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Editorial on the Research Topic

Viral Evasion Mechanisms of the Host Response

An essential function of the host response is to protect the organism against invading pathogens.
At present, a multiplicity of mechanisms has been described on how the host sense and response
to virus infections. Viruses are intracellular pathogens. Both RNA and DNA viruses have evolved
mechanisms to evade host detection and to blunt both the host innate and adaptive immune
responses. Considering viruses as pathogens with a relatively fast evolutionary rate, particularly
RNA viruses, the result of host-virus coevolution depends on the rapid recognition and response by
the host as well as on the evasionmechanism by the virus as a continuous struggle for escape/spread
and immunity/clearance of virus from the host.

In this Special Research Topics issue on the recent advances in Viral Evasion Mechanisms

of the Host Response, we compiled a total of twelve research and review articles. The special
issue includes five Original Research Articles, five Review Articles, and two Mini Review Articles.
Meanwhile five articles were dedicated to viral general mechanisms, seven were specifically focused
on picornavirus, respiratory syncytial virus (RSV), Dengue virus (DENV), herpes simplex virus
(HSV), and Influenza virus (IAV). The family Picornaviridae includes some of the most important
RNA viruses for human and veterinary diseases as poliovirus, rhinovirus, and foot-and-mouth-
disease virus, which comprised pioneer studies on the structural aspects of viral components.
In their minireview, Cifuente and Moratorio summarize genetic variation mechanisms used by
picornaviruses on structural changes involved in binding receptor and capsid antibody evasion
of enteroviruses to ensure adaptation, spread and survival. The Paramyxoviridae family includes
several important human RNA virus as Measles, Mumps, and RSV. In their article, Bakre et al.
hypothesize that viral quasi-species enable RNA viruses to modulate host gene expression by
regulating miRNA function via sequence complementarity or identity with the miRNA seed sites
and consequently they test the hypothesis by analyzing Paramyxovirus transcripts that mimic or
bind to host miRNAs by seed sequence and found that complex molecular interactions likely
occurred at this host-virus interface. The human RSV (hRSV) belongs to the Pneumoviridae
subfamily and is the leading cause of severe acute lower respiratory tract infections in humans
at all ages and is the main cause of hospitalization due to pneumonia, asthma, and bronchiolitis in
infants. Vaccine development against this pathogen has been delayed after the detrimental effects
observed in children by vaccination with a formalin-inactivated hRSV preparation, which caused
enhanced disease upon natural viral infection. In this issue, Acevedo et al., discuss the eventual role

4
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of Fcγ receptor-mediated immunity underlying such disease
exacerbation and immune response mechanisms involved in
reinfections. Respiratory viral infections are associated to IgA
nephropathy (IgAN). Here, Hu et al., using a RSV-induced IgAN
exacerbation mouse model demonstrates that RSV activates C5a-
C5aR1 axis and modulates the Th1, Th17, and Treg balance.
C5aR1 inhibition alters both kidney damage and Th1, Th17,
and Treg cell dysfunction supporting that blocking the C5a-
C5aR1 axis might be a potential therapy for RSV-induced
IgAN. The Dengue virus (DENV), a member of the Flaviviridae
family, causes 400million infections each year.Whereas, primary
dengue infection by any of the four serotypes is asymptomatic
or mild, secondary infection with a heterotypic serotype is
associated with hemorrhagic fever suggesting that pre-existing
immunity to DENV play a role for enhanced secondary
infections. Ripoll et al. carried out molecular simulations guided
by previous in vitro experiments and structural studies to
explore the role of antibody fine-specificity, viral conformation,
and maturation state on antibody dependent enhancement in
the context of primary and secondary DENV infections. The
Influenza viruses belong to the Orthomyxoviridae family and are
major pathogens that affect both humans and animals causing
severe respiratory illness, including pneumonia. Neutrophils
and macrophages play essential roles in the clearance of
influenza virus from lungs, before the onset of virus specific
immunity but their uncontrolled recruitment and activation
contribute to acute lung injury. In this special issue, Rudd
et al. study chemokine receptors expression in a murine model
of influenza-induced pneumonia and reported a new set of
chemokine receptors that modulates several biological functions
of neutrophils. On the other hand, Tao et al. performed a
comparative analysis of whole-transcriptome RNA expression
between two influenza viruses and discuss how differently
expressed genes may be involved in host response and evasion
mechanisms. The Herpesviridae family includes very important
human pathogens as the herpes simplex virus (HSV), associated
with mucosal lesions and encephalitis. Tognarelli et al. review
and update several mechanisms used by HSV that have been
described to evade the host antiviral response. The epithelial
surfaces of the human body contain complex communities of
microorganisms collectively referred to as microbiota. Since
the discovery that gut microbiome instruct host immunity,
great attention has been directed to this interaction. In their
minireview, Domínguez-Díaz et al., provides a general overview
of the pro- and antiviral effects of the microbiota to prevent
viruses entry into host cells or to help them to evade the

host antiviral immunity. Regulation of RNA homeostasis is a
central step in eukaryotic gene expression. From transcription to
decay, cellular messenger RNAs (mRNAs) associate with specific
proteins in order to regulate their entire cycle, including mRNA
localization, translation and degradation. The best characterized
of such RNA-protein complexes are Stress Granules (SGs) and
Processing Bodies (PBs), which are involved in RNA storage
and RNA decay/storage, respectively, and are generally associated
with repression of gene expression. Gaete-Argel et al. performed
an exhaustive update about how viruses have evolved different
mechanisms to counteract SGs and PBs assembly or to use
them to his own benefit. Moreno-Altamirano et al. explore
how viruses mimic, exploit, and/or interfere with host cell
metabolic pathways and how, in doing so, they may evade
immune responses. Programmed cell death protein (PD-1) and
its ligands have received immense attention because of their
role in the evasion of tumor cells from antitumor immunity.
However, it has been less appreciated that the PD-1/PD-L1
axis also regulates antiviral immune responses and is therefore
modulated by a number of viruses. Here, Schönrich and Raftery
update and discuss the current literature regarding this important
expanding field.
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This study aimed to detect changes in the complete transcriptome of MDCK cells

after infection with the H5N1 and H3N2 canine influenza viruses using high-throughput

sequencing, search for differentially expressed RNAs in the transcriptome of MDCK cells

infected with H5N1 and H3N2 using comparative analysis, and explain the differences

in the pathogenicity of H5N1 and H3N2 at the transcriptome level. Based on the results

of our comparative analysis, significantly different levels of expression were found for

2,464 mRNAs, 16 miRNAs, 181 lncRNAs, and 262 circRNAs in the H3N2 infection

group and 448 mRNAs, 12 miRNAs, 77 lncRNAs, and 189 circRNAs in the H5N1

infection group. Potential functions were predicted by performing Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the target genes

of miRNAs, lncRNAs and circRNAs, and the ncRNA-mRNA regulatory network was

constructed based on differentially expressed RNAs. A greater number of pathways

regulating immune metabolism were altered in the H3N2 infection group than in the

H5N1 infection group, which may be one reason why the H3N2 virus is less pathogenic

than is the H5N1 virus. This study provides detailed data on the production of ncRNAs

during infection of MDCK cells by the canine influenza viruses H3N2 and H5N1, analyzed

differences in the total transcriptomes between H3N2- and H5N1-infected MDCK cells,

and explained these differences with regard to the pathogenicity of H3N2 and H5N1 at

the transcriptional level.

Keywords: canine influenza, H3N2, H5N1, deep sequencing, total transcriptome

INTRODUCTION

Influenza viruses belong to the Orthomyxoviridae family of RNA viruses that cause influenza in
humans or animals, and the viral genome is composed of a single negative strand of segmented
RNA. To date, four types of influenza viruses have been identified: influenza A virus (IAV),
influenza B virus (IBV), influenza C virus (ICV), and most recently influenza D virus (IDV)
(Hause et al., 2013, 2014).

6

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2019.00076
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2019.00076&domain=pdf&date_stamp=2019-03-26
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shoujunli@scau.edu.cn
https://doi.org/10.3389/fcimb.2019.00076
https://www.frontiersin.org/articles/10.3389/fcimb.2019.00076/full
http://loop.frontiersin.org/people/535515/overview
http://loop.frontiersin.org/people/703161/overview
http://loop.frontiersin.org/people/703248/overview
http://loop.frontiersin.org/people/210068/overview


Tao et al. Comparative Analysis of Whole-Transcriptome

IAV, which causes acute respiratory diseases in many hosts
such as birds, humans and pigs, is an important pathogenic
microorganism worldwide. Moreover, IAV has a wide host
specificity and infects a variety of hosts. Influenza has been
divided into avian influenza, swine influenza, human influenza
and canine influenza. In the early days, IAVs were believed to
be unable to infect dogs under natural conditions, but several
subtypes were subsequently isolated from dogs with respiratory
symptoms. Currently, two main subtypes of canine influenza
virus (CIV) have been identified: equine-origin H3N8 (Crawford
et al., 2005; Daly et al., 2008; Kruth et al., 2008; Kirkland et al.,
2010) and avian-origin H3N2 (Song et al., 2008; Lee et al., 2009;
Li et al., 2010). In addition, various subtypes of IAVs are reported
to be able to infect dogs, including influenza A H1N1 pdm09
viruses, H5N1 avian influenza viruses (AIVs), H5N2 subtypes of
AIVs, reassortants of wild-type H3N1 IAVs and H9N2 subtypes
of AIVs (Songserm et al., 2006; Dundon et al., 2010; Lin et al.,
2011; Guang-jian et al., 2012; Song et al., 2012; Sun et al., 2013).

Avian-origin H3N2 CIV, which was initially circulating only
in Asian countries (Song et al., 2009; Li et al., 2010; Li G. et al.,
2018), has now spread to the United States and the rest of the
world (Pulit-Penaloza et al., 2017; Voorhees et al., 2017). H3N2
CIV causes sneezing and clinical symptoms of typical respiratory
diseases, such as runny nose, cough and fever, as well as damage
to many other organs outside the respiratory tract, in dogs (Luo
et al., 2018; Zheng et al., 2018).

The highly pathogenic avian influenza (HPAI)H5N1 virus was
first reported in Thailand in October 2004 in dogs with severe
pulmonary congestion and edema and a bloody nose (Songserm
et al., 2006). An epidemiological survey of 629 village dogs in
Thailand found that approximately one-quarter had antibodies
against H5N1, indicating that they were infected with the virus
or had been infected in the past (Butler, 2006). Our laboratory
also isolated an avian influenza H5N1 virus from a dog in 2013.
The dogs that were infected with the highly pathogenic AIV
H5N1 subtype showed anorexia, dyspnea, cough, conjunctivitis
and a brief increase in body temperature within 2 days, but
the virus did not spread between dogs (Maas et al., 2007; Giese
et al., 2008). The highest viral replication titer of the nose swab
was 6.3 log10TCID50/mL on average, and lung lesions in the
H5N1 infection group were more severe than those in the H3N2
infection group (Zheng et al., 2018).

Why is the H5N1 influenza virus more pathogenic than
H3N2, and why does it lead to a more severe inflammatory
response? Current studies on H3N2 and H5N1 avian-origin
CIV transcriptomes are limited to miRNAs and mRNAs (Fu
et al., 2018; Zheng et al., 2018), whereas no studies have
examined changes in mRNAs, miRNAs, lncRNAs, and circRNAs
or performed a detailed analysis of the correlations between
ncRNA and mRNA levels. In the present study, we analyzed
the entire transcriptome to obtain an understanding of the
mechanism of pathogenicity and differences in inflammation
between the viruses and to provide guidance for future treatment.

Dogs are one of the most numerous domesticated animals
and often serve as companion animals to humans. Because
dogs can be infected with both avian and human influenza
viruses, they are likely to be a “mixing vessel” for genetic

rearrangement of influenza viruses, making the study of
canine influenza important for public and human health
(Gonzalez et al., 2014; Zhu et al., 2015).

MATERIALS AND METHODS

Viruses and Cells
The H3N2 (A/canine/Guangdong/B/2013) and H5N1
(A/canine/Guangdong/01/2013) CIVs were isolated in 2013
from dogs with severe respiratory symptoms in Guangdong,
China, and preserved in our laboratory. Madin-Darby canine
kidney (MDCK) cells were obtained from American Type
Culture Collection (ATCC) and propagated in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with 10%
fetal bovine serum (FBS) at 37◦C in a 5% CO2 atmosphere.
Viruses were propagated in the MDCK cells at 37◦C and 5%
CO2 for 48 h. All experiments with live viruses were performed
in an enhanced animal biosafety level 3 facility at the South
China Agricultural University. The protocol number was SYXK
(YUE) 2016-0136.

Sample Collection and RNA Isolation
MDCK cells were cultured with DMEM containing 10% FBS in a
37◦C incubator with a 5% CO2 atmosphere. Upon reaching 90%

confluence, MDCK cells were infected with the H3N2 (MOI =
0.1) and H5N1 (MOI = 0.1) influenza viruses, and the viruses
used in these infections were purified using a sucrose gradient.
Then, the cells were cultured with DMEM containing 2% FBS

FIGURE 1 | Replication kinetics of H3N2 and H5N1 in MDCK cells.

Monolayers of MDCK cells were infected with each virus at MOIs of 0.1 and

0.01. Virus titers were determined using the TCID50 assay at 3, 12, 24, 36, 48,

and 72 hpi. TPCK-trypsin (0.25 mg/mL) was added to the medium to promote

the propagation of the H3N2 influenza A virus. The data were analyzed using

one-way ANOVA (p < 0.05). Data are presented as the means ± SD of

independent triplicate experiments.
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FIGURE 2 | (A) Statistical histogram of the differential expression analysis. The horizontal axis represents the comparison and the vertical axis shows the number of

differentially expressed transcripts. Orange represents downregulated transcripts, and blue represents upregulated transcripts. (B) Differentially expressed transcripts.

In the Venn diagram, different comparison groups are represented by different colors. The numbers in the figure represent specific or common differences in the

number of transcripts. The overlapping areas represent the number of differentially expressed transcripts shared by different comparison groups; the non-overlapping

areas represent the number of differentially expressed transcripts that were unique to the different comparison groups. (C) Heat map of differentially expressed

transcripts based on fold changes. Each row represents a transcript and each column represents a comparison group. Red indicates upregulated expression, and

green indicates downregulated expression.

in a 37◦C incubator with a 5% CO2 atmosphere for 24 h before
being harvested. The control group was cultured without virus
under the same conditions (independent triplicate experiments).
Total RNA was isolated from MDCK cells using TRIzol (Takara)
according to the manufacturer’s protocol. RNA concentrations
were detected using a Qubit2.0 fluorometer (Invitrogen), and the
RNA integrity and genomic DNA contamination were detected
by separating the samples on an agarose gel. RNA concentrations
and purity were determined by measuring the OD, A260/A280
(>1.8) and A260/A230 (>1.6). RNA samples were stored at
−80◦C until further use.

RNA Sequencing and Data Analysis
Small RNA library construction: T4 RNA ligase 2 (New England

Biolabs) was used to connect the 3
′

-end connector to the RNA.
Reverse transcription primer hybridization: T4 RNA ligase 1
(New England Biolabs) was used to connect the 5’-end connector

to the RNA. Reverse transcription reaction: The final library
product was obtained by PCR amplification of the reverse
transcription product. Construction of a chain-specific library
for ribosome removal: Sequencing libraries were generated
using RNase R digestion and rRNA-depleted RNAs. The library
preparations were sequenced on an Illumina HiseqTM platform
(repeated 3 times). The raw sequencing data were analyzed with
FastQC using cutadapt to remove joints and trimmomatic to
remove low-quality bases and reads at both ends.

Screen of Differentially Expressed mRNAs,
miRNAs, lncRNAs, and circRNAs and
Clustering Analysis
The differences in expression among mRNAs, lncRNAs and
circRNAs were analyzed using DESeq2, and the differential
expression of miRNA was analyzed using edgeR (Anders and
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FIGURE 3 | The network diagram of ncRNA and mRNA interactions. Square nodes indicate ncRNAs, round nodes indicate mRNAs, and the edges indicate the

interactions between the two genes. The size of the node is proportional to the connectivity (degree) of the node; namely, the more edges are connected to the node,

the larger the degree of the node, indicating that the gene is more important in the network. The color of the node represents the difference in gene expression in this

group of samples, namely, the logFC value; green represents downregulation, red represents upregulation, and the color depth represents differences in the altered

expression.

Huber, 2010). The results of the differential analyses were
visualized, with a p < 0.05 and multiple differences >2
as screening conditions. A Venn diagram and a heat map
were constructed, and a clustering analysis was performed
based on the results of the differential expression analysis. A
network diagram was drawn based on the correlations between
miRNA and mRNA, lncRNA and mRNA, and circRNA and
mRNA expression.

Annotation of GO Terms and Analysis of
KEGG Signaling Pathways
The differentially expressedmiRNA, lncRNA, and circRNA target
genes and mRNAs were annotated using GO and analyzed for
enriched KEGG signaling pathways.

Analysis of the ceRNA Network (ceRNET)
The circRNA-miRNA-mRNA ceRNET and the lncRNA-
miRNA-mRNA ceRNET were constructed after determining
the negative regulatory relationship between the differentially
expressed miRNAs and their differentially expressed target genes
(mRNAs/lncRNAs and mRNAs/circRNAs).

Real-Time qPCR
Significant regulatory pathways were selected from the ceRNET
for RT-qPCR verification of differential expression. The cDNA
templates were synthesized using PrimeScriptTM RT Master Mix
(Perfect Real Time) (Takara, Otsu, Japan, Product no: RR036A).
RT-qPCR was performed using the SYBR Premix Ex TaqTM (Tli
RNaseH Plus) (Takara, Otsu, Japan, Product no: TRR820A) and
an LC480 Real-Time PCR System (Roche, Basel, Switzerland)
in accordance with the manufacturer’s specifications. Small
RNA samples were isolated using the E.Z.N.A.TM miRNA Kit
(OMEGA BIO-TEK. Product no: R6842-01). The miRcute Plus
miRNA First Chain cDNA Synthesis Kit (Tiangen, Beijing,
China. Product no: KP211) was used for cDNA synthesis. RT-
qPCR was performed using the miRcute Plus miRNA qPCR
Detection Kit (Tiangen, Beijing, China, Product no: FP411) and
an LC480 instrument (Roche, Basel, Switzerland). GAPDH was
used as the endogenous control for mRNAs and lncRNAs, and
U6 was used as the endogenous control for miRNAs.We used the
2−11Ct method to analyze the data. All samples were analyzed
in triplicate, and the data are presented as means ± standard
deviations (n= 3).
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RESULTS

Replication Kinetics of H3N2 and H5N1
Strains in MDCK Cells
The kinetics of H3N2 and H5N1 CIV replication were measured
and analyzed based on the TCID50 at 3, 12, 24, 36, 48, and
72 hpi (Figure 1) in Reed-Muench. H3N2 and H5N1 CIVs
replicated well in MDCK cells. H5N1 replicated significantly
more vigorously than H3N2 (p < 0.01) at every assessed time
point throughout the replication kinetics experiment. Viral
replication was distinctly dose dependent for both H3N2 and
H5N1 CIVs during the first 24 hpi, whereas the dose dependency
was negligible from 24 to 72 hpi. The peak titers of the H5N1
CIV reached up to 109.6 of the TCID50/mL at 24 hpi, whereas
H3N2 CIV replicated significantly less rapidly, with peak virus
titers reaching only 107.7 of the TCID50/mL.

Analysis of Differentially Expressed
mRNAs, miRNA, lncRNAs, and circRNAs
Through comparative analysis, we found that 2,464 mRNAs,
16 miRNAs, 181 lncRNAs, and 262 circRNAs were significantly
differentially expressed in the H3N2 group compared with the
control group and that 448mRNAs, 12 miRNAs, 77 lncRNAs and
189 circRNAs were differentially expressed in the H5N1 group
compared with the control group. Moreover, 1,950 mRNAs,
20 miRNAs, 162 lncRNAs, and 75 circRNAs were differentially
expressed in the H3N2 group compared with the H5N1 group
(Table 1, Figure 2 and Supplementary Material).

Correlation Analysis of mRNAs
and ncRNAs
We analyzed the targeting relationship between differentially
expressed ncRNAs and mRNAs to further study the correlation
between the ncRNA-mRNA regulatory network in MDCK cells
infected with CIVs. The analysis identified 706 differentially
expressed miRNA-mRNA, 66 lncRNA-mRNA and 86 circRNA-
mRNApairs in theH3N2 group compared with the control group

TABLE 1 | Differential expression profiles of mRNAs, miRNAs, lncRNAs, and

circRNAs.

Group Type of RNA Up Down Total

H3N2 vs. Control mRNA 2,068 396 2,464

miRNA 7 9 16

lncRNA 135 46 181

circRNA 78 184 262

H5N1 vs. Control mRNA 328 120 448

miRNA 10 2 12

lncRNA 35 42 77

circRNA 88 101 189

H3N2 vs. H5N1 mRNA 1,546 404 1,950

miRNA 6 14 20

lncRNA 127 35 162

circRNA 22 53 75

and 50 differentially expressed miRNA-mRNA, 13 lncRNA-
mRNA, and 6 circRNA-mRNA pairs in the H5N1 group
compared with the control group (Figure 3).

Gene Ontology (GO) Functional Enrichment
Analysis of Differentially Expressed Genes
We conducted a GO enrichment analysis and statistical analysis
of biological processes to determine the functional classifications
of these differentially expressed mRNAs and target genes
of ncRNAs. A large number of genes in the H3N2 and
H5N1 infection groups are involved in cellular process, single-
organism process and metabolic process. However, many genes
in biological processes were enriched in the H3N2 infection
group, and each enriched functional classification also contained
a large number genes. Based on the results of the GO enrichment
analysis, miRNAs were more abundant than lncRNAs and
circRNAs in terms of the number of target genes and functional
classifications (Figure 4).

Analysis of the Enrichment of Differentially
Expressed Genes in Various Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathways
KEGG analysis was also performed for mRNAs and target genes
of miRNAs, lncRNAs and circRNAs that were differentially
expressed in cells infected with H3N2 and H5N1 to explore
canine host resistance mechanisms to H3N2 and H5N1 infection
and their differences. Then, we conducted a statistical analysis

TABLE 2 | Primer sequences used for real-time PCR.

Gene name Primer sequences (5′-3′)

MSTRG.300.2 F: GATCCCGTGGGCGTTTACCCG

R: GCAAGACACCCAACAGCGGCG

MSTRG.17313.7 F: GGAGTGCTGAGAAGACGGTCGAAC

R: GCCGCGTTCTCCGTTAATGATCC

MSTRG.7743.1 F: AGGAGCATCTCGGGCTTTTCA

R: CTTTACCGCTCCATCAACGCA

cfa-novel-52-mature F: GCCCCCCGGGGGGGCGG

cfa-novel-46-mature F: GCGGCGGCGGGGAGGGT

cfa-miR-149 F: AGACCGAGGCACAGAAGTGAGGG

U6 F: ACTAAAATTGGAACGATACAGAGA

CISH F: TTCTTTGCTGGCTGTGGAGCG

R: GCCTCACTGGCGGTAATGGAA

CREBBP F: CTTTAAGCCAGAGGAGTTACGC

R: GGATGTCTTGCGGTTATAGAGC

MCL1 F: ACTGGGGCAGGATTGTGACTCT

R: GCCAGTCTCGTTTCGTCCTTAC

PERP F: CCCGAGAGTTCCTTAGCACA

R: ATGATGTCGAAGGCGATGGC

SND1 F: TAGAGGTGGAGGTAGAGAGCAT

R: GACAGCAGGGATTTGTAGTAGG

GAPDH F: AAATGGGGTGATGCTGGTGCT

R: CATCAGCAGAAGGAGCAGAGA
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FIGURE 4 | GO pathways of differentially expressed mRNAs and target genes of differentially expressed miRNAs, lncRNAs, and circRNAs. The horizontal axis shows

the functional classification, and the vertical axis shows the number of genes in the classification.

of cytokine and pathogen-host interaction pathways and found
that a large number regulatory pathways and genes were enriched

in the H3N2 infection group, particularly the MAPK signaling

pathway, the endocytosis pathway, the p53 signaling pathway and
other pathways with more obvious advantages. Notably, miRNAs

can target more than one mRNA to regulate gene expression,

indicating that miRNA-mediated targeted regulation of mRNA
expression is more important than are the regulatory pathways
involving lncRNAs and circRNAs (Figure 5).

The Competing Endogenous RNA (ceRNA)
Regulatory Network
Notably, lncRNAs and circRNAs limit miRNA-mediated
regulation of target gene expression and act as miRNA sponges
to indirectly regulate gene expression. According to the theory of
ceRNAs, we constructed lncRNA-miRNA-mRNA and circRNA-
miRNA-mRNA regulatory networks. In the comparison of the
H3N2 and control groups, the lncRNA-miRNA-mRNA network
contained 15 lncRNAs, 6 miRNAs and 237 mRNAs, and the
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FIGURE 5 | KEGG pathways of differentially expressed mRNAs and target genes of differentially expressed miRNAs, lncRNAs, and circRNAs. The horizontal axis

shows the number of genes, and the vertical axis shows each pathway.

circRNA-miRNA-mRNA network contained 3 circRNAs, 1
miRNA and 9 mRNAs. In the comparison of the H5N1 and
control groups, the lncRNA-miRNA-mRNA network comprised
6 lncRNAs, 4 miRNAs and 18 mRNAs, and a circRNA-miRNA-
mRNA regulatory network was not identified. Enrichment of
mRNAs in the regulatory network was assessed via analysis of
KEGG pathways (Figure 6).

Differential Expression of ncRNAs and
mRNAs Confirmed by RT-qPCR
In the ceRNA network, mRNAs in the Jak-STAT signaling
pathway, p53 signaling pathway and viral carcinogenesis
regulatory network were enriched and verified by RT-qPCR
(primer sequences are shown in Table 2). The sequencing results
were consistent with the trends in the qPCR verification results
(Table 3 and Figure 7).

DISCUSSION

In this study, a high-throughput sequencing technique was used
to compare the entire transcriptomes of MDCK cells infected

with the H5N1 and H3N2 viruses. Although fewer differentially
expressed mRNAs were identified in the H5N1 infection group
than in the H3N2 infection group, a higher proportion of mRNAs
exhibited a more significant differential expression pattern in the
H5N1 infection group. In the H5N1 group, 24 (log2-fold change
> 10) of 448 mRNAs were differentially expressed mRNAs,
while only 27 (log2-fold change > 10) of 2,464 mRNAs were
differentially expressed in the H3N2 group, 10 of which were
shared by the two groups. In the ncRNA-mRNA regulatory
network, the H3N2 group had more regulatory pairs than did
the H5N1 group. Thus, H3N2-infected MDCK cells may be able
to resist the viral infection through more pathways to reach a
balanced state. This finding also illustrates why H5N1 is more
virulent than H3N2 at the RNA level.

In the circRNA-miRNA-mRNA regulatory network, we
identified 3 circRNAs in the H3N2 infection group. One miRNA
and 9 mRNAs had a targeted relationship, while the H5N1
infection group did not possess this regulatory network. In
the lncRNA-miRNA-mRNA regulatory network, 15 lncRNAs, 6
miRNAs, and 237 mRNAs were identified in the H3N2 infection
group. Six lncRNAs, 4 miRNAs, and 18mRNAs were identified in
the H5N1 infection group. Based on this result, H3N2 infection
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FIGURE 6 | KEGG pathways associated with the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA regulatory networks; green represents lncRNAs, red represents

circRNAs, orange represents miRNAs, and blue represents mRNAs.

FIGURE 7 | Enrichment of mRNAs in the Jak-STAT signaling pathway, p53 signaling pathway and viral carcinogenesis regulation network; lncRNAs are depicted in

red, green represents miRNAs, and blue represents mRNAs.
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TABLE 3 | Relative RNA expression of selected differentially expressed genes (DEGs) determined using RNA-seq and quantitative real-time PCR analyses.

lncRNA_name/miR_name/mRNA_name Accession number Illumina miRNA-seq

(log2-fold change)

Regulation Real-time PCR (log2-fold change)

MSTRG.300.2 5.574059 Up 4.06*

MSTRG.17313.7 24.63398 Up 20.25*

MSTRG.7743.1 1.199492 Up 1.53*

cfa-novel-52-mature −3.62139 Down −4.52*

cfa-novel-46-mature −2.7541 Down −3.02*

cfa-miR-149 −1.71902 Down −2.08*

Cytokine inducible SH2 containing protein

(CISH)

ENSCAFT00000045397 1.291812 Up 1.06*

CREB binding protein (CREBBP) ENSCAFT00000044601 1.619728 Up 2.05*

MCL1, BCL2 family apoptosis regulator (MCL1) ENSCAFT00000019132 2.098362 Up 2.16*

PERP, TP53 apoptosis effector (PERP) ENSCAFT00000043071 1.268355 Up 1.89*

Staphylococcal nuclease and tudor domain

containing 1 (SND1)

ENSCAFT00000002687 1.176868 Up 1.39*

*The statistical significance of differential gene expression with p < 0.05 (t-test).

may induce broad regulation in MDCK cells, and the circRNA-
miRNA-mRNA regulatory network is not common in influenza
infection. Regarding GO and KEGG enrichment analyses, we also
intuitively observed a greater number of GO annotations and
enriched KEGG pathways in the H3N2 infection group than in
the H5N1 infection group. In conclusion, we postulate that H5N1
is more virulent than H3N2 for several reasons. (1). H5N1 infects
cells and causes intracellular cytokine storms, resulting in rapid
cell death (Li X. et al., 2018). (2). Cells infected with H3N2 utilize
more resistance pathways to eliminate the virus, while H5N1
infection activates relatively few pathways in cells, which showed
the some differences in MDCK in antiviral responses between
H3N2 and H5N1 at the RNA level of the transcriptome.

Notably, lncRNAs play important roles in many cellular
activities, such as the regulation of epigenetics, the cell cycle
and cell differentiation, and has become a hot topic in genetic
research (Wapinski and Chang, 2011; Kwok and Tay, 2017).
MiRNAs and their target genes have a variety of relationships
(Perez et al., 2009; Fan and Wang, 2016; Nakamura et al.,
2016), and misaligned miRNAs can be used as diagnostic and
prognostic biomarkers (Okkenhaug and Vanhaesebroeck, 2003;
Hale et al., 2010; Haneklaus et al., 2013). In the present study,
we examined the lncRNA-miRNA-mRNA regulatory networks
of the Jak-STAT signaling pathway, the p53 signaling pathway
and the viral carcinogenesis pathway for RT-qPCR verification.
The Jak-STAT signaling pathway, which is closely related to the
type I interferon (IFN)-mediated innate immune response, is an
important regulator of cell proliferation, differentiation, survival,
motility, apoptosis, development and the immune response
(Bartunek et al., 1999; Liu et al., 2010). Currently, p53 is the most
widely analyzed functional transcription factor. The aggregation
and induced activation of p53 are the core cell signaling events in
a variety of stress-induced injury responses and have important
regulatory roles in inhibiting cell cycle progression and inducing
DNA damage repair, cell autophagy and apoptosis (Crighton

et al., 2006; Duan et al., 2015; Sui et al., 2015). In the next step,
we further explored the mechanisms of these pathways.

In this study, the total transcriptome of the MDCK cell model
infected with CIVs was analyzed for the first time. The results
further revealed the differences in pathogenicity between H3N2
and H5N1 at the RNA level of the transcriptome. However,
this study has only analyzed the differences in the RNA levels
at 24 hpi in canine cells and further studies are needed to
analyze both earlier time points as well as the differences in
the RNA transcriptome in dogs infected with the two types of
influenza viruses.
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The human Respiratory Syncytial Virus (hRSV) is the leading cause of severe acute lower

respiratory tract infections (ALRTIs) in humans at all ages and is the main cause of

hospitalization due to pneumonia, asthma, and bronchiolitis in infants. hRSV symptoms

mainly develop due to an excessive host immune and inflammatory response in the

respiratory tissue. hRSV infection during life is frequent and likely because of non-

optimal immunological memory is developed against this virus. Vaccine development

against this pathogen has been delayed after the detrimental effects produced in

children by vaccination with a formalin-inactivated hRSV preparation (FI-hRSV), which

caused enhanced disease upon natural viral infection. Since then, several studies have

focused on understanding the mechanisms underlying such disease exacerbation. Along

these lines, several studies have suggested that antibodies elicited by immunization

with FI-hRSV show low neutralizing capacity and promote the formation of immune

complexes containing hRSV (hRSV-ICs), which contribute to hRSV pathogenesis through

the engagement of Fc gamma receptors (FcγRs) expressed on the surface of immune

cells. Furthermore, a role for FcγRs is supported by studies evaluating the contribution

of these molecules to hRSV-induced disease. These studies have shown that FcγRs

can modulate viral clearance by the host and the inflammatory response triggered by

hRSV infection. In addition, ICs can facilitate viral entry into host cells expressing FcγRs,

thus extending hRSV infectivity. In this article, we discuss current knowledge relative

to the contribution of hRSV-ICs and FcγRs to the pathogenesis caused by hRSV and

their putative role in the exacerbation of the disease caused by this virus after FI-hRSV

vaccination. A better understanding FcγRs involvement in the immune response against

hRSV will contribute to the development of new prophylactic or therapeutic tools to

promote virus clearance with limited inflammatory damage to the airways.

Keywords: hRSV, Fc gamma receptors, re-infection, inflammatory response, lung disease, immune complexes,

opsonized virus
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INTRODUCTION

The Human Respiratory Syncytial Virus (hRSV) is a single-
stranded RNA enveloped virus belonging to the Pneumoviridae
family (Amarasinghe et al., 2018). The viral particle has
a filamentous structure, which consists in a nucleocapsid
surrounded by a lipid bilayer envelope obtained from the plasma
membrane of the host cell (El Omari et al., 2011). Importantly,
infection by hRSV is the most frequent cause of severe acute
lower respiratory tract infections (ALRTIs) in children younger
than 5 years old (Scheltema et al., 2017) and infection during the
first year of life is the main cause of hospitalization in infants
(Song et al., 2016). According to epidemiological studies, during
the past decade, nearly 33 million cases of new ALRTIs episodes
affect children during the first months of life are due to hRSV
infection each year (Shi et al., 2017). Therefore, infection by
this virus represents a major health and socio-economic burden
worldwide (Diez-Domingo et al., 2014; Amand et al., 2018).

Clinical manifestations caused by hRSV infection range from
mild symptoms, such as rhinitis, to more severe consequences,
which include bronchiolitis, and pneumonia (Pickles and
DeVincenzo, 2015). Besides, extra-pulmonary manifestations of
hRSV infection have also been reported to occur, such as acute
neurological symptoms with seizures and ataxia observed in
hRSV-infected children (Eisenhut, 2006; Bohmwald et al., 2015)
and long-term behavioral and cognitive impairments in animal
models (Espinoza et al., 2013).

Remarkably, it is known that most children become infected
with hRSV during the first 2 years of life (Domachowske
and Rosenberg, 1999), likely because hRSV can efficiently pass
on from one individual to another, but also because of the
capacity of this virus to negatively modulate both, T cell and
B cell responses upon infection allowing frequent re-infections
(PrabhuDas et al., 2011; Cespedes et al., 2014; Zhivaki et al.,
2017). These features are thought to be mediated by host and
viral factors. For instance, it is known that infants show reduced
capacity to produce neutralizing antibodies against hRSV, as
compared to adults making the former more susceptible to
recurrent infections (Siegrist and Aspinall, 2009). Although
maternally-delivered antibodies (matAbs) are reported to delay

the onset of primary hRSV infection, their presence in the
blood of infants is not associated with the development of less
severe disease symptoms (Jans et al., 2017). These observations
suggest that antibody-mediated neutralization of hRSV may not
be sufficient by itself to limit hRSV infection and disease severity.
Furthermore, hRSV encodes several proteins that have the ability
to negatively modulate or impair the host antiviral immune
response, therefore contributing to re-infections (Mason et al.,
2003; Cespedes et al., 2014; Saint et al., 2015; Bohmwald et al.,
2016; Gomez et al., 2016; Canedo-Marroquin et al., 2017;
Ward et al., 2017). Such knowledge is relevant for designing
novel vaccines and therapeutic approaches that can prevent the
pathology caused by hRSV. As a result, several clinical trials
are currently in progress to assess the safety and effectiveness
of different hRSV vaccine candidates (Cautivo et al., 2010;
Rey-Jurado and Kalergis, 2017; Rezaee et al., 2017). Among
them, we have developed a unique approach to be administered

to newborns and young infants. Immunization in the mouse
model with a recombinant bacillus of Calmette-Guérin (BCG)
that expresses the nucleoprotein (N) of hRSV (rBCG-N-hRSV)
induce the production of neutralizing antibodies against hRSV
and a T helper 1 (Th1) cellular immunity that protects from
hRSV associated-lung pathology by decreasing the infiltration
of inflammatory immune cells into the lungs and reduce viral
loads in the airways of hRSV-infected mice (Bueno et al., 2008;
Cautivo et al., 2010; Leyrat et al., 2014) Furthermore, a single low
dose of this vaccine produced using current good manufacturing
practices (cGMP), conferred protection against hRSV infection
in the mouse model (Cespedes et al., 2017). Given these results,
this recombinant-based vaccine arises as a promising candidate
to prevent lung damage caused by this virus (Cespedes et al.,
2017). In this context, it is possible that a mechanism that
contributes to the prevention of hRSV pathology following
rBCG-N-hRSV vaccination is the induction of antibodies that
recognize the hRSV N protein, which is necessary for viral
replication and the inhibition of the immunological synapse
(IS) between DCs and T cells that promote T- cell activation
(Cespedes et al., 2014). Therefore, if the hRSV N protein
becomes neutralized by antibodies during infection it cannot
contribute to viral replication, but also will fail in its ability
to impair the formation of the IS between DCs and T cells,
thus hampering a proper immune response against hRSV.
Furthermore, a recent publication from our group shows that
immunization with rBCG-N-hRSV can induce the production
of antibodies against other hRSV proteins, such as F and G
which can serve to neutralize infection, therefore reducing hRSV
associated pathology (Soto et al., 2018).

In contrast, vaccine candidates from other groups use the F
protein as a target antigen to confer immunity. For example,
Novavax Inc. is currently performing a clinical trial based
on the use of nanoparticles linked with hRSV F protein to
induce the production of neutralizing antibodies against hRSV
(Mazur et al., 2018).

Similarly, Janssen is currently testing adenovirus based vector
vaccines, encoding pre-fusion forms of the hRSV F protein that
also induce the production of anti-hRSV neutralizing antibodies
(Mazur et al., 2018).

Finally, other live attenuated vaccines as is the case of rBCG-
N-hRSV are based in attenuated hRSV that lack some particular
proteins such as M2-2, NS2, or both (Mazur et al., 2018).

Together, these data indicate that it is of vital importance
to delineate the mechanisms contributing to hRSV induced
pathology in order to prevent or treat infection.

At this latter point, recurrent hRSV re-infection episodes
which are common thorough life have encouraged the generation
of studies that seek to define the mechanisms responsible for
what is considered an impaired or non-optimal immune response
elicited against hRSV upon infection to account for re-infection
episodes (Openshaw and Chiu, 2013; Cespedes et al., 2014;
Shao et al., 2015). Along these lines, a role for the interaction
between immune complexes consisting of IgGs and hRSV
(ICs) with Fc gamma receptors (FcγRs) could be a process
contributing to both, re-infection episodes, and enhancement of
hRSV-disease elicited by vaccination with formalin-inactivated
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hRSV (FI-hRSV) and later hRSV natural infection (Kim et al.,
1969). This hypothesis is supported by the fact that high
amounts of antibodies with low neutralizing activity can be
induced by immunization with FI-hRSV, which correlates with
enhancement of the hRSV-induced disease (Kapikian et al., 1969;
Kim et al., 1969). Therefore, it is possible that these low affinity
antibodies promote the infection of FcγR-bearing cells through
a phenomena called antibody dependent enhancement (ADE),
as previously observed for other viruses (Yip et al., 2014; Gu
et al., 2015; Flipse et al., 2016). Furthermore, in vitro and in vivo
studies have shown that the blockade or absence of particular
FcγRs expressed on the surface of immune cells can modulate
the immune response against this virus and the onset of hRSV-
induced disease (Osiowy et al., 1994; Kruijsen et al., 2013; Gomez
et al., 2016; van Erp et al., 2018). In this article, we review
and discuss the current understanding on the contribution of
FcγRs to infection and the modulation of the immune response
against hRSV both, in vitro and in vivo and their impact on
hRSV-induced pathology.

The Family of Fc Receptors for IgG (FcγRs)
Fc-gamma receptors (FcγRs) bind to immunoglobulin G (IgG)
antibodies (Ab), by recognizing the Fc region of the IgG,
which promotes receptor clustering on the cell surface and
the phosphorylation of tyrosine residues present on signaling
motifs within the intracellular region of these receptors. FcγRs
engagement ultimately leads to signaling cascades in the cell
that can result in the expression of surface molecules and
secretion of soluble mediators to modulate the host immune
responses (Getahun and Cambier, 2015; Renner et al., 2016);
(Soto et al., 2018).

Importantly, these types of receptors are expressed on the
surface of immune cells, such as neutrophils, dendritic cells
(DCs) and macrophages, among others (Zhang et al., 2004). In
general, classic members of this family of proteins were classified
according to their immune-modulatory properties, which either
promote or inhibit inflammatory responses (Nimmerjahn and
Ravetch, 2008; Guilliams et al., 2014). However, FcγRs can also
be classified as type-I or type-II, based on their capacity to
interact with the two (open or closed) conformational states
of the IgG Fc domain (Banegas Banegas et al., 1987). Type-I
FcγRs include the classic FcγRs and can only be engaged by
the IgG Fc domain in the open conformation state (Banegas
Banegas et al., 1987). In contrast, type-II (non-canonical
FcγRs), include C-type lectin receptors CD23 and Dendritic
Cell-specific Intercellular Adhesion Molecule-3-Grabbing Non-
integrin (DC-SIGN), which preferentially bind IgG Fcs in a
closed conformation (Banegas Banegas et al., 1987).

In humans, the so-called classic FcγRs are known as:
FcγRI (CD64), FcγRIIa (CD32a), FcγRIIb (CD32b), FcγRIIc
(CD32c), FcγRIIIa (CD16a), and FcγRIIIb (CD16b) (Table 1)
(Tripp et al., 2002; Guilliams et al., 2014). Among them, a
study performed during 2002 indicates that the expression of
FcγRIIIa is increased in Natural Killer cells (NK cells) from
patients with severe hRSV associated pathology. Thus, suggesting
that this receptor and this particular cell population could
be contributing to hRSV disease (Table 2, Tripp et al., 2002).

Nevertheless, there are two more non-classic human Fc-gamma
receptors: neonatal Fc-receptor (FcRn) and cytosolic tripartite
motif (TRIM) 21 that bind IgG once internalized into the
cells (Guilliams et al., 2014). However, there is no study about
it contribution to hRSV induced pathology in hRSV positive
patients (Table 2). Importantly, all canonical FcγRs with the
exception of FcγRIIb are involved in activating functions, such as
phagocytosis, antibody-dependent cellular cytotoxicity (ADCC)
and the release of inflammatory cytokines following FcγR-
crosslinking by IgG-opsonized complexes (Guilliams et al., 2014).
The activation of such processes relies on the Src-family kinase-
mediated phosphorylation of an Immunoreceptor Tyrosine-
based Activating Motif (ITAM) that is located in the cytoplasmic
portion of these activating Fc-receptors (Nimmerjahn and
Ravetch, 2008). Subsequently, phosphoinositide 3-kinase (PI3K)
is activated, which generates phosphatidylinositol trisphosphates
(PIP3s), leading to the recruitment of Bruton’s tyrosine kinase
(BTK) and the activation of phospholipase Cγ (PLCγ), which
promotes the release of calcium (Ca2+) from the endoplasmic
reticulum (ER) that in turn activates cell effector functions
(Nimmerjahn and Ravetch, 2008).

In contrast, FcγRIIb which is able to terminate the activation
cascades associated with the engagement of activating FcγRs
(Malbec et al., 1998), is also known as the inhibitory FcγR.
During this process FcγRIIb becomes engaged by ICs and it
co-aggregates with activating receptors. Following that, different
recruited kinases phosphorylate a conserved tyrosine within
an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM)
located in the cytoplasmic tail of FcγRIIb (Malbec et al.,
1998). This phosphorylation step leads to the recruitment of
tyrosine phosphatases SHP-1 and SHP-2, as well as the inositol
phosphatases SHIP-1 and SHIP-2 that suppress the activating
signals derived from activating FcγRs (D’Ambrosio et al., 1995;
Ono et al., 1996).

In the mouse, there are four different canonical FcγRs
expressed on the cell surface: FcγRI, FcγRIIb, FcγRIII, and
FcγRIV (Table 2) (Nimmerjahn and Ravetch, 2008). Among
them, FcγRI, FcγRIII, and FcγRIV are activating, whereas
FcγRIIb is the only one that is inhibitory. Of interest, a pro-
inflammatory role for the FcγRIII receptor has been reported
during hRSV infection in the mouse model (Gomez et al., 2016),
whereas the inhibitory FcγRIIb has been shown to hamper
inflammatory reactions during allergic-like rhinitis (Malbec et al.,
1998), allergic asthma (D’Ambrosio et al., 1995), and hRSV
infection (Gomez et al., 2016). Therefore, such receptors appear
as attractive targets for novel therapeutic approaches against this
kind of diseases.

Contribution of FcγRs to Neutrophil
Recruitment, Viral Replication, and Lung
Damage During hRSV-Induced Pathology
Based on animal studies, neutrophils have been described to
promote inflammation and tissue damage during hRSV infection
(Yasui et al., 2005). In addition, other studies in mice that
evaluated the role of FcγRs on the lung damage produced
by neutrophils in models of acute lung injury (ALI), which
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TABLE 1 | Classification of currently described human Fcγ Receptors, and evidences of their role in hRSV-induced pathogenesis.

Type Receptor Alternative

name/CD

Main function Evidence after hRSV

infection

Suggested role References

indicating a role

during hRSV

infection

Classical FcγRs

(Recognize ICs on

the cell surface)

FcγRI CD64 Activating —
a

— —

FcγRIIa CD32a Activating — — —

FcγRIIb CD32b Inhibitory — — —

FcγRIIc CD32c Activating — — —

FcγRIIIa CD16a Activating Increased presence of

FcγRIIIA+ NK cells, and

lung damage in patients

with severe hRSV infections

The expression of FcγRIIIA

on NK cells negatively

influences the immune

response during hRSV

infection

Tripp et al., 2002

FcγRIIIb CD16b Activating — — —

Non-classical

FcγRs

(C-type lectins that

recognize ICs on

cell surface or

non-classic FcγRs

that recognize ICs

inside the cell)

CD23 CD23 — — —

DC-SIGN CD209 Recognition of

glycans through a

carbohydrate

recognition

domain (CRD)

In vitro: mAb-blockade of

DC-SIGN increases human

DC maturation markers

(CD80, CD86) after hRSV

infection.

hRSV-DC interaction

through DC-SIGN might

impair DC maturation

Johnson et al.,

2012

FcRn — Control of

endosomal routing

— — —

TRIM 21 — Elimination of ICs

via recruitment of

the proteasomal

machinery

— — —

aNo data are available.

resembles those caused by hRSV infection (Zhang et al., 2016),
have suggested that animals lacking activating FcγRs (FcRγ

−/−

mice) can be protected from ALI triggered by administration
of IgG mAbs that recognize self-antigens, such as MHC-I
molecules (Looney et al., 2006). Supporting a role for neutrophils
and activating FcγRs in this model of lung injury, the same
study showed that ALI was observed when FcRγ

−/− mice were
adoptively transferred with wild-type neutrophils followed by
the administration anti-MHC-I mAbs (Looney et al., 2006).
Taken together, these results suggest that lung disease in this
model is dependent on the expression of activating FcγRs
by neutrophils.

For the case of hRSV infection, it has been shown that
the recruitment of neutrophils to the lungs of infected mice is
modulated by the presence of different FcγRs (Figure 1) (Gomez
et al., 2016). For instance, it was reported that animals lacking the
activating FcγRIII (FcγRIII−/−) showed decreased neutrophil
recruitment and higher viral loads (Gomez et al., 2016),
suggesting that FcγRIII could play a pro-inflammatory role
during hRSV primary infection and promotes viral clearance.
Consistent with the results described above, mice lacking the
inhibitory FcγRIIb (FcγRIIb−/−) showed increased neutrophil

infiltration in lungs due to hRSV infection but decreased viral
loads (Gomez et al., 2016), thus suggesting that this receptor
can play an anti-inflammatory role during hRSV-induced disease
despite it contributes to viral replication (Gomez et al., 2016).

An in vitro study using human neutrophils showed that
hRSV-ICs, established with hRSV and anti-hRSV autologous
serum, but not free hRSV or antibodies alone, could promote
the release of reactive oxygen species (ROS) by neutrophils,
which could contribute to lung tissue damage (Figure 1) (Kaul
et al., 1981; Winterbourn et al., 2016). Therefore, it is possible
that the activation of neutrophils, mediated by the engagement
of FcγRs likely occurs under physiological conditions, when
individuals become infected. This notion, is further supported
by a study showing increased release of IL-8 by human
neutrophils challenged with opsonized hRSV (Arnold et al.,
1994). This cytokine is relevant, as it has been described that
secreted IL-8 works as a chemotactic signal for neutrophils that
induces their activation leading to pro-inflammatory responses
(Henkels et al., 2011). This in vitro evidence suggests that the
engagement of FcγRs can activate neutrophils and therefore
contribute to lung inflammation and the progression of hRSV
disease (Figure 1).
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TABLE 2 | Classification of currently described mouse Fcγ Receptors, and evidences of their role in hRSV-induced pathogenesis.

Type Receptor Main

function

Evidence after hRSV infection Suggested role References

Classical FcγRs

(Recognize ICs on

the cell surface)

FcγRI Activating — — —

FcγRIIb Inhibitory In vivo: FcγRIIb−/− mice display increased

lung neutrophil infiltration but decreased

viral loads

Anti-inflammatory role Gomez et al.,

2016

In vitro: WT mice-derived BMDCs loaded

with hRSV-ICs were not able to induce the

production of IL-2 by CD4+ T cells as

compared with FcγRIII−/− mice-derived

BMDCs

The engagement of FcγRIII by hRSV-ICs

impairs DC-mediated T cell activation

Gomez et al.,

2016.

In vitro: FcγRIIb−/−mice-derived BMDCs

loaded with hRSV-ICs showed unaltered

capacity to induce the secretion of IFNγ by

CD4+ T cells

DC-mediated stimulation of IFN-γ

secretion by CD4+ T cells does not

depend on the presence of the inhibitory

FcγRIIb

Kruijsen et al.,

2010

FcγRIII Activating In vivo: FcγRIII−/− mice display

decreased neutrophil recruitment and

higher viral loads

Pro-inflammatory role, promotion of viral

clearance

Gomez et al.,

2016

In vitro: FcγRIII−/− mice-derived BMDCs

loaded with hRSV-ICs showed restored

capacity to induce the production of IL-2

by CD4+ T cells

The engagement of FcγRIII by hRSV-ICs

impairs DC-mediated T cell activation

Gomez et al.,

2016

FcγRIV Activating —
b

— —

Non-classical

FcγRs

(FcγRs that

recognize ICs

inside the cell)

FcRn IgG recycling In vitro: FcγRn−/− mice-derived BMDCs

loaded with hRSV-IC display unaltered

capacity to induce IFN-γ production by

CD4+ T cells. In vivo: FcRn−/− and WT

mice display similar CD4+ IFN-γ

production after hRSV-IC challenge

FcRn does not modulate DC-mediated

CD4+ T cell activation

Kruijsen et al.,

2013

TRIM 21 Elimination of

ICs via

recruitment of

the

proteasomal

machinery

— — —

bNo data are available.

Modulation of Dendritic Cell Function by
FcγRs and ICs Containing hRSV:
Implications for T Cell Immunity
Dendritic cells (DCs) can modulate the immune response during
viral infections after capturing ICs through either, activating or
inhibitory FcγRs (Guilliams et al., 2014). Along these lines, IgG–
antigen complexes can trigger activating signals in human DCs
(hDCs) after binding to FcγRIII and promote an inflammatory
response (Bandukwala et al., 2007). In contrast, binding of ICs
to the inhibitory FcγRIIb trigger inhibiting signals that can lead
to reduced inflammation (Boruchov et al., 2005). In addition, it
has been described that hRSV-ICs containing either, neutralizing
or non-neutralizing antibodies can modulate DC function and
subsequent T cell responses elicited by the antigen presentation
of these cells (Kruijsen et al., 2013; Gomez et al., 2016).

In the context of hRSV infection, it has been reported that
DC-mediated T cell activation and IFN-γ production by these
cells, is modulated by the presence of activating FcγRs on the

DC surface (Kruijsen et al., 2013). In this case, it was observed
that DCs derived from WT adult mice were able to induce
the production of IFN-γ by CD4+ T cells in the presence of
anti-hRSV immune serum obtained from mice being challenged
with hRSV (Kruijsen et al., 2013). Nevertheless, this observed
increase in the IFN-γ response by CD4+ T cells was reduced
when the DCs were derived from FcRγ

−/− mice. Therefore, the
expression of all activating FcγRs on the DC surface is required
to promote the production of this cytokine by CD4+ T cells.
Remarkably, unaltered secretion of IFN-γ by CD4+ T cells was
observed in DCs derived from FcγRIIb−/− mice, when compared
to WT mice (Kruijsen et al., 2013), indicating that DC-mediated
stimulation of IFN-γ secretion by CD4+ T cells does not depend
on the presence of the inhibitory FcγRIIb (Kruijsen et al., 2013).

Interestingly, another report indicates that CD4+ T cells

represent an important source of IFN-γ during neonatal hRSV

infection in the murine model, which is required to prevent re-

infection and disease severity in adult mice (Lee et al., 2008).
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FIGURE 1 | Putative mechanisms explaining hRSV-induced inflammation due to hRSV-IC interaction with Fc-gamma receptors expressed on the surface of

neutrophils. During a primary infection (1) hRSV induces the secretion of pro-inflammatory cytokines (2) and chemokines that promote neutrophil recruitment to the

lungs and the airways (3). During infection, hRSV is phagocyted by DCs and impair its maturation (4). Infected DCs migrate to lymph nodes (5) but fail to activate T

cells (6). By a poorly understood mechanism, T cells fail to help naïve B cells (7) and promote the proliferation of plasma cells that produce anti-hRSV antibodies with a

low neutralizing capacity (8). Serum antibodies produced after a primary hRSV infection can opsonize hRSV during secondary infection (9). Opsonized hRSV is then

phagocyted by neutrophils through FcγRs (10). The infection of these cells triggers the release of cytokines such as IL-8 that promote the activation and the

recruitment of neutrophils (11). Activated neutrophils then release metabolic products, i.e., reactive oxygen species (ROS) that promote lung damage and

inflammation (12).

Thus, it is possible that activating FcγRs contribute to prevent
re-infection during adulthood, by promoting IFN-γ production
by CD4+ T cells through DC-mediated antigen presentation.
However, it is necessary to determine whether activating FcγRs
on the DC surface also modulate the production of this cytokine
by neonatal CD4+ T-cells to prevent re-infection.

Recent studies have shown that another IgG Fc receptor,
particularly the neonatal Fc receptor for IgG (FcRn), which is
a non-classical Fc receptor that binds IgG at acidic pH (<6,5)
(Qiao et al., 2008), does not contribute to the activation of
CD4+ T cells when DCs are loaded with hRSV-ICs (Kruijsen
et al., 2013). Moreover, Bone Marrow-Derived DCs (BMDCs)
from FcγRn−/− mice exhibit unaltered capacity to induce
the production of IFN-γ by CD4+ T-cells (Kruijsen et al.,
2013). These results were validated in vivo, as FcγRn−/−

mice also displayed unaltered IFN-γ production by CD4+

T-cells after being intranasally challenged with hRSV-ICs
(Kruijsen et al., 2013).

Results from our group indicate that BMDCs display a
reduced capacity to induce IL-2 production by CD4+ T cells
after being loaded with hRSV-ICs that had the neutralizing
antibody Palivizumab (SynagisTM) (Gomez et al., 2016). In
contrast, when the assay was performed with BMDCs derived
from either, FcγRIII−/− or FcγRIIb−/− mice IL-2 secretion by
CD4+ T cells was restored. This results prompts that when
present, these receptors impair the capacity of DCs to induce
the secretion of IL-2 by CD4+ T cells. It should be noted that,
the production of this cytokine is required for the generation
of memory regulatory CD4+ T cells (Tregs), which perform
anti-inflammatory functions during hRSV infection and protect
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against re-infections (Durant et al., 2013). Thus, it is possible that
both, FcγRIII and FcγRIIb contribute to hRSV pathogenesis and
re-infection by impairing the capacity of DCs to promote the
production of IL-2 by CD4+ T cells.

Type II FcγRs Expressed on the Surface of
Human DCs Contribute to Immune
Responses Against hRSV
In humans, the presence of two types of FcγRs has been
recognized (Banegas Banegas et al., 1987). Type-I FcγRs are
members of the immunoglobulin superfamily and can be either
activating or inhibitory (Nimmerjahn and Ravetch, 2005, 2008).
In contrast, Type-II FcγRs are members of the C-type lectin
receptor family and comprise two different members: the IgE
receptor and the surface protein DC-SIGN (Banegas Banegas
et al., 1987; Miettinen, 2004), which is able to recognize the
Fc portion of IgG (Kaneko et al., 2006; Svajger et al., 2010),
but also the G protein expressed by hRSV (Johnson et al.,
2012). Of interest, studies evaluating the role of DC-SIGN in
hDCs during hRSV infection, showed that the blockade of
this receptor with specific mAbs led to an increase in the

expression of maturation markers, such as CD80 and CD86
following hRSV infection (Johnson et al., 2012). This suggests
that the interaction between hRSV surface proteins and DC-
SIGN can suppress some aspects of DC activation in humans,
thus contributing to an impaired protective immunity following
hRSV infection. However, further studies are required to study
the influence of this receptor during infection in vivo and hRSV-
induced pathology, as well as its consequences on DC mediated
T-cell activation.

Contribution of ADE to hRSV Re-infection
Episodes
In a recent study, it was shown that young infants (i.e., <3
months old) generate a highly neutralizing antibody response
that is biased from the post-fusion to the pre-fusion form of
hRSV F protein. However, as children become older (i.e., from
<3 months old to >6 months old), this response is re-directed
against post-fusion conformation antigens (Goodwin et al.,
2018). Thus, the antibodies generated display a weak neutralizing
capacity that fail to prevent hRSV infection. Therefore, it
is possible that the generation of a pool of low-neutralizing

FIGURE 2 | Proposed mechanism to explain enhancement of hRSV-induced disease following FI-hRSV vaccination. Formalin hRSV inactivation produces a

non-infectious virus with a high proportion of post-fusion conformation epitopes in the F protein (Post-F) (1). The inactivated virus is then phagocyted by B cells (2) that

can present hRSV antigens to T cells in the context of MHC molecules (3). The interaction between B and T cells allows the differentiation of B cells into plasma cells

that generate antibodies against the post-fusion conformation of the hRSV F protein (4). Such antibodies failed to neutralize hRSV infection but also may enhance the

infection of FcγR bearing cells such as DCs. When infection by hRSV occurs, the low neutralizing antibodies induced by the FI-hRSV vaccine can form

immune-complexes (ICs) with hRSV (5) that leads to the activation of Fc-gamma receptors expressed on the surface of DCs (6). Subsequently, an impaired

DC-mediated T cell activation (7) can induced CD4+ T cells with a Th2-biased phenotype that promotes lung damage (8). Furthermore, low secretion of IL-2 by CD4+

cells activated by hRSV-IC-loaded DCs can lead to a poor memory response that contributes to hRSV re-infection (9).
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antibodies during infancy can facilitate infection of immune
cells that express FcγRs, a phenomenon called ADE of infection
that has been observed for other viruses such as dengue virus
(Flipse et al., 2016), acute respiratory syndrome coronavirus (Yip
et al., 2014) and porcine reproductive and respiratory syndrome
virus infection (Gu et al., 2015). In this context, antibodies
might exert different effector functions through their Fc regions
and for hRSV, ADE during infection is an effect that has been
reported in in vitro studies (Gimenez et al., 1989; Krilov et al.,
1989; Osiowy et al., 1994). However, a role of ADE during
hRSV pathogenesis in vivo has been proposed, but remains to be
confirmed during re-infection.

To date, in vitro enhancement of infection of monocyte-
derived cell lines due by FcγR binding by mAbs and patient
sera has been reported (Gimenez et al., 1989; Krilov et al., 1989;
Osiowy et al., 1994), demonstrating that non-neutralizing mAbs
can enhance the infection of phagocytic cell lines expressing
these receptors (Gimenez et al., 1996). Further, when neutralizing
antibodies were applied at sub-neutralizing concentrations (i.e.,
diluted), they induced ADE in phagocytic cells bearing FcγRs.
This was also observed using human sera and purified human
immunoglobulin (IVIg) (van Erp et al., 2017). Together, these
results suggest that the interaction of hRSV-ICs generated with
low neutralizing antibodies can promote the infection of immune
cells in vitro, therefore contributing to hRSV pathogenesis under
physiological conditions.

Contribution of ICs Containing hRSV to
Enhanced Disease Elicited by Vaccination
With Formalin-Inactivated hRSV
The administration of a formalin-inactivated hRSV vaccine to
children nearly 50 years ago, which was aimed at preventing
severe respiratory disease elicited by hRSV infection was unable
to produce protective immunity against hRSV. Contrarily to what
was expected, its administration resulted in increased morbidity
and mortality in vaccinated infants when they were later infected
by the virus (Kim et al., 1969). Although the mechanisms
underlying the pathological effects of FI-RSV vaccine have
not been totally elucidated, this episode revealed complexities
associated to vaccine development, which has been hampered,
and raised hypothesis about the pathologic roles of hRSV-ICs
(Kim et al., 1969; Polack et al., 2002; Delgado et al., 2009).
Enhanced hRSV disease (ERD) after FI-RSV immunization of
BALB/c mice has been associated with alveolar deposition of ICs,
which was observed 7 dpi of hRSV by means of co-localization
of IgG with the complement component 3 (C3 protein). The role
of complement fixing ICs in ERD was supported by experiments
in C3−/− mice, which showed significantly less airway hyper-
responsiveness (AHR) in comparison to WT counterparts,
after FI-hRSV vaccination and hRSV challenge, arguing for a
role of complement in bronchoconstriction observed in ERD
(Polack et al., 2002). These experimental studies were supported
by histological analysis of lung sections from two infants
that suffered fatal ERD, in which IC-mediated complement
activation was observed through extensive peribronchiolar
complement component 4d (C4d) deposition in the airway

tissue (Polack et al., 2002). Furthermore, a sub-optimal, non-
protective antibody response in mice, characterized by high
levels of non-neutralizing anti-F and anti-G IgG antibodies, was
observed after immunization with FI-hRSV, but not infectious
hRSV (Polack et al., 2002). The lack of affinity maturation in
Abs elicited by FI-hRSV was associated with enhanced lung
histopathology and AHR, whereas the supplementation of Toll-
like receptor (TLR) agonists, performed during immunization
promoted proper affinity maturation that prevented ERD after
hRSV challenge, showing that a deficient TLR stimulation in B
cells is likely responsible for the lack of Ab affinity maturation
after FI-hRSV vaccination (Delgado et al., 2009). Furthermore,
cotton rats vaccinated with FI-RSV elicited high levels of hRSV-
specific antibodies, which displayed low neutralizing titers in
Vero cells (Piedra et al., 1993). These antibodies were also
able to cause ADE in in vitro assays. These studies suggest
that sub-optimal antibody production and the generation of
ICs play a role in ERD development (Figure 2). Furthermore,
recent studies suggest that CD4+ subsets and a Th2-biased
immune response are key for AHR and ERD (Knudson et al.,
2015). In this context, TAM (Tyro3, Axl, and Mertk) receptors,
which are expressed in various cells and tissues, and their
ligand Growth arrest-specific 6 (Gas6) could be involved in
the production of a Th2-biased immune responses that reduce
the production of type IgG2a subclass antibodies (Shibata and
Ato, 2017). These antibodies could have an effective neutralizing
capacity against hRSV and therefore prevent hRSV induced
disease, but their production is lowered as a consequence of
FI-hRSV immunization followed by hRSV infection. Therefore,
it is possible that the TAM/Gas6 signaling axis can contribute
to the generation of low neutralizing antibodies that failed
to neutralize hRSV infection and instead contributes to the
pathology caused by hRSV infection through the engagement
of FcγRs.

CONCLUDING REMARKS

The hRSV is a leading cause of respiratory illness in infants and a
major health burden worldwide. Re-infections with this virus are
common and can contribute to additional clinical manifestations,
such as asthma and allergies. For this reason, several studies have
focused on understanding the mechanisms that can contribute
to hRSV induced pathology, but also to elucidate the factors
that contribute to re-infection episodes throughout life. In this
context, some studies suggested that low number of memory
hRSV-specific CD8+ T cells could be associated with re-infection
episodes and that the levels of such cells could be regulated by
virus-specific antibodies, by modulating the function of antigen
presenting cells, such as DCs. Furthermore, recent studies suggest
that the generation of regulatory memory T cells could be
impaired by the interaction of hRSV-ICs with DCs, pointing out
these phenomena as an interesting research topic that deserves
analysis. In this review, and based on several studies, we discussed
the role of FcγRs during hRSV infection and their immune-
modulatory properties that can account for recurrent hRSV
infection episodes and the enhancement of the disease caused
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by FI-hRSV vaccination. However, further research is needed
to understand how hRSV induces the production of antibodies
that fail to prevent re-infections. Knowledge of such mechanisms
would certainly be appreciated for vaccine and therapy
development against hRSV, which represents a major global
health problem.
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Exaggerated host innate immune responses have been implicated in severe influenza

pneumonia. We have previously demonstrated that excessive neutrophils recruited

during influenza infection drive pulmonary pathology through induction of neutrophil

extracellular traps (NETs) and release of extracellular histones. Chemokine receptors

(CRs) are essential in the recruitment and activation of leukocytes. Although neutrophils

have been implicated in influenza pathogenesis, little is known about their phenotypic

changes, including expression of CRs occurring in the infected -lung microenvironment.

Here, we examined CC and CXC CRs detection in circulating as well as lung-recruited

neutrophils during influenza infection in mice using flow cytometry analyses. Our studies

revealed that lung-recruited neutrophils displayed induction of CRs, including CCR1,

CCR2, CCR3, CCR5, CXCR1, CXCR3, and CXCR4, all of which were marginally

induced in circulating neutrophils. CXCR2 was the most predominant CR observed

in both circulating and lung-infiltrated neutrophils after infection. The stimulation of

these induced CRs modulated neutrophil phagocytic activity, ligand-specific neutrophil

migration, bacterial killing, and NETs induction ex vivo. These findings indicate that

neutrophils induce a novel CR repertoire in the infectious lung microenvironment, which

alters their functionality during influenza pneumonia.

Keywords: influenza, neutrophil, acute lung injury, chemokine receptor, mouse model

INTRODUCTION

Frequent outbreaks of influenza virus infections are causing significant morbidity and mortality in
humans, birds, and other animal species (Xu et al., 2006; Traylor et al., 2013; Short et al., 2014;Wang
et al., 2016). Neutrophils and macrophages constitute the majority of infiltrated cells in the lungs
during influenza, and play essential roles in the clearance of the virus, before the onset of virus-
specific immunity (Perrone et al., 2008; Tavares et al., 2017). However, uncontrolled recruitment
and activation of these innate immune cells contribute to acute lung injury (ALI), significantly
impacting the disease outcome (Crowe et al., 2009; Mauad et al., 2010; Liu et al., 2015). Our
earlier studies have demonstrated that in severe influenza, the massive influx of neutrophils into
the infected lungs causes collateral damage to the lungs via generation of NETs and the release of
extracellular histones (Narasaraju et al., 2011; Anandi et al., 2013; Ashar et al., 2018).
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The recruitment, extravasation, and activation of neutrophils
are largely driven by chemokine ligands via binding to
their cell-surface receptors called chemokine receptors (CRs)
(Moser et al., 2004). CRs belong to a family of seven-
transmembrane domain G protein-coupled receptors, divided
into four structural groups (C, CC, CXC, and CX3C) based on
the spacing of two conserved cysteine residues. Inflammatory
chemokines produced in response to influenza by lung epithelial
cells and/or macrophages regulate leukocyte recruitment and
activation in infected lungs (Rossi, 2000; Moser and Loetscher,
2001). Neutrophils are generally thought to be limited in
expression of CRs, typically consisting predominantly of the
CXC group CRs (such as CXCR1, CXCR2); expression of
CC chemokine receptors are absent under normal conditions
(Sallusto et al., 2000). However, in inflammatory disease
conditions such as rheumatoid arthritis, sepsis, and cystic
fibrosis, neutrophils have been shown to expand their CR
expression repertoire, especially after translocating into various
tissues (Speyer et al., 2004; Hartl et al., 2008; Chou et al., 2010;
Lebre et al., 2011). Induction of these CC CRs significantly
alters neutrophil function, including phagocytosis, respiratory
burst, and chemotaxis (Hartl et al., 2008; Chou et al., 2010).
Neutrophils isolated from influenza-infected patients display
impaired expression of phagocytic receptors such as CD64,
CD32, and CD16, indicating that influenza infection modulates
neutrophil functionality, which may also contribute to increased
susceptibility to bacterial superinfections (Salentin, 2003).
Influenza infection also modulates expression and chemotactic
responsiveness of CCR1 and CCR2 in monocytes (Pauksens
et al., 2008). Following excessive neutrophil influx, their toxic
products such as NETs and granule enzymes are associated with
pulmonary pathology in influenza pneumonia, although little is
known about the phenotypic and functional characteristics of
these neutrophils (Narasaraju et al., 2011; Anandi et al., 2013;
Rojas-Quintero et al., 2018).

Here, we investigated whether hyper-inflammatory cytokine
responses seen during influenza pneumonia alters the phenotypic
signature of CR induction in lung-recruited neutrophils. Using
Flow cytometry analysis, we have evaluated cell surface receptor
expression of CRs (including CC and CXC types) in circulating
as well as lung-recruited neutrophils during the course of
infection. We evaluated the effects of induced CRs on neutrophil
functionality, including phagocytosis, neutrophil migration,
bacterial killing, and NETosis. Our results demonstrated
induction of various CC and CXC-type CRs in neutrophils
after their recruitment into the infected lungs, but not while
in circulation. Further, activation of induced CRs with their
specific chemokine ligands modulates neutrophil functional
activities including phagocytosis, neutrophil migration, and
NETosis. These studies suggest that induction of various CRs
in lung-recruited neutrophils shape their fate and functional
responsiveness in influenza infected-lungs.

MATERIALS AND METHODS

Virus, Animals, and Ethics Approval
Influenza A/Puerto Rico/8/34, H1N1 (PR/8) virus was obtained
from the American Type Culture Collection (ATCC, VA).

Viral titers were determined by tissue culture infectivity dose
(TCID50) assay via infection of Madin-Darby canine kidney
(MDCK) cells (Ng et al., 2012). Female BALB/c mice (6–8
weeks old) were used in this study. The animals were housed
in microisolator cages in a BSL-2 animal facility. All animal
experiments were approved by the Institutional Animal Care
and Use Committee (IACUC) of Oklahoma State University
(protocol number VM-11-43) and were performed in strict
accordance with their recommendations.

Animal Infections
For influenza infections, mice were anesthetized with a mixture
of xylazine (0.1 mg/kg) and ketamine (7.5 mg/kg). Mice were
infected intranasally (IN) with a sub-lethal dose (100 TCID50)
of PR/8 (H1N1) influenza virus in a 50 µL volume of sterile
phosphate-buffered saline. Control mice received equal volumes
of PBS.

Collection of Blood, Bronchoalveolar
Lavage (BAL) Fluid, and Tissues
For BAL fluid collection, the lungs were lavaged twice using
intratracheal administration of 0.5mL of sterile PBS (Ashar et al.,
2018). The recovery of BAL fluid was over 85% for all animals.
The BAL fluid samples were centrifuged at 200 x g for 10min,
and BAL cells were resuspended in sterile PBS containing 2% fetal
bovine serum for flow cytometry analysis. For differential cell
counts, BAL cells were processed onto microscopic slides using a
CytoFuge 2 cytocentrifuge (StatSpin, Westwood, MA), subjected
to modified Giemsa staining, and cells (more than 200 per
animal) were counted at a magnification of 1000x. Whole blood
was obtained via terminal procedure of intra-cardiac collection.
BAL and blood were collected from control and infected mice at
3, 4, and 5 days post-infection (dpi) for flow cytometry analysis
(we found that neutrophils influx peaked from 3 dpi). To exclude
that inflammatory responses were due to secondary bacterial
infection, 20 µL of each BALF sample was plated onto blood agar
and incubated at 37◦C for 3 days. In another set of experiments,
control and infected animal lungs were fixed with 4% formalin,
and subjected to histopathology analysis after hematoxylin and
eosin (H&E) staining to evaluate inflammatory and acute lung
injury. Histopathologic severity was scored in a blinded fashion
on a scale of 1–4 (four being the most severe) based on
the following criteria by a board-certified anatomic veterinary
pathologist: cellular inflammation, necrotizing bronchiolitis,
interstitial pneumonia, alveolitis, hemorrhage, and edema. Total
histopathologic scores were evaluated as a sum of all individual
scores (Narasaraju et al., 2010).

Flow Cytometry Analyses
The following mouse antibodies were purchased from R&D
Systems and used for flow cytometry for detection of chemokine
receptors in neutrophils: CCR1 FITC-conjugated antibody
(Clone 643854), CCR2 PE-conjugated antibody (Clone
475301), CCR3 PE-conjugated antibody (Clone 83101),
CCR5 FITC-conjugated antibody (Clone CTC5), CXCR1/IL-8
RA PE-conjugated antibody (Clone 1122A), CXCR2/IL-8 RB
PE-conjugated antibody Clone 242216), CXCR3 PE-conjugated
antibody (Clone 220803), CXCR4 fluorescein-conjugated
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antibody (Clone 247506), and Ly6G-1A8 PerCP-conjugated
antibody (Clone 1A8) were purchased from BioLegend, CA
(Hartl et al., 2008).

Phenotypic characterization of neutrophils during the course
of infection was performed using whole blood from control
mice; blood and BAL cells from influenza-infected mice at 3,
4, and 5 dpi. Control BAL samples were not used as they
contained very low numbers of neutrophils to perform flow
cytometry. Blood and BAL samples were incubated with RBC
lysis buffer (Miltenyi Biotec Inc, CA), followed by incubation
with chemokine receptor specific antibodies for 30min at
room temperature. Unstained cells and single-fluorochrome
staining controls were used to exclude background and cross-
reactivity among different fluorochromes. All samples were then
centrifuged and washed thrice with PBS (containing 2% fetal
bovine serum) before performing flow cytometry. The latter was
performed using BD FACSCalibur flow cytometer, and the data
were analyzed using CellPro software. Neutrophils were gated
as Ly6G-1A8+SSCmed-hi. CD11b analysis was performed by
comparing mean fluorescence intensity (MFI) between samples.
The Ly6G-1A8 staining on neutrophils was validated by sorting
Ly6G-1A8 positive cells on FACSAria flow cytometer, which
displayed 99% purity. All flow cytometry experiments were
repeated three times, and in each experiment, cells were prepared
from a pool of three mice to obtain sufficient numbers of cells.

Neutrophil Isolation
For neutrophil functional analysis, neutrophils were isolated
from control blood, infected blood, and BAL samples using
a MACS neutrophil isolation kit (Miltenyi Biotec Inc, CA)
with Ly6G-1A8 antibody through positive selection (Ashar
et al., 2018). Isolated neutrophils were enumerated and used
for functional studies. Blood samples were initially incubated
with 1x RBC lysis buffer to remove RBCs, prior to isolation
of neutrophils.

Phagocytosis Assay
For phagocytosis assays, BAL neutrophils were isolated, and
105 cells were stimulated with or without the appropriate
CCR1, CCR3, CCR5, CXCR2, CXCR3, and CXCR4 blockers and
ligands. One microgram of BX 471 (CCR1 Antagonist; Cayman
Chemicals, MI), SB328437 (CCR3 Antagonist; Sigma, MN),
anti-CCR5 (Novus, CO), anti-CXCR2 (Cell Applications, CA),
CXCR3 (Bio X Cell, NH) blocking antibodies, and AMD3100
(CXCR4 Antagonist (R&D, MN) were added and incubated
for 30min at 37◦C. The cells were then stimulated with 10
ng of the appropriate ligands CCL3 (CCR1), CCL11 (CCR3),
CCL4 (CCR5), IL-8 (CXCR2), CXCL11 (CXCR3), and CXCL12
(CXCR4). pHrodoTM Red E. coli BioParticles (Thermo Fisher,
MA) were added to each sample (1 mg/mL), and cells were
incubated at 37◦C for 90min. Cells were then stained with Ly6G-
1A8 antibody for 30min at room temperature, washed twice to
remove excess bacteria, followed by flow cytometry (Hartl et al.,
2008). Results were analyzed by determining MFI. Unstained,
single-stained neutrophils and bacteria alone served as controls.

Neutrophil Chemotaxis Assay
Neutrophil chemotaxis assay was performed as described by
Szczur et al. (2006). In brief, BAL neutrophils isolated at 4 dpi
were purified, resuspended in DMEM containing 1% fetal bovine
serum and added to (1 × 105/well) the upper compartment of
a Transwell filter system (8.0µm pore size, 12mm diameter)
in a 24-well culture plate. The chemokine specific ligands
including CCL3, CCL4 (R&D), IL-8, and CXCL11 (R&D) (at a
concentration of 100 ng/ml) were added to the lower chamber.
The plate was incubated for 90min at 37◦C. The culture medium
from the lower chamber was centrifuged, and the migrated cells
were counted with hemocytometer (Szczur et al., 2006).

In vitro NETs Release
To test the effect of various chemokine receptors on NETosis,
neutrophils isolated from influenza-infected lungs at 4 dpi were
resuspended in DMEM containing 1% fetal bovine serum and
stimulated (2 × 104) with chemokine specific ligands including
CCL4, IL-8, and CXCL11 as described above. Phorbol 12-
myristate 13-acetate (PMA) at 20 nM concentration was used
as a positive control for induction of NETs (Ashar et al., 2018).
Released NETs were labeled with SYTOX green staining and
visualized under fluorescence microscopy at 400x magnification.
Quantification of NETs released was performed as described
earlier (Ashar et al., 2018). We evaluated at least 5–10 fields
on each slide to quantify the total numbers of positive cells
exhibiting NETs release.

Bactericidal Activity
Neutrophils (105) isolated from influenza-infected mice at 4 dpi
were incubated with Streptococcus pneumoniae at 1:10 ratio for
90min in the presence or absence of CCL3, CCL4, IL-8, CXCL11
(100 ng/mL). Bacterial killing was measured as a percentage
of control bacteria (bacteria incubated without neutrophils) as
described previously (Narasaraju et al., 2011). Sample aliquots
were plated on chocolate agar to determine the numbers of

colony-forming units (CFU).

Statistical Analysis
The data are expressed as the means ± SEM. Statistical analyses
were performed using Student’s unpaired t-test, paired t-test or
analysis of variance (ANOVA) using GraphPad Prism 7 software.
A value of p < 0.05 was considered as statistically significant.

RESULTS

Lung-Infiltrated Neutrophils Induce Novel
Chemokine Receptors During
Influenza-Infection
We have evaluated various CC and CXC chemokine receptors
in circulating neutrophils as well as lung-recruited neutrophils
in influenza-infected mice. Neutrophils were gated based on
their FSC/SSC characteristics, followed by detection of Ly6G-
1A8 on 10,000 events. Neutrophils, SSCmed-hi/Ly6G-1A8+ were
separated by a cell sorter, resulting in 99% purity based on
modified Giemsa staining (Figure 1A). We then evaluated

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 April 2019 | Volume 9 | Article 10830

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Rudd et al. Neutrophil Phenotypic Changes During Influenza

FIGURE 1 | Neutrophil gating and differential counts during influenza infection. BALB/C mice were infected with a sub-lethal dose (100 TCID50), intranasally with

influenza A/Puerto Rico/8/34 H1N1 virus. Mock-infected mice received equal volumes of PBS. (A) Identification of neutrophils and gating. Neutrophils were identified

based on their light scatter characteristics (FSC/SSC). The granulocyte region was further differentiated by means of the neutrophil specific marker, Ly6G-1A8.

FSCmedSSCmed-hiLy6G-1A8+ cells were further sorted using a FACSAria flow cytometer, which showed that over 99% were neutrophils. Morphologically, neutrophils

were identified by modified Giemsa staining. The representing images are showing neutrophils at 100x and 1000x. (B) Influenza-infected mice have significantly

elevated BAL leukocytes between 3 and 5 dpi. (C) Differential cell counts were performed in lung-recruited cells, and revealed neutrophils as the major cell population.

Data were expressed as means ± SEM. n = 3–5 mice per group; **p < 0.01; ***p < 0.001 vs. control.

induction of a broad range of CRs, including CC (CCR1-
3, CCR5) and CXC (CXCR1-4), by flow cytometry analysis
using control blood, infected blood, and BAL. Control BAL
cells were not included in this study as they contained too
few neutrophils to perform flow cytometry. We characterized
chemokine receptor profiles in neutrophils between 3 and 5
dpi, which displayed persistent increase of these cells into the
infected-lungs (Figures 1B,C), with vascular injury evident by
protein leakage and total histopathologic changes in the lungs
(Figures 6A–C).

To evaluate induction of various CRs, neutrophils from
blood and BAL samples were labeled with CC (CCR1-CCR3,
CCR5) and CXC (CXCR1-4) specific antibodies. Neutrophils
were identified by Ly6G-1A8+ staining. Our studies revealed
that majority of the CRs do not show significant increase
while in circulation in infected-mice. However, the CRs induced
in infected-lung microenvironment. Lung-recruited neutrophils
induced CCR1, CCR2, CCR3, CCR5, CXCR1, CXCR3, CXCR4,
which were absent or marginally induced in peripheral blood
neutrophils from influenza-infected mice. Neutrophils from
infected-blood showed minimal to absent of CC CRs similar to
healthy mice samples. The expression pattern of majority of CC
and CXC CRs was consistently elevated from 3 dpi through 5
dpi in lung-recruited neutrophils, but not while in circulation
(Figures 2–4).

Among all CRs, CXCR2 was the most abundant CR
detected in control blood, infected blood, and BAL neutrophils

(Figures 2E–H). Circulating neutrophils from healthy control
mice were 85% positive for CXCR2, which increased to 97–
100% in infected blood samples (Figure 2F). Upon pulmonary
infiltration in response to infection, these neutrophils exhibited
decline in CXCR2-positive staining, but remained highly induced
at over 60% positivity compared to other induced CRs in
infected-lungs (Figures 4A–C). There was no difference in
surface expression levels of CXCR1 in circulating neutrophils,
but increased from 3 to 5 dpi with about 30–40% elevation in
lung-recruited neutrophils at 4 and 5 dpi (Figures 2A–D). The
detection of other CXC CRs (including CXCR3 and CXCR4)
also displayed a similar trend in their surface expression during
the course of infection between 3 and 5 dpi, while there was no
difference in circulating neutrophils between control and infected
groups (Figures 2I–P, 4A–C).

The surface expression of CC CRs was minimal to absent
in circulating neutrophils in both control and influenza-
infected mice. However, CC CRs including CCR1, CCR2,
CCR3, and CCR5 were significantly increased in lung-recruited
neutrophils (Figures 3A–P). The induction of these chemokine
were altered between control and infected blood groups
(Figures 3B,F,J,N). These CC CRs were present in about 10–
15% of BAL cells at 3 dpi, and increased to 20–30% at 4 dpi
and to 30–40% at 5 dpi (Figures 3D,H,L,P, 4B,C), suggesting
that the inflammatory cytokine environment significantly
modulates neutrophil chemokine receptor induction during
influenza pneumonia.
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FIGURE 2 | Surface CXC-chemokine receptor detection profiles in blood and lung-recruited neutrophils during influenza infection. Blood from control and

influenza-infected mice at 3–5 dpi were assessed by flow cytometry. Neutrophils were gated as Ly6G-1A8+ cells for subsequent analysis. Induction of receptors was

represented as percentage of blood neutrophils showing positive staining for chemokine receptors CXCR1 (A,B), CXCR2 (E,F), CXCR3 (I,J), and CXCR4 (M,N).

Lung-recruited neutrophils were analyzed at 3,4, and 5 dpi for induction of CXCR1 (C,D), CXCR2 (G,H), CXCR3 (K,L), and CXCR4 (O,P). Dot plots represent

detection of CXCR1, CXCR2, CXCR3, and CXCR4 in control blood, infected blood (4 dpi) and infected BAL (3 and 4 dpi), and the subsequent graph represents the

overall trend in percentage induction of receptor on neutrophils in all samples from 3 through 5 dpi. Data are expressed as mean ± SEM. n = 3 replicates and each

replicate prepared from a pool of three mice for all receptor expression analysis. #p < 0.05; vs. Con blood. *p < 0.05; **p < 0.01; ***p < 0.001 vs. 3 dpi BAL. C-Con,

I-Infected.

Effect of Induced Chemokine Receptors on
Phagocytic Activity in Lung-Recruited
Neutrophils Following Influenza Infection
Earlier studies have shown that impaired phagocytic activity
during influenza (Ishikawa et al., 2016), and lung-recruited
neutrophils fail to kill bacteria in vivo (Hashimoto et al.,
2007). We found that overall phagocytic activity declined
in lung-recruited neutrophils compared to circulating
neutrophils (Figure 5A). Next, to test if the induced CRs
in lung-recruited neutrophils contribute to phagocytic
function in infected-lungs, we stimulated upregulated CRs
in lung-recruited neutrophils with specific chemokine

ligands in the presence or absence of CCR1, CCR3, CCR5,
CXCR2, CXCR3, and CXCR4 specific blocking antibodies.

Our results demonstrated that antibody blocking of CCR5
and CXCR2 significantly inhibited phagocytic activity.

Interestingly, blockade with CCR1 antibody revealed enhanced
phagocytic activity (Figure 5B). No significant differences
in phagocytic activity was observed when CCR3, CXCR3,
and CXCR4 were blocked. Based on these findings, we
used ligand-specific stimulation for CCR1, CCR5, CXCR2,
and CXCR3 to test their effects on neutrophil functional
responsiveness including chemotaxis, bacterial killing,
and NETosis.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5 April 2019 | Volume 9 | Article 10832

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Rudd et al. Neutrophil Phenotypic Changes During Influenza

FIGURE 3 | Surface CC-chemokine receptor detection in blood and lung-recruited neutrophils during influenza infection. Blood from control and influenza-infected

mice at 3–5 dpi were assessed by flow cytometry. Neutrophils were gated as Ly6G-1A8+ cells for subsequent analysis. Detection of receptors was represented as

percentage of neutrophils showing positive staining for chemokine receptors CCR1, CCR2, CCR3, and CCR5. Detection of receptors was represented as percentage

of blood neutrophils showing positive staining for chemokine receptors CCR1 (A,B), CCR2 (E,F), CCR3 (I,J), and CCR5 (M,N). Lung recruited neutrophils were

analyzed at 3,4, and 5 dpi for detection of CCR1 (C,D), CCR2 (G,H), CCR3 (K,L), and CCR5 (O,P) Dot blots represent expression of CCR1, CCR2, CXR3, and

CCR5 in control blood, infected blood (4 dpi) and infected BAL (3 and 4 dpi). Data are expressed as mean ± SEM. n = 3 replicates and each replicate prepared from

a pool of three mice for all receptor expression analysis. #p < 0.05 vs. con blood. *p < 0.05; **p < 0.01; ***p < 0.001 vs. 3 dpi BAL.

Effect of Induced CRs on Neutrophil
Chemotaxis
Neutrophils isolated from influenza-infected mouse lungs were
seeded in the upper chamber of the 8.0-µm membrane insert
in a Transwell system. CCR1, CCR5, CXCR2, and CXCR3
specific ligands including CCL3, CCL4, IL-8, and CXCL11
(100 ng/mL) were added into the lower chamber and incubated
for 90min. Incubation with IL-8 culminated in a 4-fold increase
in neutrophil migration. The addition of ligands including CCL4,
and CCL3, but not CXCL11 demonstrated∼2-fold enhancement
in neutrophil migration (Figure 5C).

Induced CRs Modulate Release of NETs in
Lung-Recruited Neutrophils in vitro
Neutrophils isolated from influenza-infected mouse lungs
were stimulated with CCR1, CCR5, CXCR2, and CXCR3
specific ligands CCL3, CCL4, IL-8, and CXCL11 (100 ng/mL),
respectively, and incubated for 4 h. NETs were stained with
SYTOX green (Ashar et al., 2018). Stimulation of neutrophils
with IL-8 (CXCR2 ligand) generated pronounced release of
NETs. Significantly elevated NETosis was also observed when
neutrophils were stimulated with CCL3 and CCL4. However,
CXCL11 did not lead to prominent NETosis (Figure 5D).
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FIGURE 4 | Overall induction of chemokine receptors in neutrophils during the course of infection. The surface detection of CC and CXC CRs were analyzed in a

time-dependent fashion and compared with control blood neutrophils. Control blood, infected blood and infected BAL from mice at 3 dpi (A); 4 dpi (B), and 5 dpi (C).

Samples are represented as percentage expression on neutrophils compared between groups. Data are expressed as mean ± SEM. At each days post infection, was

compared with infected (INF) blood samples to visualize the overall surface detection of CRs while in circulation and after recruiting into the infected-lungs. The control

BAL samples were not included as they contained very low number of neutrophils to perform flow cytometry. Replicates (n = 3); each replicate was prepared from a

pool of three mice for all receptor expression analysis. *p < 0.05; **p < 0.01; ***p < 0.001; vs. Infected blood at each day post infection.

Stimulation of Induced CRs Does Not
Enhance Bacterial Killing
Neutrophils isolated from influenza-infected mouse lungs were
stimulated with CCR1, CCR5, CXCR2, and CXCR3 specific
ligands including CCL3, CCL4, IL-8, and CXCL11 (100 ng/mL)
for 20min, followed by incubation with a 1:10 ratio of
Streptococcus pneumoniae (serotype 3) for 90min. No difference
in bacterial numbers was observed in cells stimulated with any of
these chemokine ligands compared to the bacteria-alone group,
thus indicating that activation of these CRs do not interfere with
bactericidal activity of neutrophils (data not shown).

Influenza Infection of Lungs Leads to
Excessive Neutrophil Influx and
Widespread Pulmonary Damage
We performed histopathologic analysis to test for a correlation
between neutrophilic inflammation and pathologic lesions

between 3 and 5 dpi. Neutrophil-influx was significant
and comparable between 3 and 5 dpi, while the changes
in neutrophil phenotypic support increase in pathologic
lesions with augmented alveolar injury, vascular damage and
bronchiolitis (Figures 6A,B). Our studies indicate a significant
increase in lung pathology. BAL fluid cell counts performed on
days 3–5 dpi also displayed an increase in total cell numbers. In
support of this, we found significant vascular leakage from 3 to
5 dpi (Figure 6C). Further, we did not find any bacterial growth
from the BAL samples from influenza-infected mice (data not
shown), indicating that neutrophil inflammation or induction of
CR are not due to bacterial superinfection.

DISCUSSION

Newly emerging and re-emerging influenza virus infections
remain a continuous threat worldwide. Influenza infections
trigger hyper-inflammatory cytokine responses together with
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FIGURE 5 | Effect of CR induction on neutrophil phagocytic activity. To test overall phagocytic activity between circulating and lung-recruited neutrophils, we isolated

neutrophils from infected blood and BAL, and tested their phagocytic activity. (A) Neutrophils isolated from BAL exhibited diminished phagocytic capacity compared

with those in circulation. (B) Phagocytic activity using CCR1, CCR3, CCR5, CXCR2, CXCR3, and CXCR4 blockers and ligands. BX 471 (CCR1 antagonist), SB328437

(CCR3 antagonist), anti-CCR5, anti-CXCR2, CXCR3 blocking antibodies, and AMD3100 (CXCR4 antagonist) were added and incubated for 30min at 37◦C. The cells

were then stimulated with the appropriate ligands CCL3 (CCR1), CCL11 (CCR3), CCL4 (CCR5), IL-8 (CXCR2), CXCL11 (CXCR3), and CXCL12 (CXCR4). Blocking

CCR5 and CXCR2 reduced phagocytic capacity of pulmonary infiltrating neutrophils in influenza viral infection, while no change was observed with CXCR3 blockade.

In contrast, CCR1 inhibition resulted in enhanced phagocytic activity. (C) Neutrophil chemotaxis assay was performed by stimulating neutrophils isolated from infected

BAL using CCL3 (CCR1), CCL4 (CCR5), IL-8 (CXCR2), CXCL11 (CXCR3). Data are represented as percentage migration. (D) NETosis was evaluated by stimulating

neutrophils isolated from infected BAL using CCL3 (CCR1), CCL4 (CCR5), IL-8 (CXCR2), CXCL11 (CXCR3). Data are represented as percentage of NETs formation.

Mean ± SEM. n = 3 independent experiments, and cells were collected by pooling two mice in each experiment. *p < 0.05; **p < 0.01; ***p < 0.001.

rapid, massive cellular influx, predominantly by neutrophils,
and macrophages (de Jong et al., 2006; Perrone et al., 2008;
Taubenberger and Morens, 2008). We have previously shown
that overly exuberant neutrophils produceNETs and extracellular
histones which disrupt the alveolar-capillary barrier, resulting
in alveolar injury and vascular leakage (Narasaraju et al.,
2011; Ashar et al., 2018). Neutrophils are short-lived and
terminally differentiated innate immune cells with primary roles
in phagocytic clearance of influenza-infected cells. Although
exaggerated neutrophil recruitment and their activation are
linked to acute lung pathology during influenza, little is known
about their phenotypic or functional characteristics (Kobasa
et al., 2004; Tumpey et al., 2005; Taubenberger and Morens,
2008; Yokoyama et al., 2010). Here, we provide evidence that
lung-recruited neutrophils expand their CR repertoire during
influenza infection of lungs. Lung-sequestered neutrophils
displayed up-regulation of several CRs (such as CCR1, CCR2,

CCR3, CCR5, CXCR1, CXCR3, and CXCR4) that are minimally
expressed or absent while in circulation. The surface induction of
these CRs increased in a time-dependent manner in pulmonary-
recruited neutrophils. Furthermore, induced CRs in lung-
recruited neutrophils potentially modulate neutrophil functions,
including chemotaxis, phagocytosis, and NETosis. These results
indicate that the infected-lung microenvironment significantly
affects neutrophil phenotypic signature and their functional
responsiveness, and these changes could considerably impact the
disease pathogenesis in influenza pneumonia.

Neutrophils conventionally express CXC chemokine
receptors, while CC chemokine receptors are generally absent
and unresponsive to CC chemokine ligand stimulations.
However, studies have shown that neutrophils isolated from
lungs or synovial cavities from patients with chronic obstructive
pulmonary disease (COPD), rheumatoid arthritis or sepsis
(Speyer et al., 2004; Hartl et al., 2008; Chou et al., 2010; Lebre
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FIGURE 6 | Influenza infection increases inflammation and severe pulmonary pathology. (A) Paraffin-embedded lung tissues from 3 to 5 days following challenge with

infection or mock infection were stained with hematoxylin and eosin. Infected lungs displayed the highest severity score with notable pulmonary edema, bronchiolitis,

alveolitis, hemorrhage, and interstitial disease. (B) Total histopathologic scores of infected samples were compared with controls. Data were expressed as means ±

SEM. n = 4 mice per group. (C) Vascular leakage was determined by measuring total proteins present in the BAL fluid samples collected from control and

influenza-infected mice at 3, 4, and 5 dpi. AV, alveoli; BR, bronchioles. *p < 0.05; **p < 0.01; ***p < 0.001.

et al., 2011) display induced expression of CC CRs, and that pro-
inflammatory cytokines including IFN-γ, TNF-α, and GM-CSF
modulate expression of these CRs. Further, the induced CRs alter
neutrophil functions, including respiratory burst, degranulation,
and chemotaxis thus contributing to inflammation and injury
(Hartl et al., 2008). Hyper cytokine responses, also termed as
the “cytokine storm” are associated with pulmonary pathology
in fatal influenza pneumonia (de Jong et al., 2006; Teijaro
et al., 2014; Guo and Thomas, 2017). Influenza primarily

infects lung epithelial cells and macrophages, which trigger
pro-inflammatory cytokines induction and activation of various
toll-like receptors (TLRs) and retinoic acid-inducible receptors
(RIG-1)-mediated signaling, leading to persistent elevation
in cytokines/chemokines in infected-lungs culminating in
immunopathology (Wang et al., 2008; Shirey et al., 2013; Iwasaki
and Pillai, 2014; Pulendran and Maddur, 2015; Kandasamy et al.,
2016). We found early induction of chemokine ligands such
as CCL4, CCL7, CCL2, CCLL, CXCL1, CXCL11, CXCL13 in
infected mouse lungs (Ivan et al., 2012). Indeed early induction

of pro-inflammatory cytokine response is detrimental in severe
influenza pathogenesis (Perrone et al., 2008). Despite evidence
demonstrating extensive cytokine induction in severe influenza
pneumonia, little is known whether these secreted cytokines
regulate induction of CRs in lung-infiltrated neutrophils. It
is noteworthy that although neutrophils numbers peaked by
3 dpi, the induction of new CRs appeared up-regulated only
from 4 dpi, indicating that induction of these CRs occurs
under “cytokine/chemokine stress,” which could be critical in

shaping the phenotype and functionality of neutrophils in the
influenza-infected lung microenvironment.

Among CXC CRs, CXCR2 is the most abundantly
expressed in circulating and lung-recruited neutrophils.
The surface expression of CXCR2 is regulated by at least two
mechanisms, including the receptor internalization/recycling or
metalloprotease activity by a disintegrin and metalloproteinase
domain-containing protein 17 (ADAM-17) (Mishra et al.,
2014). Interestingly, percent neutrophils expressing CXCR2 was
decreased in lung-recruited neutrophils at 3 dpi, compared to
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circulating neutrophils. However, CXCR2 surface expression
increased significantly between 3 and 5 dpi. Similar to these
findings, reduction in CXCR2-positive neutrophils is observed
in patients with chronic inflammatory conditions (Hartl
et al., 2008). The changes in surface expression of CXCR2
in blood and lung-recruited neutrophils may be attributed
to receptor internalization and recycling upon increase in
ligand-specific interaction in acute influenza infection (Mishra
et al., 2014). Persistent increase in neutrophil influx and CXCR2
surface expression indicate that targeting CXCR2 could alleviate
excessive neutrophils influx and lung pathology. Indeed, blocking
CXCR2 has shown to reduce acute lung injury and inflammation
in influenza-infected mice (Tavares et al., 2017) and mice lacking
CXCR2 gene have shown decreased inflammation, without
affecting viral clearance indicating pathogenic role of neutrophils
in severe influenza (Wareing et al., 2007).

The functional significance of the induced CRs was
investigated through chemokine-specific ligand activation and/or
antibody blocking for neutrophil phagocytosis, chemotaxis,
bacterial killing, and NETosis. Our studies revealed highly
variable responses to different chemokines that are upregulated
during infection. Blocking CCR5 and CXCR2 resulted in
reduced phagocytic activity compared to the ligand-mediated
stimulation, whereas CCR1 blockade augmented phagocytic
activity. Blocking CCR3, CXCR1, CXCR3, and CXCR4 did
not modify phagocytic activity. These findings are in partial
agreement with previous findings of LPS-injury models, chronic
inflammatory diseases in humans, which show that induced CC
CRs (such as CCR1, CCR2, CCR3, CCR5) enhance phagocytic
activity, and respiratory burst functions (Hartl et al., 2008; Wang
et al., 2011). In contrast to the earlier reports, blocking CCR1
enhanced phagocytic activity. However, stimulation of CCR1
enhanced NETosis and chemotaxis, thus indicating that induced
CRs exhibit differential functional responsiveness during
influenza. Based on the phagocytic functions of different CRs, we
tested the effects of induced CCR1, CCR5, CXCR2, and CXCR3
on neutrophil functions including chemotaxis, bacterial killing,
and NETosis. Although CXCR2 is a critical CR that regulates
neutrophil chemotaxis, and NETosis, induction of CCR5 and
CCR1 also significantly impacted these neutrophil functions.
Mice deficient of CCR5 gene are more susceptible to influenza
infection and exhibit greater neutrophil influx compared to
wild-type mice. However, deletion of CXCR3 together with
CCR5 (CCR5−/−/CXCR3−/−) does not alter neutrophil influx.
These findings are congruent with our findings that stimulation
of CXCR3 does not significantly alter neutrophil migration or
NETosis (Fadel et al., 2008).

Interestingly, none of the induced CRs show potential
bactericidal effects, when we incubated neutrophils in the
presence of Streptococcus pneumoniae, which is one of the
commonest pathogens causing co-infections during influenza
outbreaks (Kash et al., 2011; Moorthy et al., 2016). These results
validate our earlier findings that neutrophils from influenza-
infected mice lack bactericidal effects. It is noteworthy that
close proximity of induced chemokine ligands with enhanced
CRs have high probability to augment phagocytic function.
However, the lack of in vivo bacterial killing suggests that

lung-recruited neutrophils may engulf bacteria, but may be
defective in bactericidal activity, which was evident from a
report demonstrating increased neutrophils containing labeled
bacteria (Ishikawa et al., 2016), but fail to kill the pathogen.
The lack of bactericidal activity may also be attributed to
impaired free radical generation. Influenza infection has also
shown to impair NADPH oxidase activity (Sun and Metzger,
2014). A study has shown that seasonal and pandemic influenza
viruses differentially regulate neutrophil respiratory burst and
phagocytosis (Malachowa et al., 2018). The ability of influenza
virus to impair phagocytic function may be due to the
inhibition of azurophilic granules with the lysosomes during
phagocytosis, thus preventing bacterial killing (Abramson et al.,
1982). These findings support our earlier studies showing that
massive neutrophil influx during influenza does not reduce
bacterial loads. On the other hand, alveolar-capillary injury
inflicted by NETs and extracellular histones may facilitate
bacterial adhesion and growth, and thus exacerbate pulmonary
pathology. Another study has shown that neutrophils also
limit pulmonary pathology by suppressing T-cell mediated
damage during influenza (Tak et al., 2018). The contribution
of neutrophils to protection or injury may ultimately be
dependent upon the neutrophil numbers and inflammatory
cytokine responses. The virulence of the influenza virus strain
may also influence the neutrophil functionality and pathogenesis,
which warrants further investigations into the effects of different
viral strains of varying pathogenicity on the cytokine storm
and neutrophil phenotypic changes. These studies attempted to
characterize and compare circulating as well as lung-recruited
neutrophils. It would thus be interesting to evaluate neutrophils
that are present within the lung parenchyma of infected lungs
to determine if induction of CRs is also modified during
transmigration of neutrophils from the circulation into the
alveolar air space.

In conclusion, this study indicates an induction of CRs occurs
upon neutrophil extravasation and activation into the pulmonary
environment in a murine model of influenza pneumonia. These
induced CRs could serve as potential therapeutic targets for
alleviating neutrophil-induced lung pathology. Among all CRs,
CXCR2 is most highly induced, and represents a promising
target for therapy to reduce neutrophil recruitment to the area
of inflammation. The functional properties of these individual
chemokine receptors warrant further investigation to further
understand how these induced CRs impact deleterious or
beneficial effects of neutrophils as well as their roles in the context
of influenza-induced acute lung injury.
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Over the last decade, there has been significant advances in the understanding of

the cross-talk between metabolism and immune responses. It is now evident that

immune cell effector function strongly depends on the metabolic pathway in which

cells are engaged in at a particular point in time, the activation conditions, and

the cell microenvironment. It is also clear that some metabolic intermediates have

signaling as well as effector properties and, hence, topics such as immunometabolism,

metabolic reprograming, andmetabolic symbiosis (among others) have emerged. Viruses

completely rely on their host’s cell energy and molecular machinery to enter, multiply,

and exit for a new round of infection. This review explores how viruses mimic, exploit or

interfere with host cell metabolic pathways and how, in doing so, they may evade immune

responses. It offers a brief outline of key metabolic pathways, mitochondrial function and

metabolism-related signaling pathways, followed by examples of the mechanisms by

which several viral proteins regulate host cell metabolic activity.

Keywords: viruses, cell metabolism, mitochondria, immune response, viral evasion

INTRODUCTION

Several recent comprehensive reviews have highlighted the key role of eukaryotic cell metabolism
in immunity (Ganeshan and Chawla, 2014; O’Neill and Pearce, 2016; O’Neill et al., 2016). Six main
and interconnected metabolic pathways have a role in the immune response: glycolysis; the pentose
phosphate pathway (PPP); the tricarboxylic acid cycle (TCA), also known as Krebs cycle; the fatty
acid oxidation (FAO), also known as β-oxidation; as well as the fatty acid and amino acid synthesis
pathways (Figure 1).

Mitochondria take central stage in cellular metabolism since TCA, FAO, oxidative
phosphorylation (OXPHOS), calcium buffering, and heme biosynthesis take place within this
organelle (Mishra and Chan, 2016).

Energetic and biosynthetic metabolism is fueled by carbon sources, including glucose and
glutamine (DeBerardinis and Cheng, 2010), which are taken up by the cells by glucose and
glutamine transporters, respectively (Bhutia and Ganapathy, 2016; Navale and Paranjape, 2016).

Once in the cytosol, glucose is converted to pyruvate, via glycolysis, yielding two molecules
of ATP and two molecules of NADH (which acts as a cofactor in several enzymatic reactions)
per unit of glucose. The glycolysis pathway is also the source of biosynthetic intermediates
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that serve the purpose of ribose and nucleotides synthesis
(glucose-6-phosphate into ribulose 5-phosphate), amino acids
(3-phosphoglycerate enters the serine biosynthetic pathway), and
fatty acids (by the sequential conversion of glycolysis-derived
pyruvate into the TCA intermediate citrate that may be exported
from the mitochondria to the cytosol, where it is converted
into acetyl-coA).

Glycolysis-derived pyruvate is either converted to lactate,
which is exported out of the cells, or converted into acetyl-CoA
that enters the TCA cycle through the aldol condensation with
oxaloacetate to form citrate (O’Neill et al., 2016). Citrate is then
sequentially converted to isocitrate, α-ketoglutarate, succinyl
CoA, succinate, fumarate, malate, and oxaloacetate, which starts

Abbreviations: ACC, Acetyil-CoA carboxylase; Akt, Akt/Protein kinase B;

AMP, Adenosine monophosphate; AMPK, Adenosine monophosphate-activated

protein kinase; ATP, Adenosine three phosphate; 2B, 2B protein; 2BC,

2BC protein; ANT3, Adenine nucleotide translocator 3; ATLL, Adult T-

cell leukemia/lymphoma; BALF1, BamH1-A left frame transcript; BHRF1,

BamH1-Hright reading frame; BZLF1, Zebra protein; cGAS, cyclic guanosin

monophosphate-adenosin monophosphate synthase; cGMP, cyclic guanosine

monophosphate; CoA, Coenzyme A; CTL, Cytotoxic T lymphocytes; COXIII,

Cytochrome c oxidase III; 1ψm, Mitochondrial membrane potential; Drp1,

Dynamin-related protein; dTTP, Deoxythymidine triphosphate; early Zta, early

Zta protein; Env, Envelope; ER, Endoplasmic reticulum; FADH2, reduced Flavin

adenin dinucleotide; FAO, Fatty acid oxidation; FHV, Flock house virus; F17, F17

protein; Grb10, Growth factor receptor bound protein 10; HBx, Hepatitis B virus

x protein; HIF1α, Hypoxia-induced factor 1α; HPV 18, Human papillomavirus

18; KSHV, Kaposi’s sarcoma-associated herpesvirus; HSP60, Heat shock protein

60; IFI6-16, Interferon inducible protein 6-16; IFNs, Interferons; IκBα, nuclear

factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha;

IKK, IκB kinase; IL-4, Interleukin-4; IP3Rs, Inositol 1,4,5-triphosphate receptors;

IRF3, Interferon regulatory factor 3; ISGs, Interferon-stimulator genes; JAK-

STAT, Janus kinase-Signal transductor and activator of transcription; Lag-

3, Lymphocyte activation gene-3; LANA, Latency-associated nuclear antigen;

LMP2A, Latent membrane protein 2A; LPS, Lypopolysacharide; M1, Macrophage

type1; M2, Macrophage type 2; MAMs, Mitochondria-associated membranes;

MAVS, Mitochondrial antiviral-signaling protein; MCU, Mitochondrial calcium

uniporter; MDA-5, Melanoma differentiation-associated gene 5; Mfn1, Mitofusin

1; MHV68γHV68, Murine gammaherpesvirus-68; mTORC1, mechanistic target

of rapamycin complex 1; mTORC2, mechanistic target of rapamycin complex 2;

mtSSB, Mitochondrial single-stranded DNA binding protein; NADPH, reduced

Nicotinamide adenine dinucleotide phosphate; Nef, Nuclear elongation factor;

NS, Non-structural Proteins; NETs, Neutrophyl extracellular traps; NFκB, Nuclear

factor kappa B; NK, Natural killer; NLR, NOD-like receptor; NOD, Nucleotide-

binding and oligomerization domain; NS1, Non-structural protein 1; NS2b3,

Non-structural protein 2b3; OMM, outer mitochondrial membrane; OPA1,

Optic atrophy protein 1; ORF52, Open reading frame 52; OXPHOS, Oxidative

phosphorylation; PB1-F2, PB1-F2 protein; PB1-F2 66S, PB1-F2 protein, serine 66

PB1-F2 66N, PB1-F2 protein, asparagine 66; PB2, PB2 protein; PD-1, Programmed

death-1; PFK, Phosphofructokinase; PGC-1a, Peroxisome proliferator-activated

receptor-gamma coactivator-1alpha; PI3K, phosphatidylinositol 3-kinase; PLC,

Phospholipase C; PMA, Phorbol 12-myristate 13-acetate; PPP, pentose phosphate

pathway; PRRs, Pattern recognition receptors; p7, protein 7; p13, protein 13;

P70S6K, Ribosomal protein S6 kinase beta-1; RIG-1, Retinoic acid-induced gene

1; RLR, RIG-1-like Receptor; ROS, Reactive Oxygen Species; SPCA 1, Secretory

pathway calcium ATPase 1; STING, Stimulator of interferon genes; TBK1, TANK

binding kinase 1; TCA, Tricarboxylic acid; Tim-3, T cell immunoglobulin mucin-

3; TLRs, Toll like receptors; TTP, thymidine triphosphate; UL 12, full length

UL 12 protein; UL 12. 5, N-terminally truncated UL 12 protein; UPR, Unfolded

protein response; UTP, Uridine triphosphate; VV, Vaccinia virus; VDAC3, Voltage

dependent anion channel 3;VMC1, Viral mitochondrial carrier 1; vIRF1, viral

Interferon regulatory factor 1; vMIA, viral mitochondrial-localized inhibitor of

apoptosis. Note: Other viruses abbreviations are indicated in Tables 1–5.

a new round of the TCA cycle by its reaction with pyruvate-
derived acetyl CoA. Fatty acids can also be converted into acetyl
CoA through FAO, linking this metabolic pathway with the TCA
cycle. Two major products of both the TCA cycle and FAO
are NADH and FADH2, which can transfer electrons to the
mitochondrial electron transport chain coupled with OXPHOS
and the generation of ATP (O’Neill et al., 2016). In addition,
succinate, an intermediate in the TCA cycle, is also an electron
donor for the mitochondrial respiratory chain at complex II
(succinate dehydrogenase) (Rich and Maréchal, 2010).

The pentose phosphate pathway involves a non-oxidative
as well as an oxidative branch; the first allows for the
diversion from glycolysis intermediates toward the synthesis
of nucleotide and amino acid precursors, while the second
generates reducing equivalents of nicotinamide adenine
dinucleotide phosphate hydrogen (NADPH), which maintain
a favorable cellular redox environment and allows fatty acid
synthesis (O’Neill et al., 2016).

Fatty acid synthesis uses glycolysis, TCA cycle, and pentose
phosphate pathway metabolic intermediates. TCA cycle-derived
citrate may be exported from the mitochondria to the
cytosol and then ATP citrate lyase converts citrate to acetyl-
coA, which in turn may be carboxylated by acetyl-CoA
carboxylase (ACC) producing malonyl-CoA. Furthermore,
fatty acid synthase and NADPH elongate fatty acid chains
(O’Neill et al., 2016).

Glutamine is also a primary source of energy as it is converted
to glutamate and then to α-ketoglutarate, which enters the TCA
cycle (DeBerardinis and Cheng, 2010).

Immune system cells preferentially follow one or other
metabolic pathway, depending on cell type, differentiation
status, activation conditions, and microenvironment.
Resting T lymphocytes rely mostly on OXPHOS,
whereas activated and proliferating T lymphocytes
upregulate the expression of the glucose transporter
glut-1 and key glycolytic enzymes, relying mostly on
glycolysis (Frauwirth et al., 2002; Pearce and Pearce, 2013).

Memory T lymphocytes use OXPHOS (Pearce and Pearce,
2013), “classically activated” macrophages (stimulated with
LPS plus IFN-γ)—also referred to as M1 macrophages—
engage in glycolysis, whereas alternatively activated
macrophages (stimulated with IL-4)—also referred to as
M2 macrophages—use OXPHOS and FAO to generate
energy (Rodríguez-Prados et al., 2010). Stimulated
macrophages and dendritic cells engage in glycolysis after
activation through pattern recognition receptors (PRRs)
(O’Neill and Pearce, 2016).

Neutrophils rely mostly on glycolysis (Pearce and
Pearce, 2013) and the release of neutrophil extracellular
traps (NETs) is dependent on the increase in cell
membrane glut-1, glucose uptake, and the glycolytic
rate (Rodriguez-Espinosa et al., 2015).

Activated B lymphocytes undergo metabolic reprogramming
in response to changing energetic and biosynthetic demands,
and long-lived plasma cells uptake glucose and glutamine at
a higher rate; glucose is used to generate pyruvate for spare
respiratory capacity, and glutamine is used as a carbon source for
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FIGURE 1 | Eukaryotic cell metabolism. Bioenergetic and biosynthetic pathways interconnect glycolysis, glutaminolysis, PPP (pentose phospahate pathway), TCA

(tricarboxylic acid cycle), FAO (fatty acid oxidation), fatty acid synthesis, aminoacid synthesis, metabolic sensors such as the AMPK, mTORC1, and mTORC2

pathways, and are also dependent on calcium homeostasis, mitochondrial membrane potential and mitochondrial dynamics. All together they influence cell function

and may be the targets of several viruses.

mitochondrial anaplerotic reactions and respiration, promoting
cell survival (Jellusova and Rickert, 2016; Lam et al., 2018).

Switching metabolic pathways (metabolic reprograming)
leads to changes in cell function (Buck et al., 2017) and the
metabolic microenvironment, i.e., tissue O2 tension, or the
concentration of metabolites such as lactate determines cell

immune responses (Romero-Garcia et al., 2016).
Interestingly, viral infections such as ocular infection with

herpes simplex virus-1 (HSV-1) may change blood glucose
levels in the course of infection (Varanasi et al., 2017).
Moreover, if glucose utilization is pharmacologically limited
in vivo in the inflammatory phase, lesions diminish but, if
glucose utilization is limited in the acute phase of infection
when the replicating virus is still present in the eye, infected
mice become susceptible to the lethal effects of HSV-1
infection as the virus spreads to the brain, causing encephalitis
(Varanasi et al., 2017). This highlights the fundamental
relationship between cell metabolism, immune response, and
viral pathogenesis.

ANTI-VIRAL IMMUNE RESPONSES

Among the most effective antiviral immune responses is the
production of several type I interferons (Figure 2); interferon-
α (IFN-α) subtypes and interferon-β (IFN-β), which along with
IFN-ε, IFN-τ , IFN-κ, IFN-ω, IFN-δ, and IFN-ζ, are collectively
referred to as type I interferons; most cells can produce IFN-α
and IFN-β following cell activation through the recognition of
viral nucleic acids (McNab et al., 2015).

The RIG-I-MDA5-mitochondrial antiviral-signaling protein
(MAVS) axis is the major sensing pathway for RNA viruses,
while the axis composed of the cyclic guanosine monophosphate
(cGMP)-adenosinemonophosphate (AMP) synthase (cGAS) and
the stimulator of interferon genes (STING) is the major sensing
pathway for DNA viruses (Wu and Chen, 2014). However,
there is recent evidence that the cGAS-STING pathway may
also restrict the infection by RNA viruses, thus suggesting a
connection between the sensing of cytosolic DNA and RNA
(Ni et al., 2018).
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FIGURE 2 | Antiviral immune responses. Type I interferons, cell cytotoxicity, neutrophil extracellular traps and neutralizing antibodies protect against viral infections,

each type of response has a metabolic hallmark. Viruses may target specific metabolic pathways for immune evasion.?, not known.

Both anti-viral pathways converge in the activation of two
main transcription factors that regulate the expression of type-
I interferons, nuclear factor kappa B (NFκB) and interferon
regulatory factor 3 (IRF3). In the case of the RIG-I-MDA5-MAVS
pathway, their activation depends on mitochondrial function
(Seth et al., 2005; Koshiba, 2013).

Both IFN-α and IFN-β activate the expression of interferon-
stimulated genes (ISGs) through the Janus kinase-signal
transducer and activator of transcription (JAK-STAT) signaling
pathway, leading to the inhibition of viral replication and
assembly (Darnell et al., 1994; Seth et al., 2005).

Cytotoxic T lymphocytes (CTL) play an important role in
the clearance of viral infections (Figure 2); memory CTL can
be activated by low concentrations of antigen, readily producing
cytokines and the lysis of infected cells, thus preventing
dissemination (Veiga-Fernandes et al., 2000).

Upon acute viral infection, virus-specific memory CTL
quickly produce IFN-γ. However, around 18 h after infection
the number of IFN-γ producing CTL drops concomitantly with
the upregulation of inhibitory receptors. It has been suggested
that the decrease in the synthesis of IFN-γ by CTL is an active
regulatory process (Hosking et al., 2013) reminiscent of T cell
exhaustion, a process also known to take place during chronic
viral infections (Yi et al., 2010; Wherry, 2011).

A hallmark of T cell exhaustion is the upregulation of
inhibitory receptors such as programmed death-1 (PD-1), T cell
immunoglobulin mucin-3 (Tim-3), and lymphocyte activation
gene-3 (Lag-3) (Freeman et al., 2000; Barber et al., 2006).
Interestingly, PD-1 negatively regulates glycolysis, represses
the transcriptional co-activator peroxisome proliferator-
activated receptor-gamma co-activator (PGC)-1alpha
(PGC-1α), which plays an important role in the regulation
of carbohydrate and lipid metabolism, and impairs CTL
responses (Bengsch et al., 2016).

Other anti-viral cell-mediated immune responses
include NK cell cytotoxicity (Hammer et al.,
2018) and neutrophil extracellular traps (NETs)
(Schönrich and Raftery, 2016) (Figure 2).

Natural killer (NK) cells have anti-viral activities as they exert
direct cytotoxicity on virus infected-cells, and readily produce
IFN-γ. NK cells increase their glycolytic rate upon activation
(Gardiner and Finlay, 2017), and disruption of glycolysis impairs
NK cell-mediated responses to Cytomegalovirus (CMV), for
instance (Mah et al., 2017).

Neutrophils are considered a first line of defense against
pathogens. However, their role in the control of viral infections is
not as clear as for other pathogens (Galani and Andreakos, 2015).
It has recently been recognized that viruses can induce the release
of neutrophil extracellular traps (NETs), and the mechanisms
by which NETs could contribute to anti-viral immunity are
emerging (Hammer et al., 2018).

Several viruses, including Hantaan virus (HTNV), H1N1
Influenza A virus (IAV), human immunodeficiency virus (HIV-
1), and Respiratory Syncytial virus (RSV), directly stimulate
neutrophils to release NETs (Raftery et al., 2014; Delgado-Rizo
et al., 2017), and both IFN-α and IFN-γ can prime mature
neutrophils to release NETs upon further stimulation (Martinelli
et al., 2004; Hammer et al., 2018).

HIV-1 may also prevent the release of NETs by inducing
dendritic cells to produce IL-10, which in turn suppresses the
reactive oxygen species (ROS)-dependent release of NETs (Saitoh
et al., 2012; Hammer et al., 2018).

The Dengue virus serotype-2 (DENV-2) down-modulates the
phorbol 12- myristate 13- acetate-(PMA) induced release of
NETs, and it has been proposed that one of the mechanisms
for this is the interference with the mobilization of the glucose
transporter glut-1 to the cell membrane and consequently with
the glucose uptake (Moreno-Altamirano et al., 2015).
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NETs may prevent virus spreading by being trapped by
electrostatic attraction or be inactivated by molecules associated
with NETs, such as myeloperoxidase and α-defensins (Saitoh
et al., 2012; Hammer et al., 2018).

Antibodies are also important anti-viral effectors (Figure 2),
and whereas cytotoxic lymphocytes can eliminate infected cells,
antibodies are capable of both eliminating infected cells and
neutralizing viruses, thereby preventing cell infection. The
production of protective antibodies over prolonged periods
constitutes a first line of defense against reinfection and,
therefore, survival of antibody-producing plasma cells is
determinant (Dörner and Radbruch, 2007). It is now known that
plasma cell longevity is dependent on enhanced glut-1 expression
and glucose uptake, mitochondria pyruvate import and spare
respiratory capacity, and that nutrient uptake and catabolism
distinguish plasma cell subsets with different lifespans and rates
of secreted antibodies (Lam et al., 2016, 2018).

Taken together, it emerges that the activity of immune system
cells is dependent on cell metabolism and that viruses could target
cell metabolism to evade anti-viral immune responses. The next
sections explore some specific mechanisms by which viruses may
interfere with cell metabolism.

MITOCHONDRIAL ANTI-VIRAL SIGNALING

(MAVS) AND VIRUS SUBVERSION

OF MAVS

Mitochondria constitute a metabolic hub, so if a virus is to take
control of host metabolism, targeting mitochondria is perhaps
the best way.

In 2005 Seth et al. reported the identification of a new protein
essential for the activation of the transcription factors NFκB
and IRF3 by RNA viruses. They named the protein MAVS and
showed that this contains a C-terminal transmembrane domain
that targets the mitochondrial outer membrane. Strikingly, they
found that this transmembrane domain and the targeting to
mitochondria are essential for MAVS signaling, opening a new
avenue of research in which mitochondria took center stage in
antiviral immunity (Seth et al., 2005).

In non-stimulated cells, NFκB is located in the cytoplasm,
associated with its inhibitor IκBα. Upon stimulation with viruses,
other pathogens or cytokines, the IκB kinase (IKK) is activated,
leading to the phosphorylation of IκBα and its subsequent
ubiquitination and proteasomal degradation. NFκB is then
released and translocated to the nucleus, where it activates
immune and inflammatory genes (Silverman andManiatis, 2001;
Seth et al., 2005).

IRF3 is located in the cytoplasm of non-stimulated cells,
and following viral or other pathogen infection it becomes
phosphorylated by TANK-binding kinase 1 (TBK1) and IKK
kinases, allowing the formation of homodimers that can
translocate into the nucleus and activate the synthesis of IFN-β,
acting in synergy with NFκB (Yoneyama et al., 2002; Fitzgerald
et al., 2003; Hiscott et al., 2003; Seth et al., 2005).

IRF7 can also be phosphorylated by TBK1 and IKK (tenOever
et al., 2004), leading to the production of interferon-α (Honda

et al., 2005; Seth et al., 2005). NFκB and IRFs are activated by
RNA viruses as well as by other pathogens.

The entry of RNA viruses to the cells produces double-
stranded RNA intermediates, which can be recognized by host
cell pathogen recognition receptors (PRRs) including TLR -3, -7,
-8, and -9 (Akira and Takeda, 2004; Seth et al., 2005).

The receptor Retinoic Acid-Induced Gene I (RIG-
1) recognizes intracellular dsRNA and the interaction
of viral RNA with RIG-1 leads to a change in its
conformation, which then activates NFκB and IRF3
(Yoneyama et al., 2002; Sumpter et al., 2005).

The melanoma differentiation-associated gene 5 (MDA5) is
a RIG-I-like protein involved in dsRNA signaling and apoptosis
(Kovacsovics et al., 2002; Seth et al., 2005).

In 2011, Koshiba (Koshiba, 2013) demonstrated that
mitochondrial fusion and mitochondrial membrane potential
(1ψm) are required for MAVS-mediated signaling. They
showed that the deletion-targeting of mitofusin 1 (Mfn1) and
mitofusin 2 (Mfn2), two molecules involved in mitochondrial
fusion, prevented cells from producing interferons and pro-
inflammatory cytokines in response to viral infection. This
resulted in increased viral replication along with a reduced1ψm,
correlating with a reduced antiviral response. Interestingly, the
reduction in 1ψm did not affect the activation of IRF3, which
acts downstream of MAVS, suggesting that 1ψm and MAVS
are coupled at the same stage in the RIG-1-like Receptor (RLR)
signaling pathway (Koshiba, 2013).

In addition to mitochondria, MAVS are also found in
peroxisomes and mitochondrial-associated membranes (MAMs)
(Seth et al., 2005; Vazquez and Horner, 2015).

A natural target for the subversion of IFN type I-mediated
antiviral response is the MAVS protein (Table 1). As an example,
the influenza A virus encodes a protein called PB1-F2, which
inhibits the induction of type I interferon at the level of the
MAVS (Varga et al., 2012). PB1-F2 is an 87–90-amino-acid-long
protein with a serine at position 66 (66S), which accounted for the
virulence of the Spanish and avian flu pandemic viruses (H1N1
and H5N1, respectively). Interestingly, PB1-F2 66S has a higher
affinity for MAVS than PB1-F2 66N, and more efficiently affects
the 1ψm than the wild-type PB1-F2 (Conenello et al., 2007).

TABLE 1 | Viruses that subvert MAVS.

Virus Viral

proteins

Effect References

Influenza A virus

(IAV)

PB1-F2 Inhibition of type I IFN

at the level of MAVS

Conenello et al.,

2007

Influenza A virus

H1N1(1918) and

H5N1

PB1-F2 66S,

PB1-F2 66N

Disruption of

mitochondrial

membrane potential

and type I IFN

response

Conenello et al.,

2007

Hepatitis C virus

(HCV)

NS3/4A Inhibition of type I IFN

response by cleaving

of MAVS

Meylan et al., 2005
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Other viruses, such as hepatitis C virus (HCV), induce the
cleavage of MAVS from the outer membrane of mitochondria,
reducing the interferon-producing response. In this case, the
NS3/4A protein cleaves MAVS at cysteine 508 (Meylan et al.,
2005; Bender et al., 2015; Vazquez and Horner, 2015).

Another family of pattern recognition receptors contain
a nucleotide-binding and oligomerization domain (NOD)
and is called the NLR (NOD-like receptor) family.
NOD2 facilitates the activation of IRF3 and the synthesis
of type I IFN in response to single-stranded RNA.
Interestingly, the activation of NOD2 is dependent on MAVS
(Sabbah et al., 2009; Moreira and Zamboni, 2012).

Recently, NLRX1 (also known as NOD5, NOD9, or NOD26),
a member of the NLR family that localizes to the outer
mitochondrial membrane, was shown to mediate MAVS
degradation, allowing HCV to evade type I IFN-mediated
antiviral response (Qin et al., 2017).

cGAS-STING ANTI-VIRAL PATHWAY AND

ITS SUBVERSION BY VIRUSES

The cyclic guanosine monophosphate (cGMP)-adenosine
monophosphate (AMP) synthase (cGAS) recognizes viral as
well as bacterial double-stranded DNA (dsDNA) (Wu and
Chen, 2014; Ni et al., 2018). After binding to dsDNA, cGAS
catalyzes the synthesis of the second messenger cyclic guanosine
monophosphate-adenosine monophosphate (cGAMP), which
then binds to the stimulator of interferon genes (STING)
adaptor protein on the endoplasmic reticulum (ER); STING,
as a dimer, translocates from the endoplasmic reticulum to the
Golgi complex, where it recruits TANK-binding kinase 1 (TBK1)
which activates the transcription factors NFκB and IRF3, both of
which translocate to the nucleus and induce the synthesis of type
I interferons (Barber, 2015; Ni et al., 2018).

While the activation of the RIG-1-MDA5-MAVS antiviral
signaling pathway clearly requires mitochondrial activity, in
the form of mitochondrial dynamics and 1ψm, a metabolism-
related component in the cGAS-STING antiviral signaling
pathway has not been explicitly identified. However, several
lines of research suggest crosstalk between cGAS-STING and
metabolism. Firstly, the ER has been regarded as a separate
metabolic compartment on the basis that the ER luminal micro-
environment is different from the cytosol, that it contains its
own pool of pyridine nucleotides, and that several metabolic
pathways related to carbohydrate and steroid metabolism,
biotransformation, and protein processing take place in the ER
(Csalaa et al., 2006); viral infections may lead to ER stress and
to the unfolded protein response (UPR) (Zhang and Wang,
2012); and the mitochondrial function in cells undergoing ER
stress is compromised, particularly at the level of mitochondrial
membrane potential, oxygen consumption, and ATP production
(Wang et al., 2011). The ER stress and UPR synergy with the
cGAS-STING antiviral signaling pathway still needs to be fully
elucidated (Smith, 2014).

Among the DNA viruses that activate the cGAS-STING
pathway are herpes simplex virus 1 (HSV-1), vaccinia virus (VV),

andmurine gamma herpesvirus 68 (MHV68). Interestingly, RNA
viruses such as HIV-1 generate RNA: DNA hybrids as well as
dsDNA that may activate the cGAS-STING pathway (Ma and
Damania, 2016; Ni et al., 2018).

Of note, dengue virus (DENV)-induced mitochondrial
damage leads to mitochondrial DNA release to the cytosol, and
the activation of the cGAS-STING pathway (Sun et al., 2007).
Since other viruses may cause mitochondrial damage (see below)
it is plausible that other RNA viruses may activate cGAS-STING
through mitochondrial DNA release.

Several DNA virus-associated proteins are known to
interfere with the cGAS-STING pathway, as reviewed
by Ni et al. (2018), either by interfering with DNA
binding to cGAS, as is the case of Kaposi’s sarcoma-
associated herpesvirus (KSHV), Epstein Barr virus (EBV),
and murine gammaherpesvirus-68 (MHV68,γHV68)
tegument protein open reading frame 52 (ORF52), and
the KSHV latency-associated nuclear antigen (LANA)
protein which interact with cGAS (Wu et al., 2015;
Zhang et al., 2016), or by targeting STING, as is the case
for the HSV-1-infected cell protein 27 (ICP27) and the
UL46 protein, the KSHV viral interferon regulatory factor 1
(vIRF1), the human papillomavirus 18 (HPV18) E7 oncoprotein,
the human adenovirus 5 (hAd5) E1A oncoprotein, and
the Hepatitis B virus (HBV) polymerase (Lau et al., 2015;
Liu et al., 2015; Ma et al., 2015; Christensen et al., 2016;
Deschamps and Kalamvoki, 2017).

A more recent development in the field is the finding that
some RNA viruses are also capable to interfere with the cGAS-
STING pathway, subverting its anti-viral effect (Ni et al., 2018).

Finally, it has been shown that single- or double-stranded
DNA may attenuate glucose metabolism, leading to ATP
depletion and so constitute a metabolic barrier for viral
replication. However, the mechanism seems to be dependent
on the activation of adenosine monophosphate (AMP)-activated
protein kinase (AMPK) and the activation of mechanistic target
of rapamycin complex 1 (mTORC1) (see below), but independent
of the cGAS-STING anti-viral pathway (Zheng et al., 2015).

MITOCHONDRIAL PROTEINS OTHER

THAN MAVS AS TARGETS OF

VIRAL INFECTION

Some viruses encode mitochondrial proteins, which allow them
a direct functional intervention on host cells mitochondria
(Table 2). In this regard, the Acanthamoeba polyphaga
mimivirus (APMV), one of the largest known viruses (400 nm
in its capside diameter) (La Scola et al., 2003; Monné et al.,
2007), encodes a mitochondrial transport protein called VMC1
(viral mitochondrial carrier), whose function is to transport
dATP and other nucleotide triphosphates (dTTP, TTP, UTP,
and ADP). VMC1 can support the replication of the APMV
genome by acquiring additional nucleotide triphosphates from
the mitochondrial pool in exchange for cytosolic ADP (Monné
et al., 2007). The APMV genome additionally encodes other five
putative mitochondrial proteins (Monné et al., 2007).
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TABLE 2 | Viruses that target other mitochondrial proteins.

Virus Viral

proteins

Effect References

Acantthamoeba

polyphaga

mimivirus

(APMV)

Virus

mitochondrial

carrier 1

(VMC1)

Increase of viral

replication by

transporting dATP

from the

motochondrial

pool

Monné et al., 2007

Epstein Barr

virus (EBV)

BHRF1,

BZLF1,

BALF1, early

Zta

Increase of viral

replication,

prevention of B

cell apoptosis,

blockage of mDNA

replication

Cavallari et al.,

2018

Hepatitis C virus

(HCV)

p7, NS3/4A,

NS5A

Disruption of

mitochondrial

function,

cleaveage of

MAVS

Cavallari et al.,

2018

Hepatitis C virus

(HCV)

Core Mitochondria

depolarization,

increased

production of

mitochondrial ROS

Cavallari et al.,

2018

Influenza virus

(IV)

PB1-F2, PB2,

NS1

Modulation of viral

replication, viral

mRNA synthesis

Cavallari et al.,

2018

Herpes simplex

virus-1 (HSV-1)

UL 12.5 Degradation of

mitochondrial DNA

early during

infection

Cavallari et al.,

2018

Herpes simplex

virus-1 (HSV-1)

UL 12 Generation of

mature viral

genomes

Cavallari et al.,

2018

The Human T-cell leukemia virus type 1 (HTLV-
1) causes adult T-cell leukemia/lymphoma (ATLL) and
encodes an 87-amino acid protein (p13) that helps this
virus to establish a persistent infection. This protein
primarily accumulates in the inner mitochondrial membrane
of host cells and alters mitochondrial morphology
toward a more rounded shape, fragments mitochondria
(mitochondrial fission), and reduces mitochondrial Ca2+ uptake
(Biasiotto et al., 2010; Cavallari et al., 2018).

Several proteins encoded by Epstein Barr virus (EBV) target
mitochondria, such as BHRF1 (BamHI-H right reading frame),
BZLF1 (also known as Zebra protein), BALF1 (BamHI-A
left frame transcript), LMP2A (Latent membrane protein),
and immediate early Zta protein. BHRF1 accumulates in the
outer mitochondrial membrane (OMM) of B lymphocytes,
preventing apoptosis and promoting survival of EBV-infected
cells, viral persistence, and replication; BHRF presents homology
with the transmembrane domains of some eukaryotic Bcl-
2 family members (Kvansakul et al., 2017; Cavallari et al.,
2018); and BZLF1 has the capacity to interact with mtSSB
(mitochondrial single-stranded DNA-binding protein), which
is required for the replication of the mitochondrial genome,

and partially redirects mtSSB from mitochondria to the
nucleus (LaJeunesse et al., 2005; Cavallari et al., 2018).
BALF1 also shares homology with Bcl-2 family members
and modulates apoptosis and promotes transformation
(Hsu et al., 2012; Cavallari et al., 2018). LMP2A induces
mitochondrial fission by a Drp1-dependent mechanism
(Pal et al., 2014; Cavallari et al., 2018), and finally, the
immediate early Zta protein can also bind mtSSB in the
cytoplasm, inducing its re-location to the nuclei, blocking
mitochondrial DNA replication and facilitating viral replication
(Wiedmer et al., 2008).

Many other viruses encode mitochondrial proteins capable
of regulating a broad spectrum of mitochondrial activities, as
reviewed by Cavallari et al. (2018), including the control of
intracellular Ca2+, apoptosis, mitochondrial dynamics, the levels
of cytochrome c oxidase III (COXIII) and COX activity, as well
as cellular ROS production, and the aggregation of mitochondria
near the nucleus. Others promote mitophagy and interfere with
the antiviral interferon response (Wu et al., 2007; Wang and
Ryu, 2010). Proteins such as KS-Bcl-2 localize in mitochondria
(Gallo et al., 2017), and others such as the KSHV-encoded K7
protein localize in mitochondria as well as in the ER and nucleus
(Feng et al., 2002).

The non-structural proteins p7 of HCV can modify the
mitochondrial function. The p7 protein is determinant for the
assembly and later release of infectious virions, it is capable
to form membrane-associated hexameric ion channels, induces
mitochondrial membrane depolarization, and binds to the
interferon inducible protein 6–16 (IFI6-16) (Nieva et al., 2012;
Madan and Bartenschlager, 2015; Qi et al., 2017); HepG2 cells
that express HCV core protein have increased levels of prohibitin,
a protein that regulates mitochondrial function and apoptosis
(Peng et al., 2015), by reducing the levels of COX subunits
I and II. Therefore, the interaction between the HCV core
protein and prohibitin may interfere with the assembly of the
respiratory chain, which could lead to increased production of
mitochondrial ROS and viral replication (Tsutsumi et al., 2009;
Ren et al., 2016). Other molecular partners for viral-encoded
mitochondrial proteins are voltage-dependent anion channel 3
(VDAC3) (Rahmani et al., 2000), and heat shock protein 60
(HSP60) (Tanaka et al., 2004).

Three influenza virus proteins are known to localize into
mitochondria: PB1-F2, PB2, and NS1 (Chen et al., 2001;
Yamada et al., 2004; Carr et al., 2006; Tsai et al., 2017).
Although PB1-F2 is dispensable for viral replication, at least
in some host cells, its expression accelerates influenza virus-
induced apoptosis in human monocytes through mitochondrial
ANT3 (adenine nucleotide translocator 3) and VDAC1 (voltage
dependent anion channel 1) (Chen et al., 2001; Zamarin
et al., 2005). The PB2 protein has a key role in viral mRNA
synthesis and localizes in mitochondria, where it can regulate
the viability of mitochondria during infection (Carr et al.,
2006). The NS1 protein is highly expressed in Influenza A
virus-infected cells, and predominantly localizes in the nucleus,
although it may also be found in the cytoplasm at later
stages of infection (Melén et al., 2007). Although NS1 does
not harbor mitochondria-targeting sequences, it has also been
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found in mitochondria at early times (1.5 h) post-infection
(Tsai et al., 2017).

The UL12 gene of herpes simplex virus type 1 (HSV-
1) encodes two distinct but related alkaline DNases through
two separately promoted 3’ co-terminal mRNAs, producing
full-length (UL12) and amino-terminal truncated (UL12.5)
proteins. UL12 localizes to the nucleus while UL12.5 is
predominantly located in mitochondria, where it degrades
mitochondrial DNA early during infection. Whereas nuclear-
targeted UL12 produces mature viral genomes from larger
genome precursors (Draper et al., 1986; Saffran et al., 2007;
Corcoran et al., 2009), the role of UL12.5 is not well-defined
since mitochondrial DNA degradation is not required for HSV-1
replication (Duguay et al., 2014).

MITOCHONDRIAL DYNAMICS

AND VIRUSES

Mitochondria constantly undergo fusion and fission depending
on the cell metabolic requirements, a process that has been
dubbed as mitochondrial dynamics (Mishra and Chan, 2016).

Along with being the “powerhouse” of eukaryotic cells,
mitochondria are also involved in cellular innate antiviral
immunity (Seth et al., 2005). Mitochondrial fusion and fission
processes depend on the activity of mitofusin 1 (Mfn1), mitofusin
2 (Mfn2), and optic atrophy protein 1 (OPA1)—which promotes
fusion—in addition to Dynamin-related protein 1 (Drp1)—
which promotes mitochondrial fission (Mishra and Chan, 2016).
There is evidence that antiviral immune responses can be
regulated by mitochondrial dynamics (Arnoult et al., 2011;
West et al., 2011). The close association between mitochondrial
dynamics and several mitochondrial and cellular functions
may suggest that mitochondrial dynamics could be a target
for viruses to interfere with immune responses (Table 3).
Likewise, the non-structural protein 4A (NS4A) from HCV,
either alone or associated with the non-structural protein 3
(NS3), accumulates in mitochondria, altering the mitochondrial
dynamics (Nomura-Takigawa et al., 2006). Infection with
HIV-1 re-shapes mitochondrial distribution within the cells
(Radovanović et al., 1999), while African swine fever virus
(ASFV) induces the clustering of mitochondria around virus
factories within infected cells, providing the local energy required
for the release of virus (Rojo et al., 1998). The DENV NS2b3
protein partially cleaves Mfn1 and Mfn2, attenuating interferon
responses (Yu et al., 2015), and induces mitochondrial fusion
by inhibiting Drp1 activation and in turn the activation of the
interferon response (Chatel-Chaix et al., 2016).

Excessive mitochondrial fission may lead to mitochondrial
damage, and this may have a role in hepatitis B virus (HBV)-
induced liver disease (Kim et al., 2013).

Hepatitis B virus, through its HBx protein, triggers the
translocation of Drp1 to the mitochondria by stimulating the
phosphorylation of Drp1 at the Ser616 residue, and on the
other hand, contributes to the degradation of Mfn2, favoring
mitochondrial fission and mitophagy, attenuating the virus-
induced apoptosis in the process (Kim et al., 2013).

TABLE 3 | Viruses that disrupt mitochondrial dynamics.

Virus Viral proteins Effect References

Hepatitis C

virus (HCV)

NS4A, NS3 Change of

mitochondria

distribution

Nomura-Takigawa

et al., 2006

Human

immunodeficiency

virus-1 (HIV-1)

Clustering of

mitochondria

Radovanović

et al., 1999

African swine

fever virus

(ASFV)

Cluster of

mitochondria

around virus

factories, providing

ATP for virus

release

Rojo et al., 1998

Dengue virus

(DENV)

NS2b3 Cleavege of Mfn1

and Mfn2,

attenuation of IFN

responses

Yu et al., 2015

Mitochondrial

fusion by inhibition

of Drp1

Chatel-Chaix

et al., 2016

Hepatitis B

virus (HBV)

HBx Mitochondrial

fission, and

mitochondrial

injury

Kim et al., 2013

Intracellular calcium concentrations also regulate
mitochondrial dynamics since the calcium-dependent
phosphatase calcineurin dephosphorylates Drp1 at S637,
facilitating the recruitment of Drp1 to the mitochondria and the
consequent mitochondrial fission (Cereghetti et al., 2008).

INTRACELLULAR CALCIUM

HOMEOSTASIS AND VIRAL INFECTIONS

Intracellular calcium participates in cell signaling,
mitochondrial function, and cell death (Duchen,
2000; Contreras et al., 2010), and Ca2+ uptake by
mitochondria activates Krebs cycle enzymes and oxidative
phosphorylation, leading to higher ATP production
(Nasr et al., 2003).

Several viruses regulate host cell calcium concentrations
in the cytoplasm as well as in mitochondria, allowing viral
gene expression, virus replication, and the control of host cell
viability (Table 4). HSV1 downregulates the uptake of Ca2+ by
mitochondria along its lytic cycle, modulating virus replication
(Lund and Ziola, 1985). Other viruses such as HCV target
mitochondria, increasing Ca2+ concentration (Li et al., 2007;
Campbell et al., 2009). Among the HCV proteins known to
interfere with Ca2+ homeostasis, are the core protein, the NS5A,
and the p7 protein (Gong et al., 2001; Griffin et al., 2004;
Kalamvoki and Mavromara, 2004; Dionisio et al., 2009).

HBV induces the mobilization of Ca2+ from mitochondria
and endoplasmic reticulum to the cytoplasm through the
interaction of the HBV protein X with voltage-dependent
anion channels (VDAC) (Bouchard et al., 2001; Choi et al.,
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TABLE 4 | Viruses that disrupt calcium homeostasis.

Virus Viral proteins Effect References

Human T leukemia

virus (HTLV-1)

p13 p13 accumulates

in the inner

mitochondrial

membrane,

reduces Dym and

mCa2+ uptake

Biasiotto et al.,

2010

Herpes simplex

virus 1 (HSV1)

? Modulation of viral

replication by

down-regulation of

Ca2+ uptake by

mitochondria

Lund and Ziola,

1985

Hepatitis C virus

(HCV)

NS5A, p7 Increase of Ca2+

concentration

Gong et al., 2001;

Griffin et al., 2004

Hepatitis B virus

(HBV)

HBx Ca2+ release from

mitochondria and

ER

Bouchard et al.,

2001

Human

immunodeficiency

virus-1 (HIV-1)

Nef Increase in viral

replication by

IP3R-dependent

increase of

cytosolic Ca2+

Foti et al., 1999

Rotavirus NSP4 virus release by

decreasing Ca2+

concentration

Tian et al., 1995;

Ruiz et al., 2007

Poliovirus 2BC Increase in viral

gene expression

and apoptosis by

increse in Ca2+

concentration

Aldabe et al., 1997

Coxsackievirus B3 2B Control of

apoptosis and

virus release by

regulation of Ca2+

concentration

Campanella et al.,

2004

Human

cytomegalovirus

(HCMV)

pUL37x1 Increased viral

replication by

mitochondria

Ca2+ uptake and

increased ATP

Sharon-Friling

et al., 2006;

Bozidis et al.,

2010

?, not known.

2005). The HIV-1 protein Nef (nuclear elongation factor)
interacts with the Inositol 1,4,5-trisphosphate receptor (IP3Rs),
increasing cytosolic Ca2+ concentration, promoting the
transcription of virus-encoded genes and viral replication
(Kinoshita et al., 1997; Foti et al., 1999). Rotavirus, through
its NSP4 protein, activates phospholipase C (PLC) and the
release of Ca2+ from the endoplasmic reticulum to the cytosol.
However, by the end of its life cycle there is a decrease
in cellular Ca2+ concentrations enabling rotavirus release
(Tian et al., 1995; Ruiz et al., 2007; Díaz et al., 2008).

Poliovirus increases intracellular Ca2+ concentrations shortly
after infection, increasing viral gene expression (Irurzun et al.,
1995; Aldabe et al., 1997). By the end of the virus life cycle
Ca2+ accumulates within mitochondria at the expense of ER
stores in a mitochondrial calcium uniporter (MCU) and voltage-
dependent anion channel (VDAC)-dependent process, leading to
mitochondrial dysfunction and apoptosis (Brisac et al., 2010).

Enteroviruses control apoptosis through Ca2+ regulation; in
this way, low levels of cytosolic Ca2+ provide the conditions
for viral replication while high concentrations of cytosolic Ca2+

lead to the formation of vesicles which allow virus release
(Campanella et al., 2004; Van Kuppeveld et al., 2005).

Human cytomegalovirus (HCMV) protein pUL37 ×

1, also known as viral mitochondrion-localized inhibitor
of apoptosis (vMIA) localizes into mitochondria and
induces the transfer of ER Ca2+ into mitochondria,
increasing the production of ATP and virus replication
(Sharon-Friling et al., 2006; Bozidis et al., 2010).

The maturation of viral glycoproteins is dependent on both
pH and intracellular Ca2+ concentrations. Ca2+ acts as a
cofactor for several enzymes including glycosyl- and sulfo-
transferases (Vanoevelen et al., 2007). Measles virus (MV),
Dengue virus (DENV), West Nile virus (WNV), Zika virus
(ZIKV), and Chikungunya virus (CHIKV) use the host calcium
pump secretory pathway calcium ATPase 1 (SPCA1) for
Ca2+ loading into the trans Golgi network, which activates
glycosyl transferases and proteases allowing viral maturation and
spreading (Hoffmann et al., 2017).

mTOR AND AMPK AS METABOLIC HUBS

AND VIRAL TARGETS FOR EVASION

The mechanistic target of rapamycin (mTOR) and the
adenosine monophosphate-activated protein kinase (AMPK)
constitute an integrated metabolic sensor. High levels of
ATP (high ATP/AMP ratio) activate mTORC1, resulting
in enhanced nutrient-dependent protein synthesis, cell
growth and proliferation, whereas low levels of ATP
(low ATP/AMP and ATP/ADP ratios), a hallmark of
metabolic stress (starvation, hypoxia or viral infection),
lead to AMPK-mediated inhibition of mTORC1 and
activation of mTORC2, which restores energy homeostasis
by switching the ATP-consuming biosynthetic pathways
off and the ATP-producing catabolic pathways on
(Hardie et al., 2012; Saxton and Sabatini, 2017).

MTOR acts as the catalytic subunit of either of two molecular
complexes known as mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2); mTORC1 is bound to the protein Raptor
(Hara et al., 2002; Kim et al., 2002) and mTORC2 is bound to the
protein Rictor (Hresko and Mueckler, 2005).

MTORC1 induces metabolic reprograming from OXPHOS
to glycolysis by upregulating the transcription factor hypoxia-
induced factor 1α (HIF1α) and, as a result, increases the
expression of several glycolytic enzymes including phospho-
fructo kinase (PFK). On the other hand, mTORC2 regulates
cell proliferation and survival by activating the PI3K-Akt
pathway (Düvel et al., 2010; Thomanetz et al., 2013; Saxton
and Sabatini, 2017). The mTORC1 complex acts downstream
of Akt and, as a way of regulation, the mTORC1 substrate
p70S6K suppresses mTORC2, and the mTORC1 substrate Grb10
suppresses PI3K signaling (Hsu et al., 2011; Yu et al., 2011; Saxton
and Sabatini, 2017), establishing a negative feedback that balances
mTORC1 and mTORC2 activities (Meade et al., 2018).
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TABLE 5 | Viruses that target mTOR or AMPK.

Virus Viral proteins Effect References

Herpes simplex

virus 1 (HSV1)

viral kinase Us3 Enhancement of

mTORC1 activity

Martin et al., 2012

Poliovirus (PV) Inhibition of

mTORC1 activity

Human

immunodeficiency

virus-1 (HIV-1)

Env Activation of

mTORC1 activity

Le Sage et al.,

2016

Sindbis virus

(SINV)

Activation of

mTORC

Le Sage et al.,

2016

Chikungunya virus

(CHIKV)

? Controversial

activation/Inhibition

of mTOR

Le Sage et al.,

2016

Influenza A virus

(IAV)

NS1 Differential

activation of

mTORC1 and

mTORC2,

supports viral

replication

Kuss-Duerkop

et al., 2017

Andes virus

(ANDV)

glycoprotein Gn Activation of

mTOR, supports

viral protein

expression and

replication

McNulty et al.,

2013

Hepatitis C virus

(HCV)

NS5A Activation of

mTORC1

supports viral

protein expression

and replication

Stohr et al., 2016

Poxviruses F17 Evasion of

cytosolic sensing

by disruption of

the mTORC1-

mTORC2

circuit

Meade et al., 2018

Dengue virus

(DENV)

? Viral replication by

activation of AMPK

and inhibition of

mTORC1

Jordan and

Randall, 2017

Zika virus (ZIKV) ? AMPK activation

evokes antiviral

innate responses

and restricts virus

replication

Kumar et al., 2018

?, not known.

Extracellular growth factors, the cell energy status, and
different stressors such as viral infection are integrated into the
mTOR pathway. Not surprisingly, viruses can modulate mTOR
signaling to their advantage (Le Sage et al., 2016; Saxton and
Sabatini, 2017) (Table 5). HSV-1 can enhance mTORC1 activity;
whereas Poliovirus, HIV-1, Sindbis virus, and CHIKV can inhibit
this same complex (Martin et al., 2012).

Activation of mTORC1 supports viral protein expression and
replication of Influenza A virus, Andes virus (ANDV), and
HCV (McNulty et al., 2013; Stohr et al., 2016; Kuss-Duerkop
et al., 2017). On the other hand, poxviruses are capable of
evading their cytosolic sensing bymeans of a conserved structural
protein that disrupts the mTORC1-mTORC2 regulatory circuit

while maintaining the metabolic benefits of mTOR activity
(Meade et al., 2018).

DENV activates AMPK, decreases the activity of mTORC1,
and induces lipophagy, a process that is required for the
robust DENV replication; the autophagic-mediated mobilization
of lipids increases the β-oxidation in DENV-infected cells
(Jordan and Randall, 2017) whereas AMPK activation evokes
antiviral innate responses and restricts ZIKV replication
(Kumar et al., 2018).

CAN VIRUSES REPLICATE

WITHIN MITOCHONDRIA?

In addition to the interaction of viral proteins withmitochondria,
which modify mitochondrial function, the Alphanodavirus
flock house virus (FHV) can infect yeast, insect, plant, and
mammalian cells, and replicates its RNA in the mitochondrial
outer membrane. Miller et al. showed that the FHV RNA-
dependent RNA polymerase, required for FHV RNA replication,
localizes to the outer mitochondrial membrane and by electron
microscopy these authors identified 40–60 nmmembrane-bound
spherical structures, similar to other virus-induced membrane
structures, within the mitochondrial intermembrane space of
infected cells from Drosophila (Miller et al., 2001).

CONCLUDING REMARKS

This review explores how viruses may subvert immune responses
by controlling host cell metabolism.

Viruses may target MAVS (RIG-I-MDA5-MAVS anti-viral
pathway) interfering with RNA virus-induced type 1 interferon
responses and target other mitochondrial-associated proteins,
disrupting mitochondrial dynamics, mitochondrial membrane
potential, and calcium handling—all of which may affect anti-
viral immunity. They may also regulate the production of
ATP to their advantage by interfering with mitochondrial
calcium mobilization, mitochondrial enzymatic activities, and
key metabolic sensors such as mTORC1, mTORC2, and AMPK.
They may also induce cytotoxic T lymphocyte exhaustion, which
implies metabolic reprogramming.

Viruses may also target the cGAS-STING anti-viral pathway,
interfering with DNA virus-induced type I IFN responses. Since
this anti-viral pathway is not directly connected with host cell
metabolism (at least not in the way the RIG-I-MDA5-MAVS
is), one key outstanding question is why anti-RNA viruses IFN
responses are more “metabolically directed” compared to anti-
DNA virus responses. Moreover, why do some RNA viruses
induce the release of mitochondrial DNA and in this way recruit
the RIG-I-MDA5-MAVS pathway?

In the context of HCV infection, there are at least two
mechanisms accounting for the degradation of MAVS, direct
cleaving by the HCV-encoded NS3/4A protein, and the NLRX1-
induced proteosomal degradation. As both MAVS and NLRX1
localize in the outer mitochondrial membrane, and MAVS
signaling is dependent on mitochondrial function, it remains
to be determined whether NLRX1 activity is also dependent
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on mitochondrial function. However, it is currently known that
NLRX1 regulates OXPHOS and cell integrity in a model of
ischemia-reperfusion injury, and that loss of NLRX1 increases
oxygen consumption and oxidative stress in epithelial cells
(Stokman et al., 2017).

The role of glycolysis, β-oxidation, and oxidative
phosphorylation on viral infections is continuing to emerge, but
there are still outstanding questions on the role and mechanism
that some metabolic intermediates may play in viral infection.
For instance, dimethyl fumarate enhances the infection of cancer
cell lines and human tumor biopsies with several oncolytic
viruses (Selman et al., 2018), whereas ZIKV infection upregulates
the enzyme cis-aconitate descarboxylase, which converts the
TCA intermediate cis-aconitate to itaconate, an endogenous
inhibitor of succinate dehydrogenase, inhibiting the conversion
of succinate to fumarate and generating a metabolic state that
restricts ZIKV replication in neurons (Daniels et al., 2019). These
topics require further exploration.

On the other hand, the success of anti-viral antibody
responses as well as of antibody-mediated anti-viral vaccine
protection depends on plasma cell lifespan, which ultimately
relies on plasma cell metabolism; something that differs

from B lymphocyte metabolism (Lam et al., 2018). It would
therefore be interesting to determine whether there are viruses
that specifically target plasma cell metabolism, and in which
case whether protecting plasma cell metabolism could be
therapeutically useful in helping to support long-lasting anti-viral
immune responses.
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Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) have co-evolved with humans

for thousands of years and are present at a high prevalence in the population worldwide.

HSV infections are responsible for several illnesses including skin and mucosal

lesions, blindness and even life-threatening encephalitis in both, immunocompetent

and immunocompromised individuals of all ages. Therefore, diseases caused by HSVs

represent significant public health burdens. Similar to other herpesviruses, HSV-1 and

HSV-2 produce lifelong infections in the host by establishing latency in neurons and

sporadically reactivating from these cells, eliciting recurrences that are accompanied by

viral shedding in both, symptomatic and asymptomatic individuals. The ability of HSVs to

persist and recur in otherwise healthy individuals is likely given by the numerous virulence

factors that these viruses have evolved to evade host antiviral responses. Here, we

review and discuss molecular mechanisms used by HSVs to evade early innate antiviral

responses, which are the first lines of defense against these viruses. A comprehensive

understanding of how HSVs evade host early antiviral responses could contribute to the

development of novel therapies and vaccines to counteract these viruses.

Keywords: interferon (IFN), inflammasome, toll-like receptors (TLRs), natural killer cells (NK cells), dendritic cells

(DCs), cytosolic nucleic acid receptors, innate immunity, apoptosis

INTRODUCTION

Herpes simplex viruses (HSVs) type 1 (HSV-1 or human herpesvirus 1, HHV-1) and type 2 (HSV-2

or human herpesvirus 2, HHV-2), are members of theHerpesviridae family and Alphaherpesvirinae
subfamily, similar to varicella zoster virus (VZV) (Davison, 2010; Sharma et al., 2016). HSVs are
present among humans at a high prevalence (Looker et al., 2008; CDC, 2010; Yawn and Gilden,
2013; Dickson et al., 2014; Suazo et al., 2015b), with two thirds of the global population infected
with HSV-1 (Looker et al., 2015a), and ∼11% of the world population infected with HSV-2
(Looker et al., 2015b). HSV-1 and HSV-2 are associated with diverse clinical manifestations, yet
disease widely varies from one individual to another, with nearly 40% of those that are infected
displaying symptoms during primary infection (Langenberg et al., 1999; Bernstein et al., 2013).
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Additionally, during recurrent viral reactivations, most
individuals are asymptomatic, with 5–15% of those infected
displaying clinical symptoms related to HSV infections
(Benedetti et al., 1994; Wald et al., 2000; Sudenga et al., 2012;
Suazo et al., 2015b). Although a relatively low proportion of
the infected individuals show clinical manifestations, the high
percentage of the world population infected with these viruses
yields an enormous number of individuals that effectively suffer
from HSV-related illnesses.

HSV-1 is mainly associated with orofacial lesions, yet it
is also the leading cause of infectious blindness in developed
countries and the number one cause of viral encephalitis in
adults (Kaye and Choudhary, 2006; Horowitz et al., 2010; Farooq
and Shukla, 2012; Bernstein et al., 2013). On the other hand,
HSV-2 is mainly associated with genital lesions and neonatal
encephalitis (Gupta et al., 2007; Berger and Houff, 2008; Looker
et al., 2008; Suazo et al., 2015b), despite the fact that HSV-1 is
nowadays more frequently related to primary genital infection
worldwide (Buxbaum et al., 2003; Coyle et al., 2003; Xu et al.,
2006; Pereira et al., 2012). However, HSV-2 reactivates more
frequently from the genital tissue than HSV-1 and hence, despite
the finding that the latter is commonly detected during primary
infection, HSV-2 is more often isolated from this site than HSV-
1 at any time during infection (Lafferty et al., 1987; Kaneko
et al., 2008). A similar phenomenon may occur in the orofacial
area, with most viral reactivations being attributed to HSV-1.
Variable reactivation of HSV-1 and HSV-2 from neurons within
the trigeminal or sacral ganglia may be given by differences in
gene expression profiles by neurons that innervate these tissues
(Kaneko et al., 2008; Flegel et al., 2015; Lopes et al., 2017).

A clinically relevant concern associated with HSV-2 genital
infection is that it is associated with a three-fold increase in
the likelihood of acquiring the human immunodeficiency virus
type 1 (HIV-1), due to synergistic aspects related to the co-
infection with both viruses (Wasserheit, 1992; Freeman et al.,
2006; Barnabas et al., 2011). For instance, evidence of an indirect
interplay between HIV and HSV occurs with HSV-2 infection
of macaques and humans eliciting an increase in the amounts
of dendritic cells present in the genital tissue, as well as α4β7-
and CCR5-expressing CD4+ T cells, both known to be substrates
for HIV (Rebbapragada et al., 2007; Martinelli et al., 2011).
HSV-2 also elicits lesions in the infected tissue that provide
an entry portal for HIV (Bagdades et al., 1992; Suazo et al.,
2015b). Additionally, proposed interactions between HSV-2 and
HIV would support HSV-2 infections being associated with a
relative risk of HIV incidence nearing 50% in the African region
(Looker et al., 2017). The association between HSV-2 and HIV
suggests that tackling HSV-2 infection could help reduce the
HIV pandemics (Rebbapragada et al., 2007; De Jong et al., 2010;
Johnson et al., 2011; Martinelli et al., 2011; Sartori et al., 2011;
Stefanidou et al., 2013a). Therefore, HSV-2 infection should be
considered a major matter of public health concern.

Infections with HSVs remain latent and are characterized by
sporadic reactivation episodes accompanied by virus shedding,
regardless of the presence of clinical symptoms (Kaneko et al.,
2008; Tobian et al., 2013). Lifelong infection in the host by HSVs
is achieved thanks to their capacity to infect neurons, mainly

those enervating infected tissues and then remain latent within
these cells (Margolis et al., 2007; Yao et al., 2014). In the skin,
mucosae and eyes, HSVs access neurons by infecting sensorial
nerve termini and then traveling in a retrograde manner through
the axon of these cells up to the soma. Later, HSVs may reactivate
from these cells and exit them through anterograde movements
either, to infect other neurons that eventually may innervate the
brain or infect cells located nearby the initial site of infection
(Linehan et al., 2004; Gonzalez and Sanjuan, 2013).

Importantly, HSVs not only infect epithelial cells and neurons
but virtually any cell type in the body, including immune cells
thanks to the fact that the main receptors of HSVs are widely
distributed in host tissues and cells (Krummenacher et al.,
2004). By infecting immune cells, these viruses can modulate
and escape diverse antiviral mechanisms evolved by the host
to counteract infection and furthermore, establish long-term
infection with sporadic recurrences that produce new infectious
particles (Retamal-Diaz et al., 2015; Suazo et al., 2015a). Here,
we review and discuss recent studies that report the relationship
between HSVs and early cellular antiviral responses, both in
immune and non-immune cells.

Replication Cycle of HSVs
HSV-1 and HSV-2 share ∼74% identity at the nucleotide level
and are structurally very closely related (Baines and Pellett,
2007). Both viruses have a linear, double-stranded DNA (dsDNA)
genome with sizes ranging from 150 to 154 kbp, which encode
more than 70 open reading frames (ORFs) (Kieff et al., 1971;
Dolan et al., 1998; Koelle et al., 2017). The viral genomes
are covered by a 125 nm icosahedral capsid (Wu et al., 2016),
which is surrounded by a mesh composed by many proteins
(>20) called the tegument (Figure 1). This protein stratum is
in turn enveloped by a lipid bilayer, from which multiple viral
glycoproteins protrude and play roles in virus entry and exit,
as well as immune-modulation and immune-escape (Roller and
Roizman, 1992; Loret et al., 2008; Retamal-Diaz et al., 2015; Suazo
et al., 2015a; Suk and Knipe, 2015).

Although HSV-1 and HSV-2 share common aspects during
cell entry, they do have some differences. For instance, unlike
HSV-1, HSV-2 does not require its glycoprotein C (gC) for
attaching to target cells (Shukla and Spear, 2001). On the other
hand, both of these HSVs do require the viral glycoprotein B
(gB) for the virus to attach to heparan sulfate proteoglycans on
the cell surface (Atanasiu et al., 2013). In immune cells such
as dendritic cells (DCs) and natural killer cells (NK cells), gB
has been reported to bind to an additional cell receptor for
viral attachment, namely the paired immunoglobulin like-type 2
receptor (PILR) (Shiratori et al., 2004; Satoh et al., 2008). Once
the virus has attached to the cell surface, the viral glycoprotein D
(gD) will bind to either, nectin-1 (or nectin-2) expressed on the
surface of most anchored cells in the organism, such as epithelial
and neuronal cells, or the herpesvirus entry mediator (HVEM),
a member of the tumor necrosis factor receptor (TNFR) family
that signals intracellularly depending on the orientation of its
ligand, either in cis or trans (Kovacs et al., 2009). The latter HSV
receptor is preferentially expressed on the surface of immune
cells, such as DCs and T cells (Krummenacher et al., 2004; Jones
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FIGURE 1 | HSV virion structure. HSVs possess linear, double-stranded DNA genomes (152–154 kbp) encoding more than 70 ORFs. The viral genomes are

contained within icosahedral capsids of ∼125 nm, which in turn are surrounded by complex meshes of viral proteins known as the tegument. The tegument is

enveloped by lipid membranes, which harbor numerous transmembrane glycoproteins. A table with tegument proteins involved in immune evasion is shown on the

right, ordered from highest to lowest molecular weight (MW).

et al., 2016). In addition, gD has been described to bind to 3-
O-sulfated heparan sulfates on the surface of CHO cells, which
permitted viral entry when gB, gD, glycoprotein H (gH), and
glycoprotein L (gL) were present in the virion (Xia et al., 2002;
Tiwari et al., 2004). As a result of gD binding to its ligand, this
glycoprotein will undergo a conformational changes that enable
this protein to activate the viral gH/gL glycoprotein complex,
which in turn triggers the fusion of the virus and cell membranes
in a process that is dependent on the activity of gB, which
acts as the fusion protein for these viruses (Lazear et al., 2014).
Moreover, the glycoprotein complex gH/gL of HSV-1 and HSV-2
participate in a process distinct to the conventional viral entry,
since they have been reported to bind αv3, αvβ6 and αvβ8 surface
integrins causing dissociation from the heterodimer permitting
gH activation to promote virion entry through a mechanism
involving acidic endosomes (Gianni et al., 2013, 2015; Cheshenko
et al., 2014). Lastly, it has also been observed that HSV-
1 can enter cells via a phagocytosis-like uptake mechanism
(Clement et al., 2006).

Once the viral and cell membranes have fused, the viral capsid,
which is surrounded by tegument proteins, will be released into
the cytoplasm. These tegument proteins will have the opportunity
to rapidly modulate host antiviral determinants upon entry into
the cell, interfering with the detection of viral components,
that altogether aim at diminishing the progression of infection
(Owen et al., 2015). Within the cytoplasm, the viral capsid
will associate to microtubules and travel toward the nuclear
membrane to deliver the viral genome into the cell nucleus
(Sodeik et al., 1997; Dohner et al., 2002; Radtke et al., 2010).
However, it is possible that the capsid reaches the nucleus by
simple diffusion within the cytoplasm, as morphological changes
take place in HSV-infected cells (Ibanez et al., 2018). Once the
capsid reaches the outer nuclear membrane, the tegument viral
protein VP1/2, which travels associated to the capsid, will anchor

this structure to nuclear pore proteins and favor its docking to the
nucleopore for the injection of the viral DNA into the nucleus.
This process will allow the initiation of viral gene transcription
within the nucleus, and later on, viral genome replication
(Abaitua et al., 2012). In parallel, the viral protein VP16, which
is present in the tegument, will localize in the nucleus in such
a way to promote the transcription of viral genes, acting as a
transactivator (Milbradt et al., 2011; Roizman and Zhou, 2015;
Suk and Knipe, 2015).

Within infected cells, HSV genes are transcribed sequentially
in threemain waves; the first set of viral genes that are transcribed
are called immediate early (or alpha) genes, with many of their
functions being related to limiting host immediate antiviral
mechanisms. This set of genes also encodes proteins that act as
transcription factors that promote the transcription of the second
set of viral genes (Silva et al., 2012). After the transcription of
alpha genes, early (or beta) viral genes are expressed, which are
involved among others in promoting the replication of the viral
genome (Ibanez et al., 2018). During the replication of the viral
genetic material, the genomes of HSVs undergo circularization in
a form known as “rolling circle,” which is regulated by viral factors
that ultimately generate linear genomes that are packaged into
new viral capsids within the nucleus (Jackson and Deluca, 2003).
After the expression of alpha and beta genes, HSV-infected cells
transcribe late (or gamma) viral genes, which are occasionally
separated into late early (or gamma-1) and late (or gamma-2)
genes, and are involved among others in providing the structural
components that are present in the virion (Chen et al., 1992).
During viral transcription, host cells equipped with a zinc-finger
antiviral protein (ZAP) that can utilize this restriction factor to
inhibit the replication of viruses by promoting the degradation
of critical viral mRNAs. Nevertheless, the HSV-1 UL41 protein
which is also known as the virus host shutoff protein (VHS),
has been reported to rapidly degrade human ZAP mRNA upon

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 April 2019 | Volume 9 | Article 12757

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Tognarelli et al. Early Immune Evasion by HSVs

infection, before this host factor can block viral gene expression
(Su et al., 2015).

Importantly, infectious HSV particles to be released from
the infected cells will require that the viral capsids leaving the
nucleus contain the viral genome. For this, HSV capsids are
assembled with the viral DNA within the nucleus and then
envelope in the inner nuclear membrane (INM) and de-envelope
from the outer nuclear membrane (ONM) (Mettenleiter et al.,
2013; Funk et al., 2015). At this time, tegument proteins coating
the capsid are acquired both, in the nucleus and cytoplasm.
Importantly, viral glycoproteins located within the perinuclear
space are needed to carry out the capsid budding and fusion
processes with these membranes (Bucks et al., 2007; Mou
et al., 2009; Ott et al., 2011; Mettenleiter et al., 2013; Owen
et al., 2015). Once in the cytoplasm, the capsid which will
be covered with tegument proteins will be enveloped into
the Golgi apparatus, generating enveloped particles within this
compartment that are ready for virion exocytosis (Johnson
and Baines, 2011). Notably, it has been reported that viral
glycoproteins acquired by the enveloped capsid in the Golgi
apparatus are first exported to the cell surface by this organelle
and then re-internalized through the Trans Golgi Network before
associating to the coated capsids (Wisner and Johnson, 2004;
Turcotte et al., 2005). Infected cells will attempt to prevent the
release of mature virions using the host antiviral restriction factor
tetherin, an interferon (IFN)-inducible membrane protein that
has been shown to prevent egress of several enveloped viruses
(Perez-Caballero et al., 2009; Kuhl et al., 2011). However, the
HSV-1 VHS protein depletes tetherin by degrading its mRNA
(Zenner et al., 2013), while, HSV-2 gD has been observed to
directly interact with a long disulfide-rich coiled-coil structure
(CC) that is found within the extracellular domain of tetherin,
thereby targeting the latter to lysosomes for degradation (Liu
et al., 2016b). Both effects evidence how HSVs intervene
with cell antiviral mechanisms meant to stop virions exit and
prevent dissemination.

Aside from the previously described events, HSVs can

propagate onto close cells through cell-cell interactions. In these
cases, viral proteins are directed to the interface of adjacent

cells in a process termed virological synapse, in which cells in

close proximity undergo membrane fusion events favoring virus
propagation (Johnson et al., 2001). An advantage of this type of

infection is that it allows HSVs to propagate onto neighboring
cells while avoiding being targeted by immune components,
such as complement or neutralizing antibodies (Hook et al.,
2006a; Lubinski et al., 2011). This mechanism of infection has
not only been reported for epithelial cells, but also for the
infection of immune cells, such as T cells by HSV-infected
fibroblasts (Aubert et al., 2009).

In sum, HSVs have evolved molecular determinants to
effectively bind to and infect various cell types, causing
productive infection in multiple tissues and establishing
latency in neurons. Alternatively, these viruses are
also capable of infecting immune cells and modulate
their functions to further interfere with host early
antiviral responses.

HSV Modulates Apoptosis Differentially in
Non-immune and Immune Cells
For a virus to produce significant amounts of infectious particles
from an infected cell, it will need the cell to be viable
for as long as possible and to provide the building blocks
required for replicating its genetic material and producing its
proteins. HSVs have been reported to modulate cellular death
in different cell types either, to promote cell viability for the
generation of new virions or to promote the death of cells
that may be detrimental for their replication and shedding.
For instance, the HSV-1 glycoproteins J (gJ) and D (gD) have
been described to produce, at least partially the inhibition of
Fas-mediated apoptosis in a neuroblastoma cell line and Jurkat
cells (Zhou et al., 2000; Jerome et al., 2001). Surprisingly,
the expression of gJ alone also induced the production of
reactive oxygen species (ROS), which can eventually trigger
apoptosis (Figure 2) (Fleury et al., 2002; Aubert et al., 2008).
HSV-1 has also been reported to reduce cell apoptosis in
epithelial cells, despite eliciting processes that involved FLICE-
inhibitory protein (c-FLIP) downregulation, which is an inhibitor
of caspase-8 that generally results in cell death (Kather
et al., 2010). This apparent discrepancy was attributed to
the presence of latency-associated transcript (LAT) sequences,
which have been described to act as inhibitors of caspase-8-
mediated apoptosis, similar to what occurs in infected neuronal
cells (Henderson et al., 2002).

Additionally, an intrinsic mechanism of apoptosis consists
on the activity of pro-apoptotic Bcl-2 cell death in mouse
fibroblasts and monocytes, as well as in human colon carcinoma
cells (Figure 2) (Sciortino et al., 2006; Papaianni et al., 2015).
Importantly, HSV-1 infection promotes increased expression
of p53 upregulated modulator of apoptosis (PUMA), a protein
that is a host Bcl-2 homology 3 (BH3)-only family member that
activates Bax/Bak and produces mitochondrial outer membrane
permeabilization (MOMP) to release cytochrome c from the
mitochondria and activates caspase-3, ultimately culminating
in apoptosis (Papaianni et al., 2015). Furthermore, during HSV
infection, caspase-8-interacting domains within the HSV-1 viral
protein ICP6 and the HSV-2 viral protein ICP10, both which are
R1 large subunits of a ribonucleotide reductase (RR), have been
suggested to bind to caspase-8 and cause inhibition of apoptosis
induced by TNF-α-induced apoptosis through the TNF receptor
TNFR1 (Figure 2) (Guo et al., 2015a). However, this inhibition of
apoptosis may cause cells to enter necroptosis 12 h post-infection,
as an alternative defensemechanism to limit virus replication and
spreading (Sridharan and Upton, 2014). Nevertheless, HSV R1
proteins have been reported to bind to host receptor-interacting
protein (RIP) 1/3 and inhibit necroptosis in human cells, while
necroptosis was observed in mouse cells (Guo et al., 2015b;
Huang et al., 2015). RIP3 likely mediates necroptosis in infected
fibroblasts cells to limit the dissemination of HSV-1 in the mouse,
similar to what has been described for RIP3 with other viruses,
such as vaccinia virus and murine cytomegalovirus (MCMV)
(Wang et al., 2014; Huang et al., 2015). Effective inhibition
of both, apoptosis- and necroptosis-related mechanisms
likely allow these viruses to generate high virus yields and

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 April 2019 | Volume 9 | Article 12758

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Tognarelli et al. Early Immune Evasion by HSVs

FIGURE 2 | HSVs modulate antiviral mechanisms related to cell death in non-immune cells. HSVs utilize numerous mechanisms to hamper the capacity of host cells

to restrict viral infection. (A) The engagement of the TNFR receptor leads to the activation of caspase-8 eliciting apoptosis, or eventually RIP1/3 to induce necroptosis.

However, HSV proteins ICP6 and ICP10 hamper signaling events related to these pathways, thus prolonging cell survival during infection. (B) Engagement of the Fas

receptor with Fas ligand (FasL) generally leads to extrinsic apoptosis events mediated by the activation of caspase-8. However, HSV glycoproteins J (gJ) and gD block

signaling events by this receptor. Additionally, the LAT transcript also interferes with caspase-8 mediated signaling that usually leads to apoptosis. (C) However, HSV

infection has been described to upregulate the expression of PUMA in the mitochondria of HSV-infected cells, which leads to BAX/BAK-dependent apoptosis

mediated by caspase-3. Thus, HSV may induce the intrinsic apoptotic pathway at later time points of infection after inhibiting apoptosis. (D) Another antiviral

mechanism hampered by HSV infection is inhibition of cell-induced apoptosis due to translation arrest. Upon detection of viral components, host PKR triggers eIF2α

phosphorylation, which inhibits its function and consequently mRNA translation, leading to global protein synthesis arrest and caspase-3 activation. However, the viral

proteins US11 and γ34.5 impair eIF2α phosphorylation, allowing viral gene translation to ensue during infection and limiting apoptosis through this pathway. (E) The

host protein ZAP can act as an antiviral factor that promotes degradation of viral mRNAs. However, its function is inhibited by the HSV protein UL41 (VHS), which

promotes ZAP mRNA degradation. (F) Finally, infected cells may attempt to prevent the release of mature virion through a membrane protein called tetherin that is

capable of binding to enveloped virions. As a countermeasure, the viral glycoprotein gD interacts with tetherin which ultimately provokes degradation of the latter.

Black lines show cellular processes. Red lines show processes modulated by HSVs.

sufficient amounts of progeny virions for the dissemination
of infection onto adjacent cells and other tissues within
the host.

On the other hand, HSVs have been described as capable of

inducing apoptosis in immune cells (Jones et al., 2003; Stefanidou
et al., 2013a). For instance, HSV-1 induces apoptosis in natural

killer cells (NK cells) upon interacting with virus-infected
macrophages that expresses Fas/FasL (Figure 2) (Iannello et al.,

2011), and kills dendritic cells (discussed in the followings

sections) (Peretti et al., 2005; Stefanidou et al., 2013b). Although
the specific mechanism by which HSVs induce apoptosis in

DCs is unclear to date, the process was found to be likely

mediated by reduced c-FLIP expression, because it was targeted
to degradation in a proteasome-dependent manner (Kather et al.,

2010; Stefanidou et al., 2013a). Importantly, an HSV-2 mutant
virus lacking the gene that encodes glycoprotein D (US6), was
shown to be non-lethal for DCs, yet it is unknown if the mutated
or deleted viral gene is directly involved in cell death or if its

deletion interferes with viral processes that relate to cell death
(Petro et al., 2015; Retamal-Diaz A. et al., 2017).

HSVs have also been described to induce the death of T cells

either, directly or indirectly. Indeed, a study reported that HSV-2
induced apoptosis in T cells through the activation of caspase-

9, -8, and -3 (Vanden Oever and Han, 2010). Although the
mechanism by which apoptosis was induced involved intrinsic

apoptotic pathways, the addition of inhibitors of apoptosis

was unable to completely revert cell death (Pongpanich et al.,
2004). Indirectly, HSV-1 has been described to induce T cell

“fratricide,” a process in which activated T cells infected with
HSV-1 increase their surface expression of FasL and induce the
apoptosis of neighbor T cells, through FasL signaling through
Fas receptor (Raftery et al., 1999). Overall, the findings discussed
above indicate that HSVs can differentially modulate apoptosis
in immune and non-immune cells, which may favor interference
with the host antiviral immune response while allowing viral
replication to occur in epithelial cells.
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HSVs INTERFERE WITH TOLL-LIKE
RECEPTOR SENSING OF VIRAL
COMPONENTS

Immune and non-immune cells express numerous molecular
sensors that detect virus components or infection-related stimuli
that promote the induction of rapid antiviral responses that
hamper viral replication and virus propagation (Mogensen,
2009). A type of stimuli that may be encountered or produced
during virus infection are pathogen-associated molecular
patterns (PAMPs) (Tang et al., 2012), as well as danger signals
released due to cellular stress in response to viral replication
and known as damage-associated molecular patterns (DAMPs)
(Johnson et al., 2013). Host receptors that sense these stimuli
include Toll-like receptors (TLRs), which include both cytosolic
and nuclear proteins (Mogensen, 2009). Upon the engagement of
ligands by such types of receptors, signaling pathways take place
which results in the expression of factors with antiviral activity,
as well as the production of soluble and membrane-bound
molecules that modulate the activity of the infected cell and
neighboring cells (Pandey et al., 2014). The early recognition of
viral factors by the host, immediately after infection will favor an
effective control of the pathogen and hamper its replication and
dissemination, altogether likely promoting the establishment of
a protective and long-lasting immunity (Mogensen and Paludan,
2001; Tang et al., 2012).

Toll-like receptors, such as TLR2, TLR3, TLR7, and TLR9
have been described to mediate antiviral activities against HSVs
during infection (Alexopoulou et al., 2001; Triantafilou et al.,
2014). Experimental findings indicate that TLR2 recognizes
glycosaccharides within the virion structure, which provides

some degree of protection against HSVs. Indeed, it has been
reported that TLR2 recognizes the glycoprotein B (gB) of HSV-

1, promoting NF-κB activation and the secretion of interleukin
(IL)-8 (Cai et al., 2013). Additionally, TLR2 seems to work in

concert with the integrin αvβ3, acting as a coreceptor for its

activation which leads to type-I IFN production in response
to the HSV-1 proteins gH/gL (Gianni and Campadelli-Fiume,

2014). In vivo assays showed that in TLR2 knockout mice
neuronal CCL2 levels were decreased, in associationwith reduced

macrophage recruitment into the enteric nervous system after

intragastric HSV-1 infection (Brun et al., 2018).
On the other hand, the use of agonists of TLR3, a receptor

that recognizes pathogen or host double-stranded RNA (dsRNA)
that may be produced during viral infections or abnormal cellular

processes, has been reported to promote effective antiviral

responses (Alexopoulou et al., 2001; Weber et al., 2006). Among
HSV-related viral processes that occur during viral transcription,

overlaps within (intra-molecular) or between (inter-molecular)
viral and host mRNAs may yield dsRNA structures that induce

the activation of dsRNA sensors. Additionally, HSVs encode

micro RNAs (miRNAs, miR), which are processed from dsRNA

intermediates. Some of these miRNAs have been shown to
be involved in regulating virus latency. For instance, miR-

H2 targets ICP0, which is required for immediate early gene
expression and lytic infection, while miR-H3 andmiR-H4 encode

antisense sequences that counteract the neurovirulent virus
lytic factor ICP34.5 (γ34.5). Furthermore, miR-H6 targets ICP4
and promotes LAT transcription (Piedade and Azevedo-Pereira,
2016). Other miRNAs, such as miR-H1, miR-H5, miR-H7,
miR-H8, and miR-H11 are also loaded onto the RNA-induced
silencing complex (RISC), which may also help trigger dsRNA
sensors within infected cells (Flores et al., 2013). Although the
precursors of these miRNAs may eventually be involved in the
activation of host dsRNA sensors, the precise mechanisms by
which these receptors are activated have not been determined
and calls for further research in this area. Interestingly, the
application of the TLR3 agonist Poly I:C was reported to confer
protection against HSV-related disease in the mouse genital
infection model (Ashkar et al., 2004). Recently, an HSV vaccine
candidate based on sub-unit viral antigens used Poly I:C as a
potent adjuvant, which elicited a robust antibody response and
induced protection to a lethal vaginal challenge withHSV-2 in the
mouse infection model. Importantly, protection was associated
with the activation of TLR3 by this formulation (Bardel et al.,
2016). On the other hand, it has been suggested that CD8α
dendritic cells TLR3 expression contributes to the establishment
of an antiviral response that is dependent on NK and CD8+ T cell
activation (Swiecki et al., 2013).

Importantly, several findings suggest that the host has set
mechanisms dependent on TLR3 function to detect HSV
infection in the central neural system (CNS) and restrict
viral replication (Zhang et al., 2008; Carty et al., 2014). For
instance, experiments with TLR3 knockout mice have shown
that the expression of TLR3 in astrocytes favors the control
of HSV infection in the CNS, mainly thanks to NF-κB-
dependent secretion of IL-6 and TNF-α (Reinert et al., 2012;
Liu et al., 2013). On the other hand, induced pluripotent
stem cells (iPSCs) obtained from TLR3-deficient patients that
were differentiated into various neural populations, displayed
increased susceptibility to viral infection and impaired IFN
secretion (Lafaille et al., 2012). Accordingly, mutations present
in genes of the TLR3 signaling pathway, such as the gene
encoding for TANK-binding kinase 1 (TBK1), correlated with the
development of herpes simplex encephalitis (HSE) in children
and young adults (Herman et al., 2012; Lim et al., 2014).
Therefore, positive modulation of the TLR3 pathway may help
control HSV infection in infected individuals, yet this remains to
be determined.

TLR7, which recognizes exogenous single-stranded RNA
(ssRNA) has been reported to induce a response that reduces
HSV infection and disease in a genital mouse infection model
when engaged with the synthetic agonist Imiquimod (Miller
et al., 1999). Furthermore, application of this TLR7 agonist in
HIV-1-positive patients suffering from acyclovir-resistant HSV-
2 disease has been shown to elicit favorable results against this
virus. Thus, artificially engaging TLR7 during HSV-2 infection
may eventually prove an effective mechanism to reduce virus-
related disease and shedding in these patients (Hirokawa et al.,
2011; Deza et al., 2015).

TLR9 is expressed in immune and non-immune cells and
can sense bacterial and viral DNA, as well as synthetic CpG-
oligodeoxynucleotides (CpG ODNs). Interestingly, intranasal
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application of CpG ODNs that are TLR9 agonists in BALB/c
mice previous to HSV-1 infection was reported to reduce viral
load and the production of pro-inflammatory cytokines IL-6,
CCL2, and CCL5 by neurons in the CNS, which increased
the survival rate of the infected mice (Boivin et al., 2012).
Moreover, local mucosal TLR9 engagement with CpG ODNs
prior to infection has been described to promote thickening of
the genital epithelium and increase immune cell infiltration into
the submucosa in order to control HSV-2 replication, conferring
protection in the genital tissue after infection in mice (Ashkar
et al., 2003). Although TLR9 knockout mice did not die after CNS
infection with HSV-1 in one study, these animals were highly
susceptible to HSV infection (Krug et al., 2004; Mancini and
Vidal, 2018). In another study, TLR9 expression in the trigeminal
ganglia was reported to be required to prevent HSV encephalitis
induced by intranasal HSV-1 infection, as more than half of the
animals that lacked this receptor died. Interestingly, if the animals
lacked both, TLR2 and TLR9 all animals died after infection
pointing out the relevance of these receptors in HSV infection
(Lima et al., 2010). A similar result has been reported in the
HSV genital infection model, as both TLR9 and TLR2 together
have been observed to be relevant for resisting intravaginal
infection by HSV-1. Indeed, a double TLR2/9 knockout mouse
was more susceptible to infection than single knockout animals
(Uyangaa et al., 2018). The anti-HSV response in the presence of
TLR2/9 involved increased differentiation of TNF-α- and iNOS-
producing DCs (Tip-DCs) and the activation of NK cells, which
was accompanied by increased recruitment of the latter to the site
of infection (Uyangaa et al., 2018). Furthermore, CpG treatment
has been shown to induce plasmacytoid DCs (pDCs) to secrete
IL-12 and type-I IFNs during HSV-2 infection in TLR4 knockout
mice, but not TLR9 knockout animals suggesting that these cells
need TLR9 to produce these cytokines (Lund et al., 2003; Boivin
et al., 2012). Although IFN-α production during HSV infection
in vivo is mostly TLR9-independent, CpG also elicited significant
IFN-α secretion by splenic pDCs in a TLR9-dependent manner
during HSV-1 infection in vitro (Hochrein et al., 2004).

Taken together, several TLRs recognize HSV components
leading to limited disease, while other TLRs are not stimulated by
HSV. However, when these receptors are engaged with activating
ligands they also display antiviral activities, which suggests that
targeting TLR receptors could be an attractive strategy to treat or
limit HSV infection.

HSVs ALSO HAMPER THE SENSING OF
VIRAL NUCLEIC ACIDS BY NON-TLR
RECEPTORS

Besides TLRs, other host receptors also sense nucleic acids
expressed during HSV infection, such as cytosolic retinoic-
acid-inducible gene-1 (RIG-1)-like receptors and a broad class
of putative DNA sensors (Mogensen, 2009). Importantly, viral
nucleic acids can act as strong activators of host signaling
pathways that lead to antiviral cellular responses (Iwasaki, 2012).
Furthermore, the detection of viral nucleic acids frequently leads
to the secretion of pro-inflammatory cytokines, as well as the

production of IFNs that hamper viral replication and infection
(Diner et al., 2015). Interferon-γ inducible protein 16 (IFI16) is a
host sensor of nucleic acids that has been reported to be able to
recognize episomal dsDNA, particularly DNA replicating in the
nucleus of cells, which results in IFI16 acetylation (Ansari et al.,
2015). This process is followed by the translocation of IFI16 to the
cytoplasm, which leads to the promotion of IFN-β secretion by
the cell and the activation of a host multiprotein complex called
the inflammasome, able to initiate an inflammatory response
(Unterholzner et al., 2010; Kerur et al., 2011). Importantly,
HSV-1 and HSV-2 recognition by IFI16 induces the activation
of the transcription factors interferon regulatory factor 3 (IRF3)
and NF-κB, which once translocated to the nucleus induce IFN-
α/β and IL-6 production in vaginal epithelial cells (Dawson and
Trapani, 1995; Conrady et al., 2012; Triantafilou et al., 2014).
IFI16 recognition of foreign DNA likely depends on the sensing
of naked DNA. During HSV-1 infection, IFI16 may silence viral
gene expression in human fibroblasts by adding nucleosomes and
heterochromatin marks to the viral DNA, thereby restricting the
host transcription machinery from accessing the viral genome
(Orzalli et al., 2013). On the other hand, in epithelial cells the
HSV-1 ICP0 protein has been reported to partially inhibit IFI16
activation by targeting it to the proteasome for degradation
(Figure 3) (Johnson et al., 2013). A role for IFI16 in HSV
infection has been assessed in vivo, with IFI16 knockdown mice
unable to produce IFN-α and clear HSV-1 from the cornea
after ocular infection (Conrady et al., 2012). Taken together, the
studies described above indicate that HSVs readily modulate
downstream pathways related to IFI16, as its activation seems to
be detrimental to these viruses and their replication. Regretfully,
to date only a few studies have assessed the roles of these sensors
in immune cells in response to HSV infection.

cGMP-AMP synthase (cGAS) is a cytosolic DNA sensor
that triggers cytosolic GMP-AMP (cGAMP) production upon
binding to an activating DNA (Cai et al., 2014), cGAMP, in
turn, acts as a messenger that signals through the transmembrane
adaptor stimulator of interferon genes (STING) and leads to
the recruitment and phosphorylation of TBK1, which ultimately
activates IRF3-dependent production of IFN-α/β (Sun et al.,
2013; Wu et al., 2013). Interestingly, HSV-1 recognition by cGAS
leads to IFN-α and IFN-β secretion in fibroblasts, as well as
immune cells (Orzalli et al., 2015). Furthermore, it has been
shown that cGAS and IFI16 detect HSV cooperatively, with cGAS
partially localizing in the nucleus and associating with IFI16
to promote the stabilization of the latter (Orzalli et al., 2015).
Nevertheless, HSV-1 has been reported to be able to deregulate
the function of these sensors. For example, the HSV-1 UL37
tegument protein has been shown to target cGAS and elicit its
inactivation through the deamidation of an asparagine residue
that is found both, in the human and mouse versions of this
protein (Figure 3) (Zhang et al., 2018). In addition, apoptosis was
observed following activation of cGAS after HSV-1 infection in
human foreskin fibroblasts, which required cyclic dinucleotides
and the activation of STING (Diner et al., 2016). On the other
hand, protein kinase B (PKB, AKT) activation during HSV-1
infection has been observed to phosphorylate and suppress cGAS
activity in epithelial cells, macrophages and fibrosarcoma cells
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FIGURE 3 | HSVs interfere with viral sensing. (A) cGAS is a cytosolic DNA sensor that triggers the activation of STING, which can lead to the phosphorylation of the

transcription factor NF-κB and the transcription factor IRF3 through the activity of TBK1. HSV proteins, such as UL37 and UL41 interfere with cGAS activity. VP11/12

and US3 modulate Akt signaling to promote cGAS phosphorylation and suppress its activity, further impairing the capacity of cGAS to mediate STING activation.

(B) Toll-like receptors (TLRs) are involved in recognizing pathogen and danger signals. Engagement of TLRs with agonists leads to improved antiviral responses due to

increased type-I IFN secretion, which is dependent on IRF3/7 and leads to the production of cytokines dependent on NF-κB activation. Importantly, VP24 can target

TBK1 to block IRF3 phosphorylation. Downstream of TBK1, ICP0 binds IRF3, and IRF7 to inhibit their activity. (C) US3 also blocks IRF3 activation and its translocation

to the nucleus reducing type-I IFN production by HSV-infected cells. (D) MDA5 and RIG-1 can recognize dsRNA products elicited during viral infection and replication.

HSV proteins UL37 and UL41 can impair the function of these cellular sensors, which signal through MAVS to activate NF-κB and promote cytokine production.

(E) DNA-dependent activator of interferon (DAI) can sense HSV likely through the recognition of HSV dsDNA and inhibit the activity of ICP0, leading to a decrease in

viral genome replication. However, after DAI recognition downstream signaling events from STING, through NF-κB are blocked by the viral protein UL24. (F) The

inflammasome is a multiprotein complex that assembles upon host sensor (e.g., AIM2, IFI16, NLRP3) encounter with viral determinants. The HSV protein VP22 has

been reported to block AIM2 sensing of HSV and hence, block pro-caspase-1 activation by adaptor protein apoptosis-associated speck-like protein containing CARD

(ASC). By blocking pro-caspase-1 activation, HSV inhibits the production of the pro-inflammatory cytokine IL-1β. Although the host sensor IFI16 has been reported to

signal mainly through STING, it can also participate in inflammasome activation. (G) The HSV-2 protein ICP0 can direct IFI16 to degradation compartments, thus

blocking downstream signaling events by this sensor. Black lines show cellular processes. Red lines show processes modulated by HSVs.

in vitro (Figure 3) (Seo et al., 2015). The latter effect is likely
due to HSV-1 US3 inhibiting Src family kinases and UL13-
dependent VP11/12 tyrosine phosphorylation that leads to the
modulation of the phosphatidylinositol-3 kinase (PI3K)/AKT
signaling pathway (Eaton et al., 2014). Overall, PI3K/AKT
modulation by HSVs would likely provide the virus the ability to
interfere with cellular processes related to this pathway, such as
cell metabolism, proliferation, gene expression, and cell survival
(Liu andCohen, 2015). Signaling through STINGhas been shown
to be particularly important for conferring protection against
ocular HSV-1 infection, as increased disease and virus replication
were observed in the corneas and trigeminal ganglia of STING
knockout mice, as compared to control animals (Parker et al.,
2015). Consistently, treatment with 5,6-dimethylxanthenone-
4-acetic acid (DMXAA), a STING agonist prior to infection
protected mice from HSV neurological disease, which was
associated with reduced viral replication thanks to increased
type-I IFN production (Ceron et al., 2019).

Although cGAS is targeted early after infection by HSV, one
wonders if it would be possible to detect this host sensor at later
time points during cell infection. In this regard, the virion host
shutoff protein (VHS, UL41) has been described to target cGAS
for degradation even at 20 h post-infection, significantly reducing
the chances that this receptor signal for IFN-β production upon
HSV infection of epithelial cells and fibroblasts (Figure 3) (Su
and Zheng, 2017).

Although some level of interference has been described
by HSVs over the nucleic acid sensors described above, the
DNA sensor termed DNA-dependent activator of interferon
(DAI), which is expressed in primary vaginal tissue has been
reported to readily detect HSV-2 and lead to IL-6 and IFN-
β release upon infection (Triantafilou et al., 2014). This host
sensor has been described to interact with the HSV-1 protein
ICP0 to hamper viral genome replication, yet independent
of the canonical DNA sensing function of this host factor
(Figure 3) (Pham et al., 2013). Importantly, downstream events
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of the cGAS-STING signaling pathway, which are shared with
those of DAI-STING, can be blocked by the HSV-1 serine
protease UL24 protein that impairs NF-κB activation (Xu et al.,
2017). Furthermore, VP24 can target TBK1 and hamper IRF3
phosphorylation, thus blocking alternative downstream signaling
pathways associated with STING activation (Figure 3) (Zhang
et al., 2016). Again, impairing IRF3 activation within infected
cells will result in impaired IFN-I production and subsequent
inhibition of interferon-stimulated genes (ISGs) in infected and
neighbor cells.

RIG-1, as well as melanoma differentiation-associated protein
5 (MDA5), are two host sensors specialized in recognizing
dsRNA (Weber et al., 2006). In the context of DNA viruses,
such molecules are likely generated as byproducts during the
transcription of viral genes and may derive from viral or
host products, although this has not been reported for HSVs.
Importantly, both receptors have been reported to have their
signaling pathways modulated by the HSV protein VHS early
after infection (Cotter et al., 2010; Yao and Rosenthal, 2011). This
effect has been described to lead to impaired signaling events that
otherwise should elicit IRF3 activation and an IFN-β-mediated
antiviral response (Figure 3) (Yao and Rosenthal, 2011). RIG-
1 has been reported to activate the STING pathway through
an RNA-DNA sensor crosstalk mechanism aimed at restricting
HSV-1 infection in epithelial cells and fibroblasts, as well as
in vivo (Liu et al., 2016a). Additionally, the HSV-1 UL37 viral
protein has been shown to directly block the function of RIG-1,
through the deamidation of its helicase domain, which is needed
for sensing dsRNA products (Figure 3) (Zhao et al., 2016).

In neuronal tissues DAI and RIG-1 work in tandem to detect
HSV-1 in the CNS and elicit the production of the inflammatory
cytokines TNF-α and IL-6 by murine glial cells, which altogether
promote CNS inflammation and increased CNS permeability
that allows immune cells to cross the blood-brain barrier, as
well as IFN-I type-I to limit viral replication (Crill et al., 2015).
Accordingly, RIG-1-mediated recognition of viral nucleic acids in
this context depends on host DNA-dependent RNA polymerase
III transcription of viral genes into mRNA harboring a 5′

triphosphate CAP structure, which is a substrate for RIG-1 and
would allow an antiviral response either, directly or indirectly
through DAI or RIG-1, respectively (Crill et al., 2015).

Another viral sensing pathway related to HSV and nucleic
acids is the recognition of viral DNA and the activation of the
inflammasome early after infection and then, its inhibition later
during the virus replication cycle (Johnson et al., 2013). The
inflammasome is amultiprotein complex composed by either one
of the cytoplasmic sensors NLRP3 or AIM2, combined with IFI16
and has been described to sense HSV in keratinocytes (Chen and
Ichinohe, 2015; Gimenez et al., 2016; Strittmatter et al., 2016).
Consistent with this finding, a recent study found that IFI16
and NLRP3 are activated in human fibroblasts early after HSV
infection (4 h) with consequent IL-1β release (Johnson et al.,
2013). However, at later time points (8 h), IFI16 was found to
be directed to the proteasome by the viral protein ICP0 and
caspase-1, which is a pro-inflammatory effector induced by the
inflammasome, and appeared to be trapped within actin clusters
instead of being free in the cytosol to enact its catalytic activity

(Figure 3) (Johnson et al., 2013). Additionally, HSV-1 has been
reported to inhibit AIM2-dependent inflammasome signaling
events by preventing its oligomerization through the viral protein
VP22 (Maruzuru et al., 2018). Thus, HSVs also seem to have
evolved molecular mechanisms to block the activation of the
inflammasome within infected cells, as a mechanism to hamper
the overall function of this sensor and therefore limit its effector
capacity of alerting the cells of the presence of the virus.

Finally, virus-infected cells can also detect tertiary RNA
structures derived from viral mRNAs thanks to protein kinase
R (PKR), a host factor that once activated can help hamper
the replication of viruses by inducing NF-κB activation and
the expression of cytokines that control virus replication and
infection (IFNs) (Kang and Tang, 2012). Furthermore, PKR can
control protein synthesis by inducing its shutdown within the
cell through the phosphorylation of the host translation initiation
factor 2-alpha (eIF2α), which ultimately leads to cell apoptosis
(Vattem et al., 2001). Because inhibition of translation within
infected cells would be detrimental to the replication cycle of
HSVs, these viruses override PKR function by inhibiting the
phosphorylation of eIF2α thanks to the viral proteins γ34.5 and
US11 (Figure 1) (He et al., 1997; Poppers et al., 2000; Carr et al.,
2005). Thanks to these viral factors, HSVs can bypass cellular
processes elicited after contact of host sensors with viral nucleic
acids to enable productive viral infection and virus replication
within infected cells.

Taken together, several nucleic acid receptors other than
TLRs can sense activating nucleic acids generated during HSV
infection. The recognition of such ligands likely helps counteract
virus infection and dissemination to other cells and tissues within
the host. Importantly, several of these receptors are known to
recognize dsRNA structures, yet the origin of these nucleic acids
in the context of HSV infection has not been established, and
further studies are needed for their identification.

HSVs INTERFERE WITH THE HOST
INTERFERON RESPONSE

The activation of pathogen recognition receptors (PRR), can
lead to the activation of immune and non-immune cells and
trigger antiviral responses that restrict and interfere with virus
replication. A significant antiviral response elicited by the sensing
of viruses is the IFN response. IFNs are cytokines that once bound
to their receptor can potentiate antiviral activities both, in the
cell that secretes these molecules and neighbor cells (Schoggins,
2014). IFNs are classified as type-I, -II, or -III. Type-I IFNs are
a broad family of molecules that can be secreted by numerous
cell types early after infection in response to pathogens such as
viruses, with some well-known members being IFN-α, IFN-β,
and IFN-ε, and others more recently described IFN-υ, IFN-ω,
and IFN-ζ (Hemmi et al., 2002; Al-Khatib et al., 2004; Diebold
et al., 2004; Oritani and Tomiyama, 2004; Theofilopoulos et al.,
2005; Ma et al., 2018). On the other hand, type-II IFNs have
a sole family member, namely IFN-γ which is secreted by
specialized subsets of immune cells usually late during infection
(Boehm et al., 1997; Bigley, 2014). Finally, type-III IFNs such as
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FIGURE 4 | HSV proteins modulate key steps in interferon-related pathways. HSV proteins inhibit interferon-related pathways. Engagement of Toll-like receptors

(TLRs) by viral determinants leads to the activation of transcription factors that induce the expression of type-I IFNs. (A) The HSV ICP0 protein can block IRF7

activation by hampering its phosphorylation and consequently inhibit its translocation to the nucleus. (B) Additionally, UL36 inhibits the ubiquitination of TRAF3 which

is required for positive downstream signaling and activation of the transcription factors NF-κB and IRF3. (C) HSV proteins US3 and ICP0 can interfere with IRF3

activation at this stage, thus blocking this signaling pathway that otherwise would lead to type-I IFN expression. (D) Furthermore, VP16 inhibits the formation of the

IRF3-CREBBP/p300 complex hampering signaling events that would lead to IFN-I expression. (E) Upon IFN-I engagement, IFNR on the cell surface elicits intracellular

signaling cascades mediated by STAT1, STAT2, and JAK1. However, the viral protein ICP27 interferes with STAT1 activation and the viral protein VHS hampers

STAT2- and JAK1-related signaling pathways that otherwise would induce the expression of ISGs, which elicit antiviral effects. Black lines show cellular processes.

Red lines show processes modulated by HSVs.

IFN-λ1, IFN-λ2, and IFN-λ3 are usually secreted early during
infection and have somewhat similar effects than type-I IFNs,
although their secretion is limited to epithelial cells (Donnelly
and Kotenko, 2010). While type-I and type-III IFNs are related
to the induction of multiple antiviral effects in several cell types,
type-II IFNs are more related to regulatory roles among immune
cells and are accordingly mainly expressed by such types of cells,
such as T helper cells (Tau and Rothman, 1999).

Because IFNs have detrimental effects on viruses, HSVs
encode an array of molecular factors that negatively modulate
the induction of IFN, their production, secretion, and their
associated effects by interfering, among others with their
intracellular signaling pathways (Peng et al., 2009). For example,
the ICP0 proteins of both, HSV-1 andHSV-2 have been described
to directly bind and interfere with the activation of IRF3 and
IRF7, two transcription factors related to the expression of type-I
IFNs (Figure 4) (Eidson et al., 2002; Lin et al., 2004; Zhang et al.,
2015). Importantly, mice that lack both IRF3 and IRF7 (IRF3/7
double knockout mice) have been described to suffer increased
HSV-1 replication and display enhanced dissemination of this
virus to several organs after corneal infection (Murphy et al.,
2013). Additionally, the HSV-1 US3 protein has been reported
to hyperphosphorylate IRF3, which impairs its dimerization

and nuclear translocation, thus hampering the transcription
of IFNB mediated by this transcription factor (Wang et al.,
2013b). Furthermore, the HSV-1 tegument protein VP16 has
been shown to block IFN-β expression through the inhibition
of IRF3 and NF-kB, by impairing the recruitment of the shared
coactivator CREB binding protein (CBP) to IFN-I promoters,
which is required by these transcription factors to induce IFN-I
expression (Figure 4) (Xing et al., 2013). Accordingly, the HSV-
1 protein UL36, an ubiquitin-specific protease has been shown
to de-ubiquitinate TRAF3 (TNF receptor-associated factor-3),
thereby hampering stimuli-induced IRF3 dimerization, which is
required for IRF3 translocation to the nucleus thus, inhibiting
IFN-β transcription (Figure 4) (Wang et al., 2013a). Moreover,
the advantage for HSVs in interfering with the signaling events
associated to type-I IFN secretion has been evidenced in vivo,
as low IFN-α and IFN-β production is observed in the genital
tract of mice after infection (Milligan and Bernstein, 1997;
Peng et al., 2009).

When IFNs are released from infected cells, they can act
either as paracrine or autocrine ligands by binding to IFN
receptors on the cell surface and induce ISG within cells.
Antiviral effects of IFNs include restricting the replication of
the viral genome, inhibition of protein translation, and impaired
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virus egress (Schoggins and Rice, 2011). In order to counteract
these outcomes, HSVs interfere with signaling events that occur
downstream of the IFN receptors. For instance, the HSV-1 ICP27
protein affects STAT-1 activation, which is a signal transducer for
ISG transcription. ICP27 has been reported to interfere with the
phosphorylation and nuclear accumulation of STAT-1 in order to
impair its activity as a transcription factor (Figure 4) (Johnson
et al., 2008). Additionally, there is indirect evidence, through
an HSV-1 mutant, that suggests that the viral protein VHS
could partially be responsible for reducing the activity of signal
transducers such as JAK1 and transcription factors like STAT-
2, as observed in HSV-infected HeLa cells (Figure 4) (Chee and
Roizman, 2004). Additionally, the HSV-1 ICP27 protein has been
reported to be involved in the secretion of an uncharacterized
soluble factor that has antagonizing activity over IFN-I signaling
pathways in neighboring uninfected cells (Johnson and Knipe,
2010). In vivo studies have assessed the relevance of IFN-I in HSV
infection in mice that lack the receptors for type-I IFNs, namely
IFNAR1 and IFNAR2c, and shown that inoculation of HSV-1 in
the footpads of such animals results in a reduced capacity of the
host to control HSV replication, leading to systemic infection,
although non-lethal (Luker et al., 2003).

On the other hand, IFN-αβγR−/− mice have been found to
be highly susceptible to acute liver failure after HSV-1 corneal
infection, with IFN-αβγR expression in both, immune and non-
immune cells playing relevant roles in the control of systemic
HSV infection (Pasieka et al., 2011; Parker et al., 2016). Moreover,
a key role for type-I IFN signaling has been identified in neurons,
since immune cell and non-neuronal cell IFN responses do
not protect from lethal corneal HSV infection when the these
pathways are abrogated in neurons (Rosato and Leib, 2015).
In a later study, it was found that IFN-I signaling in neurons
was dispensable for the establishment of latency and that cells
deficient in IFN-I signaling supported reduced reactivation yet,
displayed higher levels of LAT indicating that IFN-I likely
regulates LAT expression in neurons (Rosato et al., 2016).
Consistent with the relevance of type-I IFNs in HSV infection,
topical application of IFN-α was reported to significantly reduce
the frequency of recurrences and viral shedding in patients
suffering from genital HSV reactivations (Shupack et al., 1992).
Although HSVs have mechanisms to impair type-I IFN secretion
and their effects, such molecules may eventually reach adjacent
cells that are non-infected and elicit signaling events in these cells
(Gill et al., 2011; Lee et al., 2017).

IFN-γ induction is associated with positive outcomes during

HSV-1 and HSV-2 infections, with reduced viral replication.
Furthermore, IFN-γ may be considered a marker related to

the potential efficacy of prophylactic formulations (Svensson

et al., 2005; Bird et al., 2007; Sato et al., 2014; Khan et al.,
2015). Without IFN-γ, T cells are incapable of conferring

protection against HSV genital infection (Johnson et al., 2010).
However, the relationship between IFN-γ and HSV control is
intricate, as the antiviral effects of this cytokine are tissue-
dependent and vary depending on whether the virus remains
latent in infected cells or is productive in the lytic cycle (Bigley,
2014). Among numerous effects, IFN-γ causes microtubule
remodeling in infected cells, which is mediated through the

activity of the molecules suppressors of cytokine signaling 1
and 3 (SOCS1 and SOCS3). However, elevated SOCS expression
elicits microtubule stabilization and an inhibition feedback on
IFN-γ effects, which has been exploited by the HSV-1 ICP0
protein, capable of upregulating SOCS during lytic infection
in keratinocytes (Frey et al., 2009). Although IFN-γ acts over
promoters of IFN-γ-stimulated genes (ISGs) that have antiviral
functions, ISG expression is restricted by epigenetic regulations
of histone 3 (H3) in the trigeminal ganglia and is dependent
on histone deacetylases (HDACs) to maintain chromatin in a
transcriptionally inactive state (Gao et al., 2013). During HSV-
1 infection of the trigeminal ganglia, neurons may respond
to stress stimuli (e.g., UV light) and inhibit HDACs, which
results in SOCS1 and SOCS3 acetylation and the loss of IFN-γ
effects. Additionally, chromatin may suffer relaxation processes
allowing the viruses to exit latent infection of neurons (Guise
et al., 2013). Although a relevant role for IFN-γ has emerged
from some studies, paradoxically mice lacking IFN-II receptors
IFNGR1 and IFNGR2 showed comparable levels of viral loads
as controls when challenged with HSV-1, suggesting that the
effects of IFN-γ are somewhat complex in the context of
HSV infection (Luker et al., 2003).

Regarding type-III IFNs, relatively few studies have assessed

their role during HSV infection. However, one study has reported

that the administration of IFN-λ1 (IL-29) prior to HSV-1
infection promoted the expression of numerous antiviral proteins

in primary human keratinocyte cultures. One of them, IFN-
β helped prevent their infection. This effect was dependent
on TLR3 engagement and JAK-STAT signaling events (Zhang
et al., 2011). Furthermore, in human neurons HSV-1 infection
was shown to be suppressed by IFN-λ1 and IFN-λ2 (IL-
28A), particularly through the upregulation of TLR3 and TLR9
expression and subsequent TLR3/9-mediated antiviral responses
involving the transcription factor IRF7 (Zhou et al., 2011).
Interestingly, type-III IFNs have been reported to be secreted in
the vaginal mucosa mainly by DCs, yet if this is the case during
HSV infection remains to be determined (Iversen et al., 2010).

Taken together, HSVs have evolved several mechanisms to
interfere with the host IFN response at multiple levels. Indeed,
HSVs can impair IFN secretion and their related signaling events
in infected cells. Collectively, the capacity of HSVs to interfere
with IFN responses at various steps highlights the importance of
these molecules and pathways in HSV control. Unsurprisingly,
potential therapeutic approaches, such Imiquimod induce type-I
IFN secretion (Sainathan et al., 2012).

HSVs DOWN-MODULATE THE ANTIVIRAL
ACTIVITIES OF THE COMPLEMENT AND
INNATE IMMUNE CELLS

If HSV-infected cells are unable to restrict the replication of
these viruses or their dissemination, an innate immune response
consisting on both acellular and different cell types, will likely
interact with the viruses or virus-infected cells in an attempt to
impede further infection of nearby cells or other tissues (Halford
et al., 2005; Nandakumar et al., 2008; Tegla et al., 2011).
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FIGURE 5 | HSVs interfere with antiviral processes in innate immune cells. (A) HSV has been described to reduce MHC-I expression on the surface of infected cells.

In addition, HSV also reduces MICA and ULBP1-3 expression through the inhibition of PIGT, a member of the GPI anchoring complex by the HSV-1-encoded

microRNA H8 (miR-H8). (B) The HSV glycoprotein gD reduces nectin-1 expression on the surface of infected cells, hampering DNAM-1 binding to this host factor and

diminishing the capacity of NK cells to mediate the lysis of HSV-infected cells, which is normally mediated by granzymes. (C) HSV has been reported to directly

engage TLR2 on the surface of NK cells, which leads to IFN-γ and TNF-α secretion. (D) FasL expressed on the surface of HSV-infected macrophages has been

reported to induce Fas-mediated apoptosis in NK cells. (E) Within HSV-infected macrophages, the HSV protein ICP27 has been reported to inhibit STING and TBK1

activation, thus interfering with this signaling pathway that generally leads to IRF3-dependent type-I IFN secretion by virus-infected cells. (F) HSV infection of

macrophages reduces the surface expression of CD1d, which in combination with a glycolipid acts as a receptor for NKT cell TCRs. CD1d is sequestered by the HSV

proteins US3 and VP22. Thus, HSV reduces NKT expansion and function by hiding its activating ligand. Black lines show cellular processes. Red lines show

processes modulated by HSVs.

However, HSVs are able to inhibit the chain reactions carried
out by the host complement which is intended to hamper
pathogens by initiating a cascade of protein activations that
lead to a membrane attack complex (MAC) (Serna et al., 2016).
Indeed, the gC glycoprotein of HSVs can bind to the complement
component C3b and block alternative pathways that otherwise
lead to the formation of a MAC on the pathogen surface, or the
surface of virus-infected cells (Friedman et al., 1984; Mcnearney
et al., 1987. Additionally, gC also binds to the complement
components C3 and C5, further inhibiting pathways related to
the activation of this antiviral mechanism (Lubinski et al., 2002;
Hook et al., 2006b).

On the other hand, natural killer (NK) cells are innate immune
cells capable of sensing and destroying virus-infected cells that
either lack the expression of major histocompatibility complex
I (MHC-I) molecules, or express NK-activating molecules on
the surface because of abnormal cellular processes betray
infection (Mandal and Viswanathan, 2015). HSVs hampers
MHC-I expression on the surface of infected cells, which under
normal conditions should elicit the activation of NK cells (Orr
et al., 2005). However, HSV-1 infection has been shown to reduce
the expression of MHC class I polypeptide-related sequence

A (MICA) and UL16 binding proteins 1–3 (ULBP1, ULBP2,
ULBP3) on the surface of infected cells, which are activators of
NK cells that mediate signaling events through the engagement

of NKG2D in these cells (Figure 5) (Schepis et al., 2009).

This inhibition has been reported to be mediated by HSV-

1-encoded mir-H8, which downregulates PIGT expression, a

member of the GPI anchoring complex that anchors MICA
and ULBP1-3 and results in the surface downregulation of

these NK ligands (Enk et al., 2016). Therefore, NK cells
do not release cytotoxic molecules, such as granzymes onto

HSV-1-infected cells, protecting these cells from NK-mediated
apoptosis. Nevertheless, NK cells pulsed with HSV-1 and HSV-

2 glycoprotein gD antigens and inoculated with TLR2 agonists
produced IFN-γ that activated antiviral CD4+ T cells (Kim et al.,

2012). Consistent with immune evasion properties by HSVs, the

HSV-1 gD glycoprotein has been reported to sequester nectin-1
from the cell surface of infected cells and induce decreasedDNAX

accessory molecule-1 (DNAM-1) receptor engagement on the

surface of NKs by this ligand, thus preventing NK cell-mediated
lysis of infected cells (Figure 5) (Grauwet et al., 2014). Finally,

macrophages infected with HSV-1 have been described to express
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FasL and induce apoptosis in NK cells that express Fas receptors
(Iannello et al., 2011).

Another innate immune cell type known to participate in
antiviral responses is Natural Killer T cells (NKT cells). NKTs
recognize antigens in the form of glycolipids presented on CD1d
molecules that share structural similarities with MHC-I (Godfrey
et al., 2010). Importantly, HSV-1 has been described to negatively
affect NKT activation by downregulating CD1d expression on the
surface of infected cells (Figure 5) (Yuan et al., 2006; Rao et al.,
2011). More specifically, HSV-1 was shown to redirect CD1d
from the cell surface to intracellular compartments through the
phosphorylation of the host factor KIF3A by the viral kinase
US3 (Xiong et al., 2015). Furthermore, cellular recycling of CD1d
was also inhibited by the viral protein VP22 working along
US3 (Liu J. et al., 2016). Importantly, the administration of α-
galactosylceramide, an NKT ligand that elicits the recruitment
of these cells to the vaginal tissue was reported to decrease
the susceptibility of mice upon HSV-2 intravaginal infection
(Iversen et al., 2015).

Macrophages are also targets of HSVs. In these cells, HSV-
1 has been reported to inhibit downstream events related to
the cGAS-STING-TBK1 axis, particularly through the direct
interaction of ICP27 with STING and TBK1, which produced
a reduction in IFN-I secretion by these cells (Figure 5)
(Christensen et al., 2016). Interestingly, STAT-1-knockout mice,
which are unresponsive to IFN-α and IFN-γ, have been found
to be more susceptible to HSV-1 in terms of macrophage
infection, as compared to wild-type mice suggesting that these
cells utilize a JAK-STAT-1 signaling pathway to restrict HSV
replication (Mott et al., 2009). Additionally, HSV-1 has been
shown to produce higher levels of pro-inflammatory cytokines
in M1 macrophages as compared to M2 macrophages, with
M1 characterized as “classically polarized” macrophages vs.
M2 macrophages that are “alternatively polarized” (Martinez
and Gordon, 2014). The latter observation suggests that pro-
inflammatory M1 macrophages infected by HSV-1 promote
increased eye inflammation (Lee and Ghiasi, 2017). On the other
hand, in the same study when macrophages were stimulated to
induce their differentiation toward an M2 phenotype, these cells
produced anti-inflammatory cytokines (e.g., IL-10), which was
associated with less eye pathology.

Regarding other innate immune cell types, such as neutrophils
or mast cells, these cells have been described to participate at the
onset of immune cell infiltration into skin and corneas during
HSV infection (Royer et al., 2015; Hor et al., 2017). However aside
from contributing to exacerbated inflammation, a protective role
has not been attributed to neutrophil activity in these tissues in
mice models, yet mast cells seem to be necessary for assisting
innate immunity in the cornea of mice (Royer et al., 2015; He
et al., 2017).

Altogether these results suggest that HSVs target NK andNKT

cells, as well as macrophages because these cells likely play a
crucial role in controlling HSV infection. Thus, potentiating the

activation and functions of these cells during HSV exposure and

infection could elicit improved responses against these viruses.

HSV INFECTION MODULATES DENDRITIC
CELL MATURATION, ANTIVIRAL ACTIVITY
AND MIGRATION

Dendritic cells (DCs) are key immune cells that promote and
regulate immune responses by modulating the activity of innate
and adaptive immune cells (Gonzalez et al., 2008; Cespedes et al.,
2013). DCs are strategically located throughout the body acting
as sentinels that probe the environment surrounding mucosae,
skin, as well as internal organs. Ultimately, DCs sense and capture
foreign and self-antigens for their processing (Soloff and Barratt-
Boyes, 2010). DCs degrade protein-derived antigens and present
them to T cells as small peptides loaded on MHC-I and -II
molecules (pMHC) that can be recognized by T cell receptors
(TCR) on the surface of CD8+ and CD4+ T cells, respectively
(Galvez et al., 2016). DC antigen presentation to T cells can lead
to a process termed the immunological synapse, which involves
close DC-T cell interactions that can result either in T cell
activation or its inactivation (Gonzalez et al., 2007; Murphy et al.,
2012; Retamal-Diaz et al., 2015; Retamal-Diaz A. et al., 2017).
Importantly, the interaction between DCs and antigen-specific T
cells will determine the phenotype of T cells which will depend
on the expression of membrane-bound and soluble molecules
presented at the cell-cell interphase (Zheng et al., 2004). As a
result of DC-T cell activation, T cells can become among other
cell types, cytotoxic or regulatory by secreting soluble factors
that kill infected cells, modulate immune, and non-immune cells,
or promote tolerance to antigens, eventually ignoring cognate
antigens (Gonzalez et al., 2007).

Because of the role of DCs in defining the phenotype of
T cells, which in turn can affect the overall immune response
against a viral pathogen such as HSV, the interaction between
DCs and these viruses has gained increasing attention in the
last decade. Importantly, DCs are permissive to HSV infection,
although virus yields are somewhat limited as compared to
other cellular substrates, such as epithelial cells (Pollara et al.,
2003; De Jong et al., 2008; Grosche et al., 2017; Retamal-
Diaz A. et al., 2017). Once infected with HSVs, DCs display
reduced antigen presentation on MHC-I molecules, which is
mediated by the viral protein ICP47 that acts over transporters
associated with antigen processing (TAP) at the endoplasmic
reticulum and impedes antigen translocation to this organelle for
the loading of viral antigenic peptides onto MHC-I molecules
(Figure 6); yet, this phenomenon has been reported to occur
at a lower extent in murine cells, as compared to human cells
(Hill et al., 1995; Tomazin et al., 1998; Elboim et al., 2013;
Oldham et al., 2016a). Interestingly, ICP47 has been reported to
adopt a helical hairpin structure that blocks TAP function and
peptide translocation, as it precludes substrates from binding to
the transporter and prevents the two cytoplasmic nucleotide-
binding domains (NBD) of TAP from hydrolyzing ATP, which
is required for their activity (Oldham et al., 2016b). Despite the
existence of several variants of TAP-1 and TAP-2 in humans,
ICP47 does not seem to have a particular preference over one or
other polymorphism (Praest et al., 2018).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13 April 2019 | Volume 9 | Article 12767

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Tognarelli et al. Early Immune Evasion by HSVs

FIGURE 6 | HSVs interfere with dendritic cell function. Dendritic cells (DCs) are susceptible to HSV-1 and HSV-2 infection. (A) Upon infection with HSV, the host

protein CYTIP is degraded, which causes the upregulation of LFA-1 and reduces the capacity of DCs to migrate to draining lymph nodes and activate T cells. (B) HSV

infection hampers the capacity of DCs to present virus-derived antigens to T cells on MHC-I molecules by interfering with the activity of transporters associated with

antigen presentation (TAP proteins). Inhibition of TAPs is mediated by the viral protein ICP47. (C) HSVs elicit apoptosis in DCs through the downregulation of c-FLIP, a

potent anti-apoptotic protein, which is directed to the proteasome during infection of these cells. (D) HSV infection hampers the activity of the autophagosome, which

has been reported to reduce antigen presentation to CD8+ T cells. (E) CD80 and CD86 are co-stimulatory molecules that are commonly upregulated during infection,

and along with MHC-peptide complexes enable DCs to activate T cells. HSV inhibits the expression of CD80 and CD86 on the DC surface thanks to the viral proteins

γ34.5. The viral protein ICP22 also inhibits the expression of CD80 on the cell surface. (F) HSV infection inhibits inducible nitric oxide synthase (iNOS) in DCs through

the downregulation of caveolin-1, which will reduce the antiviral capacity of these cells. Black lines show cellular processes. Red lines show processes modulated by

HSVs.

HSV-1 and HSV-2 can also reduce the capacity of DCs to
activate T cells by decreasing the expression of the co-stimulatory
molecules CD80 and CD86 on the cell surface, which has been
suggested to occur through the downregulation of IFNα/β levels
by the viral protein γ34.5 (Figure 6) (Jin et al., 2009; Suazo
et al., 2015a). Consistently, an HSV-1 with a mutation in γ34.5
is capable of inducing the maturation of DCs through TBK-1-
dependent phosphorylation of IRF3 (Ma et al., 2017). However,
a later study suggests that inhibition on IRF3 activation by
γ34.5 is also mediated by mechanisms other than TBK-1, as
the deletion of the TBK-1 binding domain (TBD) of γ34.5 did
not restore IRF3 activation, although this finding remains to
be confirmed in DCs as the study was performed in human
foreskin fibroblasts cells (Manivanh et al., 2017). On the other
hand, the HSV-1 protein ICP22 has been reported to be capable
of binding to the CD80 promoter in DCs circulating through
HSV-infected cornea, inhibiting the expression of this important
co-stimulatorymolecule for T cells (Matundan andGhiasi, 2018).

Moreover, both HSV-1 and HSV-2 have been reported to
inhibit autophagosome formation in DCs, by interfering with
cellular degradation processes and affecting antigen presentation
to CD8+ T cells (Suazo et al., 2015a; Budida et al., 2017). Because

DCs utilize autophagy as a means to limit viral replication within
these cells, inhibition of this process likely contributes to HSV
subversion of DCs (Figure 6) (Rasmussen et al., 2011). HSV-
1 has been described to interfere with nitric oxide synthase
within lung DCs via downregulation of caveolin-1 (Cav-1),
further hampering the antiviral capacities of HSV-infected DCs
(Figure 6) (Wu et al., 2015).

Additionally, HSV-1 and HSV-2 have been reported
to hamper DC migration from the infected tissue to the
corresponding lymph nodes (LNs), thereby likely reducing the
efficacy of DCs at activating CD4+ and CD8+ T cells at this site
(Prechtel et al., 2005; Bedoui and Greyer, 2014; Retamal-Diaz
A. et al., 2017). Indeed, HSV-1 has been shown to promote the
degradation of cytohesin-interacting protein (CYTIP) in mature
DCs, which regulates DC motility by downregulating integrin
expression and causes the upregulation of lymphocyte function-
associated antigen-1 (LFA-1), a β2-integrin protein; therefore
enhanced adhesion of DCs occurs in the infected tissue reducing
their migration to the LNs (Figure 6) (Theodoridis et al., 2011).
Additionally, HSV-1- and HSV-2-infected Langerhans cells
(LCs) have been reported to undergo apoptosis after infection
with HSVs and to be unable to downregulate E-cadherin, which
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needs to be reduced at the cell surface to promote the migration
of these cells to the LNs (Puttur et al., 2010). In this context,
HSV-infected LCs have been described to act as a source of HSV
antigen for dermal DCs (dDCs) within the infected skin, which
would result in the phagocytosis of apoptotic HSV-infected LCs
by dDCs (Kim et al., 2015). The interaction between LCs and
HSV, and then by HSV-infected and apoptotic LCs with dDCs
would likely result in the priming of HSV-specific T cells in vivo,
which would be difficult to assess in vitro with HSV-infected
bone marrow-derived DCs (BMDCs) and monocyte-derived
DCs. Importantly, the effects of HSV infection over the
capacity of DCs to activate T cells seems to more pronounced
in vitro than in vivo (Bedoui et al., 2009; Kim et al., 2015;
Whitney et al., 2018).

However, contrarily to the negative effects described above
for HSV over DCs, another study found that upon exposure to
HSV-1, a human CD8α+ plasmacytoid DC subset increased the
expression of markers associated with the migration of these cells
to lymph nodes, and that these DCs were able to promote the
activity and functions of T cells, B cells and NK cells, which were
recruited to the infection site (Schuster et al., 2015).

Overall, most of the findings described above support the
notion that HSVs have evolved different mechanisms and
strategies to hamper DC function impacting virus control by
these cells and likely negatively affecting adaptive immune
responses in the host.

Despite numerous studies describing approaches that elicit
protective immunity against HSVs, identifying a correlate of
protection for HSV infection has remained elusive. Interestingly,
recent studies suggest that the outcome of the DC-HSV
interaction may relate to the establishment of protective
immunity, as specific HSV mutants that are attenuated in DCs
confer particularly protective and robust immunity against HSV
infection in vivo (Retamal-Diaz A. et al., 2017; Retamal-Diaz
A. R. et al., 2017). One of these studies reported that anti-
HSV antibodies mediated the protection conferred by the HSV-
inoculated DCs, which likely results from the help of B cell-
supportive anti-HSV helper T cells (Long et al., 2014). On
the other hand, vaginal DCs primed with estradiol have been
described to promote CD4+ T cells with a Th17 profile that
enabled these cells to efficiently respond against an HSV-2
challenge (Anipindi et al., 2016). An IL-1β-related signaling
pathway mediated this favorable response. The relevance for
DCs in eliciting protective anti-HSV responses has been further
emphasized by studies that assess their contribution at re-
stimulating tissue-resident memory T cells (TRM) (Iijima et al.,
2008). After HSV-2 infection, TRM CD8+ are recruited to the
genital tissue by chemokines such as CXCL-9 and CXCL-10,
which are expressed by the infected epithelium (Nakanishi et al.,
2009; Iijima and Iwasaki, 2014). Importantly, this recruitment
was found to be mediated, at least partially by IFN-γ produced
by DCs which came into contact with HSV antigen-specific Th1
helper CD4+ cells and stimulated them to establish TRM CD8+

cells (Smith et al., 2004; Nakanishi et al., 2009). In line with this
notion, a “prime and pull” immunization approach was recently
described with which protective immunity was achieved against
HSV-2 genital infection upon inoculation of an attenuated HSV
virus which induced vaginal tissue memory T cells that could be

recalled to this tissue in a CXCL10-dependent manner (Shin and
Iwasaki, 2012). dDC populations present in the skin within the
CD301b+ subset were found to be present at the site of infection
after applying “prime and pull” strategy mentioned above and
were held responsible for re-stimulating HSV antigen-specific
memory CD8+ T cells (Shin et al., 2016).

HSVs have also been reported to induce the synthesis and
release of pro-inflammatory cytokines by DCs that promote
their infection with HIV and the replication of this virus from
previously-infected cells, likely increasing the dissemination of
the latter virus during co-infections (Stefanidou et al., 2013a).
HSV-2-infected DCs secrete TNF-α, which through signaling
processes mediated by TNFR1 and TNFR2 has been reported
to induce increased expression of CCR5 in DCs, enabling
subsequent infection of these cells with HIV-1 (Marsden et al.,
2015; Herbring et al., 2016).

Recent studies support the notion that DCs may promote
neuron infection with HSV, thus contributing to virus latency
within the host. In addition, it has been observed that animals
depleted of DCs display up to fivefold less latently infected
neurons in the trigeminal ganglia, as compared to wild-type
mice suggesting that DCs participate in processes related
to neuron infection (Mott and Ghiasi, 2008). Accordingly,
the depletion of the CD11c+CD8α+ DC subset reduced the
amounts of latent HSV-1 in neurons after ocular infection
(Mott et al., 2009). Furthermore, Flt3L treatment, which
increases the numbers of DCs in tissues, produced increased
neuronal infection upon a similar infection (Mott et al.,
2008). Taken together these studies suggest HSV may use
DCs as Trojan horses to reach neurons, which may occur
by virus attachment to the cell surface or virus replication
within these cells. Despite these findings, another study found
that depleting DCs with diphtheria toxin targeting CD11c-
expressing cells was associated with increased viral loads in
neurons after HSV infection in the footpads (Kassim et al.,
2006). Another study found that mice lacking CD8α+ DCs
had increased amounts of latent HSV-1 and more recurrences
(Mott et al., 2014).

Overall, HSVs have evolved multiple mechanisms to
negatively modulate the function of DCs, which likely results
in a reduced capacity of the host to control HSV infection and
mount and effective antiviral response. Identifying strategies
that improve the interaction between HSVs and DCs should
likely ameliorate the overall host response to these viruses either,
immediately upon infection or during the establishment of
long-term protection.

CONCLUDING REMARKS

Herpes simplex viruses elicit a diverse array of diseases
in humans, both in individuals that have immune-related
complications, as well as otherwise healthy persons. The
capacity of HSVs to elicit disease during primary infections, as
well as recurrences after establishing lifelong infection relates,
among others to their ability to evade and neutralize host
antiviral mechanisms that act in immune and non-immune
cells. Importantly, HSVs interfere with early antiviral steps,
such as the capacity of the host to sense viral determinants,
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signaling pathways that lead to cellular antiviral effects and the
function of innate immune cells that act early after infection
against these viruses. Evasion of these processes gives HSVs
the chance to infect host cells and reach neurons favoring
viral latency and lifelong infections, altogether dampening
antiviral activities that could help immune cells establish
effective and protective immunity against these viruses. The
fact that the host somewhat fails at initiating an effective early
antiviral response may provide grounds for the establishment of
ineffective adaptive immunity, mainly through the interference
of DC function, which is crucial for linking innate and
adaptive immunity. Thus, improving the outcome of the early
host antiviral responses against HSVs could help both, the
generation of better anti-HSV therapies, as well as the design
of prophylactic strategies intended at preventing infection with
these viruses.
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Respiratory viral infections can directly lead to kidney damage such as IgA nephropathy

(IgAN), partly due to mucosal immune system dysfunction. Although the activated

C5a-C5aR1 axis results in increased Th1 and Th17 frequencies but reduced Treg

frequencies in Respiratory syncytial virus (RSV) infection, how this axis affects Th cell

disorders in RSV-induced IgAN exacerbation remains unknown. Here, we used a mouse

model to dissect the activation of C5a-C5aR1 by RSV and the consequences on

the regulation of Th1, Th17, and Treg immune responses in IgA nephropathy. RSV

fusion protein was clearly deposited not only in the pulmonary interstitium but also in

the glomerulus in RSV-IgAN mice, and RSV infection led to more severe pathological

changes in the kidneys in IgAN mice. Blocking the C5a-C5aR1 axis resulted in a

decrease in the albumin-to-creatinine ratio, and the attenuation of kidney damage

in IgAN and RSV-IgAN mice might be partly attributed to the inhibition of Th cell

and cytokine dysfunction. Th1, Th17 and Treg immune responses and their corelative

cytokines were disrupted by RSV infection and rescued by C5aR1 inhibition. Moreover,

we constructed a coculture system of human mesangial cells and CD4+ T cells and

found that RSV infection might lead to CD4+ T cell production via human mesangial

cells-enhanced CD4+ T cell proliferation, consequently increasing IL-17 levels. These

pathological behaviors were augmented by C5a stimulation and decreased by C5aR1

inhibition. Thus, C5aR1 inhibition alters both kidney damage and Th1, Th17, and Treg

cell dysfunction in RSV-induced IgAN exacerbation and locally regulates HMC antigen

presentation function in the kidney. Taken together, our data offer profound evidence

that blocking the C5a-C5aR1 axis might be a potential therapy for RSV-induced IgAN.

Keywords: RSV, C5a-C5aR1 axis, IgA nephropathy exacerbation, CD4+ T cells, human mesangial cells
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INTRODUCTION

Immunoglobulin A nephropathy (IgAN), a common disease
characterized by prominent IgA deposits in the renal mesangium,
is the most prevalent primary chronic glomerulonephritis,
particularly in the Asia-Pacific region (Lv et al., 2017).
Mucosal immune system dysfunction is chiefly involved in
the pathogenesis of IgAN (Fellström et al., 2017). The onset
and exacerbation of IgAN are often related to respiratory and
gastrointestinal syndromes caused by viral infections (Amore
et al., 2004; Wyatt and Julian, 2013). Previous research has
focused on the correlation between renal injury and injection
with viruses such as coxsackie virus, cytomegalovirus, herpes
simplex viruses, Epstein-Barr virus, and adenovirus by detecting
viral antigens, DNA or RNA in kidney tissues of IgAN patients
(Kawasaki, 2011). Although an IgAN mouse model can be
constructed by immunization with infectious or inactivated
Sendai virus (Amore et al., 2004; Zhang et al., 2017), chronic
inflammatory diseases of the respiratory mucosa, whether or
not they result in IgAN development, remain uncharacterized
(Floege and Feehally, 2016). Respiratory syncytial virus (RSV),
a common pathogen of respiratory tract infection, is involved
in the mechanism by which minimal change disease causes
nephrotic syndrome onset and exacerbation through cytokine
dysfunction and direct kidney injury (Liu et al., 2007; Zhai et al.,
2016). However, the potential pathogenic mechanism of RSV
infection in the IgAN process should be explored.

Our research group demonstrated that CD4+ T lymphocytes,
a crucial component of the mucosal immune system that can
defend against pathogens, play a key role in IgAN development
(Meng et al., 2014; Xiao et al., 2016; Gan et al., 2018b). Increased
frequencies of Th17 cells and Th22 cells and decreased Treg
frequencies in blood and kidney were observed in IgAN mice
compared to normal mice (Meng et al., 2014; Gan et al.,
2018b). Moreover, the imbalances in Th17 and Treg cells were
further disturbed in mice with IgA nephropathy by hemolytic
streptococcus infection (Meng et al., 2014) and tonsillitis (Gan
et al., 2018b), respectively. In addition, we found that RSV
infection led to CD4+ T cell disorders in normal mice, while the
activated C5a-C5aR1 axis could exacerbate the above imbalance

(Hu et al., 2017). Furthermore, Bera et al. reported that RSV
infection resulted in Th17 relevant cytokine production and
lung inflammation in wild-type mice and that C3aR deficiency
reversed these reactions (Bera et al., 2011).

The C5a-C5aR1 axis functions as a modulator and effector
of immune responses. Liu et al. proposed that C5a and C5aR
expression in the urinary tract and kidney was significantly
associated with the activity and severity of kidney injury in IgAN
patients (Liu et al., 2014). C5aR deficiency reduces proteinuria
and attenuates histologic injury in an IgAN mouse model,
perhaps partly contributing to the inhibition of kidney cytokine
and chemokine expression (Zhang et al., 2017). Notably, blocking
C5aR can inhibit cultured human mesangial cells (HMCs)
proliferation and cytokine and chemokine secretion (Zhang et al.,
2017). In addition, we found that RSV infection apparently
enhanced the frequencies of Th1, Th2, and Th17 cells but
decreased the Treg cells frequencies by stimulating C5a and

C5aR1 production, and the above changes were alleviated by
a C5aR antagonist (C5aRA) in an asthma mouse model (Hu
et al., 2017). Although the C5aR1-mediated regulation of CD4+

T cells in RSV infection is understood in detail and the C5a-
C5aR1 axis can function in IgAN pathogenicity, the mechanisms
of RSV-mediated IgAN exacerbation, whether via activating the
C5a-C5aR1 axis or orchestrating Th17 cell immune responses,
remain unknown.

The main focuses of this project were as follows:
(1) to ascertain how RSV infection exacerbates kidney
damage in IgAN mice, perhaps through C5a-C5aR1 axis-
mediated regulation of Th17 cell responses; and (2) to
clarify the capabilities of HMCs to function as antigen-
presenting cells to induce Th17 cell proliferation during
RSV infection.

MATERIALS AND METHODS

Mice
Female BALB/c mice were purchased from the Experimental
Animal Center of Central South University (Changsha, Hunan,
China). All animals were fed and housed under desired
temperature and humidity conditions in a specific pathogen-
free environment. All studies were conducted in accordance
with Institutional Animal Care guidelines. This project was
approved by the Animal Experimental Ethics Committee of
Hunan Province.

Animal Model
Thirty-six BALB/C mice were randomly assigned to six groups
(age: 6–8 weeks, weight: 20 ± 2 g, n = 6 per group):
control group (Control), RSV-infected group (RSV), IgAN group
(IgAN), RSV-infected IgAN group (RSV-IgAN), C5aRA-treated
IgAN group (C5aRA-IgAN), and C5aRA-treated RSV-IgAN
group (C5aRA-RSV-IgAN).

The RSV infection mouse model was mainly developed as
described previously (Hu et al., 2017). Mice were inoculated
under isoflurane anesthesia by intranasal instillation and
intraperitoneal (i.p.) injection with ∼106 PFU of purified RSV

(A2 strain, 50 µl) in endotoxin-free PBS from days 0 to 2. The
control group received an equal amount of PBS. Mice were
sacrificed on day 7 (Supplementary Figure 1A).

The IgA nephropathy mouse model was constructed as
previously described (Meng et al., 2014; Xiao et al., 2017). This
model was generated by intragastric gavage of mice with BSA
(Roche) in acidified water (800 mg/kg body weight) every other
day, subcutaneous injection of CCL4 and castor oil (mixed at the
ratio of 1 to 5; 0.1ml) once a week and i.p. injection (0.08ml)
biweekly, and intravenous injection of LPS (Sigma) (50 µg) twice
in weeks 6 and 8. For RSV-IgAN mice, RSV was inoculated as
described above daily for up to 3 days in the 10th and 11th weeks.
For the C5aRA-treated groups, IgA and RSV-IgAN mice were
treated with C5aRA (W54011, Abcam) by caudal vein injection
24 h before RSV infection. The control mice received an equal
amount of PBS. All mice were killed in the 12th week for sample
harvest (Supplementary Figure 1B).
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Cell Culture
HMCs were purchased from ScienCellTM Research Laboratories,
and CD4+ T cells were isolated from healthy people by human
CD4microbeads (130-045-101) bought fromMiltenyi Biotec. For
the coculture of HMCs with CD4+ T cells, the two different cell
types were cultured in mesangial cell medium (4201, Scien Cell)
in an incubator at 37◦C in 5% CO2. Purified CD4+ T cells were
cultured with HMCs at a ratio of 1–5 for 48 h in the absence or
presence of RSV.

Functional Studies
Before sample harvest, all mice were housed in metabolic cages
for 24 h to collect urine samples. The albumin-to-creatinine ratio
(ACR) was determined by standard laboratory methods.

Histological Analyses
The upper left kidney and right lung were fixed in 4% neutral-
buffered formalin, dissected, embedded in paraffin, and cut
into 2- and 3-µm-thick sections. Sections were stained with
hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) and then
examined by light microscopy.

The mouse renal tissues were fixed with 2.5% glutaraldehyde
in 0.1M cacodylate buffer. Three hours later, specimens were
placed in 2% OsO4 for 2 h, hydrated in a decreasing series
of ethanol solutions and embedded in Epon-Araldite. The
specimens were cut into ultrathin sections (70 nm) and stained
with uranyl acetate and lead citrate. The specimens were
examined by transmission electron microscopy.

Paraffin-embedded sections were subjected to
immunohistochemistry (C5aR1 and CD4 protein) and
immunofluorescence (RSV F protein, IgA and IgM). Serial
2-µm-thick sections of kidney tissues and serial 3-µm-thick
sections of lung tissues were dewaxed by xylene, rehydrated in
different gradient alcohol and washed by PBS. Then antigen
retrieval was performed with citrate (pH 6.0). Endogenous
peroxidase was blocked with 3% hydrogen peroxide in
PBS for 20min. After blocking nonspecific binding with
diluted normal rabbit serum for 60min, the sections were
incubated for 16–8 h at 4◦C with anti-C5aR1 antibody
(ab117579, Abcam) or CD4 antibody (44038, SAB). The
slides were developed using an SP goat IgG kit (ZSGB-Bio).
Chromogenic reactions were performed with DAB liquid
(ZSGB-Bio), and counterstaining was performed with Mayer’s
hematoxylin (ZSGB-Bio). For immunofluorescence, dewaxing,
rehydration, and antigen retrieval were performed as described
for immunohistochemistry. The sections were incubated for 16 h
at 4◦C with RSV F protein (SC-57998, Santa Cruz), anti-mouse
IgA (ab97234, Abcam), and anti-mouse IgM (ab190369, Abcam).
Normal rabbit and normal rat sera were used in the control
group for immunohistochemistry and immunofluorescence.

The integrated density and area of each immunofluorescence
or immunohistochemistry section was measured by Image J
program according to regular instruction. Then mean density is
calculated by the ratio of integrated density to the area. The mean
density of RSV F, IgA, C5aR1, and CD4 protein was used for
statistical analysis in every group.

Cell Isolation From Blood and Kidney

Tissue
Blood samples of different mice (100 µl) were collected before
sample harvest, and then red blood cell lysis buffer (C3702,
Beyotime Biotochnology) was used to remove red cells. The
washed cells were used for flow analysis.

Kidney tissues were excised completely, minced in serum-free
RPMI 1640medium under aseptic conditions and then incubated
with 0.4 mg/ml collagenase IV (LS004186, Worthington) for
1 h at 37◦C. Cell suspensions were filtered through a series of
nylon meshes and washed with PBS. Lymphocyte-enriched cell
suspensions were acquired by Percoll density gradient (70 and
30%, GE Healthcare) centrifugation. Cells were stained for flow
cytometric analyses.

Flow Cytometry
For Th1 and Th17 cell detection, isolated cells were suspended
in RPMI 1640 (Gibco) with 10% FCS and activated by phorbol
12-myristate 13-acetate (PMA, 50 ng/ml; Sigma) and ionomycin
(1 mg/ml; Sigma) in an incubator (37◦C, 5% CO2) for 5 h. After
30min of incubation, Brefeldin A (3 mg/ml, eBioscience) was
added to the cell suspensions. The postintervention cells were
divided equally into tubes, stained with normal mouse serum
(Sigma) to block nonspecific staining, incubated with antibodies
against the surface markers CD3 (APC, eBioscience) and CD4
(FITC, eBioscience) for 30min in the dark at 4◦C, and then
permeabilized with Cytofix/Cytoperm (eBioscience) at 4◦C for
30min. Intracellular cytokines were stained with anti-mouse
IFN-γ (PE, eBioscience) and anti-mouse IL-17A antibodies
(PE, eBioscience). Foxp3 staining was performed according
to the manufacturer’s instructions. Isolated lymphocytes were
incubated with anti-mouse CD4 (FITC, eBioscience) and CD25
(APC, eBioscience) in the dark at 4◦C for 30min, rinsed in
Fix/Perm buffer (eBioscience), and stained with anti-mouse
Foxp3 antibody (PE, eBioscience) for 45min. For Ki67+CD4+

T cells detection, the treated cells were incubated with anti-
human CD4 (564419, BD Biosciences) antibody in the dark at
4◦C for 30min, rinsed in Fix/Perm buffer (eBioscience), and
stained with anti-human Ki67 antibody (350535, Biolegend) for
45min. Finally, the cells were analyzed with a Becton Dickinson
FACS Calibur system using Cell Quest software.

Assessment of Cytokines in Serum and

Kidney
Serum was diluted with PBS, while the same weight
kidney samples in all different mice were prepared by
homogenization in PBS containing protease inhibitors (Roche
Diagnostics). Serum and kidney IFN-γ, IL-10, and IL-17A
(eBioscience) levels and C5a levels (RayBiotech) were tested
by enzyme-linked immunosorbent assay (ELISA) following the
manufacturer’s protocols.

RNA Preparation and Real-Time PCR
Real-time PCR analysis of total RNA extracted from cells using
RNeasy Mini Kits (Qiagen, Valencia, CA) was performed
according to the manufacturer’s guidelines. RNA was
reverse transcribed into cDNA using SuperScript III Reverse
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Transcriptase (Invitrogen). Real-time PCR was conducted in an
ABI Prism 7000 sequence detector (Applied Biosystems, CA) as
previously described (Bin et al., 2018).

The CD80 (Hs01045161_m1), CD86 (Hs01567026_m1), and
IL-17A (Hs00936345_m1) primers used for real-time PCR were
purchased fromApplied Biosystems. Quantities of all target genes
in test samples were normalized to the corresponding HPRT1
and 18S quantities.

Statistical Analysis
Data is appeared as mean ± sem. Statistical analyses for every
group were assessed with one-way analysis of variance (ANOVA),
and between-group comparisons were evaluated by the least
significant difference (LSD) t-test (Prism software; Graphpad).
Significance was assumed at P < 0.05.

RESULTS

The ACR in IgAN Mice Is Enhanced by RSV

and Reduced by C5aRA
To explore the impact of RSV infection and C5aRA on kidney
dysfunction in IgAN mice, urine samples were obtained from
all mice to detect the ACR before sample harvest. As shown
in Figure 1, the ACR was significantly increased in IgAN mice
compared with control mice, and RSV infection further increased
the ACR in RSV-IgAN mice. This finding implied that we
successfully generated an IgAN mouse model and verified that
RSV infection indeed exacerbates kidney dysfunction. However,
C5aRA treatment of IgAN and RSV-IgAN mice reversed the
above phenotype, as evidenced by an obvious decrease in the
ACR. Overall, our data suggest that RSV infection can clearly
increase the ACR, which is significantly reduced by C5aRA in
IgANmice. ACR evaluation indicated that C5aRA can effectively
rescue the adverse effect of RSV infection on kidney dysfunction.

Kidney Damage in IgAN Mice Is

Exacerbated by RSV but Alleviated

by C5aRA
To further assess pathological damage in the kidney, PAS-stained
sections of kidneys from all experimental mice were examined.
As shown in Figure 2A, there was more proliferation of the
mesangium in IgAN mice than control mice. Moreover, RSV
infection exacerbated this proliferation in RSV-IgAN mice,
but it was ameliorated in C5aRA-treated mice. Furthermore,
immunofluorescence staining with a specific IgA antibody
(Figure 2B and Supplementary Figure 2) uncovered IgA
deposition in IgAN mice that was exacerbated by RSV exposure.
However, C5aRA-treated IgAN and RSV-IgAN mice showed
markedly fewer IgAN deposits.

In addition, the changes in electron-dense deposits detected
by electron microscopy were related to histology changes and
IgA deposition. Specifically, many electron-dense deposits in the
glomerular mesangial region, minor mesangial proliferation, and
segmental fusion of podocyte foot processes were observed in
IgAN mice. Notably, the above changes were more obvious in
RSV-IgAN mice, while the opposite trends were observed in the
C5aRA treatment group (Figure 2C). In accordance with the

FIGURE 1 | The ACR in IgAN mice is increased by RSV and decreased by

C5aRA. Urine samples were collected for 24 h before sample harvest to

assessed ACR. Data are expressed as mean ± sem of experiments performed

in duplicate in n = 6 mice per group, t-test. ***P < 0.001 vs. control group.
##P < 0.01 vs. IgAN group. ∧∧P < 0.01 vs. RSV-IgAN group.

ACR changes, morphological changes described above indicate
that kidney damage is aggravated by RSV and alleviated by
C5aRA in IgAN mice.

C5aRA Lessens the RSV Deposition in

Kidney and Lung Tissues of

RSV-Infected Mice
To further investigate the inhibitory effect of C5aRA on RSV
deposition in RSV-IgAN mice, immunofluorescence staining of
RSV F protein was detected. Representative images show that
RSV F protein was principally deposited in the kidney glomeruli
(Figures 3A,C) and lung interstitial areas (Figures 3B,D) in
RSV-infected mice. Nevertheless, C5aRA treatment reduced RSV
deposition in RSV-IgAN mice. Taken together, the data indicate
that C5aRA might antagonize the detrimental effect of RSV
infection on kidney function by decreasing RSV deposition.

C5a and C5aR1 Expression Is Further

Upregulated by RSV Infection in IgAN Mice
The aforementioned results suggest that C5aRA can antagonize
the negative effects of RSV infection, but the influence of RSV
infection on the C5a-C5aR1 axis during IgANdevelopment is still
unknown. As shown by the immunohistochemical results, C5aR1
expression was localized in the kidney glomeruli of RSV-infected
mice, with lower expression in control mice. Moreover, C5aR1
expression was increased in kidney tissues in IgA mice and was
further increased by RSV infection in RSV-IgAN mice. C5aR1
expression was obviously lower in RSV-infected mice, IgANmice
and RSV-IgAN mice treated with C5aRA. In addition, ELISA
was used to assess serum and kidney C5a levels in the different
groups, and the trends in C5a levels were similar to those in
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FIGURE 2 | Kidney damage in IgAN mice is exacerbated by RSV but alleviated via C5aRA. (A)Representative images of pathological changes of kidney of PAS

staining in different mice (400×). (B) IgA deposition in local kidney area were detected by immunofluorescence staining (200×). (C) Ultrathin kidney sections (70 nm)

were stained with uranyl acetate and lead citrate, and then examined by transmission electron micrographs. N = 6 per group.

C5aR1 expression. All the data described above imply that RSV
might exacerbate IgAN development by excessively activating the
C5aR-C5aR1 axis (Figure 4).

Lung Damage and IgA Deposition in IgAN

Mice Are Aggravated by RSV Infection but

Reduced by C5aRA Treatment
RSV infection can lead to lung damage, but we were interested
in determining whether the lung damage caused by RSV
infection in IgAN mice could be cured by C5aRA. Compared
with the control and IgAN mice, RSV-IgAN mice exhibited
significant inflammatory cell infiltration around blood vessels
and bronchi in lung tissues assessed via CD4 immunostaining
(Figures 5A,C,E). Moreover, IgA deposition was found in the
lung tissues of IgAN mice, and RSV infection might have further
increased IgA deposition in IgANmice (Figures 5B,D). This lung
damage and potential increase in IgA deposition were reduced
by C5aRA treatment. However, there was no IgM deposition in
the lung tissues of IgAN mice (data not shown). In short, these
findings proclaim that respiratory mucosal infection is related to
IgAN onset and development.

The Balance of Th17 Cell Responses and

Correlative Cytokines Is Perturbed by RSV

but Normalized by C5aRA
To further expound the potential regulatory relationship between
C5a-C5aR1 axis activation and Th17 cell responses in RSV-
induced IgAN mice, the frequencies of Th1, Th17, and Treg
cells in the blood and kidney were examined. The proportions

of Th1 and Th17 cells in the blood and kidney were both
remarkably augmented, while the Treg proportions were reduced
in RSV-infected mice and IgAN mice compared with control
mice. Additionally, these changes in Th1, Th17, and Treg cells
were further increased in RSV-infected IgANmice. Interestingly,
C5aRA treatment decreased the Th1 and Th17 cell frequencies
but increased the Treg frequency in IgAN and RSV-IgAN
mice (Figure 6).

Additionally, correlative cytokines in serum and kidney
tissues were evaluated by ELISA. Serum and kidney IFN-γ, IL-
17A, and IL-10 levels presented similar trends as those described
above for Th1, Th17, and Treg cells in all the groups (Figure 7).
In summary, C5aRA might remedy kidney immune dysfunction
caused by RSV infection through regulating Th1, Th17, and Treg
cell frequencies and related cytokine expression.

Antigen Presentation to CD4+ T Cells by

HMCs in vitro Stimulates CD4+ T Cell

Proliferation and Increases IL-17A Levels

in Response to RSV Infection
RSV infection may exacerbate IgAN in mice by inducing the
production of more CD4+ T cells, but little is known about the
function of HMCs in this pathogenic mechanism. To elucidate
the effect of HMCs on CD4+ T cell proliferation induced by
RSV infection, we first stimulated normal HMCs with RSV.
The data revealed that CD80 and CD86 expression by HMCs
was increased by RSV infection (Figure 8A), which suggested
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FIGURE 3 | C5aRA decreases RSV F protein deposition in kidney and lung tissues of RSV-infected mice. Representative images of immunofluorescence staining for

RSV F protein in kidney (A, 400×) and lung tissues (B, 200×). Light green, RSV F protein deposition, blue, nuclear counterstain. The mean density of RSV F protein

deposition in kidney tissues (C) and lung tissues (D) was calculated through Image J program. Data are calculated as mean ± sem of experiments in triplicate in n = 5

per group, t-test.

FIGURE 4 | C5a levels and C5aR1 expression in different mice. (A) Representative images of C5aR1 expression in kidney tissue was assessed by

immunohistochemistry (400×). Red arrowheads, C5aR1 positive expression area in glomerular. (B) The mean density of C5aR1 expression in kidney tissues evaluated

by Image J software. (C,D) Serum C5a levels (C) and kidney C5a levels (D) tested by ELISA in different groups. Results are assessed as mean ± sem of repeated

experiments in triplicate, n = 5 per group, t-test. ***P < 0.001 vs. control group. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. IgAN group. ∧∧P < 0.01, ∧∧∧P <

0.001 vs. RSV-IgAN group.
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FIGURE 5 | RSV exacerbates and C5aRA reduces lung damage and IgA deposition in IgAN mice. (A) Representative images of HE staining in lung tissues (200×).

(B) Specific IgA deposition in lung tissues detected by immunofluorescence staining (200×). Light green, IgA deposition, blue, nuclear counterstain. (C) CD4 protein

expression (200×) of lung tissues were assessed by immunohistochemistry. Red arrowheads, CD4 positive expression. The mean density of IgA deposition (D) and

CD4 immunostaining (E) in lung tissues was calculated by Image J program. Data are expressed as mean ± sem of experiments in triplicate, n = 5 per group, t-test.

that HMCs antigen presentation function could be enhanced by
RSV infection.

Based on our above results in IgAN mice, RSV infection
could activate the C5a-C5aR1 axis, lead to kidney damages and
Th cells disorder, cocultures of HMCs with CD4+ T cells were
constructed and maintained in the absence or presence of RSV,
C5a, C5aRA, and a costimulatory molecule inhibitor to further

verify the specific interaction between HMCs and CD4+ T cells.
As shown in Figures 8B,D, we found that RSV infection alone
increased Ki67+CD4+ T cell proliferation and IL-17A levels, but
these increases were even more obvious in coculture conditions.
It is speculated that HMCs might play a part in CD4+ T cell
dysfunction caused by RSV infection. Moreover, C5a stimulation
resulted in more significant enhancements of Ki67+CD4+ T cell
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FIGURE 6 | Percentages of Th1, Th17, and Treg cells in blood and serum levels of IFN-γ, IL-17A, and IL-10. Blood samples were collected before sample harvest,

and then red blood cell lysis buffer was use to remove red cells. Anti-mouse CD3, CD4, IFN-γ, and IL-17A antibody were stained as method described above and

then tested by flow cytometry to evaluate Th1 and Th17 percentages, respectively. Anti-mouse CD4, CD25, and Foxp3 antibody were stained to show Tregs

proportions. (A) Representative flow chart of Th1 and Th17 cells in blood as percentages of CD3+CD4+ IFN-γ+ cells CD3+CD4+ IL-17A+cells. (B) Representative

flow chart of Treg cells in blood as percentages of CD4+CD25+Foxp3+cells. (C–E) Percentages of Th1 (C), Th17 (D), and Treg (E) cells in the blood of all different

groups. (F–H) Serum IFN-γ (F), IL-17A (G), and IL-10 (H) levels assessed by ELISA in different groups. Data are shown as mean ± sem of experiments in triplicate in

n = 3–5 mice per group, t-test. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. IgAN group. ∧P < 0.05, ∧∧P <

0.01, ∧∧∧P < 0.001 vs. RSV-IgAN group.

proliferation and IL-17A levels in coculture conditions with RSV
infection (Figures 8B,D).

However, Ki67+CD4+ T cell proliferation and IL-17A levels
were reduced by treatment with C5aRA, anti-CD80 mAb, anti-
CD86 mAb, a combination of anti-CD80 and anti-CD86 mAbs,
CTLA-4Ig, and control Ig, which decrease the effectiveness of
HMC antigen presentation (Figures 8C,E). Taken together, the
results show that RSV infection and C5a stimulation might lead
to CD4+ T cell production via HMC-enhanced CD4+ T cell
proliferation, thereby increasing IL-17 levels.

DISCUSSION

Accumulating evidence suggests that abnormalities in the
IgA mucosal immune system could be key elements in the
pathogenesis of IgAN, and a characteristic clinical presentation
of IgAN is episodic visible hematuria coinciding with mucosal
infection, most commonly of the upper respiratory tract
(Floege and Feehally, 2016). Moreover, IgAN exacerbation is
often associated with viral infections of the upper respiratory
tract (Amore et al., 2004).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 May 2019 | Volume 9 | Article 15186

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hu et al. RSV Exacerbates IgAN via C5a

FIGURE 7 | Percentages of Th1, Th17 and Treg cells and levels of IFN-γ, IL-17A, and IL-10 in the kidney. Kidney samples were collected and isolated lymphocyte via

Percoll density gradient (70% and 30%) centrifugation. Anti-mouse CD3, CD4, IFN-γ, and IL-17A antibody were stained and then examined by flow cytometry to

evaluate Th1 and Th17 percentages, respectively. Anti-mouse CD4, CD25, and Foxp3 antibody were stained to show Tregs proportions. (A) Representative flow chart

of Th1 and Th17 cells among kidney lymphocytes as percentages of CD3+CD4+ IFN-γ+ cells CD3+CD4+ IL-17A+ cells. (B) Representative flow chart of Treg cells in

the kidney as a percentage of CD4+CD25+Foxp3+ cells. (C–E) Percentages of Th1 (C), Th17 (D), and Treg (E) cells in the kidneys of different groups. (F–H) Levels of

IFN-γ (F), IL-17A (G), and IL-10 (H) in the kidneys were measured by ELISA of different groups. Data are expressed as mean ± sem of experiments in triplicate in n =

3–5 mice per group, t-test. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. IgAN group. ∧P < 0.05, ∧∧P < 0.01,
∧∧∧P < 0.001 vs. RSV-IgAN group.

In the present study, we investigated the effect of RSV
infection on IgAN mice and tried to clarify the underlying
pathogenic mechanism. Inconsistent with a previous study that
showed less RSV F protein deposition and mRNA levels in the
glomerulus and renal tubules of RSV-infected mice at day 14 (Liu
et al., 2007; Zhai et al., 2016), we did not find RSV F protein
deposition in the kidney in RSV-infected normal mice. There are

two possible reasons to explain the above discrepancy: (1) female
BALB/c mice were used in our study, while male Sprague-Dawley
rats were used in the previous study; and (2) because two different
model construction methods were used, the RSV incubation time
was different. However, we observed that RSV F protein was
clearly deposited not only in the pulmonary interstitium but also
in the glomerulus in RSV-IgAN mice, and RSV infection led to
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FIGURE 8 | CD4+ T cell proliferation and IL-17A levels are increased by RSV and C5a but reduced by C5aRA via human mesangial cell antigen presentation. (A)

Effect of RSV infection on HMCs antigen presentation function. CD80 and CD86 expression in RSV-infected HMCs assessed by real-time PCR. (B) Effect of RSV

infection and C5a stimulation on CD4+ T cell proliferation. (C) C5aRA and costimulatory antibodies decrease Ki67+CD4+ T cell proportions in the coculture system of

HMCs and CD4+ T cells in response to RSV infection. Ki67+CD4+ T cell percentages were detected by flow cytometry (B,C). *P < 0.05, **P < 0.01, ***P < 0.001 vs.

RSV+HMCs+CD4+T group. ∧P < 0.05, ∧∧P < 0.01 vs. RSV+HMCs+CD4+T+anti-CD80+anti-CD86 group. (D) Effect of RSV and C5a stimulation on IL-17A

expression. (E) IL-17A levels are downregulated by C5aRA and co-stimulatory inhibitor treatment in the coculture system of HMCs and CD4+ T cells in response to

RSV infection. Total RNA extracted from CD4+T cells were collected and then IL-17A levels were assessed by real-time PCR (D,E). **P < 0.01, *** P < 0.001 vs.

RSV+HMCs+CD4+T group. ∧P < 0.05, ∧∧P < 0.01 vs. RSV+HMCs+CD4+T+anti-CD80+anti-CD86 group. Data are expressed as mean ± sem and each

experiment was performed in triplicate repeated in cells, n = 3, t-test.

more severe pathological changes in the kidney in IgAN mice.
Moreover, marked infiltration of inflammatory cells surrounding
the airway and IgA deposition in the kidney and lung were
detected in RSV-IgAN mice, which supports the notion that
immune responses induced by RSV infection could cause the
progression of the immune-mediated kidney damage of IgAN.

Th cells play multifaceted roles in RSV infection and IgAN.
The immunomodulatory mechanisms of RSV infection are
highly effective at inhibiting long-term protection by disrupting
type I interferon signaling, antigen presentation, and the quality
and durability of T cells, B cells and antibodies; chemokine-
induced inflammation is another possible contributor (Ascough
et al., 2018). As shown in our previous study, RSV infection
increases Th1 and Th17 cell frequencies but decreases Treg
cell populations in normal mice (Hu et al., 2017). In addition,
we found that Th17 cells, viewed as vital T cells, might affect
the pathology or disease outcome of streptococcus-associated
IgAN (Meng et al., 2014). In agreement with the results of
previous studies, our present results verify that Th1 and Th17
frequencies were higher in IgAN mice than in controls, while

the results for Tregs were the opposite. Notably, higher Th1
and Th17 frequencies and lower Treg frequencies were detected
in IgAN mice infected with RSV. Based on the above findings,
CD4+ T cell response might be a pivotal part of RSV-induced
IgAN exacerbation, with Th1 and Th17 cells functioning as
proinflammatory cells and Treg behaving as protective cells.
Therefore, decreasing Th1 and Th17 cells and promoting
Treg cells will be potential beneficial aspects of RSV-induced
IgAN treatment.

Complement activation is recognized to play a prominent role
in the pathogenesis of IgAN, as confirmed by the renal deposition
of complement components of the alternative and mannose-
binding lectin (MBL) pathways (Zhai et al., 2016). Although
C5aR expression has been observed in RSV infection (Hu et al.,
2017) and in IgAN patients (Liu et al., 2014) and mice (Zhang
et al., 2017), how it affects RSV-induced IgAN exacerbation
has not been defined. Consistent with previous research (Zhang
et al., 2017), we found that C5a levels and C5aR1 expression
were elevated in IgAN mice compared to normal mice, but
the novel finding that C5a levels and C5aR1 expression were
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further increased in RSV-IgAN mice attracted our attention.
Furthermore, blocking the C5a-C5aR1 axis partially reversed the
aforementioned phenomena and alleviated kidney lesions. Our
results provide conclusive evidence that RSV infection might
exacerbate IgAN by strengthening C5a-C5aR1 axis activation
and represent a foundation supporting the future use of latent
therapies targeting C5aR to remedy RSV-induced IgAN.

It is likely that genetic absence or pharmacological inhibition
of C5aR1 reduces the generation of myeloperoxidase-ANCA,
with an attenuated Th1 response and an increased number of
Foxp3+ regulatory T cells (Dick et al., 2018). Moreover, there
was research proposed that C5aR-deficient mice have fewer Th17
cells and therefore are less likely to develop lupus nephritis
than wild-type mice (Pawaria et al., 2014). Our previous study
found that inhibition of C5aR1 could decrease Th1 and Th17
cell responses but augment Treg responses in RSV-infected mice
(Hu et al., 2017). To date, studies investigating the role of the
C5a-C5aR1 axis in regulating Th1, Th17, and Treg cell immune
responses in IgAN and RSV-IgANmice have not been performed.
In our study, to further address the above focuses, IgAN and
RSV-IgAN mice were treated with C5aRA, and the properties of
Th1, Th17, and Treg cells were detected. Interestingly, C5aRA
not only reversed kidney damage in IgAN and RSV-IgAN mice
but also reduced the Th1 and Th17 frequencies while increasing
the Treg frequency. According to our data, the C5a-C5aR1 axis
participates in the IgAN pathogenic process by amplifying the
proinflammatory functions of Th1 and Th17 cells but weakening
the protective effects of Treg cells, and these functions could be
further strengthened during RSV infection in IgAN mice.

Based on our murine experiments, RSV infection
could activate C5a-C5aR1 axis and further augment their
proinflammatory through increase Th1 and Th17 proportions,
meanwhile which kidney inherent cells or immune cells
involved in the process catch our attention. HMCs represent
approximately one third of glomerular cells. Substantial
mesangial cell proliferation in response to injury occurs in IgA
nephropathy. Resident renal cells including mesangial cell should
no longer be viewed as passive targets in renal inflammation,
but as active participants in this process. HMCs can express
major histocompatibility complex class II molecules (MHCII),
suggesting that it can act as Ag presenting cells and directly
regulate the nephritogenic immune response (Timoshanko and
Tipping, 2005). Gan et al. proposed that Th22 lymphocytosis
can be induced by HMCs through CD80 and CD86 antigen
presentation pathway (Gan et al., 2018a), and CD80 and CD86
expression in antigen presentation cells is related to renal
function (Wu et al., 2004). Therefore, we constructed the
coculture system of HMCs and CD4+ T cells to explore the effect
of HMCs in CD4+ T proliferation in vitro. In addition, Zhang
et al. confirmed that C5aR inhibition can block cytokine and
chemokine secretion and cell proliferation of cultured HMCs
(Zhang et al., 2017). It is curious whether HMCs induce CD4+

T cell populations during RSV infection and C5a stimulation in
vitro. As the data show, RSV infection augmented the antigen
presentation function of HMCs, as assessed by CD80 and CD86
expression. Ki67+CD4+ T cells and IL-17A levels showed a

small increase in response to RSV infection and C5a stimulation
alone but were significantly augmented upon coculture with
HMCs. Of note, when the HMC antigen presentation function
was suppressed by CD80 antibody, CD86 antibody and C5aRA,
Ki67+CD4+ T cells, and IL-17A levels were lessened. Combined
with our previous results, our current data indicate that RSV
infection might promote HMC antigen presentation function
and C5a secretion, and further lead to CD4+ T cell proliferation
and increased IL-17A levels. Therefore, it is speculated that RSV
infection exacerbates IgAN onset via CD4+ T cell imbalance,
partly due to heightened HMC antigen presentation function in
the local area of the kidney. In addition, therapeutics targeting
the C5a-C5aR1 axis may be sufficient to affect the HMC
pathogenic process.

In conclusion, this work builds on previous studies and
extends the role of the C5a-C5aR1 axis in RSV-induced
IgAN exacerbation. We demonstrate that RSV infection can
exacerbate IgAN pathogenic development. This pathogenic
process may be attributed partly to C5a-C5aR1 axis activation,
increased Th1 and Th17 proinflammatory function and
reduced Treg cell-mediated protective effects. Of note, we
also confirmed that HMCs, as antigen-presenting cells, might
promote CD4+ T cell proliferation and upregulate IL-17A
levels, but these effects could be inhibited by C5aRA. Our
data provide profound evidence indicating that blocking the
C5a-C5aR1 axis might be a potential therapy for RSV-induced
IgAN patients.
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Viral proteins encode numerous antiviral activities to modify the host immunity. In this

article, we hypothesize that viral genomes and gene transcripts interfere with host gene

expression using passive mechanisms to deregulate host microRNA (miRNA) activity.

We postulate that various RNA viruses mimic or block binding between a host miRNA

and its target transcript, a phenomenon mediated by the miRNA seed site at the 5
′

end of miRNA. Virus-encoded miRNA seed sponges (vSSs) can potentially bind to

host miRNA seed sites and prevent interaction with their native targets thereby relieving

native miRNA suppression. In contrast, virus-encoded miRNA seed mimics (vSMs) may

mediate considerable downregulation of host miRNA activity. We analyzed genomes

from diverse RNA viruses for vSS and vSM signatures and found an abundance of

these motifs indicating that this may be a mechanism of deceiving host immunity.

Employing respiratory syncytial virus and measles virus as models, we reveal that regions

surrounding vSS or vSMmotifs have features characteristics of pre-miRNA templates and

show that RSV viral transcripts are processed into small RNAs that may behave as vSS

or vSM effectors. These data suggest that complex molecular interactions likely occur

at the host-virus interface. Identifying the mechanisms in the network of interactions

between the host and viral transcripts can help uncover ways to improve vaccine efficacy,

therapeutics, and potentially mitigate the adverse events that may be associated with

some vaccines.

Keywords: RNA viruses, microRNA, miRNA, miR, seed sequence, mimics, sponges

INTRODUCTION

Regulation of gene expression is a complex occurrence involving transcriptional and post-
transcriptional mechanisms (Burgess, 2017). Translation of host mRNAs is regulated by small
evolutionarily conserved small non-coding RNAs or miRNAs (Chen et al., 2017; Morales et al.,
2017; Murashov, 2017) principally by sequence complementarity. Sequence complementarity is
also fundamental to pathways such as clustered regularly interspaced short palindromic repeats
(CRISPR) and RNA interference (RNAi) pathways (Panek et al., 2016; Kaikkonen and Adelman,
2018; Damas et al., 2019; Hussain et al., 2019) of which miRNAs have an integral function. Host
miRNA genes can be intronic, intergenic, or independent transcription units typically processed
by RNA polymerase II. Initial transcription produces primary miRNA transcripts (pri-miRNA)
which are processed by a nuclear microprocessor complex to produce pre-miRNAs (Bartel, 2004;
Finnegan and Pasquinelli, 2013; Ha and Kim, 2014). Pre-miRNAs are exported out into the
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cytoplasm and further processed into a 18–25nt long dsRNA
by class III RNAse enzyme Dicer to form the mature mRNA
duplex. One strand of the duplex is thermodynamically stable
and referred to as the guide strand while the other strand is the
passenger strand. Themature guide strand at the 5’ end encodes a
6 nt ‘miRNA seed’ that is complementary to amiRNA recognition
element (MRE) in target transcripts (Bartel, 2004; Finnegan
and Pasquinelli, 2013; Ha and Kim, 2014). Sequence dependent
pairing of the seed site with MRE can lead to either mRNA decay
or blocked translation (Fabian et al., 2010). Each miRNA can
target several genes although the stoichiometry of this interaction
is inadequately defined (Weill et al., 2015). Non-seed-mediated
miRNA regulation has also been recognized (Fabian et al., 2010;
Ghosal et al., 2014; Li et al., 2014; Kumari et al., 2016), is
an alternate mechanism of miRNA function (Cloonan, 2015),
and multiple miRNAs may regulate a single gene (Bartel, 2009;
Friedman et al., 2009; Fabian et al., 2010). There are several
features that may contribute to function as different motifs may
be able to interact among viral and host transcripts given each
position can have one of the four nucleotides (A/U/G/C) and
the six nt in the seed site can be promiscuous and bind to many
targets (Friedman et al., 2009). Host gene miRNA regulation is
well established and has been demonstrated to modulate ∼60%
of the human transcriptome (Friedman et al., 2009; Dong and
Lou, 2012; Hashimoto et al., 2013; Jia et al., 2014). It is well known
that miRNAs regulate cell physiology during normal homeostasis
as well as during disease states (Karnati et al., 2015; Alipoor
et al., 2016; Vishnoi and Rani, 2017; Olejniczak et al., 2018).
Importantly, differential expression of miRNAs has been used as
biomarkers for diagnosis, treatment and prognosis, and miRNA
expression is modified in response to viral infection (Sullivan
and Ganem, 2005; Piedade and Azevedo-Pereira, 2016; Auvinen,
2017; Trobaugh and Klimstra, 2017).

DNA viruses typically replicate with a high fidelity and encode
their own miRNAs (Klinke et al., 2014; Flor and Blom, 2016;
Albanese et al., 2017; Qin et al., 2017) to regulate virus and
host gene expression. In contrast, RNA viruses lack replicative
fidelity and arise in the host following infection as swarms of
quasispecies (Steinhauer et al., 1992). The quasispecies generally
have poor replicative fitness. RNA virus replication and gene
transcription are catalyzed by RNA-dependent RNA polymerase
(RdRP) which is error-prone (Perez-Rodriguez et al., 2016). It is

TABLE 1 | Binding energy calculations for vSSs per RNA duplex.

Virus vSS miRNA MFE (Kcal/mol)

RSV A2 NS1-2278 miR-2278 −32.4

G-4280 miR-4280 −25.2

G-1273f miR-1273f −29.7

RSV B1 NS1-2278 miR-2278 −31.9

M/IGR4-7161-3p miR-7161-3p −34.0

G-2113 miR-2113 −29.0

Stability of vSSmiRNAwas determined using RNAhybrid. Mean free energy (MFE) denotes

stability of interaction. NS1, Non-structural gene-1; G, RSV G gene; M, Matrix gene.

Number indicate the potential miRNA target.

not understood what proportion of quasispecies are translated
during infection, though non-canonical start codons can be
used during RNA viral protein synthesis (Firth and Brierley,
2012). Thus, quasispecies can contribute to antigenic diversity
via non-canonical translation of alternative viral proteins, and
inhibition of these processes can improve viral yield during
vaccine production via molecular breeding, increase vaccine
safety and stability and reduce potential adverse events (Perez-
Rodriguez et al., 2016). While a lack of exonuclease proof
reading activity occurs in the RdRP, a feature explaining how
low fidelity arises, it remains unclear why RNA viruses have and
maintain low fidelity RdRP. It is possible that low RdRP fidelity
facilitates virus replication (Hopfield, 1974; Back et al., 1996) by
allowing RNA viruses to escape situations where unfit mutations
predominate fitness leading to species collapse and attenuation
(Lauring and Andino, 2010).

In this article, we speculate that RNA viruses interfere with
the host RNAi machinery that regulates both foreign and
endogenous gene expression by miRNAs. We postulate that
RNA viral genomes and gene transcripts encode motifs that can
either mimic or block native miRNA activity through sequence
homology or complementarity. We analyzed the genomes
of several RNA virus families (Supplementary Tables 1, 2)
and identified vSMs that potentially may mimic miRNA
seed activity and thus increase native miRNA repression
of host antiviral pathways. We also identified several viral
seed sponges that can potentially block host miRNAs and
relieve native miRNA suppression of pro-viral host genes.
We focused our analysis on the Paramyxoviridae family of
RNA viruses owing to their impact on human and animal
health. Paramyxoviruses have negative sense, non-segmented,
single-stranded RNA genomes that are transcribed in a gradient
leading to a differential abundance of viral transcripts with
all steps in the viral life cycle occurring in the cytosol where
host miRNAs also regulate gene expression. Paramyxoviruses
are classified into two subfamilies Paramyxovirinae (e.g.,
Avulavirus, Henipavirus, Morbilivirus, Respirovirus, and
Rubulavirus genera) and Pneumovirinae (e.g., Pneumovirus and
Metapneumovirus genera) (Aguilar and Lee, 2011; Amarasinghe
et al., 2017; Rima et al., 2017). Paramyxovirinae members
causing morbidity and mortality include measles (MV),
Mumps (MuV), Hendravirus (HV), Nipah virus (NiV), and the
Pneumoviruses, i.e., respiratory syncytial virus (RSV) and human
metapneumovirus (hMPV).

In this article, we propose that quasispecies enable RNA
viruses to modulate host gene expression by regulating miRNA
function via sequence complementarity or identity with the
miRNA seed sites. We also suppose that vSM function to
increase native miRNA-based suppression, while vSS inhibit
native miRNA activity and increase host gene expression to
the advantage of the virus. Preliminary analysis has identified a
number of vSM or vSS in several Paramyxovirus genomes. For
example, for RSV the regions that neighbor potential vSS or vSM
are predicted to form stable stem loop structures that are typically
substrates for nuclear and cytosolic RNAses of the RNAi pathway
(Cai et al., 2004; Ritchie et al., 2007; Shu et al., 2007; Kurihara
and Watanabe, 2010). These findings suggest that these regions
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in the viral genome can be templates for cytosolic Dicer activity.
We have confirmed that during RSV infection gene transcripts
are processed into sncRNAs and have identified viral transcripts
that harbor vSS or vSM using next generation sequencing (NGS).
Genomic analyses show that these motifs are more abundant
in genes that have known or predicted immunomodulatory
function or are involved in viral replication/transcription.
These data suggest that interactions with host miRNAs may
be part of a mechanism to modulate miRNA-mediated host
regulatory pathways and regulate viral gene expression.
These findings have important implications for better
understanding of host-virus interaction as well as rational vaccine
design strategies.

MATERIALS AND METHODS

Viruses and Cell Culture
Mycoplasma-free virus stocks of wild type RSV strain A2 were
expanded in Vero cells (ATCC CCL81) and maintained in

DMEM (Hyclone, Salt Lake City, Utah USA) supplemented
with 5% heat-inactivated fetal bovine serum (Hyclone, USA) as
previously described (Oshansky et al., 2009). A549 cells (ATCC-
CCL185) grown in DMEM supplemented with 5% serum as
above were used for all infections. A549 cells were infected at
a multiplicity of infection (MOI) of 1.0 as previously described
(Oshansky et al., 2009). SHSY5Y cells were maintained in DMEM
with 10% heat inactivated FBS.

Nucleotide Sequence Analysis
Complete genome sequences for RSV, MV, HMPV, MuPV,
NDV, HV, NiV, MuV were from the National Center for
Biotechnology Information (NCBI). Accession numbers for all
sequences analyzed are given in Supplementary Table 1. A local
database of human mature miRNA sequences version 21.0 was
constructed locally in BioEdit. Viral sequences were analyzed
using BLASTN (Altschul et al., 1990; Altschul and Gish, 1996;
Altschul and Pop, 2017) against this local database using the
parameters Expect value (E) =10, matrix (M) = BLOSUM62,

TABLE 2 | vSMs in Paramyxovirus genomes.

Genera vSMs

RSV A miR-4719 > miR-556-3p > miR-4801 > miR-8074 > miR-3613-3p > miR-1253 > miR-3618 > miR-182-5p > miR-8485 > miR-4770

RSV B miR-4311 > miR-6780a-5p > let-7b-3p > miR-499a-3p

HMPV A miR-4662a-5p > miR-20b-5p > let-7f-5p > miR-5194 > miR-548u > miR-1267 > miR-3925-5p > miR-3148 > miR-4799-5p > miR-6884-5p >

miR-335-5p

HMPV B miR-6884-5p > miR-592 > miR-1267 > miR-20b-5p

NDV miR-6876-5p > miR-1306-5p > miR-1264 > miR-4280 > miR-6888-3p > miR-6855-3p > miR-338-3p > miR-548aq-5p > miR-6875-5p > miR-8069

> miR-3925-3p > miR-1249-5p > miR-892b > miR-4656 > miR-4679

HV miR-4661-3p > miR-4651 > miR-30e-5p > miR-6734-5p

NiV miR-3925-5p > miR-4698 > miR-4693-3p

MV miR-374a-3p > miR-5571-5p > miR-3942-3p > miR-4662a-5p > miR-5688 > miR-6861-3p > miR-4275 > miR-3617-3p > miR-4273 > miR-569 >

miR-3202 > miR-1297 > miR-26b-5p > miR-3934-3p > miR-1255b-5p > miR-6755-3p > miR-1469 > miR-324-3p > miR-548ah-5p > miR-593-3p

> miR-4518 > miR-6803-3p > miR-4690-5p > miR-4466 > miR-210-3p > miR-2909 > miR-3909 > miR-4505 > let-7b-3p > miR-2276-5p >

miR-4420 > miR-4498 > miR-6075 > miR-2276-3p > miR-4486 > miR-6793-3p

MuV miR-6861-5p > miR-6877-3p > miR-143-5p > miR-4433a-5p > miR-1236-3p > miR-4781-3p > miR-219a-2-3p > miR-1233-5p > miR-4645-5p >

miR-3131 > miR-6881-5p > miR-4269 > miR-7152-3p > miR-4286 > miR-4323

vSMs in bold are conserved across two or more viruses. vSM hits are listed in order of their decreasing abundance among viral genomes. RSV, respiratory syncytial virus; hMPV, human

metapneumovirus; NDV, New Castle disease virus; HV, Hendravirus; NiV, Nipah virus; MV, Measles virus; MuV, Mumps virus.

TABLE 3 | vSSs in Paramyxovirus genomes.

Genera vSSs

RSV A miR-2278 > miR-4280 > miR-1273f > miR-4753-3p > miR-592 > miR-4639-3p

RSV B miR-2278 > miR-7161-3p > miR-2113 > miR-7151-5p > miR-8068 > miR-369-3p

HMPV A miR-8063 > miR-323b-5p > miR-6831-5p > miR-337-5p > miR-5584-3p > miR-494-5p > miR-3678-3p

HMPV B miR-891a-3p > miR-6831-5p > miR-323b-5p > miR-337-5p > miR-8063 > miR-3678-3p > miR-6730-3p

NDV miR-219a-1-3p > miR-3165 > miR-1257 > miR-758-5p > miR-7161-3p > miR-7844-5p > miR-6868-3p

HV miR-374a-3p > miR-1250-5p > miR-6815-3p > miR-29b-3p > miR-29c-3p > miR-26a-5p > miR-6740-3p

NiV miR-6817-5p > miR-6846-3p > miR-3173-5p > miR-1205 > miR-2054

MV miR-6770-3p > miR-4455 > miR-514b-3p > miR-6506-5p > miR-1183 > miR-6841-3p > miR-4714-5p

MuV miR-6861-5p > miR-6877-3p > miR-143-5p > miR-4433a-5p > miR-1236-3p > miR-4781-3p > miR-219a-2-3p

vSSs in bold are conserved across two or more viruses. vSSs identified Paramyxovirus genomes. vSMs in bold are conserved across two or more viruses. vSS hits are listed in order

of their decreasing abundance amongst viral genomes. RSV, respiratory syncytial virus; hMPV, human metapneumovirus; NDV, New Castle disease virus; HV, hendravirus; NiV, nipah

virus; MV, measles virus; MuV, mumps virus.
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Low complexity Repeat masking = OFF and output = Tabular.
CSV files were imported into Microsoft Excel 2010 and filtered to
identify hits where miRNA start or miRNA end was ≤3. Hits in
the same orientation as the miRNA (5′-3′) were designated vSMs
while vSSs were in anti-sense orientation.

Structure Prediction of RSV vSMs (mimics)

and vSSs (sponges)
Nucleotide sequences (100 nt) flanking each predicted vSM or
vSS for RSV were extracted from parental genomic sequence and
analyzed by miRNAfold (Sullivan and Ganem, 2005) or RNA
structure (Xu and Mathews, 2016). Structures were visualized
with VARNA GUI (Hashimoto et al., 2013). Pre-miRNA
sequences were used as controls in prediction. Hybridization
stability was calculated using RNA hybrid (Jia et al., 2014).

FIGURE 1 | Distribution of vSMs and vSSs across genera of the

Paramyxoviridae family. (A) Viral sequences identical to host miRNA seed site

were designated vSMs (open bars) while those complementary to miRNA seed

sites were designated as vSSs (filled bars). (B) Ratio of vSS/vSM across

genera is shown. Dotted line represents ratio equal to 1.0. HV, hendravirus;

HMPV, human metapneumovirus; MV, measles virus; MuV, mumps virus; NDV,

New Castle’s disease virus; NiV, nipah virus; RSV, respiratory syncytial virus.

Analysis of Small RNA Processing
Total RNA from mock-treated or RSV A2-infected (MOI =

1.0) Vero cells was isolated and fractionated using RNAzol
RT according to the manufacturer protocol (MRCgene, Ohio).
Fractionated small RNA was polyadenylated and then reverse
transcribed with Protoscript II (New England Biolabs, MA) RSV
G- and L-specific reverse oligomers followed by PCR using gene
specific forward and reverse oligomers in a reaction containing
10 uM final primer concentration as per manufacturer’s
recommendations. PCR amplicons were resolved on a denaturing
12% PAGE gel in 1X TBE buffer and stained with SYBR
Gold. Sequences for RSV G and L oligomers are provided in
Supplemental Methods.

Next Generation Sequencing (NGS)
Type II respiratory epithelial (A549) cells or neuronal (SHSY5Y)
cells were mock-treated or infected with RSV A2 (MOI = 1.0)
for 24 h. Total RNA was isolated using RNAzol RT (MRCgene,
Ohio) per the manufacturer protocol and size fractionated.
Small RNA was quantified using Qubit broad range RNA kit
(Invitrogen, USA). Size fractionated small RNA was ligated to
proprietary Illumina adaptors using T4 RNA Ligase deletion
mutant (Epicenter, USA). Adaptor ligated RNA was reverse
transcribed and amplified for limited number of cycles during
which index barcodes were attached to each cDNA pool. cDNA
libraries for each sample at the end of the incubation temperature
were again analyzed on a Tapestation 2200, quantified and then
pooled at equimolar ratios as recommended by manufacturer.
Pooled cDNAs were denatured using freshly prepared 0.2N
NaOH at room temperature for 3min and then mixed with
hybridization buffer. Diluted libraries at 20 pM concentration
were loaded onto Illumina MiSeq and run to generate fastq
files as per Illumina MiSeq protocol. Sequencing reads obtained
had quality scores >30, were trimmed of adaptors, and were
then analyzed by BLAST against RSV A2 genome to determine
virus specific transcripts and determine gene location for
these transcripts.

RESULTS

Paramyxovirus Transcripts Mimic or Bind

to Host miRNAs by Seed Sequence
Paramyxovirus genome replication, gene transcription, and
translation occur in the cytoplasm, which is the primary
site of host post-transcriptional gene regulation by miRNAs.
To identify the sequence motifs in Paramyxovirus genomes
that could mimic or inhibit host miRNA function based on
seed sequence homology/complementarity, RSV, HMPV, MuPV,
NDV, HV, NiV, MV, and MuV genomes were analyzed by
basic local alignment search tool (BLAST) (Altschul et al.,
1990) against a database of either human mature miRNAs
or cognate species using criteria optimized for finding short
matches (matrix = BLOSUM 62, Expect value = 10). Hits
were filtered to identify matches in the miRNA seed site that
were either in the sense (+/+) or antisense (±) orientation
relative to the miRNA. Sense orientation hits were designated
as vSMs (Table 2), while antisense hits were designated vSSs
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FIGURE 2 | Sequence alignments of miRNA vSMs encoded by different paramyxoviruses. Alignments show identity between host miRNA seed sites and the

corresponding vSM across Paramyxoviruses. Nucleotide numbers indicated viral genome coordinates while labels on the right indicate encoding viral gene. miRNA

seed sequence is indicated in bold. Straight lines indicate perfect identity.
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FIGURE 3 | Sequence alignments of miRNA vSSs encoded by different paramyxoviruses. Alignments show complementarity between host miRNA seed site and the

corresponding vSS across Paramyxoviruses. Nucleotide numbers indicated viral genome coordinates while labels on the right indicate encoding viral gene. miRNA

seed sequence is indicated in bold. Straight lines indicate Watson-Crick base pairing (AU/GC) while colon indicates a non-Watson-Crick base pair (GU).
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FIGURE 4 | Viral genomic regions form characteristic stem- loop folds in vSM and vSS encoding regions and are processed into smaller transcripts. Secondary

structures of a 100 nt sequence flanking vSM-4719 (A) and−556-3p (B) were predicted using RNAfold and drawn using VARNA. Highlighted region corresponds to

the vSM. Internal and terminal loops are prefixed with L and T, respectively. Helices are prefixed with H and the 5
′

and 3
′

ends of the molecule are as indicated.

(C) Size-fractionated small RNA from mock or RSV A2 infected (24 h or 48 h pi) Vero cells was reverse transcribed using RSV G- and L-specific reverse primers.

Amplicons obtained using a G/L specific primer pair were electrophoresed on a 12% PAGE gel alongside a molecular ladder and stained with SYBR gold.
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(Table 3). Across genera, we identified 85 vSSs compared
to 60 vSMs for the type strains (Figure 1A). The ratio of
the number of vSSs to vSMs was typically in the 1.5–2.0
+ range for most genera except HMPV where they were
in approximately equal numbers (Figure 1B). The ratio of
vSS/vSM was determined to determine if vSMs vs. vSSs were
selected for or against during evolution. As noted in the
Introduction, vSMs are expected to enhance native miRNA
mediated suppression while vSSs are expected to bind to
miRNAs and relieve their repressor effect. A high vSM/vSS
ratio would indicate that mimicking host miRNA activity could
be a predominant mechanisms of modulating host miRNA
activity. Alternatively, a low vSM/vSS ratio might indicate that
inhibiting miRNA activity would be a more conserved mode of
regulating miRNA function. Most vSMs or vSSs were located

in the L gene across the Paramyxovirus genera followed by F
protein and G protein genes. Details of vSMs and vSSs in are
discussed below.

Respiratory Syncytial Virus
RSV is grouped as A and B strains based on the diversity in the
G protein (Johnson and Graham, 2004; Papenburg and Boivin,
2010; Pangesti et al., 2018). For strain A2 (GenBank accession
number M74568), we did not identify any vSM or vSS while
for strain B1 (GenBank accession number AF013254), one vSM
was identified in the L gene. Analysis of clade A (326 sequences
identified) and clade B (60 sequence strains) (accession numbers
in Supplementary Table 1) identified two vSMs, one mapping
to miR-4719 in the G gene and the other mapping to miR-
556-3p in L gene (Figure 2A). Strains that encoded vSM-4719

FIGURE 5 | Small RNA from RSV-infected respiratory epithelial (A549) (A,B) or neuronal (SHSY5Y) (C,D) cells were sequenced on an Illumina MiSeq. Alignments

show RSV vSMs or vSSs in bold.
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did not encode vSM-556-3p and vice-versa. For B1, the single
vSM corresponding to miR-4311 mapped to the L gene. The
viral gene segments that encoded vSSs included miR-2278 in
the NS1/1c gene and miR-4280 and miR-1273f in the G gene
(Figure 3A).

Human Metapneumovirus
HMPV, like RSV, is grouped as A and B strains based on G gene
diversity (Kahn, 2006; Papenburg and Boivin, 2010; Schuster and
Williams, 2014). A single vSM for miRNA let-7f was located
in the L gene (Figure 2B), and a single vSS complementary to
multiple members of the miR-548 family was found in the M2
gene (Figure 3B).

Hendravirus
Analysis of the HV genome identified three major vSMs for
miR-4661-3p, miR-30e-5p, and miR-580-3p in F, G, and P genes
(Figure 2C). vSSs for miR-6815-3p and miR-29c-3p in the N
gene, miR-374a-5p, and miR-26a-5p in the L gene, and miR-
1250-5p in the G gene were identified (Figure 3C).

Murine Pneumovirus
Analysis of MuPV genome identified several conserved vSMs
containing seed sequence of miR-4311 in the N gene, miR-539-
5p in the SH gene, and miR-2681-3p in the G gene (Figure 2D),
as well as vSSs complementary to miR-6825 and miR-138-5p in
the P and G genes, respectively (Figure 3D).

New Castle Disease Virus
Avian Paramyxovirus-1 (APMV-1) is the etiological agent of
NDV. Analysis of the APMV-1 genome identified four highly
conserved vSMs for miR-1681, miR-6703-3p, and miR-6648-3p
in the L gene and miR-146b-3p in the M gene (Figure 2E).
The genome also encoded two vSSs each for miR-1465, miR-
7456-5p in the F gene, and miR-6516-3p and miR-6662-3p in
the L gene, and miR-1636 in the intergenic region (Figure 3E).
APMC-1 encoded the highest number of vSMs and vSSs among
all paramyxoviruses.

Nipah Virus
Analysis of NiV genomes identified two vSMs for miR-3925-
5p and miR-4698 in the L gene (Figure 2F). The genomes also

TABLE 4 | miRs targeted by vSMs and vSSs for HMPV or RSV strain A or B were analyzed by DIANA miRPath server.

# of vSMs # of vSSs

Pathways deregulated by virus infection RSV A RSV B Total RSV A RSV B Total

Prostate cancer 1 1 2 1 1 2

Axon guidance 1 1 2 1 1

PI3K-Akt signaling pathway 1 1 2 1 1 2

Chronic myeloid leukemia 1 1 2 1 1

Non-small cell lung cancer 1 1 1 1 2

Transcriptional mis-regulation in cancer 1 1 2 1 1

Endometrial cancer 1 1 1 1 2

T cell receptor signaling pathway 1 1 2 1 1

Focal adhesion 1 1 2 0

Neurotrophin signaling pathway 1 1 1 1

Vasopressin-regulated water reabsorption 1 1 2 2

ErbB signaling pathway 1 1 1 1

Regulation of actin cytoskeleton 1 1 0

Prion diseases 1 1 2 0

Glioma 1 1 1 1

Endocytosis 1 1 2 0

Wnt signaling pathway 1 1 2 0

Colorectal cancer 1 1 2 0

Ubiquitin mediated proteolysis 1 1 2 0

Dopaminergic synapse 1 1 2 0

MAPK signaling pathway 1 1 2 0

Renal cell carcinoma 1 1 1 1

Melanogenesis 1 1 1 1

TGF-beta signaling pathway 1 1 1 1

B cell receptor signaling pathway 1 1 1 1

mRNA surveillance pathway 1 1 2 0

Significance of association based on p value ≤ 0.05 and False Discovery Rate (FDR) correction. Pathways with p-values < 0.05 are shown which are significant. Numbers indicate

number of vSMs or vSSs.
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encoded vSSs against miR6846-3p in the G gene, miR-6817-5p in
the P gene and miR-3173-5p in the F gene (Figure 3F).

Measles Virus
The MV genome had a vSM for miR-569 in the L
gene (Figure 2G), and a vSS for miR-6770-3p in the P
gene (Figure 3G).

Mumps Virus
MuV genome has a vSM in the L gene for mir-548i (Figure 2H).
The genome also encodes five vSSs against miR-4781-3p in the
NP gene, miR-6877-3p in the P gene, miR-376c-3p in the M
gene, miR-143-5p in the SH gene, and miR-6861-5p in the HN
gene (Figure 3H).

These comparative analyses of Paramyxoviruses revealed an
enrichment of vSSs relative to vSMs and localization of vSM
sequences in L or G genes. It is not clear if these miRNA
sequences evolved as an adaptation to a host response or
are an outcome of low polymerase (L gene) fidelity. The
conservation of these sequences in the circulating viral strains of
multiple paramyxoviruses suggests that they may facilitate virus
replication possible by contributing to immune evasion.

Viral RNA Is Processed to Smaller

Transcripts During Infection
Stem-loop structures are a feature of miRNA templates and are
recognized by both nuclear and cytosolic class III RNAses (Fabian
et al., 2010; Weill et al., 2015). Several studies suggested RSV
genome/antigenome might not fold to form secondary structures
due to N protein encapsidation (Ghosal et al., 2014; Kumari et al.,
2016). However, recent data has shown that RNA probes can
bind to RSV genomic RNA (Bartel, 2009; Li et al., 2014; Cloonan,
2015) support the hypothesis that the RSV genome/antigenome
is exposed during infection and may be able to form secondary
structural motifs that can act as templates for Dicer, a class III
cytosolic RNAse (Friedman et al., 2009). There is no published
data to indicate that viral transcripts are protein encapsidated
in the cytosol during infection. We analyzed genomic sequences
near predicted vSMs and vSSs, and RNA secondary structure
predictions indicated the potential of these regions to fold into
stable stem loop structures similar to pre-miRNA transcripts
(Figures 4A,B). Randomization of the sequence disrupted the
structure. Stability of interaction between miRNAs and vSSs were
computationally determined with RNAhybrid, a tool for finding
the minimum free energy hybridization of a long and a short
RNA to predict miRNA targets (Jia et al., 2014). Interactions

FIGURE 6 | Model of vSM / vSS modulation of host responses during infection. Host mRNA are depicted as solid lines, microRNAs are depicted as dashed lines with

end caps while viral transcripts are depicted as dashed lines. (A) Normal post-transcriptional miRNA regulation of gene expression. Degree of miRNA complementarity

determines if gene knockdown proceeds via mRNA decay/translation following miRNA binding to target transcript in the RISC complex. (B) Viral RNAs encoding

vSSs/processed vSSs bind to host miRNAs and prevent native suppression of pro-viral factors. (C) Viral RNAs encoding vSMs can supplement host miRNA activity

and suppress anti-viral responses.
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between the predicted vSS and complementary miRNA are very
stable as evident from the low mean free energy of the hybrid
(Table 1). To establish if the RSV transcripts are processed into
small RNAs during infection, Vero cells were infected with
RSV A2 (MOI = 5.0) for 24 or 48 h, and size-fractionated
small RNA was reverse transcribed using G- or L- specific
oligonucleotides and amplified using G- or L-specific forward
and reverse oligomers. MOI of 1.0 was used to infect A549 or
SHY5Y cells with RSV or MV followed by small RNA isolation
at 24hpi and NGS sequencing. MOI of 5.0 was used to infect
Vero cells for RT-PCR analysis of small RNA products. The
different MOIs were used because of the different sensitivities
of the assay methods. With NGS, we expected to observe even
small differences owing to the extremely high sensitivity of the
method. In contrast, for Vero cells, RSV infection produces little
to no cytopathic effect at 24–48 hpi, thus necessitating higher
MOI infection. Electropherograms clearly showed bands of∼40,
50, 70, and 80 bp for the G gene, and 40 and 80 bp for the L gene
along with several bands in the∼120 bp size range that are similar
to host pre-miRNA sizes (Figure 4C). These data support the
hypothesis that vSM- and vSS-encoding regions of the genome
are folded and processed into smaller transcripts potentially via
cellular RNAi machinery. Experimental validation of predicted
structures is out of the scope of this hypothesis article.

Small Viral RNA Transcripts Encode vSMs

and vSSs
The results show that RSV infection of Vero cells, which
lack a functional IFN α/β locus (Karnati et al., 2015; Alipoor
et al., 2016), produces small RNAs from the G and L genes
(Figure 4C). We also analyzed small RNAs transcriptomes of
mock-treated, RSV-infected A549 cells, or RSV-infected neuronal
SHSY5Y cells by NGS to identify if these transcripts encoded
vSMs and vSSs. Transcripts mapping to viral genome over their
entire length (36 nts) were also compared to mature human
miRNAs to identify vSMs and vSSs. In RSV-infected A549 cells,
we identified viral transcripts that encoded three overlapping
full-length vSMs (miR-384, miR-6508-5p, and miR-642a-3p)
and others that were perfectly complementary to miR-4483
(Figure 5A). Viral transcripts from RSV infected SHSY5Y cells
encoded a near full length miR-3201 or miR-642a-3p transcript
and vSSs against miR-642b-5p and miR-182-3p (Figure 5C).
Many of transcripts encoded only vSMs or vSSs in contrast to
the transcripts noted above which encoded nearly full-length host
miRNAs (Figures 5B,D). These findings support our hypothesis
that Paramyxovirus gene transcripts may modulate host miRNA
activity via seed match or complementarity. While host encoded
competing endogenous RNA are known, this is the first such
analysis done for Paramyxovirus genomes thereby opening new
areas of investigation.

DISCUSSION

The low replicative fidelity of RdRp of Paramyxoviruses appears
to be an evolutionary strategy since it allows for quasispecies
generation, favors emergence of variants that can escape

immune pressure, and may allow the virus to modulate
host responses and gene expression via regulation of miRNA
function. Tempering host gene expression is important for viral
replication, and viruses have evolved several means to counter
host responses to virus infection using mechanisms including
shutdown of host transcription, translation, and modification
of sncRNA and miRNA expression (Vishnoi and Rani, 2017;
Olejniczak et al., 2018).

RIG-I and MDA-5 are prototypical pattern recognition

receptors that detect and respond to presence of 5
′

triphosphorylated and double-stranded RNA, respectively,
during RNA virus infection (Piedade and Azevedo-Pereira,
2016; Auvinen, 2017). These receptors trigger a signaling
cascade that culminates in establishment of an antiviral state
in the infected and neighboring cells (Piedade and Azevedo-
Pereira, 2016). Viruses avoid host responses to replicate and
moderate these responses to facilitate replication. In addition to
modifying the antiviral response, we propose that quasispecies
generation during RNA virus replication helps regulate host
gene expression by modulation of host miRNA function and
activity. We speculate that RNA viral quasispecies produce a
cloud of molecular signatures that mimic or inhibit host miRNA
activity via sequence complementarity and alter the expression
and function of several host pathways during infection. Our data
suggest that vSMs and vSSs encoded by Paramyxovirus genomes
and transcripts aid quasispecies generation by modulating
various host pathways (Table 4) (Figure 6). It is likely that the
generation of quasispecies is dynamic and adapts to host cell
pressure. Thus, viral transcripts can mutate to produce vSMs
or vSSs that modulate different miRNAs in different cell types
as well as carry one or more frameshift mutations to produce
alternative proteins/peptides that provoke modified or altered
responses as these data suggest where viral transcripts can
potentially bind to or mimic host miRNAs perturbing their
expression and diverting host resources.
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Recent clinical studies have revealed that severe symptoms of dengue fever are

associated with low pre-existing antibody levels. These findings provide direct clinical

evidence for the theory of antibody-dependent enhancement of infection (ADE), which

postulates that sub-neutralizing levels of antibodies facilitate the invasion of host cells by

the dengue virus. Here, we carried out molecular simulations guided by previous in vitro

experiments and structural studies to explore the role of antibody fine-specificity, viral

conformation, and maturation state—key aspects of dengue virology that are difficult to

manipulate experimentally—on ADE in the context of primary and secondary infections.

Our simulation results reproduced in vitro studies of ADE, providing a molecular basis

for how sub-neutralizing antibody concentrations can enhance infection. We found that

antibody fine specificity, or the relative antibody response to different epitopes on the

surface of the dengue virus, plays a major role in determining the degree of ADE observed

at low antibody concentrations. Specifically, we found that the higher the relative antibody

response to certain cross-reactive epitopes, such as the fusion loop or prM, the greater

was the range of antibody concentrations where ADE occurred, providing a basis for why

low antibody concentrations are associated with severe dengue disease in secondary

infections. Furthermore, we found that partially mature viral states, in particular, are

associated with the greatest degree of ADE.

Keywords: antibody-virus interactions, dengue virus, antibody dependent enhancement, antibody neutralization,

molecular simulations

INTRODUCTION

Dengue virus (DENV), a major human pathogen transmitted by Aedes aegypti mosquitoes,
causes an estimated 390 million infections each year (Bhatt et al., 2013). Four DENV serotypes
(DENV1–DENV4), which are found across tropical and sub-tropical regions, vary in prevalence
depending on the time and region. Whereas primary dengue infection is typically asymptomatic or
results in a mild, uncomplicated fever, secondary infection with a heterotypic serotype is associated
with severe disease manifestations, such as dengue hemorrhagic fever, and occasionally, death
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(Halstead, 1970; Sangkawibha et al., 1984; Guzman and Harris,
2015). This pattern of outcomes has led to the hypothesis that
pre-existing immunity to DENV is responsible for enhanced
secondary infections.

Recently, two clinical studies that assessed the longitudinal
risk of severe dengue disease following primary and secondary
infection found that low pre-existing serum concentrations of
antibodies (Abs) to dengue virus were associated with the
highest risk of severe symptoms. In a study of 3,451 children
in Thailand, Salje et al. (2018) found that individuals developed
a stable set-point titer within 1 year of a primary infection,
and that individuals with pre-existing titers of <1:40 developed
hemorrhagic fever at 7.4 times the rate of naïve individuals,
compared with 0.0 times for those with titers>1:40. Likewise, in a
study of children in Nicaragua, Katzelnick et al. (2017) found that
individuals with pre-existing DENV Ab titers within a narrow
intermediate range had the highest risk of severe symptoms,
compared to those with high DENVAb titers and those that were
seronegative for DENV infection.

The exactmechanism bywhich pre-existing immunity leads to
severe dengue symptoms is unknown. However, in vitro studies
of dengue infection suggest that Ab-dependent enhancement
of infection (ADE) plays a role. In ADE, sub-neutralizing Ab
concentrations facilitate viral invasion of host cells via an Fcγ-
receptor (FcγR)-mediatedmechanism. Specifically, Abs bound to
the virus surface engage Fc receptors, resulting in FcγR-mediated
endocytosis. Subsequent acidification of the phagocytic vesicles
triggers viral membrane fusion and invasion of the host cell.
Although in vitro studies using both monoclonal and polyclonal
Abs have shown that ADE occurs under various conditions for a
range of FcγR-bearing cells, major questions remain regarding its
physiological role in dengue disease severity.

First, lower set-point titers are associated with severe
dengue disease during secondary infection, but not primary
infection, suggesting that serotype specificity, in addition to
antibody concentration, plays a role in ADE. Second, it is
unclear how the same infecting viral titer that is largely
asymptomatic in naïve individuals is pathogenic in exposed
individuals. In this study, we sought to address these questions
by extending a molecular simulation approach to model the
roles of antibody concentration, serotype-specificity, and viral
heterogeneity in ADE.

DENV infection triggers a broad immune response, which in
part involves the production of hundreds to thousands of distinct
monoclonal Abs (mAbs) which bind to a range of epitopes on
the surface of the virus. Previous in vitro studies of flavivirus
infection suggest that a stoichiometric threshold of 20–50 Abs
bound to the virion is sufficient for neutralization (Pierson et al.,
2007). MAbs to DENV are typically classified as type-specific
(TS) Abs that bind to and/or neutralize only one serotype, and
cross-reactive (CR) Abs that bind to and/or neutralize all four
serotypes. An important study by Beltramello et al. (2010) found
that activation of immunological memory years after a DENV
infection leads to the production of large amounts of broadly CR
Abs. However, most of these Abs are incapable of neutralizing
infection even at very high concentrations, and only a small
quantity of them may exhibit TS or potent neutralizing activity.

A key feature of these poorly neutralizing CR Abs is that
they target immunodominant epitopes, such as the fusion
loop (FL) of the envelope (E) protein or the pr fragment of
the prM protein, which have low accessibility or availability.
In vitro studies have shown that, Abs which bind to these
epitopes are highly prone to ADE (Halstead and O’Rourke, 1977;
Beltramello et al., 2010; Dejnirattisai et al., 2010; Yeo et al.,
2015). Fully mature DENV viral particles do not contain pr
fragments or present the FL epitope on their surface (Perera
and Kuhn, 2008; Zhang et al., 2013). However, infected host
cells produce a wide spectrum of viral particles in different
maturation states with varying ratios of prM and E, which are
manifest in cryo-electronmicroscope images as spiky patches and
heterogeneous morphologies. Recent studies of in vitro models
of DENV infection have shown that, mAbs which target these
epitopes are typically highly cross-reactive, poorly neutralizing,
and highly prone to ADE, even when they are produced by
infections due to other flaviviruses, such as the Zika virus (ZIKV)
(Barba-Spaeth et al., 2016; Stettler et al., 2016).

We previously presented a method (Ripoll et al., 2016) for
estimating the stoichiometry of Ab-flavivirus complex formation
and modeling antibody-dependent neutralization of dengue
virus, using a molecular simulation approach based on the
theory of multiple equilibria in proteins (Tanford and Kirkwood,
1957; Beroza et al., 1991). We used a coarse-grained structural
representation of the Ab-flavivirus complex based on high-
resolution cryo-EM and X-ray crystallography structures that
allowed us to capture important structural characteristics, such
as the spatial distribution of the epitope around the virion. Here
we extended this approach to consider (1) mixtures of CR and
TS mAbs that recognize distinct epitopes, and (2) heterogeneous
viral populations that include partially mature states in various
structural configurations.

MATERIALS AND METHODS

We modeled the interaction of a mixture of CR and TS Abs with
the envelope of flaviviruses, using an extension of the structure-
based Monte Carlo (MC) approach described previously (Ripoll
et al., 2016). Here, we highlight the changes we introduced to the
procedure to model the binding of an Ab mixture to a virion.
First, we assumed that the total Ab concentration, [Abtot], is
given by Equation (1), where

[

AbTS
]

and [AbCR] are the partial
concentrations of TS and CR Abs, respectively.

[Abtot]= [AbTS]+ [AbCR] (1)

We assumed that binding occurs as a Brownian-like process
where Abs randomly collide with a virus envelope. The virion
concentration, [V], was considered infinitely dilute (virion-virion
interactions are negligible, i.e., [Abtot] >> [V]). Each set of CR
or TS Abs was represented by a single mAb with the highest
affinity of the respective group, and the chosen representative
Abs corresponded to well-studied mAbs whose epitopes were
mapped to E or prM, preferably through Cryo-EM or X-ray
crystallography experiments.
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Coarse-Grained Structural Model of
DENV-Ab Complexes
We used coarse-grained representations of both the Abs
and the viral envelope to capture the relevant geometrical
features of the complexes. As described above, we generated
three-dimensional models of the viral particles by combining
homology modeling techniques with existing cryo-EM and
X-ray structure data. For the four DENV serotypes, we
constructed all-atom models for whole virus envelopes in
their immature “spiky,” immature “smooth,” and mature
conformations (Zhang et al., 2003, 2013; Perera and Kuhn,
2008; Yu et al., 2008; Kostyuchenko et al., 2013). Using
the fully mature or immature models, we produced partially
mature viral particles with varying ratios of immature to
mature content, , and then converted these into coarse-
grained models.

We represented the partially mature state as a sphere of radius
r [= (rImm + rMat)/2], where rImm and rMat correspond to the
radii of the immature and mature viral envelopes, respectively,
derived from all-atom homology models of the viral envelopes
in the particular maturation state (i.e., mature, immature spiky,
and immature smooth) (Zhang et al., 2003, 2013; Perera and
Kuhn, 2008; Yu et al., 2008; Kostyuchenko et al., 2013). We
used a tessellation procedure to partition the surface of the
sphere into elements of equal size (Tegmark, 1996), each of
which determined a pixel on the sphere, and whose total number
determined the resolution of the spherical grid. We derived a
simplified representation of an epitope, ξ, on the tessellated
sphere from the collection of surface elements intersected by
the radial projections of the actual epitope atoms in the three-
dimensional model of the partially mature envelope.

At the start of each MC run, the fraction of prM content, f,
was randomly selected based on a normal distribution centered
around , an input parameter defining the mean prM content,
and a composite viral particle consisting of E-prM and E
subunits (in a ratio corresponding to f ). The distribution of
E-prM and E subunits was either arranged randomly across
the whole viral surface (for the “smooth” conformation) or as
a contiguous surface patches (for the “rough” conformation).
The types of epitope distributions were consistent with available
experimental data indicating the existence of partially mature
flavivirus particles containing varying amounts of uncleaved prM
(Junjhon et al., 2008; Nelson et al., 2008; Dowd and Pierson,
2011), and cryo-EM data showing viral particles where a portion
of the surface remains in the immature “spiky” state (Perera and
Kuhn, 2008; Junjhon et al., 2010). Finally, CR and TS epitopes
were mapped to the corresponding E-prM and E subunits on the
viral surface.

Abs were represented as circular “soft disks” that could

interact with other Abs through steric interactions and bind to
their epitopes. This simplified “footprint” representation removes
the need to account for changes in the Ab orientation relative
to the virus surface. An Ab was considered bound when it
landed on a given surface element and occluded a center of
one of its epitopes. The radius of the soft disk, rFab, reflects
the overall excluded volume of the Ab. We previously found
that a rFab of 27.8 Å was sufficient to reproduce the Ab binding

stoichiometry for most Ab-flavivirus complexes with available
cryo-EM structures (Ripoll et al., 2016).

Ab-Virus and Ab-Ab Interactions
We used the theory of multiple equilibria in proteins to model
Ab binding (Edsall and Wyman, 1958; Steinhardt and Reynolds,
1969; Bisswanger, 2008), where Abs represented the ligands, and
the virus envelope represented themacromolecule whose binding
sites corresponded to the epitopes of the Abs. We modeled
the behavior of a mixture of two types of Abs by adapting a
methodology used to study pH titration in proteins (Beroza
et al., 1991). During the simulation process, we assumed that Abs
stochastically bind to and unbind from binding sites on the virus
surface in an epitope-specific manner, through the use of a free
energy function that derives the free energy of the virus binding
state based on its binding configuration and the binding affinity
of each mAb in the system (see Supplemental Materials: section
A. Modeling Ab-virus and Ab-Ab interactions). Previously, we
used this approach to model the binding of mAbs to DENV
(Ripoll et al., 2016), here, we extended this approach to simulate
the binding of mixtures of two mAbs, a CR and TS mAb, to
DENV. The Abs in the system, in addition to binding to the
virus surface, were also assumed to sterically interact with each
other, potentially occluding neighboring binding sites in the
described above.

Simulating Ab Binding and Neutralization
We carried out simulations for combinations of

[

AbTS
]

, and
[

AbCR
]

, with each partial concentration ranging from 10−1 to
10−14 M. For each pair of partial concentrations, we carried out
500 binding simulation runs (∼108 M steps each), collecting
statistics from 25,000 independent configurations of Abs bound
to the viral capsid. From the simulation data, we computed the
observed number of bound Abs < Nbound > to generate Ab
occupancy curves. Similarly, we computed the mean number of
bound CR Abs, < NCR >, and the mean number of bound TS
Abs, < NTS >.

We generated theoretical curves of infectivity, rinfc, or
neutralization, rneut [= (1–rinfc)], using a structure-based model
of neutralization introduced in our previous work (Ripoll et al.,
2016). This model represents a variation of the “multiple hit”
model (Parren and Burton, 2001), which assumes that docking
of multiple Abs to a single virion is required for neutralization.
In previous work we showed that this model shows ∼50%
neutralization for an average < Nbound > of ∼30, which is close
to the neutralization threshold postulated by the “coating theory”
for flaviviruses.

Simulating ADE
We defined a quantitative model of ADE that assumes that the
enhancement, EADE, produced by a given virion is determined
by two variables: the infectivity of the particle, “rinfc, and the rate
of phagocytosis, “rphg.

EADE = “rinfc·“rphg (2)

We assumed the rate of phagocytosis to be a function of the
number of successful encounters of the virion with the receptors
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on the surface of the invaded cell. Additionally, we assumed
all cells to have the same number of receptors. A successful
encounter required the presentation of an Ab by the virus
to the host cell, hence, the greater the < Nbound > on the
virion, the more likely the encounter was successful. With these
considerations, we assumed that “rphg = C Nbound , where Nbound

is the number of Abs bound to the particular configuration of the
virus, and C is a constant.

Monte Carlo Simulations
To produce a stoichiometric curve for a given dual Ab mixture
and virus complex, we need to determine the average< Nbound >

at different concentration values of the Ab mixture. To this end,
we performed importance sampling using MC methods (Beroza
et al., 1991) to simulate the Ab-virus binding process. After first
selecting a pair of partial concentration values for the free Abs,
[

AbTS
]

and
[

AbCR
]

, we carried out 500 independent simulation
runs. Each run started with the initialization of the system, in
which the number of CR epitopes for an Ab-free viral envelope
was randomly defined using a normal distribution with a mean
corresponding to the immature content (specified by an input
value). During the course of the MC simulation, surface elements
were randomly selected along with a type of action (a “trial”
move): binding or release of an Ab. For binding moves, the
type of Ab was chosen randomly, and a binding attempt was
made only when the surface element was associated with an
epitope of the correct type. For release moves, the procedure first
checked whether an Ab was bound to the surface element under
consideration, and upon confirming a bound Ab, attempted to
unbind it. Trial moves were accepted and rejected based on the
Metropolis criteria.

During a run, which typically ended after 108 MC steps,
we collected statistics every 2 × 106 steps. This sampling
frequency was determined based on the correlation time between
approximately independent measurements as computed using
the methodology of Beroza et al. (1991). To produce averages for
a given concentration, we used all samples collected from the 500
independent runs.

Code Availability
The program code and processing scripts are available
upon request.

RESULTS

Simulating Ab Binding in Flaviviruses
We carried out molecular simulations of polyclonal Abs binding
to DENV, West Nile Virus (WNV), and ZIKV virions to
explore the contributions of Ab concentration, epitope fine
specificity, and virusmaturation state on infectivity andADE.We
represented polyclonal sera as a mixture of representative TS and
CR mAbs and assigned binding affinities that reflect homotypic
and heterotypic specificities. Representative TS and CR Abs
were selected from published data where serotype specificity and
epitope information were available. In particular, we focused

on mAbs where cryo-EM, X-ray crystallography, or shotgun
mutagenesis methods were used for epitope mapping (Table 1).

We carried out MC-based simulations using coarse-grained
representations of the flavivirus envelope and mAbs. Specifically,
we started from a high-resolution structural model of the virion,
mapped the appropriate mAb epitopes onto the virion surface,
and then reduced the virion representation to that of a tessellated
sphere, with the epitope residues defined as points. Each Ab was
modeled as soft disk that represents its binding “footprint,” and
Abs could interact with one another through steric interactions
(Ripoll et al., 2016). We modeled viral structural heterogeneity
by varying the degree of maturation and by modeling “smooth”
(Figures 1A–C) and “rough” (Figures 1D–F) conformational
states. A given virion in themodel assumed a range of maturation
states, each defined by the fraction of prM-E heterodimers
present in the model, from fully immature (100%) to fully
mature (0%).

During simulations, each run started from a coarse-grained
model of the partially mature virion. Representative models
are shown in Figures 1C,F for the smooth and rough partially
mature states, respectively. In the smooth form of the virion,
prM-E heterodimers were distributed randomly over the virus
envelope. We used the smooth form of the WNV envelope,
together with WNV mAb E16, to explore the effects of epitope
exposure. The smooth form of a DENV virion was also used in
simulations that assumed simultaneous binding of CR and TS
Abs. In the latter case, we chose DENV mAb 2D22, which binds
to E protein dimers (Fibriansah et al., 2015), as a representative
of TS mAb, and DENV mAb 5G22, which binds to an epitope on
prM, as a representative CR mAb.

For the rough form of the virion, we considered mosaic
structures from cryo EM experiments which show partially
mature particles containing E-prMheterodimers in the immature
spiky state (Junjhon et al., 2010). These heterodimers aggregate
over the virus surface to form a single immature patch
(Figure 1D). For the rough virion, we used the mAb 2H2, which
binds a pr epitope, as a representative CR mAb, along with
2D22 as a representative TS mAb. Figures 1B,E show the atomic
representations of TS and CR epitopes in the rough form of the
virus. Simulations of the rough form were also used to investigate
the effect of partial maturation on the binding of a CR mAb of
the EDE2 family, namely mAb 747(4) A11, which targets E dimer
epitopes in DENV and ZIKV (Dejnirattisai et al., 2015, 2016;
Barba-Spaeth et al., 2016).

Ab Binding Stoichiometry in Partially
Mature Virions
We first carried out simulations in which we varied the
concentration of a single type of mAb that binds to partially
mature virions either in the smooth or rough state, to observe the
impact of reduced epitope exposure on infection, neutralization,
and ADE. We considered a wide range of maturation states
(prM content from 0 to 100%) and ran the simulations with TS
mAb concentrations ranging from 10−1 to 10−14 M, assuming
high binding affinity for the virion (KA = 10−9 M). At each
mAb concentration, we carried out 500 independent simulations,
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TABLE 1 | DENV-specific mAbs used in simulations.

mAb Specificity Virus Method PDB ID Epitope References

2D22 TS DENV2 Cryo-EM 4UIF, 4UIH, 5A1Z E dimer De Alwis et al., 2012; Fibriansah et al., 2015

2H2 CR DENV1-4 Cryo-EM 3J42 prM Henchal et al., 1982; Wang et al., 2013

5G22 CR DENV1-4 Shotgun mutagenesis – prM Smith et al., 2012, 2016

EDE2 A11 CR DENV1-4, ZIKV X-ray diffraction 4UTB, 5LCV EDE2a Dejnirattisai et al., 2015; Rouvinski et al., 2015; Barba-Spaeth et al., 2016

E16 TS WNV X-ray diffraction 3IYW, 1ZTX E–DIII Nybakken et al., 2005; Kaufmann et al., 2010

aEDE2 stands for “E dimer-dependent epitope” with sensitivity to disruptions in N-linked glycosylation sites at positions 153 and 155 of the DENV E protein.

FIGURE 1 | Structural models of DENV envelope used for simulations. Representative structures are shown for smooth (A–C) and rough (D–F) conformations.

Epitopes and epitope centers for TS (blue) and CR (white) mAbs are highlighted in (B,C,E,F). Structures were generated with maturation corresponding to a prM

content of 20%.

each 108 steps long, and evaluated the mean number of bound
Abs. From the simulation trajectories, we computed the average
infectivity and average enhancement.

Pierson et al. (2007) carried out in vitro experiments on the
effects of epitope exposure in the related flavivirus WNV. In
one experiment, they investigated Ab occupancy requirements
for virus infectivity by controlling the number of epitopes of
a type-specific Ab (mAb E24) displayed by recombinant WNV
particles. They achieved this by mixing wild-type WNV E
protein, which contains the E24 epitope, with mutant WNV E-
prMheterodimers, which include a pointmutation that abrogates
E24 binding. To simulate this experiment, we used published
structural information from mAb E16 whose epitopes closely
overlap with those of mAb E24 (Pierson et al., 2007). For
simulation purposes, we assumed that these mixed particles
were in the smooth state (Figure 1A), containing wild-type E
molecules in themature state andmutant E-prM in the immature
state. We found good agreement between our simulated results

and the experimental data with respect to ADE and relative
infectivity at varying levels of maturation. Increasing epitope
exposure (by increasing the percentage of wild-type E in the
particles) led to a reduction in the overall infection rate, as found
in the experiments (Figures S1A,B). The range of concentrations
where ADE occurred broadened and shifted toward higher
concentrations as epitope exposure decreased (Figures 2A,B).

DENV glycoproteins organized on the envelope surface co-
exist in two forms, mature dimers and immature trimers
(Junjhon et al., 2008, 2010; Plevka et al., 2011), which form
mosaic “rough” viral particles that are often released by
infected host cells. We carried out simulations using this rough
conformation (Figure 1B) for a range of maturation states.
We first explored the binding of CR Abs to immature DENV
using epitope information for the anti-prM mAb 2H2 (Wang
et al., 2013) and compared it with the experimental results of
Dejnirattisai et al. (2010), which showed that anti-prM Abs are
prone to elicit ADE even at very high Ab concentrations (see
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FIGURE 2 | Effects of epitope exposure on Ab activity—experiments vs. simulations. Plots of ADE as a function of Ab concentration for viral particles displaying

varying numbers of epitopes. (A) Simulated ADE using virions in the smooth state, at various ratios of wild-type to mutated E proteins forming the virus envelope.

(B) Experimental ADE data for WNV mAb E24, obtained from Pierson et al. (2007). (C) ADE predicted by simulations of anti-prM Ab 2H2 binding to epitopes exposed

on mosaic particles at different degrees of maturation. (D) Enhancement of DENV2 infection of primary monocytes in the presence of human anti-prM antibodies; data

from Dejnirattisai et al. (2010). (E) ADE predicted by simulations of mAb EDE2 747(4)-A11 binding to mosaic particles of ZIKV at different degrees of maturation.

(F) Enhancement of infection in human myeloid cell U937 by ZIKV strain HD78788 in the presence of variable concentrations of EDE2 mAbs 747(4)-A11 and 747C4;

data from Dejnirattisai et al. (2016). Simulated ADE values were normalized by the maximum ADE observed in that condition.

Figure 2D). Our simulations showed similar results: unlike with
an anti-E mAb, such as E24, 2H2 exhibited ADE across a broad
range of Ab concentrations and maintained high ADE even at
very high concentrations (Figure 2C).

Finally, we examined a recently studied class of CR mAbs
that target the EDE2 epitope (Dejnirattisai et al., 2015). EDE2
Abs can strongly neutralize DENV, but some members of the
family enhance infection of ZIKV (Dejnirattisai et al., 2016). The
epitope of EDE2 Abs is a conformational one that forms when
the virus matures and exposes E dimers on the envelope surface.
We used structural information for the mAb EDE2 747(4)A11
bound to DENV and ZIKV to define the epitopes (Rouvinski
et al., 2015; Barba-Spaeth et al., 2016). Our simulations for
EDE2 mAb 747(4)A11 in complex with the rough form of
ZIKV showed peak ADE activity for highly mature particles
(prM content < 10%) and monotonically increasing ADE at
lower Ab concentrations at a wide range of maturation states
(prM content >10% and <90%) (Figure 2E). Both of these ADE
characteristics are reproduced qualitatively as in experimental
observations (Figure 2F).

Neutralization and ADE in Primary DENV
Infections
To explore the role of ADE in secondary heterotypic DENV
infections, we used a semi-quantitative approach to describe

differences in host immune status between primary and
secondary infections. We assumed that changes in the
neutralization properties of blood sera between primary
and secondary infections are mainly related to variations in
the binding affinity of the Abs. In our model, variations in
binding affinity are specified through changes in the dissociation
constants of Abs, KTS and KCR. To model blood sera conditions
that follow a primary or secondary homotypic infection, we first
produced stoichiometric plots for dual mixtures of CR and TS
Abs assuming that the affinity of the TS Ab is comparable to
that of the CR counterpart (KTS

≈ KCR). Conditions associated
with a secondary heterotypic infection, on the other hand, were
modeled assuming a substantial loss in affinity of TS Abs with
respect to CR Abs ( KTS

≫ KCR).
We carried out binding simulations at a range of TS and

CR Ab concentrations (10−2 to 10−14 M) and immature (prM)

contents ranging from 5 to 40%, using the smooth conformation
of the virus. Figure 3A shows the Ab occupancy as a function
of Ab concentration and maturation state. For highly mature
virions (5–10% prM content), CR epitopes, which are found on
prM, contributed little to the total occupancy even at high CR
Ab concentrations where the epitopes are saturated, and overall
Ab occupancy was primarily driven by TS Ab concentration.
At lower maturation levels (30 and 40% prM content), CR Abs
played a greater role in overall Ab occupancy, although TS Ab
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concentration continued to be the primary contributing factor.
This is because, TS epitopes greatly outnumbered CR epitopes,
even at higher maturation states.

Figure 3B shows infectivity as a function of Ab concentration
and maturation state. At high maturation states, it was
determined almost entirely by the TS Ab concentration, as the
number of CR epitopes to drive neutralization was insufficient.
At lower maturation states (20–40% prM content), CR Abs and
TS Abs contributed comparably to neutralization, and infectivity
was only seen in conditions of low CR and TS Ab concentrations.

Figure 3C shows ADE as a function of Ab concentration and
virus maturation state. We calculated ADE as a function of both
Ab occupancy and Ab neutralization, with the peak ADE at an
Ab occupancy just under the neutralization threshold. For highly
mature virions (5% prM content), ADE occurred in conditions
corresponding to low TS Ab concentration and high CR Ab
concentration. Under these Ab concentration conditions, ADE
peaked for a prM content of around 10% and became almost
negligible for a prM content above 20%. At low maturation states
(prM content ≥30%), ADE only occurred in a narrow range of
Ab concentrations corresponding to the transition between high
occupancy and no occupancy.

Overall, for primary infections, Ab occupancy and
neutralization was primarily driven by TS Ab concentration, and
ADE occurred only at a low TS Ab concentration and a moderate
to high CR Ab concentration in highly mature virions. In virions
of low to moderate maturation states, ADE rarely occurred,
and was restricted to a very narrow range of Ab concentrations
whenever it did.

ADE in Heterotypic Secondary DENV
Infections
We extended our model to capture secondary heterotypic DENV
infection. We assumed that TS Abs produced in a primary
infection had low binding affinity against a heterotypic virion,
while the binding affinity of CR Abs was similar between
homotypic and heterotypic infections. To reproduce these
conditions, we chose dissociation constants of KTS

= 1E−5M for
TS Abs and KCR

= 1E−9M for CR Abs in heterotypic infections.
We carried out binding simulations under the same

conditions as in the case of the primary infection. Figure 4A
shows Ab occupancy as a function of the partial concentrations
of TS and CR Abs and the maturation state of the virus.
For highly mature virions (5% prM content), occupancy was
determined primarily by TS Ab concentration because of the
low numbers of CR epitopes. Unlike in the primary infection,
however, appreciable Ab occupancy occurred only at high TS
Ab concentrations, due to the poor binding affinity of TS Abs
to a heterotypic serotype. At moderate to low levels of viral
maturation (prM content > 10%), CR Ab concentration plays a
significant role in determining Ab occupancy, owing to the high
binding affinity for its epitope.

Figure 4B shows infectivity as a function of partial TS and CR
Ab concentrations and viral maturation state. For highly mature
virions (5% prM content), neutralization was only observed at
high concentrations of TS Ab, owing to its poor binding affinity

for the heterotypic serotype. Under conditions of low TS and high
CR concentrations, only virions with a lowmaturation state (prM
content ≥ 30%) exposed enough CR epitopes to become fully
neutralized. On the other hand, virions with moderate to high
maturation (prM content ≤10%) were only partially neutralized.

Figure 4C shows ADE as a function of partial TS and CR
Ab concentration and viral maturation state. For the highly
mature virion, ADE occurred at a wide range of TS and CR Ab
concentrations. This is because the low affinity of TS Abs and
the low epitope availability of CR Abs led to sub-neutralizing Ab
occupancy at a wide range of concentrations. As in the case of
a primary infection, under conditions of low TS and high CR
concentrations, ADE peaked at a prM content of around 10%
and became negligible at a prM content above 20%. For moderate
to highly immature virions, ADE occurred at a narrow range of
concentrations, limited to conditions where Ab occupancy was
>0 but sub-neutralizing.

Overall, whereas ADE occurred mainly during conditions of
very low TS Ab concentration in primary or homotypic infection,
it occurred under a wide range of TS Ab concentrations in
heterotypic secondary infection.

Role of Rough Viral Conformation in ADE
To explore how different types of partially mature virus particles
affect infectivity and ADE, we next carried out a series of
simulations in which a fraction of the viral envelope was in the
immature rough or spiky state during a heterotypic infection
(see Figure 1D). Unlike previous simulations of the smooth
form of the virus where CR Abs targeted pr epitopes randomly
distributed on the virion surface, here we used simulations of the
rough form of the virus in which CR Abs targeted exposed pr
epitopes forming a single patch on the surface of the virion.

Compared to the simulations of heterotypic infection using
the smooth form of the virion, we found several differences.
Most notably, occupancy and neutralization were driven almost
entirely by the partial concentration of TS Abs, and CR Abs had
virtually no neutralization capacity, even at high concentrations
(Figures 5A,B). Furthermore, the degree of maturation had
little impact on the neutralization capacity of CR Abs within
the range of maturation states considered (prM content of
5–40%). In contrast to heterotypic infection in the smooth
virion, the neutralization capacity of CR Abs increased as
the prM content increased, eventually providing a level of
neutralization comparable to TS Abs at high levels of virus
immaturity (Figure 5B).

Finally, whereas ADE occurred only in highly mature virions
in the case of the smooth virion, it occurred at all levels of
viral maturation in the rough virion (Figure 5C). Together,
these findings suggest that the rough viral conformation may
be particularly prone to ADE under a wide range of conditions
during a secondary heterotypic infection.

Simulating Longitudinal Risk of ADE
Recent long-term pediatric cohort studies (Katzelnick et al.,
2017; Salje et al., 2018) based on large groups of individuals
have shown that the risk of severe dengue disease is correlated
with low anti-DENV antibody titers in the blood, with risk
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FIGURE 3 | Simulated Ab binding occupancy, neutralization, and ADE in primary DENV infection using the smooth virus conformation. Estimated Ab binding

occupancy (A), infectivity (B), and ADE (C) at a range of TS and CR Ab concentrations for highly mature (5% prM content), moderately mature (10% prM content),

and low-maturity (30% prM content) virions during a primary or homotypic infection.

being significantly lower for children having high antibody
titers, and, surprisingly, for seronegative individuals. We sought
to use our simulation results to explore alternative scenarios
and conditions under which an individual might be prone to
enhancement of dengue disease. In particular, we investigated
how time-dependent changes of Ab concentrations and other
variables determine DENV infection and disease enhancement as
the outcome.

In a pediatric dengue cohort study, Katzelnick et al. (2017)
showed that serum titers over time could vary substantially
from one individual to another. In a separate study, Salje et al.
(2018) found that the time-dependent behavior of TS and CR Ab
concentrations in an individual during primary and post-primary
infections could be modeled as a sharp increase in titers followed
by an exponential decay. They found that, after the first year, titers
tend to stabilize to a set-point titer.

To our best knowledge, more detailed data on time-dependent
changes in the concentration of CR and TS Abs against DENV
from individuals are not publicly available. As such, we used
information from the above-mentioned studies to produce
hypothetical curves of Ab concentrations as functions of time that
capture relevant aspects of the observed experimental behavior.
Figure 6A shows hypothetical curves of total Ab concentration
and TS Ab fraction as a function of time. In these hypothetical
curves, total Ab concentrations are highest at the convalescent

phase of a primary infection (t0), followed by an exponential
decay leveling off to a range of set-point titers, months to years
later (t2). We modeled the risk of ADE as a function of the fine
specificity of serumAb (the fraction of the total Ab concentration
occupied by TS Abs), and the total Ab concentration from the
convalescent phase of a primary infection until set-point titers
are achieved (t0 to t2) (Figure 6B).

For homotypic infections, the risk of ADE was minimal, even
at low Ab concentrations, across all ranges of fine specificity
(Figure 6B; top) and time points. As such, the risk of ADE during
homotypic secondary infection was minimal regardless of the
rate of decay of Ab concentration or the endpoint titer, even
for individuals with low set-point titers (top panel of Figure 6B,
showing projections of different Ab concentration time courses
onto ADE risk).

For secondary heterotypic infections, however, there was
a substantial risk of ADE under a wide range of Ab
concentrations and fine specificities (Figure 6B; bottom). The
risk was particularly pronounced under conditions where the fine
specificity of the Ab response is biased toward CR Abs over TS
Abs (TS fraction < 0.50), and at intermediate concentrations of
total Ab. During the first year after infection (from t0 to t1), the
risk of ADEwas low in all scenarios, as the total Ab concentration
was higher than the intermediate concentrations associated with
ADE. Thereafter, the outcome varied by scenario. Individuals
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FIGURE 4 | Simulated Ab binding occupancy, neutralization, and ADE in heterotypic secondary DENV infection using the smooth virus conformation. Estimated Ab

binding occupancy (A), infectivity (B), and ADE (C) at a range of TS and CR Ab concentrations for highly mature (5% prM content), moderately mature (10% prM

content), and low-maturity (30% prM content) virions during a heterotypic infection.

with very low set-point titers (purple in Figure 6A) were most
susceptible to ADE within a specific time window (between 12
and 24 months post-infection), as their serum Ab concentration
passed through the high-risk intermediate range. By contrast,
for individuals with higher set-point titers (magenta and red in
Figure 6A), long-term risk of ADE remained high after the first
year, as their Ab titers stabilized within the high-risk intermediate
range. Finally, individuals with very high set-point titers (pink
and brown in Figure 6A) were almost entirely free of risk. Finally,
these trends were robust for both smooth and rough virions
differing widely in prM content.

DISCUSSION

Here, building on previous work, we developed a model of
Ab binding to the flavivirus surface in order to determine
the molecular and structural basis for ADE. We validated this
model with experimental in vitro data on antibody occupancy
and relative infection from a range of studies (Ripoll et al.,
2016). We used smooth conformation of the flavivirus virion
to model infection and ADE as a function of Ab concentration
and epitope accessibility. Our simulations show infection curves
similar to those obtained by Pierson et al. (2007) finding that
virions with low epitope exposure are able to avoid neutralization
entirely, while virions with epitope exposures >30% showed a

typical neutralization curve. Our simulations reproduced general
features observed in experimental studies of ADE, such as the
bell-shaped curve for high degrees of mature content (Pierson
et al., 2007) and the displacement of maximum ADE toward
high concentrations with diminishing epitope exposure. Our
model predicted ADE to occur over a wide range of high Ab
concentrations at an epitope accessibility below 30%. At high Ab
concentrations, it predicted some degree of ADE at an epitope
accessibility below 25%, and predicted maximum ADE to occur
around an epitope accessibility of 5–10%.

In addition, we explored the role of partial maturation on
infectivity by modeling viral particles in their “rough” state
(i.e., mosaic particles). Comparison of our computational results
with the limited experimental data on the neutralizing capacity
of CR anti-prM and EDE Abs revealed that our simulations
captured the relevant features of infectivity and ADE observed
in experiments. Our simulations also linked observed patterns
of infection, neutralization, and ADE to specific conditions that
determine epitope accessibility: Ab affinity, Ab concentration,
and mature content of the virus. The simulations predicted that
rough and smooth viral particles produce different patterns of
infectivity and ADE for similar levels of maturation. For the
smooth particle, anti-EDIII Abs were fully neutralizing at high
Ab concentrations ([Ab] >> KD) and induced ADE only at sub-
neutralizing concentrations ([Ab] ∼ KD). By contrast, for the
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FIGURE 5 | Simulated Ab binding occupancy, neutralization, and ADE in heterotypic secondary DENV infection using the rough virus conformation. Estimated Ab

binding occupancy (A), infectivity (B), and ADE (C) at a range of TS and CR Ab concentrations for highly mature (5% rough conformation), moderately mature (10%

rough conformation), and low-maturity (30% rough conformation) DENV virions during heterotypic infection.

rough particle, both EDE2 and anti-prM Abs induced ADE even
at high Ab concentrations for a wide range of maturation states.
These trends were robust to changes in maturation state (prM
content of 25–90%).

We modeled the polyclonal Ab response as a combination of
CR and TS Abs and modeled heterotypic infection by reducing
the binding affinity of the TS Ab while maintaining that of the
CR Ab. Neutralization and ADE were significantly affected by
conditions associated with heterotypic infection. In homotypic
infection, neutralization is driven primarily by TS Abs and ADE
is limited to conditions of very low TS Ab concentration. In
heterotypic infection, both TS and CR Abs generally contributed
to neutralization, but in a suboptimal fashion: CR Abs were
limited by epitope accessibility while TS Abs were limited by
poor binding affinity. During heterotypic infection involving
virions in the smooth conformation, ADE became increasingly
pronounced across a wide range of Ab concentrations as the prM
content decreased below 20%.

The exact maturation state of DENV in vivo is unclear,
but in vitro studies show that the virus can be produced
in a wide range of maturation states. In our simulations,
maturation state played a prominent role in neutralization
and ADE. At lower levels of maturation (higher prM content),
CR Abs specific to pr epitopes increasingly played a role
in neutralization. Furthermore, in both homotypic and

heterotypic infections, ADE was maximal at a maturation
state corresponding to a prM content of 5–10% for smooth
virions, and over 30% for rough virions. Previous studies
have suggested that unlike some flaviviruses, DENV may have
evolved to have suboptimal prM cleavage (Rouvinski et al.,
2017). This feature of DENV could contribute to ADE in
secondary infections.

We found that the immature rough form of the virus also
had interesting characteristics with respect to neutralization and
infection. It was poorly neutralized by CR Abs, and unlike the
smooth form, where ADE is highest at relatively high levels of
maturation (prM content of 5–10%), it was prone to ADE at a
wide range of maturation states. In our model, CR Abs are poorly
neutralizing in the rough form (relative to the smooth form)
because the FL epitopes are tightly clustered in trimeric spikes
that prevent full occupancy of all three epitopes for steric reasons.
Thus, for a prM content of 40%, the most CR epitopes that a
virion can display is 32. Our simulations estimate that the average
number of bound CR Abs is generally below the neutralization
threshold postulated by the “coating theory” (∼30 Abs), even at
the highest CR Ab concentrations tested. In the smooth form of
the virus, these epitopes are distributed homogenously across the
viral surface, with negligible interference between neighboring
bound CR Abs. Collectively, our results suggest that the rough
form of the virus may be particularly pathogenic in cases of
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FIGURE 6 | Estimating the longitudinal risk of ADE from simulation data. (A) Hypothetical scenarios of changes in DENV-specific serum Ab concentration over time

(top) from the convalescent phase of a primary infection (t0) to a time point where set-point titers are achieved (t2), where t1 indicates 1 year post infection. Scenarios

with increasingly higher set-point titers are shown from brown to purple. The bottom panel shows the corresponding TS Ab fractions for each scenario. (B) Contour

plots for ADE as a function of fine specificity, expressed as TS fraction, and total Ab concentration. Scenarios are plotted using corresponding colors in (A) for

homotypic (top) and heterotypic (bottom) conditions. Plots are derived from simulations of smooth virions with a prM content of 20%.

heterotypic infection, where neutralization is driven primarily by
CR Abs.

Our finding that the viral maturation state plays a significant
role in ADE has implications for in vitro and in vivo models
of ADE. Two recent studies showed discordant results between
a in vivo and in vitro model of ADE where they found that
high concentrations of CR mAbs 4G2 and 6B6C-1 show high
mortality in the AG129 mouse model, but do not exhibit ADE
at high concentrations in an in vitro model using THP-1 cells
(Watanabe et al., 2015; Ramasamy et al., 2018). They also found
that TS mAb 3H5, which shows similar neutralization and ADE
characteristics as 4G2 and 6B6C-1 in vitro, was highly protective
in the AG129 mouse model. One possible explanation for these
discrepancies is that the maturation state of virus produced in
the in vivo model is different from virus produced in the in vitro
model. In our model, if the prM content of the virion produced
in vitro is >20%, then a standard bell-shaped ADE curve is to be
expected. By contrast, if the prM content of the virion produced
in the in vivo model is <20%, then ADE would be expected
even at high Ab concentrations. Furthermore, this difference in
maturation state would be expected to have a greater impact on
CR Abs than TS abs, in an epitope-specific manner. Thus, lower
immature contents in the virions produced by AG129 mice could
explain the high mortality of mice at high Ab concentrations and
the discordance between in vitro and in vivo results. Differences
in the conditions inside host cells have been shown to affect
the maturation state of newly produced virions (Nelson et al.,

2008). Thus, it is conceivable that in vivo and in vitro conditions
alter the virus maturation state, shifting the neutralization and
enhancement capacities of CR Abs. Such mechanism could also
explain why ADE can overcome the protective efficacy of Abs in
a tissue-dependent manner (Watanabe et al., 2015).

ADE and Severe Dengue Disease
Our ADE model informs a number of recent clinical findings
on severe dengue disease in natural infection studies. First, prior
studies have shown that low pre-existing antibody levels are
associated with an increased likelihood of severe dengue disease
only during secondary heterotypic infections (Katzelnick et al.,
2017). Our work shows why low pre-existing antibody levels
may not enhance secondary homotypic infection—namely that
highly neutralizing TS Abs generated during primary infection
can neutralize a secondary homotypic infection even at low Ab
concentrations, precluding the occurrence of ADE.

Second, other studies have shown that after a primary
infection, individuals acquire temporary immunity to all four
serotypes—an immunity that has been suggested to last anywhere
from 6 months to several years (Sabin, 1952; Halstead, 2007;
Montoya et al., 2013; Sharp et al., 2014). Our work suggests
that this is because serum Ab concentrations are sufficiently high
following a primary infection, such that even low affinity (poorly
cross-reactive) TS Abs can neutralize a secondary heterotypic
infection. As the Ab concentration decays toward a set-point
titer, the combination of high-affinity CR Abs that target
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poorly accessible epitopes, and low-affinity TS Abs that show
poor binding occupancy, results in sub-neutralizing binding
stoichiometry and a high propensity for ADE. In short, serum
conditions conducive to ADE emerge months to years after a
primary infection, depending on the subsequent Ab decay rate.

Finally, previous studies have shown that different individuals
achieve different set-point titers ∼24–36 months after a primary
infection (Salje et al., 2018). Our simulations suggest that the risk
of ADE for individuals with very low set-point titers temporarily
increases as the serumAb concentration passes through the high-
risk range and then falls below that level, whereas the risk for
those with higher set-point titers may remain consistently high.
This suggests that measuring set-point titers may be sufficient to
predict an individual’s relative risk of severe dengue disease.

Implications for Vaccine Research
Recent studies of Dengvaxia, a tetravalent vaccine developed by
Sanofi-Pasteur, have revealed that for vaccine recipients with no
prior exposure to DENV, there is a modest increase in the risk
of severe dengue disease (Aguiar et al., 2016). Other studies have
shown that poorly immunogenic dengue vaccines, or tetravalent
dengue vaccines in which the subject fails to seroconvert in
all four serotypes, can result in the induction of CR Abs over
TS Abs (Kanesa-Thasan et al., 2001; Gromowski et al., 2018).
Our findings suggest that low Ab titers with mostly CR Abs
that target only a few epitopes per virion are prime conditions
for ADE, supporting the theory that poorly immunogenic
dengue vaccines act as a surrogate for post-primary dengue
infection. Our results demonstrate that Ab concentration and
specificity are critical host determinants of ADE, underscoring
the importance of measuring not only antibody titer but also
fine specificity when assessing future dengue vaccine candidates.
In this respect, our simulations support vaccine designs such as
the one recently reported using tetravalent virus-like particles
displaying the domain III of E (Ramasamy et al., 2018), in
which the antigen contains well-characterized serotype-specific
epitopes that are present in large quantities on the virion surface.
Finally, our simulations point to the degree of viral maturation
as another important determinant of ADE. The fraction of

extracellular DENV particles that exist as mosaic particles can
vary substantially depending on various factors, such as the
specific DENV strain or the host cell in which the virus was
produced (Van Der Schaar et al., 2008; Junjhon et al., 2010;
Plevka et al., 2011). We suggest that the maturation state of
any live-attenuated strain of DENV used as a dengue vaccine
may be critical to its ability to induce protective Ab responses
without creating serum conditions that increase the risk of severe
dengue disease.

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the Supplementary Files.

AUTHOR CONTRIBUTIONS

DR developed the stochastic model for antibody binding and

carried out the simulations. DR, AW, and SC designed the
computational experiments, analyzed the resulting data, and
prepared the manuscript.

FUNDING

Support for this research was provided by the Military Infectious
Disease Research Program, the U.S Department of Defense
High-Performance Computing Modernization Program, and
the U.S. Army Medical Research and Materiel Command.
The opinions and assertions contained herein are the private
views of the authors and are not to be construed as official
or as reflecting the views of the U.S. Army, U.S. DoD, or
HJF. This paper has been approved for public release with
unlimited distribution.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcimb.
2019.00200/full#supplementary-material

REFERENCES

Aguiar, M., Stollenwerk, N., and Halstead, S. B. (2016). The risks

behind Dengvaxia recommendation. Lancet Infect. Dis. 16, 882–883.

doi: 10.1016/S1473-3099(16)30168-2

Barba-Spaeth, G., Dejnirattisai, W., Rouvinski, A., Vaney, M. C., Medits,

I., Sharma, A., et al. (2016). Structural basis of potent Zika-dengue

virus antibody cross-neutralization. Nature 536, 48–53. doi: 10.1038/natur

e18938

Beltramello, M., Williams, K. L., Simmons, C. P., Macagno, A., Simonelli,

L., Quyen, N. T., et al. (2010). The human immune response to

Dengue virus is dominated by highly cross-reactive antibodies endowed

with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283.

doi: 10.1016/j.chom.2010.08.007

Beroza, P., Fredkin, D. R., Okamura, M. Y., and Feher, G. (1991). Protonation

of interacting residues in a protein by a Monte Carlo method: application to

lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides.

Proc. Natl. Acad. Sci. U.S.A. 88, 5804–5808. doi: 10.1073/pnas.88.13.5804

Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C.

L., et al. (2013). The global distribution and burden of dengue. Nature 496,

504–507. doi: 10.1038/nature12060

Bisswanger, H. (2008). Enzyme Kinetics. Principles andMethods. Weinheim:Wiley-

VCH Verlag GmbH & Co. KGaA. doi: 10.1002/9783527622023

De Alwis, R., Smith, S. A., Olivarez, N. P., Messer, W. B., Huynh, J. P., Wahala,

W. M., et al. (2012). Identification of human neutralizing antibodies that bind

to complex epitopes on dengue virions. Proc. Natl. Acad. Sci. U.S.A. 109,

7439–7444. doi: 10.1073/pnas.1200566109

Dejnirattisai, W., Jumnainsong, A., Onsirisakul, N., Fitton, P., Vasanawathana, S.,

Limpitikul, W., et al. (2010). Cross-reacting antibodies enhance dengue virus

infection in humans. Science 328, 745–748. doi: 10.1126/science.1185181

Dejnirattisai, W., Supasa, P., Wongwiwat, W., Rouvinski, A., Barba-Spaeth,

G., Duangchinda, T., et al. (2016). Dengue virus sero-cross-reactivity drives

antibody-dependent enhancement of infection with zika virus. Nat. Immunol.

17, 1102–1108. doi: 10.1038/ni.3515

Dejnirattisai, W., Wongwiwat, W., Supasa, S., Zhang, X., Dai, X., Rouvinski, A.,

et al. (2015). A new class of highly potent, broadly neutralizing antibodies

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12 June 2019 | Volume 9 | Article 200115

https://www.frontiersin.org/articles/10.3389/fcimb.2019.00200/full#supplementary-material
https://doi.org/10.1016/S1473-3099(16)30168-2
https://doi.org/10.1038/nature18938
https://doi.org/10.1016/j.chom.2010.08.007
https://doi.org/10.1073/pnas.88.13.5804
https://doi.org/10.1038/nature12060
https://doi.org/10.1002/9783527622023
https://doi.org/10.1073/pnas.1200566109
https://doi.org/10.1126/science.1185181
https://doi.org/10.1038/ni.3515
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ripoll et al. Simulating ADE in Dengue Virus

isolated from viremic patients infected with dengue virus. Nat. Immunol. 16,

170–177. doi: 10.1038/ni.3058

Dowd, K. A., and Pierson, T. C. (2011). Antibody-mediated neutralization

of flaviviruses: a reductionist view. Virology 411, 306–315.

doi: 10.1016/j.virol.2010.12.020

Edsall, J. T., and Wyman, J. (1958). Biophysical Chemistry. New York, NY:

Academic Press.

Fibriansah, G., Ibarra, K. D., Ng, T. S., Smith, S. A., Tan, J. L., Lim, X. N., et al.

(2015). Cryo-EM structure of an antibody that neutralizes dengue virus type 2

by locking E protein dimers. Science 349, 88–91. doi: 10.1126/science.aaa8651

Gromowski, G. D., Henein, S., Kannadka, C. B., Barvir, D. A., Thomas, S. J.,

De Silva, A. M., et al. (2018). Delineating the serotype-specific neutralizing

antibody response to a live attenuated tetravalent dengue vaccine. Vaccine 36,

2403–2410. doi: 10.1016/j.vaccine.2018.03.055

Guzman, M. G., and Harris, E. (2015). Dengue. Lancet 385, 453–465.

doi: 10.1016/S0140-6736(14)60572-9

Halstead, S. B. (1970). Observations related to pathogensis of dengue hemorrhagic

fever. VI. Hypotheses and discussion. Yale J. Biol. Med. 42, 350–362.

Halstead, S. B. (2007). Dengue. Lancet 370, 1644–1652.

doi: 10.1016/S0140-6736(07)61687-0

Halstead, S. B., and O’Rourke, E. J. (1977). Dengue viruses and mononuclear

phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp.

Med. 146, 201–217. doi: 10.1084/jem.146.1.201

Henchal, E. A., Gentry, M. K., Mccown, J. M., and Brandt, W. E. (1982). Dengue

virus-specific and flavivirus group determinants identified with monoclonal

antibodies by indirect immunofluorescence. Am. J. Trop. Med. Hyg. 31,

830–836. doi: 10.4269/ajtmh.1982.31.830

Junjhon, J., Edwards, T. J., Utaipat, U., Bowman, V. D., Holdaway,

H. A., Zhang, W., et al. (2010). Influence of pr-M cleavage on the

heterogeneity of extracellular dengue virus particles. J. Virol. 84, 8353–8358.

doi: 10.1128/JVI.00696-10

Junjhon, J., Lausumpao, M., Supasa, S., Noisakran, S., Songjaeng, A., Saraithong,

P., et al. (2008). Differential modulation of prM cleavage, extracellular particle

distribution, and virus infectivity by conserved residues at nonfurin consensus

positions of the dengue virus pr-M junction. J. Virol. 82, 10776–10791.

doi: 10.1128/JVI.01180-08

Kanesa-Thasan, N., Sun, W., Kim-Ahn, G., Van Albert, S., Putnak, J. R., King,

A., et al. (2001). Safety and immunogenicity of attenuated dengue virus

vaccines (Aventis Pasteur) in human volunteers. Vaccine 19, 3179–3188.

doi: 10.1016/S0264-410X(01)00020-2

Katzelnick, L. C., Gresh, L., Halloran, M. E., Mercado, J. C., Kuan, G., Gordon,

A., et al. (2017). Antibody-dependent enhancement of severe dengue disease in

humans. Science 358, 929–932. doi: 10.1126/science.aan6836

Kaufmann, B., Vogt, M. R., Goudsmit, J., Holdaway, H. A., Aksyuk, A.

A., Chipman, P. R., et al. (2010). Neutralization of West Nile virus by

cross-linking of its surface proteins with Fab fragments of the human

monoclonal antibody CR4354. Proc. Natl. Acad. Sci. U.S.A. 107, 18950–18955.

doi: 10.1073/pnas.1011036107

Kostyuchenko, V. A., Zhang, Q., Tan, J. L., Ng, T. S., and Lok, S. M. (2013).

Immature and mature dengue serotype 1 virus structures provide insight into

the maturation process. J. Virol. 87, 7700–7707. doi: 10.1128/JVI.00197-13

Montoya, M., Gresh, L., Mercado, J. C., Williams, K. L., Vargas, M. J., Gutierrez, G.,

et al. (2013). Symptomatic versus inapparent outcome in repeat dengue virus

infections is influenced by the time interval between infections and study year.

PLoS Negl. Trop. Dis. 7:e2357. doi: 10.1371/journal.pntd.0002357

Nelson, S., Jost, C. A., Xu, Q., Ess, J., Martin, J. E., Oliphant, T., et al. (2008).

Maturation of West Nile virus modulates sensitivity to antibody-mediated

neutralization. PLoS Pathog. 4:e1000060. doi: 10.1371/journal.ppat.1000060

Nybakken, G. E., Oliphant, T., Johnson, S., Burke, S., Diamond, M. S., and

Fremont, D. H. (2005). Structural basis of West Nile virus neutralization

by a therapeutic antibody. Nature 437, 764–769. doi: 10.1038/natur

e03956

Parren, P. W., and Burton, D. R. (2001). The antiviral activity of antibodies in vitro

and in vivo. Adv. Immunol. 77, 195–262. doi: 10.1016/S0065-2776(01)77018-6

Perera, R., and Kuhn, R. J. (2008). Structural proteomics of dengue virus. Curr.

Opin. Microbiol. 11, 369–377. doi: 10.1016/j.mib.2008.06.004

Pierson, T. C., Xu, Q., Nelson, S., Oliphant, T., Nybakken, G. E., Fremont, D.

H., et al. (2007). The stoichiometry of antibody-mediated neutralization and

enhancement of West Nile virus infection. Cell Host Microbe 1, 135–145.

doi: 10.1016/j.chom.2007.03.002

Plevka, P., Battisti, A. J., Junjhon, J., Winkler, D. C., Holdaway, H. A.,

Keelapang, P., et al. (2011). Maturation of flaviviruses starts from one or

more icosahedrally independent nucleation centres. EMBO Rep. 12, 602–606.

doi: 10.1038/embor.2011.75

Ramasamy, V., Arora, U., Shukla, R., Poddar, A., Shanmugam, R. K., White, L.

J., et al. (2018). A tetravalent virus-like particle vaccine designed to display

domain III of dengue envelope proteins induces multi-serotype neutralizing

antibodies in mice and macaques which confer protection against antibody

dependent enhancement in AG129 mice. PLoS Negl. Trop. Dis. 12:e0006191.

doi: 10.1371/journal.pntd.0006191

Ripoll, D. R., Khavrutskii, I.,Wallqvist, A., and Chaudhury, S. (2016).Modeling the

role of epitope arrangement on antibody binding stoichiometry in flaviviruses.

Biophys. J. 111, 1641–1654. doi: 10.1016/j.bpj.2016.09.003

Rouvinski, A., Dejnirattisai, W., Guardado-Calvo, P., Vaney, M. C., Sharma,

A., Duquerroy, S., et al. (2017). Covalently linked dengue virus envelope

glycoprotein dimers reduce exposure of the immunodominant fusion loop

epitope. Nat. Commun. 8:15411. doi: 10.1038/ncomms15411

Rouvinski, A., Guardado-Calvo, P., Barba-Spaeth, G., Duquerroy, S., Vaney,

M. C., Kikuti, C. M., et al. (2015). Recognition determinants of broadly

neutralizing human antibodies against dengue viruses. Nature 520, 109–113.

doi: 10.1038/nature14130

Sabin, A. B. (1952). Research on dengue during World War II. Am. J. Trop. Med.

Hyg. 1, 30–50. doi: 10.4269/ajtmh.1952.1.30

Salje, H., Cummings, D. A. T., Rodriguez-Barraquer, I., Katzelnick, L. C., Lessler,

J., et al. (2018). Reconstruction of antibody dynamics and infection histories to

evaluate dengue risk. Nature 557, 719–723. doi: 10.1038/s41586-018-0157-4

Sangkawibha, N., Rojanasuphot, S., Ahandrik, S., Viriyapongse, S., Jatanasen, S.,

Salitul, V., et al. (1984). Risk factors in dengue shock syndrome: a prospective

epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J.

Epidemiol. 120, 653–669. doi: 10.1093/oxfordjournals.aje.a113932

Sharp, T. M., Hunsperger, E., Munoz-Jordan, J. L., Margolis, H. S., and Tomashek,

K. M. (2014). Sequential episodes of dengue—Puerto Rico, 2005–2010. Am. J.

Trop. Med. Hyg. 91, 235–239. doi: 10.4269/ajtmh.13-0742

Smith, S. A., Nivarthi, U. K., De Alwis, R., Kose, N., Sapparapu, G., Bombardi, R.,

et al. (2016). Dengue virus prM-specific human monoclonal antibodies with

virus replication-enhancing properties recognize a single immunodominant

antigenic site. J. Virol. 90, 780–789. doi: 10.1128/JVI.01805-15

Smith, S. A., Zhou, Y., Olivarez, N. P., Broadwater, A. H., De Silva, A. M., and

Crowe, J. E., Jr. (2012). Persistence of circulating memory B cell clones with

potential for dengue virus disease enhancement for decades following infection.

J. Virol. 86, 2665–2675. doi: 10.1128/JVI.06335-11

Steinhardt, J., and Reynolds, J. A. (1969).Multiple Equilibria in Proteins. NewYork,

NY: Academic Press.

Stettler, K., Beltramello, M., Espinosa, D. A., Graham, V., Cassotta, A., Bianchi, S.,

et al. (2016). Specificity, cross-reactivity, and function of antibodies elicited by

Zika virus infection. Science 353, 823–826. doi: 10.1126/science.aaf8505

Tanford, C., and Kirkwood, J. G. (1957). Theory of protein titration curves. I.

General equations for impenetrable spheres. J. Am. Chem. Soc. 79, 5333–5339.

doi: 10.1021/ja01577a001

Tegmark, M. (1996). An icosahedron-based method for pixelizing a cellestial

sphere. Astrophys. J. Lett. 470, L81–L84. doi: 10.1086/310310

Van Der Schaar, H. M., Rust, M. J., Chen, C., Van Der Ende-Metselaar, H.,

Wilschut, J., Zhuang, X., et al. (2008). Dissecting the cell entry pathway of

dengue virus by single-particle tracking in living cells. PLoS Pathog. 4:e1000244.

doi: 10.1371/journal.ppat.1000244

Wang, Z., Li, L., Pennington, J. G., Sheng, J., Yap, M. L., Plevka, P., et al. (2013).

Obstruction of dengue virus maturation by fab fragments of the 2H2 antibody.

J. Virol. 87, 8909–8915. doi: 10.1128/JVI.00472-13

Watanabe, S., Chan, K. W., Wang, J., Rivino, L., Lok, S. M., and Vasudevan, S. G.

(2015). Dengue virus infection with highly neutralizing levels of cross-reactive

antibodies causes acute lethal small intestinal pathology without a high level of

viremia in mice. J. Virol. 89, 5847–5861. doi: 10.1128/JVI.00216-15

Yeo, A. S., Rathakrishnan, A., Wang, S. M., Ponnampalavanar, S., Manikam,

R., Sathar, J., et al. (2015). Dengue patients exhibit higher levels of prM

and E antibodies than their asymptomatic counterparts. Biomed. Res. Int.

2015:420867. doi: 10.1155/2015/420867

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13 June 2019 | Volume 9 | Article 200116

https://doi.org/10.1038/ni.3058
https://doi.org/10.1016/j.virol.2010.12.020
https://doi.org/10.1126/science.aaa8651
https://doi.org/10.1016/j.vaccine.2018.03.055
https://doi.org/10.1016/S0140-6736(14)60572-9
https://doi.org/10.1016/S0140-6736(07)61687-0
https://doi.org/10.1084/jem.146.1.201
https://doi.org/10.4269/ajtmh.1982.31.830
https://doi.org/10.1128/JVI.00696-10
https://doi.org/10.1128/JVI.01180-08
https://doi.org/10.1016/S0264-410X(01)00020-2
https://doi.org/10.1126/science.aan6836
https://doi.org/10.1073/pnas.1011036107
https://doi.org/10.1128/JVI.00197-13
https://doi.org/10.1371/journal.pntd.0002357
https://doi.org/10.1371/journal.ppat.1000060
https://doi.org/10.1038/nature03956
https://doi.org/10.1016/S0065-2776(01)77018-6
https://doi.org/10.1016/j.mib.2008.06.004
https://doi.org/10.1016/j.chom.2007.03.002
https://doi.org/10.1038/embor.2011.75
https://doi.org/10.1371/journal.pntd.0006191
https://doi.org/10.1016/j.bpj.2016.09.003
https://doi.org/10.1038/ncomms15411
https://doi.org/10.1038/nature14130
https://doi.org/10.4269/ajtmh.1952.1.30
https://doi.org/10.1038/s41586-018-0157-4
https://doi.org/10.1093/oxfordjournals.aje.a113932
https://doi.org/10.4269/ajtmh.13-0742
https://doi.org/10.1128/JVI.01805-15
https://doi.org/10.1128/JVI.06335-11
https://doi.org/10.1126/science.aaf8505
https://doi.org/10.1021/ja01577a001
https://doi.org/10.1086/310310
https://doi.org/10.1371/journal.ppat.1000244
https://doi.org/10.1128/JVI.00472-13
https://doi.org/10.1128/JVI.00216-15
https://doi.org/10.1155/2015/420867
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ripoll et al. Simulating ADE in Dengue Virus

Yu, I. M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman,

P. R., et al. (2008). Structure of the immature dengue virus at low pH primes

proteolytic maturation. Science 319, 1834–1837. doi: 10.1126/science.1153264

Zhang, W., Chipman, P. R., Corver, J., Johnson, P. R., Zhang, Y., Mukhopadhyay,

S., et al. (2003). Visualization of membrane protein domains by cryo-electron

microscopy of dengue virus. Nat. Struct. Biol. 10, 907–912. doi: 10.1038/

nsb990

Zhang, X., Ge, P., Yu, X., Brannan, J. M., Bi, G., Zhang, Q., et al.

(2013). Cryo-EM structure of the mature dengue virus at 3.5-

A resolution. Nat. Struct. Mol. Biol. 20, 105–110. doi: 10.1038/ns

mb.2463

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Ripoll, Wallqvist and Chaudhury. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14 June 2019 | Volume 9 | Article 200117

https://doi.org/10.1126/science.1153264
https://doi.org/10.1038/nsb990
https://doi.org/10.1038/nsmb.2463
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


REVIEW
published: 13 June 2019

doi: 10.3389/fcimb.2019.00207

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 1 June 2019 | Volume 9 | Article 207

Edited by:

Aleem Siddiqui,

University of California, San Diego,

United States

Reviewed by:

Namir Shaabani,

The Scripps Research Institute,

United States

Masanori Isogawa,

Nagoya City University, Japan

*Correspondence:

Günther Schönrich

guenther.schoenrich@charite.de

Specialty section:

This article was submitted to

Virus and Host,

a section of the journal

Frontiers in Cellular and Infection

Microbiology

Received: 31 January 2019

Accepted: 27 May 2019

Published: 13 June 2019

Citation:

Schönrich G and Raftery MJ (2019)

The PD-1/PD-L1 Axis and Virus

Infections: A Delicate Balance.

Front. Cell. Infect. Microbiol. 9:207.

doi: 10.3389/fcimb.2019.00207

The PD-1/PD-L1 Axis and Virus
Infections: A Delicate Balance

Günther Schönrich* and Martin J. Raftery

Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin

Institute of Health, Institute of Virology, Berlin, Germany

Programmed cell death protein (PD-1) and its ligands play a fundamental role in the

evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the

PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated

by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is

observed during acute virus infection and after infection with persistent viruses including

important human pathogens such as human immunodeficiency virus (HIV), hepatitis C

virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient

signaling through the PD-1 pathway promotes immunopathology during acute infection

by exaggerating primary T cell responses. If chronic infection is established, however,

high levels of PD-1 expression can have unfavorable immunological consequences.

Exhaustion and suppression of antiviral immune responses can result in viral immune

evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated

by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an

immune response. In this review, we discuss the intricate interplay between viruses and

the PD-1/PD-L1 axis.

Keywords: PD-1, PD-L1, PD-L2, antiviral immune responses, viral immune evasion, virus-induced

immunopathogenesis, viruses

INTRODUCTION

Programmed cell death 1 (PD-1, also known as CD279) was discovered by Tasuku Honjo et al. at
Kyoto University from a screen of genes involved in programmed cell death (Ishida et al., 1992).
PD-1 expression is rapidly induced after signaling through the T cell receptor (TCR) andmodulated
by cytokines (Agata et al., 1996; Yamazaki et al., 2002; Wherry et al., 2007; Chikuma et al., 2009;
Terawaki et al., 2011; Ahn et al., 2018). Other types of immune cells such as B cells, natural killer
(NK) cells, NKT cells, dendritic cells (DCs), and monocytes also express PD-1 (Sharpe et al., 2007;
Keir et al., 2008).

There is ample evidence that PD-1, a member of the immunoglobulin superfamily, regulates
the magnitude and quality of T cell responses. It plays a pivotal role in the induction and
maintenance of central as well as peripheral tolerance (Nishimura et al., 1999, 2001; Wang et al.,
2005; Okazaki andHonjo, 2006; Francisco et al., 2010; Fife and Pauken, 2011). For example, antigen
presentation by resting DCs induces peripheral CD8+ T cell tolerance by signaling through PD-
1 on CD8+ T cells (Probst et al., 2005). In fact, PD-1 has been called a ‘rheostat’ that calibrates
threshold, strength, and duration of T cell responses (Okazaki et al., 2013; Honda et al., 2014).
PD-1 belongs to a group of structurally different surface molecules that function as co-inhibitory
receptors during immune responses against pathogens and cancer (Attanasio and Wherry, 2016;
Hashimoto et al., 2018; Sharpe and Pauken, 2018). These molecules counterbalance co-stimulatory
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receptors on T cells such as CD28, which bind to CD80
and CD86 on professional APCs and facilitate T cell
activation (Esensten et al., 2016).

Clinical studies have shown that blocking the PD-1 pathway
is effective against several types of cancer including melanoma,
lymphoma, lung, and renal cancer (Sanmamed and Chen, 2018).
This type of treatment is referred to as immune checkpoint
therapy and the blocking reagents are called immune checkpoint-
inhibitors (ICIs). Together with James P. Allison, who worked
on another co-inhibitory receptor called cytotoxic T-lymphocyte-
associated Protein 4 (CTLA-4), Tasuku Honjo was awarded the
Nobel Prize in Physiology or Medicine 2018 for the discovery
of cancer therapy by inhibition of negative immune regulation
(Wolchok, 2018).

PD-1 interacts with the ligands PD-L1 (CD274; also called B7-
H1) and PD-L2 (CD273; also called B7-DC), which show distinct
expression patterns. In vitro, PD-1 inhibits T cell activation by
recruiting Src homology region 2-containing protein tyrosine
phosphatase 2 (SHP2) after interaction with its ligands on APCs
(Chen and Flies, 2013; Okazaki et al., 2013; Sharpe and Pauken,
2018). This is associated with dephopshorylation of crucial
tyrosine residues within the CD3 complex and CD28. In virus-
infected mice lacking SHP2 in T cells, however, PD-1 signaling
is not impaired, suggesting the existence of redundant inhibitory
pathways downstream of PD-1 (Rota et al., 2018).

PD-L1 is expressed not only by all hematopoietic cells
but also by many non-hematopoietic cell types such as
endothelial cells and epithelial cells (Sharpe and Pauken, 2018).
In contrast, PD-L2 expression is more restricted and can be
induced on hematopoietic cells such as DCs, B cells, and
monocytes/macrophages. Besides PD-1, there are other known
interacting partners for PD-L1 and PD-L2. PD-L1 also binds
to CD80 whereas PD-L2 uses RGM domain family member
B (RGMB) as an alternative binding partner. Both types of
interaction also inhibit immune responses (Butte et al., 2007;
Xiao et al., 2014).

Viruses have to overcome strong barriers to replicate in the
hostile environment of their hosts (Virgin et al., 2009). An arsenal
of weapons helps viruses to subvert antiviral immunity. This
includes the exploitation of host inhibitory receptor signaling
pathways (Ong et al., 2016). The impact of the PD-1/PD-L1
axis in chronic virus infections is well described whereas its role
during the acute phase of viral infections is less clear (Brown et al.,
2010; Attanasio and Wherry, 2016). However, whether virus-
induced upregulation of PD-1 ligands represents a viral immune
evasion strategy or an adaption of the host defense to minimize
immunopathology is a moot point. In this review, we highlight
the diverse roles of PD-1 and its ligands during virus infections
and their implications for host-pathogen interaction.

THE ROLE OF THE PD-1 PATHWAY IN

ACUTE VIRUS INFECTIONS

In mice acutely infected with lymphocytic choriomeningitis
virus (LCMV) strain Armstrong (LCMV Arm) PD-1 is rapidly
upregulated on naïve virus-specific CD8+ T cells before they

clonally expand (Ahn et al., 2018). In this model of acute LCMV
infection, CD4+ T cells are not required for virus clearance,
which occurs within 1–2 weeks after infection (Matloubian
et al., 1994). Blockade of the PD-1 pathway at this stage further
increases effector functions of CD8+ T cells by enhancing
granzyme B expression and mechanistic Target of Rapamycin
(mTOR) signaling. Consequently, virus elimination is accelerated
although the total number of virus-specific CD8+ T cells
does not change (Ahn et al., 2018). Similarly, the PD-1/PD-L
axis inhibits the differentiation of CD8+ T lymphocytes into
polyfunctional cytotoxic T cells during acute infection of mice
with murine retrovirus (David et al., 2019). This implies that
PD-1 negatively regulates the terminal differentiation of naïve
CD8+ T cells into effector CD8+ T lymphocytes during acute
virus infection.

After virus clearance, PD-1 expression on virus-specific T cells
returns to normal levels (Barber et al., 2006; Blattman et al., 2009).
The expanded pool of virus-specific effector T lymphocytes
contracts due to increased cell death and memory T cells arise
from a subset of fate-permissive effector T cells (Akondy et al.,
2017; Omilusik and Goldrath, 2017; Youngblood et al., 2017).
There are at least three major memory T cell subsets: central
memory T cells (Tcm cells), effector memory T cells (Tem cells),
and recently defined tissue-resident memory T cells (Trm cells).
Tcm cells lack effector functions but express lymph node homing
molecules and circulate through the blood and the secondary
lymphoid organs (Sallusto et al., 1999). After stimulation, Tcm
cells differentiate into Tem cells that lack lymph node homing
molecules and continuously recirculate between blood, lymph
and non-lymphoid tissues. Tem cells are bestowed with various
effector functions (Sallusto et al., 1999). In contrast, Trm cells
do not recirculate (Wakim et al., 2008; Gebhardt et al., 2009;
Masopust et al., 2010) and express core phenotypic markers
including co-inhibitory receptors such as PD-1 (Hombrink et al.,
2016; Kumar et al., 2017; Pallett et al., 2017). Functionally,
Trm cells participate in the first line of defense to viruses by
establishing an antiviral state and recruiting circulating memory
T cells to sites of viral infection (Schenkel et al., 2013, 2014;
Ariotti et al., 2014; Carbone and Gebhardt, 2014). Located in
multiple anatomical sites including barrier tissue such as lung,
skin and gut, Trm cells are indispensable for antiviral immunity
and immunosurveillance (Shin, 2018;Wu et al., 2018; Szabo et al.,
2019). The functional role of the PD-1/PD-L1 axis for CD8+Trm
cells is unclear at the moment but it may prevent uncontrolled
Trm activation and inflammation in virus-infected tissues and
other inflammatory conditions. In accordance, blockade of PD-
1 on Trm cells increases the severity of eczema in a mouse model
of allergic contact dermatitis (Gamradt et al., 2019).

Intriguingly, the number of memory precursor T cells
increases if PD-1 is blocked by antibodies during acute LCMV
infection, possibly due to faster virus elimination (Ahn et al.,
2018). Virus-specific memory CD8+ T cells that develop after
the elimination of LCMV persist without antigen and are capable
of self-renewal due to homeostatic proliferation in response
to IL-7 and IL-15 (Wherry et al., 2004; Surh and Sprent,
2008; Abdelsamed et al., 2017). Although the blockade of the
PD-1/PD-L1 axis in mice infected with LCMV Arm increases
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effector CD8+ T cell function, no excessive tissue damage is
observed (Ahn et al., 2018). Similar to the LCMV strain WE
(LCMV WE), LCMV Arm does not disseminate but instead is
eliminated from infected laboratory mice after acute infection. In
contrast, derivatives of LCMV Arm and LCMV WE (“clone 13”
and “docile,” respectively) replicate more vigorously and persist
(Matloubian et al., 1990; Welsh and Seedhom, 2008). These
LCMV strains cause lethal immunopathology in mice deficient
of the PD-1/PD-L1 axis (PD-L1 KOmice, PD-1 KOmice) during
the acute phase of infection (Barber et al., 2006; Mueller et al.,
2010; Frebel et al., 2012; Zinselmeyer et al., 2013; Shaabani et al.,
2016). This is due to the killing of LCMV-infected vascular
endothelium by CD8+ T cells resulting in vascular leakage with
pulmonary edema and severe hypotension (Frebel et al., 2012).
In a mouse model of acute viral hepatitis, the absence of PD-1 is
associated not only with more rapid virus clearance but also with
more severe hepatitis (Iwai et al., 2003). These results imply that
the stimulation of the PD-1/PD-L1 axis during the acute phase
of virus infection helps to adjust the strength and quality of the
cytotoxic CD8+ T cell attack so that the good (virus elimination)
and the bad (tissue damage) is balanced, preventing excessive
tissue damage.

VIRUS-DRIVEN PD-L1/2 EXPRESSION

Many viruses increase PD-L1/2 expression on hematopoietic
cells (Table 1) and non-hematopoietic cells (Table 2). PD-
L1/2 expression is regulated by proinflammatory and anti-
inflammatory signals (Sun et al., 2018). The promotor regions
of PD-L1 and PD-L2, which are paralog genes, are differentially
regulated although they show similarly arranged binding sites for
transcription factors (Garcia-Diaz et al., 2017).

Type I and type III interferons (IFNs) are important antiviral
cytokines. They are induced early in virus-infected barrier tissue
such as lung/gut epithelial cells and serve as the first line of
antiviral defense (Okabayashi et al., 2011; Wack et al., 2015;
Andreakos et al., 2017; Galani et al., 2017; Zanoni et al., 2017;
Good et al., 2019; Lazear et al., 2019). Type I IFNs, which in
humans include several IFN-α subtypes and IFN-β, increase
PD-L1 expression but to a lesser extent than PD-L2 expression
(Garcia-Diaz et al., 2017). PD-L2 responds equally well to IFN-
γ (type II IFN) and IFN-β (Garcia-Diaz et al., 2017). IL-4 may
be an even more potent inducer of PD-L2 (Loke and Allison,
2003) thus accounting for the presence of PD-L2 on monocyte-
derived DCs generated in vitro. Blockade or absence of type I
IFN signaling during chronic LCMV infection results in reduced
PD-L1 expression despite enhanced viral replication (Teijaro
et al., 2013; Wilson et al., 2013; Shaabani et al., 2016). Although
type I IFNs moderately upregulate PD-L1 (Sun et al., 2018)
they increase NK cytotoxicity and allow clonal expansion and
memory formation of antiviral cytotoxic CD8+ T cells (Biron
et al., 2002; Kolumam et al., 2005; Aichele et al., 2006). Type III
IFNs signal through a unique heterodimeric receptor and induce
the expression of antiviral IFN-stimulated genes (ISGs) similar
to type I IFNs (Davidson et al., 2015). Intriguingly, type III IFNs
do not upregulate PD-L1 (Raftery et al., 2018). Accordingly, in

this early phase of acute infection the PD-1/PD-L1 axis does not
inhibit antiviral immune cells.

Recognition of viruses by pattern recognition receptors
(PRRs) also upregulates PD-L1. TLR3 signaling in particular
strongly increases PD-L1 levels on DCs (Pulko et al., 2009;
Boes and Meyer-Wentrup, 2015; Raftery et al., 2018) whereas
RIG-I signaling alone has no significant effect (Raftery et al.,
2018). Triggering of TLR3, which transmits downstream signals
through the TIR-domain-containing adapter-inducing IFN-β
(TRIF), also enhances PD-L1 on other cell types including
endothelial cells (Cole et al., 2011) and epithelial cells (Tsuda
et al., 2005). In accordance, virus-induced PD-L1 upregulation
on neuronal cells is severely impaired in TLR3-deficient mice
(Lafon et al., 2008). Recently, viral proteins inducing PD-L1/PD-
L2 expression have been identified. For example, HIV Tat protein
increases PD-L1 expression on DCs through TNF-α and TLR4
signaling (Planes et al., 2014). The HCV core protein in vitro
induces strong PD-L1 upregulation on primary human Kupffer
cells andmonocytes in a TLR2- and PI3K-dependentmanner (Tu
et al., 2010; Zhai et al., 2017). In accordance, the PD-L1 levels on
monocytes from HCV-infected patients were significantly higher
than onmonocytes from healthy individuals (Zhai et al., 2017). A
recent study has shown that extracellular vesicles (EVs) produced
by HBV-infected hepatocytes are endocytosed by circulating
monocytes resulting in PD-L1 upregulation (Huang et al.,
2017; Kakizaki et al., 2018). Moreover, PD-L1 and PD-L2 are
upregulated by hantaviral N protein most likely via hantavirus-
induced TLR3 signaling (Raftery et al., 2018). In addition, the
latency-associated transcripts (LATs) of herpes simplex virus type
1 (HSV-1) upregulate PD-L1 on mouse neuroblastoma cells by
an unknown mechanism (Chentoufi et al., 2011). Remarkably, as
of yet no viral immunoevasin has been discovered that directly
interacts with the molecules of the PD-1/PD-L1 axis to exploit its
immunosuppressive function.

Viral replication can also result in the production of anti-
inflammatory cytokines such as IL-10 (Brooks et al., 2006b;
Ejrnaes et al., 2006). Cellular IL-10 has been shown to upregulate
the expression of PD-1 and PD-L1 in a STAT-3 dependent
manner in DCs and monocytes (Curiel et al., 2003; Selenko-
Gebauer et al., 2003; Sun et al., 2015; Lamichhane et al.,
2017). Accordingly, the absence of cellular IL-10 in LCMV
infected mice results in enhanced effector T cell responses,
rapid virus elimination, and generation of antiviral memory T
cells (Brooks et al., 2006b; Ejrnaes et al., 2006). Intriguingly,
during coevolution with their hosts members of the virus
family Herpesviridae have acquired numerous genes from their
hosts including those that mimic cellular IL-10 (Raftery et al.,
2000; Ouyang et al., 2014; Schonrich et al., 2017). These viral
IL-10 (vIL-10) molecules act as immunosuppressive cytokines
that also paralyze co-stimulatory B7 molecules (Muller et al.,
1998; Raftery et al., 2004). It is possible that vIL-10 molecules
also increase signaling through the PD-1/PD-L1 axis similar
to their cellular counterparts thereby contributing to viral
persistence. However, combined blockade of both, IL-10 and PD-
L1, during chronic LCMV infection enhances T-cell function
more efficiently than a single blockade (Brooks et al., 2008).
Thus, IL-10 is pleiotropic and has immunosuppressive functions
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TABLE 1 | Virus-induced upregulation of PD-1 ligands on hematopoietic cells.

Virus Findings References

LCMV Arm and clone13 Increased PD-L1 expression on myeloid DCs and marginal zone macrophages;

decreased T cell motility in the marginal zone of the spleen due to PD-L1

Zinselmeyer et al., 2013

LCMV High PD-L1 expression on Kupffer cells in the liver Shaabani et al., 2016

IAV Type I IFN induced PD-L1 expression on virus-infected professional APCs in the

airways

Erickson et al., 2012; Valero-Pacheco et al., 2013;

Rutigliano et al., 2014; Staples et al., 2015;

McKendry et al., 2016

JEV PD-L1 upregulation on virus-infected DCs in vitro and decreased expansion of

Treg cells by virus-infected DCs after PD-L1 blockade

Gupta et al., 2014

EOBV Increased numbers of PD-L1 transcripts during EOBV infection of monocytes

derived from macaques

Menicucci et al., 2017

HV PD-L1/2 upregulation on DCs; high amounts of soluble PD-1 and PD-L2 in the

circulation of HV-infected patients

Raftery et al., 2018

FV PD-L1 expression on erythroid precursor cells and CD4+ T lymphocytes Akhmetzyanova et al., 2015

HIV PD-L1/2 upregulation on monocytes, DCs and macrophages; Correlation

between level of PD-L1 expression and disease progression

Boasso et al., 2008; Meier et al., 2008; Wang et al.,

2008; Rodriguez-Garcia et al., 2011

SIV Upregulation of PD-L1 on DCs; correlation between level of PD-L1 expression

and disease progression; improved function of antiviral T cells function after

PD-L1 blockade

Xu et al., 2010

HSV-1 Increased PD-L1 expression on DCs in the draining lymph nodes after virus

inoculation into foot pads of mice

Channappanavar et al., 2012

VZV PD-L1/2 upregulation on human monocytes, B cells, NK cells, and NKT cells Jones et al., 2019

KSHV Increased PD-L1 expression on monocytes Host et al., 2017

Ad, adenovirus; EOBV, Ebola virus; FV, Friend retrovirus; HIV, human immunodeficiency virus; HSV-1, herpes simplex virus type 1; HV, hantavirus; IAV, Influenza A virus; JEV, Japanese

encephalitis virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; LCMV, lymphocytic choriomeningitis virus; LCMV Arm, LCMV strain Armstrong; LCMV clone13, LCMV strain

clone13; RSV, respiratory syncytial virus; Treg cells, regulatory T cells; VZV, varicella zoster virus.

TABLE 2 | Virus-induced PD-L1 upregulation on non-hematopoietic cells.

Viruses Findings References

LCMV PD-L1 upregulation on fibroblastic reticular cells Zinselmeyer et al., 2013

Ad Increased PD-L1 expression on primary human hepatocytes Grakoui et al., 2006; Muhlbauer et al., 2006

HBV Upregulated PD-L1 expression on hepatocytes derived from a transgenic mouse

model of BV infection

Maier et al., 2007

IAV, MHPV, PIV-3, RSV Increased levels of PD-L1 on alveolar and bronchiolar epithelial cells after virus

infection in vitro and in patients with viral acute lower tract infections

Stanciu et al., 2006; Telcian et al., 2011; Erickson

et al., 2012; McNally et al., 2013

RABV Type I IFN-dependent PD-L1 upregulation on virus-infected mouse and human

neuronal cells in vitro and on neuronal cells in virus-infected mice

Lafon et al., 2008

HSV-1 PD-L1 upregulation on mouse neuroblastoma cells Chentoufi et al., 2011

HSV-1 PD-L1 upregulation on virus-infected neurons in ganglia Jeon et al., 2013

HSV-1 PD-L1 upregulation on epithelial cells in the virus-infected cornea Jeon et al., 2018

Ad, adenovirus; EOBV, Ebola virus; HMPV, human metapneumovirus; HBV, hepatitis B virus; HSV-1, herpes simplex virus type 1; HV, hantavirus; IAV, Influenza A virus; JEV, Japanese

encephalitis virus; LCMV, lymphocytic choriomeningitis virus; LCMV Arm, LCMV strain Armstrong; LCMV WE, LCMV strain WE; PIV-3, parainfluenza virus type 3; RABV, rabies virus;

RSV, respiratory syncytial virus; Treg cells, regulatory T cells; VHF, viral hemorrhagic fever.

independent of the PD-1/PD-L1 axis during persisting virus
infections (Ouyang et al., 2011).

In the late phase of acute virus infection, type II IFN
and several other cytokines including TNF-α and IL-10 are
released by immune cells such as CD8+ T cell cells (Zhang
and Bevan, 2011). IFN-γ strongly upregulates PD-L1 (Garcia-
Diaz et al., 2017; Raftery et al., 2018; Sun et al., 2018). In
addition, plasmacytoid DCs (pDCs) migrate into virus-infected
tissue and secrete large amounts of type I IFNs (Siegal et al.,

1999). These cytokines not only induce antiviral ISGs but also
drive inflammatory responses such as secretion of TNF-α, IL-1β,
or IL-6 (Davidson et al., 2015), which can further increase PD-
L1 on various cell types including endothelial cells and at the
same time promote non-lytic virus elimination (Sun et al., 2018).
Thus, in the late phase of acute viral infection, PD-L1 is strongly
upregulated thereby downregulating terminal differentiation of
CD8+ T cells and preventing excessive tissue damage due to
uncontrolled cytotoxic attack.
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FUNCTION OF PD-L1 DURING ACUTE

VIRUS INFECTIONS

PD-L1 expressed on hematopoietic or non-hematopoietic cells
has different functions (Keir et al., 2006; Mueller et al., 2010). For
example, PD-L1 expression on parenchymal cells of the pancreas
rather than hematopoietic cells prevent autoimmune diabetes
(Keir et al., 2006). In accordance, during LCMV infection of
mice PD-L1 expression on non-hematopoietic cells reduces
viral clearance and immunopathology (Keir et al., 2008). Thus,
upregulation of PD-L1 expression may protect virus-infected
cells from being eliminated by cytotoxic CD8+ T cells. On
the other hand, selective absence of PD-L1 on hematopoietic
cells results in lethal immunopathology (Mueller et al., 2010).
This is best explained by an increase in number and function
of cytotoxic CD8+ T lymphocytes, which may overwhelm
the PD-L1-conferred protection in non-hematopoietic target
cells (Frebel et al., 2012).

Virus-induced PD-L1 on professional APCs may help to focus
the antiviral CD8+ T cell response on a few strongly stimulatory,
i.e., immunodominant, virus-derived epitopes by increasing the
threshold of CD8+ T cell activation. In this way, the majority
of weakly immunogenic viral peptides fail to activate CD8+ T
cells. The adjustment of the “rheostat” on professional APCs
may be necessary to prevent autoimmune disease and maintain
peripheral tolerance in the face of a highly inflammatory milieu.
Indeed, a recent study has shown that the PD-L1/PD-1 axis
regulates T cell responses at the activation stage (Sugiura et al.,
2019). CD80, which binds to CD28 and CTLA-4 on T cells,
also interacts with PD-L1 (Butte et al., 2007, 2008). Importantly,
this interaction occurs only in cis (Chaudhri et al., 2018) and
prevents PD-L1 on DCs from co-inhibitory signaling to T
cells via PD-1 (Chaudhri et al., 2018; Sugiura et al., 2019). In
contrast, the functions of CD28 (co-stimulatory) and CTLA-4
(co-inhibitory) are not impaired by cis-PD-L1/CD80 interactions
on DCs (Sugiura et al., 2019). Many viruses upregulate PD-
L1 on professional APCs such as DCs (Table 1) either directly
or through IFN release. Low PD-L1 levels on uninfected DCs
have only a weak impact on T cell activation (Brown et al.,
2003) due to cis-PD-L1/CD80 interactions (Figure 1, upper
scheme). It is likely, that the high PD-L1 levels on DCs in
the context of viral infection will overwhelm the cis-binding
capacity of CD80 resulting in increased co-inhibitory signaling
via PD-1 (Figure 1, lower scheme). PD-L1 on professional APCs
also promotes the induction and maintenance of regulatory
T cells (Treg cells; Francisco et al., 2009). Treg cells help to
confine the antiviral defense and to prevent immunopathology
during virus infections (Veiga-Parga et al., 2013). Taken together,
viruses can reprogram DC function in antiviral immune
responses by tipping the balance between co-inhibitory and
co-stimulatory signals as shown for murine cytomegalovirus
(Loewendorf et al., 2004; Benedict et al., 2008) and vaccinia
virus (Kleinpeter et al., 2019).

Strong stimulation of the PD-1/PD-L1 does not prevent
immunopathology during viral hemorrhagic fever (VHF). VHF
is a designation for distinct but pathogenically similar zoonotic
diseases that are caused by several enveloped RNA viruses
including Ebola virus (EBOV), hantavirus, and dengue virus

(DENV) (Paessler and Walker, 2013). VHF viruses target
endothelial cells thereby causing vascular leakage (Zampieri
et al., 2007; Schonrich et al., 2008; Basler, 2017). In fact, type
III IFN and TNF-α, which upregulate PD-L1 on endothelial
cells, also mediate dysfunction of the endothelial barrier (Brett
et al., 1989; Koh et al., 2004). Virus-specific CD8+ T cells show
high levels of PD-1 on the surface during acute infection with
EBOV (McElroy et al., 2015). Moreover, fatal EBOV infection
is characterized by a high percentage of T cells expressing PD-
1 and other co-inhibitory receptors such as CTLA-4 (Ruibal
et al., 2016). Monocytes are susceptible to EBOV infection and
upregulate production of PD-L1 transcripts in response to EBOV
replication (Menicucci et al., 2017), whereas DENV-infected DCs
express higher levels of PD-L2 but reduced PD-L1 (Nightingale
et al., 2008). In patients with acute hantavirus infection large
amounts of soluble PD-L1/PD-L2 are found in the sera indicating
that these molecules are strongly upregulated in hantavirus-
infected cells in vivo (Raftery et al., 2018). In accordance, strongly
increased PD-L1 levels are detected after hantavirus infection
of immature DCs in vitro and in hantavirus-infected mice with
a humanized immune system (Raftery et al., 2018). In striking
contrast, CD8+ T cells do not upregulate PD-1 during acute
hantavirus infection (Lindgren et al., 2011).

Taken together, in the acute phase of viral infection virus-
specific T cells rapidly upregulate the co-inhibitory receptor PD-1
upon recognition of antigen. Simultaneously, viruses upregulate
PD-L1 on hematopoietic and non-hematopoietic cells directly
through PRR signaling or indirectly by inducing the release of
IFNs and other inflammatory cytokines. Ideally, a tailor-made
antiviral CD8+ T cell response eliminates viral pathogens with
minimal immunopathology (Figure 2). The antiviral immune
response during VHF, however, eliminates viruses at the cost
of vascular leakage. The dysregulation of the immune responses
could be due to variations in PD-L1 expression (e.g., timing,
cell type, or strength), imbalance between co-stimulatory vs.
co-inhibitory receptors (failure of “checks and balances”), or
altered usage of PD-L1 interaction partners (PD-1, CD80, and
possibly additional unknown partners). On the other hand
viruses can also manipulate the “checks and balances” of
the immune system in such a way that an effective antiviral
immune response is prevented helping the pathogen to persist in
the organism.

THE PD-1/PD-L1 AXIS DURING

PERSISTING VIRUS INFECTIONS

Chronic Virus Infection
Chronic infections with viruses such as hepatitis B virus,
hepatitis C virus (HCV), and human immunodeficiency
virus (HIV) represent major causes of chronic disease and
death worldwide (Ott et al., 2012; Schweitzer et al., 2015;
GBD 2015 HIV Collaborators, 2016; Stanaway et al., 2016).
During chronic infection virus particles are continuously
released from virus-infected cells and maintain a network
of immunosuppressive mechanisms that interfere with virus
elimination (Ng et al., 2013). Therefore, T cells enter a state called
T cell exhaustion.
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FIGURE 1 | PD-L1 mediated viral regulation of T cell activation. Upper graph: In the absence of viral infection mature dendritic cells (DCs) express relatively low levels

of PD-L1. Recognition of cognate antigen (Ag) bound to MHC class I molecules by T cell receptor (TCR) results in upregulation of PD-1 on T cells. DCs express

co-stimulatory molecules CD80 and CD86 allowing efficient co-stimulation of T cells via CD28. The PD-1/PD-L1 axis is not co-inhibitory due to restriction by

cis-PD-L1/CD80 interactions, and thus T cells are activated. Lower graph: In the context of viral infection DCs upregulate PD-L1 due to exposure to viral PAMPs and

high levels of type I IFN. The restricting cis-PD-L1/CD80 interactions are most likely overwhelmed by virus-induced PD-L1 resulting in PD-1 signaling and prevention of

T cell activation. The consequences of this for the generation of Tregs is as of yet unknown.

T Cell Exhaustion and Partial Restoration

of T Cell Function by Blockade of the

PD-1/PD-L1 Axis
The first evidence for T cell exhaustion was gathered in
paradigmatic experiments using LCMV-infected mice (Zehn
and Wherry, 2015; Kahan and Zajac, 2019). Derivatives of
LCMV Arm and LCMV WE (LCMV clone13 and LCMV
docile, respectively) vigorously replicate and disseminate in
mice thereby persisting for more than 100 days (Moskophidis
et al., 1993; Gallimore et al., 1998; Zajac et al., 1998). In this
model of chronic virus infection, CD4+ T cells are crucial to
sustain the virus-specific CD8+ T cell responses (Matloubian
et al., 1994). Sustained upregulation of PD-1 and other co-
inhibitory receptors such as 2B4, CTLA-4, and lymphocyte-
activation gene 3 (Lag3) has become the defining characteristic
of exhausted T (Tex) cells (Barber et al., 2006; Wherry et al.,

2007; Blackburn et al., 2009; Crawford et al., 2014). These
phenotypic changes are accompanied by a multistep loss of T cell
effector functions (Speiser et al., 2014; Kahan et al., 2015; Wherry
and Kurachi, 2015; McKinney and Smith, 2018). Dependent on
the strength of PD-1 signaling CD8+ T lymphocytes gradually
lose important effector functions (Wherry et al., 2003; Wei
et al., 2013). Some are lost early (such as cytotoxicity, IL-
2 production, and proliferation), whereas others (e.g., IFN-γ

production) are maintained for a longer time (Wherry et al.,

2003; Wei et al., 2013). Finally, Tex cells undergo apoptosis

(Kahan et al., 2015). As an underlying mechanism of T cell

exhaustion during chronic LCMV infection, PD-1 signaling

impairs T cell motility facilitating engagement of inhibitory
pathways in T cells (Zinselmeyer et al., 2013). In another

experimental setting, PD-L1 blocking antibodies prolong the
T cell migration arrest suggesting that PD-1 signaling in fact
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FIGURE 2 | The PD-1/PD-L1 checkpoint in acute virus infection. Early phase:

The infected tissue produces type I IFNs and possibly type III IFNs, which

strongly induce antiviral IFN-stimulated genes (ISGs) but only moderate PD-L1

levels. Antiviral CD8+ T cells eliminate virus-infected cells. At this stage, the

PD-1/PD-L1 checkpoint activity is low and does not restrict the antiviral

immune response. Late Phase: Type II IFN and TNF-α is secreted by CD8+ T

cells and other immune cells. In addition, hematopoietic cells such as

plasmacytoid DCs (pDCs) produce large amounts of type I IFN. This results

not only in virus elimination but also increases PD-L1 expression. The high

checkpoint activity downregulates terminal differentiation of antiviral CD8+ T

cells. Ideally, the strength and quality of the CD8+ T cell response is balanced

out in such a way that the viral intruder is eliminated without causing

immunopathology.

enhances T cell motility (Honda et al., 2014). The reason for
these contrasting results are unclear at the moment. Intriguingly,
PD-1-regulated changes in several metabolic pathways occur at
the very beginning of Tex cell development underlining the
importance of these metabolic processes in the execution of
the Tex program (Bengsch et al., 2016; Schurich et al., 2016;
McKinney and Smith, 2018).

Several reports have found differences in the transcriptional
program and epigenetic profile of Tex cells as compared to
memory and effector T lymphocytes (Wherry et al., 2007;
Doering et al., 2012; Pauken et al., 2016). In Tex cells derived
from LCMV-infected mice, the Pdcd1 regulatory region is
completely demethylated and remains so even when virus titers
decrease (Youngblood et al., 2011). They do not show antigen-
independent persistence driven by IL-7 and IL-15, the hallmark
of memory T cells, and instead require the continuous presence
of their cognate antigen (Wherry and Ahmed, 2004; Shin
et al., 2007). This can be explained by the observation that
the TCR-induced transcription factors IRF4, BATF, and NFATc1
not only drive T cell exhaustion but also impair memory T
cell development during chronic LCMV infection (Man et al.,
2017). Recently, microRNA (miR)-155 has been identified as a

key molecule that promotes long-term persistence of Tex cells
(Stelekati et al., 2018).

T cells that have been rendered dysfunctional during
persisting virus infections can be reinvigorated (Brooks et al.,
2006a). Blockade of the PD-1/PD-L1 axis during chronic LCMV
infection reinvigorates antiviral T cell functions and reduces viral
load (Barber et al., 2006). Of note, CD8+ T cells also become
exhausted in the absence of PD-1 (Odorizzi et al., 2015). These
experiments show that other coinhibitory receptors contribute to
T cell exhaustion. In line with this view, a combined blockade
of PD-1 and LAG-3 or PD-1 and Tim-3 synergistically improves
antiviral CD8+ T cell responses and viral control in mice with
chronic LCMV infection (Blackburn et al., 2009; Jin et al., 2010).
Reinvigorated CD8+ T cells in chronically LCMV-infected mice
become exhausted again after termination of the PD-L1 blockade
(Pauken et al., 2016; Sen et al., 2016; Turner and Russ, 2016). This
finding indicates that inflexibility of the epigenetic regulation in
Tex cells may limit the success of therapies using ICIs.

The studies of chronic LCMV infection in mice also relate to
important human infectious diseases. In a recently established
mouse model of HCV infection Tex cells are observed in
the liver of mice infected with a newly identified Norway rat
hepacivirus (NrHV), which belong to the same virus family as
HCV (Billerbeck et al., 2017; Klenerman and Barnes, 2017). In
NrHV-infected mice, CD4+ T cells were important to maintain
the antiviral CD8+ T cell response similar to the LCMV model
of chronic virus infection (Billerbeck et al., 2017). Blockade of
the PD-1/PD-L1 axis in early chronic infection reduced the
viral load whereas no beneficial effects were observed at later
time points (Billerbeck et al., 2017). Moreover, ICIs blocking
the PD-1 pathway can reinvigorate to some extent Tex cells
in humans chronically infected with HBV or HCV (McKinney
and Smith, 2016; Cox et al., 2017; Saeidi et al., 2018; Wykes
and Lewin, 2018). Targeting the PD-1/PD-L1 pathway during
retroviral infections has beneficial effects for virus control (Velu
et al., 2015). PD-1 upregulation is linked to a loss of function
in HIV-specific CD8+ T cells, which can be partially reversed
in vitro by a blockade of the PD-1/PD-L1 axis (Day et al., 2006;
Trautmann et al., 2006). Surprisingly, the context and timing of
PD-1 blockade seems to be important for its functional outcome:
PD-1 signaling inhibition during stimulation of naive CD8+ T
cells results in diminished activation, whereas PD-1 blockade
during the T cell effector phase increases activation (Garcia-Bates
et al., 2019). PD-1 blockade in rhesus macaques infected with
simian immunodeficiency (SIV) rapidly increases the number
and functional quality of virus-specific CD8+ T cells (Velu et al.,
2009). Intriguingly, the combination of anti-PD-1 antibodies and
antiretroviral therapy further improves antiviral CD8+ T cell
function in SIV-infected rhesus macaques (Mylvaganam et al.,
2018). This observation implies that directly acting antivirals
(DAAs) reducing the viral load and ICIs releasing the brake in
Tex cells synergistically increase antiviral T cell responses.

Recent data suggest that PD-1 expression does not necessarily
reflect T cell failure but rather adaption of T cell function to
chronic inflammation (Utzschneider et al., 2013, 2016; Speiser
et al., 2014; Staron et al., 2014; Zehn et al., 2016; Barnes, 2018;
Petrelli et al., 2018). In fact, at least two CD8+ Tex cell subsets
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exist that act in concert to mount a partially effective CD8+ T
cell response for control of chronic virus infection (Paley et al.,
2012). Moreover, Tex cells have the capacity for self-renewal and
are not entirely functionally inactive (Paley et al., 2012). The latter
finding implies that Tex cells may represent a form of antiviral
defense that is evolutionary adapted to the need to control a
chronically replicating non-lytic virus with minimal collateral
tissue damage and immunopathology. Moreover, experiments
in mice with genetic ablation of PD-1 suggest that PD-1 is not
required for induction of Tex cells (Odorizzi et al., 2015). In
fact, PD-1 may play a pivotal role in maintaining Tex cells
by preventing excessive stimulation that leads to proliferation
and terminal differentiation (Odorizzi et al., 2015). After the
elimination of HCV by DAAs, PD-1 expressing CD8+ T cell
populations remain that display characteristics of memory cells
including antigen-independent survival and proliferation after
re-challenge with antigen (Wieland et al., 2017).

Latent Infection and Reactivation
Viruses that establish latent infection include the members
of the family Herpesviridae. In contrast to chronic infection,
latent infection is characterized by periodic suspension of virus
replication. However, the blueprint of viral particles is preserved
in the latently infected host cells enabling the virus to reactivate
and resume virus production. It is a matter of debate whether
reactivation from latent virus infection creates enough antigenic
load to induce exhaustion of antiviral CD8+ T cells. Memory
CD8+ T cells recognizing viral antigens in the context of
chronic virus infections (e.g., HIV) more frequently express PD-
1 than memory CD8+ T cells stimulated by virus periodically
reactivating from latency, e.g., human cytomegalovirus (HCMV)
(Petrovas et al., 2006). This finding is consistent with the
idea that the amount of available antigen regulates PD-1
expression on reactive T cells (Petrovas et al., 2006). In
accordance, increased virus replication in immunosuppressed
patients with HCMV disease after allogeneic hematopoietic
cell transplantation is associated with PD-1 upregulation on T
cells (Gallez-Hawkins et al., 2009). In mice with a humanized
immune system, HCMV reactivations induced by granulocyte-
colony stimulating factor (G-CSF) resulted in a shift toward
PD-1 expressing T cells (Theobald et al., 2018). Whether
this phenotype corresponds to Tex cells is unclear, however.
Upregulation of co-inhibitory receptors such as PD-1 on CD8+
T cells is tightly linked to activation and differentiation and
not per se proof of T cell exhaustion (Legat et al., 2013).
In addition, studies of HSV-1 infection in mice did not
reveal evidence for functional impairment of virus-specific
CD8+ T cells during latency and subsequent reactivations
(Mackay et al., 2012).

PD-1 expression on brain Trm cells is maintained
independently from antigen (Shwetank et al., 2017). Recently,
it has been shown that Trm cells provide immunosurveillance
in the human brain to eliminate neurotropic viruses (Smolders
et al., 2018). In accordance, reactivation of HSV-1 from latently
infected neurons of the mouse is controlled by CD8+ Trm
lymphocytes (Liu et al., 2000; Khanna et al., 2003; Verjans et al.,
2007). These immune cells provide IFN-γ which upregulates

PD-L1 on HSV-1-infected neurons (Jeon et al., 2013). CD8+
T cells recognizing subdominant epitopes derived from HSV-1
proteins other than glycoprotein B (gB) but not CD8+ T cells
specific for the dominant gB-derived epitope show a partial
exhausted phenotype with increased PD-1 expression (Jeon
et al., 2013). Blockade of PD-L1 resulted in increased survival
of exhausted CD8+ T cells that were non-functional and not
protective, however (Jeon et al., 2013). In contrast, it has been
reported that HSV-1 LATs promotes functional exhaustion of
CD8+ T cells specific for the dominant gB-derived epitope
(Allen et al., 2011; Chentoufi et al., 2011).

During coevolution with their host, herpesviruses developed
numerous mechanisms to evade the antiviral immune response
such as modulation of programmed cell death (Raftery et al.,
1999, 2001; Muller et al., 2004; Kather et al., 2010) and
downregulation of MHC class I molecules (Schuren et al.,
2016). Intriguingly, replication competent varicella-zoster virus
(VZV) downregulates MHC class I and PD-L1 molecules in
human brain vascular adventitial fibroblasts, perineurial cells,
and human lung fibroblasts (Jones et al., 2016). In contrast, VZV
upregulates PD-L1 in hematopoietic cells (Jones et al., 2019).
The mechanism underlying VZV-associated downregulation of
PD-L1 is posttranscriptional in nature but the VZV-encoded
protein responsible has not yet been identified (Jones et al.,
2016). VZV might target PD-L1 to increase the migration
arrest of T cells (Honda et al., 2014). In this way, the virus
could more efficiently spread from lung fibroblasts to T cells,
which play crucial role in VZV dissemination to the skin
(Arvin et al., 2010).

CONCLUDING REMARKS

It is a seductive proposition that a virus induces PD-1 ligands in
order to inhibit and thus evade the host immune response. On the
other hand, recent data on the regulation of PD-L1 expression
during viral infection suggest that PD-L1 upregulation is rather
a part of the normal innate response induced by IFNs and PRR
signaling. The reason for this is still enigmatic. PD-L1 may have
a yet not defined immunostimulatory role in the very early phase
of viral infection. Later, it may adjust the quantity and quality
of the antiviral CD8+ T cell response in such a way that virus
is eliminated with minimal collateral tissue damage. The PD-
1/PD-L1 axis may also be important to maintain antiviral Trm
cells and Tex cells. Virus-induced PD-1 ligand expression as an
immune evasion strategy should always be rigorously tested with
this in mind.
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Viruses are obligate intracellular pathogens that require the protein synthesis machinery

of the host cells to replicate. These microorganisms have evolved mechanisms to avoid

detection from the host immune innate and adaptive response, which are known as viral

evasion mechanisms. Viruses enter the host through skin and mucosal surfaces that

happen to be colonized by communities of thousands of microorganisms collectively

known as the commensal microbiota, where bacteria have a role in the modulation of

the immune system and maintaining homeostasis. These bacteria are necessary for the

development of the immune system and to prevent the adhesion and colonization of

bacterial pathogens and parasites. However, the interactions between the commensal

microbiota and viruses are not clear. The microbiota could confer protection against

viral infection by priming the immune response to avoid infection, with some bacterial

species being required to increase the antiviral response. On the other hand, it could also

help to promote viral evasion of certain viruses by direct and indirect mechanisms, with

the presence of the microbiota increasing infection and viruses using LPS and surface

polysaccharides from bacteria to trigger immunosuppressive pathways. In this work, we

reviewed the interaction between the microbiota and viruses to prevent their entry into

host cells or to help them to evade the host antiviral immunity. This review is focused on

the influence of the commensal microbiota in the viruses’ success or failure of the host

cells infection.

Keywords: microbiota, microbioma, viral evasion, microbiota-virome interaction, microbiota and antiviral immune

defense

INTRODUCTION

The mucosal surfaces of the human body contain complex communities of microorganisms
collectively referred to as microbiota; these bacteria are a key factor in health and disease due to
their participation in the development of the immune system and their host-protection against
pathogens (Human Microbiome Project Consortium, 2012a,b; Lloyd-Price et al., 2016).

Viruses are a large and heterogeneous group of dependent biological agents that require the host-
cell machinery to replicate. Most viruses are identified based on their capacity and mechanisms
used to produce disease; however, healthy individuals harbor viral communities that do not cause
directly known pathologies. These viral communities are known as the human virome (Rohwer
et al., 2009). The coexistence of viruses and bacteria within the microbiome encourages the study
of viral evasion mechanisms that provide immune system tolerance to these pathogens. These
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mechanisms are undoubtedly also used during the
pathophysiology of viral diseases (Abeles and Pride, 2014).

MICROBIOTA AGAINST VIRAL INFECTION

Since the discovery that gut bacteria instruct host immunity,
i.e., they restrict pathogen proliferation, it would seem logical
to think that the intestinal microbiota would also play a
predominant role in viral etiology infection inhibition. Studies
reveal that commensal bacteria are crucial in maintaining
immune homeostasis and immune responses at mucosal surfaces
(Ichinohe et al., 2011). Mucous membranes are the gateway
to many pathogens, including viruses. For example, intestinal
microorganisms promote maturation of the secondary lymphoid
organs within the gastrointestinal tract, which is the first line
of defense of the intestinal mucosa (Karst, 2016). Germ-free
mice are unable to mount an efficient immune response against
pathogens due to immature intestinal lymphoid structures
(Hooper et al., 2012; Kamada and Núñez, 2014).

Given the complexity of the microenvironment in mucosal
surfaces, it makes sense that the most studied bacteria and virus
interactions are the ones involving the intestinal microbiome.
The protective role of commensal bacteria, mainly probiotics,
is well-established; however, in its interactions with viruses,
more studies are needed. The Lactobacillus genus can inhibit
murine norovirus (MNV) replication in vitro, which could be
mediated by the increased expression of IFNβ and IFNγ. In
vivo models show that these bacteria are decreased during MNV
infection, though with the aid of retinoic acid treatment, it is
possible to avoid this effect. It has been hypothesized that the
antiviral effects of vitamin A (and consequently, retinoic acid) are
mediated by the Lactobacillus genus due to interferon production
(Lee and Ko, 2016).

Bacterial flagellin is efficient against rotavirus (RV) infection
because it activates Pattern Recognition Receptors (PRR), TLR5
and NLRC-4, that stimulate the release of interleukin-22 (IL-22)
and IL-18; the former induces normal epithelium proliferation,
while the latter induces infected epithelial cell apoptosis (Zhang
et al., 2014). Bifidobacterium breve and a mixture of this probiotic
with galactooligosaccharides and fructooligosaccharides have
a preventive effect against RV infection by increasing the
production of IFNγ, IL-4, TNFα, and TLR2 expression, while also
decreasing the tolerogenic response (Rigo-Adrover et al., 2018),
thereby enhancing the mucosal defense against this pathogen.

Immunoregulation and reinforcement of the intestinal
barrier through the relationship between commensal bacteria,
probiotics, epithelial, and immune cells, are established
physiological processes mediating the antiviral effects of the
microbiota. The enteric microbiota regulates increased mucus
production and synthesis of potential antiviral compounds,
likereactive oxygen species and defensins, that inhibit local viral
replication (Monedero et al., 2018).

Gut microbiota could also have distal protective effects
on antiviral responses. There is evidence of the role of
inflammasome activation in the immune defense against
influenza virus infection (Allen et al., 2009; Ichinohe et al.,

2009); it induces dendritic cell migration to the local lymph
node to stimulate an influenza-specific T-cell response in the
lung (Ichinohe et al., 2011; Wilks and Golovkina, 2012). The
commensal gut microbiota regulates the respiratory mucosa
immunity against respiratory influenza virus through the
IgA secretion, and the proper activation of inflammasomes,
Th1 cells, and CTLs, and through the upregulation of
TLR7 signaling in the respiratory mucosa (Ichinohe et al.,
2011; Wu et al., 2013). Steed et al. (2017) demonstrated
that desaminotyrosine, a microbial metabolite, enhances
type I interferon (IFN-I) signaling and protects against
influenza pathogenesis.

Gut probiotics like Lactobacillus paracasei and Lactobacillus
plantarum increase pro-inflammatory cytokines like IL-33, IL-
1α, IL-β, IL-12, and IFNγ during influenza virus infection. There
is also an increase in the presence of innate immune cells
in the lungs such as NKs, macrophages, and dendritic cells.
These probiotics were also able to diminish the inflammatory
response in the lungs by an IL-10 increase, thereby controlling
the antiviral response (Park et al., 2013; Belkacem et al., 2017).
The crosstalk between the gut and airway bacteria through the
gut-lung axis could explain how the intestinal bacteria are able
to improve antiviral immunity since gut microbial metabolites
could stimulate immune cells that can move to distal locations
to mediate the antiviral response.

On the respiratory surface, airway bacteria protect
against viral infections. Staphylococcus aureus stimulates
the recruitment of peripheral CCR2+ CD11b+ monocytes and
their subsequent maturation into M2 macrophages, through
the activation of TLR2 signaling during influenza infection.
This mechanism dampens influenza-mediated acute lung injury
(Wang et al., 2013). The respiratory commensal bacteria,
Corynebacterium pseudodiphtheriticum modulates the TLR3
antiviral response against Respiratory Syncytial Virus (RSV),
enhancing the production of TNFα, IL-6, IFNγ, and IFNβ

through the increase of T-cell subpopulations that produce these
cytokines (Kanmani et al., 2017).

The vaginal mucosa is dominated by bacteria from the
Lactobacillus genus. Vaginal microbial communities dominated
by Lactobacillus crispatus were associated with a decreased HIV
infection in South African women (Gosmann et al., 2017).
L. crispatus, Lactobacillus gasseri, and Lactobacillus vaginalis
inhibit HIV-1 replication in ex vivo cervico-vaginal tissue culture.
These effects are mediated through acidification of the medium
and lactic acid production, as well as their binding to the
virus in order to reduce the free virions in the tissue (Ñahui
Palomino et al., 2017). Lactic acid and acidic pH increase
the production of anti-inflammatory cytokines, preventing the
production of pro-inflammatory cytokines by epithelial cells
and, with this, the inflammation that increases HIV acquisition
(Hearps et al., 2017). Lack of the vaginal microbiome by
antibiotic depletion leads to IL-33 increased production which
suppresses IFNγ secretion, leading to Herpes Simplex Virus
type 2 (HSV-2) susceptibility due to an impaired antiviral
defense (Oh et al., 2016).

These findings demonstrate that commensal bacteria in
different mucosal sites are part of the antiviral response against
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FIGURE 1 | Microbiota–virome interactions in mucosal surfaces. The microbiota has a dual role when it interacts with viruses. (A) Microbiota can have a protective

role against viral infections. Bacteria from the Lactobacillus genus inhibit Norovirus infection. Bacterial flagellin activates TLR5 to produce inflammatory cytokines

(IL-22, IL-18). B. breve stimulates the production of pro-inflammatory cytokines (IFN-γ, IL-4, TNFα) against viruses. The gut microbiota regulates the production of

ROS and defensins, and the activation of Th1 and CTL against viral infections. (B) Microbiota can function as an evasion mechanism, where viruses can bind to

bacterial structural molecules (such as LPS) or bacterial pili or membranes to induce immunotolerance through the increase of anti-inflammatory cytokines (IL-10) and

to infect host cells. (C) Bacterial flagellin increases the infectivity of influenza, Measles, Ebola, Lassa, and Vesicular stomatitis viruses through TLR5 activation in lung

epithelial cell culture. Created with BioRender.com.

pathogenic viruses; nevertheless, there is much yet to define in the
mechanisms through which they can achieve this (Figure 1A).

MICROBIOTA AS PROMOTERS OF
VIRAL INFECTIONS

Despite the significant evidence available about the role of the
microbiota in the regulation of the mucosal immune system
and the host protection from viral infections, it is also known
that, through microbiota rich mucosal surfaces, different viruses
enter host cells most efficiently. Furthermore, viruses escape the
immune response to establish chronic infections. Then, contrary
to the known benefits of gut microbiota, intestinal viruses take
advantage of gut bacteria to trigger replication at favorable
transmission sites (Kuss et al., 2011).

Human and murine norovirus (MNV) require the presence
of bacteria to infect B cells since the lack of both bacteria
by antibiotic treatment and B cells in Rag−/− mice inhibit
the infection by norovirus (Jones et al., 2014; Baldridge et al.,

2015). MNV also targets intestinal tuft cells by the CD3001f
receptor and antibiotics reduce the specific genes for these cells
in the colon. The MNV needs the colonic commensal microbiota
to regulate these epithelial cells to utilize them as a reservoir
for its chronic infection (Wilen et al., 2018). Commensal
bacteria from the human gut, such as Enterobacter faecium,
Klebsiella spp., Bacillus spp., Bacteroides thetaiotaomicron,
L. plantarum, and L. gasseri, among others, bind human
norovirus through bacterial pili and membranes, possibly
through HBGA-like (histo-blood group antigens) molecules,
sialylated gangliosides, and lipopolysaccharides (LPS), which can
facilitate the entry of these viruses and the development of
the infection (Almand et al., 2017). It is yet to be elucidated
the exact mechanisms and molecules this virus utilizes to bind
on bacterial surfaces; however, these interactions are a good
example of viruses exploiting commensal bacterial to promote
their infectivity (Figure 1B).

The intestinal microbiota enhances mouse mammary tumor
virus (MMTV), poliovirus, and mammalian orthoreovirus
(reovirus) infections (Kane et al., 2011; Kuss et al., 2011). MMTV
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vertical transmission to offspring’s via milk is thought to rely
upon TLR4 activation, a PRR for bacteria LPS (Rassa et al., 2002;
Jude et al., 2003). The retrovirus MMTV relies on the microbiota
interaction to evade the immune response. It binds LPS and
induces immune tolerance through a TLR4/MyD88 pathway to
induce IL-10 (Kane et al., 2011).

Poliovirus interacts with surface polysaccharides on
specific microbes, enhancing host cell binding via the
poliovirus receptor (PVR) (Kuss et al., 2011; Robinson
et al., 2014). Poliovirus particles are also able to bind
to LPS and peptidoglycan (Robinson and Pfeiffer, 2014).
Moreover, microbiota-harboring mice support more efficient
poliovirus replication (Kuss et al., 2011). Also, the reovirus
utilizes bacterial envelope components to enhance virion
stability (Berger et al., 2017). Both peptidoglycan and LPS
improve viral, and ISVPs (infectious subvirion particles)
thermostability; ISVPs are produced when the virus encounters
intestinal proteases and play a part in the initial infection steps
(Bodkin et al., 1989; Berger and Mainou, 2018).

A recent study showed how human milk oligosaccharides
(HMOs) correlate with neonatal RV G10P[11] infection and an
increase in abundance of Enterobacter/Klebsiella. This neonatal
RV evolved to bind HMOs to possibly enter into epithelial cells
or to be stabilized by them (Ramani et al., 2018). Considering
that HMOs are considered to have a beneficial effect due to their
prebiotics effect for bacteria like Bifidobacterium, it is remarkable
that pathogenic viruses and bacteria can take advantage of
this prebiotic to increase their infectivity. Additionally, the
commensal microbiota promotes RV infection and affects the
immune response to the infection. Antibiotic treatment reduces
its infectivity and increases IgA-producing cells, suppressing
RV entry (Uchiyama et al., 2014). Vancomycin treatment in
healthy adults improves RV vaccine immunogenicity and RV
shedding through the increase of Proteobacteria and a reduction
in Bacteroidetes (Harris et al., 2018). These studies show that
the complete commensal microbiota downregulates the antiviral
response to RV infection and only particular taxa can enhance the
immunity against viruses.

Recently, it was reported that bacterial flagellin promotes viral
infection in an in vitro model using lentiviral pseudoviruses
encoding the glycoproteins of influenza, Measles, Ebola, Lassa,
and Vesicular stomatitis virus in pulmonary epithelial cell culture
through TLR5 and NF-κB activation (Benedikz et al., 2019). This
finding is particularly exciting since previously, it was reported
that flagellin had a protective effect against RV infection in mice
(Zhang et al., 2014). The dual effect of flagellin could be due to the
differences in the microenvironment and models used to study
the interaction between the viruses and bacteria (Figure 1C).
These studies exemplify how much is unknown in the interplay
of bacteria and viruses.

VIRUSES AS PART OF THE HUMAN
MICROBIOME

The intestine contains other types of organisms, besides bacteria,
that can influence mucosal and systemic immune responses

such as viruses (Minot et al., 2012; Kernbauer et al., 2014;
Norman et al., 2015). To interpret the role of the microbiota
within viral infections, we must also consider the impact
that the virome may play in this interaction. A recent study
approximated that in healthy humans, there are 45% of
mammalian viruses that are part of the virome without a clinical
outcome (Rascovan et al., 2016; Olival et al., 2017). However,
similar to bacteria, resident viruses modulate the immune
responses (Freer et al., 2018).

Enteric human virome has also been linked to diseases.
For example, enteric eukaryotic viruses can be associated
with gastroenteritis, enteritis, or colitis (Norman et al., 2015).
Bacteriophages perturb the bacterial community, interplay with
the host immune system, and an antagonistic relationship
between bacteria and bacteriophages during inflammatory
bowel disease has been reported (Duerkop and Hooper, 2013;
Virgin, 2015). Also, bacteriophages contribute to the spread
of antibiotic resistance genes among bacteria; they form a
reservoir of these genes within the microbiome (Muniesa
et al., 2013; Quirós et al., 2014). In Crohn’s disease, a
reduction in viral diversity is part of its characteristic dysbiosis
(Abeles and Pride, 2014).

Changes in the intestinal virome are significant in AIDS
and HIV enteric disease pathogenesis. Reciprocal transactivation
between HIV-1 and other human viruses have been reported
(White et al., 2006). Monaco et al. found a relation between
the enteric adenovirus sequence expansion and the advanced
HIV/AIDS stage (Monaco et al., 2016). Also, AIDS alters the
commensal plasma virome since an increase in the proportion
of anelloviruses has been reported (Li et al., 2013). In this study,
the presence of viral sequences from HIV, HCV, hepatitis B virus
(HBV), human endogenous retroviruses (HERV), and GB virus
C (GBV-C) in the plasma virome of HIV subjects was also found.

HSV-2 may alter vaginal epithelial integrity, which favors HIV
infection and transmission (Shannon et al., 2017). Furthermore,
it induces genital inflammation and, in the genital tract mucosa,
it increases HIV susceptive target cells (Rebbapragada et al.,
2007). Epidemiological studies report a coincidence in different
populations of women who have a high incidence of HSV-2
infection and an increased HIV risk (Shannon et al., 2017). Viral-
bacterial interactions involving HSV, human cytomegalovirus
(HCMV), and Epstein–Barr virus type 1 (EBV-1) might
contribute to the development of periodontitis, since HSV infects
T-lymphocytes and monocytes/macrophages, EBV-1 infects B-
lymphocytes, and HCMV infects monocytes/macrophages and
T-lymphocytes, which may cause an impaired immune response
against bacteria (Contreras and Slots, 2003; Elamin et al., 2017).
HSV may promote subgingival attachment and colonization
by periodontopathic bacteria using the capsid proteins as
receptors for bacteria (Bakaletz, 1995; Contreras and Slots,
2003). This is similar to one of the mechanisms by which
commensal bacteria collaborate with viral infections. Chronic
periodontitis has also been related to the natural history of
HPV in patients with base of tongue cancers (Tezal et al.,
2009), since it facilitates the life cycle of HPV infection in the
periodontal pocket (Shipilova et al., 2017). This represents a
clear example of a virus-bacteria-virus interaction that ends in
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increased susceptibility to the disease, in this case, head and
neck cancer.

LIMITATIONS OF STUDIES EVALUATING
BACTERIA-VIRUSES’ INTERACTIONS

It was supposed that bacteria removal, by antibiotics or the
lack of these microorganisms in germ-free models, would
increase the predisposition to viral infections; on the other
hand, it was found that microbiota ablation decreases the
infectivity of pathogenic viruses. Experimental systems to
evaluate the role of the gut microbiota during enteric viral
diseases included two strategies: the infection of germ-free mice
and the administration of treatments to eliminate the commensal
microbiota in mice prior to a viral infection (Karst, 2016).
However, there are several problems with germ-free animals,
such as defects in mucosal immune development and changes
in intestinal morphology, while the antibiotic treatment has
some disadvantages—antibiotics do not remove the entirety of
the commensal microorganisms (Wilks and Golovkina, 2012),
some gut species are unculturable so its complete absence
can’t be proved (Schmeisser et al., 2007), there is currently
evidence of antimicrobial resistance of some bacterial groups
(Pogue et al., 2015).

The study of the effects of the intestinal microbiota on the
host immune system requires precisely defined experimental
approaches that are complex, and the requirement of samples
limits in vivo analysis. Also, the study of the microbiome
suggests that there is significant variability among individuals,
this indicates that microbiomes are dynamic “fingerprints”,
though they can change depending on environmental challenges
(Bogdanos et al., 2015).

Improvement of in vitro and ex vivo cultures to simulate
more accurately the in vivo conditions of microbiome-
virome interactions is needed to be able to understand
the complexity of this relationship. Otherwise, these
models are too simplistic in their approaches, and they
should only be used as a first encounter in order to
further elucidate the mechanisms of these relations.
“Omics” approaches are essential methods to unravel these
interactions since pathogenic viruses not only interact with
one type of bacteria, but with hundreds of them. Further
studies of the relationship between these microorganisms
need to take into consideration these approaches to
improve our understanding of the complexity of mucosal
surface microenvironments.

CONCLUSIONS AND PERSPECTIVES

Although the role of the host-microbiome in human health has
been a topic of interest in recent years, its role in the immune
response in the context of the susceptibility to different strains of
viruses is an important new consideration. Most viruses access
the human body through mucosal surfaces that are traditionally
described as rich in a diversity of commensal pathogens. In
those sites, viruses interact with hundreds of different commensal
bacteria, which are part of the host immune defense. Since the
discovery of the protective role of the microbiota, it is easy to
imagine that bacteria interact with viruses to eliminate or reduce
their infectivity, ensuring the homeostasis of the mucosal sites.
However, viruses have developed mechanisms to take advantage
of the microbiota, and thereby, evade the immune system.
So previous considerations of viruses as the sole grounds of
different pathologies is not entirely accurate. It is important to
remember the complex interaction within the microenvironment
and how they determine the outcomes of disease. Therefore, the
commensal microbiota could have a fundamental role against
viral infections, but also viruses have evolved to interact with
the microbiota, use it, and facilitate viral infection, so based on
these observations the microbiota can be in itself a mechanism of
viral evasion.

There is also a great need for the development of techniques
that allow the characterization of these interactions. There are
few translational studies, and the experimental models used have
several deficiencies.

In this mini-review, we show how current investigations are
just starting to untangle the complex world of the microbiome-
virome interactions. While it is undeniable that bacteria aid in
the antiviral response to certain viruses, they are also, without a
doubt, used as a way of entry by them. This makes it complicated
to define the role of the microbiota as a friend or foe in
this context.
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Picornaviruses constitute one of the most relevant viral groups according to their impact

on human and animal health. Etiologic agents of a broad spectrum of illnesses with a

clinical presentation that ranges from asymptomatic to fatal disease, they have been

the cause of uncountable epidemics throughout history. Picornaviruses are small naked

RNA-positive single-stranded viruses that include some of the most important pillars

in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus.

Picornavirus infectious particles use the fecal–oral or respiratory routes as primary

modes of transmission. In this regard, successful viral spread relies on the capability

of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for

cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from

the immune system. Importantly, picornaviruses display a substantial amount of genetic

variability driven by both mutation and recombination. Therefore, the outcome of their

replication results in the emergence of a genetically diverse cloud of individuals presenting

phenotypic variance. The host humoral response against the capsid protein represents

the most active immune pressure and primary weapon to control the infection. Since the

preservation of the capsid function is deeply rooted in the virus evolutionary dynamics,

here we review the current structural evidence focused on capsid antibody evasion

mechanisms from that perspective.

Keywords: picornavirus, capsid, antibody, genetic variability, structure, vaccine

PICORNAVIRUS HISTORICAL RELEVANCE

Picornaviruses have been pivotal in the foundations of virology. Original research on
“ultra-filterable infectious agents” such as foot-and-mouth disease virus (FMDV) and poliovirus
(PV) began the era of animal virology (Loeffler and Frosch, 1898; Eggers, 1999). The development
of cell cultures for PV replication led to Salk’s inactivated and Sabin’s attenuated vaccines (Enders
et al., 1949). The first animal virus engineered into an infectious clone (Racaniello and Baltimore,
1981) and the first virus synthesized outside the cell was PV (Molla et al., 1991).

Although vast knowledge has been gained, picornaviruses still challenge our understanding. The
still open fundamental questions and public health challenges picornaviruses pose reflect that we
are far from a conclusive comprehension (Holm-Hansen et al., 2016; Li et al., 2017; Zarocostas,
2018). In the following review, we examine how these agents evade host antibodies (Abs) based on
their biological and evolutionary properties, with the spotlight on human picornaviruses.
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CLASSIFICATION AND CLINICAL IMPACT

ON HUMAN HEALTH

Picornaviridae is a large family of vertebrate viruses that produce
both clinically asymptomatic infections but often mild and
fatal disease. Their current classification includes more than
30 genera and 75 species (Zell et al., 2017), including several
human picornaviruses. The genus Enterovirus comprises seven
species infecting humans (enterovirus A-to-D and rhinovirus A-
to-C). This genus contains poliovirus (PV), coxsackieviruses A/B
(CVA/B), enteroviruses (EV), echoviruses (E), and rhinoviruses
(RV). Further serological classification results in hundreds of
serotypes. Hepatitis A virus (HAV) is the sole human-virus
species in the genus Hepatovirus. Other human picornaviruses
include members of the genera Cardiovirus (Saffold virus—
SAFV), Cosavirus (CoSV), Parechovirus (Ljungan virus—LV),
Kubovirus (Aichi virus—AiV), and Salivirus (Salivirus A—SaVA)
(Nielsen et al., 2013).

RVs are airborne pathogens, while other enteroviruses and
HAV use the fecal–oral route (Yin-Murphy and Almond, 1996).
RVs cause the common cold, the most prevalent infectious
disease worldwide, resulting in uncountable lost days from
school and work. Epidemics occur yearly with outbreaks in
the winter and spring (Drysdale et al., 2017). PV infection
targets the central nervous system, destroying nerves and motor
neurons, resulting in paralytic poliomyelitis. Until the PV
worldwide eradication program based on global vaccination,
polio epidemics have been the cause of high morbimortality
(Minor, 2014). The so-called “non-polio enteroviruses” (CVs,
EVs, and Es) cause several diseases with high morbimortality
including meningitis, myocarditis, poliomyelitis-like syndrome,
pancreatitis, and possibly the onset of diabetes. Outbreaks
are common and have been considered to have pandemic
potential (Zhang et al., 2015; Pons-Salort et al., 2018).
Hepatitis produced by HAV is a mild disease producing liver
damage usually leading to total recovery, but rare, severe
cases are fatal in older age individuals. HAV produces large
outbreaks probably due to its long 2 to 3 week incubation
time (Jacobsen and Wiersma, 2010).

GENOME ORGANIZATION

Picornaviruses have single-stranded RNA positive-sense
genomes (∼7–9 kb) that serve as mRNA for viral protein
synthesis (Baltimore, 1971) (Figure 1A). Their RNA holds
a single ORF encoding a polyprotein precursor for all viral
proteins. Importantly, the 5′-end of the genome is covalently
bound to the Viral-Protein-genome (VPg) (Crawford and
Baltimore, 1983), the primer for viral RNA synthesis (Nomoto
et al., 1977). Two untranslated regions (UTR), 5′UTR and
3′UTR, flank the ORF and contain virus-specific RNA secondary
structural elements implicated in replication and providing
host specificity (Kloc et al., 2018). The 5′UTR bears an internal
ribosomal entry site (IRES) and polypyrimidine tract (PPT) that
elicit host ribosomes and PPT-binding protein for translation

(Martinez-Salas et al., 2018). The 3′UTR finishes in a poly(A) tail
that mimics host mRNA tail conferring genome stability.

From 5′-to-3′, the ORF comprises three regions: (i) P1,
encoding the structural capsid viral proteins (VP4–VP2–VP3–
VP1), while, in some picornaviruses, also codifying a short leader
L-protein; (ii) P2, encoding the viral non-structural proteins
2A−2B−2C; and (iii) P3 encoding the viral non-structural
proteins 3A−3B−3C−3D (Palmenberg, 1990) (Figure 1B). The
non-structural proteins’ central role is replication, translation,
and hijacking host-cell machinery (Figure 2). In particular, 3D
is the RNA-dependent RNA polymerase (RdRp or 3Dpol) that
synthesizes the virus genome and 3B (which is VPg) acts as
its primer, being the only non-structural protein in the virion
(Palmenberg, 1990).

PICORNAVIRUS CAPSID ANATOMY

Picornaviruses were the first human viruses to be structurally
defined at the atomic level (Rossmann et al., 1985). To date,
several structures of human picornaviruses have been unveiled
including HRV, PV, HAV, CVB, E, CVA, EV, SAFV, and AiV
(Hogle et al., 1985; Rossmann et al., 1985; Filman et al., 1989,
1998; Muckelbauer et al., 1995; Zhao et al., 1996; Lentz et al.,
1997; Hendry et al., 1999; Verdaguer et al., 2000, 2003; Stuart
et al., 2002; Zhang et al., 2004; Venkataraman et al., 2008;
Plevka et al., 2010, 2012; Zocher et al., 2014; Liu et al., 2015,
2016; Ren et al., 2015; Zhu et al., 2015; Mullapudi et al.,
2016). Moreover, the structure of FMDV has been disclosed

(Logan et al., 1993; Lea et al., 1994). All picornaviruses have a
naked 30 nm icosahedral capsid composed of 60 identical tightly
packed protomers (Figure 1E). Early in particle morphogenesis,
immature protomers contain VP1 and VP3 together with VP0,
the precursor of VP4 and VP2 (Jiang et al., 2014) (Figure 1B).
Virus assembly likely goes through a dodecahedral pathway (Li
et al., 2012), by the association of pentamers formed by five
immature protomers leading to the icosahedral particle, defining
5-, 3-, and 2-fold symmetry axes. Upon genome encapsidation,
VP0 is generally auto-catalytically cleaved into VP2 and VP4
generating the mature capsid (except for Parechovirus and
Kubovirus) (Figure 2).

The larger proteins (VP1–3) form the external and internal
capsid surface. These proteins have a common fold, the “jelly-
roll,” formed by two 4-strand anti-parallel β-sheets and two
helices (Figure 1D). Conversely, the small VP4 is located
inside the capsid only and usually appears myristoylated at
its N-terminus (Paul and Schultz, 1987; Belsham et al., 1991)
(Figure 1C). The capsid external surface displays a rugged
topography. Main surface features include (i) a principal
protrusion built by the interaction of copies of VP1 forming
a star-shaped 5-fold vertex, (ii) a 5-fold surrounding valley
called the “canyon,” (iii) a VP2 loop protuberance or the “puff,”
(iv) a VP3 loop rise or the “knob,” and (v) a large 2-fold
depression (Muckelbauer et al., 1995). Loop differences result in
distinctive surface traits between picornaviruses. Finally, some
picornaviruses exhibit a lipidmolecule, the “pocket factor,” bound
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FIGURE 1 | Picornavirus genome, proteins, and capsid organization. (A) Representation of the picornavirus genome, the VPg, and the polyA tail, showing the single

ORF location. The position of the P1–3 regions, the flanking 5′ and 3′UTR, and the IRES are indicated. (B) A bar diagram showing the polyprotein (gray box) and the

proteolytic cascade that leads to all picornaviral proteins (colored boxes). Boxes include the protein names following the genome-ORF regions’ nomenclature

(number–letters) or the VP1–4 nomenclature for the structural proteins. Colored rhombi indicate cleavage points and are labeled with the corresponding protease

name. (C) Overall view of the canonical picornavirus protomer with the proteins VP1 (blue), VP2 (green), VP3 (red), and VP4 (yellow). The protein N- and C-termini are

indicated as encircled N and C letters, and yellow circles show the 5-,−3, 2-fold symmetry axes positions. Lipid components as the VP4 myristoylation and the

“pocket factor” are depicted as black spheres. The “canyon” region is shown as a gray circular segment shadow. (D) Schematics of the “jelly roll” fold of VP1–3

proteins inscribed in a trapezoidal prism where the yellow highlighted face corresponds to the external capsid surface, and the dark gray base faces the inner capsid.

The secondary structure elements are colored from N- to C-terminus according to the color code bar below. External loops and N- and C-terminus are indicated. (E)

Overall view of the picornavirus capsid showing the outer surface of VP1 (blue), VP2 (green), and VP3 (red). The yellow dotted line indicates the boundaries of one

pentamer. The solid yellow line marks the icosahedral asymmetric subunit and thinner lines separate proteins following the trapezoidal schematics shown in (D).

Symmetry 5-, 3-, 2-fold symmetry axes are indicated in yellow circles.

in a cavity located inside the VP1 jelly-roll, which has been
observed to play a role in particle stability (Figure 1C).

RECEPTORS AND TROPISM

Picornavirus cell infection starts with its attachment to cell
receptors (Figure 2). Therefore, virus-receptor usage is critical
for tropism and its evolution can change virus targets at the level

of cells to host ranges. The capsid binding sites of picornavirus
receptors can be used to classify them into canyon binders and
non-canyon binders.

Canyon binders are members of the immunoglobulin
superfamily including: (i) ICAM-1 used by HRV and CVA
(Greve et al., 1989; Staunton et al., 1989; Tomassini et al.,
1989; Kolatkar et al., 1999; Xiao et al., 2001; Baggen et al.,
2018), (ii) the PV receptor (PVR) (Mendelsohn et al., 1989;
He et al., 2000; Strauss et al., 2015), (iii) the coxsackie and
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FIGURE 2 | Picornavirus life cycle. (A, B) Picornavirus uses different receptors to enter the cell, some implicated in the signaling internalization (A), meanwhile others

can act as carriers that transport the viral particle to meet the primary receptor (B). (C, D) This infection event can be impeded by the action of specific neutralizing

antibodies that can destabilize the viral particle (C) or opsonize or stabilize the particle to impair receptor binding or conformational changes required for infection (D).

(E) Once the virus enters the cell, the viral RNA delivery mechanism is triggered, and the viral genome (black wavy line) is released into the cytoplasm. (F) Upon

removal of VPg (magenta oval), the genome starts the IRES-driven translation leading to the production of the viral polyprotein. (G) The proteolytic cascade produces

all viral proteins, structural and non-structural. (H) Some proteins act by hijacking the host cellular systems such as the nuclear pore, the cell translation machinery,

and the apoptotic systems and initiate the remodeling of the internal cell membranes. (I) The structural proteins assemble into the capsid intermediates, the protomer

and the pentamer, and also procapsids (L). (J) The formed replication complex assembled from non-structural proteins and modified internal membranes firing the

picornaviral genome replication by the 3D polymerase via RNA complementary (red wavy lines) and using VPg as a primer. (K) The new progeny genomes including

eventual mutations (yellow stars). (M) Mature virions assemble from pentamers that surround and package the new viral genomes. Viral particles escape from the cell

by cell lysis or budding within membranes that can protect the viral progeny (P). (N) Some progeny virus with mutations in their capsids (yellow star) may escape from

to the action of specific NAbs. (O) Empty capsids can act as molecular decoys for Abs to protect the infecting particles from neutralization.

adenovirus receptor (CAR) used by CVBs (Bergelson, 1997;
He et al., 2001; Organtini et al., 2014; Lee et al., 2016),
(iv) αvβ3 and αvβ6 integrin used by some CVAs (Roivainen
et al., 1994; Williams et al., 2004; Shakeel et al., 2013),
and (v) the α2 subunit of VLA-2 used by E1 and E8
(Bergelson et al., 1992; Xing et al., 2004). Canyon binders’
apical domain engages in the binding into the canyon, triggering
conformational changes essential for infection, leading to
the altered-particle (A-particle) conformational state (Greve
et al., 1989; Xing et al., 2004; Xiao et al., 2005; Shakeel
et al., 2013; Organtini et al., 2014; Strauss et al., 2015).
These changes have been observed to depend on the number

of binding events that stimulate the viral particle (Lee
et al., 2016). Engagement of several receptors is known to
bring the viral 5-fold vertex close to the cell membrane
(Bubeck et al., 2005).

Non-canyon binders attach to the virus surface elsewhere
outside the canyon, tethering the virus to the cell surface
eventually signaling for virus internalization. Importantly, they
are diverse in molecular characteristics. These receptors include
(i) the LDL-receptor used by HRV-C (Verdaguer et al., 2004);
(ii) the decay-accelerating factor (DAF), receptor of many
echoviruses and CVBs (Bergelson et al., 1994, 1995; Pettigrew
et al., 2006; Plevka et al., 2010; Pan et al., 2011; Yoder et al.,
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2012); (iii) P-selectin glycoprotein ligand-1 (PSGL-1) used by
EV71 (Nishimura et al., 2009); and (iv) scavenger receptor B2
(ScaRB2), a receptor of EV71 (Yamayoshi et al., 2009; Zhou
et al., 2018). This group possibly includes heparan sulfate used
by several enteroviruses (Escribano-Romero, 2004; Zautner et al.,
2006; McLeish et al., 2012; Tan et al., 2013; Nishimura et al.,
2015) and cadherin-related family member 3 (CDHR3) used by
HRV-C (Watters and Palmenberg, 2018). Non-canyon binders
rarely induce substantial conformational changes due to their
interaction, and some may not be essential for infection since few
mutations allow or limit their usage (Pan et al., 2011; McLeish
et al., 2012; Lee et al., 2013). This alternative receptor usage can
modify the infection mechanism, as seen in the case of CVB3
binding to DAF which signals the trafficking of the attached virus
to tight junctions where the virus can meet CAR (Coyne and
Bergelson, 2006).

POPULATION DYNAMICS AND GENETIC

VARIABILITY

Picornaviruses display a great potential for adaptation and
evolution, which is primarily dictated by their high mutation
rate. Viral progenies are huge in population size and they have
short generation times. Thus, the RNA virus population is a
dynamic cloud ofmutants where the average-consensus sequence
of all variants represents the “genotype.” The mutation rate
is the number of genetic changes, such as point mutations,
insertions, or deletions introduced during viral replication. The
first mutation ratemeasurement on RNA viruses was reported for
CVA, disclosing a value of 1 mutation every 10,000 nucleotides
copied (Eggers and Tamm, 1965).

Natural selection may have shaped picornaviral mutation
rates in response to extremely dynamic ecosystems (Elena and
Sanjuán, 2005). Therefore, this natural low replicative fidelity
results in populations that quickly adapt to unexpected changes
in the environment, such as immune pressure (Andino and
Domingo, 2015). These observations have been conceptualized
in the light of quasispecies evolution (Domingo et al., 2012).
This adaptive capacity can be impaired by altering viral mutation
rates (Vignuzzi et al., 2006). Indeed, the first support of the
role of replicative fidelity in viral pathogenesis was observed in
picornaviruses. Two groups isolated the first antimutator variant
of an RNA virus, by serially passaging PV in the presence of
ribavirin (Pfeiffer and Kirkegaard, 2003; Vignuzzi et al., 2006).
The resistant variant contained a 3Dpol single point mutant
(G64S) relatively resistant to lethal mutagenesis leading to (i)
populations with lower mutation rates, (ii) reduced genetic
diversity, and (iii) attenuated phenotype in mice (Vignuzzi et al.,
2006). Recently, it has been suggested that this attenuation could
be partly an outcome of a decrease in the replication speed
(Fitzsimmons et al., 2018). Moreover, genetic engineering of
viral polymerases has also identified several low-fidelity variants,
called mutator variants (Thompson et al., 2007; Gong and
Peersen, 2010; Gnädig et al., 2012; Rozen-Gagnon et al., 2014).
For instance, using FMDV as a model, low-fidelity variants were
found to increase mutation frequencies and render these viruses
more susceptible to mutagenesis (Xie et al., 2014). Moreover,

the same residue in the 3Dpol of FMDV is responsible to
increase or decrease fidelity (Rai et al., 2017). Thus, picornaviral
mutator variants were proven to increase mutation frequencies,
decrease viral fitness, and also display an attenuated phenotype.
Ostensibly, picornavirus mutation rates have been tuned to be
near an upper limit (Crotty et al., 2001) yet evading population
extinction by the accumulation of deleterious mutations by
harmonizing (i) genetic integrity, (ii) genetic diversity, and (iii)
replicative speed.

In addition to the classical view of single virus infectious unit
of picornaviruses, structures containing many viral genomes
support the existence of collective infectious units (Sanjuán,
2017). Lipid vesicles have been observed in HAV and EV
infections (Feng et al., 2013; Chen et al., 2015; Kirkegaard,
2017). This current evidence incorporates the vesicle release
and transmission to the standard lytic release and transmission
of free virions, opening the debate on the “social evolution”
of picornaviruses. Social evolution has been proposed to
reduce detrimental mutations and negative interactions
among the individuals within the population with direct
implications for viral evolution, genetic diversity, and viral fitness
(Bordería et al., 2015).

RECOMBINATION

During infection, RNA virus genomes can interchange nucleotide
sequences resulting in genetic variation by recombination
resulting in unpredictable advantages (Simon-Loriere and
Holmes, 2011). This phenomenon was discovered in cells co-
infected with PV escape mutants, resistant to antisera and
guanidine, resulting in recombinant infectious PV (Ledinko,
1963). Recombination is widespread at intra-typic and inter-
typic levels (Lukashev, 2005, 2010), often preceding the
emergence of novel evolutionary lineages of picornaviruses
(McWilliam Leitch et al., 2009, 2010; Meijer et al., 2012). For
instance, there is evidence about recombinants of Sabin-related
polioviruses harboring homologous sequences of other species of
enteroviruses (Arita et al., 2005; Combelas et al., 2011; Bessaud
et al., 2016).

Interestingly, recombination-deficient variants of PV have
been identified. These viruses carry amino acid changes in
the in 3Dpol that reduce recombination without conferring
other detectable replication deficiencies. These non-recombining
viruses accumulate a higher number of detrimental mutations,
presumably by an inability to purge deleterious mutations,
and fewer beneficial mutations (Xiao et al., 2016, 2017).
Lately, the combined approach of mathematical modeling
and experimental evolution experiments have predicted the
frequency of recombination of picornaviruses such as PV and
EV71 (Stern et al., 2017; Woodman et al., 2018).

ANTIBODY RESPONSE AGAINST

PICORNAVIRUS INFECTION

Innate immune response detects foreign RNA using sensing
proteins such as RIG-I, MDA-5, and Toll-like Receptor-3. These
mediators act in the early control of picornaviral infection (Slater
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et al., 2010). Nevertheless, the adaptive response mediated by
Abs plays the definitive role in the resolution of the infection.
Several pieces of evidence support this view as (i) patients with
agammaglobulinemia develop chronic infections (Wilfert et al.,
1977; McKinney et al., 1987; Kainulainen et al., 2010; Bucciol
et al., 2018), (ii) humoral response mediates the protective effect
of picornavirus vaccines (Grant et al., 2017; Sun et al., 2017), (iii)
mice lacking B-cells cannot clear enteroviral infections (Mena
et al., 1999), and (iv) passive immunization with Abs is an
efficient treatment of HAV infection (Stapleton, 1992), although
their effectiveness for enteroviral neonatal infections is disputed
(Yen et al., 2015). Therefore, it appears to be clear that an effective
humoral immune response represents the final host weapon to
shortcut the viral infection.

ANTIBODY ESCAPE MUTANTS

Picornaviruses’ high mutation rates permit the rapid escape from
the immune system. The change of residues in the exterior capsid
surface overcomes the intense pressure exerted by host Abs.
These properties were used to locate capsid antigenic sites by
testing neutralizing Abs (nAbs) escape mutants in vitro (Minor
et al., 1986; Sherry et al., 1986; Stapleton and Lemon, 1987).
Successful progeny virus rely on capsid functionality. Therefore,
the preservation of the architecture and receptor binding restrict
viable mutations. The exposed jelly-roll loops can accommodate
mutations easier than secondary structure elements and protein–
protein interacting surfaces (Murray et al., 1988; Usherwood
and Nash, 1995). Several structural studies by cryoEM revealed
the way nAbs bind to solvent-exposed loops of VP1–3 by
interacting with critical residues. Complexes of viruses with Fab-
Abs fragments can display 1-Fab:1-protomer ratio following the
icosahedral symmetry. Nevertheless, when epitopes are close to
the symmetry axis, lower binding ratios are observed due to
Fab–Fab steric hindrance (Lee et al., 2013). Three mechanisms
of neutralization are interpreted from these structures: (i)
destabilization of the virion by triggering conformational changes
upon Fab binding, which is accompanied by the “pocket factor”
release when present (Smith et al., 1996; Plevka et al., 2014; Dong
et al., 2017; Zheng et al., 2019), (ii) stabilization of virions by
cross-linking of protomers to prevent conformational changes
for infection (Ye et al., 2016), (iii) virus aggregation by antibody
cross-linking particles (Mosser et al., 1989), and (iv) opsonization
that can interfere with virus-cell attachment and receptor binding
(Lee et al., 2013; Wang et al., 2017).

THE CANYON HYPOTHESIS

Hiding the receptor-interacting surface from Abs surveillance
is the hypothetical function of the canyon (Rossmann, 1989).
Therefore, the canyon is the result of an evolutionary process
to preserve and protect the critical residues required for host-
cell receptor recognition. Conversely, accessible areas can mutate
to disguise the virus from the humoral immune response.
Nevertheless, some observations have challenged this view,
proposing the receptor-binding site topology as an uncoating

mechanism that dictates receptor binding to trigger the
uncoating event (Smith et al., 1996). These views are not strictly
incompatible; hence, both pictures contribute to the paradigm
of picornavirus capsid evolution. Here, capsid topology arose
out of and continues to be shaped by the interplay of host
environmental pressure, random genomemutations, and fixation
of mutations when beneficial.

PICORNAVIRUS ANTIBODY DECOY

PARTICLES

Picornaviruses are known to produce a significant amount of
procapsids during the infectious cell cycle, which appears as
an inefficient way to replicate (Shingler et al., 2015). This
wastefulness looks aggravated considering each polyprotein
translation event would lead to a single protomer. Finally, the so-
called procapsid may be an off-pathway particle (Cifuente et al.,
2013). Although counterintuitive in appearance, the function of
the procapsid could be to act as an immune decoy to enhance
the infectivity of mature virions providing an evolutive advantage
(Shingler et al., 2015; Liu et al., 2016). In this regard, empty Dane
particles also have been proposed to be decoy particles for the
hepatitis B virus (Rydell et al., 2017).

Several picornavirus procapsids are larger particles compared
to the mature virion and similar in shape to the A-particle.
Procapsids have some viral epitopes more accessible and
consequently can bind nAbs more efficiently. This phenomenon
has been observed for the procapsid and mature virion of EV71,
revealing that they are antigenically distinct (Shingler et al.,
2015). Moreover, a non-nAb has been structurally solved in
complex with procapsids but not disclosed for the mature virion
(Hewat and Blaas, 2006), which suggests that procapsid may also
lead to effects in the modulation of non-nAbs immune response.

VACCINES

Inactivated vaccines for PV, HAV, and FMDV are shown
to prevent associated illnesses by inducing specific antibody
defenses (Salk, 1957). Nevertheless, it was the live-attenuated
oral PV vaccine (OPV) responsible for most of the success in
controlling polio epidemics. PV attenuation was obtained by
serial passage in cell lines from non-human hosts (Sabin, 1965).
Rare cases of vaccination-derived paralytic disease can occur as
well as vaccines shedding of virulent poliovirus revertant (Platt
et al., 2014).

New ideas for picornavirus vaccines, currently under
development, exploit evolutionary concepts including (i)
codon usage, (ii) mutational robustness, (iii) modification of
translational efficiency, and (iv) RdRp fidelity manipulation
(Burns et al., 2006; Mueller et al., 2006; Coleman et al., 2008;
Le Nouën et al., 2014; Tulloch et al., 2014; McDonald et al.,
2016). In this regard, synonymous codon deoptimization was
first applied for PV (Burns et al., 2006; Mueller et al., 2006) and
other picornaviruses such as FMDV (Diaz-San Segundo et al.,
2016). Interestingly, increasing the CpG and UpA dinucleotide
frequencies using synonymous codon substitutions leads to
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increased activation of the immune system (Tulloch et al., 2014).
The maintenance of phenotype despite changing the genotype
(mutations), or mutational robustness, can be altered by codon
substitutions, correlating less robust viruses with attenuation in
mice (Lauring et al., 2012). This approach was further extended
using synonymous codons that upon mutation became stop
codons (Moratorio et al., 2017). The increase in stop codon
mutations in codon-engineered CVB3 during replication led
to a loss of infectivity in vitro and attenuation in vivo. These
new methods can improve the safety of already existing live-
attenuated vaccines and can be broadly applied by re-coding any
viral genome (Jorge et al., 2015).

Further elucidation of the mechanisms underlying these
phenotypes could be used for rational codon rewiring in
combination with increasing CpG and UpA frequencies to
activate innate host immunity (Kumagai et al., 2008; Tulloch
et al., 2014).

FINAL REMARKS

The control and eradication of pathogenic picornaviruses is
an ongoing problem. Picornavirus evolution, ruled by high
mutation rates and recombination, has made this viral group
genetically and antigenically highly variable. Moreover, changes
in virulence represent an unpredictable threat. Important lessons

drawn from the polio eradication battle indicate the necessity of a
new generation of vaccines (Agol et al., 2016). A holistic approach
based on big data and mathematical modeling combining views
from structural and evolutionary biology, cellular, and molecular
immunology will allow a better understanding of picornavirus–
host interactions. This knowledge could have the potential
to foresee possible outbreaks and changes on viral virulence.
Furthermore, these models may redefine the way new vaccines
and antiviral therapies will be designed.
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Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene

expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate

with specific proteins in order to regulate their entire cycle, including mRNA localization,

translation and degradation, among others. The best characterized of such RNA-protein

complexes, today named membraneless organelles, are Stress Granules (SGs) and

Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage,

respectively. Given that SGs and PBs are generally associated with repression of gene

expression, viruses have evolved different mechanisms to counteract their assembly

or to use them in their favor to successfully replicate within the host environment. In

this review we summarize the current knowledge about the viral regulation of SGs and

PBs, which could be a potential novel target for the development of broad-spectrum

antiviral therapies.

Keywords: RNAstasis, RNA granules, membraneless organelles, stress granules, P-Bodies, anti-viral host immune

response

INTRODUCTION

RNA plays key roles in all biological systems where RNAstasis is a central processing unit in
the regulation of gene expression in eukaryotic cells (Sharp, 2009). RNAstasis include synthesis,
modification, protection, storage, release, transportation and degradation of different types of
RNA (mRNA, tRNA, rRNA, siRNA, miRNA, lncRNA, piRNA, snRNA, snoRNA, smRNA) and

metabolic processes mediated by RNA–protein complexes called RNA granules. Depending on
its localization, RNA granules are found in the nucleus, in the nucleolus, paraspeckles, nuclear
speckles and Cajal bodies; or in the cytoplasm, as stress granules (SGs) and processing bodies
(PBs). All are membraneless organelles (i.e., lack an enclosing membrane, MLOs) to allow for
rapid exchange of components with the surrounding cellular environment (Fay and Anderson,
2018). MLOs contain a heterogeneous mixture of nucleic acids and proteins that present
low-complexity regions (LCRs) and intrinsically disordered regions (IDRs) regulated by post-
translational modifications (Ramaswami et al., 2013; Panas et al., 2016; Wheeler et al., 2016). MLO
biogenesis has been shown to be via liquid–liquid phase separation (LLPS) process, supporting
the high flexibility and quick adaptive responses to environmental stresses required for function
(reviewed in Fay and Anderson, 2018).
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After several rounds of translation, an mRNA undergoes
degradation as a way of turnover. Indeed, it is suggested that
mRNA degradation is tightly dependent on translation (Bicknell
and Ricci, 2017).

However, under conditions of cellular stress, the cell responds
by mounting a robust response causing the shutoff of protein
synthesis in order to protect the mRNA so that translation can
resume once the stress disappears. Repression of gene expression
induces the assembly of RNA granules such as SGs and PBs,
which are involved in mRNA triage and untranslated mRNA
storage, respectively. By using single mRNA imaging in living
human cells, it has been recently reported that a single mRNA
can interact with both SGs and PBs (Wilbertz et al., 2018;
Moon et al., 2019). However, while Wilbertz et al. showed
that an mRNA preferably moves from a SG to a PB, Moon
et al. showed a dynamic and bidirectional exchange of a single
mRNA to multiple SGs and PBs (Wilbertz et al., 2018; Moon
et al., 2019). Despite their distinctive organization and unique
molecular markers, SGs and PBs share molecular components
which could allow the dynamic shuttling of an mRNA between
them (Kedersha et al., 2005).

Viral infections are a major trigger of cellular stress and, thus,
viruses have evolved diverse mechanisms aimed to modulate host
RNAstasis with a direct impact in the assembly of different RNA
granules while counteracting mRNA decay machineries in order
to ensure viral replication (Poblete-Durán et al., 2016; Toro-
Ascuy et al., 2016). In this review, we provide an update on the
current knowledge of the different strategies used by several virus
families to modulate the RNA granules assembly/disassembly,
specifically SGs and PBs, in order to promote a successful viral
infection (see Figure 1).

VIRAL FAMILIES AND STRESS GRANULES

SGs are translationally silent membraneless organelles with a
diameter between 0.1 and 4µm. Canonical or bona fide SGs
contain mRNA, RNA-binding proteins, and components of the
40S ribosomal subunit. Many proteins involved in SG assembly
are RNA binding proteins that favor mRNA stability (TIA-
1, TIAR, HuR), mRNA metabolism (G3BP-1, G3BP-2, DDX6,
SMN, Staufen1, DHX36, Caprin1, ZBP1, HDAC6, ADAR),
signaling proteins (mTOR, RACK1) and interferon-stimulated
gene (ISG) products (PKR, ADAR1, RIG-I, RNase L, and OAS
(reviewed in Poblete-Durán et al., 2016). Recently, Nunes et al.
generated an open access electronic resource containing all SGs-
recruited protein reported to date (available at https://msgp.pt/)
(Nunes et al., 2019). Its assembly is typically a consequence of
translation repression upon phosphorylation of the translation
initiation factor eIF2α by environmental stress such as heat
shock, UV irradiation, oxidative stress, viral infection, and even
upon treatment with several drugs (see Table 1). Most of these
stresses are sensed by the eIF2α kinases PKR, which is activated
by double-stranded RNA during viral infection (Williams, 2001);
PERK, which is activated upon accumulation of misfolded
protein in the ER and during hypoxia (Harding et al., 2000);
HRI, which is activated by oxidative stress and heme deprivation

(Han et al., 2001); and GCN2, which is activated by aminoacid
deprivation and UV irradiation (Jiang andWek, 2005). However,
SGs can also be formed by inhibitors of translation that target
other components of the translation machinery (Table 1) or by
overexpression of SG-associated proteins such as TIA-1/TIAR
or G3BP-1 (Kedersha et al., 1999; Tourrière et al., 2003). In
addition to its role in mRNA triage, SGs have been described
as signaling centers. Recruitment of signaling proteins to SGs
allow the crosstalk between multiple stress cascades including
translational control pathways, prevention of apoptosis and
innate immune responses against viral infections (reviewed in
Kedersha et al., 2011; Onomoto et al., 2014; Mahboubi and
Stochaj, 2017).

Here, we summarize how viruses modulate SG
accumulation in order to maintain viral protein synthesis
and particles production.

Double-Stranded DNA (dsDNA) Viruses
Herpesviridae
All members of the Herpesviridae family that have been studied
prevent the accumulation of SGs. Herpes simplex virus type 1
(HSV-1) infection upregulates and relocalizes to the cytoplasm
the SG components TTP, TIAR, and TIA-1 but does not induce
SG assembly (Esclatine et al., 2004). The virion host shutoff
(vhs) protein, an mRNA endonuclease, has been shown to
be essential in SGs blockade as vhs-deficient HSV-1 (1vhs)
infected cells do trigger SG assembly (Esclatine et al., 2004;
Dauber et al., 2011, 2016). HSV vhs is thought to facilitate
viral mRNA translation throughout the viral cycle by reducing
host mRNAs and preventing viral mRNA overload (Dauber
et al., 2016). 1vhs-induced SGs accumulation correlates with
increased PKR activation (Sciortino et al., 2013; Dauber et al.,
2016; Burgess and Mohr, 2018), but while a group observed
higher eIF2α phosphorylation (Pasieka et al., 2008; Burgess and
Mohr, 2018), others did not (Dauber et al., 2011, 2016). This
phenotype could be in part due the reduced levels of the late-
expressed dsRNA binding protein Us11, that has been shown
to block PKR activation (Mulvey et al., 2003; Dauber et al.,
2011). Burgess and Mohr showed that dsRNA accumulates and
partially localizes to 1vhs-induced SGs (Burgess and Mohr,
2018). Furthermore, they show that SGs are not assembled
neither PKR is phosphorylated in 1vhs-infected cells upon
treatment with ISRIB (see Table 1) or in absence of G3BP-
1 or TIA-1. Based on these observations, the authors suggest
that 1vhs-enhanced PKR activation is a consequence of SG
assembly due to dsRNA accumulation (Burgess andMohr, 2018).
Interestingly, other HSV proteins have also been involved in
SGs regulation, although it is not clear whether they all act
cooperatively, or during different stages of the viral cycle. HSV-
1 ICP27 has been shown to prevent formation of arsenite-
induced SGs by inhibiting PKR and eIF2α phosphorylation
(Sharma et al., 2017). On the other hand, overexpression of
HSV-1 ICP8 protein, a G3BP binding partner, blocks arsenite-
induced SG assembly (Panas et al., 2015). Similar to HSV-1,
SGs do not assemble during herpes simplex virus 2 (HSV-
2) infection and its blockade is mediated by the vhs protein
(Finnen et al., 2012; Dauber et al., 2014). HSV-2 vhs protein
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FIGURE 1 | Viral families tree. Phylogenetic tree showing 56 sequences representing all viral families described to modulate RNA granules assembly. The chosen

sequences were “gene encoding to superficies structural protein.” The sequences were selected from NCBI databases (https://www.ncbi.nlm.nih.gov/nuccore/).

Alignment were performed by MUSCLE (http://www.drive5.com/muscle/) (Edgar, 2004). Phylogenetic tree was constructed with MEGA6 (http://www.megasoftware.

net) and IQ-TREE on the IQ-TREE web server (http://www.cibiv.at/software/iqtree/) (Trifinopoulos et al., 2016) by using the maximum-likelihood (ML) method.

Robustness of tree topologies was assessed with 1,000 bootstrap replicates. Phylogenetic tree was constructed using ML inference with the general time reversible

(GTR)_G nucleotide substitution model. Viral families are showed in different colors. Genomes by clade are grouped by black arch.

has also been shown to shutoff protein synthesis by depleting
mRNAs (Smith et al., 2000). Wild Type (WT) HSV-2 impairs
arsenite-induced SGs despite increased eIF2α phosphorylation,

but not pateamine (eIF2α-independent)-induced SGs, indicating
that vhs can disrupt or modify SGs independently of eIF2α
phosphorylation (Finnen et al., 2012). Further investigation
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TABLE 1 | List of drugs/stressors used to induce or disassemble SGs and PBs.

Class Drug/stressor Effect Mechanism References

Pateamine-A Induces SG assembly Interacts with eIF4A disrupting the eIF4F complex Bordeleau et al., 2005;

Kedersha et al., 2006

Hippuristanol Induces SG assembly Inhibits eIF4A RNA binding activity Bordeleau et al., 2006;

Mazroui et al., 2006

Translation

inhibitors

Cycloheximide Disassembles both SGs and

PBs

Inhibits eEF2-mediated translation elongation Obrig et al., 1971; Mollet

et al., 2008

Selenite Induces non-canonical SG

assembly

Enhances 4EBP-1 binding to eIF4E, thus disrupting

the eIF4F complex

Fujimura et al., 2012

Sorbitol Induces SG assembly Causes osmotic stress, which enhances 4EBP-1

binding to eIF4E, thus disrupting the eIF4F complex

Patel et al., 2002

Arsenite Induces SG and PB

assembly

Induces HRI-mediated eIF2α phosphorylation* McEwen et al., 2005

Dithiothreitol (DTT) Induces SG assembly Induces PERK-mediated eIF2α phosphorylation Oslowski and Urano, 2011;

Dimasi et al., 2017

Heat-Shock Induces SG assembly and

inhibits PBs

Induces HRI-mediated eIF2α phosphorylation McEwen et al., 2005; Aulas

et al., 2017

eIF2α kinases

Stressors

Poly I:C Induces SG assembly Induces PKR-mediated eIF2α phosphorylation Weissbach and Scadden,

2012

Bortezomib and MG132

(proteosome inhibitors)

Induce SG assembly Induce HRI(Bortezomib)- and GCN2(MG132)-

mediated eIF2α phosphorylation

Mazroui et al., 2007;

Fournier et al., 2010

Thapsigargin Induces SG assembly Induces PERK-mediated eIF2α phosphorylation Kimball et al., 2002

eIF2α modulators ISRIB Inhibit SG assembly Prevents eIF2B inhibition, maintaining translation

initiation despite eIF2α phosphorylation

Sidrauski et al., 2015

Salubrinal Induces SG assembly Blocks eIF2α dephosphorylation Boyce et al., 2005

Others 1,6-Hexanediol Disassembles and induces

PB and SG assembly

Disrupt weak hydrophobic interactions causing

quick disassembly of granules that reappear after a

few minutes**

Wheeler et al., 2016;

Kroschwald et al., 2017

Zn+2 Stress- inducible second

messenger

Induces reversible multimerization, phase separation

and SG recruitment of TIA-1

Rayman et al., 2018

*Arsenite can also induce SG assembly independent of HRI. In Drosophila, which lacks HRI, induces the PEK eIF2a kinase (Farny et al., 2009). In addition, Sharma et al. demonstrated

that arsenite can also induce phosphorylation of PKR and SG assembly in HeLa and BCBL-1 cells (Sharma et al., 2017).
** It has been shown to also alter many other cellular structures (Wheeler et al., 2016).

revealed that (i) vhs localizes to SGs, (ii) vhs not only inhibits
SG assembly but also disrupts pre-assembled SGs, and (iii) vhs
endoribonuclease activity is required in SGs modulation (Finnen
et al., 2016). Interestingly, TIA-1 was shown to egress before
G3BP in the course of vhs-mediated SGs disassembly, which
could be explained by the G3BP-enriched core SG structure (Jain
et al., 2016; Niewidok et al., 2018). Based on these results, the
authors proposed that HSV-2 vhs modify SGs by directly or
indirectly degrading mRNA. Human cytomegalovirus (HCMV)
inhibits the assembly of SGs but induces the unfolded protein
response (UPR) (Isler et al., 2005a). Typically, this ER stress
response leads to eIF2α phosphorylation via PERK activation,
but HCMV limits eIF2α phosphorylation without diminishing
PERK activation (Isler et al., 2005b). Marshall et al. showed
that infection with HCMV lacking pTRS1 and pIRS1, dsRNA-
binding proteins linked to PKR pathway inhibition, results in
increased levels of eIF2α phosphorylation and the reduction of
viral protein synthesis (Marshall et al., 2009). Both proteins have
identical amino-terminal regions and share 35% of similarity in
their carboxy-terminal regions, suggesting that HCMV pTRS1
and pIRS1 have redundant roles in evading dsRNA-mediated

antiviral response. Ziehr et al. demonstrated that lack of both
proteins also results in PKR activation and SG assembly, and
that expression of either pTRS1 or pIRS1 is necessary and
sufficient to prevent PKR activation, eIF2α phosphorylation and
SG assembly (Ziehr et al., 2016). Furthermore, pTRS1 PKR
binding domain (PDB) was shown to be critical to accomplish
those three phenotypes suggesting that the main mechanism
of HCMV to inhibit SG assembly is through PKR antagonism.
Strikingly, pTRS1 transfection interferes with arsenite-induced
SG assembly in WT and PKR-depleted cells, but pTRS1-1PBD
does not, suggesting that pTRS1 could also obstruct SG assembly
promoted by other eIF2α kinases and that its PDB is crucial
for it. Kaposi’s sarcoma-associated herpesvirus (KSHV) does
not lead to SG accumulation via the viral protein ORF57 and
SOX which are able to restrict arsenite-induced SG assembly
independently (Sharma et al., 2017). ORF57, the HSV-1 ICP27
homologous, inhibits PKR/eIF2α phosphorylation by directly
interacting with PKR via its N-terminal dsRNA-binding domain,
and with PACT via its two N-terminal RNA-binding motifs,
thus obstructing PKR binding to both dsRNA and PACT. The
mechanism and the spatiotemporal regulation of SG assembly
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by the viral shutoff exonuclease SOX is unclear, but it might
be related to its intrinsic RNA endonuclease activity similarly
to HSV-2 vhs (Glaunsinger and Ganem, 2004; Sharma et al.,
2017). Expression of Epstein–Barr virus (EBV) protein EB2, the
counterpart of KSHVORF57 and HSV-1 ICP27, does not abolish
SG assembly, neither PKR/eIF2α phosphorylation, indicating
that this specific ability to regulate SGs is not conserved along
herpesviruses (Sharma et al., 2017). Further research is necessary
to define the effect of EBV on SG assembly.

Poxviridae
Unlike herpes viruses, Vaccinia virus (VACV), a member
of Poxviridae family, exploits SG components to favor viral
protein production (reviewed in Liem and Liu, 2016). VACV
redistributes proteins from the host translation machinery and
SGs, such as eIF4E, eIF4G, G3BP, and Caprin1 into viral
replication factories (RFs) assembled in the cytoplasm of the
host cell (Katsafanas and Moss, 2004, 2007). Notably, TIA-
1 is not recruited into these replication foci (Walsh et al.,
2008). How VACV redistributes each of these components
remain unclear, but evidences have shown that VACV ssDNA-
binding protein I3 associates and recruits eIF4G to ssDNA
formed within the RFs (Zaborowska et al., 2012). Furthermore,
it was shown that G3BP-1 and Caprin1 associate with nascent
VACV DNA by mass spectrometry (Senkevich et al., 2017).
Despite the disruption of canonical SGs for its own benefit,
infection with the replication-defective VACV lacking E3L leads
to the accumulation of granule-like structures around the RFs,
named antiviral granules (AVGs), that arrest viral translation
(Simpson-Holley et al., 2010). AVGs contain proteins that are
typically found in SGs such as TIA-1, eIF3b, G3BP-1, and
USP10, but they are not affected by cycloheximide, a drug
that induce the disassembly of bona fide SGs (Simpson-Holley
et al., 2010). AVG assembly requires eIF2α phosphorylation
via PKR activation (Simpson-Holley et al., 2010; Pham et al.,
2016), process that is inhibited in presence of E3L (Chang
et al., 1992). Furthermore, TIA-1 is an essential component
of AVGs, as in its absence these antiviral granules are not
formed even if PKR and eIF2α are phosphorylated (Simpson-
Holley et al., 2010). Interestingly, WT VACV infection also
induces AVGs assembly that repress viral protein synthesis but to
negligible levels (Rozelle et al., 2014). Recently, another mutant
VACV lacking C7L/K1L was shown to induce AVG assembly
(Liu and McFadden, 2014). AVGs accumulation was abolished
and abortive infection was rescued in 1C7L/K1L in SAMD9-
depleted cells, suggesting that C7L/K1L antagonize SAMD9
host protein antiviral function. Even though SAMD9 localize
to both 1E3L and 1C7L/K1L VACV induced-AVGs, infectivity
neither AVG assembly is blocked with 1E3L VACV in SAMD9-
depleted cells, suggesting a different mode of organization of the
granules induced by both mutants (Liu and McFadden, 2014).
1C7L/K1L-dependent AVGs assembly is independent of eIF2α
phosphorylation, in contrast to 1E3L AVG accumulation (Liu
and McFadden, 2014). Viral mRNA was shown to colocalize
with AVGs during 1C7L/K1L VACV infection, thus limiting
translation of viral proteins (Sivan et al., 2018), as well as
dsRNA, TIA-1 and the viral protein E3L (Meng and Xiang,

2019). Despite of that, TIA-1 is not required for 1C7L/K1L-
mediated AVG assembly as it is on 1E3L (Meng and Xiang,
2019). The role of each viral system, E3L and C7L/K1L, to prevent
formation of AVGs in the context of viral infection remain to
be studied.

Double-Stranded RNA (dsRNA) Viruses
Reoviridae
Rotavirus replication, the prototypical member of the Reoviridae
family, also occurs in viral replication factories and upon
infection, synthesis of cellular proteins is reduced while viral
protein production is maintained. Accumulation of viral dsRNA
in the cytoplasm causes a persistent PKR-dependent eIF2α
phosphorylation, even when eIF2α phosphorylation is not
required for viral replication (Montero et al., 2008; Rojas et al.,
2010). Despite that, rotavirus infection does not induce SG
assembly; instead it changes the cellular localization of SG
components (Montero et al., 2008). TIA-1 is relocalized to
the cytoplasm, eIF4E distributes more homogeneously in the
cytoplasm, and PABP is translocated to the nucleus through
the viral protein NSP3 (Montero et al., 2008). Recently, Dhillon
et al. determined that rotavirus remodels SGs by excluding
some of their proteins, such as G3BP-1, hnRNP A1, and ZBP1,
and then recruits these atypical granules to viral replication
factories (Dhillon and Rao, 2018; Dhillon et al., 2018). It will
be of interest to understand how rotavirus selectively excludes
these specific SG components. In contrast, uncoating of the
mammalian orthoreovirus (MRV) during the early stage of
infection leads to eIF2α phosphorylation by the action of at
least two eIF2 kinases, suggesting that MRV infection is a
complex process that induces different types of stresses to the
cell (Qin et al., 2009). Phosphorylation of eIF2α triggers SG
accumulation (Qin et al., 2009). MRV cores are then recruited
into the assembled SGs, a step that depends on synthesis of
viral mRNA. As the infection proceeds, assembled SGs are
disrupted in order to allow efficient synthesis of viral proteins,
despite the sustained levels of eIF2α phosphorylation (Qin et al.,
2011). Like rotavirus, MRV replication occurs in viral replication
factories that grow in the perinuclear region (Rhim et al., 1962).
The non-structural µNS viral protein associates with σNS, σ2,
µ2, and λ1 are recruited into viral replication factories. µNS
viral protein has been shown to localize with SGs, although
is unable to independently prevent SGs accumulation (Carroll
et al., 2014). Interestingly, the SG components G3BP-1, Caprin1,
USP10, TIAR, TIA-1, and eIF3b were found to localize to the
outer peripheries of viral replication factories (Choudhury et al.,
2017). σNS and µNS were shown to be responsible for their
redistribution as well as for disruption of the SG assembly. In
addition, in the absence of G3BP-1 the other recruited SGs-
associated protein, except for eIF3b, do not localize to RFs. The
recruitment mode is thought to be as follows: Caprin1, USP10,
TIAR, and TIA-1 interact with G3BP-1 which binds to σNS
via its RNA recognition (RRM) and an arginine/glycine-rich
(RGG) motifs. Then, σNS partner with µNS for RF localization,
carrying all the other proteins with it (Choudhury et al.,
2017).
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Positive-Sense Single Stranded RNA ((+)
ssRNA) Viruses
Picornaviridae
Members of the Picornaviridae family also modulate SGs
accumulation during replication. Poliovirus (PV) regulates SGs
in a time-dependent manner; at early times the 2A proteinase
induces assembly of SGs (Mazroui et al., 2006; Chen et al.,
2008) that are later disassembled by the 3C proteinase through
G3BP-1 cleavage (White et al., 2007). Despite of bona fide
SG disruption, atypical SGs (aSGs) that contain TIA-1 and
viral RNA, but no eIF4G nor PABP, still accumulate later in
the course of PV infection (Piotrowska et al., 2010; White
and Lloyd, 2011). A similar temporal control of SG assembly
is exhibited by Coxsakievirus B3 (CVB3) and Enterovirus 71
(EV71). CVB3 2A proteinase induces SG assembly as early as
3 h post infection (hpi) in an eIF2α phosphorylation-independent
manner (Wu et al., 2014; Zhai et al., 2018). It has been described
that they have an antiviral role, inhibiting the biosynthesis of
CVB3 (Zhai et al., 2018). However, at 6 hpi CVB3 induces the
assembly of granules that do not contain G3BP-1 or eIF4G,
likely because of G3BP-1 cleavage (Fung et al., 2013; Zhai
et al., 2018). In the case of EV71, canonical SGs are assembled
early during infection dependent on the PKR-eIF2α pathway
(Zhu et al., 2016), but are dispersed at late stages of infection
(Yang et al., 2018b; Zhang et al., 2018). Yet, atypical SGs in
which TIA-1, TIAR, Sam68, and viral RNA are persistently
aggregated in an eIF2α independent and cycloheximide-resistant
manner remain during infection. Yang et al. showed that EV71
2A protease expression is enough for atypical SGs induction
through the cleavage of eIF4GI and bona fide SGs blockage by
abolishing eF4GI-G3BP-1 interaction (Yang et al., 2018a,b). In
contrast, Zhang et al. reported that EV71 3C protease alone
is sufficient to inhibit canonical SGs accumulation during late
stages of infection through G3BP-1 cleavage at amino acid Q326
(Zhang et al., 2018). Interestingly, cells infected with EV71-
2AC110S (a cleavage-deficient 2A protease) do form canonical
SGs in which viral RNA is aggregated, suggesting that EV71
blocks bona fide SGs but induce atypical SGs to facilitate viral
translation by stalling only cellular mRNAs (Yang et al., 2018b;
Zhang et al., 2018). Unlike already mentioned picornaviruses,
encephalomyocarditis virus (EMCV) infection does not induce
SG assembly at all, and cleavage of G3BP-1 is the mechanism for
their disruption (Ng et al., 2013). On the other hand, the leader
(L) protein of Theiler murine encephalomyelitis virus (TMEV)
and mengovirus (a strain of EMCV) inhibit SG assembly without
cleaving G3BP-1 (Borghese and Michiels, 2011; Langereis et al.,
2013). A mutant mengovirus, in which the Zn-finger domain of
L is disrupted, induces antiviral G3BP-1 aggregations in which
Caprin-1 and PKR are recruited, resulting in PKR activation and
viral replication inhibition (Langereis et al., 2013; Reineke et al.,
2015). Foot and Mouth Disease Virus (FMDV) does not induce
SG assembly despite strongly shutoff cap-dependent translation
and G3BP-1 dephosphorylation at Ser-149 (Ye et al., 2018;
Visser et al., 2019), suggesting that FMDV infection regulates
the cellular stress response. In fact, G3BP-1, eIF4G, eIF3, and
eIF2α protein levels are downregulated and eIF4E-BP and PKR

are dephosphorylated during FMDV infection (Ye et al., 2018).
Ye et al. showed that G3BP-1 cleavage by 3C protease impairs
SG assembly (Ye et al., 2018) while Visser et al. argued that L
protease catalytic activity is responsible for the impairment of SG
assembly in infected cells, without affecting PKR signaling (White
et al., 2007). In addition, Ye et al. reported that the 3C-induced
cleavage of G3BP-1 inhibits the NF-κB-dependent induction of
antiviral immune responses (Ye et al., 2018). By using a reporter
system, it has been shown that G3BP-1 negatively regulates viral
translation by interacting with a structure located at domain 4
of the viral IRES (Galan et al., 2017). Furthermore, the G3BP-
1 S149A substitution impairs the negative effect of G3BP-1 on
IRES translation, suggesting that G3BP-1 is an antiviral protein
whose activity depends on its phosphorylation (Ye et al., 2018).
Instead, FMDV induces the nuclear-to-cytoplasm translocation
of Sam68 via a proteolytic cleavage of its C-terminal domain
mediated by 3C protease (Lawrence et al., 2012). Interestingly,
Sam68 and TIA-1 colocalize in transient cytoplasmic granule-
like structures in infected cells. Moreover, Sam68 interacts with
FMDV IRES and Sam68 knockdown leads to a reduction in virus
production, suggesting that Sam68 is a proviral factor (Lawrence
et al., 2012; Rai et al., 2015). Similar to FMDV, Equine Rhinitis A
virus (ERAV) infection also disrupts SG assembly via L-protease
mediated cleavage of G3BP-1 and G3BP-2, suggesting that this is
a conserved mechanism among aphtoviruses. However, despite
G3BP-1 cleavage at multiple positions during FMDV and ERAV
infections, the products differ in molecular weight, suggesting
that they do not induce identical cleavages of G3BP-1 (Visser
et al., 2019).

Togaviridae
Among viruses of Togaviridae family, Chikungunya virus
(CHIKV) is the only member know to block SG assembly. G3BP-
1 is sequestered by nsP3 in cytoplasmic foci (Fros et al., 2012)
while G3BP-2 colocalizes with nsP2/3 in complexes different
from viral replication factories (Scholte et al., 2015). Recently, it
has been shown that dsRNA foci, nsP3-like granules and nsP1-
coated structures are in close proximity, suggesting that CHIKV
not only sequesters G3BP-1/-2 proteins in order to impair
SGs assembly, but also to support viral replication (Remenyi
et al., 2018). CHIKV dsRNA was shown to be undetectable
in G3BP-1/-2 double knock-out (dKO) cells, indicating that
G3BPs play key roles in RNA replication and formation of viral
replication complexes (Kim et al., 2016). In contrast, Venezuelan
Equine Encephalitis virus (VEEV) replication is not affected
by G3BP-1/-2 dKO (Kim et al., 2016), but the SG-associated
proteins FXR1, FXR2, and FMR1 have been shown to be
essential factors for VEEV replication and protein production.
Interestingly, VEEV infected cells contain both large and small
plasma membrane-bound FXR-nsP3 complexes containing viral
genomic RNA, suggesting a role of FXRs in viral replication
and protection of viral genomic RNA from degradation during
transport to the plasma membrane (Kim et al., 2016). Semliki
Forest Virus (SFV) induces SG assembly early during infection
in an eIF2α phosphorylation-dependent manner (McInerney
et al., 2005). Nevertheless, at late stages of infection nsP3

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6 October 2019 | Volume 9 | Article 336155

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Gaete-Argel et al. Membraneless Organelles and Viral Infections

promotes SG disassembly by sequestering G3BP-1 to sites of
viral replication, which correlates with an increase in viral RNA
levels (McInerney et al., 2005; Panas et al., 2012). Consistently,
infection with a non-G3BP-1 binding SFV promotes a persistent
accumulation of SGs containing G3BP-1 and TIA-1, which
correlates with an attenuation in viral infection (Panas et al.,
2015). On the other hand, Sindbis virus (SINV)-derived vectors
induce PKR activation and the subsequent assembly of SGs
containing TIA-1, eIF4E, and eIF4G (Venticinque and Meruelo,
2010). Furthermore, viral nsP2, nsP3, and nsP4 colocalize with
aggregates containing G3BP-1 (Frolova et al., 2006; Gorchakov
et al., 2008; Cristea et al., 2010) while nsP3 also interacts
with G3BP-2. In 2011, Mohankumar et al. revealed that SINV
infection induces the phosphorylation of eIF2α which correlates
with a strong shutoff of de novo protein synthesis and 4E-BP1
dephosphorylation. Moreover, the authors demonstrated that
SINV replication does not require the PI3K/Akt/mTOR pathway,
and that later during infection, SINV suppresses Akt/mTOR
activation in HEK cells (Mohankumar et al., 2011). Similar to
CHIKV, G3BP-1/-2 dKO significantly reduce SINV replication
rates and plaque size. However, FXR1/2 and FMR1 triple knock-
out only induces a delay in viral particles production (Kim et al.,
2016). Finally, it has been suggested that G3BP-1 plays a potential
role in the encapsidation of Rubella virus (RUBV) due to the
colocalization of RUBV genomic RNA, the non-structural viral
protein P150 and G3BP-1 aggregates (Matthews and Frey, 2012).

Flaviviridae
West Nile virus (WNV), a member of the Flaviviridae family,
was the first virus described to block SG assembly. The 3′

stem loop in the (–) RNA, which is the site of initiation for
nascent genome RNA synthesis, captures the SG components
TIA-1 and TIAR, suggesting that they have a role in viral
replication (Li et al., 2002). In addition, TIA-1 and TIAR
colocalize with viral replication complexes containing dsRNA
and NS3 viral protein in the perinuclear region (Emara and
Brinton, 2007). Although WT WNV impedes SGs assembly, the
chimeric WNV W956IC induces PKR-dependent SG assembly
due to the high levels of viral RNA that are produced (Courtney
et al., 2012). Remarkably, WNV inhibits arsenite, but not heat
shock, or DTT-induced SG assembly. High levels of GSH
(antioxidant) has been shown to counteract arsenite-induced
SGs, as duringWNV infection even low levels of PERK-mediated
eIF2α phosphorylation upregulate ATF4 and Nrf2, transcription
factors that induce antioxidant gene expression (Basu et al.,
2017). Similar to WNV, TIA-1, and TIAR colocalize with viral
replication complexes containing dsRNA and NS3 in Dengue
Virus type 2 (DENV-2) infected cells (Emara and Brinton, 2007).
In addition, a quantitative mass spectrometry study revealed
that DENV-2 RNA interacts with the SG components G3BP-1/2,
Caprin1, and USP10 (Ward et al., 2011). It has been shown that
DENV infection generates a non-coding subgenomic flaviviral
RNA (sfRNA) that binds to G3BP-1/2 and Caprin1, impairing
its ability to induce the translation of interferon Stimulated
Genes (ISGs) mRNAs in response to DENV infection (Bidet
et al., 2014). Recently, it has been described that Zika virus
(ZIKV) infection blocks SG assembly (Amorim et al., 2017;

Basu et al., 2017; Hou et al., 2017; Bonenfant et al., 2019)
despite a strongly induced translational shutoff and activation
of both PKR- and UPR-induced phosphorylation of eIF2α,
suggesting that ZIKV impairs SG assembly downstream of eIF2α
phosphorylation (Hou et al., 2017). In addition, ZIKV infection
impairs arsenite-, poly I:C and hippuristanol, but not DTT-
, Pateamine A- and Selenite-induced SG assembly (Amorim
et al., 2017; Hou et al., 2017; Bonenfant et al., 2019) without
affecting levels of SG-nucleating proteins (Amorim et al., 2017;
Bonenfant et al., 2019). Hou et al. showed that expression of
ZIKVNS3, NS4, NS2B-3 or capsid protein are sufficient to inhibit
SG assembly (Hou et al., 2017). Interestingly, during ZIKV
infection the host proteins YB-1 and Ataxin-2 are redistributed
to the nucleus, while HuR and TIA-1 are redistributed to the
cytoplasm of infected cells (Bonenfant et al., 2019). Moreover,
TIAR is partially redistributed to sites of viral replication in the
perinuclear zone, as seen on its colocalization with NS1 and viral
RNA (Amorim et al., 2017). Furthermore, G3BP-1 and HuR are
isolated with replication complexes, but only G3BP-1 interacts
with viral dsRNA (Hou et al., 2017; Bonenfant et al., 2019). G3BP-
1, Caprin-1, TIAR, Ataxin-2 and YB-1 knockdown negatively
affects virus production, while HuR and TIA-1 knockdown
resulted in an increase of viral titers (Hou et al., 2017; Bonenfant
et al., 2019). Specifically, G3BP-1 knockdown also decreases
genomic RNA and viral protein levels, while HuR knockdown
increases genomic RNA and protein level (Bonenfant et al.,
2019). Together, these data suggest a possible proviral role
of the SG components G3BP-1, Caprin-1, TIAR, Ataxin-2,
and YB-1 in ZIKV replication (Hou et al., 2017; Bonenfant
et al., 2019). Similar to ZIKV, Japanese encephalitis virus
(JEV), Murray Valley Encephalitis Virus (MVEV) and Yellow
Fever Virus (YFV) capsid-expressing cells showed a significantly
impairment in hippuristanol-induced SG assembly (Hou et al.,
2017). Specifically, it has been shown that JEV core protein blocks
SG assembly through an interaction with Caprin-1, resulting in
the recruitment of other SG components such as G3BP-1 and
USP10 (Katoh et al., 2013). A JEV virus carrying a non Caprin-1-
binding core protein is less pathogenic in mice and exhibits lower
propagation in vitro thanWT virus, suggesting that SGs blockade
is crucial to facilitate viral replication (Katoh et al., 2013).
Analogous to WNV and DENV, Tick-Borne Encephalitis virus
(TBEV) sequesters TIA-1 and TIAR to viral replication factories
(Albornoz et al., 2014). In particular, TIA-1 binds viral RNA and
acts as a negative regulator of TBEV translation, suggesting that
TIA-1 function is independent of SG assembly (Albornoz et al.,
2014). In addition, TBEV infection induces eIF2α-dependent SG
assembly containing the canonical SGs markers G3BP-1, eIF3,
and eIF4B (Albornoz et al., 2014). On the other hand, Bovine
Viral Diarrhea virus (BVDV) impairs the assembly of arsenite-
induced SGs and despite viral N-terminal protease (Npro)
interaction with several SG components (such as YB-1, IGFBP2,
DDX3, ILF2, and DXH9), this is not the mechanism by which
BVDV blocks SG assembly (Jefferson et al., 2014). Hepatitis C
virus (HCV) relocalizes G3BP-1, PABP1, ATX2, DDX3, TIA-1,
and TIAR to viral replication factories in lipid droplets (LDs)
(Ariumi et al., 2011; Garaigorta et al., 2012). In particular, DDX3
activates IKKα during HCV infection to induce LDs biogenesis
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(Li et al., 2013). Importantly, Garaigorta et al. reported that
G3BP-1, TIA-1, and TIAR are required for viral RNA and protein
synthesis early during infection, while G3BP-1, DDX3, and TIA-
1 play a role in viral particle assembly (Garaigorta et al., 2012;
Pène et al., 2015; Valiente-Echeverría et al., 2015). In addition,
they showed that HCV induces SG assembly in a PKR-dependent
manner in order to impair the translation of antiviral ISGs
(Garaigorta et al., 2012). Ruggieri et al. showed that HCV induces
an oscillation between SG assembly and disassembly as a result
of balance between dsRNA-dependent PKR activation with the
subsequent phosphorylation of eIF2α and the antagonist effect
of GADD34-mediated dephosphorylation of eIF2α (Ruggieri
et al., 2012). This tight balance allows HCV to chronically
infect cells without affecting cell survival (Ruggieri et al., 2012).
In addition, two other SG components have been related to
HCV replication: Staufen1 and YB-1. Staufen1 is involved in
cellular mRNA transport, translation and decay, and negatively
regulates the assembly of SGs (Thomas et al., 2009). Despite
YB-1 being a general translational repressor, it regulates SG
assembly by inducing G3BP-1 mRNA translation through its
interaction with the 5′UTR of the mRNA (Somasekharan et al.,
2015). In 2016, Dixit et al. showed that Staufen1 interacts directly
with PKR and NS5B, and that this interaction is required to
inhibit PKR activation during HCV infection to allow viral RNA
translation. In addition, the interaction of Staufen1 with NS5B
suggests a role of Staufen1 in HCV replication, which is in
accordance with a strong reduction in viral RNA and NS5A
and NS5B protein levels in cells transfected with and Staufen1-
siRNA (Dixit et al., 2016). Moreover, Wang et al. demonstrated
that YB-1 knockdown reduces the phosphorylation status of
NS5A, which is crucial for the NS5A-mediated regulation of RNA
replication and virus assembly (Wang et al., 2015). Also, YB-
1 interacts with NS5A in an YB-1 phosphorylation-dependent
manner and this interaction is crucial for NS5A protein stability
during HCV infection. Interestingly, YB-1 is phosphorylated
by Akt at serine 102 and is known that HCV infection and
NS5A expression activate the PI3K/Akt signaling (Wang et al.,
2015). Together, these observations could explain the oscillation
of SG assembly/disassembly detected in HCV-infected cells
(Ruggieri et al., 2012) and how SG assembly and SG components
are necessary for HCV RNA replication, assembly and egress
(Ariumi et al., 2011; Garaigorta et al., 2012; Pager et al., 2013).

Dicistroviridae
Cricket Paralysis Virus (CrPV) is the only described member
of Dicistroviridae family that regulates SG assembly. CrPV 1A
protein impairs the assembly of arsenite-, Pateamine A-, and
heat shock-induced SGs containing Rox8 and Rin, Drosophila
homologs of TIA-1 and G3BP-1 respectively, demonstrating that
there is a conserved mechanism in insect and human cells
(Khong and Jan, 2011; Khong et al., 2016). In addition, CrPV-
induced inhibition of SG assembly is not due to a cleavage of
Rox8 or Rin despite 3C proteinase sequestration in SGs (Khong
and Jan, 2011).

Coronaviridae and Arteriviridae
Transmissible gastroenteritis virus (TGEV), a member of the
Coronaviridae family, induces SG assembly later during infection

(Sola et al., 2011). The SGs component PTB binds to TGEV
genomic and subgenomic RNA and colocalize with TGEV-
induced aggregates containing TIA-1 and TIAR (Sola et al.,
2011). In addition, Xue et al. described that PERK-mediated
eIF2α phosphorylation during TGEV infection is detrimental
for viral replication due to the global translational repression
induced by activation of the IFN pathway (Xue et al., 2018). On
the other hand, Mouse Hepatitis Coronavirus (MHV) induces
the aggregation of TIAR early during infection in an eIF2α
phosphorylation-dependent manner and, in contrast to TGEV,
translational shutoff induced by MHV enhanced viral replication
(Raaben et al., 2007). Moreover, MHV infection does not induce
the expression of factors necessary to dephosphorylate eIF2α
such as CHOP and GADD34 (Bechill et al., 2008). MHV
N protein strongly impairs the IFN-induced PKR signaling
activation, suggesting a viral regulation of the cellular antiviral
response (Ye et al., 2007). Recently, Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) was shown to impair SG
assembly even when viral dsRNA alone activates PKR-mediated
SG assembly, suggesting that the virus protects its viral dsRNA
from PKR (Rabouw et al., 2016; Nakagawa et al., 2018). Rabouw
et al. showed that viral protein p4a antagonizes PKR activity
through its dsRNA-binding motif and inhibits partially arsenite-
dependent SG assembly, suggesting that p4a suppresses PKR
but no other pathways of the cellular stress response (Rabouw
et al., 2016). In addition, MERS-CoV replication is significantly
impaired in cells depleted of TIA-1 or G3BP-1/-2, suggesting
a potential proviral role of these SG components (Nakagawa
et al., 2018). Severe Acute Respiratory Syndrome Coronavirus
(SARS-CoV) induces a strong inhibition of host protein synthesis
mediated by the nsp1 viral protein, which interacts with the
40S ribosomal subunit, impairing 80S formation (Narayanan
et al., 2008; Kamitani et al., 2009). In addition, SARS-CoV
infection induces PKR-mediated eIF2α phosphorylation, while
GCN2 protein levels decreased in infected cells (Krahling et al.,
2008). Finally, Infectious Bronchitis Coronavirus (IBV) induces
PERK and eIF2α phosphorylation at early times post infection,
while induces GADD34 expression and the subsequent eIF2α
dephosphorylation at late stages of the course of infection in
order to maintain viral protein synthesis (Wang X. et al., 2009;
Liao et al., 2013). Interestingly, IfnBmRNA, but not IFN protein
was detected in the supernatant of IBV infected cells, probably
due to a 5b-mediated inhibition of general protein synthesis
(Kint et al., 2016). However, although it has been described
that SARS-CoV and IBV regulate eIF2α phosphorylation in
infected cells, it has not been evaluated whether it result in
SG assembly or blockade. In contrast, it is known that Porcine
Reproductive and Respiratory Syndrome Virus (PRRSV), a
member of the Arteriviridae family, induces canonical SG
assembly mediated by PERK and eIF2α phosphorylation in
infected cells (Zhou et al., 2017).

Caliciviridae
Members of the Caliciviridae family block SG assembly by
targeting G3BP-1. Although Feline Calicivirus (FCV) infection
results in eIF2α phosphorylation, viral 3C-like NS6 proteinase
cleaves G3BP-1, thus impeding SG assembly in infected cells
(Humoud et al., 2016). Similarly, Murine Norovirus 1 (MNV1)
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induces a shutoff of global translation by triggering the
phosphorylation of eIF4E and eIF2α in a PKR-dependent
manner, without inducing SG assembly (Royall et al., 2015;
Brocard et al., 2018; Fritzlar et al., 2019). Interestingly, MNV1
infected cells showed a redistribution of G3BP-1 to sites of viral
replication closely to the nucleus, colocalizing with NS5 (Fritzlar
et al., 2019) or NS3 viral protein (Brocard et al., 2018). Together,
these observations showed that MNV impairs SG assembly
by sequestering G3BP-1, thus, uncoupling the cellular stress
response (Brocard et al., 2018; Fritzlar et al., 2019). Although
Humoud et al. showed that MNV does not impair arsenite-
induced SGs, recently Fritzlar et al. demonstrated the opposite
(Humoud et al., 2016; Fritzlar et al., 2019).

Negative-Sense Single Stranded ((–)
ssRNA) Viruses
Orthomyxoviridae
Influenza A virus (IAV) and Influenza B virus (IBV), members
of the Orthomyxoviridae family, block SG assembly during
infection. IAV disrupts SGs accumulation by expressing three
different proteins: the host-shutoff protein polymerase-acidic
protein-X (PA-X), the nucleoprotein (NP), and the non-
structural protein 1 (NS1) (Khaperskyy et al., 2014). PA-
X inhibits SG assembly in an eIF2α-independent manner,
and requires its endoribonuclease activity for this function
(Khaperskyy et al., 2014). It causes nuclear relocalization of
PABP1, a phenotype that has been observed with other viral
host-shutoff proteins (Khaperskyy et al., 2014). In addition, it
depletes poly(A) RNAs from the cytoplasm but promotes its
accumulation in the nuclei (Khaperskyy et al., 2014). A recent
publication demonstrates that PA-X selectivity degrades host
RNAs by selecting transcripts that have undergone splicing, and
that can interact with cellular proteins involved in RNA splicing
(Gaucherand et al., 2019). NP can block arsenite-induced SGs
accumulation in an eIF2α-independent manner, but its effect
depends on its expression levels (Khaperskyy et al., 2014). In
contrast, NS-1-mediated inhibition of SG assembly depends
on the PKR pathway; NS-1 binding to dsRNA inhibits PKR
autophosphorylation and subsequent eIF2α phosphorylation
(Khaperskyy et al., 2011). Interestingly, the SGs-associated
proteins RAP55, DDX3, and NF90 have been shown to interact
with both NP and NS-1, which could represent the cell‘s attempt
to inhibit IAV infection or most the virus hijacks these host
proteins to block SG assembly (Wang P. et al., 2009; Mok et al.,
2012; Li et al., 2016; Raman et al., 2016). NP and DDX3 are
recruited to SGs during 1NS1 IAV infection (Onomoto et al.,
2012; Raman et al., 2016), but in presence of NS1 NP localizes to
PBs instead, suggesting that NS1 is essential for NP escape from
SGs (Mok et al., 2012). Normally NF90 leads to SG accumulation
by directly binding and activating PKR, but in presence of IAV
NS1, NF90 binds preferentially to it rather than PKR, suggesting
that NS1 also suppress PKR activation by blocking NF90-PKR
interaction (Wen et al., 2014; Li et al., 2016). Similarly, IBV
requires NS1 in order to restrict SG assembly (Núñez et al.,
2018). The vRNA sensor retinoic acid inducible gene I (RIG-I)
is recruited to SGs and induces IFN response during 1NS1 IAV

and IBV infections (Onomoto et al., 2012; Núñez et al., 2018).
Furthermore, RIG-I was shown to associate with DDX6, which
upon binding to vRNA stimulated RIG-I IFN induction (Núñez
et al., 2018).

Arenaviridae
Infection with Junin virus (JUNV), a member of theArenaviridae
family, inhibits SG assembly in mock and arsenite-treated cells
by impairing eIF2α phosphorylation. To do so, the presence
of either NP or glycoprotein precursor (GPC) is required, as
they both block SGs accumulation when expressed individually
in cells (Linero et al., 2011). Recently, JUNV NP was found
to interact with PKR, G3BP-1, eIF2α, hnRNP A1, and hnRNP
K (King et al., 2017), as well as with DDX3 (Loureiro et al.,
2018). Upon infection, PKR expression increases but is targeted
to viral replication factories (RFs) together with NP, G3BP-1,
dsRNA, PKR, phosphorylated PKR, RIG-I, and MDA-5 (King
et al., 2017; Mateer et al., 2018). Despite the high levels of PKR
activation, JUNV fails to induce eIF2α phosphorylation, maybe
due its sequestration to the RFs via NP (King et al., 2017).
Lassa virus and lymphocytic choriomeningitis virus (LCMV)
NPs also interact with G3BP-1, eIF2α, and DDX3 (King et al.,
2017; Loureiro et al., 2018). PKR interaction with LCMV NP
occurs but weakly than with JUNV NP, which is reflected in
the lack of PKR upregulation and colocalization with NP, and
the increased eIF2α phosphorylation level compared to JUNV
infection (King et al., 2017).

Rhabdoviridae
The vesicular stomatitis virus (VSV), member of the
Rhabdoviridae family, promotes eIF2α phosphorylation
and downregulates the synthesis of cellular proteins while
maintaining viral production (Dinh et al., 2012). Under these
conditions, it forms aSGs that contain PCBP2, TIA-1 and TIAR,
but no eIF3 or eIF4A. VSV RNA, phosphoprotein (P) and NP are
also part of these atypical SG-like structures, whose induction
requires ongoing viral protein synthesis and viral replication
(Dinh et al., 2012). Interestingly, assembly of aSGs and bona
fide arsenite-induced SGs can occur simultaneously, revealing
that VSV infection suppresses the accumulation of bona fide
antiviral SGs and utilize SGs-associated components for its own
benefit (Dinh et al., 2012). In contrast, Rabies virus (RABV)
effectively replicate in cells that assemble SGs upon infection
(Nikolic et al., 2016). The observed SGs contain G3BP-1, TIA-1
and PABP, and their accumulation is dependent on PKR-induced
eIF2α phosphorylation, suggesting that they are canonical SGs.
Notably, PKR and TIA-1 depletion enhances viral replication,
revealing that they have an antiviral effect but that is not strong
enough to completely stop RABV infection. RABV-induced SGs
locate adjacent to viral RFs. Interestingly, viral mRNA but no
viral genomic RNA is transported from RFs to SGs, suggesting
that RABVmay be using SGs to modulate viral transcription and
replication (Nikolic et al., 2016).

Paramyxoviridae
Respiratory Syncytial Virus (RSV), member of the
Paramyxoviridae family, replicate in viral replication factories
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(RFs) which have been observed to interact with SGs. However,
seemingly contradictory findings have been reported for RSV.
Lindquist et al. showed that RSV replication induces SG assembly
in ∼10–25% of the infected cells, and that they enhance RFs
formation and viral replication (Lindquist et al., 2010, 2011).
SGs accumulation requires PKR activation, which induces eIF2α
phosphorylation, however PKR depletion did not affect RSV
replication (Lindquist et al., 2011). Contrastingly, Groskreutz
et al. reported that RSV infection activates PKR but does
not trigger eIF2α phosphorylation due to PKR sequestration
by the RSV NP (Groskreutz et al., 2010). Two other groups
reported that RSV induce SG aggregation in ∼1% (Hanley
et al., 2010) and ∼5% (Fricke et al., 2012) of the infected
cells, revealing that, in general, RSV inhibits their assembly.
Sequestration to RFs of the O-linked N-acetylglucosamine
transferase (OGT), a factor involved in SGs regulation, and
the presence of the 5′ extragenic trailer sequence of the RSV
genome have been associated with SGs suppression (Hanley
et al., 2010; Fricke et al., 2012). Measles virus (MeV) infection
does not induce SG assembly due to the PKR inhibitory effect
of the viral accessory protein C (Okonski and Samuel, 2012). To
block PKR autophosphorylation, MeV C protein requires the
presence of the dsRNA binding protein and the SGs-component
ADAR1, as WT MeV infection induce PKR activation and SGs
accumulation in ADAR1 depleted cells (Toth et al., 2009; Li
et al., 2012; Okonski and Samuel, 2012). Furthermore, infection
with 1C-MeV produces large amounts of dsRNA that activate
PKR and induce SGs assembly, suggesting that the C protein
may utilize ADAR1 to downregulate the viral dsRNA produced
during replication (Pfaller et al., 2013). Both ADAR1 and C
protein colocalize with SGs (Okonski and Samuel, 2012). Similar
to RSV, Sendai virus (SeV) induces SGs accumulation in just
a fraction of the cells (5–15%) and the 5′ trailer region of its
sequence has been implicated in SG assembly prevention via
interaction with TIAR (Iseni et al., 2002). Like MeV, the SeV
C protein is required to impair SG assembly in control and
arsenite-treated cells, although C protein expression alone is
not able to do so (Yoshida et al., 2015). 1C-SeV assembled SGs
contain RIG-I and unusual viral RNA species. Recently, the
effect on SG assembly of three more paramyxoviruses have been
studied. Newcastle disease virus (NDV) infection trigger the
canonical SGs assembly to arrest host mRNAs and boost viral
replication (Oh et al., 2016; Sun et al., 2017). SG assembly is
dependent on PKR/eIF2α phosphorylation and its suppression
(by depleting TIA-1 or TIAR proteins) reduces viral protein
synthesis but increases cellular protein synthesis (Sun et al.,
2017). Accordingly, cellular mRNAs have been shown to be
predominately recruited to SGs compared to viral mRNAs (Sun
et al., 2017). Strikingly, RIG-I is also recruited to the assembled
SGs, which induces IFN production as an antiviral response
(Oh et al., 2016). Likewise, Mumps virus (MuV) infection
promotes SG assembly dependent on PKR activation despite
weak eIF2α phosphorylation (Hashimoto et al., 2016). PKR,
G3BP-1 and TIA-1 depletion reduces MeV-SGs and increased
IFN response, but did not alter viral titers, suggesting that
MuV replication occurs independently of the presence or
absence of SGs. Conversely, Human Parainfluenza Virus Type

3 (HPIV3) infection leads to assembly of SGs that seem to have
a poor antiviral role, as it is able to replicate in presence of SGs
although viral protein expression and particle production is
improved when SG assembly is constrained by knockdown of
PKR, G3BP-1 or expression of a non-phosphorylatable eIF2α
(Hu et al., 2018). SG assembly is due eIF2α PKR-dependent
phosphorylation triggered by viral mRNAs, which can be
shielded, and therefore block SGs assembly, by HPIV3 RFs
(Hu et al., 2018).

Bunyaviridae
Since our last review (Poblete-Durán et al., 2016), no new reports
have been published on how members of the Bunyaviridae
family modulate SG assembly. Briefly, Rift Valley fever virus
(RVFV) infection inhibit SG assembly despite attenuation
of the Akt/mTOR signaling pathway which leads to the
arrest of cap-dependent translation (Hopkins et al., 2015).
It has been shown that non-structural protein from the S
segment of Orthobunyaviruses, Hantaviruses and Phleboviruses
(Kohl et al., 2003; Jaaskelainen et al., 2009), as well as
glycoprotein Gn and the capsid N protein from Hantaviruses
(Alff et al., 2006; Cimica et al., 2014; Matthys et al., 2014),
inhibit IFN response.

Interestingly, the Andes Hantavirus (ANDV) N protein
inhibits PKR dimerization, but this lack of activation
does not stop protein translation (Wang and Mir,
2014). In contrast, RVFV infection promotes a protein
translation shutoff due to PKR degradation by NSs protein
(Habjan et al., 2009; Ikegami et al., 2009).

Filoviridae
Ebola virus (EBOV), member of the Filoviridae family, inhibits
the assembly of SGs and instead sequesters the SGs-associated
proteins eIF4G, eIF3, PABP, and G3BP-1, but no TIA-1 into
granules within the viral replication factories (Nelson et al.,
2016). These inclusion-bodies (IB) granules do not require
eIF2α phosphorylation, do not disassemble with cycloheximide,
and do not block translation. Furthermore, arsenite, heat and
hippuristanol can still induce bona fide SGs accumulation,
suggesting that sequestration of SGs proteins in IB granules
may be released upon stress. EBOV VP35 was found to be
the protein that prevents the bona fide SG assembly late in
infection, and its C-terminal domain is critical for this function
(Le Sage et al., 2016). VP35-CTD contains an inhibition of
interferon regulatory factor 3 (IRF3) domain that is responsible
for blocking PKR activation during EBOV infection (Schumann
et al., 2009). However, when expressed in sufficient high
levels, VP35 can block arsenite-induced SGs without reducing
the levels of eIF2α phosphorylation, suggesting that VP35
suppress SG assembly by using an alternative way to PKR
(Le Sage et al., 2016). VP35 can interact with several SG-
associated proteins such as G3BP-1, eIF3, and eEF2 and it
is targeted to viral replication factories, suggesting that it
may be blocking SG assembly by relocating SG constituents
(Le Sage et al., 2016; Nelson et al., 2016).
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Single Strand RNA Retroviruses
(ssRNA-RTs)
Retroviridae
Viruses belonging the Retroviridae family integrate its
retrotranscribed (+)ssRNA into the host chromosomal DNA
(Fields et al., 2013). The Human T-Lymphotropic Virus 1
(HTLV1) Tax protein blocks SG assembly by interacting with
the SG components histone deacetylase 6 (HDAC6) (Legros
et al., 2011) and USP10 (Takahashi et al., 2013). Similarly,
the Human Immunodeficiency Virus Type I (HIV-1) also
blocks SG assembly despite eIF2α phosphorylation, through
an interaction between Gag and the eukaryotic elongation
factor 2 (eEF2) (Valiente-Echeverría et al., 2014; Poblete-Durán
et al., 2016). HIV-1 Gag also disassembles pre-formed arsenite-
induced SGs by interacting with G3BP-1 (Valiente-Echeverría
et al., 2014) and selenite-induced atypical SGs by interacting
with eIF4E (Cinti et al., 2016; Poblete-Durán et al., 2016).
Notably, G3BP-1 was shown to act as a restriction factor that
inhibits viral replication by interacting with HIV-1 genomic
RNA (gRNA) in macrophages (Cobos Jiménez et al., 2015).
Recently, Rao et al. described a novel HIV-1 NC-induced SGs
containing G3BP-1, TIAR, eIF3, PABP, and poly(A) mRNAs
that are no longer disassembled by Gag or CA (Rao et al.,
2017). HIV-1 NC expression significantly increased eIF2α
phosphorylation, inhibiting protein synthesis and reducing viral
particle production. In addition, NC was shown to interact
with G3BP-1, TIAR, and Staufen1 even in absence of RNA.
The inability of NC to assembly SGs in G3BP-1 depleted cells
suggest that their interaction is required to promote NC-induced
SG accumulation (Rao et al., 2017). The authors also showed
that Staufen1 counteracts NC-induced PKR-dependent eIF2α
phosphorylation and translational shutoff (Rao et al., 2017).
Interestingly, while HIV-1 impairs SGs assembly, the virus
favors the assembly of Staufen1-containing HIV-1 dependent
ribonucleoproteins (Abrahamyan et al., 2010). Indeed, it has
been reported that HIV-1 is unable to dissociate or block
arsenite-induced SG assembly in Staufen1 knock-out cells,
suggesting that the recruitment of Staufen1 is crucial for HIV-1
SGs blockade. In addition, in absence of Staufen1 the HIV-1
genomic RNA colocalizes with TIAR in arsenite-induced SGs,
which correlates with a significant reduction of Gag protein
levels possibly due to the robust eIF2α phosphorylation induced
by HIV-1 infection (Rao et al., 2019b). Besides these data,
Soto-Rifo et al. showed that DDX3, eIF4GI, and PABPC1 form
a pre-translation initiation complex with the HIV-1 genomic
RNA to promote viral translation (Soto-Rifo et al., 2014; Poblete-
Durán et al., 2016). In contrast to HIV-1, HIV-2 infection does
not block SG assembly and the viral genomic RNA recruits TIAR
in a different type of RNA granules where it is suggested that
the transition from translation to packaging occurs (Soto-Rifo
et al., 2014). On another hand, Bann et al. showed that Mouse
Mammary Tumor Virus (MMTV) Gag interacts and colocalizes
with the SGs component YB-1 in small cytoplasmic foci in an
RNA-dependent manner. Interestingly, these foci also contain
viral RNA and are insensitive to cycloheximide treatment.
It is suggested that YB-1 plays key roles in MMTV as YB-1

knockdown results in a significant reduction in viral particle
production (Bann et al., 2014).

In summary, information about virus-host interaction
mediated by membraneless organelles in order to ensure viral
replication can be found summarized in Table 2.

VIRAL INFECTIONS AND PROCESSING
BODIES

PBs are membraneless organelles and their diameter range
between 150 and 340 nm (Cougot et al., 2012). PBs contain
proteins involved in mRNA decapping machinery (Dcp1/2,
LSm1-7, Edc3 proteins), scaffolding proteins (GW182, Ge-
1/Hedls), deadenylation factors (Ccr1, Caf1, Not1), nonsense-
mediated decay (NMD) proteins (SMG5-6-7, UPF1) and
translation control factors (CPEB, eIF4E-T) (reviewed in Poblete-
Durán et al., 2016). PBs are constitutively assembled in the
cytoplasm of the cell, but their size and number increases upon
cellular stress (Kedersha et al., 2005). Initially it was suggested
that PBs were sites of mRNA decay, but recent evidences suggest
that instead, P-bodies are sites of long-term mRNA storage
and decapping enzymes (reviewed in Luo et al., 2018). Recent
studies have shown that PBs participate in the storage of a
selection of mRNAs; transcripts involved in regulatory processes
are enriched while mRNAs that encode proteins that support
basic cell functions are excluded (Hubstenberger et al., 2017;
Standart and Weil, 2018).

Interestingly, viruses have been shown to modulate PB
assembly by degrading and/or relocating PB-associated
components, thus avoiding their accumulation. Here we
summarize how viruses modulate PBs.

Double-Stranded DNA (dsDNA)Viruses
Adenoviridae
In order to accumulate late mRNAs, adenovirus decreases the
number of PBs in the cell by relocalizing several PB components,
such as DDX6, LSm1, Ge-1, Ago2, and Xrn1 to aggresomes,
where proteins are inactivated or degraded (Greer et al., 2011).
Aggresome formation is induced by the viral protein E4 11K,
which was found to specifically bind DDX6, suggesting that this
interaction may redistribute DDX6 (Greer et al., 2011). Recently,
the PB-associated protein PatL1 was also shown to localize within
aggresomes following E4 11K protein expression (Friedman and
Karen, 2017).

Herpesviridae
In contrast to the aforementioned adenovirus, expression of PB-
associated proteins and PBs accumulation increase upon HCMV
infection, but viral mRNA is not targeted to them, suggesting
that HCMV mRNAs escape translation repression (Seto et al.,
2014). HCMV-induced PB assembly requires cellular but no
viral RNA synthesis and was independent of the translational
status of the cell (Seto et al., 2014). KSHV prevents PB assembly
during latent and lytic infection thanks to the activation of the
cytoskeletal regulator RhoA GTPase (RhoA) (Corcoran et al.,
2012, 2015). How RhoA disperse PBs is unknown, but in both
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TABLE 2 | Virus families that modulate SGs.

Genome Virus family Virus SGs

induction

SGs

blockade

Mechanism References

dsDNA Herpesviridae Herpes simplex Virus type 1

(HSV-1)

No Yes vhs is required for inhibition of SG assembly

dependent on PKR

Esclatine et al., 2004;

Dauber et al., 2011, 2016;

Sciortino et al., 2013

vhs-dependent SGs inhibition is independent on

eIF2α phosphorylation

Dauber et al., 2011, 2016

vhs-dependent SG inhibition is dependent on

eIF2α phosphorylation, dsRNA partially localizes

to SGs, and SG assembly activates PKR

Burgess and Mohr, 2018

ICP27 inhibits phosphorylation of PKR/eIF2α

and blocks SG assembly

Sharma et al., 2017

ICP8 interacts with G3BP and blocks SG

assembly

Panas et al., 2015

Herpes simplex virus type 2

(HSV-2)

No Yes HSV-2 inhibits SG assembly independent on

eIF2α phosphorylation

Finnen et al., 2012

vhs is required for disruption of canonical and

arsenite-induced SGs

Finnen et al., 2012

vhs inhibit SG assembly and disrupt

pre-assembled SGs, and its endoribonuclease

activity is required

Finnen et al., 2016

Cytomegalovirus (HCMV) No Yes HCMV inhibits eIF2α phosphorylation Isler et al., 2005b

HCMV inhibits SG assembly Isler et al., 2005a

Lack of viral proteins pIRS1 and pTRS1 increase

levels of eIF2α phosphorylation

Marshall et al., 2009

pTRS1 or pIRS1 inhibits SG assembly

dependent on PKR. Transfected pTRS1 also

prevent SG assembly independent on PKR

Ziehr et al., 2016

Kaposi’s sarcoma-associated

herpesvirus (KSHV)

No Yes ORF57 interacts with PKR inhibiting its binding

to dsRNA and its activation, which impairs eIF2α

phosphorylation and SG assembly

Sharma et al., 2017

SOX inhibits arsenite-induced SG assembly Sharma et al., 2017

Epstein–Barr virus (EBV) ND ND EB2 overexpression does not abolish SG

assembly neither PKR/eIF2α phosphorylation

Sharma et al., 2017

Poxviridae Vaccinia virus (VACV) Yes

(AVGs)

Yes G3BP-1, Caprin 1, eIF4G, eIF4E, PABP are

sequestered into RFs

Katsafanas and Moss, 2004

VACV lacking E3L induce AVGs which require

TIA-1 expression

Simpson-Holley et al., 2010

1E3L induced AVGs requires eIF2α

phosphorylation

Pham et al., 2016

WT VACV spontaneously form AVGs but to

negligible levels

Rozelle et al., 2014

1C7L/K1L VACV induce AVGs assembly

dependent on SAMD9 host protein and

independent of eIF2α phosphorylation

Liu and McFadden, 2014

Viral mRNA is recruited to 1C7L/K1L VACV

induced AVGs

Sivan et al., 2018

TIA-1 is not required for 1C7L/K1L-mediated

AVG assembly

Meng and Xiang, 2019

dsRNA Reoviridae Rotavirus No Yes Rotavirus inhibits SG assembly independent on

eIF2α phosphorylation, but changes the

localization of TIA-1, eIF4E, and PABP

Montero et al., 2008

Relocalizes ADAR1, Caprin1, CPEB, eIF2α,

4EBP1, PKR, and Staufen1 to RFs, and

selectively excludes G3BP-1 and ZBP1

Dhillon and Rao, 2018;

Dhillon et al., 2018

Mammalian orthoreovirus (MRV) Yes

(canonical)

Yes SGs are formed during the early stage of

infection but disassembled in later stages

independent on eIF2α phosphorylation

Qin et al., 2009, 2011

(Continued)
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TABLE 2 | Continued

Genome Virus family Virus SGs

induction

SGs

blockade

Mechanism References

µNS is recruited to SGs Carroll et al., 2014

MRV relocalizes G3BP-1, Caprin1, USP10,

TIAR, TIA-1, eIF3b to RFs via G3BP1-oNS-uNS

interaction

Núñez et al., 2018

(+)ssRNA Picornaviridae Poliovirus (PV) Yes

(canonical

and atypical)

Yes 2A-protease mediated SGs assembly Mazroui et al., 2006

3C protease-mediated G3BP-1 cleavage White et al., 2007

Induces aggregates containing TIA-1 and viral

RNA

Piotrowska et al., 2010

Encephalomyocarditis virus

(EMCV)

No Yes Cleavage of G3BP-1 Ng et al., 2013

Coxsakievirus B3 CVB3 Yes

(canonical

and atypical)

Yes Cleavage of G3BP-1 Fung et al., 2013

2A protease-mediated SGs assembly Zhai et al., 2018

2A protease-mediated eIF4G cleavage Wu et al., 2014

Theiler’s murine encephalomyelitis

virus (TMEV)

No Yes Inhibition of SG assembly mediated by Leader

protein (L)

Borghese and Michiels,

2011

Enterovirus 71 (EV71) Yes

(canonical

and atypical)

Yes 2A protease-mediated inhibition of SGs Zhu et al., 2016; Yang et al.,

2018b

PKR-eIF2α phosphorylation- dependent SG

assembly mediated by 2A protease

Zhang et al., 2016, 2018;

Zhu et al., 2016

Cleavage of eIF4GI mediated by 2A protease,

abolishing eIF4GI and G3BP-1 interaction

(Yang et al., 2018a,b)

Cleavage of G3BP-1 mediated by 3C protease Zhang et al., 2018

Foot-and-Mouth Disease Virus

(FMDV)

No Yes Shuts-off host cap-dependent translation

mediated by eIF2α downregulation and PKR

dephosphorylation

Ye et al., 2018

Cleavage of G3BP-1 and Sam68 mediated by

3C protease

Lawrence et al., 2012; Ye

et al., 2018

Cleavage of G3BP-1 mediated by Leader

protease

Visser et al., 2019

Equine Rhinitis A virus (ERAV) ND Yes Cleavage of G3BP-1 and G3BP-2 by Leader

protease

Visser et al., 2019

Mengovirus, a strain of EMCV No Yes Leader protein (L) inhibits SG assembly Langereis et al., 2013;

Reineke et al., 2015

Togaviridae Semliki Forest Virus (SFV) Yes

(canonical)

Yes Induces eIF2α phosphorylation McInerney et al., 2005

nsP3 sequesters G3BP-1 and G3BP-2 into RFs Panas et al., 2012

G3BP-1 binding by nsP3 is necessary for SGs

blockage

Panas et al., 2015

Chikungunya virus (CHIKV) No Yes Nsp3 sequesters G3BP-1 to RFs Fros et al., 2012; Remenyi

et al., 2018

G3BP-2 colocalizes with nsP2/nsP3 complexes Scholte et al., 2015

Rubella virus (RUBV) Yes No Accumulation of G3BP-1 Matthews and Frey, 2012

Venezuelan equine encephalitis

virus (VEEV)

ND ND nsP3 interacts with FXRs to facilitate viral RFs

formation

Kim et al., 2016

Sindbis virus (SINV) Yes

(canonical)

Yes Nsp4 interacts with G3BP-1 Cristea et al., 2010

Induces PKR-dependent SGs assembly Venticinque and Meruelo,

2010

Nsp3 protein interacts with G3BP-1 and

G3BP-2

Kim et al., 2016

(Continued)
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TABLE 2 | Continued

Genome Virus family Virus SGs

induction

SGs

blockade

Mechanism References

Flaviviridae West Nile Virus (WNV) No Yes Viral RNA captures TIA-1 and TIAR Li et al., 2002

Increased GSH levels inhibit arsenite-induced

SGs

Basu et al., 2017

Dengue Virus (DENV) No Yes Viral RNA colocalizes with TIA-1 and TIAR Emara and Brinton, 2007

3′UTR interacts with G3BP-1, G3BP-2, Caprin

1 and USP1

Ward et al., 2011

Zika Virus (ZIKV) No Yes ZIKV impairs SG assembly downstream of eIF2α

phosphorylation

Hou et al., 2017

Expression of ZIKV capsid, NS3, NS2B-3, or

NS4A protein inhibits SG assembly. Capsid

protein interacts with G3BP-1 and Caprin-1

Hou et al., 2017

Relocalizes Ataxin-2, HuR and YB-1. G3BP-1

and TIAR localize at viral RFs

Bonenfant et al., 2019

Yellow Fever Virus (YFV) ND Yes Ectopically expressed capsid protein blocks

hippuristanol-induced SGs

Hou et al., 2017

Murray Valley Encephalitis Virus

(MVEV)

ND Yes Ectopically expressed capsid protein blocks

hippuristanol-induced SGs

Hou et al., 2017

Tick-borne encephalitis virus

(TBEV)

Yes

(canonical)

No Induces eIF2α phosphorylation Albornoz et al., 2014

Sequesters TIA-1 and TIAR to RFs Albornoz et al., 2014

Japanese encephalitis virus

(JEV)

No Yes Core protein interacts with Caprin 1 Katoh et al., 2013

Ectopically expressed capsid protein blocks

hippuristanol-induced SGs

Hou et al., 2017

Bovine viral diarrhea virus

(BVDV)

No Yes Impairs arsenite-induced SGs assembly Jefferson et al., 2014

Hepatitis C virus (HCV) Yes Yes G3BP-1, Ataxin-2, PABP1, DDX3, TIA-1, and

TIAR are recruited to lipid droplets

Ariumi et al., 2011;

Garaigorta et al., 2012

Induces SGs dependent on PKR and IFN Garaigorta et al., 2012

GADD34-mediated SGs disassembly Ruggieri et al., 2012

DDX3 binds viral 3’UTR Li et al., 2013

DDX3 and G3BP-1 localize with HCV core

protein

Pène et al., 2015

Staufen 1 inhibits PKR activation Dixit et al., 2016

Dicistroviridae Cricket paralysis virus (CrPV) No Yes 3C protease is sequestered to SGs Khong and Jan, 2011

CrPV-1A protein disrupts Pateamine A, arsenite

and heat shock-induced SGs assembly

Khong et al., 2016

Coronaviridae Mouse hepatitis coronavirus

(MHV)

Yes No Induces eIF2α phosphorylation Raaben et al., 2007; Bechill

et al., 2008

N protein impairs PKR and eIF2α

phosphorylation during IFN treatment

Ye et al., 2007

Transmissible gastroenteritis virus

(TGEV)

Yes No PTB localization in SGs correlates with an

increase in viral replication

Sola et al., 2011

Induces PERK-dependent eIF2α

phosphorylation

Xue et al., 2018

Middle East Respiratory Syndrome

Coronavirus (MERS-CoV)

No Yes 4a protein inhibits PKR-dependent SG assembly

by binding and sequestering dsRNAs from PKR

Rabouw et al., 2016;

Nakagawa et al., 2018

Severe Acute Respiratory

Syndrome Coronavirus

(SARS-CoV)

ND ND Nsp1 induces translational shutoff by impairing

80S formation

Narayanan et al., 2008;

Kamitani et al., 2009

Induces PKR and eIF2α phosphorylation Krahling et al., 2008

Infectious Bronchitis Coronavirus

(IBV)

ND ND Induces PKR and eIF2α phosphorylation at early

stages of infection and inhibits eIF2α

phosphorylation at later stages

Wang X. et al., 2009; Liao

et al., 2013

Viral 5b protein induces host translational shutoff Kint et al., 2016

(Continued)
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TABLE 2 | Continued

Genome Virus family Virus SGs

induction

SGs

blockade

Mechanism References

Arteriviridae Porcine Reproductive and

Respiratory Syndrome Virus

(PRRSV)

Yes

(canonical)

ND Induces PERK-dependent eIF2α

phosphorylation and subsequent SGs assembly

Zhou et al., 2017

Induces Mnk1-mediated eIF4E phosphorylation Royall et al., 2015

Induces PKR and eIF2α phosphorylation, but

translation repression is PKR-independent

Fritzlar et al., 2019

G3BP-1 is sequestered to RFs even in presence

of arsenite treatment

Fritzlar et al., 2019

G3BP-1 colocalizes with Nsp3 in a perinuclear

zone but not in presence of arsenite treatment

Brocard et al., 2018

Feline Calicivirus (FCV) No Yes NS6-mediated G3BP-1 cleavage Humoud et al., 2016

(-)ssRNA Orthomyxoviridae Influenza A virus (IAV) No Yes NS1 restrict SG assembly dependent on eIF2α

while NP and PA-X block SG assembly in an

eIF2α-independent manner

Khaperskyy et al., 2014

PA-X requires its endoribonuclease activity to

inhibit SGs, and relocalizes PABP1 to the

nucleus

Khaperskyy et al., 2014

PA-X selectively degrades host spliced RNAs Gaucherand et al., 2019

NS-1 inhibits PKR activation by binding to

dsRNA

Khaperskyy et al., 2011

NS1 interacts with RAP55 and its RNA and PKR

binding sites are required for the interaction and

to inhibit SGs

Mok et al., 2012

NS1 and NP interact with DDX3 Raman et al., 2016

NP and RIG-I are recruited to SGs on 1NS1 IAV

infection, and IAV genomic RNA is sufficient to

form SGs

Onomoto et al., 2012

NS1 interacts with NF90 and restricts its binding

to PKR. The NS1 RNA-binding domain and the

NF90 double-stranded RNA binding domain are

required

Wen et al., 2014; Li et al.,

2016

NF90 binds NP independently of RNA binding Wang P. et al., 2009

Influenza B virus (IBV) No Yes NS1 is required to inhibit SG assembly. RIG-I

and DDX6 interact and colocalize to

1NS1-induced SGs

Núñez et al., 2018

Arenaviridae Junin Virus (JUNV) No Yes NP and GPC individually impair arsenite-induced

SGs by inhibiting eIF2α phosphorylation

Linero et al., 2011

NP interacts with G3BP-1, PKR, hnRNP A1,

and hnRNP K, G3BP-1 and eIF2α. NP

sequesters PKR into RFs

King et al., 2017

NP interacts with DDX3 Loureiro et al., 2018

dsRNA activates PKR and colocalizes with RFs Mateer et al., 2018

Rhabdoviridae Vesicular stomatitis virus (VSV) Yes

(atypical)

Yes Inhibit canonical SGs but induces SGs-like

structures containing PCBP2, TIA1, TIAR, and

viral RNA, P and NP proteins

Dinh et al., 2012

Rabies virus Yes

(canonical)

No SG assembly is dependent on PKR and they

locate close to RFs. Viral mRNA is transported

to RFs

Nikolic et al., 2016

Paramyxoviridae Respiratory Syncytial Virus (RSV) Yes

(canonical)

Yes 10–25% of infected cells form SGs dependent

on PKR

Lindquist et al., 2010, 2011

Just 1% of infected cells form SGs. The 5‘trailer

region of the RSV genome is required to inhibit

SGs

Hanley et al., 2010

Just 5% of infected cells form SGs.

Sequestration of OGT into RFs suppresses SGs

accumulation

Fricke et al., 2012

Measles virus (MeV) No Yes Viral C protein inhibits SG assembly by blocking

PKR activation but requires the presence of

ADAR1

Okonski and Samuel, 2012

(Continued)

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15 October 2019 | Volume 9 | Article 336164

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Gaete-Argel et al. Membraneless Organelles and Viral Infections

TABLE 2 | Continued

Genome Virus family Virus SGs

induction

SGs

blockade

Mechanism References

MeV C protein reduces the dsRNA in the

cytoplasm to inhibit PKR activation

Pfaller et al., 2013

Sendai virus (SeV) Yes

(canonical)

Yes 5–15% of infected cells form SGs. The trailer

RNA region captures TIAR and inhibit SGs

accumulation

Iseni et al., 2002

Viral C protein is required to inhibit SG assembly Yoshida et al., 2015

Newcastle disease virus (NDV) Yes

(canonical)

No NDV replication induces canonical SGs which

contain vRNA(+) and RIG-I

Oh et al., 2016

SG assembly is dependent on PKR/eIF2α

pathway. SGs contain cellular mRNA but no viral

mRNA

Sun et al., 2017

Mumps virus (MuV) Yes

(canonical)

No SG assembly is dependent on PKR. MuV

replicates independently of the presence or

absence of SGs

Hashimoto et al., 2016

Human parainfluenza virus

type 3 (HPIV3)

Yes No PKR-dependent SGs are induced by viral

mRNA. SGs have an inhibitory role in HPIV3

replication.

Hu et al., 2018

Bunyaviridae Rift Valley fever virus (RVFV) Yes Yes Attenuate Atk/mTOR signaling Hopkins et al., 2015

Andes hantavirus (ANDV) ND Yes N protein inhibits PKR activation Wang and Mir, 2014

Filoviridae Ebola virus Yes

(IB granules)

Yes Ebola inhibits canonical SGs but form IB

granules within RFs that contain eIF4G, eIF3,

PABP, and G3BP-1, but no TIA-1

Nelson et al., 2016

VP35 inhibit canonical and stress-induced SGs,

and its C-terminal domain is required. VP35

interacts with G3BP-1, eIF3, and eEF2

Le Sage et al., 2016

ssRNA-

RT

Retroviridae Human T-cell Leukemia virus

(HTLV-1)

No Yes Tax interacts with HDAC6 and USP10 Legros et al., 2011;

Takahashi et al., 2013

Human immunodeficiency virus

type 1 (HIV-1)

No Yes Staufen 1 and Gag-mediated blockade of SGs

assembly

Abrahamyan et al., 2010

Gag interacts with eEF2 to block SGs assembly Valiente-Echeverría et al.,

2014

G3BP-1 interact with Gag to disassembly

preformed SGs

Valiente-Echeverría et al.,

2014

gRNA promote pre-translation initiation complex

assembly

Soto-Rifo et al., 2014

Gag interacts with eIF4E to promote

disassembly of SGs

Cinti et al., 2016

Ectopically expressed NC protein induces eIF2α

phosphorylation and interacts with SGs proteins.

Rao et al., 2017

Human immunodeficiency virus

type 2(HIV-2)

Yes No gRNA and TIAR colocalizes in SGs Soto-Rifo et al., 2014

Mouse Mammary Tumor Virus

(MMTV)

ND ND YB-1 interacts with Gag and gRNA in

cytoplasmic foci

Bann et al., 2014

cases its activated by the p38/MK2 pathway, which is triggered
by the viral gene G-protein-coupled receptor (vGPCR) during
lytic infection, and by the viral kaposin B (KapB) protein during
latency (Corcoran et al., 2012, 2015). Furthermore, on both cycles
PBs inhibition causes stabilization of AU-rich containing RNAs,
a cis-acting RNA element usually present in mRNAs coding
cytokines, growth factors and proto-oncogenes, increasing their
protein synthesis during infection (Corcoran et al., 2012, 2015).

Double-Stranded RNA (dsRNA) Viruses
Reoviridae
Similarly, rotavirus has also been shown to suppress PB assembly
(Montero et al., 2008; Bhowmick et al., 2015). Upon infection,
it reduces the cytosolic levels of Xrn1, Pan3, and Dcp1a, but

no GW182 in a time-dependent manner (Bhowmick et al.,
2015). Furthermore, it has been shown that rotavirus infection
induces the relocalization of Xrn1, Dcp1a, and PABP to the
nucleus (Montero et al., 2008; Bhowmick et al., 2015), and
to sequester most of the PB components into RFs, with the
exception of DDX6, Edc4, and Pan3 (Dhillon and Rao, 2018;
Dhillon et al., 2018), and to accelerate Pan3 decay by the NSP1
protein (Bhowmick et al., 2015).

Positive-Sense Single Stranded RNA ((+)
ssRNA) Viruses
Flaviviridae
The relationship between (+)ssRNA and PB components has
been extensively studied. Members of the Flavivirus genus of

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16 October 2019 | Volume 9 | Article 336165

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Gaete-Argel et al. Membraneless Organelles and Viral Infections

the Flaviviridae family generates a subgenomic flavivirus RNA
(sfRNA) as a product of genomic RNA incomplete degradation
by the exonuclease Xrn1 (Pijlman et al., 2008; Silva et al.,
2010). In that process, Xrn1 stalls on highly structured sequences
in the 3′ UTR, thus inhibiting Xrn1 activity and resulting in
the accumulation of uncapped cellular mRNAs (Pijlman et al.,
2008; Moon et al., 2012). Interestingly, sfRNA colocalizes with
Xrn1 in PBs and is essential for viral-mediated cytopathogenesis
(Pijlman et al., 2008). The flavivirus WNV reduces PB assembly
during the course of infection through the sequestration of
several PB components such as LSm1, GW182, Xrn1, DDX3,
and DDX6 to viral replication factories (RFs) (Chahar et al.,
2013). Similarly, DENV infection reduces PBs accumulation
through an interaction of DENV 3′UTR with DDX6 (Ward et al.,
2011). In addition, it has been shown that Dcp1b colocalizes
with viral dsRNA, suggesting that DENV RNA replication
occurs within PBs (Dong et al., 2015). LSm1, another PBs
component, interacts with DENV RNA both in vitro and in
vivo during DENV-2 infection, colocalizing with sites of viral
replication (Dong et al., 2015). Moreover, downregulation of
LSm1 negatively affects viral RNA accumulation and particle
production, suggesting that LSm1 plays key roles in the early
stages of the viral replicative cycle, such as translation and
replication (Dong et al., 2015). In 2016 Balinsky et al. showed
that NS4A and NS3 interact with IRAV, which is a constituent
of PBs and is induced by DENV infection in an interferon-
dependent manner. Interestingly, IRAV is relocalized to viral
RFs in HEK-293T cells and in monocyte-derived macrophages
(Balinsky et al., 2017). MOV10 is also relocalized to viral RFs, as
shown by its colocalization with NS3. Both IRAV andMOV10 are
restriction factors for DENV, as viral replication is significantly
enhanced in KO and KD cells, respectively (Balinsky et al., 2017).
ZIKV infection does not affect the morphology, localization or
number of PBs per cell (Hou et al., 2017), however both DDX6
and DGCR8 are upregulated in ZIKV-infected neurospheres
(Garcez et al., 2017). Interestingly, nonsense-mediated mRNA
decay (NMD) transcripts are stabilized in ZIKV-infected cells,
suggesting that NMD pathway is impaired in infected cells. In
addition, ZIKV capsid interacts with several NMD components,
including nuclear Upf1, which is targeted for proteasomal
degradation (Fontaine et al., 2018). Downregulation of Upf1
prior to infection significantly increases RNA viral levels and
consequently viral production, suggesting that Upf1 regulates
early stages of ZIKV infection (Fontaine et al., 2018). Similar
to the other flavivirus mentioned above, HCV induces the
relocalization of several PB components such as DDX6, LSm1,
Xrn1, PatL1, Ago2, Dicer, and DDX3 to sites of viral replication
in lipid droplets (Ariumi et al., 2011; Berezhna et al., 2011;
Pager et al., 2013) in order to promote viral replication (Ariumi
et al., 2007, 2011; Berezhna et al., 2011; Pager et al., 2013). In
particular, the decapping activators DDX6, LSm1, and PatL1 are
crucial for the transition from translation to replication of HCV
RNA (Scheller et al., 2009; Jangra et al., 2010). Although PB
constituents play key roles during HCV infection, the presence
of PBs is not necessary for efficient viral replication (Berezhna
et al., 2011; Pérez-Vilaró et al., 2012). Analysis of liver biopsies
from HCV-infected patients confirmed that HCV decreases

the number of PB in vivo independent of the viral genotype,
the inflammation status of the sample donor or whether the
infection is chronical or recent. Interestingly and contrary to
previous reports, DDX6 was shown to not be recruited to sites
of viral replication at lipid droplets (Pérez-Vilar et al., 2015),
although its role in HCV replication in patient samples remains
to be elucidated. This article by Pérez-Vilaró et al. is the first
evidence and confirmation of a direct relationship between a
viral-induced pathogenesis and PB modulation. Furthermore,
they reported differences in PB composition since DDX6 do not
colocalize with Dcp1 in human hepatocytes in vivo, highlighting
the potential variations between cell line-based experiments
and analysis of human or animal models (Pérez-Vilar et al.,
2015). Although HCV and BVDV do not generate a sfRNA
from their 3′UTR as other flavivirus such as DENV, Moon
et al. showed that Xrn1 stalls while attempting to degrade
the 5′UTR of both HCV and BVDV, thus Xrn1 activity is
repressed. This dysregulation causes a stabilization of mRNAs
encoding proteins involved in innate immune responses and
transcription factors, which have short half-life in uninfected
cells (Moon et al., 2015). In addition, they suggest that HCV-
mediated Xrn1 repression induces a feedback mechanism that
prevents the initial steps of 5′-3′ decay, such as deadenylation and
decapping (Moon et al., 2015).

Picornaviridae
The picornaviruses PV and CVB3 3C proteases cleave Dcp1a
and target Xrn1 and Pan3 for proteasomal degradation, thus
resulting in the total disruption of PBs (Dougherty et al.,
2011; Poblete-Durán et al., 2016). In addition, CVB3 2A
protease relocalizes AUF1 (also known as hnRNP D) from the
nucleus to the cytoplasm of infected cells and 3C protease
cleaves AUF1 (Wong et al., 2013). Moreover, AUF1 knockdown
significantly enhances viral RNA abundance, suggesting that
AUF1 is a restriction factor for CVB3 replication. Interestingly,
AUF1 binds to the 3′UTR of viral genome containing AU-
rich sequences and likely targets it for degradation, thus CVB3
counteracts AUF1-induced degradation of the viral RNA genome
by targeting AUF1 for degradation (Wong et al., 2013). In
addition, it has been reported that MOV10 is a restriction
factor for EMCV and CVB3 replication. Thus, both EMCV and
CVB3 viral 3C protease induces the cleavage of MOV10 to
counteract its antiviral activity (Cuevas et al., 2016). Enterovirus
71 (EV71) increases the number of PBs at early stages but
disrupt PBs at late stages of infection (Wang et al., 2016;
Zhu et al., 2016; Yang et al., 2018b). In addition, EV71 2C
protease reduces the expression of APOBEC3G (A3G) by
targeting to degradation via the autophagy-lysosome pathway.
Surprisingly, A3G antiviral activity does not depend on its
cytidine deaminase activity but restricts viral replication by
binding to the viral 5′UTR thus displacing PCBP1, which
is essential for the replication of picornaviruses such EV71
(Li et al., 2018). In contrast, MOV10 is a positive regulator
of EV71 replication through its binding to a cloverleaf-like
structure and the IRES of viral RNA, facilitating replication
and viral protein synthesis (Wang et al., 2016). Upon EV71
infection MOV10 co-localized with PBs and it is suggested that
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MOV10 relocalization is a host response to impair viral MOV10
recruitment (Wang et al., 2016).

Dicistroviridae and Togaviridae
CrPV, a member of theDicistroviridae family, selectively disrupts
GW182/Dcp1 but not Ago1/Ago2 aggregates, suggesting that
they play differential roles during infection (Khong and Jan,
2011), while that RNAs of SINV, a virus that belong to the
Togaviridae family, interact with HuR in order to stabilize and
avoid the cellular mRNA decay machinery (Sokoloski et al.,
2010). It was reported that Upf1 knockdown increases SINV and
Semliki Forest Virus (SFV) RNA replication. Thus, Upf1 has an
antiviral activity, probably by promoting viral RNA degradation.
In addition, Upf1-mediated inhibition of viral replication also
involved other NMD components, such as Smg5 and Smg7
(Balistreri et al., 2014). On other hand, the coronavirus MHV
induces the degradation of several cellular mRNAs encoding
translation-related factors with a concomitant translational shut
off and increase in the number of PBs per cell (Raaben et al.,
2007). The mechanism behind MHV-induced regulation of
mRNA decay is still unknown. Similarly, SARS-CoV Nsp1
promotes mRNA downregulation as a consequence of global
mRNA degradation in order to maximize viral RNA translation
(Huang et al., 2011). In contrast, TGEV infection decreases
significantly the number of PBs by an unknownmechanism (Sola
et al., 2011).

Negative-Sense Single Stranded ((–)
ssRNA) Viruses
Orthomyxoviridae and Bunyaviridae
The negative-strand RNA virus IAV, member of
Orthomyxoviridae family, suppresses PB assembly via interaction
of NS1 and RAP55; and prevents the sequestering of NP in the
PBs (Mok et al., 2012). In contrast, the Bunyaviridae hantavirus
nucleocapsid protein (N) avoids the 5′ cap degradation of
cellular mRNAs, protecting them from Dcp1a/Dcp2-mediated
decapping which allows the viral transcripts to escape from PBs
(Mir et al., 2008) (reviewed in Poblete-Durán et al., 2016).

Paramyxoviridae and Rhabdoviridae
Recently, it was shown that the infection of RSV, member
of Paramyxoviridae family, decreases the number of Dcp1-
containing puncta late in infection, suggesting that RSV
disassemble PBs over time or that Dcp1 is excluded from
PBs (Dickey et al., 2015); while that during early stages of
VSV infection, virus belong to Rhabdoviridae family, Dcp1/PBs
accumulation is unaltered, but further work is necessary to
determine its effect on later times (Dinh et al., 2012).

Single Strand RNA Retroviruses
(ssRNA-RTs)
Retroviridae
Abrahamyan et al. reported that HIV-1 expression dramatically
decreases the number of PBs (Abrahamyan et al., 2010), but
the relationship between HIV-1 and the PB components is still
controversial. It has been shown that HIV-1 gRNA localize to
PBs (Chable-Bessia et al., 2009; Nathans et al., 2009; Martin et al.,

2011), however, that observation has not been reproduced by
others (Abrahamyan et al., 2010; Phalora et al., 2012). Similarly,
some groups have reported that DDX6, LSm1, GW182, Xrn1,
DGCR8, Dicer, and Drosha are antiviral factors, while other
researchers argue that Ago2 and DDX6 are proviral factors
(Chable-Bessia et al., 2009; Nathans et al., 2009; Martin et al.,
2011; Bouttier et al., 2012; Reed et al., 2012). APOBEC3 has
been shown to have an anti-HIV-1 activity, but it is targeted
for degradation by the viral protein Vif (Poblete-Durán et al.,
2016). Interestingly, Chen et al. showed that MOV10 protects
A3G from Vif-mediated degradation by interfering with the
interaction between Vif and the ubiquitin CBF-β-Cullin 5-
ElonginB-ElonginC complex (Chen et al., 2017). In addition,
MOV10 increases the incorporation of A3G in HIV-1 viral
particles, enhancing the antiviral effect of A3G (Chen et al.,
2017). Recently, it has been shown HIV-1 infected monocyte-
derived macrophages (MDMs) show diminished levels of Upf1,
Upf2, and SMG6 proteins, accordingly with their restrictive role
in HIV-1 replication due to their ability to inhibit genomic
RNA expression (Rao et al., 2019a). Interestingly, Reed et al.
demonstrated that the first assembly intermediate (AI) in
which Gag interacts with genomic RNA—containing HIV-1
Gag, GagPol, and Vif (Lingappa et al., 1997)—are formed by
the recruitment of DDX6 and ATP-binding cassette protein
E1 (ABCE1), suggesting that HIV-1 hijack PB-components
to promote viral assembly (Reed et al., 2012; Barajas et al.,
2018). The Feline Immunodeficiency Virus (FIV) also co-opts
a cellular RNA granule containing DDX6, ABCE1, and Dcp2 to
assembly immature capsids, suggesting that this is a mechanism
conserved between primate and non-primate lentiviruses (Reed
et al., 2018). It has been reported that HTLV-1 Tax protein
interferes with host NMD by its interaction with Upf1 and
INT6 (Mocquet et al., 2012). In addition, Tax increases the
localization of Upf1 in PBs, causing an increase in their size
and number. Interestingly, viral RNA is sensitive to degradation
via NMD and it has been shown that a fraction of viral
genomic RNA co-localized with PBs (Mocquet et al., 2012;
Nakano et al., 2013). Fiorini et al. reported that Tax stabilizes
the SMG5 and Upf1 interaction, which inhibits Upf1 recycling
for another round of NMD (Mocquet et al., 2012). Moreover,
Tax inhibits Upf1 binding to its substrate and also destabilizes
Upf1 during both unwinding and translocation, promoting its
dissociation from the substrate. Together, these observations
suggest that Upf1 is targeted by Tax both before and during
Upf1-mediated decay (Fiorini et al., 2018). In contrast, Nakano
et al. argued that Rex protein is the main protein responsible
for NMD inhibition in HTLV-1 infected cells and that Tax
effect on NMD is not as significant as the effect of Rex protein
(Nakano et al., 2013).

A summary of how viruses modulate PBs can be found
in Table 3.

CONCLUDING REMARKS

The knowledge about MLOs has increased exponentially during
the last few years (reviewed in Guzikowski et al., 2019).
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TABLE 3 | Virus families that modulate PBs.

Genome Virus family Virus PB

induction

PB

blockade

Mechanism References

dsDNA Adenoviridae Adenovirus No Yes Relocalization of DDX6, LSm1, Ge-1, Ago2, and Xrn1 to

aggresomes dependent on E4 11K viral protein

Greer et al., 2011

Relocalization of Pat1b to aggresomes dependent on E4

11K viral protein

Friedman and Karen,

2017

Herpesviridae Cytomegalovirus (HCMV) Yes No Increased Dcp1a, Edc4, DDX6, and Rap55 protein levels

and PB accumulation, but viral mRNA is not sequestered

Seto et al., 2014

Kaposi’s sarcoma-associated

herpesvirus (KSHV)

No Yes PB disruption during lytic replication requires RhoA

activation, mediated by vGPCR activation pathway

(vGPCR-MK2)

Corcoran et al., 2012

PBs disruption during latency requires RhoA activation,

mediated by Kaposin B activation pathway

(KapB-MK2-hsp27-p11RhoGEF)

Corcoran et al., 2015

dsRNA Reoviridae Rotavirus No Yes Xrn1, Dcp1, and Pan3, but not GW182 protein levels are

reduced. NSP1 triggers Pan3 decay. Xnr1 and Dcp1 are

translocated to the nucleus

Bhowmick et al., 2015

PABP is relocalized to the nucleus dependent on the viral

protein NSP3

Montero et al., 2008

Most of PBs-associated proteins, except DDX6, Edc4,

and Pan3, are recruited into RFs

Dhillon and Rao, 2018;

Dhillon et al., 2018

(+)ssRNA Flaviviridae West Nile virus (WNV) No Yes LSm1, GW182, DDX6, DDX3, and Xrn1 are sequestered

to RFs

Emara and Brinton,

2007; Chahar et al.,

2013

Dengue Virus (DENV) No Yes LSm1, GW182, DDX6, DDX3, MOV10, and Xrn1 are

sequestered to RFs

Emara and Brinton,

2007; Chahar et al.,

2013

IRAV and MOV10 localizes to RFs and associates with

DENV NS4A and NS3

Balinsky et al., 2017

LSm1 binds to the Dengue virus RNA 3’ UTR and

localizes to viral RFs

Dong et al., 2015

Zika Virus No No DDX6 and DGCR8 are upregulated in ZIKV-infected

neurospheres

Garcez et al., 2017

ZIKV does not affects PBs abundance, morphology or

localization

Hou et al., 2017

ZIKV capsid protein specifically targets nuclear Upf1 for

degradation via the proteasome

Fontaine et al., 2018

Yellow fever virus (YFV) Yes* No sfRNA co-localizes at PBs and inhibits Xrn1 activity Silva et al., 2010

Kunjin virus (KUNV), Australian

strain of DENV

Yes* No sfRNA co-localizes at PBs and inhibits Xrn1 activity Pijlman et al., 2008;

Moon et al., 2012

Hepatitis C virus (HCV) Yes* Yes DDX6, LSm1, Xrn1, PATL1, Ago2, Dicer, and DDX3

localize to lipid droplets

Ariumi et al., 2011;

Berezhna et al., 2011;

Pager et al., 2013

Dcp1 and GW182 not localize to viral factories Pérez-Vilaró et al.,

2012

DDX6 did not colocalize at lipid droplets in hepatocytes

from HCV-infected patients

Pérez-Vilar et al., 2015

XRN1 stalls during exonucleolytic decay of the 5’ UTRs

of HCV

Moon et al., 2015

Bovine Viral Diarrhea Virus

(BVDV)

ND ND XRN1 stalls during exonucleolytic decay of the 5′ UTRs

of BVDV

Moon et al., 2015

Picornaviridae Poliovirus (PV) No Yes 3C protease-mediated cleavage of Xrn1, Dcp1a, and

Pan3

Dougherty et al., 2011

Protease 2A inhibits PB assembly Dougherty et al., 2015

Coxsackievirus B3 (CVB3) No Yes 3C protease-mediated cleavage of Xrn1, Dcp1a, and

Pan3

Dougherty et al., 2011

Cytoplasmic redistribution and cleavage of AUF1,

mediated by 2A and 3C protease, respectively

Wong et al., 2013

(Continued)
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TABLE 3 | Continued

Genome Virus family Virus PB

induction

PB

blockade

Mechanism References

Cleavage of MOV10 by 3C protease Rao et al., 2019b

Encephalomyocarditis virus

(EMCV)

ND ND Cleavage of MOV10 by 3C protease Cuevas et al., 2016

Enterovirus 71 (EV-71) Yes Yes Disrupts DDX6 and Dcp1a foci Zhu et al., 2016; Yang

et al., 2018b

EV71 2C protein reduces the expression of A3G through

autophagy–lysosome pathway

Li et al., 2018

MOV10 promotes viral RNA replication and

IRES-dependent translation

Wang et al., 2016

MOV10 co-localizes with PBs upon EV71 infection Wang et al., 2016

Dicistroviridae Cricket paralysis virus (CrPV) Yes Yes Disrupts aggregates containing GW182 and Dcp1 Khong and Jan, 2011

Togaviridae Sindbis virus (SINV) No Yes Viral RNA interacts with HuR Sokoloski et al., 2010

Upf1 is a restriction factor for SINV Balistreri et al., 2014

Semliki Forest Virus (SFV) ND ND Upf1 is a restriction factor for SFV Balistreri et al., 2014

Coronaviridae Mouse Hepatitis Coronavirus

(MHC)

Yes No Induces host translational shutoff Raaben et al., 2007

Severe Acute Respiratory

Syndrome Coronavirus

(SARS-CoV)

ND ND SCoV nsp1-mediated promotion of host mRNA

degradation

Kamitani et al., 2009;

Huang et al., 2011

Transmissible Gastroenteritis

Virus (TGEV)

No Yes Decreases the number of PBs Sola et al., 2011

(-)ssRNA Orthomyxoviridae Influenza virus A (IAV) No Yes NS1 interacts with RAP55, Ago1, Ago2, and Dcp1a Mok et al., 2012

Bunyaviridae Hanta virus Yes* No Cap snatching occurs in PBs Mir et al., 2008

Paramyxoviridae Respiratory Syncytial Virus

(RSV)

ND ND Reduction of Dcp1 puncta over time Dickey et al., 2015

Rabdhoviridae Vesicular stomatitis virus (VSV) ND ND Dcp1 puncta are not affected Dinh et al., 2012

ssRNA-RT Retroviridae Human Immunodeficiency virus

type 1 HIV-1

ND Yes HIV-1 genomic RNA interacts with DDX6, Ago2, and

APOBE3G

Nathans et al., 2009

Relocalization of PBs out of zones where genomic RNA

accumulates

Abrahamyan et al.,

2010

The first assembly intermediate where Gag interacts with

viral RNA contains DDX6 and ABCE1

Reed et al., 2012;

Barajas et al., 2018

Overexpression of MOV10 inhibits HIV-1 replication Burdick et al., 2010

MOV10 inhibits the degradation of APOBEC3G through

interference with the Vif-mediated ubiquitin–proteasome

pathway

Dong et al., 2015

Downregulation of Upf1, Upf2, and SMG6 in infected

monocyte-derived macrophages

Rao et al., 2019a

Feline Immunodeficiency Virus

(FIV)

ND ND Assembly intermediates are formed by DDX6, Dcp2, and

ABCE1

Reed et al., 2018

Human T-cell lymphotropic virus

type I (HTLV-1)

Yes No Tax inhibits NMD by targeting Upf1 and INT6 Mocquet et al., 2012;

Fiorini et al., 2018

Tax increases the localization of Upf1 in PBs Mocquet et al., 2012

A fraction of viral RNA colocalizes in PBs Mocquet et al., 2012;

Nakano et al., 2013

Rex inhibits Upf1 activity Nakano et al., 2013

*Maintain PB endogenous.

Consequently, the historically proposed roles of SGs and PBs in
mRNA storage and degradation have been challenged. SGs and
PBs assembly have been shown to contribute to cell survival,
inducing translational arrest and delay apoptosis by sequestration
of RACK1 from JNK, while that SGsmay inhibit growth signaling
by diverting TORC1 from its active location at lysosomes
(Arimoto et al., 2008; Kedersha et al., 2011; Thedieck et al.,

2013; Arimoto-Matsuzaki et al., 2016). Single-molecule imaging
studies have revealed that mRNAs can transiently interact or
move between SGs and PBs (Wilbertz et al., 2018; Moon
et al., 2019), and more interestingly, that mRNA translation
and degradation dynamics are equivalent for MLO-engaged and
“free” mRNAs, suggesting that their sequestration into granules
does not regulate translation and decay (Wilbertz et al., 2018).
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Recently, Niewidok et al. revealed the existence of a relative
immobile nanocore within SGs and a mobile outer liquid phase
that allows a dynamic exchange of protein and mRNA between
SGs (Niewidok et al., 2018). Importantly, the tight interaction
between SG-nanocores and prion-like domains present in many
SG and PB components has been proposed as a potential
origin of neurotoxic protein aggregates that are linked to the
progression of different neurodegenerative diseases (reviewed in
Ramaswami et al., 2013; Dobra et al., 2018), growing MLOs
as an attractive therapeutic target for the treatment of such
syndromes. A similar interest is rising regarding MLOs and viral
infections. As reviewed here, cellular and viral-induced MLOs
have been associated with a spatiotemporal regulation of viral
replication, viral assembly and host immune evasion (Schuster
et al., 2018). MLOs allow the concentration of viral proteins
and viral genome in the cytosol of infected cells, enabling a
dynamic exchange and adaptation to changing environmental
conditions. Despite all the information presented in this review
about the modulation of the MLOs assembly, many molecular
details of how some viral families proceed to subvert the MLOs
remain unknown.Why some viruses promote or inhibit theMLO
assembly is well-characterized. In many cases, these MLOs serve
as viral factories recruiting cellular proteins to ensure efficient
viral replication, while that the co-option of proteins involved in
antiviral response (e.g., interferon-stimulated genes) could have a
detrimental effect. On the other hand, the dynamism in theMLOs
assembly/disassembly over the course of a viral infection would
allow the chronicity of the infection (Ruggieri et al., 2012). Today,
we know that not only proteins, but also RNA modifications

have gained importance in the fate of mRNAs inside the cell.

These RNA modifications (e.g., m6A, m5C) have been involved
in triaging mRNAs to RNA granules (Anders et al., 2018) which
have also been widely identified in the RNA genomes of several
viruses such as HIV-1, ZIKV, HCV, IAV, KSHV, and SV40
(Reviewed in Pereira-Montecinos et al., 2017; Manners et al.,
2018). Thus, the possibility to develop drugs that upregulate these
pathways, the generation of molecules that disaggregate or target
crucial viral -MLO interactions arises to impair viral replication
(Jackrel et al., 2014). Furthermore, due to the shared mechanism
that different viruses use to modulate MLOs, drugs targeting
MLOs could eventually serve as broad-spectrum antivirals for
infectious diseases.
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