches,
SVM achieved higher accuracy but was similar to linear
discriminant analysis (LDA) and Fisher linear discriminant
analysis (FLDA), which are effective methods that classify
features with linear separability.

DISCUSSION

This study demonstrated that neocortical HFA (i.e., gamma
power) predicted successful memory encoding, with average
prediction accuracies of 78.5 and 88.5% for the pre-stimulus
and during-stimulus intervals, respectively. The prediction rate
improved by 10% when using during-stimulus intervals from the
pre-stimulus interval. The majority of above-chance predictions
were associated with activity in lateral temporal cortical regions,
suggesting that cortical HFA values predict memory encoding.

To date, there have been no studies comparing data from
pre- and during-stimulus intervals to predict subsequent memory
formation using cortical ECoG activity. In accordance with our
findings, several scalp EEG studies have demonstrated that pre-
or during-stimulus electrophysiological brain activity predicted
memory formation or subsequent memory. For instance, both
neural signals before (Otten et al., 2010) and during an event (Sun
et al., 2016) enabled the distinction of remembered events from
forgotten ones. Indeed, by combining information from pre-
and during-stimulus periods with single-trial-based classification
methods, high-resolution surface EEG recordings predicted
subsequent memory (Noh et al., 2014).

This is the first study to demonstrate the efficacy of HFA
in cortical regions for memory prediction. Our data revealed
specific gamma activity from different sub-bands (low gamma,
30–60 Hz; high gamma, 60–150 Hz) depending on cortical region
during the 200–300 ms after stimulus presentation or later, which
typically indicates induced activity (Basar-Eroglu et al., 1996;

Tallon-Baudry et al., 1998). Studies have demonstrated that HFA
may play a role in encoding information. A previous study
reported an increase in gamma power (20–80 Hz) in subjects
performing a visual delayed-matching-to-sample task while
memorizing information, particularly in the occipitotemporal
and frontal regions (Tallon-Baudry et al., 1998). In fMRI studies,
the positive gamma SME in lateral temporal regions mirrors the
localization of the positive SME (Wagner et al., 1998; Davachi
et al., 2001; Reber et al., 2002). Similar to our findings, iEEG
recordings of subjects during the encoding of a verbal noun
memory task revealed that gamma oscillations (44–64 Hz) in the
left temporal and frontal cortices predicted successful encoding
of new verbal memory (Sederberg et al., 2007).

The majority of significant HFA during pre- and during-
stimulus periods was observed in the lateral temporal cortices.
The functional relevance of lateral temporal cortical activity
in memory formation is unclear. The lateral temporal cortical
regions play a functional role in memory formation, as this is
a critical region in episodic memory processing (Chao et al.,
1999). In humans, neuronal activity in the lateral temporal cortex
subserves the encoding of verbal material networks (Ojemann
and Schoenfield-McNeill, 1998; Ojemann et al., 2002, 2009).
Previous functional imaging studies support temporal changes
in cortical activity during the encoding stage of explicit verbal
memory (Casasanto et al., 2002; Fletcher and Tyler, 2002).
In line with this, a recent direct human brain stimulation
study demonstrated causality between the direct stimulation
of the lateral temporal cortices and verbal memory encoding
(Kucewicz et al., 2018). Our recent hippocampal stimulation
study also revealed that successful memory encoding involves the
temporal cortex, which may act in concert with the hippocampus
(Jun et al., 2019). Collectively, these findings suggest that the
lateral cortex supports the functional connectivity underpinning
memory formation.

The present study demonstrated that the pre- and during-
stimulus brain activity in the lateral cortex could be used
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to distinguish subsequently remembered trials from forgotten
trials. This indicates that the characterized high-frequency
neural correlates of the lateral temporal cortex can predict
subsequent memory. In this regard, investigating neural high-
frequency oscillatory changes in memory-related temporal
neocortical regions that modulate memory processes may
provide insight into our understanding of the neural basis of
episodic memory.
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Objective: Collaborative brain–computer interfaces (cBCIs) can make the BCI output
more credible by jointly decoding concurrent brain signals from multiple collaborators.
Current cBCI systems usually require all collaborators to execute the same mental tasks
(common-work strategy). However, it is still unclear whether the system performance
will be improved by assigning different tasks to collaborators (division-of-work strategy)
while keeping the total tasks unchanged. Therefore, we studied a task allocation scheme
of division-of-work and compared the corresponding classification accuracies with
common-work strategy’s.

Approach: This study developed an electroencephalograph (EEG)-based cBCI which
had six instructions related to six different motor imagery tasks (MI-cBCI), respectively.
For the common-work strategy, all five subjects as a group had the same whole
instruction set and they were required to conduct the same instruction at a time. For
the division-of-work strategy, every subject’s instruction set was a subset of the whole
one and different from each other. However, their union set was equal to the whole
set. Based on the number of instructions in a subset, we divided the division-of-work
strategy into four types, called “2 Tasks” . . . “5 Tasks.” To verify the effectiveness of
these strategies, we employed EEG data collected from 19 subjects who independently
performed six types of MI tasks to conduct the pseudo-online classification of MI-cBCI.

Main results: Taking the number of tasks performed by one collaborator as the
horizontal axis (two to six), the classification accuracy curve of MI-cBCI was mountain-
like. The curve reached its peak at “4 Tasks,” which means each subset contained
four instructions. It outperformed the common-work strategy (“6 Tasks”) in classification
accuracy (72.29 ± 4.43 vs. 58.53 ± 4.36%).

Significance: The results demonstrate that our proposed task allocation strategy
effectively enhanced the cBCI classification performance and reduced the
individual workload.

Keywords: collaborative brain-computer interfaces, task allocation, division-of-work, common-work, motor
imagery
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INTRODUCTION

Brain–computer interface (BCI) systems could use human brain
signals for the direct control of external devices (Wang and Jung,
2011; Jiang et al., 2018). Compared with other ways of human
machine interaction (HCI), such as voice or gesture (Karpov
and Yusupov, 2018), BCI systems have the potential to provide
more efficient HCI channels by encoding brain signals directly.
It could express intended human actions and monitor human
physiological states by detecting and analyzing neural activity.
Brain–computer interface systems can be differentiated based
on the brain-sensing modality employed, such as functional
magnetic resonance imaging (fMRI) (Sokunbi et al., 2014), near
infra-red spectroscopy (NIRS) (Naseer and Hong, 2015), and
electroencephalography (EEG) (Abiri et al., 2019). Each of these
modalities has certain advantages, which render it more suitable
for specific applications. Due to the high time resolution and
portability of EEG-based BCI, it is usually employed in the
control of external devices (Luu et al., 2017; McCrimmon et al.,
2018).

For control purposes, it can be divided into two types: (A)
active BCI systems that do not require external stimuli which only
use consciously intended brain signals. Motor imagery BCI (MI-
BCI) is one of the mature representatives (Vourvopoulos et al.,
2019; Zapała et al., 2020). (B) Reactive BCI systems are driven
by indirectly modulated brain signals related to specific exxternal
stimulation, such as steady-state visually evoked potential BCI
(SSVEP-BCI) (Ma et al., 2017). However, most of them have not
been widely used so far in social and productive activities mainly
due to the following two reasons:

(1) Low information transmission rate: due to volume
conduction effects of the brain, the EEG signal-to-noise
ratio is relatively low (Liu, 2019; Wei et al., 2019).
Hence, EEG-based BCI systems are generally incapable of
extracting sufficiently effective neural features in a short
time window, which results in poor decoding performance.
On the other hand, for a high level of human–computer
hybrid intelligence, elaborate control operations with high
precision, short time delays, and long-term reliability are
needed. These performance requirements are hardly met by
current EEG-based BCI systems.

(2) Poor interpersonal collaboration: currently, the majority
of BCI systems are designed for a single user, which are
hard to meet the demands of social interactions and the
large-scale collaboration of social groups. Human social
interactions suggest that BCI systems should involve forms
of collaboration with multiple persons and computers
(Mattout, 2012).

To overcome the above limitations, collaborative BCI (cBCI)
systems have been proposed. It is defined as BCIs where data
from multiple users are integrated to achieve a common purpose
(Valeriani et al., 2017). The classification performance and
robustness could be effectively improved by fusing group EEG
features. Therefore, cBCI systems are more suitable for advanced

tasks of hybrid human–computer intelligence, especially group
interactions (Valeriani et al., 2015).

Current cBCI systems can be divided into two categories
based on their goals. One kind of cBCI systems is utilized to
perform visual target matching or search tasks, which seeks to
improve the system decision-making ability based on human
visual information (Matran-Fernandez and Poli, 2014; Valeriani
et al., 2015, 2017). The other kind of cBCI systems focuses on
the output by movement intentions, which can carry out active
control instructions much faster and more conveniently (Wang
and Jung, 2011; Zhou et al., 2019). These studies show that BCI
performance can be effectively improved by fusing the neural
responses of multiple users for the same task. However, they
did not explore how to design a better system architecture to
achieve more efficient fusion of multiple sources of human brain
information. We believe that two improvements are of vital
importance in optimizing system design:

(1) Task allocation strategy: for existing cBCI systems,
collaborators follow a common-work strategy, i.e., users
perform the same task together. Nevertheless, this strategy
does not fully consider the rationality of task allocation and
the differences in individual capabilities. It may result in
wasteful use of collaborative resources, without effectively
improving the overall performance. By contrast, group
performance might be improved through division-of-work
strategy. In fact, Adam Smith, one of the key founders
of free-market economics, suggested in his book “The
Wealth of Nations” (Smith, 1848) that division-of-work
greatly improves labor productivity. Hence, we designed the
cBCI system with an optimizing task allocation strategy of
division-of-work, in order to enhance the overall system
performance and reduce the individual workload as well.

(2) Data-fusing method: Wang and Jung (2011) presented two
paradigms of cBCI—centralized and distributed systems.
The biggest distinction between the two is whether the
brain information of multiple persons is processed centrally
on one data server (centralization) or not (distribution).
Different paradigms dictate distinct requirements of data
fusion methods. Thus, we designed a feature fusion
method for centralized paradigm which conducts unified
modeling and recognition through integrating the EEG
features of all collaborators. Besides, a decision fusion
method was developed to compute an overall decision
value of classification in the distributed paradigm. For
the classification performance of cBCI, a comparison was
undertaken between the two methods under multiple
strategies of task allocation in this work.

Motor imagery is the mental representation of movement
without any body movement (Dickstein and Deutsch, 2007). In
our previous research (Zhou et al., 2019), a MI-cBCI system
was successfully implemented by decoding event-related de-
/synchronization (ERD/ERS) features from multiusers. This
study still adopted the motor imagery paradigm, which is
suitable for active control. Through the pseudo-online process
of MI-cBCI, we explored the impact of two key factors: (1)
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TABLE 1 | Categories of motor imagery instructions for the MI-cBCI system.

Name Both hands Both feet Left hand Right hand Right hand left foot Left hand right foot

Abbreviation BH BF LH RH RHLF LHRF

Diagram

Symbol ↑ ↓ ← → ↗ ↘

No. 1 2 3 4 5 6

task allocation strategy and (2) data fusion method on system
classification performance.

MATERIALS AND METHODS

Subjects
The study involved 19 healthy volunteering subjects (11 females,
23–27 years). None of these participants had cognitive or physical
dysfunction. Nine subjects had previously participated in MI-BCI
studies. The rest of the subjects had no BCI experience prior to
this study. All participants read and signed the informed consent
form approved by the Institutional Research Ethics Committee of
Tianjin People’s Hospital before the experiment.

Paradigm Design
In this study, we aim to address the problem of classifying six
types of motor imagery instructions, namely, moving both hands
(BH), both feet (BF), the left hand (LH), the right hand (RH),
the right hand and the left foot (RHLF), and finally the left
hand and the right foot (LHRF). Table 1 shows the details for
these categories. For example, the name of the first type is “both
hands.” Participants were required to perform MI of both wrist
extensions. The command abbreviation is BH, the symbol is ↑
and the instruction number is 1. The motion associated with the
foot task is ankle dorsiflexion.

All 19 subjects independently performed the above six types
of motor imagery tasks with EEG data collected simultaneously.
Then, the MI-cBCI system based on the division-of-work strategy
was simulated by using offline EEG data from users. The whole
experiment for a single subject was divided into 14 blocks,
consisting of 36 trials (6 types × 6 trials) each, which led to
84 trials of each type of MI task. There was a break of about
5 min between the consecutive three blocks. Within each block,
MI tasks were performed in a random order. The task paradigm
is shown in Figure 1, which mainly includes a period of motor

FIGURE 1 | Experimental paradigm of a motor imagery task. At the beginning
of each trial, a red fixation cross was presented at the center of the screen to
remind subjects to prepare for the following task. At the first second, a symbol
of instruction appeared on the screen for 4 s, subjects were instructed to
perform the indicated motor imagery (MI) task up to the fifth second. This time
period of 4 s was defined as a MI epoch. Then, “Rest” was displayed for 2 s
to remind participants to have a rest.

imagery that lasts 4 s. The experiment was programmed using
Psychtoolbox on MATLAB platform.

Data Acquisition and Preprocessing
The EEG signal was recorded using a SynAmps2 system
(Neuroscan Inc., Charlotte, NC, United States) with a 64-
channel quick-cap at a sampling rate of 1,000 Hz, whose
electrode positioning follows the international 10/20 system.
The reference and ground electrode were placed at the
vertex and on the prefrontal lobe, respectively. A band-pass
filter between 0.5 and 100 Hz and a 50-Hz notch filter
were enabled during the data acquisition. All raw data were
downsampled to 200 Hz and re-referenced by the common
average reference (CAR). According to data labels, the EEG
data of all trials were extracted as data samples. Then, data
samples were band-pass filtered to obtain interested frequency
(8–28 Hz) by a fourth-order Butterworth filter. All 84 samples
of each class of MI are divided into two parts randomly.
One part is for offline training, including 72 samples, and
the other part includes 12 samples for the pseudo-online
classification of cBCI.

Algorithms
All the main algorithms applied in this study are described here,
in order to avoid disrupting the continuity of the introduction of
the overall workflow. The preprocessed EEG data collected from
the motor imagery tasks were analyzed in the succeeding sections.

Event-Related Spectral Perturbation
Event-related spectral perturbation can provide detailed
information about temporal and spatial ERD/ERS features
of various MI categories (Yi et al., 2017). It is a useful tool
to select the MI task with stronger feature separability from
six instructions as the reference instruction, rather than for
classification. The average event-related spectral perturbation
(ERSP) across the input data is defined as follows:

ERSP
(
f , t
)
=

1
n
∑n

k = 1

(
Fk
(
f , t
)2
)

(1)

where n is the number of trials, and Fk(f , t) indicates the
spectral estimation of the kth trial at frequency f and time t. To
produce the baseline-normalized ERSP, the spectral estimation
of a baseline period (1 s before the MI epoch) is subtracted
from the ERSP of tasks. To observe time–frequency domain
features, plots of the mean ERSP from two key electrodes C3
and C4 were displayed from -1 to 6 s between 8 and 28 Hz
for analysis. To investigate the topographical distributions of
ERD features, the average ERD values were computed within
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the specific frequency range and time window for each channel
according to the following equation:

ERDvalue =
1
N

∑
f∈F

∑
t∈T

(ERSP(f , t)) (2)

where F is the α band (8–13 Hz) or β band (14–25 Hz), and T
is the whole MI task duration of 4 s. N is the total number of
time–frequency bins decided by F and T.

Multiclass Common Spatial Patterns
Multiclass common spatial patterns (multi-CSP) was applied to
extract features from multichannel EEG data of MI epochs (Qian
et al., 2011; Yi et al., 2013). For the analysis, a single MI epoch
data is represented as an N by T matrix Xi, where iε{1,2,. . .,6}
indicates the ith class of MI, N is the number of channels (N = 60),
and T is the number of samples per channel (T = 800). We firstly
calculated the average covariance matrix Ri of every MI pattern.
The whitening matrix can be formed by

P = 3−1/2UT
0 (3)

where U0 is the N × N matrix of eigenvectors and 3 is the
diagonal matrix of eigenvalues from

R =
6∑

i = 1

Ri = U03UT
0 (4)

The strategy of one-versus-rest is adopted to acquire spatial
filter matrices. For the first class, we letR1

′
=

∑
6i = 2Ri. Then

R1 and R1
′ can be translated as

Y1 = PR1PT

Y ′1 = PR1
′PT (5)

And Y1 and Y1
′ share common eigenvectors

Y1 = U131UT
1

Y ′1 = U131
′UT

1 (6)

With the projection matrix W1 = UT
1 P consisting of spatial

filters corresponding to the first class, the other five projection
matrices also can be computed in a similar way.

Mutual Information Maximization
Mutual information maximization (MIM) (Khaleghi et al., 2015)
was used in the feature fusion method to select features from the
integrating features of all single users. The mutual information
(MI) between every feature and its class label separately was
calculated. Then features were ranked according to a decrease of
MI. MI is defined as:

MI (Y,X) = H (Y) + H (X)−H (Y,X)

= −

∑
i,j

P
(
yi, xi

)
log2

P
(
yi, xi

)
P
(
yi
)

P (xi)
(7)

where H function is the information theory,

H (X) = −
K∑

i = 1

P (xi)log2P (xi) (8)

H (Y) = −
K∑

j = 1

P
(
yi
)
log2P

(
yi
)

(9)

H (Y,X) = −
K∑

i = 1

K∑
j = 1

P
(
yi, xi

)
log2P

(
yi, xi

)
(10)

P (xi) and P
(
yi
)

are the ith priori probability of feature vector
X and label Y in all K values, respectively. P

(
yi, xi

)
is the joint

probability of them. After ranking the features, the first four
features are reserved for processing in this work.

Multiclass Classification Support Vector Machines
Multiclass classification support vector machines (multi-class
SVM) were employed to classify multiclass of features (Duan and
Keerthi, 2005; Aboalayon et al., 2015). It constructs M binary
classifiers, where M is the number of classes. Each classifier is
trained to separate one class as positive from the rest of the k - 1
classes as negative.

Next, we describe in detail the concepts of task allocation and
data processing flow in MI-cBCI systems.

Task Allocation Schemes Based on the
Division-of-Work Strategy
We propose an optimized task allocation scheme based on the
division-of-work strategy for MI-cBCI systems. This strategy
generates a feasible scheme to assign different MI tasks to
collaborators. The MI-cBCI system has the same instruction set
as a single-user MI-BCI system which has six MI instructions.
A collaborative group consisted of five users, denoted by the
letters A–E. In other words, the MI-cBCI system is operated by
five persons controlling six instructions together. All of the users
were randomly selected from 19 subjects. The workflow of the
division-of-work strategy in MI-cBCI is divided into four steps:

(A) Selection of the division-of-work strategy. As shown
in Figure 2A, there are four types of division-of-work
strategies. Based on the size of the instruction subset for one
person, they are categorized into “2 Tasks,” “3 Tasks,” and so
on until “5 Tasks.” In addition, “6 Tasks” is the common-
work strategy where each of the five users executes the
identical six MI tasks. Both feet (BF) instruction is selected
as the reference instruction that is involved in every single
users’ instruction set. Here, we choose the “3 Tasks” strategy
(in the solid black box) as an example to illustrate the
following workflow.

(B) Setting of the collaborative mode. The input of the MI-cBCI
system is defined as the required MI task, and the output is
the instruction obtained by decoding the EEG information
of all users. As shown in Figure 2B, six collaborative modes
are set up to indicate the designated tasks to users in line
with the input instructions. In most modes, two users are
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FIGURE 2 | Workflow of the division-of-work strategy for the proposed MI-cBCI system. Arrows indicate different types of motor imagery instructions as shown in
Table 1. [+]/[−] in “panel C” means taking the following instruction as a positive/negative class. +/− in “panel D” means a positive/negative decision label.

required to complete the tasks consistent with the system
input, while others execute the both feet task. Only mode
2 requires all users to perform both feet tasks together. As
an example, in the blue dashed box, the system input is ↑.
According to the task allocation scheme of mode 1, users A
and B should perform both hands MI (↑) and the remaining
users perform both feet MI (↓).

(C) Offline modeling of a single user. Across all modes, each
user executes a total of three types of tasks represented
by arrows, which is in accordance with the “3 Tasks”
strategy. Each arrow in Figure 2B matches a single-user
offline modeling pipeline in Figure 2C. For instance, in
the yellow shading area in Figure 2B, user A executes
three kinds of MI tasks (↑ ↗ ↓). For these tasks, three
data processing pipelines have been established, as shown
in the yellow shading area in Figure 2C. Each pipeline is
to complete the corresponding offline modeling of EEG
data in the light of the one-versus-rest strategy. It means

that one type of MI data is taken as the positive class [+],
and the other two types of data became the negative class
[−]. Features of two classes EEG data are extracted by the
CSP algorithm and classified by a SVM classifier. In all
pipelines of a single user, a total of three pairs of CSP filters
and SVM classifiers have been trained. In the next offline
phase of cBCI, they would be used as the submodels for
the collaborative model. Detailed information about data
processing of a single user have been described in the Offline
modeling of a single user section.

(D) Pseudo-online classification. The pseudo-online
classification of MI-cBCI is composed of two processes:
the offline phase for cBCI modeling and the pseudo-
online phase for recognition. In the offline phase, we
established six collaborative models for feature extraction
and classification, one for each of the collaborative modes
in Figure 2B. For each collaborative model (¬-±) in
Figures 2B,D shows what submodels it should entail. Every
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collaborative model is assembled from five submodels. The
submodels are generated by offline modeling of the users
in step (C). Take the collaborative model ¬ as an example;
it is set up with two submodels from pipeline 1 (users A
and B) and three submodels from pipeline 3 (users C, D,
and E), as shown in the blue dashed box in Figures 2C,D.
Other collaborative models are built in the same way. There
are two alternative fusion methods applied in constructing
collaborative models called feature fusion and decision
fusion, which are described in the Feature fusion method
and Decision fusion method sections.

In the pseudo-online phase, EEG data collected from five
collaborators are sent to the six collaborative models sequentially
for classification. The collaboration model that has the highest
number of submodels matched to the multiperson input data
is the winner, and its corresponding mode (i.e., the arrow that
immediately follows numbers ¬-± in Figure 2D) is selected
as the final system output. To illustrate the process of pseudo-
online recognition more specifically, we take the system input
of ↑ as an example in Figure 2D. It shows that users A and
B need to imagine both hands (↑) while the other users are
required to imagine both feet (↓) as defined in the task allocation
scheme in Figure 2B. Subsequently, pseudo-online EEG data
from all five users (marked as different colors) are processed
by the six collaborative models in sequence. Because the input
EEG data match to the positive classes of all five submodels
of collaborative model ¬, it should contain the largest number
of positive decision labels among all six collaborative models.
Therefore, the system output is both hands instruction (↑).

Data Processing of MI-cBCI
After describing the overall workflow, we will concentrate on
the details of data processing. Two data fusion methods for
MI-cBCI have been proposed in this study, which are called
feature fusion and decision fusion. The implementation of both
methods is based on the single-user modeling process and
differed on the subsequent cBCI offline modeling and pseudo-
online validation.

Offline Modeling of a Single User
The purpose of single-person offline modeling is to provide
the required submodels for cBCI, mainly including CSP filters
and SVM classifiers. Here, we continue with the example
of the “3 Tasks” strategy. According to the task allocation
scheme in Figure 2C, subject A should perform BH, BF, and
RHLF tasks (numbered 1, 5, and 2, respectively). Figure 3
illustrates the offline modeling process of EEG data related to
these instructions. Each class of EEG data is taken in turn
as a positive class [+], while others represent the negative
class [−]. All three data processing pipelines are made to
accomplish binary classifications. For example, in pipeline 1,
xA1 represents the data of executing instruction 1 and xRA1
represents two remaining data (xA5 and xA2). Feature matrices
FA1εR72 × 4 and FRA1εR144 × 4 are obtained by filtering 72
samples of xA1 and 144 samples of xRA1, respectively. A SVM
classifier with linear kernel function is trained using the two

classes of features. Leave-one-out cross-validation is applied to
obtain the offline accuracy accA1, and an accuracy-based weight
coefficient λA1 = accA1

2 is computed to guide subsequent offline
processing of cBCI.

Feature Fusion Method
Figure 4 demonstrates the data processing procedure of the
feature fusion method for MI-cBCI. In the multiperson cBCI
offline phase, X represents the EEG training dataset for five
collaborators. The selection of data processing pipelines of
users depends on the collaborative modes. We describe here
the offline and pseudo-online process of mode 1. The data
processing pipeline of each user is executed independently
using training datasets. As described in the previous section,
all submodels containing feature matrices of the two classes
Fi and FRi, CSP filters, and weight coefficients λi are
all obtained from five collaborators, i = {A1,B1,C3,D3,E3}.
FiεR72 × 4 and FRiεR144 × 4 are multiplied by their respective
coefficients λi and concatenated into matrices FXεR72 × 20 and
FRXεR144 × 20 in the column direction. After that, the features
are sorted in descending order by the mutual information
criterion, and the achieved feature ranking Rf is recorded.
Only the top 4 features are pick up as F′XεR72 × 4 and
F′RXεR144 × 4, respectively. Finally, a SVM classifier is trained
for offline modeling of mode 1 by taking F′X and F′RX as
positive/negative class.

In the cBCI pseudo-online phase, Y contains single-trial data
extracted from five users’ testing dataset. The CSP filters from
the offline modeling phase are applied to filter Y to calculate
single-user features fiεR1 × 4. Then, the multiuser features are
combined (following the offline processing approach) to gain the
selected features fYεR1 × 20. According to the feature ranking
Rf, the fusing features are rearranged and the first four features
are selected as f′YεR1 × 4. Then, the optimized features are
classified by the trained classifier SVMmodel1 to export the
decision value Dvmodel1. Using the same method, we process Y
with the other five models and subsequently acquire the outputs
Dvmodel2... Dvmodel6. The label associated with the maximum
positive decision value is considered to be the predicted label.

Decision Fusion Method
Figure 5 shows the data processing procedure of the decision
fusion method for MI-cBCI. It fuses information on the decision
value level, while the feature fusion method is on the feature
level. Specifically, in the offline phase, the training dataset X
is processed with different pipelines from collaborators. The
CSP filters and SVM classifiers are reserved, and the accuracy-
based weights λi are also calculated. In the pseudo-online
phase, multiple pairs of CSP filters and SVM classifiers are
utilized to conduct spatial filtering and classification on the
multiusers’ EEG testing data. The corresponding decision value
vector dviεR1 × 1 is calculated. In addition, decision values from
multiple users are fused to get the decision value vector of model
1 Dvmodel 1 =

1
5
∑

λidvi. In turn, the output value Dvmodel of
each model is calculated, and then the label corresponding to the
maximum positive value is chosen as the predicted label.
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FIGURE 3 | The data processing procedure of a single user for offline modeling. XA represents the training dataset of subject A. x means a certain class of data.
[+]/[−] means taking the following data as a positive/negative class. CSP and SVM indicate CSP filters and SVM classifiers, respectively. We use the symbol F to
represent the feature matrix. acc is the abbreviation of accuracy.

FIGURE 4 | The data processing procedure for the feature fusion method. means that m is processed by component k (a filter or a classifier) to obtain data n.
Mutual Info and Dv are the abbreviations of mutual information and decision value, respectively.

RESULTS

Event-Related Spectral Perturbation
The C3 and C4 electrodes are located in the sensorimotor cortex
of the brain (Li et al., 2019). As preliminary knowledge, they are
the primary electrodes for the neural response features induced
by MI (Tangwiriyasakul et al., 2013). Figure 6 shows the averaged
ERSP time–frequency maps of two electrodes across 19 subjects
performing six types of MI tasks. The two black dotted lines at
time points 0 and 4 represent the start and stop time of MI,
respectively. The color bar from blue to red represents the energy

ratio from low to high compared with the baseline energy. The
map presents clear spectral powers of ERD at α (8–13 Hz) and
β (14–28 Hz) bands under various MI tasks. They last until the
end of the MI task phase, especially for instruction 3-LH, 4-RH,
5-RHLF, and 6-LHRF. The ERD on both feet is the weakest,
as shown in Figure 6. It also could be seen that the ERD in
the α band is more obvious, and it has laterality with different
instructions. In order to explore spatial distribution, averaged
topographical maps of ERD are drawn in this study as well.

Figure 7 is the average topographic map of all 19 subjects,
and α (the first row) and β (the second row) bands for
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FIGURE 5 | The data processing procedure for the decision fusion method.

FIGURE 6 | Averaged time–frequency maps across 19 subjects for six types of MI tasks at the location of C3 and C4 electrodes. Blue indicates ERD; red indicates
ERS. Black dashed line indicates the onset and offset of motor imagery.

the MI period (4 s) are selected. It can be clearly observed
that the ERD of unilateral upper limb MI has obvious
contralateral dominance. Both hands’ movement induces marked
enhancement of ERD on both sides. As we can view in the
second column, the ERD of both feet is the weakest in the
six types of MI, which is consistent with the time–frequency

plot. The compound MI composed of one hand and one foot
had significant ERD enhancement on both sides. Moreover,
the whole brain has more significant energy attenuation than
other types of MI. By contrast, the contralateral activation
of the hand is stronger than that of foot MI, and the
activation area is larger.
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FIGURE 7 | Averaged topographical distribution for six types of MI tasks at α (8–13 Hz) and β (14–28 Hz) bands. Blue regions indicate the involved areas where ERD
occurs during the MI period.

FIGURE 8 | Classification accuracy curves of the feature and decision fusion methods for cBCI and single-user BCI.

By superimposing the averages of multiple trials of ERSP, we
can find that ERD features of 19 participants are actually induced
in general, and the ERD of six types of MI is mainly located
in the α and β bands with contralateral dominance, which is
consistent with the results of previous studies (Sollfrank et al.,
2015; Collazos-Huertas et al., 2020). Among the six types of MI
tasks, the ERD of both feet MI task is the weakest, which could
have the largest difference from other tasks. This is the reason
why we chose it as a reference instruction.

Classification Performance
In this work, we collected EEG data from 19 subjects who
independently performed the abovementioned six types of MI
tasks. We should select five persons as users A–E from 19
subjects to conduct the pseudo-online classification of MI-
cBCI. The maximum number of possible selections is the
number of five permutations of 19. To reduce the complexity,
we randomly picked 300 selections among them, and the
average classification accuracy of MI-cBCI was obtained for
simulated online classification, as shown in Figure 8. The
vertical coordinate shows the average classification accuracy of
six instructions, and the horizontal coordinate represents the
number of tasks performed by one collaborator; “2 Tasks” to

“5 Tasks” belong to the division-of-work strategy, while the
“6 Tasks” strategy is the conventional common-work strategy.
The classification accuracies of the cBCI systems using feature
fusion and decision fusion methods are depicted by the pink and
blue lines, respectively. The gray dotted line shows the six-class
average classification accuracy of 19 subjects by the single-user
BCI system. This accuracy is independent of the task allocation
and does not change with the horizontal coordinate.

These results show the following: (1) even at the lowest point
of the cBCI performance curves, the cBCI average classification
accuracy is more than 10% higher than the single-user BCI
(feature fusion cBCI at “2 Tasks”: 43.97 ± 3.96%, decision
fusion cBCI at “6 Tasks”: 58.53 ± 4.36%, single-user BCI:
31.37 ± 7.21%); (2) accuracy peaks of both classification curves
are at “4 Tasks” (division-of-work), which is higher than “6
Tasks” (common work): feature fusion cBCI (68.48 ± 3.85
vs. 60.93 ± 4.13%) and decision fusion cBCI (72.29 ± 4.43
vs. 58.53 ± 4.36%); (3) comparison of the cBCI performance
curves indicates the superiority of the decision fusion cBCI
system over the feature fusion for most of the division-of-
work strategies; (4) the standard deviation of the classification
accuracy is reasonably small which almost remains within 5%.
This low standard deviation shows that the subject selection
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may have little impact on the cBCI system performance.
Therefore, these results obtained by randomly selected users are
representative and authentic.

CONCLUSION AND DISCUSSION

In this work, a novel task allocation based on division-of-
work strategy for MI-cBCI system is proposed. The recognition
performance metrics indicated that the division-of-work systems
outperform the common-work system, and showed better
accuracy than the single-user BCI system. We believe that the
main reason for this is due to that division-of-work strategy
effectively reduced the number of classes in multiclassification
for single person, thereby improving the accuracy of it. Generally
speaking, the classification performance of cBCI is positively
correlated to the single-person performance and the number of
users executing the common tasks. Although the division-of-
work strategy reduces the number of users recognizing the same
instructions, it improves the classification performance of a single
person. The influences of these two factors on the system are
the reasons why the shape of the classification accuracy curves
are mountain-like in both methods. In the current system, the
accuracy peak is at the “4 Tasks” strategy.

Moreover, this paper compares the recognition performance
of two data-fusing methods and shows that the decision fusion
algorithm is generally superior to the feature fusion. Currently,
the literature suffers from the lack of extensive discussions on this
problem. We are aware of little relevant work on this problem,
except for the cBCI based on rapid serial visual presentation
(RSVP) which was designed by Matran-Fernandez and Poli
(2014). Moreover, they came to similar conclusions to ours in
spite of the employment of different potential features.

We are here to discuss the reasons for the difference in
performance between the two methods. Specifically, decision
fusion for distributed architecture is more direct, while feature
fusion for centralized architecture retains more EEG information
of individuals and may lead to degraded performance. If more
efficient multiperson EEG feature extraction algorithms can be
applied, e.g., algorithms based on deep learning or transfer
learning, feature fusion cBCI could capture more relevant
information and may thus have greater research potential.

We believe that future cBCI research should have more
hybridization and collaboration in the following aspects: (1)
hybrid tasks: the current cBCI tasks are usually single tasks,
which are basically enhancement tasks for motion control or
visual recognition (Liu et al., 2020). However, cBCI systems
may perform better in hybrid high-load tasks and have greater
advantages of collaboration; (2) Joint task allocation strategies
and data-fusing methods: more tasks lead to inferior performance
under a standalone task allocation scheme. Therefore, cBCI
systems should be adjusted continuously according to operation
characteristics and user capabilities. More specifically, cBCI
systems may be created with hybrid common-work and division-
of-work strategies, as well as hybrids of centralized and
distributed architectures. It can assign dynamic specific tasks
and data processing methods according to the status of each

collaborator; (3) fusion of multimodal signals: multiple neural
response features (e.g., potential and energy) should be deeply
mined and fused (Wang et al., 2020). Also, cBCI systems with
other physiological or behavioral signals might be exploited.
Furthermore, fusion strategies can be adjusted to achieve
automatic performance optimization.

On one hand, the development of the cBCI technology
indicates that the performance of existing BCI systems can be
substantially improved. On the other hand, cBCI technology
evolution promises the development of a new generation
of human–computer interaction systems with energy-saving
and networking modes. In addition to the abovementioned
cBCI systems, passive cBCI systems whose operation is based
on monitoring the interaction between multiple persons and
the external environment have been gradually emerging. This
technology is also known as hyperscanning. In recent years,
hyperscanning systems based on EEG, functional near-infrared
spectroscopy (fNIRS), and magnetoencephalography (MEG)
have been rapidly developed. Through designing joint tasks
to explore the brain activation characteristics and causality
(Konvalinka and Roepstorff, 2012; Sänger et al., 2012; Babiloni
and Astolfi, 2014; Nam et al., 2020), the conventional interaction
between individual subjects, tasks, and the environment has
been gradually transformed into the interaction between multiple
persons, multiple tasks, and different environments. Hence, the
cBCI technology is expected to spread more widely and be more
successful in novel and diverse engineering applications.
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