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The Editorial on the Research Topic

How Fear and Stress Shape the Mind

How do fear and stress systems interact and how do they shape ongoing and future behavioral
responses? In a classical definition of fear and stress, we think of threatening stimuli activating
a species-specific defensive threat reaction. This defensive reaction triggers physiological stress
responses including adrenal hormone release (for review see LeDoux, 2003, 2012; Johnson et al.,
2012). Knowledge of the microanatomy of conditioned threat memory is developing however,
knowledge of its interaction with stress mediated adrenal steroid systems is still emerging (LeDoux,
2003, 2012; Johnson and LeDoux, 2004; Prager and Johnson, 2009; Prager et al., 2010; Bergstrom
et al., 2011, 2013a,b; Bergstrom and Johnson, 2014; Krugers et al.). Studies have identified the key
role of the lateral amygdala and within this nucleus the microanatomy of Pavlovian fear/threat
memory consolidation, reconsolidation, and extinction has begun to be revealed (Bergstrom et al.,
2011, 2013a,b; Bergstrom and Johnson, 2014). This Frontiers Research Topic builds on previous
research by addressing key questions that reveal unique aspects and mechanisms of how fear and
stress shape the mind.

The fear neural circuitry includes; amygdala output circuits that directly activate the sympathetic
nervous system and also the hypothalamic pituitary adrenal (HPA) axis, thereby including stress
hormones in the negative emotional response (Radley). It is generally accepted that negative
emotion involves a stress response, however what stress is and how it manifests in the body has
been, and continues to be, vigorously investigated and debated. Radley summarizes detailed circuit
tracing and connectivity approaches to understand the interaction between stress and fear systems
in the brain. Proposing that the anterior bed nuclei of the stria terminalis (aBST) is the central
point for regulation of chronic stress induced hyperactivity of the HPA axis. This GABA projecting
nucleus, upstream of the PVH, receives convergent input from amygdala, prelimbic cortex, and
other fear related nuclei. Aspects of amygdala anatomy and its control of HPA responding may
underlie differences in mental responding to fear and stress (Johnson and LeDoux, 2004; Johnson
et al., 2012; McGuire et al., 2013).

Krugers et al. describe a series of studies in animals and humans that highlight the key time
course and mechanisms of stress hormones norepinephrine and glucocorticoids in facilitating fear
memories. They describe short-term rapid activation of NE Beta and Mineralocorticoid receptors
(MR) in the postsynaptic space leads to rapid insertion of AMPA receptors in the postsynaptic
membrane. Over a longer period (hours), Glucocorticoid receptors (GR) acting through genomic
mechanisms also drive insertion of AMPA receptors into the postsynaptic membrane. These
authors found that these multiple complementary cellular mechanisms facilitate and strengthen
memories of stressful events.
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By identifying the fundamental mechanisms underlying
structural changes in the fear system in response to threatening
stimulus associations, Lamprecht describes changes to the actin
cytoskeleton and suggests, that it may be essential for pre-
and post- synaptic changes that occur in the dendrite spines
(particularly in lateral amygdala and hippocampus) following
fear conditioning. It was found that inhibitors of the actin
cytoskeleton modify neuron structure and dampen long-term
memory (Lamprecht).

Starting from the assumption that age is a risk factor
for anxiety disorders (Pardon and Rattray, 2008; Shoji and
Mizoguchi, 2011), Beracochea et al. used stressed middle-
aged and non-stressed young adult mice to understand the
interaction between the fear circuitry and its link with anxiety
disorder, memory, and pharmacology. When administered
benzodiazepines in specific dose range, stressed middle-
aged mice became like young adult non-stressed mice, on a
hippocampal memory task. This provides the first evidence
of a dynamic interaction between benzodiazepines and
corticosterone levels, indicating a reduced stress effect and
improved memory performance.

Potential overlapping pathways between fear, stress, suicide,
anxiety, and aging are identified by Choi et al., who found
kinase gene expression levels increased in the prefrontal
cortex of suicide victims compared to controls. Postnatal
disruption of (kinase) genes by environmental factors may
increase later pathophysiology increasing the risk of suicide.
In addition to Kinase genes, other regulators of stress may
be important indicators and pharmacological regulators of the
amygdala-prefrontal cortex stress axis. McGuire et al. report
that Neuropeptide Y (NPY) plays a role in integrating stress
and emotion in part through regulation of CRH, and, that a
dysregulation of NPY may leave an individual more exposed to
the negative aspects of subsequent stress.

Nolte et al. summarize important work on how attachment
experiences during development influence the development of
anxiety and HPA axis sensitivity. They propose, that stress
sensitivity characteristics that an infant is born with could
represent in utero adaptation of stress regulation style of the
mother. Thus, anxiety in the mother can be transferred from
mother to child through dysregulation of the HPA axis. A
person’s sensitivity to developing post-traumatic stress disorder
(PTSD) may be influenced by their genetic, development and
environmental experiences.

PTSD is associated with dysregulated fear and stress
systems. In an elegant article by Jovanovic and Norrholm, fear
inhibition models are suggested to be possible translational
tools for studying fear reduction in animals and humans.
Facilitation of fear extinction mechanisms both, behaviorally,
and pharmacologically, may produce therapeutic modification
to underlying neural circuitry. They identify that decreased
ability to reduce fear is a risk factor for the development
of PSTD. Reduction of fear is context and time dependent.

Huff et al. developed a sophisticated virtual reality procedure
for context and cued fear in humans. They identified a time
dependency and memory consolidation of context fear develops
quickly. In contrast, memory consolidation of differential cued
fear (CS+/CS−), develops slowly. These finding have important
implications for understanding anxiety and testing anxiety in
humans.

In a fresh and novel perspective for PTSD research in wild
animals Clinchy et al. propose, that we need to know how real
animals deal with real stress. They investigate the “predator
model of PTSD” in which exposure to odor of the predator
leads to long lasting changes in the brain and body, including to
CRH and corticosterone, and to dendrite morphology. Predator
exposure to wild prey animals has been shown to lead to 40% less
offspring production and it is linked to glucocorticoid elevation
in the parents. Multi-generational stress has been demonstrated
in snowshoe hares which may increase an adaptive predator
response in future offspring. Clinchy et al. propose, that trans-
generation stress responses may be personally maladaptive but
evolutionarily adaptive. If stress is maladaptive why does it
persist? It may be a struggle to live with but not necessarily
maladaptive to survival, thus maladaptive stress responses may
make sense.

Throughout human history, every generation has arguably
faced an epidemic of fear and stress associated mental trauma
which frequently manifests as PTSD (Ursano et al., 2010).
This epidemic afflicts past, present and future generations.
The 11 studies presented provide a fresh perspective into how
fear and stress systems interact and how they may influence
the development of emotional and pathological states. How
bodily stress systems interact with the neurobiology of fear
and mental health continues to be an important question in
neuroscience (Prager et al.). Future studies will need to revisit
and solve fundamental mechanisms of emotion in order to
effectively understand and treat pathologies of fear, stress, and
trauma.
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A network of interconnected cell groups in the limbic forebrain regulates
hypothalamic-pituitary-adrenal (HPA) axis activation during emotionally stressful
experiences, and disruption of these systems is broadly implicated in the onset of
psychiatric illnesses. A significant challenge has been to unravel the circuitry and
mechanisms providing for regulation of HPA output, as these limbic forebrain regions
do not provide any direct innervation of HPA effector cell groups in the paraventricular
hypothalamus (PVH). Recent evidence will be highlighted that endorses a discrete region
within the bed nuclei of the stria terminalis serving as a neural hub for integrating
and relaying HPA-inhibitory influences to the PVH during emotional stress, whereas
the prevailing view has involved a more complex organization of mulitple cell groups
arranged in parallel between the forebrain and PVH. A hypothesis will be advanced that
accounts for the capacity of this network to constrain the magnitude and/or duration of
HPA axis output in response to emotionally stressful experiences, and for how chronic
stress-induced synaptic reorganization in key cell groups may lead to an attrition of these
influences, resulting in HPA axis hyperactivity.

Keywords: bed nuclei of the stria terminalis, prefrontal cortex, hippocampus, ventral subiculum, HPA axis,

paraventricular nucleus of the hypothalamus, plasticity, dendritic spine

INTRODUCTION
Stress may be broadly defined as the constellation of physiolog-
ical and behavioral responses to any challenge that overwhelms,
or is perceived to overwhelm, selective homeostatic systems of the
individual (Selye, 1980; Day, 2005). A hallmark feature of stress
entails activation of the hypothalamic-pituitary-adrenal (HPA)
axis. This neuroendocrine cascade is initiated when visceromo-
tor neurons in the paraventricular nucleus of the hypothalamus
(PVH) stimulate the release of pituitary adrenocorticotropic hor-
mone (ACTH) into the bloodstream, which, in turn, activates glu-
cocorticoid (GC; cortisol in humans, corticosterone in rodents)
secretion from the adrenal gland (Antoni, 1986). GCs are the
end-products of HPA axis activation, and facilitate catabolic pro-
cesses throughout the body during stress by increasing energy
metabolism and utilization. GCs also have activating effects on
cardiovascular output, and inhibit non-essential processes, such
as immune and reproductive functions. Finally, HPA axis activa-
tion during stress alters cognitive and emotional processes rele-
vant for behavioral adaptation (e.g., Shors et al., 1992; McIntyre
et al., 2003).

Despite the critical role that stress plays for adaptive coping
and survival of the individual, it is widely implicated in the
onset of psychiatric disease, most notably depression and post-
traumatic stress disorder (Kessler, 1997; Yehuda, 2002). Initial
studies revealed that patients hospitalized for major depressive
illness commonly manifested hypercortisolemia and HPA axis
insensitivity to GC receptor agonist treatment (i.e., dexamethasone

supression test; Carroll et al., 1976). A wealth of research implicates
elevated GCs in compromised brain function, disruptions in the
neural circuits imparting negative feedback control over the HPA
axis, and further endangerment of brain regions targeted by GCs
(for reviews, see Sapolsky et al., 1986; Conrad, 2008). Since the
neural substrates providing restraining influences over the stress
axis are also regions that play important roles in cognition and
emotion, elevated GC levels and HPA axis dysregulation may be
key steps in producing the disordered thought and affect that
characterize stress-related mental illnesses.

Animal models of repeated stress (e.g., chronic variable
stress, chronic intermittent stress, chronic social defeat stress)
have proven useful for modeling HPA axis hyperactivity and
depression-like behaviors, and would appear to provide the
appropriate setting for teasing apart the role of the HPA axis
in the pathogenesis of depression. However, progress has been
hampered by the fact that the neural circuitry and mechanisms
accounting for limbic forebrain control over the HPA axis have
proven difficult to unravel. While a number of these candidate
regions have been implicated in HPA axis inhibition during emo-
tional stress (Herman et al., 2003; Radley and Sawchenko, 2011),
none of these cell groups provide any appreciable direct innerva-
tion of the PVH. Combined pathway tracing and immediate-early
gene mapping studies have helped to identify a number of candi-
date cell groups that could serve as disynaptic relays to interface
between forebrain regulators and the PVH. The picture that
emerges is one involving a complex network of higher-order
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structures interconnected in a parallel and multisynaptic man-
ner with the PVH (Cullinan et al., 1993; Roland and Sawchenko,
1993; van de Kar and Blair, 1999; Herman et al., 2003).

Here we highlight recent advances in our research suggesting
an entirely different organization for limbic forebrain control over
the stress axis: one involving convergence onto a circumscribed
cluster of GABAergic neurons within the anterior bed nuclei of
the stria terminalis (aBST), that, in turn, directly inhibits the PVH
and HPA activation. This model has several implications for neu-
ral circuits and mechanisms underlying HPA axis control and
GC-dependent negative feedback. An unforeseen but not inci-
dental feature is that this model helps to clarify the sequelae of
chronic stress-induced HPA axis hyperactivity, whereby structural
reorganization within limbic forebrain cell groups (i.e., synapse
loss/gain) throughout the network leads to an attrition of HPA
axis control.

EMOTIONAL STRESS CIRCUITRY: A SEARCH FOR THE
MISSING LINK
Over the years, attempts to organize stressors into a taxonom-
ical framework have resulted in two major groupings, phys-
iological (a.k.a., systemic), and emotional (a.k.a., neurogenic,
psychogenic) (Fortier, 1951; Allen et al., 1971). More recent
immediate-early gene mapping as a generic index of cellular
activation in stress-related circuits has helped to provide a consid-
erable degree of face validity for these distinctions (Cullinan et al.,
1995; Li and Sawchenko, 1998; Dayas et al., 2001). Physiological
stressors are generally considered to involve more targeted chal-
lenges that overwhelm selective homeostatic systems, such as
hemorrhage, hypoxia, or immunogenic stimuli. Emotional stres-
sors require interpretation by exteroceptive sensory modalities
and integration with distinct cognitive (comparison with past
experience) and affective information processing systems in the
brain (Herman and Cullinan, 1997; Sawchenko et al., 2000; Dayas
et al., 2001). Commonly employed animal models of emotional
stress are restraint, immobilization, and footshock. Whereas each
class of stressor enlists brainstem and hypothalamic effectors
for activation of the sympathoadrenal and HPA axis output,
emotional stressors manifest widespread activation in the limbic
forebrain, and correspond to a broad array of behavioral changes
(e.g., vigilance, fear, anxiety) that help to facilitate adaptive cop-
ing as required by the specific environmental demand (Cullinan
et al., 1995; Campeau et al., 1997; Li and Sawchenko, 1998; Dayas
et al., 2001).

Functional and lesion studies implicate a network of limbic
forebrain cell groups in the inhibitory control of HPA acti-
vation during emotional stress (Cullinan et al., 1995; Herman
and Cullinan, 1997; Akana et al., 2001; Jaferi and Bhatnagar,
2006). Noteworthy examples of regions implicated in HPA axis
inhibition are the septum (Feldman and Conforti, 1980b), poste-
rior paraventricular nucleus of the thalamus (PVTp; Jaferi and
Bhatnagar, 2006), ventral subiculum (vSUB, the region issu-
ing extrinsic projections of hippocampal formation involved in
stress regulation; Herman et al., 1995), and mPFC (Diorio et al.,
1993). These cell groups are conspicuously lacking in any direct
innervation of HPA effector neurons within the PVH, instead
issuing projections throughout numerous basal forebrain and

hypothalamic structures (Sesack et al., 1989; Cullinan et al., 1993;
Herman et al., 2003). Many of these regions (notably, mPFC
and hippocampal outputs) give rise to predominantly excitatory
projections, utilizing the neurotransmitter glutamate (Malthe-
Sorenssen et al., 1980; Walaas and Fonnum, 1980; Ottersen
et al., 1995), implicating a hitherto unknown, GABAergic relay.
Previous work has identified candidate GABAergic cell groups
(i.e., preoptic area, aBST, posterior BST, dorsomedial hypotha-
lamic nucleus, PVH-surround regions) between vSUB and PVH
(Cullinan et al., 1993), laying a foundation for understanding how
controls over the axis may be organized. Nonetheless, whether
influences from vSUB, and other HPA-inhibitory cell groups,
are mediated via several disynaptic relays arranged in parallel to
each other, and which relays are capable of integrating inhibitory
signals from the limbic forebrain during emotional stress, has
remained elusive.

Our starting point into this problem was to first address the
nature of mPFC involvement in acute emotional stress-induced
HPA activation, and we have shown that distinct subregions
of mPFC differentially modulate the stress axis (Radley et al.,
2006a). These studies were inspired from the idea that a variety
of other functions subserved by mPFC are differentiated in a
dorsal-to-ventral manner (Morgan and LeDoux, 1995; Heidbreder
and Groenewegen, 2003). Indeed, previous reports in the stress
literature tended to treat the mPFC as a homogeneous structure,
and discrepancies remained concerning the nature of mPFC’s
influence (excitatory or inhibitory) on HPA output (Sullivan
and Gratton, 1999; Akana et al., 2001; Figueiredo et al., 2003b;
Spencer et al., 2005). Through a series of experiments employing
discrete excitotoxin lesions in cortical subfields of mPFC, we found
that lesions of dorsal mPFC (encompassing prelimbic cortex, PL,
and portions of dorsal anterior cingulate cortex, ACd) enhanced,
whereas ventral mPFC (infralimbic cortex, IL) lesions inhibited
HPA activation in response to acute restraint stress (Radley et al.,
2006a). Furthermore, dorsal mPFC lesions resulted in a prolonged
elevation of plasma corticosterone after the cessation of restraint,
which is consistent with its role as a target site for GC negative
feedback under normal conditions (Diorio et al., 1993) (Figure 1).

Follow-up work has shown that a discrete cluster of GABAergic
neurons in aBST forms the missing link in a circuit convey-
ing HPA-inhibitory influences of PL during emotional stress
(Radley et al., 2009). First, functional neuroanatomical experi-
ments assayed for sources of GABAergic input to PVH whose
sensitivity (i.e., as measured with Fos activation) to an acute stress
or (restraint) was diminished by dorsal mPFC lesions. Of the
stress-sensitive, GABAergic, PVH-projecting regions analyzed, a
circumscribed region in the aBST (corresponding to the dor-
somedial and fusiform subdivisions of Dong et al., 2001) was
exclusive in showing a decrement in Fos activation following PL
lesions (Radley et al., 2009). By contrast, IL lesions were noted to
attenuate Fos activation in PVH-projecting neurons in the same
region, albeit in a subpopulation of non-GABAergic neurons
(Figure 2).

In a second series of experiments, functional ablation of
GABAergic neurons in aBST recapitulated the effects of PL lesions
on acute stress-induced HPA activation (Radley et al., 2006b,
2009). These studies were performed by focally administering
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FIGURE 1 | Top: Darkfield photomicrographs showing
corticotropin-releasing factor (CRF) mRNA expression in the paraventricular
nucleus of the hypothalamus (PVH) as a function treatment condition.
Restraint stress results in a marked increase in CRF mRNA expression in
the PVH dorsal medial parvicellular subdivision of intact animals, which is
enhanced in prelimbic (PL)-lesioned rats. No such enhancement of
stress-induced CRF mRNA expression was seen in infralimbic (IL)-lesioned
animals. Bottom: Stress exposure also significantly increases plasma
corticosterone (CORT) levels in sham-lesioned animals. PL lesions result in
a prolonged increase in stress-induced plasma CORT, while IL-lesioned
animals show a more rapid recovery to pre-stress levels. ∗Differs
significantly from basal (0 min) values from within each group, p < 0.05;
†Differs significantly from sham-lesioned animals for a given time point,
p < 0.01. Data are from Radley et al. (2006a).

an immunotoxin in aBST that preferentially ablates GABAergic,
while sparing non-GABAergic, neurons (Radley et al., 2009).
Ablation of GABAergic cell groups in aBST enhanced activation
of PVH and hormonal indices of HPA axis output in response
to acute restraint. Previous reports that indiscriminate lesions to
aBST attenuate stress-induced HPA output (Choi et al., 2007),
whereas stimulation of aBST may either facilitate or inhibit HPA
activity (Dunn, 1987), are consistent with the idea that distinct
HPA-regulatory influences arise from neurochemically heteroge-
neous subpopulations. Thus, opposing influences of the dorsal
and ventral mPFC may commingle within the same region of
aBST onto separate populations of PVH-projecting GABAergic
and non-GABAergic neurons, respectively, to modulate emo-
tional stress-induced HPA output (Figure 3).

Subsequent anatomical pathway tracing studies have that PL is
the cortical subfield that provides the source of HPA-inhibitory

*  /
*  /

*  
*  

*  /

/*  

FIGURE 2 | Top: Brightfield photomicrograph showing stress-induced Fos
immunoreactivity (black nuclei) and Fluoro-Gold (FG; brown cytoplasm) in
anterior bed nuclei of the stria terminalis (aBST). Retrogradely-labeled cells
are concentrated in fusiform (fu) and dorsomedial (dm) subnuclei of aBST
following tracer injections centered in the PVH. Inset: Coronal section
showing the approximate location of aBST corresponding to the region
comprising the relevant subdivisions (red box). Middle left: Following
restraint stress, cells doubly-labeled for Fos and Fluoro-Gold (arrows) are
abundant in sham-lesioned animals. Middle right: Concurrent labeling for
Fos (brown) with glutamic acid decarboxylase (GAD67) mRNA (black grains)
showing comparable increases in doubly-labeled cells (arrows) in the
sham-lesioned group following restraint stress. Bottom: Mean + SEM
number of neurons co-labeled for Fos and Fluoro-Gold, and for Fos and
GAD67 mRNA, in aBST of treatment groups. Whereas both PL and IL
lesions reliably diminished stress-induced activation of PVH-projecting
neurons in aBST, only PL lesions resulted in a decrease in the activation of
GABAergic neurons in this subregion, implicating different relays for
prefrontal modulation of the stress axis. ∗Differs significantly from
sham-lesioned control animals, p < 0.05. †Differs significantly from
sham-lesioned stressed animals, p < 0.05. Portions of these data have
been derived from Radley et al. (2009), and Radley and Sawchenko (2011).
Data on IL lesion effects on stress-induced aBST activation are previously
unpublished.

influences that emanate from the mPFC (Radley et al., 2006b,
2008b, 2009). Whereas the subcortical projections of dorsal and
ventral mPFC are considered to be highly divergent (e.g., Vertes,
2004), their projections to aBST distribute in a topographically
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FIGURE 3 | Two disynaptic pathways from medial prefrontal cortex

(mPFC) are proposed to account for the differential modulation of

emotional stress-induced HPA output. Whereas evidence highlighted in
the text [see also, Radley et al. (2009)] supports GABAergic neurons in the
anterior bed nuclei of the stria terminalis (aBST) as interceding for the
HPA-inhibitory influences of prelimbic cortex (PL; red lines), the pathway
from infralimbic cortex (IL) is suggested, and remains to be verified with
functional studies. ac, anterior commissure; ACTH, adrenocorticotropic
hormone; Ant. Pit., anterior pituitary gland; cc, corpus callosum; CRF,
corticotropin-releasing factor; ot, optic tract; PVH, paraventricular nucleus of
the hypothalamus.

graded, increasing dorsal-to-ventral manner (Radley et al., 2009).
Anterograde tracer injections centered in the most dorsal aspect
of mPFC (ACd) fail to label any projections to aBST, more ven-
trally placed injections label progressively more inputs, with PL
providing a moderate innervation of aBST, and IL providing the
densest input. Acute restraint stress increases activation of aBST-
projecting neurons throughout PL and IL, and most prominently
in the medial-to-rostral aspect of PL (Radley and Sawchenko,
unpublished observations). Finally, dual tracing experiments
show that PL projections overlap extensively, and make appo-
sitions with, PVH-projecting cell groups in aBST (Radley and
Sawchenko, 2011).

Insight into the broader organization of HPA axis control has
been gleaned from examination of a second limbic forebrain
region implicated in the inhibitory regulation of the neuroen-
docrine stress response. The hippocampal formation (HF) is
similar to mPFC from the standpoint that its extrinsic projec-
tions are excitatory, it avoids direct innervation of PVH proper,
and is capable of inhibiting emotional-stress induced HPA out-
put (Swanson and Cowan, 1977; Walaas and Fonnum, 1980;
Canteras and Swanson, 1992; Cullinan et al., 1993). Previous
studies have shown that HPA-inhibitory influences of HF are
localized to vSUB (Herman et al., 1995; Herman and Mueller,
2006), implicating a disynaptic GABAergic relay to PVH. vSUB
contains the bulk of the extrinsic projections of HF that innervate
candidate PVH-projecting GABAergic cell groups, such as vari-
ous subregions of the BST and hypothalamus, and preoptic area
(Cullinan et al., 1993). Nonetheless, attempts to define the precise
relays subserving vSUB influences on the stress axis, or its rela-
tion to other relays involved in HPA axis inhibition, had not been
previously clarified.

We have found that vSUB influences on the HPA axis are
also interceded for by aBST, similar in nature to PL (Radley and

Sawchenko, 2011). First, GABAergic PVH-afferent cell groups
in aBST showed a diminished functional activation in ani-
mals bearing excitotoxin lesions of vSUB. In these experiments,
vSUB lesions were also noted to increase multiple indices of
acute restraint-induced HPA activation, as previously reported
(Herman et al., 1995). Although HF is not typically regarded as
one of the more stress-responsive regions in the limbic forebrain
(Li and Sawchenko, 1998), vSUB, particularly its aBST-projecting
neurons, does in fact display a moderate degree of engage-
ment following acute restraint stress (Radley and Sawchenko,
2011). Finally, animals bearing dual tracer deposits show that
vSUB projections overlap extensively, and make appositions with,
stress-sensitive PVH-projecting cell groups in aBST. Collectively,
these studies highlight a neural circuitry from vSUB → aBST
(GABA) → PVH, with each node in the pathway showing func-
tional activation in response to acute restraint stress, and lesions
of vSUB resulting in corresponding alterations in output (i.e.,
decreased aBST, increased PVH/HPA activation).

A key feature of aBST, in addition to its role as a site of con-
vergence, is that it appears to integrate limbic cortical influences
(Radley and Sawchenko, 2011). For instance, animals bearing
excitotoxin lesions of both PL and vSUB were found to exhibit
more exaggerated central indices of stress-induced HPA responses
as compared to lesions of either alone. Furthermore, ablation
of GABAergic cell groups in aBST produced a greater enhance-
ment of hormonal indices of HPA activation in response to acute
restraint, as compared to animals with vSUB lesions alone. Given
that dual lesions of PL and vSUB, or separately, by disruption of
their interceding inhibitory relay, result in a greater overall effect
on stress-induced HPA output than lesions of either, implicates
aBST as a key integrator of stress-inhibitory influences ema-
nating from the limbic cortex. Indeed, our examination of the
projections of PL and vSUB reveal extensive overlap in their ter-
minal innervation of PVH-projecting neurons within aBST, with
evidence of some convergence onto single neurons (Figure 4).

IMPLICATIONS OF AN HPA-INHIBITORY NETWORK
The elucidation of this network should help to address some of
the lingering questions concerning the central organization of
HPA control. First is the generality of aBST as a site of conver-
gence and integration of additional forebrain limbic influences
on emotional stress-induced HPA output (Figure 5). None of
the other forebrain cell groups implicated in the inhibition of
emotional stress-induced HPA activity (i.e., septum, posterior
paraventricular thalamic nucleus) provides any substantial direct
innervation of PVH, although each projects to aBST (Shin et al.,
2008). Thus, aBST GABAergic neurons are poised to receive and
integrate these along with prefrontal and hippocampal influences.
The amygdala is generally considered to exert an excitatory influ-
ence on HPA axis activation (Prewitt and Herman, 1997; Sullivan
et al., 2004), however, the circuits and mechanisms accounting
for this are poorly understood. Both CeA and MeA issue a mas-
sive GABAergic input into GABAergic regions of aBST (Sun and
Cassell, 1993; Tsubouchi et al., 2007), particularly the aforemen-
tioned PVH-projecting population. This suggests that excitatory
effects on HPA output may be mediated via disinhibition of
this modulatory pathway. The basolateral amygdala (BLA), which
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FIGURE 4 | Top: Overlap of retrograde tracer injections in PVH (Fluoro-gold,
FG; cyan), and anterograde tracers in PL (BDA; green) and vSUB
(FlouroRuby, FR; red) was evaluated in fluorescence preparations using
confocal microscopy. Instances of BDA- (arrows) and FR-labeled
(arrowhead) terminals were found to make appositions onto single
PVH-projecting neurons in aBST, by analysis of single optical planes
containing fluorescence labeling for all three markers. Bottom row: After a
single stress exposure, numerous instances of Fos-labeled nuclei are
evident in PVH-projecting neurons containing appositions from BDA- (left)
and FR-labeled (right) terminals. Data are based upon Radley and
Sawchenko (2011).

consists predominantly of pyramidal-like glutamatergic neurons,
is also implicated in stimulating emotional stress-induced HPA
activation (Bhatnagar et al., 2004). One likely scenario is for
BLA to access the PVH via the BLA-to-CeA pathway widely
implicated as the direction of information flow for the genesis of
fear-related autonomic and behavioral responses (Pitkanen et al.,
1997; LeDoux, 2000), then proceeding via a CeA (GABA) →
aBST (GABA) → PVH pathway.

The model as proposed may also help to advance our under-
standing of the circuits and mechanisms accounting for GC
receptor-mediated negative feedback. A number of cell groups
implicated in inhibiting emotional stress-induced HPA activation
(i.e., PL, HF, PVTp, lateral septum) are also capable of impart-
ing GC receptor-mediated negative feedback on the axis (Feldman
and Conforti, 1980a; Jacobson and Sapolsky, 1991; Diorio et al.,

FIGURE 5 | Proposed role of anterior bed nuclei of the stria terminalis

(aBST) as an integrator of limbic forebrain influences on emotional

stress-induced HPA output. Previous work of ours supports the pathways
highlighted in red, with aBST providing an important source of GABAergic
innervation of PVH, and relaying limbic cortical influences. Other forebrain
cell groups known to influence HPA output (highlighted in black), notably via
GC receptor-mediated negative feedback, also project to aBST, whose
integrated output targets PVH directly. Like ventral subiculum (vSUB) and
prelimbic cortex (PL), these regions do not provide any appreciable
innervation of PVH, but do issue projections to the aBST. ACTH,
adrenocorticotropic hormone; Amyg, amygdala; cc, corpus callosum; CRF,
corticotropin-releasing factor; Glu, glutamate; HF, hippocampal formation;
LS, lateral septum; ot, optic tract; Pit., pituitary gland; PVH, paraventricular
nucleus of the hypothalamus; PVT, paraventricular thalamic nucleus.

1993; Jaferi and Bhatnagar, 2006). This raises the possibility
that aBST may integrate steroid-dependent feedback information
from the limbic forebrain for conveyance to the PVH. Evidence
increasingly suggests that GC negative feedback in the limbic
forebrain may be mediated via an endocannabinoid signaling
mechanism. For example, Hill and colleagues (2011) recently
reported that GC receptor activation in mPFC neurons mobilizes
the release of endocannabinoids and increases excitatory outflow
from principal neurons via the presynaptic inhibition of GABA
release from local interneurons (Hill et al., 2011). Understanding
of a broader circuitry for imparting inhibitory influences over the
stress axis should allow for assessment of whether GC negative
feedback is restricted to upstream mediators, or whether aBST
can intercede for these influences as a proximate source of steroid-
mediated feedback, and, the generality of endocannabinoid sig-
naling in relaying GC-dependent feedback in other components
of the network.

Finally, if the proposed framework is inhibitory in nature,
this helps to clarify a fundamentally important question of what
drives the initial activation of PVH and HPA output during stress.
As previously noted, IL appears to exert an excitatory influence
on HPA output via a distinct realy in aBST, and may comprise
one of the upstream components for an activating network. The
idea that a non-GABAergic subpopulation of aBST neurons relays
excitatory influences from IL to the PVH is consistent with evi-
dence that indiscriminate excitotoxin lesions in aBST reliably
attenuate acute emotional stress-induced HPA output (Choi et al.,
2007). One proposal from Choi and colleagues (2007) is that the
non-neuroendocrine CRF-expressing subpopulation within aBST
(corresponding to the fusiform subdivision of Dong et al., 2001)
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may provide a source of excitatory input into PVH, and future
studies will help to clarify this relationship further. At least with
regard to physiological stress, HPA output appears to be medi-
ated predominantly via medullary aminergic inputs to PVH, as
ablation of this pathway completely blocks central and periph-
eral indices of HPA activation under exposure to these challenges
(Ritter et al., 2003; Schiltz and Sawchenko, 2007). By contrast, this
pathway does not mediate HPA activation during acute emotional
stress (Ritter et al., 2003; Schiltz and Sawchenko, 2007), and evi-
dence for an equivalent activating system under this category of
challenges remains elusive.

CHRONIC STRESS-INDUCED NETWORK REORGANIZATION
Chronic stress induces profound structural and synaptic changes
in a variety of limbic forebrain regions. mPFC (ACd, PL, and
IL) and CA3 hippocampal neurons show regressive alterations
in apical dendritic and synapse morphology (Watanabe et al.,
1992; Magarinos and McEwen, 1995a; Cook and Wellman, 2004;
Radley et al., 2004, 2006b; Stewart et al., 2005; Hajszan et al.,
2009), whereas amygdala (BLA) neurons show increases in these
indices (Vyas et al., 2002, 2006). These changes are paralleled by
reductions in gray matter volume and functional impairments
in mPFC and HF of depressed individuals (Sheline et al., 1996,
2003; Drevets et al., 1997). Generally speaking, stress-induced
structural plasticity is dependent on elevated GCs and excitatory
glutamatergic signaling (Liu et al., 2008; Magarinos and McEwen,
1995b). Such structural alterations have been linked with dis-
ruptions in learning and memory (Luine et al., 1994; Stewart
et al., 2005; Liston et al., 2006; Dias-Ferreira et al., 2009; Holmes
and Wellman, 2009; cf. Conrad, 2010), and increases in anxiety-
like behaviors (e.g., elevated plus maze performance; Mitra et al.,
2005). HPA axis hyperactivity (i.e., sensitization, facilitation) is
also widely documented to result from chronic stress (Ottenweller
et al., 1989; Dallman et al., 1992; Willner, 1997; Bhatnagar and
Dallman, 1998; Figueiredo et al., 2003a; Weinberg et al., 2010),
although its relation to structural plasticity in the limbic forebrain
remains to be thoroughly examined.

Much of the previous literature relevant to studying the effects
chronic stress on structural plasticity entailed examination of
dendritic branching patterns. This is likely due to the fact that
stress and GCs produce robust changes on neurons that are
readily manifest at the morphological level, and that changes
in dendritic branching patterns (i.e., complexity, length, branch
numbers) generally were thought to correlate with changes in
synaptic connectivity. Nonetheless, increasing attention has been
given to more detailed analyses of synaptic alterations in neu-
ral circuits following chronic stress, given their critical role as
junctional points of connectivity that mediate information flow
between neurons. Dendritic spines represent sites of postsynaptic
contact for the majority of excitatory synaptic input in corti-
cal structures. Spines are highly motile and dynamic structures
that exhibit a wide degree of morphological diversity, with alter-
ations in shape and number providing a cellular correlate for
learning capacity, learning, and memory (Bailey and Kandel,
1993; Sorra and Harris, 2000; Kasai et al., 2003; Wilbrecht et al.,
2010). Despite the heterogeneity of spine morphology, their clas-
sification into broad categories has proven useful. For instance,

long and thin spines tend to be regarded as immature, and are
more abundant during development, whereas mushroom-shaped
spines (large diameter head, small diameter neck) represent
stronger, more well-established excitatory synapses.

A number of studies suggest that chronic stress leads to a
net loss of excitatory synapses in PL neurons (Radley et al.,
2006b; Michelsen et al., 2007; Liu and Aghajanian, 2008; Arnsten,
2009). Notably, dendritic spines in the distal portions of the
apical dendritic tree appear to be most profoundly impacted
by chronic stress, inclusive of retraction of distal processes and
decreases in spine density (Figure 6) (Radley et al., 2006b; Liu
and Aghajanian, 2008). We conducted a high-throughput anal-
ysis of over 17,000 dendritic spine morphologies in PL and ACd
pyramidal neurons (Radley et al., 2008a), and found that chronic
stress resulted in an overall decrease in apical dendritic spine
density, manifested by a loss of mushroom-shaped spines, and
an increased frequency of long and thin spines. Another recent
report employing two-photon microscopic in vivo imaging of
spines in has provided the most compelling evidence to date for
the capacity of GCs to mediate stress-induced spine alterations in
the cortex (i.e., primary motor, secondary motor, somatosensory;
Liston and Gan, 2011). Whereas acute GC exposure increased the
rate of spine turnover (elimination and formation), prolonged
GC exposure selectively increased the elimination of spines, par-
ticularly ones that were older and more stable. These, and other
studies (Michelsen et al., 2007; Liu and Aghajanian, 2008), sup-
port the idea that chronic stress, via increases in GC levels,
may selectively target the mature, stable population of excitatory
synapses throughout cortical structures.

Chronic stress has also been shown to decrease synapse and
spine density in hippocampal neurons (Sousa et al., 2000; Sandi
et al., 2003; Stewart et al., 2005; Hajszan et al., 2009). In one
of the more rigorous demonstrations of this phenomenon, one
study employed electron microscopy (EM) and stereological 3-D
reconstructions in, finding that chronic stress induced signifi-
cant decreases in dendritic spine density and synapse number,
and was reversible following a stress-free recovery period (Sandi
et al., 2003). In another study employing EM, Magarinos and
colleagues (1997) reported ultrastructural differences in presy-
naptic terminals of synapses in the mossy fiber pathway in CA3
neurons following chronic stress, indicative of an up-regulation
of presynaptic activity and release of glutamate. Taken together,
decreases in density and in overall numbers of postsynaptic
excitatory contacts may help to limit the extent of excitotoxic
damage that would otherwise result from prolonged activation of
glutamatergic synapses under chronic stress.

A number of studies have begun to identify the cellular mech-
anisms underlying chronic stress-induced spine synapse loss (for
reviews, see Arnsten, 2009; Duman and Voleti, 2012). For exam-
ple, reduced expression of certain neurotrophic/growth factors
(notably, brain-derived neurotrophic factor) in the hippocampus,
and more recently in mPFC, may contribute to dendritic spine
synaptic compromise in these regions (Liu et al., 2012; Nibuya
et al., 1995; Kuipers et al., 2003). Alterations in protein kinase
C signaling have also been shown to underlie dendritic spine
loss in mPFC (Hains et al., 2009). Finally, the mammalian tar-
get of rapamycin (mTOR) signaling pathway has recently been
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FIGURE 6 | Summary of effects of chronic stress on structural plasticity

in mPFC pyramidal neurons. In these studies (Radley et al., 2004, 2006b,
2008a), high resolution analyses were performed in digitally reconstructed
dendritic segments from fluorescent dye-injected pyramidal neurons in dorsal
anterior cingulate (ACd) and prelimbic (PL) areas. An atlas plate (lower left)
depicts the approximate region within mPFC that neurons were filled

for morphologic analyses. Distance in millimeters relative to bregma is
indicated. Arrows highlight the fact that dendritic atrophy and spine/excitatory
synapse loss is most prominent on distal apical dendrites (right). Spine
morphologic analyses reveal fewer spines with mature (stubby,
mushroom-shaped), and a greater number with immature (long and thin)
phenotype.

implicated in synaptic deficits that result from excessive gluta-
matergic stimulation, such as that which ensues under chronic
stress (Magarinos and McEwen, 1995b; Li et al., 2011). These
studies highlight potentially important cellular mechanisms for
investigating their role in the circuit alterations underlying neu-
roendocrine adjustments following chronic stress.

From the network perspective, large-scale decreases and desta-
bilization of the excitatory synapse population in mPFC and HF
could uncouple excitatory afferent input from excitatory outflow
in PL and/or HF, resulting in their diminished influence over PVH-
projecting GABAergic neurons in aBST. Concurrent increases in
BLA neuronal dendritic branching and spine densities could also
drive disinhibition of PVH-projecting GABAergic neurons, via
increasing activation in the extrinsic GABAergic projections from
CeA. One challenge concerns whether changes throughout the
entire network are necessary for HPA axis hyperactivity following
chronic stress, or whether this phenotype is regulated by a distinct
pathway or mechanism. As many of the stress-related changes
in HF have been demonstrated more dorsally in CA3, and to
some extent in DG and CA1 (e.g., Sousa et al., 2000; Snyder
et al., 2011) it is unclear whether vSUB serves as a way station, or
whether stress effects within vSUB proper (or ventral hippocam-
pus) account for alterations in excitatory outflow to aBST. Another
issue concerns the fact that little is known about how chronic
stress impacts other cell groups implicated in the stress-inhibitory
network, such as PVTp and lateral septum. The fact that GCs
appear capable to exert widespread effects throughout the cortex,
inclusive of sensorimotor regions (Liston and Gan, 2011), poses
additional challenges in teasing apart neural circuits that underlie
stress-related behavioral and physiological alterations.

SUMMARY
It has been previously established that the HPA axis response to
emotional stress involves a network of limbic forebrain afferents
that exert their effects on the PVH via multisynaptic and parallel
pathways. Recent evidence lends support for at least two lim-
bic cortical regions, mPFC and HF, that impart their inhibitory
influences over the stress axis by converging on a discrete tar-
get, the aBST, that in turn inhibits the PVH and HPA activity.
Importantly, GABAergic neurons in the aBST exhibit the capacity
to integrate the inhibitory prefrontal and hippocampal influ-
ences that they impart on the stress axis. There are a number
of hypotheses that derive from this model that should help to
inform future work. One idea is that aBST serves as a neural hub
for receiving and integrating stress-modulatory influences from
other limbic forebrain regions (i.e., PVTp, septum, amygdala).
Another implication is that this network, notably via GABAergic
relays in aBST, may serve to integrate GC receptor-mediated
negative feedback signals from some, if not all of, these limbic
forebrain regions via a presynaptic endocannabinoid signaling
mechanism. As this network is inhibitory, this may help to inform
the search for HPA-activating networks; i.e., something akin to
the medullary aminergic inputs to PVH that are known to drive
HPA output in response to physiological stressors.

Chronic stress-induced neuroplasticity throughout the lim-
bic cortex, or within key regions, may lead to an attrition of
their excitatory influence on the PVH-projecting GABAergic cell
population in aBST, producing HPA axis hyperactivity. A key
feature of this hypothesis is that regressive changes are evi-
dent in regions that normally serve to inhibit HPA axis activa-
tion during emotionally stressful experiences, and hypertrophic
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changes (i.e., increased branching and synapse number) are evi-
dent in regions that contribute an excitatory influence on HPA
output. Whereas considerable gains have been made in under-
standing the cellular mechanisms underlying dendritic spine
dynamics, much of this work has not been applied to enhance
our knowledge of how chronic stress leads to long-term changes
in neuroendocrine function. Moreover, examination of why stress
and GCs have bidirectional effects on excitatory synapse plastic-
ity in BLA, relative to HF and mPFC, may shed light on what are
likely to be categorically distinct effects on the regulation of gene
expression in these cell types that are imparted by GCs. Finally,
susceptibility to stress-related psychiatric illnesses depends on a

number of factors (e.g., genetics, early-life experiences, previous
stress exposure) that may help to explain why some individuals
go on to develop stress-related disorders while others do not. The
extent to which structural plasticity in limbic cortical regions is
predictive of adaptation or failure of stress/HPA control systems
is of fundamental importance for informing the issue of how these
more complex hereditary and environmental factors may tip the
balance between stress resilience and pathology.
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Memories for emotionally arousing and fearful events are generally well retained. From the
evolutionary point of view this is a highly adaptive behavioral response aimed to remem-
ber relevant information. However, fearful memories can also be inappropriately and vividly
(re)expressed, such as in posttraumatic stress disorder.The memory formation of emotion-
ally arousing events is largely modulated by hormones, peptides, and neurotransmitters
which are released during and after exposure to these conditions. One of the core reac-
tions in response to a stressful situation is the rapid activation of the autonomic nervous
system, which results in the release of norepinephrine in the brain. In addition, stress-
ful events stimulate the hypothalamus–pituitary–adrenal axis which slowly increases the
release of glucocorticoid hormones from the adrenal glands. Here we will review how glu-
cocorticoids and norepinephrine regulate the formation of fearful memories in rodents and
humans and how these hormones can facilitate the storage of information by regulating
excitatory synapses.

Keywords: glucocorticoids, norepinephrine, fear conditioning, AMPA

INTRODUCTION
In our daily life we face many emotionally arousing and stressful
experiences, ranging from small displeasures to major life events
such as accidents or loss of relatives. The perception of these events
results in behavioral and physiological responses which enable
adaptation to these potentially threatening situations (Chrousos,
1998; Kim and Diamond, 2002; de Kloet et al., 2005). Enhanced
memory for stressful experiences is a highly adaptive behav-
ioral response, which helps to remember relevant information
(McGaugh, 2000) and prepares individuals to cope appropriately
with similar events in the future (de Kloet et al., 1999).

One of the core neuro-endocrine reactions in response to a
stressful situation is the rapid activation of the autonomic ner-
vous system (ANS), which results in the release of norepinephrine
in the brain, in part by neurons located in the locus coeruleus.
These noradrenergic projections regulate neuronal function via
β-adrenergic receptors in areas that are critically involved in learn-
ing and memory such as the hippocampus, prefrontal cortex,
and amygdala (Foote et al., 1983; Gibbs and Summers, 2002;
Roozendaal et al., 2009). Stressful events also stimulate activa-
tion of the hypothalamus–pituitary–adrenal (HPA) axis, which
leads to a slow increase in the release of glucocorticoid hormones
from the adrenal cortex (corticosterone in most rodents; corti-
sol in humans). These hormones enter the brain and bind to two
subtypes of discretely localized receptors, i.e., the mineralocor-
ticoid receptor (MR) and glucocorticoid receptor (GR), which
(like adrenergic receptors) are expressed in regions that are crit-
ical for memory formation such as hippocampus, amygdala, and
prefrontal cortex (de Kloet et al., 2005). MRs are occupied when

hormone levels are low; these receptors exert their effects classically
via the genome. GRs have a 10-fold lower affinity for corticos-
terone, become substantially activated when hormone levels rise
after stress and exert slow genomic actions in cells carrying the
receptor. Recent evidence has revealed that corticosteroid hor-
mones can also regulate synaptic function via non-genomic effects,
both via activation of MRs and GRs (Orchinik et al., 1991; Venero
and Borrell, 1999; Di et al., 2003; Karst et al., 2005, 2010; Groc
et al., 2008).

In this review we will highlight behavioral studies emphasiz-
ing how norepinephrine and glucocorticoids, via their receptors,
regulate fearful memories, both in rodents and humans. Second,
we will address the cellular mechanism by which norepinephrine
and glucocorticoids promote learning and memory processes by
focusing on regulation of excitatory synapses. Recent studies have
revealed that these hormones modulate these synapses by regulat-
ing the function of AMPA type glutamate receptors (Karst et al.,
2005; Hu et al., 2007; Groc et al., 2008; Martin et al., 2009; Yuen
et al., 2009, 2011; Krugers et al., 2010; Liu et al., 2010; Tenorio
et al., 2010), which are critically involved in synaptic transmission
and activity-dependent changes in synaptic transmission – a major
cellular model for learning and memory (Malinow and Malenka,
2002; Malenka, 2003; Neves et al., 2008; Kessels and Malinow, 2009;
Box 1).

FEAR CONDITIONING AND INHIBITORY AVOIDANCE
Various tasks are being used to examine hormonal regulation
of emotional memories. Here we will briefly address two of
the most used behavioral tasks, Pavlovian fear conditioning and
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Box 1 Excitatory synapses, plasticity, and memory.

Changes in synaptic connectivity are generally believed to underlie
learning and memory processes (Doyere and Laroche, 1992; Bliss
and Collingridge, 1993; Neves et al., 2008). Plasticity at synapses
can be regulated at the presynaptic site (by changing the release
of neurotransmitters) and/or the postsynaptic site (by changing the
function and number of their receptors; Malinow and Malenka,
2002). The most explored forms of plasticity at excitatory synapses
are N -methyl-D-aspartic acid receptor (NMDAR)-dependent long-
term potentiation (LTP) and long-term depression (LTD), which have
been associated with changes in postsynaptic signaling (Bliss and
Collingridge, 1993; Neves et al., 2008).

Long-term potentiation (LTP) reflects a long-lasting increase in synap-
tic connectivity (Neves et al., 2008) that can be experimentally
elicited by high-frequency stimulation or by afferent stimulation in
combination with postsynaptic depolarization (Bliss and Lomo, 1973;
Bliss and Collingridge, 1993). NMDA receptors play a critical role
in the induction of LTP. This receptor is a unique ligand-gated ion
channels since activation requires binding of glutamate as well as
membrane depolarization which is needed to release the magnesium
block of the channel and to open the channel with high probability
(Nowak et al., 1984). Therefore, the NMDA receptor functions as
a coincidence detector that determines specificity and associativ-
ity of synaptic potentiation. Activation of NMDA receptors allows
Ca2+ influx into dendritic spines of postsynaptic neurons which
activates calcium-dependent enzymes, such as calcium/calmodulin-
dependent calcium kinase II (CaMKII; Barria et al., 1997), protein

kinase A (PKA; Man et al., 2007), and protein kinase C (Boehm et al.,
2006). These kinases impact synaptic transmission, including regu-
lation of the function of AMPA receptors (Lledo et al., 1995; Roche
et al., 1996; Barria et al., 1997; Mammen et al., 1997; Lee et al.,
2000; Boehm et al., 2006; Derkach et al., 2007). Moreover, these
enzymes may help to organize structural process that leads to the
incorporation of AMPA receptor-binding proteins into the postsynap-
tic density (PSD), followed by subsequent anchoring or additional
AMPA receptors (Lisman and Zhabotinsky, 2001).
AMPA receptors are highly mobile and the link between AMPA
receptor surface diffusion and cycling is evident in synaptic plasticity
paradigms. Recent studies have shown that AMPA receptor traffick-
ing is regulated by both exocytotic and endocytotic processes and
by their surface lateral diffusion in the plasma membrane (Kennedy
and Ehlers, 2006; Shepherd and Huganir, 2007; Newpher and Ehlers,
2008). Endocytosis of AMPA receptors is important for the number
of AMPA receptors at the membrane surface and recycling endo-
somes supply AMPA receptors for LTP (Park et al., 2004). Receptor
recycling from postsynaptic endocytic zones appears to be crucial for
maintaining a mobile population of surface AMPA receptors that can
be synaptically inserted to increase synaptic strength (Blanpied et al.,
2002; Lu et al., 2007; Petrini et al., 2009). Together, the regulation
of synaptic AMPA receptor number relies on a dynamic equilibrium
between intracellular, extrasynaptic, and synaptic pools, and is reg-
ulated by the activity status of the neuronal network (Makino and
Malinow, 2009; Petrini et al., 2009).
The trafficking of AMPA receptors governs rules that appear to
be dependent on the subunit composition: the GluA1 carboxyl
terminus mediates regulated delivery of AMPARs onto synapses
upon synaptic activation while the GluA2 carboxyl terminus deter-
mines the continuous delivery of AMPARs onto synapses inde-
pendent from synaptic stimulation (Shi et al., 2001). Upon LTP
induction, GluA1-containing calcium-permeable AMPA receptors are
incorporated into synaptic membrane, rapidly, and transiently from
intracellular reserve pool (Shi et al., 2001), and are replaced by
GluA1-lacking calcium-impermeable AMPA receptors shortly after
LTP induction (Plant et al., 2006). Functionally, these GluA1-lacking
AMPA receptors (such as GluR2/3) are calcium-impermeable (Bur-
nashev et al., 1992; Kauer and Malenka, 2006; Plant et al., 2006)
and may play a role in maintaining synaptic strength (Malinow and
Malenka, 2002; Malenka, 2003; Kauer and Malenka, 2006; Plant
et al., 2006).

inhibitory avoidance (IA) learning. Pavlovian fear conditioning
is a behavioral paradigm that can be used to study the memory
formation of emotionally arousing events, both in rodent animals
and humans (e.g., Nader et al., 2000; Kindt et al., 2009). In fear
conditioning, an emotionally neutral conditioned stimulus (CS)
such as a tone or light is paired with an aversive CS such as a
foot shock unconditioned stimulus (US). After pairing, the CS
elicits defensive behavior, of which freezing behavior is most fre-
quently studied (Rodrigues et al., 2009). The amygdala is critically
involved in fear conditioning (LeDoux, 2000): the lateral amyg-
dala (LA) receives auditory, visual, olfactory, and somatosensory
information from the thalamus and cortex, and plasticity in the LA
is believed to underlie the association between the CS (cue) and
US (Rogan et al., 1997). The hippocampus also plays a role in fear
conditioning in that it provides information about the context of a
fearful event (LeDoux, 2000). Finally, the medial prefrontal cortex

regulates the expression and control of fear responses (LeDoux,
2000). A second task that is widely used to examine the mem-
ory formation of emotionally arousing events is IA training. In
IA training, rodents are placed in a light chamber and can subse-
quently enter a dark chamber. Upon entry of this chamber, animals
receive a footshock, which is well remembered. Inhibitory avoid-
ance memory formation is believed to be hippocampal dependent
(e.g., Whitlock et al., 2006) with the amygdala playing a modu-
latory role (McGaugh, 2000). In addition, regulating prefrontal
cortex function by the amygdala regulates memory consolidation
in this task (e.g., Barsegyan et al., 2009).

NOREPINEPHRINE, GLUCOCORTICOIDS, AND FEARFUL
MEMORIES IN RODENTS
Norepinephrine and corticosteroid hormones, via their receptors,
mediate (at least in part) the memory enhancing effects of stress
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and emotion (Joëls et al., 2006, 2011; Roozendaal et al., 2009). Nor-
epinephrine enhances memory formation of emotional events via
brain β-adrenergic receptors: application of norepinephrine or β-
adrenergic receptor agonists promotes memory consolidation in
various aversive memory tasks such as IA task, fear conditioning,
and in Morris water-maze learning (Hu et al., 2007; Roozen-
daal et al., 2009; but see also Hatfield and McGaugh, 1999; Lee
et al., 2001; Bush et al., 2010), and blocking β-adrenergic receptors
reduces contextual fear memories (Ji et al., 2003). Activation of α-
adrenergic receptors also enhances memory, but presumably act
by enhancing β-adrenergic actions (Ferry et al., 1999a,b). Finally,
noradrenaline has been reported to enhance reconsolidation of
information (e.g., Debiec and LeDoux, 2006).

Corticosteroid hormones, via MRs have been implicated in
the appraisal, and response selection during the learning process
(Oitzl and de Kloet, 1992; Sandi and Rose, 1994). Recent studies
provide evidence that MRs are also involved in encoding of infor-
mation, possibly linked to effects on appraisal, and/or response
selection: application of the MR antagonist spironolactone prior
to training lastingly suppress the expression of fear (Zhou et al.,
2010). Moreover, genetic deletion of MRs in the forebrain led
to various cognitive impairments, including impaired learning in
a Morris water-maze task (Berger et al., 2006) and reduced fear
learning (Zhou et al., 2010). Via GRs, corticosteroid hormones
have been reported to promote long-term consolidation of infor-
mation (de Kloet et al., 1999; Joëls et al., 2006; Roozendaal et al.,
2009). For instance, a point mutation in the mouse GR was found
to impair spatial memory formation (Oitzl et al., 2001), and block-
ing GRs impairs fear conditioning (Pugh et al., 1997a; Donley et al.,
2005). In agreement, in several fearful learning paradigms, includ-
ing fear conditioning and IA learning, post-training application
of corticosterone, or GR agonists promoted the consolidation of
information (Corodimas et al., 1994; Sandi and Rose, 1994; Pugh
et al., 1997b; Hui et al., 2004; Roozendaal et al., 2009). These studies
imply that GRs are involved in consolidation of fearful information
and that genomic actions are involved. This does not exclude the
possibility that other GR-dependent pathways are also involved.
For instance, a recent study suggested that membrane-associated
GRs also promote long-term memory in an object recognition
task via chromatin modification (Roozendaal et al., 2010). Thus,
it is possible that both non-genomic as well as genomic actions of
corticosteroid hormones, via GRs, promote the storage of relevant
information.

In addition to these well-documented effects of stress and
glucocorticoids on consolidation processes, these hormones also
affect memory retrieval mechanisms (de Quervain et al., 1998)
and extinction processes (Brinks et al., 2009). Exposure to stress
and elevated corticosteroid levels hampers the retrieval of already
stored information (de Quervain et al., 1998) and glucocorticoids
promote the extinction of information (de Kloet et al., 1999).
Finally, blocking GRs has been reported to hamper reconsolida-
tion of cue-conditioned fear (Pitman et al., 2011). Taken together,
there is ample evidence that corticosteroid hormones, via activa-
tion of MRs and GRs, exert a repertoire of behavioral effects that
promote the consolidation of relevant (fearful) information, facil-
itate the extinction of information that is no longer relevant, and
ultimately favor behavioral adaptation (de Kloet et al., 1999).

Corticosteroids act in concert with other hormones such as nor-
epinephrine (Roozendaal et al., 2009), endocannabinoids (Cam-
polongo et al., 2009), corticotropin releasing hormone (CRH;
Roozendaal et al., 2008) for optimal memory performance both
in humans and rodents (de Quervain et al., 2009; Roozendaal
et al., 2009). It is generally thought that noradrenergic activation
is essential for the memory enhancing effects and that glucocor-
ticoids play a permissive role in noradrenergic actions, thereby
promoting memory formation (Hui et al., 2006; Roozendaal et al.,
2006, 2009). These studies emphasize that concerted action of
various stress-related mediators is required for optimal memory
performance in rodents (Joëls and Baram, 2009).

NOREPINEPHRINE, GLUCOCORTICOIDS, AND FEARFUL
MEMORIES IN HUMANS
The involvement of noradrenergic receptor activation in human
emotional memory has been investigated by either stimulating
or decreasing the release of norepinephrine (Table 1). Blocking
the β-adrenergic receptors with propranolol selectively impairs
memory performance for emotional arousing information (Cahill
et al., 1994; Van Stegeren et al., 1998; Hurlemann et al., 2005;
Van Stegeren, 2008). Conversely, adrenergic receptor agonist epi-
nephrine (Cahill and Alkire, 2003) or the α2-adrenergic receptor-
antagonist yohimbine – which stimulates central noradrenergic
activity by blocking the α2-adrenergic autoreceptor (Charney
et al., 1987; Peskind et al., 1995) – enhances memory consol-
idation of emotionally arousing information (Southwick et al.,
2002). These findings support that noradrenergic receptors are
critically involved in the formation of human emotional memory
(McGaugh, 2004).

The effect of glucocorticoids on memory formation, is typically
studied by either a stress manipulation such as the Trier Social
Stress Test (TSST; Kirschbaum et al., 1993), the cold pressor test
(CPT), or by administering cortisol directly. Although stress or
cortisol treatment generally impairs memory retrieval (de Quer-
vain et al., 2000), the same hormone has been reported to enhance
memory consolidation (Het et al., 2005; Wolf, 2009). These mem-
ory effects of the corticosteroids are often stronger for emotional
arousing material (Wolf, 2009).

Even though the memory enhancing effects of emotional
arousal are extremely functional from an evolutionary perspec-
tive, the impact of emotion on memory can also have long-term
detrimental consequences. Research into the effects of stress on
emotional memory is highly relevant for a better understanding

Table 1 | Role noradrenergic hormones in emotional memories.

Enhanced noradrenergic tone

Emotional memory formation ↑ Cahill et al. (1994); Van Stegeren et al.

(1998); Van Stegeren (2008); Peskind

et al. (1995); Southwick et al. (2002);

Soeter and Kindt (2011a)

Extinction fear conditioning ↓ Soeter and Kindt (2011a)

Reconsolidation fear ↑ Kindt et al. (2009); Soeter and Kindt

(2010)

Fear generalization ↑ Soeter and Kindt (2011a)
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of the etiology and maintenance of emotional disorders, such as
anxiety disorders. In humans the effects of stress on memory are
traditionally investigated for non-associative and distinct emo-
tional stimuli such as emotional stories and pictures (McGaugh,
2004; Wolf, 2009). Given that patients with anxiety disorders either
fear for stimuli that are intrinsically non-threatening or they per-
sist in fear responding whilst the acute threat already disappeared
(e.g., after traumatic experiences), the emotional memory liter-
ature seems to be inconclusive for the understanding of these
disorders. Indeed, an important aspect of the pathogenesis of anx-
iety disorders is that they originate from a learned association
between a previously neutral event (CS; such as a stranger) and
an anticipated disaster (US; such as physical assault). This can be
experimentally modeled in a differential human fear conditioning
paradigm. In contrast to animal research, the effect of stress hor-
mones such as noradrenaline on associative fear memory is not
extensively studied in humans.

Another notable aspect of research into human emotional
memory is that most studies did not assess the emotional response
but the declarative memory for the emotional stimuli. However,
not the factual recollection but the concomitant excessive emo-
tional expression is the main problem in emotional disorders
(Ehlers et al., 2004). In particular, hyper-noradrenergic activity
in the wake of a life-threatening event may contribute to the
“overconsolidation” of memory for trauma, generating disturb-
ing intrusive memories that are characteristic of posttraumatic
stress disorder (PTSD; Pitman and Delahanty, 2005; Glannon,
2006; Henry et al., 2007). In patients with PTSD, these involun-
tary traumatic memories may be experienced as reenactments of
the original trauma (“flashbacks”) and are associated with sig-
nificant emotion and distress (DSM-IV-R; American Psychiatric
Association, 2000).

In two human fear conditioning studies, we recently demon-
strated that the systemic administration of the α2-adrenergic
receptor-antagonist yohimbine (20 mg) during memory forma-
tion strengthened the later expression of human associative fear
memory (fear potentiated startle reflex; Soeter and Kindt, 2011a,c).
More specifically, stimulation of the noradrenergic system by the
administration of yohimbine during memory formation did not
directly augment the differential startle fear response. Yet, the
retention tests presented 48 h later uncovered that the earlier
administration of yohimbine extensively delayed the process of
extinction learning and generated a superior recovery of fear (rein-
statement and reacquisition). The competition between the orig-
inal excitatory fear association and the newly formed inhibitory
memory trace determines the behavioral outcome of extinction
learning (Bouton, 1993). Given that yohimbine was adminis-
tered during fear conditioning (48 h prior to fear extinction),
the noradrenergic manipulation apparently delayed the process
of extinction by strengthening the original excitatory fear associa-
tion. In addition, the yohimbine administration promoted fear
generalization, a core feature of anxiety disorders (Soeter and
Kindt, 2011c). In rodents, the generalization of fear seems to
be dependent on the strength of the memory as operational-
ized by training intensity (both US intensity and the number
of CS+ and US applied; Laxmi et al., 2003). Allegedly, the
strengthening of a specific fear memory trace by α2-adrenergic

receptor-manipulation may produce fear generalization similar to
training intensity.

The effect of β-adrenergic interference has not yet been demon-
strated for the consolidation of associative fear memory. For recon-
solidation, however, a series of studies showed a robust memory
impairing effect of the β-adrenergic receptor blocker propranolol
(Kindt et al., 2009; Soeter and Kindt, 2010, 2011b,c). Disrupting
reconsolidation by propranolol (40 mg) – administered before or
after memory retrieval – “deleted” the emotional expression of
a fear memory in humans (Kindt et al., 2009; Soeter and Kindt,
2010, 2011b,c). The anxiolytic properties of propranolol could
not explain the fear erasure, as omission of memory reactivation
after propranolol intake yielded intact fear responding. Together,
these recent studies illustrate the involvement of noradrenergic
modulation in the (re)consolidation and generalization of human
associative fear memory. Given that fear generalization is a main
characteristic of anxiety disorders, these findings suggest that
norepinephrine may play an important role in the etiology and
maintenance of anxiety disorders.

In contrast to the noradrenergic modulation of associative fear
memory, the modulatory role of cortisol seems to be more com-
plex. A mixture of fear conditioning paradigms reveals ambiguous
findings regarding the effect of cortisol on the emotional expres-
sion of associative fear memory in humans. Cue or context fear
conditioning and eyeblink conditioning studies – using either a
trace or delay reinforcement scheme – have shown impairing as
well as enhancing effects of cortisol on associative fear memory.
First, a relatively low dose of hydrocortisone (30 mg) affected cue
fear conditioning, decreasing it in men and increasing it in women
(Stark et al., 2006; Merz et al., 2010; Tabbert et al., 2010). In contrast
to this gender effect, exposure to a stress manipulation (elevating
both the sympathetic and the glucocorticoid stress response) facil-
itated cue fear conditioning in men but not in women (Zorawski
et al., 2005, 2006; Jackson et al., 2006). Furthermore, a high
dose of hydrocortisone (60 mg) exclusively enhanced context fear
conditioning in both sexes, while leaving cue fear conditioning
unaffected (Grillon et al., 2011). Finally, delay eyeblink condition-
ing is impaired in men and women after a stress manipulation
(TSST; Wolf et al., 2009), whereas trace eyeblink conditioning is
improved by a stress manipulation (CPT; Duncko et al., 2007)
as well as by cortisol (2 mg, administered intravenously; Kuehl
et al., 2010), but also by a cortisol inhibitor (1500 mg metyrapone;
Nees et al., 2008). In summary, future research is required to clar-
ify the modulatory role of cortisol on associative fear memory
in humans and the possible interaction with the noradrenergic
system.

EXCITATORY SYNAPSES AND LEARNING AND MEMORY
An import question that remains to be addressed is which mech-
anisms are involved in the effects of norepinephrine and gluco-
corticoids on fear learning. The current view of how memories
are formed is that neurons are activated during the learning
process thereby changing synaptic communication (Neves et al.,
2008). AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onate) type glutamate receptors mediate most of the fast excitatory
synaptic transmission in the brain and controlling the number of
synaptic AMPA receptors on the postsynaptic membrane is an
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essential mechanism to regulate synaptic transmission and plas-
ticity (Malinow and Malenka, 2002; Plant et al., 2006; Kessels
and Malinow, 2009). The best-studied forms of synaptic plas-
ticity are long-term potentiation (LTP) and long-term depression
(LTD) of excitatory synaptic transmission (Malinow and Malenka,
2002; Bredt and Nicoll, 2003). LTP involves the activity-dependent
recruitment of AMPA receptors to the postsynaptic membrane and
a concurrent increase in AMPA-mediated transmission whereas
LTD reflects a decrease in synaptic AMPA receptor function.

AMPA receptors are heteromeric tetramer complexes formed
of different combinations of GluA1, GluA2, GluA3, and GluA4
subunits (Keinanen et al., 1990; Tanabe et al., 1992; Wisden
and Seeburg, 1993; Hollmann and Heinemann, 1994; Wen-
thold et al., 1996). In adult hippocampal pyramidal neurons,
two main populations of AMPA receptor complexes are found:
GluA1/GluA2 and GluA2/GluA3 containing AMPA receptors.
The trafficking of AMPA receptors to and from the synapse is
regulated by (1) exocytotic/endocytotic recycling between intra-
cellular and membrane receptor pools (Passafaro et al., 2001;
Gerges et al., 2006); and (2) surface diffusion between extrasy-
naptic and synaptic receptor pools (Adesnik et al., 2005; Ashby
et al., 2006; Ehlers et al., 2007; Makino and Malinow, 2009;
Petrini et al., 2009; Box 1). The leading model for constitu-
tive and activity-dependent AMPA receptor trafficking is that
activity-dependent processes (such as induction of LTP) promote
synaptic delivery of GluA1-containing AMPA receptors which are
believed to be gradually replaced by the cycling GluA2/GluA3
heteromers after LTP induction (Shi et al., 2001; Plant et al.,
2006).

AMPA receptors have been shown to underlie memory for-
mation. Inhibitory avoidance training rapidly (and reversibly)
increases hippocampal synaptic insertion of GluA1 and GluA2
AMPA receptor subunits (Whitlock et al., 2006). Studies using
mutant mice reveal that GluA1 mutant mice are hampered in
short-term memory processes (Reisel et al., 2002; Schmitt et al.,
2005; Sanderson et al., 2007, 2009, 2011), while the mutation leaves
Morris water-maze spatial navigation unaffected (Zamanillo et al.,
1999). Moreover, GluA2 mutant mice are impaired in a spatial
working memory task and elevated Y-maze (Shimshek et al., 2006).
These studies indicate that GluA1 and GluA2 subunits are at least
relevant for short-term memory processes. Finally, the observation
that preventing synaptic insertion of GluA1-containing AMPA
receptors in the amygdala hampers tone-cue fear conditioning
implies that trafficking of GluA1-containing AMPA receptors is
critical for fear learning (Rumpel et al., 2005).

STRESS HORMONES AND HIPPOCAMPAL EXCITATORY
SYNAPSES
The cellular mechanisms via which norepinephrine and corticos-
terone facilitate learning and memory processes are starting to
be unraveled. Here we summarize studies – mainly in the rodent
hippocampus – that have examined how these hormones regulate
synaptic transmission and synaptic plasticity. Recent studies have
revealed that AMPA receptors are regulated by norepinephrine and
glucocorticoid hormones. Via activation of β-adrenergic recep-
tors, norepinephrine can rapidly – but reversibly – activate PKA
and CaMKII (Wang et al., 2004; Hu et al., 2007) and increase the

phosphorylation of GluA1 at Ser845 and Ser831. Likewise, stress,
via activation of β-ARs increases phosphorylation of Ser831 and
Ser845 (Hu et al., 2007). In agreement with the observations that
phosphorylation of AMPA receptors at these sites is critical for
LTP, activation of β-adrenergic receptors facilitates the induction
of hippocampal (LTP; Thomas et al., 1996; Winder et al., 1999; Hu
et al., 2007; Tenorio et al., 2010) and enhances activity-dependent
synaptic insertion of AMPA receptors (Hu et al., 2007). Inter-
estingly, activation of β-adrenergic receptors facilitates LTP in a
time-dependent manner; these receptors only facilitate LTP when
these receptors are activated during and shortly after induction of
LTP, i.e., when the adrenergic receptors enhance phosphorylation
of GluA1 (Hu et al., 2007).

Also corticosteroid hormones can rapidly and reversibly pro-
mote hippocampal synaptic transmission. Within minutes after
application, glucocorticoids increase synaptic transmission in the
hippocampus (Karst et al., 2005), via activation of low affinity
MRs which are located in the cellular membrane. This rapid and
reversible increase in synaptic transmission after glucocorticoid
exposure most likely results from an increase in the presynaptic
release of glutamate (Karst et al., 2005) in which the Erk pathway
is critically involved (Olijslagers et al.,2008). At the same time scale,
glucocorticoid exposure, via membrane MRs rapidly increases the
lateral diffusion of GluA1 and GluA2 subunits,without altering the
number of postsynaptic AMPA receptors (Groc et al., 2008; Martin
et al., 2009). At this time, glucocorticoids, via MRs, promote the
activity-dependent synaptic insertion of GluA2-containing AMPA
receptors (Groc et al., 2008). Finally, glucocorticoids also facilitate
LTP in at time-dependent manner; LTP is only facilitated when
elevated corticosteroid levels are present at the moment of high-
frequency stimulation (Wiegert et al., 2006). These studies show
that both norepinephrine and glucocorticoids can rapidly facili-
tate synaptic plasticity and thereby increase the ability to encode
information at the cellular level (Figure 1). While glucocorticoids
and norepinephrine act in concert for optimal memory perfor-
mance, they also affect synaptic function in a synergistic fashion
(Joëls et al., 2011). Application of a β-adrenergic receptor ago-
nist together with corticosterone facilitates the induction of LTP
in the hippocampus (Pu et al., 2007). Moreover, activation of β-
adrenergic receptors together with corticosterone enhances AMPA
receptor function (Zhou et al., 2011).

After exposure to a stressful event, plasma corticosteroid lev-
els slowly return to their pre-stress level in about 2 hours (de
Kloet et al., 2005). Nevertheless, these hormones exert – via a
slow, genomic mode of action – long-lasting effects on excitatory
synapses (Figure 1). Elevated glucocorticoid levels increase the
membrane expression and synaptic insertion of GluA2-containing
AMPA receptors in the hippocampal neurons (Groc et al., 2008;
Martin et al., 2009). These effects are mediated via GRs, require
time as well as the synthesis of new proteins, and most likely
result from increased lateral diffusion and/or altered ratio of endo-
cytosis/exocytosis of GluA2-containing AMPA receptors (Groc
et al., 2008; Martin et al., 2009). Functionally, glucocorticoids
also slowly increase the amplitude of evoked as well as sponta-
neous AMPA receptor-mediated synaptic currents in hippocampal
primary cultures and hippocampal slices (Karst and Joëls, 2005;
Martin et al., 2009), thereby enhancing AMPA receptor-mediated
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FIGURE 1 | Norepinephrine and glucocorticoids rapidly increase

activity-dependent synaptic insertion of AMPA receptors. Slowly,
corticosteroid hormones enhance AMPA receptor mediated synaptic
transmission and reduce the ability to encode novel information. This might
preserve and promote the retention of the original (fearful and relevant)
memory trace (see text for details).

synaptic transmission. Furthermore, glucocorticoids – via a slow
mode of action – suppress the induction of LTP (Alfarez et al.,
2002; Wiegert et al., 2005), facilitate LTD (Coussens et al., 1997;
Xu et al., 1997) and increase endocytosis of synaptic AMPARs
upon stimuli that weaken synaptic transmission (Martin et al.,
2009).

STRESS HORMONES: FROM EXCITATORY SYNAPSES TO
FEARFUL MEMORIES
The release of norepinephrine and glucocorticoids promotes
the consolidation of fearful memories in rodents and humans
(Roozendaal et al., 2009). Recent findings indicate that stress hor-
mones like norepinephrine and corticosterone both rapidly and
slowly increase AMPA receptor mediated synaptic transmission.
These differential effects on AMPA receptor trafficking may pro-
vide a cellular mechanism that underlies the memory enhancing
effects of these hormones. Initially glucocorticoids and norepi-
nephrine promote the AMPA receptor mediated synaptic trans-
mission and synaptic insertion of AMPA receptors (Karst et al.,
2005; Hu et al., 2007; Groc et al., 2008; Olijslagers et al., 2008).
These effects are accompanied by an increased ability to elicit LTP
(Thomas et al., 1996; Winder et al., 1999; Wiegert et al., 2006; Hu
et al., 2007) and may therefore contribute to an enhanced capacity
to acquire and store information (Figure 1).

Next, glucocorticoids via a slow genomic action enhance synap-
tic insertion of AMPA receptors. At the same time, glucocorticoids
suppress activity-dependent increase in synaptic AMPA receptors

(Groc et al., 2008), activity-dependent increase in AMPA receptor-
mediated synaptic transmission (Hui Xiong, unpublished obser-
vations), and synaptic plasticity (e.g., Wiegert et al., 2005). Thus,
these hormones slowly reduce the ability to encode novel informa-
tion. The consequence could be that these hormones also prevent
the ability to overwrite information that is present in the network,
in a meta-plastic manner (Joëls et al., 2006; Krugers et al., 2010),
thereby preserving the original memory trace. Furthermore, glu-
cocorticoids promote the loss of synaptic AMPA receptors which is
enhanced upon stimuli that reduce synaptic transmission (Martin
et al., 2009), thereby accentuating synaptic efficacy. This provides a
picture where glucocorticoids, via MRs, and β-adrenergic receptor
activation rapidly enhance the ability to store information, which
is consolidated and accentuated via activation of GRs (Krugers
et al., 2010; Figure 1).

FUTURE PERSPECTIVES
There are a number of relevant issues which need to be addressed:

(1) First, it is unknown how activation of MRs and GRs
enhance (activity-dependent) synaptic insertion of AMPA
receptors. Potential candidates are enzymes that regulate
the phosphorylation of AMPA receptors, regulators of
endocytosis/exocytosis (Liu et al., 2010), and/or proteins that
promote transport and synaptic retention of AMPA receptors
(Nicoll et al., 2006).

(2) A behaviorally very relevant question is whether AMPA recep-
tors mediate the memory enhancing effects of stress hor-
mones. Studies using mice carrying mutations in the GluR1
phosphorylation sites indicate that norepinephrine-regulated
phosphorylation of GluR1 facilitates emotional memory (Hu
et al., 2007). Moreover, application of pep2m, which blocks
trafficking of GluA2-containing AMPA receptors also pre-
vents the memory enhancing effects of stress (Conboy and
Sandi, 2010), and fearful memories (Migues et al., 2010).
Also, stress-induced regulation of Rab4/SGK may underlie
stress-effects on AMPA receptor function and stress-effects
on working memory (Yuen et al., 2011). Studies using tem-
poral erasure of functional AMPA receptors will be required
to reveal whether regulation of AMPA receptor function is
critical for stress-induced facilitation of the different learn-
ing phases (such as acquisition and/or consolidation of
information).

(3) The studies carried out so far mainly focused on the hip-
pocampal formation. However, region-specific effects of stress
hormones on excitatory synapses – even in the hippocampus –
need to be considered. For example, in an elegant series of
studies it was shown that corticosteroid hormones may have
different effects on synaptic plasticity within the hippocampal
formation; corticosteroid hormones suppress synaptic plastic-
ity in de dorsal hippocampus but enhance synaptic plasticity
in the ventral hippocampus (Maggio and Segal, 2007, 2009;
Segal et al., 2010).
Moreover, other brain areas such as prefrontal cortex and
amygdala are also critically involved in the regulation of fearful
memories. It will therefore also be necessary to carefully inves-
tigate the effects of stress hormones on excitatory synapses in
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these brain areas. Indeed corticosteroid hormones have been
reported to affect AMPA receptor mediated synaptic trans-
mission in the amygdala (Karst et al., 2010) differently from
the hippocampus (see Karst et al., 2005), and stress and cor-
ticosteroid hormones regulate AMPA receptors (Yuen et al.,
2011) and function of the prefrontal cortex (Arnsten, 2009).

(4) Behaviorally, several neurotransmitters (e.g., norepinephrine,
enodocannabinoids, dopamine), neuropeptides, and steroid
hormones (e.g., corticosteroid hormones; Joëls and Baram,
2009) may act together for optimal memory performance
(de Quervain et al., 2009; Roozendaal et al., 2009) and cel-
lular plasticity (Pu et al., 2007). It will therefore be relevant
to examine whether and how these stress-mediators interact
to regulate AMPA receptor function as well as learning and
memory.

(5) In susceptible individuals, memories for aversive events may
remain inappropriately present and lead to anxiety disor-
ders such as in (PTSD; de Kloet et al., 2005). This under-
scores the importance of understanding how individual dif-
ferences in cognitive development, and the ability to cope
with threatening events later in life, are determined. These
differences are largely regulated by environmental factors, in
particular during the early postnatal period – in conjunc-
tion with genetic factors – (Hackman et al., 2010). When
comparing rodent offspring of mothers that exhibited low
levels of maternal care with the adult offspring of mothers
that exhibited high levels of maternal care, enhanced mem-
ories for fearful events and increased anxiety was observed
(Weaver et al., 2006; Champagne et al., 2008). Also, mater-

nal deprivation results in enhanced fear learning (Oomen
et al., 2010). It will therefore be important to examine how
stress hormones promote the retention of stressful mem-
ories and regulate molecular mechanisms that are funda-
mental for learning and memory (such as AMPA recep-
tors) in individuals who suffered from negative early life
experiences.

(6) Finally, studies over the past decade have shown that stored
memories are rendered labile after being retrieved, and require
de novo protein synthesis for reconsolidation (Nader et al.,
2000). Reconsolidation has been demonstrated in various
tasks and species (Nader et al., 2000; Eisenberg et al., 2003;
Sangha et al., 2003), including humans (Kindt et al., 2009;
Schiller et al., 2010). The notion that stored memories can be
turned into a labile state has opened new avenues to reduce
the expression of fear more permanently than the traditional
extinction procedure (Pitman and Delahanty, 2005), e.g., by
targeting noradrenergic receptors (Pitman et al., 2002; Orr
et al., 2006; Brunet et al., 2008; Kindt et al., 2009; Soeter and
Kindt, 2010, 2011b,c) and corticosteroid receptors (Barrett
and Gonzalez-Lima, 2004; Cai et al., 2006; Abrari et al., 2008).
Future studies will be needed to test whether targeting stress
hormones and their receptors can be used to effectively reduce
fear and whether these fear-reducing effects are mediated via
AMPA receptors (Clem and Huganir, 2010).
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2008). Changes in synaptic transmission and neuronal morphology 
are involved in the process of memory formation (Lamprecht and 
LeDoux, 2004).

This review is focused on the roles of the actin cytoskeleton in 
fear memory formation, in particular in the lateral amygdala (LA) 
and hippocampus brain regions shown to be involved in fear con-
ditioning. Fear conditioning is a useful behavioral paradigm used 
to study brain mechanisms underlying fear memory formation. In 
fear conditioning an association is formed between a neutral condi-
tioned stimulus (CS), such as a tone, and an aversive unconditioned 
stimulus (US), typically a mild footshock (LeDoux, 2000; Davis 
and Whalen, 2001; Schafe et al., 2001; Sah et al., 2003; Rodrigues 
et al., 2004; Maren, 2005). Fear conditioning leads to LTM of the 
CS that acquires affective properties and will subsequently elicit 
responses that typically occur in the presence of danger. The lateral 
nucleus of the amygdala receives information about the CS and US 
from thalamus and cortex and cells in LA are responsive to CS or 
US and some LA cells respond to both stimuli (e.g., LeDoux et al., 
1984; LeDoux et al., 1990a; Turner and Herkenham, 1991; Mascagni 
et al., 1993; Romanski and LeDoux, 1993; Romanski et al., 1993; 
Shi and Cassell, 1997; McDonald, 1998; Shi and Davis, 1998; Doron 
and LeDoux, 2000; LeDoux, 2000; Linke et al., 2000). Damage or 
functional inactivation of the LA during acquisition prevents the 
learning from taking place (e.g., LeDoux et al., 1990b; Helmstetter 
and Bellgowan, 1994; Muller et al., 1997; Fanselow and LeDoux, 
1999; Wilensky et al., 1999; Nader et al., 2001), and neural activity 
changes in LA by learning (e.g., Quirk et al., 1995; Quirk et al., 
1997; Collins and Pare, 2000; Repa et al., 2001). LA is connected 
directly or indirectly to other amygdala nuclei including the cen-
tral nucleus of the amygdala (CE) shown to participate in fear 

Long-term memory (LTM) formation is believed to involve alter-
ations of synaptic efficacy produced by modifications in neural 
transmission caused by physiochemical and/or structural modi-
fications of synaptic communication within neuronal networks 
(Konorski, 1948; Hebb, 1949; Dudai, 1989; Bliss and Collingridge, 
1993; Martin et al., 2000; Tsien, 2000; Kandel, 2001; Lamprecht 
and LeDoux, 2004). A prime challenge is to identify molecules 
involved in sustaining synaptic alterations and memory formation. 
Actin is a most attractive candidate to play a key role in memory 
formation as it is responsive to synaptic signaling, such as triggered 
during learning, and consequently may mediate cellular events that 
underlie changes in synaptic efficacy, such as synaptic transmission 
and morphology.

Actin cytoskeleton is involved in many key cellular processes 
including cellular morphogenesis, motility, division, and intra-
cellular transport. Actin exists in two states in cells, either as a 
globular monomer (G-actin) or following head-to-tail interaction 
as a polymer to form filamentous F-actin. Actin remodeling and 
the structure of F-actin network are tightly regulated by actin-
binding proteins (Luo, 2000; Dillon and Goda, 2005). These actin 
cytoskeleton-regulatory proteins mediate between intrinsic and 
extrinsic cellular signals and actin-dependent cellular functions. 
Thus, by forming such intricate network of filaments responsive 
to regulatory signals, actin mediates a large variety of cellular func-
tions from supporting cellular morphology to providing contrac-
tile forces needed for cellular activities including cell division and 
transport of vesicles. Actin monomers and filaments are abundant 
in presynapses and postsynapses and act to regulate key neuronal 
processes such as alterations in synaptic transmission and mor-
phology (Luo, 2002; Dillon and Goda, 2005; Cingolani and Goda, 
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memory  formation and also to serve as output nucleus to brain 
areas involved in fear responses (e.g., LeDoux, 2000; Wilensky et al., 
2006; Ciocchi et al., 2010; Haubensak et al., 2010; Duvarci et al., 
2011). The hippocampus is involved in contextual fear condition-
ing where the environmental contex is associated with an aversive 
event (e.g., Kim and Fanselow, 1992; Phillips and LeDoux, 1992).

As noted above, actin is involved in neuronal transmission and 
morphogenesis and in synaptic plasticity (Luo, 2002; Dillon and 
Goda, 2005; Cingolani and Goda, 2008) neuronal processes that 
have been shown to be implicated in fear memory formation in LA 
and hippocampus (see below). These findings beg the questions: 
is the actin cytoskeleton an essential component of the molecular 
events needed for long-term fear memory formation in these brain 
regions? If so, which cellular mechanisms are modulated by actin 
cytoskeleton and how they mediate fear memory formation?

Actin And feAr memory formAtion
Several studies have shown that the actin cytoskeleton is needed 
for both cued fear conditioning (tone–footshock pairing) and con-
textual fear conditioning memory formation in amygdala and hip-
pocampus. It was shown that intra-hippocampal infusion of actin 
cytoskeleton assembly inhibitors (latrunculin A or cytochalasin D) 
impaired the consolidation of contextual fear memory (Fischer 
et al., 2004). Moreover, microinjection of these compounds into the 
hippocampus impaired the extinction of contextual fear memory, 
a form of learning whereby the animal re-learns that the context is 
not fearful (Fischer et al., 2004). Microinfusion of cytochalasin D, 
an actin polymerization inhibitor, into rat LA immediately before 
fear conditioning training interfered with the formation of long-
term fear memory (LTM) but not short-term fear memory (STM; 
Mantzur et al., 2009). Furthermore, microinfusion of cytochalasin 
D into rat LA immediately after fear conditioning dampened LTM. 
Cytochalasin D had no effect on fear conditioning memory retrieval 
when injected immediately before LTM test. Rehberg et al. (2010) 
showed that auditory cued but not contextual fear memory is 
disrupted, when the actin depolymerization inhibitor phalloidin 
was injected into basolateral complex of the amygdala (BLA) 6 h 
after conditioning. Re-consolidation of memory is also depend-
ent on regulation of actin polymerization (Rehberg et al., 2010). 
Microinjection of cytochalasin D into the BLA or CA1 was shown 
to impair the return of fear after reconditioning at the last extinc-
tion session indicating that actin polymerization is also needed for 
reconditioning (Motanis and Maroun, 2011). Actin cytoskeleton 
was shown to be involved in other types of memory formation 
(e.g., conditioned taste aversion: Bi et al., 2010; aversive memories 
of drug withdrawal: Hou et al., 2009). In summary, convincing 
evidence is available indicating that actin cytoskeleton is involved 
in fear memory formation.

the roles of Actin regulAtory proteins in feAr 
memory
How does neuronal activation in amygdala or hippocampus dur-
ing fear conditioning lead to changes in actin cytoskeleton needed 
for fear memory formation? Actin cytoskeleton polymerization 
and depolymerization are tightly controlled by regulatory proteins 
(Luo, 2000). Other actin-mediated function such as intracellular 
transport and contractility are also mediated by actin-binding 

 proteins (Kamm and Stull, 2001; Somlyo and Somlyo, 2003). These 
regulatory proteins (Figure 1) could mediate actin involvement 
in fear memory formation as they are functionally linked with 
synaptic receptors that participate in fear conditioning such as 
the glutamate receptors, Eph receptors, and adhesion molecules 
such as cadherin (Gerlai et al., 1999; Rodrigues et al., 2004; Schrick 
et al., 2007; Maguschak and Ressler, 2008; Savelieva et al., 2008). 
For example, actin dynamics in spines are inhibited by activation 
of either α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
(AMPA) or N-methyl-d-aspartate (NMDA) glutamate receptors 
(Fischer et al., 2000). Moreover, activation of either receptor inhib-
ited actin-based protrusive activity from dendritic spine head. In 
addition, several actin regulatory proteins, such as members of 
the Rho GTPase family, are activated by glutamate receptor to 
regulate neuronal morphogenesis. Studies are available suggest-
ing that RhoA mediates the promotion of normal dendritic arbor 
development by NMDA receptor activation (Li et al., 2000), and 
recruitment and activation of RhoA underlies spines morphol-
ogy in a glutamate receptor-dependent manner (Schubert et al., 
2006). Two-photon glutamate uncaging leads to long-term volume 
increase of single spine and to rapid activation of RhoA and Cdc42 
in stimulated spine (Murakoshi et al., 2011). Moreover, NMDA or 
its downstream signaling pathways stimulation may lead to regu-
lation of Rho or Rac GTPases activity (e.g., Tejada-Simon et al., 
2006; Nakazawa et al., 2008; Saneyoshi et al., 2008). Eph receptors 
are also regulators of the Rho/Rac/CDC42 GTPases proteins and 
affect actin dynamics and neuronal morphology (Shamah et al., 
2001; Irie and Yamaguchi, 2002; Penzes et al., 2003; Klein, 2009). 
Adhesion molecules may regulate Rho/Rac/CDC42 GTPases pro-
teins to affect actin cytoskeleton (e.g., Brusés, 2006).

Indeed, several actin regulatory proteins have been shown to 
be involved in fear memory formation. Following fear condition-
ing, the tyrosine phosphorylated p190 RhoGAP becomes associ-
ated with a molecular complex in LA (Lamprecht et al., 2002). 
Importantly, evidence is available that p190 RhoGAP is involved 
in mediating actin reorganization. Specifically, in p190 RhoGAP 
mutant mice, polymerized actin accumulates extensively in cells of 
the neural tube floor, suggesting that p190 RhoGAP plays a role 
in regulating actin assembly (Brouns et al., 2000). P190 RhoGAP 
regulates Rho GTPase protein, a molecular switch that controls 
many key cellular processes including actin dynamics. Inhibition 
of the Rho GTPase effector, the Rho-associated kinase (ROCK), a 
kinase that affects actin cytoskeleton (Amano et al., 2010), in LA 
impaired the formation of long- but not short-term fear memory 
formation (Lamprecht et al., 2002). Interestingly, the activation 
of Rho and Rac GTPases led to rearrangement of cerebral actin 
cytoskeleton, enhanced neurotransmission and synaptic plastic-
ity, and facilitation of fear conditioning (Diana et al., 2007). In 
addition, RhoB, a member of the Rho GTPase family, is involved 
in short-term plasticity in hippocampus, in the regulation of cofi-
lin and dendritic and spine morphology (McNair et al., 2010). 
Intracerebroventricular injection of ROCK inhibitor leads to 
increase in anxiety-related behaviors (Saitoh et al., 2006). ROCK 
regulates actin cytoskeleton via other signaling molecules such 
as the LIM kinase (LIMK) that regulates actin dynamics. LIMK 
exerts its effect on actin polymerization by phosphorylating and 
thus inactivating the actin depolymerization factor (ADF)/cofilin 
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Profilin is another actin cytoskeleton-regulatory protein that 
regulates actin polymerization by funneling ATP-actin to the 
growing actin filaments (Witke, 2004). Profilin was shown to be 
translocated into dendritic spines in cultured hippocampal neu-
rons after neuronal stimulation, LTP and long-term depression 
(LTD; Ackermann and Matus, 2003; Neuhoff et al., 2005). The 
translocation of profilin is associated with the suppression of actin 
dynamics in the spine head and the stabilization of spine morphol-
ogy. Fear conditioning in rats leads to the movement of profilin 
into dendritic spines in the LA (Lamprecht et al., 2006a). Profilin-
containing spines were shown to be larger compared to spines 
devoid of profilin. A greater proportion of profilin-containing 
spines with enlarged PSDs could contribute to the enhancement 

(Arber et al., 1998; Yang et al., 1998; Sumi et al., 1999). Indeed, in 
LIMK-1 knockout mice, spine-dendrite F-actin levels were reduced 
compared to wild type mice (Meng et al., 2002). Furthermore, the 
knockout mice exhibited significant abnormalities in spine and 
axonal morphology. In addition, hippocampal long-term poten-
tiation (LTP) is enhanced indicating that synaptic function was 
altered. The LIMK-1 knockout mice also showed enhanced cued 
fear conditioning LTM. These results indicate that the regulation of 
actin polymerization by the LIMK pathway is essential for normal 
fear memory formation. The LIMK effector cofilin is also involved 
in fear conditioning. Mice in which n-cofilin was removed from 
principal neurons of the postnatal forebrain are impaired in long- 
and short-term fear memory (Rust et al., 2010).

Figure 1 | Actin cytoskeleton and its regulatory proteins are involved in 
fear memory formation. Fear conditioning memory formation depends on 
the activation of glutamate receptors, calcium channels, receptors tyrosine 
kinases such as Eph receptors and adhesion molecules. Activation of these 
receptors and channels during or after fear learning may lead to regulation of 

intracellular signaling cascades that affect actin dynamics and cellular 
processes such as neuronal morphogenesis. Among these regulated 
molecules are the Rho, Rac, and CDC42 GTPases and their effectors and 
actin-binding proteins such as profilin shown to be involved in fear 
memory formation.
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Cumulatively, the aforementioned studies show that actin regu-
latory proteins are involved in fear memory formation. Modulation 
of the actin cytoskeleton by these proteins may serve as a signaling 
connection between synaptic activation induced by learning and 
cellular changes underlying fear memory formation.

To further elucidate possible roles of actin cytoskeleton in fear 
memory formation its roles in synaptic morphology, transmission 
and plasticity in amygdala and hippocampus are discussed.

Actin cytoskeleton in synAptic trAnsmission
Alteration of synaptic efficacy either by affecting synaptic release 
of neurotransmitters and/or the level of synaptic receptors for neu-
rotransmitters is associated with memory formation and synaptic 
plasticity. Changes in synaptic efficacy are induced by fear learning. 
For example, it was shown that fear-conditioned animals exhibit 
a presynaptic facilitation of AMPA receptor-mediated transmis-
sion in LA neurons (McKernan and Shinnick-Gallagher, 1997) and 
conditioned fear is accompanied by the enhancement in transmit-
ter release at cortico-amygdala synapses (Tsvetkov et al., 2002). At 
the postsynapse fear conditioning drives AMPA receptors into the 
synapses of neurons in the LA, incorporation process that is needed 
for fear conditioning memory formation (Rumpel et al., 2005; Yeh 
et al., 2006; Nedelescu et al., 2010).

Actin cytoskeleton is found in pre- and post-synapse and is 
involved in the regulation of synaptic transmission in these sites and 
may mediate changes in synaptic efficacy following fear condition-
ing. In the presynapse actin cytoskeleton contacts synaptic vesicle 
through short strands of synapsin, a phosphoprotein associated 
with synaptic vesicle membrane (e.g., Landis et al., 1988; Hirokawa 
et al., 1989; Doussau and Augustine, 2000). It is possible that actin 
regulates the availability of the vesicle in the reserve pool (RP) by 
forming a barrier (e.g., Wang et al., 1996) or may serve as a scaf-
fold protein to retain synapsin in presynapse, thereby indirectly 
influencing neurotransmission (Sankaranarayanan et al., 2003). 
Neuronal stimulation may redistribute synapsin enabling access to 
the RP of vesicles (Greengard et al., 1994; Chi et al., 2001, 2003). 
Actin may also promote vesicle delivery to the readily releasable 
pool (RRP) by providing cytoskeletal routes of vesicle to the RRP 
(Prekeris and Terrian, 1997; Evans et al., 1998; Watanabe et al., 
2005). In addition, actin may be involved in the endocytosis of vesi-
cle at the presynapse, possibly by forming a link with dynamin or 
by promoting the transport of endocytosed vesicles to the internal 
RP cluster (Shupliakov et al., 2002; Bloom et al., 2003; Engqvist-
Goldstein and Drubin, 2003). Synaptic vesicles endocytosed at one 
bouton can be recruited into the functional pool of nearby boutons 
where they undergo exocytosis (Darcy et al., 2006). Such distribu-
tion of vesicles between nearby boutons requires actin turnover 
(Darcy et al., 2006).

The postsynaptic actin cytoskeleton may also contribute to 
synaptic transmission as it is involved in the regulation of gluta-
mate and GABA receptors clustering and trafficking and thereby 
in the postsynaptic response to neurotransmitters. F-actin depo-
lymerization reduces the number of AMPA and NMDA receptors 
clusters at excitatory synapses (Allison et al., 1998). Actin also medi-
ates glutamate receptor trafficking via myosins, the main actin- 
dependent motor proteins. Myosin Va mediates translocation of 
GluR1-containing AMPA receptor (AMPAR) from the dendritic 

of associatively induced synaptic responses in LA following fear 
learning. Mice with knockdown of one of the profilin isoforms, 
profilin2, are hyperactive and show increased novelty-seeking 
behavior (Pilo Boyl et al., 2007). Freezing after fear conditioning 
is similar in control and knockout mice when number of freez-
ings, but not time of freezing, is measured during LTM test (Pilo 
Boyl et al., 2007).

Myosin light chain kinase (MLCK) is a calcium/calmodulin-
dependent protein kinase that phosphorylates the myosin regula-
tory light chain (RLC), leading to contraction of the actomyosin 
filaments (Kamm and Stull, 2001; Somlyo and Somlyo, 2003). 
MLCK is involved in regulating cellular events related to synaptic 
transmission, such as neurotransmitter release (Mochida et al., 
1994; Ryan, 1999; Polo-Parada et al., 2001), N-methyl-d-aspartate 
receptor activity (Lei et al., 2001) and potassium channel function 
(Akasu et al., 1993). In addition, MLCK participates in neural 
morphogenesis, including the regulation of growth cone motility 
(Gallo et al., 2002; Zhou et al., 2002) and dendritic branching 
(Ramakers et al., 2001). MLCK is present in cells throughout the 
LA and is localized to dendritic shafts and spines that are post-
synaptic to the projections from the auditory thalamus to lateral 
nucleus of the amygdala, a pathway specifically implicated in fear 
learning (Lamprecht et al., 2006b). Inhibition of MLCK in LA 
leads to the enhancement of fear memory formation but has no 
effect on retrieval of fear memory (Lamprecht et al., 2006b). In 
addition, inhibition of myosin light chain kinase enhances LTP in 
the auditory thalamic pathway to the LA (Lamprecht et al., 2006b). 
MLCK inhibition immediately after fear conditioning training has 
no effect on fear memory formation. The short time window of 
involvement of MLCK in fear conditioning is consistent with its 
ability to rapidly regulate synaptic transmission (Ryan, 1999; Lei 
et al., 2001). In addition, anatomical findings showing that MLCK 
is located in LA presynaptic terminals and in postsynaptic densi-
ties suggest that MLCK might be involved in regulating events in 
these sites such as vesicle release (Ryan, 1999) or receptor activity 
(Lei et al., 2001). Moreover, the observation that MLCK inhibi-
tion does not affect fear memory retrieval implies that MLCK 
does not regulate transmission during memory activation, but 
only during acquisition. Consistent with this view is the observa-
tion that application of ML-7 (an MLCK inhibitor) to amygdala 
slices has no effect on basal transmission but rather specifically 
on the induction of associative LTP. These findings showing that 
the inhibition of MLCK enhances conditioning and the synaptic 
plasticity underlying conditioning indicate that MLCK normally 
inhibits fear learning.

Other proteins that are involved in actin polymerization and 
some in spine morphology have been implicated in fear memory 
formation such as beta-adducin shown to be essential for contex-
tual and cued fear conditioning (Rabenstein et al., 2005), drebrin 
A needed for context-dependent freezing after fear conditioning 
(Kojima et al., 2010), Ndr which expression is increased in amygdala 
6 h after Pavlovian fear conditioning training (Stork et al., 2004), 
neurabin needed for contextual fear memory and hippocampal 
LTP but not auditory fear memory and LTD (Wu et al., 2008) and 
p21-activated kinase which is not needed for normal short-term 
contextual fear conditioning but is needed for normal consolida-
tion/retention of fear memory (Hayashi et al., 2004).
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and Pasquale, 2005; Tada and Sheng, 2006; Schubert and Dotti, 
2007; Honkura et al., 2008; Hotulainen and Hoogenraad, 2010). 
In addition, actin plays a role in stabilizing postsynaptic proteins 
(Allison et al., 1998; Kuriu et al., 2006; Renner et al., 2009) and in 
modulating spine head structure in response to synaptic signaling 
(Fischer et al., 2000; Star et al., 2002; Okamoto et al., 2004).

Alteration in axonal morphology is also implicated in mem-
ory formation and synaptic plasticity (Bailey and Kandel, 1993; 
Lamprecht and LeDoux, 2004). Actin polymerization mediates 
morphological changes involved in axonal growth, guidance, 
shape, collateral branching, branch retraction, and regeneration 
(Luo, 2002; Letourneau, 2009).

Additional research is warranted to elucidate whether actin is 
involved in neuronal morphogenesis seen in amygdala and hip-
pocampus following fear memory formation and whether such 
changes are essential for memory formation. Some supporting 
evidence comes from studies showing that interference with actin 
regulatory proteins activity impairs fear memory formation and 
spine and axonal morphology (e.g., LIMK-1, Meng et al., 2002).

the roles of Actin cytoskeleton in synAptic 
plAsticity
As mentioned above actin cytoskeleton plays key roles in modulat-
ing synaptic transmission and neuronal morphogenesis, cellular 
processes believed to underlie synaptic plasticity (e.g., Bailey and 
Kandel, 1993; Lamprecht and LeDoux, 2004). The role of actin 
cytoskeleton in synaptic plasticity was studied mainly by elucidat-
ing its involvement in LTP or LTD, physiological models of mem-
ory (e.g., Bliss and Collingridge, 1993; Malenka and Nicoll, 1999; 
Martin et al., 2000). Findings suggest that LTP occur in the LA and 
hippocampus during fear conditioning. LTP induction at thalamic 
auditory inputs to the LA enhances auditory-induced responses in 
the LA in a manner similar to the increase of CS-evoked responses 
observed during auditory fear conditioning (Rogan and LeDoux, 
1995). Fear conditioning-altered auditory CS-evoked responses 
in LA changes in conjunction with conditioned fear responses 
(Rogan et al., 1997). Thalamic inputs or cortical inputs to the LA 
were enhanced in slices from trained animals compared to naive 
or unpaired animal groups (McKernan and Shinnick-Gallagher, 
1997). Moreover, fear conditioning inhibits the induction of LTP 
at cortical inputs suggesting that LA synapses that have already 
undergone LTP by training are less capable of showing additional 
LTP (Tsvetkov et al., 2002; Schroeder and Shinnick-Gallagher, 2004; 
and Schroeder and Shinnick-Gallagher, 2005). It was shown that 
contextual fear conditioning increased synaptic response in hip-
pocampal CA1 (e.g., Sacchetti et al., 2001) and that contextual fear 
conditioning modified the ability to induce LTP in hippocampus 
(Sacchetti et al., 2002).

To study the roles of actin in LTP Okamoto et al. (2004) used the 
fluorescence resonance energy transfer (FRET) technique to show 
that in rat hippocampal dendritic spines LTP induction led to per-
sistent shift of F-actin/G-actin equilibrium toward F-actin within 
seconds of a tetanic stimulus. In the dentate gyrus, LTP increased 
F-actin content in dendritic spines lasting up to 5 weeks (Fukazawa 
et al., 2003). The increase in F-actin correlates with a stable increase 
in the size of the spine head and inhibition of actin polymerization 
impaired LTP-induced spine head enlargement (Matsuzaki et al., 

shaft into spines and is required for LTP (Correia et al., 2008). 
Myosin Vb is also involved in AMPAR trafficking (Lisé et al., 2006). 
Actin regulatory and associated proteins also mediate receptor traf-
ficking. For example, ADF/cofilin-mediated actin dynamics regu-
lates AMPAR receptor trafficking during synaptic potentiation (Gu 
et al., 2010). The reversion induced LIM protein (RIL) is involved 
in actin-dependent trafficking of GluR1 (Schulz et al., 2004) and 
the actin adaptor protein 4.1N stabilizes the surface expression 
of GluR1 (Shen et al., 2000). Actin also mediates AMPAR inter-
nalization. AMPAR internalization can be induced by the actin 
assembly inhibitor latrunculin A, and this process is blocked by 
jasplakinolide, a drug which stabilizes actin filaments (Zhou et al., 
2001) and myosin VI plays a role in the clathrin-mediated endo-
cytosis of AMPARs (Osterweil et al., 2005). Actin cytoskeleton can 
also affect inhibitory transmission by mediating GABA receptor 
trafficking to the synapse (e.g., Graziane et al., 2009).

Taken together, the aforementioned studies show that actin 
cytoskeleton is involved in regulating synaptic transmission by 
affecting pre- and post-synapse molecular and cellular events that 
are also involved in synaptic plasticity and fear memory forma-
tion. Additional research is warranted to elucidate whether actin 
cytoskeleton is needed for presynaptic or postsynaptic changes 
during and following fear conditioning training.

Actin cytoskeleton in synAptic morphogenesis
It has been shown that alteration in neuronal morphology is associ-
ated with memory formation (Bailey and Kandel, 1993; Lamprecht 
and LeDoux, 2004) and may serve to modulate neuronal connectiv-
ity needed to form or alter memory. Most excitatory synapses in the 
brain terminate on dendritic spines, which have been the focus of 
recent work in the mammalian brain. Dendritic spines receive the 
majority of excitatory synaptic inputs in the brain, compartmen-
talize local synaptic signaling pathways, and restrict the diffusion 
of postsynaptic molecules (Nimchinsky et al., 2002; Lamprecht 
and LeDoux, 2004; Newpher and Ehlers, 2009). Modulation of 
the number of dendritic spines and/or their morphology has been 
proposed to contribute to alterations in excitatory synaptic trans-
mission during learning (Lamprecht and LeDoux, 2004). Changes 
in number and shape of dendritic spines where observed follow-
ing fear conditioning. For example, contextual fear conditioning 
leads to a time-dependent increase in dendritic spine density in the 
CA1 hippocampal region and the anterior cingulate cortex (Restivo 
et al., 2009; Vetere et al., 2011) and auditory fear conditioning leads 
to an increase in spinophilin-immunoreactive dendritic spines in 
the LA (Radley et al., 2006). Postsynaptic density (PSD) area on 
a smooth endoplasmic reticulum (sER)-free spines increases with 
fear conditioning while the spines head volume of these spines 
decreases (Ostroff et al., 2010).

Actin cytoskeleton is involved in neuronal morphogenesis in 
postsynaptic dendritic spines. The base, neck, and head of mature 
spine consist of a mixture of branched and linear actin filaments. 
The neck contains both linear and branched filaments, whereas 
branched actin filament network is a dominant feature of spine 
head (Korobova and Svitkina, 2010). The actin cytoskeleton is 
intimately involved in the formation and elimination, stability, 
motility, and morphology of dendritic spines (e.g., Halpain et al., 
1998; Matus, 2000; Korkotian and Segal, 2001; Luo, 2002; Ethell 

Frontiers in Behavioral Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 39 | 

Lamprecht Actin cytoskeleton in fear memory

32

http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


references
Ackermann, M., and Matus, A. (2003). 

Activity-induced targeting of pro-
filin and stabilization of dendritic 
spine morphology. Nat. Neurosci. 6, 
1194–1200.

Akasu, T., Ito, M., Nakano, T., Schneider, 
C. R., Simmons, M. A., Tanaka, T., 
Tokimasa, T., and Yoshida, M. (1993). 
Myosin light chain kinase occurs in 
bullfrog sympathetic neurons and 
may modulate voltage-dependent 
potassium currents. Neuron 11, 
1133–1145.

Allison, D. W., Gelfand, V. I., Spector, I., 
and Craig, A. M. (1998). Role of actin 
in anchoring postsynaptic receptors 
in cultured hippocampal neurons: 
differential attachment of NMDA 
versus AMPA receptors. J. Neurosci. 
18, 2423–2436.

Amano, M., Nakayama, M., and Kaibuchi, 
K. (2010). Rho-kinase/ROCK: a key 
regulator of the cytoskeleton and cell 
polarity. Cytoskeleton (Hoboken) 67, 
545–554.

Antonova, I., Arancio, O., Trillat, A. C., 
Wang, H. G., Zablow, L., Udo, H., 
Kandel, E. R., and Hawkins, R. D. 

(2001). Rapid increase in clusters of 
presynaptic proteins at onset of long-
lasting potentiation. Science 294, 
1547–1550.

Arber, S., Barbayannis, F., Hanser, H., 
Schneider, C., Stanyon, C., Bernard, O., 
and Caroni, P. (1998). Regulation of 
actin dynamics through phosphoryla-
tion of cofilin by LIM kinase. Nature 
393, 805–809.

Bailey, C. H., and Kandel, E. R. (1993). 
Structural changes accompanying 
memory storage. Annu. Rev. Physiol. 
55, 397–426.

Bi, A. L., Wang, Y., Li, B. Q., Wang, Q. Q., 
Ma, L., Yu, H., Zhao, L., and Chen, Z. 
Y. (2010). Region-specific involvement 
of actin rearrangement-related synap-
tic structure alterations in conditioned 
taste aversion memory. Learn. Mem. 
17, 420–427.

Bliss, T. V., and Collingridge, G. L. (1993). 
A synaptic model of memory: long-
term potentiation in the hippocam-
pus. Nature 361, 31–39.

Bloom, O., Evergren, E., Tomilin, N., 
Kjaerulff, O., Löw, P., Brodin, L., 
Pieribone, V. A., Greengard, P., and 
Shupliakov, O. (2003). Colocalization 

of synapsin and actin during synap-
tic vesicle recycling. J. Cell Biol. 161, 
737–747.

Brouns, M. R., Matheson, S. F., Hu, K. 
Q., Delalle, I., Caviness, V. S., Silver, 
J., Bronson, R. T., and Settleman, J. 
(2000). The adhesion signaling mol-
ecule p190 RhoGAP is required for 
morphogenetic processes in neural 
development. Development 127, 
4891–4903.

Brusés, J. L. (2006). N-cadherin signal-
ing in synapse formation and neu-
ronal physiology. Mol. Neurobiol. 33, 
237–252.

Chi, P., Greengard, P., and Ryan, T. A. 
(2001). Synapsin dispersion and 
reclustering during synaptic activity. 
Nat. Neurosci. 4, 1187–1193.

Chi, P., Greengard, P., and Ryan, T. A. 
(2003). Synaptic vesicle mobilization 
is regulated by distinct synapsin I 
phosphorylation pathways at different 
frequencies. Neuron 38, 69–78.

Cingolani, L. A., and Goda, Y. (2008). 
Actin in action: the interplay between 
the actin cytoskeleton and synap-
tic efficacy. Nat. Rev. Neurosci. 9, 
344–356.

Ciocchi, S., Herry, C., Grenier, F., Wolff, 
S. B., Letzkus, J. J., Vlachos, I., Ehrlich, 
I., Sprengel, R., Deisseroth, K., Stadler, 
M. B., Müller, C., and Lüthi, A. (2010). 
Encoding of conditioned fear in cen-
tral amygdala inhibitory circuits. 
Nature 468, 277–282.

Colicos, M. A., Collins, B. E., Sailor, M. J., 
and Goda, Y. (2001). Remodeling of 
synaptic actin induced by photocon-
ductive stimulation. Cell 107, 605–616.

Collins, D. R., and Pare, D. (2000). 
Differential fear conditioning induces 
reciprocal changes in the sensory 
responses of lateral amygdala neurons 
to the CS(+) and CS(−). Learn. Mem. 
7, 97–103.

Correia, S. S., Bassani, S., Brown, T. C., 
Lisé, M. F., Backos, D. S., El-Husseini, 
A., Passafaro, M., and Esteban, J. A. 
(2008). Motor protein-dependent 
transport of AMPA receptors into 
spines during long-term potentiation. 
Nat. Neurosci. 11, 457–466.

Darcy, K. J., Staras, K., Collinson, L. M., 
and Goda, Y. (2006). Constitutive 
sharing of recycling synaptic vesicles 
between presynaptic boutons. Nat. 
Neurosci. 9, 315–321.

the F-actin/G-actin equilibrium toward G-actin and decreases spine 
head volume with the disappearance of some spines (Okamoto 
et al., 2004). Furthermore, LTD-inducing paradigm has stabilizing 
effects on actin (Star et al., 2002).

Cumulatively, the aforementioned studies show that actin cytoskel-
eton serves as regulator of synaptic plasticity possibly by affecting 
synaptic morphology and transmission and thereby tuning synaptic 
strength. Furthermore, actin cytoskeleton is intimately involved in 
synaptic plasticity in amygdala and hippocampus areas that medi-
ate fear memory formation. Further studies are needed to elucidate 
whether actin cytoskeleton is needed for LTP of synapses in the amyg-
dala following fear conditioning and how it can affect plasticity.

future reseArch
Much evidence indicates that the actin cytoskeleton and its regula-
tory proteins are involved in fear memory formation. However, key 
questions remain unresolved. For example, are the morphological 
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Studies aimed to elucidate such questions will undoubtedly provide 
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also on the cellular processes essential for fear memory formation and 
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BEHAVIORAL NEUROSCIENCE

HPC of young adult mice induced memory impairments similar 
to those observed in stressed middle-aged mice (Chauveau et al., 
2009, 2010).

Because of the impact of benzodiazepines (BDZ) on GABAergic 
neurons, these compounds are widely prescribed in the treatment 
of anxiety disorders associated to aging. Indeed, it has been shown 
that aging causes organisms to become vulnerable to stress, which 
might be mediated by dysfunction of the brain system regulating 
emotional and stress responses (Pardon and Ratray, 2008; Shoji 
and Mizoguchi, 2010). However, it is also known that compounds 
modulating GABA-A receptors such as BDZ, also affect HPC-
dependent memory functions (for review, see Beracochea, 2006). 
Furthermore, it has already been demonstrated that GABAergic 
neurons also act on hypothalamic nuclei of the HPA axis (Jones 
et al., 1984; Hillhouse and Milton, 1989; Stotz-Potter et al., 1996; 
Cullinan et al., 2008) and that peripheral injection of GABA-A 
receptor positive modulators such as BDZ reduced HPA axis activity 
(Imaki et al., 1995; Grottoli et al., 2002).

Given the reciprocal interaction between the GABAergic system 
and HPA axis, it is of importance to determine the impact of BDZ 
administration on HPA axis activity and its consequence on memory 

INTRODUCTION
It is well known that both stress-induced and age-induced cognitive 
dysfunctions are major public health issues nowadays. More par-
ticularly, it has been shown that stress and aging impair in humans 
declarative memory, and more specifically memory processes 
involving either the hippocampus (HPC) and/or prefrontal cortex 
activity (de Quervain et al., 2003; Cappell et al., 2010). Moreover, 
both stress-induced and aged-induced memory impairments 
would involved dysfunction of the HPA axis activity (Sapolsky 
et al., 1986; de Kloet et al., 1991; Lupien et al., 1999; Pardon, 2007; 
Pardon and Ratray, 2008; Comijs et al., 2010).

In line with these observations, we recently showed that 
stressed middle-aged mice exhibited contextual memory impair-
ments associated with a dramatic increase in intra-HPC cor-
ticosterone concentration (Tronche et al., 2010a). We already 
evidenced the causal role of HPC corticosterone on memory 
dysfunction in stressed middle-aged mice insofar as the adminis-
tration of metyrapone (an inhibitor of corticosterone synthesis) 
totally alleviated both the stress-induced corticosterone rise and 
memory impairments (Tronche et al., 2010a). In addition, we 
also showed that the direct infusion of corticosterone into the 
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function, in particular in middle-aged subjects that are vulnerable 
to stress. So far, the aim of the present study was to evidence more 
specifically the impact of BDZ administration on HPC glucocor-
ticoids concentration and its consequence on memory in a HPC-
dependent contextual memory task in stressed middle-aged mice.

For that purpose, we studied in a first experiment the effects of a 
diazepam administration on contextual memory, using the contex-
tual serial discrimination task (CSD). This task allowed to evidence 
a hippocampal-dependent memory impairment in stressed (Celerier 
et al., 2004; Piérard et al., 2009) as well as in middle-aged (Tronche 
et al., 2010a) and aged subjects (Tronche et al., 2010b). More precisely, 
the CSD task involves two serial discriminations (D1 and D2) learned 
on two different contexts. We found from in situ brain lesions and 
pharmacological experiments, that the memory retrieval of D1 but 
not of D2 is HPC-dependent (Chauveau et al., 2008, 2009, 2010). In 
a second experiment, we evaluated the emotional status of diazepam-
treated stressed middle-aged mice in an elevated plus-maze task. 
Finally, in a third experiment, we measured by in vivo microdialysis 
the intra-HPC corticosterone concentration following diazepam 
administration in freely moving mice. Microdialysis allows a direct 
and dynamic measurement of the interaction between the HPA axis 
and the HPC, as a function of the administered dose of diazepam. 
Whereas peripheral measurements of circulating glucocorticoids 
have already been performed (Comijs et al., 2010), there is to our 
knowledge no direct evidence for such a dynamic interaction at the 
hippocampal level, which is surprising given the known importance 
of the hippocampus both in memory processes and in the negative 
feedback exerted by this brain area on HPA axis activity.

MATERIALS AND METHODS
ANIMALS
Upon arrival in the laboratory, all animals were 3-month-old male 
mice of the BALB/c inbred strain obtained from Charles River 
(L’Arbresle, France). Animals were housed in collective cage in the 

colony room (12 h light–dark cycle in a temperature controlled 
and ventilated room) until they were either 16 months. Two weeks 
before the experiments, they were housed individually. The animal’s 
weights were ranged between 28 and 35 g at the time of experi-
ments. All procedures were carried out during the light phase of the 
cycle, between 08:00 and 12:00 a.m. During the food deprivation 
phase, mice were handled daily so as to become familiar with the 
experimenter. During that phase, all subjects were maintained at 
85–90% of their ad libitum body weight throughout the behavioral 
study. All animal experimentation reported in the present paper 
has been conducted in accordance with the guidelines laid down 
by the European Communities Council.

MEMORy TEST
Apparatus
The CSD has been extensively described in earlier studies (Chauveau 
et al., 2009, 2010; Pierard et al., 2010). All tests were performed in a 
four-hole board apparatus (45 cm × 45 cm × 30 cm high) enclosed by 
gray Plexiglas. The four-hole board apparatus was placed on the floor 
of the room (3.0 m × 3.0 m × 2.40 m high). The floor of the board 
was interchangeable (white and rough; black and smooth). On the 
floor, four holes opening on a food cup (3 cm in diameter × 2.5 cm 
in depth) were located 6 cm away from the sidewalls. The apparatus 
was placed in a room exposed to a 60-dB background noise and a 
light centered over the apparatus provided 20 lx intensity at the posi-
tion of the apparatus. The apparatus was cleaned with 95% ethanol, 
then with water before each mouse behavioral testing. Data were 
automatically monitored by photoelectric cells and video recording.

Acquisition phase
In the CSD, the acquisition phase took place in room A where ani-
mals learned two consecutive spatial discriminations (D1 and D2; 
see Figure 1). Both discriminations differed in terms of the color 
and texture of the floor (internal context of the four-hole board) 

Figure 1 | Description of the contextual serial discrimination (CSD) behavioral task. (A) Behavioral procedures. (B) Type of responses for the retrieval test 
phase. D1, discrimination 1; D2, Discrimination 2; CSD, contextual serial discrimination. During retrieval test phase, each mice is randomly evaluated either on D1 
floor or D2 floor without food reward.
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The  remaining arms did not have sidewalls. These walls did not 
extend from the center of the maze. The experiment was performed 
between 08:30 and 12:00 a.m. At the beginning of the session, mice 
were placed at the center of the plus maze in a cylinder (8 cm 
diameter, 17 cm high) for 30 s. Then, the cylinder was removed and 
mice were allowed to freely explore all arms of the maze for 6 min. 
An entry was counted only when a mouse entered an arm with all 
four paws. “Anxiety-like” behavior was measured by the ratio of 
entries into the open arms divided by the total number of entries 
in all arms (entry ratio). Results were expressed in percentages 
(ratio × 100). The elevated plus-maze test has been performed in 
four independent groups of mice (i.e., not submitted to the CSD 
task and microdialysis experiment) distributed as follows: vehicle: 
n = 7; diazepam 0.25 mg/kg: n = 7; diazepam 0.5 mg/kg: n = 7; 
diazepam 1.0 mg/kg: n = 7).

SURgERy AND HISTOLOgy
Mice were anesthetized with a ketamine (100 mg/kg body weigh)–
xylazine (10 mg/kg body weigh) mixture and placed into a stereotaxic 
frame. A single guide cannula microdialysis (CMA/7 Microdialysis 
probe, CMA Microdialysis, Sweden) was implanted in the bottom 
of the parietal cortex at the following coordinates from the bregma 
(Paxinos and Franklin, 2001): Antero-posterior = −2000 μm, 
Lateral = +1400 mm, and Vertical = −800 mm. The guide cannula 
was fixed with dental cement and three micro screws attached to 
the skull. All operated mice were allowed to recover in their home 
cages in the animal room for at least 7 days before the microdialysis 
experiment. On the day of the experiment, the microdialysis probe 
was lowered 1 mm below through the guide cannula so that the 
microdialysis membrane is located into the dorsal HPC. At the 
end of the microdialysis experiment, mice were anesthetized and 
then transcardially perfused in the left ventricle with saline solu-
tion (NaCl 0.9%) followed by formaldehyde (4%). Brains were 
then postfixed in a 4% formaldehyde solution for 10 days, then in 
a saccharose–formaldehyde solution (30 and 4% v/v) for 2 days. 
All the brains were sectioned coronally (50 μm thickness). A cresyl 
violet stain was used to locate the microdialysis probe with utmost 
accuracy.

In vIvo MICRODIALySIS
Seven days after surgery, a dialysis probe (CMA/7; CMA 
Microdialysis AB, Sweden; length: 1 mm; molecular cut-off 6 kDa 
and membrane outer diameter: 0.24 mm) was carefully implanted 
into the right dorsal HPC under light anesthesia induced by a 
ketamine (50 mg/kg body weigh)–xylazine (5 mg/kg body weigh) 
mixture. Mice were then individually housed in a system allowing 
animals to move freely (CMA/120; CMA Microdialysis AB, Sweden) 
overnight. After the overnight perfusion at 1 μl/min to equilibrate 
extracellular metabolites concentrations, freely moving animals 
were continuously perfused with a sterile-filtered saline solution 
(Dulbecco’s phosphate buffered saline; SIGMA; in g/l: CaCl

2
, 0.133; 

MgCl
2
, 0.1; KCl, 0.2; KH

2
PO

4
, 0.2; NaCl 8.0; Na

2
HPO

4
, 1.15; pH 

between 7.1 and 7.5) at a 1-μl/min flow rate through a micro-infu-
sion pump. The foot-shock delivery system was inside the dialysis 
cage in order to deliver acute stress. Microdialyzates were sampled 
every 15 min using tubes with a dead volume of 1.2 μl/100 mm 
length (CMA Microdialysis AB). Samples were stored at −80°C. 

and were separated by a 2-min delay interval. During this delay, the 
mouse was returned to its home cage in room B. At the beginning 
of acquisition and retrieval phases, mice were placed in the center 
of the four-hole board in an opaque PVC tube for 5 s to provide the 
animal with a random start in the apparatus. For D1, ten 20-mg food 
pellets were available only in one of the four holes on the board for 
6 min. Location of the baited hole for D1 was randomized for each 
subject. For D2, ten 20-mg food pellets were consistently located 
in the opposite symmetrical hole, for 6 min likewise. The environ-
mental spatial cues were made of colored and striped paper sheets 
positioned at 1.00 m above the four-hole board. These allocentric 
cues remained at the same place for both D1 and D2 discriminations 
and for the retrieval phase. Thus, both discriminations D1 and D2 
differed only by the internal (floor) contextual cues. Both floors were 
positioned in a mixed random order during the acquisition of the 
first and second discrimination tasks. At the end of the acquisition 
phase, mice returned to their home cage in the animal room for 
24 h. Only mice having eaten all the pellets during both acquisition 
sessions were used for the retrieval test phase.

Acute stress
Twenty-four hours after acquisition, mice were placed in the stress 
delivery cage for 1 min, in room D. Stress was induced 15 min before 
the test session. Stressed mice received three consecutive inescapable 
electric foot-shocks (0.9 mA; 10 ms). All animals were then returned 
to their home cage during the delay preceding the test session.

Test phase
Fifteen minutes after acute stress, mice were replaced in the four-
hole board (room A) without any pellet in the apparatus. Mice 
were placed either on the D1 floor or on the D2 floor and were 
allowed to freely explore the apparatus for 6 min. For all mice, 
the retrieval test phase occurred 24 h after the acquisition phase 
and was performed on independent groups for either D1 or D2. 
Performance was assessed by measuring the number of head dips 
in each hole during 6 min.

Measurements
Memory retrieval performance was evaluated through the explora-
tion rates into the different holes. Correct responses were defined as 
head dips into the hole previously baited on the same floor-context 
during the acquisition phase, and were calculated as follows: (head 
dips into the baited hole/total number of head dips in the four 
holes) × 100.

EvALUATION Of EMOTIONAL STATUS
Elevated plus maze
In order to verify the anxiolytic action of diazepam and the absence 
of sedative effect for the selected doses, stressed animals were sub-
mitted to the elevated plus-maze task 15 min after electric shock 
delivery. Stress was similar as the one previously described in the 
CSD experiments. The elevated plus maze, which was constructed 
of gray Plexiglas, consisted of four arms arranged in the shape 
of a plus sign. Each arm was 30 cm long, 7 cm wide, and was 
elevated 40 cm above the ground. The four arms were joined at the 
center by a 7-cm square platform. Two opposite arms of the plus 
maze were enclosed by sidewalls 17 cm high, but open on the top. 
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All the data were expressed as mean ± SEM and “NS” means 
that “p” values exceed 0.05 and are considered as non-statistically 
significant.

ETHICAL STATEMENT
The present study was carried out in compliance with the European 
Convention for the protection of Vertebrate Animals used for 
Experimental and other Scientific Purposes, under the agreement 
#2010/11 delivered by the French Ministry of Defence after the 
protocol was examined by the local ethical committee. Guidelines 
for proper laboratory animal care were fully implemented.

RESULTS
EXPERIMENT 1: CSD TASk
Acquisition phase
The acquisition phase has been analyzed according to the further 
random attribution of mice to D1 (Vehicle: n = 10; 0.25 mg/kg: 
n = 9; 0.5 mg/kg: n = 9; 1.0 mg/kg: n = 9) or D2 (Vehicle: n = 10; 
0.25 mg/kg: n = 9; 0.5 mg/kg: n = 9; 1.0 mg/kg: n = 9) as regards 
the retrieval test phase and the post-stress delay. Total numbers 
and percentage of head dips are reported in Table 1. The Student’s 
t-test is used for comparisons between D1 and D2.

Test phase
A two-way ANOVA performed on all groups (vehicle; Diazepam 
0.25 mg/kg, Diazepam 0.5 mg/kg, and Diazepam 1.0 mg/kg) showed 
a significant interaction between Discriminations × Treatments 
[F

(3,66)
 = 33.049; p ≤ 0.001; Figure 2].

(i) Vehicle. Vehicle-treated mice exhibited performance for 
D1 and D2 significantly different from chance level (25%; 
17.8 ± 2.5%; t = 3.552; p ≤ 0.01 and 46.3 ± 2.5%; t = 8.663; 
p ≤ 0.001 respectively as compared to chance level). 
Bonferroni’s t-test reveals significant memory performances 
differences between D1 and D2 (17.8 ± 2.5 and 46.3 ± 2.5% 
respectively; t = 8.218; p ≤ 0.001).

(ii) Diazepam 0.25 mg/kg. Within-group analyses showed that 
D1 performance in 0.25 mg/kg treated mice was at chance 
(28.7 ± 5.7%; t = 1.943; NS) but was significantly above 

Baseline dialyzates were collected for 1 h before ip injection of 
diazepam (n = 8 for each dose) or vehicle (n = 8) and 30 min before 
acute stress delivery. Free corticosterone levels measured in the 
dialyzate (in nanomolar) were expressed as the percentage of the 
averaged baseline values collected before the injection.

DRUg ADMINISTRATION
Five days before experiments, mice were daily prepared for intra-
peritoneal (ip) administration by exerting light pressure on the body 
with the syringe. On the day of the experiment, 30 min before acute 
stress administration, mice received an ip injection of a diazepam 
solution. Diazepam (Valium®, Roche, 1, 0.5, 0.25 mg/kg body weigh 
dissolved in saline solution) and vehicle (saline solution) solutions 
were injected in a room (room C, Figure  1) different from the 
 behavioral room (room A).

INTRA-HIPPOCAMPAL CORTICOSTERONE ASSAy
A commercially prepared Enzyme Immunoassay kit was used to 
measure HPC corticosterone concentrations in the microdialyzates 
(Correlate-EIA™, Assay Designs, Ann Arbor, USA). The sensitivity 
of the assay was 0.08 nmol/l. Therefore, baseline sample concentra-
tion was more than 10-fold superior than sensitivity threshold.

STATISTICAL ANALySES
Statistical analyses were performed using the Sigma Plot 11.0 soft-
ware. Behavioral data were analyzed using 1 way or 2 way facto-
rial analyses of variance (ANOVAs) with either “Treatments” and 
“Discriminations” as factors followed, – when adequate, with post 
hoc comparisons (Bonferroni’s t-test). In the CSD task, compari-
sons of retrieval performances with chance level were calculated 
with paired-samples t-test (with hypothesized mean = chance 
level = 25% for correct responses).

For microdialysis, basal free extracellular corticosterone levels 
were compared with one sample Student’s t-test. Stress effects on 
intra-HPC corticosterone levels are expressed in percentage of base-
line variation. They were compared using two-way repeated-meas-
ures ANOVA (RM-ANOVA) with both “Treatments” and “Time” 
factors. When appropriate, post hoc analyses were performed with 
Bonferroni’s t-test.

Table 1 | Total number of head dips and % number of head dips in the rewarded hole of acquisition 1 and acquisition 2 in vehicle and diazepam-

treated groups.

 Total number Percent of head Student’s t-test on the percentage

 of head dips dips in baited hole of head dips in baited hole

groups D1 D2 %D1 %D2 D1 vs D2 vehicle vs doses

Vehicle n = 20 56.5 ± 1.7 64.9 ± 1.4 60.7 ± 2.8 56.5 ± 4.9 t = 0.739, NS 

1 mg/kg n = 18 63.7 ± 4.2 62.8 ± 6.2 65.6 ± 6.4 67.8 ± 3.8 t = 0.631, NS for D1, t = 0.738, NS

      for D2, t = 1.793, NS

0.5 mg/kg n = 18 58.1 ± 3.4 61.1 ± 6.9 56.3 ± 2.8 63.6 ± 5.4 t = 1.131, NS for D1, t = 1.107, NS

      for D2, t = 0.917, NS

0.25 mg/kg n = 18 60.1 ± 3.8 65.4 ± 4.4 58.4 ± 8.1 62.4 ± 5.5 t = 0.413, NS for D1, t = 0.283, NS

      for D2, t = 0.802, NS

There	is	no	significant	between	groups	difference.
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red to chance level). Bonferroni’s t-test did not reveal any 
difference between D1 and D2 (32.1 ± 1.9 and 31.7 ± 2.7% 
respectively; t = 0.103; NS). In addition, inter-group com-
parisons evidenced a significant difference for D1 per-
formance between the vehicle-treated and the 1-mg/kg 
groups (17.8 ± 2.5 and 32.1 ± 1.9% respectively; t = 3.990; 
p ≤ 0.001). Furthermore, a significant difference for D2 per-
formance was already observed between the vehicle-treated 
and the 1-mg/kg groups (46.3 ± 2.5 and 31.7 ± 2.7% respec-
tively; t = 4.114; p ≤ 0.001).

Elevated plus-maze task
Results are represented in Figure  3. Diazepam administration 
in stressed middle-aged mice induced a significant decrease of 
entry ratio as compared to placebo (39.9 ± 5.0%) for the dose of 
0.5 mg/kg (58.9 ± 2.3%; p < 0.01) and 1.0 mg/kg (54.7 ± 3.1%; 
p < 0.05). In contrast, diazepam at 0.25 mg/kg did not significantly 
modified performance as compared to vehicle (46.9 ± 2.3%; NS).

EXPERIMENT 2: HIPPOCAMPAL CORTICOSTERONE LEvELS
Basal levels
The basal corticosterone levels in the dialyzate have been analyzed 
according to the further random attribution of mice to vehicle or 
diazepam-treated groups.

Basal corticosterone levels in the dialyzate obtained from vehicle-
treated mice were 2.71 ± 0.48 nmol/l (n = 8), 2.29 ± 0.56 nmol/l 
(n = 8) for 0.25 mg/kg, 1.51 ± 0.49 nmol/l (n = 8) for 0.5 mg/kg, 
1.77 ± 0.15 nmol/l (n = 8) for 1 mg/kg. There were no significant 
differences in basal extracellular corticosterone levels between: (i) 
vehicle and 0.25 mg/kg treated mice (t = 0.567; NS), (ii) vehicle and 
0.5 mg/kg treated mice (t = 1.888; NS), (iii) vehicle and 1 mg/kg 
treated mice (t = 1.857; NS).

chance level for D2 (34.6 ± 6.3%; t = 5.434; p ≤ 0.001). 
Bonferroni’s t-test did not reveal any differences between D1 
and D2 (28.7 ± 5.7 and 34.6 ± 6.3% respectively; t = 1.631; 
NS). In addition, cross-analyses were performed as compa-
red to vehicle-treated group on independent groups of mice. 
Inter-group comparisons evidenced a significant difference 
for D1 performance between the vehicle-treated and the 
0.25-mg/kg groups (17.8 ± 2.5 and 28.7 ± 5.7% respecti-
vely; t = 3.042; p ≤ 0.01). Furthermore, a significant diffe-
rence for D2 performance was already observed between the 
vehicle-treated and the 0.25-mg/kg groups (46.3 ± 2.5 and 
34.6 ± 6.3% respectively; t = 3.284; p ≤ 0.01).

(iii) Diazepam 0.5 mg/kg. Within-group analyses showed that 
D1 performance in 0.5 mg/kg treated mice was significantly 
above chance level (43.8 ± 3.7%; t = 5.090; p ≤ 0.001) but was 
at chance for D2 (22.6 ± 3.3%; t = 0.719; NS). Bonferroni’s 
t-test revealed a significant differences between D1 and 
D2 performance in 0.5 mg/kg treated mice (43.8 ± 3.7 and 
22.6 ± 3.3% respectively; t = 5.799; p ≤ 0.001). In addition, 
cross-analyses were performed as compared to vehicle-
treated group on independent groups of mice. Inter-group 
comparisons evidenced a significant difference for D1 per-
formance between the vehicle-treated and the 0.5-mg/kg 
groups (17.8 ± 2.5 and 43.8 ± 3.7% respectively; t = 7.286; 
p ≤ 0.001). Furthermore, a significant difference for D2 per-
formance was already observed between the vehicle-trea-
ted and the 0.5-mg/kg groups (46.3 ± 2.5 and 22.6 ± 3.3% 
respectively; t = 6.662; p ≤ 0.001).

(iv) Diazepam 1 mg/kg. The 1-mg/kg treated-mice exhibited 
significant memory performance for D1 and D2 as compa-
red to chance level (25%; 32.1 ± 1.9%; t = 3.576; p ≤ 0.01 
and 31.7 ± 2.7%; t = 2.513; p ≤ 0.05 respectively as compa-

Figure 2 | effect of stress on contextual memory in vehicle and diazepam 
(0.25, 0.5, and 1 mg/kg) treated mice. Memory performance was evaluated by 
the percentage of correct responses for D1 and D2 in the CSD task. Each animal 
were evaluated either on the D1 either on D2. All groups received ip injection 

(vehicle or diazepam) 30 min before the stress delivery. All animals were 
evaluated 15 min after the stress delivery. Numbers of animals used for each 
group are mentioned in histograms. Comparison to vehicle groups: *p ≤ 0.05; 
**p ≤ 0.01; ***p ≤ 0.001. Dotted lines represent chance level.
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respectively; t = 2.295; p ≤ 0.05). In contrast, no significant dif-
ference was observed between vehicle and 0.5 mg/kg diazepam-
treated mice 45, 60, 75, and 90 min after stress delivery (NS in all 
comparisons). Finally, a faster decrease of corticosterone levels 
in 0.5 mg/kg diazepam-treated mice was observed as regards to 
vehicle-treated mice for the 105-min point (172.45 ± 37.95 and 
232.86 ± 26.74%, respectively; t = 2.690; p ≤ 0.05).

– 1 mg/kg. As compared to the last pre-stress sample 
(107.78 ± 8.58%; “time = 0”), the stress-induced rise in corti-
costerone levels was not observed in 1 mg/kg diazepam-trea-
ted mice.
In consequence, the significant fast and important increase 
in corticosterone levels in vehicle-treated mice was observed 
15 min to the end of the post-stress delay, as compared to 1 mg/
kg diazepam-treated mice (223.77 ± 34.23 and 89.63 ± 10.61%, 
respectively; t = 4.575; p ≤ 0.001 for 15 post-stress delay; 
215.27 ± 28.04 and 104.35 ± 23.27%, respectively; t = 3.738; 
p ≤ 0.001 for 120 post-stress delay).

DISCUSSION
The main findings of our study are as follows:

(i) Diazepam significantly decreases anxiety-like reactivity in 
the elevated plus maze, at the doses of 0.5 and 1.0 mg/kg 
(but not at the dose of 0.25 mg/kg), as compared to stressed 
vehicle-injected animals.

(ii) Stressed middle-aged mice exhibit a highly significant 
memory of the second discrimination (D2), while respon-
ding at chance (25%) for the first one (D1). Diazepam admi-
nistration at 0.5 mg/kg totally reverses the memory retrieval 
pattern in acutely stressed middle-aged animals (D1 > D2). 
In contrast, animals receiving the lowest (0.25 mg/kg) and 
highest (1.0 mg/kg) diazepam doses exhibit similar memory 
performance for both discriminations even though just 
above chance level.

(iii) Microdialysis experiment shows a significant interaction 
between diazepam doses and corticosterone concentra-
tions into the HPC. From 0.25 to 0.5 mg/kg, diazepam 
dose-dependently reduces intra-HPC corticosterone con-
centrations and in parallel, dose-dependently increased hip-
pocampal memory performance in the CSD task. In contrast, 
the highest diazepam dose (1.0 mg/kg) induces a reduction 
in hippocampal corticosterone concentration, which was of 
greater magnitude as compared to the two other diazepam 
doses, but however decreased the hippocampal-dependent 
memory performance (D1) in the CSD task.

Our previous data (Chauveau et al., 2008, 2010; Tronche et al., 
2010a,b) showed that both stress and aging, as well as hippoc-
ampal chemical lesions, selectively reduced the retrieval of D1 
to chance level (25%) while sparing the retrieval of D2. In the 
present study, we focused on stressed condition only insofar 
as stressed middle-aged mice exhibit memory retrieval pattern 
comparable to non-stressed middle-aged animals, except that 
stressed subjects exhibit an increase of D2 response of greater 
magnitude as compared to non-stressed ones. Thus, since our 
goal was only to determine if diazepam is able to restore a 

Effect of stress
Figure 4 represents corticosterone levels in the dorsal HPC. Results 
are expressed in percentage of variation of baseline. Two-way 
repeated-measures ANOVAs performed on corticosterone kinetic 
evidenced a significant interaction between Treatments × Time 
[F

(13,364)
 = 2.801; p ≤ 0.001]. Bonferroni’s t-test did not reveal any 

difference between the groups (vehicle, 1, 0.5, and 0.25 mg/kg) in 
the pre-stress period for each factor.

– Vehicle. As compared to the last pre-stress sample 
(120.42 ± 25.01%; “time = 0”), stress induced a fast and 
important increase in corticosterone levels from 15 min after 
stress (223.77 ± 34.23%; t = 4.009; p ≤ 0.001) to 120 min 
(215.27 ± 28.04; t = 3.623; p ≤ 0.01).

– 0.25 mg/kg. During the post-stress period, stress induced a 
fast and rapid increase in corticosterone levels from 15 min 
after stress (203.36 ± 25.52%; t = 3.895; p ≤ 0.01) to 105 min 
(190.56 ± 47.28%; t = 3.254; p ≤ 0.01) as compared to the 
last pre-stress sample (113.52 ± 18.10%; “time = 0”). Only the 
120 point was no significant (184.03 ± 35.09%; t = 1.258; NS) 
with the last pre-stress sample (113.52 ± 18.10%; “time = 0”).
Furthermore, after the stress delivery, the increase in corti-
costerone levels observed in 0.25 mg/kg diazepam-treated 
mice and vehicle-treated mice showed non-significant 
differences during all the post-stress period (NS in all 
comparisons).

– 0.5 mg/kg. As compared to the last pre-stress sample 
(91.23 ± 14.09%; “time = 0”), stress induced a progressive, 
and significant increase in corticosterone levels from 15 min 
after stress (169.89 ± 25.47%; t = 3.004; p ≤ 0.05) to 75 min 
(191.21 ± 18.71%; t = 3.819; p ≤ 0.01). Furthermore, the 
highest difference was observed 60 min after stress admini-
stration (243.51 ± 23.93; t = 5.817; p ≤ 0.001).
In addition, a faster increase in corticosterone levels in vehicle-
treated mice was observed 15 min after stress delivery as com-
pared 0.5 mg/kg diazepam-treated mice (223.77 ± 34.23 and 
169.89 ± 25.47%, respectively; t = 2.414; p ≤ 0.05) as well as 
30 min after stress delivery (238.22 ± 24.60 and 166.62 ± 15.50%, 

Figure 3 | entry ratio in the elevated plus-maze task in vehicle and 
diazepam (0.25, 0.5, and 1 mg/kg) treated mice. As can be observed, 
diazepam at 0.5 and 1.0 mg/kg increased the entry ratio as compared to 
vehicles, *p < 0.01; **p < 0.05. The lower diazepam dose (0.25 mg/kg) induced 
no significant effect as compared to vehicles.
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previously that in non-stress condition, aging increases HPC cor-
ticosterone concentration and abolished the HPC-dependent 
memory retrieval pattern, as compared to non-stressed young 
adult mice (Tronche et al., 2010a,b). Thus, acute stress amplified 
such endocrinal and cognitive effects of aging, as compared to the 
non-stress condition.

Our present data evidences a significant memory-enhancing 
effect of diazepam on HPC-dependent memory performance at 
the dose of 0.5 mg/kg in stressed middle-aged mice. This finding 
is at first sight surprising, because of the well-known anterograde 
and retrograde amnesic properties of BDZ in healthy young adult 
subjects (for review, Beracochea, 2006). However, the memory-
enhancing effect observed in the present study as compared to 
both control animals and chance level for the dose of 0.5 mg/kg 
may rely on the specificity of the studied population, that is to say 
stressed middle-aged subjects. The microdialysis experiment shows 
that diazepam dose-dependently reduces HPC  corticosterone 

memory retrieval pattern comparable to the level of the one 
observed in young non-stressed mice (that is to say is able to 
restore the hippocampal-dependent D1 response), we decided 
therefore to analyze the effects of diazepam only in the more 
deleterious condition (middle-aged stressed mice) as compared 
to non-stress condition.

Our present study confirms the therapeutic anxiolytic action of 
diazepam. However, in our experimental conditions, this effect is 
more important for the dose of 0.50 mg/kg (p < 0.01), as compared 
to 1.0 mg/kg (p < 0.05). Data from the elevated plus-maze test also 
shows the absence of any sedative effect of diazepam on locomotion 
for the range of the doses used in our study.

We already showed that the memory retrieval of the first dis-
crimination (D1) but not of the second one (D2) is dependent on 
the HPC activity, and that both stress and aging affected the memory 
retrieval of D1 but not of D2 (Celerier et al., 2004; Chauveau et al., 
2008, 2009, 2010; Tronche et al., 2010a,b). Moreover, we also showed 

Figure 4 | effect of stress on corticosterone concentration into the dorsal 
HPC. (A) Effect of 0.25 mg/kg diazepam on corticosterone concentration into 
the dorsal HPC after stress delivery. (B) Effect of 0.5 mg/kg diazepam on 
corticosterone concentration into the dorsal HPC after stress delivery. (C) Effect 

of 1 mg/kg diazepam on corticosterone concentration into the dorsal HPC after 
stress delivery. Numbers of animals used for each group are mentioned in 
graphs legends. Dotted lines represent baseline level. Comparisons to 
vehicle-treated animals: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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Benzodiazepines (BDZ) activate central GABA receptors, which 
are importantly distributed in the HPC (Laviv et al., 2010; Lehner 
et al., 2010). It has been hypothesized that the effects of GABA/BDZ 
on HPA activity are mediated by CRH and/or AVP (see Cullinan 
et al., 2008).

The neurotransmitter GABA is a well-known inhibitor of ACTH 
release (Makara and Stark, 1974), probably through a central action 
on hypothalamic CRH. In vivo injection of the GABA-A receptor 
antagonist bicuculline into the dorsomedial hypothalamus resulted 
in increased plasma ACTH and corticosterone (Keim and Shekhar, 
1996). Thus, the HPA axis appears to be under tonic GABA inhibi-
tion at the hypothalamic level, mediated through GABA receptors 
(Häusler et al., 1993). Moreover, neuroanatomical and pharmaco-
logical studies have established GABA-mediated inhibition of the 
HPA axis at the level of the PVN (Cullinan et al., 2008). Our study 
is however the first to evidence an in vivo direct dynamic interac-
tion between BDZ and corticosterone level in the hippocampus 
in stress condition.

Glucocorticoids can impair HPC long term potentiation (LTP) 
in vitro (Dubrovsky et al., 1987; Pavlides et al., 1993) as well as 
increasing after hyperpolarization mediated by small conductance 
calcium-activated potassium channels (Joëls and de Kloet, 1989) 
that have been implicated in arousal. Because of the “inverted-U” 
response to these hormones (Diamond et al., 1992), low concen-
trations maintain, moderate concentrations promote, and high 
concentrations impair neuronal function. LTP is dependent on 
adrenal output in vivo, and adrenalectomy results in a significant 
decrease in the extent of LTP (Shors et al., 1990). Conversely, stress 
and excess glucocorticoids impair neuronal function and HPC-
dependent memory (reviewed by Sapolsky et al., 1986; de Kloet 
et al., 1991; Filipini et al., 1991; McEwen and Sapolsky, 1995; Lupien 
and McEwen, 1997).

So far, the bimodal modulation of HPC-dependent memory 
performance according to corticosterone concentrations is in 
agreement with the study of Diamond et al. (1992), showing that 
corticosterone exerts a concentration-dependent biphasic influence 
on the expression of hippocampal plasticity.

CONCLUSION
Our data evidences a direct interaction between diazepam, HPC 
corticosterone concentrations, and HPC-dependent memory 
performance in stressed middle-aged mice. To our knowledge, it 
is shown here for the first time that diazepam restores memory 
performance sustained by the hippocampus as previously evi-
denced (Chauveau et al., 2010) so that stressed middle-aged ani-
mals receiving the 0.5-mg/kg diazepam dose exhibit a memory 
pattern similar to the one of young adult non-stressed mice. This 
effect is related to the level of HPC corticosterone. Overall, our 
data illustrate how stress and benzodiazepines could modulate 
cognitive functions depending on hippocampus activity.
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 concentrations but the memory-enhancing effect is observed only 
at the 0.5-mg/kg dose. In contrast, whereas the 1.0-mg/kg dose 
continues to decrease HPC corticosterone concentration, there is 
a decrease of HPC-dependent memory performance as compared 
to the 0.5-mg/kg diazepam dose (see Figure 5). Thus, the result 
found with the highest diazepam dose confirms a pejorative effect 
of diazepam on HPC-dependent memory performance, as com-
pared to the 0.5-mg/kg dose.

In addition to the effects of diazepam on hippocampal corticos-
terone, other actors could also be involved in the dose-dependent 
effect of BDZ on memory in stress condition, mainly catecho-
lamine, GABA, glutamate, and aspartate. Moreover, changes in 
GABA/BDZ receptor number and affinity (desensitization) could 
also be involved.

As shown in Figure 5, a key finding is the continuous decrease in 
HPC corticosterone concentration measured 15 min after stress, as 
a function of the administered dose of diazepam. From a dynamic 
point of view (Figure 4), the highest diazepam dose totally inhib-
its the stress-induced HPC corticosterone rise. However, for the 
0.50-mg/kg dose, diazepam attenuates the stress-induced corticos-
terone rise as compared to vehicle-treated animals and accelerates 
the return to baseline.

From a cognitive point of view, Figure 5 also shows a bimo-
dal effect of diazepam as a function of the administered dose. 
Indeed, from 0.0 to 0.5 mg/kg, we observed an inverse  relationship 
between HPC-dependent memory performance and HPC cor-
ticosterone concentration. In contrast, from 0.50 to 1.0 mg/kg, 
the memory performance varies in the same way as the HPC 
corticosterone level.

The action of diazepam on HPC corticosterone concentrations 
and memory performance could be explained via the interaction 
between the GABAergic system and HPC corticosterone as a result 
of the modulation of HPA axis activity by diazepam.

Indeed, numerous data have clearly demonstrated that HPA axis 
activity is regulated by non-glucocorticoid inhibitors. There is evi-
dence that HPC-mediated mechanisms of glucocorticoid feedback 
could involve hypothalamic CRH secretion and GABAergic path-
ways (Calogero et al., 1988; Arvat et al., 2002; Cullinan et al., 2008). 

Figure 5 | Synoptic view of the effects of diazepam on both 
hippocampus corticosterone concentrations (left) and memory 
performance (D1 test; right). Comments are mentioned in the text.
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BEHAVIORAL NEUROSCIENCE

been deployed since September 2001 than in the previous 40 years. 
A greater number of these deployed service members are surviving, 
which has increased the incidence of combat-related PTSD among 
those veterans (Callahan, 2010). For example, Iraq and Afghanistan 
War veterans who showed PTSD symptoms were four times more 
likely to endorse suicidal ideation than their non-PTSD counterparts 
(Jakupcak et al., 2009). These evidences suggest that fearful memo-
ries and PTSD symptoms may contribute to suicidal ideation and 
attempts, and individual vulnerability to traumatic events is one of 
the risk factors for suicide (Ursano et al., 2010). However, precise 
molecular mechanisms underlying how fear and stress trigger sui-
cidal behavior in humans are not clearly understood.

Multiple brain regions have been implicated in emotional 
learning and memory. Among those, the PFC is one of the 
key brain regions that integrates stress signals and subsequent 
 decision-making process in humans. Protein phosphorylation in 
the brain plays a critical role in triggering synaptic changes that 
are associated with emotional learning and memory (Fischer 
et al., 2003). Intracellular phosphorylation is orchestrated by 
a complex network of many different kinases including pro-
tein kinase C (PKC), calcium/calmodulin-dependent protein 
kinase (CAMK), mitogen-activated protein kinase (MAPK), and 
cyclin- dependent kinase (CDK). PKC is a critical phosphorylat-
ing enzyme in the phosphoinositide signaling pathway. Previous 

IntroductIon
Physical and mental threat can induce fear responses, and fear can 
be associated with objects and places through a process of Pavlovian 
fear conditioning (Ledoux, 2000). The process of fear learning and, 
importantly, its “overriding” or fear extinction is dependent on the 
amygdala and the prefrontal cortex (PFC). Stress is a multi-dimen-
sional challenge to physical and mental homeostasis that can be trig-
gered by fear (Kim and Diamond, 2002; McEwen, 2007), and both 
acute and chronic stress can alter the properties of fear (Conrad et al., 
1999; Rodrigues et al., 2009). A growing body of evidence suggests 
that fear and traumatic stress may contribute to the pathophysiology 
of suicide. For instance, suicidal ideation was significantly associ-
ated with traumatic life events and the effects of traumatic stress 
on suicidal behavior may be mediated by feelings of hopelessness 
(Tarrier and Picken, 2010; Guerra and Calhoun, 2011). A study using 
a large scale of civilian population (N = 34,653) found that over 
70% of the individuals who reported a lifetime history of a suicide 
attempt had anxiety disorders (Nepon et al., 2010). Interestingly, 
individuals with comorbidity of personality disorders such as neu-
roticism and posttraumatic stress disorder (PTSD) showed a much 
stronger association with suicide attempts than those who had PTSD 
alone. In a military population, more U.S. service members have 
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studies have suggested that these kinases such as PKC, CAMK, 
MAPK, and CDK also regulate fear conditioning and extinction 
in animals (Schafe et al., 2000; Li et al., 2002; Frankland et al., 
2004; Lepicard et al., 2006; Sananbenesi et al., 2007; Bergstrom 
et al., 2011). For example, chronic administration of a PKC 
inhibitor reduced the acquisition of conditioned fear memory 
suggesting the involvement of PKC in the synaptic plasticity and 
memory (Li et al., 2002). On the contrary, another study reported 
that inhibition of PKC signaling protected dendritic spines in 
the PFC and rescued working memory impairment caused by 
chronic stress (Hains et al., 2009). The authors suggested that 
PKC inhibitors may act as neuroprotective agents in fear and 
stress-related disorders. CAMK is also involved in hippocampal-
dependent contextual learning in rodents (Kouzu et al., 2000). 
Among the individuals with psychiatric disorders, the expression 
levels of CaMKII beta (CAMK2B) were increased in the PFC 
of individuals with schizophrenia (27%) and individuals with 
depression (36%) as compared to the unaffected controls (Novak 
et al., 2006). Because CAMK2B regulates important functions in 
the brain such as neurotransmitter signaling, neural outgrowth, 
and pruning, its increased expression in the PFC of the individu-
als with psychiatric disorders may have important implications. 
Moreover, inhibition of the MAPK pathway in the hippocampus 
abolished the increased contextual fear conditioning induced by 
glucocorticoids in mice (Revest et al., 2005). This suggests that 
the MAPK pathway interacts with the glucocorticoid system in 
fear learning and memory. Another kinase, cyclin-dependent 
kinase 5 (CDK5), has been implicated in learning and memory 
(Fischer et al., 2003). CDK5 plays a role during neurodevelop-
mental processes, such as interactions with distinct cytoplasmic 
and synaptic target molecules, and synaptic plasticity underlying 
memory consolidation in the adult brain. It has been shown that 
extinction of fear memory requires down-regulation of CDK5 
activity in the mouse hippocampus (Sananbenesi et al., 2007). 
Taken together, these studies indicate that multiple kinase sys-
tems contribute to regulation of emotional learning and memory, 
and subsequent behavioral responses in animals and in humans.

Recent advances in genomic technologies utilizing postmor-
tem brain tissue have made significant progress toward more 
analytical and informative research in psychiatry (Harrison, 2011; 
Mccullumsmith and Meador-Woodruff, 2011). However, identify-
ing potential susceptibility genes associated with suicide has been 
challenging (Mann et al., 2009; Tsai et al., 2011). We have shown 
that gene expression changes in postmortem brain tissue are subtle 
possibly due to a relatively small sample size, known and unknown 
confounding factors, and diagnostic heterogeneity among psychiat-
ric patients (Choi et al., 2008). Given that multiple kinase genes are 
implicated in the mechanisms of fear and stress, and fear and stress 
are the major risk factors for suicidal behavior, we hypothesized 
that the kinases genes may be involved in the pathophysiology of 
suicidal behavior. Thus, we investigated the expression profiles of 
four major kinase genes including protein kinase C (PKC), cal-
cium/calmodulin-dependent protein kinase (CAMK), mitogen-
activated protein kinase (MAPK), and CDK in the PFC of mood 
disorder patients died with and without suicide. In order to study 
the developmental expression pattern of the same genes, we meas-
ured mRNA levels in the PFC of normal individuals ranging in age 

from birth to 49 years. Using gene expression microarrays from 
the postmortem brain tissue, we aimed to identify potential kinase 
genes that are associated with both chronological age and suicide.

MaterIals and Methods
PostMorteM braIn tIssue
Gene expression microarray datasets from the individuals with 
mood disorders with suicide (N = 45) and without suicide (N = 38) 
were obtained from the Stanley Online Genomics database (see 
text footnote 1). The details of the brain sample collection have 
been described previously (Torrey et al., 2000). Developmental 
brain tissue from the PFC of subjects (N = 46) ranging in age 
from 1 month to 49 years was obtained from the National Institute 
of Child Health and Human Development Brain and Tissue 
Bank for Developmental Disorders (UMBB; NICHHD contract# 
NO1-HD8-3283). The collection protocol was reviewed and 
approved by the Institutional Review Board of the University of 
Maryland, Baltimore. For the developmental brains, all subjects 
were free of neurological and psychiatric symptoms at the time of 
death as described previously (Choi et al., 2009). Developmental 
brain microarray raw data are available from the gene expression 
omnibus (GEO) with an Accession number GSE11512.

MIcroarray exPerIMent
Total RNA was extracted from gray matter of the PFC (BA 46) and 
using the Trizol method (Invitrogen, Carlsbad, CA, USA). Samples 
were included only if the RNA was of good quality (RNA integrity 
number, RIN > 7) as determined by the Bioanalyzer 2100 elec-
trophoresis system (Agilent Technologies, Foster City, CA, USA). 
Purified RNA was carried through the Affymetrix preparation pro-
tocol2, and each sample was hybridized to the different Affymetrix 
platform such as HGU95av2, HGU 133a, HGU 133b, or HGU133 
plus 2.0 GeneChip to assess genome-wide expression profiles. RNA 
processing and microarray data generation was performed by the 
individual investigators at their own facilities as described previ-
ously (Choi et al., 2008).

QualIty control of MIcroarrays
Raw microarray data were processed and analyzed using the R sta-
tistical language3 and the Bioconductor packages (Gentleman et al., 
2004). A robust multi-array average (RMA) algorithm was used for 
normalization of expression values (log base 2) for each transcript 
(Irizarry et al., 2003). Microarray data quality was assessed using a 
pair-wise sample correlation coefficient with hierarchical cluster-
ing. Transcripts were filtered out if 20% or more of the subjects had 
expression values of less than a 1.1-fold change in either direction 
from the transcript’s median value and if the percent of subjects 
with an absent gene call exceeded 33% using the Affymetrix calls.

MIcroarray analysIs of the develoPMental braIns
First, we analyzed individual demographic factors including brain 
pH, postmortem interval (PMI), RIN, race, and sex to identify 
potential confounds affecting the expression of a significant number 
of genes (p < 0.001). Following the demographic variable analyses, 

2www.Affymetrix.com
3http://www.r-project.org
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non-suicide group (p < 0.05). Thus, we adjusted for age, mood 
disorder (bipolar disorder and major depression) and duration of 
illness in the following suicide analysis using a multiple regression 
model. Among the 45 suicide cases, a majority of the subjects died 
of drug overdose (36%), hanging (29%), jumped (11%), and gun 
shot wound (9%).

Figure 1 shows the expression profiles of CAMK2B in the PFC 
of normal individuals ranging in age from birth to 49 years (A) 
and suicide victims as compared to the non-suicide subjects (B). 
The expression levels of CAMK2B in the PFC were gradually 
decreased during the postnatal development (r2 = 0.69, qv = 1.1E-
11). Each subject was color-coded based on the arbitrary age 
group such as neonate (red), infant (green), toddler (blue), school 
age (magenta), teenage (pink), young adult (yellow), and adult 
(gray). A combined analysis of the microarray studies shows that 
CAMK2B expression levels are significantly increased in the PFC 
of suicide victims as compared to the non-suicide subjects (FC: 
1.13, qv = 0.009). There are multiple microarray probes (N = 2–5) 
for CAMK2B in each study and those probes show consistent 
changes in expression levels. Although most of the individual 
studies did not show significant changes, the combined analysis 
(shown on the bottom) showed consensus increases in expres-
sion in the suicide group as compared to the non-suicide group.

The expression levels of CDK5 in the PFC during postnatal 
development show inverted U-shape (Figure 2A). Specifically, the 
expression levels of CDK5 in the PFC were increased until 10 years 
of age (r2 = 0.18, qv = 0.035) and then gradually decreased until 
49 years (r2 = 0.23, qv = 0.029). A combined analysis of the micro-
array studies shows that CDK5 expression levels are increased in 
the PFC of suicide victims as compared to the non-suicide subjects 
(FC: 1.19, qv = 0.04) as shown in Figure 2B. Individual studies did 
not show significant changes but a combined analysis (shown on 
the bottom) showed a significant up-regulation of CDK5 in the 
PFC of suicide victims.

Figure 3A shows that the expression levels of mitogen-activated 
protein kinase 9 (MAPK9) in the PFC are gradually increased in the 
PFC of normal individuals ranging in age from birth to 49 years 
(r2 = 0.64, qv = 1.2E-05). The expression levels consistently increased 

gene expression across chronological age was analyzed in a series 
of multiple regression models, one model for each gene, including 
age (log base 2) and brain pH as independent variables and gene 
expression (log base 2) as a dependent variable (Choi et al., 2009). 
To correct for multiple testing of the genes, the calculated p-values 
corresponding to the age covariate for each gene were adjusted to 
give an overall false discovery rate (FDR) of 5% using the q-value 
(qv) package4. The criteria of significance were set at qv < 0.05.

MIcroarray analysIs of Mood dIsorder wIth and wIthout 
suIcIde
Mood disorder subjects were divided into two groups: those with 
suicide (N = 45) and those without suicide (N = 38). Each pre- and 
post-mortem variable was compared between the suicide and the 
non-suicide group. We identified the variables including age, mood 
disorder, and duration of illness that were different between the 
two groups (p < 0.05). Thus, we adjusted for these variables in the 
following suicide analysis using multiple regression models. For an 
individual study analysis, we performed a linear regression analysis 
to calculate an adjusted fold change, SE, and p-value for each gene 
in each study. We then performed a cross-study comparison based 
on scaled representations of individual study-level analysis across 
nine microarray studies. Consensus fold change was calculated for 
each gene based on a weighted combination of the individual fold 
changes and the SEs for the microarray probe sets that map to 
each gene across the studies as described previously (Choi et al., 
2008). Weights were determined in a probe set specific manner to 
account for the different levels of precision associated with each 
probe set that map to a given gene across the studies. The weights 
were equal to 1/SEi, where SEi is the SE of the ith probe set for the 
gene across all the studies. To adjust for multiple testing of the genes, 
the calculated p-values corresponding to the suicide group were 
adjusted to give an overall FDR of 5% using the qv package. The 
criteria of significance were set at qv < 0.05 and fold change >1.1.

bIoInforMatIcs MaPPIngs
The NCBI’s Database for Annotation, Visualization, and Integrated 
Discovery  was used as the standard source for gene annotation 
information [22]. The primary fields extracted from the DAVID 
include: Entrez ID, gene symbol, gene name, and gene summary. 
For the microarrays, queries were based on the Affymetrix probe 
set ID (AFFYID).

results
A summary of the subject characteristics included in the microarray 
studies is shown in Table 1. There were no significant differences 
in sex, race, brain pH, and PMI between the suicide and the non-
suicide group; this is important since these pre- and post-mortem 
variables appear to influence gene expression in the postmortem 
brain tissue. The number of bipolar disorder subjects was slightly 
higher in the non-suicide group (66 vs. 51%) while the number 
of major depression subjects was higher in the suicide group (49 
vs. 34%). Other variables such as age (47.2 vs. 41.7) and duration 
of illness (19.4 vs. 15) were different between the suicide and the 

Table 1 | A summary of subject characteristics included in suicide 

microarray analysis.

 Non-suicide Suicide

Number of subjects 38 45

Age 47.2 (1.6) 41.7 (1.6)

Sex (male) 55.3% 55.6%

Race (caucasian) 94.7% 95.6%

Bipolar disorder 65.8% 51.1%

Major depression 34.2% 48.9%

PMI 32.9 (2.5) 33.0 (2.3)

Brain pH 6.4 (0.05) 6.5 (0.04)

Duration of illness 19.4 (1.7) 15.0 (1.4)

Lifetime antipsychotics 11287 (4021) 4981 (1707)

For each variable, mean ± SE or percentage value is reported. PMI, postmortem 
interval.

4www.bioconductor.org
5http://david.abcc.ncifcrf.gov/
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qv = 4.2E-06) as shown in Figure 4A. A combined analysis of the 
microarrays showed that PRKCI expression levels were increased in 
the PFC of suicide victims as compared to the non-suicide subjects 
(FC: 1.14, qv = 0.015) shown in Figure 4B. Each microarray study 
has three probes for PRKCI and two studies (Study ID 2 and 3) did 
not show any changes in PRKCI expression while the rest of stud-
ies showed a tendency toward increase in expression. A combined 
analysis of microarrays demonstrated small but consensus changes 
in expression levels of PRKCI in the suicide group as compared to 
the non-suicide group.

until 20 years of age then stabilized until 49 years. In the PFC of suicide 
victims, MAPK9 expression levels were increased as compared to the 
non-suicide subjects (FC: 1.21, qv = 0.002) as shown in Figure 3B. 
Each study has two microarray probes for MAPK9 and most of the 
probes showed a tendency toward increase in expression. A combined 
analysis of microarrays revealed increased expression levels of MAPK9 
in the suicide victims as compared to the non-suicide controls.

A developmental expression pattern of the protein kinase C 
iota (PRKCI) gene showed a gradual decrease in the PFC of nor-
mal individuals ranging in age from birth to 49 years (r2 = 0.66, 

Figure 1 | The expression profiles of CAMK2B in the PFC of normal 
developing individuals and suicide victims. (A) The scatter plot with a locally 
weighted scatter plot smoothing (LOWESS) line demonstrates gradual 
decreases in expression levels of CAMK2B in the PFC of normal humans 
ranging in age from birth to 49 years. Points are colored by the predefined age 
groups: red = neonate, green = infant, blue = toddler, light blue = school age, 
pink = teenage, yellow = young adult, gray: adult. (B) The plot with fold changes 

and 95% confidence intervals shows consistent up-regulation of CAMK2B in 
the PFC of suicide victims as compared to the non-suicide controls across nine 
microarray studies. A combined analysis shown on the bottom represents the 
weighted fold change and 95% confidence intervals. Individual microarray 
probes for CAMK2B across multiple studies are shown on the left (Study ID and 
Affymetrix probe ID). Red circle: adjusted p < 0.05, Cyan circle: adjusted 
p > 0.05.
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CDK5, MAPK9, and PRKCI undergo age-dependent changes in 
expression in the PFC of normal individuals ranging in age from 
birth to 49 years. The expression levels of the same genes were 
increased in the PFC of suicide victims as compared to the non-
suicide controls. It is important to note that these genes have been 
implicated in the mechanisms of fear and stress-related disorders. 
Thus, these genes may also contribute to the pathophysiology of 
suicide via interactions with the fear and stress circuitry in the brain.

Here, we demonstrated the advantages of combining multiple 
microarray datasets to detect small but consensus changes in gene 
expression in the PFC of suicide victims. We found robust changes 
in gene expression in the PFC of normal individuals ranging in age 
from birth to 49 years, suggesting that chronological age is one of 
major factors affecting brain gene expression during development. 
We attempted to identify the genes that are associated with both 
chronological age and suicide phenotype in individuals with mood 

dIscussIon
The mechanisms of suicide are complex mediated by the interaction 
of multiple factors including genes and environment (Brezo et al., 
2008; Fiori et al., 2011). However, the search for specific genetic fac-
tors that contribute to the pathophysiology of suicide has been chal-
lenging (Mann et al., 2009; Tsai et al., 2011). Previous studies with 
rodent models with fear and stress suggested that kinase genes in 
the brain may play a role in fear and stress-related behavior (Kouzu 
et al., 2000; Li et al., 2002; Revest et al., 2005; Sananbenesi et al., 
2007; Hains et al., 2009). Although fear and stress may contribute 
to suicidal behavior in humans, expression profiles of those kinases 
genes in suicide brains have not been well-characterized. Thus, we 
investigated the expression profiles of the kinase genes using the 
microarray data from a well-characterized cohort of postmortem 
brains of mood disorder patients who died with suicide and with-
out suicide. We found that four kinase genes including CAMK2b, 

Figure 2 | The expression profiles of CDK5 in the PFC of normal 
developing individuals and suicide victims. (A) The scatter plot with a locally 
weighted scatter plot smoothing (LOWESS) line demonstrates inverted 
U-shape expression pattern of CDK5 in the PFC of normal humans ranging in 
age from birth to 49 years. Points are colored by the predefined age groups: 
red = neonate, green = infant, blue = toddler, light blue = school age, 
pink = teenage, yellow = young adult, gray: adult. (B) The plot with fold changes 

and 95% confidence intervals shows consistent up-regulation of CDK5 in the 
PFC of suicide victims as compared to the non-suicide controls across nine 
microarray studies. A combined analysis shown on the bottom represents the 
weighted fold change and 95% confidence intervals. Individual microarray 
probes for CDK5 across multiple studies are shown on the left (Study ID and 
Affymetrix probe ID). Red point: adjusted p < 0.05, Cyan point: adjusted 
p > 0.05.
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CAMK2 modulates catecholamine metabolism via phosphorylation 
of tyrosine hydroxylase in dopamine neurons (Seeman et al., 1976). 
Previous studies investigated the role of CAMK2A and CAMK2B 
in the postmortem brains of individuals with mood disorder. For 
example, a gene expression microarray study showed that CAMK2A 
expression levels were increased in the PFC of individuals with 
major depression (Tochigi et al., 2008). Another study replicated 
an up-regulation of CAMK2A in the PFC of individuals with major 
depression but not bipolar disorder using a real-time quantitative 
PCR (Novak et al., 2006). The authors showed that the expression 
levels of CaMK2A and CAMK2B were elevated in the depression 
subjects by 29 and 36%, respectively. Moreover, the increased levels 
in depression subjects were not altered by a history of antidepres-
sant medication in that study. Here, we classified the mood disorder 
subjects into either the suicide or the non-suicide group and we 
had a slightly higher number of depression cases in the suicide 
group. Although the increased levels of CAMK2B in the suicide 

disorder. A recent study showed the advantage of performing the 
genetic analysis using only mood disorder subjects with or without 
suicide attempts (Perlis et al., 2010). Thus, we have taken a similar 
approach of comparing suicide vs. non-suicide among the mood 
disorder subjects. Because we used only mood disorder samples, we 
were able to minimize the potential confounding effects of comor-
bid psychiatric disorders in our analysis.

Although many kinases are involved in a complex network of 
intracellular phosphorylation, previous studies suggested that mul-
tiple kinase genes such as PKC, CAMK, MAPK, and CDK play a 
significant role in regulating fear memories (Schafe et al., 2000; Li 
et al., 2002; Frankland et al., 2004; Lepicard et al., 2006; Sananbenesi 
et al., 2007; Bergstrom et al., 2011). CAMK2 including two splice 
variants, CaMK2A and CaMK2B, control dendritic growth and 
maturation in neurons, as well as phosphorylation of numer-
ous receptors including GABAA receptor (Churn and Delorenzo, 
1998) and NMDA glutamate receptor subunits (Rakic et al., 1994). 

Figure 3 | The expression profiles of MAPK9 in the PFC of normal 
individuals and of suicide victims. (A) The scatter plot with a locally 
weighted scatter plot smoothing (LOWESS) line demonstrates gradual 
increases in expression of MAPK9 in the PFC of normal humans ranging in age 
from birth to 49 years. Points are colored by the predefined age groups: 
red = neonate, green = infant, blue = toddler, light blue = school age, 
pink = teenage, yellow = young adult, gray: adult. (B) The plot with fold 

changes and 95% confidence intervals shows consistent up-regulation of 
MAPK9 in the PFC of suicide victims as compared to the non-suicide controls 
across nine microarray studies. A combined analysis shown on the bottom 
represents the weighted fold change and 95% confidence intervals. Individual 
microarray probes for MAPK9 across multiple studies are shown on the left 
(Study ID and Affymetrix probe ID). Red point: adjusted p < 0.05, Cyan point: 
adjusted p > 0.05.
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CDK5 pathway play a critical role in extinction of fear memory. 
Here, we found age-dependent changes in CDK5 expression: up-
regulation until 10 years of age and then gradual down-regulation 
until 49 years of age. This suggests that there is a sensitive period of 
CDK5 expression in the PFC during postnatal development. Thus, 
any disruptions in normal gene expression changes during devel-
opment may result in dysfunction of stress and fear mechanisms. 
Increases in CDK5 levels in the PFC of suicide victims further sug-
gest that fear learning and extinction mechanisms may be disrupted 
in the individuals with suicide.

MAPK signaling pathway is critical for cell division and dif-
ferentiation in the hippocampus as well as subsequent synaptic 
plasticity and memory formation (Sweatt, 2001). Importantly, 
MAPK has been shown to be critical for the formation of new fear 
memories, as well as for extinction and reconsolidation of fear 
memories (Schafe et al., 2000; Herry et al., 2006; Bergstrom et al., 
2011). These studies also support the role of neuronal plasticity 

group may have been influenced by higher number of depression 
samples in the suicide group, this is unlikely because we adjusted 
for the mood disorder effects in the multiple regression analysis of 
suicide. Given that CAMK2B could phosphorylate and influence 
the activity of many neurotransmitter receptors as well as neuronal 
growth and pruning, its altered expression in both developing and 
suicide brains suggests an important role in fear and stress.

CDK5 has been implicated in anxiety and stress-related disor-
ders that may require the promotion of the fear extinction process, 
which is defined as the learned reduction of fear. Some of the roles 
of CDK5 during neurodevelopmental processes, such as interac-
tions with distinct cytoplasmic and synaptic target molecules, may 
be related to the synaptic plasticity underlying memory consolida-
tion (Fischer et al., 2003). A study using genetic and pharmacologi-
cal approaches showed that extinction of fear memory requires the 
down-regulation of CDK5 in mice (Sananbenesi et al., 2007). The 
authors demonstrated that several key proteins associated with the 

Figure 4 | The expression profiles PRKCI in the PFC of normal 
developing individuals and suicide victims. (A) The scatter plot with a 
locally weighted scatter plot smoothing (LOWESS) line demonstrates gradual 
decreases in expression of PRKCI in the PFC of normal humans ranging in 
age from birth to 49 years. Points are colored by the predefined age groups: 
red = neonate, green = infant, blue = toddler, light blue = school age, 
pink = teenage, yellow = young adult, gray: adult. (B) The plot with fold 

changes and 95% confidence intervals shows consistent up-regulation of 
PRKCI in the PFC of suicide victims as compared to the non-suicide controls 
across nine microarray studies. A combined analysis shown on the bottom 
represents the weighted fold change and 95% confidence intervals. Individual 
microarray probes for PRKCI across multiple studies are shown on the left 
(Study ID and Affymetrix probe ID). Red point: adjusted p < 0.05, Cyan point: 
adjusted p > 0.05.
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Accumulating evidence from clinical studies and pre-clinical animal models supports a role
for neuropeptide Y (NPY) in adaptive emotional response following stress. The long-term
impact of stress, particularly chronic stress, on availability, and function of resilience factors
such as NPY may be critical to understanding the etiology of stress-related psychopathol-
ogy. In these studies, we examined expression of NPY during recovery from a chronic
variable stress (CVS) model of repetitive trauma in rats. Due to the importance of amygdala
and prefrontal cortex in regulating emotional responses, we predicted chronic changes in
NPY expression could contribute to persistent behavioral deficits seen in this model. Con-
sistent with the hypothesis, ELISA for NPY peptide identified a significant reduction in NPY
at the delayed (7 days) recovery time-point. Interestingly, a significant increase in prefrontal
NPY was observed at the same recovery time-point. The mRNA expression for NPY was
not changed in the amygdala or PFC, although there was a modest but not statistically
significant increase in NPY mRNA at the delayed recovery time-point in the prefrontal cor-
tex. The observed changes in NPY expression are consistent with maladaptive coping and
enhanced emotionality, due to the nature of NPY signaling within these respective regions,
and the nature of reciprocal connections between amygdala and prefrontal cortex.

Keywords: neuropeptideY, amygdala, resilience, prefrontal cortex, chronic variable stress

INTRODUCTION
Accumulating evidence from pre-clinical and clinical studies
implicates neuropeptide Y (NPY) as an important stress resiliency
factor/hormone. NPY acts directly in limbic forebrain structures,
antagonizing the actions of pro-anxiety hormone, corticotropin-
releasing hormone (CRH) (Heilig, 2004; Giesbrecht et al., 2010)
working to maintain balance between pro- and anti-anxiety sig-
naling and helping to regulate emotional state (Sajdyk et al., 2004).
Additionally, NPY in the amygdala regulates the expression of fear
responses (Fendt and Fanselow, 1999). Animals over-expressing
NPY in forebrain regions (Thorsell et al., 2000) or exclusively in
the amygdala (Primeaux et al., 2005) are resistant to anxiogenic
stress as measured in pharmacologically validated behavioral tests
of rodent anxiety. Recent studies in humans corroborate the data
from animal studies. A variant allele in the promoter region of NPY
is linked to higher trait anxiety (Zhou et al., 2008), and increased
psychopathology after adversity in analyses of gene × environment
interaction (Sommer et al., 2010). Interestingly, lower haplotype-
driven NPY expression predicted higher emotion-induced activa-
tion of the amygdala, as wells as higher neuroticism scores and
diminished resiliency (Zhou et al., 2008). Reduced concentra-
tions of NPY are observed in cerebrospinal fluid of posttraumatic
stress disorder (PTSD) patients (Sah et al., 2009) and in plasma
of trauma exposed individuals (Morgan III et al., 2003). Increased
plasma NPY levels are correlated with symptom improvement in

individuals with past PTSD, supporting an association of NPY
with coping and resilience (Yehuda et al., 2006). Collectively, a
considerable body of evidence supports the relevance of NPY as
an important regulator of stress and fear responses.

Stress-associated psychopathologies are often associated with
inadequate stress coping and failure to recover from traumatic
life events. Optimal function of putative resiliency factors such
as NPY may be essential for adequate reactivity to and recovery
from stress. In this regard, it is important to investigate how stress
impacts long-term expression of NPY. This is particularly relevant
for repeated stress exposure, where depletion of stress buffering
systems are likely.

In this report we investigated regulation of NPY expression after
cessation of chronic stress, where factors influencing resilience
would be most critical for recovery. We used a chronic vari-
able stress (CVS) paradigm recently developed by our group as a
model of chronic traumatization and posttraumatic-like phenom-
ena (McGuire et al., 2010). Exposure to CVS produces a delayed
expression of enhanced fear reinstatement and fearful arousal,
behaviors that may be impacted by a dysregulation in NPY. To
test the hypothesis that repeated stress would dysregulate neural
NPY systems, NPY mRNA, and peptide expression were mea-
sured at early and delayed recovery time-points in the amygdala
and prefrontal cortex, brain regions implicated in posttraumatic
pathophysiology (Shin et al., 2006; Liberzon and Sripada, 2008).
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In support of our hypothesis, central NPY systems manifest alter-
ations in mRNA and protein expression during recovery from CVS
in both amygdala (down-regulation) and PFC (up-regulation),
both of which are consistent with exaggerated stress responsiveness
observed in this model.

MATERIALS AND METHODS
THE CVS MODEL
Subjects were male Long–Evans rats between 225 and 250 g (Har-
lan, Indianapolis, IN, USA). Animals were housed in a climate-
controlled vivarium on a 12:12 light dark cycle, lights on 6:00 a.m.
All procedures were reviewed and approved by the University of
Cincinnati animal care and use committee.

The CVS model was as previously described (McGuire et al.,
2010). Subjects were randomly assigned to weight matched
control and chronic stress groups. Briefly, experimental ani-
mals underwent two stressors a day, morning, and afternoon,
for 7 days. Morning and afternoon stressors were administered
between 0900–1100 and 1400–1600 hours, respectively. Stressors
were selected to include both primarily anxiogenic and primarily
physiologic stressors, including restraint, hypoxia, forced swim-
ming, cold, temporary crowding, and agitation of the cages. In
addition to the daily stressors, twice during the CVS period the
animals were housed overnight in a confined space (a mouse
shoebox cage). Overnight stressors began immediately after cessa-
tion of afternoon stressors and terminated at the initiation of the
next day’s morning stressor. Within the CVS and control groups,
animals were further subdivided in early and delayed recovery
time-points and sacrificed at either 24 h (early) or 7 days (delayed)
after termination of CVS. Brains were rapidly isolated: a mid-
line sagittal incision was made to divide the brain into two equal
halves that were then rapidly flash frozen in isopentane on dry ice.
One half was processed for NPY ELISA for peptide concentrations
while the other was subjected to in situ hybridization for mRNA
levels. The samples were randomized between the two procedures
to overrule any lateralization effects.

ELISA FOR MEASUREMENT OF NPY PEPTIDE CONCENTRATION
The brains were kept frozen until transfer into acid for extrac-
tion of the NPY peptide. The amygdala and prefrontal cortex
were dissected from cryostat-sliced sections using bregma −2.12 to
−3.6 (amygdala) and 3.20 to 2.20 (PFC) as stereotaxic coordinates
(Paxinos and Watson, 1998). Dissected tissue was homogenized in
200–300 μl of 0.2 M HCl. The homogenates were boiled for 5 min
and cooled on ice. Ten microliter aliquots were removed for later
analysis of total protein concentrations. Remaining supernatants
were then lyophilized overnight in a speed vac to ensure complete
drying. Dried extracts were stored at −80˚C until ELISA assay.

Frozen samples were re-constituted with ELISA buffer and used
for NPY ELISA (Peninsula Laboratories, San Carlos, CA, USA) as
described previously (Sah et al., 2009). Homogenate volumes for
ELISA were optimized in preliminary runs for each region such
that OD readings were obtained within the linear section of the
NPY standard curve. Peptide concentration was determined from
plotting optical density of unknown samples against a 10 point
standard curve for NPY. Total protein was determined by Brad-
ford protein assay. Data was calculated for nanogram NPY per mg

protein. Samples from Control and CVS exposed animals were
tested for post-CVS early and delayed recovery.

IN SITU HYBRIDIZATION
Brain samples were coronally sectioned at 14 μm on a Leica 3050
cryostat, mounted on Fisherbrand Superfrost-Plus-charged glass
slides (Hampton, NH, USA), and stored at −20˚C until further
analysis. Prior to hybridization, sections were thawed to room tem-
perature and fixed for 15 min in 4% paraformaldehyde. Sections
were then rinsed 2 × 5 min in 5 mM DEPC-treated potassium
phosphate buffered saline (KPBS), 2 × 5 min in PBS containing
0.2% glycine, followed by 2 × 5 min in KPBS. Sections were acety-
lated for 10 min in triethanolamine (0.1 M, pH 8.0), containing
0.25% acetic anhydride, rinsed twice in SSC buffer (0.25 M sodium
chloride, 0.015 sodium citrate, pH 7.2) for 5 min, followed by
dehydration in a graded ethanol series. Sections were re-hydrated
to 70% ethanol and then air-dried. Antisense rat NPY riboprobes
were generated (complimentary to bp 20–532 of the NPY sequence
Accession #M15880) by in vitro transcription using 35S-labeled
UTP. Riboprobe 35S percent incorporation was determined with
TCA precipitation. Labeled probes were added to a hybridiza-
tion buffer containing 50% formamide, 20 mM Tris–HCl, pH 7.5,
1 mM EDTA, 335 mM NaCl, 1× Denhardt’s solution, 200 μg/ml
fish sperm DNA, 150 μg/ml yeast transfer RNA, 20 mM dithiothre-
itol, and 10% dextran sulfate. Probes were denatured for 15 min
at 65˚C and 50 μl (1 × 106 cpm) of diluted probe applied to each
slide. Slides were coverslipped, placed in moistened chambers, and
incubated overnight at 55˚C. After hybridization, coverslips were
removed in 0.2× SSC, and rinsed in fresh 0.2× SSC for 10 min.
Sections were then treated with RNase A (50 μg/ml) for 30 min at
37˚C, and transferred to fresh 2× SSC and then rinsed three times
in 0.2× SSC (10 min/wash), followed by a 1-h wash in 0.2× SSC at
65˚C. Finally, sections were dehydrated in a graded ethanol series,
dried at room temperature, and exposed for 4–6 days to Kodak
BioMAX film (Eastman Kodak, Rochester, NY, USA).

IMAGE ANALYSIS
Film images of brain sections were captured by digital camera.
Semi-quantitative microdensitometry analysis for autoradiograph
images was performed using Scion Image (Alpha 4.0.3.2; Scion,
Frederick, MD, USA) software. Brain regions were identified using
the Paxinos and Watson rat brain atlas. Each identified region
of interest was analyzed by subtracting the non-hybridized tissue
(background) from the hybridized signal within the same brain
section, and data were expressed as corrected gray level (CGL).
Multiple brain sections were analyzed per region per animal. Aver-
age CGL values were calculated in series for the amygdala and
prefrontal cortex. 14C standards were developed with each film
and analyzed for CGL to confirm that all measured gray levels
were within the linear range of the film.

STATISTICAL ANALYSIS
Data for NPY ELISA and in situ hybridization for each region
was analyzed by unpaired t -test for the early and delayed recov-
ery time-point using stress as the variable. Data is expressed as
mean ± standard error of the mean (SEM). Criterion for statistical
significance was p < 0.05.
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RESULTS
To investigate the regulation of NPY mRNA and peptide in the
same animals, brains were bisected in the midline. As a predicted
stress resilience factor, it was hypothesized that NPY would be
regulated in the amygdala and PFC following traumatic stress,
and that these alterations may persist into later recovery. There-
fore tissue was collected at timepoints early and later in recovery
as depicted in Figure 1A. Consistent with this hypothesis, NPY
content in the amygdala showed a significant reduction (38.4%)
at the delayed recovery time-point in the amygdala (Figure 1B).
Unpaired t -test with stress as the variable revealed significant
depletion at this recovery point (t = 2.258; p < 0.05). There was
a reduction NPY content at the early time-point (32.2%), but
that did not reach statistical significance. In contrast to the amyg-
dala, NPY peptide concentration in the PFC was significantly
upregulated (128.3%) at delayed recovery (t = 2.761; p < 0.05 by
unpaired t -test), while no changes were noted at early recovery
(Figure 1B). To reveal whether alterations in NPY peptide were
accompanied by changes in NPY synthesis within the region, NPY
mRNA expression was measured in contralateral sections from the
same animals (Figure 2). No significant changes in NPY mRNA
density were observed at the early recovery time point in the amyg-
dala or the PFC. However, the change in PFC NPY at the 7-day
delayed recovery time-point approached statistical significance
(p = 0.09).

FIGURE 1 | Changes in NPY protein in early and delayed recovery from

chronic variable stress (CVS) (A). Schematic of experimental design and
tissue collection. (B). Significant changes in NPY tissue content emerge
during recovery from CVS. NPY is decreased in amygdala (a) and increased
in prefrontal cortex (b) 7 days after cessation of CVS as measured by ELISA.
NPY content is not different in either region when tested 16 h after CVS
completion. “*” Indicates p < 0.05. Data is represented as mean ± SEM.

DISCUSSION
Investigating neural factors associated with recovery and resilience
constitutes an important scientific priority for developing treat-
ments for stress-induced disorders, especially PTSD. Here we
report that exposure to chronic intermittent stress in an unpre-
dictable fashion can induce long-term alterations in the putative
resiliency factor NPY, in limbic brain areas that regulate behav-
ioral, physiological, and cognitive effects of stress and trauma.
There are two main findings of our study: first, that significant
NPY dysregulation was noted well into the recovery period when
restoration and normalization would be expected, and in some
cases (PFC) NPY dysregulation appears to be emergent over the
recovery period. Second, the amygdala and PFC elicit differential
NPY responses to chronic stress that may be caused by different
mechanisms. Importantly, dysregulation of NPY is temporally co-
incident with the expression of enhanced fear recall and emotional
arousal that we previously reported in this model (McGuire et al.,
2010).

The trajectory of NPY regulation following stress was inves-
tigated in the amygdala and PFC based on (a) their well estab-
lished role in regulation of stress homeostasis and relevance
in stress-induced disorders such as PTSD (Shin et al., 2004;

FIGURE 2 | In situ hybridization for NPY mRNA in amygdala and

prefrontal cortex during recovery from CVS. (A). Representative images
of NPY in situ hybridization from control and CVS animals. (B). Levels of
NPY mRNA did not differ between CVS and control brains in basolateral,
medial, or central amygdala in either early or delayed recovery. (C). NPY
mRNA in the prefrontal cortex did not differ between control and CVS
animals in early and delayed recovery. However there was a trend toward
increase in NPY mRNA in later recovery when NPY peptide was also
increased. “#” Indicates p = 0.09. Data is represented as mean ± SEM.
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Eaton et al., 2007), (b) a defined role of NPY in the control of
excitability and pro-stress transmitters in these regions (Bacci
et al., 2002; Chung and Moore, 2009; Giesbrecht et al., 2010),
and (c) preliminary experiments revealing the absence of per-
sistent CVS-induced regulation of NPY content in other limbic
regions such as the hippocampus and hypothalamus (data not
shown).

Decreased NPY concentration in the amygdala was observed at
delayed post-stress recovery, accompanied by no changes in NPY
mRNA synthesis. Since intra-amygdalar NPY mRNA remained
unaffected by CVS, reduced NPY peptide content may be a poten-
tial outcome of reduced transport via afferent projections to the
amygdala. NPY innervation from extra-amygdalar sources has
been proposed, although the exact source of afferent inputs are
not yet identified (Leitermann et al., 2009; Rostkowski et al., 2009).
Reduction of NPY peptide content in the absence of reduced
synthesis could also be due to an increase in proteolytic degra-
dation. Previous studies have reported that NPY effects in the
CNS are modulated by dipeptidyl peptidase IV. DPPIV-like enzy-
matic activity is responsible for the cleavage of NPY (Karl et al.,
2003). A previous study reported increased NPY mRNA and
protein in the amygdala following repeated restraint stress for 9–
10 day (Thorsell et al., 1999). This increase was described as an
adaptive functional response that coincided with the absence of
behavioral and neuroendocrine deficits that were evident after
acute restraint episode. It is possible that paradigms support-
ing habituation may produce enhanced NPY expression in the
amygdala and possibly NPY function. On the other hand, CVS
paradigms favor sensitized responses without habituation. This
is supported by the delayed expression of sensitized emotional
and neuroendocrine responses evoked by CVS in our paradigm
(McGuire et al., 2010). Other studies have reported increased
NPY concentrations and NPY-immunoreactive fibers in the amyg-
dala 7 day following single prolonged stress exposure (Cui et al.,
2008) and elevated NPY mRNA at 2 weeks following single
session of multiple footshocks (de Lange et al., 2008). Thus,
it is possible that engagement of the putatively “pro-adaptive”
NPY system is dependent on stressor modality, duration, and
intensity.

We also observed significant increases in NPY peptide and trend
toward increase in mRNA expression in the prefrontal cortex at
7 day post-CVS cessation. Impact of chronic stress on the expres-
sion of NPY in the PFC has not been investigated previously.
Interestingly, modulation of stress on NPY content in the PFC
was in the opposite direction as observed in the amygdala. While
the exact mechanism for this differential regulation is unclear, we
also observed a modest increase in NPY mRNA expression at the
same time-point suggesting that increased NPY synthesis may con-
tribute to this effect. Acute stress-induced decrease in cortical NPY
mRNA has been reported earlier, however this normalized at 10 h
post-stress (Thorsell et al., 1998). The delayed up-regulation of
NPY thus appears to be a result of long-term plasticity within the
PFC. Exposure to chronic stress has been shown to induce struc-
tural and functional plasticity in this area (Goldwater et al., 2009).
These long-term neuroplastic alterations may be accompanied
by altered synthesis and content of transmitter systems such as
NPY.

IMPLICATIONS OF CVS-EVOKED NPY DYSREGULATION
In recent years, a prominent role of neuropeptides such as NPY
in integrating stress and emotion has emerged (Sajdyk et al.,
2004; Alldredge, 2010). Using genetic, behavioral, electrophysi-
ological, and pharmacological approaches, previous studies have
determined that NPY in the amygdala promotes successful adap-
tation to the acute and cumulative effects of stress, anxiolysis, and
attenuation of fear (Sajdyk et al., 2008; Fendt et al., 2009; Gies-
brecht et al., 2010; Tasan et al., 2010). Persistent reductions in
chronic stress evoked NPY in this region would therefore com-
promise both resiliency to stress as well as induce potentiated
fear responses. Exposure to CVS gives rise to exaggerated fear
responses and recall following 1 week of recovery (McGuire et al.,
2010). These effects are evident at a time when compromised NPY
may promote increased excitatory tone in the amygdala leading to
sensitized fear responses.

The physiological consequences of NPY expression in the PFC
are less well understood. Classification of NPY-expressing cells
in the PFC reveals a diverse population of interneurons that are
exclusively GABAergic (Karagiannis et al., 2009). NPY elicits a
long lasting decrease in evoked excitatory postsynaptic currents
through calcium-dependent increase in GABAergic signaling as
well as a delayed long lasting increase in inhibitory postsynap-
tic current (Bacci et al., 2002). Each of these NPY actions would
decrease excitability in cortical circuits and output. Significant
decrements in synaptic function and neural activity have been
reported in the PFC by chronic stress (Wilbur et al., 2011).
Increased NPY expression in prefrontal circuits may induce per-
sistent inhibition and reduced excitability leading to dampened
PFC output. Given the relevance of PFC in modulating behavioral
and neuroendocrine consequences of stress, reduced PFC activity
is expected to result in emotional arousal as well sensitization of
the hypothalamic pituitary adrenal axis (HPA) responses (Radley
et al., 2009; Sotres-Bayon and Quirk, 2010). In agreement with
this, we have observed exaggerated fear responses, as well as sensi-
tized HPA responses at the delayed recovery time-point post-CVS
(McGuire et al., 2010).

The CVS-recovery paradigm was developed by our group to
model chronic traumatization insults and posttraumatic-like out-
comes. As described before, this paradigm produces selective
effects related to fear memory reinstatement as well as fear-
ful arousal while no significant effects on anxiety are observed
(McGuire et al., 2010). NPY in the amygdala has been reported
to regulate fear-associated behaviors in several paradigms (Heilig
et al., 1992; Britton et al., 2000; Gutman et al., 2008; Fendt et al.,
2009) Since NPY has been reported to counteract and contain the
effects of stress mediators like CRH (Sajdyk et al., 2004; Gies-
brecht et al., 2010) in limbic regions such as the amygdala, it
is likely to be released during acute stress responses. However,
long-term exposure to stress may dysregulate the NPY system,
resulting in reduced inhibition of pro-stress transmitters, and vul-
nerability to the effects of stress. Although we did not measure
CRH or NE in our current studies, others have reported an up-
regulation of amygdalar CRH expression following chronic stress
(Gray et al., 2010; Wang et al., 2010). Chronic stress induces last-
ing changes in catecholaminergic neuron structure, and function,
particularly in the forebrain (Goldstein et al., 1996; Miner et al.,
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2006; Aborelius and Eklund, 2007; Goldwater et al., 2009; Lee et al.,
2011), Additionally, increased tonic expression of CRH and NE is
associated with a reduced threshold for arousal (van Gaalen et al.,
2002; Dierssen et al., 2006). Persistent reduction in amygdalar NPY
in the face of enhanced CRH and NE tone will promote exag-
gerated fear and arousal-associated behaviors that were reported
in this model by our group. Likewise, control of excitatory ver-
sus inhibitory balance in the cortical output by NPY would be
impacted by derangements in NPY that emerge and persist well
after stress cessation.

By comparing early and delayed expression of NPY message
and protein it is evident that regional disparity exists in how
NPY responds to chronic stress. While early decrements in amyg-
dalar NPY are exacerbated with recovery (suggesting depletion),
there might exist delayed neuroadaptive changes in the PFC. It is

interesting to note that even though these changes are in opposite
directions the net outcome may result in enhanced emotional reac-
tivity and sensitized neuroendocrine responses. Another implica-
tion of the current study is that dysregulation of limbic NPY may
lead to increased vulnerability to subsequent stress or reduced
resilience.

In conclusion, persistent dysregulation of NPY, that exists well
after cessation of repeated stress may lead to impaired emotional
homeostasis and confer vulnerability to subsequent trauma given
the stress buffering role of NPY.
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Anxiety disorders represent a common but often debilitating form of psychopathology
in both children and adults. While there is a growing understanding of the etiology and
maintenance of these disorders across various research domains, only recently have inte-
grative accounts been proposed. While classical attachment history has been a traditional
core construct in psychological models of anxiety, contemporary attachment theory has
the potential to integrate neurobiological and behavioral findings within a multidisciplinary
developmental framework.The current paper proposes a modern attachment theory-based
developmental model grounded in relevant literature from multiple disciplines including
social neuroscience, genetics, neuroendocrinology, and the study of family factors involved
in the development of anxiety disorders. Recent accounts of stress regulation have high-
lighted the interplay between stress, anxiety, and activation of the attachment system.
This interplay directly affects the development of social–cognitive and mentalizing capaci-
ties that are acquired in the interpersonal context of early attachment relationships. Early
attachment experiences are conceptualized as the key organizer of a complex interplay
between genetic, environmental, and epigenetic contributions to the development of anx-
iety disorders – a multifactorial etiology resulting from dysfunctional co-regulation of fear
and stress states. These risk-conferring processes are characterized by hyperactivation
strategies in the face of anxiety. The cumulative allostatic load and subsequent “wear
and tear” effects associated with hyperactivation strategies converge on the neural path-
ways of anxiety and stress. Attachment experiences further influence the development of
anxiety as potential moderators of risk factors, differentially impacting on genetic vulnera-
bility and relevant neurobiological pathways. Implications for further research and potential
treatments are outlined.

Keywords: stress, anxiety, anxiety disorders, mentalization, attachment, hyperactivation, allostasis

INTRODUCTION
Contemporary perspectives in developmental psychopathology
conceptualize attachment relationships as part of a complex net-
work of epigenetic factors which interact to confer risk of or
resilience to the development of stress-related psychopathology
(e.g., Fonagy and Luyten, 2009; van Ijzendoorn et al., 2010; Luyten
et al., submitted for publication). This paper presents a model of
the influence of attachment relationships on the development of
stress regulation strategies and discusses the role those relation-
ships play in the development and maintenance of anxiety dis-
orders, particularly the neurobiological alterations that underpin
them.

Anxiety disorders are characterized by a pronounced dysfunc-
tion of systems underpinning stress regulation and fear responses
(Mineka and Zinbarg, 1996; Rosen and Schulkin, 1998). It has
been hypothesized that individual styles of threat response and

stress regulation develop within the context of early caregiving
experiences (Luyten et al., submitted for publication). These styles
are thought to persist throughout the life cycle, providing a the-
oretical framework for linking early attachment to later anxiety
disorders (Gunnar and Quevedo, 2007; Sbarra and Hazan, 2008).
From this perspective, stressful experiences, physiological stress
regulation, and attachment relationships are inherently linked,
as the activation of the attachment system invariably follows the
early stages of detecting and processing fear-related cues, stress-
responses, and states of anxiety (e.g., Murgatroyd and Spengler,
2011; Luyten et al., submitted for publication). Specifically, the
biologically based activation of a child’s attachment system fol-
lowing distress entails coordinated behaviors that aim to address
the stress response by eliciting the attention, and by ensuring the
proximity and protection of attachment figures. When effective,
this process leads to a co-regulation of the child’s distress (Sbarra
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and Hazan, 2008). Hence, at least some of the mechanisms by
which stress-regulatory strategies are acquired are inherently inter-
personal in nature and, it is argued, these strategies persist into
adulthood and are relevant for the understanding of the nature
and development of anxiety disorders. In this paper we review evi-
dence from prospective human behavioral studies showing that a
history of insecure–anxious infant–caregiver attachment, charac-
terized by an excessive intensification of distress signals to elicit
caregiver responsiveness and maintain proximity, is a risk factor
for developing anxiety disorders in middle childhood and adoles-
cence (Bosquet and Egeland, 2006), even when maternal anxiety
and temperament are controlled for (Warren et al., 1997). Based on
these and similar studies, we propose a theoretical model arguing
that the characteristic up-regulation of stress reactivity observed
in individuals classified as insecure–anxious may be an important
risk factor for the development of anxiety disorders (Vasey and
Dadds, 2001; Muris et al., 2003; Shaw and Dallos, 2005; Lee and
Hankin, 2009). Thus, we argue that an understanding of the nor-
mative and pathological development of stress-regulatory systems
within an attachment context is likely to be important for eluci-
dating the etiology and may also directly inform the treatment of
anxiety disorders.

In this context, the multiple levels of the stress response must
be taken into account. Research into stress and anxiety disorders
in past decades has tended to consider factors such as behavioral,
genetic, or physiological phenomena in isolation. Recently, how-
ever, more comprehensive developmental formulations have been
proposed that are notable for their integration of findings from
genetic and social neuroscience research in adults (e.g., Heim and
Nemeroff, 2001; Pine, 2007; Martin et al., 2009). With convergent
findings in adult research indicating that neurobiological under-
pinnings are broadly shared by most anxiety disorders (Martin
et al., 2009; Etkin, 2010) there have been calls for a comprehensive
integration of research findings from multiple levels of analysis
utilizing a developmental perspective (e.g., Gross and Hen, 2004;
Murray et al., 2009; Cicchetti, 2010).

The developmental model proposed in this paper attempts
to respond to such calls by highlighting, within an integra-
tive account, the role of early attachment relationships. In this
framework, individual differences in parental stress regulation are
conceptualized as impacting upon the stress regulation strate-
gies developed by the child. This process is proposed to confer
both risk of or resilience to the development of anxiety-related
psychopathology. More specifically, we propose that stress- and
fear-triggered co-regulatory processes between parent and child
within the attachment relationship are evolutionarily vital and
neurobiologically pre-wired adaptations to the child’s specific
early caregiving environment. These early adaptations are pre-
served to ensure the superior adaptation of the organism to likely
environmental challenges over the course of the life cycle.

Behavioral and physiological aspects of stress regulation
have been comprehensively described in adults (McEwen, 2007;
Chrousos, 2009), and this is increasingly the case in children (Gun-
nar and Quevedo, 2007). However, research focusing on the inter-
generational transmission of dysfunctional stress regulation, and
the role of this transmission in the subsequent emergence of anx-
iety disorders, is relatively underdeveloped. Stress in a child’s early

caregiving environment has been linked to lasting adverse effects
on both physiological and psychological domains of development
(National Scientific Council on the Developing Child, 2005; Gun-
nar and Quevedo, 2007; Nugent et al., 2011). These findings are
congruent with population-representative studies that have shown
that early adversity, and particularly attachment-related trauma, is
related to increased risk for anxiety disorders throughout the life
span (Green et al., 2010; Luyten et al., submitted for publication).
For example, early adversity, such as maltreatment and neglect,
have been consistently shown to lead to chronic alterations in
the function of the hypothalamic-pituitary–adrenal (HPA) axis,
both at a the level of basal activity and in response to stress
(De Bellis et al., 1999; Heim and Nemeroff, 2001; Lupien et al.,
2009). Hyperresponsiveness of this system is also implicated in
the anxiety disorders (Kallen et al., 2008; Etkin, 2010). Further
theory-driven research is required to link the interpersonal mech-
anisms involved in the emergence of childhood anxiety problems
with studies of the heterogeneity in stress responsivity (Luyten
et al., submitted for publication). This paper is an attempt to
provide a theoretical framework for such research and outlines
implications for intervention strategies. While the psychopharma-
cological treatment of anxiety is beyond the scope of this paper,
its central role in intervention is acknowledged. Rather, the model
presented here suggests how attachment-based interventions may
enhance a range of other treatments, including pharmacological
approaches.

PAPER OUTLINE
This paper covers three literatures. We begin by reviewing lit-
erature on anxiety disorders from the perspective of a number
of disciplines. Next, an account of the role of attachment in the
development of both normative and aberrant stress regulation is
explicated. Finally, an integrative developmental model for the eti-
ology of anxiety disorders is proposed based on constructs drawn
from the interface of modern attachment theory and neuroscience.

Differences in the presentations of the various anxiety disorders
may reflect variations in etiological pathways, but we suggest that
the unregulated fear responses and subsequent hyperactivation
of the attachment system is shared by these diagnostic entities.
For this reason, the focus of this paper is on the anxiety disor-
ders as a group. This is in line with studies concerning a tripartite
model showing that anxiety disorders empirically cluster together,
separate from depression for instance (Clark and Watson, 1991;
De Bolle and De Fruyt, 2010; Luyten and Blatt, 2011), and with
findings from recent studies based upon multivariate statistical
analyses indicating that anxiety disorders can be hierarchically
ordered as part of a spectrum of internalizing disorders (Krueger
et al., 2007).

ANXIETY DISORDERS
While fear is an evolutionarily preserved response to environ-
mental threat and enables appropriate defensive behaviors such
as escape and avoidance (Rosen and Schulkin, 1998) the excessive
fear responses that characterize pathological anxiety have been
conceptualized as a dysfunctional variant of these originally adap-
tive processes. (Mineka and Zinbarg, 1996; LaBar and Phelps, 2005;
Shin and Liberzon, 2009). While resulting symptomatology can
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range from the persistent and non-specific apprehension in Gen-
eralized Anxiety Disorder to the overwhelming terror present in
Panic Disorder, the presence of fear and stress states is common to
these presentations (Craske et al., 2009).

PREVALENCE
Lifetime prevalence data consistently shows anxiety disorders to
be the most commonly occurring class of mental disorders (e.g.,
Lépine, 2002; Kessler and Wang, 2008), usually with a chronic-
recurrent course (Kessler et al., 2010). Several population studies
attest to the high prevalence of anxiety disorders occurring before
adulthood (Breton et al., 1999; Canino et al., 2004) and though
estimates vary, at any given time approximately 2.5–5% of chil-
dren and adolescents meet criteria for an anxiety disorder (Ford
et al., 2003). Evidence from longitudinal studies suggests that the
life-interference associated with shyness and anxiety disorders in
childhood persists into early adulthood (Caspi et al., 1996; Last
et al., 1996), while studies demonstrating the longitudinal stability
of features predicting anxiety disorders from childhood to adoles-
cence (Bittner et al., 2007) and from adolescence to early adulthood
(Pine et al., 1998) emphasize the importance of a developmental
approach.

COMORBIDITY
Estimates suggest that 40–60% of children and adolescents with a
specific anxiety disorder meet criteria for at least one other anxiety
disorder (Benjamin et al., 1990; Kendall et al., 2001). Such a high
level of comorbidity within the anxiety disorders likely reflects
both shared risk factors and common underlying fear processes
maintaining the presentation (Rapee et al., 2009).

Population studies also indicate high levels of comorbidity with
other psychiatric disorders (Angold et al., 1999), with significant
associations existing between anxiety disorders and the subsequent
onset of other psychiatric (Beesdo et al., 2007) and substance use
(e.g., Zimmerman and Chelminski, 2003) disorders. However, the
most striking and consistent finding of population studies is the
marked comorbidity of anxiety disorders and depression. It is esti-
mated that anxious children are between 8 and 29 times more
at risk of developing subsequent depression than non-anxious
children (Angold et al., 1999; Costello et al., 2003; Ford et al.,
2003).

Given the early onset of anxiety disorders, they commonly
represent the temporally primary disorder in comorbid profiles.
It is on this basis that some commentators have suggested that
early interventions to treat anxiety disorders might attenuate
risk for the onset, persistence, or severity of secondary disorders
such as depression and substance abuse (Wittchen et al., 2000;
Kessler, 2004) underscoring the value of developmental accounts
of etiology and course.

FACTORS CONTRIBUTING TO THE DEVELOPMENT OF
ANXIETY DISORDERS
Before outlining the key role of the attachment relationship in the
development of stress-regulatory processes in the face of threat
and anxiety, a review of the critical factors that have been impli-
cated in the development of anxiety disorders is presented. These
factors have been investigated across multiple disciplines and are
examined in turn.

GENETIC INFLUENCES ON THE DEVELOPMENT OF ANXIETY DISORDERS
A growing body of research supports the familial aggregation of
anxiety disorders (Hettema et al., 2001) with findings consistently
demonstrating that children with anxiety disorders are more likely
to have a parent with an anxiety disorder (Last et al., 1987, 1996;
Cooper et al., 2006; Schreier et al., 2008).

Twin studies have allowed for estimates of the actual contribu-
tion of genetic factors to the pathogenesis,or heritability,of anxiety
disorders and consistently report a genetic influence of a moder-
ate magnitude (Thapar and McGuffin, 1995; Hettema et al., 2001,
2005; Ehringer et al., 2006; Gregory and Eley, 2007). In consider-
ing transdiagnostic overlap of anxiety psychopathology accounted
for by genetic and environmental influences, estimates have var-
ied according to the form of anxiety investigated (Eley et al., 2003,
2010; Ehringer et al., 2006), with Obsessive–Compulsive and Shy-
ness/Inhibition behaviors most consistently indicated as highly
heritable and Separation Anxiety as more strongly influenced by
shared environmental factors.

This evidence for phenotypic and genetic overlap in the various
behaviors associated with the anxiety disorders has provided the
basis for their common consideration as a group. However, while
the differentiation in genetic contributions can partially account
for the heterogeneity of presentations in the anxiety disorders,
environmental influences remain substantial in each diagnostic
entity. Defining the nature of the early experiences that may inter-
act with genetic risk factors to produce anxiety-related phenotypes
is therefore crucial (Norrholm and Ressler, 2009).

Furthermore, it has been argued that genetic and environ-
mental factors may be more or less influential depending on a
subject’s developmental stage, and that factors relating to the pri-
mary caregiver will account for more variance during early to
middle childhood, when parents exert the strongest influence on
their children (Rapee and Spence, 2004). In line with this, varia-
tions in a polymorphism of the serotonin transporter gene have
been associated with anxiety sensitivity, but only in the presence
of childhood maltreatment (Stein et al., 2008).

TEMPERAMENT AND ANXIETY DISORDERS
Various nosologies of temperament have described a style in
infancy characterized by inhibition, shyness, withdrawal, and dis-
tress in response to novelty, and a tendency to stay within close
proximity to attachment figures (Windle and Lerner, 1986; Kagan
et al., 1988; Hirshfeld et al., 1992; Sanson et al., 1996; Chorpita and
Barlow, 1998). As a result, although studies examining childhood
anxiety have utilized different classification criteria for tempera-
ment, nearly all employ measures of behavioral inhibition (BI)
and proneness to distress reactions when faced with novelty. For
purposes of clarity and because it is the most commonly used term
across disciplines, we refer to this temperament style as BI.

It has been suggested that BI might serve as a potential endophe-
notype in research into anxiety disorders (Smoller et al., 2005;
Norrholm and Ressler, 2009). Indeed, associations have been
found between BI in children and anxiety disorders in their par-
ents (Biederman et al., 1993; Rickman and Davidson, 1994), and
longitudinal studies have shown that BI in childhood predicts later
anxiety disorders (Hirshfeld et al., 1992; Turner et al., 1996; Prior
et al., 2000).
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Although BI features have much in common with those
observed in children with an insecure–anxious attachment classi-
fication (Calkins and Fox, 1992), meta-analyses investigating this
overlap have indicated that individual differences in attachment
style cannot be explained by temperament constructs (Vaughn
and Bost, 1999). Rather, contemporary accounts posit that tem-
perament and attachment are distinct but interacting influences
on the child’s development (for a review, see Vaughn et al.,
2008).

In relation to the model proposed in the current paper, a BI
temperament style is conceptualized as one potential risk for the
development of anxiety disorders (Rapee and Coplan, 2010), and
a factor interacting with an individual’s attachment status.

ENDOCRINOLOGICAL, NEURAL, AND COGNITIVE MEDIATORS OF
STRESS REGULATION AND ANXIETY DISORDERS
HPA-axis sensitivity programming
The concept of developmental programming (Andrews and
Matthews, 2004; Meaney et al., 2007; Seckl, 2008) has been pro-
posed in response to a large body of research demonstrating
that environmental cues at sensitive periods of development can
result in permanent alterations in the functioning of the HPA-
axis (Matthews, 2002; De Kloet et al., 2005; Oitzl et al., 2010).
Preclinical and clinical evidence suggests that this programming
is relevant to an understanding of the etiology of anxiety disor-
ders in humans (Heim et al., 2004, 2008; Capitanio et al., 2005)
with a growing number of studies in human samples indicating
that stressors within the early caregiving environment are associ-
ated with alterations in the functioning of the HPA-axis and an
increased risk of heightened anxiety and psychopathology later in
life (Graham et al., 1999; Rinne et al., 2002; Heim et al., 2008).

It has been suggested that maternal care plays a key mediating
role in the regulation of the HPA-axis in offspring (e.g., Gun-
nar and Donzella, 2002; Taylor et al., 2011). Adequate care has
been associated with reduced cortisol levels and an attenuation
of HPA-axis responsiveness in children, together with a greater
cortisol recovery post-stress (Albers et al., 2008). These findings
are highly pertinent to the attachment framework applied in the
current paper as they underscore the interpersonal nature of stress
regulation. The regulation of the HPA-axis as a primary function
of the attachment relationship is a key component of the current
model.

The effects of prenatal anxiety on HPA-axis function. A number
of studies have demonstrated associations of antenatal maternal
anxiety with cognitive, behavioral, and emotional problems in
the child (Van den Bergh and Marcoen, 2004; O’Connor et al.,
2005; Bergman et al., 2010). In investigating potential physiolog-
ical mediators underpinning the sequelae of prenatal maternal
anxiety, attention has largely focused on its effects on the HPA-
axis of the offspring. Based on the evidence for overactive and
dysregulated HPA axes in the offspring of prenatally stressed ani-
mals (Weinstock et al., 1992; McCormick et al., 1995; Huizink
et al., 2004), it has been hypothesized that exposure to anxiety and
stress in the prenatal environment may result in susceptibility to
psychopathology, such as anxiety disorders and/or depression, in
humans (Van den Bergh et al., 2008).

In a recent study examining outcomes associated with prena-
tal stress and the impact of attachment, Bergman et al. (2010)
documented that levels of maternal prenatal cortisol measured in
amniotic fluid were linked with impaired cognitive development
in children. However, mother–infant attachment moderated these
in utero effects: the negative outcome only held true when early
caregiving was characterized by attachment insecurity. Further, it
has been shown that prenatal stress is associated with reduced hip-
pocampal volume only when combined with inadequate levels of
post-natal care from the mother (Buss et al., 2007).

Taken together, this body of research suggests that although
prenatal stress can confer risk for anxiety disorders through alter-
ing the set-point of the HPA-axis, this risk can be attenuated by
the early caregiving environment and attachment experiences in
particular.

Neural basis of anxiety
Current understanding of fear conditioning and threat responses
at a neural level derives mainly from animal research and sub-
sequent translational efforts that apply these animal models
to study fear and anxiety processes in normal human popula-
tions (LeDoux, 2000; Schiller et al., 2010; Schiller and Phelps,
2011). Phenomenologically, the arousal and avoidance responses
of subjects with anxiety disorders resemble the reactions of
normal subjects to conditioned fear cues (Grillon, 2002). Cru-
cially, both groups of subjects display the same accompanying
changes in the neural substrates that coordinate their defensive
responses to threats. Responses in humans with anxiety disor-
ders are therefore likely to represent extreme manifestations of
the normal, context-appropriate responses to stress and fear that
have proven evolutionarily successful (Rosen and Schulkin, 1998;
Gray and McNaughton, 2000; Rauch et al., 2000; Shekhar et al.,
2005).

Any account of the neurobiological underpinnings of anxiety
disorders should therefore be based on an understanding of the
neural circuitry underlying normal processing of fear and subse-
quent normative regulatory mechanisms. Neuroscientific evidence
has converged to delineate a well-established limbic-medial pre-
frontal system comprising three functionally interacting groups
of brain structures (Etkin and Wager, 2007; Kober et al., 2008;
Martin et al., 2009; Etkin, 2010). The complex interaction of these
structures is summarized here in brief.

First, detection of and early response to fear cues and/or neg-
ative emotional stimuli occur within the phylogenetically ancient
limbic structures of the amygdala and insula. The result is a first
integration of sensory, affective, and interoceptive processes (see
Etkin and Wager, 2007 for a quantitative meta-analysis of the
involvement of these areas in anxiety-relevant emotional process-
ing). In turn, these regions initiate and modulate activity in sev-
eral target structures (including the hypothalamus, periaqueductal
gray, sensory cortices, and the hippocampus) to carry out coordi-
nated physiological and behavioral responses. The hippocampus
exerts an important regulatory function via negative feedback to
the HPA-axis (Pruessner et al., 2010). Hippocampal volume and
neurogenesis have been implicated in stress resilience and in the
stress sensitivity associated with anxiety disorders (Lupien et al.,
2009; Roozendaal et al., 2009).
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Subsequent appraisal of the registered fear cues occurs in the
dorsal anterior cingulate and dorsomedial prefrontal cortices. This
detailed evaluation of the emotional stimulus has a potential
gate-keeping function that may admit the stimulus to conscious
awareness and may trigger the context-dependent inhibition or
enhancement of limbic activation. Finally, the engagement of a
third part of the circuit (involving rostral subregions of the ante-
rior cingulate and ventromedial prefrontal cortex) is responsible
for top-down-regulation of negative emotions and limbic process-
ing. Furthermore, executive regions within the lateral prefrontal
cortex activate medial prefrontal regulation of emotion processing.

The complexity of the interdependent functions of the regions
within the limbic prefrontal circuit suggests that anxiety pro-
cessing and responses do not rely on specific areas that perform
unique functions. Rather, anxiety processing and response should
be conceived of as emergent functions of interacting brain areas
(Morgane et al., 2005). Furthermore, these circuits are under the
modulatory influence of several other neural systems and neu-
ropeptides (e.g., Mathew et al., 2008; Joels and Baram, 2009).
Oxytocin, in particular, has been studied widely during the last
decade (Insel, 2010). Its crucial role in mediating attachment as
well as its influence on the neural circuits underpinning anxiety
are discussed further below.

Accruing evidence suggests that the neural correlates of anxi-
ety disorders involve an abnormally elevated activation pattern in
the limbic structures. This leads to hypoactivation in prefrontal
regions aimed at normalizing limbic response, and thus to regu-
latory failures. In a normal population, the neuronal processing
of participants who scored higher on an anxiety measure, already
appears to involve, via activation of the basolateral amygdala, a
more generalized dysregulation and distorted detection of nega-
tive affect (Etkin et al., 2004; Campbell-Sills et al., 2010). Studying
the regulation of negative affect in a sample of older adults, Urry
et al. (2006) reported an inverse coupling of amygdala and ventro-
medial prefrontal cortex activation. This association also predicted
diurnal cortisol secretion.

These findings, in particular the role of increased amygdala acti-
vation provoked by anxiety-producing unpredictable or ambigu-
ous stimuli, are indicative of “hyperarousal and hypervigilance”
(Etkin et al., 2004). These states are similar to behavioral responses
found in anxiety disorders. This is of particular relevance, since
most anxiety disorders are characterized by intolerance of uncer-
tainty or ambiguity (Holaway et al., 2006; Boelen and Reijntjes,
2009) and a bias toward negative interpretations of ambiguous
cues (Bishop, 2007). Additionally, success in interpreting negative
stimuli as less threatening is associated with increased PFC and
decreased amygdalar activity (Bishop, 2007) implying the cen-
tral role of interpretation of experience. These processes reflect-
ing normal social cognition or mentalizing capacities will be
explained in detail below. Investigating the structural integrity of
the amygdala–prefrontal pathway with diffusion tensor imaging,
Kim and Whalen (2009) found evidence for an inverse correlation
with participants’ trait anxiety levels. This linked higher pathway
strength with lower anxiety. In addition, studies on the resting
brain showed that the level of anxiety can dissociate ventrome-
dial prefrontal cortex functional connectivity with the amygdala,
resulting in compromised interactions between these two brain

regions (Kim et al., 2011). This may partly explain the failure to
downregulate anxiety-provoked stress states, especially when these
occur in interpersonal contexts as our model will show.

Taking these findings together, it appears likely that the
prefrontal–amygdala circuit mediates basic mechanisms involved
in human anxiety. These mechanisms include:“attention to threat,
interpretation of stimuli, and acquisition and extinction of condi-
tioned fear” (Bishop, 2007). Ultimately, this mediation can lead
to a pathological bias in favor of negative representations of
external and internal cues and to a failure to activate alternative
non-threatening representations.

Evidence from recent functional neuroimaging research in clin-
ical populations suggests commonalities in the functional anatomy
underpinning most anxiety disorders (van den Heuvel et al., 2005;
Pine, 2007; Ressler and Mayberg, 2007; Martin et al., 2009; Etkin,
2010; Shin and Liberzon, 2009 for review of the overlap with neural
circuits of depression). Additionally, there are disorder-specific
features in pathologies such as obsessive–compulsive disorder
(Martin et al., 2009; Etkin, 2010). In the most comprehensive
meta-analysis on negative emotional processing, Etkin and Wager
(2007) demonstrated that limbic hyperactivation in patients with
PTSD, social anxiety, or specific phobia was similar to anxiety
experimentally induced through fear conditioning in healthy indi-
viduals. The finding that amygdala and insula hyperactivation is
common to all three anxiety disorders is suggestive of patients’
“excessive engagement of fear- or negative emotion-related cir-
cuitry” and reflects a neural phenotype of anxiety (Etkin and
Wager, 2007) as well as of alterations in interoceptive processing of
anxiety-induced affect (Paulus and Stein, 2006; Stein et al., 2007).
Future research, however, is needed to address whether these func-
tional perturbations represent acquired characteristics of anxiety
disorders or reflect vulnerability factors that precede the onset
of psychopathology. A growing body of developmental research
investigates neuro-structural correlates of exposure to stressors in
the early environment, finding for example, corticostriatal-limbic
gray matter reductions in adolescents reporting maltreatment in
childhood (Edmiston et al., in press) and decreases in corpus cal-
losum volume in maltreated children and adolescents compared
to their non-maltreated peers (Jackowski et al., 2008). Preliminary
evidence suggests such structural differences in response to early
life stress might be mediated by gender (Teicher et al., 2004).

Attentional bias to threat
Cognitive accounts have suggested that development of an atten-
tional bias to threatening stimuli is both a mechanism by which
early experience shapes an individual’s stress responsivity and a
risk factor for the development of anxiety disorders (MacLeod
et al., 2002). It is now well-established that attentional biases are
present in individuals diagnosed with a range of anxiety disorders
(Bar-Haim et al., 2007) as indexed by heightened and sustained
vigilance for visual stimuli conveying threat (Mogg and Bradley,
2002). Attentional biases have also been associated with heightened
HPA-axis activity (Ellenbogen et al., 2002; Roelofs et al., 2007) pro-
viding a basis for cognitive-biological accounts of mood disorders
(Beck, 2008). Furthermore, a genetic mechanism for attentional
biases has emerged through its association with variations in the
serotonin transporter gene (Perez-Edgar et al., 2010).
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It has, however, been proposed that a child who is genetically
vulnerable to anxiety may or may not develop an attentional bias
toward threat depending upon the early caregiving environment
(Fox et al., 2007). This research demonstrated that caregivers who
highlight or identify negative events in their child’s environment
are contributing to the child’s own development of a negative bias.
It is interesting therefore that recognition and modification of
attentional biases has been a central aspect of Cognitive Behav-
ioral approaches to the treatment of the anxiety disorders (e.g.,
Beck, 1976; Beck and Emery, 1985).

ENVIRONMENTAL INFLUENCES
Early adversity
Although there is evidence indicating that children diagnosed with
an anxiety disorders experience more negative events preceding
diagnosis when compared to non-anxious controls (Goodyer et al.,
1988; Phillips et al., 2005), such findings are called into question by
studies indicating reciprocal influences. For example, it has been
demonstrated that childhood anxiety predicts the occurrence of
subsequent negative events (Swearingen and Cohen, 1985). Simi-
larly, longitudinal research by Kim et al. (2003) demonstrated that
internalizing problems such as anxiety and depression followed,
but were also followed by, negative life events.

The processes whereby adverse events lead to the develop-
ment of an anxiety disorder are therefore likely to be mediated
by multiple factors, including attachment experiences (Cicchetti
and Rogosch, 1997). Studies have in fact demonstrated that, in
the presence of risk factors such as early adversity (Carlson and
Sroufe, 1995) and stressful events (Heinrichs et al., 2003; Powers
et al., 2006), secure attachment can act as a protective factor mod-
erating the potential for development of psychopathology via the
impact on stress regulation (Gunnar et al., 1996; Nachmias et al.,
1996).

Parenting influences
Modeling and information transfer. A child’s observation of
anxiety in others has been proposed as a route for the intergen-
erational transmission of anxiety disorders (Mineka, 1985). Such
learning-theory accounts posit that caregiver modeling allows the
child to vicariously acquire behaviors, and that this is likely to
be evolutionarily advantageous because it prepares the child for
environmental challenges without exposing him to direct threat
(Mineka, 1988). For example, in a sample of mothers without anx-
iety disorders and their 15 to 20-month-old infants, fear modeling
by the mothers was found to be associated with the subsequent fear
responses of the infants (Gerull and Rapee, 2002). In a more recent
longitudinal study comparing mothers with and without an anxi-
ety disorder (Murray et al., 2008), the level of anxiety expressed by
the mother toward a stranger in front of their 10-month-old infant
predicted the infant’s subsequent avoidance of the same stranger
at 14 months.

Research examining features of child–parent discussions has
shown that anxious mothers are more likely to make comments of
a catastrophic nature to their children (Whaley et al., 1999; Moore
et al., 2004) and less likely to refer to positive emotions (Suveg
et al., 2008). Further, compared to discussions in non-clinical fam-
ilies, discussions regarding ambiguous situations within families

of anxious children appear to be characterized by reciprocal rein-
forcement of comments regarding risk and have been shown to
magnify the extent of a child’s anxiety and avoidance behavior in
subsequent situations (Barrett et al., 1996).

This body of literature links parental behavior to anxiety in chil-
dren via parental displays of anxiety or verbal behaviors empha-
sizing threat in the environment. These instances of “modeling”
may also in part be seen as failures of the attachment system
since the parent does not (or is unable to) show appropriate
caregiving behavior within a stressful situation, and thus fails to
effectively co-regulate the child’s stress. Rather, the caregiver mod-
els to the child their own strategies for evaluating and responding
to threat.

Parenting styles. A related body of research has considered the
impact of a range of parenting practices on the development of
anxiety disorders in children. The two major facets of parent-
ing considered in these studies are lack of warmth (or parental
rejection) and overcontrol. Within a cognitive framework, lack
of warmth and rejecting behaviors can be seen as likely to rein-
force a child’s expectations that the world and others are hostile
and unsupportive (Bögels and Tarrier, 2004). Overcontrol and the
concomitant discouragement of independence are likely to limit
the child’s sense of agency and competence and to reinforce avoid-
ance of potentially threatening situations (Parker, 1983; Chorpita
and Barlow, 1998).

Evidence for associations of such parenting factors with child-
hood anxiety has been mixed (Wood et al., 2003; DiBartolo and
Helt, 2007; McLeod et al., 2007), but with stronger and more
reliable associations generally found for overcontrolling parent-
ing. Inconsistencies in findings may partly reflect different study
designs and measurement contexts and methods. Direct observa-
tion of parenting, in samples of children with diagnosed anxiety
disorders rather than proxy symptoms, produces the most robust
associations. A meta-analysis of studies accounting for these fac-
tors suggested that of all aspects of parenting style, a low level of
autonomy granting (a feature of overcontrol) was the one most
reliably associated with anxiety disorders in children (McLeod
et al., 2007).

These associations can be considered in relation to quality of
parent–child attachment. Attachment theory has long held that
rejecting and overcontrolling parental behaviors are related to
the child’s level of attachment security. This general hypothesis
is well supported in observations of mothers and children (Crow-
ell and Feldman, 1991). More specifically, attachment theorists
have hypothesized that limited autonomy granting and/or reject-
ing parental styles engender an anxious style of attachment in the
child (Ainsworth and Bell, 1974; Sroufe et al., 1983). This spe-
cific hypothesis has been consistently supported in observational
research (e.g., Sroufe et al., 1993).

Child-driven effects and parenting factors
While studies examining parenting styles have established that
certain features are more commonly found in the context of
childhood anxiety and insecure–anxious attachment (for review
see Bögels and Brechman-Toussaint, 2006), researchers have
attempted to establish whether such styles cause anxiety in the
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child, are the effect of having an anxious child, or result from an
interaction between parent and child.

Studies pertaining to support a causal model of parenting styles
that use sibling controls are problematic (Hudson and Rapee, 2002;
Barrett et al., 2005) given that the controls often have considerable
levels of anxiety themselves. This leaves open the possibility that
parenting style is provoked by a child’s anxiety. Evidence for child-
driven effects was provided in a study by Moore et al. (2004) in
which parenting styles such as lack of warmth and catastrophiz-
ing were found to show a main effect of child diagnosis. Further,
Ghera et al. (2006) found that 4-month-old infants who responded
negatively to novel stimuli and were viewed by their mothers as
“difficult to soothe” received low levels of maternal sensitivity
(see also Hane and Fox, 2006). The same group reported that
9-month-old infants who showed high levels of behavioral avoid-
ance to ominous stimuli and a corresponding pattern of right
frontal electroencephalogram (EEG) asymmetry (itself a correlate
of continued inhibition across early childhood; see Fox et al.,2001),
received low levels of maternal sensitivity (Hane et al., 2008). This
result was replicated in a follow-up study of the same sample in
early childhood (Hane et al., 2010).

There is therefore some evidence that child-driven effects can
potentially influence the quality of the early caregiving environ-
ment by provoking a certain style of parenting response. Other
than child-driven effects, however, these studies do not adequately
address potential influences on maternal behavior that could be
impinging on mothers’ abilities to provide sensitive care. Social
support and maternal anxiety are two examples of such factors
and are considered in turn.

It has long been established that reported level of social support
correlates with quality of caregiver behavior (e.g.,Crockenberg and
McCluskey, 1986), with the level of social support being of particu-
lar importance for mothers of distress-prone infants (Crockenberg
and McCluskey, 1986). One study demonstrated that maternal
insensitivity was predicted by the joint effect of infant distress-
proneness and low social support (Pauli-Pott et al., 2004) while
Hirshfeld et al. (1997) demonstrated that parenting styles associ-
ated with anxiety disorders in children emerged only in anxious
mothers with BI infants. Taken together, these studies suggest that
infant temperament (BI) predicts later child anxiety only when
accompanied by certain anxiogenic parenting styles. These styles
are more readily provoked in mothers who are themselves anxious,
an interaction that is more likely to occur against a background of
low social support. Recent longitudinal research offers support for
this complex pattern of interaction effects (Warren and Simmens,
2005; Murray et al., 2008).

Regarding parenting effects, research over the last decade has
largely focused on the impact of maternal factors. In order to
understand the development more comprehensively the role of
fathers should also be considered (Bögels and Phares, 2008).
While this is a relatively under-researched area, there is prelim-
inary evidence for the role of paternal anxiety as a moderator of
treatment outcomes for children with anxiety disorders (Rapee,
2000). Rapidly changing patterns of parenting in Westerns coun-
tries make delineation of the shared and gender specific parenting
influences on emotional development an urgent social as well as
psychological issue (Grossmann et al., 2005, 2006).

SECTION SUMMARY
Given their high prevalence, associated functional impairments
and robust associations with the onset of other debilitating dis-
orders, anxiety disorders warrant continued, multidisciplinary
attention. While further elucidation of the genetic substrates and
related biological processes by which anxiety disorders are inher-
ited will no doubt offer exciting insights, greater understanding of
the processes by which such genetic vulnerabilities may be modu-
lated by the early environment will afford the most comprehensive
etiological account.

ATTACHMENT EXPERIENCES AND STRESS REGULATION
Having reviewed literature pertinent to anxiety disorders, we now
transition to integrating these findings in an attachment frame-
work. First, we discuss normative co-regulation of stress and
threat in the secure attachment relationship. We then propose
a model for the dysfunction of regulation in anxious attach-
ment and how this moderates genetic vulnerabilities and biolog-
ical pathways that underpin subsequent development of anxiety
disorders.

Contemporary attachment theory posits attachment as a
behavioral and physiological system that is biologically based and
dynamically adapting to meet the needs of the individual’s particu-
lar environment (Mikulincer and Shaver, 2007). It responds to the
stress provoked by environmental threats by promoting strategies
that best maintain proximity to the caregiver.

Recent literature has conceptualized the stress response as an
interpersonal process (Sbarra and Hazan, 2008; Luyten et al., sub-
mitted for publication), and has proposed an empirically testable
and integrative framework of individual differences in stress regu-
lation and susceptibility to anxiety disorders. Because it provides a
developmental account of both normative and maladaptive stress
regulation, attachment theory is best positioned to integrate find-
ings that are proliferating in the various fields investigating stress
and anxiety disorders (for a comprehensive review, see Luyten et
al., submitted for publication).

SECURE ATTACHMENT AND THE REGULATION OF STRESS AND
ANXIETY
Perceived threats and fear activate an individual’s attachment sys-
tem, prompting a series of processes that ultimately aim to regulate
the stress response (Mikulincer and Shaver, 2007). These processes
include primary attachment behaviors such as separation dis-
tress and subsequent proximity seeking (Sbarra and Hazan, 2008).
Experimental and naturalistic studies have demonstrated this in
children, adolescents, and adults (Sbarra and Hazan, 2008 for
review, Mikulincer and Shaver, 2007).

If these behaviors successfully elicit the safety-promoting
response of the attachment figure, the attachment system is deac-
tivated. Over time, if the attachment figure is reliably available,
attentive, and responsive, a secure attachment develops. This
attachment is characterized by experiences of reassurance, a sense
of safety and, ultimately, effective affect regulation. These repeated
experiences become generalized as experience-expectant predic-
tions of interactions and lead to a reduced reliance on external
cues of safety (Mikulincer and Shaver, 2007). Individuals become
increasingly capable of effectively regulating their stress-responses
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by calling upon mental representations of internalized attach-
ment figures – so-called “internal working models” (Bowlby, 1973;
Bretherton and Munholland, 2008). Recently, research studies
have operationalized the effects of the working model as support-
seeking, self-esteem, and self-worth (e.g., Lee and Hankin, 2009).
Thus, securely attached individuals can efficiently regulate stress
and anxiety either by seeking proximity to a reliable attachment
figure in their actual environment or by mentally drawing upon
past experiences in which stress was effectively co-regulated. In this
way, stress regulation remains an inherently interpersonal process
(Diamond and Aspinwall, 2003; Luyten et al., submitted for pub-
lication) with the attenuation of anxiety embedded in all close
relationships.

Ganzel et al. (2010) have modeled the stress response in an
allostasis framework that accounts for: (a) ongoing evaluations of
internal resources and external demands; (b) advance physiolog-
ical adjustment through anticipatory arousal; and (c) adaptation
to environmental circumstances over time. This notion has been
greatly enriched in contemporary attachment theory by the elab-
oration of the concept of mentalization (Fonagy, 1998; Fonagy
et al., 2002). The role of mentalization, that is, to conceive of
self and others as social agents whose thoughts, feelings, desires,
and behaviors are underpinned by intentional mental states (Fon-
agy et al., 2002), has been highlighted as a potent factor in social
cognition and particularly in stress-related interpersonal contexts
(Fonagy and Luyten, 2009). There is accruing evidence that effec-
tive mentalization that enables infants to regulate negative affect,
threat cues, separation anxiety, and the resulting stress states – and
thus subjective as well as physiological distress – follows a pat-
tern of intergenerational transmission (Sharp and Fonagy, 2008).
A mother’s mentalizing ability, that is, the parent’s ability to treat
the child as an psychological agent with mental states indepen-
dent of their own (Fonagy and Target, 1997) predicts both secure
attachment and their child’s own capacity to mentalize (Meins
et al., 2002; Slade et al., 2005). For instance, a distinctive marker
of secure attachment is the capacity to tolerate negative affect
(Sroufe, 1996). Crucial to these processes is the caregiver’s capacity
to attenuate the child’s stress or anxiety once its attachment sys-
tem has been activated. A child’s general sense of a secure base not
only enables them to explore their environment freely but, more
importantly, enhances their ability to contemplate own mental
states and those of others. Studies have demonstrated attachment
security to be a predictor of performance on diverse theory of
mind (ToM) tasks, including false belief tasks in preschoolers (e.g.,
Arranz et al., 2002), and of the development of socio-cognitive
capacities which support ToM, such as internal state language (i.e.,
emotion regulation and self-awareness vocabulary) in toddlers
(e.g., Lemche et al., 2007). In critical contexts, these mentalizing
capacities are online only once the attachment system has been
downregulated after a threat or stressor has abated (Luyten et al.,
submitted for publication). This in turn, creates positive feed-
back loops for the possibility of the adjustment and regulation
of impending stress response. In an attachment-based approach
secure attachment is therefore viewed as the interpersonal train-
ing ground for the infant in which social cognition or mentalizing
and their concomitant neural correlates are developed. These

capacities allow for allostatic accommodation by enabling indi-
viduals to recognize and to regulate stress-related states (Schulkin,
2010).

As noted earlier, there is increasing evidence that attachment
security serves a protective function by promoting resilience to
the impact of stress mainly via anxiolytic and trust-enhancing
effects mediated by the neuropeptide oxytocin (Heinrichs et al.,
2003; Powers et al., 2006; Feldman et al., 2007; Heinrichs and
Domes, 2008). Moreover, studies investigating stress responsiv-
ity in both human and animals have demonstrated that a secure
attachment leads to an “adaptive hypoactivity” of the HPA-axis
(Gunnar and Quevedo, 2007). Conversely, in a study of human
adults low-quality parenting was found to be linked with elevated
salivary cortisol levels during experimentally induced psychoso-
cial stress (Gunnar et al., 2007). Such parenting was also linked to
an increased release of dopamine in ventral striatal areas, which
is a factor in the response to aversive stressful stimuli (Pruessner
et al., 2004).

A further feature of a secure attachment is its encouragement of
effective seeking of supportive attachment relationships through-
out the lifespan. This is in line with contemporary attachment
theory which posits that a attachment security leads to a cyclical
process of “broaden and build” (Fredrickson, 2001) in which the
individual experiences a sense of personal agency, can effectively
regulate emotions and conflicts and engage in exploratory behav-
iors (Mikulincer and Shaver, 2007). Such behaviors direct the
individual into new environments (broaden) that require adapt-
ing to new challenges (build). Moreover, broadening experiences
have been shown to result in the recruitment of supportive rela-
tionships (Hauser et al., 2006) which further enhances resilience
in the face of stress (Masten and Obradovic, 2008). Additional
evidence for this notion is provided by functional neuroimaging
studies that demonstrate an inverse relationship between partic-
ipants’ cortisol levels during social stress and the extent of their
supportive social network (Eisenberger et al., 2007), with indi-
vidual differences in activity of brain areas associated with social
separation (Brodmann area 8, dorsal anterior cingulate cortex)
found to mediate this relationship indicating a “protective” effect
of social support on the neural processing of social threat and
subsequent HPA reactivity. Furthermore, secure attachment has
been associated with stronger decreases in state anxiety levels fol-
lowing laboratory-induced stress exposure (Ditzen et al., 2008).
More interestingly, an interaction effect between combined social
support and secure attachment resulted in even lower post-stress
anxiety levels. Secure attachment and a normative stress response,
in the current model, are closely linked with adaptive allostasis
and neural plasticity (Ganzel et al., 2010; McEwen and Gianaros,
2010), a process conceived of as a buffer against future environ-
mental challenge and conferring resilience to the development of
psychopathology (Gluckman et al., 2007). The capacity to retain
high levels of mentalization when faced with threat or anxiety is
supposed to play a key mediating role therein, mainly by keeping
regulatory brain regions such as the prefrontal cortex engaged dur-
ing experiences of stress and attachment activation and by enabling
a fast recovery from the momentary loss of this capacity. This, is
turn, results in a reinforced feeling of attachment security, a sense
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of agency and autonomy during successful affect regulation, facil-
itated by undistorted perception and representation of self and
others (Fonagy and Luyten, 2009).

There is increasing evidence that the interplay between attach-
ment activation, stress-related arousal, and continuing mental-
izing is subserved by both the activation of mesocorticolimbic
dopaminergic reward circuits and stress attenuating (Neumann,
2008; Fonagy and Luyten, 2009) and anxiolytic effects of oxytocin
(Heinrichs et al., 2003; Kirsch et al., 2005; Ditzen et al., 2009;
Kubzansky et al., 2009; Quirin et al., 2010). Given that oxytocin
has been implicated in the parent–infant attachment relationship
(e.g., Gordon et al., 2008; Strathearn et al., 2008), the attachment
system may play a key role in the functioning of neural systems
involved in anxiety processing. Oxytocin thus provides a link to
the attachment system and has been shown to enhance experi-
ences of secure attachment in an experimental setting (Buchheim
et al., 2009). Because of the impairments in attachment in inse-
curely attached individuals, the quality of early experiences seems
to have differential effects on the oxytonergic system (Heim et al.,
2009; Bartz et al., 2010) and peripheral oxytocin levels in mothers
watching cues of their infants (Strathearn et al., 2009).

INSECURE ATTACHMENT, DYSFUNCTIONAL STRESS REGULATION, AND
THE DEVELOPMENT OF ANXIETY DISORDERS
Given that the primary evolutionary function of the attachment
system is to maintain an infant’s proximity to the caregiver, the
system has to allow for adaptation to sub-optimal caregiving, as
in cases where the caregiver is inconsistently responsive, unavail-
able, or abusing. Therefore, when faced with stress or threat and
the primary attachment strategies have failed to elicit appropri-
ate caregiving behaviors, the infant utilizes so-called secondary
strategies in order to promote proximity and regulate anxiety.
These secondary strategies are characterized by “hyperactivating”
or “deactivating”1 modes of stress and anxiety regulation (Cassidy
and Kobak, 1988; Mikulincer and Shaver, 2007; Roisman, 2007).
Hyperactivating strategies are central to an attachment account
of anxiety disorders given their initiation in response to anxiety
states, and are typically observed in anxiously attached individu-
als. Such strategies are characterized in infancy by frantic attempts
to gain the attention of the attachment figure and develop when
the infant’s previous interactions have required up-regulation of
seeking behaviors in response to an inattentive, preoccupied, or
anxious caregiver (Mikulincer and Shaver, 2008). If repeated over
time, these experiences serve to consolidate expectations of unre-
liable and unpredictable responses from the attachment figure and
therefore create anticipatory anxiety and heightened vigilance for
threat rather than successfully regulating anxiety states. The frantic
demanding of support and constant activation of the attachment

1Deactivating (minimizing) strategies are typically observed in individuals with a
avoidant style of attachment, and are characterized by attempts to downregulate and
suppress the attachment system in times of stress. Behaviorally, deactivating strate-
gies are observable in self-soothing activities, assertions of independence, and the
denial of attachment needs (Cassidy and Kobak, 1988). Deactivating strategies are
derived from a history of attachment experiences in which the caregiver was reject-
ing, emotionally distant, or prone to withdrawal when called upon. A reliance upon
deactivating strategies strengthens expectations of attachment figures as unavailable,
characteristic of a dismissive attachment in adulthood.

system may only allow for temporarily effective stress regulation
but in the long run “undermine the goal of recruiting a soothing
figure” (Luyten et al., submitted for publication) and compromise
the establishment of social networks to provide supportive care
(Campbell et al., 2005). At the intrapersonal level, these dynam-
ics are characterized by autonomy-dependency conflicts which
in turn affect interpersonal functioning Joraschky and Petrowski
(2008). Furthermore, Mikulincer and Shaver (2007) demonstrated
that secondary strategies impact on the primary attachment strat-
egy of fear and threat appraisal via inhibitory or excitatory feed-
back loops (with the latter being of particular relevance regarding
hypervigilance and HPA-axis functioning in anxiety disorders).
Anxiety therefore increases the seeking of proximity, while sepa-
ration from the attachment figure in turn increases anxiety and
withdrawal (Luyten et al., submitted for publication).

While evolutionarily advantageous in early childhood, these
strategies are associated with maladaptive outcomes in later life
due to their detrimental impact on interpersonal functioning
(Mikulincer et al., 2010). The resulting anxious pattern of attach-
ment is then likely to persist into adulthood (anxious–ambivalent
attachment) and represents the predominant mode of stress regu-
lation. In individuals who have experienced highly unpredictable
and abusive caregiving environments, attempts to regulate anxi-
ety states are observed to be characterized by a chaotic oscillation
between both hyperactivating and deactivating strategies – so-
called disorganized attachment (Main and Solomon, 1986; Main
and Hesse, 1990). Both anxious and disorganized attachment
patterns have been associated with the development of anxiety
disorders (Manassis et al., 1994; Warren et al., 1997).

ATTACHMENT RESEARCH IN RELATION TO ANXIETY DISORDERS
Whilst not considered inherently pathological, insecure infant
attachment patterns, and the reliance upon secondary strategies
increases the likelihood of psychopathology. Specifically, anxious
attachment has been consistently associated with internalizing
problems (e.g., Colonnesi et al., 2011) and a growing body of
research lends support to the view that anxious attachment, and
therefore the use of hyperactivating strategies, predisposes an indi-
vidual to various anxiety disorders (Colonnesi et al., 2011 for
meta-analysis). For example, it has been shown that a history of
anxious attachment measured at 12 months of age puts children
at risk of developing anxiety disorders in childhood and adoles-
cence even when maternal anxiety and temperament are controlled
for (Warren et al., 1997). Bosquet and Egeland (2006) found
attachment history was moderately correlated with self-reports of
anxiety at the age of 16. Further, childhood anxiety classification
was predictive of negative adolescent peer relationships which in
turn predicted anxiety symptoms. In another longitudinal study,
Bar-Haim et al. (2007) linked anxious–ambivalent attachment at
the age of 12 months with higher levels of school phobia 10 years
later. This association was, however, only found in boys.

Hyperactivating strategies therefore hold a relatively unique
position of predicting an array of transdiagnostic anxiety behav-
iors. Anxiously attached children experience constant worry
about being abandoned and left alone when fear is experienced
(Sroufe, 1996). This response is characterized by chronic hyper-
vigilance toward the social environment which may give rise to
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the development of anxiety symptoms (Cassidy and Berlin, 1994;
Weinfield et al., 1999).

In adulthood, the manifestation of anxiety disorders is linked
with ambivalent (anxious) attachment classification (Fonagy et al.,
1996; Rosenstein and Horowitz, 1996; Dick et al., 2005; Colon-
nesi et al., 2011) and negative attachment-related experiences such
as overprotective parenting or abandonment and separation dis-
tress (DeRuiter and van Ijzendoorn,1992; Cassidy,1995; Bandelow
et al., 2002). In some of these studies (Manassis et al., 1994; Fon-
agy et al., 1996) and particular when investigating PTSD (Kobak
et al., 2004; Stovall-McClough and Cloitre, 2006 for review), there
seems to be a high prevalence of disorganized attachment sug-
gesting that childhood trauma or loss can give rise to particular
anxiety disorders.

More importantly, the study by Manassis et al. (1994) demon-
strates, albeit with a small sample, that 80% of the children
of mothers diagnosed with anxiety disorders were classified as
insecurely attached with 65% of them matching their mother’s
attachment classification.

In line with our framework it has to be noted that anxious
attachment itself is, at least in part, influenced by genetic con-
tributions. This seems to be more relevant when the style of
attachment is assessed via self-reports. Brussoni et al. (2000) found
that 25% of the variability in adult attachment measured with the
Relationship Scales Questionnaire was accounted for by genes.
Using a twin study design, Crawford et al. (2007) demonstrated
that 40% of the variance was attributable to heritable factors, a
finding recently confirmed by Picardi et al. (2010) who reported
45% heritability. Behavioral genetics studies focusing on attach-
ment classifications obtained with interview-based instruments, in
contrast, highlight the role of shared environmental factors with
only little influence accounted for by genes in the contribution
to the transgenerational transmission of attachment in children
(Bokhorst et al., 2003; Fearon et al., 2006; Bakermans-Kranenburg
and Ijzendoorn, 2007). These inconsistencies might result from
different methodological approaches and the differential effect of
gene x environmental interplay depending on the timing of when
genetic effects come into play.

CONSEQUENCES OF HYPERACTIVATING STRATEGIES
As indicated earlier, secondary attachment strategies might be
temporarily adaptive in a specific context or even at a societal
level (Simpson and Belsky, 2008; Ein-Dor et al., 2010), but in the
long run fail to attenuate stress effectively and result in increased
allostatic load. More specifically, the heightened subjective and
physiological stress reactivity found to be associated with hyper-
activation has been shown to affect core processes involved in
allostatic adaptation on a behavioral, endocrinological, and neural
level.

Compromised broaden and build features
The attachment-based coping strategies associated with hyper-
activation prohibit the ability of the individual to “broaden and
build.” Potentially supportive and competent others, especially
in close relationships, are experienced as untrustworthy and/or
unpredictable in their support and these expectations are com-
bined with chronic worry about abandonment (Campbell et al.,

2005; Miculincer and Shaver, 2009). Psychodynamic accounts fur-
thermore highlight the role of conflictuous interpersonal func-
tioning (e.g., Joraschky and Petrowski, 2008). Further, the use
of such strategies inhibits motivational systems responsible for
exploratory, affiliative, and caregiving behaviors (Mikulincer and
Shaver, 2005). Other factors characterizing hyperactivating behav-
ior, such as a negative view of self, a lack of self-efficacy, and
the tendency to avoid fears – all inversely correlated with find-
ings regarding resilience (Cicchetti, 2010) – reinforce the systems
responsible for hyperreactivity to stress.

Dysfunctional HPA-axis
The excessive use of behavioral hyperactivation has been linked
to physiological and neuroendocrinological hyperresponsivity
(Lupien et al., 2009). In a large prospective cohort study, for
instance, insecure–anxious (resistant) children displayed elevated
cortisol levels after being exposed to a separation paradigm (Luijk
et al., 2010). Similarly, in adults, hyperactivation has been found
to result in an altered and more sensitive HPA-axis (Powers et al.,
2006; Diamond et al., 2008; Gordon et al., 2008) and to have direct
effects on reducing hippocampal cell density (Quirin et al., 2011)
which might reflect a stress-driven neurotoxic impact on the gluco-
corticoid system. These indicators of allostatic load together with
the previously reviewed effects of stress and anxiety on HPA-axis
functioning suggest that chronic wear and tear entails that the once
regulatory and anticipatory functions of the HPA-axis are ren-
dered to conferring vulnerability to psychopathology (Schulkin,
2010). Most notably, the acquisition of prior allostatic load as
observed in attachment experiences characterized by anxiety and
ineffective stress regulation might impair the individual’s capac-
ity to accommodate to a current or future stressor (Ganzel et al.,
2010).

Effects of allostatic load on the neural circuits – mentalization
deficits under heightened stress and in the face of anxiety –
biobehavioral switch
The core emotional regions of the brain (the fronto-limbic cir-
cuit), as outlined above, are the primary and central mediator of
allostatic load as they are involved in the immediate stress response
but also iteratively update evaluations of stress and threat-related
environmental challenge (Ganzel et al., 2010). Together they coor-
dinate physiological and behavioral responses to stress and require
the effective recruitment of additional neural resources due to
increased attentional and processing load. (Vuilleumier et al., 2001;
Davidson et al., 2004). As these neural circuits represent the main
interface between changes in the environment and the individ-
ual’s accommodation to it they have been shown to be vulnerable
to accrual of stress load and resulting wear and tear (LeDoux, 1996;
Phelps, 2006; McEwen, 2007; Fonagy and Luyten, 2009; Rodrigues
et al., 2009; Ganzel et al., 2010) and are most malleable during
fetal and early childhood periods (National Scientific Council on
the Developing Child, 2005). Arnsten (2009) has drawn attention
to the stress signaling pathways and the neuromodulatory alter-
ations that markedly impair PFC functioning, the ventromedial
section in particular. More specifically, the impact of allostatic
load can damage brain circuits due to an overproduction of neu-
rochemicals involved in the stress response (Bremner et al., 1995;
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Gould et al., 1997; Ganzel et al., 2010). These effects of signifi-
cantly stressful events on neural processing have been studied in
great detail in fear consolidation and fear extinction paradigms
which are associated with anxiety and affected by hyperactivation
strategies (Wellman, 2001; Izquierdo et al., 2006; Milad et al., 2009;
Rodrigues et al., 2009).

More importantly, following the biobehavioral model put for-
ward by Luyten et al. (submitted for publication), sustained hyper-
activation in the face of anxiety or stress is directly linked to a
relative switch in activation from cortical to subcortical brain sys-
tems, from slow, reflective regulation to a rapid, reflexive response
(see also Mayes, 2006; Fonagy and Luyten, 2009; Johnson et al.,
2011). This arousal-dependent switch furthermore affects the
capacity to mentalize and modulates the neural network under-
pinning this faculty. More broadly, on a neural level, what can
be observed is a “switch from non-stress to stress conditions”
(Arnsten, 2009). Brain areas that have been consistently shown
to underpin mentalization include the medial PFC, superior tem-
poral sulcus, and temporal lobes (Gallagher and Frith, 2003; Frith
and Frith, 2006; Lieberman, 2007). In keeping with this notion,
Fraley et al. (2006) showed that anxious attachment is associated
with hypervigilance in perception of emotional expression and
poorer affect judgments.

Beyond the well-established effects on neural circuitry under-
pinning anxiety, there is strong evidence from electrophysiology
studies and functional neuroimaging that anxiously attached indi-
viduals employing hyperactivating strategies under-recruit pre-
frontal brain regions involved in emotion regulation, display a
neurobiologically supported bias toward memories of negative
valence and respond with amygdala hyperactivation to negative
social feedback (Gillath et al., 2005; Zilber et al., 2007; Vrticka
et al., 2008; Zhang et al., 2008). Moreover, it has been shown that
when comparing the effect of a general stress induction versus an
attachment-related (interpersonal) stress induction, only the latter
results in a relative deactivation of core areas associated with men-
talization. In this study of a normal population, when inferring
mental states of others during the Reading the Mind in the Eyes
Test (Baron-Cohen et al., 2001), Nolte et al. (under review) found
that it was only after exposure to attachment stress that activation
decreased in the inferior frontal gyrus (a part of the prefrontal
cortex), the posterior temporal sulcus, and the temporoparietal
junction combined with stress-driven alterations of functional
connectivity. It can be hypothesized that these stress-related alter-
ations will be more pronounced in anxious individuals, although
this has yet to be investigated.

Together, these findings provide preliminary evidence that the
mitigating role of mentalizing is reduced in anxious individuals
due to excessive use of hyperactivating strategies. Consistent with
this theory, Milrod and colleagues (Rudden et al., 2008) report
preliminary evidence that individuals with Panic Disorder dis-
play no general deficits in mentalizing but markedly impaired
mentalization related to threat and anxiety cues.

SECTION SUMMARY
The hallmarks of hyperactivation strategies in response to stress
and anxiety states are a low threshold for activation of the
attachment system, a low threshold for relative deactivation of

brain areas involved in controlled, reflective social cognition,
and mentalization as well as amygdala hyperreactivity result-
ing in neuroendocrinological hyperresponsivity. The current
model locates the main “programming” of these circuits and the
neural acquisition of allostatic adaptation (i.e., plasticity) in the
early attachment experiences. The ineffective down-regulation of
stress which is linked with impaired interpersonal functioning
and long-term consequences of allostatic load can lead to an
exhaustion and dysfunction of the stress response system with
increased risk for stress-related psychopathologies such as anxiety
disorders.

AN ATTACHMENT-BASED DEVELOPMENTAL FRAMEWORK
OF ANXIETY DISORDERS
We conceptualize the attachment system as a central organizer of
biological, genetic, and environmental influences on the devel-
opment of dysfunctional stress-regulatory processes and fear
responses that underpin anxiety disorders. The model, based on
the preceding review is presented in Figure 1. Component sections
are discussed in turn.

CHILD FACTORS
Genetic influences have been demonstrated to account for tem-
peramental factors (BI) which may, in some instances, represent
child-driven effects in the evocation of certain parenting styles.
Individual differences in attachment have also been demonstrated
to be influenced by genetic factors, although to a lesser degree.
The direct contribution to anxiety disorders accounted for by
genes is most likely the result of multiple loci additive and/or
interactive gene effects (Norrholm and Ressler, 2009; Figure 1,
Box 1).

However, as we have seen, stress sensitivity, and temperament
at birth, is modifiable by the effects of prenatal environment given
that, maternal stress and anxiety during pregnancy can lead to
a sensitization of the HPA-axis. Thus, characteristics the infant
is born with could represent an in utero adaptation to the stress
regulation style of the mother.

PARENTAL FACTORS
Multiple parental factors have been outlined as possible contribu-
tors to the development of dysfunctional stress regulation of the
child. Such factors have been delineated as the presence of an
anxiety disorder (or preclinical anxiety, both entailing HPA-axis
alterations), low social support, parental insecure attachment, and
low mentalization capacity (Figure 1, Box 2).

THE ATTACHMENT RELATIONSHIP AS A DIALECTICAL SYSTEM
ORGANIZING EARLY EXPERIENCES
Together, or individually, parental factors interact with child fac-
tors outlined above, within the context of the early attachment
relationship. The proposed mechanisms by which these factors
can affect the parent’s capacity to effectively co-regulate the child’s
stress include the modeling of anxiety responses, the reinforce-
ment of threat cues in the environment (and their avoidance)
and parenting styles characterized by overcontrol of the child and
limited autonomy granting as observed in caregiver responses to
anxiously attached children (Figure 1, Box 3).
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EARLY ATTACHMENT
EXPERIENCES

Caregiver: Inconsistant
Unpredictable
Anxious

DYSFUNCTIONAL
STRESS REGULATION

ANXIOUS-AMBIVALENT 
ATTACHMENT

Modelling of  anxiety
Reinforcement of  threat cues

Overcontrolling
Reinforcement of  avoidance

CONSOLIDATION

OVERGENERALIZATION

INTERNALIZATION

CHILD FACOTRS

Genetic vulnerability
Temperament

Prenatal sensitization
of  HPA

Box 1

PARENTAL FACOTRS

AD/ anxiety
Low social support
Insecure attachment
Impaired mentalizing

HPA

Box 2

Box 3 ANXIOUS CHILD

Hyperactivation

HPA
Low mentalizing under stress

Altered neural circuit
Attentional Bias

Broaden and Build
Lack of  secure base

Hypervigilance

Box 4

ANXIETY DISODER

Box 5

FIGURE 1 | A developmental model of the attachment-moderated

interaction of risk factors in the development of anxiety

disorders. Black bolts from one box to another indicate either

uni- or bidirectional effects and refer to the box as a whole. Blue bolts inside
boxes indicate either an increase or decrease of the magnitude of the
respective feature.

FROM EARLY ATTACHMENT EXPERIENCE TO A RISK PROFILE
It is proposed that the development of a stress regulation style char-
acterized by hyperactivating strategies is adaptive to the child’s
particular early environment. However, this pattern of respon-
sivity, once internalized, leads to an overgeneralized application
of these strategies in the face of stress, a process that over time
becomes consolidated. Consolidation occurs as the individual
detects more threat in the environment in the first instance, avoids
these perceived threats, and subsequently limits the repertoire of
experience that could potentially correct and adjust the internal-
ized expectations of the environment as ultimately unpredictable
and threatening (attentional bias to threat). These maintaining fac-
tors echo those delineated in both cognitive and learning-theory
accounts of the persistence of fear responses in anxiety disorders
(Wells, 1997; LaBar and Cabeza, 2006; Mineka and Zinbarg, 2006;
Britton et al., 2011; Figure 1, Box 4).

These processes are hypothesized, in the current model, to
represent pathways from insecure attachment experiences to the
presentation of chronic anxiety-related phenomena which, in turn,
predispose the child to the development of full anxiety disor-
der symptomatology depending on vulnerability factors and life
events.

THE “ANXIOUS CHILD”: A PROFILE OF RISK
Following the development of hyperactivating strategies and their
persistent utilization over time, the anxiously attached child
is characterized by a discernable repertoire of stress-responses.
Such phenomena include (1) the lack of a secure base and
concomitant poor exploratory behaviors, perception of reduced

control, an attentional bias to threat, (2) chronic reliance upon
hyperactivating strategies and hypervigilance of the social envi-
ronment with neurophysiological correlates of a sensitized HPA-
axis and altered fronto-limbic neural circuitry, and (3) compro-
mised social–cognitive capacities under stress with slow recovery
of mentalization (Figure 1, Box 5).

The various aspects of this combined profile of stress respon-
sivity have been shown within this review to associate with the
development of anxiety disorders. The mechanisms by which these
response characteristics ultimately lead to the expression of a clin-
ical anxiety disorder likely include the chronic sensitization of the
HPA-axis and neural systems, or the impact of subsequent stress-
ful life events that trigger a style of responding that, while adaptive
in early childhood, proves maladaptive in adult environments.

Furthermore, the various factors that may influence the expres-
sion of anxiety disorders likely interact. The interplay between
these different risks at different developmental stages, congru-
ent with the developmental principle of multifinality (Cicchetti
and Rogosch, 1996; Luyten et al., 2008), may give rise to different
clinical presentations of anxiety disorders. Further longitudinal
research is needed in this area to investigate these assumptions.

LINKS IN THE CHAIN: THE ROLE OF EPIGENETIC FACTORS IN THE
DEVELOPMENT OF STRESS REGULATION
As demonstrated throughout this review, the understanding of
interactions between genetic and environmental factors are key
to elucidating how early experiences confer risks for anxiety dis-
orders that persist throughout the lifespan (Rutter et al., 2006).
Epigenetic processes, through which events in the environment
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alter the activity and expression of genes without altering DNA-
sequence, are key candidates in explaining how the effects of early
attachment experiences manifest beyond the early years (for review
see Murgatroyd and Spengler, 2011).

While attention to these epigenetic processes is developing
rapidly, many key hypotheses rely on findings in animal research
in which early environments can be experimentally controlled.
Data from rodent models indicate that the long-term effects of
maternal caregiving appear to depend upon alterations in differ-
entiation of those neurons involved in down-regulation of the
stress-response (Meaney et al., 1996; Meaney, 2010), a process
involving glucocorticoid feedback systems and related levels of
corticotropin releasing hormones (CRH; Plotsky and Meaney,
1993). Further, the offspring of mothers providing high qual-
ity, attentive care exhibit reduced levels of CRH in the hip-
pocampus and a reduced sensitivity of the HPA-axis when com-
pared with rat pups of mothers who had not provided such
sensitive caregiving (Francis et al., 1999). These environmental-
dependent effects are hypothesized to be underpinned by epi-
genetic alterations in DNA methylation processes (Weaver et al.,
2004) and are in line with our model which holds the early inter-
actions within the attachment context as the vital component in
the development of stress-regulatory capacities that persist into
adulthood.

More recent studies that examine these processes in humans
have shown that post-mortem hippocampal tissue from individu-
als who have completed suicide following a history of depression
and early adversity, is marked by altered GR promoter methylation
(McGowan et al., 2009). In comparing GR promoter methylation
in these subjects with those who had committed suicide (with
or without a diagnosis of depression) but with no known his-
tory of early adversity, Alt et al. (2010) demonstrated that altered
GR promoter methylation was characteristic of subjects with early
adversity only, thus addressing the question of whether such mark-
ers may be correlates of mood disorders irrelevant of early expe-
riences. Such findings represent initial evidence that epigenetic
programming in animal models may extrapolate to human studies
of psychopathology associated with sub-optimal early caregiving
environments. How such epigenetic alterations could contribute
causally to the emergence of anxiety disorders is yet to the be
understood, and the search for so-called “epigenetic biomarkers”
of psychiatric presentations (Murgatroyd and Spengler, 2011) is
made complicated by the limited evidence available indicating that
psychopathology can be present without the presence of epigenetic
markers (Alt et al., 2010).

Epigenetic processes are hypothesized to underpin the devel-
opmental plasticity of an organism, characterized by biological
adaptations made early in life that remain in order to enhanced
biological preparedness for later, similar environments. While the
evolutionary function of such plasticity is clear, adaptations made
through epigenetic processes may ultimately increase vulnerability
for anxiety-related diseases as the strategies they have promoted
may prove redundant and pathognomonic in later environments.
Thus, the process of overgeneralization and consolidation in the
current model could be taken as representative of the inflex-
ible application of strategies initially promoted via epigenetic
mechanisms due to their adaptive properties.

CONCLUSION
The model presented conceptualizes anxiety disorders as caused
and maintained by a complex interplay between genetic, environ-
mental, and epigenetic contributions – a multifactorial etiology
which ultimately results in dysfunctional stress regulation and fear
appraisal strategies that are acquired within the early attachment
relationship. These strategies, in our model, are maintained by
alterations of social–cognitive as well as biological functions. Emo-
tional strategies adopted by a child may be associated with cumu-
lative allostatic load and subsequent “wear and tear” effects. These
converge on the neural pathways involved in processing of signals
and experiences associated with anxiety and stress. We suggest that
chronic anxiety conditions entail the triggering of a biobehavioral
switch causing a shift from more controlled, reflective mentaliza-
tion to more automatic, reflexive modes (McEwen, 2007; Luyten
et al., submitted for publication). This in turn increases the indi-
vidual’s vulnerability to further potentially stressful experiences
leading to a hyperactivation of strategies that generate salience
for somatosensory and perceptual experiences associated with
the activation of the attachment system and the potential of an
experience of loss.

An attachment-based framework integrates isolated strands of
research that successfully characterized processes inherent to anx-
iety disorders. A further advantage of this framework is its poten-
tial to explain individual differences in stress and fear-triggered
regulatory capacities. Distinct characteristic patterns of stress
responsivity are associated with the different attachment styles,
which may go some way toward explaining differences between
anxiety-related conditions. In common to the development of
anxiety problems, however, is an overgeneralization of predom-
inantly hyperactivating stress-regulatory strategies developed in
an individual’s specific attachment relationship.

DISCUSSION/IMPLICATIONS
While delineation of disorder-specific etiological pathways has
been beyond the scope of the current paper, the frame-
work presented can account for the heterogeneity of presen-
tations of anxiety-related psychopathology, given its focus on
the interplay of genetic and environmental factors that poten-
tially contribute to the development of the various anxiety dis-
orders.

The model therefore generates empirically testable hypotheses
regarding specific developmental pathways and factors moderat-
ing the risk for or resilience to anxiety disorders.

Longitudinal neuroscientific developmental research will be
required in order to elucidate the complex interactions that are
likely to result in phenomenologically different types of anxiety
disorders, and to further understand the role of anxiety and attach-
ment in the emergence of other major psychopathologies, most
notably depressive disorders. Research to date has been primar-
ily cross-sectional and the serial sequence of brain changes that
characterize the emergence of anxiety problems is not known.
Much of the interactional processes discussed in this review are
assumed rather than observed to be occurring in chronologi-
cal time. The limitation this imposes on theorization principally
entails limited understanding of the phenomenon of resilience,
the processes whereby risks fail to be translated into clinically
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significant problems. While we understand more about brain
changes that create pathogenic outcomes, far less is known about
adaptations that protect the mind of the child, despite adver-
sity (Hauser et al., 2006). Further, future research should devote
more attention to individual differences in clinical outcomes. For
instance, the extent to which deactivating strategies are used may
influence the clinical expression of anxiety problems, may be
dependent on contextual factors or could even protect against
the development of anxiety-related symptomatology. For exam-
ple, within the maltreatment literature, findings from studies of
HPA-axis responsivity in children and adolescents with histories of
early adversity have been mixed (Tarullo and Gunnar, 2006) with
hyperresponsivity not consistently found (De Bellis et al., 1994). A
study by Kaufman et al. (1997) showed that hyperresponsivity may
be dependent upon the child’s ongoing exposure to a stressful envi-
ronment. Thus, further maltreatment research might fruitfully
examine the insecure attachment relationship as an example of
chronic exposure to a stressful environment, potentially differen-
tiated in its pathognomonic effects from more isolated episodes of
maltreatment or adversity. The attachment framework might thus
shed light on some currently contradictory findings within the
maltreatment literature, as well as providing a conceptual frame-
work for understanding mechanisms by which such sub-optimal
caregiving can give rise to such differential outcomes. For example.
disorganized attachment, where the caregiver’s affect regulation is
highly inconsistent (Fonagy and Luyten, 2009), may be associ-
ated with more severe developmental outcomes related to anxiety
and have been shown to impact substantially on neurobiological
development (see McCrory et al., 2010 for a review) with evi-
dence for gender-specific stress responsivity (Kirschbaum et al.,
1995; Kudielka and Kirschbaum, 2005). The disorganization of
attachment possibly entails the loss of the interpersonal under-
pinning that is at the root of epistemic trust undermining the
individuals confidence in exploring their environment and reduc-
ing suspicion through testing and exposure of cultural knowledge
as well as a physical world (Fonagy, 1998). Modern attachment the-
ory argues that human infants have genetically inbuilt “healthy”
social expectations (Baillargeon et al., 2010). Social experience
is developmentally “good enough” when it complies with these
expectations; in other words it fits in with biologically prepared
mechanisms which evolved to transmit human culture and is con-
sistent with neural development (i.e., the capacity to integrate new
information; Fonagy et al., 2007). Meeting these basic expectations

is inherent to secure attachment and their violation can be toxic
because not only does this“teach” the infant inappropriate content
but it undermines the biological and psychological mechanisms
for the social acquisition of knowledge and the emergence of an
effectively biologically functioning agentive sense of self.

Finally, the model may have important implications for clinical
interventions. There is already accumulating evidence for the effi-
cacy of interventions informed by attachment theory in a variety of
clinical presentations (Brisch et al., 2003; Bakermans-Kranenburg
et al., 2008; Dozier et al., 2009; Fonagy and Luyten, 2009; Such-
man et al., 2010). Secure attachment is isomorphic with inducing
in the infant/child a sense of epistemic trust which may be seen as
indicating to the infant/child that the information relayed by the
adult charged with conveying key cultural meanings (Tomasello
et al., 2005) may be trusted. This has important implications for
therapy for children – as the mind is found within the other and
not within itself we may say that evolution has “prepared” chil-
dren’s brains for psychological therapy. They are eager to learn
about the opaque mental world from those around them and
they are prepared to learn most readily about minds in condi-
tions of epistemic trust. Thus, a therapist ignores the persons
to whom the child naturally turns for knowledge at their peril.
Preliminary support for superior outcomes when treating the par-
ent or family of children with anxiety disorders (compared to
treatment focusing on the child only) exists, mainly for cognitive
behavioral approaches (Ginsburg and Schlossberg, 2002; Creswell
and Cartwright-Hatton, 2007; Creswell et al., 2008; Kendall et al.,
2008). Therapy is not just about the what but the how of learn-
ing. It is about opening the child’s mind so (s)he once again can
trust the social world by changing expectations This review and
proposed model emphasizes the importance of considering an
attachment-based framework in interventions for the treatment
of childhood anxiety disorders in particular in identifying the
attachment relationship as a key target of clinical work, alone, or
in addition to pharmacological or other treatment components.
Further research therefore should address process and outcome
factors in relation to increasing attachment security and enhanc-
ing mentalizing capacities in combination with the underlying
neurobiological substrates.
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Furthermore, the neurobiological underpinnings of the different 
symptoms may not overlap (Lanius et al., 2006), suggesting that 
different “subtypes” of PTSD may have different treatment targets. 
Finally, PTSD is frequently co-morbid with other disorders, such as 
depression, substance abuse, and other anxiety disorders (Kessler 
et al., 1995). Taken together, these issues result in a complex phe-
notype of PTSD; one that is difficult to model in animal research 
and does not easily lend itself to treatment outcome studies.

Given this complexity, progress in the field can be greatly 
enhanced by focusing on phenotypes that are more proximal to the 
neurobiology of the disorder. Such neurobiological intermediate 
phenotypes can provide investigative tools to increase our under-
standing of the roots of the disorder and develop better prevention 
or intervention programs. Although the narrow focus cannot by 
definition encompass the entire spectrum of the illness, it can define 
targets in the neurocircuitry of the illness.

In the present paper, we argue that the inhibition of fear 
responses is an intermediate phenotype that is related to both the 
neurocircuitry associated with the disorder, and is linked to its 
clinical symptoms. An advantage of focusing on fear inhibition is 
that the neurobiology of fear has been well investigated in animal 
models providing the necessary groundwork in understanding 
alterations. Furthermore, because many paradigms can be tested 
across species, fear inhibition is an ideal translational tool. For 
example, fear-potentiated startle and inhibition of fear-potentiated 
startle has been tested in rodents, non-human primates, as well as 
humans (Myers et al., 2009). Here we review both the behavioral 
tests and measures of fear inhibition and the related neurocircuitry 
in neuroimaging studies with both healthy and clinical samples.

Neurobiological iNtermediate pheNotypes of ptsd
Posttraumatic stress disorder (PTSD) can develop in some indi-
viduals who are exposed to an event that causes extreme fear, horror, 
or helplessness (APA, 1994). PTSD is considered the fourth most 
common psychiatric disorder, affecting 10% of all men and 18% 
of women (Breslau et al., 1998). The rates of lifetime PTSD are 
closer to 40% in high trauma populations, such as combat (Kessler 
et al., 1995) and low-income inner-city populations (Schwartz 
et al., 2005; Alim et al., 2006). Recent studies have demonstrated a 
steep dose–response curve between trauma frequency and PTSD 
symptom severity such that the more traumatic events a person 
experiences, the greater the PTSD symptoms (Binder et al., 2008; 
Mcteague et al., 2010). Even at such high prevalence rates, the rela-
tionship between trauma exposure and PTSD suggests resiliency in 
the majority of individuals, indicating the presence of “resilience 
factors” that allow trauma-related symptoms to diminish over time. 
These factors can be genetic, as shown by several recent gene by 
environment interaction studies (Binder et al., 2008; Ressler et al., 
2010), or psychological, such positive social support (Charney, 
2004; Norrholm and Ressler, 2009).

Delineating these resilience factors is of great importance to the 
development of improved and personalized treatment approaches 
to this disorder; however, using the DSM-IV defined disorder as the 
phenotype under investigation raises many complications. PTSD is 
a heterogeneous disorder, which presents with different symptom 
domains, specifically, re-experiencing, avoidance and numbing, 
and hyper-arousal symptoms. As some patients may present higher 
symptoms in one domain as compared to another, a one-size-fits-
all approach is often inadequate (Norrholm and Jovanovic, 2010). 
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iNhibitioN of fear as a Neurobiological pheNotype
Inhibition of fear responses involves learning and then appropri-
ately responding to safety signals, i.e., the ability to discriminate 
between danger and safety cues and suppress fear responses in the 
presence of safety cues (Jovanovic et al., 2011). In the laboratory, 
fear inhibition can be measured by first using a fear condition-
ing paradigm to acquire learned fear (termed fear acquisition), 
which is then followed by training to inhibit learned fear responses 
(termed fear inhibition). Fear conditioning is based on a simple 
Pavlovian conditioning model in which a neutral conditioned 
stimulus (termed the CS; for example, a light) is paired with an 
aversive unconditioned stimulus (termed the US; for example, cuta-
neous electric shock). After a number of pairings, the association 
is formed so that the CS alone elicits the conditioned response 
(termed the CR; for example, freezing in rodents or fear-potentiated 
startle in humans; Pavlov, 1927). This basic model is used in ani-
mal as well as human research to investigate mechanisms of fear 
expression (Davis, 1990; Labar et al., 1995; Grillon and Davis, 1997; 
Fanselow and Ledoux, 1999; Lissek et al., 2005; Jovanovic et al., 
2006). The advantage of using these paradigms is that they can be 
measured with peripheral outcomes such as the skin conductance 
or startle responses, which are non-invasive but offer physiological 
measures of fear conditioning. In this review we will describe fear 
inhibition as the reduction of fear responses in the presence of 
safety cues which is a manifestation of the underlying inhibitory 
neurocircuitry.

There are two laboratory models that have been primarily used 
for behavioral testing of fear inhibition in animals and humans: 
extinction and differential conditioning. Whereas fear acquisi-
tion refers to learning that something is dangerous, extinction is 
a mechanism by which an individual learns that something that 
was previously dangerous has become safe. In fear extinction 
paradigms, a stimulus that was previously paired with an aversive 
stimulus (the CS+) is then repeatedly presented without the US, 
so that it no longer elicits a fear response [cf. (Myers et al., 2006; 
Norrholm et al., 2006), see Figure 1A]. In a basic differential con-
ditioning paradigm, the above CS+ pairing is intermingled, at the 
time of training, with a separate stimulus (CS−). The CS− does not 
co-occur with an aversive stimulus, and thus represents safety, or 
inhibition of fear. This paradigm involves a simple discrimination 
between the danger and safety cues (see Figure 1B), and is the one 
most commonly used in human fear conditioning research (Lissek 
et al., 2005). More complex tasks, such as conditional discrimina-
tion, Figure 1C (in which there is an element of the conditioning 
stimulus that is shared between the CS+ and CS−), and stimulus 
generalization, Figure 1D (in which there is a perceptual gradient 
of stimuli between the CS+ and CS−), are designed to capture more 
subtle variation in fear-inhibition processes.

Conditioned inhibition involves a variation of discrimination in 
which the danger cue (i.e., CS+) is not reinforced when preceded by 
(or combined with) a second cue, usually termed X, so that CS+, CS/
X−). Although the X cue should be conditioned to designate safety, 
it is vulnerable to second-order conditioning effects and limited 
by configural processing (Myers and Davis, 2004). This paradigm 
has been used in several animal studies (Falls et al., 1997; Gewirtz 
et al., 1997), but rarely in human studies (Grillon and Ameli, 2001) 
due to the above issues. Conditional discrimination, a modification 

Figure 1 | Schematic depictions of four different fear-inhibition paradigms; 
(A) extinction, (B) Simple Discrimination, (C) Conditional Discrimination, 
and (D) Stimulus generalization. CS+ = Reinforced Conditioned Stimulus; 
CS− = Non-reinforced Conditioned Stimulus. In fear extinction paradigms (A), a 
stimulus that was paired with an aversive stimulus (the CS+) during the initial 
phase is then repeatedly presented without the US in the next phase of the 
experiment, so that it no longer elicits a fear response. In the simple 
discrimination paradigm (B), the CS+ is intermingled with a separate stimulus 
that is not paired with the US (CS−). In a conditional discrimination experiment 
(C), the US occurs depending on the presence of the CS+ when it is combined 
with a neutral (X) cue, which is also combined with the CS− to predict the 
absence of the US. In the next phase of the experiment, presentation of CS+ and 
CS− together, without the shared cue (X) results in a reduced fear response 
compared to the response to CS+. In a stimulus generalization experiment (D), 
after the initial conditioning, the second phase of the experiment presents 
iterations of CSs that differ from the CS+ in small increments. The number of 
degrees required for discrimination is an indication of cue overgeneralization.
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 testing the reduction of fear-potentiated startle on the transfer test. 
We used this paradigm in combat veterans (Jovanovic et al., 2009) 
and traumatized civilian population (Jovanovic et al., 2010b) and 
have found that individuals who met criteria for PTSD had higher 
potentiation of the startle response to the CS− than traumatized 
controls and did not transfer safety on the test trial (Figure 2C).

While some data with combat veterans suggest that impaired 
fear inhibition may be an acquired trait (Milad et al., 2008), that is 
associated with current symptom severity (Jovanovic et al., 2009), 
other studies have reported that heightened fear responses and 
decreased inhibition of fear may be predictors of the disorder. A 
prospective study of police academy cadets found that greater skin 
conductance responses to threatening stimuli and slower habitu-
ation prior to trauma exposure were predictive of PTSD symp-
tom severity after trauma exposure (Pole et al., 2009). A similar 
prospective study with firefighters found that reduced extinction 
of fear conditioned responses examined before the index trauma 
explained almost a third of the symptoms in later traumatized 

of the conditioned inhibition design, avoids some of these limita-
tions (Myers and Davis, 2004). In a conditional discrimination 
experiment, an aversive event occurs depending on the presence of 
the CS+ when it is combined with a neutral (X) cue (Wagner and 
Rescorla, 1972). This cue is also combined with the CS− to predict 
the absence of the US (Figure 1C). In a critical subsequent test trial, 
presentation of CS+ and CS− together, without the shared cue (X) 
results in a reduced fear response compared to the response to CS+. 
This is referred to as the transfer test, when the inhibitory properties 
of the CS− are actively transferred to the combined CS+/CS− cue 
(Myers and Davis, 2004; Jovanovic et al., 2005).

The current review will focus on extinction, simple discrimina-
tion, and conditional discrimination methods of fear inhibition, 
as these have been more thoroughly investigated using psycho-
physiological techniques. The final paradigm, stimulus generaliza-
tion is a very novel approach to studying fear inhibition and has 
only been recently used in patients with panic disorder (Lissek 
et al., 2010), and there are no published studies to date that have 
tested stimulus generalization in PTSD. This paradigm is promis-
ing because it assesses both the subjects’ ability to detect subtle 
differences between danger and safety on a continuum, and their 
ability to show reduction of fear once the discrimination occurs 
(Lissek et al., 2010).

Both extinction tests and differential conditioning paradigms 
focus on active suppression of fear responses through learned safety 
signals; while fear itself may only involve subcortical areas of the 
brain located primarily in the limbic circuitry, safety signals may 
require a cognitive, cortical component (Bremner et al., 2005; Weike 
et al., 2008). This premise is supported by data from our lab show-
ing that awareness of the association between the CS and the US 
is necessary for inhibiting fear responses (Jovanovic et al., 2006). 
Furthermore, a recent study by Weike et al. (2008) examined the 
temporal domain of fear conditioning with a danger and safety sig-
nal and found that safety signal processing was slower than danger 
processing. The authors argued that top-down cognitive processes 
are involved in responses to safety signals which accounts for the 
latency in response.

We have recently used extinction, simple discrimination, and 
conditional discrimination paradigms in a highly traumatized 
civilian population from inner-city Atlanta (Jovanovic et al., 
2010a,b; Norrholm et al., 2011). Data from our study on extinction 
(Norrholm et al., 2011) suggest that the early phase of extinction is 
predicted by the level of fear expression to the CS+ (i.e., the danger 
signal) at the end of acquisition. It is this fear expression during 
early extinction that is exaggerated in PTSD subjects compared 
to traumatized non-PTSD controls (see Figure 2A). On the other 
hand, a high degree of fear remaining during late extinction is 
related to impaired inhibition, as it is best predicted by responses 
to the CS− (i.e., safety signal) at the end of acquisition (Norrholm 
et al., 2011). Figure 2B shows simple discrimination between the 
CS+ and the CS− during late acquisition between PTSD subjects 
and controls. Although PTSD subjects are slower in developing the 
discrimination, by the final phase of conditioning both groups show 
higher levels of fear-potentiated startle to the CS+ than the CS−; 
however, PTSD subjects demonstrate higher levels of fear to both 
stimuli (Norrholm et al., 2011). The final paradigm, conditional 
discrimination, measures fear inhibition to the safety signal by 

Figure 2 | Fear-inhibition data from our studies on a traumatized civilian 
population. (A) Extinction, adapted from (Norrholm et al., 2011); (B) Simple 
Discrimination, adapted from (Norrholm et al., 2011); (C) Conditional 
Discrimination, adapted from (Jovanovic et al., 2010b). EXT, Extinction Block; 
PTSD, Posttraumatic stress disorder; CS+, Reinforced Conditioned Stimulus; 
CS−, Non-reinforced Conditioned Stimulus.

Frontiers in Behavioral Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 44 | 

Jovanovic and Norrholm Neural mechanisms of fear inhibition in PTSD

85

http://www.frontiersin.org/Behavioral_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Neuroimaging studies in humans have used several paradigms 
that activate the PFC; the simplest and most commonly used 
tasks involve response inhibition. In such tasks, the participant 
is presented a stimulus indicating that a response is required, for 
example, to press a button when a letter appears on the moni-
tor. This is referred to as a “Go” signal. On a minority of trials, 
however, the participant is required to either withhold a response 
during a “NoGo” signal (the Go/NoGo task) or stop responding 
once they have begun the execute the action during a “Stop” 
signal (the Stop task; Hester et al., 2004; Eagle et al., 2008). The 
Go/NoGo task has been used in subjects with PTSD with elec-
troencephalogram (EEG) evoked-potentials (Wu et al., 2010) 
and functional magnetic resonance imaging (fMRI) measures 
(Carrion et al., 2008; Falconer et al., 2008). This task reliably 
indicates decreased activation in PTSD subjects compared to 
controls in the rostral ACC, located at the genu of the corpus 
callosum (see Figure 3B). The advantage of this task is that it is 
very simple to administer in both behavioral and neuroimaging 
studies, and may provide insight into deficits in inhibiting lim-
bic activity. Although a more general impairment in inhibitory 
processes mediated by the rACC may very well be an underly-
ing abnormality associated with several psychiatric disorders, 
the deficits in inhibiting fear responses appear to be uniquely 
associated with re-experiencing and hyper-arousal symptoms of 
PTSD (Norrholm and Jovanovic, 2010). Further support for the 
utility of this paradigm comes from a study predicting positive 
treatment outcomes in PTSD patients with greater rACC volumes 
(Bryant et al., 2008).

A well known and frequently used example of a more complex 
inhibition task is the Stroop effect task, where the meaning of a 
word (such as the word “red”) is in conflict with the color in which 
it is shown (for example, in blue ink). In this task, the subject is 
instructed to state the color of the ink while ignoring the interfer-
ence from the word. Due to the conflict between the color and the 
word, reaction times are delayed, providing a measure of the cogni-
tive inhibition (Stroop, 1935), and activating the ACC (Pardo et al., 
1990; Bremner et al., 2004). The Stroop task can also be adapted 
to use with emotion-relevant stimuli, in which the emotional con-
tent of a word competes with the cognitive content and must be 
ignored. This task also activates the ACC, but in an area distinct 
from the strictly cognitive interference tasks (Whalen et al., 1998, 
2006). Emotionally relevant stimuli appear to be processed by the 
rostral or subgenual area of the ACC (Shin et al., 2005), which is 
anterior to the genu of the corpus callosum. Furthermore, this 
specific region of the PFC, the rostral ACC, is involved in amygdala 
regulation (Etkin et al., 2006).

Neuroimaging studies using fear conditioning paradigms dem-
onstrate that fear acquisition and extinction of fear also activate 
the PFC, specifically the ventromedial (vmPFC; Phelps et al., 2004; 
Reinhardt et al., 2010). Recent developments in the spatial resolu-
tion of neuroimaging techniques have resulted in more fine-tuned 
examinations of this area of the brain. As mentioned above, the 
rostral or subgenual regions of the ACC are activated during the 
presentation of emotional stimuli; these areas are also activated 
during the regulation of fear (Phelps et al., 2004; Schiller et al., 
2008). There are several lines of evidence that this region of the 
vmPFC is associated with inhibition of fear. For example, fMRI data 

individuals (Guthrie and Bryant, 2006). On the other hand, a 
recent study of Vietnam veterans and their twins found that PTSD 
subjects did not have impaired extinction learning, but rather had 
less extinction retention on the day after acquisition and extinc-
tion compared to veterans without PTSD (Milad et al., 2008). 
Furthermore, impaired retention of extinction appeared to be an 
acquired trait related to the disorder since the twins of the PTSD 
subjects did not show the same impairment. It is possible that a 
decreased ability to inhibit fear is a risk factor for developing the 
disorder and contributes to the maintenance of the disorder, while 
decreased extinction retention is a state resulting from the disor-
der – given that these fear-inhibition phenotypes may have dif-
ferent neural underpinnings this would explain the above studies. 
Extinction learning requires inhibition of the fear circuitry by the 
prefrontal cortex (PFC; Phelps et al., 2004); whereas discrimination 
between danger and safety cues, and recall of extinction may also 
require activation of the hippocampus (Milad et al., 2007b). Given 
that both extinction and differential conditioning are dependent 
on the PFC, this review will focus on this region as a primary locus 
in fear-inhibition neurocircuitry.

iNhibitioN Neurocircuitry as a target of 
iNvestigatioN
The PFC has long been thought to play a role in behavioral inhibi-
tion. More than a decade ago, animal studies reported that lesions of 
the medial PFC (mPFC) prior to original fear conditioning retard 
extinction to a tone (Morgan et al., 1993). Recent studies have 
demonstrated that neurons in the PFC may have inhibitory action 
on the amygdala (Grace and Rosenkranz, 2002; Phelps et al., 2004). 
The PFC can be subdivided into medial and orbitofrontal PFC. 
The anterior cingulate cortex (ACC), which is also part of the PFC, 
has both rostral and dorsal components which may play different 
roles in the expression and inhibition of fear, as will be discussed 
in greater detail below. Figure 3 shows the medial regions of the 
PFC most involved in inhibitory processes (Figure 3A), including 
the ventral and dorsal PFC and the ACC (Figure 3B).

Figure 3 | Structural magnetic resonance image (Mri) showing areas 
involved in inhibition. (A) Coronal view showing location of medial areas in 
red. (B) Sagittal view showing prefrontal cortical areas.
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To summarize the neuroimaging findings to date, the rostral 
ACC is involved in (1) response inhibition tasks, (2) emotion regu-
lation tasks, (3) inhibition of fear, and (4) is hypo-active in PTSD. 
These data suggest that this specific circuit represents a compelling 
target for translational investigations of PTSD and anxiety, as a 
biomarker predictive of PTSD and anxiety disorder vulnerability, 
treatment response, or as a treatment outcome measure in itself.

iNhibitioN Neurocircuitry aNd implicatioNs for 
treatmeNt respoNse
Currently, the most effective therapy for PTSD appears to be psy-
chotherapy, such as cognitive-behavioral therapy, which employs 
imaginal, in vivo, or virtual reality exposure to trauma cues 
(Rothbaum and Schwartz, 2002). The repeated exposure to feared 
cues without the negative events associated with the trauma, gradu-
ally leads to a reduction in symptoms. Clearly, active fear inhibi-
tion is critically involved in this treatment type. Although extant 
treatment approaches are not tailored to an individual patient’s 
symptom profile, future treatment strategies for PTSD may be gov-
erned by a shift toward personalized medicine (see Norrholm and 
Jovanovic, 2010). The identification of particular risk factors such 
as genotype or gene expression, as well as the assessment of inter-
mediate phenotypes specific to PTSD may dictate which treatment 
regimens will be most effective for a particular patient.

It now appears that some forms of dysregulated fear inhibition, 
such as impaired conditioned fear extinction, may be a vulnerability 
factor for the development of PTSD (Guthrie and Bryant, 2006; 
Pole et al., 2009), while other forms of impaired inhibition, such as 
danger/safety signal discrimination, may be associated with current 
symptom state, (Jovanovic et al., 2009). In addition, impaired fear 
inhibition that manifests itself as disrupted extinction recall may 
represent acquired traits of the disorder (Milad et al., 2008). The dif-
ference between these paradigms may lie in the involvement of the 
hippocampus in the latter (Milad et al., 2007c); which early studies 
have found to be decreased in PTSD subjects (Bremner et al., 1995) 
possibly as a result of the trauma and associated stress (Bremner, 
2001). However, some have argued that smaller hippocampal vol-
ume is a risk factor for PTSD (Pitman, 2001; Gilbertson et al., 2002). 
These issues can only be resolved with a prospective study examin-
ing neural volume before and after onset of PTSD. Regardless of 
whether fear inhibition is impaired prior to PTSD or develops as 
part of the disorder itself, it may be modifiable with treatment.

Clinically, fear inhibition has not yet been tested with regard 
to treatment response. The lack of these studies is partly due to 
the difficulty of testing de novo learning in a repeated design. For 
example, improvements in fear inhibition after treatment may not 
be due to treatment efficacy, but rather to a practice effect from 
patients remembering the previously administered training para-
digms. A recent study with fear acquisition and fear extinction tests 
spaced 12 weeks apart demonstrated good test–retest reliability on 
these measures (Zeidan et al., 2011); this is a crucial first step to 
developing treatment outcome measures.

Although treatment outcome and psychophysiological fear-
inhibition measures have not been actively examined concur-
rently, several studies have begun to investigate the relationship 
between pre-treatment neural function and subsequent treatment 
response. In PTSD, one study revealed that larger rostral ACC 

indicate increased activation during an extinction recall task that is 
presented after extinction learning has occurred (Phelps et al., 2004; 
Milad et al., 2007b). vmPFC is also activated during fear reversal 
tasks in which the CS contingencies are switched after acquisition 
so that a previously conditioned danger cue (CS+) becomes the new 
safety cue (CS−; Schiller et al., 2008). Morphometric data show that 
the thickness of vmPFC cortical tissue is correlated with extinc-
tion retention (Milad et al., 2005; Hartley et al., 2011). Functional 
and morphometric data support the rostral ACC as an anatomical 
substrate for fear inhibition, however, similarly acquired functional 
and morphometric data suggest that dorsal ACC activity underlies 
fear acquisition and fear expression (Milad et al., 2007a). Given that 
this area is also implicated in cognitive tasks (Shin et al., 2007), 
it may be activated by the active learning that occurs during fear 
acquisition, rather than by the fear itself. However, given that this 
area has been associated with fear as well as other noxious stimuli 
such as pain (Vogt et al., 2003), it may be more centrally involved 
in the expression of negative affect and not simply activated by 
general learning.

Several studies have indicated that this inhibitory neurocircuit 
is dysregulated in PTSD patients. Evidence suggests that a hall-
mark of PTSD neurobiology is exaggerated amygdala activity dur-
ing fearful stimulation coupled with reduced top-down control of 
the amygdala by the PFC (Liberzon et al., 1999; Rauch et al., 2000, 
2006; Shin et al., 2004; Liberzon and Martis, 2006). Furthermore, 
functional neuroimaging studies that have examined connectiv-
ity between PFC and the amygdala have demonstrated impaired 
inhibition of the amygdala in PTSD (Lanius et al., 2004). The 
emergence of MRIs with greater special resolution allows for 
more precise descriptions of these neural substrates. A recent 
meta-analyses of imaging studies during emotion processing in 
PTSD, social anxiety, and specific phobia indicated that the ros-
tral ACC is less active in PTSD patients relative to controls; an 
effect not found in other anxiety disorders (Etkin and Wager, 
2007). Furthermore, deficient activation of the rostral ACC has 
been observed in women with sexual trauma-related PTSD by 
coupling the the Emotional Stroop task with neuroimaging tech-
niques (Bremner et al., 2004). Similar effects were also observed in 
combat veterans (Shin et al., 2001). Decreased activation of this 
area may be a risk factor for psychopathology: a recent study of 
children with depressed parents revealed a lack of ACC activa-
tion to the Emotional Stroop (Mannie et al., 2008). There has 
been a paucity of studies investigating fear conditioning in PTSD 
patients using neuroimaging methodologies. One study using 
positron emission tomography (PET) during fear acquisition and 
extinction, demonstrated heightened amygdala activity in PTSD 
patients relative to controls during the acquisition phase with 
lower ACC function during the extinction phase (Bremner et al., 
2005). The differential involvement of the ACC subcomponents 
has been further elaborated in more recent studies. For example, 
a recently published study that tested extinction recall in an fMRI 
task demonstrated increased activation of the dorsal ACC (associ-
ated with learning) and decreased activation of the vmPFC (which 
includes the rostral ACC) in PTSD patients (Rougemont-Bücking 
et al., 2011). Finally, as previously mentioned, the rostral ACC is 
hypo-activated during Go/NoGo inhibition tasks (Carrion et al., 
2008; Falconer et al., 2008).
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 volume  predicted positive outcomes to cognitive-behavior therapy 
(Bryant et al., 2008). Furthermore, this brain area has been linked to 
treatment response in depression (Pizzagalli et al., 2001; Pizzagalli, 
2011). The ventral area immediately below the corpus callosum has 
been used as a target in deep brain stimulation to relieve depres-
sion (Holtzheimer and Mayberg, 2010), with long-term positive 
outcomes (Kennedy et al., 2011).

There is an emerging body of literature assessing structural 
and functional changes in the neural underpinnings of PTSD 
with treatment. An early study using single photon emission com-
puted tomography (SPECT) imaging pre- and post-treatment with 
selective serotonin reuptake inhibitors (SSRIs), found significant 
changes in ACC and hippocampus after 12 weeks of treatment 
(Carey et al., 2004). More recent studies using fMRI before and after 
psychotherapy for depression have indicated changes in prefrontal 
areas (Dichter et al., 2010; Ritchey et al., 2011).

future directioNs: caN we iNcrease Neural 
iNhibitioN of fear?
Several exciting and novel avenues have been revealed for the 
further exploration and development of neurobiologically based, 
translational studies of PTSD and trauma-related disorders. We 
are currently well-poised to investigate these avenues as a means 
of developing better diagnostic tools based on novel neurobiologi-
cal intermediate phenotypes. An obvious first step is to test fear 
inhibition before and after treatment in order to improve existing 
predictors of treatment response. This will also allow for the explo-
ration of potential individual differences that contribute to posi-
tive treatment outcomes and aid in personalization on treatment 
strategies. Another goal is to track treatment efficacy in responders.

In addition to increased exploration of the putative fear-
inhibition phenotype with respect to treatment, we also need to 
investigate treatment-related changes in brain neurocircuitry and 
structure. As previously described, fMRI has been successfully 
employed in depressed patients with significant treatment results 
(Ritchey et al., 2011). Given the specificity of the brain areas that 
are related to fear inhibition in PTSD, namely, the rostral ACC, 
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The extinction of conditioned fear is known to be context-specific and is often considered
more contextually bound than the fear memory itself (Bouton, 2004).Yet, recent findings in
rodents have challenged the notion that contextual fear retention is initially generalized.The
context-specificity of a cued fear memory to the learning context has not been addressed
in the human literature largely due to limitations in methodology. Here we adapt a novel
technology to test the context-specificity of cued fear conditioning using full immersion
3-D virtual reality (VR). During acquisition training, healthy participants navigated through
virtual environments containing dynamic snake and spider conditioned stimuli (CSs), one
of which was paired with electrical wrist stimulation. During a 24-h delayed retention test,
one group returned to the same context as acquisition training whereas another group
experienced the CSs in a novel context. Unconditioned stimulus expectancy ratings were
assayed on-line during fear acquisition as an index of contingency awareness. Skin con-
ductance responses time-locked to CS onset were the dependent measure of cued fear,
and skin conductance levels during the interstimulus interval were an index of context fear.
Findings indicate that early in acquisition training, participants express contingency aware-
ness as well as differential contextual fear, whereas differential cued fear emerged later in
acquisition. During the retention test, differential cued fear retention was enhanced in the
group who returned to the same context as acquisition training relative to the context shift
group. The results extend recent rodent work to illustrate differences in cued and context
fear acquisition and the contextual specificity of recent fear memories. Findings support
the use of full immersion VR as a novel tool in cognitive neuroscience to bridge rodent
models of contextual phenomena underlying human clinical disorders.

Keywords: fear conditioning, virtual reality, contextual fear, memory retention, hippocampus

INTRODUCTION
In the emotional learning literature, it is well established that the
extinction of conditioned fear to a discrete cue is context-specific
(for review, see Bouton et al., 2006). Experimental and clinical
findings of fear renewal and relapse demonstrate that extinction
learning does not readily generalize to other contexts in rodents
and humans (e.g., Mineka et al., 1999; Corcoran and Maren, 2001;
Bouton, 2002, 2004; Schiller et al., 2008; Huff et al., 2009). There-
fore, it has been argued that the original fear memory is less
context-specific than the competing extinction memory because
extinguished fears return when an organism is put back into the
acquisition context or a novel context (Bouton, 2004).

However, recent rodent studies reveal that there is a sharp
contextual gradient for the original fear memory, which chal-
lenges the notion that fear extinction is more context-specific than
the fear memory itself. For example, Wiltgen and Silva (2007)
demonstrated that contextual fear memory is initially specific but
becomes generalized over time when memory for a footshock
is tested 1, 14, 28, or 36 days after context exploration. More-
over, mice that can discriminate between fearful and safe contexts

rely on the hippocampus, whereas generalized fear memories are
hippocampus-independent (Wiltgen et al., 2010). Winocur et al.
(2007) employed a comparative contextual fear and food prefer-
ence conditioning paradigm by testing rats in a new context or the
conditioning context at 1 and 8 days for food preference memory,
or 1 and 28 days for fear memory. Responding to both the food
and fear cue was context-specific at the short intervals but not at
the long intervals. This decrease in the learned response outside of
the original context is known as the context shift effect (reviewed in
Riccio and Joynes, 2007) and suggests that both conditioned fear
and food preference memory retention is initially context-specific
due to the incorporation of background stimulus attributes into
the memory (Perkins and Weyant, 1958; McAllister and McAllister,
1963; Feinberg and Riccio, 1990; Zhou and Riccio, 1996; Anderson
and Riccio, 2005).

It has been argued that contextual specificity in rodent mem-
ory models provide an evolutionary basis for more complex forms
of episodic memory in humans. The transformation hypothesis
argues that such memories change from an initially hippocampus-
dependent representation to a more neocortical framework
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through systems-level consolidation processes (Winocur et al.,
2007,2010). Contrary views, such as multiple memory trace theory
(Nadel and Moscovitch, 1997), diverge from the transformation
hypothesis and predict long-term hippocampal involvement for
episodic and detailed spatial memories whereas long-term seman-
tic memories reside in the neocortex (Nadel et al., 2000). Both
theoretical positions, however, would predict that humans should
express a context-specific fear memory soon after fear acquisition.
Yet, direct comparisons of cued fear conditioning both in and out
of the original learning context are lacking in order to evaluate
this predicted context-specificity of recent fear memories. Here
we investigate 24-h delayed recall of a conditioned fear memory
in healthy humans using a manipulation that varies the testing
context in order to assess the spatial specificity of recent cued fear
memories.

A major challenge to addressing this research question is the
ability to evoke stable contextual fear retention in humans. Pre-
vious studies have moved participants from one physical room
to another (LaBar and Phelps, 2005; Huff et al., 2009), but this
method is limited in the number and type of contexts that can be
manipulated as well as their salience. An alternate method uses a
single-cue context manipulation, such as changing the color of a
background light in a scene (Milad et al., 2005), but this method
is known in animal models to not engage the same hippocampal-
dependent mechanisms as exploration of a multisensory complex
environment (O’Keefe and Nadel, 1978; Squire, 1992; Wiltgen
et al., 2010; Winocur et al., 2010). Measurement of conditioned
fear to a context rather than a discrete conditioned stimulus (CS)
has only recently been explored in humans (e.g., Baas et al., 2004;
Grillon et al., 2006) because it has been technically difficult to
create a context that is more salient to the participant than the
laboratory in which a study is being conducted. Several recent
fear conditioning studies have also employed 2-D virtual reality
(VR) in which participants view a computerized scenario through
a head mounted display (e.g., Baas et al., 2004; Grillon et al., 2006;
Alvarez et al., 2008; Marschner et al., 2008). However, the VR litera-
ture (Sanchez-Vives and Slater, 2005) suggests that head mounted
displays presenting flat 2-D representations do not create the same
level of “presence” or subjective feelings of “being there” that a 3-
D immersive VR experience does. Moreover, these initial studies
on contextual fear conditioning have focused on the acquisition
processes rather than fear retention.

To overcome these methodologic challenges, the present inves-
tigation implemented a contextually rich, fully immersive 3-D VR
preparation in the Duke immersive virtual environment (DiVE).
The unique technology utilized in these studies simulates a life-like
experience by guiding participants through 3-D worlds that are
back-projected onto movie screens surrounding them, including
ceiling and floor projection (Figure 1). Dynamic CSs are inserted
into the environments and are viewed through VR goggles, pro-
viding a fully immersive virtual experience (Huff et al., 2010). This
setup simulates how CSs are encountered in the real-world using
rich contextual manipulations and brings human studies closer to
rodent preparations in which subjects explore a novel conditioning
chamber.

Evidence from the learning and memory literature suggests
that, in an intact neurobiological system, fear learning to a context

FIGURE 1 | Schematic of the control room and Duke’s immersive virtual

environment (DiVE) with a human participant viewing a virtual scene.

and cue naturally occurs in a conjunctive or holistic manner (Rudy
and O’Reilly, 2001; Rudy et al., 2004). That is, a rodent rapidly
acquires a representation of the context and the features of the
context, such as a fear-predicting cue, in a unitary, hippocampal-
dependent representation. Therefore, we hypothesized that fear
retention to the CS in the original context would be superior to
that tested in the original context without the CS present or to
the CS in a novel context. To test whether conditioned fear is ini-
tially context-specific and retrieved as a function of a combined
cue and context representation, we implemented a differential fear
conditioning paradigm conducted over 2 days. Skin conductance
responses (SCRs) to a compound audio–visual CS paired with
a mild wrist shock unconditioned stimulus (US) were analyzed
24 h after fear conditioning in a novel VR context, the same VR
context, and to the context alone during the interstimulus interval
(ISI). This approach to assessing context effects is derived from the
rodent literature (e.g., Phillips and LeDoux, 1992; Huff and Rudy,
2004; Rudy et al., 2004) to allow for dissociation of three aspects of
fear memory retention: contextually cued (CS + original context),
cued (CS + novel context), and contextual (context alone). Given
the rich feeling of presence in a fully immersive virtual environ-
ment (Sanchez-Vives and Slater, 2005), this novel application of
VR technology permits a strong assay of contextual influences on
fear memory in human participants.

MATERIALS AND METHODS
PARTICIPANTS
Subjects consisted of 58 young adults (28 male and 30 female;
mean age = 19) who were recruited from the Duke University
community. Participants were randomly assigned to either the
Same Context or Different Context groups. Same Context partic-
ipants experienced the same VR setting on Days 1 and 2 whereas
Different Context participants experienced a context shift between
Day 1 and Day 2. Participants completed a questionnaire assess-
ing attitudes toward snakes and spiders (Klorman et al., 1974).
No subjects scored within 1 SD of the mean of patients with
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specific phobia. Participants received either psychology course
credit or were compensated at a rate of $10/h. All participants
provided written informed consent and experimental procedures
were approved by the Duke University Institutional Review Board.

CONDITIONING PROCEDURE AND DESIGN
Participants were seated in the center of the DiVE, a six-sided,
fully enclosed 10 ft3 cube, facing forward with head tracking on
the 3-D headset (Figure 1). During each learning phase, partici-
pants were taken on a fixed virtual walk through the designated
environment in which dynamic virtual snakes and spiders (CS+
/CS−) were encountered. The onset of each CS was also paired
with an auditory cue (rattle sound for snake and tapping sound
for spider) to orient the participant to the presence of the CS in
the environment. These postural constraints were made to avoid
dizziness, account for variability in height, control for amount of
context and stimulus exposure between participants, and ensure
that the visual display is realistically updated according the partici-
pants’ movement through the scenario. For a video demonstration
of the methodology, see Huff et al. (2010).

PSYCHOPHYSIOLOGICAL RECORDING IN THE DiVE
Skin conductance, the dependent measure of fear, was collected
on the middle phalanges of the second and third digits of the
non-dominant hand using Ag–AgCl electrodes attached to velcro
straps. A wrist band was secured along the median nerve on the
dominant forearm for transmission of the electrical stimulation
pulses that constituted the US. Recording and stimulating leads
reached the BIOPAC (Goleta, CA, USA) physiological recording
system and shock generator, respectively, just outside the DiVE
in the control room where this equipment interfaces with the
stimulus presentation computer running Virtools software. The
BIOPAC’s digital input was connected to the control computer’s
parallel port. SCR data was continuously monitored and data
was collected on a laptop computer connected to the BIOPAC
system via a parallel port. The Virtools software program trig-
gered the shock generator via a National Instruments DIO-24 data
acquisition card (Austin, TX, USA).

TRAINING AND TESTING PHASES
Fear acquisition followed an initial habituation period on Day
1 to allow for acclimation to the experimental environment and
reduction of orienting responses to the CS. Habituation consisted
of four trials of each CS type presented without reinforcement
in a gray screen virtual background. The fear acquisition phase
consisted of 16 intermixed trials of each CS type (5 of the 16
CS+ trials were reinforced with the US). Approximately 24 h later,
fear retention was tested in an extinction session that consisted
of 16 unreinforced trials of each CS type in a pseudorandomized
order. Participants experienced the fear retention test in either
the same virtual context as the fear acquisition context the day
before, or they were shifted to a novel context (randomized across
participants). Three contexts were utilized and counterbalanced
across participants – an interior of a furnished apartment, an out-
door suburban neighborhood scene, and a forest (see Figure 2).
The path length and navigation course were matched between vir-
tual worlds, as were the number and placement of objects in the
different environments.

FIGURE 2 |Time line of fear conditioning and retention testing.

Participants were seated in the DiVE during habituation/acquisition and
extinction sessions on two consecutive days. Conditioned Stimuli (CS+)
and (CS−) indicate the phasic reinforced and non-reinforced snake and
spider images. The unconditioned stimulus (US), mild wrist shock, was
paired with the CS+ on 40% of acquisition trials. Participants were tested
in either the same or a different VR context (bottom panel) on the following
day during extinction trials to measure fear retention.

STIMULUS PARAMETERS
The dynamic snake and spider CSs were created using Maya
graphic design application and imported into Virtools software
(Virtools SA, The Behavior Company, Paris, France), which indi-
vidually appear in the middle and center of the front screen of the
DiVE, for a duration of 4 s. The ISI was 12 ± 2 s. The sequence
of CSs was pseudorandom, subject to the constraint that no more
than two trials of the same CS occur consecutively (to avoid con-
founding inductions of state anxiety and cognitive expectancy).
Partial reinforcement of the CS+ was used to delay rapid extinc-
tion that normally occurs in human participants following 100%
CS+ reinforcement (LaBar et al., 1998; Phelps et al., 2004). In
addition, partial reinforcement provides a more realistic condi-
tioning contingency in that aversive consequences do not always
occur following a threatening stimulus.

The US was a brief electric shock (200 ms duration deliv-
ered at 30–50 Hz) administered transcutaneously by a bipo-
lar surface-stimulating electrode with 21-mm electrode spacing
(Grass-Telefactor Model F-E 10S2, West Warwick, RI, USA). The
electrode leads were secured by a rubber strap and are attached
to a Grass-Telefactor SD-9 stimulator via coaxial cable leads that
were shielded and grounded through a radiofrequency filter. A
saline-based gel (Sigma Gel, Parker Laboratories, Fairfield, NJ,
USA) was used as an electrolyte conductor. Electrical stimulation
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was adjusted prior to the start of the experiment according to each
subject’s tolerance level in order to facilitate group comparisons
and eliminate confounding influences of overall arousal level dif-
ferences across groups (LaBar et al., 2004; LaBar and Phelps, 2005).
The stimulation level was chosen by each participant to be his
or her perception of “highly annoying but not painful” using an
ascending staircase procedure. Voltage was initially set at a low level
of 30 V and increased in increments of 5 V until participants indi-
cated that their tolerance level had been reached without inducing
pain.

TASK INSTRUCTIONS – US EXPECTANCY
Prior to each experimental phase, participants were informed that
they would encounter snakes and spiders in the virtual environ-
ment and that they may receive electrical stimulation at the level
that was set prior to conditioning at any time throughout the
study. Participants were instructed to press a button on a VR hand
wand using their dominant hand to indicate their expectancy of
a shock occurring at the onset of each CS presentation (1 = least
likely, 4 = most likely). They were instructed to face directly for-
ward and attend to the snake and spiders images presented on the
front screen. Subjects were also instructed to keep their hand still
to avoid movement artifacts in the SCR recording electrode. They
were reminded that they did not have any control over their own
movement through the world, nor could they control the occur-
rence of electrical stimulation. They were also informed that they
could terminate at any time without penalty.

PSYCHOPHYSIOLOGICAL MEASUREMENTS
Skin conductance was sampled at 250 Hz, amplified, and stored for
offline analysis using AcqKnowledge software (BIOPAC Systems).
The recorded waveforms are lowpass filtered using a Blackman
window (cutoff frequency = 31 Hz) and smoothed over three suc-
cessive data points. SCR amplitudes were time-locked to the onset
of each CS relative to the pre-stimulus baseline to derive a depen-
dent measure of cued fear (LaBar et al., 1998, 2004; LaBar and
Phelps, 2005; Zorawski et al., 2005). For inclusion in the data analy-
sis, the following criteria were established: latency = 1–4 s, dura-
tion = 0.5–5 s, and minimum amplitude = 0.02 μS. Responses
that do not meet these criteria were scored as zero. Context fear
in the absence of CS+, CS−, or US presentation was computed
as the mean skin conductance level during the ISI (12 ± 2 s) dur-
ing which participants navigated the environment but no explicit
CS was presented. ISIs immediately following a US presentation
were discarded for analysis due to potentially confounding residual
influences of the unconditioned response.

DATA ANALYSIS
Three dependent measures were analyzed for evidence of differ-
ential fear learning on Day 1: SCR to the CS+ and CS− defined as
cued fear, SCR to the context during the ISI defined as context fear,
and US Expectancy defined as a declarative measure of the fear
contingency with a button press response to the CS+ and CS−.
Three dependent measures of fear retention were extracted on Day
2 (long-term memory): contextually cued fear was defined as SCR
to the CS viewed within the same context as acquisition training
(Same Context group); cued fear was defined as SCR to the CS

in a novel context (Different Context group); and context fear was
defined as skin conductance level to the Same or Different Context
during the ISI. Across all three measures fear retention was com-
puted by extracting data collected during the first half (16 mixed
stimuli presentations or ISIs) of extinction training trials on Day
2. The second half of trials on Day 2 was not analyzed due to con-
founds with extinction processes. Repeated measures MANOVAs
were conducted to determine how the dependent measures of fear
changed within each training phase and CS type across groups.
Fischers PLSD and Bonferroni–Dunn post hoc analyses were con-
ducted on fear acquisition and fear retention data. US Expectancy
was not extracted on Day 2 due to technical errors in data col-
lection. An alpha level of 0.05 was established for all statistical
contrasts.

Because SCR data is typically skewed toward zero, the data were
square-root transformed prior to statistical analysis to attain a nor-
mal distribution. The data from each CS type (virtual snakes or
spiders) were collapsed into “Early” (first half – 16 mixed stimuli
presentations) and “Late” (second half – 16 mixed stimuli pre-
sentations) trial blocks of each phase (Acquisition on Day 1 or
Retention on Day 2), as learning typically varies across time within
each learning phase. Data were normalized by dividing each value
by the participants’ own maximum US response to account for
individual variations in responding and minimize group differ-
ences in overall arousal levels. US Expectancy responses were also
normalized to the maximum response of four in order to statis-
tically compare all three dependent variables. Due to technical
errors during data collection, the final statistical analysis included
58 participants for cued fear, 54 participants for context fear, and
28 participants for US Expectancy.

RESULTS
FEAR ACQUISITION
Repeated Measures MANOVA was computed using the factors
Fear Acquisition Block (Early, Late) by Dependent Variable (US
Expectancy, Cued Fear, Context Fear) by CS Type (CS+, CS−).
Analysis revealed a main effect of CS Type, F(1, 272) = 33.793,
P < 0.001, indicating greater responding to the CS+ across vari-
ables, as expected. A main effect of Dependent Variable, F(2,
272) = 538.288, P < 0.001, indicated a difference in response mag-
nitude across measures, with Context Fear and US Expectancy
exhibiting the largest differentiated responses at both Early and
Late Acquisition. Fischers PLSD post hoc tests revealed Context
Fear responding to be greater then Cued Fear at both Early and
Late Acquisition, P < 0.001; P < 0.001. Likewise, US Expectancy
responses were greater than Cued Fear responses, P < 0.001;
P < 0.01. Conversely, Bonferroni–Dunn follow up tests revealed
that Context Fear and US Expectancy were not different from each
other at either time point, P = 0.967; P = 0.248. Accordingly, there
was a significant interaction of CS Type × Dependent Variable,
F(2, 272) = 12.457, P < 0.001. However, the relatively lower num-
ber of subjects’ data available for US Expectancy analysis should
be taken into consideration in all analyses.

As predicted, there was a significant interaction of Fear Acquisi-
tion Block and CS Type, F(1, 272) = 12.756, P < 0.001, indicating
greater responding to the CS+ in Late Acquisition across all
dependent measures. Finally, there was a significant three-way
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interaction of Fear Acquisition Block × CS Type × Dependent
Variable, F(2, 272) = 4.575, P < 0.02, which revealed when dif-
ferential fear emerged in the learning phase across dependent
measures. Follow up post hoc tests indicated that Context Fear
and US Expectancy were differentiated by CS Type in Early Fear
Acquisition and maintained in Late Acquisition, whereas differ-
ential Cued Fear emerged only in Late Acquisition (Figure 3).
Post hoc Bonferroni–Dunn analysis revealed differential Con-
text Fear (P < 0.002; P < 0.001) and US Expectancy (P = 0.035;
P = 0.001) during both Early and Late Acquisition. However,
differential Cued Fear emerged only during Late Acquisition
(P = 0.043).

FEAR RETENTION
A Repeated Measures MANOVA was computed for Early Extinc-
tion SCRs on Day 2 as an index of fear retention using factors
CS Type (CS+, CS−), Context Group (Same, Different), and
Dependent Variable (Cued Fear, Context Fear). Analyses revealed a
significant effect of CS Type, F(1, 108) = 18.859, P < 0.001, indi-
cating stronger fear memory retention for the CS+ relative to
the CS− across groups. Consistent with the primary prediction,
there was a significant interaction of CS Type × Context Group,
F(1, 108) = 9.158, P < 0.03, indicating that differential fear was
greater in the Same Context participants than the Context Shift
participants. Finally, further supporting our primary hypoth-
esis, there was a significant interaction of CS Type × Context
Group × Dependent Variable, F(1, 108) = 4.174, P < 0.05. This
three-way interaction signifies that Cued Fear was specific to the
CS+ in the Same Context group, revealing contextually cued fear
memory for this group only, whereas fear measured to the context
during the ISI reflected a generalized fear memory across CS Type
in both Same and Different Contexts (Figure 4). Post hoc Fisch-
ers PLSD confirmed that there was differential responding only
to the Cue stimuli in the Same Context, (CS Type by Dependent
Variable), P < 0.01. Importantly, Bonferroni–Dunn tests further
revealed that responding to CS− was different by Dependent Vari-
able and Context Group, P < 0.02, but not to the CS+, P = 0.052.
This pattern suggests, as seen in Figure 3, that the Context served
to reduce generalized fear to the non-reinforced stimulus (CS−).

DISCUSSION
Characterizing how environmental contexts guide the expression
of acquired fears has important implications for understanding
mechanisms that promote maintenance of anxiety disorders. The
current study used fully immersive VR in a novel way to bridge
animal models of contextual fear conditioning and real-world
expression of human fears to biologically prepared stimuli. By
simulating how fears are acquired and retained to dynamic snakes
or spiders encountered in real-world settings, the present study
extended prior human research on contextual fear conditioning
(e.g., Baas et al., 2004; Kalisch et al., 2006; Alvarez et al., 2008)
to reveal, for the first time, context-specific cued fear retention
after a 24-h delay. In addition, the results indicate that context fear
and US Expectancy occurred early in learning whereas differential
cued fear became specified later in learning. The fear acquisi-
tion findings are consistent with empirical evidence in rodents
and computational models demonstrating that the hippocampus

FIGURE 3 | Fear acquisition results. Data depict mean values (±SEM)
across the three dependent measures all normalized to the maximum
response on Day 1 when the differential fear contingency is initially learned.
In early acquisition, differential fear is reflected in US Expectancy ratings
(Top Panel) and Context Fear (mean skin conductance level during the
interstimulus interval; Middle panel). Differential Cued Fear (skin
conductance response to the CS+ relative to the CS−) emerges in late
acquisition (Bottom Panel). *P < 0.01. SCR = skin conductance response.
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FIGURE 4 | Fear retention results. Data depict mean values (±SEM)
across Contextually cued, Cued, and Context Fear measurements on Day 2
during retention testing trials. Data are normalized to the maximum
response on Day 2. Fear was specified to the CS+ (relative to the CS−) in
the Same Context group only, indicating significant contextually cued fear
retention, *P < 0.001. These group differences were not due to differences
in baseline Context Fear expressed during the interstimulus interval.
SCR = skin conductance response.

rapidly and automatically stores a context memory (Rudy and
O’Reilly, 2001; Rudy, 2009), and that medial temporal lobe acti-
vation to predictive CSs in humans emerges early during training
(LaBar et al., 1998; Lang et al., 2009). In rodent studies, contextual
conditioning can be more protracted than cue learning (e.g., LaBar
and LeDoux, 1996); however, these studies rarely use differential
training procedures for which the discrimination between the CS+
and CS− takes time to emerge. Altogether, the findings suggest
that there is rapid short-term memory consolidation of context
fear and US Expectancy early in learning whereas differential fear
to the reinforced cue is slower to emerge but is strongly retained in
long-term memory. The US Expectancy results should be treated
with caution, given that the data included fewer participants than
the other measures. Finally, by using multiple 3-D environmental
contexts encountered in a fully immersive VR setting, the current
study establishes feasibility of this innovative method for dissoci-
ating contextual and cued fear in humans that is more analogous
to rodent paradigms of fear conditioning (Phillips and LeDoux,
1992; Rudy et al., 2004; Fanselow, 2010) and dynamic, real-world
encounters of CS and reinforcers.

The context-dependent fear retention findings challenge the
assumption that fear conditioning to a cue is not initially context-
specific relative to extinction memories, and suggest that retrieval
of either the fear or extinction memory is possible depending on
the organism’s state at the time of testing (e.g., Bouton, 2002, 2004;
Bouton and Moody, 2004). From a theoretical perspective, the cur-
rent results support the transformation view of memory storage,
which posits that initial storage of an episodic event is context- and
hippocampal-dependent and has a specific spatiotemporal rep-
resentation (e.g., Gardiner and Java, 1991; Knowlton and Squire,

1995; Tunney and Bezzina, 2006; Wiltgen and Silva, 2007; Winocur
et al., 2007). Furthermore, according to the two-process theory
of contextual fear conditioning (O’Reilly and Rudy, 2001; Rudy
et al., 2004), fear memories to the CSs are encoded in a conjunc-
tive hippocampal – dependent manner that should yield better
fear retention to the CS in the original context compared to a novel
context that shares fewer features of the learning context. This per-
spective is also in accordance with the role of the hippocampus in
pattern completion functions in that the degree of contextual fea-
ture similarity across acquisition and retention testing should cue
pattern completion, yielding recovery of the original fear memory.
The findings support increasing evidence in the rodent literature
that context fear is initially specific (Biedenkapp and Rudy, 2007;
Riccio and Joynes, 2007; Wiltgen and Silva, 2007; Winocur et al.,
2007).

We suggest that the dearth of comparable findings in the human
literature is due to weak context manipulations compared to those
implemented in animal studies for which rats physically navi-
gate multisensory environments. A previous study (Effting and
Kindt, 2007) found greater verbal reports of US expectancy during
extinction training in a group that remained in the same context
compared to those who were shifted to a novel extinction context.
However, this effect generalized to both the CS+ and CS−, and
no physiological indices of differential fear retention were taken.
Our prior study that examined differential SCR conditioning and
retention to fear-relevant stimuli across 2 days of testing using a
virtually identical paradigm failed to show context-specific reten-
tion effects when participants physically moved from one lab room
to another (Huff et al., 2009). Using a 2-D VR fear conditioning
paradigm with a head mounted display in a fMRI scanner, Alvarez
et al. (2007) reported a slight loss of fear response (startle mag-
nitude) in Context B as well as in the 24-h re-test in Context A,
suggesting that flattened displays are not powerful enough to gen-
erate a lasting representation of Context A. It is possible that these
kinds of laboratory manipulations that are commonly employed
are not effective enough to engage a conjunctive representation,
but rather the paradigms only supported a feature-based represen-
tation of the context (Rudy et al., 2004). The use of fully immersive
3-D VR environments appears to be more effective than standard
laboratory context manipulations in generating robust contex-
tual fear memory effects. Human participants can thus acquire
and retain a strong contextual representation associated with a
conditioned cue when provided with sufficient sensory input in
an experimental setting that more closely simulates real-world
experiences.

In light of generating translational research, it is important to
determine why it is rare to find robust long-term contextually
cued fear in humans whereas rodent studies readily demonstrate
that fear to a conditioned cue is well remembered in the origi-
nal context (e.g., Phillips and LeDoux, 1994; Corcoran and Maren,
2001, 2004; Maren and Chang, 2006). One difference is that rodent
research tends to employ separate tests of cued and contextual fear.
In many human studies, training parameters consist of presenting
an unpaired shock US and CS in 2-D VR contexts so as to generate
contextual fear in only one environment, or alternatively pairing
shock with either a cue or a context (Baas et al., 2004; Alvarez et al.,
2008; Marschner et al., 2008). The strength of the US may also
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play a role in the emergence of conditioned responding (see Mor-
ris and Bouton, 2006), since the use of shock in human research
is ethically limited to tolerance levels of the participant. How-
ever, across human studies electrical stimulation varies in strength,
and even when normalized scoring is used to address individual
differences in overall reactivity, context effects are minimal (e.g.,
Grillon, 2002; Huff et al., 2009). The rate of reinforcement also
varies across studies as well as the type of CSs employed. The
current paradigm used a partial reinforcement schedule and a mul-
tisensory fear-relevant CS, both of which may engage additional
memory storage processes to create a stable context representa-
tion. Finally, the role of navigation in an environment should be
considered. Whereas the rodent studies and the current immersive
VR human study present the stimuli and reinforcers while partic-
ipants navigate their environment, typical human studies require
no navigation in the environment, and thus the use of navigation-
based idiothetic cues and encoding of spatial relationships of the
stimuli with respect to background context features is not nec-
essarily undertaken. With these methodological issues taken into
consideration, the use of rich full immersion VR contexts that
can be manipulated across training phases may enhance engage-
ment of the relevant neural circuitry (e.g., Marschner et al., 2008;
Lang et al., 2009) to support long-term contextual and cued fear
associations in humans.

Since evidence in rodents indicates that fear memory is ini-
tially context bound but becomes more generalized over time
(Riccio et al., 1992; Biedenkapp and Rudy, 2007; Wiltgen and
Silva, 2007), it would be important in future human studies to
vary the retention interval between acquisition and extinction
training to test different theoretical perspectives regarding mech-
anisms supporting remote fear memory. It will also be important
to determine to what extent the findings presented here are spe-
cific to fear-relevant CSs or whether they generalize to stimuli
that are not biologically prepared to be associated with aversive

outcomes. In addition, humans can use higher-order cognitive
processes to generalize from an emotional learning experience
(Huff and LaBar, 2010) and the contribution of such generaliza-
tion processes should be evaluated further. Finally, this novel VR
paradigm could be used to determine whether anxiety disorders
are characterized by less context-specificity of fear retention, even
at short delays.

CONCLUSION
Together, data from the present study suggest that it is possible
to evoke robust contextually cued fear retention in humans over
24 h with fully immersive VR. In summary the findings implicate
that: (1) context fear learning occurs rapidly in humans, consis-
tent with rodent findings, (2) in a rich environment, differential
cued fear learning in humans is slower to occur than context fear
but is retained in a context-specific manner 24 h after training, (3)
contextually cued fear memory retention recently after learning
supports the transformation view implicated in rodent memory
research; and (4) stronger contextually cued fear retention than cue
or context alone supports a conjunctive representation account of
conditioning. Taken together, the findings indicate that putative
hippocampal-dependent learning processes can be engaged by fear
conditioning and memory retention testing using fully immersive
3-D VR. This study represents a paradigm shift in the way human
Pavlovian fear conditioning may be implemented in future stud-
ies, with important applications for understanding how context
effects on fear expression are dysregulated in anxiety disorders.
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BEHAVIORAL NEUROSCIENCE

to a trauma (Yehuda and Bierer, 2009), predator exposure has been 
demonstrated to have long-lasting effects on: anxiety-like behav-
iors, glucocorticoid levels, dendritic morphology, gene expres-
sion, and the release of the neuropeptide corticotrophin-releasing 
hormone (CRH) in the amygdala (the region of the brain most 
frequently linked to fear), as well as many other phenomena associ-
ated with PTSD (Adamec and Shallow, 1993; Schulkin et al., 2005; 
Roseboom et al., 2007; Stam, 2007; Armario et al., 2008; Campeau 
et al., 2008; Rosen et al., 2008; Takahashi et al., 2008; Masini et al., 
2009; Mitra et al., 2009; Staples et al., 2009). Predator exposure early 
in life has also been shown to increase vulnerability to developing 
subsequent long-term behavioral disruptions when exposed to a 
predator in adulthood (Cohen et al., 2006), consistent with the 
growing evidence that individual variation in susceptibility to PTSD 
is influenced by early-life experiences (Yehuda and Bierer, 2009).

Researchers studying the “predator model of PTSD” have 
increasingly begun to suggest that predator exposure offers an 
additional advantage in attempting to understand PTSD, because 
long-lasting predator-induced fear and stress is ethologically and 
ecologically relevant, and represents a valid experience applica-
ble to animals in their natural environment (Roseboom et al., 
2007; Cantor, 2009; Staples et al., 2009; Cohen et al., 2010). 
Independently, wildlife ecologists have begun to arrive at a simi-
lar conclusion, following a line of inquiry that began in the 1990s 
(Creel and Christianson, 2008). Traditionally, the view of both 
wildlife ecologists and comparative endocrinologists has been that 

INTRODUCTION
Post-traumatic stress disorder (PTSD) represents arguably the most 
salient example of how fear and stress shape the mind. Because 
controlled prospective studies cannot be conducted on humans, it 
is necessary to use an “animal model” to help elucidate the etiology 
of PTSD and explore the associated neurological changes (Cohen 
et al., 2010). A suitable animal model should utilize stressors that 
emulate as closely as possible the relevant stressors in humans; the 
behavioral, physiological, and neurological responses elicited in the 
animal must reflect clinical symptomatology; and pharmacological 
agents known to affect symptoms in human patients should correct, 
with equal efficacy, comparable symptoms in the animal (Rosen 
and Schulkin, 1998; Roseboom et al., 2007; Stam, 2007; Armario 
et al., 2008; Masini et al., 2009; Mitra et al., 2009; Cohen et al., 2010).

Many researchers have adopted utilizing exposure to a predator 
(e.g., showing a rat a cat; Adamec and Shallow, 1993), or predator 
odor, as a stressor, in exploring the animal model of PTSD (Cohen 
et al., 2010; Mackenzie et al., 2010). Predator exposure was initially 
seized upon for practical reasons as this permits the researcher to 
utilize a (1) psychological stressor, that is (2) life-threatening, but 
(3) does not involve pain; all consistent with the etiology of PTSD 
in humans (Adamec and Shallow, 1993; Roseboom et al., 2007; 
Campeau et al., 2008; Takahashi et al., 2008; Staples et al., 2009; 
Cohen et al., 2010; Mackenzie et al., 2010). Of greatest importance 
with respect to understanding PTSD, the hallmark of which is the 
long-lasting or “transformational” change in the patient in response 
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predator-induced fear and stress is necessarily acute and transitory: 
the prey detects a predator; freezes, flees, or fights; survives or does 
not; the event is over; the animal returns to going about its busi-
ness; homeostasis is restored (Schulkin, 2003; Sheriff et al., 2009). 
According to this traditional view, lasting effects are necessarily 
maladaptive and pathological: since the evolutionary “function” of 
predator-induced fear and stress is to ensure immediate survival, 
any further or lasting effect on fitness (i.e., Darwinian fitness), such 
as an effect on subsequent reproduction, must be maladaptive; 
and since the “function” of the stress axis is to maintain home-
ostasis, chronic stress must be pathological (Lupien et al., 2009; 
Rodrigues et al., 2009; Sheriff et al., 2009). Given this traditional 
view, the many lasting effects of predator exposure documented 
by researchers exploring the predator model of PTSD must be an 
artifact. The most parsimonious explanation being – given this 
perspective – that such lasting effects stem from the unnatural 
conditions of captivity, i.e., it is not the fact of predator exposure 
but the fact the predator is inescapable that must explain these 
effects, since the animal cannot flee from the predator as it natu-
rally would (Creel et al., 2009; Jöngren et al., 2010).

We propose that the traditional view in wildlife ecology and 
comparative endocrinology, that the effects of predators on free-
living animals are necessarily transitory, is no longer tenable, since 
the results from a growing number of experimental and observa-
tional field studies show that predator-induced fear and stress has 
long-lasting effects on animals in the wild (Creel and Christianson, 
2008; Hawlena and Schmitz, 2010), comparable to those docu-
mented by investigators addressing the predator model of PTSD. 
For animals in the wild that are in peril every moment of every 
day of being torn limb from limb by any number of predators, 
responses resembling PTSD in humans may result from necessary 
trade-offs to stay alive, that are fully adaptive, because dead animals 
do not reproduce. We suggest that for both, researchers studying 
the predator model of PTSD, and ecologists, conducting collabora-
tive studies on predator-induced fear and stress on animals in the 
wild would be of enormous benefit. For investigators addressing 
the predator model of PTSD, the extremity of the stressors faced 
by animals in the wild, in a real world context, would appear to 
much better emulate the circumstances leading to PTSD in humans. 
For ecologists, building upon the progress that has been made in 
understanding PTSD in the lab provides the most expedient means 
of addressing the mechanisms underlying predator-induced fear 
and stress effects in the field. We briefly review approaches taken to 
studying PTSD in the lab that appear translatable to the field; and 
then describe recent field studies on songbirds and snowshoe hares 
showing that, predator-induced fear and stress affects reproduction 
in animals in the wild, and the physiological responses involved 
appear comparable to those documented in response to predator 
exposure in the lab.

APPROACHES TRANSLATABLE TO THE FIELD
Behavioral responses to predator exposure in the lab include 
avoidance, reduced activity and increased vigilance (Blanchard 
and Blanchard, 1989; Stam, 2007; Armario et al., 2008; Takahashi 
et al., 2008), and similar responses to predator exposure have been 
exhaustively documented in the field since at least Darwin’s time 
(Caro, 2005). Predator exposure in the lab results in changes in 

plasma glucocorticoid levels (Blanchard et al., 1998; Roseboom 
et al., 2007; Takahashi et al., 2008; Masini et al., 2009) and the same 
has been shown in both birds and mammals in the field (Hawlena 
and Schmitz, 2010). Measuring glucocorticoid metabolites in feces 
provides a new, non-invasive means of assessing glucocorticoid 
responses to predator exposure that is particularly useful in field 
studies (Sheriff et al., 2009, 2010).

Studying the neurological effects of predator-induced fear and 
stress in animals in the wild will likely rely primarily on destructive 
sampling. Though effects on live animals could be studied using 
pharmacological methods or neuroimaging, there are practical dif-
ficulties translating these approaches to the field. The suitability of 
using predator exposure in exploring the animal model of PTSD has 
been validated, in part, by the numerous studies showing that phar-
macological agents known to affect symptoms of PTSD in human 
patients also correct comparable symptoms in animals exposed 
to predators (Cohen et al., 2006, 2010; Stam, 2007; Armario et al., 
2008; Nanda et al., 2008). Some of these pharmacological agents 
can be administered in food (e.g., antalarmin; Zoumakis et al., 2006; 
Armario et al., 2008), which is of practical advantage for use with 
free-living animals since it is then not necessary to capture the 
subject to administer the drug. The principal constraint on using 
pharmacological agents on animals in the wild is almost certain to 
be the cost of the drugs, since the intrinsically greater error variation 
associated with studying any phenomenon in the field necessitates 
a larger sample size than that required in the lab.

A number of recent neuroimaging studies using magnetic reso-
nance imaging (MRI) have evaluated the neurological effects of 
exposure to predator odor in lab rats (e.g., Chen et al., 2007; Febo 
et al., 2009; Huang et al., 2011). MRI has also been used to assess 
neuroactivity in response to other stimuli in mice and songbirds 
(Van der Linden et al., 2007). Neuroimaging holds enormous 
promise as a technique for studying effects on animals in the wild 
because, being non-destructive, subjects could be returned to the 
field to determine if differences in brain activity predicted their 
subsequent behavior and reproduction. However, though MRI is 
non-destructive it is necessarily invasive and may be very injurious 
depending upon the method used (e.g., the manganese used in 
manganese-enhanced MRI is potentially toxic; Silva et al., 2004). 
At a minimum, neuroimaging requires restraining the subject’s 
head in a scanner for a protracted period. To measure effects in 
conscious animals requires acclimation to being restrained in this 
manner, which takes several days in laboratory animals (King et al., 
2005), and may be unachievable in many wild-caught animals. Even 
if anesthetized during the procedure, the trauma of capturing a 
wild animal and transporting it to wherever the scanner is might 
render the results uninterpretable (Van der Linden et al., 2007). 
Nonetheless, we strongly recommend that using neuroimaging to 
study effects on animals in the wild should at least be attempted.

Because animals in the wild are generally challenging to capture, 
and limited in number, it is critical to maximize the information 
extracted from every animal euthanized. Moreover, because free-
living animals must be captured, the conditions of capture will 
vary, meaning the rate at which tissue can be obtained will vary, 
and the circumstances will often be less than ideal. Measures that 
respond to an acute trauma or perturbation, such as the trauma 
of capture, will be largely unsuitable. Several new approaches to 
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ciation of PTSD risk with maternal PTSD, the relevance of child-
hood adversity to the development of PTSD, and recent evidence 
of a relationship between childhood abuse, DNA methylation (in 
gene promoters, an epigenetic marker of gene silencing) and sui-
cide (McGowan et al., 2008, 2009; Yehuda and Bierer, 2009). As 
noted above, Cohen et al. (2006) reported that early-life preda-
tor exposure increased vulnerability to behavioral disruptions in 
response to exposure in adulthood, though there have been no 
studies looking specifically at predator-induced epigenetic changes. 
In the aforementioned suicide study, subjects had been dead an 
average of 24 h before sampling, suggesting that changes in DNA 
methylation ought to be detectable in the brains of animals in the 
wild collected under less than ideal field conditions, as recently 
corroborated by Pilsner et al. (2010) in a study that examined DNA 
methylation in the brains of polar bears shot by aboriginal hunters 
in eastern Greenland.

FIELD STUDIES SHOWING LONG-LASTING EFFECTS OF 
PREDATOR EXPOSURE
Evolutionarily, the “function” of staying alive is to reproduce, i.e., 
to transmit genes to the next generation. For ecologists, repro-
duction is the “currency” that matters. Ecological factors such as 
food and parasites, with obvious long-lasting effects (malnutrition 
and disease), have always been considered to be those most likely 
to affect reproduction, because reproduction (giving birth and 
rearing young) is a slow process. Traditionally, predators have not 
been thought to affect reproduction because predator-induced fear 
and stress has been considered to be far too acute and transitory. 
Behavioral (e.g., Kotler, 1992) and physiological (e.g., Boonstra 
et al., 1998) studies began, in the 1990s, to suggest that predator-
induced fear and stress could have lasting effects on animals in the 
wild, but because of the logistical challenges involved the critical 
experiments necessary to demonstrate effects on reproduction 
have only very recently been conducted. The principal challenge 
concerns space. Free-living animals can, and do, simply flee or 
avoid, a predator in a cage, predator models, or predator odor 
stations (e.g., Stankowich and Blumstein, 2005). Because sound 
travels, and thus occupies space, field studies often use playbacks of 
recorded predator calls and sounds to investigate effects of preda-
tor exposure. Moreover, for organisms that rely more on sound 
and sight than smell, such as birds and humans, auditory stimuli 
are generally more meaningful than olfactory ones (Jarvis, 2004), 
and acoustic cues may frequently be more alarming than visual 
ones (Cohen et al., 2010).

Only one study to date on a bird or a mammal has, to our knowl-
edge, exposed free-living prey to increased predator cues in the field, 
and demonstrated a resulting effect on the number of offspring pro-
duced per year. Zanette et al. (submitted) used an array of speakers 
spaced over several hectares to expose nesting female song sparrows 
to playbacks of either predator calls and sounds, or non-threaten-
ing calls and sounds. Females exposed to elevated predation threat 
produced almost 40% fewer offspring than controls (3.8 ± 0.4 vs. 
6.0 ± 0.4, mean ± SE), over the 4-month breeding season, because 
they laid fewer eggs, fewer of their eggs hatched, and more of their 
chicks starved to death. These effects on reproduction were most 
likely mediated in part by predator-threat-induced changes in glu-
cocorticoid levels, because work on the same study populations has 

measuring neurological effects, developed in the lab, nonetheless 
appear amenable to use on animals in the wild, even given these 
constraints.

Immunohistochemistry has been used to map the expression of 
genes in response to predator exposure in various brain regions that 
appear central to the phenomenon of fear (such as the medial amy-
gdala). Whereas a number of lab studies have mapped the expres-
sion of the immediate-early gene c-fos, in response to predator 
exposure (Dielenberg et al., 2001; Roseboom et al., 2007; Campeau 
et al., 2008), c-fos is rapidly expressed (within <1 h; Armario et al., 
2008) and rapidly down-regulated (Staples et al., 2009), which is 
problematic for use in the field. Two recent studies (Staples et al., 
2009; Mackenzie et al., 2010) have mapped the expression of fosB 
and its protein products FosB/∆FosB, as an alternative to mapping 
c-fos. ∆FosB can persist in the brain for weeks after chronic stimulus 
exposure (McClung et al., 2004), and Staples et al. (2009) reported 
that FosB/∆FosB expression remained elevated 7 days after repeated 
predator exposure, making this a much more suitable marker for 
use in field studies.

Global gene expression has been assessed in response to predator 
exposure using cDNA microarrays (gene chips) in rats and chickens. 
Roseboom et al. (2007) euthanized rats 3 h after predator exposure, 
and found increased CRH-binding protein gene expression in the 
amygdala, consistent with previous studies (Schulkin et al., 2005). 
Jöngren et al. (2010) euthanized chickens 2 week after predator 
exposure and identified 13 significantly differentially expressed 
genes in the midbrain. Roseboom et al.’s (2007) findings confirm 
that cDNA microarrays can be used to identify the expression of 
genes expected to be upregulated in response to fear, and Jöngren 
et al.’s (2010) study shows that this approach can be used to detect 
long-lasting effects, even in non-mammalian subjects.

Quantifying dendritic morphology appears ideally suited for 
indentifying individual variation in susceptibility to predator-
induced fear and stress in field studies, and may be useful in 
evaluating predator-induced changes in neural architecture. 
Mitra et al. (2009) evaluated behavioral differences in subjects 
2 weeks after predator exposure and found differences in the 
architecture of the neurons in the basolateral amygdala. Total 
dendritic length, dendritic extent, and total branch points were all 
greater in individuals that continued to demonstrate anxiety-like 
behaviors as compared to those that no longer showed anxiety-
like symptoms. Though the design of Mitra et al.’s (2009) study 
did not allow them to determine whether these differences in 
dendritic morphology were pre-existing or induced by predator 
exposure, Mitra and Sapolsky (2008) reported changes in den-
dritic morphology in response to a single day of stress, suggesting 
that predator-induced fear could indeed induce such changes in 
neural architecture.

Yehuda and Bierer (2009) recently reviewed the potential role 
of epigenetic changes in the etiology of individual differences in 
susceptibility to PTSD. Epigenetic modifications involve long- 
lasting, often environmentally induced, changes in gene expression 
and function, that can be inter-generationally transmissible (i.e., 
heritable), though the DNA sequence itself remains unchanged 
(Champagne and Curley, 2009; Yehuda and Bierer, 2009). Several 
lines of evidence point to epigenetic changes as potentially being 
involved in predisposing individuals to PTSD, including the asso-
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ecological “currency” that matters is reproduction, the subject must 
be able to reproduce as it naturally would. Very large (e.g., several 
hundred square meter) outdoor enclosures may fulfill these require-
ments when studying very small animals (e.g., mice or songbirds), 
whereas housing an animal in a somewhat larger cage than usual 
in an animal care building (e.g., Blanchard and Blanchard, 1989; 
Choi and Kim, 2010) does not meet these criteria.

The scope for future collaborations between neuroscientists and 
ecologists will almost certainly involve studying many more species 
than just sparrows and hares. As further field experiments on the 
effects of predator exposure on reproduction are conducted, we 
have no doubt such effects will be found to be common. Effects 
on components of reproductive success have already been docu-
mented in experiments on several other species. Eggers et al. (2006) 
reported effects of predator call playbacks on the number of eggs 
laid by Siberian jays, and Fontaine and Martin (2006) found that 
where predators were removed songbirds laid heavier eggs. Karels 
et al. (2000) similarly showed that where predators were removed 
the proportion of arctic ground squirrel females weaning young 
was increased. Lasting behavioral and physiological effects point-
ing to likely effects on reproduction have been shown in an even 
larger number of species (Creel and Christianson, 2008; Hawlena 
and Schmitz, 2010). What effect such predator-induced fear and 
stress has in shaping the minds of free-living birds and mammals is 
a question that is almost completely unexplored, presenting a wide-
open field of study replete with opportunities for new discoveries.

CONCLUSION
Numerous laboratory experiments have shown that predator-
induced fear and stress has lasting neurological effects, and wild-
life ecologists have begun demonstrating that predator-induced 
fear and stress has lasting effects on reproduction in free-living 
animals in the field. We propose that the next two critical ques-
tions to answer are: (1) whether predator-induced fear and stress 
has lasting neurological effects on free-living animals, and if so; 
(2) which of the effects seen in the lab appear most frequently 
in wild animals in the field. The insights neuroscientists have to 
offer ecologists in exploring the effects of predator-induced fear 
and stress on the minds of wild animals in the field include, where 
to begin, and what to measure. The insights ecologists, in turn, 
have to offer researchers studying the predator model of PTSD 
include, establishing which effects seen in the lab are observed in 
the greatest number of species and circumstances, and which are 
most biologically meaningful as gaged by their association with 
effects on reproduction. We suggest that if, as the predator model 
assumes, PTSD in humans has evolutionary precursors, then it is 
virtually certain that collaborations between neuroscientists and 
ecologists will greatly enhance our understanding of the etiology 
of PTSD and the associated neurological changes.
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demonstrated lasting effects on glucocorticoid levels associated with 
variation in predator abundance (Clinchy et al., 2004, 2011), and 
the probability of suffering nest predation (Travers et al., 2010).

Sheriff et al. (2009) recently reported correlative results sug-
gesting that predator exposure affects glucocorticoid levels and 
reproduction in free-living snowshoe hares, consistent with the 
results from Zanette et al.’s (submitted) experiment. To corrobo-
rate their findings, Sheriff et al. (2009) presented a live predator (a 
trained dog) to pregnant hares housed in 4 m × 4 m outdoor pens, 
and demonstrated that predator-exposed females had dramatically 
elevated fecal glucocorticoid metabolite (FCM) levels, and were 
significantly less likely to give birth to live young.

In a subsequent study on snowshoe hares, Sheriff et al. (2010) 
showed that predator exposure may have very long-lasting effects 
on animals in the wild, extending from one generation to the next. 
Sheriff et al. (2010) reported that at a population level, predator 
exposure, mean maternal FCM levels, and mean juvenile FCM 
levels, were all correlated, suggesting that predator-induced glu-
cocorticoid changes in mother hares affect their offspring’s gluco-
corticoid levels. To corroborate these findings, Sheriff et al. (2010) 
measured FCM levels in pregnant hares, housed in 4 m × 4 m out-
door pens, and demonstrated that each mother’s FCM level was 
highly correlated with her offspring’s glucocorticoid responses to 
a hormonal challenge, when the latter was 28 days old. Thus, in 
animals in the wild, maternal or early-life exposure to predators 
may increase responsiveness to predators later in life, consistent 
with Cohen et al.’s (2006) lab results demonstrating that early-life 
predator exposure increases vulnerability to behavioral disruptions 
when exposed to a predator in adulthood.

Life-long maternal effects on the glucocorticoid responsiveness of 
their offspring, resembling the results shown by Sheriff et al. (2010), 
have been well-studied in relation to stress effects on maternal care in 
laboratory rodents, and have been shown to be associated with DNA 
methylation of genes affecting glucocorticoid receptor function in 
the hippocampus (Weaver et al., 2004; Kappeler and Meaney, 2010). 
In an example of the kind of collaboration between neuroscientists 
and ecologists we are herein hoping to encourage, McGowan and 
Boonstra are currently examining the brains of juvenile snowshoe 
hares, collected in the field, whose mothers were subject to naturally 
varying levels of predator exposure, to test if maternal predator 
exposure affects DNA methylation in their offspring’s hippocampus 
in a manner similar to the way in which childhood abuse evidently 
affects DNA methylation in humans, as shown in the aforemen-
tioned suicide study (McGowan et al., 2008, 2009).

Calisi and Bentley (2009) recently proposed that studying neuro-
biology and behavior in semi-natural settings may provide a means 
to merge lab and field approaches. Our focus here is on the lasting 
effects of predator-induced fear and stress on neurobiology and 
ecology. As noted above, the principal challenge in studying such 
lasting ecological effects concerns space, and this applies equally to 
studying such effects in a semi-natural setting – the subject must 
have the same amount of space available as it would if it were 
free-living, to flee or avoid a predator, otherwise any effects seen 
could be attributed to the unnatural conditions of captivity (Creel 
et al., 2009). Sheriff et al.’s (2009, 2010) exposure of caged hares to 
a predator, for example, cannot be considered definitive, for this 
reason (Clinchy et al., 2011). Moreover, since, as noted above, the 
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In 1963, the National Institutes of Health 
(NIH) first issued guidelines for animal 
housing and husbandry. The most recent 
2010 revision emphasizes animal care “in 
ways judged to be scientifically, technically, 
and humanely appropriate” (National 
Institutes of Health, 2010, p. XIII). The goal 
of these guidelines is to ensure humanitar-
ian treatment of animals and to optimize the 
quality of research. Although these animal 
care guidelines cover a substantial amount 
of information regarding animal housing 
and husbandry, researchers generally do 
not report all these variables (see Table 1). 
The importance of housing and husbandry 
conditions with respect to standardization 
across different research laboratories has 
been debated previously (Crabbe et al., 
1999; Van Der Staay and Steckler, 2002; 
Wahlsten et al., 2003; Wolfer et al., 2004; 
Van Der Staay, 2006; Richter et al., 2010, 
2011). This paper focuses on several animal 
husbandry and housing issues that are par-
ticularly relevant to stress responses in rats, 
including transportation, handling, cage 
changing, housing conditions, light levels 
and the light–dark cycle. We argue that these 
key animal housing and husbandry varia-
bles should be reported in greater detail in 
an effort to raise awareness about extrane-
ous experimental variables, especially those 
that have the potential to interact with the 
stress response.

Rats used in scientific research are 
usually transported from a breeder to an 
institution’s animal housing facility prior 
to experimentation. NIH guidelines on 
animal care do not provide standards on 
the duration of time to allow for acclima-
tion to the new colony prior to experi-
mentation, even though transportation 
can be stressful (Van Ruiven et al., 1998; 
Capdevila et al., 2007). Transporting rats 
[male Sprague-Dawley (SD), 175–200 g] 
for 5 h to a new facility has been found 

to decrease body weight, decrease overall 
activity levels, and increase heart rate (HR) 
for up to four days after transportation 
(Capdevila et al., 2007). Blood corticoster-
one (CORT), a physiological indicator of 
the stress response, has also been reported 
to be significantly lower in male and female 
Wistar rats 1 day after a prolonged (15 h) 
transport compared to control animals, but 
returns to pre-transport values 3 days after 
arrival in a new environment (Van Ruiven 
et al., 1998). Therefore, in agreement with 
Van Ruiven and colleagues, 3–4 days should 
be a sufficient period for acclimation after 
which rats’ stress parameters return to pre-
transport levels.

Although not a component of NIH 
guidelines for housing and husbandry, 
most researchers “gentle” or “handle” rats 
prior to experimentation with the inten-
tion of habituating them to human con-
tact, thereby decreasing stress responses. 
However, evidence to the contrary indi-
cates that handling induces a rapid and 
significant elevation of physiological 
stress responses in rats that may persist 
for 30–60 min or longer (Black et al., 1964; 
Sharp et al., 2002a,b, 2003; Balcombe et al., 
2004). Handling male SD rats for 20 consec-
utive days significantly increases mean HR, 
blood pressure, and serum CORT concen-
trations (Armario et al., 1986a,b; Balcombe 
et al., 2004). The persisting CORT response 
after the initial handling may affect per-
formance in subsequent behavioral tests 
(Brown and Martin, 1974). Interestingly, 
rats show minimal habituation to these 
physiological markers of stress (Balcombe 
et al., 2004). Therefore, daily handling may 
not reduce stress as commonly thought, but 
instead, may actually work to increase the 
stress response. Although it is difficult to 
estimate a precise timeframe for testing 
after daily handling, the data cited above, 
as well as other experimental data (see 

Sapolsky et al., 1984; Flores et al., 1990) sug-
gest that at least 30–60 min should elapse 
before conducting stress-sensitive proce-
dures. Given this caveat, we recommended 
that authors report latency from handling 
to procedure and consider all handling in 
their experimental design.

National Institutes of Health guidelines 
indicate that cages should be changed as 
often as necessary to ensure that animals are 
clean and dry, but that cleaning frequency 
is a matter of the judgment of animal care 
personnel (National Institutes of Health, 
2010, p. 75). Empirical evidence suggests 
that excessive cage changes may be stress-
ful to rats (Kacergis et al., 1996; Thulin et al., 
2002; Balcombe et al., 2004; Burn et al., 
2006). Cage cleaning has been linked with 
increases in cardiovascular parameters and 
general activity in male SD and Wistar rats 
(Saibaba et al., 1996; Schnecko et al., 1998; 
Doerning, 1999; Duke et al., 2001; Burn 
et al., 2006). Burn et al. (2006) examined 
the effects of cage cleaning (twice weekly, 
weekly, or biweekly) across two commonly 
used rat strains (Wistar and SD). Rats with 
cage cleanings biweekly displayed fewer 
defensive behaviors (i.e., biting and audi-
ble vocalizations) and struggled less during 
handling than did rats with cages cleaned 
weekly or twice weekly. In contrast, it took 
longer for anxiety-like behaviors to return 
to pre-stress levels in rats that had cages 
cleaned less often. Because cage changing 
may affect behavioral and biological stress 
responses, it is important for investigators 
to include this information in experimental 
reports and to be consistent in frequency 
of cage changing among treatment groups. 
Investigators should consider biweekly 
cage cleaning, if possible, or no more than 
weekly, if necessary.

Numbers of animals per cage, size of 
cages, and presence or absence of physi-
cal enrichment affect stress responses 
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Light luminance in housing facilities is 
another variable that has a marked influ-
ence on the physiology, circadian rhythm, 
and behavior of rats (Tucker et al., 1984; 
Azar et al., 2008). Compared with SD rats 
housed in a standard 12:12 light–dark cycle 
with normal illumination (200 lux), the HR 
of undisturbed male (but not female) rats 
was decreased under dim lights (10 lux) 
during a 12:12 photocycle. Increasing 
the dark cycle to 16 h (8:16 photocycle) 
under normal light conditions (200 lux) 
decreased the HR of undisturbed males. 
Changing the light cycle to be more spe-
cies specific (e.g., dim light or longer dark 
period in rats) reduced HR during peri-
ods of day and night when rats were left 
undisturbed (Tucker et al., 1984; Azar et al., 
2008). However, neither dim light nor long 
nights affected HR responses during exper-
imentation (Azar et al., 2008). Behavioral 
research is commonly carried out during 
the light phase, an approach that is etho-
logically incorrect in nocturnal animals. 
Reverse light cycle allows for measure-
ments during rats’ active period, whereas 
direct light cycles result in measurements 
during rats’ inactive period. Although exist-
ing data on the impact of testing phase on 
the stress response is limited, investigators 
should consider and report illumination 
levels, light cycles, and lighting conditions 
when taking behavioral and biological 
measurements.

The data reviewed here suggests that rat 
transport, handling, cage changing, housing 
conditions, light levels, and the light–dark 
cycle all have the potential to interact with 
the stress response. However, these interac-
tions may not always be easily transferred to 
other rodent models. Therefore we recom-
mend documenting in detail all housing and 
husbandry procedures as part of standard 
experimental reporting, so that informed 
comparisons of experimental results can be 
made across different laboratories.
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