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Editorial on the Research Topic
Bioinformatics of Genome Regulation and Systems Biology

This Research Topic presents the studies in the field of computational genomics. These papers
were discussed at BGRS\SB-2018 (Bioinformatics of Genome Regulation and Structure Systems
Biology) multi-conference, along with the hybrid wet-lab/computational genetics studies focused
on genome-wide gene expression regulation. The BGRS is the major event in the computational
biology field, which has been held in Novosibirsk, Russia biannually since 1998. The main
conference is typically followed by a series of special post-conference journal issues covering
contemporary computational genetics and genomics applications (Orlov et al., 2016, 2019a;
Tatarinova et al., 2019). First Special Issues covering BGRS\SB conference were presented in the
Journal of Bioinformatics and Computational Biology in 2012 (Kolchanov and Orlov, 2013; Orlov
et al., 2015, 2019b) and other platforms (Chen et al., 2017; Baranova et al., 2019; Orlov, 2019;
Medical Genetics and Bioinformatics special issue). Starting in 2018, extended discussion of the
conference materials in genetics and genomics is being presented in Frontiers in Genetics.

In this Research Topic, we arranged the papers by areas of applications—clinical bioinformatics
and human genome studies are followed by the plant genetics and then by systems
biology applications.

Bah et al. comprehensively reviewed genomics tools and databases allowing us to dissect the
pathophysiology of bacterial and parasitic infection, spanning the species from Mycobacterium
tuberculosis to Plasmodium falciparum. These databases provide the data and tools for in-depth
investigations of disease outbreaks and pathophysiological mechanisms, genomic variation and co-
evolution of hosts and pathogens, diagnostic markers and vaccine targets, with special attention
to the contributions of genomics and bioinformatics to the management of both common and
neglected tropical diseases, including tuberculosis, dengue fever, malaria, and filariasis.

The TCGA (The Cancer Genome Atlas) database was mined from an entirely new technical
viewpoint of developing reference genes with stable mRNA levels for quantitative PCR studies
of cancer cells (Krasnov et al.). A scoring system for the assessment of gene expression stability
allowed authors to highlight previously untried reference gene candidates, specific to each cancer
type, along with several more “universal,” pan-cancer reference gene candidates, namely SF3A1,
CIAO1I, and SFRS4. The application on colon adenocarcinoma was presented in Fedorova et al.
(2019), another work in the frames of BGRS SB conference series.

The study by Ivanov et al. highlighted methodological problems for an up-and-coming
biomarker mining technique, a sequencing of cell-free DNA (cfDNA) in human plasma. As
fragmentation patterns of cfDNA are far from being random due to nucleosome patterns reflecting
tissue-specific epigenetic signatures, these patterns may be used for guiding the design of amplicon-
based NGS panels. Therefore, the sensitivity of mutation detection in liquid biopsy samples may be
much improved, allowing for a lessening of the amount of body fluids collected from patients.
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Khatun et al. work in the medical bioinformatics field;
they have developed a computational tool PreAIP (Predictor
of Anti-Inflammatory Peptides), aimed at augmenting the
search for novel biologics. Integrative analysis of stomach
carcinoma samples by pairing DNA methylation patterns with
gene regulatory network topology was presented in Wu et al..
The authors showed conservation of epigenetic patterns across
various stages of this important type of human malignancies.

Gene expression regulation at genome level is important in
evolution and adaptation studies (Ponomarenko et al., 2017;
Igoshin et al). Igoshin et al. looked into the adaptation
of humans to cold climate. They have concentrated on the
TRPMS gene, which encodes for a cold-sensing ion channel.
In a population data set, they found a very promising
single nucleotide polymorphism rs7577262 with a signature
of selective sweep. Chadaeva et al. employed bioinformatics
to discern behavioral pattern in mice and identify variants
contributing to the dominance and the subordination traits
continuing bioinformatics behavior studies in laboratory animals
(Bragin et al, 2017). Using the prediction on-line tool
SNP_TATA_Comparator (Ponomarenko et al., 2017) a set of
candidate SNP markers contributing to the dominance and the
subordination were uncovered. The studies using same SNP
analysis tool were continued in Oshchepkov et al. (2019) and
Ponomarenko et al. (2020).

Zverkov et al. considered a problem of genome reduction
in primitive parasites. Among the two groups of microscopic
parasitic invertebrates, the Dicyemida, and Orthonectida, overall
morphological organization is much simplified, with tissues
and organs almost absent. In these species, homeodomain
transcription factors, G-protein-coupled receptors, and many
other protein families have undergone a massive reduction.
Interestingly, it seems that the dramatic simplification of body
plans in dicyemids and orthonectids has evolved independently.

Das et al. discuss the application of ancestry informative
markers (AIMs), previously developed for the inference of
genomic ancestry in humans (Das and Upadhyai, 2018), for
the delineation of gorilla lineages. Three of the four AIMs-
determining approaches were successful for gorilla species (Das
etal.).

The next group of papers in the Research Topic highlight the
findings in genome regulation related to plants genetics. Kovalev
et al. developed a computer pipeline and a machine learning
classifier of deleterious coding mutations in agricultural plants,
with the performance exceeding that of the popular PolyPhen-2
tool. The novel tool will improve the annotation of genes located
in QTL and GWAS hit regions. This work was initially discussed
at BGRS\SB-2018 plant biology session as well (Orlov et al.,
2019¢).

Zhang et al. studied abiotic stress in a model of Populus
euphratica and its sister species P. pruinosa, differing by their
adaptability to the content of salt in the soil. The authors
performed transcriptome analyses of three seed germination
phases from both of the species of desert poplar, and
presented their findings in a form of a database suitable for
use by poplar breeders. Wang et al. also studied Populus
euphratica, in this case to infer genetics mechanisms of crossover

Interference. Four-point linkage analysis allowed them to show
the distribution of the crossover interference through the
entire genome of this tree, uniquely suited for survival in
saline deserts.

The following work by Khassanova et al. continues the
line of studies of salinity resistance by exploring expression
profiles in the chickpea (Cicer arietinum L.). They have tested
six accessions of Chickpea ecotypes, all selected from field
trials, for tolerance to abiotic stresses, found the involvement
of CaRabC gene and developed markers for genotyping
chickpea germplasm. Gene expression patterns in bread wheat
exposed to drought were studied in Zotova et al. The
authors’ team had identified general transcription repressor
TaDrl, a part of TaDrl, TaDrlA and TaDrlB gene set,
with drought-dependent variable expression. It seems that the
general transcription repressor TaDrl controls expression of
TaVrnl and TaFT1 and, consequently, flowering time. These
finding have direct implications for plant productivity in the
dry environment.

Flowering time in plants is important agricultural feature
determined by genetics and environment. Gursky et al. dissected
the core genetic regulatory network canalizing the flowering
signals to the decision to flower. While discovered and
extensively studied in the model plant Arabidopsis thaliana,
the flowering model may hold in other species (Kozlov et al.,
2019). When the authors built a model gene network in
chickpea (Cicer arietinum), activation from the FLOWERING
LOCUS T gene or its homologs to the flowering decision
led to a high expression of the meristem identity genes,
including API. Different levels of activation from API may
explain the differences observed in the expression of the two
homologs of the repressor gene TFLI in species compared.
Zhao et al. worked on tea plant (Camellia sinensis). In this
plant, the development of new sprouts directly affects the
yield and quality of the tea leaves, by affecting the content
of catechins, theanine, and caffeine. Using High-Performance
Liquid Chromatography-Mass Spectrometry, authors showed
that conserved miRNA are playing a role in primary metabolism
of a tea plant during sprouting. Li et al. presented their study
of the chloroplast genomes of Vicia sepium, an important
wild resource plant suitable for cultivation in extreme cold
and dry conditions. The authors have compared a new
complete chloroplast genome of V. sepium with the chloroplast
genomes from related genera belonging to tribe Fabeae,
then reconstructed the evolutionary history of the chloroplast
genomes in these species.

Orlov M. et al. have studied promoters of Mycoplasma
gallisepticum, an intracellular parasite affecting the respiratory
tract of poultry, and found that the vlhA promoters differ by
carrying a variable GAA repeats region upstream of transcription
start site. These data have implications for the studies of the
phase variation in M. gallisepticum. The computer technique of
such promoter studies were continued in Orlov and Sorokin
(2020).

Liu et al. presented their study of gender differences in
solitary parasitoid species Brachymeria lasus, which has been
evaluated as a potential candidate for release to control the
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gypsy moth, Lymantria dispar, a pest of worldwide importance.
Work by Qin et al. considers the polyploidy problem in
vertebrates. They have analyzed genome organization in the
autotetraploid of the red crucian carp (Carassius auratus red
var.). The loss of chromosomal loci, base variations in non-
transcribed spacer, and array recombination of repeat units have
been detected.

Overall, we are proud of the Research Topic at Frontiers in
Genetics we collated. We hope that you will find this paper
collection a stimulating reading, and will consider coming to
the next BGRS\SB conferences in Novosibirsk, Russia as well
as read next “Bioinformatics of Genome Regulation” Research
Topic in Frontiers (https://www.frontiersin.org/research-topics/
14266/bioinformatics- of-genome-regulation).
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Dynamical Modeling of the Core
Gene Network Controlling Flowering
Suggests Cumulative Activation
From the FLOWERING LOCUS T
Gene Homologs in Chickpea

Vitaly V. Gursky "2, Konstantin N. Kozlov?, Sergey V. Nuzhdin?® and Maria G. Samsonova?*

" Theoretical Department, loffe Institute, Saint Petersburg, Russia, ? Systems Biology and Bioinformatics Laboratory, Peter the
Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia, ° Molecular and Computational Biology, University of
Southern California, Los Angeles, CA, United States

Initiation of flowering moves plants from vegetative to reproductive development. The
time when this transition happens (flowering time), an important indicator of productivity,
depends on both endogenous and environmental factors. The core genetic regulatory
network canalizing the flowering signals to the decision to flower has been studied
extensively in the model plant Arabidopsis thaliana and has been shown to preserve its
main regulatory blocks in other species. It integrates activation from the FLOWERING
LOCUS T (FT) gene or its homologs to the flowering decision expressed as high
expression of the meristem identity genes, including AP7. We elaborated a dynamical
model of this flowering gene regulatory network and applied it to the previously published
expression data from two cultivars of domesticated chickpea (Cicer arietinum), obtained
for two photoperiod durations. Due to a large number of free parameters in the model, we
used an ensemble approach analyzing the model solutions at many parameter sets that
provide equally good fit to data. Testing several alternative hypotheses about regulatory
roles of the five FT homologs present in chickpea revealed no preference in segregating
individual FT copies as singled-out activators with their own regulatory parameters, thus
favoring the hypothesis that the five genes possess similar regulatory properties and
provide cumulative activation in the network. The analysis reveals that different levels
of activation from AP7 can explain a small difference observed in the expression of the
two homologs of the repressor gene TFL1. Finally, the model predicts highly reduced
activation between LFY and AP7, thus suggesting that this regulatory block is not
conserved in chickpea and needs other mechanisms. Overall, this study provides the
first attempt to quantitatively test the flowering time gene network in chickpea based on
data-driven modeling.

Keywords: chickpea, flowering time, FT genes, ICCV 96029, CDC Frontier, dynamical model
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INTRODUCTION

The depleted genetic diversity of many domesticated
agriculturally important plants is a common problem for
breeders, providing an obstacle in developing new forms with
desired features. One such feature important for domesticated
chickpea (Cicer arietinum) is early flowering time, which
enforces more rapid transition from vegetative to reproductive
growth. Due to high sensitivity of chickpea to ascochyta blight,
it is essential to reduce the full plant cycle, from sowing to
maturation, in order to fit it to relatively short growing seasons
having dry weather and, hence, low disease pressure (Kumar
and Abbo, 2001). These growing seasons are quite short in
major chickpea growing regions, pushing breeders to developing
chickpea lines with early flowering time. Thus, it is important to
identify key genes regulating floral transition and quantitatively
understand the behavior of the flowering time gene network.

The floral transition has been intensively studied in model
organisms, such as Arabidopsis (Arabidopsis thaliana) (Srikanth
and Schmid, 2011; Andrés and Coupland, 2012), and in other
plants, including important crops and legumes (Kumar and
Abbo, 2001; Dong et al., 2012; Shrestha et al., 2014; Bliimel et al.,
2015; Peng et al.,, 2015; Weller and Ortega, 2015; Zhang et al.,
2016; Ridge et al., 2017). Flowering starts in response to various
environmental signals, including photoperiod and vernalization,
and endogenous signals, such as autonomous and circadian
clock, and molecular pathways have been identified conducting
these signals to the core gene network that integrates them into
a binary decision to flower. Despite the high complexity of these
pathways and many unknown regulators, it has been shown that
key genes regulating the process are conserved between species.
In particular, the flowering signals lead to the elevated expression
of the floral pathway integrator gene FLOWERING LOCUS T
(FT), or its homologs, in the leaves (Kardailsky et al., 1999;
Kobayashi et al., 1999; Pin and Nilsson, 2012; Jaeger et al., 2013).

In Arabidopsis, the understanding of the core gene network
integrating the flowering signals transmitted via the expression
of FT has evolved to the general scheme illustrated in Figure 1A
(Jaeger et al., 2013). FT is a mobile factor transported from
the leaves to the apical meristem, where it forms the complex
with the transcription factor FD. This complex activates the
meristem identity genes LEAFY (LFY) and APETALAI (API),
which also activate each other. The expression of API activates
genes controlling flower development and thus can be considered
as the output of the network specifying the floral transition
(Kaufmann et al., 2010). In order to keep the center of the shoot
apical meristem in a vegetative state, the key floral repressor
TERMINAL FLOWERI (TFL1) inhibits expression of LFY and
AP] in this region. The resulting gene interaction graph takes
the form shown in Figure 1B, incorporating evidence for some
additional interactions: TFL1 acts as a repressor in the complex
with FD, LFY activates FD, and AP1 represses TFLI. As many
genes are omitted, each node in the graph in fact represents a
group of genes (Jaeger et al., 2013).

The knowledge about the regulatory interactions between the
genes from Figure 1 has been obtained via extensive genetic
studies, and it provides a unique opportunity for computational

FIGURE 1 | The core gene network controlling floral transition. (A) The general
scheme of processes involved in floral transition. (B) The graph of the
regulatory interactions proposed for Arabidopsis, and the list of the FT and
TFL7 homologs in chickpea considered in our model. The interaction graph
was adopted from (Jaeger et al., 2013).

modeling of this gene regulatory network, when experimental
data on the system behavior is available. The modeling allows
to gain mechanistic insights into specific properties of the
floral transition system and produce testable predictions. Jaeger
et al. (2013) elaborated a dynamical model of the core network
from Figure 1 based on the data on the flowering time for a
set of the wild type and mutant Arabidopsis genotypes. They
showed that the floral transition dynamics can be explained
by splitting the network into several feedback and forward
loops, each bearing a clear functional role (Pullen et al., 2013).
Leal Valentim et al. (2015) studied a similar gene network,
particularly considering that the complex TF-FD activates LFY
via the intermediate transcription factors SOC1 and AGL24.
They measured expression dynamics of all genes involved and
used this data to calibrate a dynamical model. Using this data-
driven approach, they tested various hypotheses about regulation
of LFY by SOC1 and AGL24 and showed that perturbations can
spread through the network in a nonlinear way.

A possibility to extend these results to chickpea depends on
what we know about the inflorescence genes in this species. We
concentrate on two chickpea cultivars in this study, CDC Frontier
and ICCV 96029. CDC Frontier is a photoperiod-sensitive kabuli
chickpea cultivar developed at the University of Saskatchewan
(Warkentin et al., 2005), exhibiting relatively late flowering (Daba
et al., 2016; Ridge et al., 2017). The reference genome sequence
was obtained for this cultivar (Varshney et al., 2013). ICCV 96029
is a photoperiod-insensitive desi chickpea cultivar developed
by the International Crops Research Institute for the Semi-
Arid Tropics, India, representing the earliest flowering chickpea
cultivar currently known. Quantitative trait loci associated with
early flowering were investigated, and it was shown that a
single recessive allele with some additional modifiers confer early
flowering of ICCV 96029 (Kumar and van Rheenen, 2000; Gaur
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et al., 2015; Upadhyaya et al., 2015; Mallikarjuna et al., 2017).
Ridge et al. (2017) provided evidence that a mutation in an
ortholog of the key circadian gene ELF3 can be associated with
earliness in ICCV 96029 under short day growth conditions, but
their analysis of the expression of clock genes in ICCV 96029 did
not reveal any clear differences for this cultivar.

In contrast to the single FT gene in Arabidopsis, Ridge et al.
(2017) identified five FT homologs in chickpea: FTal, FTa2, F1a3,
FTb, and FTc, named according to affiliation with one of the
three clades (FTa, FTb, and FTc). They also found two chickpea
orthologs of TFL1 (TFL1a and TFLIc). Furthermore, Ridge et al.
(2017) measured the expression dynamics of the homologs of
all genes from the core gene network for CDC Frontier and
ICCV 96029 under two growth conditions (short day, SD, and
long day, LD) and identified specific differences in expression
between these genotypes. In particular, they noted that the up-
regulation of FT and API expression was synchronous with floral
bud initiation, thus confirming that regulation of floral transition
in chickpea occurs via the FT gene family.

We aimed to investigate a possibility to extend the core gene
network from Figure 1 to chickpea. Assuming this network is
conserved, we developed a dynamical model of gene expression
and applied it to the previously published expression time series
(Ridge et al,, 2017). We used the resultant model to dissect
interactions in which targets were found insensitive to regulator
action. This points to chickpea specific deviations in regulation
of floral transition. We also studied if the TFLI homologs are
mutually distinguishable in the context of the model. Finally, we
tested several hypotheses about how the FT-like genes combine
in their activation of the meristem identity genes.

RESULTS
Model

We modeled the flowering time gene network shown in
Figure 1. We formulated the model in terms of the ordinary
differential equations in which the change rates of gene product
concentrations are regulated by the activators and inhibitors via
the Hill-type regulation functions (the model equations (1-5)
are described in details in section Materials and Methods). The
formulation of the model equations depends on how we combine
the activation from the FT-like genes. The baseline model
(model, or hypothesis, H0) assumes that the five FT homologs
are mutually indistinguishable in their activation of the meristem
identity genes (LFY and API). In this model, FD forms the
complex with the total FT concentration equal to the sum of the
protein concentrations from each FT homolog. The activation
of LFY by the FT-FD complex is characterized in the model
equations by the regulation function containing the following
regulatory parameters: one Michaelis—-Menten constant (Kg), one
Hill parameter (ng), and one maximal synthesis rate (vg) (see
equation (6) in section Materials and Methods), and a similar
set of regulatory parameters quantify the activation of API1 by
the total FT concentration. An alternative model (H1) assumes
that only one of the five FT’s is enough to activate transition to
flowering, so the concentration of only that FT participates in the
complex FT-FD and activates LFY and API (see equation (7) in

section Materials and Methods for the case of LFY activation).
In another alternative model (H2), we tried to distinguish a
single FT gene from the other four assuming that this singled-
out gene has the regulatory parameters distinct from the rest of
the FT genes, while these FTs still activate cumulatively (like
in model HO). The activation from the singled-out FT gene and
the activation from the total concentration of the rest of the FT
genes are represented in the model by two distinct regulation
functions (see equation (8) in section Materials and Methods
for the case of LFY activation). Models H1 and H2 have five
possible versions, where each version is associated with one FT
homolog separated from the other FT-like genes. We tested only
four of them, excluding FTa3 from the analysis due to its very low
expression in both growth conditions.

We applied the models to describe the previously published
dynamic expression data for all genes from the core network
measured in two chickpea cultivars, ICCV 96029 and CDC
Frontier (Ridge et al., 2017). We failed to find a good model
solution for the expression data from CDC Frontier (the best
solution is shown in Supplementary Figure 1; we also discuss
possible reasons in Discussion). Therefore, the rest of the paper
describes modeling results for ICCV 96029.

Parameter Estimation and Model Solutions
for ICCV 96029

Models HO and HI have the same number of free parameters
(k = 31), and model H2 has six parameters more (k = 37). We
estimated values of these parameters by minimizing the weighted
sum of squared residuals quantifying the difference between the
model solution and the ICCV 96029 data for the two growth
conditions (SD and LD) simultaneously (section Materials and
Methods). The data comprised expression levels of five genes
(TFLl1a, TFLIc, FD, LFY, and API) in ICCV 96029 on 7 days
under SD and LD, with the total number of data points equal to
m = 70. After estimating the parameter values, we applied the
Akaike information criterion corrected for small data samples for
model comparison, as described further in the text.

As k was relatively large, we refused to estimate the parameter
values by fitting the model to the data from one condition (either
LD or SD) and testing on the data from the other condition.
In that case, the number of parameters k in model H2 would
exceed the number of data points (m = 35 in LD or SD) and
k in other model versions would be close to m, and that would
complicate the application of the Akaike information criterion
for model comparison. As a control, we performed the fitting to
the LD data and tested on the SD data in model H0 and made
sure that the corresponding solutions were qualitatively similar
to the two-conditions fitting results (Supplementary Figure 2).

We further circumvented an overfitting potential of the
two-conditions fitting applying the ensemble approach in the
analysis of model behavior (Samee et al., 2015). In this approach,
all sets of parameter values and solutions resulted from the
fitting procedure were considered as equally suited for biological
conclusions, and the conclusions were derived based on the
analysis of the whole ensemble of the solutions and optimized
parameter values.

Frontiers in Genetics | www.frontiersin.org

10

November 2018 | Volume 9 | Article 547


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Gursky et al.

Dynamical Model of Flowering in Chickpea

The parameter optimization under hypothesis HO resulted
in the model solutions of very similar quality (Figure 2;
distributions of the estimated parameter values are shown in
Supplementary Figure 3). The model correctly reproduces the
main characteristics of the data. The dynamic increase of LFY
and AP1 concentrations can be explained by activation from the
rising expression of the FT genes. LFY activates FD, resulting
in the dynamic increase of its expression. Finally, the floral
repressors TFL1la and TFLIc decrease in time due to repression
by AP1.

Reduced LFY and AP1 Activation

The solution in Figure 2 shows somewhat insuflicient expression
levels of both LFY under SD and API under LD. The
analysis of the expression data reveals that LFY behaves rather
counterintuitively under SD as compared with LD and differs
in this behavior from AP1. Namely, LFY is down-regulated in
LD compared to SD, despite the increased activation from the
raising expression of the FT genes in LD compared to SD, and
this holds both for ICCV 96029 and CDC Frontier (Figure 3).
In contrast, the integral expression of API increases from SD

to LD in accordance with the rising activation from FT. This
anticorrelation between LFY and its sole activators (FT and AP1)
observed in the data hampers the model in finding a better
solution.

We analyzed how LFY and other transcription factors are
involved in their regulations in the model for ICCV 96029 by
plotting average values of the Hill functions which implement in
the model equations each regulatory interaction from the gene
network (Figure 4). An active regulation tends to keep the Hill
function value between 0 and 1, while the limit values (0 or 1)
evidence that the interaction between genes is saturated, with
no sensitivity to specific expression levels of the regulators. This
type of saturation occurs for activation of LFY by AP1, with the
corresponding Hill function values pushed to zero. Activation
of AP] by LFY is also characterized by the Hill function values
close to zero, but the analysis of the Jacobian values of the right-
hand side of the model equations for this regulation still shows
relatively high LFY influence on API (Supplementary Figure 4).
Another saturated regulation involving LFY is activation of
FD. At the same time, LFY is sensitive to its repressors
(the complexes TFL1a-FD and TFLI1c-FD), in contrast to the
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FIGURE 2 | Model HO solutions for ICCV 96029 under two growing conditions. The model solutions (red curves) corresponding to all parameter sets found by

optimization are shown for five flowering time genes and for the short day (SD, upper panels) and long day (LD, lower panels) conditions. The black dots and error
ranges are the mean expression data and standard deviation, respectively, taken from (Ridge et al., 2017).
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FIGURE 4 | Average values of the regulation functions characterizing
regulation in the model for ICCV 96029. For each set of the optimized
parameter values, the averaged values of the regulation functions from the
model equations were obtained by integrating these functions over time under
SD and LD and dividing by the integration time interval; the figure shows box
plots of the distributions of these values over all sets of the optimized
parameter values. The type of regulation corresponding to each regulation
function is shown on the horizontal axis, where arrow indicates the direction of
the regulation. FT-FD and TFL1-FD denote the complexes of FD with all FT and
two TFL1 proteins, respectively. Dots show outliers.

saturated repression of API by these complexes (Figure 4).
Overall, this analysis of the model and expression data suggests
that there are regulators of LFY missing in the core gene network
under study.

Figure 4 shows four regulations characterized by the average
Hill function values that are considerably far from the saturation
limits: activation of LFY and API by FT and repression of TFL1a
and TFL1c by AP1. This fact allows us to use the model for testing
various alternative hypotheses about these regulations.

Difference in TFL1a and TFL1c Expression
can be Explained by Different Regulation
by AP1

We tested a hypothesis that a small difference in TFLla
and TFLIc expression observed in the data (Figure5) can
be explained by different regulation by AP1. Because of this
difference in the expression, we included TFLla and TFLIc in
the model as two distinct dynamical variables whose dynamics
are under control of the following four parameters per factor
(equations (1-2) in section Materials and Methods): maximal
expression rate v;, dissociation constant Kj, cooperativity
parameter #;, and degradation rate A; (i = I1,2). If the model
fitting produced no significant difference in these parameters
between TFLla and TFLIc, there would be no means to
distinguish between these factors in the model and we would
have to consider a single dynamical variable TFL1 = TFLla +
TFL1c instead. If the difference in parameter values exists, there
is an interesting question about whether this difference can be
explained by different regulation from API1. If AP1 is indeed
involved, a statistically significant difference should exist between

values of the regulatory parameters K; and K, and/or between
values of n; and n;, because these parameters are associated with
repression of TFL1a and TFLIc by AP1. A possible difference in v;
and/or A; should be attributed to other, AP1 independent, factors.

The optimized parameter values for TFLla and TFLIc form
two clearly separated clusters, which correspond to the main
box (“main cluster”) and the outliers (“outlying cluster”) in
the AP1—TFLla and AP1—TFLIc parts of Figure 4, and it is
already seen in this figure that the regulation by AP1 differs
between the analyzed target genes within the main cluster. The
Hill exponents n; are the same in the main cluster for both TFL1a
and TFLI1c (n; = 1, i = 1,2), but we see the significant difference
in K; values in this cluster: K; = 561.14 £ 0.13 (TFL1la) and
K, = 401.14 =+ 0.08 (TFLI1c) (p-value = 2 x 107°). Therefore,
the model suggests different regulatory properties of AP1 in its
action on the genes TFL1a and TFLIc, linked to possible different
association kinetics to their promoters. The outlying cluster is
characterized by a small influence of AP1 and contain only from
5 to 6 parameter sets with very similar K; and n; values, so we
consider this cluster as not relevant.

Model Suggests Cumulative Activation by
the FT Homologs

We tested whether an individual FT gene stands out against the
other FT homologs by fitting the three versions of the model
(models HO, HI, and H2) described above and in Materials and
Methods, with subsequent comparison of their fitting quality. We
considered only four of the five FT genes in the tests excluding
FTa3, since its expression was small relative to the other ones
(Figure 6A).

We first checked if a single FT gene can provide the full
activation from the FT gene family in the network, thus serving
as a unique transmitter of the flowering signal (model HI1). Under
this assumption, we replaced the sum of FT concentrations in the
model equations by the concentration of one of the four FI’s and
fitted each resulted version of the model to the expression data for
ICCV 96029. For each tested FT gene, model HI demonstrated
worse fitting quality as compared to the baseline model with the
cumulative activation from all FT genes (model HO) (Figure 6B;
p-value = 3 x 1077 for FTal as the sole activator; 7 x 1077,
FTa2; 2 x 107°, FTb; 107%, FIc). Breaking the cost function
into the separate SD- and LD-related components reveals that
all versions of model HI have worse quality in description of
the LD data and all except the FTa2- and FTcl-related models
have worse description of the SD data (Supplementary Figure 5).
Since models HO and HI have the same number of parameters,
neither of them is prone to overfitting to a larger extent than the
other one, and, hence, we can conclude about better relevance of
model HO based on the fitting quality comparison and without
applying additional quality measures.

As several FT genes are required for better description of the
expression data, a question yet remains about whether different
FT’s activate the meristem identity genes differently in terms of
their regulatory parameters. We implemented this possibility in
model H2 by singling an FT out from the other four and adding a
new regulation function to the model equations representing the
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expression levels were calculated as described in Figure 3.

FIGURE 5 | Integral expression levels of TFL7a and TFL1c under two growth conditions in two cultivars, based on the data from (Ridge et al., 2017). The integral
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FIGURE 6 | Testing alternative hypotheses on regulation by the FT genes in ICCV 96029. (A) Expression data of the FT genes in ICCV 96029 under SD and LD;
reproduced from (Ridge et al., 2017). (B) Values of the cost function (weighted residual sum of squares; equation (9) in Materials and Methods) quantifying the
goodness of fit for model HO and four versions of model H7, for all optimized parameter sets. Each version of model H7 is marked on the bottom of the panel by the
name of the FT gene participating as a sole FT activator in the model. (C) The same as in (B), but for model H2. Each version of model H2 is marked on the bottom of
the panel by the name of the FT gene singled out in the model equations from the other FT genes. (D) Akaike information criterion corrected for small data samples
(AICc; equation (10) in Material and Methods) for HO and four versions of model H2, marked as in (C). The relative values of AICc normalized to the HO value are
shown. The use of a more conventional form of AlCc yields a similar figure (Supplementary Figure 8 and Supplementary Text).
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activating action of this FT with its own regulatory parameters
(v, K, and n), while preserving in the equations the activation
from the sum of the other FT concentrations. Model H2
exhibited a better fitting quality than HO for the singled-out genes
FTal (p-value = 0.005) and FTc (p-value = 0.0004), with no
improvement for the other two FT genes (p-value = 0.09 for
the singled-out FTa2 and 0.12 for FTb) (Figure 6C). Both FTal-
and FTc-related models H2 demonstrate better fit to the LD-
data, with no significant improvements in fits to the SD-data
(Supplementary Figure 6).

We can try to find features in the expression of FTu2 and
FTb that can be attributed to their worse individual performance
in the model. Figure 6A shows that the expression dynamics of
FTa2 is almost identical under SD and LD for a long time and
becomes down-regulated under LD at later days, in contrary to
the behavior of all other FT’s and to the up-regulation of API in
LD (Figure 3). At the other extreme, the up-regulation of FTb
in LD is the strongest among the FT genes, and this raise in

expression might be too large to represent the difference between
SD and LD adequately. However, model HI with FTb as the
only FT activator performs best among all FT genes on average
(Figure 6B), and both FTb-related models (HI and H2) provide
the lowest cost function values among all models, including HO
(see the minimal cost values in Figures 6B,C), which hints at
possible importance of this gene.

The observed better performance of models H2 with the
singled-out genes FTal and FTc can be related to overfitting,
since model H2 has six parameters more than the baseline model
HO. We controlled this by evaluating the Akaike information
criterion corrected for small data samples (AICc; equation (10)
in section Materials and Methods), which assesses the quality
of a model applied to a data by combining the fitting quality
of the model and its complexity in terms of the number of free
parameters. Smaller values of this measure correspond to better
models. AICc evaluation reveals that its value for each version
of model H2 is more than four times larger than for model
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HO (Figure 6D), which suggests that the complexity added to
model H2 is not justified by the resulted improvement in fitting.
Therefore, we conclude that the model with the cumulative
activation from all FT genes (model H0) is the most relevant for
the given expression data.

DISCUSSION

We presented a computational model of the core gene network
controlling the floral transition and investigated its ability to
describe the expression data in two chickpea cultivars. We were
able to find good model solutions for ICCV 96029, which suggests
a general conservation of the core gene network from Figure 1 in
this chickpea cultivar. On the other hand, the modeling results
were negative for CDC Frontier. A possible reason for this could
be related to the specific choice of the modeling formalism. This
explanation does not seem likely, since the modeling formalism
is quite general and has been successfully applied to the same
gene network in Arabidopsis (Leal Valentim et al., 2015). Another
explanation which we find more probable is that this gene
network is more perturbed in CDC Frontier than in ICCV 96029.

Several key differences between CDC Frontier and ICCV
96029 were reported based on the analysis of the expression
data (Ridge et al., 2017): ICCV 96029 exhibits much earlier and
much stronger up-regulation of the expression of API, according
to the earlier appearance of visible floral buds as compared to
CDC Frontier. The floral repressors TFLIa and TFLI1c have lower
expression levels in ICCV 96029 than in CDC Frontier, also in
accordance with the early flowering of the former. On the other
hand, the differences in expression of FD and LFY are not as
visible between the cultivars.

The expression levels of the FT genes in the data are
significantly different for the two cultivars, and the total FT
concentration in CDC Frontier can be estimated as close to the
background levels (Figure 7A). This can partially explain why the
model is not feasible for the expression data from CDC Frontier.
Such small FT levels could possibly be related to the observed fact
that the first floral buds, appeared in CDC Frontier at 31 days

after sowing in SD and at 32 days in LD, were abortive, although
the low expression of some of these genes persisted for much
longer time (Ridge et al., 2017). Furthermore, investigation of the
autocorrelation functions of the FT expression time series reveals
very different patterns in the FT signals between the cultivars
(Figure 7B), and these patterns are translated to the rest of the
core network genes almost without changes (Figure 7C). It is
interesting to note a periodic signal in the FT dynamics in CDC
Frontier with a period of two days, although this signal can yet be
an experimental artifact related to low expression levels.

Another important difference between the cultivars that we
see in the data and that might contribute to the difference
in the modeling results concerns the dependence between
concentrations of TFL1a/TFL1c and LFY/AP1. TFLla and TFL1c
repress LFY and API, and AP1 represses the TFLI-like genes
(Ratcliffe et al., 1999; Kaufmann et al.,, 2010). Therefore, we
should expect that these two groups of transcripts should avoid
coexistence in the data and, hence, exhibit a negative correlation
over time. We do see this correlation in the data from ICCV
96029, but not from CDC Frontier (Table 1). Moreover, Table 1
shows that these mutual repressors tend to show a positive
correlation in the CDC Frontier data. Regardless of whether this
inconsistency in the CDC Frontier data should be attributed to
an artifact or it hints at alternative regulations between the TFLI-
like genes and the inflorescence identity genes in this cultivar, this
property evidently impedes the modeling success under given
assumptions.

It has been shown that LFY is involved in positive regulation
of AP1 and is positively regulated by AP1 in Arabidopsis (Wagner
et al., 1999; Jaeger et al., 2013; Leal Valentim et al., 2015). Our
modeling results suggest that some additional factors should
exist providing insufficient activation of these genes in the
model for chickpea. The counterintuitive increase in the integral
expression of LFY under SD as compared with LD, contrary to
the decreasing activation from the FT-like genes, may indicate
that additional activators of LFY participate under SD and
compensate the missing activation. We believe that the absence
of such factors in the core gene network considered in our model
and, as a consequence, the inability to properly handle the LD
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s == CDC Frontier, LD w— |(CCV 96029

519000 ~=-ICCV 96029, SD 0.2
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FIGURE 7 | Difference in FT behavior between ICCV 96029 and CDC Frontier, based on the expression data from (Ridge et al., 2017). (A) The dynamics of the sum of
concentrations of all five FT transcripts, for the two cultivars and two growth conditions. Developing floral buds were first detected at 15 days (under SD) and 13 days
(LD) in ICCV 96029 and at 31 days (SD) and 32 days (LD) in CDC Frontier (Ridge et al., 2017). (B) Autocorrelation function (ACF) for the expression data time series of
the FT genes. ACF estimates similarity (correlation) between data points as a function of the time lag between them. For each time lag value, an ACF value was
calculated for the expression time series for each FT gene and growth condition (SD and LD), and then an average ACF was calculated over the FT genes and
conditions. (C) The same as in (B) but for the expression dynamics of the genes TFL7a, TFL1b, FD, LFY, and AP1.
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TABLE 1 | Correlations between the expression dynamics of TFL1a/TFL1c and LFY/AP1 in the data from (Ridge et al., 2017).

ICCV 96029 CDC Frontier
SD LD SD LD
TFL1avs. LFY —0.89 (P < 0.01)* —0.57 (P=0.10) 0.80 (P < 0.01)* 0.14 (P = 0.36)
TFL1a vs. AP1 —0.89 (P = 0.01)* —0.64 (P =0.07) 0.18 (P = 0.31) —0.14 (P = 0.41)
TFL1c vs. LFY —0.61 (P =0.10) —0.64 (P < 0.01)* 0.81 (P < 0.01)* 0.33 (P =0.13)
TFL1c vs. AP1 —0.96 (P < 0.01)* —0.86 (P < 0.01)* 0.22 (P = 0.20) 0.13 (P =0.28)

The Spearman rank correlation coefficient p was calculated for each cultivar (CDC Frontier and ICCV 96029) and growth condition (SD and LD). The p-values (P) were calculated by

one-tailed permutation test, and the p-values below 0.05 are marked with asterisk.

vs. SD changes in expression is the reason why AP1 is almost
excluded as an activator of LFY in the model solutions. In other
words, this allows for the hypothesis that the LFY-AP1I regulation
module is not conserved in chickpea. However, we should also
consider the possibility that the LD vs. SD increase in expression
of LFY is due to insufficient quality of the data. Future work, both
modeling and experimental, should clarify this point.

Since ICCV 96029 is day length neutral and floral transition
is conferred via the FT genes, we might expect no difference in
FT expression between SD and LD treatments in this cultivar.
However, the expression data by Ridge et al. (2017) shows an
essential difference in expression of these genes (Figures 6, 7A),
and it is important that this difference is transferred to the
SD/LD difference in expression of AP1 (Figure 3), so that the
key gene specifying flower meristem identity exhibits sensitivity
to photoperiod according to the data. This expression data was
collected from the plants with first visible floral buds appeared at
15 days after sowing in SD and 13 days in LD (Ridge et al., 2017),
thus providing the two days difference in floral bud initiation
time between SD and LD. This two days difference diverges
from previous measurements showing no difference in this time
in ICCV 96029 (19 days from seeding £ 0.0) (Daba et al,
2016), but it qualitatively matches with the observed difference
in expression.

Irrespective of whether this match is confident or not, the
observed raise in expression of the FT genes and API in
LD suggests that some compensatory mechanisms, or missing
repressors, should exist diminishing the influence of that extra
expression on the time to flower. It is reasonable to presume that
these mechanisms should operate in the post-inductive phase
of flower development, as they take the increased expression
of floral meristem identity genes as the input. However,
this conjecture is not in correspondence with the previously
observed fact that ICCV 96029 does not exhibit photoperiod
sensitivity on any of the pre-, inductive, or post-inductive phases
of flower development (Daba et al, 2016). We believe this
expression-based photoperiod sensitivity effect in ICCV 96029 is
a fascinating subject for further studies.

An important difference of legumes and other species from
Arabidopsis is in multiple orthologs of the inflorescence genes,
such as FT, that present in a single copy in Arabidopsis (Pin
and Nilsson, 2012). The regulatory roles of individual copies can
sometimes be separated from the others; for example, FTb has
been shown to have the leading role in pea (Hecht et al., 2011).

The main purpose of our modeling approach was to infer possible
differences in regulatory roles or other properties associated with
the five FT homologs and two TFLI1 homologs in chickpea (Ridge
etal, 2017). It is important that the model and expression data in
principle allow to perform such inference, as the fitting results
reveal that both FT- and TFLI-like genes are involved in active
regulations.

AP1 was shown to repress TFLI-like genes (Liljegren et al.,
1999; Kaufmann et al., 2010; Jaeger et al., 2013), and we found
that this repression can be different for TFLIa and TFLIc in
chickpea. As this difference concerns only the values of the
equilibrium dissociation constant K, we can suggest that AP1
has different binding properties to the promoters of TFLla and
TFLIc.

Visual comparison between the expression of the five FT-
like genes in ICCV 96029 does not help in differentiating
their regulatory properties. Our modeling results support the
cumulative activation model, in which all FT proteins have very
similar regulatory properties and activation of the meristem
identity genes occurs via the total FT concentration. Analyzing
their expression data, Ridge et al. pointed at FTb as particularly
important for induction of flowering (Ridge et al., 2017).
However, this gene becomes indistinguishable from the others if
we put it in the modeling context. The ensemble of model fits in
which this gene is singled out does not improve the model, and we
get the same conclusions using the Akaike information criterion
to assess the relative performance of the model. On the other
hand, we found that singling FTb out produced the lowest values
of the minimal cost in all types of the computational experiments,
suggesting that its potential of being the leading FT activator is
not exhausted and is not seen only due to possible imperfections
of the model and/or data.

As any modeling approach, our model has limitations.
Perhaps the most important one concerns the large number of
free parameters. We tackled this inevitable problem by utilizing
the ensemble approach in the analysis of the model behavior
(Samee et al, 2015). Despite the existing interdependence
between the model parameters, the optimized parameter values
led to the set of very similar solutions for ICCV 96029. We drew
any conclusions only based on the average over the ensemble of
the optimized parameter values, thus utilizing the “wisdom of the
crowd” principle. We note that, for example, both the model with
the single FTb and the model with the singled-out FTb provide
the minimal costs among all alternative models, while they do not
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perform better on average. Even with the given number of free
parameters, the model was not able to reproduce the expression
data from CDC Frontier, which, in particular, indicates that we
cannot fit any data. Therefore, we believe that the ensemble
approach increases the confidence of our results.

MATERIALS AND METHODS

Model Equations
We model the expression of TFLla, TFLIc, FD, LFY, and API
with the following set of differential equations:

durrria K™
=y —A1UTFL1a > (1)
dt K™ +ugp™ ¢
durrryc K,
= —A2UTFL1C > (2)
dt K2”2+uAp1”2 le
dugp urpy™
= —A3UED , (3)
dt K3"+uppy™

durry uapy™
dt ~ \" KM gy Hfer—1ry (B) ) X
K5n5 >
—AqurFy, (4)
<K5"5+ (urp (uTFL1G + UTFL1)]™
duapi urpy"®
= (v + t) | X
It A w— frr—ap1 (1)

K7 n7

(K7"7+ (urp (UTFL1a + UTFL1)]™

) —Asuap1,(5)

where u’s describe the protein concentrations, v; are the maximal
protein synthesis rates, K; are the Michaelis-Menten constants
(which can be seen as the equilibrium dissociation constants
for the regulators binding the target gene promoters in the case
of a direct transcriptional regulation), ni are the Hill constants
(accounting for the cooperative effects), and 2; are the protein
degradation constants. We do not model translation explicitly,
but instead assume that protein concentrations are proportional
to mRNA concentrations for simplicity.

The specific form of the equations is chosen according to
the regulatory graph in Figure 1 and can be read as follows.
The last terms on the right-hand side of all the equations
represent degradation of each protein. The first term on the right-
hand side of equation (1) is the regulation function describing
repression of TFL1a by AP1. The same regulation function but
with different parameters describes repression of TFLIc by AP1
in equation (2). The first term on the right-hand side of equation
(3) represents activation of FD by LFY. The first brackets in
equation (4) contains the sum of the activating inputs to LFY
expression from API (the first term in the sum) and the FT

homologs (the function frr_, Lry (), described below). This input
is multiplied by the regulation function in the second brackets of
this equation, representing repression of LFY by the FD-TFL1
complex. This repression is represented under the assumption
that TFL1a and TFL1c have equivalent regulatory properties, and
the concentration of the complex is proportional to the product
of the FD concentration (upp) and the total concentration of
TFLlaand TFL1c (urrr1a+uTFL1c)- The first brackets in equation
(5) contains the sum of the activating inputs to API expression
from LFY (the first term in the sum) and the FT homologs (the
function frr—, ap1(t), described below). This input is multiplied
by the regulation function in the second brackets of this equation,
representing repression of API by the FD-TFLI complex.

We test three alternative hypotheses (H0, H1, and H2) about
functions fpr—rry and frr— ap1. Under the null hypothesis HO,
we assume regulatory equivalence of the five FT homologs, so
the total concentration of all FT proteins forms the complex with
FD and activate LFY and API with a single Michaelis-Menten
constant and a single Hill constant, according to the following
expression:

n8
[uFD S it — T)]
HO: fer—pry (t) =6 5 (©6)
Kg"8+ ["FD Zle u; (t — T)]

U1 = UFTal>, U2 = UFTa2, U3 = UFTa3, U4 = UFTH, U5 = UFTc >

and a similar expression for the function frr_,4p; with the
API-related constants v7, Ko, and n9. The FT concentrations in
equation (6) are calculated with a time delay 7, which is taken to
transport FT from the leaves to the apical meristem.

In the hypothesis HI, we assume that a single FT' gene (with
index k) is capable to fully represent the FT-mediated activation
of LFY and API:

[uppuy (t — 7)]"®
Ks"8+ [uppuy (t — 7)]"

HI: frr—iry () =v6 %)
and a similar expression for the function fpr_, op1 with the same
uy and with the API-related constants v;, Ky, and n9.

Under the hypothesis H2, we assume that a member uy of
the FT family is distinguishable from the rest four members of
the family in terms of regulation of LFY and API, so that we
can separate it into a distinct regulation function with its own
regulatory constants as follows:

4 n8
[uFD D ik i (t— T)]
3 4 n8
Kg™+ [uFD Z,’#k u; (t — t):l

(uppu (t — 7)™
v Ko™+ [uppug (t — )]~ ®

H2: ferppy () =

and a similar expression for the function frr_4p; with the
API-related constants vg, v9 Kio, K11, n10, and n1l. The first
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term in equation (8) describes the cumulative activation from
four FT proteins distinct from the FT protein with index &,
whose activating input is represented by the second term in this
equation. Depending on which gene of the FT family is singled
out in the described way, we have five possible forms of frr— rry
and frr— 4p to test under hypothesis H2.

We solved numerically equations (1-5) replacing the
concentrations of all regulators in the right-hand side of the
equations with their expression data values interpolated in time.
This effectively splits the model into four independent parts
which do not contain common parameters: single equations
for TFL1la, TFL1c, and FD, and the system of two equations
for LFY and AP1 sharing the common parameter 7. The initial
conditions for all proteins except TFLla and TFL1c were equal
to the value of each transcript at the first available day from the
expression data (Ridge et al., 2017). Setting the initial conditions
for TFLla and TFLIlc in the same way led to undesirable
artifacts in the solutions resulted from the fitting procedure
(Supplementary Figure 7); therefore, the initial conditions for
these proteins were set to zero at t = 0, and the functions in
the right-hand side of the model equations were obtained by
interpolating the data values back to zero concentrations at t = 0.
Numerical solution was obtained using either the ode23s solver
in Octave or the NDSolve function in Wolfram Mathematica.

Parameter Estimation

The model contains 31 free parameters (7 v;’s, 9 Ki’s, 9 ni’s, 5 A;’s,
and 7) under hypothesis HO and in each version of the model
under hypothesis H1, and there are six more parameters in H2.
For the ICCV 96029 cultivar, the parameter values were found
by minimizing the following weighted residual sum of squares
(wWRSS):

5 T

wRSS= "

g:l k=1

(st (10—t 1))

Ogk*

, )

in which the difference between the model solution u, for genes

g and the data 4% is summed over all genes and over T times at
which the data is available; oy is the standard deviation of the
data for gene g and time f;. For fits to the CDC Frontier data,
wRSS was additionally complemented with a penalty term equal
to the covariance between the model solution and data.

The model fitting was performed either to the LD data only
(and the SD data was used for testing) or to the joint LD
and SD data, in which case wRSS from equation (9) should be
calculated for the two growth conditions and summed. In the
case of the LD fits, there were 35 data points in total for ICCV
and 75 data points for CDC Frontier. In the case of fits to
the joint SD and LD data, there were 70 and 145 data points

for ICCV and CDC Frontier, respectively. The expression data
for the five genes under modeling and the five FT homologs
in chickpea was obtained from Figure 5 of the paper by Ridge
et al. (2017). The figure was digitized by the web-based tool
WebPlotDigitizer (Rohatgi, 2018; the extracted expression data
is available at https://zenodo.org, DOI:10.5281/zenodo.1451748).
The cost functional was minimized by the differential evolution,
which is a global parameter search method, using either a
wolframscript program utilizing NMinimize function in Wolfram
Mathematica or an entirely parallelized version of the method
implemented in the DEEP software (Kozlov et al., 2016).

We assessed the quality of the alternative models HO-H2 using
the Akaike information criterion adjusted for small data samples:

. 2K2+2k
AICc =2k — 2log L+ —— ",
¢ 8 +m—k—1

(10)
where k is the number of parameters in a model, m is
the number of data points used for model fitting, and L is
the maximum value of the likelihood function. In our case,
2log I = —wRSSmin — the minimal value of the wRSS
functional from equation (9) estimated from the set of model
fits (see Supplementary Text for derivation of L). We also
used a classical likelihood function appearing in least squares
fitting.

AUTHOR CONTRIBUTIONS

MS and SN conceived and coordinated the project. VG and
KK conducted the computational experiments. VG analyzed
and summarized the results and wrote the first draft of
the manuscript. All the authors participated in finalizing the
manuscript.

FUNDING

The work was supported by the Russian Science Foundation,
grant 16-16-00007.

ACKNOWLEDGMENTS

We thank Stephen Ridge for valuable discussions about
expression data and Sergey Rukolaine for helpful advices on
model inference.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00547/full#supplementary-material

REFERENCES Blimel, M., Dally, N, and Jung, C. (2015). Flowering time

regulation in  crops—what did we learn from  Arabidopsis?

Andrés, F., and Coupland, G. (2012). The genetic basis of flowering responses to Curr.  Opin.  Biotechnol. 32, 121-129. doi: 10.1016/j.copbio.2014.
seasonal cues. Nat. Rev. Genet. 13, 627-639. doi: 10.1038/nrg3291 11.023

Frontiers in Genetics | www.frontiersin.org 11 November 2018 | Volume 9 | Article 547


https://zenodo.org
https://www.frontiersin.org/articles/10.3389/fgene.2018.00547/full#supplementary-material
https://doi.org/10.1038/nrg3291
https://doi.org/10.1016/j.copbio.2014.11.023
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Gursky et al.

Dynamical Model of Flowering in Chickpea

Daba, K., Warkentin, T. D., Bueckert, R,, Todd, C. D., and Tar’an, B. (2016).
Determination of photoperiod-sensitive phase in chickpea (cicer arietinum L.).
Front. Plant Sci. 7:478. doi: 10.3389/fpls.2016.00478

Dong, Z., Danilevskaya, O., Abadie, T., Messina, C., Coles, N., and Cooper,
M. (2012). A Gene regulatory network model for floral transition
of the shoot apex in maize and its dynamic modeling. PLoS ONE
7:€43450doi: 10.1371/journal.pone.0043450

Gaur, P. M., Samineni, S., Tripathi, S., Varshney, R. K., and Gowda, C. L. L.
(2015). Allelic relationships of flowering time genes in chickpea. Euphytica 203,
295-308. doi: 10.1007/s10681-014-1261-7

Hecht, V., Laurie, R. E., Vander Schoor, J. K., Ridge, S., Knowles, C. L.,
Liew, L. C., et al. (2011). The pea GIGAS gene is a FLOWERING
LOCUS T homolog necessary for graft-transmissible specification of flowering
but not for responsiveness to photoperiod. Plant Cell 23, 147-161.
doi: 10.1105/tpc.110.081042

Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J., and Wigge, P. A. (2013).
Interlocking feedback loops govern the dynamic behavior of the floral
transition in Arabidopsis. Plant Cell 25, 820-833. doi: 10.1105/tpc.113.
109355

Kardailsky, L., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen,
J. T., et al. (1999). Activation tagging of the floral inducer FT. Science 286,
1962-1965

Kaufmann, K., Wellmer, F., Muifio, J]. M., Ferrier, T., Wuest, S. E., Kumar, V., et al.
(2010). Orchestration of floral initiation by APETALAL. Science 328, 85-89.
doi: 10.1126/science.1185244

Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of
related genes with antagonistic roles in mediating flowering signals. Science 286,
1960-1962.

Kozlov, K. N., Samsonov, A. M., and Samsonova, M. G. (2016). A software for
parameter optimization with differential evolution entirely parallel method.
Peer] Comp Sci. 2, e74-€20. doi: 10.7717/peerj-cs.74

Kumar, J., and Abbo, S. (2001). Genetics of flowering time in chickpea and its
bearing on productivity in semiarid environments. Adv. Agronomy 72, 107-138.
doi: 10.1016/S0065-2113(01)72012-3

Kumar, J., and van Rheenen, H. A. (2000). A major gene for time of flowering in
chickpea. J. Hered. 91, 67-68. doi: 10.1093/jhered/91.1.67

Leal Valentim, F., Mourik, S. V., Pos,é, D., Kim, M. C,, Schmid, M., van
Ham, R. C, et al. (2015). A quantitative and dynamic model of the
arabidopsis flowering time gene regulatory network. PLoS ONE 10:e0116973.
doi: 10.1371/journal.pone.0116973

Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S., and Yanofsky,
M. F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL
FLOWERLI specify meristem fate. Plant Cell 11, 1007-1018.

Mallikarjuna, B. P., Samineni, S., Thudi, M., Sajja, S. B., Khan, A. W, Patil, A,,
et al. (2017). Molecular mapping of flowering time major genes and QTLs in
chickpea (Cicer arietinum L.). Front. Plant Sci. 8:1140. doi: 10.3389/fpls.2017.
01140

Peng, F. Y., Hu, Z, and Yang, R. C. (2015). Genome-Wide comparative
analysis of flowering-related genes in arabidopsis, wheat, and barley.
Int. J. Plant 2015, 874361-874317. doi: 10.1155/2015/
874361

Genomics

Pin, P. A, and Nilsson, O. (2012). The multifaceted roles of Flowering
Locus T in plant development. Plant Cell Environ. 35, 1742-1755.
doi: 10.1111/.1365-3040.2012.02558.x

Pullen, N., Jaeger, K. E., Wigge, P. A., and Morris, R. J. (2013). Simple network
motifs can capture key characteristics of the floral transition in Arabidopsis.
Plant Signal. Behav. 8:¢26149. doi: 10.4161/psb.26149

Ratcliffe, O. J., Bradley, D. J., and Coen, E. S. (1999). Separation of shoot and floral
identity in Arabidopsis. Development 126, 1109-1120.

Ridge, S., Deokar, A., Lee, R., Daba, K., Macknight, R. C., Weller, J. L., et al. (2017).
The chickpea Early flowering 1 (Efl1) locus is an ortholog of arabidopsis ELF3.
Plant Physiol. 175, 802-815. doi: 10.1104/pp.17.00082

Rohatgi, A. (2018). WebPlotDigitizer [Internet]. Version 4.1. Austin, Texas
(USA). (Accessed Apr 11, 2018). Available online at: https://automeris.io/
WebPlotDigitizer

Samee, M. A. H, Lim, B., Samper, N., Lu, H., Rushlow, C. A., Jiménez,
G., et al. (2015). A systematic ensemble approach to thermodynamic
modeling of gene expression from sequence data. Cell Syst 1, 396-407.
doi: 10.1016/j.cels.2015.12.002

Shrestha, R., Gdmez-Ariza, J., Brambilla, V., and Fornara, F. (2014). Molecular
control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann.
Bot. 114, 1445-1458. doi: 10.1093/a0b/mcu032

Srikanth, A., and Schmid, M. (2011). Regulation of flowering time: all roads lead
to Rome. Cell. Mol. Life Sci. 68, 2013-2037. doi: 10.1007/s00018-011-0673-y

Upadhyaya, H. D., Bajaj, D., Das, S., Saxena, M. S., Badoni, S., Kumar, V.,
et al. (2015). A genome-scale integrated approach aids in genetic dissection
of complex flowering time trait in chickpea. Plant Mol. Biol. 89, 403-420.
doi: 10.1007/s11103-015-0377-z

Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G, et al. (2013).
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for
trait improvement. Nat. Biotechnol. 31, 240-246. doi: 10.1038/nbt.2491

Wagner, D., Sablowski, R. W., and Meyerowitz, E. M. (1999). Transcriptional
activation of apetalal by leafy. Science 285, 582-584.

Warkentin, T., Banniza, S., and Vandenberg, A. (2005). CDC Frontier kabuli
chickpea. Can. J. Plant Sci. 85, 909-910. doi: 10.4141/P04-185

Weller, J. L., and Ortega, R. (2015). Genetic control of flowering time in legumes.
Front. Plant Sci. 6:207. doi: 10.3389/fpls.2015.00207

Zhang, X., Zhai, H., Wang, Y., Tian, X., Zhang, Y., Wu, H., et al. (2016). Functional
conservation and diversification of the soybean maturity gene El and its
homologs in legumes. Sci. Rep. 6:29548. doi: 10.1038/srep29548

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Gursky, Kozlov, Nuzhdin and Samsonova. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Genetics | www.frontiersin.org

18

November 2018 | Volume 9 | Article 547


https://doi.org/10.3389/fpls.2016.00478
https://doi.org/10.1371/journal.pone.0043450
https://doi.org/10.1007/s10681-014-1261-7
https://doi.org/10.1105/tpc.110.081042
https://doi.org/10.1105/tpc.113.109355
https://doi.org/10.1126/science.1185244
https://doi.org/10.7717/peerj-cs.74
https://doi.org/10.1016/S0065-2113(01)72012-3
https://doi.org/10.1093/jhered/91.1.67
https://doi.org/10.1371/journal.pone.0116973
https://doi.org/10.3389/fpls.2017.01140
https://doi.org/10.1155/2015/874361
https://doi.org/10.1111/j.1365-3040.2012.02558.x
https://doi.org/10.4161/psb.26149
https://doi.org/10.1104/pp.17.00082
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
https://doi.org/10.1016/j.cels.2015.12.002
https://doi.org/10.1093/aob/mcu032
https://doi.org/10.1007/s00018-011-0673-y
https://doi.org/10.1007/s11103-015-0377-z
https://doi.org/10.1038/nbt.2491
https://doi.org/10.4141/P04-185
https://doi.org/10.3389/fpls.2015.00207
https://doi.org/10.1038/srep29548
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

',\' frontiers
in Genetics

ORIGINAL RESEARCH
published: 21 November 2018
doi: 10.3389/fgene.2018.00569

OPEN ACCESS

Edited by:
Yuriy L. Orlov,
Russian Academy of Sciences, Russia

Reviewed by:

Mikhail P Ponomarenko,

Russian Academy of Sciences, Russia
Enrique Medina-Acosta,

Universidade Estadual do Norte
Fluminense Darcy Ribeiro, Brazil

*Correspondence:

Mikhail Orfov
orlovmikhailanat@gmail.com
Irina Garanina
irinagaranina24@gmail.com

Specialty section:

This article was submitted to
Bioinformatics and Computational
Biology,

a section of the journal

Frontiers in Genetics

Received: 08 August 2018
Accepted: 06 November 2018
Published: 21 November 2018

Citation:

Orlov M, Garanina I, Fisunov GY

and Sorokin A (2018) Comparative
Analysis of Mycoplasma gallisepticum
vIhA Promoters. Front. Genet. 9:569.
doi: 10.3389/fgene.2018.00569

Check for
updates

Comparative Analysis of
Mycoplasma gallisepticum vihA
Promoters

Mikhail Orlov'*, Irina Garanina?*, Gleb Y. Fisunov? and Anatoly Sorokin’

" Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia, ? Federal Research and Clinical Center
of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia

Mycoplasma gallisepticum is an intracellular parasite affecting respiratory tract of poultry
that belongs to class Mollicutes. M. gallisepticum features numerous variable lipoprotein
hemagglutinin genes (vIhA) that play a role in immune escape. The vIhA promoters have
a set of distinct properties in comparison to promoters of the other genes. The vihA
promoters carry a variable GAA repeats region at approximately 40 nts upstream of
transcription start site. The promoters have been considered active only in the presence
of exactly 12 GAA repeats. The mechanisms of vIhA expression regulation and GAA
number variation are not described. Here we tried to understand these mechanisms
using different computational methods. We conducted a comparative analysis among
several M. gallisepticum strains. Nucleotide sequences analysis showed the presence
of highly conserved regions flanking repeated trinucleotides that are not linked to
GAA number variation. VIhA genes with 12 GAA repeats and their orthologs in 12
M. gallisepticum strains are more conserved than other vinA genes and have narrower
GAA number distribution. We conducted comparative analysis of physicochemical
profiles of M. gallisepticum vIhA and sigma-70 promoters. Stress-induced duplex
destabilization (SIDD) profiles showed that sigma-70 group is characterized by the
common to prokaryotic promoters sharp maxima while vihA promoters are hardly
destabilized with the region between GAA repeats and transcription start site having
zero opening probability. Electrostatic potential profiles of vihA promoters indicate the
presence of the distinct patterns that appear to govern initial stages of specific DNA-
protein recognition. Open state dynamics profiles of vihA demonstrate the pattern that
might facilitate transcription bubble formation. Obtained data could be the basis for
experimental identification of mechanisms of phase variation in M. gallisepticum.

Keywords: Mycoplasma gallisepticum, promoter, transcription regulation, DNA physics, vihA

INTRODUCTION

Mycoplasmas are genome-reduced bacteria without a cell wall and with a parasitic lifestyle.
Mycoplasmas parasitize diverse animal and plant species and humans. Like other intracellular
parasites, they need to adapt to the host’s immune system. One of main mechanisms Mycoplasmas
employ is changing the repertoire of surface lipoproteins (phase variation) (Rosengarten and Wise,
1990). Other pathogenic bacteria, including Haemophilus, Chlamydia, and Streptococcus species,
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also use phase variation to escape of host defense mechanisms
(Noormohammadi, 2007). Phase variation in Mycoplasmas can
occur spontaneously or due to an immune attack, it is important
for persistence and survival of Mycoplasmas in a host (Markham
et al., 1998; Glew et al., 2000; Ma et al, 2015; Czurda et al,
2017; Chopra-Dewasthaly et al., 2017). Numerous mechanisms
of phase variation are described for Mycoplasmas (Citti et al.,
2010). Usually, the mechanisms of variation are species-specific
and occur in one species or closely related Mycoplasmas. They
include DNA slippage, site-specific recombination, reciprocal
recombination, and gene conversion (Citti et al., 2010). However,
the phase variation system of Mycoplasma gallisepticum is unique,
and has not been described so far. Therefore, studying phase
variation genes can reveal novel mechanisms of gene expression
regulation in bacteria.

Mpycoplasma gallisepticum is a major bacterial pathogen
inducing widespread respiratory disease in poultry and wild
birds, which leads to significant economic losses throughout
the world (Bencina, 2002). Phase variation of M. gallisepticum
includes the switching on variable lipoprotein and hemagglutinin
(vlIhA) gene expression (Markham et al, 1992). The exact
function of vlhA proteins is still unknown. They involve in
haemagglutination (Bencina, 2002; Noormohammadi, 2007),
based on data obtained on avian Mycoplasmas it can be assumed
that vlhA proteins participate in host cell adhesion and invasion
(May et al., 2014; Matyushkina et al., 2016; Hegde et al,
2018). VIhA genes are organized into 3-5 cassettes, uniting
ten genes per cassette (Baseggio et al., 1996). The promoter
structure of these genes is significantly different from the
promoters of the other M. gallisepticum genes. VIhA genes
lack conserved sigma-70 promoter sequence and often have
GTG start codon (Markham et al., 1994). They are proposed
to employ an alternative sigma factor binding GCGAAAAT
sequence (Fisunov et al., 2016). Long regions of GAA repeats
are located upstream of vlhA genes (Markham et al., 1994).
In general, the GAA repeats can be considered as short-
sequence repeats (SSRs). SSRs were found in all eukaryotic
and many prokaryotic genomes (Mrazek et al.,, 2007; Avvaru
et al,, 2017). In bacteria, SSRs were identified in genes coding
for bacterial virulence factors including lipopolysaccharide-
modifying enzymes or adhesins (Mrazek, 2006; Wei et al., 2015).
So, SSRs provide genetic and, therefore, phenotypic variability.
Changes in number of repeated units and/or in the repeat unit
itself may arise from recombination processes or polymerase
errors including slipped-strand mispairing (SSM), either solely
or in combination with DNA repair deficiencies (van Belkum
et al., 1998; Rocha, 2003; Torres-Cruz and van der Woude,
2003).

First experiments showed that M. gallisepticum express only
one vlhA family member at a time and expression depends on
the presence of exactly 12 GAA trinucleotide repeats upstream
of the gene (Glew et al., 1995, 1998; Liu et al., 2002). Recently
it was shown that expression of the gene preceded by 12 GAA
exceeds the other vIhA genes, but the other genes with a different
number of repeats are also expressed and some of them are
expressed at a high level (Matyushkina et al, 2016; Pflaum
et al., 2016; Butenko et al., 2017). In vivo experiments showed

the non-stochastic character of vIhA switching during infection,
vlhA expression pattern changes during infection progression
and differs between strains (Pflaum et al., 2016, 2018). So, vlhA
expression is determined by GAA repeats, but probably the
additional expression control mechanisms exist. An interesting
question here is how the cell defines what promoter needs to be
activated. One explanation here is the existence of hemagglutinin
activator protein (HAP) recognizing 12-GAA repeats (Liu et al,,
2002).

Another question is the mechanism of GAA repeat variation
in M. gallisepticum. It would be interesting to find out how
many repeats changes at a time, whether the change depends
on the number of repeats of a given gene, or on the sequences
surrounding the GAA repeats and their physicochemical
properties. In the present study we used computational methods
to analyze genomes of several M. gallisepticum strains and shed
light to the mechanism of phase variation and vlhA expression
control. For this purpose, we used comparative bioinformatics
analysis of sequences of vlhA promoters and genes. We assumed
that a nonstandard structure of vlhA promoters may be
related to the physicochemical properties of their sequences,
using computational methods we predicted these properties on
the DNA of vlhA promoters and compared them with the
corresponding properties of experimentally obtained sigma-70
promoters of M. gallisepticum S6.

MATERIALS AND METHODS

Bioinformatics Analysis of (GAA)n and
vihA Genes

We used 12 complete genomes of M. gallisepticum strains isolated
from chickens and house finches of various levels of virulence
available for download in June 2018 in the GenBank database
(Papazisi et al., 2003; Szczepanek et al., 2010; Fisunov et al.,
2011; Tulman et al., 2012; Fleming-Davies et al., 2018). List of
the genomes and their characteristics (size, GC content, and
number of genes) are provided in Supplementary Table S1. We
obtained sequences of vlhA promoters of all 12 strains to study
GAA number variation. For comparison of physicochemical
properties, we retrieved sequences of sigma-70 promoters of S6
strain. The exact coordinates of the transcription start sites of
M. gallisepticum S6 were obtained from our published work there
5-end enriched RNA-seq sequencing was conducted (Mazin
etal, 2014).

The GAA repeats were defined as 4-27 non-interspaced
trinucleotides repeated in a row. A smaller number of the repeats
appeared to be non-specific; no 28 or more repeats were detected.
We proposed that for the possible GAA recognizing protein
the length of GAA tract should be more important than the
substitutions in one repeat inside the (GAA)n. So, we considered
units with substitutions inside the (GAA)n as intact units and
shortened the (GAA)n to the units with at least one substitution
if it was at the end of the (GAA)n. We did not detect GAA
tracts containing more than two damaged GAA inside the tract.
For sequencing retrieval and GAA counting we used Python 2.7
custom script.
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To analyze GAA number variation we classified vIhA genes
into orthologous groups. Not all vlhA have clear annotation,
most are annotated as hypothetical proteins. Since we are
interested only in vlhA under the control of (GAA)n containing
promoters, to find all vIhA genes we first mapped GAA repeats
and then found corresponding vlhA genes. Several times we
observed short GAA repeat in coding regions of other genes
or GAA that not connected with vlhA, this cases we corrected
manually. ProteinOrtho program (version V5.16) was used to
computing orthologous vlhA proteins (Lechner et al, 2011).
Parameters identity =70% and minimum coverage of best blast
alignments =50% were used. Fisher exact test was performed
using fisher.test() function in R with two.sided alternative
hypothesis.

To reconstruct the phylogenetic tree of vlhA genes for
Figure 3 we obtained consensus sequences of orthologous
clusters applying Biopython command dumb_consensus() to
orthologous group alignments (Cock et al., 2009). VIhA proteins
and their consensus sequences we aligned by T-coffee program
implemented in JalView software (version 2.10.5) with default
parameters (Waterhouse et al., 2009; Di Tommaso et al., 2011).
Phylogenetic tree of consensus sequences was constructed by
Phylogeny.fr tool where the method of maximum-likelihood is
implemented (Dereeper et al., 2008). The histogram of GAA
number and distributions were constructed in R.

Analysis of (GAA)n Flanks

For analysis of (GAA)n flanking regions, we extracted 50
nucleotide sequences upstream and downstream of the (GAA)n.
We aligned upstream and downstream flanks independently by
T-Coffee program implemented in JalView software (version
2.10.5) with default parameters (Waterhouse et al., 2009; Di
Tommaso et al., 2011) and merged corresponding aligned flanks
using Biopython Python 2.7 library (Cock et al., 2009). See flanks
alignment in Supplementary Materials. WebLogo was used for
sequence logos construction (Crooks et al., 2004).

To compare (GAA)n flanking sequences between 12-GAA
and the other vlhA genes we used a non-linear algorithm of
dimension reduction t-SNE (t-Distributed Stochastic Neighbor
Embedding). t-SNE allows a visualization a high-dimensional
data to see high-dimensional objects in two- or three-
dimensional space. t-SNE visualizes the data in compact and
clear view and has advantages over other dimension reduction
methods, like PCA (van der Maaten and Hinton, 2008).
Alignment was transformed into the table presenting nucleotides
and gaps with numbers, columns correspond to positions
in alignment, rows to individual genes. We employed PCA
algorithm with default parameters and t-SNE algorithm with
perplexity parameter 30 implemented in sklearn Python 2.7
library (Pedregosa et al., 2011).

Calculation of Physicochemical

Properties of Promoters

Stress-induced duplex destabilization (SIDD) is a theoretical
method developed to analyze denaturation in superhelical
DNA of a specified sequence (Benham, 1990). SIDD profile

analysis predicts the DNA positions where the DNA duplex
becomes susceptible to separation when under superhelical
stress (Benham, 1990). SIDD calculation was carried out as
implemented by its authors (Zhabinskaya et al., 2015). The
conformational and thermodynamic parameters were derived
from the endonuclease digestion experiments on superhelical
DNA (Kowalski et al., 1988; Benham, 1992). Theoretical
calculations using these parameters were consistent with
experimental data (Benham, 1992).

For SIDD calculations 1000 nts-long intervals with
transcription start site (TSS) at the center were considered,
usage long DNA regions take into account broader genomic
context. We filtered nucleotide sequences containing more
than one promoter. SIDD profiles were obtained by means
of perl script. SIDD calculation was performed using default
settings (superhelicity level 0.06, energy threshold 12, and ionic
strength 0.01). Temperature value was equal to the average
chicken body temperature (314 K). The difference between
SIDD profile maximum values was tested by the non-parametric
Mann-Whitney U test implemented in R using wilcox.test()
function with parameter paired =FALSE.

Distribution of electrostatic potential is DNA duplex feature
that contributes to the initial stages of DNA—-protein interactions
(Jones etal., 2003). The DNA characteristic profiles were obtained
using method suitable for genome-wide application (Polozov
et al., 1999). The approach is based on Coulomb formula and
allows to analyze electrostatic profiles of promoters within the
electrostatic map of a whole genome DNA. It is widely used in
studies concerning electrostatic patterns of bacterial and phage
promoters (Polozov et al., 1999; Kamzolova et al., 2005, 2006,
2009; Sorokin et al., 2006; Osypov et al., 2010). Finally, DNA open
states dynamical properties, including their activation energy
(E0) and size (d). These are believed to affect transcription bubble
formation and introduce additional to the encoded by steady-
state DNA properties information. The used model equation was
derived from the sine-Gordon equation by adding two additional
terms which more accurately take into account heterogeneous
nature of the DNA sequence. The profiles were shown to be
in agreement with the function of the corresponding DNA
regions: promoters are evolving open states with most ease, while
terminator are likely to stop the transcription bubble (Grinevich
et al., 2015). Therefore, SIDD profiles were obtained by means
of perl script, electrostatic profiles was calculated using the
algorithm implemented in R, and the dynamical properties of
DNA open states were obtained using the algorithm implemented
in Matlab 9.2.

RESULTS

VIhA Promoters Share Conserved
GAA-Flanking Sequences Irrespective of
GAA Units Number

Comparative analysis of GAA repeats number for vlhA genes
of different strains was conducted to identify possible patterns
of variation. All vlhA genes from 12 strains were clustered
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into orthologous groups according to the sequence similarity.
Previous studies revealed that activation of vlhA transcription
occurs if 12 GAA repeats are present within the promoter.
Flanking regions of the GAA repeats were also found to be
essential for vlhA expression (Liu et al., 2000). Here we analyzed
conservation of GAA flanks among different M. gallisepticum
strains and vlhA orthologous groups to identify the mechanism
of vlhA expression activation. For each vlhA gene sequences
upstream and downstream of (GAA)n were obtained. Totally
368 promoters were taken into analysis. GAA tracts were defined
as repeat regions containing 4 or more GAA trinucleotides
without substitutions at the ends of the (GAA)n. The logos
build demonstrate conserved sequences both upstream and
downstream of GAA repeats (Figure 1). The conservation level
varies among positions of the motifs. We searched for similar
sequences in nucleotide collection at NCBI blast by blastn
program and did not find any matches in other species. So, these
sequences show no sequence homology with sequenced genomes
and appear to be identified in M. gallisepticum genome only. The
sequences comprise neither repetitive sequences nor palindromes
that often are present in regulatory motifs.

We compared flanking sequences of 12-GAA tracts with other
vlhA promoters. First, we looked over logos of 12-GAA and
non-12-GAA flanks (Figure 1). No traceable distinction was
found between the two groups. To more precise comparison
we visualized sequences in three-dimensional space using t-SNE
method (Figure 2). This method shows sequences similarity as
a distance in two- or three-dimensional space. No clustering of
promoters with 12 GAA was identified by t-SNE and by similar
method PCA (Supplementary Figure S1). So, analysis of GAA
flanking regions revealed conserved positions around GAA tract
and did not show correlations between 12-GAA units in (GAA)n
and sequence of (GAA)n flanks.

To consider in more detail the flanking sequences, we
constructed their alignments and phylogenetic trees for genes
belonging to the same orthologous groups. In the article we
describe two representative examples of trees (Figure 3) and
the alignments of flanks of orthologous groups (Supplementary
Materials). The identity level between vlhA proteins of these
two orthologous groups is higher than 90% for all protein
pairs. The first tree represents the tree of the merged flanks of
(GAA)n for the orthologous cluster containing 4 genes with 12-
GAA repeats. This is the largest orthologous group, containing
proteins represented in all strains. The alignment and tree show
that the sequences are conservative within the groups of strains
isolated from different species: strains F, S6, Rlow, and Rhigh
were obtained from chickens, the remaining strains from house
finches. Genomes of finch strains have almost identical genome
sequences with a low number of substitutions, but the difference
exists (Tulman et al., 2012; Kristensen et al., 2017). Chicken
strains are less similar to each other than strains from finches
according to data from the ATGC database (Tulman et al., 2012).
That is, in this case, one would expect slight differences between
the (GAA)n flanks of individual strains, but the sequences for the
orthologous group are completely identical within two groups.
It is interesting that the flanks and the corresponding genes are
located in different vIhA cassettes, the genes from chicken strains

are located in the first cassette, and finch genes are located in
the third and fourth cassettes. So, the moving to other cassette
did not affect sequences of (GAA)n flanks. The orthologous
group includes 4 genes with 12-GAA repeats, no differences
between them and other genes are noticeable. We observed that
the number of repeats within the orthologs cluster varied, while
sequences of repeats were conservative. This suggests that the
change in the number of GAA repeats does not depend on the
sequences flanking them. Figure 3B shows the tree of another
orthologous group, which also contains 12-GAA repeat genes.
The tree confirms the lack of connection between the number
of repeats and the sequence of flanks. These flanking sequences
are less conservative among themselves than sequences of the
first group. Thus, analysis of trees and alignments of particular
orthologous groups showed no connections between (GAA)n
number and their flanking sequences.

Number of GAA Repeats Varies Among
Orthologs vlhA and Different Strains of

M. gallisepticum

Comparative analysis of GAA repeats a number of vIhA genes
from different strains were conducted to identify possible
patterns of GAA number variation. All vlhA genes from 12
strains were clustered into orthologous groups (Figure 4A). The
distribution of GAA tract lengths shows that the majority of
values reside within a narrow range of 6-12 repeats. We divided
vlhA orthologous clusters into two groups: the one containing 12
repeats at least in one strain and the one including the rest. The
distribution within 12-GAA containing group is even narrower
varying from 8 to 12 repeats. This may indicate that GAA number
changes by an increase/decrease of a small number of repeats.

The number of 12-GAA promoters varies across the strains
from zero to three per genome. We found the positive correlation
between gene conservation level and the presence of 12-GAA
repeats within an ortholog cluster. Genes with 12 repeats are
more frequently occur in full ortholog clusters comprising to
genes that are represented in all strains (Fisher exact test p-value
=0.0248).

The number of repeats varies within one genome as well as
within one orthologous cluster. We analyzed the distribution of
GAA repeats number among the strains and orthologs clusters
(Figures 4B,C). The data shows that the prevalent GAA repeats
number is 8 and frequency decreases as the number of repeats
increases. Genes with 12 GAA repeats follow the common trend
and have no exceptional frequencies. Comparison of dispersion
in repeats number among the strains and ortholog clusters
showed that the number of repeats is more conserved within
one strain than within one ortholog cluster. The majority of
the strains tend to follow this trend, except for S6 strain
which exhibited the most versatile repeat number. Certain
ortholog clusters are more conserved than others which may
indicate differences in VIhA expression among strains. Therefore,
analysis of GAA repeats number did not reveal any traceable
patterns in the distribution of repeats. We suggest that alike
patterns might be established after considering a bigger set of
strains.
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FIGURE 1 | The motif of (GAA)n flanking sequences in vIhA promoters. Logos show identity of motifs for promoters with different GAA number. Sequences 50 bp
length were aligned by T-coffee program, gaps included in the alignment. Logo constructed by Weblogo 3.6.0; (A,B) logos for upstream flanks, (C,D) logos for
downstream flanks; (A,C) logos of 22 sequences of 12-GAA promoters; (B,D) logos of 344 non-12-GAA promoters.

FIGURE 2 | t-SNE analysis plot of (GAA)n flanking motifs. Points represent individual vinA genes of all analyzed strains, the analysis made on concatenated left and
right (GAA)n flanking sequences. Black points show 12-GAA promoters. In analysis was used t-SNE algorithm implemented in sklearn Python library with the
parameter of perplexity =30.
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FIGURE 3 | GAA repeats number statistics for 12 Mycoplasma gallisepticum strains and vihA orthologous clusters. (A) Heatmap showing number of GAA repeats
for each vIhA promoter. The number of repeats is indicated by colors, 12-GAA repeats are shown with red. One strain corresponds to three rows (three is the
maximum numbers of VIhA paralogs observed for a strain). Names of the strains are shown in the heatmap center. Orthologous clusters correspond to columns. The
tree was constructed by Phylogeny.fr software based on T-coffee protein alignment of consensus sequences of orthologous groups using the maximum-likelihood
method for phylogeny reconstruction. (B) Histogram of the number of GAA repeats. The dark gray bar shows 12-GAA promoters. (C) Distribution of dispersion of
GAA repeats number among strains and orthologous clusters.

robust correlation with various regulatory DNA loci including
promoters, replication origins, etc. The promoters of E. coli
can be classified into SIDD-dependent and SIDD-independent
groups according to their SIDD profile, which seems to

VIhA Promoters Have Lowest Opening
Probability Under Superhelical Stress
(SIDD Profiles) While Non-vihA

Promoters Are Highly Destabilized

In order to describe the possible role of physicochemical
interactions in phase variation of M. gallisepticum several
DNA properties of promoter regions were obtained in the
form of profiles. SIDD as a DNA parameter shows a

correlate with their functional specialization (Wang and Benham,
2006). In the present article we analyzed SIDD profiles for
vlhA promoters from various M. gallisepticum strains as well
as, for standard sigma-70 promoters experimentally identified
in S6 strain (Mazin et al, 2014). Promoters of both type
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FIGURE 4 | Phylogenetic trees of (GAA)n flanking sequences. The trees were constructed by Phylogeny.fr software based on T-coffee nucleotide alignments of
50 bp flanks. The maximum-likelihood method was applied for phylogeny reconstruction. Labels of sequences consist of strain short name, corresponding vihA
gene position (start, end, strand separated by ‘_’) and GAA units number separated by ‘_’. Red color shows 12-GAA promoters. The scale bar shows 0.02 changes.
Red numbers on branches display branch support values. (A) The tree of the biggest orthologous group that is depicted in the last column in Figure 3A; (B) the tree
of another orthologous group, consisting of four 12-GAA genes. The group is depicted in 41 column in Figure 3A.
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feature same GC-content of 0.3, which is the average GC-
content of M. gallisepticum genome. Sigma-70 promoters are
substantially more destabilized with the profile maxima located
in the vicinity of TSS, while vlhA promoters did not incline
to melt under the considered conditions (Figure 5). Peaks
of vlhA promoters’ profiles do not overlap TSS region with
the sequence adjacent to GAA repeats having zero melting
probability. At the same time, the majority of sigma-70 promoters
demonstrate sharp maxima in the upstream region [—100; —50]
nts (Mann-Whitney test p-value <0.05) (Figure 6). The fact
to some extent supports the notion that there is no direct
correlation between SIDD profiles and GC-content of a DNA
segment.

Dynamical Properties of DNA Open
States and Electrostatic Potential
Profiles of vihA Promoters Show Distinct
Patterns

Dynamics of DNA open states was shown to be important for
transcription bubble formation (Grinevich et al., 2015). The
lower the open states activation energy, the more the DNA duplex
is prone to open thus facilitating transcription initiation. Open
states activation energy profiles, as well as the size of open states
profiles, were calculated for vlhA and sigma-70 promoters. We
identified that the transition of vlhA promoters to an open state
occurred more efficiently in the region downstream TSS. The
activation energy for the promoter group in the interval [—70; 20]
nts appeared to have a decreasing slope which starts at the right
GAA repeats boundary. It may seem tempting to suggest that the
slope facilitate the directed movement of RNA-polymerase along

the promoter. At that, no traceable patterns were detected for
sigma-70 promoters (Figures 7,8).

Distribution of electrostatic potential (EP) around DNA
duplex is a physical property that could be recognized by other
molecules at a distance and prior to their direct interaction. It
appears to be crucial at the initial stages of promoter recognition
by RNA-polymerase (Polozov et al,, 1999). Promoters of vIhA
genes show characteristic EP pattern with the peak at about
30 nt after TSS. Neither visual assessment nor clusterization
revealed traceable patterns for sigma-70 promoters profiles
(Figure 9).

DISCUSSION

The promoters of vlhA genes feature a remarkable mechanism
of transcriptional regulation. It includes two functional
components: transcriptional activation at 12-GAA containing
promoters and variation of GAA repeats number. In the article
we have analyzed conservation, GAA number distribution,
and physicochemical properties of vlhA promoters in
M. gallisepticum. We proposed that physicochemical properties
of promoters including SIDD, DNA open states dynamics, and
electrostatic potential could be connected to the vlhA genes
expression regulation.

We demonstrated that the GAA repeats in vIhA promoters
are flanked by highly conserved sequences with distinct
structure. Altogether the regulatory region takes more than
50 nt. Sequences of such length are generally too large for
binding a typical bacterial transcription factor (Rodionov, 2007).
Regulatory sequences of this length are unique in bacteria.
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FIGURE 6 | Opening probability (SIDD) profiles for (A) vihA promoters of 12 M. gallisepticum strains; (B) sigma 70 promoters of S6 strain. Dashed line denotes
transcription start site; solid horizontal line — approximate GAA repeats location.
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FIGURE 7 | Open states activation energy profiles for (A) vihA promoters of 12 M. gallisepticum strains; (B) sigma 70 promoters of S6 strain. Dashed line denotes
transcription start site; solid horizontal line — approximate GAA repeats location.

It is possible that M. gallisepticum has unique DNA binding hypothesis is supported by the fact that Mycoplasmas have a large
proteins with the unknown spatial structure of the DNA binding number of orphan genes with unknown functions (Tatarinova
region that standard annotation programs cannot identify. The etal., 2016).
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Most of the analyzed strains are isolated from wild birds
and are pathogenic for the host. We observed 12-GAA vlhA
genes occur more than one time in the genome. Obtained data
implies that the presence of a single 12-GAA vlhA gene is not the
only possible combination enabling pathogenicity manifestation.

Closely related strains Rlow and Rhigh demonstrate similar
distributions of 12-GAA genes but have distinct virulence
potential (Szczepanek et al., 2010). Vaccine strains F with a
low level of pathogenicity have the maximum number of genes
with 12-GAA repeats and lacks numerous vlhA genes. One can
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speculate the inability of proper vlhA switching may result in a
decrease of pathogenicity.

We identified that the distribution of GAA number resides
within narrow borders of 8-12 repeats only in case orthologous
clusters with at least one 12-GAA promoter were considered.
We hypothesize that there is a “working range” of GAA repeats
within which the number can iterate while having a considerable
chance to get back to 12. Promoters that occasionally go out of
range are not functional, while they still may remain conserved.
The corresponding genes will never be activated again. The
orthologous clusters lacking 12-GAA promoters are distributed
in considerably fewer strains which corroborates with the idea
that they lost function and represent a decaying group of vlhA.

Calculation of physical properties of vlhA promoters and
sigma-70 promoters of S6 strain allowed to identify distinct
patterns in open states dynamics and electrostatic potential
profiles. We hypothesize that the former could facilitate
transcription bubble formation thus stimulating processive
transcription, while the latter could contribute to the initial
stage of DNA-protein recognition. By contrast, SIDD profiles of
vlhA promoters are hardly destabilized and have zero opening
probability near TSS while sigma-70 promoters have overall high
destabilization levels with maxima associated with TSS position.
It corroborates with the idea that an alternative sigma-factor
rather than sigma-70 is utilized for transcription of vlhA. One
can speculate that zero open probability of vlhA promoters under
superhelical stress reflects that fact that these loci are wrapped
around activator complex, e.g., are at a high local degree of
negative supercoiling. At the same time, improper transcription
should not be facilitated from vlhA promoters since their —10
boxes show a substantial degree of similarity with those of
sigma-70.

CONCLUSION

Analysis of promoters of vIhA indicates the presence of conserved
sequences upstream and downstream to GAA repeats. Sequences
of (GAA)n flanks are not connected with the number of
GAA repeats. The distribution of (GAA)n length among the
strains of M. gallisepticum shows a preferred range within
which this number iterates: 6-12 repeats. Distribution of GAA
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Genomics and bioinformatics are increasingly contributing to our understanding of
infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis
and parasites such as Plasmodium falciparum. This ranges from investigations of
disease outbreaks and pathogenesis, host and pathogen genomic variation, and host
immune evasion mechanisms to identification of potential diagnostic markers and
vaccine targets. High throughput genomics data generated from pathogens and animal
models can be combined with host genomics and patients’ health records to give
advice on treatment options as well as potential drug and vaccine interactions. However,
despite accounting for the highest burden of infectious diseases, Africa has the lowest
research output on infectious disease genomics. Here we review the contributions of
genomics and bioinformatics to the management of infectious diseases of serious public
health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis.
Furthermore, we discuss how genomics and bioinformatics can be applied to identify
drug and vaccine targets. We conclude by identifying challenges to genomics research
in Africa and highlighting how these can be overcome where possible.

Keywords: bioinformatics, genomics, infectious diseases, antimicrobial resistant, diagnosis

INTRODUCTION: OMICS AND BIOINFORMATICS IN
INFECTIOUS DISEASES

Genomics and bioinformatics have contributed immensely to our understanding of infectious
diseases: from disease pathogenesis, mechanisms and the spread of antimicrobial resistance, to
host immune responses. Herein, we review some of the major contributions of genomics and
bioinformatics in infectious disease research using examples of three diseases that account for
large proportions of morbidity and mortality as well as a neglected tropical disease. Specifically,
we review M. tuberculosis, which causes TB, a disease responsible for approximately two million
deaths globally per year. Dengue virus (DENV) causes Dengue fever, which is a re-emerging
mosquito borne viral disease, responsible for more than 350 million cases annually (WHO, 2017;
World Health Organization Western Pacific Region, 2018). Plasmodium falciparum causes malaria,
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a parasitic disease that accounts for the highest morbidity and
mortality in Sub-Saharan Africa, especially in children under five
and pregnant women (WHO, 2018b), and Filariasis, which is a
neglected tropical disease. Figure 1 shows a circular wheel of
genomics/bioinformatics as can be applied in infectious diseases
as discussed herein, ranging from understanding host and
pathogen genome biology to genome-wide association studies
(GWAS) as well as the identification of drug targets and drug
resistance surveillance to patient management. This encompasses
molecular techniques, bioinformatics and clinical applications
(Figure 1). We also highlight the application of genomics and
bioinformatics to the identification of vaccine targets and drug
discovery. We conclude by highlighting some challenges of
conducting bioinformatics research in resource-limited countries
in sub-Saharan Africa.

OMICS OF TUBERCULOSIS PATHOGENS
AND HOST RESPONSES

Tuberculosis caused by members of the M. tuberculosis complex
is a leading cause of death, with about 9 million cases and
two million deaths per year globally (WHO, 2018a). The
mycobacterial genome was first sequenced in 1998 and many
more M. tuberculosis genomes have since been sequenced (Cole
et al,, 1998; Guerra-Assuncio et al., 2015; Yun et al., 2016). These
genomes provide great avenues for the genomic characterization,
development of improved diagnostic tools, drug susceptibility
testing, and molecular epidemiology of circulating mycobacterial
strains. Host-pathogen genomics and transcriptomics have
over the past decade enhanced our understanding of human-
mycobacterium interactions and in the identification of potential
diagnostic and prognostic markers (Anderson et al., 2014;
Maertzdorf et al., 2015).

An understanding of the M. tuberculosis genome biology is
invaluable in the control of TB. The M. tuberculosis genome
is GC rich and consists of about 4000 genes and, unlike other
bacteria, a large proportion of its genome encodes proteins
and enzymes involved in lipogenesis and lipolysis (Cole et al,
1998), reflecting its thick lipid cell wall. TB control is hampered
by antimycobacterial resistance, multidrug resistance (MDR)
and, recently, extensively drug resistant (XDR) mycobacterial
strains (Leisching et al., 2016). Genomics analysis has immensely
contributed to the identification of drug resistance-conferring
mutations and surveillance (Koser et al., 2013). Whole genome
analyses have demonstrated that mycobacterial drug resistance
is largely attributed to single nucleotide polymorphisms (SNPs);
for example, rifampicin (RIF) resistance arises from mutations
in the rpoB gene and mutations in the katG and inhA
lead to isoniazid resistance (da Silva et al, 2011). Newly
characterized genetic mutations in M. tuberculosis genomes
have also been shown to play key roles in the emergence of
antimycobacterial drug resistance (Sun et al., 2012). Analyses of
161 drug resistant M. tuberculosis genomes identified 72 genes,
28 intergenic regions and 21 SNPs with strong and consistent
associations with drug resistance (Zhang et al., 2013). Genomic
analysis has also identified lineage mutation rate differences

and predicted the emergence of antimycobacterial resistance
(Ford et al, 2013). A retrospective analysis of thousands of
M. tuberculosis genomes collected from African and European
patients identified 120 resistance-determining mutations for
first and second line antimycobacterial drugs, which could be
valuable in developing new assays for drug susceptibility testing
(Walker et al., 2015). Furthermore, genomics through the use of
GWAS has been used to identify novel mutations associated with
resistance to cycloserine, ethionamide, and para-aminosalicylic
acid, suggesting the involvement of efflux pump in the emergence
of resistance (Coll et al, 2018). A number of genomics-based
tools have been developed to detect drug resistance including
Mykrobe Predictor, PhyResSE, and TB-Profiler, which are easy
to use by researchers with no bioinformatics expertise and can
predict drug resistance within minutes after obtaining sequences
(Bradley et al., 2015; Coll et al., 2015; Feuerriegel et al., 2015).
Mykrobe Predictor has a sensitivity and specificity of 82.6
and 98.5%, respectively (Bradley et al., 2015). TB-Profiler was
developed using a mutation library consisting of 1,325 mutations
in different genes associated with drug resistance in 15 anti-
tuberculosis drugs and had more than 75% sensitivity as well
as more than 90% specificity for all drugs tested (Coll et al.,
2015). A recent study evaluating the performance of these tools
showed that their sensitivity ranges from 74 to 80% along with
a specificity of more than 95% (van Beek et al., 2018). However,
there is still a need for optimization of analysis pipelines to make
them applicable in field settings where the disease burden is
usually the highest.

Genomics analysis has also been used to determine the
evolutionary history and spread of mycobacterial strains such
as the Beijing strain, demonstrating its spread from the Far
East (Merker et al., 2015). An investigation of M. tuberculosis
transmission dynamics is important in monitoring outbreak;
Mehaffy et al. (2014) demonstrated that whole genome analysis
can be used to monitor infections to decipher transmission
dynamics. Furthermore, genomics has also been applied to
decipher transmission dynamics of M. tuberculosis in Vietnam,
suggesting that SNPs in ESX-5 type VII secreted protein EsxW
could potentially contribute to enhancing transmission (Holt
et al, 2018). Furthermore, genomics has been applied to
investigate TB outbreaks, genotyping of the outbreak associated
lineages, and their evolution during the outbreak (Jamieson
et al., 2014; Stucki et al., 2015). Indeed, analysis tools have been
developed for the prediction of M. tuberculosis spoligotypes from
raw sequence reads, and in combination with other analysis
tools also determine antibiotic resistance as well as transmission
dynamics (Coll et al., 2012; Bradley et al., 2015). Some genomics
methods can also be employed to identify mixed infections as well
as infections with a single strain and have recently been applied
to clinical isolates from Malawi (Sobkowiak et al., 2018).

Genome-wide association study (GWAS) has also been used
to identify candidate gene variants associated with susceptibility
to active tuberculosis. GWAS analyses in African patients from
Ghana, Gambia, Uganda and Tanzania identified TB disease-
associated SNPs located on three chromosomal loci: 18qll,
11p13, and 5q@33 (Thye et al, 2010, 2012; Sobota et al,
2016). Similarly, GWAS studies have also been done in Europe
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applied to determine genetic diversity, investigation of drug resistance mechanisms and surveillance, and the identification of vaccine targets in systems vaccinology.
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identifying SNPs in the ASAPI gene on chromosome 8q24 and in
a genomic region in which class I human leucocyte antigen (HLA
II) is encoded (Curtis et al., 2015; Sveinbjornsson et al., 2016).
Recently, a GWAS study in a Han Chinese population also found
SNPs in mitofusin-2 (MFN2), regulator of G protein signaling 12
(RGS12) and HLA 1I beta chain to be associated with active TB
(Qietal., 2017). This highlights that host genetics play significant
roles in susceptibility to active TB and may explain why some
individuals remain latently infected while some develop active
TB despite having similar exposure levels. Furthermore, based
on host genetic variants, GWAS analysis could be applied to
identify latently infected individuals who are at a high risk
of developing active TB for preventative interventions. Once
validated, identified SNPs can be used to develop point of care
diagnostics to identify high risk people for mass preventative
treatment.

Host transcriptomics are increasingly being used to
understand systemic responses to infections and to identify
diagnostic and prognostic markers. Mistry et al. (2007) were
among the first to use microarray technology to study host
systemic response to TB, identifying a nine gene-signature

with potential for TB diagnosis. Jacobsen et al. (2007) applied
microarray analysis to investigate the host pathway biology and
potential diagnostic biomarkers. Analyzing peripheral blood
mononuclear cells (PBMCs), they found a monocyte-derived
gene expression signature identifying CD64, lactoferrin and
Ras-Associated GTPase-33A as potential diagnostic biomarkers,
which were further validated in another independent study
population in South Africa (Maertzdorf et al., 2011). Applying
gene set enrichment analysis to microarray gene expression
identified metabolic pathways such as insulin metabolism,
immune cell differentiation and inflammation in TB (Lesho et al.,
2011). A neutrophil-driven interferon signature consisting both
type I and type II interferon during TB was also identified using
microarray analysis (Berry et al., 2010). The type I interferon
pathway was also observed by Ottenhoff et al. (2012) identifying
IL15RA, UBE2L6, and GBP4 as the main molecules involved.
A 393-transcript signature for active TB and an 86-transcript
signature with a potential for distinguishing TB from other
inflammatory diseases were also identified (Berry et al., 2010). In
addition, a biosignature consisting of 27 transcript signatures to
distinguish active from latent TB and 44 transcript signatures to
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distinguish active TB from other diseases were recently identified
(Kaforou et al., 2013). Microarrays have also been used to
demonstrate that host transcriptional responses to M. africanum
and M. tuberculosis differ following treatment (Tientcheu et al,
2015), which could be important in the management of patients
infected with the different mycobacterial strains. Furthermore,
host gene expression has also been used to monitor treatment
responses and predict treatment outcome, which will be valuable
in testing new drug regimens and new antimycobacterial drugs
(Thompson et al., 2017). These studies prove the potential of
host genomics in providing a better understanding of disease
pathophysiology, prognosis and host pathway biology in
response to an infectious agent.

In addition, arrays have also been applied to childhood TB,
to identify signatures for active tuberculosis and a signature
that distinguishes active tuberculosis from other diseases in
sub-Saharan Africa (Anderson et al., 2014). Similarly, a 9-gene
signature was also identified in Warao Amerindian children,
further highlighting the potential of using host biomarkers
for TB diagnosis (Verhagen et al., 2013). Host transcriptional
analysis is moving from array-based technologies to RNA
sequencing and has been applied to 16 gene signatures that
identified people with a high risk of developing TB 2 years
before diagnosis in sub-Saharan Africa (Zak et al, 2016).
However, it is noteworthy that identified biosignatures have
a variable number of genes, from about 10 to more than
100, and there is very little overlap between some signatures.
It will be valuable to conduct a meta-analysis of available
datasets to increase statistical power and identify high confidence
signatures across studies regardless of circulating pathogens
and local environmental factors. In doing such analysis,
confounders due to technologies, age and circulating endemic
pathogens can be accounted for to give a strong as well as
diagnostic and prognostic signature. These studies highlight
the potential application of genomics and bioinformatics to
interrogate host response for the diagnosis and prognosis of TB,
which will contribute immensely to curbing TB morbidity and
mortality.

DENGUE VIRUS RESEARCH IN THE ERA
OF BIOINFORMATICS

Dengue virus (DENV) is a pathogenic single-stranded RNA
virus that belongs to the flavivirus genus, which comprises
other known pathogenic viruses such as West Nile, yellow
fever, Japanese encephalitis, St. Louis encephalitis, tick-borne
encephalitis, Omsk hemorrhagic fever and Zika virus (Gould
and Solomon, 2008). The re-emergence, evolution, diversity and
geographic distribution of flaviviruses make them interesting
pathogens (Moureau et al., 2015). Phylogenetic analysis of
divergence times suggests that flaviviruses originated from a
common ancestor (100,000 years ago) and later split into
mosquito and tick borne flaviviruses about 40,000 years ago
(Holbrook, 2017). Approximately 40% of the world population
is at risk of DENV infection with more than 350 million cases
reported annually.

Ilumina SNPs genotyping and SNPs identified through
whole genome analysis have been used in case-control GWAS
statistical analysis to identify SNPs that predispose or confer
protection against DENV infection (de Carvalho et al., 2017).
The DENV shock syndrome (DSS) has been shown in a
GWAS analysis of SNPs in a cohort of 2008 pediatric cases
to have a strong association (P < 0.5 X 1078) with the
human major histocompatibility complex (MHC) (rs3132468)
on chromosome 6 and phospholipase C (rs3740360 and
rs3765524) on chromosome 10 (Khor et al, 2011). Dang
et al. replicated the study in 917 Thai children with DSS
and confirmed that alleles rs3132468 [MHC I chain related
protein A (MICB)] and rs3765524 [phospholipase C epsilon
1 (PLCEI)] predispose Southeast Asians to DSS (Dang et al.,
2014). In contrast, Whitehorn et al. (2013) genotyped 3,961
confirmed cases and 5,968 controls and found that rs3132468
MICB and rs3740360 alleles PLCEI were associated with less
severe phenotypes of DENV infection in both infants and
adults. This implies that the effect of these SNPs could be
population-specific. Other candidate genes include dendritic
cell-specific intracellular adhesion molecule (ICAM)-3 grabbing
non-integrin (DC-SIGN), C-Type Lectin Domain Containing 5A
(CLEC5A), immunoglobulin gamma constant fragment receptor
(FCGRIIA), Toll-Like receptors (TLRs), Tumor necrosis Factor
(TNF), Interferons (IFNs), 2-5"-oligoadenylate synthase (OASs),
Janus Kinase (JAK), Stimulator of Interferon Genes (STING),
cytokines, chemokines, ICAM-1 and tryptase 1 proteases (de
Carvalho et al., 2017).

Whole genome sequencing (WGS) and phylogenetic methods
have been used to investigate DENV outbreaks. Faria et al. (2017)
analyzing 92 viral genomes from DENV patients during the 2012
outbreak in Rio de Janeiro, found that at least two thirds of
infections went unnoticed and their analysis highlighted the scale
of the epidemic spread of DENV after the outbreak. Ahn et al.
(2015) investigated the genetic variations in 8,826 nucleotide
sequences of whole-genome DENV virus, and demonstrated that
there was a distinctive genetic pattern between the four DENV
subtypes across different regions (American, Oceanian, Asian,
and Africa).

Analyses of envelope encoding nucleotide sequences from
India have shown a shift from DENV subtype III to subtype
IV, suggesting some level of positive selection (Manakkadan
et al,, 2013). These phylodynamic methods, which indicate
evolutionary process or patterns of genetic diversity of the DENV
virus, have also been reconciled with the virus epidemiology
so as to decrease the variation between the two methods that
are mainly used to study the population dynamics or viral
behaviors (Pybus et al., 2012; Rasmussen et al., 2014). Due to the
importance of genomics and bioinformatics in viral research, a
range of tools has been developed to analyze viral genomes and
make inferences (Stamatakis, 2014; Brody et al., 2017).

The use of RNA folding, structural predictions and functional
studies has shown that genetic variation of the DENV occurs
in nature due to high rates of recombination and error-prone
RNA polymerases. A deleterious DENV genome was first shown
by Aaskov et al. (2006) whereby a stop codon in the envelope
coding region resulted in a defective DENV. Li et al. (2011)
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also discovered defective interfering viral particles by analyzing
short fragments of DENV, suggesting that they may be part of a
broader disease attenuating process mediated by the deleterious
virus and the defective interfering particles are important in viral
replication, thereby enhancing the overall transmission capability
of DENV (Liand Aaskov, 2014). Structural RNA predictions have
implicated other elements in modulating replication of the virus,
such as the downstream cyclization sequence (Friebe et al., 2012),
cis-acting elements occurring in the capsid coding region (de
Borba et al., 2015), and elements in the promoter Stem Loop A
(SLA) and non-structural protein 5 (NS5) regions (Gebhard et al.,
2011).

Understanding intra- and inter-host genetic diversity was
previously mired with experimental and analytical methods that
did not fully account for errors in viral amplifications. Thai
et al. (2012) used various statistical approaches to correct for
the artefactual mutations resulting from PCR amplifications
and sanger sequencing, and showed that the genetic diversity
index (Pi) of the DENV was low, ranging from 0 to 0.0013.
This suggested sequence conservation, but they were able to
show mixed infections and phylogenetically distinct DENV
lineages present within the same host. Furthermore, genome-
wide scans for patterns of intra-host diversity in DENV identified
variants between genes suggesting significant differences in
intra-host diversity of the virus in the Nicaraguan population
(Parameswaran et al, 2012). Functional annotation of the
variants showed the impact of viral mutations on protein
function, which strongly suggested purifying selection across
transmission events.

Deep sequencing, RNA structural analysis and fitness
evaluation have been used to determine processes that DENV
employs for host specialization (mosquito or human) using RNA
elements in the 3-UTR (Villordo et al,, 2015). A host adaptable
stem loop structure was found to be duplicated, which DENV
uses to accumulate mutations that are beneficial in one host
and deleterious in another host, but the duplication confers a
robust mechanism during host switching (Villordo et al., 2015).
Recently, Waman et al. (2016) used population genetics methods
to compute the genotype diversity and evolution of 990 DENV
genomes, and revealed that the DENV-2 population is subdivided
into 15 lineages. Their study also indicated the presence of intra-
genotype diversity and that the population structure of DENV-
2 is spatiotemporal, shaped by episodic positive selection and
viral recombination (Waman et al., 2016). The application of
genomics and bioinformatics in the study of DENV shows the
complexity of the virus biology, which can be exploited in target
identification for drug discovery and vaccine development (Guy
etal., 2016; Low et al., 2017).

PROGRESS IN MALARIA GENOMICS

Malaria incidence and mortality rates decreased by 21 and
29%, respectively, between 2010 and 2015 (WHO, 2018b). The
genetic landscape of P. falciparum, the main cause of malaria, is
increasingly being unraveled by using deep sequencing to identify
polymorphisms and structural and copy number variations,

which are fundamental for parasite evolution (Kwiatkowski,
2015). Sequencing consortia such as the MalariaGEN improve
our understanding of genomics of both the Anopheles vector and
the plasmodium species'. A recent study on genotyping accuracy
using deep sequencing of Plasmodium parental generations and
their progenies revealed that polymorphism frequencies can be
used as markers of high recombination rates (Miles et al., 2016),
which is an important contributor to enhancing immune evasion
and drug resistance. Using whole genome deep sequencing and
micro-array analysis, a study observed 18 deletions on regions
encoding multigene families that are associated with immune
evasion (Bopp et al., 2013). The authors showed the presence of
chromosomal crossovers in six of the deletions and were able to
estimate mutation rates of P. falciparum (Bopp et al., 2013).

Bioinformatics has contributed to our understanding of
resistant mechanisms to previous drugs such as chloroquine
and the emerging resistance to artemisinin-based combination
therapies (ACT). Robinson et al. deployed next generation
sequencing to investigate multi-clonality, population genetics
and drug-resistant genotypes (Robinson et al., 2011). More
recently, WGS was used to discover that mutations in the Kelch
propeller domain (K-13) are associated with ACT resistance in
Cambodia (Ariey et al., 2014; Straimer et al., 2015). Profiling of
the drug resistance genes [P. falciparum chloroquine resistance
transporter (pfcrt), P. falciparum multidrug resistance (pfmdrl),
P. falciparum dihydrofolate reductase (dhfr) and P. falciparum
dihydropteroate synthetase (dhps), and P. falciparum Kelch
protein 13 (pfk13)] was done using Illumina next generation
sequencing and demonstrated that the resistance-associated K-13
variants were largely absent in Africa (MalariaGEN Plasmodium
falciparum Community Project, 2016; Nag et al., 2017).

Furthermore, bioinformatics tools have been used to
demonstrate multi-locus linkage disequilibrium and local
diversity, recent selection through integrated haplotype scores,
regional gene flow and allele frequency differentiations (Duffy
et al., 2017). Intra-host diversity can now be statistically
characterized using the Fws metrics because sequencing
platforms are able to generate read count data. Auburn et al.
characterized within host diversity in 64 samples from West
Africa, capturing a multiplicity of infections, number of clone
ratios, clonal variation and within-host diversity (Auburn et al.,
2012). Bioinformatics analysis of deep sequencing revealed
large-scale genetic variations in P. falciparum (86158 SNPs), and
genome wide allelic frequencies, population structure, linkage
disequilibrium and intra-host diversity (Manske et al., 2012). The
genetic diversity of P. falciparum is dependent on directional and
balancing selection, whereby drug pressure and host immunity
are the major selective agents, respectively (Mobegi et al., 2014;
Dufty et al., 2015).

Genomics has been used to discover novel malaria resistance
loci in humans, which provide 33% protection from severe
malaria (Malaria Genomic Epidemiology Network, 2015). In
Ghana, GWAS identified two unknown genetic loci associated
with severe malaria: 1q32 within the ATPase Plasma Membrane
Ca’* Transporting 4 (ATP2B4) gene and the 16q22.2 linked

'https://www.malariagen.net/
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to a tight junction protein known as MARVELD3 (Timmann
et al., 2012). Most recently, GWAS was used in a longitudinal
surveillance to detect K-13 signatures, which led to the
identification of a Kelch variant that is suggested to be a potential
modulator of artemisinin resistance (Cerqueira et al., 2017).

The Plasmodium pathophysiology is increasingly being
explored using transcriptomics and proteomics. Bioinformatics
and statistical models have been used to describe the genome-
wide translational dynamics of P. falciparum, showing that
parasite transcription and translation are tightly coupled
presenting a broad and high resolution of parasite gene
expression profiles (Caro et al., 2014). ChIP-Seq and RNA
sequencing have been used for polysome profiling to understand
the regulation of Plasmodium gene expression in humans. Bunnik
et al. (2013) observed a delay in peak polysomal transcript
abundance for several genes as compared to the mRNA fraction,
which they reported to be alternative polysomal mRNA splicing
events of non-coding transcripts.

DNA microarray technologies had been used to describe
the gene expression patterns of P. falciparum during the intra-
erythrocytic stage (Bozdech et al., 2003), gametocyte (Young
et al., 2005), sporozoite (Siau et al., 2008), liver stage (Tarun
et al., 2008), and even between three different strains (Llinds
etal., 2006). Recently, microarrays have been used to characterize
parasite transcriptomes during cerebral and asymptomatic
malaria, which revealed some differentially expressed genes
encoding proteins involved in protein trafficking, Maurer’s cleft
proteins, transcriptional factor proteins and several hypothetical
proteins (Almelli et al., 2014). RNA sequencing has also been
used to describe P. falciparum expression profiles at different
time points and has found novel gene transcripts, alternative
splicing events and predicted untranslated regions of some genes
providing further information on the parasite biology (Otto
et al., 2010). Yamagishi et al. (2014) simultaneously analyzed
the human host and the parasite transcriptomes using RNA
sequencing, and showed that several human and parasite genes
such as Toll-like receptor 2 and TIR domain-containing adapter
molecule 2 (TICAM2) correlated with clinical symptoms. RNA
sequencing has also been employed to study the transcriptome of
P. vivax, which revealed a hotspot of vir genes on chromosome
2, new gene transcripts and the presence of species-specific
genes (Zhu et al, 2016). It would be valuable to compare
this data with similar data from other related Plasmodium
species to identify species-specific transcriptomes. Analyzing the
transcriptome of Chloroquine sensitive and resistant parasites
identified 89 upregulated genes and 227 downregulated genes
that were associated with resistance (Antony et al, 2016).
These differentially expressed genes are involved in immune
evasion mechanisms, pathogenesis, and various host-parasite
interactions and could be targeted for drug and vaccine
development.

Currently, single-cell RNA sequencing is revolutionizing the
study of cell-to-cell heterogeneity. For example, the use of
this method led to the discovery of novel variations in the
expression of specific gene families that are involved in host-
parasite interactions among asexual populations (Reid et al.,
2018). Altogether, these studies demonstrate the profound

impact of malaria parasite transcriptomics and genomics on our
understanding of the parasite (Lee et al., 2017), and identify
possible candidate targets for drugs, vaccines and diagnostics
(Ludin et al., 2012; Hoo et al., 2016).

GENOMICS RESEARCH IN FILARIASIS

Filariasis is a neglected chronic disease caused by tissue-dwelling
nematodes (filariae) with onchocerciasis and lymphatic filariasis
(LF), causing significant health concerns with a disease burden
approaching 86 million cumulatively (WHO/Department of
Control of Neglected Tropical Diseases, 2016). Onchocerciasis
is caused by Onchocerca volvulus while LF is caused by three
different parasites, namely Wuchereria bancrofti, Brugia malayi,
and Brugia timori (Taylor et al., 2010). Elimination of filariasis is
challenging because of the unavailability of sensitive diagnostic
tools, lack of appropriate treatments and inadequate control
measures in resource limited countries.

The W. bancrofti and O. volvulus genomes have been
sequenced, providing opportunities for further genomic analyses
(Desjardins et al., 2013; Cotton et al., 2016). Bioinformatics
revealed the presence of gene coding for host immune system
regulators such as human-like autoantigens as well as serine and
cysteine protease inhibitors (Molehin et al., 2012; Cotton et al.,
2016).

Molecular studies coupled with computational analyses have
demonstrated an association between human host factors and
filariasis clinical manifestations. LF infections have been shown
to cluster in some families using pedigree studies (Cuenco et al.,
2004; Chesnais et al., 2016). These studies show that genetic
factors are involved in the regulation of LF infections and
affect both the presence and intensity of microfilariae. However,
a GWAS would be more comprehensive to demonstrate this
genetic susceptibility to LF as has been the case for a tropical
lymphedema (Podoconiosis) of non-filarial origin (Tekola Ayele
et al, 2012). It is worth mentioning that lymphedema, or
elephantiasis, is one of the main features of LF and normally
occurs as a result of a compromised lymphatic system (Addiss,
2010). As opposed to LE which is infectious, Podoconiosis is
a non-communicable disease caused by soil particles such as
aluminum and silica predominant in volcanic regions (Price,
1976; Davey et al., 2007). A comparative genomics-based study of
LF would help to better understand these clinical manifestations.

Most of the pathological features of LF are associated with
human-immunogenetics (Taylor, 2003; Junpee et al., 2010),
which has been investigated using genomics and bioinformatics.
Gene candidate-based genomics studies carried out in Thailand
revealed that polymorphisms in the TLR-2 gene (—196 to —173
deletion, +597 T > C and +1350 T > C) have a strong
linkage disequilibrium and were associated with increased risk
of asymptomatic LF (Junpee et al., 2010). In a functional study,
individuals with the —196 to —173 deletion were found to have
significantly low transcription levels compared to those with the
wild-type gene (Junpee et al.,, 2010). Further analyses showed
strong association of a mutation (M196A) in human tumor
necrosis factors (TNF) receptor-II with hydrocele development,
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while the A288S mutation of endothelin-1 (ET-1) correlated with
low ET-1 1 plasma levels and elephantiasis (Panda et al., 2011).

Population genetics is very important for assessing and
understanding the epidemiology and transmission dynamics
of filarial diseases (Small et al, 2016; Doyle et al, 2017).
Population genomics of O. volvulus samples collected from
different geographical zones - West Africa (WA), Uganda and
Ecuador - demonstrated some level of population structure
between WA and other populations (Choi et al, 2016).
Furthermore, phylogenetic signals indicative of gene flow and
genetic admixture between WA forest and savanna populations
were identified. These signals could serve as markers to delineate
forest from savanna populations and/or sort out admixed
populations (Choi et al., 2016). A study using both nuclear and
mitochondrial sequences identified regions in the W. bancrofti
genome that exhibited an arrangement which was consistent with
both balancing and directional selection (Small et al., 2016).

The control of filariasis in general is difficult due to the
complex parasite life cycle. In an attempt to demystify the
complex life cycle of the parasite, RNA sequencing has been used
to investigate gene expression profiles of different developmental
stages of Brugia malayi (Choi et al., 2011). Transcriptomics
analyses revealed stage-specific gene expression correlating
with stage-specific pathway activation. Upregulated proteins
included cathepsin L and Z-like cysteine proteases that were
previously demonstrated to be essential for larva molting in
O. volvulus (Lustigman et al., 2004) and cuticle and eggshell
remodeling in filarial nematodes in general (Guiliano et al., 2004).
Another study using a filarial microarray chip composed of
18,104 gene probes revealed that gene expression in B. malayi
infective larvae (L3s) depends on environmental factors (Li
et al, 2009). The gene expression patterns in irradiated L3s,
laboratory-adapted L3s and those collected from mosquitoes
were found to be different. Gene Ontology analyses showed
that upregulated genes in laboratory-adapted and mosquito-
derived L3s were mostly involved in growth and invasion,
whereas those in irradiated L3s were enriched with immunogenic
proteins and proteins involved in radiation repair (Li et al,
2009). Such high throughput genomics analysis is important for
understanding the biology/development, invasion, and immune
evasion mechanisms of the parasite and could help improve
disease control measures (Choi et al., 2011).

Mass drug treatment with Ivermectin (IVM) or Mectizan® and
Albendazole is the main strategy for filariasis control in Africa
and has been going on for decades (Amazigo, 2008). However,
cases of drug resistance have been reported and genomic
methods are increasingly being used to investigate mechanisms
of resistance. Genotyping and sequencing studies have shown
an association between SNPs in some O. volvulus genes (P-
glycoprotein-like protein, p-tubulin) and the development of
resistance (Nana-Djeunga et al., 2012; Osei-Atweneboana et al,,
2012). P-glycoprotein was recently demonstrated to be associated
with resistance to IVM in a horse filarial species (cyathostomins)
with transcript levels measured by RNA-Seq and confirmed by RT
q-PCR found to be significantly higher in the resistant compared
to sensitive worm population (Peachey et al., 2017). Moreover,
GWAS demonstrated that reduced sensitivity of O. volvulus

to IVM is accounted for by genetic drift and soft selective
sweeps. Pooled next generation sequencing of O. volvulus worms
collected from Ghana and Cameroon repeatedly treated with
IVM and phenotypically characterized into poor responder
(PR) and good responder (GR) parasites identified genetic
variants that considerably delineate GR and PR parasites. One
of these variants (SNP, OM1b_7179218) was common in both
Cameroon and Ghana worm populations, whereas the others
were country-specific (Nana-Djeunga et al., 2014; Doyle et al.,
2017). These variants were found to be grouped in quantitative
trait loci (QTLs) in which published genes associated with
IVM resistance were scarcely found. Gene Ontology® analysis
revealed that genes found in those QTLs regions were linked
to pathways involved in neurotransmission, development, and
stress responses (Harris et al., 2004; Doyle et al., 2017). The
involvement of neurotransmission is a promising finding here
because one of the main targets of IVM is a ligand-gated channel
at neuromuscular junctions (Cully et al., 1994).

The molecular mechanism of Ivermectin is not clearly
understood and has been investigated using bioinformatics
approaches. RNA-Seq analyses of ivermectin-challenged
B. malayi adult female worms revealed that genes involved in cell
division (meiosis) and oxidative phosphorylation were drastically
downregulated as early as 24 h post-exposure (Ballesteros et al.,
2016). A similar study in which the worms were instead
challenged with flubendazole (FLBZ), a potential macrofilaricide,
demonstrated the effect of FLBZ on embryogenesis and cuticle
integrity (O’Neill et al., 2016a). Expression of cuticle-related
genes and those involved in mitosis or meiosis were notably
affected by the treatment. These studies further elucidate the
drug-induced inhibition of embryogenesis and microfilarial
release from the female worm uterus during larval development
as previously demonstrated (O'Neill et al, 2015, 2016b).
Knowledge of this mechanism could help in drug repurposing
whereby drugs known to have a similar mode of action or
mechanism, but are used for the treatment of other parasitic
diseases, could be tested for their efficacy on filarial parasites.

APPLICATION OF OMICS TO VACCINE
TARGET IDENTIFICATION AND DRUG
DISCOVERY

The availability of whole genome sequences of both the host
and pathogens in different databases such as GenBank® (Benson
et al., 2004), EuPathDB (*formerly ApiDB), WormBase’, Virus
Pathogen Database and Analysis Resource (ViPR) has led to
tremendous advances in the search for new drug and vaccine
targets (Yan et al., 2015; Xia, 2017). This enables high throughput
in silico screening for the identification of vaccine and drug
targets, thus focusing expensive laboratory screening on selected
high affinity targets. Though not yet fully implemented in Africa,

Zhttp://geneontology.org/
3http://www.ncbi.nlm.nih.gov
*http://EuPathDB.org
“http://www.wormbase.org
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omics technologies and bioinformatics analyses have aided
significantly in the generation of new knowledge toward drug and
vaccine target discovery (Yan et al., 2015; Xia, 2017). Genomic,
transcriptomic and proteomic analyses of pathogens such as
filariasis parasites have identified new potential biomarkers that
can be invaluable in diagnostics, vaccine and drug development
(Armstrong et al., 2016; Bennuru et al., 2017). Kumar et al. (2007),
using genome wide C. elegans RNA-interference data as proxy,
identified a set of 3,059 essential genes in the B. malayi genome,
from which 589 were characterized as potential drug targets. The
prioritization algorithm helps in the prediction of the efficacy,
selectivity and tractability of each target.

Phylogenomic analyses across Plasmodium spp. and
comparative genomic studies in humans have led to the
identification of new drug targets in P. falciparum. Identification
of essential genes (targets) responsive to specific inhibitors led to
the discovery of 40 potential drug targets, which includes known
ones such as calcium dependent protein kinase and previously
unknown ones such as phosphoisomerase and carboxylase
(Ludin et al., 2012). Comparing the transcriptomes of six
Plasmodium spp. during blood stage infection revealed about
800 genes that have similar expression patterns across species,
among which 240 were demonstrated to be druggable by online
drug target prioritization databases (Hoo et al., 2016). Similarly,
genomic and transcriptomic analyses have been carried out with
other pathogens with encouraging results in fungi (Kaltdorf et al.,
2016), bacteria (Turab Naqgvi et al., 2017), and viruses (Dapat and
Oshitani, 2016).

In vaccine target identification, pathogen genomes are being
scanned in a bid to identify genes encoding proteins or molecules
with vaccine candidate properties such as low antigenic variation,
polymorphism, and immunogenicity (Masignani et al., 2002;
De Groot et al., 2008). Despite the success of whole-organism
vaccines such as those for polio, whole-organism vaccines for
pathogens such as Plasmodium spp., Mycobacterium spp. and
HIV remain a challenge (Doolan et al., 2014; Proietti and
Doolan, 2015). Genomics offers a potential way around this
challenge through the discovery of immunogenic antigens using
whole-genome scans (Doolan et al., 2014; Proietti and Doolan,
2015). Here, omics techniques and bioinformatics tools are
used to determine genes or proteins that are involved in the
virulence of the pathogen and pathogenesis of the disease by
comparing, for example, attenuated and pathogenic disease
agents. Algorithms can be used to predict T cell epitopes or
regions with high affinity within HLA molecules in translated
peptides found in databases (Grubaugh et al, 2013; Davies
et al, 2015) in order to inform the choice of the right
antigens for vaccine design. Omics technologies have been
reviewed in the context of vaccine target identification by He
(2012).

Most of the tools used for epitope identification rely on
statistics and machine learning. Some of them include servers to
predict MHC-binding, peptides namely RANKPEP (Reche et al.,
2004), which uses Position Specific Scoring Matrices (PSSMs),
and nHLAPred® (Bhasin and Raghava, 2007), based on Artificial

Chttp://www.imtech.res.in/raghava/nhlapred/

Neural Networks (ANNs) and quantitative matrices among
others. Some severs are specific for B-cell epitope prediction,
such as Bcepred’ (Saha and Raghava, 2004), ABCpred® (Saha
and Raghava, 2006), and BepiPred’® (Jespersen et al., 2017). These
tools work based on the physicochemical properties and location
of the peptides. They function alongside epitope-containing
databases such as Swiss-Prot, SYFPEITHI, and IEDB (Fleri et al.,
2017). The list of tools, methods and databases mentioned here
is not exhaustive, however, they have been extensively reviewed
elsewhere (Soria-Guerra et al., 2015).

Nowadays, due to advances in the fields of computer
sciences, genomics, proteomics, bioinformatics and management
of patients’ health records, etc., there seems to be a paradigm
shift from generalized medicine to personalized therapy (Sorber
et al, 2017). For example, many drugs are metabolized by
cytochrome P450 enzymes with drug action depending on the
expressed gene variant (BlueCross and BlueShield Association,
2004; Daly et al, 2006). Moreover, malaria patients with
glucose-6-phosphate (G6p) deficiency have been reported with
severe complications such as cardiotoxicity and acute hemolytic
anemia following treatment with quinidine gluconate (Damhoff
et al,, 2014). These complications have been described as a
consequence of inherited (X-linked trait) mutations in the g6p
gene (Luzzatto and Seneca, 2014). These mutations do not
cause the complete loss of the G6P enzyme but instead affect
its stability and level in red blood cells (Luzatto et al., 2001).
In the same line rifampicin, which is the drug of choice for
TB treatment, is transported after administration by a human
anion transporter encoded by the SLCO1BI gene. Studies have
shown that mutations in the SLCO1BI gene, namely rs11045819
and rs4149032, are associated with decreased RIF plasma levels
in South-African populations (Weiner et al, 2010; Chigutsa
et al., 2011; Gengiah et al., 2014). However, this finding could
not be replicated in Malawian and South Indian populations,
implying that this could be population-specific (Ramesh et al.,
2016; Sloan et al., 2017). These show, in a nutshell, the
implication of genomics and bioinformatics in drug discovery
and precision therapy (Hamburg and Collins, 2010; Rabbani
etal., 2016).

CHALLENGES AND OPPORTUNITIES IN
CONDUCTING OMICS AND
BIOINFORMATICS STUDIES IN AFRICA

Bioinformatics is increasingly becoming an important
cornerstone in contemporary research on infectious diseases
(Mulder et al., 2017), where Africa has the highest morbidity
and mortality but less genomics research output compared to
other regions of the world (Fatumo et al., 2014; Karikari, 2015).
This slow pace of genomics research output is due to several
challenges in omics and bioinformatics research facilities in
Africa; three of the major ones are briefly discussed.

http://www.imtech.res.in/raghava/bcepred/
Shttp://www.imtech.res.in/raghava/abcpred/
“http://www.cbs.dtu.dk/services/BepiPred/
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Inadequate Infrastructure

Bioinformatics and genomics analysis require powerful
computers and a reliable source of electricity for large data
storage and high throughput analyses (H3Africa Consortium
et al, 2014). With the exception of some South African
universities, most sub-Saharan African universities lack high
performance computing facilities (Karikari et al., 2015; Mulder
et al., 2016). There is also a limitation of high-speed internet
for sharing data and accessing bioinformatics databases and
repositories (Fatumo et al., 2014; Karikari, 2015). This hinders
the application of cloud-based web services which could have
circumvented the need for local high-performance computing
facilities (Navale and Bourne, 2018). Furthermore, few research
institutions in Africa have sequencing facilities and therefore
resort to sequencing abroad through collaborations. Such
collaborations often result in a loss of ownership of the data and
resulting publications usually have the external collaborators as
lead and correspondence authors. Notable efforts being made to
bridge this infrastructural gap include the installation of high-
performance computers (HPCs) at The Developing Excellence
in Leadership and Genetics Training for Malaria Elimination
in sub-Saharan Africa (DELGEME) at the University of Science
Technique and Technologies of Bamako, Mali, the West African
Centre for Cell Biology of Infectious Pathogens (WACCBIP),
University of Ghana and the Medical Research Council Unit,
The Gambia at the London School of Hygiene and Tropical
Medicine, to support storage and high throughput analyses
of genomic data. These HPC facilities are complemented by
NGS sequencing facilities at WACCBIP and MRC in addition
to some institutions in East Africa such the International
Livestock Research Institute (ILRI-Kenya). This infrastructural
development, and pressure from initiatives such as Human
Heredity and Health in Africa (H3Africa), will hopefully serve
as a springboard for Africa to increase her involvement in
the study design, sample collection, analysis and ownership
of data rather than just collecting samples for international
collaborators.

Lack of Training Opportunities and

Well-Structured Bioinformatics Courses

Until the recent introduction of bioinformatics training courses
by H3ABioNet, there were limited bioinformatics training
courses in Africa. Such training programs were mostly short
courses organized by local bioinformaticians with support from
experts in the field across Africa and other external collaborators
(Gurwitz et al., 2017). Very few African universities have
structured bioinformatics courses, most of these universities are
South African, while some are North African and few are in sub-
Saharan Africa (Bishop et al., 2015). The DELGEME, through
funding from the Wellcome Trust, is also providing funding
for Master of Science courses in bioinformatics, which are
mostly done in South Africa. The other form of bioinformatics
training is through local capacity building, which institutions
organize for staff with support usually through North-South
collaborations and transfer of expertise. However, the downside
of short courses is that there is no mentorship beyond the

course, which hinders consolidation of the knowledge gained.
In addition to these, some organizations working predominantly
on crop production, such as the International Institute of
Tropical Agriculture Bioscience Center'® and Consultative
Group on International Agricultural Research institute'', offer
short bioinformatics training opportunities to African scholars.
Sometimes some students from Africa get training from
European universities, but the challenge is that most of the
trainees do not come back to join local institutions because
of poor infrastructures. Furthermore, there is a disconnect
between biologists and other scientific disciplines such as
computer science, statistics and mathematics in most African
universities. This affects multidisciplinary research, which is
crucial in modern-day infectious disease research. Ultimately,
the lack of well-structured bioinformatics curricula hampers the
development and maintenance of highly needed experts in the
field in Africa, since they often move to Europe and North
America for better career prospects.

Limited Research Funding

A major challenge to research on the African continent is
the lack of funding for biomedical research. Current research
is mainly funded from international donors, with limited or
no funding from national governments and African regional
bodies such as the African Union (Hamburg and Collins,
2010; Karikari, 2015). However, a few countries such as
South Africa, through the South Africas National Research
Foundation and Medical Research Council, do provide funding
for genomics research projects (Karikari et al., 2015). Until
the initiation of H3Africa, through funding from the National
Institute of Health (United States) and the Wellcome Trust
(United Kingdom), there was limited to no funding for genomics
and bioinformatics in Africa (Adoga et al., 2014; Mulder et al.,
2017).

CONCLUSION AND PERSPECTIVE

Herein we highlight how genomics and bioinformatics has
contributed to our understanding of infectious diseases of
significant health concern, ranging from bacterial and viral to
parasitic infections, as well as their applications to drug and
vaccine target identification. This ranges from understanding
pathogenesis, host systemic responses and host-pathogen
interactions to identification of prognostic and diagnostic
markers. However, in Africa, despite the high morbidity and
mortality due to infectious diseases, there is limited expertise
in the field of bioinformatics and hence limited bioinformatics
research output in terms of publications. Thus, there is a need to
strengthen training and capacity building in bioinformatics in
Africa to improve infectious disease genomics and host-pathogen
genomics on the continent. This can be achieved through the
establishment of well-structured courses, mentorship for junior

1Ohttp://bioscience.iita.org/index.php/en/services/bioinformatics
https://www.cgiar.org/
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and trainee bioinformaticians and better career prospects to
maintain trained bioinformaticians on the continent.
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The impact of deleterious variation on both plant fitness and crop productivity is
not completely understood and is a hot topic of debates. The deleterious mutations
in plants have been solely predicted using sequence conservation methods rather
than function-based classifiers due to lack of well-annotated mutational datasets
in these organisms. Here, we developed a machine learning classifier based on a
dataset of deleterious and neutral mutations in Arabidopsis thaliana by extracting
18 informative features that discriminate deleterious mutations from neutral, including
9 novel features not used in previous studies. We examined linear SVM, Gaussian
SVM, and Random Forest classifiers, with the latter performing best. Random Forest
classifiers exhibited a markedly higher accuracy than the popular PolyPhen-2 tool in
the Arabidopsis dataset. Additionally, we tested whether the Random Forest, trained
on the Arabidopsis dataset, accurately predicts deleterious mutations in Oryza sativa
and Pisum sativum and observed satisfactory levels of performance accuracy (87%
and 93%, respectively) higher than obtained by the PolyPhen-2. Application of Transfer
learning in classifiers did not improve their performance. To additionally test the
performance of the Random Forest classifier across different angiosperm species, we
applied it to annotate deleterious mutations in Cicer arietinum and validated them
using population frequency data. Overall, we devised a classifier with the potential to
improve the annotation of putative functional mutations in QTL and GWAS hit regions,
as well as for the evolutionary analysis of proliferation of deleterious mutations during
plant domestication; thus optimizing breeding improvement and development of new
cultivars.

Keywords: deleterious mutation, random forest (bagging) and machine learning, Oryza, Pisum, Cicer

INTRODUCTION

New mutations continuously arise in populations. Some of them are neutral, but many are
deleterious (Grossman et al., 2010). Under most circumstances, natural selection is effective
in maintaining strong deleterious mutations at low level, however mildly deleterious variants
may reach considerable frequency in populations due to hitchhiking and population bottlenecks.
Deleterious variants may affect phenotypic traits and decrease organismal fitness. Quite the
opposite, in maize intermediate and weakly deleterious alleles are involved in heterosis
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(Yang et al, 2017). In human rare, deleterious SNPs are
associated with common diseases and cancer (Taylor et al., 2015).
Therefore, it is no wonder that estimation of the deleterious
mutations prevalence in different species is a topic of vivid
interests.

Theoretical predictions place the fraction of deleterious
mutations in barley, soybean, rice, maize, and Arabidopsis
genomes from 20% to 40% approximately (Giinther and Schmid,
2010; Mezmouk and Ross-Ibarra, 2014; Kono et al., 2016).
Deleterious alleles are usually at low frequency, an observation
that is in agreement with the action of weak purifying selection.
The prevalence of deleterious alleles differs between wild species,
landraces, and elite cultivars. Using rice sequences Giinther
and Schmid (2010) found fewer deleterious substitutions in the
wild than in cultivated rice. In comparisons with traditional
landraces, elite maize inbreds show an increase in the proportion
of deleterious variants fixed within the population, but the
much smaller proportion of segregating deleterious variants
(Yang et al, 2017). This is explained by bottlenecks during
modern breeding that results in fixation of the majority
of mutations, therefore reducing a fraction of segregating
variation.

The issue of deleterious variation in plant genotypes
is particularly essential for crop improvement, because
crop productivity may be reduced due to a persistence of
deleterious variants at a moderate frequency. Indeed Yang
et al. (2017) found that deleterious variants may contribute
substantially to wvariation in fitness-related quantitative
traits in maize and that incorporation of information about
deleterious mutations may improve existing genomic prediction
frameworks.

NGS technologies open a way to annotate the functional
effect of individual SNPs. As the regulatory code responsible
for gene activity still remains a puzzle, only genetic variants
in the coding regions are considered. The general belief
is that non-synonymous substitutions may change protein
structure and therefore many of them should have the
deleterious effect on protein function, which in
manifests as biochemical or morphological mutations.
The methods for prediction of deleterious effects of non-
synonymous substitutions in proteins could be subdivided
into two groups. The first group methods exploit sequence
conservation and are based on the assumptions that SNPs in
evolutionarily conserved regions are likely to be deleterious.
Some of them like SIFT use simple cut-off to discriminate
deleterious variants from neutral (Sim et al., 2012), while
other like MAPP (Stone and Sidow, 2005) and GERP-+++
(Davydov et al, 2010) employ phylogenetic information in
addition.

The machine learning algorithms lay the foundation of
the second group methods. Of these the most widely used
is PolyPhen-2 (Adzhubei et al., 2010). This method employs
the rigorously annotated datasets of human disease-causing
mutations for training that preconditions its high predictive
accuracy. As a machine learning method PolyPhen-2 consists
of three steps: firstly a set of features that characterize a
mutation was extracted using sequence characteristics, multiple

turn

alignment scores, and information about the 3D structure of
the resulting protein. At the next steps, training and cross-
validation were performed followed by classification with a
naive Bayes approach. It should be noted, that being trained
on human data, PolyPhen-2 is sometimes applied to predict
deleterious mutations in other species. There is, however, little
consensus about the eligibility of such a direct knowledge
transfer. Indeed, it is known that alleles annotated as deleterious
in humans at about 15% of cases correspond to normal
alleles in other mammals (Kondrashov et al., 2002). It appears
from this that to achieve more accurate predictions training
might have to be separately executed species by species.
However, for many species, information required for classifier
training might be substantially more limited than for humans.
Accordingly, the question arises whether it is possible to use
the information obtained for one species for the search for
harmful mutations in another, perhaps phylogenetically close,
species.

This question has long been discussed in machine learning
in the following formulation: how to transfer knowledge from
one object to another, considered to be close (in the sense of
data sampling distribution), to solve a specific problem (whether
classification or regression). A set of methods that provide the
methodology for solving such problems is denoted Transfer
Learning (TL). These methods have found broad application
in many practical problems. For instance, Lagunas and Garces
(2017) classify the painted images of various objects using their
naturalistic form (photos). Closer to home, Transfer Learning
was used for evaluating the quality of protein models (Hurtado
et al,, 2018), the localization of proteins in the cell based
on ontology databases (Mei et al, 2011) and the search for
associations between the genome and the phenotype (Petegrosso
etal., 2018).

Up to now, most publications predicting deleterious
mutations in plants use sequence conservation methods that
is mostly due to lack of well-annotated datasets of deleterious
and neutral mutations in these organisms. However, recently,
Kono et al. (2016) have assembled a validated database of 2,910
function-altering mutations in Arabidopsis that opens the way
for development of machine learning methods specifically
tailored for plants. Here, we developed the Random Forest
classifier that being tested on two plant species - Oryza
sativa and Pisum sativum - for which the sufficient number
of neutral and functional mutations are known - showed
substantially better performance than PolyPhen-2. We also
attempted to improve our classifier using the approaches of
Transfer learning, as this technique could provide knowledge
transfer from one species for which a lot of information is
available to a close species with limited information. Finally,
we validate this classifier using population data on single
nucleotide allele frequency available for Cicer arietinum
(Plekhanova et al., 2017). We believe our classifier will be
helpful in plant research for prioritizing mutations in QTL
and GWAS support intervals for functional validation, for
developing GRN-based models to solve the genotype-to-
phenotype problem, as well as for improvement of breeding
programs.
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MATERIALS AND METHODS

Arabidopsis Training Database

The list of amino acid substitutions in Arabidopsis thaliana
proteins was obtained from the database created by Kono et al.
(2018). The database consists of 13,707 replacements available,
of them 4,409 were labeled mutations in 994 proteins: 2,894
deleterious and 1,515 neutral. The protein sequences were
downloaded from “The Arabidopsis Information Resource.”

Oryza sativa and Pisum sativum Test
Datasets

The sets of deleterious mutations in rice (O. sativa) and pea
(P. sativum) were extracted from the UniProt mutation database
(The UniProt Consortium, 2017). To construct a set of neutral
mutations in rice and pea BLASTp program (Altschul et al.,
1997) was used to align each protein sequence against SwissProt
sequence database (Bairoch, 1996) and proteins with more than
95% identity to a query sequence were selected. At the next
step, the selected sequences were multiply aligned with Clustal
Omega (Sievers and Higgins, 2014) and a set of neutral mutations
was generated under the following rule. We consider amino
acid substitutions without any known phenotype, not present
in a continuous block of substituted residues (i.e., are isolated)
and independent (i.e., there were no other substitutions in
the same sequences of alignment). This rule makes it possible
to avoid the phenomenon of correlated mutational behavior
between columns in multiple sequence alignment (Kowarsch
et al., 2010). Besides we consider only alignment columns that
have no more than one substitution. To balance the datasets,
neutral mutations were randomly downsampled so that their
number was equal to the number of deleterious mutations.
Overall, the dataset for rice contained 764 mutations in 400
proteins (by 382 deleterious and neutral); the pea dataset
contained 136 mutations in 60 proteins (by 68 deleterious and
neutral).

Cicer arietinum Target Dataset

433 Cicer arietimum landraces from N. I. Vavilov All-Russian
Institute for Genetic Resources (VIR collection) were genotyped
by GBS sequencing and variants were called and filtered following
standard criteria; overall 56855 SNPs were identified (Plekhanova
etal., 2017). Identification of SNPs in protein coding regions and
classification of those into synonymous and non-synonymous
classes was done with SnpEff tools (Cingolani et al, 2012):
3023 synonymous and 3467 non-synonymous replacements were
determines within 2569 proteins.

Classifier Features

The set of classification features was aggregated by different
methods. To extract a set of features characterizing substitutions,
the PolyPhen-2 web service (Adzhubei et al., 2010) was used.
Additional servers and sources of information were also involved,
such as the PfamScan (Finn et al., 2014) and the PCI-SS
(Green et al., 2009). The former was used to check whether
the amino acid substitution locates within a protein domain

of the Pfam database. Features obtained with the latter service
incorporate information about the secondary structure of the
protein in the loci of the substitution. Since information about
the three-dimensional structure of a target protein is not always
known, these features played the role of alternative structural
characteristics. PCI-SS server indicates a protein secondary
structure — a-helix, B-sheet, or non-regular structure — which
contains the substitution of interest, and also provides three
quantitative characteristics about the structural state of the target
amino acid in the protein based on the mean-square error
between the models considered in the PCI-SS algorithms. To
evaluate the physicochemical nature of amino acid substitutions,
several measures were used: the Grantham distance (Grantham,
1974), the Sneath index (Sneath, 1966), the Epstein’s coefficient of
difference (Epstein, 1967), and the Miyata distance (Miyata et al.,
1979). The quantitative evaluation of the amino acid substitution
by the matrix of BLOSUMS62 substitutions was added as an extra
feature (Henikoff and Henikoff, 1992).

Two additional features have been constructed that take into
account the amino acid context around the mutation position.
The first feature was defined as the mean distance over the
Grantham matrix between the wild-type amino acid in the
mutation position and each of the two neighboring amino
acids. The second feature was calculated in the same way but
considering two amino acids from a mutant position at a distance
of one. The construction of these features was based on the
following hypothesis: if the amino acids that are very different
in their physicochemical properties are next to each other, this
is most likely justified by the constraints on functions to be
performed. Therefore, the more physicochemical differences are
in the amino acid position from its context, the more likely it
is for the mutation in the position of this amino acid to be
harmful.

Classifiers
To solve the classification problem of mutations to deleterious
versus neutral, three classifiers were tested: Support Vector
Machines with a linear kernel (Linear SVM), Support Vector
Machines with a Gaussian kernel (Gaussian SVM) (Cristianini
and Shawe-Taylor, 2000), and Random Forest (RF) (Breiman,
2001). The Linear SVM method is based on the search for a
separating hyperplane with the maximum gap between the data.
To use a non-linear separation of classes, the Gaussian SVM was
examined; it utilizes the Gaussian kernel instead of the scalar
product in the Linear SVM (Cristianini and Shawe-Taylor, 2000).
The RF uses the ideas of bagging, or Bootstrap Aggregating (a
composition of independent classifiers, in this case, of decision
trees) and the method of random subspaces (description of
objects using subspaces of the feature space) (Breiman, 2001).
The choice of hyperparameter values for classifiers was carried
out on the Arabidopsis dataset. For each classifier, the traditional
procedure - grid search with fivefold cross-validation — was
performed to find the optimal values of hyperparameters. These
values are usually selected as the values that provide the
highest cross-validation score that leads to the preventing of
overfitting. Further, the optimal hyperparameters were utilized
while classifiers’ training. One might see that the overfitting effect
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was not observed (Supplementary Figure S1). Cross-validation
was performed with tools from the scikit-learn Python module'.

The accuracy was chosen as the characteristic by which the
best values of hyperparameters were selected, as calculated by
the following formula: Accuracy = (TP + TN)/N, where N is the
sample size for which the classification was made, and TP and TN
are the numbers of correctly defined deleterious mutations and
neutral ones, respectively. To select the best classifier, the data for
A. thaliana were divided into training and validation sets (3409
and 1000 samples, respectively). Classifiers were first trained, and
then the classification on the validation set was performed. We
used Linear SVM, Gaussian SVM, and RF methods from scikit-
learn Python module (see footnote 1); the pipeline for tuning,
training and testing the classifiers is available at the GitHub
repository https://github.com/kovmax/DelMut.

Transfer Learning

The transfer learning (TL) is a machine learning technique
that improves a model trained on the target data by transfer
knowledge from the related and usually larger source data (Pan
and Yang, 2010). In our study, we applied TL for training
classifiers to predict deleterious mutations in rice and pea
datasets (target data) based on the knowledge about deleterious
mutations in A. thaliana dataset (source data). We examined the
Transductive Transfer Learning which assumes that the source
data is labeled (classes of samples are known) but the target data is
not and, accordingly, labels for the target data were not used until
final validation of the predictions. To implement Transductive
TL we assign a weight (W) for each sample from the source data,
which inversely depends on the distance in the feature space from
this sample to the mean of the target data domain:

W = exp (—||x,-s — mt||2)

where xl-S is i-th sample from the source data, m' represents mean
values of the target dataset features (Pan and Yang, 2010; Lapin
et al.,, 2014). The Transductive TL classifier predicts classes of
the target dataset and learns on the weighted source data: the
closer a sample form the source data to the target dataset, the
more significant it is for training. We applied the Transductive
TL technique to Linear SVM, Gaussian SVM, and RF classifiers
with hyperparameter values estimated for these classifiers without
TL. Methods were implemented with tools of scikit-learn Python
module (see footnote 1); all datasets and scripts are available at
the GitHub repository https://github.com/kovmax/DelMut.

RESULTS

Feature Extraction

To develop a method for predicting damaging missense
mutations in plants we use machine learning approach and three
annotated datasets of non-synonymous deleterious and neutral
mutations in A. thaliana, O. sativa, and P. sativum (see Materials
and Methods). The method employs classification algorithms

Uhttp://scikit-learn.org

and therefore we need to characterize the datasets with a set of
features able to discriminate classes. In total, 18 features were
selected characterizing the impact of substitution of the wild-
type allele by mutant allele on protein sequence and structure. As
Figure 1 shows the distributions of all the features differ between
subsets of neutral and deleterious mutations in A. thaliana that
points on their utility for discrimination between these subsets.

Best Classifier for the Arabidopsis

thaliana Dataset

The dataset was divided into training and test samples. The test
sample was randomly determined, containing 357 neutral and
643 deleterious mutations, and was used to compare the accuracy
of the predictions of the four classifiers (PolyPhen-2, Linear
SVM, Gaussian SVM, and Random Forest). The results (see
Table 1) showed that all the classifiers — Linear SVM, Gaussian
SVM, and Random Forest — were more accurate than Polyphen-
2, and the most accurate one was Random Forest, it had the
highest accuracy and AUC values (ROC-curves are presented in
Supplementary Figures S2-S4) and the lowest False Negative
and False Positive Rates.

Classification of Oryza sativa and Pisum
sativum With and Without Transfer

Learning

Each classifier was trained on Arabidopsis training samples
and applied for prediction in two settings: direct prediction
or prediction additionally involving Transfer Learning. Since
there is an element of randomization in the Random Forest
classification method, estimates for this method were obtained by
choosing the best prediction of 300 trained classifiers (Figure 2).
By comparing the predicted and annotated class values for the
rice and pea mutations, we concluded that the best of the
proposed classifiers is Random Forest without the addition of
Transfer Learning (Table 2). Predictions of PolyPhen-2 were
better only by the criterion False Positive rate, but by the
criterion False Negative Rate was significantly underperforming.
Overall the Random Forest classifier makes fewer errors in the
predictions of a truly deleterious mutation. The prediction of
classifiers in the modes without and with Transfer Learning did
not exhibit significant differences. Moreover, for the best Random
Forest classifier the mode with Transfer Learning turned out to be
less accurate.

Classification of Non-synonymous

Mutations in Cicer arietinum

To test whether or not our classifiers reasonably perform across
different angiosperm species, we chose to annotate deleterious
mutations in chickpea, C. arietinum. Classification has been
pursued with both PolyPhen-2 and the Random Forest classifier
demonstrated the best discriminating ability on rice and pea
datasets (see Figure 2). One may observe (Table 3) that there
is a general correspondence between annotations, with 1923
designated as neutral and 851 as deleterious by both classifiers.
However, there were also appreciable differences, as may be
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Grantham Sneath Epstein Miyata Blo62
pph2_dScore pph2_Score1 pph2_Nobs pph2_ldPmax pph2_ldQmin
helix strand E_dist T_dist H_dist
Neutral in Arabidopsis
O Deleterious in Arabidopsis
Neighb1 Neighb2 PfamHit
FIGURE 1 | Distribution of features used to characterize the impact of amino acid substitutions in protein sequence for subsets of neutral and deleterious mutations
in Arabidopsis thaliana. The first row of features — Grantham, Sneath, Epstein, Miyata, and Blo62 (BLOSUM62) — represents distributions of substitution scores
based on five corresponding distance matrices. The second row represents the scores obtained with the PolyPhen-2 service: pph2_Score1 and pph2_dScore
reflect PSIC scores; pph2_ldPmax, pph2_ldQmin, and pph2_Nobs represent specific features based on the multiple protein alignments. The third row contains
features of the secondary protein structure: two features of belonging to helix or strand (helix, strand), and three scores obtained with PCI-SS service (E_dist, T_dist,
H_dist). The last row includes two features of the amino acid context around the substitution of interest (Neighb1, Neighb2) and belonging to known Pfam domains
(PfamHit). The detailed explanation of features are presented in the Supplementary Table S1.

TABLE 1 | Performance of four classifiers: PolyPhen2, Linear SVM, Gaussian SVM and Random Forest on the Arabidopsis thaliana dataset.

PolyPhen-2 (PPh2)

Linear SVM (ISVM)

Gaussian SVM (gSVM) Random Forest (RF)

Neutral Deleterious Neutral Deleterious Neutral Deleterious Neutral Deleterious
Actual classes Neutral 203 [N 29 61 301 56 306 51
Deleterious  [IG0N 543 70 573 74 569 60 583
Accuracy 0.836 0.869 0.870 0.889
False Positive Rate (FPR) 0.179 0.171 0.157 0.143
False Negative Rate (FNR) 0.156 0.109 0.115 0.093
Sensitivity 0.844 0.891 0.885 0.907
Specificity 0.821 0.829 0.843 0.857
AUC 0.907 0.937 0.935 0.952

observed by alternative classifications for 517 mutations. Overall,
concordance between two classification results was 84.3%.

Due to the lack of annotated missense mutations in chickpea
only circumstantial evidence could be used to demonstrate
the validity of predictions in this species. To this end, we
analyzed the population frequencies of classified polymorphisms
in the dataset of 433 chickpea accessions (see Material and

Methods). We have calculated the frequencies of synonymous
(that are mostly neutral), predicted neutral and predicted
deleterious mutations. Due to a large number of missed data,
only those genome positions that were called in at least 300
accessions were retained for analysis. Overall, there were 1028
non-synonymous (672 neutral and 356 deleterious) and 901
synonymous polymorphisms (Table 4).
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TABLE 3 | Comparison of the number of deleterious and neutral mutation
. predicted by PolyPhen-2 and Random Forest classifier in Cicer arietinum.
T Frequency
= @5 Random forest
0870- s ° . . @
) ® - ® s Neutral Deleterious
. ] L]
o @ » PolyPhen-2 Neutral 1923 239
0.865- @ L ® ® @
g ® O Y © - Deleterious 278 851
§ e ® ® °
[ [ ] ®
d.isg e e @ ® TABLE 4 | Mean ffrequencies of non-synonymous deleterious and neutral
® o @ ® " mutations, as well as synonymous mutations in chickpea dataset.
&) @ [}
~ ® Mean frequency
s & ® * Deleterious 0.050
' ' ' Neutral 0.097
0.91 0.92 0.93
Pisum Synonymous 0.109
FIGURE 2 |’CIass‘|f|cat|9n accuracy of 300 Rgndom Forgst cIass@ers 'Ieamed TABLE 5 | Results of the Wilcoxon rank sum test for mutation frequencies
on the Arabidopsis thaliana dataset and applied to classify mutations in pea comparison
and rice. Some of the 300 classifiers demonstrated the same values of P )
accuracy on bgth Oryza sat/valr land E/sum sativum. Size and color of circles Neutral Synonymous
show frequencies of the classifiers with the same performance. The accuracy
value for the best classifier is emphasized with red color. Deleterious 0.036 (<0.05) 0.003 (<0.05)
Neutral 0.279 (>0.05)

Applying the Wilcoxon rank sum test with continuity
correction, we showed that there was no statistically significant
difference between frequencies of neutral and synonymous
substitutions; however, the frequency of deleterious mutations is
statistically significantly lower than the frequency of mutations
from other classes (one sided test, P < 0.05) (Table 5).
These results are fully consistent with previous studies on
deleterious mutations in other species (Giinther and Schmid,
2010; Mezmouk and Ross-Ibarra, 2014) and could be explained
by the action of weak purifying selection that sweeps deleterious
mutations away. We conclude that our classifier appears to be
working across a broad range of angiosperm species.

DISCUSSION

Here we aimed to develop a classifier specifically tailored for
plant datasets that classifies coding non-synonymous mutations

into neutral versus functionally deleterious. We have trained
the Random Forest classifier in the deleterious mutations in
A. thaliana using 18 selected features and accomplished a
substantially better performance than PolyPhen-2 for two plant
species — O. sativa and P. sativum - for which the sufficient
number of neutral and functional mutations is known. The
accuracy of our classifier based on Random Forest approach
versus PolyPhen-2 was 87% versus 81% for rice and 93% versus
90% for pea. The new classifier also exhibited the superior balance
of type I versus type II errors.

We also attempted to improve our classifier using the
approaches of Transfer Learning (TL). This has been justified
by the following considerations. The task of calling mutation
as neutral and deleterious can be set as a classification
problem and solved by various methods of machine learning.
In mammals, it appeared that the same nucleotide might be

TABLE 2 | Testing classifiers learned on Arabidopsis dataset to discriminate deleterious and neutral mutations in rice and pea.

Oryza sativa

Pisum sativum

Accuracy FPR FNR AUC Accuracy FPR FNR AUC
ISVM 0.848 0.144 0.160 0.918 0.912 0.103 0.074 0.971
gSVM 0.842 0.164 0.152 0.890 0.912 0.088 0.088 0.955
RF 0.873 0.115 0.139 0.928 0.926 0.074 0.074 0.981
ISVM + TL 0.848 0.144 0.160 0.918 0.912 0.108 0.074 0.971
gSVM + TL 0.803 0.285 0.110 0.902 0.904 0.147 0.044 0.960
RF + TL 0.861 0.128 0.149 0.926 0.919 0.088 0.074 0.979

PPh2, PolyPhen-2; ISVM, linear SVM,; gSVM, Gaussian SVM; RF, random forest; TL, transfer learning.
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deleterious in one species but neutral in another (Kondrashov
et al., 2002). Accordingly, training might have to be separately
executed species by species. TL appears to be a suitable
methodology to implement species-specific training as it could
provide knowledge transfer from one species for which a lot
of information is available to a close species with limited
information. However, here we failed to improve the classifier
performance with TL. In fact, the performance of our best
Random Forest-based classifier dropped between 1% and 2%
for both species, O. sativa and P. sativum. The reason why
TL does not improve classifier performance is not clear. There
might be unknown technical reasons, but also some biological
considerations. It is known, for instance, that alleles annotated
as deleterious in humans at about 15% of cases correspond to
normal alleles in other mammals (Kondrashov et al., 2002).
Which is to say, as GRNs and proteins diverge between species,
the functional importance of different amino acids may also
diverge. This might partially be explained by a highly epistatic
landscape of amino acid substitutions, as best documented for
green fluorescence protein (Sarkisyan et al., 2016). When species
with diverged GRNs and proteins mate, their progeny suffer from
F1 incompatibility and F2 hybrid breakdown because of epistatic
incompatibilities (Turelli and Orr, 2000; Rieseberg and Willis,
2007; Coyne, 2016). It is rather interesting to note that the hybrids
between different angiosperm species are much more frequently
viable, even at higher phylogenetic distances, than mammals
are. In fact, rather than suffering from incompatibilities, plant
hybrids may exhibit remarkable hybrid vigor (Garcia et al., 2008;
Charlesworth and Willis, 2009) raising a question whether the
patterns of GRN and protein divergence in plants are functionally
equivalent to those in mammals. It might imply that amino
acids substitutions in plant proteins and GRNs are less epistatic,
which is to say whether an amino acid substitution is deleterious
or not could only weekly change between angiosperm species,
unlike mammals. If so, then TL should result in substantial
improvements when applied to mammals but not angiosperms.
Of course, at this moment, this consideration is nothing more
than speculation, but the one deserving attention and specially
designed analysis to try the TL methodology in mammals.

While somewhat disappointing, that the classifier works well
for different species without the need for species-specific learning
also has positive aspects — the classifier does not have to be
retrained before applying across angiosperms. To test whether
our classifier would work with a new species, we utilized the data
on population polymorphisms available for C. arietinum. Our
hypothesis was that if we annotate these chickpea polymorphisms
the population frequency of neutral non-synonymous positions
would be identical to the frequencies of synonymous mutations,
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DNA methylation plays a critical role in tumorigenesis through regulating oncogene
activation and tumor suppressor gene silencing. Although extensively analyzed, the
implication of DNA methylation in gene regulatory network is less characterized. To
address this issue, in this study we performed an integrative analysis on the alteration
of DNA methylation patterns and the dynamics of gene regulatory network topology
across distinct stages of stomach cancer. We found the global DNA methylation patterns
in different stages are generally conserved, whereas some significantly differentially
methylated genes were exclusively observed in the early stage of stomach cancer.
Integrative analysis of DNA methylation and network topology alteration yielded several
genes which have been reported to be involved in the progression of stomach cancer,
such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST. Finally, we demonstrated
that inhibition of SST promotes cell proliferation, suggesting that DNA methylation-
associated SST suppression possibly contributes to the gastric cancer progression.
Taken together, our study suggests the DNA methylation-associated regulatory network
analysis could be used for identifying cancer-related genes. This strategy can facilitate
the understanding of gene regulatory network in cancer biology and provide a new
insight into the study of DNA methylation at system level.

Keywords: DNA methylation, gene regulation network, stomach cancer, tumor stages, system level

INTRODUCTION

DNA methylation plays a critical role in tumorigenesis through regulating oncogene activation
and tumor suppressor gene silencing (He et al., 2008), and has raised extensive attention in the past
decade. It has been shown that tumor initiation and development are associated with aberrant DNA
methylation patterns, as documented in stomach cancer development (Tahara and Arisawa, 2015;
Yamamoto et al., 2016). Aberrant DNA methylation pattern is the hallmark in the cancer genome
(Baylin et al., 2000; Bergman and Cedar, 2013) and is involved in malignant progression (Jones
et al., 2013). Although critically involved in malignancy, the implication of DNA methylation in
tumorigenesis at system level is less characterized.
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DNA Methylation Associated Networks

The gene regulatory network based analysis is regarded as a
powerful way to understand the mechanism of tumorigenesis
at system level (Kreeger and Lauffenburger, 2010), and various
robust machine learning methods based gene regulatory network
inference algorithms were proposed for such analysis (Haury
et al, 2012; Slawek and Arodz, 2013; Wu et al., 2016). On
the other hand, the rapid development of deep sequencing
technologies promotes the generation of a tremendous amount
of sequencing data, and an increasing number of network-based
methods have been recently applied to understand the molecular
mechanism of tumor formation and progression (Anglani et al.,
2014; Yang et al., 2014; Bicker et al., 2015).

To further investigate the role of DNA methylation in
tumorigenesis at system level, in this study we analyzed the DNA
methylation-associated the topology dynamics of gene regulatory
network in stomach cancer. We observed that although the
DNA methylation patterns are generally conserved, the locus-
specific DNA methylation patterns can be identified, especially in
the early stage. Comparison of the topology of gene regulatory
networks derived from different stages yielded several genes,
such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST, of
which the regulatory relationship is found to be most severely
disrupted. To evaluate the biological relevance, we performed
siRNA assay against SST in gastric epithelial cell line GES-1
and found that down-regulation of SST significantly promotes
gastric cell proliferation. Collectively, these results suggest that
the integrative analysis of DNA methylation and gene regulatory
network across different stages of stomach cancer would be
used to identify genes involved in stomach cancer initiation and
development, and provides a new insight into the understanding
of DNA methylation in carcinogenesis at system level.

RESULTS

Probe-Gene Pairs Assignment
The DNA methylation datasets downloaded from the Cancer
Genome Altas (TCGA) data portal were generated using two
MMlumina Infinium DNA methylation bead arrays (HM27 and
HM450). Considering the incompleteness of DNA methylation
data, we focused our study on the probes located in the gene
promoter regions. Technically, more than one probes were
generally designed for a given gene promoter region and it
remains unclear which probe-hit methylated region actually
affect the expression of the target gene. To address this issue, the
distance and correlation criteria were used to assign the proper
probes to a gene (See Materials and Methods for further details).
It has been well recognized that DNA hyper-methylation at
the promoter region is associated with gene suppression (Bell
et al., 2011; Jones, 2012). Due to the unavailability of DNA
methylation data and the matched RNA-seq data in normal
tissues, we examined the correlation between the pair of the
expression level and the DNA methylation level of probes located
in the promoter region of a given gene in each tumor stage.
Not surprisingly, we observed that negatively correlated pairs
outnumber the positive correlated ones (Figure 1A). Particularly,
in the significantly correlated pairs we found that almost all

probe-gene pairs were negatively correlated (Figure 1B). The
probe-gene pair was assigned if the DNA methylation level of the
probe and expression level of a gene are significantly negatively
correlated in one of the four tumor stages. With these criteria,
10,777 probe-gene pairs, which consist of 9,830 probes and 7,546
genes, were defined and then used for the downstream analysis.

Global Conserved and Locus Specific
DNA Methylation Patterns Across

Different Stomach Cancer Stages

With the selected probe-gene pairs, we firstly examined the global
methylation patterns across all stomach cancer stages and the
normal samples. We classified the probes into unmethylated,
hemi-methylated and fully methylated groups using the approach
similar to Lokk et al. (2012). To determine proper thresholds,
we examined the distributions of the methylation level in all
five phenotypes (Figure 2A). We found that the distributions
of the methylation level in all five phenotypes are very similar.
More than half of the probes were unmethylated and only about
15% probes were fully methylated in all samples. The dynamics
in the methylation patterns across the five phenotypes was also
analyzed. We found that the conservation between every two
phenotypes was higher than 80% (Figure 2B), indicating that the
DNA methylation patterns are globally conserved across all the
five phenotypes. Additionally, we found that DNA methylation
patterns are relatively more conserved in tumor stages.

Although the overall patterns are considerably conserved, the
phenotype-specific methylation presumably plays an important
role in initiation and progress of stomach cancer. To test
this presumption, we examined the presence of both the
unmethylated and fully methylated probe-linked genes in the five
phenotypes. Interestingly, we found that both the unmethylated
and fully methylated probe-linked genes in normal samples were
significantly more than those in tumor samples (Figure 3). We
next performed gene ontology (GO) analysis of these genes with
DAVID (Huang et al., 2009a,b). The results showed that the fully
methylated probe-linked genes in normal samples were enriched
in the GO items of defense response to bacterium and innate
immune response (Supplementary Table S1), including LPO
and S100A8 which have been reported to be activated in the
H. pylori-infected gastric mucosa (Semper et al., 2014; Zhuang
etal., 2015).

To further understand the biological relevance of the DNA
methylation in different stages of stomach cancer, we compared
the samples in stages I-IV with the normal samples and identified
the significantly differentially methylated probes. We found
1,059, 716, 673 and 635 genes linked to significantly differentially
methylated genes in stages I-IV samples, respectively. The top
20 significantly differentially methylated probe linked genes
with largest positive and negative mean differences were shown
in Figure 4, in which we found that several oncogenes and
tumor suppressor genes were at the top of the lists (positive
and negative directions, respectively) in all four tumor stages,
including ITGA4, FGF2, FLI1, EGFR, ERBB2, VIM, and DAPKI.
ITGA4 encodes a member of the integrin alpha chain family that
may play a role in cell motility and migration, and the promoter
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FIGURE 1 | Distribution of correlations between the probe methylation level and the expression of target genes. (A): Distribution of spearman correlation of all
potential probe-gene pairs in the four stomach cancer stages. (B): Distribution of spearman correlation of all significantly correlated potential probe-gene pairs in the
four stomach cancer stages.
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FIGURE 2 | Global view of methylation patterns in all the five types. (A): The distribution of methylation level across all the five phenotypes, where the two red lines
represent the thresholds used for dividing the probes into three groups. (B): The conservation between every two phenotypes.

of ITGA4 was reported to be hyper-methylated in various cancers, GO analysis (Supplementary Table S2) shows that the
such as colorectal cancer (Gerecke et al., 2015), breast cancer ~commonly hyper-methylated probe linked genes are mainly
(Lian et al., 2012) and gastric cancer (Kim et al., 2009). DAPKI,a involved in carcinogenesis related biological processes, such
positive mediator of gamma-interferon induced programmed cell as cell motion, cell death and cell migration. While the
death, was reported to be fully hypo-methylated or up-regulated commonly hypo-methylated probe linked genes are mainly
in several types of cancer, including fistula associated mucinous involved in development and differentiation biological
type anal adenocarcinoma (Sen et al, 2010), nasopharyngeal processes (Supplementary Table S3). We also found some
carcinoma (Luo et al,, 2011) and gastric cancer (Zhang et al., genes exclusively present in stage I, suggesting that they
2006). are presumably associated with the early stage of stomach

The Venn diagram of genes with significantly differentially ~cancer. The GO analysis results revealed that both the
methylation was shown in Figure 5. We found that most specifically hyper-methylated genes and the specifically
genes were shared by stages II — IV except in stage I. The hypo-methylated genes are involved in cell adhesion and
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FIGURE 3 | Venn diagrams of genes linked to the fully and unmethylated probes. (A): The Venn diagram of fully methylated probe linked genes with respect to the
five phenotypes. (B): The Venn diagram of unmethylated probe linked genes with respect to the five phenotypes.
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FIGURE 4 | Differential methylation analysis between four tumor stages and the normal phenotype (A): Stage | vs. Normal; (B): Stage Il vs. Normal; (C): Stage IIl vs.
Normal; (D): Stage IV vs. Normal. Left: Mean difference between the methylation level in the tumor samples and the normal samples. Right: Distributions of
methylation level, with black vertical lines showing medians. Top 20 of the largest positive and negative mean differences with an adjusted p-value less than 0.05 are
shown.

FIGURE 5 | Venn diagram of genes linked to the differentially methylated probes in stage | to IV compared to the normal phenotype. (A): The Venn diagram of genes
linked to the hyper-methylated probes. (B): The Venn diagram of genes linked to the hypo-methylated probes.
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FIGURE 6 | In-degree of each target gene in each network pair. The red dots represent the retained genes that satisfy the assumption that hyper-methylation may
cause loss of regulation and hypo-methylation may cause its gain. The blue dots represent genes discarded in the further analysis.
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transmembrane transport. The difference is that the genes linked
to the specifically hyper-methylated probes are particularly
involved in eating behavior and positive regulation of
appetite (Supplementary Table S4), while the genes linked
to the specifically hypo-methylated probes are particularly
involved in immune response, response to bacterium and
negative regulation of Wnt signaling pathway (Supplementary
Table S5).

Regulation Gain or Loss Induced by DNA
Methylation Alteration

DNA methylation is one of the key epigenetic mechanisms
involved in regulation of gene expression. To further understand
the role of DNA methylation alteration during the stomach
cancer development, we constructed a DNA methylation
associated gene regulatory network for each phenotype and
analyzed the topology differences among these networks.

To examine the regulation alteration affected by the DNA
methylation changes, we screened the target genes based
on the assumption that the hyper-methylation leads to the
reduction of affinity between the TFs and the binding regions
and then may cause the loss of regulation while the hypo-
methylation causes its gain (Yao et al,, 2016). We calculated
in-degree for each target gene and the genes with in-
degree increase linked to hypo-methylated probes (in-degree
decrease genes linked to hyper-methylated probes) were retained.
The in-degree of each target gene in each network pair

were shown in Figure 6. After filtering, 57%, 52%, 59%,
and 54% of target genes were retained in stages I-IV,
respectively.

To further investigate the regulation alteration in four tumor
stages compared to the normal phenotype, we constructed
the differential regulatory networks by subtracting the normal
weight matrix from the tumor weight matrixes. The regulation
relationship with the absolute weight difference ranking top
1,000 was regarded as true alterations. Finally, for each
tumor stage we obtained a differential regulatory network
consisting of 1,000 edges that point to 172, 172, 189, and
176 target genes in the four tumor stages. The numbers of
edges pertaining to gain or loss of regulation were listed
in Table 1, in which we observed that the gain number
is larger than the loss number in each of the four tumor
networks.

For the differential regulatory network in stages I-IV, we
ranked the target genes according to the number of gained or
lost regulation, respectively. We found several genes were at the
top in all the tumor stages. The top 10 target genes (listed in

TABLE 1 | Numbers of gain and loss of regulation in each of the four tumor related
networks.

Stage | Stage Il Stage Il Stage IV
Loss 308 408 464 419
Gain 692 592 536 581
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Supplementary Table S6) with the largest number of regulation
alteration were shown in Figure 7. In these subgraphs we found
that IGF2, ERBB2, and GSTPI rank top in the largest number of
regulation gained in all the four differential regulatory networks,
and MYHI1, SST, and TMEM59 rank top in the largest number
of regulation lost in all the four differential regulatory networks.
IGF2 is an imprinting gene and plays an essential role in the
embryonic development. However, activation of IGF2 stimulates
the proliferation of tumor cells and prevents damaged cells from
being destroyed. It was reported that overexpression of IGF2
plays an important role in carcinogenesis of diffuse type gastric
cancer (Wu et al., 1997). MYH11 belongs to a group of proteins
called myosins, which are involved in cell movement and the
transport of material within and between cells. It was reported
that MYH]11 is not expressed in gastric cancer cell lines (Saeki
et al.,, 2015) and down-regulated MYHII correlates with poor
prognosis in stage II and stage III colorectal cancer (Wang
etal., 2014). These results indicate that the methylation-mediated
network analysis facilitates the identification of the key genes
involved in tumorigenesis.

To evaluate the authenticity of the genes identified through
our network analysis, we performed a siRNA assay against SST
in gastric epithelial cell line GES-1. Comparing with the control,
we found that SST suppression results in an increase of cells
in S and G2/M phases and the decrease of cells in the G0/G1
phase (Figure 8), indicating that SST down-regulation promotes
cell proliferation. From the results, we found that inhibition
of SST promotes cell proliferation, which suggests that DNA
methylation-associated SST suppression possibly contributes to
the gastric cancer progression.

DISCUSSION

It has been recognized that aberrant DNA methylation play an
import role in tumorigenesis. However, the implication of DNA
methylation in gene regulatory network is less characterized.
Thus, we performed an integrative analysis of DNA methylation
and gene regulatory network with the RNA-seq and DNA
methylation data to understand the role of DNA methylation
change in the gene regulatory network alteration across different
stomach cancer stages.

We first assigned a gene with appropriate probes according
to both the location information and correlation relationship.
We found that the DNA methylation pattern was global
conserved across all phenotypes except some locus specific
DNA methylation patterns in the normal phenotype. The
differential methylation analysis was also performed to identify
the significantly differentially methylated genes in each tumor
stage samples. Interestingly, we found more specific alterations
in the stage I phenotype compared to the other tumor stages and
the GO analysis results showed that these genes are particularly
involved in the biological processes closely related to the cancer
initiation.

To identify the gene regulation alteration affected by the
DNA methylation change, we constructed a DNA methylation
associated gene regulatory network in each phenotype and
subtracted the normal network from the four tumor networks,
respectively. The differential network analysis results showed
that the number of regulations gained was larger than that of
regulations lost in each of the four tumor networks. We ranked
the target genes according to the number of altered regulations

Stage |

FIGURE 7 | Subgraphs involving the top 10 target genes with the largest number of regulations gained or lost stages I-IV. The red edges represent the regulations
gained in the tumor phenotype and the green edges represent regulations lost in the tumor phenotype. The larger gray nodes are target genes and the smaller gray
dots are transcription factors involved. The top 4 subgraphs are regulation relationships involving the top 10 target genes with the largest number of regulations
gained; the bottom 4 subgraphs are regulation relationships involving the top 10 target genes with the largest number of regulations lost.
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and obtained several genes that rank top in all the tumor
stages. For example, IFG2, ERBB2, and GSTPI ranked top in
the largest number of regulation gain and MYHI11, TMEM59,
and SST ranked top with the largest number of regulations loss.
To examine the biological relevance of the genes identified, we
selected SST for functional evaluation. We found that inhibition
of SST can significantly promote cell proliferation, which suggests
that down-regulation of SST is involved in stomach cancer
progression.

In brief, our study demonstrated that integrative analysis of
the regulatory network and DNA methylation allows identifying
cancer-related gene. The strategy proposed here provides new
insight into understanding of the role of DNA methylation in
disease at system level.

MATERIALS AND METHODS

Data Collection and Differentially

Methylated Sites Identification

The DNA methylation data, gene expression data and clinical
data were downloaded from TCGA data portal. The DNA
methylation data consist of 302 samples, which were generated
using two Illumina Infinium DNA methylation bead arrays,
HumanMethylation27 (HM7) and HumanMethylation450
(HM450). The HM27 array contains 27,578 probes that target
CpG sites located in proximity to the transcription start sites
and the HM450 array contains 482,421 probes that target CpG
sites throughout the genome. For ease of description, in the
following sections of this article we used probes to represent the
corresponding CpG sites.

As neither the HM27 nor the HM45 data contains enough
samples for analysis for each phenotype, we only took probes
located in gene promoters into account even though the DNA
methylation of transcriptional enhancers was also reported to
be closely associated with carcinogenesis (Aran and Hellman,
2013). We adopted the strategy mentioned in a previous report
(Bass et al., 2014) to preprocess the DNA methylation. Briefly,

the probes shared by both the HM27 and HM450 platforms were
selected, and the probes that overlap with SNPs, repeat and have
any “NA”-masked data points were removed. The probes that hit
X and Y chromosomes were also removed. After that we obtained
19,736 probes for further analysis. The gene expression data of
272 samples and 26,540 genes were generated using RNA-seq.
The DNA methylation samples and the gene expression samples
were further divided into five phenotypes, which are normal and
tumor stages I-IV, according to the clinical data. Sample numbers
for all phenotype are listed in Table 2.

As we did not expect all cases to be from a single
molecular subtype, and we sought to identify methylation
changes within cases from the same molecular subtype. To
identify the significantly differentially methylated probes, we
excluded the 10% of samples with the lowest methylation and
10% samples with the highest methylation for each probe and the
Wilcoxon Rank Sum test was used to measure the significance.
Probes with a BH-adjusted p-value less than 0.05 and an
absolute methylation difference greater than 0.2 were regarded as
significantly differentially methylated.

Assigning DNA Methylation Sites to the

Target Gene

In general more than one DNA methylation probes of the DNA
array were designed for a given gene promoter region. Thus, it
remains unclear which probes actually affect the expression of
the target gene. To address this issue, we used two criteria to

TABLE 2 | Number of samples in each phenotype for the RNA-seq and DNA
methylation data.

Normal Stage | Stage Il Stage Il Stage IV
RNA-seq 29 35 93 92 23
DNA methylation 27 37 102 111 25
Matched 0 35 93 92 23
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assign the DNA methylation probes for each gene. We initially
assigned a probe to a gene if the probe located in the promoter
region of the gene. The promoter region of a gene is defined
as £2 kb region around the transcription start site of the gene.
The relationship between a probe and a gene is then confirmed
with the aid of gene expression based on the evidence that DNA
methylation can repress the transcription when it occurs in the
promoter region. The samples with matched gene expression
data and methylation data were used for the analysis. For each
candidate, we tested the significance of the correlation between
the DNA methylation level of the probe and expression level of
the gene. The Spearman’s coefficient was used as the measure of
correlation. The correlation significance was obtained with ¢-test
and the t statistic was calculated as:

ra/n—2
=a e
where r is the correlation between the methylation and gene
expression and 7 is the number of samples. The probe-gene pairs
were finally confirmed if the BH-adjusted p-value is less than 0.05
and the correlation less than zero.

DNA Methylation Associated Gene
Regulatory Network Construction

To construct the DNA methylation associated gene regulatory
network, the potential TFs which maybe bind to the DNA
methylated regions should be identified. We first obtained
JASPAR-2014 motif position weight matrices (PWMs) and
ENCODE motif PWMs from the R package motifDb and 2,182
motif PWMs were used for further analysis (ENCODE Project
Consortium, 2004; Mathelier et al., 2014). The potential TFs
bound to each target gene were predicted according to sequence
affinity. We used FIMO (Grant et al., 2011) to scan a £100 bps
sequence around each probe in search for instances of the selected
PWMs. A TF was regarded a potential regulator of a probe-linked
genes if the p-value of its motif is less than 1E-4. However, a high
sequence affinity just indicated that the TF has a high opportunity
to bind to the regulatory region. It was unclear whether the gene
relate to the regulatory element is actually bound by the TF.

To measure the confidence of such regulation relationship, we
assigned a weight to the edge outgoing from a potential TF to
the target gene using our previously proposed gene regulatory
network inference method (Wu et al., 2016) with the RNA-seq
data. Briefly, we assumed that the expression level of target gene
can be formulated by an unknown function of the expression of
TFs. We first solved the individual regression problem with the
guided regularized random forest algorithm, and then a q-norm
normalization was employed to reduce the bias among different
regression results and the final results were obtained through
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Intracellular vesicle trafficking genes, Rab, encoding small GTP binding proteins, have
been well studied in medical research, but there is little information concerning these
proteins in plants. Some sub-families of the Rab genes have not yet been characterized
in plants, such as RabC — otherwise known as Rab18 in yeast and animals. Our study
aimed to identify all CaRab gene sequences in chickpea (Cicer arietinum L.) using
bicinformatics approaches, with a particular focus on the CaRabC gene sub-family
since it featured in an SNP database. Five isoforms of the CaRabC gene were identified
and studied: CaRabC-1a, -1b, -1c, -2a and -2a*. Six accessions of both Desi and
Kabuli ecotypes, selected from field trials, were tested for tolerance to abiotic stresses,
including salinity, drought and rapid dehydration and compared to plant growth under
control conditions. Expression analysis of total and individual CaRabC isoforms in leaves
of control plants revealed a very high level of expression, with the greatest contribution
made by CaRabC-1c. Salinity stress (150 mM NaCl, 12 days in soil) caused a 2-3-fold
increased expression of total CaRabC compared to controls, with the highest expression
in isoforms CaRabC-1c, -2a* and -7a. Significantly decreased expression of all five
isoforms of CaRabC was observed under drought (12 days withheld water) compared to
controls. In contrast, both total CaRabC and the CaRabC-1a isoform showed very high
expression (up-to eight-fold) in detached leaves over 6 h of dehydration. The results
suggest that the CaRabC gene is involved in plant growth and response to abiotic
stresses. It was highly expressed in leaves of non-stressed plants and was down-
regulated after drought, but salinity and rapid dehydration caused up-regulation to high
and very high levels, respectively. The isoforms of CaRabC were differentially expressed,
with the highest levels recorded for CaRabC-17c in controls and under salinity stress,
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and for CaRabC-1a — in rapidly dehydrated leaves. Genotypic variation in CaRabC-1a,
comprising eleven SNPs, was found through sequencing of the local chickpea cultivar
Yubileiny and germplasm ICC7255 in comparison to the two fully sequenced reference
accessions, ICC4958 and Frontier. Amplifluor-like markers based on one of the identified
SNPs in CaRabC-1a were designed and successfully used for genotyping chickpea

germplasm.

Keywords: abiotic stresses, Amplifluor-like SNP markers, bioinformatics, CaRab gene, differential gene

expression, gene isoforms

INTRODUCTION

Plant genomes include a superfamily of genes that encode
small GTP-binding proteins (Guanosine triphosphatases) that
are classified into four groups: Arf, Rab, Ran and Rho; and
an additional Ras-GTP gene group is found only in yeast and
animals (Ma, 2007). Small GTP-binding proteins were first
described in medical research, where the term “Ras” stemmed
from their association with rat sarcoma (Chang et al., 1982;
Bishop, 1985; Chavrier et al., 1990). The remaining three-letter
names are not related in structure or function to the genes but
rather refer to their product or some other feature (Coffin et al.,
1981). Small GTP-binding proteins are known to be involved
in a diverse range of activities in eukaryotes that are vital for
growth, development and repair; from cytoskeletal organization,
vacuolar storage and signaling, to modulation of gene expression
(Takai et al., 2001). The mechanism for the regulation of GTP-
binding proteins is conserved in all organisms and involves
cycling between active (GTP-bound) and inactive (GDP-bound)
forms, so they are often described as “molecular switches” that
are turned “on” or “off” via the hydrolysis of GTP (Marshall,
1993). Activation requires the dissociation of GDP, which can be
either stimulated by a regulatory factor named GEP (GDP/GTP
Exchange Protein) or inhibited by GDI (GDP Dissociation
Inhibitor; Takai et al., 2001; Liu et al., 2015; Martin-Davison et al.,
2017).

Rab proteins, encoded by Rab-GTP genes, are normally
prenylated at their carboxyl terminus. The hydrophobic prenyl-
groups facilitate attachment to membranes and are therefore
integral to the biological role performed by Rab proteins in vesicle
trafficking via endocytic and exocytic pathways between the
endoplasmic reticulum, Golgi membrane network, endosome,
plasma membrane and all intracellular membranes (Alory
and Balch, 2003). Rab proteins are highly conserved across
kingdoms, from yeast to animals and plants (Haubruck et al,,
1987; Marcote et al., 2000), but are most often present as a
small family of highly similar genes. They are divided into
either nine (Ma, 2007) or 18 clades (Agarwal et al, 2009)
based on their structure, with only eight clades represented
in plants. Historically, different nomenclatures were adopted
for identification of Rab genes in plants compared to animals.
For example, in plants, eight capitalized letters from A to H
were used in the names of Rab genes, while the numbers 1
to 11 were applied in human, animal and yeast research. In
the absence of a universal system of nomenclature for Rab
genes and their proteins, a list of all known genes and their

respective identifiers for both nomenclatures is given later in the
text.

The genes for Rab GTP-binding proteins should not be
confused with the similarly named Dehydrin genes in plants,
which are also known as RAB, meaning “Responsive to
ABA” (Abscisic acid). Dehydrins encode proteins belonging
to the large but very different group of Late embryogenesis
abundant proteins, LEA (Hundertmark and Hincha, 2008). For
example, AtfRABI8 (or AtRabl8) was described and studied in
Arabidopsis thaliana in response to various abiotic stresses and
ABA treatment (Lang and Palva, 1992; Rushton et al., 2012;
Hernandez-Sanchez et al., 2017). Despite the identical name,
this gene is neither structurally nor functionally related to the
Rab-GTP genes, and care must be taken to clearly distinguish
between the two. The mixing of these two different types of genes
is unfortunately apparent in recent publications. For example,
Jiang et al. (2017) studied the correctly designated TaRabl8
(=TaRabCl) gene in response to stripe rust in bread wheat, but
this gene was incorrectly compared with RABI8 (Responsive to
ABA) in Arabidopsis, rice and maize. As a result, the Authors
wrongly cited work by Lang and Palva (1992) and others on the
Dehydrin AtRabl8 to support their findings on the sensitivity of
TaRab18 (=TaRabC1) to ABA.

In plants, Rab-GTP genes are reportedly involved in
multiple physiological processes (Borg et al., 1997; Rehman and
Sansebastiano, 2014; He et al., 2018; Lawson et al., 2018) and
are often highly expressed in response to biotic and abiotic
stresses (Marcote et al., 2000; Stenmark and Olkkonen, 2001;
Zerial and McBride, 2001; Rutherford and Moore, 2002; Ma,
2007; Woollard and Moore, 2008; Agarwal et al., 2009). However,
despite the numerous links, little is known about the precise
molecular mechanisms underlying their involvement in plant
stress responses.

One of the first studies to report a link between Rab protein
and abiotic stress was a report by O’Mahony and Oliver (1999)
who found increased transcript levels of the Rab2 gene (otherwise
known as RabB) in the desiccation-tolerant grass Sporobolus
stapfianus in response to dehydration, but decreased transcript
levels after rehydration. This suggested the involvement of
SsRab2 in both the short-term response and later recovery from
desiccation. SsRab2 was found to share 90% similarity to Rab2
proteins found in rice, maize, Arabidopsis, Lotus japonicus and
soybean (O’Mahony and Oliver, 1999). Since that time, links
to various stresses have been established for genes encoding
Rab proteins in numerous plants, and especially in species with
high abiotic stress-tolerance such as Lilium formolongi — LfRabB
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(Howlader et al., 2017), poplar — PtRabE1b (Zhang et al., 2018),
and Mesembryanthemum crystallinum - McRab5b (=McRabF)
(Bolte et al., 2000). Interestingly, many plant species were studied
for RabG genes and their corresponding proteins including the
halophyte species, Aeluropus lagopoides — AlRab7 (=AIRabG)
(Rajan et al.,, 2015) and food grain crop, Pennisetum glaucum -
PgRab7 (=PgRabG) (Agarwal et al., 2008), as well as more stress
susceptible crops such as rice, Oryza sativa — OsRab7 (=OsRabG)
(Nahm et al.,, 2003) and peanut, Arachis hypogaea - AhRabG
(Sui et al.,, 2017), and the model species A. thaliana - AtRab7
(=AtRabG) (Mazel et al., 2004). A comprehensive analysis of
all MpRab genes was reported for the liverwort, Marchantia
polymorpha (Minamino et al.,, 2018).

Rab transcripts are often found to show different responses
to abiotic stresses. For example, in rice, dehydration triggered
a strong increase in OsRab7 (=OsRabG) transcript after 4 h
and then a decrease after 10 h. However, no significant changes
were found in response to cold or salinity stress (Nahm et al.,
2003). Similarly, in the halophytic grass A. lagopoides, AIRab7
(=AIRabG) was upregulated by dehydration, but salinity stress
caused no significant increase in transcript levels (Rajan et al.,
2015). In another halophyte, M. crystallinum, expression of
McRab5b (=McRabF) was higher after 2 h and continued to
rise over 3 days of very strong salt stress (400 mM NaCl), but
wilting or osmotic stress triggered no change in expression (Bolte
et al., 2000). These differences obviously reflect various roles of
the intracellular membrane system to abiotic stresses and may
provide the key to uncovering the precise molecular mechanisms
underlying differential plant susceptibility or tolerance to an
environmental stress.

A number of studies have used a transgenic approach to
shed light on the mechanisms explaining the link between Rab
proteins and plant stress and to explore how Rab proteins
could play a role in the breeding of more stress-tolerant crops.
For example, Mazel et al. (2004) constitutively overexpressed
AtRabG3e (=AtRab7) in Arabidopsis. The transgenic plants
accumulated more sodium in vacuoles and showed greater
tolerance to salinity and osmotic stress. Evidence was also found
for increased endocytosis in roots and leaves and entry of
Reactive oxygen species into the cell to trigger signaling and
subsequent activation of stress tolerance mechanisms (Mazel
et al., 2004; Baral et al., 2015). AhRabG, OsRab7 (=OsRabG)
and OsRabl1 (=OsRabA) were also overexpressed in transgenic
peanut and rice, respectively, producing plants that showed
relatively higher salinity tolerance compared to wild-type plants
(Peng et al.,, 2014; Sui et al,, 2017; Chen and Heo, 2018). In
transgenic peanut plants, of 132 genes differentially expressed,
most were identified as transcription factors (TF) relating to
salinity tolerance (Sui et al., 2017).

The aim of this study was to identify and analyze a possible
candidate gene involved in the tolerance to drought, salinity
and rapid dehydration in chickpea, C. arietinum, a species that
is becoming increasingly popular as a cash crop in agricultural
areas with the requirements for moderate tolerance to high
temperatures, drought and salinity stress during the growing
season. A candidate gene CaRabCl, belonging to the family
of Rab-GTP genes, was identified from an SNP database using

bioinformatic and molecular genetic analyses. Currently, the
only report concerning chickpea Rab-GTP genes was published
by Munoz et al. (2001), who identified a Rab-specific GDI
in chickpea seedlings showing 96% homology to MsRablIf
(=MsRabG), a GDI in Medicago truncatula (Yaneva and Niehaus,
2005). Our study therefore represents the first report of the Rab-
GTP family of genes in C. arietinum. We present the results of
bioinformatic analyses of the identified genes and tests conducted
to assess the expression of all isoforms of the CaRabC gene family
in response to salinity, drought and rapid dehydration in selected
chickpea genotypes. Amplifluor-like markers based on one of
the identified SNPs in CaRabC-1a were used for genotyping of
chickpea germplasm.

MATERIALS AND METHODS

Plant Material

A germplasm collection comprising 250 chickpea (C. arietinum
L) samples from the ICRISAT Reference set plus local accessions
were tested over 3 years in field trials in Northern and
Central Kazakhstan. Six accessions were selected during field
trials for further molecular analyses, as listed in Table 1. The
first accession, cv. Yubileiny, originated from Krasnokutskaya
Breeding Station, in the Saratov region (Russia), and is used as
a Standard for local field trials with chickpea accessions. The
remaining five chickpea lines were selected from the original
230 collected in the ICRISAT Reference set, to represent diverse
gene-pool sources.

Identification of the Gene of Interest
Using Bioinformatics and Molecular
Phylogenetic Comparative Analysis

Bioinformatics and systems biology methods were applied in
this study to identify a target gene or “Gene of Interest”
(Gol) with a potential role in tolerance to abiotic stresses
in chickpea. Initially, the SNP database for C. arietinum L.
was used to search and select one suitable SNP with a short
fragment of sequence for further study. The full-length nucleotide
sequence of the Gol and its corresponding polypeptide sequence
was retrieved from the same database and used for both
BLASTN and BLASTP in NCBI and in GenomeNet Database
Resources, hosted by Kyoto University, Japan®. All chickpea
gene sequences with KEGG and NCBI identification and the
encoded proteins were downloaded from GenomeNet and NCBI
databases, while chromosome locations were checked using LIS,
Legume Information System database’. The A. thaliana genes
displaying the highest level of similarity to each Gol within the
gene family were identified using alignments from the same
database.

Multiple sequence alignments of nucleotide sequences for
the Rab family of genes were conducted in CLUSTALW

https://www.ncbi.nlm.nih.gov/snp
Zhttps://www.genome.jp/tools/blast
3https://legumeinfo.org/organism/Cicer/arietinum
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TABLE 1 | List and short description of six selected chickpea germplasm accessions used for molecular analyses.

Code Name Cultivar/Landrace/Line Ecotype Origin
Yub Yubileiny Cultivar Kabuli Russia
ICC-4841 P6615 Landrace Kabuli Morocco
ICC-7255 NEC1628; SN8 Landrace Kabuli India
ICC-1392 P1240; 141-1 Landrace Desi India
ICC-4918 Elite line Desi India
ICC-12726 RFA100-3 Landrace Desi Ethiopia

using GenomeNet Database Resources’, while CLC Main
Workbench software® was used for protein amino acid sequence
alignment.

The molecular dendrogram was constructed using BLASTP
at GenomeNet Database Resources (See footnote 2) with the
function of ETE3 v3.0.0b32 (Huerta-Cepas et al., 2016) and
MAFFT v6.861b applied using the default options (Katoh and
Standley, 2013). The FastTree v2.1.8 program with default
parameters was used for phylogenetic tree preparation (Price
et al., 2009).

Abiotic Stress Treatments: Salinity,
Drought and Rapid Dehydration

Three experiments applying abiotic stress treatments
(salinity, slow drought and rapid dehydration) were carried
out in chickpea for RT-qPCR analyses using the same
conditions as described earlier in our publication for wheat
(Zotova et al., 2018). The size of containers used, number
of plants, soil type and growth conditions were all as
described and no artificial inoculation of rhizobium was
applied.

For salt stress, twenty-four uniform seedlings in each of six
accessions were grown for one month in two separate containers.
On “Day 0, three plants from each accession (three biological
replicates) were randomly selected from each container, before
the salt stress was applied. The two youngest fully developed
leaves were collected from each selected plant into a 10-ml
plastic tube and immediately frozen in liquid nitrogen and
stored at —-80°C until RNA extraction. Subsequently, 200 ml
of 150 mM NaCl was applied to the container, covering the
entire soil surface but avoiding any direct contact with the
plants. The NaCl treatments were applied four times, on every
third day following Day 0 (over 12 days in total) in treatment
containers, while the same volume of tap-water without NaCl
was used under the same schedule in the control containers.
No solution was lost through drainage from any container.
No supplementary CaCl, was added despite the recommended
requirements in experiments with hydroponics. This is because
the soil mix used contained sufficient available calcium and
no symptoms of Ca deficiency were apparent in the treated
plants. After 12 days, as on Day 0, the two youngest fully
developed leaves were collected from each of three plants both
in salt treatments and controls. Leaf samples were immediately

*https://www.genome.jp/tools-bin/clustalw
>https://www.qiagenbioinformatics.com/products/clc-main-workbench

frozen in liquid nitrogen and stored at -80°C for RNA
extraction.

Experiments with slowly droughted plants and rapid
dehydration of detached leaves were carried out using exactly
the same schedule as described in Experiments 1 and 2 in our
previous paper on wheat (Zotova et al., 2018).

RNA Extraction, cDNA Synthesis and
qPCR Analysis

Frozen leaf samples were ground as described below for DNA
extraction. TRIzol-like reagent was used for RNA extraction
following the protocol described by Shavrukov et al. (2013) and
all other steps for RNA extraction and cDNA synthesis were
as described previously (Zotova et al., 2018). The procedures
included DNase treatment (Qiagen, Germany), and the use of
a MoMLV Reverse Transcriptase kit (Biolabmix, Novosibirsk,
Russia). All cDNA samples were checked for quality control using
PCR and yielded bands of the expected size on agarose gels.

Diluted (1:2) ¢cDNA samples were used for qPCR analyses
using either a QuantStudio-7 Real-Time PCR instrument
(Thermo Fisher Scientific, United States) at S. Seifullin Kazakh
AgroTechnical University, Astana, Kazakhstan, or Real-Time
qPCR system, Model CFX96 (BioRad, Gladesville, NSW,
Australia) at Flinders University, Australia. The qPCR protocol
was similar in both instruments as published earlier (Shavrukov
et al,, 2016), wherein the total volume of 10 pul q-PCR reactions
included either 5 pl of 2xBiomaster HS-qPCR SYBR Blue
(Biolabmix, Novosibirsk, Russia) for experiments in Kazakhstan
or 5 pl of 2xKAPA SYBR FAST (KAPA Biosystems, United States)
for experiments in Australia, 4 pl of diluted cDNA, and
1 ul of two gene-specific primers (3 WM of each primer)
(Supplementary material 1). Expression data for the target
genes were calculated relative to the average expression of the
two reference genes: CAC, Clathrin adaptor complexes, medium
subunit (Reddy et al., 2016) and GAPDH, Glyceraldehyde-3-
phosphate dehydrogenase (Garg et al., 2010) (Supplementary
material 1). At least three biological and two technical replicates
were used in each qPCR experiment.

DNA Extraction, Sequencing and SNP
Identification

Plants were grown in control (non-stressed) conditions in
containers with soil as described above. Five uniform one month-
old individual plants were selected from each accession and five
leaves were collected and bulked for leaf samples. Leaf samples
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frozen in liquid nitrogen were ground in 10-ml tubes with two
9-mm stainless ball bearings using a Vortex mixer. DNA was
extracted from the bulked leaf samples with phenol-chloroform
as described in our earlier papers (Shavrukov et al., 2016; Zotova
et al.,, 2018). One microliter of DNA was checked on a 0.8%
agarose gel to assess quality, and concentration was measured by
Nano-Drop (Thermo Fisher Scientific, United States).

To identify SNPs in the Gol and compare them with
annotated accessions in databases, primers were designed in
exon regions flanking introns (Supplementary material 1). PCR
was performed in 60 pl volume reactions containing 8 pl of
template DNA adjusted to 20 ng/ul, and with the following
components in the final concentrations listed: 1xPCR Buffer,
2.2 mM MgCl,, 0.2 mM each of dNTPs, 0.25 uM of each
primer and 4.0 units of Tag-DNA polymerase in each reaction
(Maxima, Thermo Fisher Scientific, United States). PCR was
conducted on a SimpliAmp Thermal Cycler (Thermo Fisher
Scientific, United States), using a program recommended by
the Taq-polymerase manufacturer, with the following steps:
initial denaturation, 95°C, 4 min; 35 cycles of 95°C for 20 s,
55°C for 20 s, 72°C for 1 min, and final extension, 72°C for
5 min. Single bands of the expected size were confirmed after
visualization of 5 ul of the PCR product in 1% agarose gel.
The remaining PCR reaction volume (55 pl) was purified using
FavorPrep PCR Purification kit (Favorgene Biotec Corp., Taiwan)
following the Manufacturer’s protocol. The concentrations of
purified PCR products were measured using NanoDrop (Thermo
Fisher Scientific, United States) and later used as a template
(100 ng) in a sequencing reaction with the Beckman Coulter
Sequencing kit, following the Manufacturer’s protocol. Sanger
sequencing and analysis of results were performed on a Beckman
Coulter Genetic Analysis System, Model CEQ 8000 (Beckman
Coulter, United States) following the Manufacturer’s protocol
and software at S. Seifullin Kazakh AgroTechnical University,
Astana (Kazakhstan). The identified SNPs were used to design
allele-specific primers that were applied in Amplifluor-like SNP
analysis. Two fully sequenced chickpea accessions, ICC4958 of
the Desi ecotype, and Frontier of the Kabuli ecotype, were used
as the reference genomes®.

SNP Amplifluor Analysis

Amplifluor-like SNP analysis was carried out using a
QuantStudio-7 Real-Time PCR instrument (Thermo Fisher
Scientific, United States) as described previously (Jatayev et al,,
2017; Zotova et al,, 2018) with the following modifications:
Each reaction contained 3 pl of template DNA adjusted
to 20 ng/pl, 5 pl of Hot-Start 2xBioMaster (MH020-400,
Biolabmix, Novosibirsk, Russia’) with all other components as
recommended by the manufacturers, including MgCl, (2.0 mM).
One microliter of a mixture of two fluorescently labeled Universal
probes was added (0.25 wM each) and 1 ul of allele-specific
primer mix (0.15 pM of each of two forward primers and
0.78 wM of the common reverse primer). Four microliter of Low
ROX (Thermo Fisher Scientific, United States) was added as a

Shttp://www.cicer.info/databases.php
"http://biolabmix.ru/en/products

passive reference label to the Master-mix as prescribed for the
qPCR instrument. Assays were performed in 96-well microplates.
Sequences of the Universal probes and primers as well as the
sizes of amplicons are presented in Supplementary material 1.

PCR was conducted using a program adjusted from those
published earlier (Jatayev et al., 2017; Zotova et al., 2018):
initial denaturation, 95°C, 2 min; 14 “doubled” cycles of 95°C
for 10 s, 60°C for 10 s, 72°C for 20 s, 95°C for 10 s, 55°C
for 20 s and 72°C for 50 s; with recording of allele-specific
fluorescence after each cycle. Genotyping by SNP calling was
determined automatically by the instrument software, but each
SNP result was also checked manually using amplification curves
and final allele discrimination. Experiments were repeated twice
over different days, where two technical replicates confirmed the
confidence of SNP calls.

Statistical Analysis

IBM SPSS Statistical software was applied to calculate means,
standard errors, and to estimate the probabilities for significance
using ANOVA tests.

RESULTS

Bioinformatics and Comparative

Phylogenetic Analysis

During the initial screening of SNP No. 2103, rs853191221
[C. arietinum] within the chickpea SNP database
(Supplementary material 2), NCBI BLAST analysis revealed the
closest nucleotide accession to be XM_012715175.1, encoding
a Ras-related protein in C. arietinum with the corresponding
RabCl-like gene (LOC101496214, transcript variant X2, mRNA).
We designated this gene as the isoform CaRabC-1a.

To identify the full list of all members of CaRab genes
in chickpea, bioinformatics approaches were used to search
and analyze annotated sequences and whole genome sequences
available in public databases using comparisons to the reference
genome of A. thaliana. As a result, eight sub-families of CaRab
gene were identified, with 54 isoforms. The corresponding
accession IDs for the genes and proteins, as well as references to
Arabidopsis genes with the highest level of similarity are shown in
Table 2.

The sequences of all 54 isoforms of CaRab genes identified
in chickpea were used to construct a phylogenetic tree
(Figure 1). Eight distinct clades were identified in the molecular
dendrogram, and the letter corresponding to each sub-family
name is used to distinguish the corresponding clade. The biggest
and most diverse was Clade A, the CaRabA gene sub-family
while Clades B and F contained only two accessions each. Clades
D, G, H and F are molecularly similar, but most distanced
from other sub-families of the CaRab gene. The sub-family
CaRabC contained five isoforms with the closest sub-families
being CaRabD and CaRabE (Figure 1).

Protein sequence analysis of five isoforms from sub-family
CaRabC (Figure 2) showed distinct separation of CaRabC-1 from
CaRabC-2. The closest molecular similarity was found between
CaRabC-1b and CaRabC-1c with the next greatest similarity
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TABLE 2 | The eight identified sub-families (RabA — RabH) of the chickpea CaRab, with 54 isoforms and their corresponding accession ID listed for genes and proteins
as well as reference to closest genes in Arabidopsis.

Clades of Rab Group of Rab genes Chromosome in KEGG ID/NCBI Gene NCBI protein ID in ID of closest gene in
genes in plants in mammals chickpea ID in chickpea chickpea Arabidopsis thaliana
RabA-1b Rab11 Cai 101493366 XP_004489015 At1916920
RabA-1b* Unknown 101507798 XP_004514628 At1g16920
RabA-1c Cab 101498968 XP_004505464 At5g45750
RabA-1d Cai 101504539 XP_004487583 At4g18800
RabA-1f Cab 101497770 XP_004505114 At5g60860
RabA-1f* Cat 101489774 XP_004485855 At5g60860
RabA-1g Cai 101509653 XP_004487187 At3g15060
RabA-1g* Cab 101492905 XP_004505524 At3g15060
RabA-2a Cai 101495904 XP_004485429 At19g09630
RabA-2b Cab 101503536 XP_004503210 At1g07410
RabA-2b* Ca2 101512788 XP_004490850 At1g07410
RabA-2d Cab 101512110 XP_004507156 At5g59150
RabA-3 Ca3 101490262 XP_004494844 At1g01200
RabA-3* Ca7 101511394 XP_004510635 At1g01200
RabA-4a Cab 101489316 XP_004502410 At5g65270
RabA-4a* Cab 101515580 XP_004504100 At5g65270
RabA-4c Unknown 101491858 XP_004516148 At5g47960
RabA-4d Ca3 101508321 XP_004494010 At3g12160
RabA-4d* Ca4 101501691 XP_004497938 At3g12160
RabA-5a Ca4 101498836 XP_004495529 At5g47520
RabA-5b Ca3 101509902 XP_004492211 At3g07410
RabA-5e Unknown 101508123 XP_004515580 At19g05810
RabA-6a Ca8 101513235 XP_004512724 At1g73640
RabA-6a* Cab 101500012 XP_004503285 At1g73640
RabB-1b Rab2 Ca2 101515168 XP_004489550 At4g35860
RabB-1c Cai 101501307 XP_004486381 At4g17170
RabB-1c* Ca7r 101496042 XP_004510833 At4g17170
RabC-1a Rab18 Ca4 101496214 XP_004498372 At1g43890
RabC-1b Ca5 101488438 XP_004502943 At1g43890
RabC-1c Ca6 101490080 XP_004503936 At1g43890
RabC-2a Unknown 101497183 XP_004515929 At5g03530
RabC-2a* Ca4 101498490 XP_004496130 At5g03530
RabD-1 Rab1 Cat 101495577 XP_004485428 At3g11730
RabD-2a Ca3 101506934 XP_004492924 At1g02130
RabD-2a* Unknown 101514122 XP_004515343 At19g02130
RabD-2c Ca7r 101496365 NP_001265926 At4g17530
RabE-1a Rab8 Ca4 101497052 XP_004495000 At3g53610
RabE-1a* Cai 101515594 XP_004487032 At5g59840
RabE-1b Ca3 101504780 XP_004494002 At3g53610
RabE-T1c Ca4 101491866 XP_004497298 At3g46060
RabE-1c* Cab 101506447 XP_004505885 At3g46060
RabF-1 Rabb Ca4 101504907 XP_004496241 At3g54840
RabF-2b Cab 105851137 XP_012572119 At4g19640
RabG-3a Rab7 Ca4 101504052 XP_004496410 At4g09720
RabG-3b Ca2 101498677 XP_004489906 At1g22740
RabG-3b* Cab 101514161 XP_004504012 At1g22740
RabG-3c Cab 101510738 XP_012573047 At3g16100
RabG-3d Cai 101509216 XP_004486740 At1g52280
RabG-3e Cab 101513957 XP_012573072 At1g49300
RabG-3f Cab 101496247 XP_004507422 At3g18820
(Continued)
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TABLE 2 | Continued

Clades of Rab Group of Rab genes Chromosome in KEGG ID/NCBI Gene NCBI protein ID in ID of closest gene in
genes in plants in mammals chickpea ID in chickpea chickpea Arabidopsis thaliana
RabH-1d Rab6 Ca7 101507228 XP_004508989 At2g44610
RabH-1d* Ca8 101496604 XP_004511760 At2g22290
RabH-1e Cab 101492440 XP_004502420 At5g10260
RabH-1e* Cab 101507522 XP_004504075 At5g10260

The sub-family CaRabC studied in this paper is indicated in bold type.
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FIGURE 1 | Phylogenetic tree of 54 CaRab gene isoforms identified in chickpea using the FastTree v2.1.8 program. Clades are designated by colored letters
identical to the sub-family CaRab gene name.

In

shared with CaRabC-1a, while CaRabC-2a and CaRabC-2a* were
the most diverged from all others (Figure 2).

RT-gPCR and Gene Expression Analysis

Primers for RT-qPCR analysis were designed based on the
alignment and comparison of CDS sequences of five identified
CaRabC isoforms listed in Table 2. To estimate the total
expression level of all five CaRabC genes combined, common
primers with degenerative nucleotides were designed based

on the longest consensus regions in the alignments.
addition, 3’-ends of gene-specific primers were designed for
specific SNPs to maximize the specificity of qPCR analysis for
each of the five isoforms of CaRabC gene (Supplementary
material 3).

Initially, the expression level of CaRabC gene was determined
in control plants grown under favorable conditions for all
isoforms combined, as well as for each of them separately
(Figure 3A). All six studied chickpea accessions, 3 Kabuli and
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FIGURE 2 | A comparison of amino acid sequences (A), and Rooted UPGMA phylogenetic tree with branch length (B) of the five isoforms of CaRabC proteins
identified in chickpea. Multiple sequence alignment conducted presented using CLC Main Workbench software.
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FIGURE 3 | RT-gPCR analysis of CaRabC gene family expression in chickpea leaves: (A) In favorable, non-stressed conditions (Controls) for 3 Kabuli and 3 Desi
(dark green and dark blue, respectively); and the relative gene expression compared to Controls under: (B) Gradual salt stress application, 150 mM NaCl, 7 days;
(C) Slowly developing drought in pots with soil, 12 days; and (D) Rapid dehydration of detached leaves, 6 h, room temperature. All isoforms of CaRabC gene
combined (darker colors) and the five separate isoforms (lighter colors) of the CaRabC-1a, -1b, -1c, -2a and -2a* (for corresponding gene family) were analyzed
separately. Each set contained six chickpea accessions, including three Kabuli ecotypes, shown in yellow (1, Yubileiny; 2, ICC-7255; and 3, ICC-4841), and three
Desi ecotypes, shown in pink (4, ICC-1392; 5, ICC-4918; and 6, ICC-12726). Data were normalized using an average for two reference genes, calculated with
ANOVA, and are presented as means for three biological and two technical replicates & SE, shown as error bars. Significant differences (at least for P > 0.95) for
each gene isoform and within each set of chickpea accessions are shown by different letters according to ANOVA tests.
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FIGURE 4 | Partial alignments of CaRabC-7a (LOC101496214) amplicons. The alignment was produced with primers F5&R5 from the studied chickpea germplasm,
Yubileiny and ICC7255, compared to two fully sequenced reference accessions, ICC4958 and Frontier. The studied amplicons were located on Chromosome 4,
position 27,819,854-27,818,706 (Reverse order), in the reference accession ICC4958 (Desi ecotype), while the amplicon position in the second reference accession
Frontier (Kabuli ecotype), was at 38,617,439-38,616,292 (Reverse order), also on Chromosome 4. Eleven identified SNPs are shown in red for the two studied
accessions against those indicated in blue for the two reference accessions.
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3 Desi (dark green and dark blue, respectively, in Figure 3A),
showed a very high level of total CaRabC gene expression,
ranging from 11.2 to 18.4 relative expression units, with non-
significant differences among the six studied genotypes. The
expression level of a single isoform of CaRabC-1c had maximal
(63-88%) contribution in the CaRabC gene expression in total.
Two isoforms, CaRabC-2a and -2a*, both showed very similar
levels of 1.9-2.5 expression units. A level of around 1 expression
unit was observed in the isoform CaRabC-Ia, similar to the
average level for the two reference genes used in this study.
An extremely low level of expression (approximately 10-fold
lower than both reference genes) was shown for the last isoform
CaRabC-1b (Figure 3A).

For salinity stress (Figure 3B), a high level of expression
of the total CaRabC gene family was observed with 2-3.3-
fold higher expression relative to Controls, but no significant
differences were found within each set of six studied accessions
due to relatively wide variability between replicates. In all
studied genotypes, the isoform CaRabC-I1c made the highest
contribution to the gene expression (around 1.5-2-fold above
the Controls). Only two accessions, No. 2 (ICC-7255, Kabuli)
and No. 6 (ICC-12726, Desi), showed a higher level of CaRabC-
2a* isoform expression (2.2- and 2.6-fold, respectively) but these
data were quite variable. Significant genetic variation was found
for expression levels of CaRabC-1a and CaRabC-2a*. Expression
levels of two isoforms, CaRabC-1b and CaRabC-2a, did not differ
from Controls (Figure 3B).

A different expression pattern for the CaRabC gene family
was found for the drought experiment, where total expression
was down-regulated by 0.3-0.4-fold compared to Controls
(Figure 3C). The highest contribution to gene expression was
made by the isoform CaRabC-1b. There was no significant genetic
variation for CaRabC-la and CaRabC-1b among the studied
germplasm while the other three isoforms were quite variable
(Figure 3C).

In contrast, rapid dehydration of detached leaves resulted
in an up-to 8-fold increase of expression for the total
CaRabC gene family expression, as well as isoform CaRabC-
la, compared to controls (Figure 3D). With the exception of
CaRab1b, significant genetic variation was observed among the
studied chickpea accessions for all other isoform expression
profiles.

Amplicon Sequencing Showed an SNP in
the Candidate Gene CaRabC-1a

The initial SNP discovered was annotated at position 516
from the start-codon in the identified CDS, LOC101496214,
based on the reverse-compliment order in the SNP-containing
fragment. The full nucleotide sequence of the accession and
position of this initial SNP is presented in Supplementary
material 2.

To check for the presence/absence of the initial SNP in
the studied chickpea accessions, several pairs of primers were
designed flanking the SNP. The most successful primer pair,
F5&R5, amplified a fragment of 1148 bp. A fragment of the
alignment showing polymorphic amplicons from the germplasm
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FIGURE 5 | An example of allele discrimination in the chickpea germplasm
collection using the Amplifluor-like SNP marker KATU-C22. X- and Y-axes
show Relative amplification units, ARn, for FAM and VIC fluorescence signals,
respectively. Red dots represent homozygote (aa) genotypes with allele 1
(FAM), and blue dots represent homozygote (bb) genotypes for allele 2 (VIC)
identified with automatic SNP calling. The black square shows the no
template control (NTC) using water instead of template DNA.

sequences compared to two fully sequenced reference chickpea
accessions (ICC4958, Desi ecotype and Frontier, Kabuli ecotype)
in CaRabC-1a is presented in Figure 4. The sequencing of
the amplified fragments revealed the presence of 11 new
SNPs in two chickpea accessions, Yubileiny and ICC7255, both
Kabuli ecotypes (Table 1), compared to the two reference
accessions. All 11 identified SNPs recorded high scores, and clear
nucleotide peaks at the SNP positions were assessed manually.
Interestingly, the initial SNP recorded in the database was
monomorphic among the two reference accessions and two
genotypes sequenced in our study.

SNP Screening in CaRabC-1a Using

Amplifluor-Like Markers

Allele-specific primers, KATU-C22-F&R, were designed for one
of the selected SNPs from the 11 identified in the studied
fragment of isoform CaRabC-la to use with Amplifluor-like
genotyping analysis. Details on the design of primers and
positions of the studied SNPs are presented in Supplementary
material 4. The example in Figure 5 shows allele discrimination
using Amplifluor-like SNP marker KATU-C22, where allele 1
(FAM) has been identified in chickpea accessions with SNP
genotypes similar to reference accessions ICC4958 and Frontier
but allele 2 (VIC) was found in germplasm similar to Yubileiny
and ICC7255 (Figure 5).
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DISCUSSION

Rab-GTP proteins are well known in oncology studies in human
and animals, but in plants there is increasing evidence that they
play a central role in the tolerance to abiotic and biotic stresses.
Nevertheless, it appears that the mechanism of membrane
trafficking with which they are associated is similar in cells of
both humans and plants. Most Rab genes of the eight clades
represented in the molecular phylogenetic tree in plants, have
similar corresponding groups of genes in human and other
animal genomes. A greater or lesser diversity of isoforms for each
clade of Rab genes just reflects the differing outcomes of evolution
in the plant and animal kingdoms.

In plants, the most studied groups of Rab genes are from
Clades G and H, where multiple vacuolar trafficking pathway
components were demonstrated (Vernoud et al., 2003; Peng
et al., 2014; Uemura and Ueda, 2014; Brillada and Rojas-Pierce,
2017). These types of Rab genes encode proteins that have been
associated with a response to salinity and osmotic stresses, and
are thought to associate with pre-vacuolar vesicles. Thus, Rab
proteins may enhance relocation of Na™ ions to the vacuole,
after they reach a toxic level in the cytoplasm of cells. Whilst
there has been less attention placed on other groups of Rab
genes, including the diverse Clade A with its many isoforms and
the non-diverse Clade B with only two gene members, there
is practically nothing known about Clade C of Rab in plants
(Vernoud et al., 2003; Jha et al., 2014; Rehman and Sansebastiano,
2014; Lawson et al., 2018). Despite the strong similarity between
A. thaliana and C. arietinum, our bioinformatic results show
significant differences in the number of Rab isoforms in most
clades.

In the work described here, 54 isoforms of CaRab genes were
identified in chickpea, indicating an evolutionary reorganization
when compared to A. thaliana, where 57 AtRab isoforms have
been identified (Vernoud et al., 2003). Clade C in the chickpea
dendrogram has not been previously identified, described or
studied, and contains the five isoforms: CaRabC-1a, -1b, -Ic, -2a
and -2a*. The first three isoforms show similarity to AtRabC-1
(At1g43890, Table 1) while the latter two isoforms in chickpea
were similar to another single isoform AtRabC-2a (At5g03530).
The isoform AtRabC-2b (At3g09910), listed in a comprehensive
analysis of the Rab genes in A. thaliana (Vernoud et al., 2003),
has no ortholog in the C. arietinum genome. To avoid any
misunderstanding with the classification of CaRabC-2a and -2a*
isoforms, we have used an asterisk instead of another letter, to
indicate its very similar polypeptide structure.

Following the bioinformatics study, the expression analyses
of total CaRabC for all five isoforms revealed high levels of
expression of the gene family in leaves of non-stressed young
chickpea plants compared to two reference genes (Figure 3A).
More importantly, a single isoform, CaRabC-1I¢, made the major
contribution to the gene expression, indicating a very active
role of this isoform in chickpea plant development under non-
stressed conditions. In the absence of other reports comparing
expression of individual and combined (bulk) isoforms of Rab
genes in plants, our conclusions await further verification and
discussion.

Under salt stress, the dominance of the CaRabC-1c¢ isoform
in expression profiles was not as pronounced as under control
conditions and was more comparable to other isoforms in
some of the studied chickpea accessions, particularly CaRabC-1a
and CaRabC-2a*. Therefore, at least three isoforms of CaRabC
were salinity-responsive and the two latter ones were strongly
genotype-dependent (Figure 3B).

An unexpected result was found in the comparison of CaRabC
gene expression in response to slowly progressing drought of
whole plants and rapid dehydration of detached leaves. Only
a few reports have described expression of different genes in
parallel experiments with drought and dehydration. For example,
a peroxisomal isoform of APX, Ascorbate peroxidase, was down-
regulated under strong drought but up-regulated in desiccated
leaves in a cultivar of cowpea, Vigna unguiculata (D’ Arcy-Lameta
etal., 2006). Similar results were reported for two genes associated
with loss of water during slow drought progression compared to
rapid dehydration of barley leaves: HvMT2, a metallothionein-
like protein, and 2HvLHCB, Chlorophyll a-b binding protein
of LHCII type III (Giirel et al, 2016). Therefore, there are
examples of genes related to drought and dehydration that can be
down- and up-regulated, in several plant species. However, our
results show for the first time that all isoforms of CaRabC were
strongly down-regulated under the slowly developing drought,
but very strongly up-regulated in rapidly dehydrated leaves
(Figures 3C,D).

Amplifluor-like SNP markers and other molecular markers
are very helpful in identifying genetic polymorphisms in diverse
germplasm accessions. In the current study, the molecular
marker KATU-C22 was useful for genotyping one isoform
CaRabC-1a (Figure 5). This allows for tracking of the different
variants of this gene and the possibility of linking variants with
an associated phenotype. Additional markers are now needed for
all other isoforms of CaRabC and other Gol, but this will require
further investment in sequencing in the future. It also may be
worth looking for SNPs in the upstream promoter regions of the
gene family, since this could explain the variation in expression
between the genotypes.

CaRabC is just one sub-family from a large CaRab gene
family involved in controlling cell membrane trafficking, and like
the other Rab genes investigated to date (reviewed in Flowers
et al., 2018), it is responsive and potentially associated with
the adaptation of plants to abiotic stresses. For comparison, in
the bacteria Salmonella, the Rab18 protein (related to RabC in
plants) is actively involved in endocytosis and is localized in the
early endocytic compartment of cells (Hashim et al., 2000). In
plants, there is increasing evidence for the role of endocytosis
under salinity and osmotic stress (Martin-Davison et al., 2017).
The implications of increased endocytosis during these stresses
would be a reduction in total plasma-membrane area, thereby
limiting water loss from the cell through a decrease in the number
of aquaporins. Additionally, it may represent a mechanism to
obtain Na™ ions directly from outside the cell for accumulation
in the vacuole, thus keeping the cytoplasmic level of Na™ low
(Baral et al.,, 2015). In future work, we hope to explore the
role of CaRabC on endocytosis and Nat compartmentalization.
There has been very little work published to date concerning

Frontiers in Genetics | www.frontiersin.org

February 2019 | Volume 10 | Article 40


https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Khassanova et al.

RabC Genes in Chickpea

endocytosis and extended drought. The different responses
shown in the changes in expression observed in this study
between salinity and dehydration (both components of osmotic
stress), is intriguing and probably indicative of the underlying
biological role of RabC proteins themselves.

Further research is required in several selected chickpea
accessions to assess tolerance to salinity, drought and rapid
dehydration. This would allow us to explore possible associations
between sequence variants and levels of stress tolerance. The
genotype-dependent role of each isoform of CaRabC as well
as other genes from the gene family will be studied, and
we plan to carry out these experiments in the near future.
These new experiments should elaborate on the mechanism
and clarify the suggested roles of these proteins in cell
polarization and recycling to the plasma membrane, as suggested
by Vernoud et al. (2003) and Rutherford and Moore (2002),
respectively. Hopefully, our study of CaRabC extends the
knowledge of Rab gene family structure and function in
plants.
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Using Ancestry Informative Markers
(AlMs) to Detect Fine Structures
Within Gorilla Populations
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" Manipal Centre for Natural Sciences, Manipal Academy of Higher Education, Manipal, India, ? Department of Biotechnology
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The knowledge of ancestral origin is monumental in conservation of endangered animals
since it can aid in preservation of population level genetic integrity and prevent inbreeding
among related individuals. Despite maintenance of studbook, the biogeographical
affiliation of most captive gorillas is largely unknown, which has constrained management
of captive gorillas aiming at maximizing genetic diversity at the population level. In
recent years, ancestry informative markers (AIMs) has been successfully employed for
the inference of genomic ancestry in a wide range of studies in evolutionary genetics,
biomedical research, genetic stock identification, and introgression analysis and forensic
analyses. In this study, we sought to derive the AIMs yielding the most cohesive and
faithful understanding of biogeographical affiliation of query gorillas. To this end, we
compared three commonly used AlMs-determining methods namely, Infocalc, Fsr, and
Smart Principal Component Analysis (SmartPCA) with ADMIXTURE, using gorilla genome
data available through Great Ape Genome Project database. Our findings suggest that
the SNPs that were detected by at least three of the four AIMs-determining approaches
(N = 1,531), is likely most suitable for delineation of gorilla AIMs. It recapitulated the
finer structure within western lowland gorilla genomes with high degree of precision.
We further have validated the robustness of our results using a randomized negative
control containing the same number of SNPs. To the best of our knowledge, this is
the first report of an AIMs panel for gorillas that may aid in developing cost-effective
resources for large-scale demographic analyses, and greatly help in conservation of this
charismatic mega-fauna

Keywords: ancestry informative marker (AIM), gorilla ancestry, conservation genetic management, admixture,
informativeness of SNPs

BACKGROUND

Effective conservation of endangered animals with unknown ancestral origin entails delineation of
the biogeographic affinities of their ancestors in order to facilitate preservation of the population
level integrity of genomic signal. The knowledge of ancestral origin could be particularly relevant
for planned re-introduction of animals to wild habitats and management of captive breeding
programs in order to avoid inbreeding depression.

Gorillas, the largest living ape, were pronounced as critically endangered by IUCN Red List
in 2007 (Walsh et al., 2008). Since the gorilla population is rapidly dwindling in the wild as a
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result of severe habitat encroachment and the illegal bushmeat
trade, effective management of captive breeding programs
has become monumental in order to both increase their
numbers and to protect them from inbreeding. Overall 283
wild gorillas were imported to North America till 1970s, which
subsequently stopped owing to the introduction of Convention
on International Trade in Endangered Species of Wild Fauna and
Flora (CITES) in 1975 (Nsubuga et al., 2010). It is noteworthy
that despite maintenance of studbooks, insufficient information
is available pertaining to the biogeographic origin of the majority
of captive gorillas in the USA (Wharton, 2009) and that has likely
constrained proper management of captive gorillas pertaining
to maximizing genetic diversity at the population level. Proper
knowledge of ancestry is of great importance in captive breeding
programs of gorillas in order to avoid inbreeding depression and
at the same time to conserve the genomic integrity of the native
gorilla populations.

While whole genome approaches can efficiently resolve the
biogeographical affiliation of gorillas by measuring genomic
ancestry and level of admixture occurring among various gorilla
populations, it is not cost-effective and dependent on the
quality of DNA samples such that lower DNA quality (such as
DNA extracted through non-invasive techniques) can hamper
genome re-sequencing methods to a considerable extent. An
alternative cost-effective strategy to whole genome approaches
could be estimation of genomic ancestry using a handful of
highly informative Single Nucleotide Polymorphisms (SNPs)
which may range from a few hundreds to a few thousands.
These highly informative SNPs that exhibit large differences in
allele frequencies between ancestral populations are commonly
referred to as Ancestry Informative Markers (AIMs) (Rosenberg
et al., 2003; Shriver et al., 2003; Nassir et al., 2009).

Over the years AIMs panels have been successfully used for
inferring biogeographical ancestry of humans (Rosenberg et al.,
2003; Shriver et al., 2003; Kosoy et al., 2009; Nassir et al., 2009;
Kidd et al,, 2011; Tandon et al.,, 2011; Galanter et al., 2012;
Huckins et al., 2014; Vongpaisarnsin et al., 2015), detection of
illegal trade and translocation of wild animals (Frantz et al.,
2006), food forensics (Wilkinson et al., 2012), genetic stock
identification and introgression analysis (Munoz et al., 2015),
forensic analysis (Phillips et al., 2016) to name a few. Recently,
9,000 genetic markers have been identified which are unique to a
specific subspecies of chimpanzee and gorilla, and around 40,000
markers have been detected that are specific to each hominoid
species or lineage (Hormozdiari et al., 2013).

In this study, we have compared three strategies previously
used for AIMs determination, namely Infocalc algorithm
(Paschou et al., 2007; Kosoy et al., 2009), Wright’s Fst (Tian et al.,
2007; Kidd et al., 2011; Nievergelt et al., 2013), Smart Principal
Component Analysis (SmartPCA) (Patterson et al., 2006) with
a novel ADMIXTURE based approach (Alexander et al., 2009)
to interrogate previously published whole genome data of 31
gorillas available in Great Ape Genome Project (GAGP) (Prado-
Martinez et al., 2013) corresponding to two subspecies of western
gorillas (Gorilla gorilla), namely western lowland gorilla (Gorilla
gorilla gorilla) and Cross River gorilla (Gorilla gorilla dielhi),
as well as the eastern lowland gorilla (Gorilla beringei graueri),

to delineate an AIMs panel that can reproducibly capture the
genomic ancestry of gorillas at the population level and aid in
identification of gorillas at the individual level.

We performed our analysis in three steps. In the first
step we evaluated the performance of the four AIMs
determining approaches (Wright's Fsr, Infocalc, SmartPCA
and ADMIXTURE) by comparing them with complete SNP
sets (CSS). Subsequently, we developed a consensus dataset,
incorporating the SNPs that are common to at least three of
the four AIMs-determining strategies. Finally, we developed
a negative control dataset (randomly chosen SNPs from CSS)
containing the same number of SNPs as the consensus dataset
and re-evaluated the performance of the consensus dataset
and four AIMs determining approaches. The consideration of
the consensus SNPs as the AIMs panel for gorilla was robust
since it balanced out the limitations of each individual AIMs
determining method and at the same time recapitulated the
ancestry information of query gorillas with high precision.

METHODS

Dataset

The dataset employed in this study comprised of 31 gorilla
genomes available in GAGP, which overall sequenced 79 great
ape individuals to a mean coverage of 25X in an Illumina HiSeq
2000 platform (Prado-Martinez et al., 2013; Das and Upadhayai,
2018): western lowland gorilla (Gorilla gorilla gorilla, N = 27),
eastern lowland gorilla (Gorilla beringei graueri, N = 3), and
Cross River gorilla (Gorilla gorilla dielhi, N = 1). As indicated
previously (Prado-Martinez et al., 2013; Das and Upadhayai,
2018) the western lowland gorilla genomes employed in this
study belong to three distinct wild populations: Cameroonian,
Congolese, and Equatorial Guinean. The biogeographical origin
of the gorilla genomes as mentioned in the Studbook and
that predicted through Geographical Population Structure (GPS)
algorithm is mentioned in Supplemental Table 1. The same
dataset comprised of 354,080 markers that has been used recently
for tracing ancestry of gorillas (Das and Upadhayai, 2018) was
used in this study.

Population Clustering and Admixture
Analysis Employing the CSS

Principal component analysis (PCA) was performed in PLINK
v1.9 using - -pca command. The ancestry of the gorilla genomes
was estimated using unsupervised clustering as implemented
in ADMIXTURE v1.3 (Alexander et al., 2009). Similar to our
recent study (Das and Upadhayai, 2018), we chose K = 3 for all
downstream analysis to differentiate the western gorilla genomes
into the Congolese and Cameroonian clusters and detection
of AIMs for identification of genomic ancestry of gorillas at
the population level. PCA and Admixture plots were generated
inRv3.2.3.

Determination of AIMs
In order to deduce the SNP markers that are able to infer the
genomic ancestry of gorilla samples with accuracy comparable
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to that of the CSS of 354,080 SNPs, we evaluated four AIMs
determining approaches enumerated below.

1. Infocalc

The first method employed was the Infocalc algorithm
(Rosenberg et al., 2003), implemented in Infocalc v1.1, which
determines the amount of information multiallelic markers
provide regarding an individual’s ancestry by calculating the
informativeness (I) of each marker individually. Infocalc
determines I based on the mathematical expression described
previously (Rosenberg et al., 2003):

-3

j=1

K
<_Pj logpj+ % 10gPij)

i=1
Where, p; is the mean frequency of allele j over all populations,
pij is the relative frequency of allele j in population i and K is the
total number of populations.

We selected the top 10,000 most informative markers from
the Infocalc v1.1 output file. Infocalc v1.1 compatible files were
generated by using - -structure modifier to the PLINK v1.9
command line. The top 10,000 most informative markers were
selected based on the informativeness defining column (I_n) of
the output file (Supplemental Figure S1).

2. Wright’s Fst
Fgr (Sewall Wright, 2006) measures the degree of differentiation
among populations likely arising due to genetic structure within
them. Given a set of populations, PLINK estimated the fixation
indices (Fsr) separately for all 354,080 markers under evaluation
in this study using - -Fst command. The Family ID (FID) was
used as the indicator of the geographical affinity of the gorilla
genomes to different wild populations as mentioned previously
(Prado-Martinez et al., 2013) and/or estimated through our
recent biogeographical analysis (Das and Upadhayai, 2018).

The 10,000 SNPs with highest Fsr values were selected for
subsequent analyses (Supplemental Figure S2).

3. ADMIXTURE

Analyzing the ADMIXTURE output file with SNP information
(P file) for K of 3, we identified 10,662 SNPs with high K (column
to column) variance (> 0.15).

4. SmartPCA

In order to determine the most informative markers, SNP
weightings for each principal component (PC) were calculated
using the “SmartPCA” algorithm implemented in EIG v7.2.1
(Patterson et al., 2006; Price et al., 2006). SmartPCA, which
is especially designed for analysis of genomic data, employs
PCA to determine whether the test samples come from one
homogenous population or there is any signature of population
structure and outputs principal components (eigenvectors) and
eigenvalues. In addition to these two files SmartPCA generates a
“snpwt” file, depicting the weight of all 354,080 markers for each
principal component.

The 10,000 SNPs with the highest “weights” for the first
principal component (PC1) was selected for subsequent analyses
(Supplemental Figure S3).

Estimation of Candidate AIMs Panels
To determine the optimal AIMs-determining strategy for
gorilla genomes, we first compared the datasets comprising
of the top 10,000 SNPs generated through Fsr, Infocalc, and
SmartPCA with 10,662 SNPs detected through ADMIXTURE
both qualitatively (via Admixture analysis and PCA) and
quantitatively (by computing the Euclidean distances between
the admixture components of the query datasets and the CSS).
Further we developed a consensus dataset, containing SNPs
that are common to the four AIMs determining strategies (Fsr,
Infocalc, Admixture, and SmartPCA-based). Here, we note that
only 37 SNPs were found to be common to all four approaches
evaluated in this study, which was insufficient to recapitulate
intraspecific ancestry information of the query gorillas (data
not shown). So, in order to generate a consensus SNP panel
that is likely to be sufficient to detect the fine structure within
western gorilla populations, we developed a dataset comprising
of 1,531 SNPs that were common to at least three of the four
AIMs-determining methods (Supplemental Figure S4). Finally,
to adjudge the predictive accuracy of the candidate AIMs
datasets, we developed a negative control dataset by randomly
sampling 1,531 SNPs from CSS and compared this with those
comprising of the top 1,531 SNPs extracted through Fsr, Infocalc,
Admixture, SmartPCA-based methods and the consensus.

RESULTS

ADMIXTURE Analyses

Qualitative Analysis

The ancestry of 31 gorilla genomes was estimated using
unsupervised clustering as implemented in ADMIXTURE vl1.3
(Alexander et al., 2009). For CSS, at K = 3 the eastern lowland
gorillas were homogeneously assigned to a unique cluster (blue)
while most western gorillas appeared to be a genomic admixture
of Cameroonian (green) and Congolese (red) components
in varying proportions (Figure 1A, Supplemental Figure S5A).
While the entire genome of Akiba-Beri, Choomba, Paki, Oko,
Kolo and Amani is consisted of the Cameroonian admixture
component, Katie (B650) and Katie (KB4986) also appeared to
be pure-bred and their genome is entirely composed of the
Congolese admixture component.

At K = 3, the dataset comprising of the top 10,000 Inforcalc
SNPs (Infocalc-10,000) performed the best by successfully and
precisely capturing the population structure of gorilla genomes
as depicted by the CSS. It homogenously assigned Akiba-Beri,
Choomba, Paki, Oko, Kolo and Amani to Cameroon and the
Katies (B650 and KB4986) to Congo. Further, similar to the CSS,
this dataset revealed fractions of eastern lowland ancestry (blue)
in Kokomo, Mimi, Delphi, Coco, Carolyn, and Porta. However,
unlike the CSS, Infocalc-10,000 revealed minor fractions of
(<1%) eastern lowland ancestry in Kowali and Azizi (Figure 1B,
Supplemental Figure S5B).
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admixture analysis at K = 3 using ADMIXTURE v1.3 and plotted in R v3.2.3. Each individual is represented by a vertical line partitioned into colored segments whose
lengths are proportional to the contributions of the ancestral components to the genome of the individual. Blue represents eastern lowland ancestry component while
green and red represent Cameroonian and Congolese ancestral components, respectively.
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The dataset comprising of the top 10,662 Admixture
SNPs (Admixture-10,000) appeared to be the second best.
In concordance with CSS, Admixture-10,000 homogenously
assigned Akiba-Beri, Choomba, Oko and Amani to Cameroon
and the Katies (B650 and KB4986) to Congo. However, unlike
the CSS, this dataset depicted ~2, 3, and 4% Congolese ancestral
component in the cross river gorilla Nyango, Kolo and Paki,
respectively, and eastern lowland ancestral component in Helen
and Anthal, which can be attributed to the likely loss of resolution
(Supplemental Figure S5C).

The remaining two datasets, comprising of 10,000 SNPs
generated using SmartPCA and Fsr-based approaches
(SmartPCA-10,000 and Fsr-10,000, respectively), performed
moderately. While SmartPCA-10,000 successfully homogenously
assigned Akiba-Beri, Choomba, Paki, Oko, Kolo and Amani
to Cameroon and the Katies (B650 and KB4986) to Congo, it
additionally assigned Delphi, Carolyn and Porta homogenously
to Congo and thus failed to capture their discernible proportions
of Cameroonian ancestry (Supplemental Figure S5D). Among
the four approaches, Fsr-10,000 performed the worst. In
addition to incorrectly assigning Delphi, Carolyn and Porta
homogenously to Congo, Fsr-10,000 revealed Congolese
ancestry in Kolo, Akiba-Beri and Paki, which were otherwise
homogenously assigned to Cameroon by all AIMs-determining
approaches (Supplemental Figure S5E).

Among datasets comprising of top 1,531 SNPs deduced via
Fsr, Infocalc, Admixture, and SmartPCA, the 1,531 SNPs derived
using Infocalc (Infocalc-1,531) was superior to the rest and

most comparable to the CSS in recapitulating the population
structure for query gorillas (Figure 1B). This was closely followed
by a panel of 1,531 SNPs generated as a consensus of at
least three of the four AIMs-determining strategies (Consensus-
1,531) (Figure 1F), and that were detected using Admixture
(Admixture-1,531) (Figure 1C). Here we note that among all
1,531 datasets, only Consensus-1,531 and Infocalc-1,531 were the
only two who could capture the eastern lowland ancestry in the
cross river gorilla, Nyango, as revealed by the CSS. In contrast, the
SNP panel inferred using SmartPCA (SmartPCA-1,531) and Fsr
(Fsr-1,531) completely failed to capture the population structure
revealed by the CSS (Figures 1D,E). Finally, the negative control
dataset comprising of 1,531 random SNPs (Random-1,531) was
expectedly unsuccessful in capturing the ancestry information
of the query gorillas, underscoring the superiority of the
AIMs over randomly selected markers in delineating ancestry
information (Figure 1G).

Quantitative Analysis

For comparing the test datasets quantitatively, we computed
Euclidean distances between the three admixture components
(eastern lowland, Cameroonian and Congolese) of all datasets
and the CSS. The shortest mean Euclidean distance (u = 0.022)
was found between Admixture-10,000 and the CSS, closely
followed by Infocalc-10,000 and the CSS (1 = 0.064) (Figure 2).
Among other 10,000 SNP panels, the longest Euclidean distance
was found between the CSS and Fsr-10,000, followed by the CSS
and SmartPCA-10,000 (0.154 and 0.108, respectively).
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FIGURE 2 | Box and whisker plots comparing the Euclidean distances
between the admixture proportions of the gorilla genomes obtained from the
CSS and those obtained from the reduced datasets. The number of SNPs the
datasets are comprised of is mentioned in their nomenclature. The random
dataset was comprised of 1,631 randomly generated SNPs from the CSS and
the Consensus-1,531 dataset comprised of 1,531 SNPs that were detected
by at least three of the four AIMs-determining approaches.

Among the 1,531 panels, the shortest distance was revealed
between Admixture-1,531 and the CSS (u = 0.059). Consensus-
1,531 appeared as the second most sensitive approach (u =
0.087), closely followed by Infocalc-1,531 (1 = 0.095). All three
aforesaid 1,531 panels highly significantly outperformed all the
remaining datasets including the random dataset (Tukey’s post
hoc test; p-value < 0.0001). Congruent with our results from
qualitative analyses in their inability to capture the accurate
population structure for query gorilla genomes, the SmartPCA
and Fsr-based datasets appeared to be the farthest from the CSS
(e = 0.75 in both cases) and performed similar to the Random-
1,531 dataset (Tukey’s post hoc test; p-value = 0.94 and 0.95,
respectively). Here further we note that, although Admixture-
1,531 had the shortest mean Euclidean distance from the CSS,
its performance was statistically very similar to Consensus-1,531
and Infocalc-1,531 (Tukey’s post hoc test; p-value = 0.99).

Opverall, our result indicates that while Infocalc-1,531 turned
out to be the best method in qualitative ADMIXTURE analysis,
Admixture-1,531 was superior to all other approaches in
the quantitative analysis. However, in both cases, Consensus-
1,531 was a close second and its performance was statistically
similar to the other two. Additionally, Consensus-1,531 had
discernibly smaller median Euclidean distance from the CSS
(0.032) compared to both Infocalc-1,531 (0.078) and Admixture-
1,531 (0.043) which further advocates for its candidacy to be
considered as the AIMs panel for the gorillas.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) was performed in PLINK
v1.9 and the top two PCs were plotted in R v3.2.3. The PCA
results for the CSS was in coherence with previous observations
of an eastern gorilla-western gorilla contrast along the horizontal
principal component (PCl) and vertical delineation (PC2)

among western gorilla genomes (Prado-Martinez et al., 2013; Das
and Upadhayai, 2018)(Figure 3A, Supplemental Figure S6A).
Further, as observed previously, two distinct clusters were
found among western gorillas along PCl: one predominantly
composed of Cameroonian gorillas and the other predominantly
of Congolese gorillas. Also, as found previously, Coco, the only
Equatorial Guinea gorilla employed in our study clustered with
the Cameroonian gorillas owing to its genomic proximity to the
latter (Das and Upadhayai, 2018).

Similar to ADMIXTURE analysis,
(Supplemental Figure S6B) and Admixture-10,000
(Supplemental Figure S6C) best replicated the
population  clusters  depicted by CSS-based dataset
(Supplemental Figure S6A) with high precision. Both
datasets successfully recapitulated the overlap of some of
the Cameroonian and Congolese gorillas at the center of PC2
and the genomic proximity of the cross river gorilla Nyango
to Cameroonian gorillas. Among the remaining datasets,
SmartPCA-10,000 could recapitulate the overlap of Cameroonian
and Congolese gorillas along PC2, but it failed to recapture the
high genomic proximity of Nyango with Cameroonian gorillas
as depicted by the CSS (Supplemental Figure S6D). Finally,
Fs7-10,000 portrayed two distinct clusters of Cameroonian and
Congolese gorillas and failed to replicate the overlap of some
of the Cameroonian and Congolese gorillas at the center of the
vertical principal component (PC2) (Supplemental Figure S6E).

Among the 1,531 SNP panels, Infocalc-1,531 was superior
to all other AIMs-determining strategies in replicating the
population structure of query gorillas depicted by the CSS
(Figure 3B). Coherent with the ADMIXTURE analysis,
Consensus-1,531 turned out to be the second best (Figure 3F),
followed by Admixture-1,531 (Figure 3C). Among the remaining
datasets, SmartPCA-1,531 and Fsr-1,531 performed discernibly
worse and completely failed to depict any contrast among
the western gorilla genomes along PC2 (Figures 3D,E).
Finally, in concordance with the ADMIXTURE analysis,
Random-1,531 was completely unsuccessful in capturing
population structure of all query gorillas, such that it
even failed to depict the eastern gorilla-western gorilla
contrast along the horizontal principal component (PC1)
(Figure 3G). The failure of the random dataset once again
underscored the superiority of the AIMs over randomly
selected markers in portraying population structure of
query genomes.

Taking together all analyses, our study revealed that while
Infocalc performed better than other approaches in qualitative
analysis, the Admixture-based approach turned out to be the
best in the quantitative analysis. This indicates that no single
AIMs-determining strategy may be sufficient to recapitulate the
ancestry information of gorillas. So, we propose that Consensus-
1,531 which performed consistently well in both qualitative and
quantitative analysis (ranked 2nd in both) should be elucidated
as the AIM:s panel for the gorillas as it emerged as the smallest set
of SNPs that delineates the ancestry information and population
structure of gorillas with optimum precision. Further, we have
generated a set of 262 most informative SNPs from the 1,531
AIMs panel, which can be detected through common genotyping

Infocalc-10,000
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FIGURE 3 | Principal Component Analysis (PCA) of gorilla genomes. PCA plots showing genetic differentiation among query gorilla genomes. The data subsets were
generated using top 1,531 most informative SNPs detected through various AIMs determining approaches. (A) PCA of the CSS (354,080 SNPs); Here, the X-axis
(PC1) explained 45% variance while the Y-axis (PC2) explained 23% variance of the data. (B) PCA of Infocalc-1,531; In this case, the X-axis (PC1) explained 45%
variance while the Y-axis (PC2) explained only 21% variance of the data. (C) PCA of Admixture-1,531; In this case, the X-axis (PC1) explained 68% variance while the
Y-axis (PC2) explained 22% variance of the data. (D) PCA of SmartPCA-1,531; Here, the X-axis (PC1) explained 88% variance while the Y-axis (PC2) explained only
6% variance of the data. (E) PCA of Fg7-1,531; In this case, the X-axis (PC1) explained 85% variance while the Y-axis (PC2) explained only 5% variance of the data.

(F) PCA of Consensus-1,531; In this case, the X-axis (PC1) explained 82% variance while the Y-axis (PC2) explained 10% variance of the data. (G) PCA of
Random-1,531; Here, the X-axis (PC1) explained 28% variance while the Y-axis (PC2) explained 24% variance of the data. Notable populations are marked with
circles such that the blue circles represent eastern lowland gorillas; brown represents the cross river gorilla; and green, red and yellow represents western lowland
gorillas of Cameroonian, Congolese and Equatorial Guinean ancestry, respectively. In all cases, PCA was performed in PLINK v1.9 and the top four principal
components (PCs) were extracted. Top two PCs (PC1 and PC2), explaining the highest variance of the data were plotted in R v3.2.3.

techniques and are powerful enough to detect fine structure
within gorilla populations (Supplemental Table 2).

DISCUSSION

Over the years, Gorillas, with dwindling population size and
increasingly reduced and restricted distribution in the wild, are
faced with serious threats for their survival. As a consequence,
conservation of wild as well as captive gorillas and preservation of
unique gorilla gene pools has garnered a lot of attention in recent
years. The gorilla breeding programs that affords to increase
genetic diversity in order to avoid inbreeding depression, have
been restricted by insufficient information about the ancestry of
the gorillas (Wharton, 2009; Nsubuga et al., 2010; Simons et al.,
2012; Prado-Martinez et al., 2013). Hence, the determination
of the biogeographical affiliation of gorillas can be invaluable
to foster their population level (intra-specific) management and
preservation of unique gorilla gene pools.

In this study we sought to compare three strategies previously
used for AIMs determination, namely Infocalc algorithm
(Paschou et al., 2007; Kosoy et al., 2009), Wrights Fst (Tian
et al., 2007; Kidd et al., 2011; Nievergelt et al., 2013), and Smart
Principal Component Analysis (SmartPCA) (Patterson et al.,
2006) with a novel ADMIXTURE based approach (Alexander
et al., 2009) to delineate an AIMs panel that can reproducibly
capture the genomic ancestry of gorillas at the population level
and aid in identification of gorillas at the individual level.
To this end, we developed the first AIMs panel for gorillas

containing 1,531 SNPs that were common to at least three out
of four AIMs-determining approaches. Our results indicate that
this AIMs panel can recapitulate the ancestry information of
query gorillas with high precision and can help in population
level identification of gorillas, which can be monumental in
the preservation of unique gorilla gene pools and selection of
individuals for captive breeding program.

Our AIMs panel (Consensus-1,531) consisted of 1,531 SNPs,
generated as a consensus of at least three of the four aforesaid
AIMs-determining strategies and thus likely balanced out the
limitations of each individual approach (Wilkinson et al., 2011).
Here we note that out of 1,531 SNPs, 1,359 SNPs were common
among Fst, ADMIXTURE and SmartPCA and were not detected
by the Infocalc based method (Figure 2). The great extent of
overlap of top-ranked AIMs of the aforementioned strategies
indicates that these three strategies essentially captured the same
information regarding the ancestry of query gorillas. Further,
while the two worst performing approaches-SmartPCA and
Fgr revealed the highest number of overlapping SNPs (>26%),
Infocalc generated the highest number of exclusive SNPs (94%),
followed by ADMIXTURE (66%). These results indicates a likely
relationship between the exclusiveness of a SNP and its ability to
recapture the ancestry information.

Overall, our qualitative and quantitative analyses concur that
Consensus-1,531 could recapitulate the ancestry information of
query gorillas with high precision. While Consensus-1,531 had
the shortest median Euclidean distance from the CSS (0.032), it
appeared as the second most sensitive approach in terms of the
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mean Euclidean distance from the same (1 = 0.087) indicating
its high precision of recapitulating the ancestral information
depicted by the whole dataset. Further, quantitative assessment
reflected that the performance of Consensus-1,531 was indistinct
from the larger 10,000 SNP based datasets (p-value > 0.99)
and had the highest number of individuals (N = 9) with zero
Euclidean distances from the CSS. However, we note that while
Consensus-1,531 successfully replicated the ancestry information
of most query gorillas employed in this study, it failed to capture
the Cameroonian ancestry component for Carolyn, Delphi and
Porta and homogenously assigned them to Congo (Figure 1) and
thus appeared to be the second-most sensitive in the qualitative
assessment, falling short of the number matched Infocalc
derived panel.

Amidst the remaining approaches, we note that Fsr was the
poorest in capturing fine-scale population structure of query
gorillas, closely followed by the SmartPCA based approach
(Figures 1-3), suggesting the ineffectiveness of these two
strategies in recapitulating the ancestral history of gorillas. We
further note that most AIMs determining approaches employed
in this study (except Fsr, and SmartPCA) and their consensus
appeared to be superior to the randomly selected markers
in capturing the population structure delineated by the CSS
(Figures 1-3), advocating the usefulness of AIMs in tracing
biogeographical origin of organisms over randomized SNPs.

Here we note that the goal of this study was to develop
AIMs that can be used to tell apart various populations within
western lowland gorilla (below subspecies level). Eastern and
western lowland gorillas are considered to be different species
and are genetically so distinct from each other that they can be
differentiated through most markers present in the complete SNP
set (CSS). Despite our restriction in terms of sample size and data
availability, since most gorilla genomes used in this study belong
to various western gorilla populations (27 out of 31), our results
should reflect our intended outcome of deducing AIMs that can
differentiate western gorillas below subspecies level.

The quest of developing an AIMs panel for gorillas is not new.
A previous study has developed polymorphic MEIs, including
those that can be considered ancestry-informative markers and
MEIs corresponding to regions of incomplete lineage sorting
(ILS) (Hormozdiari et al., 2013). However, to the best of our
knowledge, this is the first study to have developed an AIMs panel
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The general transcription repressor, TaDr1 gene, was identified during screening of
a wheat SNP database using the Amplifluor-like SNP marker KATU-W62. Together
with two genes described earlier, TaDr1A and TaDr1B, they represent a set of three
homeologous genes in the wheat genome. Under drought, the total expression profiles
of all three genes varied between different bread wheat cultivars. Plants of four
high-yielding cultivars exposed to drought showed a 2.0-2.4-fold increase in TaDr1
expression compared to controls. Less strong, but significant 1.3-1.8-fold up-regulation
of the TaDr1 transcript levels was observed in four low-yielding cultivars. TaVim1 and
TaFT1, which controls the transition to flowering, revealed similar profiles of expression
as TaDr1. Expression levels of all three genes were in good correlation with grain yields
of evaluated cultivars growing in the field under water-limited conditions. The results
could indicate the involvement of all three genes in the same regulatory pathway, where
the general transcription repressor TaDr1 may control expression of TaVim1 and TaFT1
and, consequently, flowering time. The strength of these genes expression can lead
to phenological changes that affect plant productivity and hence explain differences in
the adaptation of the examined wheat cultivars to the dry environment of Northern and
Central Kazakhstan. The Amplifluor-like SNP marker KATU-W62 used in this work can
be applied to the identification of wheat cultivars differing in alleles at the TaDr7 locus
and in screening hybrids.

Keywords: Amplifluor-like SNP marker, bioinformatics, drought, general repressor of transcription, TaDr1,
TaFT1, TaVrn1

INTRODUCTION

Amongst the many types of abiotic stresses, drought or water limitation is one of the most
important challenges for native plants and crops. There are several genetic and breeding strategies
aimed at improving tolerance to drought in crops (Reviewed in: Ingram and Bartels, 1996;
Yordanov et al., 2000; Tuberosa and Salvi, 2006; Valliyodan and Nguyen, 2006; Shanker et al., 2014;
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Berger et al., 2016; Kaur and Asthir, 2017). One potential
approach is the modulation of flowering time, where wheat
plants grow faster and complete their life-cycles a few days
earlier, therefore minimizing interruption from oncoming,
terminal drought (Reviewed in: Shavrukov et al., 2017). Genetic
polymorphism and the introgression of novel alleles from wheat
progenitors, relatives and wild species from the genus Triticum
is a very powerful tool to enrich the genome of modern cultivars
(Reviewed in: Arzani and Ashraf, 2017; Mwadzingeni et al., 2017;
Wang et al., 2018).

Molecular markers are used widely for the identification
of novel and existing alleles, and to track specific alelles in
elite wheat breeding lines and introgression from landraces or
wild species. Analysis of SNP (Single nucleotide polymorphism)
is a rapidly developing technology with a diverse range of
methods and applications (Reviewed in: Schramm et al., 2019).
Amplifluor SNP markers are well-established and have been
successfully applied in the recent genotyping of candidate genes
for various plant species (Absattar et al., 2018; Yerzhebayeva et al.,
2018; Khassanova et al., 2019). This includes research in bread
wheat, where alleles of candidate genes for drought tolerance,
TaDREB5 and TaNFYC-A7, were identified using Amplifluor
SNP markers. These genes demonstrate differential expression
in high- and low-yielding wheat cultivars from Kazakhstan
under a progressive drought and rapid dehydration (Shavrukov
et al., 2016b; Zotova et al., 2018). In other studies, over-
expression of transcription factors, TaNFYA-BI and TaNF-YB3;l
showed increased yield and nitrogen uptake, and quicker root
development and improved tolerance to drought than controls,
respectively (Qu et al., 2015; Yang et al, 2017). Similarly,
the rice genes OsNF-YA7 and OsNF-YBI were reported to be
responsive to drought. Over-expression of OsNF-YA7 increased
drought tolerance in transgenic rice plants (Lee et al., 2015),
and OsNF-YBI controls grain filling, resulting in improved yield
(Xu et al., 2016).

Transcription factor (TF) Nuclear Factor Y (NF-Y) is a
synonym of CCAAT Binding Factor (CBF) and Heme Activator
Protein (HAP). Three subunits (A, B, and C) usually function
in a single protein complex of NF-Y, and each of the three
components is essential for binding to cis-elements in the
promoter regions of target genes (Siefers et al., 2009; Petroni et al.,
2012). In plants, the functions of NF-Y proteins are quite diverse,
but, for the purposes of this paper, we will focus on just three:
(1) regulation of flowering time; (2) response to abiotic stress,
particularly drought; and (3) overall productivity in different
plants (Gusmaroli et al., 2001; Nelson et al., 2007; Petroni et al.,
2012; Kuromori et al., 2014; Swain et al, 2017; Zhao et al,
2017) including bread wheat (Qu et al., 2015; Yadav et al., 2015;
Zotova et al., 2018).

In Arabidopsis, the C subunits of NF-Y factor, AtNF-YC3,
AtNF-YC4, and AtNF-YCY, are involved in the regulation of
photoperiod-mediated flowering time through the GA signaling
pathway by binding to RGA (Repressor of gal-3) and RGL2
(RGA-like2) proteins (Hou et al., 2014; Liu et al., 2016). Over-
expression of many individual NF-YC subunits (such as NF-YCI,
NEF-YC2, NF-YC3, NE-YC4, and NF-YC9) alters flowering time.
Individual subunits of the NF-Y complex can affect the transcript
levels of Flowering locus T (FT). This gene encodes the protein

that is the key integrator in the flowering time pathway, and up-
or down-regulation of FT in interaction with the NF-Y complex,
leads to either early or late flowering in Arabidopsis (Kumimoto
et al., 2010; Cao et al., 2014; Hou et al., 2014; Xu et al., 2016).

The flowering time trait has a complicated, multi-level control.
Transcriptional up-regulation of two genes, Vrn (Vernalisation)
and FT, is strongly required for the transition from the vegetative
to reproductive stage, largely determining time to flowering
(Reviewed in: Greenup et al., 2009; Jung and Miiller, 2009; Yan,
2009; Jarillo and Pioeiro, 2011; Song et al., 2013; Milec et al,,
2014; Bliimel et al., 2015). In wheat, one of the most important
crops, the genetic control of the flowering time trait has been
extensively studied (Reviewed in: Li and Dubcovsky, 2008;
Craufurd and Wheeler, 2009; Distelfeld et al., 2009; Campoli
and Korff, 2014; Kamran et al,, 2014). The main regulatory
control of flowering time in wheat is through the up-regulation
of TaFT1 - TaVrn3 and TaVrnl genes (Li and Dubcovsky, 2008;
Distelfeld et al., 2009).

Interestingly, flowering time is controlled not only by genes
during ontogenesis, but is strongly impacted by abiotic stresses
(Reviewed in: Kazan and Lyons, 2016; Takeno, 2016). Plants of
various species have been reported to alter their development and
flowering time in response to different types of abiotic stresses,
ranging from osmotic stress in Arabidopsis (Chen et al., 2007), to
soil pH in a native population of Corydalis sheareri, Papaveraceae
(Huang et al., 2017). However, drought has been shown to be one
of the major abiotic factors affecting development of flowering in
various plant species such as tea, Camellia sinensis (Sharma and
Kumar, 2005), litchi, Litchi chinensis (Shen et al., 2016) and lemon
(Lietal., 2017). The genetic control of reproductive development
and time to flowering in response to various abiotic stresses are
well studied in cereals (Gol et al., 2017), where the influence
of cold (Li et al., 2018) and drought (Pinto et al., 2010; Gudys
et al., 2018) in particular, affect grain yields. Early flowering as
a drought escape strategy in wheat and other species and was
reviewed recently (Shavrukov et al., 2017).

In bread wheat, the TaVrnl gene was mapped to the long arm
of chromosome 5A, tightly linked with the Q gene controlling
spike morphology (Kato et al., 1998). The Q gene belongs to the
large AP2/ERF family of TF (Konopatskaia et al., 2016), which
includes DREB genes responsive to drought and dehydration,
and reports have shown that the Q gene is also regulated by
drought (Giirsoy et al., 2012). Therefore, flowering time and spike
morphology seem to have a shared regulatory framework with
TaVrnl and Q genes, and a strong response to drought.

The gene sequence and structure of the general repressor
of transcription, Drl (alternative name - NC2f), is conserved
among various eukaryotes. It operates as a heterodimeric
complex with the product of another gene, DrAPI (alternative
name — NC2a), and strongly represses the transcriptional activity
of RNA polymerase II and III, but not RNA polymerase I
(Kim et al, 1997). Originally, Dr1/DrApl was identified in
human cells as an unknown factor that was able to inhibit
TBP-dependent basal transcription in vitro (Inostroza et al,
1992). Mammalian DrApl itself cannot repress transcription
and therefore it is considered as an enhancer of Drl repression
activity (Mermelstein et al., 1996; Kim et al., 1997; Yeung et al,,
1997). In Drosophila, Dr1/DrApl represses the transcription
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from TATA-containing promoters and activates the transcription
from promoters without TATA-boxes (Willy et al., 2000).

In plants, Drl was originally discovered in Arabidopsis
(Kuromori and Yamamoto, 1994). Later, the rice OsDrl and
OsDrAp1 genes were cloned, and formation of the heterodimeric
complex, interaction of the protein complex with DNA, and
repressive activities of the subunits and protein complex were
characterized using the Y2H system, in vitro methods, and a
transient expression assay (Song et al., 2002). These authors
demonstrated several differences between the properties of Drl
and DrAp1 in mammals and rice. Firstly, the plant DrAp1 protein
was found to be larger than the mammalian and yeast proteins,
and both plant Drl and DrApl contained a greater number of
domains/motifs than their mammalian counterparts. Secondly,
OsDrApl alone showed stronger repression activity than OsDr1,
therefore in plants, OsDrl most likely plays the co-repressor role
and enhances the activity of OsDrApl (Song et al., 2002).This
differs from mammals and yeast, where Dr1 is the repressor and
DrApl plays the role of a regulatory subunit (Inostroza et al,
1992; Kim et al., 1997; Prelich, 1997).

Two homologs Drl genes from bread wheat, TaDr1A and
TaDr1B, were identified and their expression patterns were
reported in different wheat tissues under control and drought
conditions (Stephenson et al., 2007). Transcripts of both TaDr]1
homologs were abundant in all tested plant tissues and strongly
up-regulated in leaves under drought.

In yeast, a 71% similarity between Drl and CBF-A (=NF-YB)
was reported (Sinha et al., 1996). In bread wheat, TaDrl
and TaDr2 proteins (accessions AF464903 and BT009234,
respectively), showed a “high degree of similarity” with
TaNF-YB3 amino acid residues (Stephenson et al., 2007).
Therefore, the authors suggested that the Dr1/DrApl complex
could, potentially, inhibit transcription by acting as antagonist
to all or to particular NF-YB and NF-YC subunits, thus
preventing subunit association and subsequent binding of the
activation NF-Y complex (Stephenson et al., 2007). This could
be a possible mechanism to explain TaDr-mediated global
repression of transcription.

The aims of this work were: (1) to compare flowering time
and time to grain maturity of high-yielding and low-yielding
wheat cultivars from Kazakhstan; (2) to analyze the genetic
polymorphism of the TaDrI gene in eight selected bread wheat
cultivars, and in an F3 segregating population 18-6 originating
from a complex interspecies hybridisation; (3) to study TaDrl,
TaVrnl and TaFTI gene expression in response to drought
in leaves of selected wheat cultivars; and (4) to assess the
co-expression of TaDrl, TaVrnl, and TaFT1 genes and grain
yields of wheat cultivars in the dry conditions of Northern and
Central Kazakhstan.

MATERIALS AND METHODS

Plant Material, Conditions of Plant
Growth and Drought Application

Eight wheat cultivars, representing two groups with contrasting
yields were selected from local varieties tested in field trials,

based on their grain yields under the dry conditions in
Northern Kazakhstan (current study) and Central Kazakhstan,
described earlier by Shavrukov et al. (2016b). Descriptions of
plant materials and all experiments were as reported earlier
(Zotova et al.,, 2018). These descriptions included: seeds obtained,
conditions of plant growth in the research field in Central
Kazakhstan and the controlled conditions in the “Phytotron”
experiments on gradual drought using plants in soil-filled
containers over 12 days (Experiment 1) (Zotova et al., 2018).

A small outdoor trial was conducted in the research field of
S.Seifullin Kazakh AgroTechnical University, Astana in Northern
Kazakhstan in the dry season of 2017. Total rainfall was
107 mm during the vegetative growth period, lower than the
average of 166 mm that was observed over many years in
this region, and a 3°C higher than average temperature for
August (20.3°C compared to the average, 17.3°C) was recorded
that year. Two-row plots were sown, 1 m in length with
5 cm between plants in rows and 20 cm between rows, and
four randomized replicates were used. The number of days
between sowing and first flowering of 50% of plants in each
plot was counted as “Days to flowering” (DF), while “Days
to maturity” (DM) was recorded when all plants in each plot
reached the ripening stage. Grain yield was measured for each
plot and re-calculated in “g/m?” with statistical treatment as
described below.

A complex interspecific cross [Q Triticum spelta, k-53660 x J
(T. aestivum, Novosibirskaya 67 / T. dicoccum, k-25516)] was
produced by one of the authors, Nikolay Goncharov, at the
Institute of Cytology and Genetics, Russian Academy of Sciences,
Novosibirsk (Russia). F3 plants from the hybridisation were
grown in pots with soil in a “Phytotron” with controlled
conditions as mentioned above.

Identification of the “Gene of Interest”
Using Bioinformatics and Molecular

Phylogenetic Comparative Analysis

The cereals SNP database' was used to search and select
a single target gene or “Gene of Interest” (Gol) for
further research. BLAST analysis of the genetic fragments
containing a SNP was applied to identify the full-length
Gol using the Nucleotide collection of bread wheat in the
NCBI database’.

Bioinformatics and systems biology methods were applied
in this study to identify the full-length nucleotide sequence of
the Gol, TaDrl, and its corresponding polypeptide sequence
was used for both BLASTN and BLASTP in NCBI and in
GenomeNet Database Resources, Kyoto University, Japan’.
All wheat gene sequences with KEGG identification and
their encoded proteins were retrieved from GenomeNet
databases. Multiple sequence alignments of nucleotide
sequences for the TaDrlA and TaDrlB genes were conducted
in CLUSTALW using the CLC Main Workbench software*.

Thttp://www.cerealsdb.uk.net/cerealgenomics/CerealsDB
Zhttps://blast.ncbi.nlm.nih.gov

*https://www.genome.jp/tools/blast
“https://www.qgiagenbioinformatics.com/products/clc- main-workbench
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Chromosome locations of all TaDr1 homeologous genes in the
wheat genome were found using BLAST analysis with high
confidence annotated genes of the IWGSC database at the
Gramene web-site’.

The molecular dendrogram of polypeptides of TaDrl from
bread wheat and other monocot plants was constructed using
SplitsTree4 program® (Huson and Bryant, 2006), with Phylogram
Splits and Tree Selector option.

DNA Extraction and SNP
Amplifluor Analysis

Plants were grown in control (non-stressed) conditions in
containers with soil as described above. Five uniform, 1 month-
old individual plants were selected from each accession
and five leaves were collected and bulked for leaf samples.
Leaf samples frozen in liquid nitrogen were ground in 10-
ml tubes with two 9-mm stainless ball bearings using a
Vortex mixer. DNA was extracted from the bulked leaves
with phenol-chloroform as described in our earlier papers
(Shavrukov et al., 2016b; Zotova et al., 2018). 1 pul of DNA
was loaded on a 0.8% agarose gel to assess quality, and
concentration was measured by Nano-Drop (ThermoFisher,
United States).

Amplifluor-like SNP analysis was carried out using a
QuantStudio-7 Real-Time PCR instrument (ThermoFisher
Scientific, United States) as described previously (Jatayev et al.,
2017; Zotova et al., 2018) with the following adjustment for
wheat genotyping. Each reaction contained 3 pl of template
DNA adjusted to 20 ng/pl, 5 pl of Hot-Start 2xBioMaster
(MH020-400, Biolabmix, Novosibirsk, Russia’) with all other
components as recommended by the manufacturers, including
MgCl, (2.0 mM). One pl of the two fluorescently labeled
Universal probes was added (0.125 uM each) and 1 pl of
allele-specific primer mix (0.075 uM of each of two forward
primers and 0.39 pM of the common reverse primer). 4 pl
of Low ROX (ThermoFisher, United States) was added as a
passive reference label to the Master-mix as prescribed for
the qPCR instrument. Assays were performed in 96-well
microplates. The annotated SNP sites were used to design
allele-specific primers. Sequences of the Universal probes and
primers and sizes of amplicons generated are presented in
Supplementary Material 1.

PCR was conducted using a program adjusted from those
published earlier (Jatayev et al., 2017; Zotova et al, 2018):
initial denaturation, 95°C, 2 min; 20 “doubled” cycles of
95°C for 10 s, 60°C for 10 s, 72°C for 20 s, 95°C for 10 s,
55°C for 20 s and 72°C for 50 s; with recording of Allele-
specific fluorescence after each cycle. Genotyping by SNP
calling was determined automatically by the instrument
software, but each SNP result was also checked manually
using amplification curves and final allele discrimination.
Experiments were repeated twice over different days,

Shttp://www.gramene.org
Shttp://www.splitstree.org
"http://biolabmix.ru/en/products

where two technical replicates confirmed the confidence
of SNP calls.

RNA Extraction, cDNA Synthesis and
qPCR Analysis

Plants were grown in the controlled conditions of a “Phytotron”
at S.Seifullin Kazakh AgroTechnical University, Astana,
Kazakhstan, as described earlier in Experiment 1 (Zotova et al,,
2018). In brief, for mild drought stress with 1-month old plants,
watering was withdrawn in one of two soil-filled containers for
12 days until wilted leaves were observed. Control plants in
similar containers were watered continuously. Five individual
plants were used for each cultivar in drought-affected and
well-watered containers. All leaves were collected from each
plant in plastic tubes as separate biological replicates, frozen
immediately in liquid nitrogen and kept at —80°C until RNA
extraction. Three samples were used for RNA extraction in
each cultivar and treatment, while two additional samples
were used as replacements in case of failed extraction or
poor RNA quality.

Frozen leaf samples were ground as described above for DNA
extraction. TRIzol-like reagent was used for RNA extraction
following the protocol described by Shavrukov et al. (2013) and
all other steps for RNA extraction and cDNA synthesis were
as described previously (Zotova et al., 2018) including DNase
treatment (Qiagen, Germany), and the use of a MoMLV Reverse
Transcriptase kit (Biolabmix, Novosibirsk, Russia). The quality
of all cDNA samples was confirmed by PCR with products of the
expected size.

Samples of cDNA diluted with water (1:2) were used
for qPCR analyses using both a QuantStudio-7 Real-Time
PCR instrument (ThermoFisher Scientific, United States) at
Kazakh AgroTechnical University, Astana, Kazakhstan, and
Real-Time qPCR system, Model CFX96 (BioRad, Gladesville,
NSW, Australia) at Flinders University, Australia. Similar
qPCR protocols were used in both instruments, as described
earlier (Shavrukov et al., 2016b). Differences between protocols
were: the total volume of 10 pl q-PCR reactions included
either 5 pl of 2xBiomaster HS-qPCR SYBR Blue (Biolabmix,
Novosibirsk, Russia) for experiments in Kazakhstan or 5 pl
of 2xKAPA SYBR FAST (KAPA Biosystems, United States)
for experiments in Australia, 4 pl of diluted ¢cDNA, and
1 ul of two gene-specific primers (3 WM of each primer)
(Supplementary Material 2). Expression data for the target
genes were calculated relative to the average expression of the
two reference genes: Tu22845, ATP-dependent 26S proteasome
and Ta54825, actin (Paolacci et al, 2009). At least three
biological and two technical replicates were used in each
qPCR experiment.

Statistical Analysis

IBM SPSS Statistical software was used to calculate and analyze
means and standard error using ANOVA, to estimate the
probabilities for significance using Student’s ¢-test. A correlation
analysis was performed using Tests of Between-Subjects Effects
(IBM SPSS, Statistics Desktop 25.0.0.0).
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RESULTS

Phenological Characteristics and Grain
Yield of Studied Wheat Cultivars

To assess the relative grain yield performance of the bread
wheat cultivars in the dry conditions of Northern and Central
Kazakhstan, eight wheat cultivars were selected from our
previously published paper (Shavrukov et al., 2016b), and tested
in the field during the dry season of 2017. The group of four
cultivars (1. Aktyubinka; 2. Albidum 188; 3. Altayskaya 110;
and 4. Saratovskaya 60) performed as expected, confirming
their high-yielding status, which was significantly higher than
the group with low-yield (5. Vera; 6. Volgouralskaya; 7. Yugo-
Vostochnaya 2; and 8. Zhenis) (Table 1).

The superior high-yielding cultivar Aktyubinka (240 g/m?)
had the shortest DF (39 days) and so earliest start to flowering,
while its DM was about average for this group (66 days). In
contrast, the lowest-yield cultivar, Yugo-Vostochnaya 2, with
more than two-fold lower grain yield than Aktyubinka, started
flowering after a 3 day delay (42 days) but was only 1 day
shorter in DM (65 days) compared to Aktyubinka. On average,
the four high-yielding cultivars started flowering a significant
2.5 days earlier compared to the low-yielding group, while a less
pronounced and insignificant difference (1.8 days) was found in
DM between the two groups of cultivars (Table 1).

Genotyping of Wheat Accessions for the
TaDr1 Gene Using an Amplifluor
SNP Marker

During screening of annotated SNPs in bread wheat, the
contig BC000036325 was identified for the drought-responsive
candidate gene (TaDrl) using the publicly available database
Cereal DB (see text footenote 1). The SNP marker KATU-
W62 was developed to target the annotated SNP [W = A/T]
in the 3’-UTR (untranslated region) based on the sequence of
BC000036325. Both selected wheat cultivars and the segregating

TABLE 1 | Phenological characteristics of eight wheat cultivars grown in the
Akmola region, Northern Kazakhstan, in the dry season of 2017.

Days to Days to Grain yield
Group Cultivar flowering maturity (g/m?)
High-yield Aktyubinka 39 66 240 + 142
Albidum 188 42 66 165 + 11
Altayskaya 110 42 68 155 + 10P
Soratovskaya 60 40 66 162 + 10P
Average of the high-yielding group 40.8+0.9* 66.5+06 180.5+23.0*
Low-yield Vera 43 67 129 4 9°¢
Volgouralskaya 43 74 122 £9°
Yugo-Vostoch. 2 42 65 112 + 8°
Zhenis 45 67 129 4+ 7¢
Average of the low-yielding group 433 +0.7* 68.3+23 123.0+4.3*

Number of Days to flowering (DF) was counted when 50% of plants in the plot
started flowering, while number of Days to maturity (DM) was recorded once all
plants in each plot reached the ripening stage. Grain yield was calculated in g/m?,
as average of four replicates + SE. Different letters in superscripts and asterisks (*)
indicate significant differences (p < 0.05) using ANOVA.

population 18-6 showed genetic polymorphism, with the more
common allele being the nucleotide “A” and rarer allele “T” at the
SNP position (Figure 1).

Genotyping of plants from the eight studied cultivars
using the Amplifluor SNP marker KATU-W62 revealed clear
discrimination of homozygote genotypes “aa” in all four high-
yielding cultivars (1-4) while low-yielding cultivars (5-8) were
characterized by a mixture of “bb” (5. Vera; and 7. Yugo-
Vostochnaya 2) and “ab” (6. Volgouralskaya; and 8. Zhenis)
genotypes (Figure 1A). At this stage, it remains unclear whether
the “ab” genotypes of cultivars Volgouralskaya and Zhenis belong
to true heterozygotes, a mixture of several genotypes or both
cases together.

Segregation of genotypes for the SNP marker KATU-W62
was observed in the F3 population 18-6 (Figure 1B) originating
from the complex cross, where the favorable allele “a” was
inherited from the paternal line. The analysis of the entire hybrid
population is still ongoing and will include progeny analyses in
the next generation.

Bioinformatic Characterisation of the

TaDr1 Candidate Gene and Protein

BLASTN results at NCBI®* for bread wheat gene sequences
revealed two accessions, BT009234 for TaDr1B, and AF464903
for TaDrl1A, published and described earlier (Stephenson et al.,
2007), with 96% identity in both genes, and covering 96% and
89% of the sequences, respectfully.

Genomic DNA analysis using high confidence genes
annotated by the IWGSC database revealed that TaDrlA and
TaDrlB are located on homeologous chromosomes 3A and
3D, in the positions 689,352,814-689,357,320 and 552,949,
442-552,953,939, on the forward strands of the physical
map, respectively. These genes, TraesCS3A02G450700 and
TraesCS3D02G443500, contained five exons, produced 1,536
and 1,565 bp long transcripts which encoded 291 and 298
amino acid long proteins, respectively. The sequence of
contig BC000036325, which contained the identified SNP,
had the highest level of identity (99.7%) with the gene
TraesCS3B02G487800, located in the position 733,818,973-
733,823,767, on the forward strand of the physical map of
the homeologous chromosome 3B. The gene presented in the
BC000036325 contig also contained five exons, transcribed a
single 1,317 bp long transcript and encoded a 296 amino acid
long protein. Therefore, the two annotated genes TuDrl1A and
TaDr1B, and the BC000036325 contig from the SNP database,
together represent the three homeologous genes of TaDrl in
wheat genomes A, D and B, respectively.

The protein encoded by BC000036325 shared 99.3% and 85.%
identity with TaDr1B and TaDrlA, respectively, while a low
similarity score and only 18.9% identity was found compared to
TaNF-YB3, accession BT009265 (Figure 2). This result shows that
accession BC000036325 from the B genome used in this work
has much stronger similarity to TaDr1B and to the corresponding
gene TaDr1B from the D genome of wheat.

8https://www.ncbi.nlm.nih.gov
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FIGURE 1 | Allele discrimination in eight wheat cultivars (A) and in the segregating population 18-6 (B) using the Amplifluor-like SNP marker KATU-W62. X- and
Y-axes show relative amplification units, AR,, for FAM and VIC fluorescence signals, respectively. Red dots represent homozygote (aa) genotypes with allele 1 (FAM)
associated with the high yielding cultivars, blue dots represent homozygote (bb) genotypes for allele 2 (VIC), and green dots represent heterozygote (ab) or mixed
genotypes identified with automatic SNP calling. The black squares show the no template control (NTC) using water instead of template DNA.
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i i i o
BC000036325 STTGTCHMSTAARSTTIGTTAAATAAPANPANS----------- TAAPSATPABASAAAAA--TSTPA------- T 29
TaDriB STTGTCHMSTAAPSATGTTAAATSAPANPANS- - - - ---- - - - TAAPSATPABASAAAAAAATSTPA- - ---- - T 298
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FIGURE 2 | BLASTP protein comparison of the annotated sequence BCO00036325 (http://www.cerealsdb.uk.net) with two forms of the general repressor of
transcription, TaDr1B (BT009234) and TaDr1A (AF464903), and the TF TaNF-YB3 (BT009265), presented using CLC Main Workbench software.

sequences, bread wheat (Triticum aestivum) and the diploid
Molecular Dendrogram of the progenitor of A genome (T. urartu) form the first sub-clade;
TaDr1 Gene and cultivated rice (Oryza sativa) and closely related native
The phylogenetic tree was constructed based on a BLASTX search ~ grass from tropical Africa (O. brachyantha) are isolated in the
for molecular similarity for the TaDrl protein (BC000036325) second sub-clade. All other cereal species are joined together in
in cereal plant species and a group of TFs TaNF-YB for the third sub-clade including sorghum (Sorghum bicolor), maize
the comparison from NCBI Database. The sequences of all (Zea mays), foxtail millet (Setaria italica), and Hall’s panicgrass
Drl proteins are distinct from all TaNF-YB TFs. Among Drl  (Panicum hallii) (Figure 3).
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FIGURE 3 | Molecular phylogenetic tree of proteins encoded by Dr1 genes in
monocot plants with the comparison to peptide sequences of TaNF-YB TFs in
wheat. Rooted BioNJ dendrogram was generated by program SplitsTree4
(Huson and Bryant, 2006; http://www.splitstree.org). Scale bar shows
uncorrected P genetic distance equivalent to 1.0. Accession sequences were
retrieved from NCBI database. Plant species are coded as follows: Os, Oryza
sativa; Ob, O. brachyantha; Sb, Sorghum bicolor; Zm, Zea mays; Si, Setaria
italic; Ph, Panicum hallii; Ta, Triticum aestivum; Tu, T. urartu. The studying
TaDr1 accession is indicated in Bold.

Expression Analysis of the TaDr1 in
Leaves of Control Plants and Plants
Exposed to Drought

Expression profiles for TaDr1 were recorded as the total of all three
homeologous genes, TaDrlA, TaDr1B and BC000036325 using
primers designed for the most conserved regions of these genes.
Reference genes used in this study were stable across all genotypes
in control and treatment conditions (Figure 4A). In plants
exposed to drought, our results revealed significant up-regulation
of TaDrl in all eight studied wheat cultivars (Figure 4B). Four
high-yielding cultivars increased production of TaDrI transcripts
2-2.4 fold, while expression levels in plants of low-yielding
cultivars were also increased compared to controls but not as
strongly as in plants of high-yielding cultivars (Figure 4B).

Both flowering time regulators, TaVrnl and TaFT1, showed
drought responsive expression similar to the expression of TaDr1.
High-yielding cultivars (1-4) had higher expression levels of
TaVrnl and TaFTI than low-yielding cultivars (5-8), although
differences for some cultivars were not significant. These results
show genotype-dependent co-expression following the same
trend in all three studied genes, TaDr1, TaVrnl, and TaFT1, in
leaves of plants grown under drought (Figures 4B-D).

Statistical analysis using Tests of Between-Subjects Effects
for the gene expressions presented in Figures 4B-D shows a
very low correlation between groups of high-yielding cultivars
(1-4) and low-yielding cultivars (5-8), with R* = 0.081,
0.123 and 0.118, respectively. In contrast, strong correlations
(R% = 0.897 and R? = 0.957) were found between cultivars within

each group, 1-4 and 5-8, for the three studied genes TaDrl,
TaVrnl, and TaFT1, respectively (Table 2).

DISCUSSION

Flowering time is a very important trait in wheat, and it
was documented that earlier flowering by just a few days
can increase the likelihood that plants can minimize the
impact of terminal drought and ultimately improve their yield
performance compared to wheat genotypes with later flowering
times (Reviewed in: Shavrukov et al., 2017). Terminal or late
season drought is the most common form of drought stress
under most wheat production environments. In the current
work, we compared the flowering time of four high-yielding and
four low-yielding wheat cultivars and the expression of some
genes related to flowering time. In a population of Recombinant
breeding lines of durum wheat (Triticum durum Dest.) in diverse
environments with drought, one QTL for heading date was
identified in Chromosome 2A. However, this QTL had minimal
or no effect on grain yield (Maccaferri et al., 2008). Different
results were reported concerning early heading in synthetic bread
wheat lines that correlated with higher grain yield under dry
conditions compared to controls (Inagaki et al., 2007). The
authors concluded that genes from the D genome could make an
important contribution to the correlation in bread wheat, which
is absent in tetraploid durum wheat.

The TaDr1 gene was selected from a SNP database for genetic
polymorphism analysis using molecular markers. This gene
encodes a protein belonging to the group of general transcription
repressors and is an important part of the plant regulatory system.

Two of the three homologous genes, TuDrlA and TaDrlB,
were identified earlier in wheat (Stephenson et al, 2007),
and a third TaDrl gene with the temporary name of contig
BC000036325 identified in the current study, were localized
in A, D and B genomes of bread wheat. Alignment of TaDrl
proteins with TaNF-YB3 reveals a high level of identity in
the histone fold domain responsible for protein-protein and
protein-DNA interactions (Figure 2). This result is in agreement
with the previously published statement about the “high degree
of similarity between TaDrlA, TaDr1B and TaNF-YB subunit
members” (Stephenson et al., 2007).

The expression analysis of all three homeologous genes of
TaDrl1 comprised an important part of the study of gene function,
as published by Stephenson et al. (2007). However, analysis of
the primer design for qPCR analysis of the genes, TaDrIA and
TaDrlB, in Stephenson et al. (2007) did not reveal sufficient
discrimination between these genes (Supplementary Material 2).
One pair of primers published by Stephenson et al. (2007) was
based on BT009234 and targeted the TaDr1B sequence for qPCR
analysis, but it shows full consensus between the two genes, with
no mismatches (indicated in green, Supplementary Material 2).
Therefore, the use of these primers gave total (combined)
expression for both genes, TaDrIA and TaDrlB. The second
pair of primers, used and reported by Stephenson et al. (2007),
was based on AF464903, where the reverse primer was again
designed in the conserved region which is identical in both
genes. Only a single nucleotide insertion and one SNP were
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FIGURE 4 | Expression of the reference gene Ta22845 (ATP-dependent 26S proteasome, regulatory subunit) and target genes, TaDr1, TaVin1, and TaFT1, in leaves
of eight wheat cultivars in response to drought. The expression levels of Ta22845 (A), TaDr1 (B), TaVim1 (C), and TaFT1 (D) were calculated under drought relative to
the corresponding controls in well-watered conditions. Eight wheat cultivars were studied, high-yielding are shown as darker boxes (1. Aktyubinka; 2. Albidum 188;
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found in the sequence of the TaDr1A-Fd primer (indicated in
pink, Supplementary Material 2). We estimate that it contributes
about 90-95% of the studied TaDrlA isoform specificity, so in
the results presented by Stephenson et al. (2007), TaDr1B was
over-estimated and represented the total expression of both genes
combined, TaDr1A and TaDr1B (TaDrl).

In this context, we similarly measured total expression of all
three homeologous genes TaDrl with qPCR primers based on
the sequence BC000036325. Two mismatches at the 5'-end of the
reverse primer (indicated in blue, Supplementary Material 2)
can affect the specificity of the amplified mRNA of both genes,
TaDrl1A and TaDrlB, but only at an equal rate due to perfect
consensus between AF464903 and BT009234 sequences in the
primer-binding region.

In this work, the associations of an individual Gol with
complex traits, such as flowering time and performance under

TABLE 2 | Correlation analysis between groups of high-yielding and low-yielding
cultivars for expression of the three genes, TaDr1, TaVim1, and TaFT1 (right
column), and between cultivars within each group (bottom row).

High-yielding cultivars Low-yielding cultivars R2
TaDr1 217 £0.08 1.60 +£ 0.15 0.081
TaVim1 1.72 £0.10 1.06 £ 0.08 0.123
TaFT1 218 +£0.10 165+ 0.10 0.118
R? 0.897 0.957

Data represent the average of the relative expression units for four cultivars, with
three biological replicates in each (n = 12) + SE, extracted from Figure 4. The R?
correlation coefficient was calculated using Tests of Between-Subjects.

drought, were studied in bread wheat cultivars. The regulatory
gene, TaDr1, is clearly involved in the plant’s response to drought
and its expression pattern correlates with the expression patterns
of two other regulatory genes, TaVrnl and TaFTI, which are
well-known regulators of flowering time. The existence of small
differences in flowering time between high- and low-yielding
wheat cultivars under moderate drought was also demonstrated.

In addition, over-expression of regulatory transgenes, TaNF-
YB4, TaDREB3, or TaSHN1, as was shown in our earlier papers,
activated sets of downstream genes and this led to significantly
improved drought tolerance and/or increased grain yield of
transgenic wheat plants (Yadav et al., 2015; Shavrukov et al.,
2016a; Bi et al,, 2018). These results confirm the relevance of
the “single-gene for single-trait” approach in studying complex
regulatory gene networks, such as, for instance, the response of
bread wheat under limited water conditions.

The eight local wheat cultivars from Kazakhstan used in our
study were separated into two groups representing high- and low-
yielding varieties in the dry conditions of Northern and Central
Kazakhstan, as discussed in our previous paper (Shavrukov et al.,
2016b) and confirmed in the current study (Table 1). Under
drought, the two groups of wheat cultivars showed quite variable
expression profiles of TauDrl, with 2-2.4-fold and 1.3-1.8-fold
higher expression of TaDrI in the first and second groups of
cultivars, respectively (Figure 4B). The expression of TaDrl,
identified as TaDrIB in cv. Babax (Stephenson et al., 2007), was
reported to be about 2.3-fold above the level of controls, which is
close to the highest level of the first group of wheat cultivars in
the current study.
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Our results indicate that the expression of TauDr1 is dependent
on wheat genotype. Four high-yielding cultivars showed very
high expression of TaDrl, while gene expression was moderate
in all four low-yielding cultivars compared to controls under
drought treatment.

The two TFs, TaVrnl and TaFT1I, are well studied and are
known to strongly regulate the flowering time trait in wheat.
Abiotic stresses, such as drought, can affect plant growth and
development including flowering. In our recent paper, we repor-
ted that the TaNFYC-A7 gene was differentially expressed under
drought in the same cultivars studied here (Zotova et al., 2018).
It is suggested that the TaDrl protein could bind one or both
of the TaNF-YB and TaNF-YC type subunits and consequently
prevent their interactions or binding to the third subunit, TaNF-
YA. It can therefore act as a repressor of the trimeric NF-Y
transcription factor. We can extend this hypothesis and speculate
that TaNF-Y, which is affected (deactivated) by TaDr1, can release
the activity of TaVrnl and TaFT1 promoters. This in turn leads to
earlier flowering and ultimately improved performance of wheat
genotypes grown in the dry environment of Northern and Central
Kazakhstan. The proposed signaling pathway from TaDrl to
TaVrnl and TaFT1 is supported by the three genes’ co-expression
results in the current study in wheat plants under drought.
High expression of TuDrl was accompanied by significant up-
regulation of TaVrnl and TaFT1 transcripts. In experiments with
drought stress, co-expression patterns in TaDrl, TaVrnl, and
TaFT1 were genotype-dependent and highly correlated, being
much stronger in the four high-yielding wheat cultivars and
less pronounced, but still significant, in the four low-yielding
cultivars. Further strong evidence will be required to support
or reject this hypothesis, including direct “protein-protein”
interactions in the studied wheat genotypes.

The application of the Amplifluor-like SNP marker, KATU-
W62, like other molecular markers, is a helpful tool for wheat
genotyping of both modern cultivars and interspecific hybrids
with wild relatives or species related to the genus Triticum. In this
study, we were able to show that the markers can be deployed in
tracking the different alleles in an F3 population resulting from
a complex cross. This population will be used to assess the value
of the marker in screening for enhanced drought tolerance under
production conditions in Northern Kazakhstan. If our hypothesis
is correct, we expect lines carrying the “a” allele to perform
better under drought, with the strongest improvement shown for
homozygotes “aa” in the presented study.

Identification of the TaDrl alleles can result in a better
understanding of genetic polymorphism in the control of
down-stream genes, like TaVrnl and TaFTI, which regulate
vernalisation and flowering time. Together with the Q gene,
the combined regulatory system can change the reproductive
architecture of wheat plants and improve their tolerance to
abiotic stresses, primarily drought.
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the Human Tendencies in
Subordination and Domination: A
Genome-Wide Study With in silico
Confirmation and in vivo Validation in
Mice

Irina Chadaeva’2, Petr Ponomarenko®, Dmitry Rasskazov?, Ekaterina Sharypova2,
Elena Kashina?, Maxim Kleshchev', Mikhail Ponomarenko2*, Vladimir Naumenko’,
Ludmila Savinkova?, Nikolay Kolchanov'2, Ludmila Osadchuk’ and Alexandr Osadchuk’

" Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia, ? Novosibirsk
State University, Novosibirsk, Russia, ® University of La Verne, La Verne, CA, United States

We proposed the following heuristic decision-making rule: “IF {an excess of a protein
relating to the nervous system is an experimentally known physiological marker of low
pain sensitivity, fast postinjury recovery, or aggressive, risk/novelty-seeking, anesthetic-
like, or similar agonistic-intolerant behavior} AND IF {a single nucleotide polymorphism
(SNP) causes overexpression of the gene encoding this protein} THEN {this SNP can be
a SNP marker of the tendency in dominance} WHILE {underexpression corresponds
to subordination} AND vice versa.” Using this decision-making rule, we analyzed
231 human genes of neuropeptidergic, non-neuropeptidergic, and neurotrophinergic
systems that encode neurotrophic and growth factors, interleukins, neurotransmitters,
receptors, transporters, and enzymes. These proteins are known as key factors of
human social behavior. We analyzed all the 5,052 SNPs within the 70 bp promoter
region upstream of the position where the protein-coding transcript starts, which
were retrieved from databases Ensembl and dbSNP using our previously created
public Web service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/
tatascan/start.pl). This definition of the promoter region includes all TATA-binding protein
(TBP)-binding sites. A total of 556 and 552 candidate SNP markers contributing to
the dominance and the subordination, respectively, were uncovered. On this basis,
we determined that 231 human genes under study are subject to natural selection
against underexpression (significance p < 0.0005), which equally supports the human
tendencies in domination and subordination such as the norm of a reaction (plasticity)
of the human social hierarchy. These findings explain vertical transmission of domination
and subordination traits previously observed in rodent models. Thus, the results of
this study equally support both sides of the century-old unsettled scientific debate on
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The Human Bias in Domination and Subordination

whether both aggressiveness and the social hierarchy among humans are inherited (as
suggested by Freud and Lorenz) or are due to non-genetic social education, when
the children are influenced by older individuals across generations (as proposed by

Berkowitz and Fromm).

Keywords: gene, promoter, TBP, TATA-box, SNP, expression change, social hierarchy, candidate SNP marker

INTRODUCTION

Social dominance-subordination hierarchy is a set of structured
relationships between individuals. These relationship ensure
coexistence of individuals by reducing mutual aggression and
increasing order in the competition for limited environmental
resources as well as elevating their reproductive potential (Hinde,
1970; Rowell, 1974). In animals, such intraspecies hierarchy is a
result of agonistic aggressive behavior defined by ethologists as
an innate form of action to protect oneself, shelter, progeny, and
territory (Lorenz, 2002). Artificial selection of animals for either
aggressiveness (Kulikov et al., 2016) or domestication (Belyaev,
1979) has demonstrated the contribution of genetic factors to
the phenotypic manifestation of aggressiveness (Ehrman and
Parsons, 1981; Moore, 2013). Finally, a genome-wide search
for genetic factors of both fear and aggressive behaviors has
been conducted on model animals, e.g., in canines, which were
artificially selected for both domestication and agonistic behavior
(Zapata et al., 2016).

In humans, the reference genome (Colonna et al, 2014)
and the full set of single-nucleotide polymorphisms (SNPs)
available in the public databases Ensembl (Zerbino et al,
2015) and dbSNP (Sherry et al, 2001). In humans, genetic
polymorphism exemplifies the results of natural selection rather
than artificial one Dobzhansky (1963) concluded: “man is
genetically specialized to be unspecialized,” meaning that human
behavioral tolerance to social and environmental challenges is
broad. The recent genome-wide comparison between humans
and apes (Gunbin et al., 2018) indicated that the origin of human
species coincided with a reliable increase in the plasticity of the
transcription regulation of neuronal genes, while in apes the
regulatory plasticity of these genes reduced. This observation
points at the action of destabilizing (disruptive) natural selection
rather than directional or stabilizing natural selection (Belyaev,
1979). Notably, comprehensive multifactorial regression analysis
of healthy young athletes (i.e., boxers, kick boxers, and karate
fighters) revealed a significant positive correlation between
their aggression and anxiety rates, which helps to achieve top
combat levels owing to the prevention of injuries under extreme
conditions in the arena (Tiric-Campara et al., 2012). Finally, there
is the century-old unsettled scientific dispute where one side -
e.g., Freud (1921, 1930) and Lorenz (1964, 2002) - explains both
human aggressiveness and social hierarchy as a consequence of
their genetic predisposition, while the other side - e.g., Fromm
(1941, 1973), Berkowitz (1962, 1993), and Skinner (Rogers and
Skinner, 1956; Skinner, 1981) - explains this by the continuous
non-genetic social education which continues from childhood to
the oldest age (Markel, 2016).

Notably, the social dominance-subordination hierarchy in
social species (e.g., humans) limits the permissible aggression
range, which is under pressure of natural selection as a norm
of a reaction (plasticity) to aggressive behavior (Eldakar and
Gallup, 2011). Conditions, quality, and the lifespan of an
individual depend on his\her rank within the social hierarchy
(Michopoulos et al., 2012). In murine micropopulations as
combinations of inbred and hybrid individuals, manifestation
of the social dominance phenotype reliably depends on some
behavioral features taken together with a genotype (Serova
et al,, 1991). As for human aggressiveness as a target of some
antipsychotic drugs [e.g., olanzapine (Ellingrod et al., 2005)],
there are a number of biomedical SNP markers that represent
statistically significant differences between the reference human
genome and the individual genome of patients having either a
certain psychiatric disease or resistance/susceptibility to certain
treatments of this disease.

Each discovery of the SNP markers associated with the human
phenotypic traits had been a unique success in the pregenomic
era, whereas now, this task is one of the major aims of the
largest scientific project: “1000 genomes” (Colonna et al., 2014).
The main results of this project are publicly available within two
regularly synchronized and updated databases Ensembl (Zerbino
et al,, 2015), which is the reference human genome consisting of
the most frequent (ancestral) nucleotides at each DNA position,
and dbSNP (Sherry et al., 2001) as the human variome containing
all the carefully verified SNPs. Now these databases contain a
carefully curated extract that summarizes information on more
than 10000 individual human genomes and more than 100
million SNPs (Telenti et al., 2016). As for all the 8.58 billion
possible human whole-genome SNPs, creation of a relevant
database, dbWGFP, was already reported (Wu et al., 2016); this
database is designed to compile all the available information
about each of these SNPs to use it in the nearest future to
handle the requests from the people who want to sequence
their own individual genome and, then, get his/her individual
benefits from it.

Because biomedical SNP markers may be used for diagnosis
and selection of treatments for humans, there is only one
acceptable approach to identify them: that is, to estimate the
statistical significance of differences in the prevalence of a
given SNP in the representative cohorts of individuals with the
phenotypic trait of interest (Varzari et al.,, 2018). It is unlikely
that this extremely time-consuming and expensive procedure
is applicable to each of the 8.58 billion possible human SNPs
(Abbas et al., 2006). Moreover, both Haldane’s dilemma (Haldane,
1957) and Kimura’s theory of neutral evolution (Kimura, 1968)
predict neutrality of the absolute majority of human SNPs.
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These neutral SNPs should be discarded by computer-based
calculations in order to reduce the total cost of biomedical
SNP markers. Currently, there are many public Web services
(e.g., Bendl et al., 2016), predicting candidate SNP markers and
eliminating the most probable neutral SNPs while taking into
account various similarity measures for genome-wide data during
infections (Leschner et al., 2012) or diseases (Hu et al., 2013) as
well as after treatment (Hein and Graver, 2013) and in health (Ni
et al.,, 2012). The accuracy of these similarity-based predictions
increases with the increase in diversity of available genome-wide
data, in agreement with our predictions (Ponomarenko et al.,
1999) based on Central Limit Theorem.

The best accuracy of these bioinformatics predictions
corresponds to SNPs in the protein-coding regions owing to
their reliable manifestation as protein damage, whereas in the
case of SNPs in the regulatory regions of genes, none of the
proteins is damaged (Amberger et al., 2015). Notably, the 70 bp
promoter regions in front of the transcription start sites (TSSs)
contain the majority of the clinically verified regulatory SNP
markers (Ponomarenko et al., 2013) due to the TATA-binding
protein (TBP)-binding site (e.g., TATA-box), which is obligatory
for the primary initiation of gene transcription (Martianov et al.,
2002). Finally, Mogno et al. (2010) experimentally found that the
increase in TBP-binding affinity for the TBP-binding sites altered
by SNPs causes overexpression of the appropriate genes whereas
underexpression corresponds to a decrease in the affinity.

In our previous works, we created a public Web service
SNP_TATA_Comparator (see text footnote 1) (Ponomarenko
et al., 2015) for selecting the statistically significant SNP-caused
alterations in TBP’s affinity for the promoter regions 70 bp
upstream of the protein-coding TSSs. This Web service is based
on our three-step model of the TBP-promoter binding to each
other (Ponomarenko et al., 2008), namely: (i) TBP slides along
DNA <« (ii) TBP stops at a putative TBP-binding site <>
(iii) the TBP-promoter complex is fixed by the DNA bending
at a right angle, as was experimentally discovered (Delgadillo
et al, 2009). Using SNP_TATA_Comparator, we predicted
candidate SNP markers — within TBP-binding sites of the human
gene promoters — associated with obesity, chronopathology,
aggressiveness, and autoimmune and Alzheimer’s diseases (for
review, see Ponomarenko P. et al, 2017). Recently, we
preliminarily studied (Chadaeva et al, 2017) the possibility
to predict candidate SNP markers for social hierarchy using
a short representative set of 21 human genes homologous to
the animal genes encoding the known physiological markers
of aggressiveness, which represent nervous, endocrine, immune,
respiratory, vascular, muscular, and other systems of the
human body.

In this work, due to our observation (Bragin et al., 2006) of
domination of adult male BALB/cLac mice over CBA/Lac mice,
we made a genome-wide prediction for the human tendencies
dominance and subordination within the framework of the
neuropeptidergic, non-neuropeptidergic, and neurotrophinergic
systems and verified it using a mouse model of human
inheritance. We discuss how our results fit both genetic

Thttp://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl

(e.g., Freud and Lorenz) and non-genetic (e.g., Berkowitz and
Fromm) irreconcilable sides of the century-old scientific debate
about the origin of both aggressiveness and social hierarchy
in humans.

MATERIALS AND METHODS

Animals

This study was carried out in accordance with the
recommendations of Directive 2010/63/EU of the European
Parliament and of the Council of September 22, 2010, on the
protection of animals used for scientific purposes. Manipulations
of animals and experimental procedures were performed
in compliance with the international rules according to the
“Guidelines for the care and use of mammals in neuroscience
and behavioral research™. The research protocol was approved
by the Interinstitutional Commission on Bioethics at the ICG SB
RAS, 10 Lavrentyev Avenue, Novosibirsk, Russia.

Analysis of the inheritance of agonistic behavior indicators
and social dominance levels was conducted on 230 adult male
mice that are diallelic crosses of a set of five maternal inbred
mouse strains (i.e., PT, DD, YT, A/He, and C57BL/6]) with two
analytic inbred paternal strains (BALB/cLac and CBA/Lac) of the
murine tendencies in dominance and subordination, respectively,
as determined experimentally previously (Bragin et al., 2006).

All the mice were maintained under standard conditions of a
conventional animal facility of the ICG SB RAS.

Identification of Inheritance of the
Mouse Tendencies in Dominance and

Subordination
One can see all the 230 diallelic crosses in Table 1, where five
rows and two columns present F1 males. In each row of this table,
there are descendants of mothers of the same inbred strain. Thus,
the maternal non-genetic (pre- and postnatal) and cytoplasmic
effects are the same for males of the same row of this table.
To exclude non-genetic paternal postnatal effects on offspring,
pregnant female mice were isolated from male mice.

We made up groups of F1 hybrid male mice with the minimal
society size, namely: two males each: one from each column

1 https://grants.nih.gov/grants/olaw/National_Academies_Guidelines_for_Use_
and_Care.pdf

TABLE 1 | The experimental design for identification of inheritance of the murine
tendencies in dominance and subordination.

Paternal genotype BALB/cLac CBA/Lac
Maternal genotype

PT PT x BALB/cLac (31) PT x CBA/Lac (31)
C57BI/6J C57BI/6J x BALB/cLac (20)  C57Bl/6J x CBA/Lac (20)
YT YT x BALB/cLac (21) YT x CBA/Lac (21)
DD DD x BALB/cLac (20) DD x CBA/Lac (20)
A/He A/He x BALB/cLac (23) A/He x CBA/Lac (23)

The number of male mice for each of the 10 F1 hybrids is indicated in parentheses.
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of the same row of Table 1. In each pair, both male mice had
identical age, weight, and body size, but visually differed from
each other in color. This approach allowed us to estimate the
influence of the paternal genotype on the social dominance level
of the appropriate F1 crosses.

A total of 115 experimental pairs (230 F1 hybrids) were
distributed into five groups, corresponding to the maternal
inbred strains (see Table 1). For each mouse male pair tested, we
performed 14 observations (20 min each) during 5 days. Each
observation was recorded using a video camera in automatic
mode with a fixed period. Next, we analyzed these video
recordings using the protocols of software The Observer XT
7.0 (version: 7.0, Noldus Information Technology, license No.
0B070-03670). This way, we identified the social rank for
each male within the appropriate pair according to asymmetry
in agonistic behavior, in particular, by means of attacks and
submissive poses as described in the Supplementary Experiment
(Supplementary File S6).

The Basic Decision-Making Rule

Both domesticated and laboratory animals are artificially selected
using the known target traits (Belyaev, 1979; Kulikov et al,
2016), which can help in any computer-based genome-wide
analysis of these animals (e.g., Zapata et al., 2016) in contrast
to the human genome, which is the result of natural selection
in favor of unknown unspecializing target traits (Dobzhansky,
1963). Hence, on the basis of our preliminary work (Chadaeva
et al, 2017), we proposed the following heuristic decision-
making rule: “IF {an excess of a protein relating to the nervous
system is an experimentally known physiological marker of low
pain sensitivity, fast post-injury recovery, or aggressive, fearless,
impulsive, anxious, exploratory, risk/novelty-seeking, anesthetic-
like, or similar agonistic-intolerant behavior} AND IF {a given
SNP can cause overexpression of a gene encoding this protein}
THEN {this SNP can be a SNP marker of predisposition to
social dominance} WHILE {the underexpression corresponds to
subordination} AND vice versa.” This whole study is devoted to
evaluation of this decision-making rule.

DNA Sequences
Using the aforementioned basic decision-making rule (see
subsection “The Basic Decision-Making Rule”), we analyzed
all the 5052 SNPs retrieved from the dbSNP database (build
150, Sherry et al., 2001), which are found within the 70 bp
promoter regions upstream of the protein-coding transcripts
of all the 231 human genes of the neuropeptidergic, non-
neuropeptidergic, and neurotrophinergic systems retrieved from
database Ensembl (GRCh38/hg38 assembly, Zerbino et al,
2015), which are listed in the alphabetic order in the
first columns of Supplementary Tables S1-S3, respectively
(hereinafter: see Supplementary Files S1-S3, respectively).
These genes encode proteins that are known as key factors
altering human social behavior, namely, neurotrophic and growth
factors, interleukins, neurotransmitters, receptors, transporters,
and enzymes.

Using our public Web service SNP_TATA_Comparator
(Ponomarenko et al.,, 2015), we compared the DNA sequences

of the ancestral (wt) and minor (min) alleles of SNPs of
the 70 bp promoter region of these genes. We applied it
together with the public Web service UCSC Genome Browser
(Haeussler et al., 2015) and two public databases dbSNP (Sherry
et al,, 2001) and ClinVar (Landrum et al., 2014), as described
in the Supplementary Web-service (Supplementary File S5).
As a result, we obtained two pairs of (-In(Kp™) + 3(wi))
and (-In(Kp™min) + d(min)) values of TBP affinity for
these alleles of the promoter being studied according to
contextual, conformational, and physicochemical changes in
its B-helical DNA under the influence of a given SNP,
as described in the Supplementary Method (Supplementary
File S4). Next, we calculated Fisher’s Z-score as follows:
Z = abs[ln(KD(min)/KD(Wt))]/[Sz(min)—i-Sz(wt)]1/2, and in turn
found the p-value of statistical significance of this score using
package R (Waardenberg et al., 2015).

Finally, using this p-value, we discarded all the SNPs the
effects of which were estimated as insignificant; otherwise,
using decisions on the SNP-caused significant increase and
decrease of the binding affinity of TBP for the analyzed
promoters, we predicted the candidate SNP markers for over-
or underexpression of the appropriate genes, respectively, as
demonstrated experimentally (Mogno et al, 2010). Readers
can find all our predictions within the columns “Kp, nM,
prediction” of Supplementary Tables S1-S3. Their subcolumns
“wt” and “min” contain Kp values of TBP’s binding affinity for
the ancestral and minor alleles of the appropriate promoters,
respectively. Furthermore, subcolumns “A” and “a” correspond
to the human gene expression alterations and their statistical
significance levels o, which are equal to (1 — p). In
addition, subcolumn “p” presents a heuristic rank of our
predictions varying in alphabetical order from the “best” (A)
to the “worst” (E). Finally, Table 2 contains total numbers
of our predictions (Npgs) as well as the numbers of the
candidate SNP markers for either overexpression (N.) or
underexpression (N.) of the human genes, as predicted
by this work.

The Keyword Search in the PubMed

Database

For each candidate SNP marker predicted, we manually
performed a two-step keyword search in the PubMed database
(Lu, 2011) as shown in Figure 1.

As presented in this figure, we handled each candidate
SNP marker independently of the others, one by one.
First of all, we checked whether the SNP in question
was annotated by database ClinVar (Landrum et al, 2014)
as depicted in Supplementary Figure SI1C (hereinafter: see
Supplementary File S5 “Supplementary Web service”) and
boldfaced in both the first and third rightmost columns of
Supplementary Tables S1-S3.

When this database associated the SNP under study with the
human diseases, we manually carried out a primary keyword
search for the literature data on the known physiological marker
of these diseases, which corresponds to the gene expression
alteration predicted for this SNP as described elsewhere
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TABLE 2 | Predictions of candidate SNP markers that can statistically significantly alter the TATA-binding protein (TBP)-binding sites of the human gene promoters of all
the protein-coding transcripts relating to neuropeptidergic, non-neuropeptidergic, and neurotrophinergic systems.

Ho: social Ho: neutral
Data studied: GRCh38, dbSNP 150 Result status equivalence natural selection
Human body systems NGENE NSNP NRES NT Nl P(NT = Nl = NREslz) N.. N< P(N <=4N. = 4NR55/5)
Genome-wide estimate (1000 Genomes 104 10° 1000 200 800 > 0.52
Project Consortium et al., 2012)
Clinical SNP markers of hereditary 33 203 51 14 37 > 0.93
diseases within the TBP-binding sites
(Ponomarenko et al., 2015)
Candidate SNP markers within the 22 129 24 19 5 < 0.000001
TBP-binding sites of promoters of
reproductivity-related genes (Chadaeva
etal., 2018)
Candidate SNP markers within the 5 143 28 16 12 < 0.000025
TBP-binding sites of promoters of familial
Alzheimer’s disease-related genes
(Ponomarenko P. et al., 2017)
Candidate SNP markers within the 16 162 52 39 13 < 0.000001
TBP-binding sites of promoters of
circadian clock core genes
(Ponomarenko et al., 2016)
All: a representative set of genes 21 381 92 45 47 >0.9 66 26 < 0.000001
(Chadaeva et al., 2017)
Neuropeptidergic 27 395 97 51 46 >0.6 66 31 < 0.000001
Non-neuropeptidergic 109 2226 505 240 265 >0.2 342 163 < 0.000001
Neurotrophinergic 95 2431 506 265 241 >0.3 346 160 < 0.000001
TOTAL 231 5052 1108 556 552 >0.9 754 354 < 0.000001

Ngene and Nsyp, total numbers of the human genes and their SNPs (single nucleotide polymorphisms) within the 70 bp promoter region for the protein-coding transcripts,
respectively, in this study; Nges, the total number of the candidate SNP markers predicted in this work that can increase (N-.) or decrease (N -) the TATA-binding protein
(TBP) binding affinity for these promoters and, correspondingly, the expression of these genes; Ny and N, the total numbers of the candidate SNP markers for the
human tendencies in dominance and subordination, respectively; P(Hp), the estimate of a probability for the acceptance of this Hy hypothesis, according to the binomial

distribution.

(Lu, 2011). Figure 1 depicts this procedure as two boxes
consisting of dashed lines. In the case of a successful finding of
such a publication, the clinical data taken from database ClinVar
(Landrum et al., 2014) indicated the adequacy of our predictions
for the SNP under consideration. These confirmations of our
predictions are italicized in both the first and third rightmost
column of Supplementary Tables S1-S3.

Finally, two dotted boxes in Figure 1 depict our secondary
keyword search for the known physiological markers for
pain sensitivity, postinjury repair efliciency, or agonistic
behavior, which correspond to underexpression of the human
gene containing this SNP. This way, we tested the basic
decision-making rule of this work (hereinafter: see subsection
“The Basic Decision-Making Rule” “Basic decision-making
rule”). As the main bioinformatic results, we predicted the
candidate SNP markers for the human tendencies in dominance
and subordination, which are in both the first and third
rightmost column of Supplementary Tables S1-S3. Table 2
contains the total number of these candidate SNP markers
(N4 and N, respectively).

The section “References”
in  Supplementary Tables
“Supplementary Method.”

cited
section

the articles
and in

lists
S1-S3

Statistical Analysis

We analyzed dichotomies via the equiprobable binomial
distribution and y? criteria taken from the standard statistical
package Statistica (StatSoft™, Tulsa, United States).

In the genome-wide study in silico, using only Fisher’s Z-score
test, we predicted the candidate SNP markers, the numbers of
which for the human gene overexpression and underexpression
were compared with one another using the binomial distribution
as well as in the case of the human tendencies in dominance
and subordination.

During in vivo validation in mice, by means of the 2 criterion,
we compared the actual numbers of dominants and subordinates
among male mice, which were the F1 hybrids of crossing females
from inbred strains of an unknown tendency in social hierarchy
with males from two inbred strains BALB\cLac and CBA\Lac of
the previously experimentally identified tendencies in dominance
and subordination, respectively (Bragin et al., 2006).

RESULTS AND DISCUSSION

Our analysis of 5052 SNPs of the TBP-binding regions of
231 human neuron-related genes uncovered 1108 candidate
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FIGURE 1 | A flow chart of the keyword search for the SNPs of the human neuron-related genes. Dashed boxes depict the primary keyword search for the diseases
associated with the analyzed SNP by database ClinVar (Landrum et al., 2014). The dotted boxes depict the secondary keyword search for the known physiological
markers of human social behavior, which correspond to the alteration of the gene expression in the case of the SNP being studied.

SNP markers for the human tendencies in dominance and
subordination (Table 2). These predictions are shown in
Supplementary Tables S1-S3 and exemplified in Figures 2,
3 and Supplementary Figure S1. For 36 of the 231 genes
(16%), namely: ADRAIB, ADRA2A, ADRA2B, ADRBI, AVP,
AVPRI1A, CHRNB2, CNR2, FGF15, FGF16, FGF2, FGF23, FGF7,
FIGF, FLT3, GABARAPL3, GABRA3, GABRA4, GABRQ, GMFA,
GRIA3, GRIK4, GRIN2B, GRM6, IGF2R, IL27RA, KDR, LIF,
MANF, MAOA, MAOB, NGF, OXT, TACR3, TGFBRAPI, and
VEGFC, no candidate SNP markers were found (data not shown).
Let us focus our analysis of our results on the candidate
SNP markers that have independent clinical information within
database ClinVar (Landrum et al., 2014) to both verify and discuss
their relevance to the human genes under study.

Candidate SNP Markers Near

TBP-Binding Sites in the Promoter of the
Human Genes Encoding
Neuropeptidergic-System-Related
Proteins (e.g., Neurotransmitters)

We applied our experimentally verified public Web service
(Ponomarenko et al., 2015) to analyze 395 SNPs in 70 bp
proximal promoter regions of 27 human genes encoding
neuropeptidergic-system-related proteins, namely: arginine
vasopressin receptors (AVPRs), C-X-C motif chemokine
receptors (CXCRs); neuropeptide Y and its receptors (NPYs),
opioid growth factor receptor (OGFR), opioid receptors
(OPRs), oxytocin and its receptor (OXTs), prodynorphin
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rs36211802; and (C) rs3813929.

FIGURE 2 | Examples of our predictions in this work in the case of the human genes encoding neuropeptidergic-system-unrelated proteins. (A) rs777650793; (B)

(PDYN), proenkephalin (PENK), prepronociceptin (PNOC),
proopiomelanocortin (POMC), and tachykinins together with
their precursors and receptors (TACs). The results obtained can
be found in Supplementary Table S1.

The human PDYN gene, i.e., the opioid polypeptide hormone
prodynorphin, which is a basic building block of endogenous
opioid neuropeptides, so-called endorphins, that can inhibit
the pain signals peripherally and cause a feeling of euphoria
(when acting in the brain) as neurotransmitters of happiness
and joy. SNP 1s886056538 of this gene’s promoter was
annotated within database ClinVar (Landrum et al.,, 2014),
where it is associated with spinocerebellar ataxia as shown
in Supplementary Figure S1C. Supplementary Figure S1D
illustrates our prediction for this SNP, which is the line “Decision:
excess significant” accompanied by the line “Z-score = 2.51,
p > 0.95” within the textbox “Result.” This outcome means that
this SNP can statistically significantly cause overexpression of
this gene. Our primary keyword search (hereinafter: two dashed
boxes in Figure 1) produced an original experiment (Smeets
et al., 2015) involving a mouse model of the human diseases,
which has identified the prodynorphin excess as a physiological
marker for spinocerebellar ataxia. As one can see, these in vivo
experimental data independently support our prediction for
SNP rs886056538 (Supplementary Figure S1). This observation
indicates the suitability of our Web service (Ponomarenko
et al,, 2015) for computer-based analysis of the human genes
encoding neuropeptidergic-system-related proteins as italicized
in Supplementary Table S1.

After this validation, we manually conducted our secondary
keyword search (hereinafter: two dotted boxes in Figure 1)
and found the original experiment (Szklarczyk et al, 2012)

in a mouse model of human behavior, which associated the
prodynorphin excess with reduced conditioned fear. Using our
basic decision-making rule within the limitations of the above
experimental model of human behavior (Szklarczyk et al., 2012),
we predicted that the analyzed SNP rs886056538 can be a
candidate SNP marker for the human tendency in dominance
(Supplementary Table S1).

Near this clinically characterized SNP marker, we found
two unannotated SNPs (rs371345545 and rs557431815),
which can also cause overexpression of the human PDYN
gene (hereinafter: according to our predictions shown in
Supplementary Tables S1-S3). That is why we suggest them
as two candidate SNP markers of the same genetic tendencies,
namely: spinocerebellar ataxia with limitations (Smeets et al.,
2015) and social dominance within the framework of the model
(Szklarczyk et al., 2012) as presented in Supplementary Table S1.

This way, we predicted 66 and 31 candidate SNP markers
for excess and deficiency of the proteins of the human
neuropeptidergic system, respectively, which are also 51 and
46 candidate SNP markers predicted by this work for the
human tendencies in dominance and subordination (Table 2
and Supplementary Table S1). First of all, readers can see that
the numbers of the candidate SNP markers predicted for the
human tendencies in dominance and subordination markers
are not statistically significantly different from one another
according to equiprobable binomial distribution criterion
(P(Ny = N = Nggs/2) > 0.6). This finding is in agreement
with our preliminary estimate (Chadaeva et al., 2017), namely:
P(NT = Ni = NRES/Z) > 0.9.

On the contrary, the numbers of the candidate SNP markers
predicted for excess and deficiency of the proteins of the human
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FIGURE 3 | Examples of our predictions in this work in the case of human genes encoding neurotrophinergic-system-related proteins. (A) rs387906677; (B)
rs886046768; (C) rs183431225; (D) rs10900297; (E) rs10900296; and (F) rs138010137.

neuropeptidergic system are significantly different from one
another according to the equiprobable binomial distribution
criterion (P(N = = N _ = Nggs/2) < 0.0005) in line with our
preliminary observations (Chadaeva et al., 2017), as presented in
Table 2: N > =66, N < =26 (P(N» =N _ = Nggs/2) < 0.0005).
According to a number of studies, various molecular phenomena
can shift frequencies of mutations - e.g., influence of the
nucleotide context on the occurrence and repair of pre-
mutational damage to genomic DNA, gene conversion,
pleiotropic and epistatic effects — Kasowski et al. (2010) first

noticed that SNPs decreasing the protein-DNA affinity are
much more frequent than SNPs increasing this affinity within
the human genome. Next, the authors of ref. (1000 Genomes
Project Consortium et al., 2012) quantitatively characterized
this mutational shift, namely: there are ~800 SNPs damaging
the transcription factor binding sites and ~200 SNPs improving
these sites per random individual human genome as shown
in Table 2. According to Haldane’s dilemma (Haldane, 1957)
and neutral evolution theory (Kimura, 1968), this genome-wide
estimate can correspond to the neutral mutational drift as a
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norm. Indeed, we observed 37 clinically proven SNP markers
of the human hereditary diseases, which decrease the TBP-
promoter affinity, and 14 such SNP markers increasing this
affinity (Ponomarenko et al, 2015) in agreement with the
above-mentioned genome-wide estimate (Table 2). This pattern
matches the commonly accepted opinion on these diseases as a
genetic load of the neutral mutational drift in the norm.

Nevertheless, in the case of human reproductive potential,
which is considered the target of natural selection, we observed
a diametrically opposite pattern, namely: five candidate SNP
markers were decreasing the TBP-promoter affinity and 19
candidate SNP markers were increasing this affinity (Chadaeva
et al., 2018). Besides, we found (Ponomarenko P. et al., 2017)
only a minority (12 of 28) of candidate SNP markers of familial
Alzheimer’s disease that can decrease the TBP-promoter affinity;
this finding is consistent with natural selection for its very slow
pathogenesis, whose clinical manifestation is observed only at
the age of over 65 (Table 2). In addition, in the case of core
genes of the circadian clock (Ponomarenko et al., 2016), which
are naturally selected for continuous coordination between the
functioning of systems of the human body and daily fluctuations
of the environment, we found 13 candidate SNP markers that
can decrease the TBP-promoter affinity and 39 candidate SNP
markers increasing this affinity (Table 2).

Looking through Table 2, we noticed that our predictions
for the neuropeptidergic gene system are more similar to those
for natural selection cases than to those for neutral drift within
the normal range. That is why here we predict that the human
genes encoding neuropeptidergic-system-related proteins are
under natural selection pressure, which equally supports the
human tendencies in subordination and domination, as was
preliminarily estimated elsewhere (Chadaeva et al., 2017). This
way, we followed the semicentennial bioinformatic tradition
to compare the actual frequencies of natural mutations within
their various dichotomies [e.g., transitions versus transversions
(Kimura, 1980) as well as synonymous versus non-synonymous
changes (Li et al., 1985)].

Candidate SNP Markers Near

TBP-Binding Sites in the Promoter of the
Human Genes Encoding Proteins

Related to the Non-neuropeptidergic
System (e.g., Receptors)

Using our public Web service (Ponomarenko et al., 2015), we
analyzed 2226 SNPs located within the TBP-binding regions of
109 human genes encoding proteins that are related to the non-
neuropeptidergic system, e.g., adenosine receptors (ADORs),
adrenoceptors (ADRs), muscarinic cholinergic receptors
(CHRMs), nicotinic cholinergic receptors (CHRNSs), central
cannabinoid receptor 1 (CNRI), catechol-O-methyltransferase
(COMT), dopamine D receptors (DRDs), GABA type A
receptor-associated proteins (GABARAPs), vy-aminobutyric
acid type B receptor subunits (GABBRs), y-aminobutyric
acid — type A receptor subunits (GABRs), G protein—coupled
receptors (GRPs), glutamate ionotropic receptor AMPA-type
subunits (GRIAs), glutamate ionotropic receptor NMDA-type

subunits (GRINs), glutamate metabotropic receptors (GRMs),
5-hydroxytryptamine (serotonin) receptors (HTRs), dopamine
transporter DAT (SLC6A3), Na'/Cl™-dependent serotonin
transporter SERT (SLC6A4), tyrosine hydroxylase (TH), and
tryptophan hydroxylase 2 (TPH2). Table 2 and Supplementary
Table S2 list the results.

The human COMT gene for catechol-O-methyltransferase
has, in its promoter, a clinically annotated SNP, rs777650793,
whose association with human cardiovascular disease was
documented by database ClinVar (Landrum et al, 2014).
Figure 2A presents our prediction for this SNP, which is an
excess of this protein. As a non-statistical validation of this
prediction, we manually performed our primary keyword search,
which resulted in an experimental study (He et al., 2011) on a
rat model of human pathologies, which has identified COMT
overexpression as a physiological marker of cerebral vasospasm.
This correspondence between our prediction (Figure 2A) and
these experimental data (He et al, 2011) can support the
suitability of the results of our Web service (Ponomarenko et al.,
2015) in the case of a study of the human non-neuropeptidergic
system as italicized in Supplementary Table S2.

As for our secondary keyword search, it resulted in an
in vivo experiment in a rat model of human behavior (Wilhelm
et al., 2013), where a catechol-O-methyltransferase excess was a
physiological marker of depression. Within the framework of the
behavioral animal model (Wilhelm et al., 2013), we predicted the
candidate SNP marker of the human tendency in subordination
(Supplementary Table S2).

The human DRD3 gene (dopamine receptor D3) carries SNP
rs36211802 annotated by database ClinVar (Landrum et al,
2014), which associates it with hereditary essential tremor. This
SNP can cause an excess of this receptor, according to our
prediction given in Figure 2B. We validated this prediction
by our primary keyword search, which found the original
experimental data (Kosmowska et al., 2016) on resistance
to the high-dose DRD3-agonist treatment of tremor in a
laboratory rat model of this human pathology as italicized in
Supplementary Table S2.

In addition, our secondary search revealed (Supplementary
Table S2) that a DRD3 excess reduced both motor activity and
behavioral motivation in a mouse model of human motor activity
(Ikeda etal., 2013). This finding allows us to predict rs36211802 as
a candidate SNP marker of the human tendency in subordination
(Supplementary Table S2).

The human HTR2C gene encodes 5-hydroxytryptamine
(serotonin) receptor 2C and carries SNP rs3813929,
manifestation of which is an abnormal response to olanzapine
(antipsychotic) according to database ClinVar (Landrum et al.,
2014). For this SNP, we predict an excess of this serotonin
receptor as shown in Figure 2C. Our primary keyword search
pointed to the clinical data (Ellingrod et al., 2005) on an
HTR2C excess caused by this SNP, whose manifestation is a
resistance to olanzapine-caused increase in body mass. It is
noteworthy that Tecott et al. (1995) reported that knockout mice
(5HT2C)/(5)) are obese, whereas Stahl (1998) observed eating
behavior downregulation with a 5SHT2C level increase. With this
in mind, our prediction of the rs3813929-related 5SHT2C excess
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(Figure 2C) fits the clinical observation of the rs3813929-related
resistance to olanzapine-caused increase in body mass (Ellingrod
et al,, 2005). This agreement between our prediction shown in
Figure 2C and the clinical observations (Tecott et al., 1995; Stahl,
1998; Ellingrod et al., 2005) is consistent with our verification
of our predictions of this type by electrophoretic mobility shift
assays (EMSAs) under equilibrium (Savinkova et al., 2013) and
non-equilibrium conditions (Drachkova et al., 2014) in vitro.
Besides, this result is in agreement with our verification of our
predictions on this subject using biosensor ProteON™ (Bio-Rad
Lab, United States) (Drachkova et al., 2012) and stopped-flow
spectrometer SX.20 (Applied Photophysics, United Kingdom)
(Arkova et al., 2014, 2017) in real-time mode. In addition, it
fits our verification of our analogous predictions using human
cell lines transfected with the pGL 4.10 vector (Promega,
United States) (for a review, Ponomarenko M. et al., 2017).
Finally, it is in line with our verification of our predictions on
this subject using independent data from 60 experiments (for a
review, see Ponomarenko et al., 2010) and by means of 43 known
clinical SNP markers of human diseases (Ponomarenko et al.,
2009) and 38 known genetic SNP markers of the breeding traits
of animals and plants (Suslov et al., 2010). All these verification
data can be a reason for the applicability of our Web-service
(Ponomarenko et al., 2015) when the human genes relating to
the non-neuropeptidergic system are studied, as italicized in
Supplementary Table S2.

Our secondary keyword search vyielded empirical data
on two laboratory rat strains, which were bred for 60
generations for the presence and absence of high levels
of stress-evoked aggression toward humans (Popova
et al, 2010). According to these data, increases in both
mRNA and protein levels were seen in the brains of non-
aggressive rats in comparison with the aggressive ones
(Supplementary Table S2). On this basis, we propose the
candidate SNP marker for human tendency in subordination
(Supplementary Table S2).

In total, we predicted 342 and 163 candidate SNP markers
that can increase and decrease, respectively, the expression of
the human proteins related to the non-neuropeptidergic system.
Besides, these 505 predictions can be clustered as 240 and 265
candidate SNP markers for the human tendencies in dominance
and subordination (Table 2 and Supplementary Table S2). As
readers can see in Table 2, these results are again consistent with
our preliminary estimates (Chadaeva et al.,, 2017) that natural
selection equally supports the human tendencies in dominance
and subordination.

Candidate SNP Markers Near
TBP-Binding Sites in the Promoter of the
Human Genes Encoding
Neurotrophinergic-System-Related
Proteins (e.g., Growth Factors,

Receptors)
We applied our public Web service (Ponomarenko et al.,
2015) to study 2431 SNPs in 70 bp regions in front of

the TSSs of 95 human genes encoding neurotrophinergic-
system-related proteins, namely, adenylate cyclase-activating
polypeptide 1 and its receptor (ADCYAPIs), artemin (ARTN),
brain-derived neurotrophic factor (BDNF), cerebral dopamine
neurotrophic factor (CDNF), ciliary neurotrophic factor (CNTF),
fibroblast growth factors and their receptors (FGFs), Fms-
related tyrosine kinases and their ligand (FLTs), glial-cell-
derived neurotrophic factor (GDNF), GDNF family receptors
(GFRs), glia maturation factors (GMFs), insulin like growth
factors and their receptors (IGFs), interleukins as well as their
receptors and signal transducers (ILs), leukemia-inhibitory factor
(IL6-family cytokine) and its receptor (LIFs), nerve growth
factor and its receptor (NGFs), neuregulins (NRGs), neuropilins
(NRPs), neurturin (NRTN), neurotrophins (NTFs), neurotrophic
receptor tyrosine kinases (NTRKs), oncostatin M and its receptor
(OSMs), platelet-derived growth factor subunits and receptors
(PDGFs), placental growth factor (PGF), persephin (PSPN), Ret
receptor tyrosine kinase (RET), transforming growth factors p,
its receptors and associated protein 1 (TGFBs), and vascular
endothelial growth factors (VEGFs). We show our results in
Table 2 and Supplementary Table S3.

The human FGFR2 gene (fibroblast growth factor receptor
2) contains two SNPs rs387906677 and rs886046768, which
were clinically detected in patients with bent bone dysplasia
syndrome and craniosynostosis, respectively, as documented by
database ClinVar (Landrum et al,, 2014). Readers can see in
Figures 2B, 3A how we predicted the FGFR2 deficiency in the
case of rs387906677, whereas rs886046768 corresponds to an
FGFR?2 excess.

At first, our primary keyword search revealed an experimental
report (Merrill et al, 2012) on a mouse model of human
embryonic development, which linked bent bone dysplasia with
reduced levels of FGFR2. Next, in the same way, we found
the original experiment (Mansukhani et al, 2000) on mouse
osteoblast cell culture ex vivo that points to FGFR2 as an inducer
of apoptosis in these cells and an inhibitor of their differentiation,
hyperactivity of which causes craniosynostosis-linked alterations
in cell culture. As depicted in the figures, these independent
findings confirm the validity of our predictions (Figures 3A,B)
in the case of the neurotrophinergic system analysis, as italicized
in Supplementary Table S3.

After this validation, our secondary keyword search yielded
an article (Meyer et al, 2012) on FGFR2 deficiency as a
physiological marker of delayed post-injury skin wound healing.
Analogously, we found a biomedical paper (Baatar et al., 2002)
on the injections of recombinant human FGFR2 around ulcers,
which have accelerated ulcer healing in rats as an animal
model of the human pathologies. On this basis, we predicted
rs387906677 and rs886046768 as candidate SNP markers of the
human tendencies in subordination and dominance, respectively
(Supplementary Table S3).

The human PDGFRA gene encodes platelet-derived growth
factor receptor a and contains SNP rs183431225 annotated by
database ClinVar (Landrum et al., 2014) in connection with
both idiopathic hypereosinophilic syndrome and gastrointestinal
stromal tumor. Figure 3C presents our prediction for this
SNP: overexpression of this receptor. Our primary keyword
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search revealed two biomedical papers, one of which (Score
et al, 2006) reports the PDGFRA excess as a marker of
patients with hypereosinophilia, and another one (Hayashi
et al, 2015) reveals reduced proliferation of gastrointestinal
stromal tumor cells under the influence of a selective inhibitor
of PDGFRA. Thus, these independent literature data support
applicability of our predictions to the study of human genes
encoding neurotrophinergic-system-related proteins as italicized
in Supplementary Table S3.

Then, we did our secondary keyword search and found a
mouse model of human behavior indicating that the PDGFRA
overexpression causes oligodendrocyte-associated nociceptive
hypersensitivity to neuropathic pain (Shi et al., 2016). That is why
we assumed that rs183431225 is a candidate SNP marker of the
human tendency in subordination (Supplementary Table S3).

The human RET gene codes for the Ret proto-oncogene,
where two SNPs (rs10900297 and rs10900296) have been
associated with three human diseases (renal adysplasia,
Hirschsprung disease, and pheochromocytoma) as documented
in database ClinVar (Landrum et al., 2014). As readers can see in
Figures 3D,E, our predictions for these SNPs surprisingly
correspond to over- and underexpression of this gene.
Nevertheless, using our primary keyword search, we learned
that both an excess (Sarin et al., 2014) and deficit (Bridgewater
et al, 2008) of RET are known as physiological markers of
renal adysplasia. In addition, both overexpression (Ishii et al.,
2013) and underexpression (Zhan et al., 1999) of the RET gene
can contribute to the pathogenesis of Hirschsprung disease.
Finally, both increased (Huang et al., 2003) and decreased
(Moore and Zaahl, 2012) levels of this proto-oncogene are
often seen in pheochromocytoma. Thus, the above publications
additionally validate our results (Figures 3D,E) as italicized in
Supplementary Table S3.

Accordingly, we conducted a secondary keyword search
and thus selected two animal models of human behavior.
The rat model (Wang et al, 2017) associated the RET
excess with hypersensitivity to neuropathic pain. In the
mouse model (Golden et al., 2010), the RET deficit reduced
epidermal innervation. Within the limitations of these
models, we predicted two candidate SNP markers (rs10900297
and 1s10900296) of the human tendency in subordination
(Supplementary Table S3).

The human TGFBR2 gene (transforming growth factor f
receptor 2) contains SNP rs138010137, which occurs in patients
with thoracic aortic aneurysm as documented in database
ClinVar (Landrum et al., 2014). According to our prediction
illustrated in Figure 3F, this SNP can reduce levels of receptor
TGFBR2 in humans. Using a primary keyword search, we
found an original work about the TGFBR2-deficient aortic
aneurysm and aortic dissection as the specific forms of these
pathologies (Angelov et al, 2017). As one can see, this is
one more argument in favor of the applicability of our Web
service (Ponomarenko et al., 2015) to research on the human
genes related to the neurotrophinergic system as italicized in
Supplementary Table S3.

Next, our secondary keyword search yielded a transgenic
mouse model of human health (Martinez-Ferrer et al., 2010),

in which the TGFBR2 deficit accelerates healing, closure,
and resurfacing of skin wounds. For this reason, we suggest
rs138010137 as a candidate SNP marker of the human tendency
in dominance (Supplementary Table S3).

Summarizing all the above, we can see 506 candidate SNP
markers predicted by this work in the case of human genes
encoding the neurotrophinergic-system-related proteins (Table 2
and Supplementary Table §3). These predictions can be grouped
into 346 and 160 candidate SNP markers of the excess and
deficiency of these proteins, respectively, as well as into 265
and 241 candidate SNP markers of the human tendencies in
dominance and subordination (Table 2). Notably, the first of
these dichotomies of SNPs in the human genome is statistically
significantly uneven, whereas the second one is uniform. This
is one more actual piece of evidence for the pressure of
natural selection on the human neuron-specific genes, which
equally supports the human tendencies in dominance and
subordination, in agreement with our preliminary estimates
(Chadaeva et al., 2017) as well as with all the other predictions
of this work.

In silico Validation of All the
Genome-Wide Predictions Made in This

Work

Altogether, we analyzed 5052 SNPs within all the TBP-binding
regions of all the promoters in front of all the protein-
coding transcripts of all the 231 known human neuron-specific
genes and selected 1108 candidate SNP markers that can
significantly affect the affinity of TBP for these promoters
(22%) as shown in the bottom row of Table 2. This result
of our exhaustive whole-genome analysis of three systems of
the human body (neuropeptidergic, non-neuropeptidergic, and
neurotrophinergic) is consistent with both Haldane’s dilemma
(Haldane, 1957) and Kimura’s neutral evolution theory (Kimura,
1968). Our in silico fivefold reduction in the number of
unannotated SNPs for their subsequent in vivo studies is in line
with the current need for reducing the cost of both experimental
and clinical searches for valuable SNP markers in the human
genome by trial and error through preliminary computer analysis
of the known SNPs (Deplancke et al., 2016).

With this in mind, we selected all the 10 among 1,108
candidate SNP markers predicted in this work (Figures 2, 3
and Supplementary Figure S1), which are currently linked to
the human diseases by public database ClinVar (Landrum et al.,
2014). As described above, we non-statistically validated this set
of our selected predictions by our primary keyword search in
the public PubMed database (Lu, 2011). Essentially, this match
between our 10 selected predictions and the found literature data
is statistically significant at the level of & < 0.001 according to the
criterion of the equiprobable binomial distribution.

It is important to note that most of the candidate SNP
markers that were marked in database ClinVar (Landrum et al.,
2014) had a “Clinically insignificant” label because the number
of patients with these candidate SNP markers varied from
one to six, whereas for clinical significance it is necessary
to use cohorts of several hundred patients. This observation
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supports subsequent verification (using clinical protocols) of
the candidate SNP markers predicted by this work. In this
way, genotyping for the elite combat athletes in addition
to the widely used textual psychological questionnaires for
them (Tiric-Campara et al, 2012) could enrich personalized
sports medicine.

In addition, we used the semicentennial bioinformatic
tradition of comparing the actual frequencies of mutations
for their various dichotomies [transitions versus transversions
(Kimura, 1980), synonymous versus non-synonymous changes
(Li et al., 1985), etc.]. To this end, we grouped all the 1108
predictions into 754 and 354 candidate SNP markers for the
increase and decrease in the TBP binding affinity for promoters
of the human neuron-related proteins, respectively (Table 2:
Nggs, N- and N.). This dichotomy contradicts the binomial
distribution of the whole-genome ratio 4:1 of the SNPs reducing
versus SNPs increasing affinity of the transcription factors for
the human gene promoters (1000 Genomes Project Consortium
et al, 2012) as neutral drift according to Haldane’s dilemma
(Haldane, 1957) and neutral evolution theory (Kimura, 1968),
Table 2: p(N . = 4N . = 4Nggs/5) < 0.000001. This significant
contradiction means the adaptive pressure of natural selection on
the human neuron-specific genes is in line with the commonly
accepted opinion about the adaptive role of both the nervous
system and social behavior in the course of human origin and
evolution. That is one more evolutionary argument for the
reliability of our predictions made in this work.

Finally, by the same reasoning, we grouped all the 1,108
predictions into 556 and 552 candidate SNP markers for the
human tendencies in dominance and subordination, respectively
(Table 2: Nggs, Ny, and N ). In contrast to the above dichotomy,
this one corresponds to the highly probable Hy hypothesis
about the equiprobable binomial distribution of these candidate
SNP markers for human social hierarchy [Table 2: p(Hy:
N4 =N = Ngrgs/2) > 0.9]. This correspondence means that the
pressure of natural selection proven above equally supports the
human tendencies in dominance and subordination.

Notably, so that natural selection can control the human
tendencies in dominance and subordination, it is necessary that
this human tendencies can be inherited from generation to
generation from parents to offspring. That is why, we in vivo
validated our in silico predictions of this work in a mouse model
of human inheritance as described below.

In vivo Validation of Our Predictions
Using a Mouse Model of Human

Inheritance

Each public Web service addresses a specific sort of regulatory
SNP analysis (e.g., Bendl et al, 2016), and each has its
specific advantages and disadvantages. Therefore, a comparison
between the particular predictions and experimental data as an
independent commonly accepted uniform platform (rather than
between predictions of various Web services) needs to be a
necessary step for prediction of candidate SNP markers in silico
(Yoo et al., 2015; Ponomarenko M. et al., 2017). Keeping this in
mind, we in vivo validated our in silico predictions on the equal

natural-selection support of the human tendencies in dominance
and subordination using a mouse model of human inheritance as
described in the section “Materials and Methods.” The obtained
results are given in Figure 4 and Table 3.

Figure 4 indicates that we completely reproduced the
temporal pattern of both formation and maintenance of the social
hierarchy in mouse pairs by means of both the number and
duration of attacks and submissive poses.

As one can see in the first row “PT” of this table,
21 of 31 mouse males of the FI hybrids carrying the
PT x BALB\cLac genotype dominated over the male F1 hybrids
of the PT x CBA/Lac genotype, and 10 mouse males of the
PT x CBA/Lac genotype were dominant in the remaining pairs of
the same combination. This actual difference between the F1 male
hybrids PT x BALB/cLac and PT x CBA\Lac is characterized
by the y2-score equal to 3.9, which is statistically significant
at the level of @ < 0.05. In addition, we observed the same
significant dominance of the BALB/cLac-related F1 hybrids over
the CBA/Lac-related ones, when the maternal inbred strains were
DD and YP (Table 3). In addition, in the cases of maternal
inbred strains C57BL/6] and A/He, we found only a tendency for
the same dominance, which was insignificant, possibly because
of the insufficient number of the appropriate mouse male
pairs studied regarding these maternal genotypes. Finally, the
last row of Table 3 represents the final result: the statistically
significant majority of 79 among 115 BALB/cLac-related male
hybrids achieved their dominant social status within their pairs
with the CBA\Lac-related males of the same maternal inbred
strains. This finding means that this mouse model of human
inheritance reveals an ability of the tendencies in dominance and
subordination to be inherited from generation to generation from
parents to offspring and, therefore, to be an object of natural
selection. This is the main genetic in vivo argument in favor of
the reliability of our in silico predictions in this work.

Finally, looking through Figure 4, one can see that, in contrast
to the first day of microsocial observation of a pair of adult
male mice, which was characterized by numerous and lasting
attacks of one mouse on the other, by the end of the second day
a social hierarchy is established, with rare short-term ritualized
attacks of dominant and/or ritualized submissive poses of a

TABLE 3 | The results of identification of inheritance of the murine tendencies in
dominance and subordination.

Paternal genotype BALB/cLac CBA/Lac x2 criterion
Maternal genotype

x2 Significance, o
PT 21 10 3.90 0.05
DD 16 4 7.20 0.01
C57BL/6J 13 1.80 > 0.1
YT 16 5.76 0.025
A/He 13 10 0.39 > 0.5
TOTAL 79 36 16.08 0.001

The number of male mice — that dominated over their neighbors within the
framework of their pair — is indicated; statistically significant results are boldfaced.
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FIGURE 4 | A temporal pattern of both formation and maintenance of the social hierarchy in mouse pairs. Legend: o and e, dominant and subordinate male mice,
respectively; (A) the number of attacks; (B) duration of attacks (second); (C) the number of submissive poses; the circle and error bar denote the arithmetic mean

and SD for 115 observations, respectively.

subordinate without any injuries and dangers for their lives and
health (Lorenz, 2002). This is the main ecological benefit of
establishing and maintaining social hierarchy, as a result of which
natural selection equally supports the human tendencies for both
dominance and subordination.

CONCLUSION

In this work, we analyzed only how SNPs can alter TBP’s binding
affinity for the human gene promoters, whereas more than 2500
human DNA-binding proteins are already known (Babu et al,,
2004). Consequently, now there is a huge variety of Web services
for studying the effects of SNPs on the binding affinity of the
human gene promoters for these proteins and the respective
phenotypic manifestations (e.g., Bendl et al., 2016). Their use can
significantly expand the research capabilities in comparison with
the use of our Web service alone (Ponomarenko et al., 2015).
The main finding of this work is that natural selection equally
supports the human tendencies in dominance and subordination,
which can be inherited from parents to offspring. The results of
current study could be seen as an argument in favor of the genetic
side within the century-old irreconcilable scientific debate on the
nature of both aggressiveness and social hierarchy in humans
[e.g., Freud (1921, 1930) and Lorenz (1964, 2002)]. Nevertheless,
in the case of a random individual, these human tendencies can
define the possible ranges (plasticity) of his/her aggressiveness
and social rank rather that their actual levels, which depend on
his/her continuous non-genetic social education from childhood
to the oldest age (Markel, 2016). Certainly, this one is an
argument in favor the other (non-genetic) side of the debate
in question [e.g., Fromm (1941, 1973), Berkowitz (1962, 1993),
Skinner (Rogers and Skinner, 1956; Skinner, 1981)]. According
to recent reports on epigenetics (e.g., Merkulov et al., 2017),
various stressors may cause epigenetic reprogramming of the
individual genome and, in this way, modulate the actual levels of
both individual aggressiveness and social status. Moreover, this
reprogrammed pattern of the human genome is inherited from

parents to offspring across at least two generations. Definitely,
this notion equally supports both sides of the above debate as does
our main finding in this work.

Finally, there are social mechanisms of transfer of the
hierarchy status from parents to their offspring, previously
described in macaques (PrudHomme and Chapais, 1993), deer
(Dusek et al,, 2007), and hyenas (Engh et al., 2000). Clearly,
the real effects of inherited genotypes on the human social
hierarchy are much more complex, diverse, richer, brighter,
and more interesting than our maximally simplified decision-
making rule (see subsection “The Basic Decision-Making Rule”
“Basic decision-making rule”). Nevertheless, at least a somewhat
valid decision-making rule is necessary for application of the
bioinformatic calculations to the genome-wide analysis in silico.
In any case, as a computer-based prediction, each candidate
SNP marker of the human tendencies in dominance and
subordination predicted by this work should be experimentally
verified in the studies of large human cohorts.
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Pan-Cancer Analysis of TCGA Data
Revealed Promising Reference
Genes for gPCR Normalization

George S. Krasnov*, Anna V. Kudryavtseva, Anastasiya V. Snezhkina,
Valentina A. Lakunina, Artemy D. Beniaminov, Nataliya V. Melnikova and
Alexey A. Dmitriev*

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia

Quantitative PCR (gPCR) remains the most widely used technique for gene expression
evaluation. Obtaining reliable data using this method requires reference genes (RGs) with
stable mMRNA level under experimental conditions. This issue is especially crucial in cancer
studies because each tumor has a unique molecular portrait. The Cancer Genome Atlas
(TCGA) project provides RNA-Seq data for thousands of samples corresponding to
dozens of cancers and presents the basis for assessment of the suitability of genes as
reference ones for gPCR data normalization. Using TCGA RNA-Seq data and previously
developed CrossHub tool, we evaluated mRBNA level of 32 traditionally used RGs in 12
cancer types, including those of lung, breast, prostate, kidney, and colon. We developed
an 11-component scoring system for the assessment of gene expression stability.
Among the 32 genes, PUM1 was one of the most stably expressed in the majority of
examined cancers, whereas GAPDH, which is widely used as a RG, showed significant
MRNA level alterations in more than a half of cases. For each of 12 cancer types,
we suggested a pair of genes that are the most suitable for use as reference ones.
These genes are characterized by high expression stability and absence of correlation
between their mRNA levels. Next, the scoring system was expanded with several
features of a gene: mutation rate, number of transcript isoforms and pseudogenes,
participation in cancer-related processes on the basis of Gene Ontology, and mentions
in PubMed-indexed articles. All the genes covered by RNA-Seq data in TCGA were
analyzed using the expanded scoring system that allowed us to reveal novel promising
RGs for each examined cancer type and identify several “universal” pan-cancer RG
candidates, including SF3A7, CIAO17, and SFRS4. The choice of RGs is the basis for
precise gene expression evaluation by gPCR. Here, we suggested optimal pairs of
traditionally used RGs for 12 cancer types and identified novel promising RGs that
demonstrate high expression stability and other features of reliable and convenient RGs
(high expression level, low mutation rate, non-involvement in cancer-related processes,
single transcript isoform, and absence of pseudogenes).

Keywords: cancer, gene expression, reference genes, quantitative PCR, data normalization, RNA-Seq, TCGA,
CrossHub

Frontiers in Genetics | www.frontiersin.org

113 March 2019 | Volume 10 | Article 97


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00097
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00097&domain=pdf&date_stamp=2019-03-01
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gskrasnov@mail.ru
mailto:alex_245@mail.ru
https://doi.org/10.3389/fgene.2019.00097
https://www.frontiersin.org/articles/10.3389/fgene.2019.00097/full
http://loop.frontiersin.org/people/269719/overview
http://loop.frontiersin.org/people/379831/overview
http://loop.frontiersin.org/people/398814/overview
http://loop.frontiersin.org/people/682620/overview
http://loop.frontiersin.org/people/514697/overview
http://loop.frontiersin.org/people/266277/overview
http://loop.frontiersin.org/people/336564/overview

Krasnov et al.

Promising Reference Genes for gPCR

INTRODUCTION

Quantitative PCR (qPCR) is the most widely used technique
for quantification of gene expression. qPCR is rapid, has a very
high dynamic range of mRNA level quantification and provides a
measurement of even small gene expression alterations in a large
number of samples. The most common and convenient approach
for qPCR data normalization assumes mRNA quantification of
a reference gene (RG) with stable expression level between the
samples under study (Huggett et al., 2005). It is a bottleneck of
qPCR, and the reliability of qPCR results strongly depends on
the selection of appropriate RGs. This issue becomes more acute
when it comes to assessing the moderate changes in the mRNA
level of target genes (<2-fold).

The problem of selecting appropriate RGs is especially crucial
in cancer studies because of the presence of several molecular
subtypes within a histological type and, moreover, a unique
molecular portrait of each tumor (Janssens et al., 2004). Despite
the fact that almost 30 years have passed since the moment
when the issue of picking appropriate RGs had arisen, there is
still no consensus (Janssens et al., 2004; Rubie et al., 2005; Gur-
Dedeoglu et al., 2009; Ibusuki et al., 2013; Zhao et al., 2018).
Many studies indicate that most frequently used RGs (GAPDH,
ACTB, B2M, etc.) have a wide but limited field of applicability:
they should not be illegibly used for a wide spectrum of diseases
or stress conditions (Barber et al., 2005; Rubie et al., 2005;
Kozera and Rapacz, 2013; Chapman and Waldenstrom, 2015).
To increase the reliability of qPCR data, one should use at
least two or more RGs that are not co-expressed with each
other (Chapman and Waldenstrom, 2015). The most rigorous
approach is to analyze a panel of 5-20 RGs and choose those
with the most stable expression for a current study. Several tools
have been developed for these purposes: geNorm (Vandesompele
et al., 2002), NormFinder (Andersen et al., 2004), BestKeeper
(Pfaffl et al., 2004). However, the vast part of researchers do not
perform the analysis of RG suitability and just rely on the existing
literature data concerning the object of study (Chapman and
Waldenstrom, 2015).

Whole-transcriptomic data allow us to look at the problem
from the other side. RNA-Seq opens up great opportunities
for a complex expression analysis and identifying trends in
the mRNA level changes of groups of genes between the
samples. RNA-Seq data are free of bias that comes from the
instability of RG expression. The most common RNA-Seq data
normalization strategy is based on the assumption that the
mRNA level of the majority of genes is stable. This method is
implemented in popular RNA-Seq differential expression analysis
packages, including edgeR [trimmed mean of M-values method,
TMM; Robinson et al., 2010], DESeq2 (Love et al., 2014), and
others. There are other normalization strategies: by total read
count, by upper quartile or median values, FPKM/RPKM, TPM,
“remove unwanted variation” (RUV) (Risso et al., 2014); as
well as machine-learning approaches: RNA-Seq by Expectation-
Maximization (RSEM) (Li and Dewey, 2011) and Sailfish (Patro
et al,, 2014). Despite the diversity of the methods, in most cases,
they give rather similar results, which differ by 20-30%, with the
exception of some cases when the expression of half or more of

genes is changed significantly (Dillies et al., 2013; Li et al., 2015;
Zyprych-Walczak et al., 2015; Evans et al., 2018).

Analysis of highly representative RNA-Seq and microarray
datasets is very attractive in terms of the identifying stably
expressed RGs for human (Popovici et al., 2009; Tilli et al., 2016;
Chen et al,, 2017; Chim et al., 2017; Hoang et al., 2017) or
other organisms (Alexander et al.,, 2012; Carmona et al., 2017;
Zhou et al., 2017). This approach is valuable for the detection
of novel housekeeping gene candidates with constitutively stable
mRNA level.

In 2016, Tilli et al. suggested a strategy including the large-
scale screening of potential RGs from RNA-Seq data with further
validation by qPCR and applied it for breast cancer (Tilli et al.,
2016). The authors analyzed datasets of The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) and found
that several non-traditional RGs, CCSER2, SYMPK, ANKRD17,
as well as known RG PUMI demonstrated the least expression
variability in breast cancer samples and normal tissues (Tilli
et al,, 2016). The similar approach was realized by Chen et al.
for the identification of reference mRNA and miRNA suitable
for human esophageal squamous cell carcinoma studies (Chen
et al., 2017). It allowed authors to identify non-standard RG
candidates—DDX5, LAPTM4A, P4HB, and RHOA.

TCGA is the largest resource in the field of cancer biology
that is aimed at the discovery of the molecular features of
various cancer types (https://cancergenome.nih.gov/). TCGA
database includes genomic, transcriptomic, and epigenetic data
for 33 human cancer types represented with more than
11,000 individual samples. In the present work, we analyzed
TCGA transcriptome sequencing data in order to evaluate the
expression stability of widely used RGs and identify novel
RG candidates in 12 most common cancer types. The use of
representative TCGA sample sets allows us to pay extra attention
to the overall stability of mRNA level and presence of outliers,
the cases of dramatic expression “blow up” or falling down in
single samples. Besides the data on mRNA level, we took into
account if this is a well-studied gene or not (by evaluating the
number of mentions in PubMed-indexed titles/abstracts), if a
gene is involved in cancer-associated biological processes like
cell cycle, differentiation, and adhesion (using Gene Ontology).
Additionally, we evaluated if a gene is highly mutated (using
TCGA data on somatic mutations) that indicates its implication
in cancer. Also, we tried to minimize the number of pseudogenes
and alternatively spliced transcripts in order to improve usability:
the presence of pseudogenes makes it difficult to pick up cDNA-
specific primer pairs, and the presence of alternative transcripts
complicates the expression analysis and may lead to flawed
results. We integrated all the parameters listed above into a single
scoring system. Finally, we looked for genes that demonstrate
cross-tissue expression stability and may represent “universal”
pan-cancer RGs.

MATERIALS AND METHODS

In the present work, we focused on TCGA data for 12 cancer
types for which RNA-Seq data were available for representative
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sample sets: at least 100 tumor (T) and 20 normal (N) tissue
samples. The data were processed with a modified version of
CrossHub (Krasnov et al., 2016), a tool for the multi-way analysis
of TCGA transcriptomic and genomic data. Read counts data
were downloaded from the TCGA data portal (https://portal.gdc.
cancer.gov/) and normalized using the TMM method and then
recalculated for 1 million library size. The derived CPM (read
counts per million) values were used as a measure of mRNA level
of a gene for further expression stability analysis.

In order to assess gene expression stability, we developed
a scoring system, which included several components (S;)
responsible for T-N expression level difference, expression level
stability within pools of N and T samples, and correlations of
mRNA level with clinical and pathological characteristics [disease
stage, TNM (tumor, node, metastasis) classification, follow-up
status]. Each scoring component S; takes values from 0 to 100.
All S; are taken with different weights (W;), which reflect the
importance of component. Overall expression scoring S®*P is
calculated as follows:

N /Y, wi
S = (1'[ i+ CAi)Wl)

i=1
where:

- CA, is a constant summand, which is used to mitigate the
impact of zero values of S;;

- W, is weight of a component S; (i=1... N);

- N is a number of components, N = 48.

Values of these parameters are presented in Table 1.

Each individual component §; is calculated with a common
parametric formula:

100

- cs
(x—IV;0)
148qx (ma}iprlv )

i

This formula provides a (1-sigma)-like function with a
customizable inflection point, tilt, and region of maximal score
values. The function takes values from 0 to 100. Here:

- x is a variable to be scored (see Table 1).

- IV is an “ideal value.” All cases with x < IV would produce
the maximum score (100). For example, Spp, the component
responsible for T-N expression level fold change (see Table 1)
would be equal to 100 for any log;FCp between —0.05 and
+0.05 since IV = 0.05.

- IP is an “inflection point.” In this point, there is the maximum
decrease rate of S;. When x is equal to IP and Sq = 1 (Sq takes
these value for most S;), the scoring component S; = 50. Ideally,
IP value should reflect the marginally acceptable value of x.
For example, the relative standard deviation of gene expression
(RelSD) values from 0 to 0.25 are appropriate, but RelSD
= 0.4 ... 0.5 is almost unacceptable. For the corresponding
component (Sgsip), we chose IV = 0.1 and IP = 0.3 (see
Table 1).

- CS is a “curve slope.” The greater CS value, the stronger §;
decrease rate. Higher CS values should be assigned to more
important scoring components.

- Sq is a “Squeeze;” this is an auxiliary parameter. For most
scoring components, it is equal to 1.

All scoring components S; and parameters (IV, IP, CS, Sq) are
presented in Table 1. The derived scoring functions are shown
in Figure 1.

Two components, Spp and Spr, are responsible for T-N
expression level difference. This is the major factor of RG
suitability. Spp is calculated for pooled, and Spp-for paired
samples. Hence, we applied the strongest scoring parameters (IV
= 0.05, IP = 0.25, CS = 2.5) and assigned high weight (W =
4) for these two components. Spp (or Spr.) would be equal to 50
if the absolute value of average log,FCp (or log,FCy) is equal
to IP = 0.25, ie., fold change between tumor and normal is
about 20%. We chose IV = 0.05-0.1 for all the components that
are responsible for expression level (Spp, Spr, Spo0> SPoU> SDLe>
SestD> SEoHs> SkoL). This means that 5-10% mRNA level changes
are ignored.

Spp and Spy are calculated using the trimmed means of
either CPM (pooled sample) or log,FCp (paired samples).
Only values from 10 to 90th percentiles are included. To
take into account T-N expression outliers, we added two
other scorings, Spoo and Spoy, that are responsible for the
upper and lower deciles of log,FCy.. For these components, we
assigned increased IP value (IP = 0.7) since it is expected that
Abs[Average(log, FCr.)9o—100] calculated for 90-100th percentiles
of log, FCy, will be much greater than such value calculated for
10-90th percentiles.

SEstD> SEoH> SEoL are responsible for evaluating expression
stability within pools of normal and tumor samples. Sgsip
scores trimmed standard deviation of CPM values (10-90th
percentiles), and Sgoy (or Sgor) is responsible for outliers with
high (or low) mRNA level (in terms of CPM). Additionally,
we included scoring for average expression level (Sga) and
set high weight (W = 6) for this component in order
to completely exclude genes with low mRNA level from
the analysis.

Finally, we added scorings for correlations between gene
expression and six clinical and pathological characteristics:
pathologic TNM classification (separately for T, N, and M
indexes), pathologic stage, follow-up person neoplasm cancer
status and follow-up treatment success status. Scr is the
component responsible for Spearman’s correlation coeflicient,
and Scp-for correlation p-value. IV values were chosen in such
a way that cases with p > 0.25 and |rs| < 0.1 have score equals to
100. In total, each of these two components is taken 18 times: 6
clinical characteristics are analyzed for associations with CPM in
tumor samples, CPM in normal samples and T-N expression fold
change (paired samples). Hence, we assigned low weights—W =
0.2 and 0.3 for Sc; and Scp, respectively.

Besides stable and high enough expression level, an
appropriate RG should also demonstrate a low mutation
rate, single transcript isoform, and absence of pseudogenes in
order to avoid problems with PCR priming and ensure the
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TABLE 1 | Components of the scoring function.

Component Factor Variable (x = ...)* \'} IP Cs Sq CA W Number of times applied
EXPRESSION SCORING
Spp T-N expression level difference Abs (logoFCp) 10—90 0.05 0.25 2.5 1 0 4 1 (all samples)
(pooled samples)
SpL T-N expression level difference Abs (Average(logoFCy)10-_g0) 1 (paired samples)
(paired samples)
Spoo T-N expression level difference: Abs (Average(logoFC| )go_100) 0.1 0.7 2.5 1 10 1 1 (paired samples)
outliers, overexpression
Spou T-N expression level difference: Abs (Average(logoFCy )o—10) 1 (paired samples)
outliers, underexpression
SpLe Cumulative T-N expression Average (Abs(logoFCy)10-_g0) 0.1 0.5 25 1 5 2 1 (paired samples)
difference among paired samples
Sesip Expression level stability: StDev (CPM)1g_gp/Average 0.1 0.3 2 1 5 1.5 2 (all samples: normal and
standard deviation (CPM)10—90 tumor)
SEoH Expression level stability: outliers  logo 0.1 0.7 2.5 1 5 0.75 2 (all samples: normal and
(high expression) (Average(CPM)gg_1go/Average tumor)
(CPM)10-90)
SeoL Expression level stability: outliers  logy 2 (all samples: normal and
(low expression) (Average(CPM)4g_gg/Average tumor)
(CPM)o—10)
Sea Average expression level 1/logs (CPM)10_g0 0.07 0.15 3 1 0 6 1 (all tumor samples)
Scp Correlations of expression with -logs (p-value) 2 4 3 0.3 5 0.3 18(3 x 6;3: CPMyg_gp all
clinical parameters (p-values) tumor samples, CPM1g_gg all
normal samples,
(logoFC|)10_9g0; 6: pathologic
TNM classification, pathologic
stage, follow-up—person
neoplasm cancer status,
follow-up—treatment success)
Scr Correlations of expression with Abs (rs) 0.1 0.25 2.5 0.3 5 0.2 18 (the same as above)

clinical parameters (rs)

“ANTI-SCORINGS”

gMut Percentile of mutation rate
glsoforms Number of transcript isoforms
gPseudogenes  Nymber of pseudogenes

75 95 4 1
1 3 2 0.4
0 2 2 0.4

*Percentiles, which were taken into calculation, are indicated as a subscript.
IV, ideal value; IR inflection point; CS, curve slope; Sq, “squeeze”; CA, constant add; W, weight; Abs (...), absolute value; Average (...), mean value; CPM, counts per million, gene
expression level; FCp, ratio of the average CPM in a pool of tumor samples to the average CPM in a pool of normal samples; FC,, ratio of CPM values between tumor and matched

normal tissue (per each paired sample); StDev (...), standard deviation; rs, Spearman’s correlation coefficient.

rigorous evaluation of mRNA level. The mutation rate of a
gene was assessed using TCGA data on somatic mutations.
The number of transcript isoforms (per gene) was obtained
from the Ensembl human genome annotation (hg38, release
88). The number of pseudogenes (per gene) was derived from
psiCube (Sisu et al., 2014). Therefore, we extended the scoring
system with three additional components, “anti-scorings”
(Table 1 and Figure 1). The resulting score gkinal i¢ calculated
as follows:

SFinal — gExp | gMut | SIsoforms . SPseudogenes

Next, we tried to find RGs that are stably expressed across
multiple tissues and cancer types. For this purpose, we calculated
the pan-cancer score as follows:

Exp&Mut

SFinal
Pan—cancer

Isoforms = ¢Pseudogenes
Pan—cancer -S -S

=S

where:

1

k
M Exp  <Mut
gExp&Mut Z:J’=1 (Sj S +CA)

Pan—cancer M

where M = 12 (a number of cancer types analyzed); k = —0.4
(negative k value implies that the pan-cancer score is a harmonic
mean of individual scores); CA = 12 (a constant add).

Finally, we assessed the involvement of a gene in cancer-
related processes on the basis of Gene Ontology (GO; The Gene
Ontology, 2017) data and mentions in the articles indexed by
PubMed (titles and abstracts).

A RG should not be involved in cellular processes that
are frequently altered in cancer. A penalty system based on
GO data was developed. We evaluated the involvement of
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deviation; rs, Spearman’s correlation coefficient.

FIGURE 1 | Scoring functions used for evaluation of gene suitability for gqPCR data normalization. Percentiles, which were taken into calculation, are indicated as a
subscript. Abs(...), absolute value; Avg(...), mean value; CPM, counts per million, gene expression level; FCp, ratio of the average CPM in a pool of tumor samples to
the average CPM in a pool of normal samples; FC, ratio of CPM values between tumor and matched normal tissue (per each paired sample); StDev(...), standard

a gene in 6 cancer-associated biological processes: cell cycle,
differentiation, stress response, immune response, angiogenesis,
adhesion, and cell communication. The relation of a gene
to each of these processes was followed by the assignment
of penalty points (from 2 to 5). Finally, these points were
summed up. According to this system, a gene is penalized
(1) with 5 points if its GO annotation contains at least one
keyword related to cell cycle process: cell cycle, cell division,
cell growth, cell proliferation, apoptosis, apoptotic process, cell
death, MAPK cascade, tumor, oncogenic, apoptotic; (2) with 4
points if GO annotation contains a keyword related to cell
differentiation: cell differentiation, epithelial to mesenchymal
transition, mesenchymal to epithelial transition, stem cell, fetal,

embryonic, embryonal, embryo, gastrulation, tissue development,
cellular developmental process, organ development; (3) with 3
points for stress response related processes: response to stress,
DNA damage, DNA repair; (4) with 2 points for inflammation
and immune response: inflammation, inflammatory, immune
response, T cell activation, macrophage activation, antigen; (5)
with 2 points for angiogenesis: angiogenesis; (6) with 2 points for
intercellular interactions: cell communication, cell-cell signaling,
cell adhesion, cell motility, cell migration. Thus, a gene may
have a maximum of 5 + 4 + 3 + 2 + 2 + 2 = 18
penalty points.

The more accurately the gene is annotated, the more likely it
is to find one of the keywords in its annotation. Therefore, GO
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penalty should be normalized taking into account the number of
assigned GO terms for the gene. On the other hand, the better
the gene is annotated, the more extensively it is studied, and such
genes represent more attractive candidates. In order to keep a
balance between these two factors, we introduced normalization
coeflicient evaluated as the total number of GO terms (assigned
for the gene) to the power of 0.3. If a gene lacked sufficient GO
annotation (<3 GO terms), we assigned it 10 penalty points.

The number of PubMed-indexed articles with the mention
of a gene name or its aliases was evaluated to assesses how
well a gene is studied. Next, within this pool of gene-related
publications, the number of cancer-related articles was also
evaluated. One of the following words should be present in
an article title to be treated as cancer-related: cancer, tumor,
*carcinoma, sarcoma, glioma, glioblastoma, and other keywords.

The described components (GO and Pubmed) were not
included in the main scoring and were only used for
manual exclusion of cancer-associated genes. Besides, functional
annotations from RefSeqGene (https://www.ncbi.nlm.nih.gov/
refseq/rsg/) were added to each gene.

When revealing optimal RG pairs for each of examined
cancer types, we paid special attention to the co-expression
of RG candidates to avoid genes with a pronounced
correlation between their mRNA levels. To implement
the scoring system, we modified our previously developed
CrossHub tool (the updated version can be downloaded at
https://sourceforge.net/projects/crosshub/).

RESULTS

We performed the analysis of 12 cancer types from the TCGA
project that have RNA-Seq data for representative sample sets:
285-1095 tumor and 19-113 matched normal tissues. These
are: breast invasive carcinoma (BRCA), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), kidney renal cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
prostate adenocarcinoma (PRAD), colon adenocarcinoma
(COAD), head and neck squamous cell carcinoma (HNSC), liver
hepatocellular carcinoma (LIHC), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), and bladder urothelial
carcinoma (BLCA). For the remaining TCGA cancer types,
RNA-Seq data were available only for a few normal tissue
samples, and this makes it impossible to use such datasets for the
discovery of reliable RGs.

First, we assessed the expression stability of a set of 32
frequently used RGs in 12 selected cancer types: ACTB, ALASI,
B2M, CDKNI1A, G6PD, GAPDH, GUSB, HBB, HMBS, HPRT1,
HSP90ABI1, IPOS, LDHA, NONO, PGK1, POP4, PPIA, PPIH,
PSMC4, PUM1, RPL13A, RPL30, RPLPO, RPS17, RPS18, SDHA,
TBP, TFRC, UBC, YWHAZ, TUBB, RPNI. This set of 32 RGs was
composed of commercially available RG panels: Roche “Human
Reference Gene Panel, 384” (Switzerland), TATAA “Reference
Gene Panel Human” (Sweden), and Bio-Rad “Reference Genes
H384” (USA). In total, 31 unique genes are included in the
panels, plus we added the RPN1 gene, which was identified by us
earlier as a reliable RG for lung, kidney, and colorectal cancers

(Krasnov et al., 2011; Fedorova et al., 2015). Expression stability
scores were calculated for each gene in each examined cancer
type. The results for the top 5 genes are presented in Table 2
and full data—in Supplementary Table 1. In almost each cancer
type, there were 1-10 genes with expression score about 70
or more (with a theoretical maximum of 100), which can be
considered as moderately high score value. PRAD and THCA
demonstrated the highest number of genes with stable mRNA
level-10 and 7, respectively. Only in BCLA, all the genes had
scores below 70, possibly because of potential bias due to a small
number of matched normal tissues (19—the smallest number
among the cancer types examined). The cross-tissue analysis of
12 cancer types revealed that the most stably expressed genes
were: PUMI (S¥*F = 70), IPO8 (SE*P = 61), UBC (S™* = 60),
ACTB (§"P = 55), and RPN1 (S®*P = 54). GAPDH, one of the
most frequently used RGs, showed one of the least stability of
mRNA level—position 25 out of 32 (SExP = 32). According to the
obtained results, GAPDH can be reasonably applied as a RG only
in prostate and stomach adenocarcinomas. RPN1 gene suggested
by us demonstrated high expression stability score in lung, renal,
colon, liver, thyroid, and prostate cancers.

Next, for each of 12 cancer types, we searched for a pair of
the most suitable RGs focusing on SP*P values and correlation
between mRNA levels of genes in a pair. As a result, we revealed
12 optimal pairs of RGs with SP*P above 65 for each gene and
absence of co-expression (Table 2 and Supplementary Table 1).
PUM1 came into the pair of RGs for 9 out of 12 cancer types.

It should be noted that genes with high SPP values may be
inconvenient in practice because of the presence of numerous
pseudogenes, alternatively spliced transcripts or a high mutation
rate. Among the traditionally used RGs with high expression
scores, only 3 genes met the requirements—PUM]I, IPO8, and
RPNI. These genes have no pseudogenes, one (RPNI), or
two (PUMI1 and IPO8) transcript isoforms, and relatively low
mutation rate in examined cancer types.

Using the expanded scoring system (Figure 2), in which 3
“anti-scorings” counting mutation rate, number of transcript
isoforms and pseudogenes were included, we analyzed a complete
list of human genes in order to reveal the most prominent pan-
cancer RG candidates (Supplementary Table 2). Top 10 pan-
cancer RG candidates included MBTPS1, HNRNPAO, SF3Al,
SF3B2, GGNBP2, HNRNPUL2, SFRS3, RTF1, CIAO1, TM9SF3.
All these genes had stable and high enough mRNA level
and low mutation rate in most of 12 cancer types, only
one annotated transcript isoform and no pseudogenes. Taking
into account PubMed article search, GO annotations, and
RefSeqGene information, we selected three most promising RG
candidates—SF3A1, CIAO1, and SFRS4.

DISCUSSION

The use of inappropriate RGs leads to unreliable data and nullifies
potentially high accuracy of a qPCR technique in the evaluation
of differential gene expression. The search for a RG with a stable
mRNA level under experimental conditions represents a separate
object of research and is rarely performed during the original
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TABLE 2 | Top 5 traditionally used reference genes with the highest expression scores in 12 cancer types.

Cancer type 1 2 3 4 5

Gene SExp Gene SExp Gene SExp Gene SExp Gene SExp
BRCA UBC 82.1 PUM1 75.7 IPO8 71.8 RPLPO 69.8 RPS18 66.2
LUAD UBC 79.8 ACTB 76.4 PUM1 69.6 RPN1 67.9 RPL13A 65.5
LUSC uBC 81.4 IPO8 72.9 ACTB 71.4 PUM1 70.7 RPL13A 66.3
KIRC NONO 82.6 HSP90AB1 73.2 RPN1 69.7 YWHAZ 68.7 PSMC4 64.7
KIRP PUM1 70.3 PSMC4 66.0 PGK1 63.2 ALAS1 61.7 IPO8 61.1
PRAD SDHA 80.8 YWHAZ 78.4 PSMC4 76.2 PUM1 76.1 UBC 75.8
COAD PUM1 76.9 GUSB 73.4 UBC 72.8 ACTB 72.0 IPO8 71.6
HNSC RPL30 73.4 PUM1 72.7 IPO8 68.1 ACTB 64.2 PSMC4 63.1
LIHC RPN1 82.3 ACTB 80.9 UBC 78.4 PUM1 65.7 RPS17 56.4
STAD IPO8 .7 RPL30 71.0 GAPDH 69.7 RPLPO 68.7 PUM1 68.1
THCA RPN1 84.4 HSP90AB1 84.3 PUM1 80.0 TUBB 79.2 YWHAZ 76.0
BLCA SDHA 66.3 PUM1 65.9 HSPO0AB1 63.3 RPL30 62.2 RPS17 61.2
Cross-tissue PUM1 70.1 IPO8 60.8 UBC 59.8 ACTB 54.7 RPN1 54.3

Optimal pairs of reference genes for each cancer type are shown in bold.

studies. RNA-Seq data of TCGA project offer a great opportunity
for evaluating gene expression stability. Using our CrossHub
tool, we developed a complex scoring system that allowed us to
assess the suitability of 32 traditionally used RGs for qPCR data
normalization in 12 cancer types characterized by high morbidity
and mortality rates. The alterations of mRNA level were shown
for a number of these genes, including the most frequently used
GAPDH, in examined cancer types. The analysis across 12 cancer
types revealed that PUMI and IPO8 genes demonstrate the most
stable expression among the 32 genes.

PUMI1 (Pumilio RNA Binding Family Member 1) serves
as a translational regulator of specific mRNAs by binding to
their 3°-UTRs. It may be involved in translational regulation
of embryogenesis, cell development, and differentiation. There
are several functions that call into question its applicability as
a RG. After growth factor stimulation, PUM1 binds to 3’-UTR
of CDKNI1B/p27 tumor suppressor, inhibits its expression and
promotes a rapid entry to the cell cycle (Kedde et al., 2010).
PUM1 is capable of repressing many mitotic, DNA repair,
and DNA replication factors (Lee et al, 2016). Moreover,
some authors reported that PUMI1 promotes ovarian cancer
proliferation, migration, and invasion (Guan et al, 2018).
However, PUM1 is identified as one of the most stably expressed
genes in uterine cervical cancer (Tan et al., 2017), endometrial
carcinoma (Ayakannu et al, 2015), gallbladder (Yu et al,
2015), leiomyoma (Almeida et al., 2014), breast (Ibusuki et al.,
2013; Kilic et al., 2014), and non-small cell lung (Soes et al.,
2013) cancers. This gene has only 2 transcript isoforms and
no pseudogenes that makes it even more attractive for use as a
reference one.

Recently, Tilli et al. performed a screening of breast
cancer RNA-Seq datasets from the International Cancer
Genome Consortium (ICGC), GEO, and TCGA repositories.
Authors found that PUMI, along with “novel” RGs -
CCSER2, SYMPK, and ANKRDI17, had the most stable

mRNA level (Tilli et al., 2016). This agrees with previous
qPCR analyses of RG expression stability in breast
carcinomas (Ibusuki et al., 2013; Kilic et al., 2014).

IPO8 (importin 8), which has 2 transcript isoforms and no
pseudogenes, is the second in the cross-tissue stability list, but
its mRNA level is much less stable than that of PUM1 according
to TCGA data. IPO8 mediates nuclear import of proteins with a
classical nuclear localization signal. Previously, IPO8 was found
to be suitable for data normalization in endometrial (Ayakannu
et al., 2015) and ovarian carcinomas (Kolkova et al., 2013), colon
adenocarcinoma cell lines (Krzystek-Korpacka et al., 2016), non-
small cell lung cancer (Soes et al., 2013), and other tissues and
diseases: brain edema (Du et al., 2017), heart cavities (Molina
etal, 2018), T cells, and neutrophils (Ledderose et al., 2011).

The RPNI gene (0 pseudogenes, 1 transcript isoform), which
was previously suggested by us for normalization of qPCR data
in LUAD, LUSC, KIRC, KIRP, and COAD (Krasnov et al., 2011;
Fedorova et al., 2015), demonstrate stable expression in these
cancer types as well as in PRAD, LIHC, and THCA.

The majority of the remaining genes from the set of 32
genes, even if they demonstrate stable mRNA level in certain
cancer types, have many pseudogenes or high mutation rate
(for example, UBC is above the 99th percentile in BRCA). The
presence of pseudogenes is a weakness of such widely used RGs
as GAPDH and ACTB (67 and 64, respectively) (Sun et al., 2012),
or genes encoding ribosomal proteins, including RPLI3A and
RPS17 (Tonner et al., 2012).

Next, we tried to find out novel reliable and convenient RGs
suitable for most cancer types. As it was described above, for
this purpose, we evaluated expression and mutation scorings for
each examined cancer type, calculated pan-cancer scoring values
given the “anti-scorings” for the number of transcript isoforms
and pseudogenes, and selected the promising candidates taking
into account information on functions of the genes and their
involvement in carcinogenesis.
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Along with SFRS4 (number 13 in the top list of “universal”
reference genes), three genes that participate in pre-mRNA
splicing and processing pathways (SF3A1, SF3B2, and SFRS3)
are present in the top 10 of promising pan-cancer RGs. The
splicing machinery (namely spliceosome) is the largest molecular
machine so far described. It is composed of five small nuclear
ribonucleoproteins (snRNPs U1, U2, U4, U5, and U6) and more
than 100 different polypeptides (Ghigna et al., 2008). Aberrant
splicing in cancer provides a way to generate alternatively spliced
transcripts encoding proteins with distinct functions (Ghigna
et al., 2008). There are at least two ways resulting in splicing
aberrations in cancer: mutations in the affected genes, e.g., in
their splice sites (cis-effect), and altered expression and/or activity
of the elements of splicing machinery (trans-effect). Some of
the splicing factors are known to be deregulated in cancer, by
means of mRNA level alterations, mutations or posttranslational
modifications (Stickeler et al., 1999; Blaustein et al., 2005; Ghigna

et al., 2008). On the other hand, some of the splicing factors
are considered as potential RGs. This may be explained by the
complexity of the splicing machinery and various roles of its
elements (David and Manley, 2010).

SF3A1 and SF3B2 encode the subunits of splicing factors 3a
and 3b. These two splicing factors together with 12S RNA unit
form the U2 small nuclear ribonucleoproteins complex, which
binds pre-mRNA upstream of the intron’s branch site and may
anchor the U2 snRNP to the pre-mRNA (Will et al., 2002). SF3A1
is considered as a RG in sarcoma (Aggerholm-Pedersen et al.,
2014), its expression was found to be stable in breast cancer
(Maltseva et al., 2013), colorectal adenocarcinoma Caco-2 cells
under exposure to food products (Vreeburg et al., 2011), white
blood cells under treatment with growth hormone (Castigliego
et al., 2010), bovine blastocysts produced by different methods
(Luchsinger et al., 2014), bovine granulosa cells of dominant
follicles during follicular growth and aging (Khan et al., 2016).
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Considering the other splicing machinery gene, SFRS4 (serine
and arginine rich splicing factor 4), some authors earlier
demonstrated that its mRNA level is stable in hepatocellular
carcinoma (HCC) cell lines (Liu et al., 2017) and patients with
alcoholic liver disease (Boujedidi et al., 2012). SFRS4 remains
stably expressed in hepatitis C virus-induced HCC, whereas
ACTB and GAPDH are significantly deregulated (Waxman and
Wurmbach, 2007).

CIAO1 (number 9 in the top list) is a key component of the
cytosolic iron-sulfur protein assembly (CIA) complex. This is a
multiprotein complex that mediates the incorporation of iron-
sulfur cluster into extramitochondrial Fe/S proteins (provided
by GeneCards; Stelzer et al., 2016). CIAOI was not previously
described as a RG. Till now, there is only one article describing
the possible role of the encoded protein in cancer development,
namely interacting with the tumor suppressor protein WD40
(Johnstone et al., 1998). Besides this, there is almost no data on
the association of this gene with cancer.

CONCLUSIONS

To reveal reliable RGs for qPCR data normalization, a
comprehensive analysis of TCGA data was performed. We took
into account expression stability, average mRNA level, expression
correlation with clinical and pathological characteristics, number
of pseudogenes and transcript isoforms, mutation rate, GO
terms, and mentions of a gene in titles/abstracts of articles
from PubMed. The most reliable pairs of traditionally used RGs
were suggested for each of 12 examined cancer types, as well

as unsuitability of some frequently used RGs was shown. Pan-
cancer analysis revealed promising RG candidates with stable and
sufficiently high expression level and low mutation rate across 12
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Numerous inflammatory diseases and autoimmune disorders by therapeutic peptides
have received substantial consideration; however, the exploration of anti-inflammatory
peptides via biological experiments is often a time-consuming and expensive task. The
development of novel in silico predictors is desired to classify potential anti-inflammatory
peptides prior to in vitro investigation. Herein, an accurate predictor, called PreAlP
(Predictor of Anti-Inflammatory Peptides) was developed by integrating multiple
complementary features. We systematically investigated different types of features
including primary sequence, evolutionary and structural information through a random
forest classifier. The final PreAIP model achieved an AUC value of 0.833 in the training
dataset via 10-fold cross-validation test, which was better than that of existing models.
Moreover, we assessed the performance of the PreAIP with an AUC value of 0.840 on
a test dataset to demonstrate that the proposed method outperformed the two existing
methods. These results indicated that the PreAlP is an accurate predictor for identifying
AlPs and contributes to the development of AlPs therapeutics and biomedical research.
The curated datasets and the PreAlP are freely available at http://kurata14.bio.kyutech.
ac.jp/PreAlP/.

Keywords: inflammatory disease, anti-inflammatory peptides prediction, feature encoding, feature selection,
random forest

INTRODUCTION

Inflammation responses occur under the normal conditions when tissues are damaged by
bacteria, toxins, trauma, heat, or any other reason (Ferrero-Miliani et al., 2007). These responses
cause chronic autoimmune and inflammation disorders, including neurodegenerative disease,
asthma, psoriasis, cancer, rheumatoid arthritis, diabetes, and multiple sclerosis (Zouki et al., 2000;
Steinman et al., 2012; Tabas and Glass, 2013; Patterson et al., 2014; Hernandez-Florez and Valor,
2016). Numerous inflammation mechanisms are crucial for the upkeep of the state of tolerance
(Miele et al., 1988; Corrigan et al., 2015). Numerous endogenous peptides recognized through
inflammatory reactions function as anti-inflammatory agents can be employed by new therapies
for autoimmune and inflammatory illnesses (Gonzalez-Rey et al., 2007; Delgado and Ganea, 2008).
The immunotherapeutic aptitude of these anti-inflammatory peptides (AIPs) has various clinical
applications such as generation of regulatory T cells and inhibition of antigen-specific T(H)1-driven
responses (Delgado and Ganea, 2008). Moreover, certain synthetic AIPs act as effective
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therapeutic agents for autoimmune and inflammatory disorders
(Zhao et al., 2016). For instance, chronic adenoidal direction
of human amyloid-p peptide causes an Alzheimers disease.
Mice models result in compact deposition of amyloid-f
peptides, which is a pathological marker of Alzheimer’s disease,
astrocytosis, microgliosis, and neuritic dystrophy in the brain
(Boismenu et al., 2002; Gonzalez et al., 2005; Kempuraj et al.,
2017). The present therapy for autoimmune and inflammatory
disorders involves the use of non-specific anti-inflammatory
drugs and other immunosuppressants, which are frequently
related to different side effects, such as initiation of a higher
possibility of infectious diseases and ineffectiveness alongside
inflammatory disorders (Tabas and Glass, 2013).

Notwithstanding the increasing number of experimentally
examined AIPs in vivo, the molecular mechanism of AIP
specificity remains largely unknown. On the other hand, large-
scale experimental analysis of AIPs is time-consuming, laborious,
and expensive. An alternative, computational approach that
provides an accurate and reliable prediction of AIPs is required
to complement the experimental efforts and to access the prompt
identification of potential AIPs prior to their synthesis. To date,
two in silico methods have been proposed to predict AIPs (Gupta
et al., 2017; Manavalan et al, 2018). In 2017 Gupta et al.
employed hybrid features with a support vector machine (SVM)
classifier to develop the Antilnflam predictor (Gupta et al., 2017).
Manavalan et al. developed the AlPpred predictor by using the
primary sequence encoding features with a random forest (RF)
classifier (Manavalan et al., 2018). These two methods used the
primary sequence feature information without considering any
evolutionary or structural features.

Nonetheless, the performance of the abovementioned existing
predictors is not sufficient and remains to be improved.
In this study, we have developed an accurate predictor
named PreAIP (Predictor of Anti-Inflammatory Peptides) by
integrating multiple complementary. We investigated different
types sequence features including the primary sequence,
evolutionary, and structural through a RF classifier. The PreAIP
achieved higher performance on both the training and test
datasets than the existing methods. In addition, we obtained
valuable insights into the essential sequence patterns of AIPs.

MATERIALS AND METHODS
Dataset Collection

To construct the PreAIP, we collected training and test datasets
from a recently published article of the AIPpred (Manavalan
et al,, 2018) and the IEDB database (Vita et al., 2019). A peptide
was considered as anti-inflammatory (positive sample) if the anti-
inflammatory cytokines of peptides induce any one of IL-10, IL-4,
IL-13, IL-22, TGFb, and IFN-a/b in T-cell analyses of mouse and
human (Marie et al., 1996; Jin et al., 2014). Meanwhile, the linear
peptides for anti-inflammatory cytokines were considered non-
AIPs (i.e., negative samples). To solve the overfitting problem of
the prediction model, CD-HIT was employed with a sequence
identity threshold of 0.8 (Huang et al., 2010). After eliminating
redundant peptides, the same training and test samples were
retrieved from the AIPpred predictor (Manavalan et al., 2018).

More reliable performance would be achieved by using a more
stringent criterion of 0.3 or 0.4, as executed in (Hasan et al., 2016,
2017a). However, this study did not use such a stringent criterion,
because the length of the currently available AIPs is between 4
and 25. If we apply a stringent criterion of <0.8, the number of
the available AIPs is greatly reduced so that we cannot retrieve the
datasets employed by the previous predictor (Manavalan et al.,
2018). The collected training dataset results in 1,258 positive and
1,887 negative samples, and the test dataset contains 420 positive
and 629 negative samples. All of curated datasets are included in
our web server.

Computational Framework

An overall computational framework of the proposed PreAIP
is shown in Figure 1. After collecting the positive and negative
AIPs from the AIPpred server (Manavalan et al., 2018), their
sequence datasets were transformed into the primary sequence,
evolutionary and structural features. We considered polypeptides
with 1 to 25 natural amino acids. When the peptide contains less
than 25 residues, our scheme provides gaps (-) to the missing
residues to compensate a peptide length of 25. To encode the
primary sequence features, we employed two encoding methods
of the composition of k-spaced amino acid pairs (KSAAP)
and AAindex properties. An evolutionary feature was encoded
by using the position specific encoding matrix, ie., profile-
based composition k-space of amino acid pair (pKSAAP). The
structural feature (SF) was encoded by using SPIDER2 (Yang
et al,, 2017) and PEP2D (http://crdd.osdd.net/raghava/pep2d/)
bioinformatics tools. The resulting five types of descriptors were
independently put into RF models to produce five consecutive,
independent RF prediction scores. Those RF scores were linearly
combined using the weight coefficients to obtain the final
prediction score. A web server was developed to implement
the PreAIP.

Feature Encoding

The PreAIP was constructed based on a binary classification
problem (positive AIPs and negative-AIPs) through RF
algorithms. The extraction of a set of relevant features is a
crucial step to present a classifier. To keep the generated feature
vectors, a high-quality peptide encoding method is necessary.
As a substitute of the simple binary representation, we adopted
five types of complicated feature encoding methods: AAindex,
KSAAP, SPIDER2, PEP2D, and pKSAAP, which are briefly
described in the following subsections.

Amino Acid Index Properties

Numerical physicochemical properties of amino acids exist in
the AAindex database (version 9.1) (Kawashima et al., 2008).
After assessing different types of AAindex indices, we selected 8
types of high indices (HI) and ordered them from HI1 to HI8
(Table S1). In a peptide sequence with length L, a (L x 20) feature
vector was generated through the AAindex encoding.

KSAAP Encoding

The KSAAP encoding descriptor is widely used in bioinformatics
research (Carugo, 2013; Hasan et al., 2018a,b). The procedure of
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FIGURE 1 | Computational framework of PreAlP.

KSAAP is briefly described as follows. Peptide sequences contain
(20 x 20) types of amino acid pairs (i.e., AA, AC, AD, ..., YY)400
for every single k, where k denotes the space between two amino
acids. The optimal k4 was set to 0-4 to generate (20 x 20 x
5) = 2,000 dimensional feature vectors for each corresponding
peptide sequence. Details of the KSAAP encoding method are
described elsewhere (Hasan et al., 2015).

Structural Features

Protein-Based SF

The protein-based SF features are generated by the SPIDER2
software that is widely used in bioinformatics research (Yang
et al., 2017; Lopez et al, 2018). Three types of features were
generated by SPIDER2: accessible surface area (ASA), backbone
torsion angles (BTA), and secondary structure (SS). The BTA
generated 4-type feature vectors of phi, psi, theta and tau. The SS
generated 3-type feature vectors of helix, strand and coil. Totally,
8-type feature vectors were generated SPIDER?2. For each peptide
sequence, (L x 8) dimensional feature vectors were generated,
where L was the length of a given AIP.

Peptide-Based SF

We employed PEP2D to generate a peptide structure prediction
feature (http://crdd.osdd.net/raghava/pep2d/). The PEP2D
generated three types of probability scores: Helix Prob, Sheet
Prob, and Coil Prob. For each peptide sequence, (L x 3)
dimensional feature vectors were generated, where L was the
length of a given AIP.

PKSAAP Encoding

In protein or peptide sequence analysis, the PSSM provides useful
evolutionary information. This matrix measures the replacement
probability of each residue in a protein with all the residues

of the genomic code. The PSSM profile was created by using
PSI-BLAST (version of 2.2.26+) against the whole Swiss-Prot
NR90 database (version of December 2010) with two default
parameters, an e-value cutoff of 1.0 x 10™* and an iteration
number of 3 (Hasan et al., 2015). Then, we extracted the feature
vectors using the given peptide sequences. After generating the
PSSM profile, we generated possible k-space pair composition
from the PSSM, i.e., pKSAAP, in the same manner as the previous
study of protein pupylation site prediction (Hasan et al., 2015).
When an optimal k-space was between 0 and 4, a (5 x 20 x 20 =
2,000) dimensional feature vector was generated.

Moreover, we utilized a similarity-search-based tool of BLAST
(version of ncbi-blast-2.2.25+) (Altschul et al., 1997; Bhasin and
Raghava, 2004) to investigate whether a query peptide belongs
to AIPs or not. The BLASTP with an e-value of 1.0 x 1072
was used for the whole Swiss-Prot NR90 database (version of
December 2010).

Feature Selection

To find the top ranking features for predicting AIPs, a well-
established, supervised method for feature dimensionality
reduction, Information Gain (IG) (Azhagusundari and
Thanamani, 2013; Huang, 2015; Manavalan et al, 2018),
was used through a WEKA package (Frank et al., 2004). A large
value of the IG indicates that the corresponding residues have a
great impact on prediction performance. The IG processes the
decrease in entropy when given information is used to group
values of an alternative (class) feature. The entropy of feature U
is defined as

H(U) =~ ) P(u)log, (P (1) (1)
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where u; is a set of values of U and P (u;) is the prior probability
of u;. Conditional entropy H(U/V), given another feature V] is
defined as

H(U|V) = —ij(vj) Zip(u,-wj) log,(P(w;]v)))  (2)

where P (u; | v;) is the posterior probability of U given by the
value vjof V. The IG is defined as the decreased entropy calculated
by subtracting the conditional entropy of U given by V from the
entropy of U, as follows.

IG(U|V) = H (U) — H(UIV) 3)

Random Forest

The RF is a supervised machine learning algorithm (Breiman,
2001) and is widely used for various biological problems
(Manavalan et al,, 2017, 2018; Bhadra et al., 2018; Hasan and
Kurata, 2018). In brief, the following steps are carried to construct
n trees of the RF model. Initially, to obtain a new dataset, N
samples are obtained from the training set by random selection
with replacement procedures. To get n different datasets this
procedure is repeated n times and n decision trees are built
based on the n datasets. In this assembling process, for K input
features, k (k << K) features are selected randomly, where k is
the constant during construction of the RF. To split the node,
a gini impurity criterion is used from the given features. To
grow completely, each decision tree is grown without pruning.
Afterward getting n decision trees, the class with the most
votes is the final prediction (Breiman, 2001). An R package was
implemented to train the proposed model (https://cran.r-project.
org/web/packages/randomForest/). We set n to 1000 through the
10-fold cross-validation (CV) test, which is large enough to gain
stable prediction.

Other Machine Learning Algorithms

The performance of the RF was characterized in comparison
to three commonly used machine learning algorithms: Naive
Bayes (NB) (Lowd, 2005), SVM (Hearst, 1998), and artificial
neural network (ANN) (Michalski et al., 2013). We used the
NB and ANN algorithms of the WEKA software (Frank et al.,
2004) and the SVM algorithm with a kernel radial basis function
(RBF) of the LIBSVM package (https://www.csie.ntu.edu.tw/~
¢jlin/libsvm/). In the NB algorithm, we set batch size to 1,000
through the 10-fold CV via the WEKA software. For the ANN
algorithm, we considered “MultilayerPerceptron -L 0.3 -M 0.2
-N 500 -V 0S 0 -E 20 -H a” via the WEKA software. To
optimize the parameters of the SVM model, the cost and gamma
functions were set to 8 and 0.03125 for KSAAP, respectively, via
the LIBSVM package. Similarly, the cost and gamma functions
were set to 2 and 0.0123 for AAindex, 32 and 0.0625 for pKSAAP,
16 and 0.125 for SPIDER?2, and 8 and 0.015625 for PEP2D.

Combined Method

To make an efficient and robust prediction model, optimization
of incorporative feature methods is generally essential. We

linearly combined the RF scores of the five encoding methods:
AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAP, using the
following formula (Hasan et al., 2017b):

Combined = w; x SPIDER2 + w;, x PEP2D + w3 x KSAAP
+ wy x AAindex + ws x pKSAAP (4)

where wj, wz, w3, wy, and ws are the weight coeflicients
indicating the strength of the five descriptors; the sum of wy,
w2, w3, wa, and ws is 1. We adjusted each weight from 0 to 1
with an interval of 0.05. When wy, w2, w3, wy, and ws were 0.00,
0.00, 0.15, 0.25, and 0.6, respectively, the AUC value on the CV of
training dataset was maximal. Therefore, the linear combination
of the three successive RF models of KSAAP, AAindex, and
pKSAAP was actually “Combined.”

Performance Assessment

To investigate the performance of the PreAlIP, the threshold-
dependent and threshold-independent indices were measured.
Using the threshold-dependent indices, four widely used
statistical measures denoted as accuracy (Ac) specificity (Sp),
sensitivity (Sn), and Matthews correlation coeflicient (MCC),
respectively, were considered. The four outcomes are presented
in the following formulas,

TP + TN
Ac = + (5)
TP + FP + TN + EN
TP
Sn = — (6)
TP + EN
TN
Sp = 7
P = INTrP @)
TP x TN) — (FP x EN
MCC— (TP x TN) — (FP x EN) )

V(TN + FN) x (TP + FP) x (IN + FP) x (TP + FN)

where TP exemplifies the number of correctly predicted positive
samples; TN the number of correctly predicted negative samples;
FP the number of incorrectly predicted positive samples, and
FN the number of incorrectly predicted negative samples.
Furthermore, we used the receiver operating characteristics
(ROC) curve (Sn vs. 1-Sp plot) to evaluate the area under
the ROC curve (AUC) of the threshold-independent parameter
(Centor, 1991; Gribskov and Robinson, 1996).

Since the balance between the correctly predicted AIPs and
non-AlPs is critically responsible for accurate prediction, Sp
and Sn are intuitive, intelligible measures. Typically, high Sp
decreases Sn. In this study, the prediction performance of the
PreAIP for the training dataset was evaluated with a stepwise
change in Sp. We calculated Sn, Ac, and MCC at high (0.903),
moderate (0.801) and low (0.709) levels of Sp. These three levels
of Sp were given by setting the high (0.468), moderate (0.388),
and low (0.342) thresholds of the RF score. In the same manner,
we measured the performance of the individual encoding scheme
of KSAAP, AAindex, SPIDER2, PEP2D, and pKSAAP at each
level of Sp. When the same threshold values of the RF score
were applied to prediction of the test dataset, the high, moderate
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and low levels of Sp were calculated as 0.871, 0.747, and 0.636,
respectively.

To assess the performance of the PreAIP using the measures
of Ac, Sp, Sn, MCC, and AUC, a 10-fold CV test was used. For the
10-fold CV; original training samples were randomly and equally
picked up into 10 subclasses. Among 10 subclasses, one subclass
was singled out as the test sample, and the remaining 9 subclasses
were considered as the training sample. Then we computed
all performance measures for each predictor. We repeated this
procedure 10 times by changing the training and test samples.
Eventually, we calculated the average value of each performance
measure for each predictor.

RESULTS AND DISCUSSION

Sequence Preference Analysis of AlPs

To investigate the amino acid preference of positive and negative
AlPs, we performed sequence compositional preference analysis
using the amino acids from the 1 to 15 N-terminal residues of
training sets. The length of the AIPs ranged between 4 and 25
amino acid residues in this study. The average length of AIPs was
15 amino acids. Since Ialenti et al. suggested that the AIP activity
is located in the N-terminal region of the molecule (Ialenti et al.,
2001), we investigated the 1 to 15 N-terminal amino acids by
the sequence compositional preference analysis. A non-existing
residue was coded by “O” to fill the corresponding position of
the AIPs.

At first, we submitted the 1 to 15 N-terminal amino acids
of positive and negative AIPs to the sample logo online server
(http://www.twosamplelogo.org/) to generate the sequence logo
representations (Figure 2). The height for each amino acid was
in proportion to the percentage of positive (over-represented)
or negative (under-represented) peptides. The logos were scaled
according to their statistical significance threshold of p < 0.05
by Welch’s ¢-test. Leucine (L) at positions 5, 7, 10, 11, and 15,
cysteine (C) at position 7 and 10, isoleucine (I) at positions 2
and 7, arginine (R) at position 5, phenylalanine (F) at position 8,
and lysine (K) at position 15 were significantly overrepresented
compared with other amino acids, while aspartic acid (D) at
positions 4, 5, 10, 13, and 15, threonine (T) at positions 3 and 7,
valine (V) at positionl5 were significantly underrepresented. In
addition, tyrosine (Y) at positions 4 and 5 was overrepresented,
while Y at positions 5 and 10 underrepresented. These results
suggested that positive and negative AIPs are significantly
different.

Secondly, we examined the evolutionary conservation features
of the PreAlIP using the average PSSM value (APV) for each
amino acid within 1 tol5 N-terminal amino acids of AIPs.
The evolutionary conservation information of APV of both the
positive and negative AIPs is illustrated in Figure 3. Some of
amino acid positions of positive and negative AIPs showed
significantly different scores. Furthermore, a nonparametric
Kruskal-Wallis (KW) test was used to examine whether positive
and negative AIPs were significantly dissimilar. The p-values
were calculated and corrected by the Bonferroni test (Table S2).

Thirdly, we examined the AAindex encoding features of
PreAIP. Eight types of informative amino acid indices were
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FIGURE 2 | Sequence logo representation of positive and negative AIPs. The
upper portion (enriched) is represented by positive AlPs, while lower portion
(depleted) negative AlPs. The statistically significant local sequence within the
N-terminal 15-residues of AlPs was plotted with p < 0.05 by Welch’s t-test.
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FIGURE 3 | Comparison of evolutionary information of positive and negative
AlPs. Blue lines represent the positive AIP, while orange lines the negative
AlPs. “*” represents that the APV is statistically different between both the
AlPs, with p < 0.05 by the KW test.

used and named HI1 to HI8 as the input feature vectors from
the AAindex database. We examined these HI amino acid
properties of both the positive and negative AIPs. As illustrated
in Figure 4, the average values of the eight indices were renamed
as AVHII to AVHIS. These indices represented the amino acid
compositions of intracellular proteins. Some of the AIPs had
distinct amino acid compositions in the eight high-quality amino
acid indices between two samples of AIPs (Figure 4). The KW
test was used to examine whether two samples of AIPs were
significantly dissimilar with respect to the eight HI properties.
The p-values were calculated and corrected by the Bonferroni test
(Table S3). Significantly different AAindex values with p-value
<0.05 appeared at some positions of AIPs, as marked with “*”
in Figure 4.

Finally, we examined the difference in 8 types of SFs by
SPIDER?2 between the positive and negative AIPs, as shown in
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FIGURE 4 | Comparison of eight high-quality amino acid indices between two samples of AlPs. The eight high-quality amino acid indices from HI1 to HI8 are placed
at the centers of eight amino acid index clusters, which indicate high residue propensities of AAindex. The row represents the N-terminal peptide, while the blue lines
signify the positive AIP and the orange lines the negative AlPs. “*” represents that the amino acid indices are statistically different between both the samples with p <
0.05 by the KW test.

Figure 5. We calculated the average value of 8 types of SFs for
SPIDER2: ASA, phi, psi, theta, tau, coil, stand, and helix of
both the positive and negative AIPs. The average features were
represented as AVAS, AVPhi, AVPsi, AVThe, AVTau, AVCaoil,
AVSta, and AVHel (Figure 5). We plotted these average values
of SFs with respect to the 1-15 N-terminal AIPs. Distinguished
differences were observed between the positive and negative
samples of AIPs. The KW test was employed to examine
whether two sample of AIPs were significantly dissimilar among
the eight SFs. The p-values were calculated and corrected by
the Bonferroni test (Table S4). Significantly different SFs were
perceived at some positions of AIPs, with a p-value <0.05, as
indicated with “*” in Figure 5.

The above analysis of residue preference between the positive
and negative AIPs suggested that the combination of the primary

sequence, evolutionary, and structural amino acid occurrences
achieves a precise prediction.

Overall Prediction Performance of PreAlP
The selected five descriptors (AAindex, KSAAP, SPIDER2,
PEP2D, and pKSAAP) were separately used for prediction of
ATIPs. Optimization of multiple encoded features is generally
essential in the training model to reduce dimensionality while
retaining the significant feature. To achieve this, we performed
multiple rounds of experiments to select appropriate feature
vectors using the IG feature selection via 10-fold CV test on
training set; however, it turned out that the IG feature selection
did not improve prediction performance. Thus, the IG feature
was used to collect significant features and for interpreting a
superiority of KSAAP encoding.
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We accessed the performances of the training model of five
successive encoding methods of AAindex, KSAAP, SPIDER2,
PEP2D, and pKSAAP through a 10-fold CV test using the RF
classifier. The prediction results by each of five encoding features
and the “Combined features” are shown in Figure 6A. The
AUCs of AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAP were
0.774, 0.813, 0.739, 0.734, and 0.789, respectively. The KSAAP
performed best for the 5 single encoding approaches in terms of
Sn, MCC and AUC (Table 1). The “Combined features” (PreAIP)
showed better performance with an AUC of 0.833 than any other
single feature. It is noted that “Combined features” means a
linear combination of the RF scores (Materials and Methods).
Moreover, the PreAIP presented the highest AUC value (0.840)

in the test dataset (Figure 6B). The performance of PreAIP was
effective and reasonable for all the tested cases (Figure 6) and was
best in the AIP prediction.

To present the known AIPs in the training dataset, we used
BLAST to search the (weak) homologs, and ranked them to
obtain the best hit e-value (Bhasin and Raghava, 2004). Total
256 positive and 397 negative hits were found out of 1,258
positive and 1,887 negative samples by BLASTP with an e-
value of 1.0 x 1072, The reduced numbers of the samples may
be due to the peptide length of 5-25. Then, we measured the
BLAST performances through 10-fold CV test. The prediction
performances of Sp, Sn, Ac, MCC, and AUC were 0.752, 0.269,
0.563, 0.159, and 0.632, respectively, which were lower than those
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FIGURE 6 | ROC curves of the various prediction models. (A) 10-fold CV test on a training dataset and (B) test dataset. The PreAIP combined the KSAAP, pKSAAP,
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TABLE 1 | AUC values for prediction performance of the training dataset by
10-fold CV test.

Methods Sp Sn Ac MCC AUC p-value
PKSAAP 0.798 0.647 0.738 0.450 0.789 0.017
AAindex 0.795 0.644 0.735 0.448 0.774 0.012
SPIDER2 0.765 0.434 0.633 0.235 0.739 0.004
PEP2D 0.769 0.411 0.629 0.219 0.734 0.004
KSAAP 0.805 0.656 0.745 0.463 0.813 0.118
PreAlP* 0.806 0.709 0.767 0.508 0.833

*PreAlP is the linear combination of the RF scores estimated by SPIDER2, PEP2D, KSAAR,
AAindex, and pKSAAP encoding schemes and their weight coefficients are 0.00, 0.00,
0.15, 0.25, and 0.6, respectively. A p-value was computed based on the final model of
AUC values by using a Wilcoxson matched-pair signed test.

by the other sequence encoding-based models. Therefore, we did
not consider BLAST for final prediction.

In addition, we found that KSAAP performed best for all the
five single encoding methods. To investigate the most significant
residue of the KSAAP method, the top 20 amino acid pairs
of AIPs were examined through the IG feature selection. The
top 20 significant residue pair scores and their corresponding
positions are listed in Table S5. These significant features are
also presented using a radar diagram (Figure 7A). For example,
the feature sequence motif “LxL,” which is represented by 1-
spaced residue pair of “LL, is the most important residue pair,
where “x” stands for any amino acid. The feature “Lx x xL”
represented the second enriched motif surrounding positive
samples of AIPs. Similarly, the feature “LL,” which represents a
0-spaced residue pair of “LL,” is important and enriched in the
negative samples AIPs. Similarly, to keep other k-space amino
acid pairs from KSAAP, the same exemplification was employed.
Residue preference analysis demonstrated that “L” “Y,” “C.” “D,
and “T” residues frequently appear for AIPs (Figures2, 7A).
These residues are expected to play a key role in the recognition
of AIPs. To characterize the top 20 KSAAP-specific features, we
compared the numbers of positive and negative AIPs. Figure 7B
showed the top 20 average value of feature scores (AVES) by

the IG. The average of top 20 features was significantly different
between two samples of AIPs with p < 0.05, suggesting the
effectiveness of the KSAAP encoding. The significant residue
pair scores are listed in Table S5, which provides some insights
into the sequence patterns of the AIPs. They deserve further
experimental validation.

Comparison of PreAlP With Existing

Predictors Using Test Dataset

We evaluated the performances of PreAIP along with that of
existing predictors on the test dataset. We submitted the test
set to the AIPpred (Manavalan et al., 2018) and Antilnflam
(Gupta et al., 2017) servers to assess the performance. It is noted
that Antilnflam server provides different thresholds values. We
used two threshold values of —0.3 and 0.5 and renamed as less
accurate (LA) and more accurate (MA) models (Gupta et al.,
2017), respectively. The AIPpred represents the state-of-the-art
predictor available. The average performances of the LA, MA,
AlPpred, and PreAlIP are illustrated in the Table 2. The LA
showed the highest Sp (0.892) with the lowest Sn (0.258), MCC
(0.197), and AUC (0.647) for all the predictors. The PreAIP with
the high threshold presented much higher Sn (0.618) Ac (0.770),
MCC (0.512), and AUC (0.840) than LA, while it provided Sp
(0.871) comparable to LA. The PreAIP with the low threshold
showed the highest Sn (0.863), while keeping Sp, Ac, MCC, and
AUC at a high level. While the AIPpred presented considerably
high values to all the measures of Sp, Sn, Ac, MCC, and AUC, the
PreAIP with the moderate threshold outperformed the AIPpred,
presenting well-balanced, high prediction performances. The
PreAIP performance improvement was found distinct on
the test dataset by the Wilcoxson matched-pair signed test,
demonstrating its ability to predict unseen peptides.

Comparison of PreAlIP With AlPpred Using

Training Dataset

We compared the performance of the proposed PreAIP with the
AlPpred using the same training dataset. In this study, the same
dataset as the AIPpred set was used to make a fair comparison
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TABLE 2 | Performance comparison with exiting predictors using test dataset.

Predictor Threshold Sp Sn Ac MCC AUC p-value
Antilnflam (LA)  —0.3 0.892 0.258 0.638 0.197 0.647 <0.001
Antilnflam (MA) 0.5 0.417 0.786 0565 0.210 0.706 <0.001
AlPpred Server 0.746 0.741 0744 0.479 0.813 0.039
PreAlP High 0.871 0.618 0.770 0.512 0.840
Moderate 0.747 0.784 0.762 0.522 0.840
Low 0.636 0.863 0.727 0.492 0.840

A p-value was computed based on AUC values by using a Wilcoxson matched-pair signed
test and p < 0.05 indicates a statistically significant difference between the proposed
PreAlP and each selected method. The performances of Antilnflam LA and MA methods
were computed using default threshold (server) values of —0.3 and 0.5, respectively. The
AlPpred threshold was the same as given by its server.

for prediction performance of AIPs. As shown in Table 3, the
PreAIP achieved a better performance than the AIPpred in terms
of Ac, Sp, Sn, MCC, and AUC. The AUC value was nearly 3%
higher than the AIPpred predictor. The PreAIP performance
(AUC) improvement over the AIPpred was demonstrated on the
training set by the Wilcoxson matched-pair signed test (Table 3).

Comparison of Different Machine Learning
Algorithms

The performance of the RF was compared to the three widely
used machine learning algorithms, NB, SVM, and ANN by using
the same training datasets and features, as shown in Table 4.
The AUC values of the prediction by the five algorithms were
calculated by a 10-fold CV test, while using the SPIDER2, PEP2D,
AAindex, KSAAP, and pKSAAP encodings and their combined
method. The RF provided higher AUC than any other algorithms
for all the encoding methods and their combined method.

TABLE 3 | Performance comparison of PreAIP with AlPpred using training
dataset.

MethodsThreshold Sp Sn Ac MCC AUC p-value
AlPpred Default 0.711 0.758 0.730 0.460  0.801 0.034
given in the
server
PreAIP  High 0.903 0632 0.795 0.566 0.833
Moderate 0.801 0.719 0.768 0.520 0.833
Low 0.709 0.784 0.739 0.484 0.833

A p-value was computed based on AUC values by using a Wilcoxson matched-pair signed
test and p < 0.05 indicates a statistically significant difference between the proposed
PreAlP and AlPpred.

The Effect of Peptide Redundancy on the
Predictive Model

The peptide redundancy may lead to the overestimation on the
predictive performance. Therefore, we performed the CD-HIT
with 60% identity cutoff at the peptide level (Huang et al., 2010).
After removing the 60% sequence redundancy, we re-assembled a
training dataset that contained 1,098 positive and 1,226 negative
samples, and the test dataset that contained 308 positive and
275 negative samples. While the overall performance (AUC =
0.821) of the PreAIP by the 10-fold CV test decreased slightly
(Table S6), the PreAIP could still achieve the best performance
on the independent testing dataset (Figure S1). The PreAIP
achieved 6 and 8% higher AUC values than the Antilnflam
and the AIPpred, respectively, demonstrating that the PreAIP
with the 60% peptide redundancy removal provides a stable or
competitive performance compared with the other predictors, as
well as the 80% peptide redundancy removal.
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TABLE 4 | AUC values of AIP prediction by different machine learning algorithms
based on a 10-fold CV test.

Algorithms SPIDER2 PEP2D AAindex KSAAP pKSAAP Combined

RF 0.739 0.734 0.774 0.813 0.789 0.833
NB 0.659 0.655 0.707 0.729 0.717 0.736
SVM 0.698 0.677 0.738 0.766 0.749 0.779
ANN 0.662 0.649 0.716 0.741 0.736 0.753

“Combined” indicates that the performance of the optimized combined features. The
combined score of RF was given as the sum of the five SPIDER2, PEP2D, AAindex,
KSAAR and pKSAAP features with weight values of 0.00, 0.00, 0.15, 0.25, and 0.6
respectively. In the same way, the weight values of NB, SVM, and ANN were given as
(0.00, 0.00, 0.10, 0.35, and 0.55), (0.00, 0.00, 0.22, 0.45, and 0.33), and (0.00, 0.00,
0.18, 0.5, and 0.32), respectively.

Advantages of PreAlP

In theoretical viewpoints, comparison of the proposed PreAIP
with existing predictors is summarized: (1) The PreAIP
investigated the primary sequence, physicochemical properties,
structural, and evolutionary features, although the AIPpred and
Antilnflam predictors used only primary sequence encoding
method. For instance, in Antilnflam method (Gupta et al,
2017), studied hybrid features based on primary sequence
encoding schemes such as amino acid composition (AAC),
dipeptide composition (DPC), and tripeptide composition with
SVM algorithm. The AIPpred (Manavalan et al., 2018) studied
individual composition (AAC, AAindex, DPC, and chain-
transition-composition) through multiple machine learning
algorithms. (2) Since existing prediction tools did not control the
Sp level, users cannot understand which AIP is highly positive
or negative from their servers. On the other hand, the PreAIP
controlled Sp at high, moderate and low levels by changing the
threshold of the RF scores, based on 10-fold CV test results.
A limitation of the PreAIP is that the employed dataset is still
small, but we believe that the dataset will grow to enable intensive
identification of AIPs. In addition, the calculation speed remains
to be improved. The processing time of the PreAIP was <3 min
for one peptide sequence, where the generation of PSSM profiles
requires a long time.

Server of PreAlIP

A web server of the PreAIP has been developed and publically
accessible at http://kuratal4.bio.kyutech.ac.jp/PreAIP/. The web
application was implemented by programming languages of Java
scripts, Perl, R, CGI scripts, PHP, and HTML. After submitting
a query sequence to the server, it generates consecutive feature
vectors. Then, the server optimizes the performances through

REFERENCES

Altschul, S. F., Madden, T. L., Schiffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25, 3389-3402. doi: 10.1093/nar/25.
17.3389

Azhagusundari, B., and Thanamani, A. S. (2013). Feature selection based on
information gain. Int. J. Innov. Technol. Explor. Eng. 2, 2278-3075.

Bhadra, P., Yan, J., Li, J, Fong, S., and Siu, S. W. I (2018). AmPEP:
sequence-based prediction of antimicrobial peptides using distribution

RFs. After completing the submission job, the server returns the
result in the output webpage which consists of the job ID and
probability scores of the predicted AIPs in a tabular form. A user
gets a job ID like “2018032900067” and can save this ID for a
future query. The server stores this job ID for one month. The
input peptide sequence must be in the FASTA format. Each of
the 20 types of standard amino acids must be written as one
uppercase letter. See the test example on the server. The length of
AIP sequence was limited from 1 to 25. If users submit 200 amino
acids, the PreAIP takes first 1-25 residues to analyze. When the
peptide contains less than 25 residues, the PreAIP provides gaps
(-) to the missing residues to compensate a peptide length of 25.

CONCLUSIONS

We have designed an accurate and efficient computational
predictor for identifying potential AIPs. It outperforms the
existing methods and is effective in understanding some
mechanisms of AIP identification. An IG-based feature selection
method was carried out to suggest sequence motifs of AIPs from
KSAAP encoding. A user-friendly web-server was developed and
freely available for academic users.

AUTHOR CONTRIBUTIONS

MK, MH, and HK conceived and designed the study. MK and
MH collected data and performed the analyses. MH, MK, and
HK wrote the manuscript. All authors discussed the prediction
results and commented on the manuscript.

ACKNOWLEDGMENTS

This work was supported by the Grant-in-Aid for Challenging
Exploratory Research with JSPS KAKENHI Grant Number
17K20009. This research is partially supported by the
developing key technologies for discovering and manufacturing
pharmaceuticals used for next-generation treatments and
diagnoses both from the Ministry of Economy, Trade and
Industry, Japan (METI) and from Japan Agency for Medical
Research and Development (AMED).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00129/full#supplementary-material

patterns of amino acid properties and random forest. Sci. Rep. 8:1697.
doi: 10.1038/s41598-018-19752-w

Bhasin, M., and Raghava, G. P. (2004). GPCRpred: an SVM-based method for
prediction of families and subfamilies of G-protein coupled receptors. Nucleic
Acids Res. 32, W383—- W389. doi: 10.1093/nar/gkh416

Boismenu, R., Chen, Y., Chou, K., El-Sheikh, A., and Buelow, R. (2002). Orally
administered RDP58 reduces the severity of dextran sodium sulphate induced
colitis. Ann. Rheum. Dis. 61(Suppl. 2), 19-24. doi: 10.1136/ard.61.suppl_2.ii19

Breiman, L. (2001). Random forests. ~Mach. Learn. 45, 5-32.
doi: 10.1023/A:1010933404324

Frontiers in Genetics | www.frontiersin.org

March 2019 | Volume 10 | Article 129


http://kurata14.bio.kyutech.ac.jp/PreAIP/
https://www.frontiersin.org/articles/10.3389/fgene.2019.00129/full#supplementary-material
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1038/s41598-018-19752-w
https://doi.org/10.1093/nar/gkh416
https://doi.org/10.1136/ard.61.suppl_2.ii19
https://doi.org/10.1023/A:1010933404324
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Khatun et al.

Computational Prediction of Anti-inflammatory Peptides

Carugo, O. (2013). Frequency of dipeptides and antidipeptides. Comput. Struct.
Biotechnol. J. 8:e201308001. doi: 10.5936/csbj.201308001

Centor, R. M. (1991). Signal detectability - the use of roc curves and their analyses.
Med. Decis. Making 11, 102-106. doi: 10.1177/0272989X9101100205

Corrigan, M., Hirschfield, G. M., Oo, Y. H,, and Adams, D. H. (2015).
Autoimmune hepatitis: an approach to disease understanding and
management. Br. Med. Bull. 114, 181-191. doi: 10.1093/bmb/1dv021

Delgado, M., and Ganea, D. (2008). Anti-inflammatory neuropeptides: a new class
of endogenous immunoregulatory agents. Brain Behav. Immun. 22, 1146-1151.
doi: 10.1016/j.bbi.2008.06.001

Ferrero-Miliani, L., Nielsen, O. H., Andersen, P. S., and Girardin, S.
E. (2007). Chronic inflammation: importance of NOD2 and NALP3
in interleukin-l1beta generation. Clin. Exp. Immunol. 147, 227-235.
doi: 10.1111/j.1365-2249.2006.03261.x

Frank, E., Hall, M. Trigg, L, Holmes, G., and Witten, I. H. (2004).
Data mining in bioinformatics using Weka. Bioinformatics 20, 2479-2481.
doi: 10.1093/bioinformatics/bth261

Gonzalez, R. R., Fong, T., Belmar, N., Saban, M., Felsen, D., and Te,
A. (2005). Modulating bladder neuro-inflammation: RDP58, a novel
anti-inflammatory peptide, decreases inflammation and nerve growth
factor production in experimental cystitis. J. Urol. 173, 630-634.
doi: 10.1097/01.ju.0000143192.68223.7

Gonzalez-Rey, E., Anderson, P., and Delgado, M. (2007). Emerging roles of
vasoactive intestinal peptide: a new approach for autoimmune therapy. Ann.
Rheum. Dis. 66(Suppl 3), 70-76. doi: 10.1136/ard.2007.078519

Gribskov, M., and Robinson, N. L. (1996). Use of receiver operating characteristic
(ROC) analysis to evaluate sequence matching. Comput. Chem. 20, 25-33.
doi: 10.1016/S0097-8485(96)80004-0

Gupta, S., Sharma, A. K., Shastri, V., Madhu, M. K., and Sharma, V. K. (2017).
Prediction of anti-inflammatory proteins/peptides: an insilico approach.
J. Transl. Med. 15:7. doi: 10.1186/s12967-016-1103-6

Hasan, M. M., Guo, D., and Kurata, H. (2017a). Computational identification of
protein S-sulfenylation sites by incorporating the multiple sequence features
information. Mol. Biosyst. 13, 2545-2550. doi: 10.1039/C7MB00491E

Hasan, M. M., Khatun, M. S., and Kurata, H. (2018a). A comprehensive review of
in silico analysis for protein S-sulfenylation sites. Protein Pept. Lett. 25, 815-821.
doi: 10.2174/0929866525666180905110619

Hasan, M. M., Khatun, M. S., Mollah, M. N. H,, Cao, Y., and Guo, D.
(2017b). A systematic identification of species-specific protein succinylation
sites using joint element features information. Int. . Nanomed. 12, 6303-6315.
doi: 10.2147/1JN.S140875

Hasan, M. M., Khatun, M. S, Mollah, M. N. H,, Yong, C, and Dianjing
G. (2018b). NTyroSite: Computational of protein
nitrotyrosine sites using sequence evolutionary features. Molecules 23:1667.
doi: 10.3390/molecules23071667

Hasan, M. M., and Kurata, H. (2018). GPSuc:global prediction of generic and
species-specific succinylation sites by aggregating multiple sequence features.
PLoS ONE 13:€0200283. doi: 10.1371/journal.pone.0200283

Hasan, M. M., Yang, S., Zhou, Y., and Mollah, M. N. (2016). SuccinSite:
a computational tool for the prediction of protein succinylation sites by
exploiting the amino acid patterns and properties. Mol. Biosyst. 12, 786-795.
doi: 10.1039/C5MB00853K

Hasan, M. M., Zhou, Y., Lu, X, Li, J,, Song, J., and Zhang, Z. (2015).
Computational identification of protein pupylation sites by using profile-
based composition of k-spaced amino acid pairs. PLoS ONE 10:e0129635.
doi: 10.1371/journal.pone.0129635

Hearst, M. A. (1998). Support vector machines. IEEE Intell. Syst. 18-28.
doi: 10.1109/5254.708428

Herndndez-Florez, D., and Valor, L. (2016). Protein-kinase inhibitors: a new
treatment pathway for autoimmune and inflammatory diseases? Reumatol.
Clin. 12, 91-99. doi: 10.1016/j.reuma.2015.06.004

Huang, S. H. (2015). Supervised feature selection: a tutorial. Artif. Intell. Res. 4:6.
doi: 10.5430/air.v4n2p22

Huang, Y., Niu, B., Gao, Y., Fu, L., and Li, W. (2010). CD-HIT Suite: a web server
for clustering and comparing biological sequences. Bioinformatics 26, 680-682.
doi: 10.1093/bioinformatics/btq003

Talenti, A., Santagada, V., Caliendo, G., Severino, B., Fiorino, F., Maffia, P., et al.
(2001). Synthesis of novel anti-inflammatory peptides derived from the amino-
acid sequence of the bioactive protein SV-IV. Eur. J. Biochem. 268, 3399-3406.
doi: 10.1046/j.1432-1327.2001.02236.x

identification

Jin, Y., Wi, H. ], Choi, M. H,, Hong, S. T., and Bae, Y. M. (2014). Regulation
of anti-inflammatory cytokines IL-10 and TGF-beta in mouse dendritic cells
through treatment with Clonorchis sinensis crude antigen. Exp. Mol. Med.
46:e74. doi: 10.1038/emm.2013.144

Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and
Kanehisa, M. (2008). AAindex: amino acid index database, progress report
2008. Nucleic Acids Res. 36, D202-D205. doi: 10.1093/nar/gkm998

Kempuraj, D., Selvakumar, G. P, Thangavel, R., Ahmed, M. E., Zaheer, S., Raikwar,
S. P, etal. (2017). Mast cell activation in brain injury, stress, and post-traumatic
stress disorder and alzheimer’s disease pathogenesis. Front. Neurosci. 11:703.
doi: 10.3389/fnins.2017.00703

Lopez, Y., Sharma, A., Dehzangi, A., Lal, S. P., Taherzadeh, G., Sattar, A,
et al. (2018). Success: evolutionary and structural properties of amino
acids prove effective for succinylation site prediction. BMC Genom. 19:923.
doi: 10.1186/s12864-017-4336-8

Lowd, D. (2005). “Naive Bayes models for probability estimation,” in 05 Proceedings
of the 22nd International Conference on Machine Learning (New York, NY),
529-536. doi: 10.1145/1102351.1102418

Manavalan, B., Basith, S., Shin, T. H., Choi, S., Kim, M. O., and Lee, G. (2017).
MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget
8,77121-77136. doi: 10.18632/oncotarget.20365

Manavalan, B., Shin, T. H., Kim, M. O., and Lee, G. (2018). AIPpred: sequence-
based prediction of anti-inflammatory peptides using random forest. Front.
Pharmacol. 9:276. doi: 10.3389/fphar.2018.00276

Marie, C., Pitton, C., Fitting, C., and Cavaillon, J. M. (1996). Regulation by
anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGFbeta)of interleukin-8
production by LPS- and/ or TNFalpha-activated human polymorphonuclear
cells. Med. Inflamm. 5, 334-340. doi: 10.1155/50962935196000488

Michalski, R. S., Carbonell J. G., Mitchell T. M. (2013). Machine Learning:
An Artificial Intelligence Approach. Berlin; Heidelberg: Springer-Verlag.
doi: 10.1007/978-3-662-12405-5

Miele, L., Cordella-Miele, E., Facchiano, A., and Mukherjee, A. B. (1988). Novel
anti-inflammatory peptides from the region of highest similarity between
uteroglobin and lipocortin I. Nature 335, 726-730. doi: 10.1038/335726a0

Patterson, H., Nibbs, R., Mcinnes, I., and Siebert, S. (2014). Protein kinase
inhibitors in the treatment of inflammatory and autoimmune diseases. Clin.
Exp. Immunol. 176, 1-10. doi: 10.1111/cei.12248

Steinman, L., Merrill, J. T., Mcinnes, I. B., and Peakman, M. (2012). Optimization
of current and future therapy for autoimmune diseases. Nat. Med. 18, 59-65.
doi: 10.1038/nm.2625

Tabas, I, and Glass, C. K. (2013). Anti-inflammatory
chronic disease: challenges and opportunities. Science 339,
doi: 10.1126/science.1230720

Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., et al.
(2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Res.
47:D339-D343. doi: 10.1093/nar/gky1006

Yang, Y., Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., et al.
(2017). SPIDER2: a package to predict secondary structure, accessible surface
area, and main-chain torsional angles by deep neural networks. Methods Mol.
Biol. 1484, 55-63. doi: 10.1007/978-1-4939-6406-2_6

Zhao, L., Wang, X, Zhang, X. L., and Xie, Q. F. (2016). Purification
and identification of anti-inflammatory peptides derived from simulated
gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus).
J. Food Drug. Anal. 24, 376-384. doi: 10.1016/j.jfda.2015.10.003

Zouki, C., Ouellet, S., and Filep, J. G. (2000). The anti-inflammatory peptides,
antiflammins, regulate the expression of adhesion molecules on human
leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J. 14,
572-580. doi: 10.1096/fasebj.14.3.572

therapy in
166-172.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Khatun, Hasan and Kurata. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Genetics | www.frontiersin.org

March 2019 | Volume 10 | Article 129


https://doi.org/10.5936/csbj.201308001
https://doi.org/10.1177/0272989X9101100205
https://doi.org/10.1093/bmb/ldv021
https://doi.org/10.1016/j.bbi.2008.06.001
https://doi.org/10.1111/j.1365-2249.2006.03261.x
https://doi.org/10.1093/bioinformatics/bth261
https://doi.org/10.1097/01.ju.0000143192.68223.f7
https://doi.org/10.1136/ard.2007.078519
https://doi.org/10.1016/S0097-8485(96)80004-0
https://doi.org/10.1186/s12967-016-1103-6
https://doi.org/10.1039/C7MB00491E
https://doi.org/10.2174/0929866525666180905110619
https://doi.org/10.2147/IJN.S140875
https://doi.org/10.3390/molecules23071667
https://doi.org/10.1371/journal.pone.0200283
https://doi.org/10.1039/C5MB00853K
https://doi.org/10.1371/journal.pone.0129635
https://doi.org/10.1109/5254.708428
https://doi.org/10.1016/j.reuma.2015.06.004
https://doi.org/10.5430/air.v4n2p22
https://doi.org/10.1093/bioinformatics/btq003
https://doi.org/10.1046/j.1432-1327.2001.02236.x
https://doi.org/10.1038/emm.2013.144
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.3389/fnins.2017.00703
https://doi.org/10.1186/s12864-017-4336-8
https://doi.org/10.1145/1102351.1102418
https://doi.org/10.18632/oncotarget.20365
https://doi.org/10.3389/fphar.2018.00276
https://doi.org/10.1155/S0962935196000488
https://doi.org/10.1007/978-3-662-12405-5
https://doi.org/10.1038/335726a0
https://doi.org/10.1111/cei.12248
https://doi.org/10.1038/nm.2625
https://doi.org/10.1126/science.1230720
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1007/978-1-4939-6406-2_6
https://doi.org/10.1016/j.jfda.2015.10.003
https://doi.org/10.1096/fasebj.14.3.572
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

'.\' frontiers
in Genetics

ORIGINAL RESEARCH
published: 05 March 2019
doi: 10.3389/fgene.2019.00172

OPEN ACCESS

Edited by:

Ancha Baranova,

George Mason University,
United States

Reviewed by:

Juan Pedro M. Camacho,
University of Granada, Spain
Nakatada Wachi,

University of the Ryukyus, Japan

*Correspondence:
De-Jun Hao
djhao@nijfu.edu.cn

Specialty section:

This article was submitted to
Evolutionary and Population Genetics,
a section of the journal

Frontiers in Genetics

Received: 12 October 2018
Accepted: 18 February 2019
Published: 05 March 2019

Citation:

Liu P-C, Tian S and Hao D-J

(2019) Sexual Transcription
Differences in Brachymeria lasus
(Hymenoptera: Chalcididae), a Pupal
Parasitoid Species of Lymantria
dispar (Lepidoptera: Lymantriidae).
Front. Genet. 10:172.

doi: 10.3389/fgene.2019.00172

Check for
updates

Sexual Transcription Differences in
Brachymeria lasus (Hymenoptera:
Chalcididae), a Pupal Parasitoid
Species of Lymantria dispar
(Lepidoptera: Lymantriidae)

Peng-Cheng Liu’?, Shuo Tian'? and De-Jun Hao’?*

7 Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China,
2 The College of Forestry, Nanjing Forestry University, Nanjing, China

Sex differences in gene expression have been extensively documented, but little is
known about these differences in parasitoid species that are widely applied to control
pests. Brachymeria lasus is a solitary parasitoid species and has been evaluated as
a potential candidate for release to control Lymantria dispar. In this study, gender
differences in B. lasus were investigated using lllumina-based transcriptomic analysis.
The resulting 37,453 unigene annotations provided a large amount of useful data for
molecular studies of B. lasus. A total of 1416 differentially expressed genes were
identified between females and males, and the majority of the sex-biased genes were
female biased. Gene Ontology (GO) and Pathway enrichment analyses showed that
(1) the functional categories DNA replication, fatty acid biosynthesis, and metabolism
were enhanced in females and that (2) the only pathway enriched in males was
phototransduction, while the GO subcategories enriched in males were those involved
in membrane and ion transport. In addition, thirteen genes involving transient receptor
potential (TRP) channels were annotated in B. lasus. We further explored and discussed
the functions of TRPs in sensory signaling of light and temperature. In general, this
study provides new molecular insights into the biological and sexually dimorphic traits
of parasitoids, which may improve the application of these insects to the biological
control of pests.

Keywords: sexually dimorphic, Brachymeria lasus, transcriptomic analysis, sex determination, venom protein,
transient receptor potential channels

INTRODUCTION

Parasitoids are animals that parasitize other organisms (Godfray, 1994). All invertebrate life stages,
such as egg, larva or nymph, pupa and adult, can be attacked by oviposition on or in the host or by
depositing a larva on or near a host (Boulton et al., 2015). Based on the number of offspring reared
in a host, parasitoid wasps are classified as solitary (one parasitoid per host), quasi-gregarious (one
parasitoid per host, but hosts are spatially clumped, such as a clutch of eggs on a leaf), or gregarious
(multiple parasitoids per host). The vast majority of parasitoids are solitary wasps (Mayhew, 1998).
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Sex-Biased Genes in Brachymeria lasus

Parasitoids can also be classified as koinobionts (in which hosts
continue to develop and grow to some extent) or idiobionts
(in which hosts do not grow further). Parasitoid wasps are
haplodiploid: males develop from unfertilized eggs and are
haploid, while females develop from fertilized eggs and are
diploid (Cook, 1993; Heimpel and de Boer, 2008). Parasitoid
species (e.g., Sclerodermus harmandi, Trichogramma) are
important insects and have been extensively applied to reduce the
population size of pest species (Hassan, 1993; Li, 1994; Terayama,
1999; Zhishan et al., 2003; Parra and Zucchi, 2004; Lim et al.,
2006). In addition to having important applications, parasitoid
and mutualistic Chalcidoidea, such as jewel (Nasonia vitripennis)
and fig (Pleistodontes froggatti) wasps, have been important
study models of behavioral ecology and evolutionary biology for
such traits as their sexual dimorphism in longevity, body size,
and dispersal (Hamilton, 1967; Charnov, 1982; Yan et al., 1989;
Godfray, 1994).

Animals from a broad range of taxa show sex differences,
which include behavioral (Breedlove, 1992), physiological
(Bardin and Catterall, 1981), and morphological dimorphisms
(Darwin, 1871). It is often assumed that the majority of sexually
dimorphic traits arise from differences in the expression of genes
present in both sexes (Connallon and Knowles, 2005; Rinn and
Snyder, 2005). Sex-biased gene expression has been documented
in brown algae (Lipinska et al., 2015), birds (Pointer et al., 2013),
nematodes (Albritton et al., 2014), Daphnia pulex (Eads et al.,
2007), and multiple insect species, including Drosophila (Jin et al.,
2001; Arbeitman et al, 2002; Ranz et al, 2003; Chang et al,
2011), Anopheles gambiae (Hahn and Lanzaro, 2005; Marinotti
et al., 2006; Baker et al., 2011), Tribolium castaneum (Prince
et al., 2010), vespid wasps (Hunt and Goodisman, 2010), and
Bemisia tabaci (Wen et al.,, 2014). However, few studies of sex
differences in gene expression have been done in Hymenoptera
insects, and these studies have focussed mainly on social species
(e.g., honeybee; Cameron et al,, 2013) and model organisms of
parasitoids, e.g., jewel wasp N. vitripennis (Wang et al., 2015),
which is a classic gregarious species. Most species of parasitoid
wasps are thought of as solitary species (Mayhew, 1998), but their
sexual transcription differences have not been addressed.

Gypsy moth, Lymantria dispar is a worldwide pest, and its
pupal stage can be parasitized by Brachymeria lasus. B. lasus
is a solitary parasitoid species and has been evaluated as a
potential candidate for release to control L. dispar (Simser and
Coppel, 1980), Homona magnanima (Mao and Kunimi, 1991)
and Sylepta derogate (Kang et al., 2006). In addition, B. lasus
has a wide host range, including many Lepidoptera species
(e.g., Mythimna separata, Hyphantria cunea, and Cnaphalocrocis
medinalis) (Habu, 1960). Male and female B. lasus differ in
many important biological traits, including longevity (Mao and
Kunimi, 1994b); development time in the egg, larval and pupal
stages (Mao and Kunimi, 1994a); secondary symbionts; and body
size (Yan et al., 1989). As B. lasus is a classic solitary species with
many documented sex differences, though not yet at the gene
expression level, it was used as the experimental material in this
study. To reveal B. lasus sex differences at the transcriptional
level, we carried out an Illumina-based transcriptomic analysis.
This study attempted to provide comprehensive insight into the

sexually dimorphic traits of parasitoid wasps at the transcriptome
level to improve our understanding of other biological traits
with the aim of improving the application of parasitoids to the
biological control of pest species.

MATERIALS AND METHODS

Insect Cultures

In northern China, in addition to L. dispar, B. lasus is also an
important pupal parasitoid of H. cunea, for which the parasitism
ratio is approximately 1.06-3.39% in the field (Yang et al., 2001).
To acquire B. lasus adults, we collected the pupae of H. cunea,
which may be parasitized by B. lasus and other parasitoid
species (e.g., Coccygomimus disparis Viereck; Chouioia cunea
Yang) from a field in Xuzhou City, Jiangsu Province, China, in
March 2016. After collection, we isolated the pupae individually
in polyethylene tubes (height: 7.5 cm; diameter: 1 cm) whose
openings were covered by a cotton ball and incubated them at a
temperature of 28 & 0.5°C, a relative humidity (RH) of 70 & 5%
and a photoperiod of 14 L:10 D. We observed and selected B. lasus
after adult eclosion.

Transcriptomic Analyses

For the transcriptomic experiment, only 1-day-old B. lasus
adults were selected, and the sex was determined under a
microscope (Leica M205A, Germany). Then, five adults of
the same sex were pooled into a plastic tube (1.5 ml),
snap-frozen in liquid nitrogen, and transferred to a -80°C
freezer for long-term storage. RNA from each sample group
(whole bodies of female and male adults) was extracted with
TRIzol reagent (Invitrogen; United States). Each group had
three replicates. The quality of the isolated RNA was assessed
using a NanoDrop (Thermo Fisher Scientific NanoDrop 2000,
United States), and the A260/280 values were all above 2.0.
A total of 3 pg total RNA from each sample was converted
into cDNA using the NEBNext® Ultra™ RNA Library Prep
Kit for Illumina® (NEB, United States). In total, six cDNA
libraries were constructed and subsequently sequenced with the
Mlumina HiSeq 2000 platform by Beijing Biomarker Technologies
Co., Ltd, resulting in raw reads. Raw sequence data generated
were deposited into Sequence Read Archive (SRA) database of
NCBI with the accession no. PRJNA513855. Clean reads were
obtained by removing reads containing adapter, poly-N reads
and low-quality reads from the raw data using FASTX-Toolkit",
and these clean reads were used for further analysis. Then,
transcriptome assembly was performed using Trinity (v2.5.1)
with the default parameters (Grabherr et al., 2011). For functional
annotation, pooled assembled unigenes were searched using
BLASTX (v2.2.31) against five public databases, Clusters of
Orthologous Groups (COG), Swiss-Prot, NCBI non-redundant
protein sequences (nr), KEGG Ortholog database (KO) and
GO, with an E-value cutoff of 107°. Using our assembled
transcriptome as a reference, we identified putative genes
expressed in males and females by RSEM (Li and Dewey, 2011),

1http:/ /hannonlab.cshl.edu/fastx_toolkit/
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using the reads per kb per million reads (RPKM) method. Genes
with at least 2-fold changes (i.e., log;|FC| > 1) and a false
discovery rate [FDR] < 0.01 as found by DESeq R package
(1.10.1) were considered differentially expressed. The GOseq R
package (Young et al,, 2010) and KOBAS software (Mao et al.,
2005) were used to implement the statistical enrichment of
differentially expressed genes (DEGs) in the GO and KEGG
pathways, respectively, and an adjusted Q-value <0.05 was
chosen as the significance cutoff.

Validation by mRNA Expression
and Behavior

Based on transcriptomic data, a gene of transient receptor
potential (trp) involved in the phototransduction pathway
enriched only in males (ko: 04745; Supplementary Figure S1-d),
trp (Leung et al., 2000), was down-regulated in females, which
may lead to a reduction in light response (Leung et al., 2000;
Popescu et al., 2006). Therefore, we checked this result at the
mRNA expression and behavioral levels.

Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was extracted from the whole bodies of five female or
five male adults reared on the pupae of H. cunea using TRIzol
(Invitrogen; United States) according to the manufacturer’s
protocols, then resuspended in nuclease-free water. Finally, the
RNA concentration was measured using a NanoDrop (Thermo
Fisher Scientific NanoDrop 2000; United States). Each group
have four replicates. Approximately 0.5 mg of total RNA was
used as template to synthesize the first-strand cDNA using
a PrimeScript RT Reagent Kit (TaKaRa; Japan) following the
manufacturer’s protocols. The resultant cDNA was diluted to
0.1 mg/ml for further qRT-PCR analysis (ABI StepOne Plus;
United States) using SYBR Green Real-Time PCR Master Mix
(TaKaRa; Japan). Primers (Supplementary Table S1) for trp gene
were designed using Primer Express 2.0 software. The cycling
parameters were 95°C for 30 s followed by 40 cycles of 95°C for
5 s and 62°C for 34 s, ending with a melting curve analysis (65 to
95°C in increments of 0.5°C every 5 s) to check for nonspecific
product amplification. Relative gene expression was calculated
by the 274 A€t method using the housekeeping gene GAPDH
as a reference to eliminate sample-to-sample variations in the
initial cDNA samples.

Phototaxis Assays

A glass Y-maze (main arm: 12 cm; two side arms: 5 cm; inner
diameter: 1.5 cm; angle between two side arms: 75°) was used for
phototaxis assays in a completely dark room (<10 lux, measured
by illuminometer, LX-9621, China) at a temperature of 22-26°C.
One 1-day-old B. lasus adult (female or male) began the trial in
a tube at the base of the apparatus and faced a choice between
two tubes, one of which was dark and the other of which was
lighted with a 40-watt bulb (approximately 600 lux). After 1 min,
the choice was recorded. The sample sizes of the male and female
groups were 18 and 24, respectively. After each test, the Y-maze
was washed and dried, and the two side arms were changed
for the new test.

Statistical Analysis

Prior to analysis, the raw data were tested for normality and
homogeneity of variances with the Kolmogorov-Smirnov test and
Levene’s test, respectively, and the data were log-transformed
if necessary. The qRT-PCR data comparing gene expression
in females and males were analyzed with the independent
t-test. In phototaxis assays, the preferences for light and dark
were analyzed using sign tests, and the differences in female
and male phototaxis were analyzed by the chi-square test. All
analyses were performed using SPSS v.20 (IBM SPSS, Armonk,
NY, United States).

RESULTS AND DISCUSSION

Sexual dimorphism is the condition where the two sexes of
the same species exhibit different characteristics (e.g., size,
color, behavior) beyond the differences in their sexual organs
(Bonduriansky, 2007). Most sexually dimorphic traits are often
assumed to arise from differences in the expression of genes
present in both sexes (Connallon and Knowles, 2005; Rinn
and Snyder, 2005). To reveal B. lasus sex differences at
the transcriptional level, we carried out an Illumina-based
transcriptomic analysis.

Transcriptome Sequencing, Read

Assembly and Annotation
All high-quality reads (101,945,678) from the six samples
were pooled and assembled by using Trinity with the default
parameters, and a total of 254,656 transcripts with lengths longer
than 200 bp were generated. The N50 size was 2706 bp with
57,605 sequences longer than 1 kb. We chose the longest isoform
of each gene to construct the unigene set. After isoforms were
considered, these assembled transcripts were predicted to be
produced from a total of 164,709 unigenes. The N50 size of
the unigenes was approximately 814 bp, and their mean length
was 572.08 bp (Supplementary Table S2). For annotation, the
pooled assembled unigenes were searched using blastx against
five public databases with an E-value cutoff of 107°. A total of
37,453 unigenes were successfully annotated, as shown in Table 1,
including 17,248 genes in GO, 13,491 genes in COG, 35,427 genes
in nr, 18,195 genes in Swiss-Prot, and 15,133 genes in KEGG.

In the GO analysis, 17,248 unigenes were successfully
annotated and classified into three major GO categories:
molecular function (MF), cell component (CC), and biological

TABLE 1 | Annotation of a pooled assembly including both male and female
B. lasus transcriptomes.

Annotation database Annotated unigenes Number of DEGs
COG 13,491 420
GO 17,248 442
KEGG 15,133 396
Swiss-Prot 18,195 613
nr 35,427 1024
Total 37,453 1416
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processes (BP), then assigned to 56 subcategories based on
GO level 2. The dominant subcategories for the classified
genes were catalytic activity and binding for the MF category;
cell and cell part for the CC category; and metabolic
process, cellular process, and single-organism process for the
BP category (Supplementary Table S3). A total of 15,133
KEGG-annotated unigenes were classified into 190 pathways
(>10 associated unigenes). Among these pathways, the ten most
highly represented were ribosome, carbon metabolism, protein
processing in endoplasmic reticulum, oxidative phosphorylation,
biosynthesis of amino acids, spliceosome, RNA transport, purine
metabolism, peroxisome, and ubiquitin mediated proteolysis
(Supplementary Table S4).

Sex-Biased Genes

Although in most species the male and female genomes differ
by a few genes located on sex-specific chromosomes (such
as the Y chromosome of mammals), the vast majority of
sexually dimorphic traits result from the differential expression
of genes that are present in both sexes (Connallon and Knowles,
2005; Rinn and Snyder, 2005; Ellegren and Parsch, 2007), and
this is especially true in hymenopteran insects. Because sex
determination in hymenopteran species is haplodiploid, females
and males are nearly identical genetically (Ellegren and Parsch,
2007). Such DEGs include those that are expressed exclusively in
one sex (sex-specific expression) and those that are expressed in
both sexes but at a higher level in one sex (sex-biased expression).
These sex-biased genes can be further separated into male-biased
and female-biased genes, depending on which sex shows higher
expression. Genes with equal expression in the two sexes are
referred to as unbiased (Ellegren and Parsch, 2007).

Using our assembled transcriptome as a reference,
we identified putative genes expressed in males and females
using the RPKM method, and genes with at least 2-fold changes
and FDR < 0.01 were defined as DEGs. By comparing female and
male transcriptomes, 1416 DEGs were found in B. lasus, of which
442 genes were annotated in GO, 420 in COG, 1024 in nr, 613 in
Swiss-Prot, and 396 in KEGG (Table 1). Among these DEGs, 986
were up-regulated in females and 430 were up-regulated in males
(Supplementary Table S5).

GO Enrichment Analyses

In the GO enrichment analyses, 12 and five subcategories
were enriched in females and males, respectively. In females,
the enriched subcategories were microtubule cytoskeleton,
cytoskeletal part, MCM complex, nucleus, protein complex,
kinesin complex, and nucleosome for the CC category; DNA
replication initiation, cell division and protein phosphorylation
for the BP category; and alpha-1,4-glucosidase activity and zinc
ion binding for the MF category (Figure 1A). These results
showed that, consistent with the results in flies, mosquitoes, and
Daphnia (Ranz et al., 2003; Hahn and Lanzaro, 2005; Eads et al.,
2007), including Hymenoptera insects of Nasonia (Wang et al.,
2015), most categories were related to DNA replication, which are
probably expressed to produce eggs in females (Spradling, 1993;
Parisi et al., 2004). The over-representation of transcripts from
genes required for DNA replication may be required for nurse

cell polyploidization or for the rapid division of embryonic cells,
which rely on maternally deposited gene products (Spradling,
1993; Parisi et al., 2004).

In males, the enriched subcategories were integral component
of membrane, cell junction, and postsynaptic membrane for the
CC category; ion transport for the BP category; and potassium
channel activity for the MF category (Figure 1B), consistent with
a study in D. melanogaster (Parisi et al., 2004), which may be
mainly related to spermatogenesis (Fuller, 1993). For example,
the enriched subcategories associated with membranes were
likely due to the requirements of the sperm axoneme structure
(Parisi et al., 2004). However, in parasitoids of N. vitripennis
species, highly enriched subcategories in males are related to
sex-pheromone synthetic enzymes (Wang et al., 2015). Those
differences might be likely to contribute by their difference in
sexual maturity period. Sexual maturity in many gregarious
and quasi-gregarious males (e.g., N. vitripennis) happens before
eclosion, and these males can immediately mate with females
after eclosion and near the emergence site (Boulton et al., 2015),
while solitary B. lasus have mating ability for some days after
eclosion (Yan et al., 1989).

KEGG Pathway Enrichment Analyses

Consistent with the results of GO enrichment in females, pathway
enrichment tests revealed that DNA replication (ko: 03030;
Supplementary Figure S1-a) was enriched in B. lasus females.
The functional categories enriched in females also included
fatty acid biosynthesis (ko: 00061; Supplementary Figure S1-b)
and metabolism (ko01212; Supplementary Figure S1-c). The
fatty acid synthase gene (FASN), which encoded the enzyme
catalyzing fatty acid synthesis (Jayakumar et al., 1994, 1995;
Persson et al., 2008), was probably crucial for egg yolk production
and thus female fecundity. In some insects, for example yellow
fever mosquito Aedes aegypti, brown planthopper Nilaparvata
lugens) (Alabaster et al., 2011; Li et al, 2016), when FAS
expression decreases in females, the number of oviposited eggs
significantly decreases.

We found that only the phototransduction-fly pathway (ko:
04745; Supplementary Figure S1-d) was enriched in males,
which is associated with perception of light signals (Leung et al.,
2000). Its potential functions are discussed below.

Annotated Genes Involved in

Venom Proteins

In terms of biological control, parasitoid species have been
extensively applied for reducing pest species population sizes
(Hassan, 1993; Li, 1994; Terayama, 1999; Zhishan et al., 2003;
Parra and Zucchi, 2004; Lim et al., 2006) because parasitoids can
propagate on or in other arthropods. The venom of parasitoid
wasps, which is injected into a host by females before or
at oviposition, is important for the successful development
of the progeny. Parasitoid venoms have diverse physiological
effects on hosts, including developmental arrest; alteration in
growth and physiology; suppression of immune responses;
induction of paralysis, oncosis, or apoptosis; and alteration of
host behavior (Edwards et al., 2006; Price et al., 2009; Tian
et al., 2010; Kryukova et al., 2011). In total, three female-biased
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FIGURE 1 | GO enrichment analysis of (A) female- and (B) male-biased genes. GOSeq explicitly takes into account gene selection bias due to differences in gene
length and thus the numbers of overlapping sequencing reads. GOSeq was used for the GO enrichment analysis, and an adjusted Q-value <0.05 was chosen as
the significance cutoff.
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TABLE 2 | TRP channel genes in the B. lasus transcriptome.

Drosophila Comparative

orthologue Function in analyses with
Gene name Subfamily name Drosophila RNAseq data
¢103240.graph_c0 TRPC tro phototransduction up
¢107438.graph_c0 trp gamma  phototransduction normal
c107438.graph_c1 tro gamma  phototransduction normal
c87378.graph_cO trp gamma  phototransduction normal
c107458.graph_cO0  TRPM trom unknown normal
¢107458.graph_c1 trom unknown normal
¢103139.graph_c0 TRPA pyrexia geotaxis normal
¢106854.graph_c0 pyrexia geotaxis normal
c107721.graph_c1 pyrexia geotaxis normal
c108434.graph_c0 pyrexia geotaxis normal
€89491.graph_cO pyrexia geotaxis up
c106747.graph_c0 painless nociception normal
c108178.graph_cO  TRPML troml TRPML normal

genes (c100635.graph_c0, c101314.graph_c0, c101670.graph_c0;
Supplementary Table S5) in this study were annotated for
venom proteins, which were related to known insect venoms

from N. vitripennis and belonged to previously known insect
venom families, such as serine proteases (Graaf et al., 2010;
Werren et al., 2010). Despite the large diversity of parasitoid
wasp species, only a small number of venom proteins have been
described from wasps. A wealth of unexplored biomolecules is
present in parasitoid venoms; these proteins are of value in basic
evolutionary studies, venom biology, host-parasite interactions,
and the study of the evolution of life strategies, and they may
potentially contain components that could be used in biological
control and pharmacology (Moreau and Asgari, 2015).

Annotation of Genes in the TRP Channel

Family and Function Validation

Transient Receptor Potential channels are cation channels that
are mainly considered as unique polymodal cell sensors; TRPs can
be subdivided into six main subfamilies: the TRPC (canonical),
TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin),
TRPML (mucolipin), and TRPA (ankyrin) groups (Gees et al.,
2010). Functionally, TRP channels cause cell depolarization
when activated, which may trigger many voltage-dependent
ion channels. Upon stimulation, Ca**-permeable TRP channels
generate changes in the intracellular Ca?* concentration,

standard errors.

FIGURE 2 | Sexual difference in response to light at mRNA level (A,B) and behavioral level (C). In transcriptomic data, we identified putative genes expressed using
the reads per kb per million reads (RPKM) method. Quantitative real-time PCR (QRT-PCR) analysis was used to calculated the relative gene expression to further
check the transcriptomic data, in which the differences in female and male were analyzed by the independent t-test. There was a highly significant correlation
co-efficient of 0.885 between transcriptomic data and gRT-PCR data. Behavioral responses of Brachymeria lasus adults to dark or light were tested with phototaxis
assays. The differences in female (n = 24) and male (n = 18) phototaxis were analyzed by the chi-square test. *indicates p < 0.05. The error bars indicate
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[Ca?*];, due to Ca®t entry via the plasma membrane. However,
evidence is increasing that TRP channels are also located in
intracellular organelles and serve as intracellular Ca?* release
channels (Berridge et al., 2000; Bootman et al, 2001; Gees
et al, 2010). TRP channels in Drosophila are involved in
the perception of sensory signals such as light, temperature,
humidity, pheromones, sound, and touch (Lin et al, 2005).
In our study, we found 13 TRP channel genes in B. lasus;
Nasonia and honey bee contain 12 and 11 genes, respectively,
indicating that the number of trp channels seems to be well
conserved in Hymenoptera (Werren et al., 2010). Of the TRP
channel genes in B. lasus, most belong to two subfamilies: TRPC
and TRPA (Table 2).

In Drosophila, TRPC plays an important role in the perception
of light signals, i.e., the phototransduction pathway (Leung
et al., 2000) (ko: 04745; Supplementary Figure S1-d), which
was enriched in B. lasus male adults. In Drosophila, a number
of genes in the visual signal transduction pathway have been
characterized, with functions including rhodopsin activation,
phosphoinoside signaling, and the opening of TRP and TRPL
channels (Wolff and Ready, 1993; Zuker, 1996; Leung et al,
2000; Wang and Montell, 2007). Our transcriptional analyses
(Figure 2A: FDR < 0.01, log, FC = 1.62) and g-PCR results
(Figure 2B: t = —3.169, df = 6, p = 0.019), showed that the
gene corresponding to trp (c103240.graph_c0) was more highly
expressed in B. lasus males, consistent with the phototaxis test.
Although both females and males tended to move toward light
(Figure 2C: female, Z = —1.34, p < 0.05; male, Z = —1.6,
p < 0.05), the tendency to prefer light was significantly influenced
by sex in adults (Figure 2C. x? = 4.17, df = 1, p < 0.05),
males more preferring to move to light. This result is similar
to the results of research on frp mutants in Drosophila, which
had altered phenotypes, including a reduction in light response
(Leung et al., 2000; Popescu et al., 2006). Female reduction in light
response might be due to their long periods living in the dark to
search for hosts and lay offspring into them, as most host species
(e.g., pupae of L. dispar or H. cunea) hide in dark environments,
such as the litter horizon (Yan et al., 1989; Yang et al., 2001).
Surprisingly, five members of the TRPA subfamily, which is
involved in sensing environmental temperature, were annotated
in our study. Animals must maintain thermal homeostasis and
avoid prolonged contact with harmfully hot or cold objects
(Caterina, 2007; Karashima et al., 2009). Unlike most parasitoid
species, which overwinter in their hosts as eggs or larvae, B. lasus
lives through the winter in its adult stage (Yan et al., 1989).
Thus, TRPA may be essential for B. lasus adults, allowing them
to sense harmful cold during winter. In addition, intraspecific
aggregations in B. lasus have been observed in previous research,
and an active component that elicited the aggregation response
was isolated and identified as 3-hexanone (Mohamed and
Coppel, 1987). The effects of aggregation behavior include
mating, host attack, defense, and thermoregulation, and in this
species, a previous study suggested that aggregation resulted
from an increase in reproductive success by increasing the
probability of mate location, as well as offering the possibility
of mate choice (Mohamed and Coppel, 1987). However,
combining the above results, adults may also aggregate at a

site for purposes of thermoregulation, especially in winter,
in response to cold. Further studies are required to elucidate the
nature of this cue.

CONCLUSION

Brachymeria lasus is a solitary parasitoid species and has been
evaluated as a potential candidate for release to control L. dispar.
Whereas previous studies have focussed on the application
of parasitoids and their sex differences in phenotypes, this
study focussed mainly on sex differences in gene expression.
Brachymeria lasus as a representative of solitary species was
studied, which enriched our understanding of sexual transcription
differences in parasitoid wasps, especially solitary species. Here,
we performed transcriptome assembly using the Trinity program,
which provided a large amount of useful information for
molecular studies of B. lasus, including venom protein and
perception of sensory signals. In addition to sex-biased genes,
epigenetic processes, such as DNA methylation, are known to play
important roles in differentiating phenotype and have been widely
studied in Hymenopteran insects, for example, female morphs
(queens and workers) in the honeybee, Apis mellifera (Kucharski
et al., 2008; Lyko et al., 2010), although these processes do not
appear to be in Nasonia (Wang et al., 2015). More future research
will be conducted to better understand the molecular mechanisms
underlying the biological traits of sex differences in B. lasus and
to better apply this parasitoid to the biological control of pests.
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Genotyping of cell-free DNA (cfDNA) in plasma samples has the potential to allow
for a noninvasive assessment of tumor biology, avoiding the inherent shortcomings
of tissue biopsy. Next generation sequencing (NGS), a leading technology for liquid
biopsy analysis, continues to be hurdled with several major issues with cfDNA samples,
including low cfDNA concentration and high fragmentation. In this study, by employing
lon Torrent PGM semiconductor technology, we performed a comparison between two
multi-biomarker amplicon-based NGS panels characterized by a substantial difference
in average amplicon length. In course of the analysis of the peripheral blood from 13
diagnostic non-small cell lung cancer patients, equivalence of two panels, in terms
of overall diagnostic sensitivity and specificity was shown. A pairwise comparison of
the allele frequencies for the same somatic variants obtained from the pairs of panel-
specific amplicons, demonstrated an identical analytical sensitivity in range of 140 to
170 bp amplicons in size. Further regression analysis between amplicon length and its
coverage, illustrated that NGS sequencing of plasma cfDNA equally tolerates amplicons
with lengths in the range of 120 to 170 bp. To increase the sensitivity of mutation
detection in cfDNA, we performed a computational analysis of the features associated
with genome-wide nucleosome maps, evident from the data on the prevalence of cfDNA
fragments of certain sizes and their fragmentation patterns. By leveraging the support
vector machine-based machine learning approach, we showed that a combination
of nucleosome map associated features with GC content, results in the increased
accuracy of prediction of high inter-sample sequencing coverage variation (areas under
the receiver operating curve: 0.75, 95% CI: 0.750-0.752 vs. 0.65, 95% Cl: 0.63-
0.67). Thus, nucleosome-guided fragmentation should be utilized as a guide to design
amplicon-based NGS panels for the genotyping of cfDNA samples.
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INTRODUCTION

In an approach known as “liquid biopsy,” cell-free DNA (cfDNA)
which circulates in the plasma may be used for a diagnostic
detection of tumor-specific mutations (Dawson et al, 2013;
Pupilli et al.,, 2013; Xi et al,, 2016). In the frame of the Lab-
Developed Tests (LDT) paradigm, analysis of cfDNA has already
gained approval for a number of common indications, including
the detection of the resistance mutation T790M in the EGFR
encoding gene (Malapelle et al., 2016), which commonly emerges
in lung adenocarcinomas treated with tyrosine kinase inhibitors.

At their inception, cfDNA-based LDTs commonly exploited
one or another conventional DNA analysis technique, including
real-time PCR, droplet digital PCR and beads, emulsions,
amplification, and magnetics (BEAM)ing digital PCR (Dawson
et al.,, 2013; Oxnard et al., 2014; Siravegna et al., 2015; Thress
et al, 2015; Sacher et al, 2016). Many studies showed that
the concordance of liquid biopsy and tissue-based analysis
is relatively high; nevertheless, these approaches are not
free of limitations. Typically, PCR-based and hybridization-
based cfDNA profiling techniques are developed to detect
particular DNA variants, which most commonly underlie one
or another previously described pathophysiological process.
These and other variant-specific techniques are not suitable
for the exploratory analysis of cfDNA, which is necessary
for acquisition of knowledge concerning non-conventional,
emerging resistance pathways, for co-detection of the mismatch
repair phenotype, and for off-label prescribing of anticancer
medications commonly required for personalized treatment of
metastatic tumors (Tafe et al., 2015; Wei et al., 2016; Zehir
et al., 2017). These limitations are readily surmounted by an
advent of sequencing-based technologies, including whole exome
sequencing or, more applicable to ¢fDNA analysis, amplicon-
based panels, which are limited to their target genes, but are
still exploration-permissive.

With reported sensitivity and a specificity of more than
80%, and 98 to 100%, respectively (Krishnamurthy et al., 2017),
a next generation sequencing (NGS) analysis of cfDNA has
already inserted itself into the ranks of the commonly used
LDTs. Nevertheless, further improvement of the sensitivity in
liquid biopsy-based tests is warranted. The most common way
to improve sensitivity of the mutation detection in liquid biopsy
samples, is to increase the coverage, which in turn leads to a
substantial increase in the cost of an assay. Deep or ultradeep
coverage is necessary in order to account for low concentrations
of total cfDNA in plasma samples that are compounded by
the dilution of tumor-specific cfDNA fragments, by substantial
amounts of non-tumoral cfDNA fragments (Hellwig et al., 2018).

Another physical characteristic of cfDNA, the distribution
of the sizes of its fragments, is relevant to the detection of
DNA variants both by sequencing and by PCR. Recent whole-
genome sequencing (WGS) studies of cfDNA demonstrated that
the distribution of the sizes of plasma derived DNA fragments
is far from the typical lognormal distribution that reflects the
patterning of DNA in formalin fixed-paraffin-embedded samples
or snap-frozen tissues. In fact, cfDNA exhibits a predominant
peak at a fragment length of ~167 bp accompanied by the

second, significantly less pronounced extremum at around 350 bp
(Ma et al.,, 2017). These observations mean that the majority of
these fragments are suitable to assess the technique that relies
on conventional lengths of PCR amplicons. It is of note that
tumor-derived cfDNA fragments are even shorter than those
that originate from healthy cells of the same origin (Jiang et al.,
2015). In the domain of conventional systems for the detection
of DNA variants, these characteristic of cfDNA have prompted
the development of ultra-short amplicon PCR, which allows
for the substantial increase of analytical and, as a consequence,
diagnostic sensitivity of these assays.

Moreover, recent studies have shown that fragmentation
pattern of cfDNA is not random. As cfDNA degradation
is guided by nucleosome patterns defined by epigenetic
regulation within particular loci (Ivanov et al., 2015), recurrent
underrepresentation of some regions in c¢fDNA introduces
systematic bias in the PCR based enrichment of target amplicons
and undermine the sensitivity at a local scale.

In this study, we investigated the effect of the amplicon length
on the diagnostic and analytical sensitivity of mutation detection,
using two amplicon-based NGS panels with diverse amplicon
lengths. We also describe ways to utilize the knowledge of cfDNA
fragmentation patterns to increase the sensitivity of mutation
detection in a liquid biopsy setting.

MATERIALS AND METHODS

Sample Collection

The sequencing was performed on c¢fDNA fragments extracted
from previously collected plasma samples of 13 non-small cell
lung cancer (NSCLC) patients, treated at the Blokhin Russian
Cancer Research Centre in 2014 to 2015. For each patient,
tumor tissue-based EGFR mutation status was assessed using the
therascreen EGFR RGQ PCR Kit (Qiagen, Milan, Italy) according
to the manufacturers protocol.

For nucleosome-guided cfDNA fragmentation pattern
analysis we used publicly available, anonymized WGS data
of cfDNA, described by Snyder et al. (2016) and included in
dataset [PRJNA291063].

The present study was approved by the Atlas Biomed Internal
Review Board. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

DNA Extraction and Sample Quality

Control

For each NSCLC patient, a peripheral blood sample was collected
into an EDTA-containing vacutainer tube (BD). Samples were
fractionated into plasma and blood cells by centrifugation at
400 g for 15 min within 4 h after venipuncture, followed by a
secondary spin at 1200 g for 20 min. Resultant plasma samples
were frozen in aliquots and stored at —80°C until DNA isolation.
Circulating DNA was extracted from 4 ml of plasma using
the Blood Plasma DNA Isolation Kit (BioSilica Ltd., Russia)
according to the manufacturer’s instructions, eluted by 120 .l
of nuclease-free water, mixed with 3 pl of glycogen (20 mg/ml,
Fermentas, Lithuania), 1/10 volume of 50 mM triethylamine
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and then precipitated with 5 volumes of acetone (Bryzgunova
et al.,, 2011). After reconstitution in 30-50 wl of water, cfDNA
concentrations were measured using the Qubit fluorometer.

Library Preparation and Quality Control
Sequencing libraries were prepared according to the
manufacturer’s protocol for Ion AmpliSeq Cancer Hotspot
Panel (ITCHP2), designed to amplify 207 target regions across 50
cancer-related genes. Additionally, a custom panel namely Atlas
Clinical Panel (AODCP), was designed to cover the following
genes: EGFR, IDH2, NRAS, KIT, BRAF, TP53, PDGFRA, PTEN,
IDH1, KRAS, PIK3CA, ERBB2, CTNNB1 (AODCEP, 55 target
regions). The custom panel was designed using the Ion AmpliSeq
Designer server (pipeline version 5.2). The two panels had several
loci in common, allowing for their comparison.

Sequencing and Data Analysis

Pooled libraries were sequenced employing Ion Torrent PGM,
according to the manufacturers protocol. As low frequency
mutant alleles were expected, initial analysis was performed
using Ion Torrent Suite software (version 5.2.0) on low
stringency settings. In order to exclude false negative single
nucleotide variant (SNV) calls, concomitant Bowtie2-Strelka
pipeline analysis was carried out. After aligning all reads to the
genome (GRCh37) (Bowtie2 parameters: -rdg 5,2 -rfg 5,2 -N 1 -L
17), further off-target reads were removed, while the remaining
reads were realigned on target sequences. Primer sequences were
excluded from reads employing in-house software (Ivanov et al.,
2018). Somatic variant calling was performed employing
Strelka (maxInputDepth set to —1; indelMaxRefRepeat
set to 6; indelMaxWindowFilteredBasecallFrac set to 0.4;
indelMaxIntHpolLength set to 6; lower quality bound for
SNV and indels set to 9 and 2, respectively). Variants
supported with less than 20 reads in total were discarded.
If less than four reads supported alternative allele, the variant
was omitted. Mutation hotspots were defined as nucleotide
variations identified in ten or more COSMIC (Forbes et al.,
2010) samples. Detected variants located within mutation
hotspots were supposed to be confidently somatic. Variants
outside mutation hotspots with minor allele frequency in the
general population, as defined by 1000 Genomes Project (1000
Genomes Project Consortium et al.,, 2015), of 5% and more
were supposed to be confidently germline. Further analysis
was limited to confidently somatic and confidently germline
variants. Preprocessed fastq files were additionally screened
for mutation hotspots by inputting wild type and expected
mutant reads into the Poisson distribution statistical model
with complexity-dependent variable expectation probability of
SNVs and indels. Somatic variant calls were verified manually,
in the Tablet (version 1.16.09.06) read alignment visualization
tool (Milne et al., 2010). Variant allele frequencies were
quantified within raw read sets as a ratio of reads confirming
the mutation to the total count of qualified reads covering the
mutation site. Normalization of mutation allele frequencies
to amplicon coverage was performed by bootstrapping. The
genome variation analysis was limited to the nucleotide
changes affecting the protein sequence, unless otherwise

specified. Publicly available software and database versions
used were Bowtie2 v. 2.1.0 (Langmead and Salzberg, 2012),
Strelka v. 1.0.14 (Saunders et al., 2012), and SAMtools v.
0.1.19 (Li, 2011). COSMIC and dbSNP databases were assessed
in December 2017.

GC content normalization for linear regression analysis was
performed leveraging a simple adjustment according to the
equation 7; = rim/m pon where r; stands for the read count of the
ith amplicon, mgc is the median read count of all windows with
the same GC content as the ith amplicon, and m is the overall
median of all the amplicons. Deviation of coverage from the mean
was performed for 5% GC content bands rather than percentages
of0,1,2,3,...,100%. Linear regression analysis was performed
employing simple least square fitting.

Nucleosome-guided cfDNA fragmentation patterns were
analyzed in publicly available sequences obtained from plasma
samples pooled from an unknown number of healthy individuals
(GSM1833219). The details of the DNA extraction, library
preparation and sequencing are provided in Snyder et al. (2016).
Briefly, cfDNA libraries underwent paired-end sequencing with
Mlumina sequence-by-synthesis technology generating reads
of 101 bp in size. Importantly, at the library preparation
stage, plasma DNA samples did not undergo fragmentation by
sonication and, thus, original cfDNA molecules were preserved,
granting the opportunity to investigate its fragmentation
patterns. The fastq read sequences were aligned to the human
genome (aforementioned reference build) with BWA-mem v.
0.7.12 (Li and Durbin, 2009). cfDNA fragment length may
exceed sequencing read length, however, paired-end sequencing
allows to capture both start and end positions of the fragment.
Paired reads, thus, continued to represent WGS fragments.
Nucleosome position stringencies were calculated essentially
as described in Valouev et al, using the NuMap software
with standard parameters. NuMap performs the nucleosome
mapping based on the kernel smoothed reads count calculation
(Valouev et al., 2011).

For ITCHP2 and AODCP panel amplicons, fragment counts
were generated in silico after matching both primers with
the fragment amplified and sequenced experimentally. To
understand the patterns of amplicon coverage by experimentally
observed fragments, the fragments were generated using paired
reads, then further filtered by length to include only fragments
in the range of 80 to 250 bp. Dinucleosome fragments were
therefore excluded. To improve resolution, resulting fragments
were trimmed by 40 bp around dyads to generate a set of equal-
length fragments. For each sequenced nucleotide position, counts
of overlapping fragments were recorded. Generated data were
subjected to a lowpass filter with the square pulse kernel with the
width of 21 base pairs, then resulting coverage plots were mapped
to amplicons genome positions.

Statistical analysis was performed using R, version 3.2.3.
For machine learning, we used the open source library Orange
(Demsar et al., 2013). Five machine learning algorithms were
evaluated to find the best model, demonstrating the highest
prediction accuracy based on all descriptors [support vector
machine (SVM), neural network, multiple linear regression, naive
Bayes, and random forest].
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RESULTS

Sample Sequencing and Mutation

Analysis

In this study, fourteen cfDNA samples collected from patients
with NSCLC, were analyzed using the screening panels ITCHP2
and AODCP. The mean sequencing coverages across all
experiments were set at 1150x for the AODCP panel and 802 x
for the ITCHP2 panel with corresponding medians of 1002 x and
674, respectively.

Variant detection results were completely concordant for two
panels across 18 identified somatic mutations. Plasma variant
detection results were concordant with baseline tissue analysis
in 9 samples (69%). False negative samples were limited to
the cases, characterized with low plasma DNA concentration
(Figure 1). In addition to mutations identified by tissue analysis
at baseline, namely, these in EGFR and RAS, the sequencing
of 13 plasma cfDNA samples revealed five additional somatic
missense mutations, including these in PIK3CA and TP53
genes (Figure 1).

Significance of Amplicon Length for
Mutation Detection Sensitivity and
Specificity

The average length of amplicons in panel AODCP was much
shorter than that in panel ITCHP2 (Figure 2A), with median
amplicon lengths to include primer sequences at 137 and
156 bp, respectively. Despite the difference in amplicon sizes,
variant calling results obtained for each panel were completely
concordant, with a total of 51 either somatic or germline variants
detected. Therefore, diagnostic sensitivity and specificity of these
two detection systems were the same at the study power.

In order to explore possible influences of the amplicon length
on the limits of detection and, therefore, analytical sensitivity to
the presence of the mutations in liquid biopsy, we performed a
pairwise comparison of the frequencies for same mutated allele
in reads obtained from pairs of panel-specific amplicons. For
the synonymous germline variant, namely, EGFR p.GIn787=
with the total of 15 alleles identified (1000 Genomes MAF
0.43), allele frequencies extracted from analysis of AODCP and
ITCHP2 amplicons were equivalent (Wilcoxon signed rank test
p-value = 0.88). On the other hand, analysis of somatic mutations,
which are typically present in a relatively small fraction of
the reads, showed Pearson’s correlation coefficients of 0.88 (p-
value = 0.02; Wilcoxon signed rank test p-value = 0.44) for
point mutations in genes EGFR, TP53, and PIK3CA, and 0.95 for
the deletions of the EGFR exon 19 (p-value = 0.001; Wilcoxon
signed rank test p-value = 0.53) (Figure 3). Since EGFR deletions
further reduce the length of amplified fragments by 15 or more
bp, their presence should, at least in theory, increase analytical
sensitivity of the detection system (Figure 2B). Notably, the
geometric mean ratio of the allele frequency of the EGFR exon 19
deletions, detected by two panels, was 1.16 (95% CI, 0.72-1.88;
p-value > 0.1). This indicates that the analytical sensitivity of this
assay is unlikely to change even if the difference in the average
sizes of amplicons would increase further.

Finally, we performed a regression analysis to estimate the
relationship between amplicon length and its average coverage
across samples for the ITCHP2 panel, representing a wider
spectrum of amplicon lengths. After normalization on GC-
content and overall sample read count, linear regression analysis
employing the least squares fitting approach, demonstrated a
negative slope with a Student ¢-test p-value of 0.0063. However,
regression analysis across the set of amplicons with a length of
170 bp or less yielded a non-significant slope coeflicient (p-value
0.69) (Figures 4A,B). Regression analysis between amplicon
length and its coverage covariance demonstrated no significant
correlation in any amplicon length range (data not shown).
Considering that amplicons with a length of 120 or less comprises
of only 5% of that set, this indicates that the NGS sequencing of
plasma cfDNA equally tolerates amplicons with a length in the
120-170 bp range.

Nucleosome-Guided Pattern May
Facilitate Primer Panel Design

According to the most commonly cited hypothesis, plasma
cfDNA originates from apoptotic cells where genomic DNA
is digested by a set of nucleases (Ma et al., 2017). Wrapping
around nucleosomes protects some of the DNA fragments from
digestion; that is why cfDNA fragments correspond primarily
to the mononucleosome bound regions. Originally supported
only by a unimodal distribution of cfDNA fragments sizes
(Fan et al., 2008; Lo et al., 2010), this hypothesis has been
recently validated in several studies (Chandrananda et al., 2015;
Snyder et al,, 2016; Ulz et al, 2016). In particular, employing
whole exome sequencing of cfDNA fragments to infer the read
depth coverage allowed the construction of ‘plasma genome-
wide nucleosome maps. Mapping the fragments covered by
the ITCHP2 panel, to these nucleosome maps, showed that
the positions of the ITCHP2 primers were selected in a non-
optimal way with respect to the nucleosome positioning (p-value
for nucleosome peaks and amplicons interception 0.36). An
amplicon covering KRAS exon 4 serves as a good illustration
for non-optimal selection of primers which fall in between two
peaks (Figure 5A). Because of that, amounts of spanning cfDNA
fragments are much lower than for the primers selected to
amplify the fragment located within the same peak. A similar
situation may be observed for the EGFR exon 21; shifting
positions of the primers by the order of 100 nucleotides may
result in an increase of the depth and the uniformity of the
coverage, without compromising amplification of the clinically
relevant, mutation-harboring locus.

At the next stage of analysis, we inquired whether efficiency
of targeted resequencing of cfDNA samples depends on the
pattern of DNA fragmentation. To perform this analysis, for all
amplicons represented in the ITCHP2 panel, the fragmentation
patterns were extracted from the repository of reads obtained
after a shotgun sequencing of cfDNA fragments purified from
the pool of plasma samples, of healthy individuals and from five
individual patients with solid tumors (Figure 5B).

It is known that both the nucleosome positioning (Struhl
and Segal, 2013), which, in turn, guides the fragmentation of
cDNA (Ma et al.,, 2017), and the depth and the uniformity of
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FIGURE 1 | Samples used for data analysis as well as mutations identified during NGS sequencing and allele frequencies thereof (plasma EGFR status). Mutations
identified employing a conventional sequencing method indicated in the tumor alteration column while its match (green) or mismatch (red) with NGS results specified

in plasma EGFR status column.
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FIGURE 2 | (A) lon torrent cancer hotspot 2 (ITCHP2) and custom AODCP primer panels amplicon length distribution. A constant window of 5 bp was used to
discretize amplicon length. Dotted lines demonstrate length of amplicons, covering exon 19 of the EGFR. (B) cfDNA fragment length distribution influence available
for the amplification DNA molecules in plasma and, thus, amplification effectiveness. Solid fill at the top panel demonstrates the spectrum of cfDNA fragments
involved in EGFR exon 19 PCR amplification employing the ITCHP2 panel. Dashed fill demonstrates the extension of that spectrum in case the AODCP panel is
used. Fills in the bottom panel demonstrate the spectrum extension for two panels, respectively, in case of the 15 bp exon 19 deletion mutation.
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the coverage by sequencing reads (Benjamini and Speed, 2012),
are influenced by the GC content. In the following analysis,
we aimed at finding out whether any characteristic related to
the fragmentation pattern of cfDNA within the locus of interest
may influence the depth and the uniformity of coverage with
amplification based sequencing reads.

For the ITCHP2 panel, each amplicon was matched to
an individual nucleosome map and evaluated according to
four features: (i) absolute count of experimentally observed
continuous cfDNA fragments spanning the whole amplicon
(Feature A), (ii) read signal amplitude within the amplicon
(Feature B), (iii) read signal change at the boundaries of
amplicon (Feature C), and (iv) read signal shape defined as
the area between its linear approximation and itself (Feature
D) (Figure 5C). Uniformity of the coverage was defined as a
coefficient of inter-individual variation in read coverage between
all cfDNA samples. To calculate the robustness of the nucleosome
mapping, we assessed the inter-sample variance of the defined

features calculated for each amplicon. Averaged coefficients of
the variation of features D, B and C were at 390, 68, and 38%,
respectively, pointing at significant inter-sample variation.

Further, we estimated the feature quality, employing the
RReliefF method (Robnik-Sikonja and Kononenko, 2003)
estimating how well their values distinguish between target
variables that are near to each other. Despite previously
demonstrated low robustness of the nucleosome associated
features, the count of spanning fragments (Feature A) was ranked
even higher than the GC content, while the other three features,
B, C, and D, closely followed feature A and the GC content
(Figure 6A). This finding indicates that uniformity of the locus
coverage, with amplified sequencing reads, may depend on the
underlying pattern of cfDNA fragmentation.

Univariate polynomial regression of the sequencing coverage
depth and its coefficient of variation based on the GC
content with second degree polynomial yielded coefficients
of determination of 0.29 and 0.19, respectively. Furthermore,
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FIGURE 3 | Pairwise comparison of the frequencies for same mutated allele in reads obtained from pairs of panel-specific amplicons across detected
somatic variants.
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FIGURE 5 | Plasma cfDNA fragmentation pattern biases analytical characteristics of PCR-based somatic detection system. (A) ITCHP2 primer panel design mapped
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four features were introduced, namely, observed fragments (Feature A), depth range (Feature B), depth change (Feature C), and depth shape (Feature D).
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GC content equal-frequency discretization (four groups) and
analysis of variance of both dependent variables between groups,
yielded a p-value of less than le-6. Thus, a strong non-linear
correlation between the GC content, a sequencing coverage and
its uniformity (Figures 6C,D) was detected. Despite significant
linear correlation between counts of spanning fragments and the
GC contents (Figure 6B), no similar relationship between this
feature and sequencing coverage was seen (Figures 7A,B). In
contrast, as for coverage uniformity, both spanning fragments,
count and read depth coverage, shape the demonstrated
correlation in relation to it (ANOVA test p-value of 0.037 and
0.013, respectively) (Figures 7C,D). No correlation was seen for
depth change or depth range (data not shown).

Finally, we tested the performance of the SVM classifier for
its prediction of coverage depth and coverage uniformity by
either employing the GC content as a single feature or in a
combination with all the other features analyzed above. Following
3-groups equal-frequency discretization, the target classes were
defined as coverage depth in the lowest third tertile and coverage
uniformity in the highest third tertile. For predicting the depth
of coverage, GC content in combination with depth change
(Feature C) were selected as features. To predict the uniformity of

coverage, GC content in combination with the spanning fragment
counts (Feature A) and read depth shape (Feature D) were
selected as features. A radial basis function (RBF)-kernel utilizing
SVM classifier was then applied, using threefold cross-validation.
Performance of the SVM classifiers, built upon several features
for predicting coverage uniformity, was better than that of the
GC-content only classifiers (areas under the receiver operating
curve (AUROCSsS) of 0.75, 95% CI: 0.750-0.752 vs. 0.65, 95% CI:
0.63-0.67; precision - 0.74 vs. 0.68). This indicates that non-
GC content features may aid in the prediction of the amplicons
with a high coverage variation across samples. For coverage
depths, however, applying a similar strategy has not resulted in a
significant improvement (AUROC:s of 0.69, 95% CI: 0.68-0.70 vs.
0.70, 95% CI: 0.70-0.71; precision — 0.69 vs. 0.69) (Figures 7E,F).

DISCUSSION

The share of ¢fDNA fragments originating from tumor rather
than normal tissues, may vary greatly among patients. In early-
stage disease, the share could be as low as 0.01% of the total
cfDNA (Thierry et al., 2017). Because of that, the issue of the
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FIGURE 6 | The nucleosome-guided cfDNA fragmentation pattern influences amplicon mean coverage and its uniformity across samples. (A). RReliefF ranking of
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detection of low frequency mutant alleles, represents one of the
biggest technical challenges to the development of diagnostic and
prognostic assays involving the sequencing of c¢fDNA. In this
study we examined various approaches to increase diagnostic
and analytical sensitivity of the detection of somatic mutations
in liquid biopsy samples.

In a heterogeneous cohort of patients, the liquid biopsy was
performed at baseline, at disease progression and/or within the
framework of disease monitoring. Overall diagnostic sensitivity
of NGS to detect EGFR mutations in cfDNA was at 83%. Of note,
when we limited the sample set to the plasma specimens with
DNA concentration of 20 ng/ml and higher, the false negative
rate was reduced from 17 to 0%. This observation points at low
concentrations of cfDNA samples as a primary contributor to
imperfect sensitivity of the liquid biopsy assays and at a necessity
to either improve the recovery of tumor DNA fragments, or
to require cfDNA profiling labs to introduce more stringent
QC metrics, which may render many samples ineligible for
downstream processing.

Sensitivity of cfDNA based mutation detection assays may
be aided by an improvement of amplification efficiency. Plasma
cfDNA is known to be highly fragmented (Fleischhacker et al.,
2011; Klevebring et al, 2014; Figure 2B). Therefore, it is
commonly recognized that an increase in length of PCR
amplicons may result in the elimination of a majority of
the extracted DNA fragments as possible templates. In this

study we sought to dissect how much of the amplicon length
influences the sensitivity of subsequent mutation detection. For
this we performed, to the best of our knowledge, the first
comparison of two amplicon based NGS panels characterized by
a substantial difference in average amplicon length (Figure 2A).
The comparison was performed in relation to the panels
diagnostic and analytical sensitivity. Surprisingly, the yield of
both the germline and somatic mutations between two panels
were completely concordant, pointing at an irrelevance of
amplicon size of the specified short range to diagnostic sensitivity
of resultant assays.

As a particular example defying “the shorter amplicon, the
better amplification efficiency” logic, we dissected the detection of
EGER exon 19 deletion alleles by amplicons of 138 and 168 nt in
length. Based on the area under the fragment length distribution
curves (Figure 2B), mutant alleles should be amplified 1.45 times
more efficiently than wild-type ones by the panel with larger
amplicons, while the panel with shorter amplicons would be 1.04
times more efficient for mutant ¢fDNA fragments. Considering
that tumor-derived cfDNA fragments are even shorter than
normal tissue-derived ones (Jiang et al., 2018), these rates
would increase to 1.84 and 1.16, respectively (Figure 3). This
should result in approximately and increase of 1.6 times of the
mutant allele frequencies detected with a larger-amplicon panel
as compared to a smaller-amplicon panel. In our experiment,
no statistically significant difference in mutant allele frequencies
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was noted, with the observed trend being the opposite to what
was expected, indicating that the size of the amplicons does not
contribute to the analytical sensitivity of cfDNA assays.

Notably, our observations contradict some previous work
(Chan et al.,, 2004; Koide et al., 2005), which show a length-
dependent decrease in efficiency of amplification of cfDNA
templates in up to a 250 nt fragment range, which corresponds to
the mononucleosome fraction representing approximately 85%
of all cfDNA fragments (Figure 2B). In these previous studies,
the yield of DNA dropped by almost 30 and 60% when using

amplicons with a size of 145 nt instead of 105 and 201 nt instead
of 145 nt, while for amplicons with larger sizes no pronounced
effect was observed. Furthermore, another study demonstrated
that increases in the DNA yield may be observed at a lower
amplicon size range: a direct digital PCR comparison of the
50 bp to the 84 bp amplicon resulted in significant favoring of
the shorter amplicon (Koide et al., 2005; Sikora et al., 2010). It
is important, however, to note that reported observations were
obtained in course of analysis if cfDNA samples collected either
from healthy individuals or in setting of prenatal diagnostics
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aimed at amplifying fetal cfDNA and, therefore, cannot be
directly projected onto the templates of tumor-derived cfDNA
which is known for the shorter sizes of its fragments (Pinzani
et al., 2011; Mouliere and Rosenfeld, 2015) and lower integrity
(Underhill etal., 2016). The studies of cfDNA specimens collected
from patients with tumors show that 60 bp fragments are almost
five times more abundant than 150 bp ones, thus pointing at
the necessity to use amplicons with sizes of 100 bp or lower
(Mouliere et al., 2011).

Importantly, in many cases, reaping the benefit of shorter
amplicon size may not be possible due to complications arising
from the necessity of the precise positioning of the primers
restricting optimization of their GC content, matching melting
temperatures and preventing oligonucleotide dimerization.
While designing PCR systems for select loci may be still possible,
with EGFR analysis being the common example (Reckamp et al.,
2016), the introduction of ultra-short amplicons into highly
multiplexed systems aiming at a broader molecular profiling
of human tumors, may not be feasible. Particular concerns
about this multiplexing precluding approach to the amplicon
design are owed to the recent observations of a wide mutational
spectrum in the liquid biopsies of metastatic cancer patients and
its relevance to possible inclusion in clinical trials (Rothé et al.,
2014; Frenel et al., 2015). In light of an obvious necessity for
multiplexing, the finding that varying amplicon sizes in a range
from 140 up to 170 nt does not influence analytical sensitivity
is significant, as it shifts the attention of panel designers
from minimizing the length of the amplicons to optimizing
compatibility of oligonucleotides.

Additionally, cfDNA as a template for a designed PCR-
based assay may introduce a set of additional restraints.
Both the prevalence of cfDNA fragments of certain sizes
and the fragmentation patterns depend on the positioning of
the nucleosomes within its tissue of origin. To describe this
novel complex variable depicting nucleosome positioning, we
introduced four features namely, a spanning fragment count,
a read depth change, a read depth range and a read depth
shape (Figure 5C), which collectively portray the coverage of
select amplicon by experimentally obtained WGS reads. When
read coverage maps of WGS-sequenced cfDNA fragments from
pooled plasma of healthy patients were aligned to the amplicons
employed for liquid biopsy analysis of patients with NSCLC,
these four features were utilized to determine the extent of the
influence of nucleosome positioning on two dependent variables:
sequencing coverage and coverage uniformity. A SVM-based
classifier demonstrated that combining the GC content with
spanning fragment counts and read depth shape, results in an
increased accuracy of prediction of both dependent variables.
Therefore, this variable should be taken in consideration when
designing PCR primer systems.

Nevertheless, the overall robustness of nucleosome
positioning remains unclear. It is known that several regulatory
events defining the gene expression require the strict positioning
of nucleosomes; these events are typically associated with
promoter regions (Hesson et al., 2014; Lovkvist et al., 2018).
However, nucleosome positioning is not absolute, and even
with major shifts in gene expression, some cells fail to change

nucleosome configuration (Small et al., 2014), thus, indicating an
underlying complexity of nucleosome positioning. Importantly,
the majority of clinically relevant mutations are located
within exons, which, according to the current view of cfDNA
nucleosome maps, do not retain a strict pattern of cfDNA
fragmentation. Therefore, nucleosome arranging within such
exons may be variable, either between molecular subtypes of
the same disease or even between normal tissue specimens.
Nevertheless, despite a potential for low robustness, a substantial
correlation observed between nucleosome maps revealed by
unbiased read coverage in cfDNA from healthy patients, and the
sequencing coverage and its uniformity in amplicons obtained in
cfDNA of patients with NSCLC, indicates that the efficiency of
amplification may be improved if the unbiased read coverages
are taken into account.

In conclusion, low plasma cfDNA concentration remains the
major factor that limits the sensitivity of liquid biopsy assays.
Above we showed that the design of a highly multiplexed
system equally tolerates amplicons in the range of 140-170 bp
in size, thus allowing the shift of attention toward the melting
temperature, GC clamps, cross homology and other controllable
variables. We have also provided evidence that the nucleosome
placement in the tissue of origin and the resultant genome-
wide cfDNA fragmentation pattern, may be used as a guide for
primer positioning to improve both the sequencing coverage
and its uniformity.
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As a major abiotic stress, soil salinity limits seed germination and plant growth,
development and production. Seed germination is highly related not only to the
seedlings survival rate but also subsequent vegetative growth. Populus euphratica
and P pruinosa are closely related species that show a distinguished adaptability to
salinity stress. In this study, we performed an integrative transcriptome analyses of
three seed germination phases from P euphratica and P pruinosa under salt stress.
A two-dimensional data set of this study provides a comprehensive view of the dynamic
biochemical processes that underpin seed germination and salt tolerance. Our analysis
identified 12831 differentially expressed genes (DEGs) for seed germination processes
and 8071 DEGs for salt tolerance in the two species. Furthermore, we identified the
expression profiles and main pathways in each growth phase. For seed germination,
a large number of DEGs, including those involved in energy production and hormonal
regulation pathways, were transiently and specifically induced in the late phase. In the
comparison of salt tolerance between the two species, the flavonoid and brassinosteroid
pathways were significantly enriched. More specifically, in the flavonoid pathway, FLS
and F3'5'H exhibited significant differential expression. In the brassinosteroid pathway,
the expression levels of DWF4, BR60X2 and ROT3 were notably higher in P pruinosa
than in P euphratica. Our results describe transcript dynamics and highlight secondary
metabolite pathways involved in the response to salt stress during the seed germination
of two desert poplars.

Keywords: transcriptome, salt stress, seed germination, differentially expressed gene, desert poplar species

INTRODUCTION

Soil salinization is caused by many factors and conditions, such as unsuitable irrigation practices,
irrigation with salinized water and seasonal effects (Ottow et al., 2005; Annunziata et al., 2017).
As one of the most prominent abiotic stresses, salinity stress is considered the greatest threat to
crop production and environmental conservation (Ottow et al., 2005; Arbona et al., 2013). Salinity
stress leads to osmotic and ionic stress, which reduces cell and tissue expansion, and to ion excesses
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