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Musical Creativity and Depth of
Implicit Knowledge: Spectral and
Temporal Individualities in
Improvisation
Tatsuya Daikoku*

Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

It has been suggested that musical creativity is mainly formed by implicit knowledge.

However, the types of spectro-temporal features and depth of the implicit knowledge

forming individualities of improvisation are unknown. This study, using various-order

Markov models on implicit statistical learning, investigated spectro-temporal statistics

among musicians. The results suggested that lower-order models on implicit knowledge

represented general characteristics shared among musicians, whereas higher-order

models detected specific characteristics unique to each musician. Second, individuality

may essentially be formed by pitch but not rhythm, whereas the rhythms may allow the

individuality of pitches to strengthen. Third, time-course variation of musical creativity

formed by implicit knowledge and uncertainty (i.e., entropy) may occur in a musician’s

lifetime. Individuality of improvisational creativity may be formed by deeper but not

superficial implicit knowledge of pitches, and that the rhythms may allow the individuality

of pitches to strengthen. Individualities of the creativity may shift over a musician’s lifetime

via experience and training.

Keywords: Implicit learning, statistical learning, n-gram, Markov model, entropy, characteristics, uncertainty,

hierarchy

INTRODUCTION

Implicit Knowledge and Creativity in Brain
The brain models external phenomena as a hierarchy of statistical dynamical systems, which
encode causal chain structure in the sensorium (Friston et al., 2006; Friston and Kiebel,
2009; Friston, 2010) to maintain low entropy and free energy in the brain (von Helmholtz,
1909), and predicts a future state based on the internalized stochastic model to minimize
sensory reaction and optimize motor action regardless of consciousness (Friston, 2005). This
prediction associates with the brain’s implicit, domain-general, and innate system, called
implicit learning or statistical learning (Reber, 1967; Saffran et al., 1996; Cleeremans et al.,
1998; Perruchet and Pacton, 2006), in which our brain automatically calculates transitional
probabilities (TPs) of sequential phenomena and grasps information dynamics. The terms implicit
learning and statistical learning have been used interchangeably and are regarded as the same
phenomenon (Perruchet and Pacton, 2006). Because of the implicitness of statistical learning and
knowledge, humans are unaware of exactly what they learn (Daikoku et al., 2014). Nonetheless,
neurophysiological and behavioral responses disclose implicit learning effects (Francois and Schön,
2011; François et al., 2013; Daikoku et al., 2015, 2016, 2017a,c,d; Koelsch et al., 2016; Yumoto
and Daikoku, 2016, 2018; Daikoku and Yumoto, 2017). When the brain implicitly encodes TP

5
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distributions that are inherent in dynamical phenomena, several
things are automatically expected, including a probable future
state with a higher TP, facilitating optimisation of performance
based on the encoded statistics despite being unable to
describe the knowledge (Broadbent, 1977; Berry and Broadbent,
1984; Green and Hecht, 1992; Williams, 2005; Rebuschat and
Williams, 2012), and inhibit neurophysiological response to
predictable external stimuli for the efficiency and low entropy of
neural processing based on predictive coding (Daikoku, 2018b).
The implicit knowledge has been considered to contribute
to many types of mental representation: the comprehension
and production of complex structural information such as
music and language (Rohrmeier and Rebuschat, 2012), intuitive
decision-making (Berry and Dienes, 1993; Reber, 1993; Perkovic
and Orquin, 2017), auditory-motor planning (Pearce et al.,
2010a,b; Norgaard, 2014), and creativity (Wiggins, 2018)
involved in musical composition (Pearce and Wiggins, 2012;
Daikoku, 2018a) and musical improvisation (Norgaard, 2014).
Additionally, compared to language (Chomsky, 1957; Jackendoff
and Lerdahl, 2006), several studies suggest that musical
representation including tonality is mainly formed by a tacit
knowledge (Delie‘ge et al., 1996; Delie‘ge, 2001; Bigand and
Poulin-Charronnat, 2006; Ettlinger et al., 2011; Koelsch, 2011;
Huron, 2012). Thus, it is widely accepted that implicit knowledge
causes a sense of intuition, spontaneous behavior, skill acquisition
based on procedural learning, and is further closely tied to
musical production such as intuitive creativity, composition, and
playing.

Particularly in musical improvisation, musicians are forced
to express intuitive creativity and immediately play their own
music based on long-term training associated with procedural
and implicit learning (Clark and Squire, 1998; Ullman, 2001;
Paradis, 2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016).
Thus, compared to other types of musical composition in
which a composer deliberates and refines a composition scheme
for a long time based on musical theory, the performance of
musical improvisation is intimately bound to implicit knowledge
because of the necessity of intuitive decision-making (Berry
and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017)
and auditory-motor planning based on procedural knowledge
(Pearce et al., 2010a,b; Norgaard, 2014). This suggests that the
stochastic distribution calculated from musical improvisation
may represent the musicians’ implicit and statistical knowledge
and individual creativity in music that has been developed via
implicit learning. Few studies have investigated the relationship
between musical improvisation and implicit knowledge. Here,
this study proposed the computational model of improvisational
creativity based on the framework of implicit statistical learning.

Computational Model of Musical Creativity
The computational model is often used to understand general
music acquisition (Cilibrasi et al., 2004; Backer and van
Kranenburg, 2005; Albrecht and Huron, 2012; Ito, 2012;
Prince and Schmuckler, 2012; Albrecht and Shanahan, 2013;
London, 2013), entropy-based music prediction (Manzara et al.,
1992; Ian et al., 1994; Reis, 1999; Pearce and Wiggins, 2006;
Cox, 2010), implicit learning, and the metal representation of

implicit knowledge (Dubnov, 2010; Wang, 2010; Rohrmeier and
Rebuschat, 2012). Particularly, Competitive Chunker (Servan-
Schreiber and Anderson, 1990), PARSER (Perruchet and Vinter,
1998), Information Dynamics of Music (IDyOM) (Pearce, 2005;
Pearce and Wiggins, 2012), and n-gram models (Pearce and
Wiggins, 2004) underpin the hypothesis that music is acquired
by extracting and concatenating chunks, which is a main
theory of implicit learning and statistical learning. Although
experimental approaches are necessary for understanding the
real-world brain’s function in music acquisition, the modeling
approaches partially outperform experimental results under
conditions that are impossible to replicate in an experimental
approach. For example, they can directly verify much of the
real-world music and time-course variation over long time
periods (Daikoku, 2018a). Most experimental approaches use
the specific paradigms, which are ecologically unrealistic and
focus on the specific type of short-term learning effects (e.g.,
chord perception, prediction, and timing). Additionally, some
modeling approaches calculate statistics in music and device
models, and also evaluate the validities of these models by
neurophysiological and behavioral experiments and provide
possibilities of novel tasks for neural and behavioral experiments
(Potter et al., 2007; Pearce et al., 2010a,b; Pearce and Wiggins,
2012). A combination of the two approaches is better because
each can complement the weak points of the other approach
(Daikoku, 2018b).

The n-gram models, which correspond to various-order
Markov model (Markov, 1971), calculate TPs of sequences by
chopping them into short fragments (n-grams) up to a size of n,
and are frequently used in both experimental and computational
approaches (Pearce and Wiggins, 2004; Daikoku, 2018b). The
online musical production, however, is not the mere chopping
of one type of length of sequence, but it is a dynamical prediction
to maintain an aesthetic melody with various length of sequence,
temporal, and spectral features, and harmony that interact with
each other (Lerdahl and Jackendoff, 1983; Hauser et al., 2002;
Jackendoff and Lerdahl, 2006). That is, the musical production
is not restricted to a single stream of events or a hierarchy
but, rather, they interact with various hierarchical structures.
Previous computational (Conklin and Witten, 1995; Pearce and
Wiggins, 2012) and neural studies (Daikoku and Yumoto, 2017)
expanded the n-gram method to modeling the interaction of
parallel streams and enhanced the predictive power. However,
the model that suffices to explain musical creativity cannot still
be devised. Nonetheless, the nth-order Markov models could
explain that the prediction continually occurs with each state
of sequence and that the entropy in the brain (i.e., the average
surprise of outcomes sampled from a probability distribution,
Applebaum, 2008) gradually decreases by exposure to musical
sequences. Thus, the TP distribution sampled from music based
on nth-order Markov models may refer to the characteristics
of a composer’s superficial-to-deep implicit knowledge: a high-
probability transition in music may be one that a composer
is more likely to predict and choose based on the latest n
states, compared to a low-probability transition. The notion has
also been neurophysiologically demonstrated by our previous
studies (Daikoku et al., 2017b). The model has also been
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applied to develop artificial intelligence that give computers
learning and decision-making abilities similar to that of the
human brain, such as an automatic composition system (Raphael
and Stoddard, 2004; Eigenfeldt, 2010; Boenn et al., 2012) and
natural language processing (Brent, 1999; Manning and Schütze,
1999). Thus, the Markov model is used in the interdisciplinary
realms of neuroscience, behavioral science, engineering, and
informatics.

Temporal and Spectral Feature in Musical
Creativity
Temporal and spectral features are important pieces of
information for which to configure characteristics of each type
of music (e.g., individuality, genre, and culture). Additionally,
two types of information are not independent of each other,
but rather they closely interact. Thus, the relationships between
temporal (i.e., rhythm) and spectral (i.e., melody) structures
are a large question to understand music creativity. Some
researchers indicated that humans cannot learn temporal
structure independent of spectral structure (Buchner and
Steffens, 2001; Shin and Ivry, 2002; O’Reilly et al., 2008), whereas
other researchers demonstrated temporal implicit learning
independent of pitch information (Salidis, 2001; Ullén and
Bengtsson, 2003; Karabanov and Ulle’n, 2008; Brandon et al.,
2012) and vice versa (Daikoku et al., 2017d). Additionally,
neurophysiological and psychological studies suggested that
humans can learn relative rather than absolute temporal and
spectral (Daikoku et al., 2014, 2015) patterns. Thus, the
relationships between temporal and spectral features on musical
creativity and implicit learning remains controversial. To the
best of my knowledge, there are no integrated models that
cover temporal and spectral features in musical creativity. The
present study first provides the implicit-learning models that
unify temporal and spectral features in musical improvisation.
Additionally, this study investigated which information (spectral
and temporal) and hierarchy (1st to 6th orders) represent the
individualities of creativity. To comprehensively understand how
musical creativity occurs in the human brain and how temporal
and spectral features are integrated to constitute musical
individuality, it is necessary to investigate the relationships
between spectral and temporal statistics inherent in music via
various-order hierarchical models.

Study Purpose
The present study aimed to investigate the statistical differences
and interactions between the temporal and spectral structure
in improvisation among musicians using various-order Markov
models, and to examine which information (spectral and
temporal) and hierarchy represent the individualities of
musical creativity. The statistical characteristics of the nth-
order TP distribution of the spectral (pitch) and temporal
sequences (pitch length and rest) in improvisational music
were investigated. It was hypothesized that there were general
statistical characteristics shared among musicians and specific
statistical characteristics that were unique to each musician
in both spectral and temporal sequences. Additionally, it
was hypothesized that the detectability of the characteristics

depends on hierarchy. If so, the individuality may depend on
the depth of implicit knowledge. Furthermore, the chronological
time-course variations of the entropies (uncertainly) and the
predictability of each tone sequence were examined. It was
hypothesized that implicit knowledge in music gradually shifts
over a composer’s lifetime. The present study first provided
the findings on which information (spectral and temporal) and
hierarchy (1st to 6th orders) represent the individualities of
musical creativity.

METHODS

Music Information Extraction
The music played by William John Evans (Autumn Leaves from
Portrait in Jazz, 1959; Israel from Explorations, February 1961;
I Love You Porgy from Waltz for Debby, June 1961; Stella by
Starlight from Conversations with Myself, 1963; Who Can I
Turn To? from Bill Evans at Town Hall, 1966; Someday My
Prince Will Come from the Montreux Jazz Festival, 1968; A
Time for Love from Alone, 1969), Herbert Jeffrey Hancock
(Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage
from Flood, 1975; Someday My Prince Will Come from The
Piano, 1978; Dolphin Dance from Herbie Hancock Trio’81,
1981; Thieves in the Temple from The New Standard, 1996;
Cottontail from Gershwin’s World, 1998; The Sorcerer from
Directions in Music, 2001), and McCoy Tyner (Man from
Tanganyika from Tender Moments, 1967; Folks from Echoes of
a Friend, 1972; You Stepped Out of a Dream from Fly with
the Wind, 1976; For Tomorrow from Inner Voice; 1977; The
Habana Sun from The Legend of the Hour, 1981; Autumn
Leaves from Revelations, 1988; Just in Time from Dimensions,
1984) were used in the present study. The highest pitches
including the length were chosen based on the following
definitions: the highest pitches that can be played at a given
point in time, pitches with slurs that can be counted as one,
and grace notes were excluded. In addition, the rests that
were related to highest-pitch sequences were also extracted.
This spectral and temporal information were divided into four
types of sequences: (1) a pitch sequence without length and
rest information (i.e., pitch sequence without rhythms); (2)
a rhythm sequence without pitch information (i.e., rhythm
sequence without pitches); (3) a pitch sequence with length and
rest information (i.e., pitch sequence with rhythms); and (4) a
rhythm sequence with pitch information (i.e., rhythm sequence
with pitches).

Stochastic Calculation
Pitch Sequence Without Rhythms
For each type of pitch sequence, all pitches were numbered so that
the first pitch was 0 in each transition, and an increase or decrease
in a semitone was 1 and −1 based on the first pitch, respectively.
Representative examples were shown in Figure 1A. This revealed
the relative pitch-interval patterns but not the absolute pitch
patterns [30, 98]. This procedure was used to eliminate the effects
of the change in key on transitional patterns. Interpretation of
the key change depends on the musician, and it is difficult to
define in an objective manner. Thus, the results in the present
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FIGURE 1 | Representative phrases of transition patterns in pitch sequence without rhythms (A), rhythm sequences without pitches (B), pitch sequence with rhythms

(C), and rhythm sequences with pitches (D). The musical information was extracted by listening music information recording media and originally written for the

present study.

study may represent a variation in the statistics associated with
relative pitch rather than absolute pitch. According to recent
neurophysiological studies, human’s implicit-learning system of
auditory sequence capture relative rather than absolute transition
patterns. In each piece of music for each musician, the TPs of
the pitch sequences were calculated as a statistic based on multi-
order Markov chains. The probability of a forthcoming pitch was
statistically defined by the last pitch to six successive pitches (i.e.,
first- to six-order Markov chains). The nth-order Markov model

is based on the conditional probability of an element en+1, given
the preceding n elements:

P (en+1|en) =
P(en+1 ∩ en)

P(en)
(1)

Rhythm Sequence Without Pitches
The onset times of each note were used for analyses. Although
note onsets ignore the length of notes and rests, this methodology
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can capture the most essential rhythmic features of the music
[30,99]. To extract a temporal interval between adjacent notes,
all onset times were subtracted from the onset of the preceding
note. Then, for each type of rhythm sequence, the second to
last temporal interval was divided by the first temporal interval.
Representative examples are shown in Figure 1B. This revealed
relative rhythm patterns but not absolute rhythm patterns; it is
independent of the tempo of each piece of music. In each piece
of music in each musician, the TPs of the rhythm sequences were
calculated as a statistic based on multi-order Markov chains. The
probability of a forthcoming temporal interval was statistically
defined by the last temporal interval to six successive temporal
intervals, respectively (i.e., first- to six-order Markov chains).

Pitch Sequence With Rhythms
The two methodologies of pitch and rhythm sequences were
combined. For each type of sequence, all pitches were numbered
so that the first pitch was 0 in each transition, and an increase
or decrease in a semitone was 1 and −1 based on the first pitch,
respectively. Additionally, for each type of pitch sequence, all
onset times were subtracted from the onset of the preceding note,
and the second to last temporal intervals were divided by the
first temporal interval. The representative examples were shown
in Figure 1C. For each piece of music for each musician, the
TPs of the pitch sequences with rhythms were calculated as a
statistic based on multi-order Markov chains. The probability of
a forthcoming pitch with temporal information was statistically
defined by the last pitch with temporal information to six
successive pitches with temporal information, respectively (i.e.,
first- to six-order Markov chains). In the first-order hierarchical
model of the pitch sequence with rhythms, a temporal interval
was calculated as a ratio to the crotchet (i.e., quarter note),
because only a temporal interval is included for each sequence
and the note length cannot be calculated as a relative temporal
interval. Thus, the patterns of pitch sequence (p) with rhythms
(r) were represented as [p] with [r].

Rhythm Sequence With Pitches
Themethodologies of sequence extraction were the same as those
of the pitch sequence with rhythm (see Figure 1D), whereas the
TPs of the rhythm, but not pitch, sequences were calculated as a
statistic based onmulti-orderMarkov chains. The probability of a
forthcoming temporal interval with pitch was statistically defined
by the last temporal interval with pitch to six successive temporal
interval with pitch (i.e., first- to six-order Markov chains). Thus,
the relative pattern of rhythm sequence (r) with pitches (p) were
represented as [r] with [p].

Statistical Analysis
The TP distributions were analyzed by principal component
analysis. The criteria of eigenvalue were set over 1. The first
two components (i.e., the first and second highest cumulative
contribution ratios) were adopted in the present study. Then,
the information contents [I(en+1|en)] of TP were calculated
based on information theory (Shannon, 1951). Furthermore,
the conditional entropy [H(AB)] in n-order was calculated from

information content:

I (en+1|en) = log2
1

P (en+1|en)
(bit) (2)

H (B|A) = −
∑

i

∑

j

P(ai)P
(

bj
∣

∣ai
)

log2 P
(

bj
∣

∣ai
)

(bit)

(3)

where P(bj|ai) is a conditional probability of sequence “ai bj.” The
entropy were chronologically ordered based on the time courses
in which music is played in each musician. The time-course
variations of the entropies were analyzed by multiple regression
analyses using the stepwise method. The criteria of the variance
inflation factor (VIF) and condition index (CI) were set at VIF
< 2 and CI < 20 to confirm that there was no multi collinearity
(Cohen et al., 2003).

Furthermore, in each musician, seven pieces of music were
averaged in each type of sequence. The transitional patterns with
first to fifth highest TPs in each musician, which show higher
predictabilities in each musician, were used in the regression
analyses. The transitional patterns were chronologically ordered
based on the time courses in which music is played in each
musician. The time-course variations of the TPs were analyzed
by multiple regression analyses using the stepwise method. The
criteria of the variance inflation factor (VIF) and condition index
(CI) were set at VIF < 2 and CI < 20 to confirm that there was
no multi collinearity.

The logit transformation was applied to normalize the TPs.
Then, using the transitional patterns with first to fifth highest
TPs in each musician, the repeated-measure analysis of variances
(ANOVAs) with a between-factor player (WJ. Evans vs. HJ.
Hancock vs. M. Tyner) and a within-factor sequences for
each hierarchy of Markov model were conducted. When we
detected significant effects, Bonferroni-corrected post-hoc tests
were conducted for further analysis. Statistical significance levels
were set at p= 0.05 for all analyses.

RESULTS

PCA
Pitch Sequence Without Rhythms
The eigenvalue and percentages of variance, and the comulative
variance and the eigenvectors for the principal components was
shown in a Supplementary File. In the first-order hierarchical
model (Figure 2A), the two components accounted for 91.445%
of the total variance. All of the pieces of music loaded higher
than.82 on component 1, suggesting that this explains the general
component of jazz musical improvisation in threemusicians. The
eigenvectors of the pieces of music by W. J. Evans were higher
than M. Tyner in component 2, suggesting that this explains
a component of W. J. Evans or M. Tyner. The component
of H. J. Hancock could not be detected. In the second-order
hierarchical model, the two components accounted for 20.365%
of the total variance. All of the pieces of music loaded higher
than.18 on component 1, suggesting that this explains the general
component of jazz musical improvisation in three musicians.
In M. Tyner, the eigenvectors other than “The habana sun”
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FIGURE 2 | Principal component analysis scatter plots in pitch sequence without rhythms (A), rhythm sequences without pitches (B), pitch sequence with rhythms

(C), and rhythm sequence with pitches (D). The horizontal and vertical axes represent principal component 1 and 2, respectively. The dots represent each piece of

music.
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were higher than W. J. Evans in component 2, suggesting that
this explains a component of W. J. Evans or M. Tyner. The
component of H. J. Hancock could not be detected. In the third-
order hierarchical model, the two components accounted for
13.818% of the total variance. In H. J. Hancock and M. Tyner,
the eigenvectors other than “Cotton tail” were lower than W. J.
Evans in component 1, suggesting that this explains a component
of W. J. Evans or a component combining H. J. Hancock and M.
Tyner. No obvious difference amongmusicians could be detected
in component 2. In the forth-, fifth-, and sixth-order hierarchical
models, the two components accounted for 11.663, 10.968, and
10.586% of the total variance, respectively. The eigenvectors of
the pieces of music byW. J. Evans were higher thanH. J. Hancock
and M. Tyner in component 1, suggesting that this explains a
component of W. J. Evans or a component combining H. J.
Hancock and M. Tyner. The eigenvectors of the pieces of music
by H. J. Hancock were generally lower than W. J. Evans and
M. Tyner in component 2, suggesting that this explains a weak
component of H. J. Hancock or a component combining W. J.
Evans and M. Tyner.

Rhythm Sequence Without Pitches
In the first-order hierarchical model (Figure 2B), only one
component, which accounted for 98.685% of the total variance,
could be detected. The two components accounted for 91.445% of
the total variance. All of the pieces of music loaded higher than.95
on the component, suggesting that this explains the general
component of jazz musical improvisation in three musicians.
In the second-, third-, forth, fifth-, and sixth-order hierarchical
models, the two components accounted for 29.325, 20.985,
17.153, 14.780, and 13.376% of the total variance, respectively.
No obvious difference among musicians could be detected in
stochastic models of rhythms.

Pitch Sequence With Rhythms
In the first-order hierarchical models (Figure 2C), the two
components accounted for 13.481% of the total variance. No
obvious difference among musicians could be detected in
component 1. In W. J. Evans, the eigenvectors other than “I
love you porgy” were higher than M. Tyner in component 2,
suggesting that this explains a component of W. J. Evans or
M. Tyner. In the second-order hierarchical models, the two
components accounted for 11.558% of the total variance. In W. J.
Evans, the eigenvectors other than “I love you porgy” were higher
than H. J. Hancock and M. Tyner in component 1, suggesting
that this explains a component of W. J. Evans or a component
combining H. J. Hancock and M. Tyner. No obvious difference
amongmusicians could be detected in component 2. In the third-
order hierarchical model, the two components accounted for
10.970% of the total variance. The eigenvectors of the pieces of
music by W. J. Evans were higher than H. J. Hancock and M.
Tyner in component 1, suggesting that this explains a component
of W. J. Evans or a component combining H. J. Hancock and M.
Tyner. No obvious difference amongmusicians could be detected
in component 2. In the forth-order hierarchical model, the two
components accounted for 10.774% of the total variance. In H.
J. Hancock and M. Tyner, the eigenvectors other than “Dolphin

dance” were lower than W. J. Evans in component 1, suggesting
that this explains a component of W. J. Evans or a component
combining H. J. Hancock and M. Tyner. The eigenvectors of
the pieces of music by H. J. Hancock were generally lower
than W. J. Evans and M. Tyner in component 2, suggesting
that this explains a weak component of H. J. Hancock or a
component combining W. J. Evans and M. Tyner. In the fifth-
order hierarchical model, the two components accounted for
10.515% of the total variance. The eigenvectors of the pieces of
music by W. J. Evans were higher than M. Tyner in component
1 and lower than H. J. Hancock in component 2, suggesting
that these explain components of W. J. Evans, M. Tyner, and
H. J. Hancock. In the sixth-order hierarchical model, the two
components accounted for 10.344% of the total variance. In M.
Tyner, the eigenvectors other than “For tomorrow” were higher
than W. J. Evans and H. J. Hancock in component 1, suggesting
that this explains a component of M. Tyner or a component
combining W. J. Evans and H. J. Hancock. In W. J. Evans, the
eigenvectors other than “Israel” were higher than H. J. Hancock
in component 2, suggesting that these explain components of W.
J. Evans or H. J. Hancock.

Rhythm Sequence With Pitches
In the first-order hierarchical model (Figure 2D), the two
components accounted for 27.736% of the total variance. All
of the pieces of music loaded higher than.25 on component
1, suggesting that this explains the general component of jazz
musical improvisation in three musicians. The eigenvectors of
the pieces of music by W. J. Evans were lower than M. Tyner in
component 2, suggesting that this explains a component of W.
J. Evans or M. Tyner. In the second-order hierarchical model,
the two components accounted for 12.561% of the total variance.
The eigenvectors of the pieces of music by W. J. Evans were
higher than M. Tyner in component 1, suggesting that this
explains a component of W. J. Evans or M. Tyner. No obvious
difference among musicians could be detected in component
2. In the third- and forth-order hierarchical models, the two
components accounted for 11.135 and 10.658% of the total
variance, respectively. The eigenvectors of the pieces of music
by W. J. Evans were higher than M. Tyner in component 1,
suggesting that this explains a component of W. J. Evans or M.
Tyner. In W. J. Evans, the eigenvectors other than “I love you
porgy” in the third- and “Israel” in the forth-order hierarchical
models were higher than H. J. Hancock in component 2,
suggesting that this explains a component of W. J. Evans or
H. J. Hancock. In the fifth-order hierarchical model, the two
components accounted for 10.386% of the total variance. In M.
Tyner, the eigenvectors other than “Autumn leaves” were higher
than W. J. Evans in component 1, suggesting that this explains a
component of W. J. Evans or M. Tyner. Tyner. The eigenvectors
of the pieces of music by H. J. Hancock were generally lower than
W. J. Evans and M. Tyner in component 2, suggesting that this
explains a weak component of H. J. Hancock or a component
combining W. J. Evans and M. Tyner. In the sixth-order
hierarchical model, the two components accounted for 10.269%
of the total variance. In H. J. Hancock, the eigenvectors other
than “The sorcerer” were lower than M. Tyner in component 1,
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suggesting that this explains a weak component of H. J. Hancock
or M. Tyner. In W. J. Evans, the eigenvectors other than “I love
you porgy” were lower thanM. Tyner in component 2, suggesting
that this explains a weak component of W. J. Evans or M. Tyner.

ANOVA
Pitch Sequence Without Rhythms
In the first-order hierarchical models, the main sequence
effect were significant [F(2.99, 53.84) = 7.51, p < 0.001, partial
η2 = 0.29, Table 1A]. The main musician effect were significant
[F(2, 18) = 4.29, p = 0.030, partial η2 = 0.32]. The TPs in
W. J. Evans were significantly higher than those in M. Tyner
(p= 0.046). The musician-sequence interactions were significant
[F(12) = 6.54, p < 0.001, partial η2 = 0.42, Figure 3 and
Tables 1B–D]. The TP of [0, −1] was significantly higher in
W. J. Evans than M. Tyner (p = 0.008). The TP of [0, 0] was
significantly lower in W. J. Evans than M. Tyner (p = 0.043).
The TP of [0, 1] was significantly higher in W. J. Evans than
H. J. Hancock (p = 0.003) and M. Tyner (p < 0.001). In the
second-order hierarchical models, the main musician effect were
significant [F(2, 18) = 7.11, p = 0.005, partial η2 = 0.44]. The
TPs in M. Tyner were significantly lower than those in W. J.
Evans (p = 0.006) and H. J. Hancock (p = 0.041). The musician-
sequence interactions were significant [F(20) = 3.72, p < 0.001,
partial η2 = 0.29, Figure 3 and Tables 1B–D]. The TP of [0, −1,
−2] was significantly lower in M. Tyner than W. J. Evans (p =

0.006) and H. J. Hancock (p = 0.042). The TP of [0, −2,−3] was
significantly higher inW. J. Evans than H. J. Hancock (p= 0.033)
and M. Tyner (p <0.001), and higher in H. J. Hancock than M.
Tyner (p = 0.027). The TP of [0, −2, 0] was significantly higher
in M. Tyner than W. J. Evans (p= 0.047). The TP of [0, 2, 3] was
significantly higher inW. J. Evans than H. J. Hancock (p= 0.005)
andM. Tyner (p< 0.001). In the third-order hierarchical models,
the main sequence effect were significant [F(5.13, 10.26) = 5.00, p
< 0.001, partial η2 = 0.22, Table 1A]. The musician-sequence
interactions were significant [F(24) = 3.89, p < 0.001, partial
η2 = 0.30, Figure 3 and Tables 1B–D]. The TP of [0, −1, −2,
−3] was significantly lower in M. Tyner than W. J. Evans (p <

0.001) and H. J. Hancock (p = 0.008). The TP of [0,−1,−3,−4]
was significantly lower in M. Tyner than W. J. Evans (p= 0.003).
The TP of [0, −3, −7, −5] was significantly higher in M. Tyner
than W. J. Evans (p = 0.040) and H. J. Hancock (p = 0.009).
The TP of [0, 0, 0, 0] was significantly lower in W. J. Evans than
H. J. Hancock (p = 0.037) and M. Tyner (p = 0.012). The TP
of [0, 1, 3, 4] was significantly higher in W. J. Evans than H.
J. Hancock (p < 0.001) and M. Tyner (p < 0.001). The TP of
[0, 2, 4, 5] was significantly higher in W. J. Evans than H. J.
Hancock (p = 0.034) and M. Tyner (p < 0.001), and higher in
H. J. Hancock than M. Tyner (p = 0.021). In the forth-order
hierarchical models, the main sequence effect were significant
[F(4.65, 9.30) = 2.40, p = 0.048, partial η2 = 0.12, Table 1A]. The
musician-sequence interactions were significant [F(26) = 5.92, p
< 0.001, partial η2 = 0.40, Figure 3 and Tables 1B–D]. The TP of
[0, −1, −2, −3, −4] was significantly higher in W. J. Evans than
H. J. Hancock (p = 0.015) and M. Tyner (p < 0.001), and higher
in H. J. Hancock than M. Tyner (p = 0.024). The TP of [0, −2,
−4, 0, −2] was significantly higher in M. Tyner than W. J. Evans

TABLE 1 | The difference in TPs among pitch sequences without rhythms in each

musician.

Order Sequence A Sequence B A-B SE p-value

A. GENERAL

1st 0, −2 0, −3 0.076 0.02 0.023

0, 0 0.173 0.02 <0.001

0, 1 0.116 0.03 0.028

0, 3 0.122 0.014 <0.001

0, −3 0,0 0.097 0.02 0.002

0,3 0.045 0.01 0.005

3rd 0, −3, −7, −5 0, 4, 2, 0 −0.742 0.159 0.015

0, 2, 4, 6 0, −1, −2, −3 −0.398 0.079 0.007

0, 1, 3, 5 −0.519 0.152 0.24

0, 2, 3, 5 −0.621 0.11 0.002

0, 2, 4, 5 −0.383 0.068 0.002

0, 4, 2, 0 −0.831 0.176 0.014

4th 0, 2, 4, 6, 8 0, −1, −2, −3, −4 −0.452 0.077 0.001

0, −3, −2,2,5 −0.616 0.068 <0.001

0, 1, 3, 4, 6 −0.68 0.147 0.019

0, 1, 5, 8, 12 −0.714 0.169 0.046

0, 2, 4, 5, 7 −0.786 0.184 0.041

B. W. J. EVANS

1st 0, 0 0, −1 −0.279 0.069 0.016

0, −2 −0.213 0.035 <0.001

0, −3 −0.177 0.034 0.001

0, 1 −0.294 0.053 0.001

0, 3 −0.149 0.034 0.007

2nd 0, −2, −3 0, −2, 0 0.435 0.09 0.007

0,2,3 0, −2, −4 0.585 0.124 0.009

0, −2, 0 0.688 0.115 0.001

0,2,4 0.557 0.12 0.012

3rd 0, −1, −2, −3 0, −3, −7, −5 0.869 0.2 0.03

0, 0, 0, 0 1.09 0.208 0.004

0, 2, 4, 6 0.838 0.138 0.001

0, 1, 3, 4 0, −1, −3, −4 0.442 0.099 0.023

0, −2, −4, −2 0.991 0.152 <0.001

0, −3, −7, −5 0.992 0.149 <0.001

0, 0, 0, 0 1.214 0.234 0.005

0, 2, 4, 6 0.961 0.147 <0.001

0, 2, 4, 5 0, −2, −4, −2 0.924 0.209 0.026

0, −3, −7, −5 0.925 0.196 0.013

0, 0, 0, 0 1.147 0.226 0.006

0, 2, 4, 6 0.894 0.118 <0.001

4th 0, −3, −2,2,5 0, −1, −2, −3, −4 1.019 0.122 <0.001

0, −2, −4, 0, −2 2.113 0.287 <0.001

0, −2, 2, 0, −2 2.113 0.297 <0.001

0, −3, 2, 0, −3 1.642 0.358 0.021

0, 0, 0, 0, 0 2.113 0.219 <0.001

0, 1, 3, 5, 6 1.459 0.212 <0.001

0, 2, 3, 5, 6 1.134 0.164 <0.001

0, 2, 3, 5, 7 1.663 0.296 0.002

0, 2, 4, 6, 8 2.113 0.119 <0.001

0, 5, 3, 0, −4 1.956 0.188 <0.001

(Continued)
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TABLE 1 | Continued

Order Sequence A Sequence B A-B SE p-value

0, 0, 0, 0, 0 0, −1, −2, −3, −4 −1.094 0.19 0.002

0, 1, 5, 8, 12 −1.623 0.383 0.045

0, 2, 4, 6, 8 0, −1, −2, −3, −4 −1.094 0.134 <0.001

0, 1, 3, 4, 6 −1.28 0.255 0.008

0, 1, 5, 8, 12 −1.623 0.293 0.003

0, 2, 3, 5, 6 −0.979 0.194 0.008

5th 0, −3, −2, 2, 5, 9 0, −1, −2, −3, −4,

−5

1.077 0.183 0.002

0, −2, −4, −7, −2,

−4

1.863 0.194 <0.001

0, −2, −4, 0, −2,

−4

1.863 0.272 <0.001

0, −2, −5, 0, −2,

−5

1.549 0.264 0.002

0, −3, 0, 0, −3, 0 1.863 0.254 <0.001

0, −4, −7, −2, −5,

−9

1.863 0.275 <0.001

0, 0, 0, 0, 0, 0 1.863 0.237 <0.001

0, 1, 2, 3, 4, 5 1.246 0.222 0.003

0, 2, 3, 5, 7, 8 1.344 0.231 0.002

0, 2, 4, 6, 8, 10 1.863 0.172 <0.001

0, 1, 3, 4, 6, 7 0, −2, −4,

−7,−2,−4

1.361 0.228 0.001

0, −2, −4, 0, −2,

−4

1.361 0.297 0.024

0, −3, 0, 0, −3, 0 1.361 0.28 0.013

0, −4, −7, −2, −5,

−9

1.361 0.299 0.026

0, 0, 0, 0, 0, 0 1.361 0.265 0.007

0, 2, 4, 6, 8, 10 1.361 0.209 <0.001

0, 3, 0, 1, 5, 8 0, −2, −4, −7, −2,

−4

1.883 0.247 <0.001

0, −2, −4, 0, −2,

−4

1.883 0.312 0.001

0, −2, −5, 0, −2,

−5

1.569 0.306 0.007

0, −3, 0, 0, −3,0 1.883 0.296 0.001

0, −4, −7, −2, −5,

−9

1.883 0.314 0.001

0, 0, 0, 0, 0, 0 1.883 0.281 <0.001

0, 2, 3, 5, 7, 8 1.364 0.236 0.002

0, 2, 4, 6, 8, 10 1.883 0.23 <0.001

6th 0, 3, 0, 1, 5, 8, 12 0, −1, −2, −1, −2,

−3, −2

1.658 0.289 0.002

0, −1, −2, 1, 0, −1,

−2

1.344 0.284 0.017

0, −1, 0, −1, −2,

−1, −2

1.658 0.258 <0.001

0, −2, −4, −7, −2,

−4, −7

1.658 0.302 0.003

0, −3, 2, −3, 0, −3,

2

1.658 0.315 0.006

0, −3, 4, 2, 0, 2, 0 1.658 0.258 <0.001

0, −4, −7, −2, −5,

−9, −7

1.658 0.297 0.003

(Continued)

TABLE 1 | Continued

Order Sequence A Sequence B A-B SE p-value

0, 0, −3, 0, 0, −3, 0 1.658 0.258 <0.001

0, 0, 0, 0, 0 ,0, 0 1.658 0.281 0.001

0, 1, 3, 4, 6, 7, 9 1.07 0.187 0.002

0, 2, 4, 5, 7, 9, 10 1.344 0.269 0.01

0, 4, 7, 4, 5, 9, 12 0, −1, −2, −1, −2,

−3, −2

1.569 0.323 0.013

0, −1, 0, −1, −2,

−1, −2

1.569 0.296 0.005

0, −2, −4, −7, −2,

−4, −7

1.569 0.335 0.019

0, −3, 2, −3, 0, −3,

2

1.569 0.347 0.028

0, −3, 4, 2, 0, 2, 0 1.569 0.296 0.005

0, −4, −7, −2, −5,

−9, −7

1.569 0.331 0.017

0, 0,−3, 0, 0, −3,0 1.569 0.296 0.005

0, 0, 0, 0, 0, 0, 0 1.569 0.316 0.011

0, 1, 3, 4, 6, 7, 9 0.982 0.199 0.011

0, 2, 4, 5, 7, 9, 10 1.256 0.286 0.038

C. H. J. HANCOCK

1st 0, −2 0, 0 0.132 0.035 0.029

0, 3 0.13 0.024 0.001

4th 0, −1, −2, −3, −4 0, −3, −2, 2, 5 0.529 0.122 0.036

D. M. TYNER

1st 0, −2 0, −1 0.255 0.06 0.01

0, 0 0.175 0.035 0.002

0, 1 0.29 0.053 0.001

0, 3 0.171 0.024 <0.001

0, −3 0,3 0.084 0.017 0.002

0,1 0, −3 −0.202 0.05 0.016

0,2 −0.231 0.049 0.003

3rd 0, −1, −2, −3 0, 1, 3, 5 −0.889 0.211 0.04

0, −1, −3, −4 0, −2, −3, −5 −0.713 0.165 0.033

4th 0,−2,−4,0,−2 0, −1, −2, −3, −4 1.402 0.266 0.005

0, −3, −2, 2, 5 1.402 0.287 0.011

0, 1, 3, 5, 6 1.402 0.312 0.026

0, 2, 3, 5, 6 1.402 0.33 0.044

0, 2, 4, 6, 8 1.402 0.237 0.001

0, 5, 3, 0, −4 0, −1, −2, −3, −4 1.148 0.23 0.009

0, −3, −2, 2, 5 1.148 0.188 0.001

0, 1, 3, 5, 6 1.148 0.255 0.025

0, 2, 3, 5, 6 1.148 0.242 0.015

0, 2, 4, 6, 8 1.148 0.214 0.004

5th 0, −2, −4, 0, −2,

−4

0, 2, 4, 6, 8, 10 1.086 0.211 0.007

(p= 0.008) and H. J. Hancock (p= 0.042). The TP of [0,−3,−2,
2, 5] was significantly higher in W. J. Evans than H. J. Hancock
(p < 0.001) and M. Tyner (p < 0.001). The TP of [0, 1, 5, 8, 12]
was significantly higher inW. J. Evans thanM. Tyner (p= 0.004).
The TP of [0,2,3,5,6] was significantly higher in W. J. Evans than
H. J. Hancock (p = 0.006) and M. Tyner (p < 0.001). The TP of
[0, 5, 3, 0, −4] was significantly higher in M. Tyner than W. J.
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Evans (p= 0.004) and H. J. Hancock (p = 0.001). In W. J. Evans,
the TPs of [0,−3,−2, 2, 5] was significantly higher than those of
[0, −1, −2, −3, −4] (p < 0.001), [0, −2, −4,0, −2] (p < 0.001),
[0, −2,2,0, −2] (p <0.001), [0, −3,2,0, −3] (p = 0.021), [0, 0, 0,
0, 0] (p < 0.001), [0, 1, 3, 5, 6] (p < 0.001), [0, 2, 3, 5, 6] (p <

0.001), [0, 2, 3, 5, 7] (p = 0.002), [0, 2, 4, 6, 8] (p < 0.001), and
[0,5,3,0, −4] (p < 0.001). The TPs of [0,0,0,0,0] was significantly
lower than those of [0, −1, −2, −3, −4] (p = 0.002) and [0, 1, 5,
8, 12] (p = 0.045). The TPs of [0,2,4,6,8] was significantly lower
than those of [0, −1, −2, −3, −4] (p < 0.001), [0, 1, 3, 4, 6] (p =
0.008), [0, 1, 5, 8, 12] (p = 0.003), and [0, 2, 3, 5, 6] (p = 0.008).
In the fifth-order hierarchical models, the main musician effect
were significant [F(2, 18) = 4.13, p = 0.033, partial η2 = 0.32].
The TPs in M. Tyner were significantly lower than those in W. J.
Evans (p = 0.006) and H. J. Hancock (p = 0.041). The musician-
sequence interactions were significant [F(28) = 7.07, p < 0.001,
partial η2 = 0.44, Figure 3 and Tables 1B–D]. The TP of [0, −2,
−4,−7, −2, −4] was significantly higher in M. Tyner than W.
J. Evans (p = 0.008) and H. J. Hancock (p = 0.008). The TP of
[0, −2, −4,0, −2, −4], [0, 1, 3, 4, 6, 7], and [0, 3, 0, 1, 5, 8] was
significantly higher inM. Tyner thanW. J. Evans (p= 0.022). The
TP of [0, −3, −2, 2, 5, 9] was significantly higher in W. J. Evans
than and H. J. Hancock and M. Tyner (all: p < 0.001). The TP
of [0, 1, 3, 5, 6, 8] was significantly lower in H. J. Hancock than
M. Tyner (p= 0.022). In the sixth-order hierarchical models, the
musician-sequence interactions were significant [F(28) = 5.09, p
< 0.001, partial η2 = 0.36, Figure 3 and Tables 1B–D]. The TP of
[0, −1, −2, −3, −4, −5, −6] was significantly lower in M. Tyner
than W. J. Evans (p = 0.037). The TP of [0, −2, −4, −7, −2, −4,
−7] was significantly higher in M. Tyner than W. J. Evans (p =

0.014) and H. J. Hancock (p = 0.014). The TP of [0, 3, 0, 1, 5, 8,
12] and [0, 4, 7, 4, 5, 9, 12] was significantly higher in W. J. Evans
than H. J. Hancock and M. Tyner (p < 0.001).

Rhythm Sequence Without Pitches
In the first-order hierarchical models, the main sequence effect
were significant [F(1.24, 22.36) = 553.50, p < 0.001, partial
η2 = 0.97, Table 2A]. The musician-sequence interactions were
significant [F(12) = 2.03, p = 0.028, partial η2 = 0.18, Figure 4,
Tables 2B–D]. The TP of [1, 3] was significantly higher in M.
Tyner than W. J. Evans (p = 0.015) and H. J. Hancock (p =

0.023). The TP of [1, 0.333] was significantly higher in M. Tyner
than W. J. Evans (p = 0.006) and H. J. Hancock (p = 0.002).
In the second-order hierarchical models, the main sequence
effect were significant [F(2.09, 37.68) = 74.54, p < 0.001, partial
η2 = 0.81, Table 2A]. The musician-sequence interactions were
significant [F(12) = 2.07, p = 0.025, partial η2 = 0.19, Figure 4,
Tables 2B–D]. The TP of [1, 0.333] was significantly higher in H.
J. Hancock than W. J. Evans (p = 0.015). In W. J. Evans, the TPs
of [1, 1, 1] was significantly higher than those of [1, 0.5, 1], [1,
1, 1.5], [1, 1, 2], [1, 2, 1], and [1, 2, 2] (all: p < 0.001). The TPs
of [1,0.5,0.5] was significantly higher than those of [1, 0.5, 1] (p
= 0.013), [1,1,1.5] (p < 0.001), [1, 1, 2] (p < 0.001), and [1, 2,
2] (p = 0.003). The TPs of [1, 2, 1] was significantly higher than
[1, 0.5, 1] (p = 0.034), [1, 1, 1.5] (p < 0.001), and [1, 1, 2] (p =

0.001). The TPs of [1, 2, 1] was significantly higher than [1, 1,
1.5] (p < 0.001) and [1, 1, 2] (p < 0.001). In H. J. Hancock, the

TPs of [1, 1, 1] was significantly higher than those of [1, 0.5, 1],
[1, 1, 1.5], [1, 1, 2], [1 ,2, 1], and [1, 2, 2] (all: p < 0.001). The
TPs of [1, 0.5, 0.5] was significantly higher than those of [1, 1,
1.5] (p < 0.001) and [1, 1, 2] (p = 0.001). The TPs of [1, 2, 1]
was significantly higher than [1, 2, 2] (p = 0.027), [1, 0.5, 1] (p
= 0.038), [1, 1, 1.5] (p < 0.001), and [1, 1, 2] (p < 0.001). The
TPs of [1, 2, 2] was significantly higher than [1, 1, 1.5] (p< 0.001)
and [1, 1, 2] (p = 0.037). The TPs of [1, 1, 1.5] was significantly
lower than those of [1, 1, 2] (p = 0.006) and [1, 0.5, 1] (p =

0.015). In the third-order hierarchical models, the main sequence
effect were significant [F(2.80, 50.41) = 45.17, p < 0.001, partial
η2 = 0.72, Table 2A]. The musician-sequence interactions were
significant [F(14) = 2.58, p = 0.03, partial η2 = 0.22, Figure 4,
Tables 2B–D]. The TP of [1,0.667, 0.667, 0.667] was significantly
higher in W. J. Evans than H. J. Hancock (p = 0.016). The TP
of [1, 1, 1, 1.5] was significantly higher in W. J. Evans than
H. J. Hancock (p = 0.002) and M. Tyner (p = 0.043). In the
forth-order hierarchical models, the main sequence effect were
significant [F(2.62, 47.21) = 22.03, p < 0.001, partial η2 = 0.55,
Table 2A]. In the fifth-order hierarchical models, the main
sequence effect were significant [F(3.02, 54.32) = 16.21, p < 0.001,
partial η2 = 0.47, Table 2A]. The musician-sequence interactions
were significant [F(16) = 2.11, p = 0.011, partial η2 = 0.19,
Figure 4, Tables 2B–D]. In the sixth-order hierarchical models,
the main sequence effect were significant [F(3.28, 59.06) = 17.89,
p < 0.001, partial η2 = 0.50, Table 2A]. The musician-sequence
interactions were significant [F(16) = 2.22, p = 0.007, partial
η2 = 0.20, Figure 4 and Tables 2B–D].

Pitch Sequence With Rhythms
The relative pattern of Pitch sequence (p) with rhythms (r) were
represented as [p] with [r]. In the first-order hierarchical models,
themusician-sequence interactions were significant [F(28) = 1.89,
p= 0.006, partial η2 = 0.17, Figure 5]. The TP of [0, 1] with [0.5]
was significantly higher inW. J. Evans than H. J. Hancock andM.
Tyner (p < 0.001). In the second-order hierarchical models, the
musician-sequence interactions were significant [F(28) = 3.58, p
= 0.006, partial η2 = 0.28, Figure 5]. The TP of [0,−1,−2] with
[1, 0.5], [0, 4,7] with [1, 0.5], and [0, −3, −2] with [1, 1.5] was
significantly higher in W. J. Evans than M. Tyner (p= 0.031, p=
0.038, and p = 0.023, respectively). The TP of [0, 4, 7] with [1,1]
was significantly higher inW. J. Evans than H. J. Hancock andM.
Tyner (p < 0.001). The TP of [0, 7, 0] with [1, 1] was significantly
higher in H. J. Hancock than M. Tyner (p= 0.029). The TP of [0,
4, 2] with [1, 2] was significantly higher in M. Tyner than W. J.
Evans (p = 0.005) and H. J. Hancock (p = 0.007). The TP of [0,
2, 0] with [1, 3] was significantly higher in H. J. Hancock thanW.
J. Evans (p = 0.043). In the third-order hierarchical models, the
musician-sequence interactions were significant [F(28) = 4.91, p
< 0.001, partial η2 = 0.35, Tables 3A,B and Figure 5]. The TP
of [0, −1, −2, −3] with [1,0.5,0.5] was significantly higher in
W. J. Evans than H. J. Hancock (p = 0.036) and M. Tyner (p =

0.007). The TP of [0, −2, −5, −7] with [1, 1, 1] was significantly
lower in W. J. Evans than H. J. Hancock (p = 0.042). The TP
of [0, −2, 2, 0] with [1, 1, 1], and [0, 5, 3, 0] with [1, 1, 1] was
significantly higher in M. Tyner than W. J. Evans (p = 0.039
and p = 0.004, respectively). The TP of [0, −4, 3, 0] with [1,
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FIGURE 3 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in pitch sequence without rhythms.

1, 1] was significantly higher in M. Tyner than W. J. Evans (p
= 0.031) and H. J. Hancock (p = 0.013). The TP of [0, 1, 5, 8]
with [1, 1, 1] was significantly higher in W. J. Evans than H. J.
Hancock (p = 0.011) and M. Tyner (p < 0.001). The TP of [0,
2, 4, 5] with [1, 1, 1] was significantly lower in M. Tyner than

W. J. Evans (p < 0.001) and H. J. Hancock (p = 0.041). The
TP of [0, 3, 0, 1] with [1, 1, 1] was significantly higher in W. J.
Evans than H. J. Hancock (p = 0.027) and M. Tyner (p = 0.001).
The TP of [0, 7, 4, 5] with [1, 1, 1] was significantly higher in
W. J. Evans than H. J. Hancock (p = 0.027) and M. Tyner (p

Frontiers in Computational Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 8915

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Daikoku Musical Creativity and Implicit Knowledge

TABLE 2 | The difference in TPs among rhythm sequences without pitches in

each musician.

Order Sequence A Sequence B A-B SE p-value

A. GENERAL

1st 1, 1 1, 2 1.088 0.054 <0.001

1, 0.5 1.105 0.051 <0.001

1, 1.5 1.221 0.047 <0.001

1, 0.667 1.229 0.043 <0.001

1, 3 1.218 0.043 <0.001

1, 0.333 1.226 0.043 <0.001

1, 2 1,1.5 0.133 0.014 <0.001

1, 0.667 0.141 0.015 <0.001

1, 3 0.13 0.015 <0.001

1, 0.333 0.138 0.015 <0.001

1, 0.5 1,1.5 0.116 0.013 <0.001

1, 0.667 0.124 0.014 <0.001

1, 3 0.113 0.014 <0.001

1, 0.333 0.121 0.014 <0.001

2nd 1, 0.5, 1 1, 0.5, 0.5 −0.764 0.179 0.01

1, 2, 1 −0.612 0.096 <0.001

1, 1, 1 1,0.5,1 1.065 0.093 <0.001

1, 1, 1.5 1.495 0.044 <0.001

1, 1, 2 1.353 0.061 <0.001

1, 2, 1 0.453 0.065 <0.001

1, 2, 2 0.969 0.071 <0.001

1, 1, 1.5 1, 0.5, 0.5 −1.194 0.102 <0.001

1, 0.5, 1 −0.43 0.085 0.002

1, 1, 2 −0.142 0.025 <0.001

1, 2, 1 −1.042 0.067 <0.001

1, 2, 2 −0.526 0.051 <0.001

1, 1, 2 1, 0.5, 0.5 −1.052 0.102 <0.001

1, 2, 1 −0.9 0.074 <0.001

1, 2, 2 −0.384 0.049 <0.001

1, 2, 1 1,2,2 0.516 0.107 0.003

1, 2, 2 1, 0.5, 0.5 −0.667 0.1 <0.001

3rd 1, 0.5, 0.5, 0.5 1, 1, 1, 1.5 1.062 0.072 <0.001

1, 1, 1,2 0.955 0.073 <0.001

1, 0.667,

0.667, 0.667

1, 1, 1, 1.5 1.343 0.139 <0.001

1, 1, 1, 2 1.236 0.153 <0.001

1, 2, 1, 2 0.794 0.168 0.005

1,1, 1, 1 1, 0.5, 0.5,0.5 0.542 0.07 <0.001

1, 1, 1, 1.5 1.605 0.043 <0.001

1, 1, 1, 2 1.497 0.058 <0.001

1, 1, 2, 1 0.616 0.073 <0.001

1, 2, 1, 2 1.055 0.115 <0.001

1, 1, 1, 2 1, 1, 1, 1.5 0.107 0.025 0.012

1, 1, 2, 1 1, 1, 1, 1.5 0.989 0.076 <0.001

1, 1, 1, 2 0.882 0.075 <0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.209 0.112 <0.001

1, 1, 1, 2 1.101 0.114 <0.001

1, 2, 1, 2 1, 1, 1, 1.5 0.55 0.11 0.003

1, 1, 1, 2 0.442 0.117 0.037

4th 1, 0.5, 0.5,

0.5, 0.5

1, 1, 1, 2, 1 0.464 0.074 <0.001

(Continued)

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1 1, 1, 1, 1.5, 1.5 0.557 0.156 0.046

1, 1, 1, 2, 1 0.635 0.095 <0.001

1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 −1.423 0.11 <0.001

1, 1, 1, 1, 1 −1.594 0.059 <0.001

1, 1, 1, 1.5, 1.5 −1.037 0.136 <0.001

1, 1, 1, 2, 1 −0.959 0.093 <0.001

1, 1, 2, 1, 1 −1.425 0.108 <0.001

1, 2, 1, 2, 1 −1.119 0.201 0.001

5th 1, 1, 1, 1, 1,1 1,0.5,1,0.5,1,0.5 0.939 0.226 0.022

1, 1, 1, 1, 1, 2 1.648 0.055 <0.001

1, 1, 1, 1, 2, 1 0.524 0.108 0.004

1, 2, 1, 2, 1, 2 1.035 0.171 <0.001

1, 1, 1, 1, 1, 2 1, 0.5,

0.5,0.5,0.5,0.5

−1.33 0.116 <0.001

1, 1, 1, 1, 1,1 −1.648 0.055 <0.001

1, 1, 1, 1, 2, 1 −1.124 0.111 <0.001

1, 1, 1, 1.5, 1.5, 1.5 −1.03 0.195 0.002

1, 1, 1, 2, 1,1 −1.299 0.126 <0.001

1, 2, 1, 1, 1, 1 −1.567 0.12 <0.001

1, 2, 1, 1, 1, 1 1, 1, 1, 1, 2, 1 0.443 0.112 0.033

1, 2, 1, 2, 1, 2 0.953 0.238 0.03

6th 1, 0.5, 1, 0.5,

1, 0.5, 1

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.122 0.208 0.001

1, 1, 1, 1, 1,1,1 −1.206 0.17 <0.001

1, 1, 2, 1, 1, 1, 1 −1.064 0.208 0.003

1, 1, 1, 1, 1, 1,

2

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.56 0.154 <0.001

1, 1, 1, 1, 1,1,1 −1.644 0.064 <0.001

B. W. J. EVANS

1st 1, 1 1,2 1.23 0.094 <0.001

1, 0.5 1.255 0.089 <0.001

1, 1.5 1.313 0.081 <0.001

1, 0.667 1.324 0.075 <0.001

1, 3 1.337 0.074 <0.001

1, 0.333 1.34 0.075 <0.001

1, 2 1,0.667 0.093 0.026 0.047

1, 3 0.107 0.027 0.017

1, 0.333 0.11 0.025 0.009

2nd 1, 0.5, 0.5 1,0.5,1 1.287 0.31 0.013

1, 1, 1.5 1.426 0.178 <0.001

1, 1, 2 1.337 0.177 <0.001

1, 2, 2 0.843 0.173 <0.001

1,1, 1 1,0.5,1 1.334 0.162 <0.001

1, 1, 1.5 1.473 0.076 <0.001

1, 1, 2 1.384 0.106 <0.001

1, 2, 1 0.72 0.113 <0.001

1, 2, 2 0.891 0.123 <0.001

1, 2, 1 1,0.5,1 0.614 0.166 0.034

1, 1, 1.5 0.753 0.117 <0.001

1, 1, 2 0.665 0.129 <0.001

1, 2, 2 1, 1, 1.5 0.582 0.088 <0.001

1, 1, 2 0.494 0.085 <0.001

(Continued)
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TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

3rd 1, 0.5, 0.5, 0.5 1, 1, 1, 1.5 1.084 0.125 <0.001

1, 1, 1, 2 1.034 0.126 <0.001

1,0.667,0.667,0.6671, 1, 1, 1.5 1.809 0.241 <0.001

1, 1, 1, 2 1.76 0.265 <0.001

1, 1, 2, 1 1.056 0.253 0.016

1, 2, 1, 2 1.602 0.291 0.001

1, 1, 1, 1 1, 1, 1, 1.5 1.517 0.074 <0.001

1, 1, 1, 2 1.468 0.101 <0.001

1, 1, 2, 1 0.764 0.126 <0.001

1, 2, 1, 2 1.31 0.199 <0.001

1, 1, 2, 1 1, 1, 1, 1.5 0.753 0.131 0.001

1, 1, 1, 2 0.704 0.129 0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.38 0.194 <0.001

1, 1, 1, 2 1.331 0.198 <0.001

4th 1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 −1.623 0.191 <0.001

1, 1, 1, 1, 1 −1.579 0.102 <0.001

1, 1, 1, 1.5, 1.5 −1.488 0.235 <0.001

1, 1, 1, 2, 1 −0.843 0.161 0.001

1, 1, 2, 1, 1 −1.507 0.187 <0.001

1, 1, 1, 2, 1 1, 0.5, 0.5,0.5,0.5 −0.78 0.129 <0.001

1, 1, 1, 1, 1 −0.736 0.164 0.006

1, 1, 1, 1, 2 0.843 0.161 0.001

5th 1, 1, 1, 1, 1,2 1, 0.5,

0.5,0.5,0.5,0.5

−1.451 0.201 <0.001

1, 1, 1, 1, 1, 1 −1.584 0.095 <0.001

1, 1, 1, 1, 2, 1 −0.993 0.192 0.002

1, 1, 1, 1.5, 1.5, 1.5 −1.54 0.338 0.009

1, 1, 1, 2, 1,1 −1.532 0.217 <0.001

1, 2, 1, 1, 1, 1 −1.801 0.208 <0.001

1, 1, 1, 1, 2, 1 1, 2, 1, 1, 1, 1 −0.809 0.194 0.02

1, 2, 1, 2, 1, 2 1, 0.5,

0.5,0.5,0.5,0.5

−1.449 0.361 0.03

1, 1, 1, 1, 1, 1 −1.582 0.296 0.002

1, 1, 1, 1.5, 1.5, 1.5 −1.538 0.317 0.005

1, 1, 1, 2, 1, 1 −1.53 0.403 0.048

1, 2, 1, 1, 1, 1 −1.799 0.412 0.013

6th 1, 0.5, 1, 0.5,

1, 0.5, 1

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.862 0.36 0.002

1, 1, 1, 1, 1, 1, 1 −1.739 0.294 <0.001

1, 1, 1, 1, 2, 1,1 −1.743 0.442 0.034

1, 1, 1, 1.5, 1.5,

1.5,1.5

−1.777 0.434 0.024

1,1, 2, 1, 1, 1, 1 −1.979 0.36 0.001

1, 1, 1, 1, 1, 1,

2

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.708 0.266 <0.001

1, 1, 1, 1, 1, 1, 1 −1.585 0.11 <0.001

1, 1, 1, 1, 1, 2, 1 −1.103 0.213 0.002

1, 1, 1, 1, 2, 1, 1 −1.589 0.24 <0.001

1, 1, 1, 1.5, 1.5,

1.5,1.5

−1.623 0.37 0.013

1, 1, 2, 1, 1, 1, 1 −1.826 0.259 <0.001

1, 2, 1, 2, 1, 2,

1

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.548 0.396 0.037

(Continued)

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1, 1, 1 −1.425 0.364 0.036

1, 1, 2, 1, 1, 1, 1 −1.666 0.431 0.041

C. H. J. HANCOCK

1st 1, 1 1, 2 1.035 0.094 <0.001

1, 0.5 1.045 0.089 <0.001

1, 1.5 1.205 0.081 <0.001

1, 0.667 1.214 0.075 <0.001

1, 3 1.209 0.074 <0.001

1, 0.333 1.221 0.075 <0.001

1, 2 1,1.5 0.17 0.024 <0.001

1, 0.667 0.179 0.026 <0.001

1, 3 0.174 0.027 <0.001

1, 0.333 0.186 0.025 <0.001

1, 0.5 1,1.5 0.16 0.023 <0.001

1, 0.667 0.169 0.024 <0.001

1, 3 0.164 0.025 <0.001

1, 0.333 0.176 0.024 <0.001

2nd 1, 0.5, 0.5 1, 1, 1.5 1.115 0.178 <0.001

1, 1, 2 0.92 0.177 0.001

1,0.5,1 1, 1, 1.5 0.602 0.148 0.015

1,1,1 1,0.5,1 0.924 0.162 <0.001

1, 1, 1.5 1.527 0.076 <0.001

1, 1, 2 1.331 0.106 <0.001

1, 2, 2 1.02 0.123 <0.001

1, 1, 2 1, 1, 1.5 0.195 0.044 0.006

1, 2, 1 1,0.5,1 0.606 0.166 0.038

1, 1, 1.5 1.208 0.117 <0.001

1, 1, 2 1.013 0.129 <0.001

1, 2, 2 0.701 0.185 0.027

1, 2, 2 1, 1, 1.5 0.507 0.088 <0.001

1, 1, 2 0.312 0.085 0.037

3rd 1, 0.5, 0.5,0.5 1, 1, 1, 1.5 1.037 0.125 <0.001

1, 1, 1, 2 0.871 0.126 <0.001

1, 1, 1, 1 1, 0.5, 0.5,0.5 0.615 0.122 0.002

1, 1, 1, 1.5 1.651 0.074 <0.001

1, 1, 1, 2 1.485 0.101 <0.001

1, 1, 2, 1 0.571 0.126 0.007

1, 2, 1, 2 0.906 0.199 0.007

1, 1, 2, 1 1, 1, 1, 1.5 1.081 0.131 <0.001

1, 1, 1, 2 0.915 0.129 <0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.085 0.194 0.001

1, 1, 1, 2 0.919 0.198 0.006

1, 2, 1, 2 1, 1, 1, 1 −0.906 0.199 0.007

1, 1, 1, 1.5 0.745 0.19 0.028

4th 1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 −1.294 0.191 <0.001

1, 1, 1, 1, 1 −1.565 0.102 <0.001

1, 1, 1, 2, 1 −1.059 0.161 <0.001

1, 1, 2, 1, 1 −1.239 0.187 <0.001

1, 2, 1, 2, 1 −1.418 0.349 0.015

5th 1, 1, 1, 1, 1, 2 1, 0.5,

0.5,0.5,0.5,0.5

−1.608 0.201 <0.001

(Continued)
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TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1,1 −1.622 0.095 <0.001

1, 1, 1, 1, 2, 1 −1.218 0.192 <0.001

1, 1, 1, 2, 1, 1 −1.217 0.217 0.001

1, 2, 1, 1, 1, 1 −1.309 0.208 <0.001

6th 1, 1, 1, 1, 1, 1,

2

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.418 0.266 0.002

1, 1, 1, 1, 1,1,1 −1.597 0.11 <0.001

D. M. TYNER

1, 1, 1, 1, 1, 2, 1 −1.31 0.213 <0.001

1, 1, 1, 1, 2, 1,1 −1.37 0.24 0.001

1, 1, 2, 1, 1, 1, 1 −1.066 0.259 0.023

1st 1, 1 1,2 0.999 0.094 <0.001

1, 0.5 1.014 0.089 <0.001

1, 1.5 1.144 0.081 <0.001

1, 0.667 1.149 0.075 <0.001

1, 3 1.106 0.074 <0.001

1, 0.333 1.117 0.075 <0.001

1, 2 1,1.5 0.145 0.024 <0.001

1, 0.667 0.15 0.026 <0.001

1, 3 0.108 0.027 0.016

1, 0.333 0.118 0.025 0.004

2nd 1, 0.5, 0.5 1, 1, 1.5 1.041 0.178 <0.001

1, 1, 2 0.898 0.177 0.002

1, 0.5,1 1, 1, 1.5 0.55 0.148 0.033

1, 1, 1 1, 0.5, 1 0.936 0.162 <0.001

1, 1, 1.5 1.486 0.076 <0.001

1, 1, 2 1.342 0.106 <0.001

1, 2, 2 0.995 0.123 <0.001

1, 2, 1 1,0.5,1 0.615 0.166 0.034

1, 1, 1.5 1.165 0.117 <0.001

1, 1, 2 1.021 0.129 <0.001

1, 2, 2 0.674 0.185 0.038

1, 2, 2 1, 1, 1.5 0.491 0.088 0.001

1, 1, 2 0.347 0.085 0.015

3rd 1, 0.5, 0.5,0.5 1, 1, 1, 1 −0.579 0.122 0.004

1, 1, 1, 1.5 1.067 0.125 <0.001

1, 1, 1, 2 0.96 0.126 <0.001

1,0.667,0.667,0.6671, 1, 1, 1.5 1.417 0.241 <0.001

1, 1, 1, 2 1.31 0.265 0.003

1, 1, 1, 1 1, 0.5, 0.5,0.5 0.579 0.122 0.004

1, 1, 1, 1.5 1.646 0.074 <0.001

1, 1, 1, 2 1.539 0.101 <0.001

1, 1, 2, 1 0.513 0.126 0.02

1, 2, 1, 2 0.95 0.199 0.004

1, 1, 2, 1 1, 1, 1, 1.5 1.134 0.131 <0.001

1, 1, 1, 2 1.027 0.129 <0.001

1, 2, 1, 1 1, 1, 1, 1.5 1.161 0.194 <0.001

1, 1, 1, 2 1.054 0.198 0.001

4th 1, 1, 1, 1, 2 1, 0.5, 0.5,0.5,0.5 −1.352 0.191 <0.001

1, 1, 1, 1, 1 −1.638 0.102 <0.001

1, 1, 1, 1.5, 1.5 −0.86 0.235 0.038

(Continued)

TABLE 2 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 2, 1 −0.976 0.161 <0.001

1, 1, 2, 1, 1 −1.529 0.187 <0.001

1, 1, 1, 2, 1 1, 1, 1, 1, 1 −0.662 0.164 0.017

5th 1, 1, 1, 1, 1,1 1, 0.5,

0.5,0.5,0.5,0.5

0.805 0.164 0.004

1, 1, 1, 1.5, 1.5, 1.5 1.258 0.287 0.013

1, 1, 1, 1, 1,2 1, 0.5,

0.5,0.5,0.5,0.5

−0.932 0.201 0.007

1, 1, 1, 1, 1,1 −1.737 0.095 <0.001

1, 1, 1, 1, 2, 1 −1.161 0.192 <0.001

1, 1, 1, 2, 1,1 −1.147 0.217 0.002

1, 2, 1, 1, 1, 1 −1.59 0.208 <0.001

6th 1, 1, 1, 1, 1, 1,

2

1, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5

−1.555 0.266 0.001

1, 1, 1, 1, 1, 1, 1 −1.751 0.11 <0.001

1, 1, 1, 1, 1, 2, 1 −1.212 0.213 0.001

1, 1, 1, 1, 2, 1,1 −1.11 0.24 0.008

1, 1, 2, 1, 1, 1, 1 −1.614 0.259 <0.001

= 0.001). In the forth-order hierarchical models, the musician-
sequence interactions were significant [F(28) = 6.90, p < 0.001,
partial η2 = 0.43, Tables 3A,B and Figure 5]. The TP of [0, −2,
−3, −5, −6] with [1, 1, 1, 1], and [0, 1, 5, 8, 12] with [1, 1, 1,
1] was significantly lower in M. Tyner than W. J. Evans (all: p
= 0.002). The TP of [0, −2, −4, 0, −2] with [1, 1, 1, 1], [0, −3,
−7, −5, −3] with [1, 1, 1, 1], and [0, −3, 2, −1,−5] with [1, 1, 1,
1] was significantly higher in M. Tyner than W. J. Evans and H.
J. Hancock (p = 0.008, p = 0.001, and p = 0.014, respectively).
The TP of [0, −3, −2, 2, 5] with [1, 1, 1, 1] was significantly
higher in W. J. Evans than H. J. Hancock (p = 0.009) and M.
Tyner (p = 0.002). The TP of [0, −3, −2, 2, 5] with [1, 1, 1,
1] was significantly higher in W. J. Evans than H. J. Hancock
and M. Tyner (all: p < 0.001). The TP of [0, −3, −5, −7, −5]
with [1, 1, 1, 1] was significantly higher in M. Tyner than W. J.
Evans (p = 0.017). The TP of [0, −3, −2, 2, 5] with [1, 1, 1, 1]
was significantly higher in W. J. Evans than H. J. Hancock (p =

0.002) and M. Tyner (p < 0.001). The TP of [0, −3, −2, 2, 5]
with [1, 1, 1, 1] was significantly higher in H. J. Hancock than
M. Tyner (p = 0.035). In the fifth-order hierarchical models, the
musician-sequence interactions were significant [F(28) = 6.38, p
< 0.001, partial η2 = 0.42, Tables 3A,B and Figure 5]. The TP
of [0, −2, −3, −4, −5, −6] with [1, 1, 1, 1, 1], and [0, 1, 3, 5,
6, 8] with [1, 1, 1, 1, 1] was significantly lower in M. Tyner than
H. J. Hancock (p = 0.022 and p = 0.035, respectively). The TP
of [0, −2, −4, 0, −2, −4] with [1, 1, 1, 1, 1], and [0, −2, −5, 0,
−2, −5] with [1, 1, 1, 1, 1] was significantly higher in M. Tyner
than W. J. Evans and H. J. Hancock (all: p = 0.014). The TP of
[0, −3, −2, 2, 5, 9] with [1, 1, 1, 1, 1], [0, 1, 3, 4, 6, 7] with [1,
1, 1, 1, 1], and [0,3,0,1,5,8] with [1, 1, 1, 1, 1] was significantly
higher in Evans than H. J. Hancock andM. Tyner (all: p< 0.001).
In the sixth-order hierarchical models, the musician-sequence
interactions were significant [F(28) = 4.20, p < 0.001, partial
η2 = 0.32, Tables 3A,B and Figure 4]. The TP of [0,−2,−4,−7,
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−2, −4, −7] with [1, 1, 1, 1, 1, 1] was significantly higher in M.
Tyner than W. J. Evans and H. J. Hancock (all: p = 0.014). The
TP of [0, 3, 0, 1, 5, 8, 12] with [1, 1, 1, 1, 1, 1] was significantly
higher in W. J. Evans than H. J. Hancock and M. Tyner (all: p =
0.001).

Rhythm Sequence With Pitches
In the first-order hierarchical models, the main sequence effect
were significant [F(13, 234) = 4.45, p < 0.001, partial η2 = 0.20,
Table 4]. The musician-sequence interactions were significant
[F(26) = 3.54, p < 0.001, partial η2 = 0.28, Figure 6 and Table 4].
The TP of [1,1] with [0, −3, −6] was significantly lower in W.
J. Evans than M. Tyner (p = 0.037). The TP of [1, 1] with [0,
−4, −6], and [1,1] with [0, 3, 6] was significantly higher in W.
J. Evans than M. Tyner (all: p = 0.025). The TP of [1, 1] with
[0, 4, 6] was significantly higher in M. Tyner than W. J. Evans
(p = 0.001) and H. J. Hancock (p = 0.004). In the second-
order hierarchical models, the musician-sequence interactions
were significant [F(24) = 5.53, p < 0.001, partial η2 = 0.42,
Figure 6 and Table 4]. The TP of [1, 1, 1] with [0, −1, −3, −4]
was significantly lower in M. Tyner than W. J. Evans (p < 0.001)
and H. J. Hancock (p = 0.001). The TP of [1, 1, 1] with [0, −2,
−4, −2], [1, 1, 1] with [0, −3, −7, −5] was significantly higher
in M. Tyner than W. J. Evans and H. J. Hancock (p < 0.001).
The TP of [1, 1, 1] with [0, −1, −3, −4] was significantly lower
in H. J. Hancock than W. J. Evans (p = 0.007) and M. Tyner (p
= 0.001). The TP of [1, 1, 1] with [0, −2, −4, −2], and [1, 1, 1]
with [0,−3,−7,−5] was significantly higher in W. J. Evans than
H. J. Hancock (p = 0.005) and M. Tyner (p < 0.001). The TP of
[1, 1, 1] with [0, 2, 4, 5] was significantly lower in M. Tyner than
W. J. Evans (p = 0.048). The TP of [1, 1, 1] with [0, 5, 3, 0] was
significantly higher in M. Tyner than W. J. Evans (p = 0.002).
In the third-order hierarchical models, the main sequence effect
were significant [F(5.05, 90.90) = 2.91, p= 0.017, partial η2 = 0.14,
Table 4]. The musician-sequence interactions were significant
[F(26) = 5.88, p < 0.001, partial η2 = 0.40, Figure 6 and Table 4].
The TP of [1, 1, 1, 1] with [0, −1, −2, −3, −4] was significantly
lower inM. Tyner thanW. J. Evans (p= 0.040) andH. J. Hancock
(p= 0.046). The TP of [1, 1, 1, 1] with [0,−2,−4,−7,−2], [1, 1,
1, 1] with [0, −2, 2, 0, −2] were significantly higher in M. Tyner
than W. J. Evans (p = 0.008 and p = 0.015, respectively) and H.
J. Hancock (p = 0.008 and p = 0.015, respectively). The TP of
[1, 1, 1, 1] with [0, −3, −2, 2, 5] was significantly higher in W.
J. Evans than H. J. Hancock and M. Tyner (all: p = 0.001). The
TP of [1, 1, 1, 1] with [0, −3, 2, 0, −3] was significantly lower
in W. J. Evans than M. Tyner (p = 0.038). The TP of [1, 1, 1,
1] with [0, 1, 3, 4, 6], and [1, 1, 1, 1] with [0, 2, 3, 5, 6] was
significantly higher inW. J. Evans thanM. Tyner (p= 0.046 and p
= 0.002, respectively). The TP of [1, 1, 1, 1] with [0, 1, 5, 8, 12] was
significantly higher inW. J. Evans than H. J. Hancock (p= 0.006)
andM. Tyner (p< 0.001). In the forth-order hierarchical models,
musician-sequence interactions were significant [F(28) = 5.58, p
< 0.001, partial η2 = 0.38, Figure 6 and Table 4]. The TP of [1,
1, 1, 1, 1] with [0, −2, −4, −7, −2, −4], and [1, 1, 1, 1, 1] with
[0,−2,−5, 0,−2,−5] were significantly higher in M. Tyner than
W. J. Evans and H. J. Hancock (all: p = 0.008). The TP of [1, 1,
1, 1, 1] with [0, −3, −2, 2, 5, 9], [1, 1, 1, 1, 1] with [0, 1, 3, 4,

6, 7], and [1, 1, 1, 1, 1] with [0, 3, 0, 1, 5, 8], were significantly
higher in W. J. Evans than H. J. Hancock and M. Tyner (all: p
< 0.001). In the fifth-order hierarchical models, the musician-
sequence interactions were significant [F(28) = 2.31, p < 0.001,
partial η2 = 0.21, Figure 6 and Table 4]. The TP of [1, 1, 1, 1, 1,
1] with [0, −2, −4, −7, −2, −4, −7] was significantly higher in
M. Tyner than W. J. Evans and H. J. Hancock (all: p= 0.008).

Regression Analysis
Pitch Sequence Without Rhythms
Results were shown in Table 5A. In W. J. Evans, no significant
regression equation was detected in the first-, second-, forth-,
and sixth-order hierarchical models. In the third-order
hierarchical model, a significant regression equation was found
[F(2, 4) = 16.19, p = 0.012], with an adjusted R2 of 0.84. The
predicted chronological order is equal to 9.43–17.98 (transition
of [0, −3, −7, −5]) −7.23 (transition of [0, 2, 4, 5]). The
TPs of [0, 2, 4, 5] and [0, −3, −7, −5] gradually decreased
consistently with the ascending chronological order ([0, −3,
−7, −5] p = 0.007, [0, 2, 4, 5] p = 0.031). In the fifth-order
hierarchical model, a significant regression equation was found
[F(1, 5) = 14.74, p = 0.012], with an adjusted R2 of 0.70. The
predicted chronological order is equal to 5.33–9.31 (transition of
[0, 2, 3, 5, 7, 8]). The TPs of [0, 2, 3, 5, 7, 8] gradually decreased
consistently with the ascending chronological order (p = 0.012).
In H. J. Hancock, no significant regression equation was detected
in all of the hierarchical models. In M. Tyner, no significant
regression equation was detected in the first-, third-, forth-,
fifth-, and sixth-order hierarchical models. Only in the second-
order hierarchical model, a significant regression equation was
found [F(2, 4) = 31.04, p = 0.004], with an adjusted R2 of 0.91.
The predicted chronological order is equal to −3.68 + 28.30
(transition of [0, −2, −5]) + 10.59 (transition of [0, 2, 0]). The
TPs of [0, −2, −5] and [0, 2, 0] gradually increased consistently
with the ascending chronological order ([0, −2, −5] p = 0.003,
[0, 2, 0] p = 0.038). These TPs were significant predictors of the
chronological order.

Rhythm Sequence Without Pitches
Results were shown in Table 5B. In W. J. Evans, no significant
regression equation was detected in the first-, third-, forth-
, fifth-, and sixth-order hierarchical models. In the second-
order hierarchical model, a significant regression equation was
found [F(1, 5) = 16.85, p = 0.009], with an adjusted R2 of 0.73.
The predicted chronological order is equal to −1.29 + 17.75
(transition of [1, 2, 2]). The TPs of [1, 2, 2] gradually increased
consistently with the ascending chronological order (p = 0.009).
In H. J. Hancock, no significant regression equation was detected
in the second-, third-, forth-, fifth-, and sixth-order hierarchical
models. In the first-order hierarchical model, a significant
regression equation was found [F(3, 3) = 82.70, p = 0.002], with
an adjusted R2 of 0.98. The predicted chronological order is equal
to 12.73–583.67 (transition of [1, 0.333])−79.86 (transition of
[1, 1.5]) + 33.53 (transition of [1, 2]). The TPs of [1, 0.333]
and [1, 1.5] gradually decreased and those of [1, 2] gradually
increased consistently with the ascending chronological order (p
= 0.001, p = 0.007, and p = 0.034, respectively). In M. Tyner, no
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FIGURE 4 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in rhythm sequences without pitches.

significant regression equation was detected in the first-, second-,
third-, fifth-, and sixth-order hierarchical models. In the forth-
order hierarchical model, a significant regression equation was
found [F(1, 5) = 9.08, p= 0.030], with an adjusted R2 of 0.57. The

predicted chronological order is equal to 0.82 + 5.37 (transition
of [1, 2, 1, 2, 1]). The TPs of [1, 2, 1, 2, 1] gradually increased
consistently with the ascending chronological order (p = 0.030).
These TPs were significant predictors of the chronological order.
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FIGURE 5 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in pitch sequence with rhythms.
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TABLE 3 | The difference in TPs among pitch sequences with rhythms in each

musician.

Order Sequence A Sequence B A-B SE p-value

A. WJ. EVANS

3rd 0, −1, −2, −3 with 1,

0.5, 0.5

0, −2, 2, 0 with 1, 1, 1 1.461 0.333 0.038

0, 1, 5, 8 with 1, 1, 1 0, −2, −5, −7 with 1,

1, 1

1.56 0.24 <0.001

0, −4, 3, 0 with 1, 1, 1 1.569 0.356 0.035

0, 1, 3, 5 with 1, 1, 1 1.318 0.295 0.032

4th 0, −2, −3, −5, −6 with

1, 1, 1, 1

0, −3, −7, −5, −3 with

1, 1, 1, 1

1.461 0.338 0.043

0, −4, −2, 0, 1 with 1,

1, 1, 1

1.461 0.332 0.037

0, 1, 3, 2, 1 with 1, 1,

1, 1

1.461 0.305 0.015

0, −3, −2,0,1 with 1,

1, 1, 1

0, 1, 3, 2, 1 with 1, 1,

1, 1

1.362 0.301 0.027

0,−3,−2,2,5 with 1, 1,

1, 1

0, −2, −4, 0, −2 with

1, 1, 1, 1

1.774 0.314 0.002

0, −3, −5, −7, −5 with

1, 1, 1, 1

1.774 0.335 0.005

0, −3, −7, −5, −3 with

1, 1, 1, 1

1.774 0.292 0.001

0, −3, 2, −1, −5 with

1, 1, 1, 1

1.774 0.301 0.001

0, −4, −2, 0, 1 with 1,

1, 1, 1

1.774 0.327 0.004

0, 1, 3, 2, 1 with 1, 1,

1, 1

1.774 0.314 0.002

0, 2, 3, 5, 7 with 1, 1,

1, 1

1.376 0.297 0.022

0, 1, 5, 8,12 with 1, 1,

1, 1

0, −2, −4, 0, −2 with

1, 1, 1, 1

1.664 0.38 0.038

0, −3, −7, −5, −3 with

1, 1, 1, 1

1.664 0.361 0.023

0,−3, 2, −1, −5 with 1,

1, 1, 1

1.664 0.369 0.028

0, −4, −2, 0, 1 with 1,

1, 1, 1

1.664 0.376 0.034

0, 1, 3, 2, 1 with 1, 1,

1, 1

1.664 0.365 0.026

0, 2, 3, 5, 6 with 1, 1,

1, 1

0, −3, −7, −5, −3 with

1, 1, 1, 1

1.328 0.289 0.024

0, −3, 2, −1, −5 with

1, 1, 1, 1

1.328 0.299 0.033

0, −4, −2, 0, 1 with 1,

1, 1, 1

1.328 0.31 0.047

5th 0, −3, −2, 2, 5, 9 with

1, 1, 1, 1, 1

0, −2, −3, −4, −5, −6

with 1, 1, 1, 1, 1

1.304 0.291 0.031

0, −2, −4, 0, −2, −4

with 1, 1, 1, 1, 1

1.461 0.299 0.013

0, −2, −5, 0, −2, −5

with 1, 1, 1, 1, 1

1.461 0.299 0.013

0,−3,−2,0,−1,−2 with

1, 1, 1, 1, 1

1.461 0.312 0.02

0, −3, −5, −7, −3, −5

with 1, 1, 1, 1, 1

1.461 0.312 0.02

0, −3, −7, −5, −3, −7

with 1, 1, 1, 1, 1

1.461 0.312 0.02

(Continued)

TABLE 3 | Continued

Order Sequence A Sequence B A-B SE p-value

0, −4, 3, 0, −2, −4

with 1, 1, 1, 1, 1

1.461 0.312 0.02

0, 1, 3, 4, 6, 7 with 1,

1, 1, 1, 1

0, −2, −3, −4, −5, −6

with 1, 1, 1, 1, 1

1.435 0.29 0.011

0, −2, −4, 0, −2, −4

with 1, 1, 1, 1, 1

1.591 0.294 0.004

0, −2, −5, 0, −2, −5

with 1, 1, 1, 1, 1

1.591 0.294 0.004

0,−3,−2,0,−1,−2 with

1, 1, 1, 1, 1

1.591 0.308 0.007

0, −3, −5, −7, −3, −5

with 1, 1, 1, 1, 1

1.591 0.308 0.007

0, −3, −7, −5, −3, −7

with 1, 1, 1, 1, 1

1.591 0.308 0.007

0, −4, 3, 0, −2, −4

with 1, 1, 1, 1, 1

1.591 0.308 0.007

0, 3, 0, 1, 5, 8 with 1,

1, 1, 1, 1

0, −2, −3, −4, −5, −6

with 1, 1, 1, 1, 1

1.413 0.331 0.048

0, −2, −4, 0, −2, −4

with 1, 1, 1, 1, 1

1.569 0.335 0.019

0, −2, −5, 0, −2, −5

with 1, 1, 1, 1, 1

1.569 0.335 0.019

0, −3, −2, 0, −1, −2

with 1, 1, 1, 1, 1

1.569 0.347 0.028

0, −3, −5, −7, −3, −5

with 1, 1, 1, 1, 1

1.569 0.347 0.028

0, −3, −7, −5, −3, −7

with 1, 1, 1, 1, 1

1.569 0.347 0.028

0, −4, 3, 0, −2, −4

with 1, 1, 1, 1, 1

1.569 0.347 0.028

6th 0, 3, 0, 1, 5, 8, 12 with

1, 1, 1, 1, 1, 1

0,−1, −3, −4, −5, −6,

−7 with 1, 1, 1, 1, 1, 1

1.413 0.322 0.038

0, −2, −4, −7, −2, −4,

−7 with 1, 1, 1, 1, 1, 1

1.413 0.331 0.048

0, −2, −4, 0, −2,

−4,−7 with 1, 1, 1, 1,

1, 1

1.413 0.327 0.043

0, −2, −5,

−7,−3,−5,−7 with 1,

1, 1, 1, 1, 1

1.413 0.327 0.043

0, −2, −5, 0, −2,

−5,−8 with 1, 1, 1, 1,

1, 1

1.413 0.322 0.038

B. M. TYNER

3rd 0, 3, 0, 1 with 1, 1, 1 0, 4, 2, 0 with 1, 1, 1 −1.558 0.322 0.014

4th 0, −3, −7, −5, −3 with

1, 1, 1, 1

0, −3, −2, 0, 1 with 1,

1, 1, 1

1.413 0.327 0.044

0, −3, −2, 2, 5 with 1,

1, 1, 1

1.413 0.292 0.014

0, 2, 3, 5, 6 with 1, 1,

1, 1

1.413 0.289 0.013

Pitch Sequence With Rhythms
Results were shown in Table 5C. In W. J. Evans, no significant
regression equation was detected in all of the hierarchical models.
In H. J. Hancock, no significant regression equation was detected
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TABLE 4 | The difference in TPs among rhythm sequences with pitches in each

musician.

Order Sequence A Sequence B A-B SE p-value

A. GENERAL

1st 1, 1 with 0, 4, 6 1, 1 with 0, −1, −3 −0.948 0.185 0.006

1, 1 with 0, −2, −3 −0.883 0.177 0.009

1, 1 with 0, 1, 2 −0.971 0.16 0.001

1, 1 with 0, 2, 3 −1.114 0.176 0.001

1, 1 with 0, 3, 7 −1.015 0.212 0.013

3rd 1, 1, 1, 1 with 0,

1, 3, 4, 6

1, 1, 1, 1 with 0, 2, 4,

6, 8

0.891 0.2 0.028

B. WJ. EVANS

1st 1, 1 with 0, 4, 6 1, 1 with 0, −1, −3 −1.752 0.32 0.003

1, 1 with 0, −2, −3 −1.337 0.307 0.035

1, 1 with 0, −2, −4 −1.863 0.429 0.036

1, 1 with 0, −4, −6 −1.791 0.331 0.004

1, 1 with 0, 1, 2 −1.84 0.277 <0.001

1, 1 with 0, 2, 3 −1.945 0.305 <0.001

1, 1 with 0, 3, 6 −1.863 0.338 0.003

1, 1 with 0, 3, 7 −1.716 0.367 0.017

2nd 1, 1, 1 with 0,

−1, −3,−4

1, 1, 1 with 0, −2,

−4,−2

2.197 0.327 <0.001

1, 1, 1 with 0, −3,

−7, −5

2.197 0.289 <0.001

1, 1, 1 with 0, 2, 4, 6 1.569 0.359 0.028

1, 1, 1 with 0,5,3,0 2.197 0.489 0.022

1, 1, 1 with 0,

−2, −4,−2

1, 1, 1 with 0,1,5,8 −1.924 0.329 0.001

1, 1, 1 with 0, 2, 3,5 −1.83 0.387 0.013

1, 1, 1 with 0,

−3, −7, −5

1, 1, 1 with 0, −2,

−5, −9

−1.461 0.329 0.025

1, 1, 1 with 0,1,5,8 −1.924 0.308 0.001

1, 1, 1 with

0,1,5,8

1, 1, 1 with 0,5,3,0 1.924 0.437 0.027

1, 1, 1 with

0,2,4,5

1, 1, 1 with 0, −2,

−4,−2

2.197 0.413 0.004

1, 1, 1 with 0, −3,

−7, −5

2.197 0.423 0.005

1, 1, 1 with 0, 2, 4, 6 1.569 0.356 0.026

3rd 1, 1, 1, 1 with 0,

−3, −2, 2, 5

1, 1, 1, 1 with 0, −2,

−4,−7,−2

1.883 0.314 0.001

1, 1, 1, 1 with 0, −2,

−5, 0, −2

1.883 0.339 0.003

1, 1, 1, 1 with 0, −2,

2, 0, −2

1.883 0.285 <0.001

1, 1, 1, 1 with 0, −3,

2, 0, −3

1.883 0.356 0.004

1, 1, 1, 1 with 0, 2, 4,

6, 8

1.883 0.242 <0.001

1, 1, 1, 1 with 0,

1, 3, 4, 6

1, 1, 1, 1 with 0, −2,

2, 0, −2

1.696 0.373 0.022

1, 1, 1, 1 with 0, 2, 4,

6, 8

1.696 0.346 0.01

1, 1, 1, 1 with 0,

1, 5, 8, 12

1, 1, 1, 1 with 0, −2,

−4,−7,−2

1.931 0.362 0.004

1, 1, 1, 1 with 0, −2,

−5, 0, −2

1.931 0.411 0.016

(Continued)

TABLE 4 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1 with 0, −2,

2, 0, −2

1.931 0.336 0.002

1, 1, 1, 1 with 0, −3,

2, 0, −3

1.931 0.425 0.023

1, 1, 1, 1 with 0, 2, 4,

6, 8

1.931 0.332 0.001

1, 1, 1, 1 with 0,

2, 3, 5, 6

1, 1, 1, 1 with 0, −2,

−4, −7, −2

1.844 0.404 0.022

1, 1, 1, 1 with 0, −2,

2, 0, −2

1.844 0.382 0.012

1, 1, 1, 1 with 0, 2, 4,

6, 8

1.844 0.391 0.016

4th 1, 1, 1, 1, 1 with

0, −3, −2, 2, 5,9

1, 1, 1, 1, 1 with 0,

−2, −4, −7, −2, −4

1.678 0.325 0.007

1, 1, 1, 1, 1 with 0,

−2, −5, 0, −2,−5

1.678 0.325 0.007

1, 1, 1, 1, 1 with

0,−3,0,0,−3,0,−1,

1.5,1.5,1, 1.5

1.678 0.269 0.001

1, 1, 1, 1, 1 with 0,

−3,2, −1, −5, −3

1.678 0.307 0.004

1, 1, 1, 1, 1 with 0,

−4, −7, −2, −5, −9

1.678 0.307 0.004

1, 1, 1, 1, 1 with 0, 0,

−3, 0, 0, −3, −1,

0.667, 1, 1, 0.667

1.678 0.269 0.001

1, 1, 1, 1, 1 with 0, 2,

4, 6, 8,10

1.678 0.269 0.001

1, 1, 1, 1, 1 with 0, 4,

2, 0, −3, 2

1.678 0.307 0.004

1, 1, 1, 1, 1 with

0, 1, 3, 4, 6, 7

1, 1, 1, 1, 1 with 0,

−2, −4,−7,−2,−4

1.839 0.312 0.001

1, 1, 1, 1, 1 with 0,

−2, −5, 0, −2, −5

1.839 0.312 0.001

1, 1, 1, 1, 1 with 0,

−3, 0, 0, −3, 0, −1,

1.5, 1.5, 1, 1.5

1.839 0.255 <0.001

1, 1, 1, 1, 1 with 0,

−3,2, −1, −5, −3

1.839 0.294 0.001

1, 1, 1, 1, 1 with 0,

−4, −7, −2, −5, −9

1.839 0.294 0.001

1, 1, 1, 1, 1 with 0, 0,

−3, 0, 0, −3, −1,

0.667, 1, 1, 0.667

1.839 0.255 <0.001

1, 1, 1, 1, 1 with 0, 2,

4, 6, 8,10

1.839 0.255 <0.001

1, 1, 1, 1, 1 with 0, 4,

2, 0, −3, 2

1.839 0.294 0.001

1, 1, 1, 1, 1 with

0, 3, 0, 1, 5, 8

1, 1, 1, 1, 1 with 0,

−2, −4, −7, −2, −4

1.569 0.347 0.028

1, 1, 1, 1, 1 with 0,

−2, −5, 0, −2, −5

1.569 0.347 0.028

1, 1, 1, 1, 1 with 0,

−3, 0, 0, −3, 0, −1,

1.5, 1.5, 1, 1.5

1.569 0.296 0.005

1, 1, 1, 1, 1 with 0,

−3, 2, −1, −5, −3

1.569 0.331 0.017

(Continued)
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TABLE 4 | Continued

Order Sequence A Sequence B A-B SE p-value

1, 1, 1, 1, 1 with 0,

−4, −7, −2, −5, −9

1.569 0.331 0.017

1, 1, 1, 1, 1 with 0, 0,

−3, 0, 0, −3, −1,

0.667, 1, 1, 0.667

1.569 0.296 0.005

1, 1, 1, 1, 1 with 0, 2,

4, 6, 8,10

1.569 0.296 0.005

1, 1, 1, 1, 1 with 0, 4,

2, 0, −3, 2

1.569 0.331 0.017

C. H. J. HANCOCK

1st 1, 1 with 0, 4, 6 1, 1 with 0, −1, −3 −1.394 0.32 0.035

1, 1 with 0, −2, −3 −1.327 0.307 0.038

1, 1 with 0, 1, 2 −1.343 0.277 0.012

1, 1 with 0, 2, 3 −1.445 0.305 0.015

1, 1 with 0, 3, 5 −1.519 0.355 0.041

2nd 1, 1, 1 with 0,

−1, −3,−4

1, 1, 1 with 0, −2,

−4, −2

1.377 0.327 0.041

1, 1, 1 with 0, −3,

−7, −5

1.485 0.289 0.005

3rd 1, 1, 1, 1 with 0,

−3, −2, 2, 5

1, 1, 1, 1 with 0, 2,

3,5,7

−1.525 0.353 0.038

1, 1, 1, 1 with 0, 2, 4,

5, 7

−1.501 0.357 0.048

D. M. TYNER

2nd 1, 1, 1 with 0,

−1, −3,−4

1, 1, 1 with 0, −2,

−4,−2

−1.618 0.327 0.008

1, 1, 1 with 0, −2,

−5, −9

−1.774 0.368 0.011

1, 1, 1 with 0, −3,

−7, −5

−1.799 0.289 0.001

1, 1, 1 with

0,1,5,8

1, 1, 1 with 0, −2,

−4,−2

−1.618 0.329 0.009

1, 1, 1 with 0, −2,

−5, −9

−1.774 0.342 0.005

1, 1, 1 with 0, −3,

−7, −5

−1.799 0.308 0.001

3rd 1, 1, 1, 1 with 0,

−2, −5, 0, −2

1, 1, 1, 1 with 0, 2, 4,

6, 8

1.038 0.223 0.018

in the first-, third-, forth-, fifth-, and sixth-order hierarchical
models. In the second-order hierarchical model, a significant
regression equation was found [F(1, 5) = 8.33, p = 0.034], with
an adjusted R2 of 0.55. The predicted chronological order is
equal to 3.0 + 10.50 (transition of [0, 4, 2] with [1, 2]). The
TPs of [0, 4, 2] with [1, 2] gradually increased consistently with
the ascending chronological order (p = 0.034). In M. Tyner,
no significant regression equation was detected in the first-
, second-, fifth-, and sixth-order hierarchical models. In the
third-order hierarchical model, a significant regression equation
was found [F(1, 5) = 12.99, p = 0.015], with an adjusted R2

of 0.67. The predicted chronological order is equal to 5.44–
3.72 (transition of [0, 0, 0, 0] with [1, 1, 1]). The TPs of [0,
0, 0, 0] with [1, 1, 1] gradually decreased consistently with the
ascending chronological order (p = 0.015). In the forth-order
hierarchical model, a significant regression equation was found

[F(1, 5) = 7.35, p = 0.042], with an adjusted R2 of 0.51. The
predicted chronological order is equal to 5.67–3.33 (transition
of [0, −3, 2, −1, −5] with [1, 1, 1, 1]). The TPs of [0, −3, 2,
−1, −5] with [1, 1, 1, 1] gradually decreased consistently with
the ascending chronological order (p = 0.042). These TPs were
significant predictors of the chronological order.

Rhythm Sequence With Pitches
Results were shown in Table 5D. In W. J. Evans, no significant
regression equation was detected in the first-, third-,
and sixth-order hierarchical models. In the second-order
hierarchical model, a significant regression equation was found
[F(2, 4) = 13.80, p = 0.016], with an adjusted R2 of 0.81. The
predicted chronological order is equal to 3.61–4.72 (transition
of [1, 1, 1] with [0, 2, 4, 6]) + 2.61 (transition of [1, 1, 1]
with [0, −2, −5, −9]). The TPs of [1, 1, 1] with [0, 2, 4, 6]
gradually decreased (p = 0.006) and the TPs of [1, 1, 1] with
[0, −2, −5, −9] gradually increased (p = 0.049) consistently
with the ascending chronological order. In the forth-order
hierarchical model, a significant regression equation was found
[F(1, 5) = 17.72, p = 0.008], with an adjusted R2 of 0.74.
The predicted chronological order is equal to 5.33–629.65
(transition of [1, 1, 1, 1, 1] with [0, −3, −2, 0, 1, 3]). The TPs
of [1, 1, 1, 1, 1] with [0, −3, −2, 0, 1, 3] gradually decreased
consistently with the ascending chronological order (p =

0.008). In the fifth-order hierarchical model, a significant
regression equation was found [F(1, 5) = 8.33, p = 0.034],
with an adjusted R2 of 0.55. The predicted chronological
order is equal to 5.00–3.50 (transition of [1, 1, 1, 1, 1, 1] with
[0, −3, −2, 0, 1, 3, 4]). The TPs of [1, 1, 1, 1, 1, 1] with [0,
−3, −2, 0, 1, 3, 4] gradually decreased consistently with the
ascending chronological order (p = 0.034). In H. J. Hancock,
no significant regression equation was detected in the second-,
third-, forth-, fifth-, and sixth-order hierarchical models. In the
first-order hierarchical model, a significant regression equation
was found [F(1, 5) = 15.06, p = 0.012], with an adjusted R2 of
0.70. The predicted chronological order is equal to 12.64–11.40
(transition of [1, 1] with [0, −2, −3]). The TPs of [1, 1] with
[0, −2, −3] gradually decreased consistently with the ascending
chronological order (p = 0.012). These TPs were significant
predictors of the chronological order. In M. Tyner, no significant
regression equation was detected in all of the hierarchical
models.

Time-Course Variation of Entropy
Results were shown in Table 6. In the rhythm sequence with
pitches in H. J. Hancock, significant regression equation was
detected in the higher- but not lower-order hierarchical models.
In the fifth-order hierarchical model, a significant regression
equation was found [F(1, 5) = 10.58, p = 0.023], with an
adjusted R2 of 0.62. The predicted chronological order is equal
to 5.73–193.34. The entropies of rhythm sequence with pitches
gradually decreased (p = 0.023) consistently with the ascending
chronological order. In the sixth-order hierarchical model, a
significant regression equation was found [F(1, 5) = 9.28, p =

0.029], with an adjusted R2 of 0.58. The predicted chronological
order is equal to 5.67–272.31. The entropies of rhythm sequence
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FIGURE 6 | The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in rhythm sequence with pitches.
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TABLE 5 | Regression analyses based on the stepwise method.

Model 1 Model 2

Variable B SE B β VIF CI B SE B β VIF CI

A. PITCH TRANSITION

W. J. Evans Third 0, −3, −7, −5 −16.36 5.99 −0.77* 1.00 2.36 −17.98 3.54 −0.85** 1.02 2.45

0, 2, 4, 5 −7.22 2.22 −0.55* 1.02 8.40

R2 0.52 0.84

F 7.46* 16.19*

Fifith 0, 2, 3, 5, 7, 8 −5.58 1.45 −0.86* 1.00 2.03

R2 0.70

F 14.74*

M. Tyner Second 0, −2, −5 31.21 7.67 0.88* 1.00 7.34 28.30 4.47 0.80** 1.04 5.18

0,2,0 10.59 3.15 0.42* 1.04 8.96

R2 0.72 0.91

F 16.56* 31.04**

B. RHYTHM TRANSITION

W. J. Evans Second 1, 2, 2 17.75 4.33 0.88** 1.00 6.19

R2 0.73

F 16.85**

H. J. Hancock First 1, 0.333 −506.2 129.84 −0.87* 1.00 10.04 −471.7 76.01 −0.81** 1.02 2.83

1, 1.5 −40.48 12.27 −0.43* 1.02 11.62

R2 0.70 0.90

F 15.20* 28.05**

M. Tyner Forth 1, 2, 1, 2, 1 5.37 1.78 0.80* 1.00 4.20

R2 0.57

F 9.08*

C. PITCH TRANSITION WITH RHYTHM

H. J. Hancock Second 0,4,2 with 1,2 10.50 3.64 0.79* 1.00 1.82

R2 0.55

F 8.33*

M. Tyner Third 0, 0, 0, 0 with 1, 1, 1 −3.72 1.03 −0.85* 1.00 2.16

R2 0.67

F 12.99*

Forth 0, −3, 2, −1, −5 with 1, 1,

1, 1

−3.33 1.23 −0.77* 1.00 2.55

R2 0.51

F 7.35*

D. RHYTHM TRANSITION WITH PITCH

W. J. Evans Second 1, 1, 1 with 0, 2, 4, 6 −3.50 1.21 −0.79* 1.00 1.82 −4.72 0.90 −1.07** 1.30 2.20

1, 1, 1 with 0, −2, −5, −9 2.61 0.93 0.57* 1.30 4.09

R2 0.55 0.81

F 8.33* 13.80*

Forth 1, 1, 1, 1, 1 with 0, −3, −2,

0, 1, 3

−629.6 149.6 −0.88** 1.00 1.00

R2 0.74

F 17.72**

Fifth 1, 1, 1, 1, 1, 1 with 0, −3,

−2, 0, 1, 3,4

−3.50 1.21 −0.79* 1.00 1.82

R2 0.55

F 8.33*

H. J. Hancock First 1, 1 with 0, −2, −3 −11.40 2.94 −0.87* 1.00 10.07

R2 0.70

F 15.06*

*p < 0.05, **p < 0.01. SE, standard error; VIF, variance inflation factor; CI, condition index.
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TABLE 6 | Time–course variation of entropy (rhythm sequence with entropies).

Model

Hierarchy Variable B SE B β VIF CI

Fiffth Rhythm

sequence with

pitches in

Hancock

−193.34 59.44 −0.82* 1.00 2.50

R2 0.62

F 10.58*

Sixth Rhythm

sequence with

pitches in

Hancock

−272.31 89.38 −0.81* 1.00 2.47

R2 0.58

F 9.28*

*p < 0.05. SE, standard error; VIF, variance inflation factor; CI, condition index.

with pitches gradually decreased (p = 0.029) consistently with
the ascending chronological order. No significant regression
equation was detected in W.J. Evans and M.Tyner.

DISCUSSION

Interpretation of Multi-Order Hierarchical
Models for Implicit Learning
In the context of implicit-learning models on information theory
and predictive coding (Friston, 2005; Pearce and Wiggins, 2012;
Rohrmeier and Rebuschat, 2012), the TP distribution sampled
from musical improvisation based on n-order Markov models
may refer to the characteristics of a composer’s superficial-to-
deep (i.e., n-order) implicit knowledge: a tone with high TP
compared to a tone with a low TP may be one that a composer
is more likely to predict and choose based on the latest n tones.
The notion has been neurophysiologically demonstrated by our
previous studies on predictive coding (Daikoku et al., 2017b).
Using the various-order Markov stochastic models that unify
temporal and spectral features in musical improvisation, the
present study investigated the stochastic difference of temporal
and spectral features among musicians, and clarified which
information (pitch and rhythm) and depth (1st to 6th orders)
represent the individualities of improvisational creativity and
how they interact with each other.

Hierarchy
The results of principal component analysis (PCA) suggested
that the lower-order models represented general statistical
characteristics shared among musicians, whereas higher-order
models represented specific statistical characteristics that were
unique to each musician (Figure 1). In the 1st-order models
of any type of temporal and spectral sequences, and 2nd-order
models of sequences other than pitch sequence with rhythm,
component 1 showed general characteristics in improvisation.
These results suggest that the individuality of improvisational
creativity depends on the depth of implicit knowledge. This
hypothesis could also be underpinned by ANOVA results. To

understand the differences between TPs in each sequence among
musicians, only the transitional patterns with first to fifth highest
TPs from each musician, which showed higher predictabilities
in each musician, were analyzed using an ANOVA. In lower-
order models, universal sequences that are common among
musicians could be detected. For example, in a 1st-order model
of pitch sequence without rhythm (Figure 3, top), the extracted
sequences of [0, 0], [0, −1], [0, 1], [0, −2], [0, 2], [0, −3], and
[0, 3] correspond to repetition of the same tone, and semi-tone,
whole-tone, and minor-third transitions. These sequences are
frequently exploited in many types of music (e.g., Classical, Jazz),
are easier to immediately play because of the small pitch intervals,
and lead to a smooth melody. However, in the 6th-order model
(Figure 3, bottom), the TPs for the sequences of [0, 3, 0, 1, 5,
8, 12] and [0, −2, −4, −7, −2, −4, −7] were different among
musicians. Although the difference could also be detected even
in the 1st-order model, higher-order models showed a larger
difference of TPs among musicians, suggesting that individuality
of musical prediction and production is larger with a deeper
implicit knowledge. In summary, the results of the present study
suggest that the individuality of improvisational creativity may
be formed by deeper implicit knowledge, whereas lower-order
implicit knowledge may be shared among musicians.

Pitch and Rhythm
In the pitch sequences with and without rhythms and the
rhythm sequence with pitches (Figures 1A,C,D), W. J. Evans’
and M. Tyner’s components could be detected in any-order
model. In a rhythm sequence without pitch (Figure 1B), however,
no obvious difference among musicians could be detected.
These results suggest that individuality of musical creativity is
shaped by spectral, rather than temporal, implicit knowledge.
However, the results also suggest that temporal knowledge at
least contributes to formation of individuality; TP distribution
of pitch sequences “with” rhythms, compared to those “without”
rhythms, showed clear individuality among three musicians
from a lower-order model (i.e., 4th-order model). Additionally,
in two types of rhythm sequences without and with pitches
(Figures 2B,D, respectively), TP distribution with, but not
without, pitches showed individuality of improvisation. This
suggests that temporal and spectral implicit knowledge interact
with each other. The ANOVA results support these PCA findings.
In lower-order models, the extent of the difference in TPs among
musicians is larger for pitch sequences with rhythms (Figure 7)
than for those without rhythm (Figure 3). Additionally, in two
types of rhythm sequences without and with pitches (Figures 5,
7, respectively), the extent of the TP difference among musicians
is larger in rhythm sequences with, compared to without,
pitches. Together, these results suggest that the individuality of
improvisational creativity may essentially be formed by pitch, but
not rhythm, implicit knowledge. However, implicit knowledge of
rhythm may strengthen individuality.

Time-Course Variation of Implicit
Knowledge
In all types of spectro-temporal sequences of each hierarchy,
time-course variation of TPs in some sequences could be
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detected. There were two types of time-course variations: TPs that
gradually decrease, and those that gradually increase, consistent
with the chronological order. Thus, implicit knowledge of pitch
and rhythm could be shifted over a musician’s life. However,
the findings suggested that the time-course variations in TPs
do not depend on hierarchy and spectro-temporal features,
while the individuality among musicians may depend on these
features. This suggests that the shifts in implicit knowledge may
occur in each musician’s lifetime, regardless of spectro-temporal
features and the depth of knowledge. It may be interesting to
investigate if the findings of gradual shifts in TPs reflect those of
implicit knowledge via experience and training. Learning to play
the piano enhances auditory-motor skills based on procedural
knowledge (Norgaard, 2014), which corresponds to implicit
knowledge (Clark and Squire, 1998; Ullman, 2001; Paradis,
2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus,
through experience and long-term training over the player’s
life, implicit knowledge that is tied to musical expression may
shift (Daikoku et al., 2012). On the other hand, the time-
course variations of the entropies, which represent uncertainly in
music (Pearce and Wiggins, 2006), could be detected in higher-
order hierarchy in one musician. Future study is needed to
investigate the relationships of time-course variation between
specific phrase and general uncertainty. In addition, the results
of the present study cannot completely support the hypothesis
because time-course variations among only seven pieces of
music for each musician were investigated. Further research is
needed to verify a larger number of music pieces in a musician’s
lifetime, and to examine behavioral and neurophysiological
results.

General Discussion: Informatics and
Neural Aspects in Musical Creativity
In summary, the present study found three types of results
on improvisational music and implicit knowledge: hierarchy,
spectro-temporal features, and time-course variation. First, the
lower-order TP distribution represented general characteristics
shared among musicians, whereas higher-order TP distribution
detected specific characteristics that were unique to each
musician. Thus, the individuality of improvisational creativity
might be formed by deeper (i.e., higher-order), but not
superficial (i.e., lower-order), implicit knowledge. Second,
the TP distribution with pitch information detected specific
characteristics that were unique to each musician, whereas
the TP distribution with only rhythm information could not
detect differences among musicians. Thus, the individuality of
improvisational creativity may essentially be formed by spectral
(i.e., pitch), but not temporal (i.e., rhythm), implicit knowledge,
whereas the rhythms may allow the individuality of pitches to
strengthen. Third, TPs of some phrase were gradually decreased,
and increased consistent with the chronological order for each
musician, regardless of hierarchy and spectro-temporal feature
in the TP distributions. Thus, time-course variation of implicit
knowledge in pitches and rhythms may occur throughout a
musician’s lifetime regardless of the depth of knowledge. On the
other hand, the time-course variations of the entropies, which

represent uncertainly in music (Pearce andWiggins, 2006), could
be detected in higher-order hierarchy in one musician.

It is generally considered that musical expression in
improvisation is mainly shaped by tacit knowledge (Delie‘ge et al.,
1996; Koelsch et al., 2000; Delie‘ge, 2001; Bigand and Poulin-
Charronnat, 2006; Ettlinger et al., 2011; Koelsch, 2011; Huron,
2012). Particularly, the expression of musical improvisation,
compared to other types of musical composition in which a
composer deliberates a composition scheme for a long time based
on musical theory, forces musicians to continually predict each
forthcoming tone, and immediately play the melody based on
intuitive decision-making and auditory-motor planning, which
are considered to tie in with procedural and implicit knowledge
(Berry and Dienes, 1993; Reber, 1993; Clark and Squire, 1998;
Ullman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Norgaard,
2014; Müller et al., 2016; Perkovic and Orquin, 2017). Thus,
the musical improvisation may be more strongly related to
the implicit knowledge, compared to other types of music.
Few studies have investigated the relationship between musical
improvisation and implicit learning via computational model
(Norgaard, 2014) and neural correlate (Adhikari et al., 2016;
Lopata et al., 2017). In a series of my previous neurophysiological
studies using Markov stochastic models and other studies on
music, implicit learning of pitch, harmony, and dyad chord
could be reflected in event-related responses (ERP/ERF) based
on predictive coding (Daikoku et al., 2014, 2015, 2016, 2017a;
Daikoku and Yumoto, 2017; Moldwin et al., 2017). Other studies
also detected neural correlates to the motor control for auditory
prediction and production when playing the piano (Bianco et al.,
2016), and to improvisational creativity of music (Pinho et al.,
2015; Adhikari et al., 2016; Lopata et al., 2017). These studies
suggest that the mental representation of a musician’s knowledge
facilitates optimisation of motor actions (Daikoku et al., 2018)
in the framework of information theory on brain function. The
findings of the present study were based on relative but not
absolute stochastic feature ofmusic. Thus, the results in this study
could support the previous neurophysiological and psychological
studies that suggest that human’s brain learn relative rather
than absolute temporal and spectral (Daikoku et al., 2014, 2015)
patterns.

The verification of computational models and the neural
correlates have also been performed in previous studies (see
review, Rohrmeier and Rebuschat, 2012). For example, the
n-gram models calculate probability of sequential patterns
by chopping them into short fragments (n-grams) up to
a size of n. This model, which is frequently verified by
neural approaches, is considered to correspond to chunking
and word-segmentation processes in implicit learning (Saffran
et al., 1996). The online perception and production of real-
world dynamical music, however, is not the mere chopping
of sequential patterns like word segmentation, but dynamical
prediction tomaintain an aestheticmelody with various temporal
and spectral features, hierarchical structure, and harmony, which
interact with each other (Lerdahl and Jackendoff, 1983; Hauser
et al., 2002; Jackendoff and Lerdahl, 2006). Musical prediction
and the representation constantly occurs with each state of
sequences during learning and playing music. In addition, they
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are not restricted to a single stream of events or hierarchy
but, rather, they interact with each parallel stream (Conklin
and Witten, 1995; Pearce and Wiggins, 2012). Given the real-
world phenomenon of music perception and prediction, various-
order Markov models may be able to express dynamical and
hierarchical creativity that occur in a musician’s brain when they
play music (Pearce and Wiggins, 2012), and to interdisciplinarily
verify lower-to-deeper implicit knowledge and its representation
using one experiment via neurophyisiological and informatics
approaches. Using the models, however, future study is needed
to also investigate other aspects of music such as harmony, non-
adjacent dependency, and tree-structure nature of melody and
harmony.

In conclusion, the present study suggested that the formation
of individuality of musical creativity may depend on spectro-
temporal features and hierarchy. The present study first provides
the hierarchical implicit-learning model that unifies temporal
and spectral features in musical improvisationa and creativity
and that is interdisciplinarily verifiable using neurophysiological,
behavioral, and information-thepretic approaches.
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Epilepsy is a neurological disorder that affects approximately fifty million people according

to the World Health Organization. While electroencephalography (EEG) plays important

roles in monitoring the brain activity of patients with epilepsy and diagnosing epilepsy, an

expert is needed to analyze all EEG recordings to detect epileptic activity. This method is

obviously time-consuming and tedious, and a timely and accurate diagnosis of epilepsy

is essential to initiate antiepileptic drug therapy and subsequently reduce the risk of

future seizures and seizure-related complications. In this study, a convolutional neural

network (CNN) based on raw EEG signals instead of manual feature extraction was used

to distinguish ictal, preictal, and interictal segments for epileptic seizure detection. We

compared the performances of time and frequency domain signals in the detection of

epileptic signals based on the intracranial Freiburg and scalp CHB-MIT databases to

explore the potential of these parameters. Three types of experiments involving two binary

classification problems (interictal vs. preictal and interictal vs. ictal) and one three-class

problem (interictal vs. preictal vs. ictal) were conducted to explore the feasibility of this

method. Using frequency domain signals in the Freiburg database, average accuracies

of 96.7, 95.4, and 92.3% were obtained for the three experiments, while the average

accuracies for detection in the CHB-MIT database were 95.6, 97.5, and 93% in the

three experiments. Using time domain signals in the Freiburg database, the average

accuracies were 91.1, 83.8, and 85.1% in the three experiments, while the signal

detection accuracies in the CHB-MIT database were only 59.5, 62.3, and 47.9% in

the three experiments. Based on these results, the three cases are effectively detected

using frequency domain signals. However, the effective identification of the three cases

using time domain signals as input samples is achieved for only some patients. Overall,

the classification accuracies of frequency domain signals are significantly increased

compared to time domain signals. In addition, frequency domain signals have greater

potential than time domain signals for CNN applications.

Keywords: epilepsy, electroencephalogram, convolutional neural networks, time domain signals, frequency

domain signals
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INTRODUCTION

Epilepsy, one of the most common neurological conditions
characterized by epileptic seizures, is the second most common
neurological disorder behind stroke, according to the World
Health Organization (WHO). Seizures may occur, regardless
of the circumstances or host attributes (Ahmadi et al., 2018).
Patients with epilepsy suffer from sudden and unforeseen
seizures, during which they are unable to protect themselves and
are vulnerable to suffocation, death, or injury due to fainting and
traffic accidents (Yan et al., 2016a; Mutlu, 2018). To date, this
disease is mainly treated with medications and surgery; no cure
exists, and treatments with anticonvulsants are not completely
efficacious for all of types of epilepsy (López-Hernández et al.,
2011; Yan et al., 2015).

Electroencephalography (EEG) plays an important role in
detecting epilepsy, as it measures differences in voltage changes
between electrodes along the subject’s scalp by sense ionic
currents flowing within brain neurons and provides temporal
and spatial information about the brain (Misulis, 2013; Pachori
and Patidar, 2014). Detection with EEG requires a direct
examination by a physician as well as a substantial amount
of time and effort. Furthermore, experts with differing levels
of diagnostic experience sometimes report discrepant opinions
on the diagnostic results (Wang et al., 2016a; Yan et al.,
2017a). Therefore, the development of an automated, computer-
aided method for the diagnosis of epilepsy is urgently needed
(Iasemidis et al., 2005; Martis et al., 2015).

In previous studies, various detection algorithms for
epileptiform EEG data have been proposed (De et al., 2008;
Chen et al., 2013). Existing methods for the detection of seizures
use hand-engineered techniques for feature extraction from
EEG signals (Pei et al., 2018), such as time domain, frequency
domain, time-frequency domain, and nonlinear signal analyses
(Swapna et al., 2013; Yan et al., 2017b). After feature extraction,
the selected features must be classified to recognize different EEG
signals using all types of classifiers (Chen et al., 2017). Hamad
et al. used the discrete wavelet transform method to extract a
feature set and then trained the support vector machine (SVM)
with a radial basis function, showing that the proposed gray wolf
optimizer SVM approach is capable of detecting epilepsy and
thus further enhancing diagnosis (Hamad et al., 2017). Subasi
et al. established a hybrid model to optimize the SVM parameters
based on the genetic algorithm and particle swarm optimization,
showing that the proposed hybrid SVM is an efficient tool for
neuroscientists to detect epileptic seizures using EEG (Subasi
et al., 2017). However, these methods do not eliminate the
requirement for manual feature selection (Jing et al., 2015; Wang
et al., 2016b). Feature extraction is a key step in determining the
classification, as it largely determines its accuracy. We boldly
envision a method in which classification is performed without
complex feature extraction, and the recent development of deep
learning (DL) has provided a new avenue for addressing this
issue.

DL has entered the mainstream in computer vision and
machine learning in the last several years, exhibiting near-
human and superhuman abilities to perform many tasks, such

as object detection and sequence learning (Ahmedt-Aristizabal
et al., 2018). Feature extraction prior to classification seems to be
more preferable than directly inputting raw EEG samples into the
classifier. However, in some recent studies, feature extraction was
not performed, and the DL models were instead trained with raw
EEG signals (Acharya et al., 2017; Hussein et al., 2018).

While most of these studies were performed based on
time domain signals, some previous studies on EEG have
also reported significant hidden information in the frequency
domain. Wendung et al. focused on a specific category of
methods based on analyses of the spatial properties of EEG
signals in the time and frequency domains. These methods have
been applied to both interictal and ictal recordings and share the
common objective of localizing the subsets of brain structures
involved in both types of paroxysmal activity (Wendung et al.,
2009). Wen et al. proposed a genetic algorithm-based frequency
domain feature search method that exhibited good extensibility
(Wen and Zhang, 2017). Therefore, we conducted this study
based on frequency domain signals and compared the seizure
detection performances of both the frequency and time domains.

Here, original signals based on the time or frequency domain
were directly input into the convolutional neural network (CNN)
instead of extracting all feature types. We tested this method
on the intracranial Freiburg database and the scalp CHB-MIT
database. We not only detected binary epilepsy scenarios, e.g.,
interictal vs. ictal and interictal vs. preictal, but also verified the
ability of this method to classify a ternary case, e.g., interictal
vs. ictal vs. preictal. We compared the different performances
between the time and frequency domain signals using CNN as
a classifier.

This paper is organized as follows: the data, specific method
proposed and performance indices are presented in the second
section. Detailed experimental results are presented in the third
section, and the analyses are discussed in the fourth section. The
conclusions from this study are provided in the fifth section.

MATERIALS AND METHODS

Dataset Description
One of the databases utilized in this study was prepared by
the Epilepsy Center at the University Hospital of Freiburg,
Germany. The database contains intracranial EEG (iEEG) data
from 21 patients with medically intractable focal epilepsy that
were recorded during invasive presurgical epilepsy monitoring.
Intracranial grid, strip, and depth electrodes were utilized to
obtain a high signal-to-noise ratio and fewer artifacts and to
record directly from focal areas. The EEG data were acquired
using a Neurofile NT digital video EEG system with 128 channels
at a 256-Hz sampling rate (data from patient 12 were sampled
at 512Hz but downsampled to 256Hz) (Zhang and Parhi,
2016) and a 16-bit analog-to-digital converter. All patients in
the experiment had experienced 2–5 seizures, and the dataset
contains recordings of 87 seizures from 21 patients. In this
database, six contacts were selected for each patient by a visual
inspection of the iEEG data by experienced epileptologists:
three near the epileptic focus (epileptogenic zone) and three in
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remote locations involved in seizure spread and propagation.
The subjects ranged in age from 10 to 50 years and included 13
women and 8men. Three different seizure types were represented
among the subjects, including simple partial (SP), complex
partial (CP), and generalized tonic-clonic (GTC), and all subjects
had experienced at least two types. The epileptic focus was
located in neocortical brain structures in eleven patients, in the
hippocampus in eight patients, and in both locations in two
patients. The seizure onset times and epileptiform activities were
annotated by certified epileptologists at the Epilepsy Center.

The other database used in this study was an open-source
EEG database from CHB-MIT (http://physionet.org/cgi-bin/
atm/ATM). The recordings were collected from 23 children with
epilepsy using scalp electrodes, and EEG data were provided by
theMassachusetts Institute of Technology (MIT, USA). The study
included 17 females that ranged in age from∼1.5 to 19 years and
five males that ranged in age from 3 to 22 years. The age and sex
information for one child was lost. All subjects were asked to stop
related treatments 1 week before data collection. The sampling
frequency for all patients was 256Hz. The seizure start and end
times were labeled explicitly based on expert judgments, and the
number and durations of seizure events varied for each subject.

For the detection of ictal, preictal and interictal signals, many
segments were chosen for these two open-source databases. The
period when patients experience seizure onset is named the ictal
state and is easily detected from raw signals by experts. The
interictal period corresponds to the normal state between two
seizures. The transition from the interictal period to the ictal
period is the preictal period. In this study, the differences were
evaluated by applying the CNN to each patient, and the moving-
window technique was employed to divide raw recordings into
1-s epochs.

Time and Frequency Domain Signals
In the present study, we used time or frequency domain signals
as inputs for classification. The frequency domain is a coordinate
system that describes the frequency features of the signals.
A frequency spectrogram reflects the relationship between the
frequency and amplitude of a signal and is often used to analyze
signal features (Wen and Zhang, 2017). For each channel, we first
converted the time domain signals into frequency domain signals
using the fast Fourier transform (FFT) method (Rasekhi et al.,
2013).

Figure 1A shows the interictal, preictal, and ictal recordings
of a channel from the time domain of patient 3 in the
Freiburg database. The EEG signal is obviously nonlinear and
nonstationary in nature, while the signal is highly complex,
and a visual interpretation of the signals is difficult (Acharya
et al., 2017). Figure 1B shows the frequency domain signals
resulting from the application of FFT to the interictal, preictal,
and ictal recordings shown in Figure 1A. The x-axis represents
the frequency, whereas the y-axis represents the amplitude.
Significant variations are observed among the ictal, preictal,
and interictal signals at certain frequencies, and these features
are suitable for classification. In contrast, the amplitudes at
some other frequencies are difficult to distinguish, and these
enclosed features are ineffective. Classifiers require a number of

effective features. Compared with time domain signals, frequency
domain signals are more obvious in EEG data (Ren and Wu,
2014).

CNN
The use of CNNs for large-scale imaging and video recognition
has been very successful (Sermanet et al., 2013; Simonyan and
Zisserman, 2014a) due to the establishment of large public image
repositories, such as ImageNet (Deng et al., 2009), and high-
performance computing systems, such as large-scale distributed
clusters (Dean et al., 2012; Simonyan and Zisserman, 2014b).
Recently, some studies have begun applying CNNs to EEG signals
(Ullah et al., 2018), and research interest in using CNNs for
seizure prediction has increased, probably because these methods
have been used extensively and are thus better established and
more familiar in the research community.

A CNN consists of an input and an output layer, as well as
multiple hidden layers. The hidden layers of a CNN typically
consist of convolutional layers, pooling layers and fully connected
layers. Convolutional layers apply a convolution operation to the
input, transferring the result to the next layer. The convolution
emulates the response of an individual neuron to visual stimuli.
Convolutional networks may include local or global pooling
layers that combine the outputs of neuron clusters in one
layer into a single neuron in the next layer. Mean pooling
uses the average value from each cluster of neurons in the
previous layer. Fully connected layers connect every neuron
in one layer to every neuron in another layer. The CNN is
in principle the same as the traditional multi-layer perceptron
neural network.

Compared with traditional classifiers, CNNs have obvious
advantages for analyzing high-dimensional data. CNNs employ a
parameter sharing scheme, which is used in convolutional layers
to control and reduce the number of parameters. A pooling
layer is designed to progressively reduce the spatial size of the
representation and the number of parameters and computation
in the network, and subsequently control overfitting.

As shown in Figure 2, a multichannel time series based on
time or frequency domain signals was directly input into a
CNN as the input layer. The CNN models we used consisted of
three main layers. Structurally, CNNs have convolutional layers
interspersed with pooling layers, followed by fully connected
layers. The convolutional layer, which has 6 feature maps
connected to the input layer via 5∗5 kernels, consists of
kernels that slide across the EEG signals. A kernel comprises
the matrix to be convolved with the input EEG signal and
stride (stride = 1) and controls the extent to which the
filter convolves across the input signal. The second layer
comprises a 2∗2 mean pooling layer and is mainly used to
extract key features and reduce the computational complexity
of the network. The final fully connected layer outputs the
classification result (i.e., ictal, preictal, or interictal) using sigmoid
activation.

In this study, we designed a CNN with no more than three
layers for multiple reasons. On one hand, the number of samples
acquired during ictal and preictal recordings is usually much
smaller than the number acquired during the interictal period
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FIGURE 1 | The interictal, preictal and ictal recordings from patient 1. (A) Recordings of the time domain. (B) Recordings of the frequency domain.

in the epilepsy database, leading to a serious imbalance in the
number of samples, and a simple structure meets the demand for
fewer samples. In addition, the small number of electrodes also
limits the number of layers in the network to some extent. On the
other hand, a simple training structure is more conducive to the
online clinical diagnosis of epileptic signals (Yan et al., 2018).

The detection system was tested on all patients. The dataset
was further randomly partitioned into training and independent
testing sets via 6-fold cross validation to ensure that the results
were valid and generalizable for making predictions from new
data. Each of the six subsets acts as an independent holdout test
set for the model trained with the remaining five subsets (Xiang
et al., 2015). During each run, five subsets are used for training,
and the remaining subset is used for testing, providing the
advantage that all test sets are independent of one another (Kevric
and Subasi, 2014). Numerous trials were performed to test which
of the internal architectures analyzed in our experiment provided
the most reasonable and proper results until the mean squared
error curve normalized, as shown in Figure 3.

Prediction of Performance Indices
The statistical measures for assessing the classification
performance included accuracy (acc), sensitivity (sen) and
specificity (spe), which were calculated as follows:

sen =
TP

TP + FN
(1)

spe =
TN

FP + TN
(2)

acc =
TP + TN

P + N
(3)

P denotes the number of samples during a preictal or ictal period,
N denotes the number of samples during an interictal period, FP
denotes the number of samples in an interictal period that were
mistaken for a preictal or ictal period, FN denotes the number
of samples in a preictal or ictal period that were mistaken for an
interictal period, and TP and TN denote the numbers of samples
that were accurately classified. These three measures were used

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2018 | Volume 12 | Article 9535

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Zhou et al. Seizure Detection Based on CNN

FIGURE 2 | Illustration of the CNN.

FIGURE 3 | Mean squared error.

to evaluate the performance of the method to assess binary
classification problems. For three-class problems, only accuracy
was considered.

RESULTS

The methodology described here was evaluated using the
Freiburg and CHB-MIT databases based on time and frequency
domain signals. This system was tested on three cases: two
types of experiments involving binary classification problems
[(i) interictal vs. preictal and (ii) interictal vs. ictal] and one

three-class problem (interictal vs. ictal vs. preictal). We trained
and tested our method for each patient individually, and the
classification results for all patients analyzed are presented in
Table 1 through Table 4. The average accuracy, sensitivity and
specificity values obtained are also indicated.

Results From the Freiburg Database
Results for the Frequency Domain Signals
The experimental results of the segment-based performance
assessment of this method for patients in the Freiburg database
are listed in Table 1. The detection quality obviously varied with
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TABLE 1 | Frequency domain signal results for all patients in the Freiburg database.

Patient

ID

Binary Case Interictal vs. Ictal vs. Preictal

Interictal vs. Preictal Interictal vs. Ictal

acc sen spe acc sen spe acc

1 0.967 0.960 0.973 0.960 0.940 0.980 0.930

2 0.997 0.997 0.997 0.975 0.957 0.993 0.963

3 0.945 0.960 0.930 0.945 0.933 0.957 0.928

4 0.995 1.000 0.990 0.992 0.997 0.987 0.986

5 0.982 0.983 0.980 0.988 0.987 0.990 0.971

6 0.995 1.000 0.990 0.988 0.997 0.980 0.911

7 0.980 0.987 0.973 0.968 0.943 0.993 0.937

8 0.815 0.833 0.797 0.755 0.743 0.767 0.678

9 1.000 1.000 1.000 1.000 1.000 1.000 0.913

10 0.992 0.987 0.997 0.967 0.943 0.990 0.967

11 1.000 1.000 1.000 0.973 0.947 1.000 0.963

12 0.993 0.987 1.000 0.987 0.973 1.000 0.986

13 1.000 1.000 1.000 0.970 0.957 0.983 0.896

14 1.000 1.000 1.000 0.998 0.997 1.000 0.954

15 0.958 0.953 0.963 0.902 0.857 0.947 0.856

16 0.868 0.860 0.877 0.907 0.860 0.953 0.867

17 0.958 0.943 0.973 0.987 0.983 0.990 0.956

18 0.943 0.927 0.960 0.920 0.890 0.950 0.914

19 0.965 0.963 0.967 0.948 0.903 0.993 0.960

20 0.960 0.960 0.960 0.925 0.870 0.980 0.920

21 1.000 1.000 1.000 0.985 0.990 0.980 0.933

Avg 0.967 0.967 0.968 0.954 0.937 0.972 0.923

the subjects due to the individual differences in humans. The final
row of Table 1 displays the average results of the three statistical
measures (accuracy, sensitivity, and specificity) for all 21 patients.

The mean accuracy of classification between the interictal
and preictal signals was 96.7%, and the average sensitivity and
specificity values were 96.7 and 96.8%, respectively. The best
classification results were observed for patients 9, 11, 13, 14,
and 21, while some patients had poor results, such as patient
8. The sensitivity and specificity values for this patient were
very unsatisfactory—at 83.3 and 79.7%, respectively. Overall, the
accuracy of classification was >90% for nearly all the patients,
except for patients 8 and 16. The classification sensitivity and
specificity values for these patients were relatively balanced.

Good results were also obtained for classification between
interictal and ictal signals, as this method exhibited average
accuracy, sensitivity, and specificity values of 95.4, 93.7, and
97.2%, respectively. The classification accuracy for patient 8 was
less than 90%, while this value was >90% for all other patients.
The binary classification of signals from patient 9 remained
satisfactory. The results presented in the table show that the
classification sensitivities and specificities for each patient were
clearly balanced.

For the classification of interictal, ictal, and preictal signals,
only the accuracy of every patient is presented; the average
accuracy of classification among the 21 patients was 92.3%.

Among these patients, the accuracies of classification for nine
patients were >95%, which was considered a great result, and the
classification accuracies were good for eight patients, with values
ranging between 90 and 95%. The accuracy of signal classification
for the other four patients was <90%.

Results for the Time Domain Signals
Table 2 reports the classification results for time domain signals
from patients in the Freiburg database. The average accuracies of
the three experiments were 91.1, 83.8, and 85.1%, respectively.

For interictal vs. preictal signals, the averages of three
measures were >90% for all patients. However, unsatisfactory
results for either accuracy, sensitivity or specificity values were
obtained for six patients. Almost ideal results were obtained for
some individuals, such as patients 2, 3, 15, and 19.

When classifying the interictal and ictal segments, the overall
results were slightly worse, as values of only 83.8, 80.4, and
87.1% were obtained for the three measures, respectively. An
accuracy of >90% was achieved for only seven patients, and
the accuracy of classifying signals from patient 8 was <60%.
Accuracies between 60 and 70%were obtained for patients 11 and
15, and the accuracies of classifying signals from all other patients
was generally good.

For the three-class problem, the average accuracy was 85.1%,
and a 90% classification accuracy was reported for 67% of the
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FIGURE 4 | Comparison of accuracies in the Freiburg database based on frequency and time domain signals. (A) Interictal vs. preictal. (B) Interictal vs. ictal. (C)

Interictal vs. ictal vs. preictal.
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TABLE 2 | Time domain signal results for all patients in the Freiburg database.

Patient

ID

Binary Case Interictal vs. Ictal vs. Preictal

Interictal vs. Preictal Interictal vs. Ictal

acc sen spe acc sen spe acc

1 0.968 0.973 0.963 0.857 0.723 0.990 0.961

2 0.997 0.997 0.997 0.880 0.797 0.963 0.964

3 0.997 0.993 1.000 0.907 0.900 0.913 0.973

4 0.968 0.983 0.953 0.913 0.947 0.880 0.956

5 0.977 0.963 0.990 0.953 0.963 0.943 0.971

6 0.987 0.983 0.990 0.920 0.860 0.980 0.900

7 0.888 0.873 0.903 0.858 0.797 0.920 0.860

8 0.580 0.507 0.653 0.598 0.550 0.647 0.488

9 0.737 0.743 0.730 0.825 0.793 0.857 0.530

10 0.932 0.930 0.933 0.850 0.903 0.797 0.922

11 0.677 0.677 0.677 0.675 0.647 0.703 0.616

12 0.997 0.997 0.997 0.833 0.773 0.893 0.981

13 0.720 0.770 0.670 0.725 0.587 0.863 0.610

14 0.955 0.943 0.967 0.985 0.993 0.977 0.953

15 0.995 0.993 0.997 0.633 0.603 0.663 0.628

16 0.973 0.963 0.983 0.813 0.813 0.813 0.931

17 0.872 0.893 0.850 0.792 0.887 0.697 0.853

18 0.983 0.980 0.987 0.842 0.790 0.893 0.940

19 0.997 0.993 1.000 0.832 0.673 0.990 0.964

20 0.988 1.000 0.977 0.980 0.987 0.973 0.949

21 0.938 0.977 0.900 0.917 0.900 0.933 0.921

Avg 0.911 0.911 0.910 0.838 0.804 0.871 0.851

patients, with the highest value reaching 98.1%. Notably, the
accuracy of signal classification in some patients, such as patients
8 and 9, was very unsatisfactory.

Comparison of the Frequency and Time Domains
Figure 4 presents the comparison of accuracy values based on
the time and frequency domains for all patients in the two types
of binary classification problems and the three-class problem. In
the three experiments, the average accuracies of the frequency
domain were higher than those of the time domain. As shown
in Figure 4A, better results were obtained for the classification
of interictal vs. preictal signals using the time domain than the
frequency domain in some patients, while the opposite trend was
observed in the other patients. The results were far worse using
the time domain than the frequency domain for several patients,
such as patients 8 and 9. As depicted in Figure 4B, the frequency
domain results were better at classifying the interictal vs. ictal
signals than the time domain results for all patients, except
patient 20. The frequency and time domain results were very
similar for patient 14. The results shown in Figure 4C are similar
to those shown in Figure 4A; however, the average performance
of the frequency domain was higher than the time domain.

Results From the CHB-MIT Database
Results for the Frequency Domain Signals
Table 3 shows the results for all patients in the CHB-MIT
database based on frequency domain signals. Similar to the

Freiburg database, three different experiments were conducted
using patients from this database.

For the classification of interictal and preictal signals,
the average accuracy, sensitivity and specificity of results
obtained using this database were 95.6, 94.2, and 96.9%,
respectively. The best results for the three measures were
obtained from patients 8 and 20, while the classification
accuracy was unsatisfactory (84.0%) for some patients,
such as patient 21. The classification accuracy for patient
17 was <90%. Overall, the accuracy, sensitivity and
specificity values of classification were >90% for most
patients.

When applying this method to the classification of interictal
and ictal signals, the average values of the three measures were
>90% for all patients, and the average results were better than the
classification of interictal and preictal signals. From the overall
perspective of all patients, the sensitivities of classification for
patients 14 and 21 were <90% but >85%. All other values of the
three measures were >90%.

For the three-class problem, an accuracy of 93.0% was
obtained, and the classification results for some patients, such
as patients 1 and 9, were very good. A poor accuracy of
signal classification was observed only for patient 14. The
accuracy of signal classification for four patients (patients 16,
21, 23, and 24) was unsatisfactory, ranging from 80 to 90%,
while the accuracy of signal classification for the other patients
was >90%.
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TABLE 3 | Frequency domain signal results for all patients in the CHB-MIT database.

Patient

ID

Binary Case Interictal vs. Ictal vs. Preictal

Interictal vs. Preictal Interictal vs. Ictal

acc sen spe acc sen spe acc

1 0.992 0.987 0.997 0.983 0.983 0.983 0.987

2 0.917 0.853 0.980 0.972 0.967 0.977 0.937

3 0.978 0.993 0.963 0.977 0.983 0.970 0.978

4 0.922 0.893 0.950 0.982 0.987 0.977 0.953

5 0.985 0.980 0.990 0.980 0.980 0.980 0.971

6 0.958 0.963 0.953 0.998 1.000 0.997 0.976

7 0.977 0.973 0.980 1.000 1.000 1.000 0.972

8 1.000 1.000 1.000 0.993 0.990 0.997 0.978

9 0.998 0.997 1.000 1.000 1.000 1.000 0.984

10 0.920 0.900 0.940 0.960 0.943 0.977 0.909

11 0.982 0.977 0.987 0.980 0.967 0.993 0.949

12 0.953 0.910 0.997 0.992 0.983 1.000 0.939

13 0.970 0.943 0.997 0.975 0.960 0.990 0.969

14 0.942 0.950 0.933 0.915 0.873 0.957 0.701

15 0.968 0.937 1.000 0.983 0.970 0.997 0.970

16 0.928 0.920 0.937 0.962 0.947 0.977 0.898

17 0.898 0.853 0.943 0.967 0.963 0.970 0.903

18 0.968 0.937 1.000 0.985 0.993 0.977 0.927

19 0.998 0.997 1.000 0.988 0.987 0.990 0.974

20 1.000 1.000 1.000 0.985 0.990 0.980 0.984

21 0.840 0.840 0.840 0.925 0.893 0.957 0.810

22 0.925 0.900 0.950 0.970 0.950 0.990 0.939

23 0.928 0.927 0.930 0.982 1.000 0.963 0.823

24 0.988 0.987 0.990 0.947 0.937 0.957 0.894

Avg 0.956 0.942 0.969 0.975 0.969 0.981 0.930

Results for the Time Domain Signals
Table 4 shows the time domain signal data for all patients in
the CHB-MIT database. The average performances of the three
experiments were obviously poor, with average accuracies of 59.5,
62.3, and 47.9%, respectively. A good result was obtained in the
three experiments for only one patient, while the results for all
other patients were disappointing. The diagnostic performances
of classifying interictal vs. preictal signals in some patients, such
as patients 4 and 5, were maintained at only a random level,
and the results obtained for patients 22 and 23 were very poor
and below random levels. The average accuracy of classification
of interictal and ictal segments was slightly better than the
classification of interictal and preictal signals. Inevitably, the
accuracy of classification for individual subjects was maintained
at only random or lower than random levels. The average
accuracy of classifying interictal vs. ictal vs. preictal signals was
47.9%.

Comparison of the Frequency and Time Domains
Figure 5 summarizes the comparison of the classification
performances based on frequency and time domain signals from
subjects in the CHB-MIT database. Generally, the three cases

were detected effectively using frequency domain signals. The
classification based on the frequency domain was remarkably
more accurate than classification based on the time domain.
The mean accuracies of classification calculated using frequency
domain signals were 95.6, 97.5, and 93.0% for the three
experiments, which were significantly greater than values
calculated using time domain signals (59.5, 62.3, and 47.9%,
respectively). The classification performances calculated using
the frequency domain were higher than those calculated using
the time domain signals for all patients.

DISCUSSION

Comparison With Other Methods
Many other methods for detecting epileptic seizures have been
proposed by other researchers. For example, Shoeb and Guttag
presented a patient-specific machine learning technique based
on the CHB-MIT database. They extracted spectral and spatial
features and then combined non-EEG features to form a
feature vector; an SVM was then used for classification. Their
approach detected 96% of 173 test seizures in an event-based
assessment (Shoeb and Guttag, 2010). A method based on the

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2018 | Volume 12 | Article 9540

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Zhou et al. Seizure Detection Based on CNN

TABLE 4 | Time domain signal results for all patients in the CHB-MIT database.

Patient

ID

Binary Case Interictal vs. Ictal vs. Preictal

Interictal vs. Preictal Interictal vs. Ictal

acc sen spe acc sen spe acc

1 0.905 0.900 0.910 0.993 0.987 1.000 0.934

2 0.623 0.607 0.640 0.475 0.450 0.500 0.419

3 0.623 0.677 0.570 0.677 0.713 0.640 0.460

4 0.515 0.573 0.457 0.522 0.477 0.567 0.342

5 0.508 0.533 0.483 0.568 0.520 0.617 0.409

6 0.530 0.547 0.513 0.557 0.450 0.663 0.370

7 0.627 0.660 0.593 0.717 0.677 0.757 0.473

8 0.508 0.547 0.470 0.548 0.580 0.517 0.378

9 0.538 0.563 0.513 0.698 0.667 0.730 0.459

10 0.620 0.637 0.603 0.508 0.493 0.523 0.361

11 0.548 0.607 0.490 0.550 0.540 0.560 0.410

12 0.820 0.860 0.780 0.712 0.707 0.717 0.581

13 0.582 0.630 0.533 0.525 0.600 0.450 0.498

14 0.503 0.513 0.493 0.650 0.670 0.630 0.453

15 0.605 0.580 0.630 0.578 0.580 0.577 0.463

16 0.507 0.523 0.490 0.537 0.433 0.640 0.384

17 0.505 0.480 0.530 0.692 0.643 0.740 0.473

18 0.740 0.810 0.670 0.628 0.667 0.590 0.480

19 0.745 0.700 0.790 0.602 0.507 0.697 0.679

20 0.590 0.657 0.523 0.490 0.553 0.427 0.514

21 0.572 0.587 0.557 0.545 0.560 0.530 0.386

22 0.462 0.477 0.447 0.500 0.530 0.470 0.369

23 0.492 0.517 0.467 0.762 0.777 0.747 0.502

24 0.615 0.650 0.580 0.915 0.917 0.913 0.690

Avg 0.595 0.618 0.572 0.623 0.612 0.633 0.479

Freiburg database was presented in another study (Patnaik and
Manyam, 2008) in which the authors used wavelet transform
and neural networks together with the application of harmonic
weight for classification; this method presented an average
specificity and sensitivity of 99.19 and 91.29%, respectively.
Another patient-specific seizure detection method using the
Freiburg database has been described (Yuan et al., 2012). The
fractal intercept derived from fractal geometry was extracted
as a novel nonlinear feature of EEG signals, and the relative
fluctuation index was calculated as a linear feature. The feature
vector consisting of the two EEG descriptors was fed into a
single-layer neural network for classification. For the segment-
based level, the sensitivity was 91.72%, and the specificity was
94.89%. These existing methods for the detection of seizures
use hand-engineered techniques to extract features from EEG
signals. Their performance strongly depends on the selection of
hyperparameters and the data, and research requires not only
a wealth of expertise but also a substantial amount of labor.
Therefore, automatic feature learning has a substantial advantage
over the traditional methods of manual feature extraction (Ullah
et al., 2018). CNNs are a type of a DL method that processes data
without requiring manual feature extraction or selection. CNNs

extract features more discriminatively and robustly than hand-
designed features and adapt to internal data structures (Cun,
1995).

Of course, some studies have used DL for seizure detection. A
13-layer deep CNN algorithmwas implemented to detect normal,
preictal and seizure classes using the Bonn database (Acharya
et al., 2017). The proposed technique exhibited accuracy,
specificity and sensitivity values of 88.67, 90.00, and 95%,
respectively, but the 13-layer deep CNN may obviously require
a substantial amount of labor to elucidate the best network
structure. In our study, the CNN included only three main
layers, and the network was very simple compared with the deep
network. Meanwhile, satisfactory results were obtained from
both databases analyzed using the same network. In addition,
a 1-s time segment was used for detection once the model was
completely trained. All of these features provide great possibilities
for real-time detection in the clinic.

Compared with the studies described above, our study
reported equal or even better performance. For the Freiburg
database, we obtained average accuracies of 96.7, 95.4, and 94.3%
for all three experiments, while the average accuracies obtained
using the CHB-MIT database were 95.6, 97.5, and 93% for the
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FIGURE 5 | Comparison of accuracies based on frequency and time domain signals from subjects in the CHB-MIT database. (A) Interictal vs. preictal. (B) Interictal

vs. ictal. (C) Interictal vs. ictal vs. preictal.

three cases analyzed. In the present study, we analyzed two types
of binary classification problems and a three-class problem using
both intracranial data and scalp data based on the proposed
method. Three-class problems have rarely been tested using data
from these two databases and achieved good results, and a large
number of results will be powerful for proving the feasibility of
the method.

Frequency and Time Domains
Many existing automatic seizure detection techniques use
traditional signal processing and machine learning techniques.
Some of these techniques show good accuracy for one problem
but fail to perform accurately for others, e.g., they classify
seizure vs. nonseizure cases with good accuracy but show poor
performance for distinguishing normal vs. ictal vs. interictal
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signals (Zhang et al., 2017). One of the remaining challenges
is the development of a generalized model that classifies both
binary and ternary problems. Therefore, we tested this system
on three cases: (i) interictal vs. preictal, (ii) interictal vs. ictal
and (iii) interictal vs. ictal vs. preictal. The results obtained from
all three experiments exhibited >90% accuracy, even for the
ternary problem based on the frequency domain, although the
performance of the system for classifying the ternary problem
was decreased to a certain degree. For all three cases, the
frequency domain performed better than the time domain.

In addition, one challenge underlying the development of
a successful seizure detection method is that some methods
exhibit excellent results based on their own databases, but their
performance decreases when other databases are used. Thus, the
identification of a method that adequately adapts to multiple
datasets is challenging. Furthermore, the characteristics of EEG
analyses of different brain locations, patient ages, patient sexes
and seizure types vary significantly among patients with epilepsy,
leading to substantial individual differences (Wilson et al., 2004;
Yang et al., 2018). In this study, we used two completely different
databases to test related methods, and the patients in these two
databases exhibited several types of seizures and large age ranges.
According to our results, the average accuracy of results based on
the frequency domain was better than results based on the time
domain in all experiments, regardless of whether the Freiburg
or CHB-MIT database was used. In addition, better results were
obtained for most patients when the frequency domain was
analyzed. Therefore, this method might be adapted to account
for individual differences or other epileptic databases to a certain
extent. The accuracy range was smaller in the frequency domain
than in the time domain across all patients in both databases.
Therefore, individual differences may have less of an impact on
the performance of the method based on the frequency domain
than on the time domain, indicating greater stability.

Finally, seizure detection is challenging because the electrical
activity of the brain is mediated by numerous classes of neurons
with overlapping characteristics (Shoeb and Guttag, 2010), and
improvements in the detection performance by extracting more
effective features and excluding irrelevant features or redundant
features among different classes is thus impossible. In our study
of the Freiburg database, the performance of the time domain
was better than the frequency domain for some patients, but the
average performance of the frequency domain was still better.
For the CHB-MIT database, the frequency domain performed
better than the time domain in almost all situations. In other
words, both the two-class and three-class signals were effectively
detected using frequency domain signals. The classification
based on the frequency domain was remarkably more accurate,
sensitive and specific than classification based on the time
domain for both databases. Therefore, the CNN may more easily
extract more effective features based on the frequency domain
than on the time domain.

Impacts of the Two Databases
We completed three sets of experiments using two different
public databases. For the analysis of frequency domain signals in
the Freiburg database, average accuracies of 96.7, 95.4, and 92.3%

were obtained for the three experiments. For the CHB-MIT
database, the average accuracies of the three experiments were
95.6, 97.5, and 93%. Comparable performances were observed in
these two datasets when frequency domain segments were used as
input samples. However, the two sets of data showed significant
differences when the original signal was used as the training data.
For the Freiburg database, the average accuracies were 91.1, 83.8,
and 85.1% in the three experiments, while the average accuracies
for the CHB-MIT database were only 59.5, 62.3, and 47.9%. One
potential explanation for this discrepancy is that the data in the
Freiburg database were obtained from intracranial signals, while
the signals in the CHB-MIT database were obtained from scalp
electrodes. Intracranial signals have a high signal-to-noise ratio
and few artifacts, while signals from scalp electrodes contain
more noise interference, which may result in the extraction
of low-quality features. Another potential explanation for this
discrepancy is that the signals in the Freiburg database were
recorded directly from focal areas, while signals in the CHB-MIT
database were recorded from whole-brain electrodes, and more
redundant information may have been included. Intracranial
EEGs also include features that are not observed within the scalp
EEGs because of the spatial averaging effect of the dura and skull
(Shoeb and Guttag, 2010).

CONCLUSIONS

Currently, epileptic activity in EEG recordings is mainly
examined using a number of traditional and trending
technologies. Automation of this process presents many
advantages, including a faster diagnosis, continuous monitoring,
and reduction in the overall cost of medical treatment (Yan
et al., 2016b). We conducted experiments to compare the
performances of time and frequency domain signals. The
method not only avoided the complex feature extraction process
but also used a very simple CNN structure. Both the Freiburg
and CHB-MIT datasets were analyzed to confirm the validity
of our method, and frequency domain signals performed better
than time domain signals. When frequency domain signals
were analyzed, both two- and three-class problems were solved
with satisfactory results. One limitation of this study is that
the large volumes of continuous EEG recordings required for
deep learning algorithms are limited. In addition, the non-
abruptness phenomenon and inconsistency of the signals, along
with different brain location, patient ages, patient sexes and
seizure types are challenging issues that affect the consistency
of performance. In the future, we plan to apply this method to
online epileptic signal detection. After classification, our next
research object is to develop a successful seizure forecasting
model.
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Recent neurophysiological and computational studies have proposed the hypothesis that

our brain automatically codes the nth-order transitional probabilities (TPs) embedded in

sequential phenomena such as music and language (i.e., local statistics in nth-order

level), grasps the entropy of the TP distribution (i.e., global statistics), and predicts the

future state based on the internalized nth-order statistical model. This mechanism is

called statistical learning (SL). SL is also believed to contribute to the creativity involved

in musical improvisation. The present study examines the interactions among local

statistics, global statistics, and different levels of orders (mutual information) in musical

improvisation interact. Interactions among local statistics, global statistics, and hierarchy

were detected in higher-order SL models of pitches, but not lower-order SL models of

pitches or SL models of rhythms. These results suggest that the information-theoretical

phenomena of local and global statistics in each order may be reflected in improvisational

music. The present study proposes novel methodology to evaluate musical creativity

associated with SL based on information theory.

Keywords: creativity, Markov model, N-gram, improvisation, statistical learning, machine learning, uncertainty,

entropy

INTRODUCTION

Statistical Learning in the Brain: Local and Global Statistics
The notion of statistical learning (SL) (Saffran et al., 1996), which includes both informatics
and neurophysiology (Harrison et al., 2006; Pearce and Wiggins, 2012), involves the hypothesis
that our brain automatically codes the nth-order transitional probabilities (TPs) embedded in
sequential phenomena such as music and language (i.e., local statistics in nth-order levels)
(Daikoku et al., 2016, 2017b,c; Daikoku and Yumoto, 2017), grasps the entropy/uncertainty of
the TP distribution (i.e., global statistics) (Hasson, 2017), predicts the future state based on the
internalized nth-order statistical model (Daikoku et al., 2014; Yumoto and Daikoku, 2016), and
continually updates the model to adapt to the variable external environment (Daikoku et al.,
2012, 2017d). The concept of brain nth-order SL is underpinned by information theory (Shannon,
1951) involving n-gram or Markov models. TP (local statistics) and entropy (global statistics) are
used to estimate the statistical structure of environmental information. The nth-order Markov
model is a mathematical system based on the conditional probability of sequence in which the
probability of the forthcoming state is statistically defined by the most recent n state (i.e., nth-order
TP). A recent neurophysiological study suggested that sequences with higher entropy are learned
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based on higher-order TP whereas those with lower entropy
are learned based on lower-order TP (Daikoku et al., 2017a).
Another study suggested that certain regions or networks
perform specific computations of global statistics (i.e., entropy)
that are independent of local statistics (i.e., TP) (Hasson, 2017).
Few studies, however, have investigated how perceptive systems
of local and global statistics interact. It is important to examine
the entire process of brain SL in both computational and
neurophysiological areas (Daikoku, 2018b).

Statistical Learning and Information Theory
Local Statistics: Nth-Order Transitional Probability
Research suggests that there are two types of coding systems
involved in brain SL (see Figure 1): nth-order TPs (local statistics
at various order levels) (Daikoku et al., 2017a; Daikoku, 2018a)
and uncertainty/entropy (global statistics) (Hasson, 2017). The
TP is the conditional probability of an event B, given that the
most recent event A has occurred—this is written as P(B|A). The
nth-order TP distributions sampled from sequential information
such as music and language can be expressed by nth-order
Markov models (Markov, 1971). The nth-order Markov model
is based on the conditional probability of an event en+1, given
the preceding n events based on Bayes’ theorem [P(en+1|en)].
From a psychological viewpoint, the formula can be interpreted
as positing that the brain predicts a subsequent event en+1 based
on the preceding events en in a sequence. In other words, learners
expect the event with the highest TP based on the latest n
states, and are likely to be surprised by an event with lower TP.
Furthermore, TPs are often translated as information contents
[ICs, -log21/P(en+1|en)], which can be regarded as degrees of
surprising and predictable (Pearce and Wiggins, 2006). A lower
IC (i.e., higher TPs) means higher predictability and smaller
surprise whereas a higher IC (i.e., lower TPs) means lower
predictability and larger surprise. In the end, a tone with lower IC
may be one that a composer is more likely to predict and choose
as the next tone compared to tones with higher IC. IC can be used
in computational studies of music to discuss the psychological
phenomena involved in prediction and SL.

Global Statistics: Entropy and Uncertainty
Entropy (i.e., global statistics, Figure 1) is also used to understand
the general predictability of a sequence (Manzara et al.,
1992; Reis, 1999; Cox, 2010). It is calculated from probability
distribution, interpreted as uncertainty (Friston, 2010), and used
to evaluate the neurophysiological effects of global SL (Harrison
et al., 2006) as well as decision making (Summerfield and
de Lange, 2014), anxiety (Hirsh et al., 2012), and curiosity
(Loewenstein, 1994). A previous study reported that the neural
systems of global SL were partially independent of those of local
SL (Hasson, 2017). Furthermore, reorganization of learned local
statistics requires more time than the acquisition of new local
statistics, even if the new and previously acquired information
sets have equivalent entropy levels (Daikoku et al., 2017d).
Some articles, however, suggest that the global statistics of
sequencemodulate local SL (Daikoku et al., 2017a). Furthermore,
uncertainty of auditory and visual statistics is coded by modality-
general, as well as modality-specific, neural systems (Strange

FIGURE 1 | Relationship between order of transitional probabilities, entropy,

conditional entropy, and MI illustrated using a Venn diagram. The degree of

dependence on Xi for Xi+1 is measured by MI (MI (I(X;Y)) = entropy (H(Xi+1)] –

conditional entropy [H(Xi+1 |Xi ))). The MI of sequences in this figure is more

than 0. Thus, each event Xi+1 in the sequence is dependent on a preceding

event Xi .

et al., 2005; Nastase et al., 2014). This suggests that the neural
basis that codes global statistics, as well as local statistics, is a
domain-general system. Although domain-general and domain-
specific learning system in the brain are under debate (Hauser
et al., 2002; Jackendoff and Lerdahl, 2006), there seems to be
neural and psychological interactions in perceptions between
local and global statistics.

Depth: Mutual Information
Mutual information (MI) and pointwise MI (PMI) are measures
of the mutual dependence between two variables. PMI refers to
each event in sequence (local dependence), and MI refers to the
average of all events in the sequence (global dependence). In the
framework of SL based on TPs [P(en+1|en)], MI explains how
an event en+1 is dependent on the preceding event en. Thus,
MI is key to understanding the order of SL. For example, a
typical oddball sequence consisting of a frequent stimulus with
high probability of appearance and a deviant stimulus with low
probability of appearance has weak dependence between two
adjacent events (en, en+1) and shows low MI, because event en+1

appears independently of the preceding events en. In contrast, an
SL sequence based on TPs, but not probabilities of appearance,
has strong dependence on the two adjacent events and shows
larger MI. For example, a typical SL paradigm that consists of
the concatenation of pseudo-words with three stimuli has large
MI until second-order Markov or tri-grammodels [i.e., P(C|AB)]
whereas it has low MI from third-order Markov or four-gram
models [i.e., P(D|ABC)]. Thus, MI is sometimes used to evaluate
levels of SL in both neurophysiological (Harrison et al., 2006) and
computational studies (Pearce et al., 2010). In sum, the three
types of information-theoretical evaluations of SL models (i.e.,
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IC, entropy, and MI) can be explained in terms of psychological
aspects. (1) IC reflects local statistics. A tone with lower IC
(i.e., higher TPs) may be one that a composer is more likely
to predict and choose as the next tone compared to tones
with higher IC. (2) Entropy reflects global statistics and is
interpreted as the uncertainty of whole sequences. (3) MI
reflects the levels of orders in statistics and is interpreted as
the dependence of preceding sequential events in SL. Using
them, the present study investigated how local statistics, global
statistics, and the levels of the orders in musical improvisation
interact.

Musical Improvisation
Implicit statistical knowledge is considered to contribute to
the creativity involved in musical composition and musical
improvisation (Pearce and Wiggins, 2012; Norgaard, 2014;
Wiggins, 2018). Additionally, it is widely accepted that implicit
knowledge causes a sense of intuition, spontaneous behavior,
skill acquisition based on procedural learning, and creativity,
and is also closely tied to musical expression, such as
composition, playing, and intuitive creativity. Particularly, in
musical improvisation, musicians are forced to express intuitive
creativity and immediately play their own music based on
long-term training associated with procedural and implicit
learning (Clark and Squire, 1998; Ullman, 2001; Paradis,
2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus,
compared to other types of musical composition in which a
composer deliberates and refines a composition scheme for
a long time based on musical theory, the performance of
musical improvisation is intimately bound to implicit knowledge
because of the necessity of intuitive decision making (Berry
and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017)
and auditory-motor planning based on procedural knowledge
(Pearce et al., 2010; Norgaard, 2014). This suggests that the
stochastic distribution calculated from musical improvisation
may represent themusicians’ implicit knowledge and creativity in
music that has been developed via implicit learning. Few studies
have investigated the relationship betweenmusical improvisation
and implicit statistical knowledge. The present study, using real-
world improvisational music, first proposed a computational
model of musical creativity in improvisation based on TP
distribution, and examined how local statistics, global statistics,
and hierarchy in music interact.

METHODS

Extraction of Spectral and Temporal
Information
General Methodologies
The three musicians of William John Evans (Autumn Leaves
from Portrait in Jazz, 1959; Israel from Explorations, February
1961; I Love You Porgy from Waltz for Debby, June 1961;
Stella by Starlight from Conversations with Myself, 1963; Who
Can I Turn To? from Bill Evans at Town Hall, 1966; Someday
My Prince Will Come from the Montreux Jazz Festival, 1968;
A Time for Love from Alone, 1969), Herbert Jeffrey Hancock
(Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage

from Flood, 1975; Someday My Prince Will Come from The
Piano, 1978; Dolphin Dance from Herbie Hancock Trio ’81,
1981; Thieves in the Temple from The New Standard, 1996;
Cottontail from Gershwin’s World, 1998; The Sorcerer from
Directions in Music, 2001), and McCoy Tyner (Man from
Tanganyika from Tender Moments, 1967; Folks from Echoes of
a Friend, 1972; You Stepped Out of a Dream from Fly with
the Wind, 1976; For Tomorrow from Inner Voice; 1977; The
Habana Sun from The Legend of the Hour, 1981; Autumn Leaves
from Revelations, 1988; Just in Time from Dimensions, 1984)
were used in the present study. The highest pitches with length
were extracted based on the following definitions: the highest
pitches that can be played at a given point in time, pitches
with slurs that can be counted as one, and grace notes were
excluded. In addition, the rests that were related to highest-
pitch sequences were also extracted. This spectral and temporal
information were divided into four types of sequences: [1]
a pitch sequence without length and rest information (i.e.,
pitch sequence without temporal information); [2] a temporal
sequence without pitch information (i.e., temporal sequence
without pitches); [3] a pitch sequence with length and rest
information (i.e., pitch sequence with temporal information); and
[4] a temporal sequence with pitch information (i.e., temporal
sequence with pitches).

Pitch Sequence Without Temporal Information
For each type of pitch sequence, all of the intervals were
numbered so that an increase or decrease in a semitone was
1 and −1 based on the first pitch, respectively. Representative
examples were shown in Figure 2. This revealed the relative
pitch-interval patterns but not the absolute pitch patterns. This
procedure was used to eliminate the effects of the change in key
on transitional patterns. Interpretation of the key change depends
on the musician, and it is difficult to define in an objective
manner. Thus, the results in the present study may represent a
variation in the statistics associated with relative pitch rather than
absolute pitch.

Temporal Sequence Without Pitches
The onset times of each note were used for analyses. Although,
note onsets ignore the length of notes and rests, this methodology
can capture the most essential rhythmic features of the music
(Povel, 1984; Norgaard, 2014). To extract a temporal interval
between adjacent notes, all onset times were subtracted from the
onset of the preceding note. Then, for each type of temporal
sequence, the second to last temporal interval was divided by
the first temporal interval. Representative examples are shown in
Figure 2. This revealed relative rhythm patterns but not absolute
rhythm patterns; it is independent of the tempo of each piece of
music.

Pitch Sequence With Temporal Information
The two methodologies of pitch and temporal sequences were
combined. For each type of sequence, all of the intervals were
numbered so that an increase or decrease in a semitone was 1
and −1 based on the first pitch, respectively. Additionally, for
each type of pitch sequence, all onset times were subtracted from
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FIGURE 2 | Representative phrases of each type of transition pattern. Red: pitch transition, Blue: rhythm (temporal) transition. (A) Pitch; (B) Rhythm.

the onset of the preceding note, and the second to last temporal
intervals were divided by the first temporal interval. The
representative examples were shown in Figure 2. On the other
hand, a temporal interval of first-order model was calculated
as a ratio to the crotchet (i.e., quarter note), because only a
temporal interval is included for each sequence and the note
length cannot be calculated as a relative temporal interval. Thus,
the patterns of pitch sequence (p) with temporal information (t)
were represented as [p] with [t].

Temporal Sequence With Pitches
Themethodologies of sequence extraction were the same as those
of the pitch sequence with rhythm (see Figure 2), whereas the
TPs of the rhythm, but not pitch, sequences were calculated as a
statistic based onmulti-orderMarkov chains. The probability of a
forthcoming temporal interval with pitch was statistically defined
by the last temporal interval with pitch to six successive temporal
interval with pitch (i.e., first- to six-order Markov chains). Thus,
the relative pattern of temporal sequence (r) with pitches (p) were
represented as [t] with [p].

Modeling and Analysis
The TPs of the sequential patterns were calculated based on
0th−5th-order Markov chains. The nth-order Markov chain is
the conditional probability of an event en+1, given the preceding
n events based on Bayes’ theorem:

P (en+1|en) =
P(en+1 ∩ en)

P(en)
(1)

The ICs (I[en+1|en]) and conditional entropy [H(B|A)] in
the nth-order TP distribution (hereafter, Markov entropy)
were calculated using TPs in the framework of information
theory.

I (en+1|en) = log2
1

P (en+1|en)
(bit) (2)

H (B|A) = −
∑

i

∑

j

P(ai)P
(

bj
∣

∣ai
)

log2 P
(

bj
∣

∣ai
)

(bit)(3)

where P(bj|ai) is a conditional probability of sequence “ai bj.”
Then, MI [I(X;Y)] were calculated in 1st-, 2nd-, and 3rd-
order Markov models. MI is an information theoretic measure
of dependency between two variables (Cover and Thomas,
1991). The MI of two discrete variables X and Y can be
defined as

I(X;Y) =
∑

y∈Y

∑

x∈X
p
(

x, y
)

log (
p(x, y)

p(x)p(y)
) (bit) (4)

where p(x,y) is the joint probability function of X and Y, and p(x)
and p(y) are the marginal probability distribution functions of
X and Y, respectively. From entropy values, the MI can also be
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expressed as

I (X;Y) =
∑

x,y
p
(

x, y
)

log (
p(x, y)

p(x)p(y)
)

=
∑

x,y
p
(

x, y
)

log (
p(x, y)

p(x)
)−

∑

x,y
p
(

x, y
)

log p(y)

=
∑

x,y
p (x) p(y|x) log p(y|x)−

∑

x,y
log p

(

y
)

p(x, y)

=
∑

x
p (x)

(

∑

y
p
(

y
∣

∣x
)

log p
(

y
∣

∣x
)

)

−
∑

y
log p(y)(

∑

x
p(x, y))

= −
∑

x
p (x)H (Y|X = x) −

∑

y
p
(

y
)

log p(y)

= −H (Y|X) + H (Y)

= H (Y) −H (Y|X)
(

bit
)

(5)

where H(X) and H(Y) are the marginal entropies, H(X|Y)
and H(Y|X) are the conditional entropies, and H(X,Y) is the
joint entropy of X and Y (Figure 1). Based on psychological
and information-theoretical concepts, the Equation (5) can be
regarded that the amount of entropy (uncertainty) remaining
about Y after X is known. That is, the MI is corresponding
to reduction in entropy (uncertainty). Then, the transitional
patterns with 1st−20th highest TPs in all musicians, which
show higher predictabilities in each musician, were used as local
statistics of familiar phrases. The applied familiar phrases and the
TPs were shown in Supplementary material. The TPs of familiar
phrases were averaged. Repeated-measure analysis of variances
(ANOVAs) with factors of order and type of sequence were
conducted in each IC, entropy, and MI. Furthermore, the global
statistics andMI in each order were compared with local statistics
of familiar phrases by Pearson’s correlation analysis. Statistical
significance levels were set at p= 0.05 for all analyses.

RESULTS

Local vs. Global Statistics
The means of IC, conditional entropy, and mutual information
were shown in Figure 3. The means of IC, conditional entropy,
and mutual information were shown in Figure 3. The main
sequence effect were significant [IC: F(2.39, 47.89) = 1010.07,
p < 0.001, partial η

2 = 0.98; Entropy: F(1.20, 23.92) = 828.82,
p < 0.001, partial η

2 = 0.98; MI: F(2.00, 39.91) = 225.54,
p < 0.001, partial η

2 = 0.92] (Table 1). The main order effect
were significant [IC: F(2.05, 40.93) = 2909.59, p < 0.001, partial
η
2 = .99; Entropy: F(1.55, 31.03) = 2166.02, p < 0.001, partial

η
2 = 0.99; MI: F(1.68, 33.59) = 2468.35, p < 0.001, partial

η
2 = 0.99] (Table 1). The order-sequence interactions were

significant [IC: F(3.39, 67.76) = 592.24, p< 0.001, partial η2 = 0.97;
Entropy: F(2.25, 44.94) = 282.95, p < 0.001, partial η2 = 0.93; MI:
F(1.82, 36.45) = 351.48, p < 0.001, partial η2 = 0.95)] (Table 1).

Local vs. Global Statistics
All of the results in correlation analysis are shown in Figure 4.
In pitch sequence without temporal information, 1st−5th-
order models showed that the conditional entropies of the TP

distributions were moderately (0.4 ≦ |r| <0.7) related to the ICs
of TPs of familiar phrases (1st: r = 0.65, p= 0.001; 2nd: r = 0.66,
p = 0.001; 3rd: r = 0.63, p = 0.002; 4th: r = 0.66, p = 0.001;
5th: r = 0.69, p = 0.001). In pitch sequence with temporal
information, 1st-, 4th, and 5th-order models showed that the
conditional entropies of the TP distributions were moderately
(0.4 ≦ |r| <0.7) related to the ICs of TPs of familiar phrases (1st:
r = 0.58, p = 0.006; 4th: r = 0.49, p = 0.023; 5th: r = 0.43,
p = 0.049), and 2nd- and 3rd-order models showed that the
conditional entropies of the TP distributions were strongly (0.7
≦ |r| <1.0) related to the ICs of TPs of familiar phrases (2nd:
r = 0.73, p < 0.001; 3rd: r = 0.82, p < 0.001). In temporal
sequence with pitches, 0th−5th-order models showed that the
conditional entropies of the TP distributions were moderately
(0.4 ≦ |r| <0.7) related to the ICs of TPs of familiar phrases (0th:
r = 0.68, p = 0.001; 1st: r = 0.61, p = 0.004; 2nd: r = 0.72,
p < 0.001; 3rd: r = 0.45, p = 0.043; 4th: r = 0.45, p = 0.004;
5th: r = 0.47, p= 0.003).

Local Statistics vs. Hierarchy
All of the results are shown in Figure 5. In pitch sequence without
temporal information, 3rd−5th-order models showed that the
MI of the TP distributions were moderately (0.4 ≦ |r| <0.7)
related to the ICs of TPs of familiar phrases (3rd: r = 0.45,
p = 0.043; 4th: r = 0.45, p = 0.043; 5th: r = 0.47, p = 0.03).
In pitch sequence with temporal information, 2nd- and 3rd-
order models showed that the MI of the TP distributions were
moderately (0.4 ≦ |r| <0.7) related to the ICs of TPs of familiar
phrases (2nd: r = 0.44, p= 0.046; 3rd: r = 0.49, p= 0.025).

DISCUSSION

Psychological Notions of Information
Theory
The present study investigated how local statistics (TP and IC),
global statistics (conditional entropy), and levels of orders (MI) in
musical improvisation interact. The TP, IC, conditional entropy,
and MI can be calculated based on Markov models, which are
also applied to psychological and neurophysiological studies on
SL (Harrison et al., 2006; Furl et al., 2011; Daikoku, 2018b).
Based on psychological and neurophysiological studies on SL
(Harrison et al., 2006; Pearce et al., 2010; de Zubicaray et al.,
2013; Daikoku et al., 2015; Monroy et al., 2017), these three pieces
of information can be translated to psychological indices: a tone
with lower IC (i.e., higher TPs) may be one that a composer is
more likely to predict and choose as the next tone compared to
tones with higher IC whereas entropy and MI are interpreted as
the global predictability of the sequences and the levels of order
for the prediction, respectively. Previous studies also suggest that
musical creativity in part depends on SL (Pearce, 2005; Pearce
et al., 2010; Omigie et al., 2012, 2013; Pearce and Wiggins, 2012;
Hansen and Pearce, 2014; Norgaard, 2014), and that musical
training and experience is associated with the cognitive model
of probabilistic structure in the music involved in SL (Pearce,
2005; Pearce andWiggins, 2006, 2012; Pearce et al., 2010; Omigie
et al., 2012, 2013; Hansen and Pearce, 2014; Norgaard, 2014). The
present study, using improvisational music by three musicians,
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FIGURE 3 | The means of information content (IC), Conditional entropy, and mutual information (MI). Error bars represent standard errors of the means. P, pitch

sequence; R, rhythm sequence; PwR, pitch sequence with rhythms; RwP, rhythm sequence with pitches.

examined how local and global statistics embedded in music
interact, and discussed them from the interdisciplinary viewpoint
of SL.

Local vs. Global Statistics
In pitch sequence with and without temporal information,
higher-order (1st−5th order) models detected positive
correlations between global (conditional entropy) and local
statistics (IC) in musical improvisation whereas no significance
was detected in a lower-order (0th order) model. To understand
the local statistics of familiar phrases, the present study used
only the transitional patterns that showed the 1st−20th highest
TPs for all musicians, which can be interpreted as higher
predictabilities for each musician. Thus, the results suggest
that, when the TPs of familiar phrases are decreased, the
conditional entropy (uncertainty) of the entire TP distribution
is increased. This finding is mathematically and psychologically

reasonable. When improvisers are attempting to use various
types of phrases, the variability of sequential patterns is
increasing. In the end, the ICs (degree of surprise) of familiar
phrases are positively correlated with the conditional entropy
(uncertainty) of the entire sequential distribution. It is of note
that this correlation could not be detected in a lower-order
(0th order) model, and that no correlation was detected in
a temporal sequence without pitches. This suggests that the
interaction between local and global statistics may be stronger
in the SL of spectral sequence compared to that of temporal
sequence. Furthermore, these correlations may be detectable
in higher-order models. This may suggest that higher-order SL
can connect with grasping entropy. In sum, skills of musical
improvisation and intuition may strongly depend on SL of pitch
compared with that of rhythm. In addition, this phenomenon
on intuition may occur in higher-, but not lower-order levels
in SL. The higher-order SL model of pitches may be important
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TABLE 1 | ANOVA results.

A. MAIN EFFECT

IC Entrophy MI

Diff p-value Diff p-value Diff p-value

Sequence P R 0.09 0.043 0.28 <0.001 0.94 <0.001

PwR 0.78 <0.001 0.51 <0.001 0.16 0.021

RwP 1.25 <0.001 1.27 <0.001 1.89 <0.001

R PwR 0.69 <0.001 0.23 <0.001 −0.78 <0.001

RwP 1.16 <0.001 0.99 <0.001 0.95 <0.001

PwR RwP 0.47 <0.001 0.76 <0.001 1.72 <0.001

Order 0th 1st 2.26 <0.001 1.04 <0.001

2nd 2.73 <0.001 1.83 <0.001

3rd 2.97 <0.001 2.23 <0.001

4th 3.05 <0.001 2.39 <0.001

5th 3.09 <0.001 2.46 <0.001

1st 2nd 0.47 <0.001 0.79 <0.001 −0.79 <0.001

3rd 0.71 <0.001 1.19 <0.001 −1.19 <0.001

4th 0.79 <0.001 1.35 <0.001 −1.35 <0.001

5th 0.83 <0.001 1.42 <0.001 −1.42 <0.001

2nd 3rd 0.24 <0.001 0.4 <0.001 −0.4 <0.001

4th 0.33 <0.001 0.56 <0.001 −0.56 <0.001

5th 0.36 <0.001 0.64 <0.001 −0.64 <0.001

3rd 4th 0.09 <0.001 0.16 <0.001 −0.16 <0.001

5th 0.12 <0.001 0.24 <0.001 −0.24 <0.001

4th 5th 0.03 0.001 0.07 <0.001 −0.07 <0.001

B. INTERACTION

IC Entropy MI

Order Sequence Diff p-value Diff p–value Diff p-value

0th P R −0.54 0.009 1.06 <0.001

PwR 3.51 <0.001 0.65 <0.001

RwP 4.66 <0.001 2.84 <0.001

R PwR 4.05 <0.001 −0.42 0.016

RwP 5.24 <0.001 1.78 <0.001

PwR RwP 1.15 <0.001 2.2 <0.001

1st P R 1.33 <0.001 1.18 <0.001 −0.120 0.356

PwR 0.83 <0.001 1 <0.001 −0.35 <0.001

RwP 1.82 <0.001 2.63 <0.001 0.22 0.039

R PwR −0.56 <0.001 −0.180 0.525 −0.23 0.002

RwP 0.49 <0.001 1.44 <0.001 0.34 <0.001

PwR RwP 0.99 <0.001 1.63 <0.001 0.57 <0.001

2nd P R 0.27 <0.001 0.28 <0.001 0.79 <0.001

PwR 0.26 <0.001 0.84 <0.001 −0.19 0.032

RwP 0.71 <0.001 1.34 <0.001 1.5 <0.001

R PwR −0.010 1.000 0.56 <0.001 −0.98 <0.001

RwP 0.44 <0.001 1.06 <0.001 0.71 <0.001

PwR RwP 0.45 <0.001 0.51 <0.001 1.69 <0.001

3rd P R −0.12 0.022 −0.22 <0.001 1.28 <0.001

PwR 0.050 0.772 0.37 <0.001 0.27 0.002

RwP 0.22 <0.001 0.52 <0.001 2.32 <0.001

R PwR 0.16 0.011 0.59 <0.001 −107 <0.001

RwP 0.33 <0.001 0.74 <0.001 1.04 <0.001

PwR RwP 0.17 <0.001 0.15 <0.001 2.05 <0.001

(Continued)
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TABLE 1 | Continued

IC Entropy MI

Order Sequence Diff p-value Diff p–value Diff p-value

4th P R −0.21 <0.001 −0.33 <0.001 1.39 <0.001

PwR 0.000 1.000 0.15 <0.001 0.5 <0.001

RwP 0.06 0.004 0.2 <0.001 2.64 <0.001

R PwR 0.21 <0.001 0.47 <0.001 −0.89 <0.001

RwP 0.28 <0.001 0.53 <0.001 1.25 <0.001

PwR RwP 0.06 0.011 0.06 <0.001 2.14 <0.001

5th P R −0.17 <0.001 −0.3 <0.001 1.36 <0.001

PwR 0.03 0.027 0.06 <0.001 0.59 <0.001

RwP 0.05 0.009 0.09 <0.001 2.75 <0.001

R PwR 0.2 <0.001 0.36 <0.001 −0.78 <0.001

RwP 0.22 <0.001 0.39 <0.001 1.39 <0.001

PwR RwP 0.020 0.360 0.03 <0.001 2.17 <0.001

IC, information content; MI, mutual information; Diff, mean difference.

P, pitch sequence; R, rhythm sequence; PwR, pitch sequence with rhythms; RwP, rhythm sequence with pitches.

FIGURE 4 | The correlation analysis between conditional entropy (global statistics) and ICs of familiar phrases (local statistics) based on zeroth- to fifth-order Markov

models of pitch and temporal (rhythm) sequences.
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FIGURE 5 | The correlation analysis between MI and ICs of familiar phrases (local statistics) based on zeroth- to fifth-order Markov models of pitch and temporal

(rhythm) sequences.

to grasp the entire process of hierarchical SL in musical
improvisation.

Local Statistics vs. Hierarchy
In pitch sequences without temporal information, higher-order
(3rd−5th order) models showed negative correlations between
dependence of previous events (MI) and local statistics (IC), and
no significance was detected in lower-order (0th−2nd order)
models. This finding is also mathematically and psychologically
reasonable.When players strongly depend on previous sequential
information to improvise music, they tend to use familiar phrases
because familiar phrases with higher TPs P(Xi+1|Xi) tend to
have strong dependence on previous sequential information (Xi).
In the end, the ICs (degree of surprise) of familiar phrases
are decreased when improvisers depend on previous sequential

information that can be detected as larger MIs. Interestingly,
this correlation could not be detected in a lower-order model
(0th order), and no correlation was detected in the temporal
sequence without pitches. As shown in the correlation between
local and global statistics, the interaction between local statistics
and levels of orders may be stronger in the SL of spectral
sequence compared to that of temporal sequence. Furthermore,
these correlations may be detectable in higher-order models.
In contrast, fourth- and fifth-order models of pitch sequence
with temporal information did not show correlations. Thus,
rhythms may modulate the levels of orders in the SL of pitches
in improvisational music (Daikoku, 2018c). This hypothesis may
be supported in the models of temporal sequence with pitches.
No correlation was detected in temporal sequence (Daikoku
et al., 2018) with pitches. Future study is needed to investigate
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how rhythms affect improvisational music, and how the SL
of rhythms interact with those of pitches. It is of note that
the present study did not directly investigate the improviser’s
statistical knowledge of music, as only the statistics of music were
analyzed. However, the transition probabilities shape only a small
part of their respective styles. Future study should investigate
the SL of music from many improvisers using interdisciplinary
approaches of neurophysiology and informatics in parallel. The
methodologies in this study are missing important information
that constructs music such as beat, stresses, and ornamental
note, which inspire the rhythm and intonation. Furthermore,
the present study only analyzed three improvisers. To discuss
universal phenomena in SL associated with improvisation,
future study will be needed to examine a body of pieces of
music.

CONCLUSION

The present study investigated how local statistics (TP and IC),
global statistics (entropy), and levels of orders (MI) in musical
improvisation interact. Generally, the interactions among local
statistics and global statistics were detected in higher-order SL
models of pitches, but not lower-order SL models of spectral
sequence or SL models of temporal sequence. The results

of the present study suggested that information-theoretical
phenomena of local and global statistics in each hierarchy can
be reflected in improvisational music. These results support a
novel methodology to evaluate musical creativity associated with
SL based on information theory.
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Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to

contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse

activity compared to other systems, however, whether sparseness and neurogenesis

interact during memory encoding remains elusive. We implement a novel learning rule

consistent with experimental findings of competition among adult-born neurons in a

supervised multilayer feedforward network trained to discriminate between contexts.

From this rule, the DG population partitions into neuronal ensembles each of which

is biased to represent one of the contexts. This corresponds to a low dimensional

representation of the contexts, whereby the fastest dimensionality reduction is achieved

in sparse models. We then modify the rule, showing that equivalent representations

and performance are achieved when neurons compete for synaptic stability rather than

neuronal survival. Our results suggest that competition for stability in sparse models is

well-suited to developing ensembles of what may be called memory engram cells.

Keywords: dimensionality reduction, hippocampus, pattern separation, neuromorphic computing, feed-forward

neural network, synaptic pruning, synaptic turnover, synaptic plasticity

1. INTRODUCTION

1.1. What Is Known
The hippocampal dentate gyrus (DG) is known to participate in the generation and maintenance
of spatio-contextual memories via groups of cells whose activity is causally responsible for the
recollection of particular associations (Josselyn et al., 2015; Tonegawa et al., 2015). The DG is noted
for a combination of distinctive properties, including adult neurogenesis of the principle granule
cells (Wu et al., 2015; Gonçalves et al., 2016) and extremely sparse activity (Jung and McNaughton,
1993; Leutgeb et al., 2007; Danielson et al., 2016; Diamantaki et al., 2016).

Sincemost adult-born neurons rapidly die, it has long been hypothesized that theymust compete
amongst themselves, and with mature neurons, for survival dependent upon their contribution
to behavior (Bergami and Berninger, 2012). Consistent with this notion, newly adult-born cells
integrate into the DG in an experience-dependent manner (Kempermann et al., 1997b; Gould
et al., 1999; Bergami et al., 2015; Alvarez et al., 2016; Zhuo et al., 2016), and numerous studies have
demonstrated that either ablation (Clelland et al., 2009; Sahay et al., 2011), or in vivo silencing of
activity (Danielson et al., 2016; Zhuo et al., 2016) or synaptic output (Nakashiba et al., 2012) of these
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cells impairs discrimination of hippocampus-dependent
associative memories, while enhancing survival of these cells
can enhance such performance (Sahay et al., 2011). Similar
interventions that silence adult-born cells after learning have
shown that retrieval of recent memories is impaired (Gu et al.,
2012).

Experience induces synaptic competition among adult-
generated granule cells for contacts to CA3 neurons resulting
in axonal retraction by mature cells induced by young cells
(Yasuda et al., 2011). Elsewhere in both the central (Fitzsimonds
et al., 1997; Tao et al., 2000; Du and Poo, 2004) and peripheral
nervous systems (Sharma et al., 2010; Zhou et al., 2012), the
strength of a neurons output synapses can retrogradely adjust
the strength of its input synapses. It has been suggested that this
biological phenomenon could encode a neurons performance
errors to achieve a similar effect to the artificial backpropagation
of error so commonly employed in training neural networks
(Harris, 2008). Adult-born DG granule cells reach their targets
in CA3 after about 4–6 weeks (Toni et al., 2008), overlapping
with when they begin to participate in memory encoding
(Clelland et al., 2009; Sahay et al., 2011; Nakashiba et al.,
2012; Danielson et al., 2016; Zhuo et al., 2016), and thus
may begin to receive signals from CA3 that indicate the
success of their contribution to useful representations. The
combination of these results suggests that neurogenesis may
endow the DG with a kind of learning rule—DG neurons
compete with each other for target-derived factors through
their synaptic contact to CA3, in turn, influencing their
probability of survival. Such a learning rule is the focus of our
study.

In an apparently distinct thread of research, sparse activity
in recurrent Hopfield-like networks is shown to reduce the
interference between stored memories (Tsodyks and Feigel’man,
1988; Amit and Fusi, 1994) and, in models of vision, to enable
the efficient representation of naturalistic images as combinations
of statistically independent components (Olshausen and Field,
1996; Bell and Sejnowski, 1997), ideas that have roots in
the efficient coding hypothesis (Barlow, 1961). In cortical
models consisting of a single hidden layer multilayer perceptron
with random input weights, it has been shown that pattern
decorrelation (often called pattern separation in the neurogenesis
literature) is not sufficient to yield proper memory retrieval in the
presence of noise (Barak et al., 2013; Babadi and Sompolinsky,
2014). Instead, memory retrieval depends upon a balance
between decorrelation of input patterns and generalization of
those patterns to the correct class. In such models, sparseness
improves memory retrieval by reducing the tradeoff between
decorrelation and generalization (Barak et al., 2013). This
apparent tradeoff has been analytically expressed in terms that
reflect the counterintuitive amplification of noise by sparse
coding (Babadi and Sompolinsky, 2014). As a result, there is
a theoretical limit on the benefits provided by sparseness in a
hidden layer with random input weights (Barak et al., 2013;
Babadi and Sompolinsky, 2014). This limitation led some authors
to suggest that random weighting is at least partly responsible for
limiting the benefits of sparse coding (Babadi and Sompolinsky,
2014).

1.2. Our Contribution
One interpretation of these studies is that pattern classification
performance, rather than pattern separation, as it has been
defined in the neurogenesis literature, may be the appropriate
measure of memory performance. We hone our questions into
a framework similar to that employed in previous studies of
sparse cortical representations (Barak et al., 2013; Babadi and
Sompolinsky, 2014), a single-hidden layer, randomly connected
feedforward neural network.Within this framework we represent
the activities of the neurogenic cells of the dentate gyrus in the
hidden layer. With only minimal assumptions, such a network
can learn generalizable, nonlinear classifications (Barak et al.,
2013), while allowing us to implement sparse coding, synaptic
plasticity, and competition among DG neurons for contact with
CA3. By supervising the output, the network is trained and then
tested for discrimination between sets of input patterns.

We first demonstrate that our neuronal turnover rule,
employing randomly drawn input weights, markedly increases
the discrimination performance over the initial condition of
random projection that was previously studied (Barak et al., 2013;
Babadi and Sompolinsky, 2014). The rule exploits sparse coding
such that the longer neuronal turnover is allowed to proceed,
the sparser the optimal coding level. Since our input weights are
always drawn randomly, our results suggest that the sparsening
of the optimal code is due to the achievement of a particular
hidden layer representation rather than a structuring of the input
weights, as was the case explored by Babadi and Sompolinsky.
Thus our work complements theirs by suggesting a learning rule
via which very sparse codes are optimal for random input weights
without require fine tuning.

We show that our rule induces a contextual preference
among DG neurons, partitioning the population into ensembles
whose average activities are biased for their respective contexts.
This is equivalent to dimensionality reduction of the contextual
representations in the DG. The final classification performed by
the CA3 readout thereby suffers less errors during generalization.
We demonstrate that the final achievable discrimination between
contextual memories is constrained by the distribution of
singular values of the DG representation, such that the sparse
code can evolve to a greater difference in the representation
space. We then construct a more general model based on
evidence that the strength of a neurons output synapses
can influence that of its input synapses via internal signals
(Fitzsimonds et al., 1997; Tao et al., 2000; Du and Poo, 2004;
Sharma et al., 2010; Zhou et al., 2012). This rule similarly reduces
the dimensionality of the representation while shifting the
activity-dependence toward sparser levels, improving memory
performance. Our results suggest that axonal competition for
target-mediated stability in sparse models is a novel form of
encoding that does not require synaptic fine-tuning, and could
be employed across many sparsely coded systems of the brain.

2. MATERIALS AND METHODS

2.1. Representations of Contexts
We represent the activity state of a population of EC neurons
in response to a stimulus as a vector ξ , the elements of which
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neurons that are either spiking, ξj = +1, or not spiking ξj = −1.
Patterns are split evenly into two contexts representing the two
contexts that the network must learn. The synaptic current of a
given DG unit i for pattern µ is defined as:

g
µ
i =

M
∑

j

Jjξ
µ
j (1)

and its activity is given by a threshold function of the synaptic
current controlled by θ :

S
µ
i = sgn

(

g
µ
i − θ

)

(2)

The CA3 synaptic current is defined similarly as the weighted
sum of the input from DG:

hµ =

N
∑

i

WiS
µ
i (3)

For everyµ’th pattern we want the output of the trained network,
η̂µ = sgn(hµ) to be equal to a randomly pre-chosen target output
state for the CA3 unit, either spiking ηµ = +1, or not spiking,
ηµ = −1, for all patterns.

2.2. Training the Network With
Neurogenesis
The task of the network is to use the training patterns to find
a W such that when presented with patterns of a given class
to which the network has not been explicitly trained it can
correctly generalize, i.e., it will still output the correct class. We
train the CA3 output weights in a similar manner to Barak
et al. (2013). We assume that the activity of the EC consists of
random, uncorrelated prototype patterns, ξ , that determine their
corresponding current in the DG, gi =

∑M
j Jjξ

µ
j . We then

assume there is noise, or variability in the system such that each
prototype pattern is actually represented by a group of noisy
instances of the prototype that are generated by flipping the sign
of elements of the vector ξ with a fixed probability ν = 0.2. This
allows us to calculate the mean synaptic current of a given DG
unit i for pattern µ as:

g
µ
i = g

µ
i (1− 2ν) . (4)

Consider the difference between two noisy instances of a
prototype pattern, say g

µ
i (t) at the t-th iteration and g

µ
i

(

t′
)

at
the t′-th iteration:

g
µ
i (t) − g

µ
i

(

t′
)

=
∑

+1 entries flipped in t but not in t′

Jij × (+2)+
∑

+1 entries not flipped in t but in t′

Jij × (−2)

+
∑

−1 entries flipped in t but not in t′

Jij × (−2)+
∑

−1 entries not flipped in t but in t′

Jij × (+2)

Here the sign accompanying “2” will be absorbed into Jij to
simplify the calculation because Jij ∼ N (0, 1).

〈

[

g
µ
i (t) − g

µ
i

(

t′
)]2
〉

=

〈





∑

entries flipped in t but not in t′

Jij × 2

+
∑

entries not flipped in t but in t7′

Jij × 2





2
〉

= 4

〈

∑

Mν (1− ν) terms

J2ij +
∑

Mν (1− ν) terms

J2ij

〉

= 8Mν (1− ν) .

Here 〈J2ij〉 = 1 because Jij ∼ N (0, 1). On the other hand, let

g
µ
i (t) = g

µ
i + δg

µ
i (t), then we have

〈

[

g
µ
i (t) − g

µ
i

(

t′
)]2
〉

=

〈

δg
µ
i (t)2 + δg

µ
i

(

t′
)2

− 2δg
µ
i (t) δg

µ
i

(

t′
)

〉

=
〈

δg
µ
i (t)2

〉

+

〈

δg
µ
i

(

t′
)2
〉

= 2
〈

δg
µ
i (t)2

〉

.

Hence, the variance of each DG unit is given by

σ 2
g =

〈

δg
µ
i (t)2

〉

= 4Mν (1− ν) . (5)

Since the synaptic currents of the i-th DG unit for noisy instances
are sum of many randomly altered numbers, those synaptic
currents can be assumed to be Gaussian. The expected value of
the activity of the i-th DG unit can be deduced by

S
µ

i = −1×

∫ θ

−∞

dgf
(

g
∣

∣

∣
g
µ
i , σ

2
g

)

+ 1×

∫ +∞

θ

dgf
(

g
∣

∣

∣
g
µ
i , σ

2
g

)

= −F
(

θ

∣

∣

∣
g
µ
i , σ

2
g

)

+ 1− F
(

θ

∣

∣

∣
g
µ
i , σ

2
g

)

= erf

(

g
µ
i − θ
√
2σg

)

, (6)

where f (g|g
µ
i , σ

2
µ) and F(g|g

µ
i , σ

2
µ) are probability density

function and cumulative density function, respectively, of a
normal distribution with mean g

µ
i and variance σ 2

g . To arrive at

the desired target output, e.g., η = sgn(
∑N

i=1WiS
µ
i ) for all µ, the

cost function

E =

P
∑

µ=1

(

ηµ −WTS
µ
)2
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should be minimized. We then find the linear least squared error
solution toW,

WT = argmin
W̃

[

P
∑

µ

(ηµ − W̃TS
µ
)2

]

, (7)

by taking the Moore-Penrose pseudoinverse of the matrix S,

WT = ηS
∗

(8)

= ηV6∗UT , (9)

where S∗ is the pseudoinverse of S, U and V are the matrices
of left and right singular vectors, respectively, and 6 is the
matrix of singular values. Here theMoore-Penrose pseudoinverse
enables us to look for the best approximation using column
vectors of S

µ

i . The approximation is also the best-fit solution
minimizing the cost function. More explanation about Moore-
Penrose pseudoinverse can be found in Appendix A.

To implement the synaptic competition underlying
neurogenesis we compare three different models. In Model 1
(Figures 1, 2, 3, 5), at each time step we kill DG units
corresponding to the bottom 30% of absolute values in vector
W, i.e., the input weights to those units are re-randomized. In
Model 2 we explore a multicontext case presented in Figure 6

in which each DG unit projects to multiple CA3 units, therefore
we take the sum of the absolute value of each DG units weight
vector and compare this value across all DG units.

In Model 3 presented in Figure 7, rather than re-randomizing
all input weights of selected DG units, we determine the
probability of synaptic turnover of each DG unit from a linear
transfer function of its DG-CA3 weight (Figure S3A). Results
presented in Figure 7 are from the mean of 100 simulations with
a slope = 2.5 for the linear transfer function.

2.3. Analyzing Performance of the Network
To evaluate the performance of the network, the signal-to-noise
ratio is introduced. The signal is defined by the square of the
expectation of the difference between CA3 synaptic currents
corresponding to (+) context, i.e., ηµ = +1, and (−) context,
i.e., ηµ = −1, among all the patterns.

Signal =
[

E
(

hµ
∣

∣ ηµ = +1
)

− E
(

hµ
∣

∣ ηµ = −1
)]2

. (10)

To progress, we define the context-bias of a given DG unit i, 9i,
as the difference between the fraction of (+) context patterns, f+i ,

and the fraction of (−) context patterns, f−i , to which it responds.

9i = f+i − f−i , (11)

where f±i is the fraction of (±) context patterns activating DG
unit i. On the other hand,

(

SηT
)

i
=

∑

active for a (+) pattern

(+1)× (+1)

+
∑

inactive for a (+) pattern

(−1)× (+1)

∑

active for a (-) pattern

(+1)× (−1)

+
∑

inactive for a (-) pattern

(−1)× (−1) (12)

= Pf+i − P
(

1− f+i
)

− Pf−i + P
(

1− f−i
)

(13)

= 2P9i . (14)

Note that S here is a matrix, whose column vectors are activities
of DG neurons for different input patterns. η is a label vector,
where entries are expected output (CA3) of the patterns. Then
we can then express the context-bias in terms of S and η in a
matrix-vector equation as:

9 =
1

2P
SηT . (15)

With this, the signal can be expressed as

Signal =

[

2
∑

i

Wi
(

f+i − f−i
)

]2

(16)

=

[

2WT9

]2
. (17)

On the other hand, we define the noise as the sum of variances of
this current for the (+) and (−) contexts respectively:

Noise = Var
(

hµ
∣

∣ ηµ = +1
)

+ Var
(

hµ
∣

∣ ηµ = −1
)

(18)

N→∞
= 4

∑

i

W2
i

[

f+i −
(

f+i
)2

+ f−i −
(

f−i
)2
]

(19)

= 4
∑

i

W2
i

[

f+i
(

1− f−i
)

+ f−i
(

1− f+i
)

−
(

f+i − f−i
)2
]

(20)

From these expressions we derive the signal to noise ratio (SNR)
in terms of f±i andWT .

Signal

Noise
=

[

2WT9
]2

4
∑

iW
2
i

[

f+i
(

1− f−i
)

+ f−i
(

1− f+i
)

−
(

f+i − f−i
)2
] (21)

=

∑

iW
2
i 9

2
i +

∑

i6=jWi9iWj9j

∑

iW
2
i

[
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(
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)
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(

1− f+i
)

−
(

f+i − f−i
)2
] (22)

N→∞
=

∑

iW
2
i

(

f+i − f−i
)2

∑
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2
i f

+
i

(

1− f−i
)

+
∑
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2
i f

−
i

(
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−
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2
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(23)
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FIGURE 1 | Neurogenesis enhances generalization performance. (A) In Model 1, after a weight vector is assigned by training, DG units with weak weights to CA3 are

replaced with new randomly connected units. (B) At each day of training the network is tested with randomly generated patterns belonging to one of the two

contexts. This generalization error decreases as a function of the number of iterations of neural turnover. Single simulation (gray) and mean of many simulations

(black), before (red point) and after (orange point) neurogenesis. (C,D) CA3 Synaptic current distribution for all test patterns representing the two contexts before

(C) and after (D) 128 iterations (days) of neural turnover. Results are from a network of 200 EC, 500 DG neurons and a single CA3 readout. Each context consists of

50 EC patterns with input noise, ν, fixed at 0.2, and theta is chosen to yield a coding level of f = 0.04, turnover rate is fixed at 0.30 (See Experimental Procedures).

(E) Mean error is shown decreasing as a function of the number of iterations of neural turnover for three different coding levels. (F) Error is shown as a function of

coding level before and after 128 iterations of neural turnover. After neurogenesis the performance is improved at all levels of sparseness (all coding levels, f ). (G) The

coding level at which minimum error occurs (optimal f ) is plotted vs. the number of iterations of neural turnover. Neural turnover favor a sparser (reduced) coding level.

Mean error is calculated as the mean of 20 simulations.

This expression allows us to observe the intuitive relationship
between the context-bias of DG cells and the SNR. The second
term in the numerator of Equation (22) should vanish as N →

∞, as it sums random numbers centered at zero.
ForWT ,

WT = 2P9TU
(

6∗
)2
UT (24)

In the presentation of our results it is useful to let 9̂T
i = 9Tuiu

T
i

where ui is the i-th column of U, so that

WT = 2P

N
∑

i

σ−2
i 9̂T

i (25)

observing the weight vector as a weighted sum of projected
context-bias vectors. The derivation of this equation can be found
in Appendix B.

2.4. Dimensionality of DG Contextual
Representation
From above, the weight vector is defined as:

WT = ηV6∗UT (26)

Permitting us to rewrite the weight vector as a linear sum of
coefficients producted with their respective left singular vectors:

W =

D
∑

i=1

αiui, (27)

Frontiers in Computational Neuroscience | www.frontiersin.org 5 January 2019 | Volume 12 | Article 9961

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


DeCostanzo et al. Neurogenesis and Dimensionality Reduction in Sparse Codes

FIGURE 2 | Neurogenesis exploits the low noise of the sparse code to outperform dense DG coding. (A) Distribution of CA3 current at t = 0 (before) vs. t = 128

(after) for the dense activity case of f = 0.5 for a group of test patterns generated from a single prototype pattern belonging to the (+) context. Vertical dashed line at 0

represents the activity threshold of the CA3 neuron (B) Same as in (A), but for the sparse case of f = 0.04. (C,D) Normalized CA3 readout weight distribution in dense

(C) and sparse (D) cases. (E) Signal at CA3 vs. time for f = 0.5 (blue) and f = 0.04 (red). (F) Readout noise at CA3 vs. time for f = 0.5 (blue) and f = 0.04 (red).

(G) Signal to noise ratio (SNR), calculated as data in (E) over data in (F). Demonstrates the advantage given by slower scaling of variance in the sparse case of

f = 0.04. The results are plotted as the mean of 20 simulations.

where D is the dimension of the square matrix U. The
D dimensions are ranked from 1 to D according to their
corresponding coefficients. We define a cumulative weight vector
of a given dimensionality as:

Ŵd =

d
∑

i

αiui , (28)

where d takes a value from 1 to D, representing the number of
dimensions chosen for a given cumulative weight vector. We

then define the cumulative performance, perfcum =
(0.5−err)

0.5 ,

where the error is calculated for every cumulative weight vector
(Figure S3C).

2.5. Model Parameters
All results in Figures 1–5 are from a network with 200 EC, 500
DG units and a single CA3 unit. Data in Figure 6 are from
the same size network except that the number of CA3 units
is increased to 3 to allow for multicontext discrimination. In
Figures 1, 2, 3, 4, 7 the network was trained with the mean
representation of each of 100 prototype patterns as described
above. In Figure 6 the network was trained with 8 groups
of 12 prototypes, to represent 8 subcontexts, by calculating
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FIGURE 3 | Neurogenesis clusters context representations in DG activity space. (A) Matrix of pairwise correlations between training patterns represented in the DG,

ordered by context so that patterns 1–50 correspond to the (+) context and patterns 51–100 correspond to (-) context. For a single simulation the correlation matrix of

patterns for f = 0.50 before (left) and after (right) 128 iterations of neural turnover. (B) Same as in (A) but for f = 0.04. (C) Training patterns from the two contexts are

projected onto the principal components. For visual clarity only the means of all training patterns for each of the 100 prototypes are projected. Closed and open circles

correspond to the (+) and (-) contexts, respectively. Dense coding, f = 0.50, before (left) and after (right) 128 iterations of neural turnover. (D) as in (C) but for sparse

coding of f = 0.04. (E) Mean correlation between patterns of opposite contexts (between) and patterns of the same context (within), calculated as mean of 20

simulations. (F) Schematic illustration of context discrimination by neurogenesis. Closed and open circles represent the patterns of the two respective contexts.

Intuitively, as neuronal turnover and retraining proceeds the patterns in DG space are shifted in dimensions that are mostly parallel to the weight vector, over time

leading to greater separation. All above results are from a single simulation.

the mean representation of each prototype assuming some
variability as described above. In Figure 5 the network is the
same size, however, training consisted of 100 noisy instances of
100 prototypes, rather than using the mean representation of
each prototype. This is because we wished to relate the results
of this training directly to the equations that we derived for the
SNR from the SVD as above. Both types of training gave similar
qualitative results, therefore they are not explicitly compared.

3. RESULTS

3.1. Network Model for Adult Neurogenesis
in the Formation of Associative Memories
We implement a feed-forward multilayer perceptron in
which pattern discrimination (classification) is the readout
of performance. The model consists of a three-layer network
including entorhinal cortical inputs (EC), dentate gyrus (DG),
and a CA3 output (Figure 1A). We assume that a given DG cell

receives a weighted sum of its inputs from the EC. Thus the
total current into the i’th DG cell in response to the µ’th EC
pattern, ξµ, is given by g

µ
i =

∑M
j Jjξ

µ
j where the weights, Jj,

are drawn randomly from a normal distribution,N (0, 1), and its
activity is determined by the nonlinear function of this current,
S
µ
i = sgn(g

µ
i −θ) , where we refer to θ as the activation threshold,

which is a tunable parameter we use to control the coding level,
i.e., the expected value of the fraction of patterns to which a
given unit responds, defined as f = 1

2P

∑P
µ=1

1
N

∑N
i=1(S

µ
i + 1).

We define a context as a group of prototypical activity patterns
generated in the EC, where each pattern represents a stimulus
that is present in the given context. We assume that there is
random variability in the environment, or within the system
such that among these patterns each binary element may be
flipped with probability ν. Averaging for each prototype over
the input noise ν, we obtain corresponding mean input currents
for each DG cell for each prototype pattern, g

µ
i = g

µ
i (1 − 2ν),

with variance σ 2
g = 4Mν(1 − ν) (See Materials and Methods).

This gives us a set of mean prototype activity patterns in the
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FIGURE 4 | Dimensionality reduction due to neurogenesis. (A) Relative magnitudes of ranked singular values, λ(i)/λ(1). The singular values are calculated for the

centered DG activity matrix for a single simulation. In both cases the relative magnitudes of singular values drop after turnover of DG neurons. The sparse case

(f = 0.04) shows larger drops than the dense case (f = 0.50). (B) Color-maps of classification error comparing predefined coding level, f , and restricted dimension d

at different times, t = 0th day and t = 128th day. The number of dimensions used to calculateW is restricted to d, according to Equation (28). The error is the average

error measured from 20 simulations. Before neuronal turnover, the map is relatively flat. After neuronal turnover there is a large region of low dimensionality over which

the classification performance of the network maintains low error. Dashed line: contour for err = 0.15. Dot-Dashed Curve: contour for err = 0.20. Dotted line: contour

for err = 0.25.

space of DG activity, where each neurons activity is defined as
S = erf[(θ − g

µ
i )/(

√
2σ g)]. The network is said to perform

contextual discrimination when the CA3 output correctly reads
out the DG patterns according to the target label for the EC
context to which those patterns belong.

To train the network, we randomly assign to the µ-th EC
pattern, a CA3 target, ηµ , taking the value +1 or −1. Thus,
assuming that θ is held constant during training, the task of the
network is to find a input weight matrix , J, and an output weight
vector, W, such that WTS = η, where S is the matrix of DG
prototype patterns, and η is the corresponding vector of context
labels.

We hypothesize that neurogenesis provides a mechanism by
which biology breaks this problem into two steps. We assume
that, as in the brain, the time-scale of neurogenesis is much
slower than that for synaptic plasticity, allowing us to train the
output weights, W, independently of the input weights, J. Many
learning rules could be used to train W, such as Hebbs rule,
or Support Vector Machine (with a linear kernel), or Linear
Discriminant Analysis. We obtained qualitatively similar results
with all of these, therefore, to simplify later analysis, we use
the pseudoinverse rule yielding WT = ηS∗, where S∗ is the
Moore-Penrose pseudoinverse of the matrix of DG prototype
patterns, and WT is the transpose of the output weight vector,
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FIGURE 5 | Selection of context-biased DG units takes advantage of the singular value distribution of the sparse code. (A,B) DG-CA3 weight vs. context-bias of

individual DG neurons before and after neurogenesis for f = 0.50 (A) and f = 0.04 (B). Marginal histograms show the projected distributions. In both cases the

DG-CA3 weights and the context-bias of DG neuron evolve to a bimodal distribution in which they are correlated. (C) Inverse square singular values, σ
−2
i

, sorted by

index, i. (D) The influence of the context-bias vector on the weight vector is determined by the relationship between 2Pσ
−2
i

‖9̂i‖ and ‖9̂i‖ over time. Plot shows the

dense case (f = 0.50) and sparse case (f = 0.10) before and after neuronal turnover (128 iterations). (E) ‖W‖ grows more rapidly as a function of ‖9‖ in the sparse

case. Arrows label the direction of evolution. (F) WT9 grows more rapidly in the sparse case than in the dense case as a function of the product ‖W‖‖9‖. Arrow

labels the direction of evolution. (G) WT9 grows more rapidly in time in the sparse case, and determines the scale up of the SNR. All results are calculated from a

single simulation. (H) Dense coding (blue, top) results in a reduced contribution of separating components, σ
−2
i

while sparse coding (red, bottom) results in less

reduction in the contribution of these components, promoting greater separation of contexts in DG activity space.

W, whose elements are the DG-CA3 weights of the population
of DG units (See Materials and Methods). Next we assume that
DG neurons compete with each other for connection to CA3
such that the absolute value of Wi determines their probability
of survival, i.e., neurons with large values will receive some
trophic signal allowing them to survive, while those with values
below some threshold will die, to be replaced by a new randomly

connected unit (Figure 1A). Thus training is summarized as
follows:

1. Initialize the matrix of random EC-DG weights, J.
2. Calculate DG-CA3 weight vector,W, byWT = ηS

∗
.

3. Eliminate DG units with the weakest |Wi|s at a predefined
percentage (to be stated in the following).
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FIGURE 6 | Neuronal turnover rule can be generalized to encode multiple contexts. (A) In Model 2, multiple context discrimination is performed by using multiple

readout units each with trained weights. The turnover rule sums the absolute readout weights of all units and eliminates the units ranking in the bottom 30%. (B)

Generalization error decreases with neurogenesis, and the sparse code is optimal for the multicontext case, shown as the mean of 20 simulations (input noise,

ν = 0.05, 12 prototypes per context). (C) For a single simulation, pairwise correlation matrix of patterns in DG space before neurogenesis. (D) Same as in (C) after

512 days of neurogenesis. Patterns evolve into correlated groups in DG space. (E) Projection of patterns in DG space onto PCs, before neurogenesis. (F) Same as in

(E) after 512 iterations of neurogenesis. Clusters emerge from a random arrangement, and move apart from each other. (G) As in (E) but projection of test patterns

onto PCs, day 0 before neurogenesis. (H) as in (G) but after day 512 of neurogenesis. Patterns representing distinct contexts cluster together, and become separated

from each other.

4. Those DG units are replaced by new DG units. The EC-
DG weights connecting to those new DG units are randomly
drawn from a normal distributionN (0, 1).

5. Repeat and start from Step 2.

Since the cell cycle in biology corresponds to about 24 h, and each
iteration of our model represents the death and birth of neurons,
one iteration corresponds to roughly one biological day (the time
axes is labeled “days”). One should note that the DG neurons
considered in this model are those mature enough to emerge into
the dentate gyrus and reach CA3. Those immature adult-born
cells unable to reach CA3 are not considered in this model.

We test the network by presenting EC input patterns with
a fraction of ν bits flipped (corresponding to input noise, or
variability) that belong to a known context, taking the CA3
output for the µ-th test pattern as η̂µ = sgn(

∑N
i WiS

µ
i ), where

N is the total number of DG units. Then we measure the error

on a given test pattern, errµ =

{

0, if η̂µ = ηµ

1, otherwise
, and mean

over all test patterns, 〈errµ〉µ, yielding the generalization error.
Neuronal turnover of the weakest 30% of DG neurons per day
results in a steadily decreasing mean error as a function of the
number of iterations (days) of contextual associative learning
(Figure 1B), thus increasing the performance of this framework
relative to the randomly initialized network corresponding to the
case studied by Barak et al. (2013) and Babadi and Sompolinsky
(2014). The choice of 30% may seem arbitrary, but further

clarification will follow. The error in Figure 1B is determined
by the overlap between the two underlying distributions of total
synaptic current into CA3 for the two contexts in the presence of
variability on the input (Figure 1C). The sign of the CA3 readout
should be opposite for each of the two possible associations,
positive or negative for a given pattern belonging to the context
with (+1) or (−1) context, respectively. After 128 days of neural
turnover the spread between the distributions increases such
that the overlap between them, is decreased (Figure 1D). From
Figure 1B we see that the initial drop in error occurs rapidly, i.e.,
most of the performance gain from neurogenesis occurs within a
week.

3.2. Neurogenesis Interacts With Sparse
Activity to Enhance Contextual
Discrimination
Sparseness of granule cell firing is likely induced via a
combination of cell-intrinsic and extrinsic properties (Marin-
Burgin et al., 2012). We control sparseness by adjusting θ which
represents the combination of these effects, determining the
cells coding level, f . Neurogenesis increases performance at all
coding levels (Figures 1E,F). The optimal code becomes mores
sparse and appears to plateau at around 4–5% of DG cells active
(Figure 1G). Thus, in contrast to the initial optimal coding level
of around 10–15% active, similar to previous reports in a similar
framework (Barak et al., 2013; Babadi and Sompolinsky, 2014),
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FIGURE 7 | A synaptic turnover rule generalizes neuronal turnover to allow prediction of biological rates. (A) In Model 3, the strength of a DG neurons weight to CA3

is used to determine the probability of turnover of EC-DG synapses onto that neuron. (B) Error vs. time for synaptic turnover model with slope set to 2.5, is similar to

Model 1 in which a fixed fraction of 0.30 DG units are turned over. (C) the optimal coding level is between 4 and 5% as in the prior model. (D) Fraction of synapses

turned over as a function of time for different coding levels, f. The sparsely coded DG requires greater synaptic turnover. Yet Model 3, for all f, requires less turnover

than Model 1 (dotted black line) for a similar level of performance. (E) Fraction of neurons turned over vs. time. The sparse case requires more DG units to be turned

over. (F) For each time point, the coding level at which optimal performance is achieved is evaluated, and plotted as optimal coding level. The optimal coding level

becomes more sparse in time as in Model 1 and 2. (G) The tradeoff between cumulative synaptic turnover vs. cumulative reduction in error is best resolved by the

sparse DG. (H) same as in G but for neural turnover. (I) Cumulative neuronal replacement of DG vs. time, corresponding well with experimental data suggesting

around 10% of the mature DG is replaced by adult-born cells (Imayoshi et al., 2008). All results are calculated as the mean of 100 simulations, with slope = 2.5 for the

linear transfer function (See Experimental Procedures). See also Figure S1.

our best performance is achieved at a very sparse activity level
that continues to sparsen with time (Figure 1G).

The error reduction depends on the turnover rate, i.e., the
fraction of neurons targeted for turnover per day (Figure S1A),
such that longer periods of learning (more iterations of
neurogenesis) favored lower turnover rates (Figure S1B). On
average, the optimal rate of turnover is a monotonically
decreasing function of the number of days learning (Figure S1C),
yielding an optimal turnover rate of around 0.3 at 128 days of
learning.

We next analyzed the dynamics of the population of DG
neurons. The survival rate of neurons during the time course
of encoding the contexts depended on their age, i.e., those born
more recently have a survival advantage (Figure S1D), indicating
the gradual replacement of existing cells with those that are
newly born. Neuronal replacement is highest at the beginning
of learning, with a fraction of around 0.7 of 1-day old neurons
surviving, but after 256 days of learning even 1-day old neurons
survive at a very low rate of around 0.04. Whenever there is a
sudden change of the contexts in the 2-class case, or addition of
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a context in the multiclass case, we would indeed see a sudden
jump in the survival rate of newborn neurons. Therefore the
survival rate of newborn neurons scales with the learning rate, or
the encoding of new information, consistent with experimental
findings (Kempermann et al., 1997a,b; Gould et al., 1999).

To explore the relationship between connectivity and sparse
coding, we tested the networks performance for varying degrees
of connectivity from EC to DG (Figure S2A). The performance
degrades as input connectivity is reduced, with the performance
of sparsely coded models suffering more than that of more
densely coded models (Figures S2A,B). Nevertheless the optimal
coding level is a steeply monotonically decreasing function of the
connectivity that is sparse above a connectivity of around 2.5%
(Figure S2C), suggesting that sparse models perform well over a
large range of connectivities.

We next analyzed the CA3 readout to determine why the
memory performance scales up more quickly in the sparse vs.
the dense coding case as a function of neurogenesis. We observe
the total synaptic current coming into CA3 from the DG for a
single test pattern that belongs to the (+) context. Accordingly
we see that neurogenesis causes a positive shift in the distribution
of total synaptic current into CA3 for both the dense (Figure 2A)
and sparse (Figure 2B) cases with the normalized output weights
shown in panels C and D, respectively. However, there is
an accompanying increase in the spread of this distribution
countering the performance gain given by the increased signal,
since the tail of the distribution causes errors when it crosses the
CA3 decision boundary (Figure 2A).

We define the Signal to Noise ratio (SNR) as:

〈Signal〉

〈Noise〉

def
=

〈h+ − h−〉
2

〈σh+
2〉 + 〈σh−

2〉
, (29)

where h+ and h− are the total synaptic current into CA3 from the
patterns of the (+) and (−) contexts, respectively, and σ 2

+ and
σ 2
− are the respective variances of that current across patterns.

In both the dense and sparse cases neurogenesis contributes to
a scale-up of the signal (Figure 2E) and the noise (Figure 2F).
Yet, in the signal-to-noise ratio (SNR) we see the superior
performance of the sparse case (Figure 2G). Due to synaptic
competition, the distribution of DG-CA3 weights gradually shifts
to higher efficacy synapses for both the dense (Figure 2C) and the
sparse case (Figure 2D).

3.3. Neurogenesis, Synaptic Plasticity, and
Sparse Activity Cooperatively Facilitate
Dimensionality Reduction
We then ask how the representation in the DG changes over
time. Prior to neurogenesis there is no correlation among the
patterns representing the two contexts for either the dense or
sparse case (Figures 3A,B, left). After neurogenesis proceeds, for
both the dense and sparse case, patterns that belong to a given
context become correlated to each other, while those that belong
to different contexts become anticorrelated (Figures 3A,B, right).
Note that for the same amount of neural turnover, the sparse case
always achieves a more correlated representation (Figure 3E).
Figure 3E shows the mean correlations within the same context

and across different contexts shown in panels A and B. It suggests
that the representations in DG for different patterns in the same
context are similar, while representations for patterns in different
contexts are more different after training.

For a closer look of the representations before and after the
neurogenesis training, Principal Components Analysis (PCA)
was used for presentations. Principal Components Analysis
reveals that, initially the DG activity patterns are randomly
distributed (Figures 3C,D, left) but after neurogenesis proceeds,
patterns representing the two contexts become clustered, and
separated, for both the dense and the sparse case (Figures 3C,D,
right), while the sparse case clearly shows greater separation
along PC1 (Figure 3D, right). Note that, though we do not show
it here, the separation between clusters became observable after
only 10–15 days. Since it becomes clearer with a long simulation
time, we report the state at the 128th day for comparison.

We intuitively illustrate the effect of neuronal turnover
(Figure 3F). Synaptic plasticity, between the DG and CA3,
assigns a weight vector at a given time, t, Wt . This weight
vector defines a perpendicular hyperplane that separates the
patterns defining the two contexts from each other in the
space DG activity. Weak synapses, i.e., elements of the weight
vector that are near zero, lie in dimensions that are almost
perpendicular to the weight vector, and almost parallel to
the hyperplane. By killing and replacing those DG units that
have weak synapses to CA3 and mostly perpendicular to W,
neuronal turnover randomly shifts the patterns in a direction
that is mostly parallel to the hyperplane. On average, after
this shift, the contexts are easier to separate when synaptic
plasticity draws a new weight vector, Wt+1, and the cycle
continues as such. Though step-to-step improvement on a
single instantiation is noisy (Figure 1B, gray trace) the average
performance appears to monotonically decrease (Figure 1B,
black trace).

To observe the influence of neurogenesis and sparse coding
on dimensionality, we observe the singular values, λ(i), of the
centered DG activity matrix, S, corresponding to the standard
deviation of activity patterns in the i’th dimension. The ratio
of λ(i)/λ(1) decreases after neurogenesis for all components
in both the dense and sparse case, but the decrease is more
profound in the sparse case (Figure 4A). To see more clearly how
the number of dimensions affects classification performance we
observe the effect of restricting the number of components in
the weight vector. Observing Equation (28), the weight vector
can be decomposed into a sum of weighted components, Ŵd =
∑d

i αiui . We observe how the classification error varies as we
incrementally add back components to the weight vector up
to dimensionality d, plotting a color map of the number of
restricted dimensions vs. coding level. Before neurogenesis this
map is relatively flat (Figure 4B, left panel), indicating a weak
dependence of dimensionality on coding level. In contrast, after
neurogenesis the map exhibits a sharp drop in error after a only
around 20 components, especially in the sparse coding range
around f = 0.04 (Figure 4B, right panel). This indicates that
neurogenesis reduces the effective dimensionality required for
maximal performance at a fixed coding level, and that sparse
coding allows for a greater reduction in dimensionality.
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3.4. The Separation Between Contexts Is
Determined by the Context-Bias of
Selected DG Neurons
To simplify analysis in the next two sections it is useful to
consider training with the matrix of noisy prototype patterns,
S, rather than the matrix of mean prototype patterns, S
(See Materials and Methods). We next observe how neuronal
competition affects the organization of the DG neuronal
population. We define the context-bias of a given DG cell, 9i,
as the fraction of patterns it responds to belonging to the (+)
context minus those that belong to the (−) context:

9i
def
= (f+i − f−i ) (30)

Therefore, the context-bias takes a value between −1 and +1
and is equal to 0 in cases where a DG cell responds to the same
number of (−) and (+) context patterns. For the entire DG
population, this can be expressed as the context-bias vector, 9 ,

9 =
1

2P
SηT , (31)

where each column of S is a pattern of DG activity, and η is
the vector of target CA3 activities (either −1 or +1) for each
respective input pattern and is the total number of patterns.
The derivation can be found in Equation (15). Note that 9 is
equivalent to the separation between the means of the patterns
representing the two respective contexts (See Materials and
Methods). Neurogenesis selects for neurons that are biased
for each of the two contexts (Figures 5A,B, Top histogram).
Therefore, the distribution of 9i partitions into 3 groups, those
that are biased to respond to context (−), those that are biased
toward context (+), and newborn randomly generated neurons
whose context-bias is centered on zero (Figure 5B). The two
biased groups of surviving neurons therefore form an ensemble
that can be thought of as memory engrams for their respective
contexts. Note that a DG cells context-bias is correlated with
its weight to CA3 (Figures 5A,B, scatter plot). On average, the
dense case (Figure 5A, top histogram) consists of DG cells that
are more biased between the two contexts than the DG cells
of the sparse case (Figure 5B, top histogram). This is because
the maximum difference between a neurons responsiveness to
the two contexts is limited by the total fraction of patterns
to which a neuron can respond, i.e., the coding level. With
neuronal turnover, in both cases, the average context-bias, and
the average CA3 weight increases (Figures 5A,B, top histograms,
right histograms, respectively).

We can express the SNR in these terms for a set of training
patterns as (See Materials and Methods):

Signal

Noise
=

(

WT9

)2

∑

iW
2
i f

+
i

(

1− f−i

)

+
∑

iW
2
i f

−
i

(

1− f+i

)

−
∑

iW
2
i

(

f+i − f−i

)2

(32)
The inner product between the DG-CA3 weight vector and
the context-bias vector, WT9 , determines the SNR between
contexts. With neuronal turnover, the increase in absolute

weight (Figures 5A,B, side histograms), and absolute context-
bias (Figures 5A,B, top histograms) results in increased inner
product,WT9 , for both the dense and sparse cases (Figure 5G),
accounting for the increase in the SNR. However, the SNR grows
more quickly in the sparse case (Figure 2G).

3.5. Extremely Sparse Coding Allows the
Context-Bias of Individual Units to More
Closely Determine the Output
We next address the dynamics with which the context-bias
and weight vectors change as functions of each other. The
purpose of this section is to give mathematical intuition for
how neurogenesis takes advantage of sparse coding. In particular,
we will discuss how the eigen-components of W and 9 are
interacting with each other in the dense coding case and sparse
coding case. Note, as described above that the SNR is determined
by the product of the weight vector, W, and the selectivity
vector, 9 . Furthermore, a DG cells synaptic weight determines
its probability of survival. The weight vector is defined as:

WT def
= ηS∗, (33)

where S∗ is the pseuodoinverse of the matrix of patterns in DG
space. Using the Singular Value Decomposition (see Materials
and Methods) we can re-express this in a way that allows us to
intuitively understand the relationship between the context-bias
vector and the weight vector. First we define 9̂i as the projection
of the context-bias vector,9 , onto the respective i-th left singular
projection matrix, uiu

T
i .

9̂ i
def
= uiu

T
i 9 (34)

As noted above, 9 is equivalent to the vector of mean separation
between the contexts. Therefore, each vector 9̂ i represents the
separation between the context means in the direction of a given
singular vector, ui, which expresses the direction of the ith largest
component of the activity patterns in DG space. 9̂ i can be
thought of as the contribution along the singular vector, ui, to
the mean separation between contexts, 9 . Note that the singular
vectors with large singular values represent the most important
dimensions of the distribution of patterns in DG space.

Above, we noted that the two contexts separate from each
other as neuronal turnover proceeds. Correspondingly, ‖9‖, the
euclidean length of 9 , increases over time (top histograms of
Figures 5A,B, and a summary in Figure 5E). However the dense
and sparse cases differ in the way dimensionality is reduced. To
observe this we now express the weight vector in terms of 9̂ i as:

WT = 2P

N
∑

i

σ−2
i 9̂T

i , (35)

where 2P is a constant scale factor equal to twice the total number
of patterns, and σi are the i-th singular values of the matrix S.
The derivation can be found in Appendix B. We see that the
weight vector is merely a weighted sum of 9̂ i. Here a tradeoff
emerges. Somewhat counterintuitively, the contributions of the
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9̂ i are scaled down by their respective σ−2
i . Thus, though certain

singular vectors may represent the mean separation between
contexts, their contribution to the weight vector is limited by
their singular values. In other words, the more a given 9̂ i

determines the mean separation, the more it is scaled down by
its respective σ−2

i .
In order to investigate the difference between dense coding

and sparse coding cases, let us look into the distributions of
singular values. In Figure 5C, the ranked reciprocals of the square
of singular values, σ−2

i , for different cases are presented. The
scale-down effect in the dense case is more significant than in the
sparse case for the ranks within a neighborhood of the rank 1.
Thus, the weight vector in the dense case is subject to more
shrinking of the 9̂ i by their respective σ−2

i and the elements
of the weight vector have a narrower distribution in the dense
case than in the sparse case prior to neurogenesis (Figure 5D for
individual contributions and side histograms of Figures 5A,B for
full distributions).

Due to the differences in scaling factors shown in panel C,
‖W‖ has a larger magnitude in the sparse case compared to the
dense case despite that ‖9‖ has smaller values, as shown in panel
E. In addition to the difference in the magnitude, the normalized
inner product

(

WT9
)

/ (‖W‖‖9‖) of the sparse case is larger
than that of the dense case (Figure 5F), implying that the cosine
distance between W and 9 is smaller in the sparse case. In
addition, neuronal turnover increases the inner product more
rapidly in the sparse case (Figure 5G). Because WT9 represents
the degree of separation between the presentations of (+) context
and (−) context, sparse coding is superior to dense coding in the
context separation. This situation is schematically illustrated in
Figure 5H.

3.6. The Neurogenesis Learning Rule
Generalizes to Multiple Contexts
We next analyze patterns of activity in a model with multiple
CA3 units to enable the encoding of an arbitrary number of
distinct contexts. We use a similar neurogenesis rule in Model 2,
in which the DG units compete for trophic signals, except now
a DG neurons survival is determined by the sum of the absolute
value of its output weights (Figure 6A, see section Materials and
Methods) such that those neurons with a sum ranking in the
bottom 30% of the population are turned over. In this case we
have a weight matrix, W in which the elements of each column
represents the DG-CA3 weights of a given output CA3 unit.
We train the network with 8 contexts and test the network as
before, by presenting a novel pattern, µ but now we compare
the pattern of CA3 activities represented in the vector η̂µ =

sign(WTS) to the vector representing the target CA3 pattern
specified by ηµ. Requiring a match between these patterns for
correct classification, we can then define the error for the µ-th

pattern at CA3 as errµ =

{

0, if η̂µ = ηµ

1, otherwise
. The mean error

across test patterns decreases similarly to the generalization error
of the two-context case, and again demonstrates the superiority
of the sparse case with a coding level of f = 0.04 (Figure 6B).
One may notice that the less-sparse case with a coding level of

f = 0.15 has a similar performance level with f = 0.04. The
setting with f = 0.15 may be benefited from the increase in
multiplicity in representations for this multiple-context case, c.f.,
Figure 1E. However, the superiority of sparse coding still holds
by comparing with the setting with f = 0.50.

Similar to the two-context case, the pairwise correlation of
the training patterns in DG space demonstrates a clustering
after neurogenesis (Figures 6C,D) in which patterns that are
members of the same context tend to be correlated. PCA is
used to observe the spread of the training patterns in DG
space. The training patterns are initially randomly distributed
in DG space (Figure 6E) but evolve into separated clusters
with neuronal turnover (Figure 6F). To observe the effect
of this separation on test patterns that the network has
never seen before we project them onto the PCs of the DG
representation of the training set, and mark any errors with a
gray x (Figures 6G,H). Before neurogenesis, patterns of a given
context are often misclassifed due to the lack of separation
between the contexts (Figure 6G). After neurogenesis, the
separation between training patterns of the contexts (Figure 6F),
reduces the probability of such errors on test patterns
(Figures 6B,H).

3.7. A Model of Synaptic Turnover Achieves
Similar Performance With Lower Material
Cost
The models analyzed above assume that when a DG neuron
has a weak connection to CA3, that neuron dies. However, the
turnover rate that yields the best performance is about 30% of DG
cells per day for 128 days of neuronal turnover (Figures S1B,C).
We therefore explored a model assuming that biology seeks to
conserve the material of synapses and neurons that might allow
us to predict a realistic rate of neuronal turnover. In Model 3, as
in the above models, the connections between DG and CA3 are
trained with the pseudoinverse rule. Instead of neuronal turnover
of units with weak DG-CA3 weights, we now implement synaptic
turnover. A strong connection from the DG to CA3 results
in a trophic signal that stabilizes that units EC-DG synapses,
while a weak DG-CA3 weight is destabilizing (Figure 7A).
We implement stability via the probability of EC-DG synaptic
turnover.We assume a linear transfer function (SeeMaterials and
Methods, Figure S3A) between a DG units output weight to CA3
and the probability of that units input EC-DG weights being re-
randomized, resulting in a random subset of that units EC-DG
weights being chosen for re-randomization at each iteration. A
slope of 2.5 was optimal in our simulations for the linear transfer
function (Figure S3B). This rule results in similar improvement
in performance to the prior rule that assumes that a fixed fraction
of neurons turnover (Figure 7B). The same geometric intuition
as the prior model applies (Figure 7F). The result as before
is a reduced dimensionality of the contextual representations,
such that reconstruction of an output weight vector that gives
maximal cumulative performance (See Materials and Methods)
can be achieved with far fewer dimensions (Figure S3C). Similar
to Model 1 and 2, the optimal coding level becomes sparser with
iterations of turnover (Figures 7C,F).
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We then ask, what is the difference among different coding
levels in terms of the cellular material turnover required to
enable encoding? The total number of synapses turned over in
this model is greatly reduced compared to the fixed turnover
model, for all coding levels (Figure 7D). Since synaptic stability is
thought to determine neuronal survival in several systems (Segal,
2010), including adult-born granule cells in the DG (Doengi et al.,
2016), we made a similar assumption in the model to allow us to
estimate the rate of neuronal turnover.We chose the conservative
assumption that a neuron dies only if all of its synapses are
targeted for turnover. With this assumption, the rate of neuronal
turnover relative to the previous model drops by two orders of
magnitude across all coding levels to range between 0.006 and
0.001 (Figure 7E), similar to the low rate of less than 1% that
has been reported in rats (Cameron and McKay, 2001), 0.03–
0.06% in the 2 month old mouse (Kempermann et al., 1997b),
or 0.004% in humans (Spalding et al., 2013). Our results provide
theoretical support to the findings that an extremely low rate of
day-to-day neuronal turnover is sufficient to significantly alter
memory performance.

The cumulative replacement of preexisting cells with newborn
cells is also very low, ranging between 10—22% after 128
days of turnover across all coding levels (Figure 7I) similar to
experimental results that have been previously reported in mice
(Imayoshi et al., 2008). We see that for the same level of total
synaptic or neural replacement, the cumulative error reduction is
greater for the sparse case than for the dense case (Figure 7G),
implying that sparse coding enables the learning rule to conserve
on material turnover.

4. DISCUSSION

4.1. Neuronal Turnover in a Sparsely Active
Dentate Gyrus
It is said to be paradoxical that the DG replenishes its neurons
daily even though activity levels are very sparse on average
(Piatti et al., 2013). Our results suggest that the sparseness of
the DG is actually exploited by adult neurogenesis to find low-
dimensional contextual representations that enhance memory
encoding (Figures 3C,D). Placing synaptic turnover upstream
of neuronal turnover performs similarly (Figure 7), suggesting
that similar underlying processes could apply in other systems.
As discussed below, such a model may help unify seemingly
disparate findings in the neurogenesis literature.

Prior computational models of neurogenesis have
implemented neuronal turnover by re-randomization (Chambers
et al., 2004; Deisseroth et al., 2004; Becker, 2005; Crick and
Miranker, 2006; Chambers and Conroy, 2007; Aimone et al.,
2009; Finnegan and Becker, 2015), or by adding new neurons
(Weisz and Argibay, 2012) with random synaptic weights. Here
we contribute by explicitly addressing the interaction between
sparseness and neurogenesis, and evaluating the consequences of
a learning rule based on competition for target-derived stability.

The DG is significantly more sparse than most brain regions
with a coding level estimated around 0.02–0.04 (Jung and
McNaughton, 1993; Leutgeb et al., 2007; Danielson et al., 2016;
Diamantaki et al., 2016). In our model, the optimal sparseness

for memory encoding evolves to a very sparse coding level as a
function of the total amount of time over which the network has
undergone encoding via neurogenesis (Figure 1G). This seems
to suggest that the sparse code found in the DG may be tuned
as such to make the best use of neuronal turnover in memory
encoding - though we don’t evaluate mechanisms of tuning
sparseness, it could be accomplished on a multi-synaptic level
such as by feedback inhibition, or by a homeostatic increase in
firing threshold.

During neurogenesis, new neurons compete for synaptic
contact (Figure 1A). As neurons compete and some replace
others, the DG neuronal activities evolve to a low-dimensional
representation of the two contexts that are to be learned
(Figure 3). In this low-dimensional representation the activity-
patterns representing the two contexts are grouped into distinct
clusters representing the contexts (Figures 3C,D, 6H).

In a similar framework to ours it was known that there is a
limit to how sparse a randomly connected network can be before
a tradeoff emerges such that further sparseness actually impairs
performance (Barak et al., 2013; Babadi and Sompolinsky, 2014).
Babadi and Sompolinsky (2014) demonstrated analytically that
the optimality of the sparse code is constrained by amplification
of noise by random input weights that is mitigated when a
hebbian learning rule is implemented on those weights. Given
that hebbian learning structures the input weights to represent
correlations among the inputs, they suggested that limitations
on the effectiveness of sparse coding might emerge due to the
unstructured nature of randomweights. We first show that either
neuronal (Figure 1B) or synaptic turnover (Figure 7B) improves
the performance over the initial condition of random projection
studied by Barak et al. (2013) and Babadi and Sompolinsky
(2014). Furthermore, we demonstrate that a very sparse code
can in fact be optimal even given random input weights
(Figures 1G, 7F), implying that fine-tuning, such as the hebbian
learning they employed (Babadi and Sompolinsky, 2014), is
not always necessary at very sparse coding levels. Instead, via
competition for target-derived stability, the sparse code facilitates
the search for randomly connected neurons that collectively
yield a low dimensional representation of the contextual inputs
(Figure 5H).

Decomposing the CA3 weight vector allows us to see the
higher correlation between the discriminative components, 9̂ i

and their contribution to the weight vector, σ−2
i 9̂i, in the

sparse case (Figure 5F). In other words, in the sparse case there
exist discriminative components with singular values sufficiently
small such that they can be strongly represented in the weight
vector.

As a result, with each iteration (day), the synaptic strength
of a DG neuron to CA3 can more readily grow in proportion
to its contribution to the mean separation between contexts
(Figures 5E,F). The overlap between these terms then scales up
more quickly in the sparse case (Figures 5F,G). This greater
coupling between the mean separation of contexts in the DG
and the weights to CA3 (Figure 5D) thereby allows neurogenesis
to more rapidly find separated contextual representations in the
sparse case (Figures 3C,D). This greater separation allows the
network to generalize better to new instances of the same context
(Figures 1E, 6B).
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4.2. Biological Predictions
The major prediction of this study is the dimensionality
reduction of contextual codes in the dentate gyrus (DG). This
prediction is in principle testable by recording the activity of a
population of DG cells that includes both mature and immature
neurons during contextual discrimination tasks. Then, analyses
similar to those employed in the present study will be applicable
to explore how the dimensionality of DG representation evolves
during learning and how the dimensionality reduction is affected
by the blockade of neurogenesis. Our results are also consistent
with several experimental findings. Adult-born neurons are
initially hyperexcitable, then gradually acquire the sparse firing
characteristics of their mature counterparts (Schmidt-Hieber
et al., 2004; Dieni et al., 2013). Correspondingly, input specificity
increases with time (Marin-Burgin et al., 2012). This is consistent
with the sparsening of the optimal coding level with time in
our model (Figures 1G, 7F). Furthermore, if we assume that
newborn DG cells initially have very few connections, greater
hyperexcitability (higher coding level, f) is necessary for optimal
performance (Figures S2B,C).

The preference in our model for an average sparse coding level
in the presence of neurogenesis (Figure 1F) is consistent with
findings that neurogenesis induces a sparser code in the dentate
gyrus (Ikrar et al., 2013) while blockade of neurogenesis results
in increased average activity in the dentate gyrus (Burghardt
et al., 2012; Lacefield et al., 2012). Meanwhile, increasing the
excitability of the DG while neurogenesis is intact may impair
contextual discrimination (Jinde et al., 2012).

The initial condition of our model, is equivalent to the
encoding of novel contexts. As the contexts become familiar over
time, the optimal neurogenesis rate decreases in the neuronal
turnover model (Figure S1C), as does the predicted neuronal
turnover in the synaptic turnover model (Figure 7E). This is
consistent with experimental findings that novelty increases the
neurogenesis rate (Kempermann et al., 1997b; Gould et al.,
1999). Correspondingly, as the contextual encoding proceeds,
their survival rate decreases with time, i.e., exceedingly few adult-
born cells survive (Figure S1D). Therefore, relatively few mature
cells are replaced and most of the cell death is replacement
of immature cells by other immature cells. This is because a
very old cell is already part of a favorable representation that
enables discrimination and it is improbable to find a new cell
that can better contribute. Thus newly adult-born cells have a
survival advantage during novel encoding such as would occur
during environmental enrichment, similar to what has been
found experimentally (Kempermann et al., 1997b; Gould et al.,
1999), while mature cells have the advantage under familiarity.
Contextual novelty may explain why axonal retraction of mature
DG cells results from a losing competition with adult-born
cells in the juvenile rat (Yasuda et al., 2011), but not in adult
mice in their homecage (Lopez et al., 2012). Since adults have
already sufficiently encoded their environment, it is perhaps
necessary to expose adults to enriched or novel environments
(Kempermann et al., 1997b; Gould et al., 1999) to observe
significant outcompeting of mature DG cells by new cells.
However, this prediction in survival rate should not be confused

with the overall survival rate of all new-born dentate gyrus
granule cells. The survival rate mentioned here considers only
those dentate gyrus cells able to reach CA3 for competitions.
For those newly generated dentate gyrus granule cells failed to
emerge into the system, we consider that they are invisible in the
model.

Our results are consistent with the presence of high-efficacy,
so-called detonator synapses, at the Mossy Fiber (MF) terminals
of DG axons to CA3 (McNaughton and Morris, 1987; Jonas
et al., 1993; Treves and Rolls, 1994; Henze et al., 1997, 2002;
Rollenhagen et al., 2007; Vyleta et al., 2016). The sparse activity
of the DG causes the output weights to be larger than in less
sparse systems, as the weights of sparse models are of greater
magnitude for equivalent context-bias (Figure 5E). Furthermore,
neuronal turnover during contextual learning leads to faster
growth of the weights in the sparse model compared to those
of the dense model (Figure 5E). This is consistent with the
experimental finding that contextual learning increases the
average synaptic efficacy of MF terminals of axons from the DG
to CA3 (Galimberti et al., 2006).

4.3. Neuronal vs. Synaptic Turnover
It has been estimated that only around 0.03–0.09% of granule
cells are turned over in the adult rodent DG (Kempermann
et al., 1997b; Cameron and McKay, 2001), or 0.004% in humans
(Spalding et al., 2013). These results have often raised the
question - how can such a small number of cells significantly
influence behavior (Piatti et al., 2013)? Indeed, there is a stark lack
of consensus on whether adult hippocampal neurogenesis always
positively correlates with DG-dependent learning (Frankland,
2013; Akers et al., 2014; Lipp and Bonfanti, 2016). Bats show
no adult DG neurogenesis for the majority of species studied
(Amrein, 2015), though bats clearly exhibit hippocampal place
cells, and spatio-contextual reasoning that is attributed to the
hippocampus (Finkelstein et al., 2016). Numerous comparative
studies have demonstrated heterogeneous adult neurogenesis
rates across mammalian species that does not seem to depend
on their need for spatial reasoning (Cavegn et al., 2013; Amrein,
2015; van Dijk et al., 2016).

Experimental interventions that suggest a lack of positive
correlation between neurogenesis rates and learning of DG-
dependent tasks (Wood et al., 2001; Bartolomucci et al., 2002;
Holmes et al., 2002; Bizon and Gallagher, 2003; Akirav et al.,
2004; Leuner et al., 2004, 2006; Van der Borght et al., 2005),
or that learning does not necessarily increase the number of
new neurons (van Praag et al., 1999; Döbrössy et al., 2003;
Ambrogini et al., 2004; Olariu et al., 2005; Pham et al., 2005;
Snyder et al., 2005; Van der Borght et al., 2005), suggest that
neuronal turnover is not always the relevant correlate of learning
in the DG. Substantial evidence that depletion of neurogenesis
does not impair such learning (Shors et al., 2001, 2002; Madsen
et al., 2003; Raber et al., 2004; Snyder et al., 2005; Meshi et al.,
2006; Frankland, 2013; Groves et al., 2013; Urbach et al., 2013)
suggests that molecular mechanisms modulating DG synaptic
processes can remain intact and support learning, without
requiring neuronal turnover.
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Placing synaptic turnover upstream of somatic turnover, as
in Model 3 (Figure 7A), may help unify these findings. Synaptic
turnover, rather than neuronal turnover may be the relevant
measurement with which to correlate DG-dependent learning
that is targetable by molecular and cellular interventions in
the neurogenic niche. DG neurons compete for CA3 target
factors, and those losing the competition have their input
synapses destabilized (Figure 7A). If the amount of synaptic
destabilization crosses a threshold (in our case, all input synapses
destabilized) then the neuron dies. With these assumptions, we
indeed find a very low optimal neurogenesis rate (Figure 7E)
in the biologically reported range of a fraction of a percent
(Kempermann et al., 1997b; Cameron andMcKay, 2001; Spalding
et al., 2013). This suggests that, via the same form of competition,
en masse synaptic turnover could underlie learning, while only a
minority of neurons actually turn over. Such a synaptic-turnover-
driven neuronal turnover rule is consistent with evidence that
activity-dependent competition among mature and immature
DG granule cells for CA3 targets (Yasuda et al., 2011), and
their input-synaptic stability (Tashiro et al., 2006; Doengi et al.,
2016) appears to promote neuronal survival. Furthermore, there
is a well-known overlap between factors that influence synaptic
plasticity, and those that influence neurogenesis in the DG (Vivar
et al., 2013), and many of these same factors influence synaptic
stability more generally throughout the central nervous system
(Vicario-Abejón et al., 2002). Future behavioral studies in animal
models of modulated neurogenesis may benefit from measuring
markers of synaptic stability, such as adhesionmolecules required
for synapse maintenance (Doengi et al., 2016), rather than
somatic markers of neurogenesis.

4.4. Concluding Remarks
Sparse coding is prevalent throughout many systems of the
brain (Barak et al., 2013; Babadi and Sompolinsky, 2014).
Our results suggest that neuronal or synaptic turnover in
sparsely active regions of the brain may embody a novel
learning rule that enhances the clustering of associated activity
patterns, and thereby memory encoding and retrieval. Sparseness
entails a lower metabolic cost since few neurons are active
at any time, and our results further suggest that learning in
a sparse layer via turnover conserves synaptic (Figure 7D) or

somatic material (Figure 7E), perhaps a previously unrecognized
metabolic benefit to sparse coding. The learning curves of all
implemented models suggest that differing degrees of sparseness
across systems may be found to correspond to the timescale over
which they are required to represent memories. Since the optimal
sparseness of these models increases as a function of encoding
time, we might think of the high sparseness of the DG as being
tuned to enable retrieval of episodes that are encoded over long
periods of time. Consistent with this timescale, amnesiac patient
H.M. lost not only the ability to encode novel information,
but also the ability to retrieve memories up to 11 years prior
to the removal of his hippocampus (Corkin, 2002). Further
investigation of the relationship between synaptic stability and
neuronal survival (Doengi et al., 2016) may yield insight into
how neuronal turnover and synaptic turnover are coupled. Our
work, and that of others (Marin-Burgin et al., 2012; Bergami et al.,
2015; Alvarez et al., 2016) suggests that local regulation of sparse
activity in the DG may be critical during the addition of new
synapses or new neurons that occurs during learning. Similar
processes may regulate brain development in general.
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APPENDICES

A. MOORE PENROSE PSEUDOINVERSE
GUARANTEES A LEAST-SQUARE
SOLUTION

Let us consider a linear system:

y = Ax . (A1)

For a given y and a given A, we would like to look for a solution
to xminimizing the square residual given by

‖r‖2 ≡
∥

∥y− Ax
∥

∥

2
(A2)

= yTy− yTAx− xTATy+ xTATAx . (A3)

The gradient of the residual is

∇x ‖r‖
2 = −2ATy+ 2ATAx . (A4)

∇x ‖r‖
2 = 0 implies

ATy = ATAx . (A5)

Suppose A is a matrix with linearly independent columns, we
have

x =

(

ATA
)−1

ATy . (A6)

Here A∗ ≡
(

ATA
)−1

AT is the Moore-Penrose pseudoinverse
of A. The solution to x deduced by the Moore-Penrose
pseudoinverse should be guaranteed to be the least-square
solution.

In our model, the output weights is solved by Moore-Penrose

inverse. One may consider replacing ηT with y, S
T
with A andW

with x in the linear system here. Since S is generated from linearly
independent input and random input weights, and θ is chosen to
match the coding level f , the rows of the matrix S should also be
linearly independent. The argument concerning Moore-Penrose
pseudoinverse in this appendix follows.

B. EXPRESSION OF W IN TERMS OF 9̂

Given that

WT = ηS
∗

(A7)

= ηV6∗UT , (A8)

where matrices U, V and 6 are the matrix given by singular-
value decomposition. Note that singular-value decomposition is
a generalized eigendecomposition. Diagonal entries of 6 stores
eigenvalues of the matrix S

∗
, while matrices V and U store

left-singular and right-singular vectors. On the other hand,

ηT = 2PS
∗
9 (A9)

η = 2P9T
(

S
∗
)T

. (A10)

Therefore,

WT =

[

2P9T
(

S
∗
)T
]

V6∗UT (A11)

= 2P9TU(6∗)2UT . (A12)

Let us consider the entries ofWT ,

(

WT
)

j
= 2P

∑

k

(

9T
)

k

∑

l

Ukl

∑

m

(

6−2
)

lm

(

UT
)

mj
(A13)

= 2P
∑

k

(

9T
)

k

∑

l

(

6−2
)

ll
Ukl

(

UT
)

lj
(A14)

= 2P
∑

l

(

6−2
)

ll

∑

k

(

9T
)

k
Ukl

(

UT
)

lj
. (A15)

Therefore, the matrix-vector form is given by

WT = 2P
∑

i

σ−2
i 9̂i, (A16)

where 9̂ ≡ 9Tuiu
T
i and ui is the ith column of the matrix U.
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Epilepsy is one of the most common chronic neurological diseases. High-frequency

oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone.

However, visual marking of HFOs is a time-consuming and laborious process. Several

automated techniques have been proposed to detect HFOs, yet these are still far

from being suitable for application in a clinical setting. Here, ripples and fast ripples

from intracranial electroencephalograms were detected in six patients with intractable

epilepsy using a convolutional neural network (CNN) method. This approach proved

more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a

higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27%

for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient,

the Cohen’s kappa coefficients comparing automated detection and visual analysis

results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector

was capable of reliable estimates of ripples and fast ripples with higher sensitivity and

specificity than four other HFO detectors. Our detector may be used to assist clinicians

in locating epileptogenic zone in the future.

Keywords: epilepsy, convolutional neural network, high-frequency oscillations, ripples, fast ripples, automated

detection

INTRODUCTION

Epilepsy is one of the most common chronic neurological diseases, with an incidence of between
0.5 and 1% (Jacobs et al., 2012; Chaibi et al., 2013), affecting about 67 million people worldwide
(Holden et al., 2005; Makeyev et al., 2017). Most patients are treated successfully with antiepileptic
drugs, although about 30% still suffer from medically refractory epilepsy (Kwan and Brodie, 2000;
Pati and Alexopoulos, 2010; Tamilia et al., 2017). For these individuals, surgical removal of the
epileptogenic zone (EZ), where such seizures originate, is considered themost promising treatment;
however, surgical resection depends on correct delimitation of the EZ (Jacobs et al., 2012; Tamilia
et al., 2017). Accurate delimitation of the EZ is the main determinant of successful epilepsy surgery.

High-frequency oscillations (HFOs) have been defined as events with four consecutive
oscillations between 80 and 500Hz that clearly rise above the baseline (Zelmann et al., 2009).
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Another definition is a root mean square (RMS) amplitude
increase of more than five times the standard deviation compared
with background electroencephalogram (EEG), a duration of
at least 6ms, and more than six peaks (positive plus negative)
more than three standard deviations above the mean baseline
(Staba et al., 2002). Traditionally, EEG frequencies are believed
to be relevant up to the beta, theta, and gamma band (Wang
et al., 2017; Yan et al., 2017a,b). But recent findings in rodents
and humans have shown a possible relation between HFOs and
the EZ (Bragin et al., 1999; Staba et al., 2002; Jacobs et al.,
2010). Furthermore, two post-surgical studies have indicated a
good correlation between surgical outcome and the removal of
tissue corresponding to channels with high HFO rates (Jacobs
et al., 2010; Wu et al., 2010). HFOs have gradually emerged as
promising new biomarkers for the identification of EZ (Jirsch
et al., 2006; Jacobs et al., 2010, 2012; Chou et al., 2016; Cimbalnik
et al., 2016; Fedele et al., 2016). HFOs can be subdivided
according to their spectral range into ripples (80–200Hz) and
fast ripples (200–500Hz, FRs) (Jacobs et al., 2012; Pail et al.,
2013). Whereas, ripples may reflect inhibitory field potentials
that synchronize neuronal activity, thus facilitating information
transfer over long distances, fast ripples are pathological and are
believed to reflect summated action potentials of spontaneously
bursting neurons (Cendes and Meador, 2018).

Nevertheless, detection of HFOs is complicated and time-
consuming owing to their short duration and low amplitude
(Lopez-Cuevas et al., 2013; Gliske et al., 2016). Existing detection
methods can be categorized into automated detection and visual
marking, which is a highly time-consuming process (it takes
about 10 h to visually mark HFOs in a ten-channel 10-min
recording) (Staba et al., 2002; Gardner et al., 2007; Zelmann
et al., 2009), and prone to reviewer bias and drift in judgement
(Cimbalnik et al., 2018). As a consequence, the development of
automated HFO detectors is crucial for the eventual utilization of
HFOs in clinical settings.

Several automated HFO detectors have been developed by
different research groups. In 2002, Staba et al. (2002) introduced
automated detection of HFOs based on the RMS feature of the
band-pass-filtered signals. Thresholding-based approaches have
become popular since the pioneering work of Staba et al. (2002),
for example, those based on short-time line-length (Gardner
et al., 2007), complex Morlet wavelet transforms (Chaibi et al.,
2013), the Hilbert envelope (Dumpelmann et al., 2012), and
approximate entropy (Lopez-Cuevas et al., 2013). Since 2010,
detection algorithms have been designed to tackle the problem
of low specificity through various approaches. Dumpelmann
et al. (2012) chose signal power, line-length, and instantaneous
frequency as input features, and used a radial basis function
neural network to detect HFOs. Zelmann et al. (2010) improved
the RMS detector by computing the energy threshold from
baseline segments, Chaibi et al. (2013) combined RMS and
empiric mode decomposition, and Ren et al. (2018) used the
maximum distributed peak points method to improve baseline
determination accuracy. However, most of the automated HFO
processing methods still had drawbacks such as low specificity
and high rates of false positives. These detectors are still
unsuitable for application in a clinical setting.

In recent years, deep learning has been widely applied in
diverse domains such as computer vision, natural language
processing, and speech recognition (LeCun et al., 2015). It
forms the basis of various machine learning algorithms that
model high-level data abstractions, and does not rely on
handcrafted features (LeCun et al., 2015; Schmidhuber, 2015).
The convolutional neural network (CNN), as a deep learning
algorithm, has shown remarkable performance in challenging
two-dimensional (2D) medical image computing problems,
such as classification of lung image patches with interstitial
lung disease (Li et al., 2014), breast cancer classification from
mammography (Kaur, 2016), and the classification of nuclear
cataract severity from eye examination images (Gao et al., 2015).
CNN is a biologically inspired hierarchical multilayered neural
network approach that simulates the human visual cortex and
detects translation invariance features (Alotaibi and Mahmood,
2016). CNN is superior to other approaches in that it conducts
automatic learning for complex features from raw data and
performs the classification in an end-to-end manner (Sors et al.,
2018). CNN has also shown outstanding effectiveness in solving
the EEG signal classification problem. Johansen et al. (2016)
developed a CNNmodel for detecting spikes in EEGs of epileptic
patients. Achilles et al. (2016) showed the superior learning
performance of CNN for epileptic seizure detection. Therefore,
we proposed that CNN could be used for automated detection
of ripples and fast ripples in patients with intractable epilepsy. In
this study, we converted a 1D intracranial EEG (iEEG) signal to
2D image signals and transformed the detection of ripples and
fast ripples into a binary classification of ripples and non-ripples,
as well as fast ripples and non-fast ripples. Then, a CNN model
was built to classify ripples and non-ripples, as well as fast ripples
and non-fast ripples. Finally, we compared the performance of
our detector with the other four HFO detectors integrated in
RIPPLELAB. The ultimate goal was to provide the location of EZ
through the distribution of HFO generation.

METHODS

Subjects
Patients diagnosed with medically intractable epilepsy who
underwent excision of epileptic foci in the functional
neurosurgery department of Xuanwu Hospital of Capital
Medical University were recruited from March 2016 to May
2017. A total of 19 participants (12 males and seven females)
with a mean age of 22 years (SD = 10; range 10–42 years) were
included in the study. Intracranial data were recorded, with
a sampling frequency of 4,096Hz. Patient characteristics and
electrode implantation sites are listed in Table 1. All patients
gave informed consent in agreement with the Research Ethics
Board of Xuanwu Hospital.

Data Preprocessing
We recorded interictal samples of 5min during the slow-wave
sleep period from each patient, as there is less muscle activities
and more frequent occurrences of HFOs during slow-wave sleep
compared with wakefulness (Zelmann et al., 2009; Burnos et al.,
2014). There was also the advantage that a 5-min segment
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TABLE 1 | Clinical characteristics and implantation sites of the 19 patients.

Patient MRI Implantation sites No. of channels Pathology Engel classification

(one year after surgery)

1 No lesion LIF, LC, LSF, LSP, LSI, LLT 82 FCD IIb, TSC I

2 Left DCC, left FPS, left ventricular wall ectopic LT, LC, LP 76 FCD Ib II

3 HS (right MTL) LH, RH, RI 74 FCD IIIa, HS I

4 Left temporal encephalomalacia foci LSF, LLT, LIF, RP, RO, LO 97 HS III

5 HS (bilateral) RSF, RC, RIF, RSP, RLP 128 FCD I III

6 Left temporal encephalomalacia foci LSF, LIF, LLF, LLT, LP 96 FCD IIId III

7 None RLT, RP, LLT, LC, RC 112 FCD I III

8 No lesion RIF, RLF, RSF, RO 96 FCD I I

9 LMS, left mastoiditis RF, RP 80 FCD IIb III

10 No lesion RSF, RIF, RC, RST, RP, LIF,

LSF, LC, LST, LP

96 FCD IIId I

11 HS (left MTL) LH, RLT, LOT 118 None II

12 None LOT, LIO, LP, RTH, RO, RP 96 FCD I I

13 Abnormal signal in right cingulate gyrus LT, RLF, RIF, RLT, RC 72 None I

14 No lesion RSF, RIF, RC, LSF, LIF, LC 80 FCD Ic II

15 No lesion RIF, RSF, RLP 62 FCD IIb –

16 HS (right MTL) RP, RSP, RSF, RIF 82 FCD Ia I

17 High signal in the right frontal local cortex RP, RPO, RIF, RLF 82 FCD Ic I

18 HS (left MTL) LF, LSI, LFP 90 FCD I I

19 No lesion RIF, RLF, LH 64 FCD IIa I

Gender: M, male; F, female. MRI: DCC, dysgenesis of the corpus callosum; FPS, frontoparietal schizencephaly. HS, hippocampal sclerosis; MTL, mesial temporal lobe; LMS, left maxillary

sinusitis; Implantation sites: LIF, left inferior frontal; LC, left central; LSF, left superior frontal; LSP, left superior parietal; LSI, left superior insula; LLT, left lateral temporal; LT, left temporal;

LP, left parietal; LH, left hippocampus; RH, right hippocampus; RI, right insula; RSF, right superior frontal; RC, right central; RIF, right inferior frontal; RSP, right superior parietal; RLP, right

lateral parietal; LLF, left lateral frontal; RF, right frontal; RP, right parietal; LOT, left occipital-temporal; LIO, left inferior temporal; RTH, right temporal-hippocampus; RO, right occipital; LO,

left occipital; RLF, right lateral frontal; RLT, right lateral temporal; RPO, right parietal-occipital; LF, left frontal; LFP, left frontal-cingulate. Pathologies: FCD, focal cortical dysplasia; HS,

hippocampal sclerosis; TSC, tuberous sclerosis complex.

could provide the same information as a longer interval when
identifying HFOs during slow-wave sleep (Zelmann et al., 2009).
Slow-wave sleep was defined by at least 25% delta activity by
visual inspection of 30-s epochs. Data samples were selected if
they were recorded at least 2 h before or after a seizure, to reduce
the influence of seizures on our analysis. Data containing noise
or artifacts, such as sharp transients with very large amplitudes
or irregular signals, were excluded. The data were transformed
to a bipolar montage for further analysis, which means that the
potential difference between two adjacent active electrodes in the
skull is recorded as iEEG.

The two kinds of HFOs were analyzed separately, owing to the
different generation mechanisms and electrophysiological
characteristics of ripples and fast ripples. A zero-phase
finite impulse response filter was used to perform band-
pass filtering for the data. The cutoff frequencies were 80–200
and 200–500Hz for ripples and fast ripples, respectively
(see Figure 1).

As interictal HFOs are commonly short (<330ms) and rare
(Lopez-Cuevas et al., 2013), the iEEG signals were divided
into one-second time series. Grayscale was used to characterize
the amplitude of iEEG signals, so that a 1D iEEG signal
could be converted to a row of the 2D grayscale image (see
Supplementary Figures 1, 2). Then, we converted each row of
the grayscale image to four rows.

Visual Marking of HFOs
For each channel, the first minute of the iEEG was independently
analyzed by two experienced reviewers. The concordance
between the two reviewers was assessed in line with the
Cohen’s kappa coefficient for each channel (Jacobs et al.,
2010). For channels with kappa < 0.5, the two reviewers
worked together to review the events in the first minute and
established a consensus, based on which, or if kappa > 0.5, the
remaining 4min of the iEEG were marked accordingly by one of
the reviewers.

Among the channels for the 19 patients, a total of 49,340
ripples and 19,734 fast ripples were analyzed by reviewers.
The remaining data were tagged as non-ripples and non-fast
ripples, respectively.

CNN Classifier
CNN requires fewer complex steps of feature extraction
compared to traditional neural networks. The feature extraction
is achieved by the convolutional layers and sub-sampling layers
of CNN, with advantages in terms of the complex non-linear
mapping of low-dimensional feature space that can be obtained
from the high-dimensional feature space for use in classification.
In this work, CNN has roles in both feature extraction and the
classification of HFOs. Details of the proposed CNN model are
shown in Figure 2.
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FIGURE 1 | Data preprocessing. First row: one second of raw data. Second

row: one second of filtered (80–200Hz) data. Third row: one second of filtered

(200–500Hz) data. Fourth row: Time-frequency analysis of raw data.

Input images were 4∗1,024 pixels in size, and were normalized
to have zeromean and unit variance. This normalization achieves
faster convergence and avoids local minima. In the model, the
normalized input is processed by convolutional blocks, where
each block consists of three layers: the convolutional layer, batch
normalization layer and non-linear activation layer (leaky ReLU
was chosen as the activation function in this study). The output
of the leaky ReLU layer is passed to a max pooling layer. In an
attempt to avoid overfitting, dropout is applied before the three
fully connected layers. The output of the last fully connected
layer is passed to a softmax layer, which serves as a classifier and
predicts the class of the input signal.

Architecture of CNN Model

Convolutional layers
CNN, as a simple neural network, makes use of convolution in
place of general matrix multiplication. The convolutional layers,
which detect local conjunctions of features from the previous
layer, constitute the main components of the CNN model. A
convolutional layer consists of neurons that are connected to the
local receptive field of the previous layer. The feature map of the
previous layer is convoluted with the convolution kernel. Then,
the activation function is applied to produce one output matrix.
The process is defined as:

xlj = f

(

∑

i∈Mj
xl−1
j × klij + blj

)

(1)

where f () represents the activation function, leaky ReLU; l
indicates the number of layers; k is the kernel matrix; and b is
a bias value.

Batch normalization layer
During training, the distribution of feature maps changes owing
to the updating of parameters, making the CNN model learning
harder to fit. This phenomenon was called covariate shift by
Ioffe et al. (Ioffe and Szegedy, 2015), who proposed batch
normalization as a solution. Batch normalization accelerates
network training, combined with a reduction of the sensitivity to
network initialization. The batch normalization layer normalizes
the activations and gradients propagating through the network,
making network training an easier optimization problem. In our
CNN model, a batch normalization layer is applied after each
convolutional layer.

Max pooling layer
The max pooling operation reports the maximum output within
a rectangular neighborhood. This layer not only reduces the
spatial size of the feature map, but also removes redundant
spatial information, which is beneficial for translation and scaling
of invariance to small shifts and distortions. The max pooling
layer makes it possible to increase the number of filters in
deeper convolutional layers without increasing the required
computational load per layer.

Dropout layer
Dropout regularization is an effective way to address the
overfitting phenomenon in the neural network training process.
A dropout algorithm is applied to facilitate the generalization
ability of the network by randomly disabling neurons in each
layer during training.

Softmax layer
The softmax activation function normalizes the output of the
fully connected layer. It constructs a hypothetical function to
calculate the probability of the input samples being divided
into each category, and then adjusts the parameters to make
the correct tags corresponding to the maximum probability.
The softmax activation function is deployed to approximate the
expected output between 0 and 1 in our binary classification. The
classification output of the network is “1” in the presence of HFOs
and “0” for non-HFOs.

Details of Learning
After defining the network structure, we specified the training
options. Our CNN model uses the minibatch and stochastic
gradient descent algorithms. The minibatch is set at 256. Cross
entropy serves as the loss function. The maximum number of
epochs are assigned a value of 20. An epoch is a full training cycle
on the entire training data set, in which the training begins with
an initial learning rate of 0.01 and the learning rate decreases by a
factor of five every five epochs. The CNN training was performed
on an NVIDIA Quadro M4000 with computational capability of
5.9 and a clock rate of 800 MHz.

Statistical Analysis
A 10-fold cross-validation approach, namely ten partitions for
training and test sets, 90% for training and 10% for testing,
was employed to measure the stability of the performance of
the proposed CNN model. The performance metrics included
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FIGURE 2 | Architecture of our CNN model.

FIGURE 3 | Effects of different sample sizes on CNN performance. The green line represents the accuracy of HFOs (ripples for A and fast ripples for B), and the

yellow line represents the accuracy of non-HFOs (non-ripples for A and non-fast ripples for B).

specificity and sensitivity. Previous studies of automated HFO
detection also adopted these metrics (Dumpelmann et al., 2012),
and they are appropriate for comparison of our model with other
methods. The calculations were as follows:

sensitivity =
TP

TP + FN
(2)

specificity = 1−
FP

TP + FP
(3)

where true positive (TP) refers to the visually marked HFOs that
are detected by the CNN model; false positive (FP) refers to
automatically detected events that do not overlap with visually
marked HFOs; and false negative (FN) means visually marked
HFOs that are missed by the detector.

Cohen’s kappa coefficient was computed to evaluate the
agreement between automated detection and visually marked
results. Kappa < 0 indicates that an agreement is due purely to
chance, kappa > 0.5 means excellent consistency, and kappa = 1
indicates complete agreement (Zelmann et al., 2009).

Then, the Spearman’s rank correlation was applied to assess
the association between automated detection and visuallymarked
results (Dumpelmann et al., 2012). The number of HFOs detected
by visual marking and automated detection in each channel
were counted. A correlation coefficient of 0.5–1 represented a
strong correlation.

Finally, the Mann–Whitney U-test was applied to compare
the HFO rates in the EZ channels and other channels
(Dumpelmann et al., 2015).

All statistical analyses used SPSS Statistics (IBM Corporation,
Armonk, NY, USA), version 22. The level of significance was set
at p< 0.05. Results were expressed asmean± standard deviation.

RESULTS

Different Sample Sizes
Visually marked data were used to train the CNN model,
consisting of HFOs and the low-amplitude activity here termed
non-HFO. The ratio of HFOs to non-HFOs was 1:1. Ninety
percent of the data were taken as training samples, and the
model was tested on the remaining 10%. Ripples and fast
ripples, representing different physiological significance, were,
respectively, applied to train the CNNmodel.

We changed the number of sample data points to test
whether the sample size affects CNN performance; the results
are shown in Figure 3. The more training samples were used,
the more accurate was the detection of HFOs. As the number
of training samples increased from 4,934 to 49,340, the accuracy
of ripple detection increased from 87.84+1.97 to 90.83+1.78%
(see Figure 3A). Similarly, the accuracy of fast ripple detection
increased from 83.25±1.27 to 87.65±1.13% as the number of
training samples increased from 1,973 to 19,730 (see Figure 3B).

Selection of the Best Model
There are numerous parameters in a CNN that have a significant
impact on its classification accuracy. The settings used tend to
be based on experience and practical considerations. Thus, it was
important to conduct quantitative analysis of the parameters in
our CNN. Seven CNN models were taken into consideration in
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TABLE 2 | The specifications of seven CNN models and their mean performance using 10-fold cross-validation.

Model M1 M2 M3 M4 M5 M6 M7

Conv_1 No. of kernels 32 256 64 64 64 32 16

Filter size [2, 12] [2, 12] [2, 12] [2, 12] [2, 12] [2, 12] [2, 12]

Maxpooling_1 Pool size [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4] [2, 4]

Stride 2 2 2 2 2 2 2

Conv_2 No. of kernels 64 128 64 64 64 32 16

Filter size [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8]

Maxpooling_2 Pool size [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]

Stride 2 2 2 2 2 2 2

Conv_3 No. of kernels 128 64 32 32 32 16 8

Filter size [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8]

Maxpooling_3 Pool size [1,4] [1,4] [1,4] [1,4] [1,4] [1, 4] [1, 4]

Stride 2 2 2 2 2 2 2

Conv_4 No. of kernels 256 32 32 32 32 16 8

Filter size [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8] [1, 8]

Dropout 0.5 0.5 0.5 0.5 0 0.5 0.5

Fully Connected_1 128 128 128 64 64 64 64

Fully Connected_2 64 64 64 32 32 32 32

Fully Connected_3 2 2 2 2 2 2 2

Accuracy Ripples 92.33 ± 0.80% 90.83 ± 1.78% 92.88 ± 0.93% 93.12 ± 0.84% 92.28 ± 1.16% 92.91 ± 0.97% 92.65 ± 0.47%

Non-ripples 87.99 ± 0.68% 86.65 ± 1.38% 87.91 ± 0.77% 88.11 ± 0.95% 88.71 ± 1.13% 87.95 ± 0.61% 87.95 ± 0.48%

Fast ripples 87.23 ± 1.98% 87.64 ± 1.61% 88.13 ± 1.05% 87.65 ± 0.89% 87.81 ± 1.83% 88.39 ± 1.04% 88.12 ± 0.43%

Non-fast ripples 91.63 ± 1.37% 92.21 ± 1.13% 92.34 ± 1.18% 92.82 ± 0.87% 91.64 ± 1.18% 93.35 ± 0.66% 93.28 ± 0.84%

our initial analysis to select the best model, as shown in Table 2.
We performed experiments using 10-fold cross-validation with
all sevenmodels on the same sample, with a total of 48,480 ripples
and 48,480 non-ripples, as well as 19,730 fast ripples and 19,730
non-fast ripples.

Model M1 was designed based on the traditional concept
wherein the number of kernels increases in each layer with
increasing network depth, whereas inmodelsM2 toM7 (pyramid
models), the number of kernels decreased with increasing
network depth. The pyramid models have the advantage of
reducing the number of learning parameters compared with
traditional models, which avoids the risk of overfitting.

The average performance results for 10-fold cross-validation
of different models are shown in Table 2. The average accuracies
(over all models) were 92.43% for ripples, 87.9% for non-ripples,
87.85% for fast ripples, and 92.47% for non-fast ripples. Based on
the overall results, the pyramidmodels (M2 toM7) showed better
performance than the traditional model (M1); in most cases, the
best results were given by model M4 for ripples and M6 for fast
ripples. The CNN worked better with a dropout of 0.5 and 64
neurons in the fully connected layer rather than 128 neurons.
Model M4 was used to detect ripples and M6 was used for fast
ripples for all further analysis in this study.

Selection of the Ratio of HFOs to
non-HFOs
The specificity of HFOs is correlated with the rate of false
positives, that is, the automatically detected events that do not
overlap with visually marked HFOs. When an HFO: non-HFO

ratio of 1:1 was used to train the CNN model, the accuracy was
not satisfactory with either non-ripples or non-fast ripples. In
order to minimize false positive rates and improve the specificity
of HFO detection, we increased the ratio of HFOs to non-
HFOs by increasing the number of non-HFOs to two, three,
four, and five times the number of HFOs, while keeping the
number of HFOs constant. As shown in Figure 4, increasing the
number of non-HFOs raised the accuracy of non-HFO detection
within a certain range; on the other hand, the sensitivity of
HFO detection decreased. In order to improve the specificity
of HFO detection while maintaining a reasonable sensitivity,
we chose the ratio of ripples to non-ripples to be 1:4, and the
ratio of fast ripples to non-fast ripples to be 1:3, to train the
CNN model.

Comparison of Visual and Automated
Detection Results
The CNN model based on the optimum configuration was run
to test the performance objectively. In this part, data from
one patient were selected as the testing samples, and data
from the remaining 18 patients were selected as the training
samples. The results for six patients are shown in Table 3: the
average sensitivities were 77.04% for ripples and 83.23% for fast
ripples, and the average specificities were 72.27% for ripples
and 79.36% for fast ripples. Our automated HFO detector based
on the CNN model could detect HFOs well, and there were
advantages in terms of computational time. Our detector took
only about 20 s to process 5min of 90 channels iEEG data using
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TABLE 3 | Comparison of results between our detector and the other four detectors.

Patient 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) Average (%)

Our detector Ripples Sens 73.67 80.21 75.42 81.64 85.06 66.22 77.04

Spec 50.47 73.15 79.59 77.15 82.25 71.03 72.27

Fast ripples Sens 90.66 79.55 85.50 82.40 77.73 83.54 83.23

Spec 70.75 87.74 72.71 77.41 88.14 79.43 79.36

STE detector Ripples Sens 12.38 12.73 14.61 16.46 28.97 3.26 14.74

Spec 86.21 77.71 86.86 89.29 87.32 71.43 83.14

Fast ripples Sens 36.00 15.79 8.54 18.81 17.66 1.44 16.37

Spec 67.93 74.83 41.18 84.54 86.25 33.23 64.66

SLL detector Ripples Sens 76.23 52.00 15.94 28.57 56.27 41.48 45.08

Spec 33.33 66.10 9.02 7.84 60.14 40.00 36.07

Fast ripples Sens 72.97 37.13 52.10 33.33 13.33 11.11 36.66

Spec 58.70 74.70 66.67 45.45 30.00 3.23 46.46

HIL detector Ripples Sens 72.89 27.89 2.90 25.00 55.31 30.37 35.73

Spec 54.55 83.11 25.00 46.67 89.00 85.42 63.96

Fast ripples Sens 12.50 19.55 22.95 51.13 26.42 22.22 25.80

Spec 78.57 87.73 82.35 74.96 72.43 73.68 78.29

MNI detector Ripples Sens 26.97 8.47 31.88 28.57 9.97 0.74 17.77

Spec 87.88 79.63 3.71 3.28 83.78 7.14 44.24

Fast ripples Sens 75.68 80.24 81.57 53.33 80.00 77.78 74.77

Spec 25.45 52.91 26.72 23.53 18.56 15.38 27.09

Sens, sensitivity; Spec, specificity.

FIGURE 4 | Effects of different ratios of HFOs to non-HFOs on performance of

the CNN. The green solid line represents ripples, the blue solid line represents

non-ripples, the green broken line represents fast ripples, and the blue broken

line represents non-fast ripples.

an Intel R© Xeon R© CPU E5-2650 v4 @ 2.2 GHz processor and
64 GB RAM.

At present, the most important consequence of automated
detection systems is the reduction in the time required for
analysis and the elimination of subjective factors. It is also
necessary to ensure a strong correlation between visual and
automated analysis results. In this study, we calculated the
Cohen’s kappa coefficient of the visual marking and automated

detection results for patient 1. The kappa values for the
two results were 0.541 for ripples and 0.777 for fast ripples.
Spearman’s rank correlation was used to calculate the correlation
between the automated detection and visual analysis results
for each channel. The significant correlations (0.862 for ripples
and 0.938 for fast ripples, p < 0.01) indicated that our
detector achieved reliable estimates of HFO counts and reflected
the topographical distribution of HFO generation. A visual
representation of the distribution of HFOs for all electrodes is
displayed below in Figure 5, showing the ripple and fast ripple
counts for visual analysis and automated detection for patient 1
for each channel.

Comparison With Four Other Detectors
To evaluate the performance of our detector, it was necessary
to compare its results with those of other detectors for analysis
of the same data. Here, we compared our detector with
four well-known detectors implemented in the RIPPLELAB
application (Navarrete et al., 2016), Short Time Energy
detector (STE), Short Line Length detector (SLL), Hilbert
detector (HIL), and MNI detector (MNI). Detailed descriptions
of this algorithm are available in the original publication
(Navarrete et al., 2016). The results of our comparison are
presented in Table 3. Our detector showed markedly higher
sensitivity (77.04% for ripples and 83.23% for fast ripples) and
specificity (72.27% for ripples 79.36% for fast ripples) than
the four detectors except the specificity of STE detector for
ripples (83.14%) and the sensitivity of MNI detector for fast
ripples (74.77%).
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FIGURE 5 | Comparison of results between visual marking and automated detection for patient 1. Blue and red represent ripples and fast ripples, respectively.

(A) Patient 1: visual making results. (B) Patient 1: automatic detecting results.

Comparison of HFO Rates in the EZ and
Other Channels
In this study, we considered the brain area of the removed
contacts of patient 1 as the EZ, for whom a good outcome was
obtained (Engel I). ThemeanHFO rates in the 38 channels within
the EZ were compared with those of 44 channels outside the
EZ; the results are shown in Table 4. The mean HFO rates in
the EZ were 32.9 for ripples and 25.4 for fast ripples. In the
other channels, the mean HFO rates were 16.2 for ripples and
2.2 for fast ripples. The Mann-Whitney U-test was employed to
compare the HFO rates in the EZ and other channels, showing
that HFO rates were significantly higher in the EZ channels than
outside (p < 0.05).

Missed HFOs and False Detections of Our
Detector
Our detector showed excellent comprehensive performance in
detecting ripples and fast ripples from iEEG signals, but there
were still some missed HFOs and false detections. Some typical
examples of these are shown in Figure 6. Our detector was not
sensitive to HFOs with low amplitudes, and sharp transients (e.g.,
epileptic spikes or sharp waves) might have been misclassified
as HFOs owing to their high-pass filter response as oscillations,
leading to an overestimation of HFO rates (Benar et al., 2010).

DISCUSSION

HFOs are considered to be promising biomarkers for the
identification of EZ (Jacobs et al., 2010, 2012; Cimbalnik et al.,

TABLE 4 | Mean HFO rates for channels in the EZ and other channels.

Patient 1 EZ channels Other channels Total channels

No. of

HFOs

Mean HFO

rate

No. of

HFOs

Mean HFO

rate

No. of

HFOs

Mean HFO

rate

Ripples 1,251 32.9 712 16.2 1,963 23.9

Fast ripples 965 25.4 97 2.2 1,062 13.0

2016). Visual marking is characterized by its heavy workload,
consumption of time, and vulnerability to errors. In this study, an
efficient and novel framework was integrated with CNN for the
automated detection of HFOs, as a solution to this challenging
medical processing problem. This approach is expected to relieve
the burden on clinicians and to provide a useful tool for
HFO detection in clinical settings. Compared with the four
other detectors, our detector achieved better comprehensive
performance: a higher sensitivity (77.04% for ripples and 83.23%
for fast ripples) and specificity (72.27% for ripples and 79.36%
for fast ripples). In addition, our detector could automatically
analyze ripples and fast ripples separately, enabling direct
comparison of HFOs in two different frequency bands. Thus, our
detector has significant potential for use in clinical practice.

Parameter Optimization
Various parameters determine both the computational
performance and the accuracy of a CNN model. We compared
the classification performance of our models under different
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FIGURE 6 | Example of missed HFOs and false detections in the first patient. The dotted rectangles represent ripples marked only by visual detections. The red lines

delineate false detections.

parameter conditions; the results are presented in Table 2.
Changes in parameters were correlated with changes in accuracy
of HFOs. The models M1 and M2 achieved accuracies of 90.83
and 92.33%, respectively, for ripples, indicating that pyramid
models (M2 to M7) performed better than the traditional model
(M1). The early CNN model proposed by Lecun et al. (1998)
introduced the strict pyramidal approach. Ullah et al. (Ullah
and Petrosino, 2016) also demonstrated that giving pyramidal
structure to CNNs can allow the number of parameters to be
scaled down, as well as reducing memory consumption on
disk; thus, the simple strict pyramidal model outperforms many
existing sophisticated approaches.

As shown in Table 2, the CNN with model M4 provided
the best results for ripples, while the model M6 was best for
fast ripples. Both of them showed slightly higher performance
than others but involved the minimum number of parameters
among all the models. Model M4 and M6 were adopted for all
other analysis processes in this work, as they were considered the
optimal models.

Comparison With Other Four Detectors
Several automated HFO detectors have been reported, some of
which were high specific, but low sensitive. In this study, we
compared our detector with the other four detectors provided by
RIPPLELAB (Navarrete et al., 2016), STE detector, SLL detector,
HIL detector, and MNI detector. Our detector utilized the CNN
model to detect HFOs from iEEG signals. This model resulted
in excellent sensitivity (77.04% for ripples and 83.23% for fast
ripples) and specificity (72.27% for ripples and 79.36% for fast
ripples). Our detector had a better performance than the SLL
detector, HIL detector, and MNI detector. Although the STE
detector had a higher specificity (83.14%) for ripples than our
detector, its sensitivity (14.74% for ripples and 16.37% for fast
ripples) wasmuch lower than ours. The sensitivity is as significant
as the specificity, because a detector with low sensitivity cannot
delineate the distribution of HFOs in different channels, while
low specificity may overestimate the amount of excitatory tissue

that needs to be resected according to HFO analysis. Based on
full consideration of these two factors, our detector seemed to
perform better than the other four detectors. Only detectors
with excellent sensitivity and specificity are appropriate for
clinical use.

Resection of HFO-Generating Areas
Correlates With Outcome of Epilepsy
Surgery
As was shown in many of the previous studies, brain regions
with a high rate of HFOs are often correlated with EZ (Jacobs
et al., 2010; Wu et al., 2010; Dumpelmann et al., 2015). Signal
processing aims to detect HFOs from iEEG signals and to identify
electrode sites exhibiting high HFO rates. For patient 1, the
Cohen’s kappa coefficient demonstrated excellent concordance
between the visual marking and automated detection results
(0.541 for ripples and 0.777 for fast ripples) for our detector. In
addition, the high Spearman’s rank correlation between the visual
analysis and automated detection (0.862 for ripples and 0.938 for
fast ripples, p < 0.01) indicated that our detector is a practical
tool for identifying channels with high HFO counts. Brain areas
containing LIF 3-12, LC 1-8, and LSF 1-12 were removed by
surgery. As shown in Figure 5, most of the brain tissue with high
HFO rates was resected, resulting in a good outcome (Engel I).

Our automated detector also provided reliable information
about the distribution of HFO rates between channels (see
Table 4). The mean HFO rates were significantly higher in EZ
channels than elsewhere (Mann–Whitney U-test, p < 0.05). This
indicates that HFO rates can provide additional information
about patient outcomes.

The Optimal Ratio of HFOs and non-HFOs
Our automated detector was designed as a supplementary
diagnostic tool for the localization of EZ requiring surgical
resection. Thus, the detector required good sensitivity and
specificity, with a need to remove as many false positive events as
possible with a reasonable sensitivity. The specificity of HFOs is
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correlated with the accuracy of non-HFOs. Hence, the accuracy
of non-HFOs was improved so as to enhance the specificity of
HFOs. When a sample with a 1:1 ratio of HFOs:non-HFOs was
used to train the CNN model, the accuracy was not satisfactory
for detecting either non-ripples or non-fast ripples. Subdividing
the iEEG signals in HFOs and non-HFOs resulted in too many
types of activities (e.g., baseline, epileptic spikes, and sharp waves)
being contained in the non-HFOs, which made the non-HFO
data insufficient. Therefore, we increased the number of non-
HFOs to two, three, four, and five times the number of HFOs,
with the number of HFOs kept constant, so as to improve the
accuracy of non-HFOs. As shown in Figure 3, increasing the
number of non-HFOs did raise the accuracy of non-HFOs within
a certain range, on the other hand, the sensitivity of HFOs
decreased. To improve the specificity of HFOs with a reasonable
sensitivity, we chose a ratio of ripples to non-ripples of 1:4, and
a ratio of fast ripples to non-fast ripples of 1:3, to train the
CNN model.

Limitations and Future Work
Although the CNN model overcame some important issues in
HFO detection, there still were some limitations. A potential
weakness of implementing the CNN model in this way is that
it did not utilize any cross-channel information. Moreover,
the CNN model could not obtain the start and stop time,
amplitude, or energy of HFOs. Future work should focus on
further enhancement of performance of the CNN model.

CONCLUSION

With the continuous accumulation of medical data, there is an
increasing need for the feature extraction and classification
to predict class labels for patient’s clinical data. In this

study, we present an efficient detector powered by the
CNN to detect ripples and fast ripples automatically.
This method has achieved satisfactory performance
compared with existing approaches, which might be
utilized in a clinical setting in the future. Our detector is,
therefore, valuable for identifying EZ during pre-surgical or
intraoperative evaluation.
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This paper describes continuing research on the building of neurocognitive models of

the internal mental and brain processes of children using a novel adapted combination

of existing computational approaches and tools, and using electro-encephalographic

(EEG) data to validate the models. The guiding working model which was pragmatically

selected for investigation was the established and widely used Adaptive Control

of Thought-Rational (ACT-R) modeling architecture from cognitive science. The

anatomo-functional circuitry covered by ACT-R is validated by MRI-based neuroscience

research. The present experimental data was obtained from a cognitive neuropsychology

study involving preschool children (aged 4–6), which measured their visual selective

attention and word comprehension behaviors. The collection and analysis of

Event-Related Potentials (ERPs) from the EEG data allowed for the identification of

sources of electrical activity known as dipoles within the cortex, using a combination

of computational tools (Independent Component Analysis, FASTICA; EEG-Lab DIPFIT).

The results were then used to build neurocognitive models based on Python ACT-R such

that the patterns and the timings of the measured EEG could be reproduced as simplified

symbolic representations of spikes, built through simplified electric-field simulations.

The models simulated ultimately accounted for more than three-quarters of variations

spatially and temporally in all electrical potential measurements (fit of model to dipole

data expressed as R2 ranged between 0.75 and 0.98; P < 0.0001). Implications for

practical uses of the present work are discussed for learning and educational applications

in non-clinical and special needs children’s populations, and for the possible use of

non-experts (teachers and parents).

Keywords: EEG, Event-Related Potentials, neurocognitive modeling, visual attention, word comprehension,

personalization, inclusive education, educational neurofeedback
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INTRODUCTION

The primary goal of this paper is to report on continuing
research on the building of cognitive models of the internal
mental or brain processes of children by using the measurements
of electroencephalographic (EEG) data in order to validate
the models constructed. Furthermore, as a secondary but
consequentially related goal, this paper explores prospective,
possible implications in terms of designing useful neuro-
technologies for learning and education, with specific
consideration of two major themes currently debated in
education: personalization and inclusion. The presented data
were collected from neuropsychological experiments conducted
with children from 4 to 6 years of age, which measured their
visual selective attention and word comprehension in two
separate computerized tasks. The collection and analysis of
Event-Related Potentials (ERPs) from the data of scalp EEGs
allowed for the identification within the cortex of dipoles as the
sources of electrical activity.

In over fifty years of research, psychology, neuroscience,
cognitive science, and other allied disciplines have clearly
shown that to specify the neural/mental processes involved
in a task from a human agent, behaviorally manifested
differences in the extent of responses and their latency
are necessary but not sufficient (Frank and Badre, 2015).
Further steps are required to specify which structures and
which functional pathways are putatively involved (Griffiths,
2015). In principle, analysis of verbal protocols (Ericsson
and Simon, 1993), and other forms of verbal reports (see
Runge et al., 2017) could be used to build converging validity
for neurocognitive models using the “phenomenology-neural-
behavior triangulation” (see Flanagan and Dryden, 1998).
However, determining all these elements in young (i.e., infants
and preschoolers) children escalates complexity further. This
is where the present study, involving neuro-computational
modeling (henceforth shortened as neurocognitive modeling),

comes into play. A background question permeating this
work concerns how much reduction is tolerable in order
to achieve models that could one day be relatively easily
implemented for real-world, practical applications for learning
(ideally by users such as, for example, educators, teachers, and
parents or the learners themselves, the children). For these

reasons, the present work assumes the very pragmatic tactic of
combining already existing and validated computational tools in
a novel way.

As the starting point, the guiding working model which

was pragmatically selected for investigation was the established
and widely used ACT-R cognitive modeling architecture (ACT-
R research Group, 2019). The MRI-based circuitry covered by
ACT-R (see Figure 3) overlaps considerably with the circuitry
considered and studied by many neuroscience research programs
(see Borghi et al., 2013) independently from computational and
modeling applications. The advantage of such an approach is
that the correlates considered could in turn be modeled and
verified as functional pathways through the building blocks of
ACT-R. And of course, the results of the modeling can feed back
to inform theory about neurocognitive functions and structures

(for examples see Polk and Seifert, 2002). This cycle informed
the design of the present study and is represented graphically
in Figure 1.

As represented in the process flow of Figure 1, from the initial
collection of children’s EEG data in an experiment involving
two tasks measuring aspects of different but related cognitive
processes, using a type of Independent Component Analysis
(Jung et al., 2001) we extracted and isolated single-trial ERPs and
identified dipoles, indicating their likely sources within the cortex
and other (Subcortical) parts of the brain. We then mapped this
information onto a generalized ACT-R neurocognitive model
with multiple interactive components. At the same time, from
scalp single-trial ERPs from the three key brain cortical areas
postulated in ACT-R, we simulated simple spike representation
using a reductionist electric-field estimation procedure, which
allowed us to reconstruct the cortical activity over time for the
two tasks as it would happen in each individual trial. Finally,
we compared the neurocognitive model and the reconstructed
activity to assess whether the two types of results could be
coherently integrated as a whole product.

The need for relatively precise spatial localization and
connectivity in the model was further insured by adopting
basic neural-spiking simulation techniques to be able to confirm
the following: (1) the time latency of ERP activity linked
to the identified patterns of activation within the ACT-R
architecture; and (2) validity of the postulated meaning of the
ERP components (i.e., higher amplitude reflecting the relevant
increased neural recruitment in the involved structures). Our
expectation was that the combination of already popular and
widely used modeling approaches would provide converging
evidence supporting the hypothesized processes of attention and
acquisition of the word meanings and implicate a network of
connections overlapping in key cortical networks, in particular,
those involved in the occipital-temporal-prefrontal long-range
connections (see Table 1, and Figure 1) shared by the two types
of tasks in developing brains (see D’Angiulli et al., 2015). For
the latter reason, in this paper we focused our analyses on the
selected electrodes of interest corresponding to the main cortical
areas involved in those neural networks.

MATERIALS AND METHODS

In the following “Experiment” subsection, we describe two
behavioral tasks with a sample of young children: one measured
the activation of the sensorimotor and perceptual systems
engaged in a visual selective attention task, the other task
measured linguistic-conceptual and semantic memory systems
engaged in a word-verification task. Both tasks were part of a
large developmental cognitive neuroscience research program,
and were published as primary data analysis reports elsewhere
(Van Roon and D’Angiulli, 2014; D’Angiulli et al., 2015). In
what follows, we provide a summary of the essential steps to
illustrate how the entire protocol can be replicated. However,
readers interested in more details on the human experimentation
side should consult the cited reports. ERPs were extracted from
continuous EEGs time-locked to the task stimuli, to identify
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FIGURE 1 | Process flow representation of the present study.

TABLE 1 | Times and locations of modules in ACT-R model for selective attention

and PPVT tasks.

Region(s)

Time

(ms)

Viewing pictures

(attention and PPVT)

Word verification

100 Occipital/Basal, Bilateral Bilateral Occipital/Right Frontal

125 Parietal/Basal, Bilateral Parietal/Basal, Bilateral

170 Right Occipital/Left Frontal Right Occipital/Left Frontal

220 Basal, Bilateral —

280 Parietal/Frontal, Bilateral Left Frontal/Left Occipital/Right Temporal

320 Right Parietal/Right Temporal Left Frontal/Left Occipital/Right Temporal

380 Left Parietal Left Frontal/Left Occipital/Right Temporal

690 Left Occipital/Left Basal Left Occipital

850 — Right Occipital/Bilateral Temporal

the sources of electrical activity within the cortex known as
dipoles. Subsequently, in the subsection titled “Neurocognitive
Modeling,” we describe how the results of the experimental tasks
were used as secondary data analysis and manipulation to build
neuro-computational models that could reproduce localizations,
dynamic connectivity among areas, patterns of neural spiking,
and timings of measured EEG (see Figure 1). An important
point of difference with the previously published results is that
we present here novel analysis focusing on selected samples of
the best instances of observed single-trial ERPs (across different
subjects) as identified by a type of ICA. That is, in creating the

models we did not use grand averages of already-averaged ERPs
across all trials.

Experiment
Participants
Participants were initially selected from a prospective cohort of
children recruited in the context of a separate, non-overlapping,
larger research program on early development screening
(D’Angiulli et al., 2009). Based on the extensive developmental
literature (Bornstein and Lamb, 2011) and given the scope of our
study, we identified as the optimal target developmental period
the one corresponding to the age range of 4.5–6.5 years. To
recruit the initial pool of participants, an information package
was distributed to all parents whose children attended the same
daycare of amiddle-sized Canadian city. This study was approved
by the institutional research ethics boards of Thompson Rivers
University and Carleton University in accordance with the
1964 Declaration of Helsinki ethical standards and the Tri-
Council Policy Statement (http://www.pre.ethics.gc.ca/pdf/eng/
tcps2-2014/TCPS_2_FINAL_Web.pdf). Parents signed a consent
form and completed a brief questionnaire on demographic and
socioeconomic information about their family, including a clause
to consent to this follow-up study including collecting EEG, and
behavioral and cognitive measures from their children. Materials
explaining what was involved were included in the package
and presented at the daycare to teachers and parents during
small information sessions. Thus, only general information about
the present study was provided to our target families and
children. Hypotheses and purposes of the study were only given
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(verbally to children and through a written take-home page to
parents) at debriefing after the study but not at the recruitment
stage. After screening for the families’ socioeconomic and
demographic background information and individuals’ daycare
records, the prospective participants were matched by age,
gender, ethnicity, reported health/physical development and
“computeracy” (ownership and use of internet and computers,
including video gaming). Thirty families were then re-contacted
by mail, of which seventeen returned completed and signed
consent for the present study. Children were given a gift card
of $5 for their participation and also received a book of stickers
at the end of the study. Written parental informed consent
and the children’s active assent was obtained according to a
protocol approved by research ethics boards from all of the
involved institutions.

The final sample of 13 children [nine boys; four girls;
mean age (SD) = 5.10 (0.75)] was obtained after exclusion of
three (female) participants from the initial sample of 16 (two
children had an insufficient number of artifact-free or artifact-
corrected usable EEG data and/or did not meet the minimal
required performance level (accuracy >75%) in one task, hence
their data were discarded after preliminary diagnostic analysis).
Following strict inclusion criteria, participants were carefully
selected to represent, despite some age variation, a relatively
homogeneous group of healthy, typically-developing children.
The participants scored all within 0.5 standard deviations
from the mean on the following standardized age-normed
control measures: parents completed the Behavioral Rating
Inventory of Executive Function—Preschool Version (BRIEF-P)
from Psychological Assessment Resources (PAR), Inc. (Gioia
et al., 2005); and the preschool Child Behavioral Checklist
(CBCL/1½−5 years; Achenbach, 2009). In addition to the
above measures, the participants exceeded expectations in
the Early Development Instrument (Janus et al., 2007) in
all developmental domains (i.e., physical health and well-
being; social knowledge and competence; emotional health and
maturity; language and cognitive development; communication
skills and general knowledge).

Furthermore, according to parent reports and daycare
records, the participants were typically-developing children with
no history of medication or referral to disability assessment or
services. All were Caucasian with normal or corrected-to-normal

vision and no hearing or other known sensory impairments.
The children lived in the same neighborhood, corresponding
to the same catchment area for the daycare center they
attended. All children were from middle-upper class family
socioeconomic backgrounds.

Apparatus and Procedures

Behavioral tasks
For the visual selective attention task, the method followed
the standard protocol of Akshoomoff (2002) represented in
Figure 2A. For this task, children viewed a computer screen
which displayed either a picture of a duck or a picture of a turtle
that remained on the screen for 500ms and was followed by
a 500ms ISI. Children were instructed to watch the computer
screen and, every time they saw a duck, to push a button, and
not to push the button if they saw something else (this requires
that children ignore irrelevant stimuli while paying attention to
the target stimulus). For one quarter of the trials a duck was
displayed, and for the remaining three quarters a turtle was
displayed. Each child was given 12 trials or practice periods,
followed by 150 trials each.

The task of word verification was a computerized version
of the standard Picture Peabody Vocabulary Test (PPVT-III),
which measures receptive vocabulary and word comprehension
(Dunn and Dunn, 2007). The test includes 19 sets, each set
includes 24 items: 24 target words presented aurally and 24
corresponding displays containing four-color pictures arranged
on the screen, with each picture having a rectangular frame
with a different color (spatial layout and colors of frame were
randomly shuffled from trial to trial). For each trial and item in
a stimulus set, children were seated in front of a computer and
heard a word over insert headphones (with sound set at 70 dB).
They were then asked to decide which one of the four pictures
on the computer screen corresponded to the target word (see
Figure 2B). Children were instructed to verify the meaning of the
target spoken word by selecting the picture that best illustrated its
meaning by clicking on a response keypad having four buttons
with colors matching the color-coded frames inscribing the
stimulus pictures. All children were instructed to consider all the
buttons appropriately to give the correct manual response. The
words were prerecorded from the voice of an English-speaking

FIGURE 2 | (A) Visual selective attention task. (B) Computerized version of the Peabody Picture Vocabulary Test.
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female experimenter at a rate of 250Hz. Each new trial was self-
initiated, upon pressing any button in the response keypad. A
set was completed successfully unless three consecutive words
were incorrectly verified; in this event, the test was discontinued
and the particular set was considered the maximum performance
level assigned to the subject.

The stimulus sets are arranged in order of increasing
abstractness and complexity as operationally reflected in
difficulty so that the task can be calibrated to the participant’s
appropriate vocabulary level (norm-based critical range). The
strong relationship of the type of processes measured by
the PPVT and language comprehension has been well-
documented (e.g., Carroll, 1993; Kamil and Hiebert, 2005).
Accordingly, correlations between PPVT and kindergarten
language comprehension are typically very strong (median r
> 0.65, see Dunn and Dunn, 2007). Thus, performance on
PPVT is very unlikely to reflect just shallow linguistic processing
in preschool children. This is also abundantly confirmed
by overwhelming evidence in the context of aphasiology,
intelligence, and clinical neuropsychology literature in both
children and adults—research fields in which, at least for the last
three decades, the PPVT has been used as a criterion measure of
semantic elaboration.

In both tasks, the children were all tested individually in a
sound-proof electromagnetically-shielded EEG booth. Each child
was positioned in front of the computer so that his or her
eyes were ∼38 cm from the screen. Children were reminded
of instructions or could communicate with experimenters and
attending parents in the adjacent control room through an
intercom speaker system (parents and experimenters had a back
view of the child through a window but also had a frontal and
facial view through a Bluetooth camera). The children were
reminded of the importance of not speaking, moving/turning
their head, clinching teeth, or blinking soon after they had given
their manual response and before initiating a new trial. Each task
required five minutes for completion.

EEG Data Acquisition and Recording Procedures
The EEG was recorded with EEG Quick caps with Ag-AgCl
electrodes (Compumedics Neuroscan, Charlotte, NC, USA).
Each participant had 11 Ag-AgCl electrode sites (Cz, F3, F4,
Fz, O1, O2, Oz, P7, P8, Pz, T7, and T8) applied according to
the 10–20 system of electrode application (Nuwer et al., 1998)
as used previously (e.g., D’Angiulli et al., 2008, 2013). The
decision of having the number of electrodes smaller than 32 was
dictated by previous work and pilot studies in children of similar
ages, showing no critical loss of reliability in source analysis
results (Griffiths et al., 2011). All electrodes were referenced to
nose tip. Impedances were kept below 5 kOhms. The vertical
electrooculograms (VEOG) were recorded from two split bipolar
electrodes on the left and right supraorbital ridge (VEOGU, L and
R) as well as the left and right zygomatic arch (VEOG, L and
R). The signal from the electrodes was amplified and digitized
by a SynAmps2 and a SCANTM 4.3 EEG system (Compumedics
Neuroscan, Charlotte, NC, United States), with filter settings at
0.15Hz (high pass) and 100Hz (low pass). The data from all
channels were digitized online at a sampling rate of 1,000Hz.

EEG artifact reduction
Ocular artifact reduction was conducted through the eye-
movement correction included in the EEGlab package (Delorme
andMakeig, 2004). To verify, confirm reliability, and validate our
procedure, we correlated our edited data to the data obtained
with two additional independently conducted procedures: a
manual eye-movement rejection based on visual-score scanning
procedure, and on the eye movement reduction algorithm
devised by Semlitsch et al. (1986), which consists of constructing
an average artifact response and then subtracting it from the
EEG channels on a sweep-by-sweep, point-by-point basis. The
agreement between the edited data with our procedure and the
two confirmatory procedures was high (r = 0.89 with artifact
rejection and r = 0.95, both p < 0.0001).

General ERP processing and analysis
In this section we describe procedures and analysis parameters
that did not vary depending on the nature of the EEG/ERP data,
the more specific approaches to the data relative to each subset of
tasks are described in the relative sections of the results.

The electrode locations were mapped using the EEGLAB
BESA standard-10-5-385 cap model. Each participant’s EEG was
epoched (200ms pre-stimulus and 1,000ms post-stimulus) and
averaged with respect to the event of interest, which acted as
the anchor for the epoching (the stimulus or 0ms mark). For
the attention task, the considered epoch was anchored on the
presentation of the duck or turtle. For the PPVT task, there were
two types of epochs: one anchored on the presentation of the
word and the other anchored on the subsequent presentation of
the four-picture display. Baseline correction was based on the
200ms pre-stimulus interval.

The analysis of the EEG data was conducted using EEGLAB
software from theUniversity of California, SanDiego, which runs
on the proprietary software MATLAB (Delorme and Makeig,
2004). Event-Related Potentials (ERPs) were then derived from
the continuous EEG recordings using two complementary
averaging techniques: (1) Grand averaging of averaged ERPs
across subjects; (2) averages of single-trial ERPs across subjects.
Performance accuracy rates (>75%) insured that the children
carried out the tasks at threshold in pressing the button
when appropriate.

For each task, the quantification of the effects was based on
maps representing normalized averaged scalp electrical activity
(see below), as well as on essential analysis including separated
focused contrast analyses using Z (standard normal deviate)
tests or t-tests. The latter procedures were used to calculate
the mean standardized difference (in micro-volts) needed in
each electrode location in order for the neural activation
patterns to be significantly different from one another; such
differences can be directly interpreted as effect sizes in the
samemeaningful metric (Shadish and Haddock, 1994). Contrasts
between mean amplitudes were conducted just for the time
windows of interest but took into account standard deviations
and standard errors of the baseline mean across the entire ERP
epochs. Additionally, for ease of interpretation, some of the
standardized mean differences valid for all the simultaneous
multiple comparisons between types of events are indicated in
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the depiction of the ERP waveforms in the Figures. p-values were
corrected for multiple comparisons using the Simes-Bonferroni
procedure (Simes, 1986).

Neurocognitive Modeling
In this section, we describe methods used for building the
neurocomputational models (neurocognitive model, in short)
of visualization correlates for both the attention and the word-
verification tasks we used. The observed EEG/ERP results from
the two tasks were used to build models to identify sources
of task-related ERP activity (electrical energy), and then to
reproduce the pattern and timings of measured ERP peaks.

Independent Component Analysis
Further analysis consisted of Independent Component Analysis
(ICA) of single-trial ERPs (Jung et al., 2001) as well as subsequent
ICA for components of ERPs. This technique mathematically
determines sets of discrete separate functions that may efficiently
explain all measurements as signals which are maximally
independent (the FASTICA algorithm was used, Hyvärinen
and Oja, 1997). As an example, a single middle occipital area
was discerned from the initial simultaneous reaction of three
posterior electrodes. While the location and the timing of
components can be calculated with ICA, a magnitude which is
absolute cannot be estimated similarly, as there inherently exists
an ambiguity between component magnitude and attenuation
from it to the point of measurement.

ACT-R Framework
ACT-R, as developed by John R. Anderson, provides a system for
modeling that is commonly used in cognitive science (Anderson
and Lebiere, 1998). By this architecture, cognition arises
from parallel interactions of modules which are independent.
Procedural memory is modeled as a system of production by
ACT-R, and specifically one of rules—namely, rules of if/then.
A system of buffers and chunks manages communication both
to and from the Procedural Model (see Figure 3). In ACT-R,
chunks are composed of short lists of information which are
predicated (i.e., a chunk could so represent the word “dog” as
“Is a”:dog, “Name”:Fido, “Color”:brown, “Size”:large). A buffer can
contain only one chunk at a time. At least one buffer exists for
every module, and therefore a buffer that is visual, and another
that is auditory, and another that is declarative, and so forth.
Buffer instructions are received by the modules, which send their
own results of activity to the buffers. Altogether, buffers may be
regarded to form the working memory; they can alternately be
considered to represent the current task context. When an “if
condition” matches the buffer content, productions are said to
“fire.” Buffer content is altered by the part of production known
as “then.” Each production requires 50ms, and productions
can fire only one-by-one. Module functions serve to determine
the time required of each module to return a result. If for
example a specific memory is requested by a production from the
Declarative Memory Module, a stronger memory will deliver the
results sooner. ACT-R therefore renders strong predictions about
internal events.

FIGURE 3 | The organization of information in ACT–R.

The standard version of ACT-R was written in LISP. However,
we adopted Python ACT-R, which is a recent re-implementation
of the architecture (Stewart and West, 2005). This supports
most of the functions of ACT-R release six while allowing
programming in a more compact and accessible syntax using the
Python language.

Module Localization
The term “module” is here defined as a function which is local
to some area and which also links with a given task process
(as distinct from the language modules of Chomsky or the
domain-specific modules of Fodor) but which is similar to the
generalization offered by Kosslyn (1994). Functional Magnetic
Resonance Imaging (fMRI) has accounted for much of the
research as it links ACT-R module activity to areas specific in the
brain. [The relevant papers can be found on the website for ACT-
R (ACT-R research Group, 2019). Those estimates for module
location which are proven the best are found listed in (Anderson
and Byrne, 2004). In addition, an exhaustive review of these brain
area functions can be found in Anderson (2007)]. As an example,
the central coordinator for productions is determined to be the
caudate of the basal ganglia. Hippocampal control is responsible
for declarative memory, whereas attention toward conflicting
stimuli is controlled by the anterior cingulate cortex. Declarative
memory finds its support from the frontal cortex, whereas visual
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processing occurs within the occipital lobe along with additional
processing in the parietal lobe (Figure 3).

FMRI is ideal for the use of localization. It is, however,
generally recognized as being too slow for the detection of events
as they would fall within the timeframe of ACT-R. Anderson
has avoided this limitation by electing to model the prospective
BOLD response in accordance with module activation time
course (Anderson et al., 2003), yet this approach nonetheless
involves a delay mismatch in real time, as the recording of
activation lags behind the processing of cognition by some
seconds. And even the so-called event-related fMRI still has a
time resolution that is effectively inferior to the one obtained by
EEGmeasurements. Herein, we intended to explore with EEG for
much the same reasons, so as to capitalize on the superior time
(millisecond) resolution of ERPs. (For a different, but successful
example of ERP-based ACT-R modeling, see Cassenti, 2007;
Cassenti et al., 2011).

Dipole Location
Dipolar analysis was applied for identifying the location of areas
of the brain as indicative of the origin of the signals. “Dipole” is a
term in physics that refers to one pair of charges which are closely
spaced, one being positive and the other being negative. The
dipole can create an electrical field, or voltage, at a given distance
depending upon the strength and the orientation. One section of
the brain can possess many thousands of neurons oriented in a
single direction and firing all at once. It may represent a cortical
column, a lower structure nucleus, or a ganglion belonging to the
basal ganglia, for example. In their firing. these neurons produce
voltage, to be measured as EEG in surface scalp electrodes (see
Onton and Makeig, 2006). In EEGLAB, the component titled
DIPFIT was employed for the estimation of a set of dipoles
in both single-trial and average data of ERP to explain the
independent components which were extracted. The dipole is
defined as a region of the cortex wherein many thousands
of neurons act in parallel such that their total electrical field
amounts to the scalp measurement of EEG. DIPFIT regularly
locates one or perhaps two dipoles for each specific region
as it appears to have produced the independent individual
components in each single trial. The MRI-based spherical head
model with standard Tailarach coordinates appropriate to age as
of EEGLAB was chosen.

Electric-Field Modeling
The next stage was to create a model that reproduced the average
ERP activity measured across participants using extraction of
single-trial ERPs. An ACT-R model of the process would, at
minimum, predict that the visual module (occipital) would
be activated by the displayed picture and would place a
representation of the picture in the visual buffer (parietal).
Next, the “parietal” representation would be used to retrieve the
instruction about what to do for that animal from declarative
memory (temporal), which in turn would be placed in the
declarative memory buffer (frontal). For our purposes, the model
was primarily built to reproduce the electrical activity measured
rather than behavioral results.

FIGURE 4 | Calculating an electric dipole field.

In the neurocognitive model, each module was assumed
to generate between one and two dipoles in the dipole-fitting
stage of location identification for the simulation of electrical
activity. It was believed that the module produced its electrical
energy in the rising and falling of a wave. For the purpose
of modeling, there was an assumption of a basic triangular
wave, with its peak at the module center (simplified spike
model). The resultant electrical field or voltage was thereupon
calculated at the surface head of each electrode as the total sum
contribution of the individual dipoles. Since the peak activities of
the components occurred at different times in the observed data,
it was not necessary to add the effects of more than one dipole at
a given time.

(i) The estimation of independent dipole effect reads as below
(see Figure 4): The square of the distance (r) from electrode
to dipole as obtained from Pythagoras is calculated.

(ii) The square of the distance (r) from electrode to dipole as
obtained from Pythagoras is calculated.

(iii) The electrode potential of the dipole is calculated from
Coulomb’s law (i.e,: k × p × cos(θ)/r2), where p equals the
dipole strength while k remains constant. It is unnecessary
to determine the value of the constant as the models employ
relative magnitude.

(iv) Lastly, ERP signal simulations were compared to
experimental measurements.

Elsewhere, we have provided proof-of-concept demonstrating
that the above method can be used consistently to describe
internal neural activity (Griffiths et al., 2011). In this paper, we
extend that preliminary work by showing that the set of building
blocks are stable across diverse tasks and can be used to reproduce
results for further tasks.

RESULTS

Behavioral Data
Descriptive analysis on the behavioral data showed that for the
attention task, accuracy was very high (M = 89.85%; SD = 5.03)
and relatively rapid (mean RTs = 745ms, SD = 366.17). Age
correlated significantly with accuracy [r(13) = 0.61, p < 0.05]
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but not with RTs. On the longer PPVT task, children took on
average 3.5 s (SD = 0.78) to respond from when the picture set
was presented. Similarly as with the attention task, accuracy was
relatively high as all children completed successfully between 2
and 6 sets of target words, with most children being within ±1
SD from themean in terms of age-normed standard scores. There
was no correlation between age and performance accuracy or RTs
on the PPVT test.

ERP Data
Constrained by our modeling approach (see sections Dipole
Location and Electric-Field Modeling), our ERP analysis focused
selectively on the electrodes corresponding to the brain areas
hypothesized and tested by ACT-R. We therefore report only
significant results concerning those electrodes of interest for the
hypothesized models and test thereof. For results concerning the
entire EEG montage across the scalp, we refer the readers to the
aforementioned published reports.

For the attention task, grand averages of the ERP were
calculated for the duck and turtle events, and the latter were
then plotted as scalp maps. The array of scalp diagrams in
Figure 5 shows the response for the duck (top) and turtle
(bottom). The maps are views of the scalp from the top of the

head and oriented with the anterior (frontal) areas at the top
of the circle and the posterior (occipito-parietal areas) at the
bottom. They are plotted as a function of time at every 100ms.
These provide a global dynamic view of the neural activity
for all subjects during the tasks and therefore show several
interesting features.

In the attention task, at 100ms, both duck and turtle ERPs
showed a high bilateral response in the posterior area, suggesting
visual processing of the duck/turtle image. That was followed
at 200ms by strong frontal activity, perhaps indicating working
memory determining the course of action. At 700ms there was
more bilateral frontal activity coinciding with the typical button
press time. Focused contrasts revealed the strongest bilateral
effects in the midline electrodes. The graphs in the middle of
Figure 5 show the largest significant differences (the shaded areas
in the figure) between attended (duck) and unattended (turtle)
waveforms in the midline electrodes: between 300 and 500ms in
the occipital electrode, between 400 and 600ms, and between 600
and 800 in the parietal electrode, and between 500 and 1,000ms
in the frontal electrode [all contrasts: t(13) > 2.27, p < 0.05]. On
average, the largest peak amplitude detected in the examined time
windows was 28.4 µV (relative to baseline activity estimated at
Z = 2.60, p < 0.01).

FIGURE 5 | Bottom and top arrays: Scalp maps for selective attention task events (turtle, depicted with dashed lines, and duck, depicted with solid black lines). The

graphs in the middle show ERP waveforms corresponding to the scalps at selected midline electrodes. Dark blue and red scalp areas represent significance at p <

0.05 in the Simes-Bonferroni corrected T-test band across the entire epoch (see text). We next focused our analysis on the two key proposed predictions. Figure 6B

shows waveforms concurrent with the word-verification event for concrete and abstract sets of PPVT words, wherein the more concrete words included only items

from the first set, and the more abstract included only items from the very last set successfully completed by each subject; given that the number of trials was

reduced, the ERPs were smoothened to allow for a clearer evaluation of effects critical to this context. The most important and significant differences are highlighted in

Figure 6C with gray frame boxes, for the site where the largest activation was detected through scalp maps, at the right occipital electrode (O2). As predicted, there

was higher positive activation concurrently with concrete than with abstract words in the first 100ms of the PPVT task [t(13) = 6.52; p < 0.0001]. Conversely, there

was higher positive activation concurrently with abstract than with concrete words in the 750–850ms interval [t(13) = 7.71; p < 0.0001].
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FIGURE 6 | (A) Scalp maps for the word-verification task events (viewing pictures and verifying the word). (B) Filtered single-trial ERP waveforms of correct vs.

incorrect word-verification trials at electrode FZ. (C) Filtered single-trial ERP waveforms for the verification of concrete and abstract words; the gray dashed-line frames

show regions of significant effects (see details in text).

Grand averages for the ERPs of the PPVT were calculated
and plotted as scalp maps as well. Figure 6A shows scalp
maps for the event interval between presentation of the word
and presentation of pictures (i.e., picture verification), and for
the event of seeing the pictures display (i.e., PPVT pictures).
Strikingly, the maps for ERPs concurrent to seeing the PPVT
pictures are virtually identical to those observed concurrent to
the viewing of the turtle—that is, the distracter event during
attention (compare the bottom arrays of scalp maps in Figures 5,
6A against each other). Nevertheless, the maps for the word
verification event show early co-activation of opposite polarity
in right anterior and bilateral posterior electrodes from 100 to
200ms. After 300ms, the activity spread out mostly in the right
side across the centro-parietal and temporal electrodes. To verify
that deep elaboration occurred, the bottom panel of Figure 6
also displays (unfiltered) ERPs after hearing the target word, split
by correct and incorrect PPVT trials, at Fz which was the most
representative electrode. In the window between 400 and 900ms,
although the direction of the effect is reversed at about half of this
interval, there is a significant difference between the waveforms
of correctly and incorrectly identified words [the maximal effect
is similar across, that is, a mean difference of about 5 µV,
t(13) = 4.23, p < 0.01].

The maximum value of the ERP voltage for each of the
participants was computed between 0 and 200ms at electrode O2
during the attention task, collapsed across correct duck and turtle
trials. The participants were then subdivided into two groups
based on the median split of the ERP voltage: one Low and one
High early activity group; the PPVT concrete vs. abstract analysis
was re-run separately for the latter two groups. The two graphs
in Figure 7 show the ERPs at electrode O2, corresponding to
PPVT event word-verification. The top graph shows the PPVT
O2 ERPs for the seven subjects in the Low early activity group.
The second graph shows the ERPs for the seven subjects in the
High early activity group. In both graphs, the blue stands for the
concrete PPVT word set (first set) and the red for the abstract
(last set), as in the analyses presented previously. Confirming our
second main prediction, at electrode O2 the late ERP activity
(750–850ms interval) was significantly higher for concrete than
for abstract word verification in both groups [High: t(13) = 4.00,
p < 0.001; Low: t(13) = 3.11, p < 0.01]. The effect size of the
difference in late ERP activity between concrete and abstract
word-verification was again predicted by the early ERP activity
(0–200ms interval) during the attention task. The individual
variation of early perceptual/attentional processing predicted the
variation of late activity related to word-verification, within the
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FIGURE 7 | (A,B) Filtered single-trial ERP waveforms during the concrete vs. abstract word-verification task in high and low early activity groups. (C) Scalp map of

single-trial ERP activity during the attention task and representation of predictions (black arrows) of the ERP differences in the regions shown by the black outline

frames. Bidirectional black arrows represent statistical comparison (“n.s.”: non-significant).

High early activity group (r= 0.83) as well as within the Low early
activity group (r = 0.76). Importantly, when the effect sizes of
the differentials of activity corresponding to concrete vs. abstract
words were compared in the two groups (graphically represented
by the bidirectional arrows in the right panel of Figure 7), this
test did not yield significant differences (Z = 0.27; p = 0.79),
showing that the level in early activity was similarly predictive
of late activity in both groups.

Control Comparisons Between Behavioral
Data, Subject Data and ERP Data
Several multiple regression analyses were run to test possible
associative relationships of ERP and EEG frequency bands
(event-related band power analysis) with a host of control
variables such as age, accuracy, and RTs on the tasks, as well
as subjects’ profiles used for screening and sample selection
(CBCL, BRIEF-P, EDI). All effects were far from being significant
(all p’s > 0.50). This result showed that in the main findings
we have reported above these other factors were not likely to
be confounding.

Modeling Data
Application of the ICA routine yielded from the experimental
data between 8 and 13 separate components for ERP activity
related to both attention and word-verification tasks, averaged
across subjects. Only for a short period of time were the

independent components resolved to be active. Their modeling
was thereby facilitated as for separate minimally overlapping
processes. The presence of each component was verified either
by one or two dipoles through running the DIPFIT routine.

Simulation of EEG activity was achieved by construction of
a computer model comprising eight modules, corresponding to
those components found to be most prominent. When activated,
each individual module was assumed to produce one or two
dipoles lasting for its duration. Activation was modeled as a
simplified spike, rising linearly to a peak and then dropping at
the same rate. Dipoles were assumed to have been generated at
the DIPFIT estimated location consistently with the locations
assumed to be standard in ACT-R. The Talairach database
was applied to map the corresponding regions of the brain
(Lancaster and Fox, 2010). The models matched the distribution
of experimentally measured potentials reasonably well. Overall,
the models accounted for more than 75% of the spatial and
temporal variation of electrical potentials; the model for dipole
data fit expressed as R2 had a range of between 0.75 and 0.98—a
fit of excellent quality when it is considered that the calculations
contained many approximations and simplifications. An analysis
of sensitivity suggested that measuring the scalp EEG voltage to
±10% precision would result in localizing a dipole within 2–
3mm. In particular, we were able to isolate three key processes
associated with particular events during the tasks, which are
detailed next.
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FIGURE 8 | Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for early positive activity during the attention task for the

target (duck). Right top: Dipole location. Bottom Left: Electric-field model of the component.

FIGURE 9 | Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for late positive activity during the attention task for the

target (duck). Right top: Dipole location. Bottom Left: Electric-field model of the component.
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FIGURE 10 | Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for late positive activity during the word-verification task.

Right top: Dipole location. Bottom Left: Electric field model of the component. As far as the simulation results for the PPVT task (auditory-word perception followed

by word verification process), Table 1 contains all the processes that were required to simulate the complete ERP signal for one epoch. Each line corresponds to one

module within the cognitive model having the source location of one or of two electric dipoles. The times as they appear represent peaks in activity for every module.

FIGURE 11 | Reconstruction of most relevant ERP peaks as identified by ICA through electric field modeling for the two main phases of the PPVT task, auditory

processing of the word (bottom panel), followed by picture processing (top panel) (also refer to Table 1 above).
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Figures 8–10 present the most relevant results of the
source analysis and simulation against the experimental results,
specifically, during (1) perceiving and attending to the picture of
the duck or turtle as well as the PPVT pictures, and (2) verifying
abstract words. The top left-hand plots show contour lines of
an ICA-derived single-trial ERP averaged over the subjects for
the same target (the picture of the duck), but measured at
different locations and at different times during the attention
task. The views are from above, with the nose at the top of the
diagram and the ears at the side. Darker areas indicate more
positive voltage responses in the ERP. The bottom left-hand plots
show the electric fields calculated from the model for those four
modules. The times selected are the peaks of activity for those
assumed to underlie the neurocognitive modules. On the right
hand, the locations of the dipoles responsible for the fields are
shown as small inverted pin symbols with lines indicating the
orientation-positive polarity of voltage.

A single dipole explained the strong response at 100ms
concurrent with processing pictures in both tasks. The location of
this dipole was in the posterior head in correspondence with the
occipital areas as anticipated for attention and visual processing.
The independent component in its time course produced a
single spike at 100ms, with negligible activity before it or after.
It was therefore possible to model it in the form of a simple
spike at 100ms, reaching 50ms on either side, and otherwise at
zero (see Figure 8). Similarly, for verification of abstract words
spike activity was isolated but deeper (see 3D representation in
Figure 10) in the temporo-occipital area. For the attention task,
another process was isolated in the frontal lobes with another
clearly identified spike at about 700ms (see Figure 9), the latter
appearing appears quite distinct from late occipital responses.

The output of the simulation closely reproduced the scalp
electrical activity as measured in the experiment. In fact, the
bottom panel of Figure 11 shows the electric field simulations
next to the dipole analysis for the two types of events. The main
three components we have described above are integrated with
others in the simulation of the entire waveform. Importantly, two
of these components, the early and late positivity, are observed
during perception and word comprehension. The component
representing themanual response shows clearly a different timing
than that for late positive activity; this result is important because
it rules out possible confounding factors between imagery and
motor processes.

DISCUSSION

The present findings suggest that the EEG data of children
can be simulated with use of a neurocognitive model, which
assumes for each process that one to two electric dipoles
are generated where the center of functionality is to be
found for that function. Functionality mappings of ACT-R
were proven to be robust in their use for EEG modeling.
The standard locations of functions and the timings for
productions were applicable. The experimental work described
throughout this paper utilized results obtained from children
which were first employed for the measurement of executive

functions. Since the tasks may be considered relatively easy for
children, the data may be considered optimal for the modeling
of the cognitive processes of young children. Other future
studies in modeling might make use of longitudinal results
from the data of children and adults to offer a means of
comparison in order to provide a test bench comparison of how
modules may more specifically change throughout the course
of development.

Adult neurocognitive modeling has usually been conducted
for the purpose of the reproduction of averaged outward
experimental behaviors of participants including response times
and error rates. If, however, the objective is to simulate internal
processes, it is advised that participants’ differences (individual
differences) be effectively considered. Our data of individual
children showed that there were large individual differences
in the processes taking place in the brain. For example, the
activity in their pre-frontal areas revealed large variability
between individuals (see Griffiths et al., 2009; D’Angiulli et al.,
2010). These kinds of differences would have to be taken into
consideration during any modeling specifically of individuals for
personalized neurotechnologies (see the discussion as below). For
example, ACT-R models usually only contain productions that
are related to the task at hand. To reproduce the overall brain
activity during the task, other processes such as environmental
checks taking place in the brain need to be incorporated.
It will therefore also be necessary to render tasks simple to
ensure that consistent components be isolated for the sake of
efficient modeling. Notwithstanding the general variability of
EEG data, the technique of dipole analysis appears to be a very
promising way to determine the localization, time course, and
especially sequencing of neural events for the purpose of building
increasingly complex neurocognitive simulations.

There are already links between ACT-R modeling and the
learning sciences and education. For example, modeling based
on fMRI imaging data has already been used to monitor
children’s mathematical learning procedures (e.g., Qin et al.,
2004) and strategies (Tenison et al., 2014). However, the focus
of these types of studies has mainly been to understand the
processes underlying mathematical and arithmetic problem-
solving during structured lab testing. In addition, research on
ACT-R models has been used to build “cognitive tutors,” that
is, computer-tutoring programs that implement the ACT-R
architecture for the teaching of algebra, geometry, and integrated
math (Anderson et al., 1995). The type of neurocognitive models
described in the present study may be a further development
in the possible application for learning and education by using
ACT-R or other architectures for closed-loop brain training or,
in other words, educational neurofeedback for practical uses with
non-clinical populations and, in particular, with young children
with or without special needs. In contrast to fMRI applications,
EEG-based applications are relatively inexpensive, portable and
wireless, and are more child-friendly in that they can tolerate
to a certain extent some mobility and can be used in open
spaces rather than a scanner. As a way of concluding the paper,
possible future applications and research directions are discussed
next with considerations for both progress and limitations of
this research.
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As discussed by Fairclough (2009), neurocognitive modeling
could be integrated in closed-loop brain training to (i) induce the
desired optimal psychological state prior to learning experience
or examination (as suggested by sports neurofeedback,
Hammond, 2007), to (ii) teach children about biological
systems using biofeedback games (self-regulation exercises plus
knowledge of human biology, see Sitaram et al., 2017), and to
(iii) design adaptive educational software which in real time
can keep the learner motivated, to avoid disengagement or
boredom, as suggested by video games research (Lécuyer et al.,
2008; Mishra et al., 2016; Kasemsap, 2017). Compatible with
the traditional closed-loop brain training paradigm, in the first
two instances (applications i and ii) the user works with the
processed biological signal to develop a degree of self-regulation
which can become a stable individual cognitive trait with practice
(Sitaram et al., 2017). As far as it concerns the third instance
(application iii), the software may be developed to be adaptive
so that it may personalize and optimize the learning process for
an individual. In other words, an efficient, optimal mind/brain
state is being created on the fly by dynamic software adaptation
to facilitate learning. It is unclear whether the latter application
is as effective for encouraging self-regulatory strategies as
traditional biofeedback, or whether it can serve as a potent tool
for optimizing the learning process itself. The fact, however, that
the neurocognitive modeling feedback is represented through
content (simplified spikes) and that is congruent with the
underlying brain processes might suggest that it could guide
children to use natural mental strategies such as mental imagery
(Scharnowski et al., 2015), which tend to be more successful in
leading to learning and transfer.

Thus, in principle, it seems reasonable to speculate that
EEG-based neurocognitive modeling of children’s data could
be used for indicating when/how teaching methods need to be
revised, or as an assessment tool technique, monitoring how
long children are engaged, interested or focused, as well as their
actual understanding of materials and performance during the
tests. EEG-based neurocognitive modeling may also help the
teacher in assessing individual differences in specific aptitudes
and preferences, demonstrating which learner has an aptitude for
a subject or activity by the intensity, and patterns of activation
in certain areas. It could therefore be used to assign students or
groups of students to subjects or help them develop matching
preferences to topics or projects.

Given that EEG patterns of young children differ from
adults, a motivation for the current research was to model
specifically children’s data and use an approach that could lead
to valid implementations. Accordingly, one of the implications
is that the practical issues of recognition and classification
of EEG patterns in young children can be minimized with
increasing progress in the use of the approach. Because the
technique demonstrated here can be designed so that models
are not dependent on verbal or motor response, it could be
used with young children—in particular, preschoolers. A future
direction for research would be to adapt to extend the present
approach to even younger children so that age is for any
practical purpose virtually irrelevant. Single-trial ERPs could
be measured routinely during learning, class or homework

activity, and provided that one day the markers will allow early
detection for learning difficulties, and especially reading and
math disabilities. Suitable preventive teaching methods or early
interventions could be put in place before the problems start
having their negative effects. Importantly, it may be possible
to detect or confirm clinical conditions such as ADHD by
examining EEG activity showing, for example, the relative ratio
of beta and theta EEG frequencies generated in certain ROIs in
the brain.

In addition to the potential usefulness for diagnostic purposes,
a better specification of the neural dynamics through EEG-based
neurocognitive modeling may afford to describe the learning
process more accurately, and to adapt teaching accordingly. In
video games research, some applications are already enabling
computer activities to respond to the affective states of the
user classified as being, for example, bored, angry, excited,
or confused. This approach can be directly transferred into
education environments where information, activities, tasks and
exercises can be tailored at an appropriate level and in an
enticing way. Furthermore, the feedback the system uses about
the person’s state could become part of neurofeedback itself, as it
could be used for supporting practice and training of key aspects
of executive functions and attention.

It seems plausible that personalized neurofeedback in
education likely will not be a stand-alone, but one of many
tools for the learners. An interesting approach would be
to integrate EEG-based neurocognitive modeling in systems
that use multiple techniques over time for changing behavior
(see NASA PlayAttention; Palsson and Pope, 2002). This
application could be similar to those used to enter the optimal
mind/brain state or to improve performance by practicing to
generate relevant EEG timing, patterns and intensities at certain
frequencies, or through learning interfaces in which desired states
are elicited indirectly.

The present research though is only an initial step toward
the development of the learning environments hypothesized
above. At this point, EEG-based neurocognitive modeling only
supports a relatively reliable identification of generic states;
personalization will require many layers of improvement and
fine tuning to allow monitoring to identify an individual state
and then training to replicate it consistently and reliably. The
present research opens up many interesting questions for future
research regarding knowledge representation in educational
neurofeedback. Can neurofeedback based on the simplified spike
representation as shown here with EEG-based neurocognitive
modeling be a suitable method of communicating information?
And can it be used as an appropriate way for ensuring that
information is presented meaningfully to young children? It is
unclear at this point if it is more sensible to use such an approach
to engage andmonitor rather than to teach per se. Many questions
hinge on the type of interface for education. Should it relate
directly to a subject such as human biology, as discussed earlier,
or can it be more abstract, and simply inducing the desired
mind/brain state could be sufficient? Can shared cooperative
or competitive environments be created to be more engaging
to achieve the desired state? Also, many other very important
related practical aspects such as aesthetics (the appearance of
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the interface and electrodes), wearability, mobility/portability,
and degree of invasiveness are in need of much more
future research.

All analyses, simulations and modeling included in this paper
involved a novel combination of existing, commercially available
or even open source tools that are widely available and used in the
research and consumer communities. Therefore, a third implicit
goal of this paper was to show that the approach used here, or
a similar approach, could in principle be adopted relatively easily
by non-experts in educational and pedagogical settings. However,
it is important to point out that there are limitations in terms
of reliability, that is, precision of measurement afforded by the
existing tools we used. The particular implementation of ACT-
R used in this study is based on a spherical head assumption,
which makes possible mapping ERP activity onto MRI-based
anatomo-functional structures. However, the extraction of ERP
data under the sphericity assumption employs the common
average across the scalp as the reference channel for the recorded
EEG data. Other reference methods, specifically the reference
electrode standardization technique (REST) (Yao, 2001), have
been shown to give more precise temporal information on EEG
recordings. However, even with the current limitations of the
tools, the approach we used seems reasonably robust in terms
of the validity of neurocognitive modeling, because it focused
on insuring that those tools identified and measured the internal
processes as predicted. Ultimately, the validity was insured by
comparison with a body of ACT-R modeling work, which has
been done in both adults and children. We are not aware of
currently widely available EEG-based ACT-R applications in
children that used REST. Therefore, we suggest that an important
extension of the present work is for future research to devise
ways to assess the validity and reliability of REST in ACT-R

neurocognitive modeling of children’s data, thereby establishing
a base of knowledge and use for the benefit of non-experts.

In conclusion, the retooling of existing computational
techniques in novel ways such as the one demonstrated by our
study opens a host of possible innovations in neurotechnological
applications for personalized and inclusive education. Although
we are still far from actual effective implementation of credible
and dependable neurotech for learning, thinking about their
potential and how we will use them and when they will be ready
is crucial so that education tools can be properly designed from
inception. All stakeholders (teachers, students, academics, and
parents) need to be involved at the onset—that is, from now—
as part of research development to create systems that are useful,
usable and meet the highest ethical and safety standards.

AUTHOR CONTRIBUTIONS

AD was responsible for all aspects of manuscript. PD was
responsible for critical revision and editing of all manuscript
text after the first independent review, and re-analysis of data;
redrawing and enhancing all figures, and helping with final
editorial tune-ups, and checking of references.

ACKNOWLEDGMENTS

This work was funded by a Department of National Defense &
Canadian National Science and Engineering Research Council
partnership grant to AD. We thank Gordon Griffiths for helping
with the simulations and computer programming, design, and
analysis. Parts of the methods described in this paper are based
on Griffiths et al. (2011). We thank Tibor Devenyi for help in
reanalyzing and replotting the ERP data.

REFERENCES

Achenbach, T. M. (2009). The Achenbach System of Empirically Based Assessemnt

(ASEBA): Development, Findings, Theory, and Applications. Burlington, VT:

University of Vermont Research Center for Children, Youth and Families.

ACT-R research Group (2019). “ACT-R: Publications about fMRI,” in ACT-R:

Theory and Architecture of Cognition. Available online at: http://act-r.psy.cmu.

edu/ (Accessed January 29, 2019).

Akshoomoff, N. (2002). Selective attention and active engagement in young

children. Dev. Neuropsychol. 22, 625–642. doi: 10.1207/S15326942DN2203_4

Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe?

Oxford; New York, NY: Oxford University Press.

Anderson, J. R., and Byrne, M. D. (2004). An Integrated theory of the mind.

Psychol. Rev. 111, 1036–1060. doi: 10.1037/0033-295X.111.4.1036

Anderson, J. R., Corbett, A. T., Koedinger, K., and Pelletier, R. (1995). Cognitive

tutors: lessons learned. J. Learn. Sci. 4, 167–207.

Anderson, J. R., and Lebiere, C. (1998). The Atomic Components of Thought.

Mahwah, NJ: Erlbaum.

Anderson, J. R., Qin, Y., Sohn, M.-H., Stenger, V. A., and Carter, C. S.

(2003). An information-processing model of the BOLD response in symbol

manipulation tasks. Psychon. Bull. Rev. 10, 241–261. doi: 10.3758/BF0

3196490

Borghi, A.M., Scorolli, C., Caligiore, D., Baldassarre, G., and Tummolini, L. (2013).

The embodiedmind extended: using words as social tools. Front. Psychol. 4:214.

doi: 10.3389/fpsyg.2013.00214

Bornstein, M. H., and Lamb, M. E. (2011). Developmental Science: An Advanced

Textbook, 6th Edn. New York, NY: Psychology Press.

Carroll, J. B. (1993).Human Cognitive Abilities. Cambridge: Cambridge University

Press. doi: 10.1017/CBO9780511571312

Cassenti, D. N. (2007). “ACT-R model of EEG latency,” in Proceedings

of the Human Factors and Ergonomics Society 51st Annual Meeting

(Santa Monica, CA: Human Factors and Ergonomics Society), 812–816.

doi: 10.1177/154193120705101208

Cassenti, D. N., Kerick, S. E., and Mcdowell, K. (2011). Observing and modeling

cognitive events through event-related potentials and ACT-R. Cogn. Syst. Res.

12, 56–65. doi: 10.1016/j.cogsys.2010.01.002

D’Angiulli, A., Griffiths, G., and Marmolejo-Ramos, F. (2015). Neural

correlates of visualizations of concrete and abstract words in preschool

children: a developmental embodied approach. Front. Psychol. 6:856.

doi: 10.3389/fpsyg.2015.00856

D’Angiulli, A., Herdman, A., Stapells, D., and Hertzman, C. (2008).

Children’s event-related potentials of auditory selective attention

vary with their socioeconomic status. Neuropsychology 22, 293–300.

doi: 10.1037/0894-4105.22.3.293

D’Angiulli, A., Warburton, D. S., and Hertzman, C. (2009). Population-level

associations between preschool vulnerability and grade-four basic skills. PLoS

ONE 4:e7692. doi: 10.1371/journal.pone.0007692

D’Angiulli, A., Weinberg, J., Oberlander, T. F., Grunau, R. E., Hertzman, C., and

Maggi, S. (2013). Frontal EEG/ERP correlates of attentional processes, cortisol

and motivational states in adolescents from lower and higher socioeconomic

status. Front. Hum. Neurosci. 6:306. doi: 10.3389/fnhum.2012.00306

D’Angiulli, A., Yeh, W., and Griffiths, G. (2010). Correlation between

parent-reported executive functions and EEG response during selective-

attention and language tasks in preschool children: An event-related and

Frontiers in Computational Neuroscience | www.frontiersin.org 15 February 2019 | Volume 13 | Article 4103

http://act-r.psy.cmu.edu/
http://act-r.psy.cmu.edu/
https://doi.org/10.1207/S15326942DN2203_4
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.3758/BF03196490
https://doi.org/10.3389/fpsyg.2013.00214
https://doi.org/10.1017/CBO9780511571312
https://doi.org/10.1177/154193120705101208
https://doi.org/10.1016/j.cogsys.2010.01.002
https://doi.org/10.3389/fpsyg.2015.00856
https://doi.org/10.1037/0894-4105.22.3.293
https://doi.org/10.1371/journal.pone.0007692
https://doi.org/10.3389/fnhum.2012.00306
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


D’Angiulli and Devenyi EEG Modeling of Children’s Neurocognition

spectral measurement study. Front. Hum. Neurosci. Conference Abstract:

The 20th Annual Rotman Research Institute Conference, The frontal lobes.

doi: 10.3389/conf.fnins.2010.14.00082

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis

of single-trial EEG dynamics including independent component analysis. J.

Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Dunn, L. M., and Dunn, D. M. (2007). The Peabody Picture Vocabulary Test, 4th

Edn. Bloomington, MN: NCS Pearson, Inc.

Ericsson, K. A., and Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data,

Rev. ed. Cambridge, MA: The MIT Press.

Fairclough, S. (2009).Neurofeedback in Education.Available online at: http://www.

physiologicalcomputing.net/?p=106

Flanagan, O., and Dryden, D. (1998). “Consciousness and the mind: contributions

from philosophy, neuroscience, and psychology,” in Methods, Models and

Conceptual Issues: An Invitation to Cognitive Science, eds D. Scarborough and

S. Sternberg (Cambridge, MA: MIT Press), 133–172.

Frank, M. J., and Badre, D. (2015). How cognitive theory guides neuroscience.

Cognition 135, 14–20. doi: 10.1016/j.cognition.2014.11.009

Gioia, G. A., Espy, K. A., and Isquith, P. K. (2005). Behaviour Rating

Inventory of Executive Function R©-Preschool Version (BRIEF R©-P). Odessa, FL:

Psychological Assessment Resources.

Griffiths, G., West, R., and D’Angiulli, A. (2011). “Cognitive modeling of

event-related potentials,” in Proceedings of the 33th Cognitive Science Society

Annual Meeting, Vol. 33. University of California. Available online at: https://

escholarship.org/uc/cognitivesciencesociety/33/33

Griffiths, G., Yeh, W.-H., and D’Angiulli, A. (2009). “Comparison of executive

function with EEG response during selective-attention and language tasks:

event-related and spectral measurement study,” in Paper Presented at the

Canadian Society for Life Sciences Research (Ottawa, ON).

Griffiths, T. L. (2015). Manifesto for a new (computational) cognitive revolution.

Cognition 135, 21–23. doi: 10.1016/j.cognition.2014.11.026

Hammond, D. C. (2007). Neurofeedback for the enhancement of athletic

performance and physical balance. J. Am. Board Sport Psychol. 1, 1–9.

Hyvärinen, A., and Oja, E. (1997). A fast fixed-point algorithm for

independent component analysis. Neural Comput. 9, 1483–1492.

doi: 10.1162/neco.1997.9.7.1483

Janus, M., Brinkman, S., Duku, E., Hertzman, C., Santos, R., Sayers, M., et al.

(2007). The Early Development Instrument: A Population-Based Measure for

Communities. A Handbook On Development, Properties, and Use. Hamilton,

ON: Offord centre for Child Studies.

Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E.,

and Sejnowski, T. J. (2001). Analysis and visualization of single-trial

event-related potentials. Hum. Brain Mapp. 14, 166–185. doi: 10.1002/

hbm.1050

Kamil, M., and Hiebert, E. (2005). “Teaching and learning vocabulary: perspectives

and persistent issues,” in Teaching and Learning Vocabulary: Bringing Research

to Practice eds E. H.Hiebert andM. L. Kamil (Mahwah, NJ: Lawrence Erlbaum),

1–23.

Kasemsap, K. (2017). “Mastering educational computer games, educational video

games, and serious games in the digital age,” in Gamification-Based E-Learning

Strategies for Computer Programming Education (Hershey, PA: IGI Global),

30–52.

Kosslyn, S. (1994). Image and Brain: The Resolution of the Imagery Debate.

Cambridge, MA: MIT Press.

Lancaster, J., and Fox, P. (2010). Talairach Client - v2.4.2. Research Imaging Center,

University of Texas. Available online at: http://www.talairach.org/

Lécuyer, A., Lotte, F., Reilly, R. B., Leeb, R., Hirose, M., and Slater, M. (2008). Brain-

computer interfaces, virtual reality, and videogames. Computer 41, 66–72.

doi: 10.1109/MC.2008.410

Mishra, J., Anguera, J. A., and Gazzaley, A. (2016). Video games for neuro-

cognitive optimization.Neuron 90, 214–218. doi: 10.1016/j.neuron.2016.04.010

Nuwer, M. R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J.-M.,

Hinrichs, H., et al. (1998). IFCN standards for digital recording of clinical,

EEG international federation of clinical neurophysiology. Electroenceph. Clin.

Neurophysiol. 106, 259–261. doi: 10.1016/S0013-4694(97)00106-5

Onton, J., and Makeig, S. (2006). Information-based modeling of

event-related brain dynamics. Prog. Brain Res. 159, 99–120.

doi: 10.1016/S0079-6123(06)59007-7

Palsson, O. S., and Pope, A. T. (2002). Morphing beyond recognition: the future of

biofeedback technologies. Biofeedback 14, 14–18.

Polk, T. A., and Seifert, C. M. (eds). (2002). Cognitive Modeling. Cambridge, MA:

MIT Press.

Qin, Y., Carter, C. S., Silk, E., Stenger, V. A., Fissell, K., Goode, A., et al.

(2004). The change of the brain activation patterns as children learn

algebra equation solving. Proc. Natl. Acad. Sci. U.S.A. 101, 5686–5691.

doi: 10.1073/pnas.0401227101

Runge,M. S., Cheung,M.W., andD’Angiulli, A. (2017).Meta-analytic comparison

of trial- versus questionnaire-based vividness reportability across behavioral,

cognitive and neural measurements of imagery. Neurosci. Conscious. 1–13.

doi: 10.1093/nc/nix006

Scharnowski, F., Veit, R., Zopf, R., Studer, P., Bock, S., Diedrichsen, J., et al.

(2015). Manipulating motor performance andmemory through real-time fMRI

neurofeedback. Biol. Psychol. 108, 85–97. doi: 10.1016/j.biopsycho.2015.03.009

Semlitsch, H. V., Anderer, P., Schuster, P., and Presslich, O. (1986). A solution

for reliable and valid reduction of ocular artifacts, applied to the P300 ERP.

Psychophysiology 23, 695–703. doi: 10.1111/j.1469-8986.1986.tb00696.x

Shadish, W. R., and Haddock, C. K. (1994). “Combining estimates of effect size,”

in The Handbook of Research Synthesis, eds H. Cooper and L. V. Hedges (New

York, NY: Russell Sage Foundation), 261–281.

Simes, J. R. (1986). An improved Bonferroni procedure for multiple tests of

significance. Biometrika 73, 75–754. doi: 10.1093/biomet/73.3.751

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J.,

et al. (2017). Closed-loop brain training: the science of neurofeedback.Nat. Rev.

Neurosci. 18:86. doi: 10.1038/nrn.2016.164

Stewart, T. C., and West, R. L. (2005). “Python ACT-R: A New Implementation

and a New Syntax,” in 12th Annual ACT-R Workshop (Trieste).

Tenison, C., Fincham, J. M., and Anderson, J. R. (2014). Detecting math

problem solving strategies: an investigation into the use of retrospective

self-reports, latency and fMRI data. Neuropsychologia 54, 41–52.

doi: 10.1016/j.neuropsychologia.2013.12.011

Van Roon, P., and D’Angiulli, A. (2014). “Preschooler’s ERPs of online/offline

visualizations and embodiment theory,” in Proceedings of the 36th Annual

Conference of the Cognitive Science Society, eds P. Bello, M. Guarini, M.

McShane, and B. Scassellati (Quebec City, QC: Cognitive Science Society).

Yao, D. (2001). A method to standardize a reference of scalp EEG recordings

to a point at infinity. Physiol. Meas. 22, 693–711. doi: 10.1088/0967-3334/

22/4/305

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 D’Angiulli and Devenyi. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 16 February 2019 | Volume 13 | Article 4104

https://doi.org/10.3389/conf.fnins.2010.14.00082
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.physiologicalcomputing.net/?p=106
http://www.physiologicalcomputing.net/?p=106
https://doi.org/10.1016/j.cognition.2014.11.009
https://escholarship.org/uc/cognitivesciencesociety/33/33
https://escholarship.org/uc/cognitivesciencesociety/33/33
https://doi.org/10.1016/j.cognition.2014.11.026
https://doi.org/10.1162/neco.1997.9.7.1483
https://doi.org/10.1002/hbm.1050
http://www.talairach.org/
https://doi.org/10.1109/MC.2008.410
https://doi.org/10.1016/j.neuron.2016.04.010
https://doi.org/10.1016/S0013-4694(97)00106-5
https://doi.org/10.1016/S0079-6123(06)59007-7
https://doi.org/10.1073/pnas.0401227101
https://doi.org/10.1093/nc/nix006
https://doi.org/10.1016/j.biopsycho.2015.03.009
https://doi.org/10.1111/j.1469-8986.1986.tb00696.x
https://doi.org/10.1093/biomet/73.3.751
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1016/j.neuropsychologia.2013.12.011
https://doi.org/10.1088/0967-3334/22/4/305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


ORIGINAL RESEARCH
published: 19 February 2019

doi: 10.3389/fninf.2019.00006

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2019 | Volume 13 | Article 6

Edited by:

Tianyi Yan,

Beijing Institute of Technology, China

Reviewed by:

Kuangyu Shi,

Technische Universität München,

Germany

Frithjof Kruggel,

University of California, Irvine,

United States

*Correspondence:

Hongbin Han

hanhongbin@bjmu.edu.cn

Huipo Liu

liuhuipo@163.com

†These authors have contributed

equally to this work

Received: 09 October 2018

Accepted: 29 January 2019

Published: 19 February 2019

Citation:

Wang W, He Q, Hou J, Chui D,

Gao M, Wang A, Han H and Liu H

(2019) Stimulation Modeling on

Three-Dimensional Anisotropic

Diffusion of MRI Tracer in the Brain

Interstitial Space.

Front. Neuroinform. 13:6.

doi: 10.3389/fninf.2019.00006

Stimulation Modeling on
Three-Dimensional Anisotropic
Diffusion of MRI Tracer in the Brain
Interstitial Space
Wei Wang 1,2,3†, Qingyuan He 1,3†, Jin Hou 4, Dehua Chui 3, Mingyong Gao 2, Aibo Wang 1,3,

Hongbin Han 1,3* and Huipo Liu 5*

1Department of Radiology, Peking University Third Hospital, Beijing, China, 2Department of Radiology, The First People’s

Hospital of FoShan, Affiliated FoShan Hospital of Sun Yat-sen University, Foshan, China, 3Beijing Key Laboratory of Magnetic

Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China, 4Department of Radiology, The

Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China, 5 Institute of Applied Physics

and Computational Mathematics, Beijing, China

Purpose: To build a mathematical model based magnetic resonance (MR) method to

simulate drug anisotropic distribution in vivo in the interstitial space (ISS) of the brain.

Materials and Methods: An injection of signal intensity-related

gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA), which is an exogenous

drug, was administered, and its diffusion was traced in the ISS of the brain using

MRI. Dynamic MRI scans were performed to monitor and record the changes in signal

intensity in each pixel of the region of interest. The transport parameters were calculated

using the modified equation to simulate three-dimensional anisotropic diffusion, which

was resolved using a Laplace transform and a linear regressive model.

Results: After Gd-DTPA was introduced into the caudate nucleus, its distribution

was demonstrated in real time. As the Gd-DTPA gradually cleared, the associated

hyperintensity attenuated over time. The average diffusion coefficient (D) and the

clearance rate constant (k) were (1.305 ± 0.364) × 10−4 mm2/s and (1.40 ± 0.206)

× 10−5 s−1, respectively.

Discussion: The combination of trace-based MRI and modified diffusion mathematical

models can visualize and measure the three-dimensional anisotropic distribution of drugs

in the ISS of the brain.

Keywords: interstitial space, anisotropic diffusion, mathematical model, brain, magnetic resonance, Gd-DTPA

INTRODUCTION

Despite rapid progress in neuroscience, traditional oral or intravenous administration for brain
diseases have consistently shown low efficiency (Fisher et al., 2009; Wolak and Thorne, 2013)
and much more research needed to understand the brain activity underlying emotion, behavior,
etc. (Yan et al., 2017a,b). Administering therapeutics through the interstitial space (ISS) of brain
is considered a promising method of treating brain diseases based on the fluid dynamics of the
interstitial fluid (ISF) in the ISS (N’djin et al., 2014; Lonser et al., 2015). This novel delivery strategy
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has demonstrated certain advantages compared with traditional
drug delivery, including the ability to bypass the blood-
brain barrier, wider targeted distributions throughout the brain
volume, and reduced side effects (Xi et al., 2014). For example,
the administration of a small dose cytidinediphosphate choline
through the ISS of the brain demonstrated a greater efficiency
for preventing trial ischemic stroke (Han et al., 2011). Despite
its advantages, clinical therapies cannot be administered using
this method until a greater understanding has been developed
of the anatomy and physiology of the ISS as well as the
regularity of drug distribution and clearance. So an appropriate
mathematical model, which can stimulate drug distribution in
ISS, is crucial to the emerging achievements and applications of
the promising administration.

Based on recent anatomy development, brain is the particular
example of porous media, where the ISS is the irregular, tortuous
and narrow (mostly from 38 to 64 nm) space between neural cells
and capillaries, and it occupies approximately 15–20% of the total
brain volume and is filled with ISF (Sykova and Nicholson, 2008).
Many important neural actives occur in the ISS, including neural
cell communication, information processing and integration of
coordinated responses to changes in the microenvironment (Xie
et al., 2013; Kastellakis et al., 2015). It is believed that bulk flow
and diffusion are the mechanisms underlying drug distribution
in the ISS, which means that drugs can be driven by both the
pressure gradient and the concentration gradient according to
the fluid law of the ISF (Han et al., 2012). If the influence
of pressure is neglected, diffusion is the sole factor in the
distribution of drug ions in ISS. In a porous media several factors
can impose constraints on the diffusion process. The primary
factor is the geometrical structure and secondary are specialized
features of medium. Substances contained in the ISF have a
broad spectrum of physical and chemical differences and these
differences influence the pH and viscosity of the ISF and impose
constraints on the diffusion process (Shi et al., 2015). Currently,
approaches for measuring the ISS in vivo primarily include
radioactive tracers, real-time ion introduction, and integrated
optical imaging. Based on Fick’s second law of diffusion and
the appropriate equation for ISS, these methods can measure
the morphological parameters of the ISS in the local brain
tissue (60∼100µm) (Sykova and Nicholson, 2008). However,
they are sophisticated and cannot be used to monitor the drug
distribution through the ISS of the brain due to their limitation
of low image resolution and detection depth.

Tracer-based magnetic resonance imaging (MRI) technology
employs gadolinium-diethylenetriaminepentaacetic acid (Gd-
DTPA) to visual the transport procession the brain ISS, and the
diffusion and clearance of the tracer over time at any pixel within
the brain can be monitored and quantized (Kroenke and Neil,
2004; Han et al., 2014). The technique is based on the signal
intensity increment (1SI) and its time course (1SI/1t), which
can be used to obtain the rule for the tracer concentrations at
any point within the brain over time (C/1t) (Xu et al., 2011).
The technique demonstrates the anisotropic diffusion properties
in brain ISS. Based on the isotropic diffusion equation applied
in previous studies, a novel mathematical diffusion model was
established for MR technique which can simulate the anisotropic

diffusion process, and resolve the significant parameters of
the diffusion and clearance process of Gd-DTPA in the brain
ISS, including the diffusion coefficient (D) and the clearance
rate constant (k).

MATERIALS AND METHODS

MRI Protocols
A 3.0TMRI system (Magnetom Trio, SiemensMedical Solutions,
Erlangen, Germany) with an eight-channel wrist coil was
used with magnetization-prepared rapid acquisition gradient
echo sequences (MPRAGE). The sequence parameters are as
follows: repetition time = 1,500ms, flip angle = 9◦, field of
view= 30mm, slice thickness = 0.5mm, resolution = 512× 96,
and voxel= 0.5× 0.5mm.

Animal Models
The study was conducted in accordance with national guidelines,
and the protocols were approved by the Ethics Committee
of Peking University Health Center (Approval No. LA 2009-
008). The experiments were performed on male Sprague Dawley
rats weighing 280–360 g. Eight rats were anesthetized with an
intraperitoneal injection of chloral hydrate (400 mg/kg) and
then fixed in a stereotactic coordinate system (Lab Standard
Stereotaxic-Single, Stoelting Co, Illinois, USA).Prior to injection,
a MRI scan was performed to confirm the puncture position and
obtain a basic reference image. A 2 µl dose of Gd-DTPA was
slowly injected into the caudate nucleus of the brain at a rate
of 0.2 µl/min according to pre-scan images. MRI scans were
performed at 10, 30, 60, 90, 120, 180, 240, 300, and 360min
after injection.

MATLAB-based software was developed to co-register theMR
images of the same rat before and after the injection. The before-
scanned images were then subtracted from the post-scanned
images, and the signal intensity increment of the processed MR
images was recorded using the associated software and denoted
by1SI, which was used in the subsequent calculations (Figure 1).
More detailed description on data processing method can be
found in our prior paper (Han et al., 2014).

Mathematical Model
For convenience, we assumed that the concentration at moment
t and position be C = C(x, y, z, t). Drugs diffuse from areas
of higher to lower concentrations. According to Fick’s law, the
amount of a drug that crosses the surface differential element1SI
within time differential element 1t is proportional to the normal
differential quotient of the concentration along the surface,
and the proportionality constant is the diffusion coefficient D.
Conversely, an amount of the drug will be cleared through its
combination with receptors, metabolism and entrance into brain
cells. If the clearing rate is proportional to the concentration, then
the proportional constant is the clearance rate constant k and self-
secretion by nerve cells will result in an increase in endogenous
drugs, such as dopamine in the case of Alzheimer’s disease.

First, we selected a piecewise smooth and closed surface of
the brain ISS and assumed that the space it encloses is � . From
moment t to t + 1t, Fick’s law and the Gauss formula indicate
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FIGURE 1 | (A) Image of a rat brain prior to Gd-DTPA administration; (B) Image of a rat brain 10min after administration. (C) Subtracted image. The data (1SI) for the

tracer distribution along the X-axis and Z-axis can be obtained by calculating a series of rat brain images at different time points.

that the quality of the drug that enters � by crossing surface S is
as follows,

M1 =

∫ t+1t

t

∫∫

©
S

(

Dx
∂C

∂x
cosα + Dy

∂C

∂y
cosβ

+Dz
∂C

∂z
cos γ

)

dSdt

where cosα, cosβ , cos γ are the external normal cosine of, and
DxDyDz are the effective diffusion coefficients of the drugs in
three orthotropic directions in the brain ISS. According to the
Gauss formula,

M1 =

∫ t+1t

t

∫∫∫

�

(

Dx
∂2C

∂2x
+ Dy

∂2C

∂2y

+Dz
∂2C

∂2z

)

dxdydzdt

The loss quantity of drugs caused by clearance is as follows,

M2 =

∫ t+1t

t

∫∫∫

�

kCdxdydzdt

Where k is the clearance constant. SupposeQ is a source. Volume
fraction of ISS is denoted by α and may be formally defined as,

α = VISS/VTissue

This term Q is divided by the volume fraction, reflecting the fact
that molecules released into the ISS are restricted to a smaller
volume than if they had access to the entire brain tissue. Then
we have,

M3 =

∫ t+1t

t

∫∫∫

�

Q

α
dxdydzdt

In addition, a change of the drug concentration is as follows,

M4 =

∫∫∫

�

[C(x, y, z, t + 1t)− C(x, y, z, t)]dxdydz

=

∫ t+1t

t

∫∫∫

�

∂C

∂t
dxdydzdt

According to the law of mass conservation,

M4 = M1 −M2 +M3

Based on the arbitrariness of 1t, the following is obtained,

∂C

∂t
= Dx

∂2C

∂x2
+ Dy

∂2C

∂y2
+ Dz

∂2C

∂z2
− kC +

Q

α
(1)

Parameter Solution of Special Convection
Diffusion Equations Based on the Exact
Solution
By using Fourier Transform, we can obtain the exact solution
of the three-dimensional convection diffusion Equation (1).
However, the exact solution is very complex, and several
special convection diffusion equations are applied in practical
applications. Here we present two types of exact solutions for
convection diffusion equations frequently used in health care.
To simplify the problem, we assume that all coefficients of the
equations are constants and provide special initial conditions and
boundary conditions.

Instantaneous point-source convection diffusion model. For
the convection diffusion Equation (1), the following initial and
boundary conditions are given,

{

C(x, y, z, t) = 0,+∞ < x, y, z < −∞, t > 0
C(x, y, z, )

∣

∣

t=0
= 0

(2)

Where source term is instantaneous point-source presented
as follows,

Q(x, y, z, t) = Mδ(x)δ(y)δ(z)δ(t)

Where δ is the Dirac Function and M is the tracer mass, then
the exact solution of the convection diffusion equation can be
depicted as,

C(x, y, z, t) =
M

8α(π t)3/2
√

DxDyDz

exp

[

−
x2

4Dxt
−

y2

4Dyt
−

y2

4Dzt

]

exp
(

−kt
)

(3)
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This model is easy to use medically in practice, for one simple
instantaneous injection can satisfy all assumptions listed above.

Continuous Point-Source Convection
Diffusion Model
In the case of continuous injection, the concentration can be
regarded as the integral of instantaneous point-source injection
within a unit time over time domain,

C(x, y, z, t) =

∫ t

0

C0q

8α(π t)3/2
√

DxDyDz

exp

[

−
x2

4Dxt
−

y2

4Dyt
−

z2

4Dzt

]

exp
(

−kt
)

dt (4)

Where C0 is the concentration and q is the velocity of injection.
Several groups (more than five groups) of data, which includes

tracer concentration distribution and the corresponding time
and position, can be measured using MRI. The measured
data are substituted into the exact solution of the above
equation, parameters of Dx,Dy,Dz ,k,α can be attained using least
square method. Then the average diffusion coefficient can be
calculated as,

D =

√

D2
x + D2

y + D2
z

RESULTS

Real-time monitoring of the distribution of Gd-DTPA in the
ISS revealed that after the Gd-DTPA tracer was injected into
the ISS, signal intensity in the caudate nucleus increased. Gd-
DTPA was uniformly dissipated to the anterolateral frontal and
temporal cortices; no distribution in posteromedial thalamus
was observed. The tracer was nearly cleared at 240 minutes,
and an increased signal intensity was not demonstrated
subsequently (Figure 2).

Among the currently available brain ISS measurement
techniques, the tracer-based MRI technique is unique in
producing 3-D images of substance distributions in ISS. The
images can demonstrate the diffusion progression in arbitrary
directions (Figure 3).

In addition to visualization of diffusion progression in ISS,
the tracer-based MRI technique provides quantitative measures
of the distribution rate (Figure 4). Observed drug concentrations
at different times and locations gave parameter estimates average
D= 1.305± 0.364× 10−4 and k= 1.40± 0.206× 10−5 s−1.

A comparison of the novel tracer-based MRI and classical
approaches is provided in Table 1.

DISCUSSION

In our research, drug diffusion and clearance in the ISS of the
brain can be monitored in real time using multi-viewMR images.
Superiority in the safety, enhanced soft-tissue contrast and global
imaging advantages, MRI is an excellent technique for the in vivo

TABLE 1 | The comparison of the novel tracer-based MRI and classical

approaches.

Tracer-

based

MRI

Real-time ion

introduction

Integrative

optical imaging

Tracer Gd-DTPA Positive ion (TMA+) Fluorescent probe

(Dextron)

Signal Radio wave Electric potential Fluorescence

Detection

Capability

Global Distance < 200µm Depth < 200 µm

Imaging 3D No 2D

Parameters D, λ, t1/2, k D, λ, α D, λ

Influenced by

brain activity

No Yes No

Mathematical

model

3D

anisotropic

diffusion

equation

1D Isotropic

diffusion equation

2D Isotropic

diffusion equation

TMA+: cation tetramethylammonium.

D: diffusion coefficient.

λ tortuosity.

α volume fraction.

t1/2 half-life.

k clearance rate constant.

imaging of biological tissues (Hosseini et al., 2016; Chen et al.,
2018; Yan et al., 2018).

Among the currently available ISS measurement techniques,
MRI is unique in that it can detect the ISS in the deep regions
at the whole-brain scale (Lei et al., 2017). Gd-DTPA is the
preferred contrast-drug in clinic applications and has been
used to trace substance transport in the ISS in previous
studies (Benjaminsen et al., 2008). Gd-DTPA can shorten the
spin-lattice relaxation time of the hydrogen nuclei in water
molecules within an effective distance of 2.5 angstroms and
highlight endogenous water molecules in T1-weighted MR
images (Patil and Johnson, 2011). After the drug is injected
into the ISS, it will diffuse and be cleared, which presents as
the attenuation of signal intensity in a series of MR images.
MPRAGE sequence was used to acquire a series of 3D MR
images. Additionally, a MATLAB-based software was developed
to post-process these images, including the removal of MRI
noise and the rigid registration and conversion of MR signal
intensity increment to Gd-DTPA concentrations. The technique,
which can be referred to as a tracer-based MRI, can image
the distribution and clearance of Gd-DTPA in the ISS and
provide mathematical models by recording the varying drug
concentrations with respect to time with the goal of estimating
the drug diffusion and clearance parameters, including
the effective diffusion coefficient D and the clearance rate
constant k.

The effective diffusion coefficient is defined as the diffusion
scope of the substances through a medium in unit time, where
the unit is. This measure reflects the rate of diffusion in the
medium and is affected by various factors, such as the ISS
structure, dead space, cell matrix-induced blockages, negative
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FIGURE 2 | Coronal MR images demonstrate the process of diffusion and clearance of Gd-DTPA in the ISS of rat brain. After the Gd-DTPA tracer was injected into

the ISS, the signal intensity of the caudate nucleus increased, and the hyper-intensity distributed around and the intensity attenuated gradually, which was related to

the clearance of Gd-DTPA over time. Moreover, the anisotropic diffusion properties was demonstrated. Gd-DTPA was uniformly dissipated to the anterolateral frontal

and temporal cortices and its distribution in posteromedial thalamus was not observed.

FIGURE 3 | Distribution of Gd-DTPA demonstrated in real time in ISS of rat brains using multi-view images. The sagittal (upper) images demonstrate the process of

Gd-DTPA anterior and ventral-dorsal diffusion. The axial (lower) demonstrate the lateral and ventral-dorsal Gd-DTPA diffusion.

ions attached to molecules and drug characteristics, which is the
most intuitive parameter for indicating the drug diffusion scope
in the brain (Nicholson, 2005). By using different methods or

tracers, the measurements of the effective diffusion coefficient
of substances in the ISS varied from 0.38 to 20 × 10−4mm2/s

(Sykova and Nicholson, 2008).
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FIGURE 4 | (A) was the 3D wireframe and the height of the contour line represents the level of D. Panel (B) was a contour map superimposed on the original MR

image. They were drawn with a Python package named Matplotlib.

The clearance rate k indicates the loss of the drug from the
brain ISS and includes the amount of the drug that enters the
blood-brain barrier, combines with receptors, enters cells and
drains from the brain ISS. The rate of drug drainage in the brain
ISS has the greatest effect on the k value. According to Nicholson’s
research, the main methods by which drugs drain from the brain
include blood circulation, lymph circulation and cerebrospinal
fluid circulation (Iliff et al., 2013; Louveau et al., 2015). Therefore,
to maintain an effective drug concentration level to cure diseases,
the k-value must be accurately estimated.

This research establishes modifiedmathematical models using
Cartesian and spherical coordinates that simulate the anisotropic
diffusion process using numerical differentiation and a linear
regressive method. There are several key points related to
the approach that should be discussed. Firstly, the effective
diffusion coefficient and the clearance rate k are affected by the
characteristics of the administered drug, such as the structure,
size and polarity of the drug molecule. Therefore, to obtain
these parameters for certain drugs using animal models, it is
essential to inject a MR tracer, such as Gd-DTPA, to mark the
drugs. After acquiring the data, our model will estimate the
corresponding parameters. Secondly, drug administration in the
proposedmodel is performed through bolus injection rather than
by continuous administration, and the concentration gradient
becomes the sole driving force and diffusion dominates. Mériaux
recently announced an interesting result that 7T MRI, combined

with a non-invasive probe delivery technique, could be used
to estimate the tortuosity values in deep tissue regions in vivo
with excellent sensitivity, together with spatial and temporal
resolutions (Mériaux et al., 2018). However, even if imaged by the
most advanced MR, nanoscale ECS cannot be addressed directly
at present. In our opinion, it is a complex and time-consuming
project for ECS research, that involves MR protocol and probe,
signal detection and processing, mathematical models, test, and
trial. Developing appropriate mathematical model and signal
processing should be its key highlights. Drug delivery by ECS is
the most promising field in the research on ECS, and a platform
using 1.5T or 3T MRI can be developed more easily than one
using 7T MRI. Lastly, thanks to that the tracer Gd-DTPA is
not self-secreted in the brain, the parameter value that reflects
the endogenous drug dose change is zero, and the drug dose
presents a continuous decline to a stable state at a concentration
of zero.
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The complexity change in brain activity in schizophrenia is an interesting topic clinically.

Schizophrenia patients exhibit abnormal task-related modulation of complexity, following

entropy of electroencephalogram (EEG) analysis. However, complexity modulation in

schizophrenia patients during the sensory gating (SG) task, remains unknown. In this

study, the classical auditory paired-stimulus paradigm was introduced to investigate SG,

and EEG data were recorded from 55 normal controls and 61 schizophrenia patients.

Fuzzy entropy (FuzzyEn) was used to explore the complexity of brain activity under

the conditions of baseline (BL) and the auditory paired-stimulus paradigm (S1 and S2).

Generally, schizophrenia patients showed significantly higher FuzzyEn values in the frontal

and occipital regions of interest (ROIs). Relative to the BL condition, the normalized

values of FuzzyEn of normal controls were decreased greatly in condition S1 and showed

less variance in condition S2. Schizophrenia patients showed a smaller decrease in the

normalized values in condition S1. Moreover, schizophrenia patients showed significant

diminution in the suppression ratios of FuzzyEn, attributed to the higher FuzzyEn values

in condition S1. These results suggested that entropy modulation during the process of

sensory information and SG was obvious in normal controls and significantly deficient

in schizophrenia patients. Additionally, the FuzzyEn values measured in the frontal ROI

were positively correlated with positive scores of Positive and Negative Syndrome Scale

(PANSS), indicating that frontal entropy was a potential indicator in evaluating the clinical

symptoms. However, negative associations were found between the FuzzyEn values of

occipital ROIs and general and total scores of PANSS, likely reflecting the compensation

effect in visual processing. Thus, our findings provided a deeper understanding of the

deficits in sensory information processing and SG, which contribute to cognitive deficits

and symptoms in patients with schizophrenia.

Keywords: schizophrenia, electroencephalogram, fuzzy entropy, sensory gating, complexity
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INTRODUCTION

The sensory gating (SG) deficit is considered a core deficit among
patients with schizophrenia. SG is a normal suppression function
of the brain that filters the input of irrelevant information and
is believed to be essential to sustain attention in a changing
environment and for appropriate responses to afferent stimuli
(Braff and Geyer, 1990; Zhu et al., 2013). Schizophrenia patients
have demonstrated deficits in SG, which could lead to sensory
inundation, excess irrelevant sensory information in the brain,
resulting in abnormal information processing, selective attention
and cognitive deficits in patients (Adler et al., 2004; Potter et al.,
2006; Shaikh et al., 2011; Dalecki et al., 2016; Zhu et al., 2017).

In the auditory modality, SG has usually been studied in
a paired-stimulus paradigm: two brief, identical stimuli are
presented with a 400ms stimulus onset asynchrony (Santos et al.,
2010; Sánchez-Morla et al., 2013). However, both stimuli elicit a
positive potential 50ms post-stimulus (P50), and the amplitude
of potential to the second stimulus is normally attenuated. This
phenomenon was considered a measure of input inhibitory,
also called P50 suppression. Previous studies have proven that
patients with schizophrenia showed a smaller amplitude than
normal controls, possibly related to the deficit in SG (Bramon
et al., 2004; Chang et al., 2011; Keil et al., 2016). The P50
suppression impairment reported in schizophrenia was thus
assumed to reflect an inhibitory input impairment and was
argued to be an endophenotype for schizophrenia (Leonard
et al., 1996; Korzyukov et al., 2007; Thaker, 2008; Quednow
et al., 2012). Recently, our study suggested that schizophrenia
patients showed a smaller amplitude to the first stimulus than
that of normal controls, which was attributed to the deficit in
SG (Zhu et al., 2017). The poor SG in schizophrenia patients was
considered to be more related to the diminished processing of
S1 than to the deficient gating of S2 (Blumenfeld and Clementz,
2001; Johannesen et al., 2005).

The electroencephalogram (EEG) contains the dynamic
properties of brain activity (Acharya et al., 2015). Recently,
the dynamic properties were explored by utilizing complexity
analyses such as Shannon entropy (ShEn), approximate entropy
(ApEn), and Lempel–Ziv complexity (LZC) (Li et al., 2008; Akar
et al., 2015; Molina et al., 2017). By analyzing the resting-state
EEG signal, schizophrenia patients showed increased complexity,
associated with a higher variability or “irregularity” in their brain
signals (Akar et al., 2015; Bachiller et al., 2015). Additionally,
a difference was found between schizophrenia patients and

normal controls in the frontal and temporal regions (Sokunbi
et al., 2014). Among complexity analysis approaches, entropy-

based algorithms have been useful and robust estimators to
evaluate EEG regularity or predictability (Takahashi et al., 2010;
Sharma et al., 2015). Entropies measure the probability of a
new pattern in a time series; the greater the probability of
generating a new pattern is, the greater the complexity of the
sequence will be. The entropy with fuzzy structure showed a
great performance, including fuzzy entropy (FuzzyEn) (Chen
et al., 2007) and Inherent fuzzy entropy (Inherent FuzzyEn) (Cao
and Lin, 2018). Moreover, FuzzyEn and Inherent FuzzyEn have
been widely applied in the feature extraction and classification

of EEG signals in the area of Alzheimer’s disease, epilepsy,
migraine and healthcare applications (Cao et al., 2015, 2018a,b,c;
Xiang et al., 2015).

In addition to analyzing the complexity of the resting
state, the complexity of brain activity during information
processing was further analyzed. Normal controls displayed
decreased complexity (entropy) during tasks (Li et al., 2008;
Bachiller et al., 2015; Chu et al., 2017). However, patients
showed a significant reduction in task-related changes compared
with controls. For example, schizophrenia patients showed a
significant reduction in response to both target and distractor
tones in an auditory oddball paradigm using spectral entropy
(SpEn) (Bachiller et al., 2015). By analyzing the EEG signals
evoked by three different types of emotions, the ApEn at
the Fz electrode was significantly associated with the total
scores of Positive and Negative Syndrome Scale (PANSS)
in schizophrenia patients. Furthermore, normal controls and
markedly ill schizophrenia patients could be classified with an
identification as high as 81.5% (Chu et al., 2017). These entropies
and other complex measurements demonstrated that the
dynamic properties were sensitive to the neural activity and state
of the brain, and provided an important approach to investigate
themechanisms of abnormal cognition in schizophrenia patients.
Using the auditory paired-stimulus paradigm, schizophrenia
patients showed deficits in sensory information processing and
SG, contributing to cognitive deficits and symptoms in these
patients (Light et al., 2000; Johannesen et al., 2005; Dalecki et al.,
2016; Zhu et al., 2017). However, the mechanisms of entropy
modulation during the auditory paired-stimulus paradigm in
schizophrenia remain unclear.

In the present study, we used FuzzyEn, a simpler entropy
with a fuzzy structure, and an auditory paired-stimulus paradigm
to analyze the dynamic complexity of EEG signals, between
schizophrenia patients and normal controls, in order to further
investigate the entropy modulation mechanisms of SG in
schizophrenia. Accordingly, we found abnormal SG in the frontal
and occipital regions. FuzzyEn is a useful method to study the
complexity of SG and to look for dynamical evidence of abnormal
SG in patients. It is also a potential way to study the complexity
of the brain diseases.

MATERIALS AND METHODS

Participants
In our study, 61 schizophrenia inpatients [41 men and 20
women, mean age = (37 ± 1.25)] from the Beijing Huilongguan
Hospital participated in the experiment. The patients fulfilled the
diagnostic criteria for schizophrenia according to the Structured
Clinical Interview for the Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV) (Guze, 2006).
The exclusion criteria included cardiovascular or neurological
disease, a history of a head injury with loss of consciousness,
physical abnormalities, and meeting DSM-IV criteria for
substance dependence or current mood or anxiety disorders.
They had been treated with the antipsychotic medication of a
stable dose for more than 1 month, and did not take clozapine,
were pregnant or breastfeeding. The average duration of illness
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was 14.22 years. The symptomatology was assessed by the PANSS
(Kay et al., 1987).

Additionally, 55 age- and sex-matched normal controls were
recruited from the staff of the Beijing Huilongguan Hospital
[31 men and 24 women, mean age = (41 ± 1.59)]. None
of the normal controls had any history of mental illness or
substance abuse.

There was no statistically significant difference in age, sex ratio
and education between the normal controls and schizophrenia
patients. All the participants had normal hearing abilities.
The protocol was approved by the ethics committee of the
Beijing HuilongguanHospital, and written informed consent was
obtained from all participants after the procedures had been fully
explained. The demographical and clinical evaluations of the
subjects are listed in Table 1.

Data Recordings
The experiment was implemented in an acoustically and
electrically shielded room. All the subjects were asked to
wash their hair to ensure clean skin. They were seated in a
comfortable chair and were asked to relax and focus their
eyes on the “cross” symbol 80 cm ahead. The recording of
auditory-evoked potentials was performed using the signal
generator and data acquisition system of a fully functional digital
64-channel electroencephalography system (Brain Products,
Germany) complying with the international 10–20 system. The
resistance of all electrodes was <5 k�. EEG was acquired with
a sampling frequency of 500Hz. Eye movements were recorded
via electrooculography using Ag/AgCl disc electrodes that were
placed at the outer canthus and below the right eye.

The classical auditory paired-stimulus paradigm was used in
our previous studies (Tan et al., 2014). The auditory paired-
stimulus paradigm (S1 and S2) was also introduced in this
study, and 60 paired clicks were delivered binaurally through
headphones. The intertrial interval was 10 s with a 500ms
interstimulus interval between S1 and S2. The clicks consisted
of broad-band square waves that were 1ms in duration with
an intensity of 80 dB. Electrical signals from the scalp were
amplified and bandpass filtered with a 0.01–100-Hz analog filter

TABLE 1 | Demographic and clinical variables of the normal controls and

schizophrenia patients.

Characteristics Normal

(n = 55)

Schizophrenia

(n = 61)

t/χ2

value

P-value

Mean age (SE), year 41.29 (1.58) 37.87 (1.24) 0.464 0.597

Male/Female 31/24 41/20

Mean illness course (SE), year 14.22 (1.19)

Mean (SE) age at disease onset 23.89 (0.90)

MEAN (SE) PANSS SCORE

Positive score 19.63 (0.95)

Negative score 18.87 (0.93)

General score 35.12 (1.27)

PANSS, positive and negative syndrome scale.

and without a 50-Hz notch filter. We evaluated SG by computing
the complexity of the auditory-evoked response in the auditory
paired-stimulus paradigm. The experimental process of data
acquisition is shown in Figure 1.

Data Preprocessing
The whole process of data preprocessing was performed on
BrainVision analysis 2.0. First, we chose the average reference
electrode that is commonly used in EEG data preprocessing.
Next, digital filtering used a bandpass of 0.5∼50-Hz and 24
dB/oct. EEG recordings were then segmented into 1,300 ms-
length epochs from −400 to 900ms with respect to the onset of
S1 (60 samples per subject). Baseline correction was performed
using the averaged EEG data from −400 to 0ms before the
S1. Electrooculogram (EOG) exerted great influence on EEG;
thus, ocular correction was necessary to correct the muscle
influence caused by eye movement or blinking. The Artifact
Rejection transform was asked to search the data set for physical
artifacts following segmentation and to remove ormark segments
with artifacts. Then, by enabling individual channel mode, “Bad
Interval” markers were written in channels in which artifacts
occurred. The segments with artifacts were removed and the new
data set only contained the segments without artifacts. Next, we
exported the EEG data of 60 electrodes for further analysis.

FuzzyEn Algorithm
Abundant research has indicated that entropy-based approaches
have revealed novel insights into various brain activities, in order
to understand the temporal dynamics of complexity. FuzzyEn
uses a fuzzy membership function to measure the degree of
similarity of vectors, rather than the two-valued function in
the SampEn-based algorithm, so the calculated entropy values
are continuous and smooth (Chen et al., 2007). Additionally,
compared with ApEn and sample entropy (SampEn), FuzzyEn
has less dependence and sensitivity to phase space dimension and
similarity tolerance. The robustness and continuity of measure
values are therefore better. The algorithm is described below.

The phase-space reconstruction is performed on u(i)
according to the sequence order, and a set of m-dimensional

FIGURE 1 | Auditory paired-stimulus paradigm. In the experimental

procedure, the subject remained quiet and sat in a chair, facing the “cross”

symbol on the front screen, and received paired-clicks through the ears. The

time interval between the two stimuli was 500ms, and 60 repetitions were

conducted. Each test interval was 10 s.
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(m ≤ N − 2) vectors are obtained as follows:

Smi = {u (i) , u (i+ 1) , . . . , u (i+m− 1)} − uo (i) (1)

Fuzzy membership function as follows:

A (x) =

{

1, x = 0

exp
[

−ln(2)( xr )
2
]

, x > 0
(2)

where r is the similarity tolerance.

dmij = d
[

smi , s
m
j

]

=
max

kǫ (0,m− 1)

{∣

∣u
(

i+ k
)

− uo (i) (3)

−
(

u
(

j+ k
)

− uo
(

j
))∣

∣

}

(i, j = 1 ∼ N −m, j 6= i)

dmij , the distance between two vectors smi and smj , is the maximum

difference values between the corresponding elements of the
two vectors. According to the fuzzy membership function, the
similarity degreeDm

ij between two vectors S
m
i and Smj is as follows:

Dm
ij µ

(

dmij , n, r
)

= exp (
−(dmij )

n

r
) (4)

Defining the function ϕ(n, r), and repeating the steps above in
the same manner, a set of (m + 1)-dimensional vectors can be
reconstructed according to the order of sequence, defined as
ϕm+1 (n, r). Finally, the FuzzyEn value for the time series with
a sequence length of N can be expressed as follows:

FuzzyEn (m, n, r,N) = lnϕm (n, r) − ln ϕm+1(n, r) (5)

Generally, too large of a similarity tolerance will lead to a
loss of useful information. However, if the similarity tolerance
is underestimated, the sensitivity to noise will be increased
significantly. In the present study, m = 2 and r = 0.25 × SD,
where SD denotes the standard deviation of the time series (Xiang
et al., 2015). A large FuzzyEn value indicates a more random
time series, whereas a small FuzzyEn value indicates that the time
series is regular.

FuzzyEn Measurement for the
Paired-Stimulus Paradigm
After preprocessing, we exported the data and calculated
the FuzzyEn values using MATLAB 2016b (Figure 2). We
determined the entropy values at baseline (BL, range from −400
to 0ms relative to the onset of S1), S1 (range from 0 to 400ms),
and S2 (range from 500 to 900ms) for controls and patients. Each
channel acquired the corresponding mean value under different
conditions for each subject. Finally, we calculated the FuzzyEn
mean of each group. To more intuitively observe the changes
relative to BL, a normalized method was used, the formula of
which is as follows:

Normalized S =
FuzzyEn(S)− FuzzyEn(BL)

FuzzyEn(BL)
(6)

FIGURE 2 | Experimental flowchart. Signal collection and preprocessing,

FuzzyEn measurement and Analysis. The EEG signals were recorded using 64

channels of the Vision Recorder system, EEG data pre-processing included

re-reference, filtering, segmentation, baseline correction, ocular correction,

and artifact rejection; EEG complexity was estimated using FuzzyEn; then

normalized values and suppression ratios were calculated.

Note: The S indicates the stimulus of S1 or S2.
One indicator of measuring SG is the suppression rate. The

traditional method is to calculate the amplitude generated by S1
to suppress the amplitude generated by S2. In our experiment,
we analyzed the suppression ratio (SR) from the perspective of
complexity as follows:

SR =
FuzzyEn (S2) − FuzzyEn(S1)

FuzzyEn(S1)
(7)

Statistical Analysis
Statistical analysis was performed with SPSS 16.0. For the group
comparisons of the demographic and clinical variables, we
used chi-square tests for categorical variables and independent-
sample t-tests for continuous variables. To explore differences
among conditions, a paired t-test was computed. All p-values
were two-tailed, and the significance level was set to p < 0.05
and corrected using the false discovery rate (FDR) (Benjamini
and Hochberg, 1995) and Bonferroni correction (Armstrong,
2015). Pearson’s r coefficients were computed to investigate
the correlations.
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RESULTS

FuzzyEn Values of EEG During the Auditory
Paired-Stimulus Paradigm
As shown in Figure 3A, FuzzyEn maps of BL, S1, and S2 showed
significantly larger FuzzyEn values in schizophrenia patients than
in normal controls (p < 0.05, corrected) in the frontal and
occipital regions. We further defined two regions of interest
(ROIs), the frontal ROI (AF3, AF4, F1, F2, Fz), and occipital ROI
(Oz, O1, O2), respectively (Figure 3B). By repeated measures
analysis of variance (ANOVA), we found a significant main
effect of group [F(1, 113) > 204.036; p < 0.001] and condition
[F(2, 226) > 14.699; p < 0.001] in these two ROIs. There were
significant group-by-condition interaction effects on the frontal
ROI [F(2, 226) = 12.094; p < 0.001] and occipital ROI [F(2, 226) =
24.297, p < 0.001]. By post hoc test, the schizophrenia patients
showed larger FuzzyEn values than the normal controls in two
ROIs, especially in the frontal ROI (t > 15.159; p < 0.001,
corrected). Such differences in the S1 condition were most
significant (t = 15.845; p < 0.001, corrected).

To exclude the interference of the BL status, we normalized
the FuzzyEn values of S1 and S2 relative to that of BL. The brain
topographic maps of normalized values are shown in Figure 4A.
We found that schizophrenia patients had significantly larger
normalized values of S1 than the normal controls in the frontal
and occipital ROIs (p < 0.05, corrected), values that were in
line with the FuzzyEn maps. However, there were no differences
in the normalized values of S2 (p > 0.2, corrected). We also
exported the normalized values in the frontal and occipital

ROIs (Figure 4B). Repeated measures ANOVA tests also found
significant differences in group [F(1, 113) > 9.495; p < 0.01] and
condition [F(1, 113) > 135.079; p < 0.01]. Importantly, we found
significant group-by-condition interaction effects on the frontal
ROI [F(1, 113) = 67.597; p < 0.001] and occipital ROI [F(1, 113) =
59.878; p < 0.001]. The post hoc test showed significantly larger
normalized values in the S1 condition for schizophrenia patients
than those for normal controls in these two ROIs (t > 8.370; p <

0.001, corrected). By contrast, there were no such differences in
the S2 condition.

Complexity Suppression in Sensory Gating
Based on the theory of SG, the strength of SG was determined
by calculating the gating ratio. A lower gating ratio indicated
weaker SG function. The FuzzyEn map is shown in Figure 5A.
We determined two ROIs (Figure 5B), the frontal ROI (FC1,
FCz, Fz) and occipital ROI (Oz, O1, O2). In these ROIs,
the suppression ratios of normal controls were significantly
higher than those of schizophrenia patients [frontal ROI (t =
8.578; p < 0.001, corrected) and occipital ROI (t = 7.862;
p < 0.001, corrected)].

Correlation of FuzzyEn Values in the
Frontal and Occipital ROIs
Figure 6 shows the correlation of FuzzyEn values between the
frontal and occipital ROIs. Normal controls showed a positive
correlation under all three conditions (r > 0.779; p < 0.001),
while there was no correlation between the two ROIs in patients
with schizophrenia (r < 0.260; p > 0.05). Additionally, no

FIGURE 3 | Brain topography and histogram of FuzzyEn values in three states. Panel (A) shows the topographic map of entropy in the three states of the two groups.

The darker the color in the first two columns was, the greater the entropy would be. The third column took the logarithm of the p-value of the statistical test: the darker

the color was, the greater the difference would be. Panel (B) represents the ROI histograms of the two most significant brain regions. Black represents normal

controls, while red represents schizophrenia patients. ***Less than the significance p-value of 0.001.

Frontiers in Neuroinformatics | www.frontiersin.org 5 February 2019 | Volume 13 | Article 4116

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Xiang et al. Abnormal Entropy Modulation for Schizophrenia

FIGURE 4 | Characteristic distribution of the normalized values for S1 and S2 in each group. Panel (A) shows the topographic map of the normalized values of the

two groups. The darker the color was in the first two columns, the greater the value would be. The third column took the logarithm of the p-value of the statistical test;

the darker the color was, the greater the difference between groups would be. Panel (B) represents the normalized ROI box plot of the two ROIs.

FIGURE 5 | Brain topographic map and ROIs. In (A), the first two plots represent the suppression ratios, and the darker the color was, the greater the suppression

ratio would be. The third plot was the result of the two-sample t-test. The logarithm was taken, and the darker the color was, the greater the difference would be.

Panel (B) shows the ROI histogram, including the frontal ROI and occipital ROI. Black and red represent the suppression ratios of the controls and patients,

respectively. ***Less than the significance p-value of 0.001.

correlation was found in the normalized values and suppression
ratios in the frontal and occipital ROIs, for both normal controls
and schizophrenia patients.

Relationships Between Complexity and
Clinical Features
The PANSS was mainly used to assess the presence or absence
of schizophrenia and the severity thereof (Kay et al., 1987). We

performed correlation analyses between the PANSS scores and
mean FuzzyEn values of electrodes with a significant difference
among the three states (Table 2). The FuzzyEn values showed
positive correlations with positive scores of PANSS (PANSSP) in
Fz and AF3, as well as with negative scores of PANSS (PANSSN)
in AF3 (r > 0.260; p < 0.05). By contrast, the FuzzyEn values
in Oz and O2 (r < −0.263; p < 0.05) exhibited a negative
correlation with the general scores of PANSS (PANSSG) and
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FIGURE 6 | Scatter plots of the associations between the frontal ROI and occipital ROI in normal controls and schizophrenia patients. Black represents normal

controls, and red represents schizophrenia patients. The two ROIs in the normal controls showed a positive correlation. No correlation was found between the two

ROIs in the patients. ***Less than the significance p-value of 0.001.

TABLE 2 | Results of the correlation analyses between the FuzzyEn and PANSSP,

PANSSN, PANSSG, and PANSSTOTAL scores in the patient group.

BL

(r, p)

S1

(r, p)

S2

(r, p)

Fz

PANSSP 0.279, 0.031* 0.260, 0.044* 0.289, 0.025*

AF3

PANSSP 0.260, 0.045* 0.261, 0.044* 0.266, 0.040*

PANSSN 0.274, 0.034* 0.282, 0.029* 0.271, 0.036*

Oz

PANSSG −0.294, 0.023* −0.292, 0.023* −0.299, 0.020*

PANSSTOTAL −0.268, 0.039* −0.263, 0.042* −0.271, 0.037*

O2

PANSSG −0.352, 0.006** −0.356, 0.005** −0.347, 0.007**

PANSSTOTAL −0.272, 0.036* −0.277, 0.032* −0.269, 0.037*

The first number is the Pearson correlation coefficient, and the second number is the

significance. *Less than the significance p-value of 0.05; **Less than the significance

p-value of 0.01.

total scores of PANSS (PANSSTOTAL). No correlation was
found between the PANSS scores and normalized values and
suppression ratios in patients.

DISCUSSION

The abnormality of SG is one of the important mechanisms
in schizophrenia (Bramon et al., 2004; Chang et al., 2011). In
this study, FuzzyEn was used to analyze the dynamic properties
of the EEG signal during the paired-stimulus paradigm,
to detect evidence of the complexity of abnormal entropy
modulation in schizophrenia. We found that schizophrenia
patients showed significantly higher FuzzyEn values in the
frontal and occipital ROIs. Relative to BL, schizophrenia patients
showed a smaller decrease in FuzzyEn values in conditions
S1 and S2 than the normal controls. Moreover, schizophrenia
patients showed significantly diminished suppression ratios

of FuzzyEn, attributed to the higher FuzzyEn values in the
S1 condition. The abnormal FuzzyEn values were positively
associated with PANSSP measured in the frontal ROI; by
contrast, FuzzyEn values were negatively associated with
PANSSG and PANSSTOTAL in the occipital ROI.

Abnormal Entropy in Schizophrenia
EEG signals were complex non-linear dynamic signals (Akar
et al., 2015), and it was challenging to accurately extract the
EEG signal characteristics. In the present study, we found that
schizophrenia patients had obviously higher FuzzyEn values
than the normal controls in the BL and stimuli conditions.
Consistent with previous studies, patients with schizophrenia
had more complex resting-state neural activity and showed
increased complexity across the brain using the LZC, compared
with the normal controls (Fernández et al., 2011). Additionally,
as reported previously using multiscale entropy, schizophrenia
patients had a higher complexity than controls (Takahashi
et al., 2010). The increase in FuzzyEn values indicates that
few neurons participated in the information processing and
increase in dynamic complexity, and is linked to an increase
in the number of simultaneously active states reflecting the
system’s degree of freedom (Bob et al., 2007). Furthermore,
entropy is an indicator of the probability of generating a
new pattern in a time series (Richman and Moorman, 2000;
Chen et al., 2007). Compared with the normal controls, the
brain activity of patients with schizophrenia was more active
and excited, the probability of generating a new pattern of
EEG signals was greater, and the complexity of EEG was
higher(Zhao et al., 2013). FuzzyEn measurement in EEG signals
might be more suitable to capture imperceptible changes in
different physiological and cognitive states of the human brain
(Hosseini and Naghibisistani, 2011; Mu et al., 2017).

Our results showed significant differences in FuzzyEn values
between controls and patients with schizophrenia in the frontal
ROI. Previous studies also found a considerable difference in this
region (Li et al., 2008; Mathalon and Ford, 2008; Nenadic et al.,
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2014; Goldstein et al., 2015). The frontal ROI was responsible
for memory problems that were associated with the regulation
of behavior and cognitive perception (Highley et al., 2001; Yan
et al., 2016a). For schizophrenia patients, the impairment of
metacognitive function might be mediated by the frontal ROI
(Asmal et al., 2016). It was suggested that a disturbance in
dopamine signaling to the prefrontal cortex may underlie the
abnormalities observed in this region, in social cognition studies
of schizophrenia (Sokunbi et al., 2014).

Moreover, a significant difference was also found in the
occipital ROI. It is well-known that the occipital ROI is popularly
associated with the processing of vision (Yanl and Wu, 2010).
Schizophrenia has been associated with an altered structure and
function of the occipital cortex (Bjorkquist and Herbener, 2013).
Patients with schizophrenia might have deficits in their attention
when they were instructed to fixate on the central cross (Dalecki
et al., 2016), thereby causing lower entropy values in the occipital
ROI. Moreover, there is sufficient evidence to support the notion
of a reduction in the overall volume of the occipital ROI in
schizophrenia patients (Bilder et al., 1999).

Abnormal Complexity in the Processing
Stimulus in Schizophrenia
In this study, we found that normal controls showed a
larger decrease in the FuzzyEn values when processing the
S1 stimulus. Such a decrease of complexity in the task
state implied a more intense or widespread activation of the
cerebral resources, reflecting the activated state of ‘internal
concentration’ (Li et al., 2008). Similarly, a previous study
also reported that the entropy decrease in normal controls
could be associated with an irregularity decrease of the
EEG signals during the processing of tones (Bachiller et al.,
2015). The complexity measured by LZC decreases from the
resting state to the tasking state, due to the increase in
synchronization during mental activity (Li et al., 2008). Recently,
Thilakvathi et al. demonstrated that the complexity of brain
activity comes from the neuronal level (Thilakvathi et al.,
2017). The higher the complexity is, the more disordered the
neuron activity will be. Thus, the decreased complexity in
the tasking state might be related to the increase in neuronal
activity synchronization.

However, the FuzzyEn values of S1 in schizophrenia patients
were significantly higher than those in the normal controls.
Compared with the normal controls, after normalization with
BL, the schizophrenia patients also showed a smaller decrease
in the S1 condition. A weak decrease in complexity in the
S1 condition suggested that schizophrenia patients may be
less sensitive to novel or relevant sound stimuli and had a
lower degree of reactivity, consistent with the result of event-
related potential (ERP) in our previous studies (Zhu et al.,
2017). It was previously reported that bioelectrical responses
to both novelty and relevance, during an auditory oddball
task, were attenuated in patients with schizophrenia. The
activity modulation was significantly smaller in schizophrenia
patients than in the controls, suggesting that the response

to both novelty and salience was flattened in schizophrenia
patients. Moreover, other results also showed widespread
hypoactivation in response to novelty in schizophrenia patients
(Laurens et al., 2005).

Deficit of Sensory Gating in Schizophrenia
In normal controls, the FuzzyEn values of S2 showed a smaller
decrease, a finding that was consistent with the FuzzyEn
values of S1. The smaller decrease in S2 was considered as
suppression of SG (Boutros et al., 1993; Greenwood et al.,
2015). Additionally, the phenomenon of suppression was
further confirmed by smaller normalized values in the S2
condition and significant suppression ratios of complexity.
As mentioned above, the decreased complexity was found in
the tasking state. In the S1 condition, the brain’s cognitive
system considered the stimulus as novel and relevant, the
neurons focused on processing this stimulus, and the neuronal
activity became orderly; thus, the probability of a new
pattern was reduced, and the complexity decreased. In the
S2 condition, S1 activates an inhibitory system (Greenwood
et al., 2015), suppressing the response to S2 and filtering
out the irrelevant information. The suppression marked the
order of brain neuron activity decline, and the probability of
a new pattern increased. Thus, these results implied that the
complexity was sensitive to evaluate SG by calculating the
suppression ratio.

We further found that the suppression ratios of complexity
in schizophrenia patients were weak and obviously smaller
than those in normal controls. The reduced suppression ratios
indicated their abnormal SG in the presence of S2 stimuli. A
large body of evidence suggests that a significant proportion
of patients with schizophrenia had SG impairments (Bramon
et al., 2004; Chang et al., 2011). It was theorized that the
positive and perhaps negative symptoms of schizophrenia
resulted from sensory overload and/or impairments in the
response to sensory input within the central nervous system
(Keil et al., 2016). However, we found no difference in the
normalized values of S2 between schizophrenia patients and
the normal controls. The higher FuzzyEn values in the S1
condition were attributed to the abnormal suppression ratios of
complexity in schizophrenia patients. In line with our findings,
Adler et al demonstrated that patients with schizophrenia
had difficulty processing sequentially presented sensory stimuli
(Adler et al., 2004). Some studies showed that SG deficits were
more related to a diminished response to the S1 condition
in schizophrenia patients than to a deficient gating of the
response to the S2 condition (Blumenfeld and Clementz, 2001;
Johannesen et al., 2005; Zhu et al., 2017). Molina et al. thought
the more dynamic (in terms of modulation) regions in the
healthy brain showed hampered dynamics in schizophrenia
(Molina et al., 2017).

Relationships Between Complexity and
Clinical Features
In the present study, we further found that FuzzyEn values
in the frontal ROI (FZ and AF3) showed positive correlations
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with PANSSP and PANSSN. Higher FuzzyEn values and
higher PANSSP or PANSSN scores indicated a more serious
disease (Kay et al., 1987; Leucht et al., 2005; Cerquera et al.,
2017). These findings indicated that the higher complexity
of EEG signals was associated with the more serious clinical
symptoms. Consistent with our result, previous studies have
also reported that the physiological and cognitive states of
the brain could be determined using complexity measurements
in EEG signals (Bachiller et al., 2015; Molina et al., 2017).
These findings indicate that complexity could be a useful
indicator to reveal the physiological states of the brain and
clinical characteristics.

Interestingly, the FuzzyEn values in the occipital ROI (Oz
and O2) exhibited negative correlations with the PANSSG and
PANSSTOTAL. We thought that these negative correlations
were associated with the compensation in visual information
processing (Bjorkquist and Herbener, 2013). The occipital ROI
would show more loading of visual information processing; thus,
the activity of the neurons in the occipital ROI became more
orderly, and the entropy values would decrease. Additionally, we
found correlations between FuzzyEn values in the frontal and
occipital ROIs in normal controls (Figure 6). The schizophrenia
patients with more serious clinical symptoms required more
attention to focus on the central “cross” symbol and more
visual information processing (Dalecki et al., 2016), leading
to the decrease in FuzzyEn values and lack of consistency
of FuzzyEn values across subjects. The negative associations
between FuzzyEn values and clinical symptoms in schizophrenia
patients reflected a phenomenon of compensation in the
occipital ROI to maintain focus on the central “cross”
(Yan et al., 2016b).

No correlation was found between the PANSS scores and
normalized values and suppression ratios in patients. Moreover,
other studies found no relationship between SG deficits and
performance on cognitive tests (Fernã et al., 2013; Sánchez-Morla
et al., 2013). Our results proved that the SG deficits may be an
indicator associated with chronic schizophrenia itself; thus, they
were independent of the severity of the disease (Adler et al., 2004;
Turetsky et al., 2007).

Limitations
There were several limitations in our study. First, all patients
had chronic schizophrenia and were undergoing long-term
treatment with antipsychotics. We could not distinguish whether
the difference in the complexity between the controls and
patients was affected by antipsychotic treatments. Therefore, the
complexity of SG in schizophrenia warrants further investigation
in the first episode, with drug-naïve patients and using a
longitudinal design. Second, we could not correlate the ERP
component of the resting state and SG with the FuzzyEn
values; thus, the relationship between complexity and ERP needs
further research.

Moreover, since EEG is composed of non-linear signals,
EEG complexity is fundamentally mercurial and varying.
Intrinsic modes extracted from empirical mode decomposition
(EMD) would benefit from eliminating noise/trends in
EEG signals (Huang et al., 1998), which can improve EEG

complexity evaluation. So Inherent FuzzyEn, which endows
fuzzy membership function with EMD by eliminating trend
oscillations, has the robustness to noise, non-linear and non-
stable signals. It can also operate EEG signals across a range of
time scales (Cao et al., 2018c). Previous research has shown that
entropies with a fuzzy structure (Inherent FuzzyEn and FuzzyEn)
exhibited better performance, and that the performance of
Inherent FuzzyEn was the best (Cao and Lin, 2018). We will use
the Inherent FuzzyEn to investigate the abnormal SG in patients
of schizophrenic under the auditory paired-stimulus paradigm in
the future.

CONCLUSIONS

In this study, FuzzyEn was used to extract the non-linear
feature of EEG signals under BL and paired stimuli, focused on
the changes in the complexity of SG between normal controls
and schizophrenia patients. In our study, we found that the
FuzzyEn values of schizophrenia patients were higher than
those of the controls, in three conditions in the frontal and
occipital ROIs. The increase in FuzzyEn values represented
an increase in the probability of the time series producing
new patterns in the brain. When processing information in
the stimulus condition, the complexities were reduced in the
normal controls, but few changes occurred in the patients
with schizophrenia. From the perspective of complexity, the
suppression ratios of SG in the controls were significantly
higher than those in patients with schizophrenia. Additionally,
the differences in the complexity of SG were mainly due
to S1. FuzzyEn offered the evidence of abnormal SG in
schizophrenia, and complexity analysis might be an important
way to understand SG in future studies. This study could
facilitate the diagnostic interpretation of the complexity for
schizophrenia conditions.
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The mainstream method used for the analysis of task functional Magnetic Resonance
Imaging (fMRI) data, is to obtain task-related active brain regions based on generalized
linear models. Machine learning as a data-driven technical method is increasingly used
in fMRI data analysis. The language task data, including math task and story task, of the
Human Connectome Project (HCP) was used in this work. We chose a linear support
vector machine as a classifier to classify math and story tasks and compared them
with the activated brain regions of a SPM statistical analysis. As a result, 13 of the 25
regions used for classification in SVM were activated regions, and 12 were non-activated
regions. In particular, the right Paracentral Lobule and right Rolandic Operculum which
belong to non-activated regions, contributed most to the classification. Therefore,
the differences found in machine learning can provide a new understanding of the
physiological mechanisms of brain regions under different tasks.

Keywords: generalized linear models, support vector machine, contribution of brain region, task fMRI,
lasso regression

INTRODUCTION

In functional magnetic resonance data analysis, GLM (generalized linear models) are one of
the most common model-based methods that correlate measured hemodynamic signals with
controlled experimental variables (Friston et al., 1994; Holmes and Friston, 1998). Specifically, each
voxel of the functional Magnetic Resonance Imaging (fMRI) image and the experimental paradigm
are analyzed by a generalized linear model, and each voxel corresponds to a coefficient Bata of
a regression equation, and all coefficients are combined to form a statistical parameter map (Yan
et al., 2011; Wu et al., 2012). In a group analysis, a one sample t-test is performed on the statistical
parameter maps of all subjects to determine the activation region of the group (Beckmann et al.,
2003). Although the GLM is currently the dominant approach to brain activation detection, there
is growing interest in multivariate approaches (Zhang et al., 2009). For example, machine learning
as a data-driven technology is not only sensitive to subtle spatial differentiation patterns, but also
capable of exploring the inherent multivariate nature of high-dimensional image data (Norman
et al., 2006). Since machine learning can find features that contribute most to classification (Meier
et al., 2012; Lv et al., 2015), differences found can provide a new understanding of the physiological
mechanisms of brain regions under different tasks.

Applying machine learning methods to neuroimaging data began with the work of Haxby
et al. (2001), who recognized the distribution characteristics of visual cortex activation patterns
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from functional MRI. At present, machine learning has been
widely used in fMRI data classification (Yan et al., 2017a,b)
to explore the cognitive state of the brain (Yan et al., 2018).
Under different visual stimulation conditions, the stimulus may
be different visual pictures (objects or people, shoes or bottles),
raster stimulation at different angles, etc., and the type of task
received by the subject is determined by classifying the collected
fMRI data (Haxby et al., 2001; Kamitani and Tong, 2005; Norman
et al., 2006). Machine learning is used in psychiatry to distinguish
patients from controls. Patients with severe depression (Fu
et al., 2008) were classified with an accuracy rate of 70 to 80%.
Individuals and controls with autism spectrum disorder were
distinguished based on two fMRI experiments (Chanel et al.,
2016). Machine learning is therefore a promising method used to
detect brain state (Ecker and Murphy, 2014). Machine learning
mostly uses support vector machines as classifiers in functional
magnetic resonance data classification (De et al., 2008; Pereira
et al., 2009; Ecker et al., 2010; Xin et al., 2013).

When the number of features far exceeds the number
of subjects, it will cause problem which commonly occurs
in machine learning known as the curse of dimensionality
(Bellman, 1961). If the dimension reduction of features cannot
be performed, it is easy to cause over-fitting (Guyon, 2003).
Over fitting means that the model has poor generalization ability,
that is, the ability to accurately predict new samples is poor
(Mayer et al., 2009). Therefore, feature selection is required
before training the model (De et al., 2007; Pereira et al., 2009;
Mwangi et al., 2014).

In this study, we sought to explore the effects of activated
brain regions and inactivated brain regions on the classification
results of functional magnetic resonance data for different tasks.
We extracted the average t value of the generalized linear model
as the eigenvector and chose the Lasso regression algorithm
(Tibshirani, 1996) for feature dimension reduction. Using a linear
support vector machine, the classification weight was used as
an index to evaluate the importance of each brain region in
the classification and compared this with the group analysis
results. Results revealed two brain regions that did not appear
in the activated brain region but contributed significantly to the
classification, namely the right Paracentral Lobule and the right
Rolandic Operculum.

MATERIALS AND METHODS

Participants
Experimental data for 1046 healthy subjects was obtained from
the open source database, WU-Minn Human Connectome
Project (HCP) Data - 1200 Subjects (HCP_1200), published
by the Public Connectome Data1. Most participants were
between the ages of 22 and 35. All participants had no
previously documented history of psychiatric, neurological or
medical disorders that affected their brain function. Of the
1046 participants, 560 were female and 486 were male, 223
were between the ages of 22–25, 455 were between the ages

1https://db.humanconnectome.org/

of 26–30, 357 were between the ages of 31–35 and 11 were
over the age of 36. We used the 3T MR Language Task fMRI
Preprocessed sessions.

Experimental Paradigms
The language task contained an auditory story presentation with
comprehension questions and math problems. It consisted of two
runs that each had eight blocks (four story blocks and four math
blocks) randomly combined. The length of each block varied,
but the average length was about 30 s. In order to complete a
3.8 min run, the math task blocks needed to match the length
of the story task blocks, and additional math tasks were added
when the total length was less than 3.8 min. The story blocks
presented participants with a brief auditory story (around 5–9
sentences) adapted from a collection of Aesop’s fables. After each
story, the participant was asked about the topic of the story, in the
form of a 2-alternative forced-choice question. For example, after
a story about an eagle that saves a man who had done him a favor,
participants were asked, “Was that about revenge or reciprocity?”
Participants pressed a button under the right index finger to select
the first choice or a button under the right middle finger to select
the second choice. Math tasks were also presented in a phonetic
manner, requiring participants to complete simple addition and
subtraction problems. Each series of arithmetic operations ended
with the word “equals” followed by two alternative choices,
e.g., “Four plus twelve, minus two plus nine, equals twenty-
two or twenty-three?” The participants pushed a button to
select either the first or the second answer (Binder et al., 2011;
Barch et al., 2013).

fMRI Data Acquisition
Whole-brain EPI acquisitions were acquired with a 32 channel
head coil on a modified 3T Siemens Skyra with TR = 720 ms,
TE = 33.10 ms, flip angle = 52◦, BW = 2290 Hz/Px, in-plane
FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, with a
multi-band acceleration factor of 8 (Feinberg et al., 2010; Moeller
et al., 2010). For further information please refer to Ugurbil et al.
(2013) for an overview of the acquisition details of the task fMRI.
Two runs of each task were acquired, one with a right-to-left
phase encoding and the other with a left-to-right phase encoding.

fMRI Data Processing
Preprocessing
We used the 3T MR Language Task fMRI Preprocessed data. This
data was processed using FSL and FreeSurfer. The steps included
gradient unwarping, motion correction, fieldmap-based EPI
distortion correction, brain-boundary-based registration of EPI
to a structural T1-weighted scan, non-linear (FNIRT) registration
into MNI152 space, and grand-mean intensity normalization. In
addition, spatial smoothing was done with an 8 mm full-width at
half-maximum Gaussian core (Figure 1) for GLM analysis.

SPM Statistical Analysis
In order to identify the differences between the two tasks and
to evaluate the significance of functional activation, we used a
GLM analysis. In the first level (within-subject) analysis, the data

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2019 | Volume 13 | Article 10124

https://db.humanconnectome.org/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00010 March 4, 2019 Time: 17:3 # 3

Wang et al. SVM for Task-State fMRI

FIGURE 1 | Data processing flowchart for SPM and machine learning analysis.

was skillfully modeled in GLM. Four kinds of contrast images
were created for each participant, including math task, story
task, math vs. story task and story vs. math task. In the second-
level analysis, the contrast (con files) images were used from
the first-level analyses of all 1046 subjects. The four conditions
were analyzed by one-sample t-test analysis. The SPM (T) map
of math and story tasks were obtained and the threshold was
p< 0.05(FWE) at voxel level. To eliminate artifacts, we used math
contrasts and story contrasts as a mask and the mask threshold
was p < 0.001 at voxel level for math vs. story and story vs.
math tasks, respectively. The SPM (T) map of math vs. story and
story vs. math tasks were then obtained and the threshold was
p < 0.05(FWE) at voxel level. These results were used to analyze
the activation of brain functions and were compared with the
results of machine learning.

Classification Using Machine Learning
After the SPM2 processed individual data, the spmT file
was generated for each of the two experimental conditions.
Under GRETNA (Wang et al., 2015), the AAL903 (Anatomical

2https://www.fil.ion.ucl.ac.uk/spm
3http://www.gin.cnrs.fr/en/tools/aal-aal2/

Automatic Labeling) template was used to segment the brain
region of the spmT file, and the average statistical T value of
each brain region was extracted to generate a 90 × 1 feature
matrix. For a total of 1046 participants, the feature vector was:
math task 1046 × 90, story task 1046 × 90. The characteristics
of 800 subjects were selected as a training set. The math task tag
was 1, the story task tag was −1 and the training set was sent to
the classifier for classification. The remaining 246 subjects were
used as the prediction test set. Before classification, a z-score was
used to normalize the preprocessed training set. And the Lasso
regression algorithm was used for feature selection. Then the
linear support vector machine was used as the kernel function
and the 10-fold cross-validation was used to calculate the correct
rate of training. Brain region contribution results could also be
obtained while establishing a classification model. Finally, the test
set was sent to the classifier to obtain the classification label and
the accuracy of the prediction result was calculated. In order to
obtain the optimal classification result, it was necessary to debug
the classification parameters to predict the correctness of the
results as the debugging standard. It included two parameters,
one was the regularization parameter α of the Lasso algorithm,
and it directly determined the number of features. The larger
the alpha, the sparser the model, therefore, more regression
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coefficients β were set to 0, thus deleting some features to achieve
feature selection. The other was the penalty coefficient C of the
linear support vector machine, and it directly determined the
accuracy of training. The value of C was generally between 0.01
and 0.1. The contribution of the brain region was proposed under
two preconditions: firstly, the feature was extracted based on the
region partitioned by the brain template, so that the feature was
associated with the three-dimensional brain structure, therefore,
each feature corresponded to a brain region; secondly, the linear
support vector machine was selected as the classifier, because the
weight of the linear support vector machine was in one-to-one
correspondence with the feature vector. The larger the weight
value, the more important the corresponding feature was to
the establishment of the classification decision surface. Through
the relationship between the features and the brain regions and
the relationship between features and classification weights, the
corresponding relationship between brain regions and weights
was established. In simple terms, the contribution of the brain
region, was the weight value of the optimal decision function, of
the linear support vector machine classifier.

RESULTS

Behavioral Data
The behavioral data were collected from 1046 participants during
the fMRI experiments. Only one subject’s data was lost during
the experiment. We used the average reaction time and correct
rate data of 1045 participants for statistical analysis. There were
two tasks. The mean reaction times (RT) (Figure 2A) and the
mean accuracy (Figure 2B) were 3.79 ± 0.38 s and 83.28% (SD
3.42), respectively, for the math task and 3.50 ± 0.39 s and
92.57% (SD 12.94), respectively, for the story task. Two tailed
two-sample t-tests were performed to compare the mean RTs and
the mean accuracy between the math task and story task. The
results showed that the math task had a slower reaction time
compared to the story task (t = 17.260, P < 0.001). And the
accuracy of the math task was significantly lower than the story
task (t = 15.834, P < 0.001).

Imaging Data
Group Analysis Results
The specific group results of the four groups of activated brain
regions were shown in Table 1. The activations of math and story
tasks showed that both the left and right temporal lobe were
activated (Figures 3A,B). In addition to the temporal lobe, in
the math task, the brain area with a greater activation intensity
included: the left Precentral Gyrus, left Middle Temporal Gyrus,
left Superior Temporal Gyrus, right Inferior Frontal Gyrus and
the right Middle Frontal Gyrus (Wang et al., 2007). In the story
task, the brain area with a greater activation intensity included:
the left Inferior Frontal Gyrus, left Middle Frontal Gyrus and
the right Inferior Semi-Lunar Lobule. Compared to the story
results (Figure 3C), the math results included: the left Inferior
Frontal Gyrus, left Inferior Parietal Lobule and the left Superior
Parietal Lobule which had a higher activation intensity than
the story task; while the Superior Parietal Lobule and Inferior

FIGURE 2 | Behavioral results. (A) Mean reaction time for the math stimuli and
story stimuli. (B) Mean accuracy rates for the math stimuli and story stimuli.

Parietal Lobule only activated in the math task. Compared with
the math results (Figure 3D), the brain area of the story task,
the left Inferior Temporal Gyrus, Superior Temporal Gyrus and
the Middle Temporal Gyrus, had a significantly higher activation
intensity than the math task, and the Parahippocampal Gyrus
Amygdala on the left and right sides only activated in the story
task (Binder et al., 2011; Barch et al., 2013).

Parameter Debugging Result
As shown in Figure 4A, it was found that as the α increased,
the number of features decreased exponentially. Therefore,
in order to reduce the dimensional disaster and improve
the classification performance of the classifier, the appropriate
number of important features were selected, α were taken as:
0.001, 0.002, 0.003, 0.005, 0.007, 0.01, and the corresponding
feature numbers were: 38, 25, 19, 11, 9, 8. Next, the penalty
coefficient C of the linear support vector machine was debugged,
and finally the accuracy of the prediction result was used as
a criterion for evaluating the performance of the classifier. As
shown in Figure 4B, when α = 0.002, C = 0.09, the highest
classification accuracy rate was 87.60%. The current parameters
and the effects of the trained models could be visually evaluated
by plotting the ROC curve and the AUC indicator. As shown in
Figure 4C, the area under the curve was 0.96, which was close to
1, indicating that the classifier had a good classification effect.

Machine Learning Results
As shown in Figure 5, a three-dimensional brain region
contribution distribution map in six directions was shown.
Some regions tended to exhibit higher classification weights
than others. In particular, if the weight of some areas was
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TABLE 1 | Activated regions during the two auditory stimuli and the different activated regions between them.

Cluster Anatomical regions and BA t-score x y z

size (voxels) (FWE, p < 0.05)

Math

2498 L Precentral Gyrus BA 6 20.70 −48 −2 44

L Precentral Gyrus BA 6 20.22 −44 2 34

L Middle Frontal Gyrus BA 6 15.03 −26 −4 50

1700 L Superior Temporal Gyrus BA41 33.25 −56 −20 4

L Superior Temporal Gyrus BA 38 6.26 −56 6 −6

1542 R Superior Temporal Gyrus BA 22 36.82 64 −18 2

1266 L Inferior Parietal Lobule BA 40 18.83 −42 −42 42

L Superior Parietal Lobule BA 7 10.80 −26 −62 44

L Precuneus BA 7 10.51 −28 −66 36

857 R Tuber 27.62 30 −60 −28

782 R Inferior Parietal Lobule BA 40 15.51 46 −38 42

733 L Superior Frontal Gyrus BA 6 20.23 −6 10 54

R Superior Frontal Gyrus BA 8 12.33 8 16 50

459 R Inferior Frontal Gyrus BA 47 18.12 32 26 0

316 R Inferior Frontal Gyrus BA 9 8.83 44 6 30

284 L Uvula 20.54 −28 −64 −26

189 R Middle Frontal Gyrus BA 6 9.16 32 0 52

50 R Substantia nigra 7.35 10 −14 −10

44 R Inferior Semi-Lunar Lobule 13.00 18 −68 −44

23 R Inferior Temporal Gyrus BA 20 7.93 54 −48 −8

23 L Caudate-Caudate Head 5.56 −12 6 4

22 R Superior Parietal Lobule BA 7 6.54 12 −66 56

17 L Substantia nigra 5.80 −8 −16 −12

9 R Lingual Gyrus BA 18 5.10 8 −86 −2

6 L Thalamus 4.71 −10 −14 2

4 L Postcentral Gyrus BA 3 4.65 −36 −26 50

Story task

4087 L Superior Temporal Gyrus BA 22 59.72 −62 −16 4

L Middle Temporal Gyrus BA 21 32.53 −56 4 −10

L Superior Temporal Gyrus BA 38 31.59 −52 10 −16

2768 R Superior Temporal Gyrus BA 22 63.16 62 −12 2

R Superior Temporal Gyrus BA 38 26.30 48 12 −24

759 L Inferior Frontal Gyrus BA 47 25.10 −48 30 −6

L Inferior Frontal Gyrus BA 45 19.17 −52 22 16

442 R Inferior Semi-Lunar Lobule 22.01 22 −74 −36

R Pyramis 21.03 20 −72 −28

R Culmen 6.40 30 −60 −26

110 L Middle Frontal Gyrus BA 6 9.82 −42 4 48

71 R Parahippocampal Gyrus Amygdala 10.06 18 −6 −14

37 L Parahippocampal Gyrus Amygdala 7.79 −18 −8 −14

33 R Inferior Frontal Gyrus BA 47 8.40 46 32 −8

11 R Cerebellar Tonsil 8.68 6 −56 −42

9 L Postcentral Gyrus BA 3 5.56 −36 −26 50

9 R Superior Temporal Gyrus BA 39 4.67 52 −54 22

Math vs. Story

2717 L Insula BA 13 50.5 −34 18 6

L Inferior Frontal Gyrus BA 6 47.82 −44 2 32

L Sub-Gyral BA 6 46.54 −26 4 56

1529 L Inferior Parietal Lobule BA 40 74.98 −42 −46 44

L Superior Parietal Lobule BA 7 62.76 −28 −64 46

(Continued)

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2019 | Volume 13 | Article 10127

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00010 March 4, 2019 Time: 17:3 # 6

Wang et al. SVM for Task-State fMRI

TABLE 1 | Continued

Cluster Anatomical regions and BA t-score x y z

size (voxels) (FWE, p < 0.05)

L Superior Parietal Lobule BA 7 51.08 −10 −68 52

1337 R Insula BA 13 59.33 40 18 0

R Middle Frontal Gyrus BA 6 53.07 32 4 56

R Inferior Frontal Gyrus BA 9 41.46 46 6 28

1026 R Inferior Parietal Lobule BA 40 80.95 50 −40 48

R Superior Parietal Lobule BA 7 61.34 32 −64 46

R Superior Parietal Lobule BA 7 48.52 12 −68 52

884 R Medial Frontal Gyrus BA 8 61.51 4 20 46

866 R Cerebellar Tonsil 48.22 32 −58 −32

R Declive 24.72 10 −74 −22

344 L Uvula 46.25 −32 −64 −26

L Declive 31.49 −12 −76 −22

139 R Caudate Body 16.24 18 2 16

R Substantia nigra 10.12 10 −14 −10

101 L Substantia nigra 12.18 −6 −16 −14

L Thalamus Medial Dorsal Nucleus 9.36 −10 −18 10

L Thalamus 7.18 −12 −12 2

76 L Lentiform Nucleus Putamen 14.76 −20 2 16

L Nucleus Medial Globus Pallidus 6.76 −12 0 −2

L Lentiform Nucleus Putamen 6.39 −14 8 2

49 R Inferior Temporal Gyrus BA 20 46.97 54 −46 −10

R Middle Temporal Gyrus BA 20 6.11 50 −38 −6

45 R Inferior Semi-Lunar Lobule 19.35 18 −68 −44

32 R Lingual Gyrus BA 17 14.26 8 −84 2

Story vs. Math

4175 L Inferior Temporal Gyrus BA 21 77.75 −58 −6 −12

L Superior Temporal Gyrus BA 38 70.16 −48 10 −26

L Middle Temporal Gyrus BA 39 62.72 −50 −62 24

2764 R Superior Temporal Gyrus BA 38 68.2 46 12 −28

R Middle Temporal Gyrus BA 21 67.72 54 −4 −14

R Insula BA 13 22.56 40 −24 16

646 L Inferior Frontal Gyrus BA 47 63.66 −44 30 −12

L Inferior Frontal Gyrus BA 45 42.05 −54 26 10

279 R Pyramis 61.07 26 −76 −34

104 R Parahippocampal Gyrus Amygdala 41.73 20 −4 −16

59 R Superior Temporal Gyrus BA 39 38.66 54 −58 22

55 L Parahippocampal Gyrus Amygdala 50.85 −20 −6 −18

51 R Middle Frontal Gyrus BA 11 42.62 44 34 −12

R Inferior Frontal Gyrus BA 47 33.73 50 32 −6

44 L Middle Frontal Gyrus BA 6 18.33 −40 10 50

20 R Cerebellar Tonsil 26.82 6 −56 −42

at least greater than the average weight of all areas, plus a
standard deviation of one time, we considered these areas to
have significant weights (Tian et al., 2011). The mean value plus
the standard deviation of the contribution was equal to 0.0614.
The brain region with a contribution greater than 0.0614 was
considered significant, including: the right Paracentral Lobule,
right Rolandic Operculum and the right Inferior Parietal Lobule,
excluding the supramarginal and angular gyri.

Comparing the classified brain region contribution results
and the group analysis activation region results, as shown in

Table 2, it was found that 13 of the 25 characteristic brain regions
overlapped with the group analysis activated brain regions.
Among the 13 brain regions, there were 11 brain regions that
overlapped with a different activation map between the math task
and the story task. The 11 brain regions were: the left and right
Inferior Parietal Lobe (not include supramarginal and angular
gyri), left and right Middle Frontal Gyrus, left Supramarginal
Gyrus, right Superior Parietal Gyrus, right Superior Frontal
Gyrus, dorsolateral, right Inferior Frontal Gyrus, opercular part,
right Angular Gyrus, left Amygdala, left Heschl Gyrus. Moreover,
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FIGURE 3 | Global brain activation of the group analysis. (A) Math shows a three-dimensional brain activation map in the math task. (B) Story shows a
three-dimensional brain activation map in the story task. (C) Math vs. Story shows the difference of activated brain regions between the Math task relative to the
Story task. (D) Story vs. Math shows the difference of activated brain regions between the Story task relative to the Math task. WM = working memory,
IPS = Intraparietal sulcus, AC = Auditory cortex, SMA = Supplementary Motor Area.

FIGURE 4 | (A) The relationship between the regularization parameter alpha of the Lasso regression algorithm and the number of feature selections (B) The
relationship between the penalty coefficient C of the linear support vector machine and the correct rate of the prediction result under different alpha values (C) ROC
curve of optimal classification results.
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FIGURE 5 | Three-dimensional contribution of brain regions for classification.
Each node represented a brain region divided by AAL90 (Anatomical
Automatic Labeling template). The node colors represent different regions and
the node size was scaled according to the weight value of the brain regions.
The greater the contribution of the brain region, the larger the radius
of the node.

these coincident regions had strong activation in the group
analysis results (t values were greater than 18). The remaining
12 brain regions did not overlap with the group analysis
activation region results, including the two brain regions with
significant contributions: the right Paracentral Lobule and right
Rolandic Operculum.

DISCUSSION

One of the experimental paradigms designed by Wang et al. was
the auditory computing task in Mandarin Chinese and English.
The calculation included addition and multiplication. It is similar
to the math task. Study participants included 19 adult native
Mandarin Chinese speakers, with no history of speech or hearing
impairments. The active brain regions of the calculation task
in English after the group analysis include: the left Precentral
Gyrus, left Middle Temporal Gyrus, right Inferior Frontal Gyrus,
and the right Middle Frontal Gyrus (Wang et al., 2007). Barch
et al. (2013) chose 77 participants (58 women and 19 men)
and all participants were aged between 22 and 35, with no
previously documented history of psychiatric, neurological or
medical disorders that are known to influence brain function.
Binder et al. (2011) chose 34 healthy, right-handed adults as
participants. (17 women and 17 men), aged between 18 and
50 years (mean 29 years). They all used the same experimental
paradigm of this article, and similar results were obtained: the
story vs. math results showed that the largest activation cluster
involved the temporal lobe and strong medial temporal activation
involved the uncus, amygdala, and the anterior hippocampus,
extending posteriorly into the parahippocampal and posterior
fusiform gyrus.

Comparative Analysis of Brain Region
Contribution and Group Results
The contribution of brain regions is to combine the different
partitions of the three-dimensional physiological structure in
the brain space, with the weights of the classifiers. Therefore,
the brain region contribution degree reflects the importance of
different brain regions to the classification results. The higher
the contribution value is, the more important the brain area
is for classification results. Classification is to compare the
differences between the two categories. Therefore, the results of
the classification mostly coincided with the differential activation
of the brain region. These overlapping brain regions were: the
Middle Frontal Gyrus, which is involved in expressive language
processes including semantics (Brown et al., 2010), grammar and
syntax. Broca’s area played a role in syntactic processing during
Chinese reading comprehension, verbal fluency (Abrahams et al.,
2003), and verbal working memory (Leung et al., 2002). Inferior
Parietal Lobule has been involved in the perception of emotions,
facial stimuli and interpretation of sensory information. The left
Supramarginal Gyrus was most likely involved with language
perception and processing (Gazzaniga et al., 2013). The left
Heschl Gyrus, which is found in the area of the primary auditory
cortex buried within the lateral sulcus of the human brain, was the
first cortical structure to process incoming auditory information.
The Heschl Gyrus was active during auditory processing under
fMRI for tone and semantic tasks (Warrier et al., 2009). The
right Superior Frontal Gyrus, dorsolateral, is involved in self-
awareness, in coordination with the action of the sensory system
(Goldberg and Harel, 2006; Wang et al., 2017). The Amygdala
plays a major role in memory, decision making, and emotional
response (including fear, anxiety, and aggression), which is
thought to be part of the limbic system (Amunts et al., 2005). The
left Amygdala, plays a major role in memory, decision making,
and emotional response (including fear, anxiety, and aggression),
which is thought to be part of the limbic system (Amunts et al.,
2005). Moreover, the intensity of activation of these overlapping
brain regions in the results of the group analysis reflected the
correctness of the classification features and could identify brain
regions with large activation differences between the two tasks.

There were 12 brain regions in the feature brain region
that did not coincide with the group activation results,
including two brain regions with significant contributions:
the right Paracentral Lobule, which is concerned with Motor
and sensory innervations of the contralateral lower extremity
(Spasojević et al., 2013) and it is also responsible for control
of defecation and urination, and the right Rolandic Operculum.
Some studies have proven that articulatory disorders correspond
with lesions of the Rolandic Operculum (Tonkonogy and
Goodglass, 1981). The reason for the significant difference
between the classification result and the group analysis result
can be explained by using the Paracentral Lobule brain area
as an example. On the one hand, when comparing the brain
regions of the two task differences in the group analysis, a
mask (Gajdoš et al., 2016) was added to eliminate the pseudo
activation. The mask was defined by the activation of the brain
area of the math or story task. As shown in Figure 6, the T
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TABLE 2 | Comparison with degrees between the brain region contribution and group analysis: Label and regions represent the brain region label and brain region name
of the classification result under the AAL90 template.

Label Region Cs Coincidence brain region M(t) S(t) M vs. S(t) S vs. M(t)

70 Paracentral_Lobule_R 0.0918 None

18 Rolandic_Oper_R 0.0792 None

62 Parietal_Inf_R 0.0618 R Inferior Parietal Lobule 80.95

43 Calcarine_L 0.061 None

61 Parietal_Inf_L 0.0592 L Inferior Parietal Lobule 74.98

2 Precentral_R 0.055 None

7 Frontal_Mid_L 0.0529 L Middle Frontal Gyru 15.03 9.82 18.33

46 Cuneus_R 0.0522 None

63 SupraMarginal_L 0.048 L Inferior Parietal Lobule 74.98

50 Occipital_Sup_R 0.0449 None

71 Caudate_L 0.0431 None

60 Parietal_Sup_R 0.0425 R Superior Parietal Lobule 61.34

10 Frontal_Mid_Orb_R 0.0409 R Middle Frontal Gyrus 53.07

80 Heschl_R 0.0394 None

57 Postcentral_L 0.0318 L Postcentral Gyrus 4.65 5.56

4 Frontal_Sup_R 0.0314 R Middle Frontal Gyrus 53.07

12 Frontal_Inf_Oper_R 0.0308 R Inferior Frontal Gyrus 8.40 41.46 33.73

34 Cingulum_Mid_R 0.0268 None

44 Calcarine_R 0.0246 None

65 Angular_L 0.0195 R Insula 59.33 22.56

5 Frontal_Sup_Orb_L 0.0177 L Superior Frontal Gyrus 4.44

25 Frontal_Mid_Orb_L 0.0152 None

41 Amygdala_L 0.0121 L Parahippocampal Gyrus 7.79 50.85

79 Heschl_L 0.011 L Insula 50.50

19 Supp_Motor_Area_L 0.0073 None

The order of the table is arranged by the brain region contribution degree from large too small. Cs represents the contribution score of the brain region. The coincident
brain region indicates the activated brain region in which the classification result coincides with the group analysis solution. The following sections showed the groups and
t values that appear in the coincident brain regions: math, story, math vs. story, story vs. math.
∗R = right, L = left, Oper = operculum, Inf = Inferior, Mid = Middle, Sup = Superior, Orb = orbital part, Supp = Supplementary.

FIGURE 6 | The averaged T value in inactivated brain regions under two
tasks. The numbers on the 12-column chart represented the brain area
number of the AAL90 template, the gray box represented the math task, and
the orange represented the story task. The number of asterisks represented
the degree of p value. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

value of the brain region (label number 70) was negative for
both tasks. Therefore, the differential activation of the brain
area must be included in the scope of the single task activation
brain area. The main function of the Paracentral Lobule brain
area is to control the movement of the contralateral lower limbs

and sensory innervation. The functionality of the Paracentral
Lobule was independent of the activation of the task and was
not activated in the separate analysis of math and story tasks.
Therefore, the differential brain regions of the two tasks were
unlikely to show activation in the Paracentral Lobule brain
region. On the other hand, from the classification principle
(Cherkassky, 1997), machine learning did not need to consider
the problem of pseudo activation. The selection of features
was not limited to the activation range, but the whole brain
range. The linear support vector machine mapped the feature
vector from the Euclid space to the Hilbert space, making the
data set linearly separable in the high-dimensional space. In
Hilbert space, finding such a decision surface, not only separated
the two types of features, but also made the distance between
the two types of features, to this decision surface, as large
as possible (Schölkopf, 2000; Huang et al., 2012). The greater
the distance between the two types of features, the greater the
weight of the classifier, and the greater the contribution value
of the brain region corresponding to the feature. Therefore,
the contribution essentially reflected the difference between the
two types of features corresponding to the brain region in the
Hilbert space. The Paracentral Lobule brain region had the
highest contribution, indicating that the distance between the
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corresponding features of the brain region was very far in the
high-dimensional space. We speculated that the difference in
this brain region was not obvious in low-dimensional space, and
statistical analysis did not show any significance.

Machine learning used the difference between the two
tasks for classification. Among the negatively activated brain
regions, the difference was more obvious, so the contribution
in classification was higher than that in the activated
brain region. However, the mechanism of these negatively
activated brain regions in task execution remains unclear.
This is because, in the two tasks used within the brain
regions involved, the mechanism was quite different from
the mechanism for negatively activating the brain region,
therefore, there was no need to use negative activation brain
regions for task execution. Depending on the supply of
cerebral blood flow, the higher the degree of correlation of
the regional function, the greater the degree of cerebral blood
flow supply.

We compared the T values of 12 inactive brain regions for
two tasks, as shown in Figure 6. The T values of brain regions
in both tasks were mostly negative, and the paired sample t-test
mostly had a p value of less than 0.05. This showed that there
was a significant difference between the two tasks in the negative
activation of brain regions. The negative activation of brain
regions varied greatly among different tasks, suggesting that in
addition to activating brain regions, negative activation of brain
regions played an important role in brain research.

In order to study the contribution of the brain region to the
classification, the linear support vector machine was selected as
the classifier, because the weight value of the classifier reflected
the importance of the feature to the classifier. In addition, Lasso
regression was selected as the feature selection method, which
was related to the training of the final machine learning algorithm
model. The training model was trained based on the input
training data. After the training was completed, the features were
sorted based on the model representation and the importance
of the features. It was only a screening process. If a feature has
a strong influence on the classification performance, it will be
retained, and will be zero if it has no effect on the classifier.
This method did not change the correspondence between brain
regions and features.

CONCLUSION

In this paper, the average T value of the one-sample generalized
linear model was extracted as the eigenvector. The Lasso
regression algorithm and the linear support vector machine
were used for classification, and the result was compared with
the SPM group analysis activation result. It was found that

there were coincident brain regions and non-coincident brain
regions: the coincident brain regions were mostly the difference
between tasks to activate the brain regions, and the activation
intensity was strong. Non-coincident brain regions included
brain regions with significant classification contributions, right
Paracentral Lobule and right Rolandic Operculum. The difference
between the two results was mainly due to the difference in
the algorithm. In the statistical analysis, in order to eliminate
pseudo-activation, the differential activation was limited to a
single task activation range; while machine learning did not need
to consider pseudo-activation, which can be from the scope of the
whole brain, it found feature brain regions that were not related
to task activation but contributed significantly to classification.
In summary, the contribution of the brain region was from
another perspective, analyzing the difference between the two
states of brain activity, and finding important brain regions with
no statistical difference. This suggested an important role for
negative activation of brain regions in brain research.
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Background: The hippocampus and hippocampal subfields have been found to be
diversely affected in Alzheimer’s Disease (AD) and early stages of Alzheimer’s disease
by neuroimaging studies. However, our knowledge is still lacking about the trajectories
of the hippocampus and hippocampal subfields atrophy with the progression of
Alzheimer’s disease.

Objective: To identify which subfields of the hippocampus differ in the trajectories
of Alzheimer’s disease by magnetic resonance imaging (MRI) and to determine
whether individual differences on memory could be explained by structural volumes of
hippocampal subfields.

Methods: Four groups of participants including 41 AD patients, 43 amnestic mild
cognitive impairment (aMCI) patients, 35 subjective cognitive decline (SCD) patients and
42 normal controls (NC) received their structural MRI brain scans. Structural MR images
were processed by the FreeSurfer 6.0 image analysis suite to extract the hippocampus
and its subfields. Furthermore, we investigated relationships between hippocampal
subfield volumes and memory test variables (AVLT-immediate recall, AVLT-delayed recall,
AVLT-recognition) and the regression model analyses were controlled for age, gender,
education and eTIV.

Results: CA1, subiculum, presubiculum, molecular layer and fimbria showed the
trend toward significant volume reduction among four groups with the progression of
Alzheimer’s disease. Volume of left subiculum was most strongly and actively correlated
with performance across AVLT measures.

Conclusion: The trend changes in the hippocampus subfields and further illustrates
that SCD is the preclinical stage of AD earlier than aMCI. Future studies should aim to
associate the atrophy of the hippocampal subfields in SCD with possible conversion to
aMCI or AD with longitudinal design.

Keywords: Alzheimer’s disease, amnestic mild cognitive impairment, subjective cognitive decline, magnetic
resonance imaging, hippocampal subfields
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INTRODUCTION

The pathophysiological process of Alzheimer’s disease (AD) is
a neurodegenerative disorder characterized by cognitive decline,
which is thought to have begun many years before the diagnosis.
With the disease progression, as the preclinical AD, subjective
cognitive decline (SCD) have worse cognition than normal
controls (NC), while objective examination shows that they have
not yet reached the level of amnestic mild cognitive impairment
(aMCI) or AD dementia (Molinuevo et al., 2017). The main
manifestation of SCD is the decline in memory rather than other
domains of cognition. It is formally proposed and standardized
by Subjective Cognitive Decline Initiative (SCD-I) in a conceptual
framework for research on subjective cognitive decline (Jessen
et al., 2014). After adjustment for age, sex and education, the
stage of neuropsychological examination below threshold was
mild cognitive impairment (MCI) or prodromal AD (Petersen
et al., 2018). Subsequently, if there are significant interferences
in the ability of work or daily activities, cognitive decline
progresses onward to the stage of AD dementia (Sperling et al.,
2011; Jack et al., 2018). These clinical symptoms are caused by
the accumulation of pathology leading to the macrostructural
disorder of the brain, of which the hippocampus atrophy is
the most obvious.

The hippocampus is composed of several subfields with
different histological characteristics, rather than a homogeneous
structure. Hippocampal atrophy is the most significant structural
biomarker of AD imaging (Ritchie et al., 2018). Differential
changes in hippocampal atrophy can be relatively easily obtained
from magnetic resonance imaging (MRI). The hippocampus
and hippocampal subfields are found to be diversely affected
in Alzheimer’s Disease (AD) and early stages of Alzheimer’s
disease by neuroimaging studies (de Flores et al., 2015; Chetelat,
2018). The hippocampal atrophy of AD patients was most
significantly involved subiculum and CA1 subfields (Blanken
et al., 2017). Other studies have showed that there were more
extensive and more evident atrophies in DG/CA3 or subiculum
at the lower end of the hippocampus (de Flores et al., 2015).
Studies on prodromal AD showed that the focal atrophy of
CA1-2 of MCI patients is more obvious than that of normal
aging patients (Jessen et al., 2010). The atrophy first appeared
in the presubiculum and subiculum of the hippocampus at MCI
(Carlesimo et al., 2015). However, SCD subjects are more difficult
to identify from the NC because the SCD group showed that
the left total hippocampal volume was small with statistically
significant difference, while the right total hippocampal volume
did not change significantly (van der Flier et al., 2004; Jessen et al.,
2006). The atrophy of hippocampal surface is mainly in CA1,
and the other regions have obvious overlap with AD (Perrotin
et al., 2017; Evans et al., 2018). The atrophy of the memory-
related hippocampus and hippocampal subfields is one of the
earliest macroscopic features of the trajectories of Alzheimer’s
disease, and has been reported in autopsies and neuroimaging
studies (Braak and Braak, 1991; Frisoni et al., 2008; Mueller et al.,
2011; Mak et al., 2017). To our best knowledge, there is little
research on the subfield of hippocampus and relationship with
memory in SCD.

We hypothesized that there may be 1) a change in the
hippocampal subfields at different stages of AD in accordance to
the trajectory of Alzheimer’s disease and 2) a relationship between
hippocampal subfield volume and memory status (de Flores et al.,
2015; Perrotin et al., 2015; Evans et al., 2018). The purpose of this
study was to identify which subfields of the hippocampus differ
in the trajectories of Alzheimer’s disease by magnetic resonance
imaging (MRI). In addition, to determine whether individual
differences on memory could be explained by structural volumes
of hippocampal subfields.

MATERIALS AND METHODS

Participants
We prepared 161 right-handed Chinese Han participants
including 35 SCD patients, 43 aMCI patients and 41 AD
patients, and 42 NC subjects from our databank (NCT: 02225964,
02353845, 02353884, and 03370744). The cognitive functions
of all the subjects were assessed by experienced neurologists.
Including the Clinical Dementia Rating Scale (CDR) (Morris,
1993), the Chinese version of the Mini-Mental State Examination
(MMSE), the Beijing version of Montreal Cognitive Assessment
(MoCA) (Lu et al., 2011), the auditory verbal learning test (AVLT)
(Guo et al., 2007), an activities of daily living (ADL) assessment,
and Hamilton depression rating scale.

The normal controls did not present cognitive decline
complaints and their performance in MMSE, MoCA and AVLT
were in normal range. The patients with SCD were diagnosed
based on the criteria proposed by SCD-I in 2014 (Jessen et al.,
2014), including (1) self-reported experience of persistent decline
in memory compared to a previous state (within the last 5 years);
(2) performance within the normal range on MMSE or MoCA
(adjusted for age, sex, and education); (3) the Clinical Dementia
Rating (CDR) score is 0. The patients were diagnosed with aMCI
using the Petersen criteria (Petersen, 2004), which have been
described in our previous studies (Shu et al., 2018): (a) presence
of memory complaint, confirmed by an informant; (b) presence
of objective memory impairment measured by MMSE, MoCA
and AVLT; (c) failure reach the standard of dementia; (d) CDR
score of 0.5. The inclusion criteria for SCD were based on the
recent research criteria proposed by National Institute of Aging-
Alzheimer’s Association (NIA-AA) criteria for clinically probable
AD (Sperling et al., 2011): (a) meeting the criteria for dementia;
(b) recessive and gradual onset for more than 6 months, not a
sudden attack; (c) hippocampal atrophy confirmed by structural
MRI; (d) CDR score is equal or greater than 1. Exclusion
criteria were prior history of the activities of daily living disorder,
stroke, mental disorders, cancer, drug abuse, epilepsy, brain
tumors, Parkinson’s disease, encephalitis and hypoxic brain
damage. All subjects underwent brain MRI examination. The
detailed demographic and clinical characteristics of participants
are shown in Table 1.

The study approved by the medical research ethics committee
and the institutional review board of Xuanwu Hospital, Capital
Medical University, Beijing, China. All procedures performed in
studies involving human participants were in accordance with
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TABLE 1 | Characteristics of the subjects.

NC (n = 42) SCD (n = 35) aMCI (n = 43) AD (n = 41)

Age (y) 64.24 ± 6.16 64.53 ± 7.29 67.47 ± 10.03 68.88 ± 7.86

Gender (M/F) 15/27 15/20 21/22 17/24

Education (y) 11.17 ± 0.75 11.83 ± 0.82 10.44 ± 0.74 9.68 ± 0.76

MMSE 27.627 ± 0.530 27.455 ± 0.582 25.016 ± 0.520+∗ 17.782 ± 0.542#+∗

MoCA 25.887 ± 0.513 24.804 ± 0.563 17.780 ± 0.503+∗ 13.514 ± 0.524#+∗

AVLT, immediate recall scores 9.302 ± 0.257 8.475 ± 0.282 5.858 ± 0.252+∗ 3.588 ± 0.263#+∗

AVLT, delayed recall scores 10.373 ± 0.362 8.705 ± 0.397∗ 3.226 ± 0.355+∗ 1.121 ± 0.370#+∗

AVLT, recognition scores 12.039 ± 0.464 11.212 ± 0.509 6.612 ± 0.455+∗ 3.450 ± 0.474#+∗

ANOVA followed by Bonferroni post hoc analysis for age, education, MMSE, MoCA, CDR and AVLT or the Chi-square test for gender: ∗p < 0.05 between NC and SCD,
aMCI or AD; +p < 0.05 between SCD and aMCI or AD. #p < 0.05 between aMCI and AD. n = number of subjects; NC, normal control group; SCD, subjectivel cognitive
decline group; aMCI, amnestic mild cognitive impairment group; AD, Alzheimer’s disease; MMSE, Mini Mental Status Examination; MoCA, the Beijing version of Montreal
Cognitive Assessment; AVLT, Auditory Verbal Learning Test.

the ethical standards of the institutional and/or national research
committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Image Acquisition
The 3T magnetic resonance imaging system (MAGNETOM
Trio Tim; Siemens, Erlangen, Germany) was used for image
acquisition at the Department of Radiology, XuanWu Hospital,
Capital Medical University. T1-weighted MRI scans were
acquired at the sagittal plane by using a magnetization prepared
rapid acquisition gradient echo sequence with the following
parameters: TR = 1900 ms, TE = 2.2 ms, FA = 9◦, inversion
time (TI) = 900 ms, matrix = 256 × 256, slices = 176,
thickness = 1.0 mm and Voxel size = 1× 1× 1 mm3.

Image Processing
Structural MR Images were processed by the FreeSurfer
image analysis suite, which can be downloaded free of
charge from the website (version 6.0.0, http://freesurfer.net/)
(Mueller et al., 2018).

First, the entire hippocampal formation was segmented using
the routine volumetric FreeSurfer pipeline. Briefly, T1-weighted
MR images were corrected for within-subject head motion; then,
non-brain tissues were removed using a hybrid watershed/surface
deformation algorithm (Segonne et al., 2004). The resulting
images were further affine registered to the Talairach space.
Subsequently, segmentation of the subcortical and cortical
structures (including the hippocampus) was conducted using a
probabilistic brain atlas (Fischl et al., 2002). The estimated total
intracranial volume (eTIV) of each subject was also calculated
using the standard FreeSurfer processing pipeline by exploiting
the relationship between the intracranial volume and the linear
transformation to the atlas template (Buckner et al., 2004).
The eTIV was used to correct for individual differences in
head size in the subsequent statistical analysis. Automated
segmentation of hippocampal subfields was performed using a
built-in module of FreeSurfer, in which a Bayesian statistical
model with Markov random field priors was used to estimate the
label of each subfield (Van Leemput et al., 2009). This method has
been successfully applied to detect hippocampal abnormalities
in specific subfields in many neuropsychiatric diseases (Kuhn

et al., 2012; Haukvik et al., 2015). A bounding box containing
the hippocampus that was upsampled to a 0.5 mm isotropic
resolution was applied to this module. This approach relied on
a tetrahedral mesh-based probabilistic atlas of the hippocampal
formation, which was constructed from the manual delineation
of the right hippocampus based on ultra-high-resolution T1-
weighted scans (0.38 × 0.38 × 0.8 mm3) of 10 normal subjects.
By maximizing the posterior probability of a segmentation, the
left and right hippocampi were automatically segmented into
twelve subfields: hippocampal tail, parasubiculum, presubiculum,
subiculum, CA1, CA3, CA4, hippocampus–amygdala transition
area (HATA), granule cell layer of dentate gyrus (GC-DG),
molecular layer, fimbria, and hippocampal fissure. In this
manuscript, the method for automated segmentation is standard.
Additionally, the method for segmentation is validated to be
accurate by Iglesias et al. (2015). The hippocampal subfield
segmentation results are illustrated in Figure 1. The entire
hippocampal volume was defined as the sum of the volume of
all hippocampal subfields.

Statistical Analysis
Statistical analysis was carried out using Statistical Package for
Social Sciences software (SPSS, version 21.0). All the statistical
tests were two-tailed. Categorization of demographic variables
was assessed using Chi-square test. Continuous demographic
variables were evaluated through ANOVA. In this study, the
estimated total intracranial volume (eTIV) was used as a covariate
to control head size. Statistically significant differences based on
ANOVA ( P < 0.05) were further explored using Bonferroni
post hoc analysis. In the post hoc analysis, the differences
between the individual experimental group and the control group
were assessed. The left and right hemisphere measurements
were analyzed, respectively. In addition, covariance analysis
was used to analyze the volume differences in individual
hippocampal subfield with age, sex, years of education and
eTIV as covariates. Furthermore, we investigated relationships
between hippocampal subfield volumes and memory test
variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-
recognition) through the regression model analyses controlled
for age, gender, education and eTIV.
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FIGURE 1 | Hippocampal subfield segmentation.

RESULTS

Demographic Data
The demographic characteristics of the normal control, the
patients of SCD, the patients of aMCI and the patients of
AD are shown in Table 1. Four groups of age, sex, and
educational level were well-matched (P > 0.05 for each group
comparison). Comparing SCD and NC groups, there were
no significant differences in MoCA, MMSE, immediate recall
part of AVLT, the recognition part of AVLT, while significant
difference (P = 0.012) in the delayed recall part of AVLT. The
patients with AD and aMCI had significant lower scores in
MoCA, MMSE, and AVLT compared with the healthy control
participants (P < 0.005).

Comparisons of Hippocampal Subregion
Volumes
We tested differences in whole hippocampal volume and all
subfields among four groups using ANCOVA with age, years
of education, and eTIV as covariates. Table 2 shows the
statistical results of hippocampal subfields and hippocampal
volumes. The volume of the left whole hippocampus was
significantly different between NC, SCD, aMCI and AD in
Figure 2. However, there was no statistically significant difference
in the right whole hippocampus between NC and SCD.
Compared with NC, aMCI group and AD group showed
significant decreases in right whole hippocampal volume in
Figure 3. In addition, the significant decreases were found
for SCD and NC in the volume of hippocampal tail,

subiculum, presubiculum, molecular layer HP, GC-ML-DG
and CA4 of left hippocampal subfields, right presubiculum
and fimbria of right hippocampal subfields. Most of the
hippocampal subfields showed significant volumetric difference
except hippocampal fissure and left parasubiculum between
aMCI and NC groups. The significant differences in the
hippocampal volume were detected between the AD and NC
except right hippocampal-fissure. Furthermore, in our study,
CA1, subiculum, presubiculum, molecular layer and fimbria
showed the trend toward significant volume reduction among
four groups with the trajectories of Alzheimer’s disease.

Relationship Between AVLT and
Hippocampal Subregion Volumes
In a first step, all potential risk factors (age, education years,
sex, GM volume of hippocampal subfields, TIV) were correlated
with AVLT scores and only variables correlated with AVLT score
at P < 0.2 were used in subsequent stepwise linear regressions.
This was performed to avoid too many independent variables. In
the regression model, variables were removed when P > 0.05.
Table 3 presents the results of the linear regression analyses.
In our study, volume of left subiculum of all the four groups
was most strongly and actively correlated with performance of
AVLT three measures.

DISCUSSION

In this study, we investigated the volumetric difference
of hippocampus and hippocampal subregions among AD,
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FIGURE 2 | Comparison of hippocampal subregions volume in normal controls and patients with SCD, aMCI and AD. ∗P < 0.05.
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aMCI, SCD, and NC subjects. There were also trends
in some hippocampal subregions with the trajectories
of Alzheimer’s disease in addition to the volumetric
differences between the four groups. Furthermore, we
studied AVLT and typical hippocampal subfields related
with memory. It also shown trends with the trajectories of
Alzheimer’s disease.

In our study, we found that the differences of hippocampus
and hippocampal subfields with age, years of education, and
eTIV as covariates. The effect of the size of the brain in different
subjects was excluded. Our study showed that the difference
in volumes was in the left whole hippocampus as that of
previous studies (van der Flier et al., 2004; Jessen et al., 2006).
We further divided the volume of the hippocampus, and the
volumetric subfields of SCD, aMCI and AD were compared with
the volumetric subfields of the NC. The hippocampal subfields
volume of AD had significant differences except for right
hippocampal fissure. There were also volumetric differences of
aMCI in hippocampal tail, subiculum, presubiculum, molecular
layer HP, GC-ML-DG, CA4, CA3, fimbria, HATA and right
parasubiculum. These were consistent with previous studies
(Kang et al., 2018; Su et al., 2018). Previous studies had
shown that the volume of the whole hippocampus and

hippocampal subfields of SCD and NC were not consistent
(van der Flier et al., 2004; Jessen et al., 2006; Carr et al., 2017).
But our research found that the volumes of SCD were different
from those of NC in left whole hippocampus hippocampal
tail, subiculum, presubiculum, molecular layer HP, GC-ML-DG
and CA4 of left hippocampal subregions, right presubiculum
and right fimbria. Of note, we observed the trend in the
CA1, subiculum, presubiculum, molecular layer and fimbria
subregions, which were in line with the previous studies, but
their studies rarely involved the trajectories of Alzheimer’s
disease (Perrotin et al., 2015; Carr et al., 2017; Lindberg et al.,
2017). The obvious atrophic structures in AD are located at
CA1, subiculum and the presubiculum (Carlesimo et al., 2015).
The atrophy of CA1 in MCI has also been reported, which
is related to the increased risk of conversion from MCI to
AD (Apostolova et al., 2006). In our study, we found that
the hippocampus-related subfields had changed as early as
SCD stages, however, not all of them showed trend changes.
Trend-changing parts are rich in fibers and synapses, which
also provide intrahippocampal connections and receive inputs
from the hypothalamic lobe and thalamic nucleus. This is
strongly correlated with memory impairment in AD patients
(Lace et al., 2009). Our finding about the hippocampal volume

TABLE 2 | Comparison of hippocampus and hippocampal subregions volume in normal controls and patients with SCD, aMCI and AD.

NC (n = 42) SCD (n = 35) aMCI (n = 43) AD (n = 41)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

left_Whole_hippocampus 3680.289 ± 66.434 3361.059 ± 72.289 2783.291 ± 66.006 2355.177 ± 67.634

left_Hippocampal_tail 517.540 ± 10.878 466.880 ± 11.837 383.044 ± 10.808 326.011 ± 11.075

left_subiculum 474.634 ± 9.777 434.136 ± 10.639 346.972 ± 9.714 287.218 ± 9.954

left_CA1 685.699 ± 13.496 622.925 ± 14.685 517.051 ± 13.409 456.056 ± 13.740

left_hippocampal-fissure 167.325 ± 4.356 168.285 ± 4.740 161.577 ± 4.328 145.089 ± 4.434

left_presubiculum 326.734 ± 7.911 300.225 ± 8.608 243.882 ± 7.860 203.645 ± 8.054

left_parasubiculum 60.618 ± 2.092 55.852 ± 2.276 53.596 ± 2.079 47.495 ± 2.130

left_molecular_layer_HP 615.260 ± 11.668 558.698 ± 12.697 455.821 ± 11.593 384.814 ± 11.879

left_GC-ML-DG 327.924 ± 6.251 298.829 ± 6.802 253.111 ± 6.211 211.089 ± 6.364

left_CA3 226.382 ± 4.893 213.331 ± 5.325 187.852 ± 4.862 158.502 ± 4.982

left_CA4 279.731 ± 5.250 255.658 ± 5.713 220.928 ± 5.217 186.254 ± 5.345

left_fimbria 101.503 ± 3.972 93.338 ± 4.322 69.638 ± 3.946 53.117 ± 4.044

left_HATA 64.264 ± 1.732 61.186 ± 1.884 51.397 ± 1.721 40.976 ± 1.763

right_Whole_hippocampus 3602.039 ± 63.511 3446.948 ± 69.108 2852.812 ± 63.102 2453.308 ± 64.658

right_Hippocampal_tail 515.276 ± 11.044 517.343 ± 12.017 415.792 ± 10.973 364.000 ± 11.243

right_subiculum 467.121 ± 9.699 438.444 ± 10.554 349.639 ± 9.637 293.715 ± 9.874

right_CA1 670.295 ± 13.016 641.795 ± 14.163 546.620 ± 12.932 470.188 ± 13.251

right_hippocampal-fissure 168.930 ± 5.345 179.797 ± 5.816 176.393 ± 5.311 162.883 ± 5.442

right_presubiculum 311.190 ± 6.445 285.782 ± 7.013 231.129 ± 6.403 203.520 ± 6.561

right_parasubiculum 57.794 ± 2.095 53.348 ± 2.280 46.570 ± 2.082 47.303 ± 2.133

right_molecular_layer_HP 603.151 ± 11.458 572.299 ± 12.468 474.457 ± 11.384 398.113 ± 11.665

right_GC-ML-DG 323.443 ± 6.254 307.969 ± 6.805 259.101 ± 6.213 223.016 ± 6.367

right_CA3 223.040 ± 5.422 223.890 ± 5.900 195.124 ± 5.388 170.701 ± 5.520

right_CA4 276.215 ± 5.430 265.840 ± 5.908 228.857 ± 5.395 198.068 ± 5.528

right_fimbria 93.357 ± 3.230 79.545 ± 3.514 58.037 ± 3.209 43.091 ± 3.288

right_HATA 61.156 ± 1.565 60.693 ± 1.703 47.486 ± 1.555 41.594 ± 1.593

Mean and standard deviation of subfield and total hippocampal volumes in mm3.
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FIGURE 3 | Comparison of hippocampal volume in normal controls and
patients with SCD, aMCI and AD. ∗P < 0.05.

reduction are consistent with neuropathological findings in the
progression of AD disease (Mizutani and Kashara, 1995). In
our study, the atrophies of CA1, subiculum, presubiculum,
molecular layer and fimbria subregions among SCD, aMCI
and AD groups suggest that they may be a potential early

biomarker for detecting AD at the SCD stage. These results
similarly suggest that, compared with normal control subjects,
the difference in the volumes of hippocampal subfields and
the trend of these changes could show the evolution of AD in
the earlier stage.

The functions of the hippocampal subfield were different,
which were related to memory, executive function, attention
deficits and so on (Serkova et al., 2016; Evans et al., 2018).
The analysis of subfield volumes has been applied to memory
neuroscience suggesting that subregion such as CA1, CA3
and dentate gyrus in memory is important (Kesner, 2013;
Tamnes et al., 2014; Suthana et al., 2015). In our study, the
scores of delayed recalls of AVLT were more closely related
to the changes of hippocampal subfields than the score of
immediate memory and recognition. As we all knew delayed
recalls reflect the episodic memory which was impaired first
in AD. Furthermore, the scores of delayed recalls of AVLT
were better correlated with left subiculum. It implied that left
subiculum might tell diseases earlier as an imaging biomarker
(Duara et al., 2012; Jessen et al., 2014; Tamnes et al., 2014;
Suthana et al., 2015).

There are limitations in our study. Firstly, the main limitation
is the lack of high risk group but asymptomatic control group
besides the four groups (AD, aMCI, SCD and NC). In future
design, we will collect the high risk but asymptomatic control
group. Furthermore, this study was based on cross-sectional data,
longitudinal follow-up studies of the same cohort are conducted
to identify early imaging markers for disease transformation
and prediction. Finally, we only studied hippocampal subregion
volume by structural MRI. The combination of the multimodal
imaging (i.e., structural, functional MR imaging and positron

TABLE 3 | Linear Regression Models for Different AVLT scores.

Dependent Variable Variables Included in the Model Unstandardized B Coefficients Standard Error Standardized Coefficients β P

Constant −3.814 0.948 < 0.001

Left_subiculum 0.011 0.003 0.434 < 0.001

AVLT, Sex 1.239 0.301 0.248 < 0.001

immediate recall scores Education years 0.125 0.031 0.246 < 0.001

Left_hippocampal tail 0.007 0.002 0.272 0.007

Right_p arasubiculum −0.028 0.013 −0.159 0.029

AVLT, delayed recall scores Constant −2.971 2.694 0.272

Left_subiculum 0.011 0.005 0.240 0.021

Education years 0.297 0.053 0.313 < 0.001

Left_hippocamal_tail 0.015 0.004 0.339 < 0.001

TIV < 0.001 0.000 −0.153 0.006

Right_fimbria 0.030 0.013 0.188 0.019

AVLT, recognition scores Constant −5.634 1.455 < 0.001

Left_subiculum 0.029 0.009 0.594 < 0.001

Education years 0.256 0.056 0.265 < 0.001

Right_fimbira 0.042 0.014 0.260 0.003

Left_presubuiculum −0.025 0.011 −0.370 0.025

Right_hippocamapl_tail 0.009 0.004 0.182 0.04

In a first step, all potential risk factors (age, education years, sex, GM volume of hippocampal subfields, TIV) were correlated with AVLT scores and only variables correlated
with AVLT score at P < 0.2 were used in subsequent stepwise linear regressions. This was performed to avoid too many independent variables. In the regression model,
variables were removed when P > 0.05.
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emission tomography technique) could be used in our
future research.

CONCLUSION

Our findings show that the trend changes in the hippocampus
subfield and further illustrate that SCD is the preclinical stage
of AD earlier than aMCI. The susceptibility of hippocampal
subfield to AD pathological damage is different, so the volume
of hippocampal subfield is better than the total volume of
hippocampus in identifying early AD. It can better review
the trajectory of AD, understand the mechanism, and identify
sensitive biological indicators at different stages of AD.
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The interaction between dorsal and ventral attention networks (VANs) is mediated by
the middle frontal gyrus (MFG), which is functionally connected to both networks.
However, the direct role of the MFG in selective and sustained attention remains
controversial. In the current study, we used transcranial magnetic stimulation (TMS)
and electroencephalography (EEG) to probe the connectivity dynamic changes of
MFG-associated regions during different attention modes. The participants underwent
visual, selective, and sustained attention tasks to observe TMS-induced network
changes. Twenty healthy participants received single-pulse TMS over the left or right
MFG during tasks, while synchronous EEG data was acquired. Behavioral results were
recorded and time-varying brain network analyses were performed. We found that the
MFG is involved in attention processing and that sustained attention was preferentially
controlled by the right MFG. Moreover, compared with the right hemisphere, the left
hemisphere was associated with selective attention tasks. Visual and selective attention
tasks induced MFG-related changes in network nodes were within the left hemisphere;
however, sustained attention induced changes in network nodes were in the bilateral
posterior MFG. Our findings indicated that the MFG plays a crucial role in regulating
attention networks. In particular, TMS-induced MFG alterations influenced key nodes of
the time-varying brain network, leading to the reorganization of brain network modules.

Keywords: middle frontal gyrus, TMS-EEG, attention, time-varying network, reorganization

INTRODUCTION

Understanding the physiological mechanism of complex brain functions, such as attention, is a
major challenge in neuroscience. Attention plays a crucial role in our ability to organize thoughts
and actions into meaningful behaviors (Kim et al., 2016). Maintaining attention, including
selective and sustained attention, is one of the most widely used abilities in humans. Chronic
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attention difficulties are characteristic of many
neurodevelopmental disorders, such as autism spectrum
disorder and attention deficit hyperactivity disorder (ADHD;
Kooistra et al., 2010; Keehn et al., 2013). Attentional mechanisms
are required to selectively enhance the most task-relevant
information (Jia et al., 2017). Nonetheless, despite research
indicating the importance of the middle frontal gyrus (MFG)
for maintaining the integrity of attention networks (Gogulski
et al., 2017), no study has systematically compared the role
of the MFG in different attention modes (such as selective or
sustained attention).

Functional magnetic resonance imaging (fMRI) has provided
evidence that the MFG is active in block and event-related
analyses of attention tasks, suggesting its importance in
sustained attention/vigilance (Neale et al., 2015). Most brain
network studies use fMRI-based analyses for functional
connectivity because it has higher spatial resolution; however,
the relatively slow temporal course of fMRI limits its ability
to characterize network operation and observe dynamic
processes. In addition, it is susceptible to artifacts produced
from head movements (Rathee et al., 2017), and it utilizes
either resting or task states of participants without external
interfering stimuli. Therefore, fMRI is imperfect for studying
top-down attention.

Transcranial magnetic stimulation (TMS) pulses can
induce the synchronization of distant cortical areas, and
thereby modulate information processing and alter functional
connectivity patterns in specialized, interconnected cortical
modules (Massimini et al., 2005). Therefore, TMS is a unique
method for studying brain-behavior dynamics in humans
(Pascual-Leone et al., 1999, 2000; Walsh and Cowey, 2000;
Wu et al., 2016). To date, brain connectivity between different
regions using electroencephalography (EEG) has shown
causal communication mechanisms between distinct attention
networks (Pang and Snead, 2016; Christoforou et al., 2017).
TMS combined with EEG (TMS-EEG) will provide an important
method to study brain networks.

New hardware developments, such as improved EEG
amplifier technology and advanced data processing techniques,
have removed the TMS-induced artifacts that had previously
rendered concurrent TMS-EEG impossible (Rogasch and
Fitzgerald, 2013). In addition, EEG analytical methods have
developed from a directed transfer function (Kaminski and
Blinowska, 1991) to an adapted, directed transfer function
(ADTF; Wilke et al., 2007). This method can be used to
measure connections between different brain regions at different
frequencies in time (Zhang et al., 2017; Li et al., 2018). Hot
spots or key nodes can be identified from active regions.
These are the core elements of a whole network in a certain
time epoch, which can dynamically change with time (Wang
et al., 2017; Yan et al., 2018). Furthermore, modules can be
identified as a group of nodes that are more strongly connected
between each other than nodes in different modules within
the network (Rathee et al., 2017). Subsequently, a single-
pulse TMS (sTMS) alters neural activity in the stimulated
area and modulates the excitability of interconnected
distant sites (Siebner et al., 2001). Further, TMS-EEG

can be applied to quantify this brain network connectivity
(Thut and Miniussi, 2009).

This study aimed to directly test the contributions of MFG
to different attention modes in healthy subjects and whether
this contribution is asymmetrical relative to different modes. We
hope that this research will contribute to a deeper understanding
of time-varying brain connections and dynamic changes in key
nodes in cortical areas related to the MFG.

MATERIALS AND METHODS

Participants
Twenty healthy, right-handed individuals (10 males, mean
age = 27.3 years, SD = 3.81) with normal or corrected-to-normal
visual acuity were paid to participate in our experiment. All
participants provided written informed consent for the study and
publication. The study had the approval of the Xuanwu Hospital
Ethics Committee and was in accordance with the Declaration
of Helsinki.

Attention Modes
We used three different attention modes in our experiment:

(1) Visual attention task. Participants were instructed to attend to
the numbers that were presented between 0 and 9 randomly,
with no choice component (Figure 1Aa).

(2) Selective attention task. Participants were instructed to attend
to the numbers that were presented between 0 and 9 and
respond whenever they saw a ‘‘0’’ (Figure 1b).

(3) Sustained attention task. Participants were instructed to attend
to the numbers that were presented 1–9 and respond when
they saw three consecutive odd or even numbers (‘‘triplets’’)
in any sequence (e.g., 1, 3, 5 or 8, 4, 2; see Figure 1c).

All stimuli were controlled by a stimulus system (STIM,
Neurosoft Labs Inc., Sterling, VA, USA) that presented numbers
pseudo-randomly and with equal probability. The onset-to-onset
interval and duration were 600 ms, without an inter-stimulus
interval in all three conditions. All numbers were presented in
white font on a black background. To ensure that the selective
and sustained attention task blocks were matched for motor
activation, both block types presented eight targets (‘‘0’’ or
odd/even triplets) appearing at a rate of four per 30 s. The
selective and sustained attention conditions both included four
blocks, with each block containing 200 numbers. There was a
1-min rest period between blocks without TMS stimulus.

Neuronavigation
Participants’ heads were co-registered with their T1 MRI
images using BrainSightTM frameless stereotaxic software (Rogue
Research, Montreal, QC, Canada) to confirm the anatomical
locus of stimulation. A Magstim Super-Rapid Stimulator
(Magstim Co., Whitland, Dyfed, UK) was used to deliver
the magnetic stimulation. TMS sessions corresponded to two
targeted areas: (1) left MFG (center of BA 9); and (2) right MFG
(center of BA 9).
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FIGURE 1 | Schematic representation of experimental design. (A,a) Example of only visual attention task. (b) Example of target response in selective attention task
block (number “0”). (c) Example of target response in sustained attention task block (triplets “8, 4, 2”). (B) Illustration of the concurrent transcranial magnetic
stimulation (TMS)-electroencephalography (EEG) protocol and attention modes during sTMS. sTMS, single TMS.

Measurements of Rest Motor Threshold
sTMS was applied with a figure-of-eight coil (70 mm diameter)
connected to a monophasic Magstim stimulator (Magstim
Company Ltd., London, UK). The stimulating coil was
positioned tangentially to the skull with the coil handle pointing
backward and laterally at 45◦ from the anterior-posterior
axis. The left ‘‘motor hot spot’’ was determined as the site
where the TMS consistently elicited the largest motor evoked
potentials (MEPs) from the right first dorsal interosseous (FDI)
muscle. This spot was marked on the scalp with a waterproof
pen alongside the front edge of the TMS coil. The surface
electromyography was recorded using disc-shaped Ag-AgCl
electrodes that were placed in a tendon-belly arrangement.
The resting motor threshold (RMT) was defined as the lowest
stimulus intensity that elicited a minimum MEP amplitude of
50 µV in the completely relaxed FDI muscle in at least 5 out of
10 consecutive trials.

EEG Data Acquisition
EEG data were acquired using a magnetic field-compatible EEG
amplifier (Yunshen Ltd, Beijing, China) and cap (Greentek Ltd,
Wuhan, China) with 32 TMS-compatible electrodes positioned
according to the 10/20 system and digitized with a sample
rate of 1,024 Hz. The CPz and nasal tip electrodes served
as the reference and ground, respectively. During the entire
experimental task, electrode impedances were maintained
below 5 kΩ.

Experimental Procedure
Participants were positioned on a semi-reclined chair with their
forearms lying on armrests; care was taken to maintain a relaxed

posture. Participants wore earplugs to avoid ambient and coil
discharge noises. They were instructed to staymotionless without
falling asleep. Each participant first completed the selective and
sustained attention tasks without TMS to compare reaction
times and correct response rates with responses during TMS
application. We verified that the subjects remained alert by
continuous EEG monitoring.

TMS was performed using a monophasic Magstim stimulator
(Magstim Company Ltd, London, UK), which generates a
maximummagnetic field of 1.5 T. sTMS was delivered through a
figure-of-eight focal coil over the left or right MFG. The order of
sTMS was randomized and there was a 30-min interval between
each experiment (90% RMT). The sTMS interval was 4 s to
avoid any TMS effect. Participants completed the three attention
tasks during sTMS. The order of tasks was randomized, and
there was a 10-min interval between tasks (Figure 1B). Left
and right MFG were disturbed separately with a 30-min interval
between experiments.

EEG Data Analysis
Time-Varying Network Analysis
EEG data analysis was divided into pre-processing and
time-varying network analyses. The time-varying network
analysis required several segmentations to enable the
construction of a reliable network to capture the brain
architectures and networks. In this study, we used TMS
disturbances as stimulus labels. For each labeled disturbance
event, the time point corresponding to the peak of the label
was set as time ‘‘0.’’ Then, data corresponding to 0.5 s before
and 1 s after ‘‘0’’ were extracted (total segment length, 1.5 s).
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FIGURE 2 | Reaction time and accuracy on each attention task. (A) Mean reaction time of correct responses in the selective attention task. (B) Correct response
rate in the selective attention task. (C) Mean reaction time of correct responses in the sustained attention task. (D) Correct response rate in the sustained attention
task. S, single TMS, L, left hemisphere, R, right hemisphere, MFG, middle frontal gyrus. ∗p < 0.05.

Next, to reduce the calculation load in the time-varying network
analysis, segments were eight-rate down-sampled (Li et al.,
2016), resulting in 32 Hz. ADTF was used to construct the
time-varying networks and uncover the dynamic information
processing during TMS disturbance (Wilke et al., 2007). We used
a time-varying multivariate adaptive autoregressive model and
ADTF to calculate the time-varying brain network (Zhang et al.,
2017); this process is included in the Supplementary Material
Appendix. The normalized total information outflow of the jth
node is further estimated in Equation 1 as:

Q2
j (t) =

n∑
k = 1

Q2
kj(t)

n− 1
, for k 6= j

where n is the total number of nodes.
When each node (n) has been calculated for each sample

time point (t), a directional edge (i to j) can be displayed.
From Equation 1, we can derive an outflow that denotes the
time-varying of each node across different time points, as
demonstrated in Figure 3. We defined the key node as the node
with the highest degree of connectivity at various time points.
The key node will change over time and at that sample time point,
the edges quantity of this key node determines their connection
strength.

Behavioral Data Analyses
All results from the attention tasks were averaged across the
20 participants, and statistical analyses were used to identify
differences in dynamic network patterns between attention
modes.

Post hoc pairwise comparisons were used to compare the
reaction times and correct response rates between attentional
modes. Statistical significance was set at p < 0.05.

RESULTS

Behavioral Results
We recorded the response time and accuracy of different
attention tasks that were used to evaluate the contribution of
the MFG to attention processing. There were no significant
differences in response time or accuracy in the selective attention
task during sTMS in the right or left MFG. Interestingly,
participants showed an improvement in accuracy in the sustained
attention task when sTMS was applied to the right MFG
(p < 0.05; Figure 2).

Dynamic Network Patterns
The corresponding MFG time-varying network patterns of the
different attention modes are shown in Figure 3. Specifically,
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FIGURE 3 | Application of sTMS to the left MFG (A) and right MFG (B) induced changes in the time-varying networks in different attention modes. Time: after single
TMS. Red lines: enhanced connections; black arrows: the direction of information flow; green lines: weakened connections; blue arrows: the direction of
information flow.

application of sTMS to the left MFG induced changes in
the time-varying networks in different attention modes. The
left temporal and right central area connection was initially
weakened (76–450ms) but was followed by an enhanced bilateral
temporal connection (450–1,000 ms). The left MFG induced a
longer inhibition of the left temporal region in the sustained
attention task, as compared to the other attention modes
(Figure 3A). Additionally, application of sTMS to the right MFG
induced time-varying network alterations in different attention
modes. The connection between the left temporal and parietal

lobes was initially weakened (76–256 ms) but was followed
by an enhanced bilateral temporal connection (450–1,000 ms).
MFG-induced inhibition of the left temporal connection was
observed in the sustained attention task at 560ms. This inhibition
was observed at 450 ms in the other tasks (Figure 3B).

The time-varying network patterns from different attention
modes are shown in Figure 3. These data reveal key network
nodes located in different brain regions. Moreover, local brain
regions close to the attention zones are activated at the
differential time-points.
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FIGURE 4 | Key nodes were altered during different attention modes. Red digits: conversion time of enhanced key nodes. Green digits: conversion time of
weakened key nodes. Red lines and arrows: the direction of enhanced key nodes information flow. Green lines and arrows: the direction of weakened key nodes
information flow. S, single TMS, L, left hemisphere, R, right hemisphere, MFG, middle frontal gyrus.

Furthermore, the association between the MFG and key
nodes were altered during different attention modes (Figure 4).
For example, when sTMS was applied to the left MFG during
the visual attention task, key nodes in the left frontal region
to the left posterior region were enhanced, and key nodes
from the right posterior region to the left frontal region
were weakened. When sTMS was applied to the left MFG
during the selective attention task, key nodes from the left
frontal region to the left posterior region were enhanced and
were weakened in the right posterior region. Enhanced key
nodes from the left and right posterior region and weakened
key nodes in the left and right frontal region were observed
when sTMS was applied to the left MFG during the sustained
attention task. Following sTMS application to the right MFG
during the visual attention task, the key nodes from the right
frontal region to the left posterior region were enhanced, and
the key nodes from the left posterior region to the right
frontal region were weakened. The selective attention task
revealed a change in the enhanced key nodes from the right
frontal region to left posterior region and weakened key nodes
changed from the right posterior region to the right frontal
region. The sustained attention task revealed alterations in the
enhanced key nodes from the right frontal region to the bilateral
posterior region, and weakened key nodes changed from the left
frontal region.

Our analyses revealed similar results in the left and right
MFG in both selective and sustained attention modes; however,
the visual and selective attention tasks revealed a hemispheric
asymmetry, with key nodes associated with MFG in the left
hemisphere. The sustained attention task revealed bilateral key
nodes and increased connections between hemispheres.

DISCUSSION

Previous studies have noted the importance of the prefrontal
cortex and frontal-parietal network in attention and our results
have shown that the MFG makes a significant contribution
to attention processing. Furthermore, we found that sTMS
application in the right MFG can improve sustained attention.
Interestingly, MFG-associated visual and selective attentional
network key nodes were altered in the left hemisphere from the
frontal region to posterior regions; however, sustained attention
key nodes showed bilateral information exchange with right or
left sTMS application.

The prefrontal lobe has been linked to attention in humans;
however, its mechanism and role have not been fully elucidated.
The earliest therapeutic use of repetitive TMS (rTMS) for
ADHD led to an improvement in clinical global depression
and ADHD-IV scales (Weaver et al., 2012). Similarly, our
results indicate that sTMS application to the right MFG
can have a positive effect on sustained attention. The left
hemisphere is more associated with selective attention, and
our results indicate bilateral MFG activation in sustained
attention tasks. Further, disturbance of the right MFG may
activate the right hemisphere and facilitate network connections
with other regions to improve sustained attention ability.
These results indicate a possible therapeutic potential for
sTMS in the right MFG in individuals with sustained
attention deficits.

Selective and sustained attention are primarily controlled by
the dorsal attention network (DAN) and the ventral attention
network (VAN; Corbetta and Shulman, 2002). There is a
hemispheric asymmetry between attention networks, which
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results in the functional lateralization of the MFG (Corbetta and
Shulman, 2011; Koch et al., 2011; Thiebaut et al., 2011; Neale
et al., 2015). Lesion-based studies in ADHD have indicated that
unbalanced interhemispheric interactions between the bilateral
MFG account for the hemispheric specialization of attention
function (Epstein et al., 2009; Nagashima et al., 2014). Current
data indicate that the functional asymmetry of MFG is linked
with different brain networks. This is supported by our data
showing asymmetric connectivity of the MFG between different
attention modes.

sTMS application to the MFG induced changes to
time-varying networks in different attention modes, which
included enhanced and weakened connections. The visual and
selective attention task revealed alterations in the location of
enhanced connections from the frontal region to the posterior
region in the left hemisphere and weakened connections
from the posterior region to the front brain. In contrast,
the sustained attention task revealed changes to enhanced
connections bilaterally in the posterior region and altered
weakened connections in the frontal region. This indicates
that the MFG has different roles in different attention modes,
and right MFG has its most important role in sustained
attention processing (Caruana et al., 2015; Han et al., 2018).
Previous data have shown that TMS affects performance when
applied to either hemisphere (Duecker et al., 2013; Platz et al.,
2016); however, we found a strong right MFG effect. This
indicates that this frontal region may have a spatially biased
functional role.

Previous studies of brain structure analysis, based on
functional connectivity patterns, have shown modular
organization. These are classified into four modules that
are associated with different functions: occipital (perception),
central and sensorimotor (action), and frontoparietal (executive
functions) modules; and the default mode network (spontaneous
cognition). This indicates that there is a well-defined network
organization in the brain at rest and during task performance
(Laird et al., 2005; Crossley et al., 2013). The present study
revealed that reorganization of brain network modules
might contribute to attention processing. Furthermore,
there are differences in network topology between different
attention modes. We have demonstrated that the left
hemisphere plays a leading role in visual and selective attention
processes (Fink et al., 1997; Yamaoka and Michimata, 2015;
Sweeti et al., 2018).

The time-varying network in this study highlighted that the
MFG plays an important role in dynamic network changes
that are involved in attentional processing and may have
a regulatory function in attention processing, particularly the
right MFG in sustained attention. Studies have reported that
the right posterior parietal cortex has stronger anatomical
connections with the ipsilateral MFG than the left posterior
parietal cortex (Wu et al., 2016). In the current study, we
discovered that the right hemisphere preferentially mediates
sustained attention, due to unbalanced interactions between
the bilateral frontoparietal networks. Correct response rate can
be improved by stimulating the right MFG during sustained
attention tasks and increasing the interhemispheric parietal

network connections. These asymmetric connections were
associated with behavioral performances.

This study has a few limitations, some of which may merit
future investigation. First, the brain regions to which sTMS
was applied were relatively limited and only located in the
prefrontal cortex. Next, although we used three attention modes
in the present study, there are many attention-related tasks
that can be used to assess network changes. Finally, the sample
size of this study was small. Future studies should address
these limitations.

CONCLUSIONS

We sought to assess the role of the MFG in different attention
modes by using sTMS to induce dynamic changes to brain
networks. We have confirmed that the MFG is involved in
attention processing, and our findings suggest that there is
an asymmetry of sustained attention control towards the right
MFG. Moreover, the left hemisphere is more involved in
selective attention tasks than the right hemisphere. Our principal
findings demonstrate that during visual and selective attention,
MFG-related networks were situated in the left hemisphere,
whereas sustained attention led to a greater activation of key
nodes in the bilateral posterior region of the brain. These findings
suggest that sTMS-induced MFG disturbances can cause key
nodes in brain networks altered and reorganized.
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Beijing, China, 2 School of Biomedical Engineering, Capital Medical University, Beijing, China, 3 Department of Functional
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Objective: Epilepsy is a chronic brain disease, which is prone to relapse and affects
individuals of all ages worldwide, particularly the very young and elderly. Up to
one-third of these patients are medically intractable and require resection surgery.
However, the outcomes of epilepsy surgery rely upon the clear identification of
epileptogenic zone (EZ). The combination of cortico-cortical evoked potential (CCEP)
and electrocorticography (ECoG) provides an opportunity to observe the connectivity of
human brain network and more comprehensive information that may help the clinicians
localize the epileptogenic focus more precisely. However, there is no standard analysis
method in the clinical application of CCEPs, especially for the quantitative analysis of
abnormal connectivity of epileptic networks. The aim of this paper was to present an
approach on the batch processing of CCEPs and provide information relating to the
localization of EZ for clinical study.

Methods: Eight medically intractable epilepsy patients were included in this study.
Each patient was implanted with subdural grid electrodes and electrical stimulations
were applied directly to their cortex to induce CCEPs. After signal preprocessing, we
constructed three effective brain networks at different spatial scales for each patient,
regarding the amplitudes of CCEPs as the connection weights. Graph theory was then
applied to analyze the brain network topology of epileptic patients, and the topological
metrics of EZ and non-EZ (NEZ) were compared.

Results: The effective connectivity network reconstructed from CCEPs was
asymmetric, both the number and the amplitudes of effective CCEPs decreased with
increasing distance between stimulating and recording sites. Besides, the distribution of
CCEP responses was associated with the locations of EZ which tended to have higher
degree centrality (DC) and nodal shortest path length (NLP) than NEZ.
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Conclusion: Our results indicated that the brain networks of epileptics were asymmetric
and mainly composed of short-distance connections. The DC and NLP were highly
consistent to the distribution of the EZ, and these topological parameters have great
potential to be readily applied to the clinical localization of the EZ.

Keywords: epilepsy, CCEP, ECoG, effective connection, graph theory

INTRODUCTION

Epilepsy is one of the most common and chronic neurological
disorders and is usually caused by excessive and abnormal
firing of neurons in the brain cortex. Epilepsy is characterized
by recurrent seizures and the symptoms can be diverse,
including staring, tonic movements, muscle spasms and impaired
consciousness (Pitkänen et al., 2016). The pathogenesis of
epilepsy is complex as a result of the multifactorial nature and
its heterogeneity. For example, brain injury, stroke and genetic
mutations, can all induce epilepsy (van Mierlo et al., 2014).
Globally, approximately 70 million people have epilepsy, and
up to 30% of these patients have medically intractable epilepsy
(Singh and Trevick, 2016). In China, 9 million people suffer from
epilepsy, a condition which is usually treated with anti-epileptic
drugs (AEDs). While the effects of AEDs are not satisfactory, one
possible option is resective surgery of the epileptogenic zone (EZ),
a procedure which can benefit patients by reducing or eliminating
seizure activity (Vos et al., 2016; Yue et al., 2017). However,
incomplete resection of the focus, or damage incurred by normal
brain regions during surgery may fail to achieve an effect, or may
even aggravate the condition (van Mierlo et al., 2014). Precise
delineation of the EZ is the key to epilepsy surgery; however,
abnormal connectivity of epileptic networks makes it difficult for
the clinicians to delineate the epileptogenic focus unambiguously.

Electroencephalography (EEG) is one of the most important
techniques for the diagnosis and treatment of epilepsy patients.
EEG can record the electric signals generated by neurons in the
brain with higher temporal resolution than magnetic resonance
imaging (MRI), positron emission tomography (PET) and other
techniques, and is also easy to operate, which can reveal the
neural mechanism of human brain during complex cognitive
and affective tasks and contribute unique information for the
advance of neuroscience (Yan et al., 2017a,b). EEG is now
universally regarded as the gold standard for the localization
of EZ. Electrocorticography (ECoG) uses electrodes implanted
on the surface of the cortex, which can provide recording
and stimulation data directly from the cortical surface of the
human brain. With high temporal resolution, good spatial
resolution and high signal-noise ratio, ECoG has been widely
used in preoperative assessment for resection surgery (Enatsu and
Mikuni, 2016). Matsumoto et al. (2004) were the first to use low-
frequency electrical stimulation to the cortex in eight refractory
epilepsy patients, and analyzed the distribution of response
potentials to study the connectivity of the language network; this
method was termed cortico-cortical evoked potential (CCEP).
CCEP is the response potential recorded at one cortical region
when a single pulse of electrical current was applied at another
remote location of the cortex. This technique allows us to evaluate

effective connectivity between the stimulating and recording sites
or in different cortical regions, thus providing information on the
direction of connectivity, which cannot be detected by functional
magnetic resonance imaging (fMRI), diffusion tensor imaging
(DTI) or any other imaging methods (Koubeissi et al., 2012).

Furthermore, epilepsy is a complex network disease associated
with spatial organization of epileptic cortices, functional
connectivity alternations and pattern of seizure, the abnormal
connectivity of epileptic network makes it difficult to localize the
EZ (Mears and Pollard, 2016). In recent years, the application of
CCEP and the advancements of other neuroimaging techniques
have brought about great progress in the precise localization of
the EZ and human brain network mapping (Araki et al., 2015;
Kamada et al., 2017; Fox et al., 2018). It is also important to
mention that graph theory provides significant benefit for the
studies of brain network connectivity, which is now widely used
to analyze data arising from EEG, MRI, and fMRI (Sha et al., 2017;
Yan et al., 2018). As a method of network analysis, graph theory
is the study of graphs, which are mathematical structures used
to model pairwise relations between objects. A graph is made
up with nodes, which are connected by edges (Bullmore and
Bassett, 2011). Analyzing CCEP with graph theory can provide
meaningful descriptions of large-scale brain networks, and this
method has been shown to provide a means to probe the human
brain network and to evaluate the cortical excitability (Vecchio
et al., 2015; Keller et al., 2018; Parker et al., 2018).

Due to the huge amounts of data created by EEG, the
complexities of data processing and the lack of a systematic
method for reconstructing the brain network based on CCEPs,
there are still some difficulties in the clinical application of
CCEPs. In this study, we used CCEP mapping in a cohort of
refractory epilepsy patients implanted with ECoG electrodes, and
measured the topological properties of the brain network by
graph theory in order to offer a convenient and effective batch
processing application of CCEPs and help the clinicians localize
the EZ in a precise manner.

METHODS

Subjects
Eight subjects (7 males and 1 female; mean age: 21.5 years, range:
13–28 years) with medically intractable epilepsy were enrolled
at Beijing Institute of Functional Neurosurgery at Xuanwu
Hospital Capital Medical University. All patients were implanted
with subdural grid electrodes for the invasive evaluation for
epilepsy surgery. Patients’ demographic characteristics and
clinical information are illustrated in Table 1. The EZ was defined
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by experienced clinical epileptologists with comprehensive based
on the resected areas in epilepsy surgery, combing with the
postoperative pathology results, long-term video EEG recordings,
clinical symptoms and neuroimaging. The other implanted brain
area out of EZ was defined as non-EZ (NEZ). The prognoses
of all patients involved in this study are overall good. All
patients involved in this study gave their informed consent and
all procedures were approved by the Medical Research Ethics
Committee at Xuan Wu Hospital of Capital Medical University.

CCEP Procedure
During the pre-surgical evaluation, single-pulse stimulations
were delivered to pairs of adjacent electrodes with a bipolar
setup. Stimulation was conducted with a constant current square
wave pulse which was 0.3 ms in duration, a pulse frequency of
1 Hz, and 50 trials per electrode pair. ECoG was continuously
recorded with a 128-channel digital EEG system at 1024 Hz.
Patients were awake and remained still at the time of CCEP
recording. All programming was performed in Matlab R2016b
(The MathWorks Inc., Natick, MA, United States).

Preprocessing and Feature Extraction
of CCEPs
First, the responses of each channel over the same stimulation
electrodes were averaged with a time window of 1000 ms, time-
locked to the stimulus (the stimulus was set as zero point, 200 ms
pre-stimulation and 800 ms post-stimulation). After averaging,
the baseline drift of CCEP on each channel was eliminated, the
interval between −100 ms and −5 ms prior to the stimulation
pulse was set as baseline (Trebaul et al., 2016). Analyses of CCEP
were conducted on electrode-pair level and on region level. The
gross anatomy atlas and Brodmann’s Areas (BA) atlas were used
to parcellate the brain area implanted with electrodes into several
regions. Each electrode was assigned to a specific brain region
of the atlas. Original ECoGs were averaged according to paired
electrodes or among the same brain regions.

Each CCEP consists of an early sharp negative response (N1,
10–50 ms post-stimulation) and a subsequent slow-wave (N2, 50–
300 ms post-stimulation) (Matsumoto et al., 2017). Here we only
focused on the earliest response. Combining with the waveform
characteristics of CCEP and the characteristics of ECoG signals
actually acquired in this research, we decided to set the largest

peak of CCEP during the period of 16–40 ms post-stimulus as
the index of connectivity between the stimulating and recording
sites. The first 16 ms was excluded from our analysis due to
stimulation artifacts. In order to reduce the effect of variations
among different channels, the amplitudes of CCEP at each site
were normalized and converted into Z-scores.

Effective Network Construction and
Graph Theorical Analysis
In this paper, the normalized CCEP amplitudes were set as the
connection between two sites (electrode pairs or regions). Three
different kinds of weighted connectivity matrices were observed
from CCEPs: (1) connected matrices based on electrode-pairs,
(2) connected matrices based on gross anatomy atlas, and (3)
connected matrices based on BA atlas. Each row corresponding
to a stimulation site and each column to a recording site. Then,
a threshold was set as six times the standard deviation (SD) to
identify the effective CCEP connectivity for each patient (Keller
et al., 2014). If the amplitude of CCEP exceeded the threshold,
the connectivity from the stimulating site to the recording site
was effective, the corresponding element in binary connected
matrix was set to value “1,” if not, the connectivity was ineffective,
and the corresponding element in binary matrix was set to value
“0.” Thus, three kinds of binary matrices were generated for
each patient (electrode-pair level, gross anatomy-region level and
BA-region level), which were then applied as masks to captured
the underlying effective CCEP connectivity in the corresponding
CCEP-weighted connectivity matrices. Finally, three different
effective CCEP networks were reconstructed.

In order to characterize network topology, graph theory
mathematical techniques were employed to analyze CCEP
matrices. The electrode pairs and brain regions were defined
as nodes of the network, and the effective CCEP amplitudes
were defined as the edges (Rubinov and Sporns, 2010; Bullmore
and Bassett, 2011). We computed widely used complex network
measures to analyze the topological properties of the brain
network in a quantitative manner, as detailed below.

Betweenness centrality (BC): a measure of centrality in a
network based on shortest paths.

BCi =
∑

i6=j6=k∈G

δij
(
k
)

δij
(1)

TABLE 1 | Clinical information of the patients.

Patient Gender/Age Epileptic foci Implanted side Number of electrodes Invested lobes

P1 M/20 R Temporal R 96 Frontal, Parietal, Temporal

P2 M/23 L Temporal L 96 Frontal, Parietal, Temporal

P3 M/26 R Temporal R 96 Frontal, Parietal, Temporal

P4 F/28 L Parietal L 112 Frontal, Parietal, Temporal

P5 M/23 L Parietal L 64 Frontal, Parietal, Temporal, Occipital

P6 M/16 L Parietal, Postcentral gyrus L 80 Frontal, Parietal, Temporal,

P7 M/23 L Parietal L 64 Parietal, Occipital, Precentral gyrus,
Postcentral gyrus

P8 M/13 L Parietal, Occipital L 104 Frontal, Parietal, Temporal, Occipital

M, male, F, female; R, right and L, left.
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Where δij is the number of shortest paths between node i and j
within network G, and δij

(
k
)

is the number of those paths which
pass through node k.

Degree centrality (DC): it reflects the information
communication ability of the given node in the network,
which is defined as the sum of all neighboring link weights.

DCi =

N∑
j=1

aij
(
i 6= j

)
(2)

N is the total number of nodes in the network G, aij indicates
the effective connection between node i and j, which is the
amplitude of effective CCEP recorded at node j when node
i was stimulated.

Nodal clustering coefficient (NCP): a measure of the degree to
which nodes tend to cluster together in the network G.

NCPi =
Ei

1
2ki

(
ki − 1

) (3)

Where Ei denotes the number of edges that was actually
connected with node i, and ki is the number of neighbors of node
i. If a node i have ki neighbors, 1

2ki
(
ki − 1

)
edges could exist

among this node.
Nodal efficiency (NE): it characterizes the efficiency of parallel

information transfer of a given node in this network.

NE (i) =
1

N− 1
·

∑
j,j6=i

1
dij

(4)

dij denotes the length of the shortest path between
node i and node j.

Nodal local efficiency (NLE): a measure of the information
exchanged among the immediate neighbor nodes, when node i
is removed.

NLE (i) =
1

ki
(
ki − 1

) ·∑
j∈Gi

∑
h∈Gi

djh
ki − 1

(5)

Where Gi is the local subnetwork consisting only of a node i’s
immediate neighbors, but not the node i itself, ki is the number
of nodes in subnetwork Gi.

Nodal shortest path length (NLP): it quantifies the mean
distance of routing efficiency between the given nodes i and the
other nodes in the network.

NLPi =
1

N (N− 1)

∑
i,j,i6=j

dij (6)

Statistical Analysis
We used Pearson’s correlations to assess how effective CCEPs
related to the distance between stimulating and recording sites.
Additionally, to illustrate the differences between the topological
properties of EZ and NEZ, the computed topological properties
of electrode-pairs and parcellated regions located in EZ and NEZ
were averaged. And paired-sample t-test was used to test for
group difference of EZ and NEZ in network topologies.

RESULTS

Temporal and Spatial Distribution
of CCEPs
Eight drug resistant epilepsy patients with different anatomical
EZ locations were included in this study, a total of 712
contacts were implanted. Thousands of CCEP responses were
recorded with subdural electrode strips when low-frequency
electrical stimulus was applied to the cortex directly. We
reconstructed three connectivity networks with different spatial
scales, electrode-pair-level and region-level based on the gross
anatomy and BA atlas. Distance between electrode-pairs was
calculated using the Euclidean distance between the midpoints
of the electrodes of each pair (Keller et al., 2014). The strength
of effective CCEPs decreased significantly with the increase of
distance between stimulating and recording sites (R = −0.335,
P < 0.001). As shown in Figure 1A, when the distance
increasing, the effective CCEPs became less and the amplitudes
became lower. Figure 1B shows the CCEP responses at different
recording sites (R1 and R2), when electrode S1 was stimulated.
The one (R1) closer to the stimulating site had higher amplitude
and smaller latency than the farther one (R2).

Topologies of EZ and NEZ in Effective
Brain Networks
Two different templates were used to parcellate the brain areas of
epileptics, the gross anatomy atlas based on Nissl plates and the
BAs atlas defined by cytoarchitectural organization of neurons.
We constructed two region-level brain networks for each patient.
These parcellated regions were classified into two categories, one
located in the EZ and the other located in NEZ. We computed
the widely used graph theoretical measures to characterize the
topological properties of brain networks, including BC, DC, NCP,
NE, NLE, and NLP, and compared the topologies of EZ and NEZ.

Connectivity Analysis Based on the Gross
Anatomy Atlas
A total of 14 regions of the gross anatomy atlas were involved
in this study with a mean of 9 (min–max: 7–11) per patient.
The constructed brain networks of patients P1–P8 were shown
in Figure 2. Regions located in EZ tended to strongly connected
with each other in most of the epileptic patients. When pairs of
electrodes in EZ were stimulated, the effective CCEP responses
with high amplitudes usually located in regions of EZ. The
distributions of the graph metrics averaged across all patients are
presented in Figure 3. Significant differences were observed in
DC and NLP (paired-sample t-test, P < 0.05) between EZ and
NEZ. Compared with that in NEZ, DC, and NLP significantly
increased in EZ, which means that regions in EZ have high
integration in the effective brain networks. While, the other graph
metrics (BC, NCP, NE, and NLE) did not show any significant
difference between EZ and NEZ.

Connectivity Analysis Based on the BA Atlas
In this study, a total of 23 regions of BA atlas were used for
network construction with a mean of 12 (min–max: 8–13) per
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FIGURE 1 | Spatial and temporal distribution of CCEPs. (A) The distribution of CCEPs across the distance between stimulating and recording electrode pairs. The
effective CCEP responses became less and the amplitudes got lower when the distance increasing. (B) When electrode S1 was stimulated, the CCEP responses at
different recording sites (R1 and R2) was shown respectively. Potential N1 of CCEP recorded at R1 had higher amplitude and smaller latency than the one at R2,
which located farther to S1 than R1.

FIGURE 2 | The weighted brain networks reconstructed with the effective CCEP responses, using the gross anatomy atlas to parcellate brain regions. Nodes are
represented by circularly arranged segments, of which located in epileptogenic zone (EZ) is colored by orange and the others blue. Edges are presented with ribbons
of which connected with EZ regions are colored by orange and the others blue. The stronger the connection is, the thicker the connected ribbon is. Each ribbon has
a direction, it starts at the stimulated/outgoing region which it touches, and ends at the recording/ingoing region which it does not touch. The three outer rings are
stacked bar plots that represent relative contributions of a region (outgoing/ingoing/totally). Panels (A–H) were the weighted brain networks corresponding to
patients P1–P8. Abbreviations: PrG, precentral gyrus; PoG, postcentral gyrus; OrG, orbital gyri; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior
frontal gyrus; SPL, superior parietal lobule; SMG, supramarginal gyrus; ANG, angular gyrus; STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior
temporal gyrus; TP, temporal pole and OcG, occipital gyrus.
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FIGURE 3 | The weighted brain network reconstructed from the CCEP
responses based on the BA atlas. Regions located in EZ were colored by
orange, and the others in non-epileptogenic zone (NEZ) were colored by blue.
Abbreviations: BC, betweenness centrality; DC, degree centrality; NCP, nodal
clustering coefficient; NE, nodal efficiency; NLE, nodal local efficiency; NLP,
nodal shortest path length. ∗P < 0.05.

patient. Figure 4 presents the weighted brain networks of the
eight patients studied in this study. Regions in EZ were also
strongly connected with each other in the effective networks base
on BA atlas, which is similar to the connectivity of the networks
reconstructed with the gross anatomy atlas. As shown in Figure 5,
NLP of EZ were significantly higher than that in NEZ (paired-
sample t-test, P < 0.05), which was consistent with the results
computed based on the gross anatomy atlas. While DC (paired-
sample t-test, P = 0.081), BC and other topological properties
did not show any significant difference between EZ and NEZ
in the effective networks reconstructed based on the BA atlas.
The insignificant difference of the distribution of DC between
EZ and NEZ may due to brain parcellation with different atlas.
Compared with the gross anatomy atlas, BA atlas parcellates brain
into regions more detailly. Some high-amplitude CCEPs located
in EZ might be assigned into the same BA region with other low-
amplitude CCEPs of NEZ. Accordingly, the averaged responses
of this region may get lower.

DISCUSSION

This study investigated the effective connectivity derived
from direct electrophysiological recordings of CCEPs in
eight medically intractable epilepsy patients, three different
connectivity networks over different spatial scales were
constructed for each patient. Graph theory was employed
to analyze brain network topology, and graph metrics of EZ and
NEZ were compared. We confirmed that connectivity networks
reconstructed with CCEP amplitudes can indicate the effective
connectivity of brain networks both at the electrode-pair-level
and at the region-level. Importantly, EZ regions tend to have
higher DC and NLP in comparison with NEZ, integration of
local connectivity increased in regions of EZ.

Effective Connectivity of Networks
Reconstructed With CCEPs
In the last decades, direct cortical stimulation has been used
as a useful investigational tool for epilepsy surgery, the evoked

potentials CCEPs have been proved to be a powerful method for
exploring the effective and functional connectivity in the living
human. In our study, N1 potential of CCEP was regarded as the
indication of the connection strength, which has been proved to
be able to reflect the strength of connectivity between two brain
regions (Fox et al., 2018). We fund that the effective networks
observed from CCEP were asymmetric both in strength and in
direction, CCEP connectivity networks mainly consisted with
short-distance connections and few long-distance connections
(see Figures 1, 2, 4). These findings are consistent with the results
reported by Keller et al. (2014) who analyzed the brain network
topology of 15 patients with medically intractable epilepsy.
Trebaul et al. (2018) developed a large multicenter CCEP
database with 213 epilepsy patients to analyze the human cortico-
cortical connections. They also found that CCEP strengths were
negatively corrected with the distance.

Furthermore, comparing with the other methods for CCEP
quantitative analysis, like root mean square (RMS) (Enatsu et al.,
2013) and analyzing the broadband gamma signals of CCEPs
(Crowther et al., 2019), the way we used to quantify CCEPs
is much easier and faster especially for the calculation of large
sample size, and the important characteristics of CCEPs were
preserved well. Additionally, in the constructed networks of our
results, most of the regions located in PoG (postcentral gyrus),
PrG (precentral gyrus) and frontal cortex exhibited strengthened
connections, which is consistent with the distribution of hubs
in the human brain network (van den Heuvel and Sporns,
2013). Entz et al. (2014) analyzed CCEPs from 25 refractory
epilepsy patients and identified several major hub regions in
the human brain, which mostly overlapped with the classical
distribution of hubs. Together, these findings suggest that
reconstructing effective brain networks with CCEP amplitudes
we used is credible.

Graph Metrics of Epileptogenic Zone
It has been recognized that epilepsy is a network disease of
varying scales across multiple brain regions (Bartolomei et al.,
2017). Moreover, the abnormal connectivity of brain networks
has been proved to be associated with the localization of
EZ, which may be a potential biomarker for the diagnosis
and treatment of epilepsy. In this study, we applied two
different brain atlases to parcellate brain areas and constructed
brain networks with CCEPs at region level and found
that alterations of effective network connectivity kept in
line with the distributions of EZ. The connectivity matrices
reconstructed with different atlases were similar to each
other. Strong connections were observed among regions of
EZ that exhibited higher effective connectivity than regions
in NEZ (see in Figures 2, 4). The current findings are
consistent with CCEP studies by Mouthaan et al. (2016)
and Lagarde et al. (2018).

Moreover, many other researchers also have reported the
high integration of effective connectivity and strong interictal
connectivity of epileptogenic and propagation zones in epilepsy
patients with EEG, MRI and fMRI. Tousseyn et al. (2017)
used CCEPs and interictal single photon emission computed
tomography (SPECT) to analyze network connectivity in 31
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FIGURE 4 | The weighted brain networks reconstructed with the effective CCEP responses, using the Brodmann’s area (BA) atlas to parcellate brain regions. Nodes
are represented by circularly arranged segments, of which located in EZ were colored by orange and the others blue. Edges are presented with ribbons of which
connected with EZ regions are colored by orange and the others blue. The stronger the connection is, the thicker the connected ribbon is. Each ribbon has a
direction, it starts at the stimulated/outgoing region which it touches, and ends at the recording/ingoing region which it does not touch. The three outer rings are
stacked bar plots that represent relative contributions of a region (outgoing/ingoing/totally). Panels (A–H) were the weighted brain networks corresponding to
patients P1–P8.

refractory focal epilepsy patients. They suggested that the
distributions of hyper-perfusion in SPECT overlapped with
the effective connectivity networks. This study combined
functional connectivity and effective connectivity of the brain
network, thus reconfirmed the reliability of CCEPs. Parker
et al. (2018) found a significant overlap between structural
networks of DTI and effective networks of CCEPs, and
suggested structural connection strength in the epileptic
focus tended to be higher. Hong et al. applied graph
theory to analyze the structural connectivity and resting-
state functional connectivity of 154 epilepsy patients and
82 healthy controls (Hong et al., 2017). Increased graph
metrics were observed in EZ in the structural networks.
Contrarily, inter-regional functional connectivity was
decreased in regions of EZ because of the formal structure-
function coupling. Overall, our findings are supportive to the
concept of hyperexcitable cortex of EZ (Valentín et al., 2005;
Bartolomei et al., 2017). That is, there is an imbalance between
excitation and inhibition of activities in EZ, and the cortex
excitability of focus areas is higher than others. Despite of the
multifactorial nature of epilepsy and its heterogeneity, our
study analyzed the effectivity network connectivity of CCEPs
at region level and revealed the group pattern of network
abnormalities of EZ.

Notably, the connectivity of networks constructed with
different atlases was not exactly the same. For example, in
the network of patient P1 that was constructed with the
gross anatomy atlas, regions of EZ, inferior temporal gyrus
(ITG) and middle temporal gyrus (MTG), only connected

FIGURE 5 | The graph metrics of brain networks reconstructed with the
effective CCEP responses, using the BA atlas to parcellate brain region.
Regions located in EZ were colored by orange, and the others in NEZ were
colored by blue. ∗P < 0.05.

with each other, which can be seen in Figure 2A. As
shown in Figure 3A, strong connections were also observed
in the corresponding EZ regions BA21 and BA22 in the
effective network based on BA atlas of P1. But region
BA22 also connected with BA44, which located in the
frontal gyrus. When comparing the networks with different
spatial scales, the differences of graph measures between
EZ and NEZ in networks based on the gross anatomy
atlas seemed to be more significant in comparison with
the ones computed from networks based on the BA atlas.
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This may be due to the inappropriate assignations of electrodes
when we constructed brain networks at region level, significant
CCEP responses of EZ may be averaged with the insignificant
CCEPs of NEZ mistakenly. Also, epileptogenic cerebral lesion not
respect for anatomic boundaries and the inappropriate electrode
localization also had an impact on the effective connectivity
of brain networks.

However, there are some limitations in this presented study.
Only 8 epileptic patients with multiple anatomical locations were
included. On one hand, the limited number of epilepsy patients
and the different anatomical EZ locations of these patients could
have reduced the statistical power of the data. On the other
hand, the small spatial sampling CCEP signals available in a
single patient could have made the study of effective connectivity
in a limited scale, and the connectivity estimated from CCEP
amplitudes depends on the stimulation parameters partially.
More patients with the same anatomical locations of EZ and
smaller individual differences will be included in our further
study. Furthermore, in our results, the network reconstructed
with the gross anatomy atlas seemed to perform better in the
localization of EZ than the network based on BA atlas. More
samples are needed to verify this result, and many other brain
atlases should also be included in further studies. In addition,
as recording ECoGs with electrode grids implanted on the brain
cortex is invasive, it is impossible to compare the difference of
effective connectivity networks between epileptics and healthy
controls. Other measures of effective connectivity, like DTI, MRI
and high-density EEG recordings can be used for comparison,
combined with CCEP in the following study.

CONCLUSION

We proposed a batch processing application of CCEPs based on
MATLAB, and described the graph theory we used to analyze
the topology of brain networks derived from CCEPs. We also
explored the localization of the EZ with graph metrics of
effective network. CCEPs recorded from patients with medically

refractory epilepsy reflected the asymmetric distribution of brain
network connectivity. Brain networks mainly consisted of short-
distance connections. Regions in the EZ usually had higher DC
and NLP than those out of the zone. This information has great
potential to be applied to localize the epileptic focus clinically.

In summary, the analysis of complex brain network
connectivity based on the feature extraction of CCEPs can
provide effective and accurate information relating to the
localization and delineation of EZ, thus helping epileptologists
to make appropriate clinical decisions.
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The abnormality occurs at molecular, cellular as well as network levels in patients with
Alzheimer’s disease (AD) prior to diagnosis. Most previous connectivity studies were
conducted at 1 out of 3 (local, meso and global) scales in subjects covering only part
of the entire AD spectrum (subjective cognitive decline, SCD; amnestic mild cognitive
impairment, aMCI; and then fully manifest AD). Data interpretation within the framework
of disease progression is therefore difficult. The current study included 3 age- and
sex-matched cohorts: SCD (n = 32), aMCI (n = 37) and fully-established AD (n = 30).
A group of healthy elderly subjects (n = 40) were included as a normal control (NC).
Network connectivity was examined at the local (degree centrality), meso [subgraph
centrality (SC)], and global (eigenvector and page-rank centralities) levels. As compared
to NC, SCD subjects had isolated decrease of SC in primary (somatomotor and visual)
networks. aMCI subjects had decreased centralities at all three scales in associative
(frontoparietal control, dorsal attention, limbic and default) networks. AD subjects had
increased centrality at the global scale in all seven networks. There was a positive
association between Montreal Cognitive Assessment (MoCA) scores and DC in the
frontoparietal control network in SCD, a negative relationship between Mini-Mental State
Examination (MMSE) scores and EC in the somatomotor network in AD. These findings
suggest that the primary network is impaired as early as in SCD. Impairment in the
associative network also starts at the local level at this stage and may contribute
to the cognitive decline. As associative network impairment extends from local to
meso and global scales in aMCI, compensatory mechanisms in the primary network
are activated.

Keywords: network neuroscience, brain connectivity, centrality, Alzheimer’s disease, subjective cognitive decline,
amnestic mild cognitive impairment
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INTRODUCTION

Brain pathology of Alzheimer’s disease (AD) occurs decades
before the manifestations of clinical AD (Dubois et al., 2016).
With the pathological cascade, three different stages show the
progression of AD: preclinical AD, mild cognitive impairment
(MCI) and late stage of AD (Sperling et al., 2011). Subjective
cognitive decline (SCD) in the setting of preclinical AD is
defined by self-perception of worsening cognitive capacity but
no impairment in cognition on standard neuropsychological
assessments and no evidence for MCI or prodromal AD or
dementia (Jessen et al., 2014). SCD can significantly predict
MCI or dementia (Rabin et al., 2017). MCI, especially amnestic
mild cognitive impairment (aMCI), progresses to AD or other
forms of dementia more than people without MCI (Kantarci
et al., 2009). Such a three-stage continuum of AD progression
(SCD, aMCI, and AD) offers us a systematic perspective to
study AD.

Resting-state functional magnetic resonance imaging (rfMRI)
has been increasingly used as a reliable method (Zuo and
Xing, 2014) to detect brain network abnormalities in aMCI
(Agosta et al., 2012; Bharath et al., 2017; Wang et al., 2018b)
or AD (Binnewijzend et al., 2014; Wang et al., 2018b). The
rfMRI findings in AD and MCI are rather consistent across
different studies in different networks, such as default mode
network (Agosta et al., 2012), somatomotor network (Albers
et al., 2015), dorsal attention network (Qian et al., 2015), limbic
network (Nestor et al., 2003), and frontoparietal control network
(Agosta et al., 2012; Brier et al., 2012; Munro et al., 2015).
Nevertheless, relatively few studies have been systematically
examined across the entire three-stage continuum of AD
progression. Furthermore, rare quantitative conclusions of brain
network changes have been drawn on the dynamical mechanism
of the disease deterioration. Meanwhile, from a methodological
view, most previous studies focused on a single scale of functional
brain organization in AD, e.g., only at the global scale (Supekar
et al., 2008; Binnewijzend et al., 2014) or only at the local scale
(Grady et al., 2003; Klaassens et al., 2017). Thus, an examination
of multi-scale network topology across SCD, aMCI, and AD
would enhance the current understanding of neuroimaging
pathology of AD progression.

Network analyses of human brain functional connectomes,
based on graph theory, can advance our understanding of the
multi-scale intrinsic architecture of the human brain connectome
using different centralities (Zuo et al., 2012). Degree centrality
(DC) is the number of direct connections to a brain network
node and reflects local-scale connectivity. Subgraph centrality
(SC) characterizes the odd-cyclic subgraph or closed walk of
the network node, and represents a connectivity measure at
meso-scale (Zuo et al., 2012). Both eigenvector centrality (EC)
and page-rank centrality (PC) determine the nodal connectivity
with their adjacency connectivity at global-scale (Zuo et al.,
2012). More information about DC, SC, EC, and PC can also
be seen in Supplementary Materials 1. Recently, a few studies
have applied network centrality at a single scale, such as EC
(Binnewijzend et al., 2014; Adriaanse et al., 2016; Lou et al., 2016;
Qiu et al., 2016) or DC (Guo et al., 2016) in MCI or AD.

In this study, we aimed to draw a full picture of functional
changes by using network centrality at multi-scale (DC, SC, EC,
PC) in AD continuum (SCD, aMCI, and AD) and age- and
sex-matched healthy elderly subjects as normal control (NC).
Additionally, we evaluated the relationship between network
centrality at multi-scale and cognitive performances. Given
the three stages of AD continuum, we hypothesized that a
progression-dependent pattern of network centrality changes
was detectable at multiple scales.

MATERIALS AND METHODS

Participants
All our subjects are from the database (NCT 02353884, 02353845,
02225964). A total of 188 patients, including 47 SCD, 93 aMCI
and 48 AD, were recruited from the memory clinic of neurology
department of Xuanwu Hospital, Capital Medical University.
While 92 NC were recruited by advertisement from the local
community. All the subjects had no history of stroke, head injury,
or other major neuropsychiatric illness, such as Parkinson’s
disease, encephalitis, epilepsy, psychosis or congenital mental
growth retardation, alcohol or drug abuse, and other diseases
or treatments that can affect cognitive functions (Morris, 1993).
After being age- and sex-matched for each group, 139 subjects
(40 NC, 32 SCD, 37 aMCI, 30 AD) were included for
final analysis.

Demographic, Clinical, and Cognitive
Variables
The diagnoses for SCD, aMCI, and AD were made in consensus
by two consultant psychiatrists. The criteria for AD has
been reported in detail in the previous study (Wang et al.,
2014). Briefly, we diagnosed AD using the revised version
of Diagnostic and Statistical Manual of Mental Disorders 4th
Edition (DSM-IV) Criteria (American Psychiatric Association,
1994) for Dementia and the National Institute of Neurologic
and Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA) Criteria
(McKhann et al., 1984) for possible or probable AD. In
addition, patients with AD had the Clinical Dementia Rating
scale (CDRs) score of 1 and were older than 50 years
old (Morris, 1993). The criteria of aMCI was as follows:
(1) memory complaint (if possible) confirmed by an informant;
(2) preserved activities of daily living; (3) the scores for
the Chinese version of the Mini-Mental State Examination
(MMSE) ≥ 24; (4) CDRs score = 0.5 (Portet et al., 2006);
(5) not demented according to the DSM-IV (Petersen et al.,
1999, 2001; Petersen, 2003); and (6) age older than 50 years
old. More information about the criteria of aMCI has been
described in detail in a previous study (Zhang et al., 2017). The
criteria of SCD (Shu et al., 2018) included: (1) self-reported
persistent memory decline, which was confirmed by informants;
(2) performing normally on the MMSE or the Beijing version
of the Montreal Cognitive Assessment (MoCA; adjusted
for age, sex, and education); (3) CDRs score = 0; and
(4) age older than 50 years old. The criteria of NC were:
(1) no self-reported persistent memory decline; (2) performing
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normally on the MMSE or MoCA (adjusted for age, sex,
and education); (3) CDRs score = 0; and (4) age older than
50 years old.

We obtained information on age, sex and years of education
via interview, and developed a standard clinical evaluation
protocol as described above to collect scores forMMSE, Auditory
Verbal Learning Test (AVLT), MoCA, and CDRs from all
the participants.

MRI Acquisition and Processing
Magnetic resonance imaging (MRI) scans were acquired at
a 3.0 T Siemens scanner (Erlangen, Germany) at Beijing
Xuanwu Hospital, Capital Medical University. Participants were
all instructed to lie quietly and close their eyes, and received
a T1-weighted structural MRI scan (MP-RAGE sequence:
TR = 1,900 ms, TE = 2.2 ms, TI = 900 ms, FA = 9◦,
matrix = 256 × 256, slice thickness = 1.0 mm; 176 sagittal
slices, no gap) and a rfMRI scan (EPI sequence: TR = 2,000 ms,
TE = 40 ms, FA = 90◦, 28 axial slices, 4 mm isotropic voxel,
matrix = 64 × 64) of 8 min.

Both structural and functional image preprocessing were
completed in the Connectome Computation System (CCS1),
which has been described previously (Xu et al., 2015). Briefly,
CCS extended the network centrality analyses (Zuo et al., 2012)
from 3D volumetric element (voxel) to 2D surface element
(vertex) by projecting the 3D rfMRI images onto 2D cortical
surfaces (Chen et al., 2014). Such an analytic strategy has been
demonstrated to be more effective to mitigate partial volume
effects and increase test-retest reliability of rfMRI analyses
(Zuo et al., 2013; Zuo and Xing, 2014). First, T1 images were
employed to reconstruct individual cortical surfaces (Ségonne
et al., 2004, 2007). Second, rfMRI images were preprocessed in
individual native spaces to equilibrate, de-spike, correct slice
time and motion, normalize global mean intensity, regress out
the white matter, cerebrospinal fluid and Friston-24 motion
parameters, band-pass (0.01–0.1 Hz) filter and remove linear
and quadratic trends of the timeseries signals. Finally, the rfMRI
images werematched to their individual structural images using a
boundary-based registration (BBR) algorithm (Greve and Fischl,
2009). They were then further projected onto the fsaverage5
cortical surfaces in the standard MNI space (10,242 vertices
per hemisphere and 4 mm inter-vertex gap on average;
Thomas Yeo et al., 2011).

Quality control procedure was carried out with CCS to
high-quality preprocessed brain images for network centrality
analysis. Specifically, screenshots were obtained for skull
stripping, tissue segmentation, surface reconstruction, BBR
image registration, and the head motion correction during
rfMRI (Jiang et al., 2015). For those individuals with any
of the first three showing bad quality, the brain extraction
will be invented by manually editing. Meanwhile, head
motion of each participant met following criterion: the
mean frame-wise displacement (meanFD) < 0.2 mm, the
maximum degree of rotational movement (maxRot) ≤ 2◦ and

1http://lfcd.psych.ac.cn/ccs.html

the maximum distance of translational movement (maxTran)
≤ 2 mm.

Network Centrality Mapping and Statistics
The procedure of mapping the centrality metrics for individual
functional connectomes completely followed the methods
described by Zuo et al. (2012), except that the connectomes
were constructed on cortical surfaces. The fsaverage5 cortical
surface meshes consisted of 17,064 vertices with the preprocessed
rfMRI time series. Fisher-z transformed Pearson’s correlations
were calculated between each paired vertices. The significance
above the threshold (p = 0.0001, uncorrected) was used
to determine an edge connecting. This generated individual
binary adjacency matrices for subsequent network centrality
computation. Specifically, given a node, its degree centrality
(DC) was computed as the number of the edges connecting to
the node, and commonly measured a nodal direct connectivity
at a local network scale. SC measures the participation of
a node in all subgraphs at a meso network scale and is
calculated based on the first 20 eigenvalues and eigenvectors
of the adjacency matrix. At a global network scale, eigenvector
centrality (EC), which is the first eigenvector of the adjacency
matrix, is the one that corresponds to the largest eigenvalue
and can measure global features of the graph. PC is a
variant EC and introduces a small probability of 0.15 for
random damping to handle walking traps on a graph. All
these four metrics of network centrality have been shown
with moderate to high test-retest reliability in 3D volume
space and should be more reliable for their versions of 2D
surface space as computed in the present work, due to the
previous observation on the reliability improvement of local
functional connectivity with updates of computational space
(Zuo et al., 2013).

For each of the four types of network centrality described
above, its full cortical maps were first adjusted by individual
intracranial volume and then fed the subsequent FreeSurfer
group analysis to evaluate various group-level statistics. A
FSGD (FreeSurfer Group Descriptor) file was constructed for
the four groups of participants (NC, SCD, aMCI, and AD)
to implement a set of ANCOVA using general linear models
that considered diagnosis, sex, age, and years of education as
covariates with three contrasts of group comparisons (SCD vs.
NC, aMCI vs. NC, AD vs. NC). The vertex-wise significance
values for each contrast of the group comparisons were
corrected with false discovery rate (FDR) method (corrected
p = 0.05, minimal surface cluster area = 25 mm2). The
partial correlations between the mean centrality at cluster-
level within most abnormal topology metrics (≥ 2 stages of
SCD, aMCI, and AD) and behavioral measurements (MMSE,
AVLT, MoCA) were also evaluated after controlling age, sex,
and years of education. We used the Bonferroni corrections
for multiple comparisons at P < 0.05 and for groups at all
three scales.

For the purpose of locating the network at both network-
level and area-level, we reported the results with brain regions
showing significant changes across the groups using the cortical
parcellation of both functional networks (see Figure 1A), derived
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by Yeo et al. (2011) and anatomical Destrieux Atlas derived by
Fischl et al. (2004).

RESULTS

Age, sex and years of education were well matched among
groups. There were significant differences in MMSE, AVLT
and MoCA scores among groups (p < 0.001). AD had
significantly lower scores than the other three groups by
subgroups analyzed (Table 1).

Meso-scale Network Centrality Reduced in
SCD
Compared with NC, SC was decreased in the left somatomotor
network (paracentral cortex) and the right visual network
(occipital cortex) in SCD patients (Table 2, Figure 1B).

Multi-scale Network Centrality Altered in
aMCI
Compared with NC, DC was decreased in the right default
network (orbital gyri), the limbic network (left orbital and
right parahippocampal areas) and the right frontoparietal
control network (middle temporal area) in aMCI (Figure 1C).

In aMCI, SC was decreased in the limbic network (left
orbital cortex and right parahippocampal area), the left
default network (the orbital cortex), the right dorsal attention
network (superior parietal areas) and the right frontoparietal
control network (middle temporal area; Figure 1D). In aMCI,
PC was decreased in the default network (bilateral orbital
gyrus, right middle temporal and left frontal areas), the
right somatomotor network (precentral area), the right dorsal
attention network (superior parietal area) and the bilateral
limbic network (orbital areas), whereas, it was increased in
the left somatomotor network (paracentral area; Table 3,
Figure 1E).

Global-Scale Network Centrality Enhanced
in AD
Compared with NC, AD had an increase of global network
centrality but lacked any centrality changes at both local and
meso scales (Table 4). PC was increased in the visual network
(occipital areas), the left somatomotor network (paracentral
area), the left limbic network (temporal pole), the left dorsal
attention network (inferior temporal area), the left default
network (superior frontal gyrus) and the right ventral attention

FIGURE 1 | Multi-scale network centrality changes in AD progression. (A) The seven networks map in Yeo et al. (2011). (B) SC in SCD vs. NC. The reduced SC in
SCD was located in the left somatomotor network (left paracentral cortex) and the right visual network (right occipital cortex). (C) DC in aMCI vs. NC. The reduced
DC in aMCI were located in the right default network (orbital gyri), the right limbic network (parahippocampal areas) and the right frontoparietal control network
(middle temporal area). (D) SC in aMCI vs. NC. Except for the default, limbic and frontoparietal control network, the reduced SC in aMCI extended to the left default
network (orbital cortex) and the right dorsal attention network (superior parietal areas). (E) PC in aMCI vs. NC. Significant decreases of PC in aMCI were observed
within the default network (right middle temporal and bilateral orbital gyrus), the right somatomotor network (precentral area), the right dorsal attention network
(superior parietal area) and the left limbic network (orbital areas), whereas significant increases of PC in aMCI were detectable within the left somatomotor network
(paracentral area). (F) PC in AD vs. NC. The increased PC in AD were located in the visual network (occipital areas), the left somatomotor network (paracentral area),
the left limbic network (temporal pole), the left dorsal attention network (inferior temporal area), the left default network (superior frontal gyrus) and the right ventral
attention network (superior frontal area). (G) EC in AD vs. NC. A significant increase of EC was found in the right frontoparietal control network (inferior temporal
sulcus). All the above tests were thresholded at an false discovery rate (FDR) corrected significance level of p < 0.05. Gray curves indicate the boundaries according
to the seven networks map in Yeo et al. (2011). Abbreviations: NC = normal control; SCD = subjective cognitive decline; aMCI = amnestic mild cognitive impairment;
AD = Alzheimer’s disease; DC = degree centrality; SC = subgraph centrality; PC = page-rank centrality; EC = eigenvector centrality.
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TABLE 1 | Demographic information and behavioral measurements.

NC (40) SCD (32) aMCI (37) AD (30) F/ Chi-square P

Age (Years) 68.07 ± 6.44 66.70 ± 5.98 69.67 ± 7.48 69.61 ± 9.53 1.213 0.307
Sex (M/F) 16/24 12/20 19/18 12/18 1.693 0.638
Education (Years) 12.00 ± 4.44 11.59 ± 4.06 11.22 ± 3.97 10.03 ± 4.71 1.276 0.285
MMSE 28.93 ± 1.27a 27.53 ± 1.90b 26.49 ± 1.68b 17.27 ± 5.19c 113.595 <0.001

AVLT
Immediate recall 9.15 ± 1.82a 7.74 ± 1.77b 6.12 ± 1.82c 3.78 ± 1.29d 57.210 <0.001

AVLT
Delayed recall 9.85 ± 2.77a 8.28 ± 2.69a 4.27 ± 238b 1.04 ± 1.56c 75.514 <0.001

AVLT
Recognition 12.03 ± 2.69a 10.50 ± 2.63a 8.35 ± 3.61b 4.41 ± 2.85c 37.825 <0.001
MoCA 27.06 ± 1.98a 26.24 ± 1.74a 20.80 ± 3.56b 13.07 ± 4.78c 109.004 <0.001

Differences among diagnosis categories (NC, SCD, aMCI and AD) were tested with ANOVAs (LSD or Dunnett’s T3 post hoc comparisons; p < 0.05). Each subscript letter
denotes a subset of diagnosis categories whose column proportions do not differ significantly from each other at the 0.05 level. Abbreviations: NC, normal control; SCD, subjective
cognitive decline; aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; AVLT, Auditory Verbal Learning Test; MoCA, Montreal
Cognitive Assessment.

TABLE 2 | Full list of brain regions with significant SC differences between SCD and NC.

Contrast Index Hemi Brain regions Max (-log10p) Size (mm2) X Y Z NV

SCD < NC SC LH G_and_S_paracentral −10.643 63.72 −6.9 −22.9 68.2 12
RH Pole_occipital −7.409 91.49 20.2 −98.0 −2.9 7

Abbreviations: SCD, subjective cognitive decline; NC, normal control; SC, subgraph centrality; LH, left hemisphere; RH, right hemisphere; X, Y, Z, coordinates of primary peak locations
in the Talairach space; NV, number of vertex.

TABLE 3 | Full list of brain regions with significant centralities differences between aMCI and NC.

Contrast Index Hemi Brain regions Max (-log10p) Size (mm2) X Y Z NV

aMCI < NC DC LH G_orbital −10.453 29.37 −24.8 11.6 −16.7 5
RH G_temporal_middle −10.045 119.04 60.7 −38.4 −9.8 10

G_orbital −7.971 36.91 29.2 19.4 −18.4 6
G_oc-temp_med-Parahip −7.005 47.24 23.1 −19.3 −22.6 7

SC LH G_orbital −11.003 39.17 −33.6 25.0 −16.9 4
G_orbital −9.343 34.14 −24.8 11.6 −16.7 6
G_orbital −6.219 44.71 −43.7 35.9 −14.4 7

RH G_parietal_sup −8.546 47.68 16.6 −67.5 45.7 5
G_temporal_middle −7.911 69.76 62.7 −36.0 −9.6 6
G_oc-temp_med-Parahip −5.842 40.90 25.1 −20.0 −18.9 6

PC LH G_orbital −10.316 78.77 −33.6 25.0 −16.9 8
G_front_middle −6.922 97.50 −22.3 59.7 5.6 7

RH G_orbital −11.358 44.44 29.2 19.4 −18.4 7
G_precentral −10.918 47.73 18.6 −13.7 64.9 7
G_parietal_sup −10.064 47.68 16.6 −67.5 45.7 5
G_temporal_middle −8.712 60.58 54.5 0.1 −26.2 5

aMCI > NC PC LH G_and_S_paracentral 10.152 33.13 −7.2 −20.0 68.4 6

Abbreviations: aMCI, amnestic Mild Cognitive Impairment; NC, normal control; DC, degree centrality; SC, subgraph centrality; PC, page-rank centrality; LH, left hemisphere; RH, right
hemisphere; X, Y, Z, coordinates of primary peak locations in the Talairach space; NV, number of vertex.

TABLE 4 | Full list of brain regions with significant centralities differences between AD and NC.

Contrast Index Hemi Brain regions Max (-log10p) Size (mm2) X Y Z NV

AD > NC PC LH G_and_S_paracentral 11.596 87.73 −6.9 −22.9 68.2 16
Pole_occipital 11.142 90.27 −13.3 −99.4 5.4 8
Pole_temporal 10.471 85.61 −41.9 −0.1 −29.4 6
G_temporal_inf 8.850 99.45 −50.8 −45.8 −14.6 7
S_front_sup 4.067 80.70 −31.7 14.7 43.2 7

RH Pole_occipital 11.211 284.74 20.2 −98.0 −2.9 22
G_front_sup 8.651 56.65 10.7 4.5 61.3 8

EC RH S_temporal_inf 9.807 90.48 56.8 −44.2 −10.8 7

Abbreviations: AD, Alzheimer’s disease; NC, normal control; PC, page-rank centrality; EC, eigenvector centrality; LH, left hemisphere; RH, right hemisphere; X, Y, Z, coordinates of
primary peak locations in the Talairach space; NV, number of vertex.
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FIGURE 2 | Post hoc cluster-level analyses in the left somatomotor network. Multi-scale centrality and behavioral performance in the left somatomotor network
region among NC, SCD, aMCI and AD. Compared with NC, the area of the left somatomotor network showed centralities change at local, meso and global scales in
AD progression. Mean DC, SC and EC values decreased in SCD, increased in aMCI and AD. The scatter plot exhibited negative association between: (1) mean SC
values and auditory verbal learning test (AVLT)-Recognition scores in the NC (r = −0.4093, p < 0.05); and (2) mean EC values and Mini-Mental State Examination
(MMSE) total scores in the AD (r = −0.4908, p < 0.05).

network (superior frontal area; Figure 1F). EC was increased
in the right frontoparietal control network (inferior temporal
sulcus; Figure 1G).

Post hoc Cluster-Level Analyses
Compared with NC, the area of the left somatomotor network
showed changes in centralities at local, meso and global scales
in AD progression. DC, SC, PC and EC decreased in SCD but
increased in aMCI and AD. When the relationship between
the centralities and cognitive performance was deeply analyzed,
negative associations between SC and AVLT-Recognition scores
in NC (r = −0.4093, p < 0.05) and between EC and MMSE
total scores in AD (r = −0.4908, p < 0.05) were found
(Figure 2).

Compared with NC, the area of the right frontoparietal
control network also exhibited multi-scale network centrality

changes in AD progress. SCD had a decrease of DC and PC and
an increase of SC and EC. DC, SC, PC, and EC decreased in aMCI
but increased in AD. SCD group showed a significant positive
association between DC and MoCA scores (Figure 3).

DISCUSSION

The main finding of the present study is that different functional
network centralities changed at different scale levels across the
spectrum of SCD, aMCI, and AD. aMCI exhibited multi-scale
abnormal centralities, while SCD and AD exhibited single-scale
abnormal centrality: (1) primary, meso-scale, and impairment
in SCD; (2) both primary and associative, impairment and
compensation coexisted in aMCI; and (3) both primary
and associative, extended global compensation in widespread
networks in AD.

Frontiers in Neuroinformatics | www.frontiersin.org 6 April 2019 | Volume 13 | Article 26167

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wang et al. Network Connectivity Impairments in AD Progression

FIGURE 3 | Post hoc cluster-level analyses in the right frontoparietal control network. aMCI showed the lowest centralities at local, meso and global scales in the
area of the right frontoparietal control network. The scatter plot exhibited a positive association between mean DC values and Montreal Cognitive Assessment
(MoCA) total scores in the SCD (r = 0.5076, p < 0.05).

Meso-scale Topological Impairment in
Primary Network in SCD
In this study, we observed decreased meso centrality (SC)
in the left somatomotor network and right visual network
in individuals with SCD. It is worth noting that we found
no enhanced centralities in SCD. Compensatory mechanisms,
frequently proposed in aMCI (Qi et al., 2010) and AD
(Agosta et al., 2012), seem to have not yet happened at this
point since brain network impairments are not yet severe
enough. The motor system receives sensory information for
movement control (Rizzolatti et al., 1997). Many pyramidal
and extrapyramidal motor impairments affect a substantial
portion of AD patients and progressively worsen along with
cognitive impairment (Albers et al., 2015). The onset of
accelerated rates of motor decline can occur 12 years before the
onset of MCI in initially cognitively healthy adults (Buracchio
et al., 2010). In the present study, the decrement of multi-
scale centrality in the somatomotor network may indicate
motor dysfunction and further supports the theory that motor
impairment could occur at an early stage of AD, or even
precede the onset of the cognitive impairment for AD by a
decade and longer (Albers et al., 2015). The previous study
has detected an increased functional brain network efficiency
during the audiovisual task in aging (Wang et al., 2018a),
while there is a negative connection between within-network
functional connectivity in the visual network and levels of
SCD (Contreras et al., 2017). These results indicate visual
network impairment beginning from SCD. Our result provides

further evidence for topological impairment in the visual
network, which may be associated with early indications of
cognitive impairment. In summary, these findings might help
us to better identify or understand early, multi-scale primary
network (e.g., sensory and motor) impairments caused by the
early AD.

Multi-scale Topological Impairment and
Compensation Activated in aMCI
Global-scale centrality impairment and compensation in primary
network coexist in aMCI. We found both increased and
decreased PC in aMCI in the somatomotor network. Earlier
studies have reported both increased and decreased brain
connectivity in aMCI as well (Qi et al., 2010; Wang et al.,
2015). In contrast to SCD with only decreased centrality at
the meso scale and AD with only increased centrality at
global-scale, aMCI exhibited bidirectional alterations of brain
network centrality at the global-scale. Summarizing the content,
we draw a conclusion that disconnection syndrome (Qiu
et al., 2016) and compensation in primary network coexist
in aMCI.

Multi-scale centrality impairment in associative networks
occurs in aMCI. We found decreased DC, SC, and PC in
the limbic and default mode network, reduced SC and PC in
the dorsal attention network, as well as declined DC and SC
in the frontoparietal control network in aMCI. In previous
studies, atrophy (Callen et al., 2001) and hypometabolism
(Nestor et al., 2003) in the limbic network in AD have
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been widely reported. Brain alterations in the default mode
network in aMCI, such as amyloid deposition (Agosta et al.,
2012), atrophy (Thompson et al., 2003), decreased activity
(Sorg et al., 2007), and reduced connectivity (Qi et al., 2010)
have also been reported. Our findings in the two networks
(limbic and default) are consistent with previous studies and
add the evidence for functional disconnection in aMCI. In the
present study, significant meso- and global-scale topological
impairments were found in the dorsal attention network but
not in the ventral attention network. These findings suggest
that functional connectivity appears to be preferentially affected
in the dorsal attention network and preserved or less impaired
in the ventral attention network in aMCI (Sorg et al., 2007;
Qian et al., 2015). Dorsal attention network is involved in
the endogenous attention orienting (top-down) process (Fox
et al., 2006), while ventral attention network is responsible for
reorienting attention in response to salient sensory stimuli (Fox
et al., 2006; bottom-up process). In aMCI patients, deteriorations
in goal-relevant processing such as divided attention and
selective attention (Dannhauser et al., 2005; Redel et al., 2010)
have occurred, while still retain the ability for bottom-up
processing (Zhang et al., 2015). This asymmetric pattern of
network topology impairments of attention networks might help
us better understand attention deficits in patients with aMCI.
As for the frontoparietal control network, previous studies are
not quite consistent. One study reported decreased connectivity
in aMCI (Munro et al., 2015), while another one reported
increased connectivity (Agosta et al., 2012). The discrepancy
between these studies may be attributed to differences in
severity of cognitive impairment and diagnostic criteria for
patients. Centrality alterations, at the local and meso rather
than global scales in our study, may suggest relatively less
impairment in the frontoparietal control network in the stage
of aMCI.

Global Compensation in All Seven
Networks in AD
An intriguing finding of this study is that we probe a unique
pattern of compensation in AD patients: enhanced global
centrality in large scale was observed in all seven networks
(both primary and associative networks). This result is consistent
with previous studies, which revealed increased activity and
connectivity in AD (Zhou et al., 2010; Agosta et al., 2012). A
possible reason for such augments in AD may be that additional
neural resources are recruited to compensate for losses. And
this hypothesis has been supported by earlier studies showing
that patients with AD are able to succeed in episodic memory
tasks due to compensatory neuronal activity (Buckner, 2004;
Schwindt and Black, 2009). There is an alternate network, a
compensation network, consisting of the left posterior temporal
cortex, calcarine cortex, posterior cingulate, and the vermis
(Stern et al., 2000). Our study showed that centrality enhanced
at the global scale in AD, which suggests that compensation
in this stage of the disease has extended from local to remote.
Furthermore, compensation is also active in both primary and
associative networks.

Progressed From Local to Global,
Impairment to Compensation in AD
Continuum
Our previous study showed that the rich club of the
human connectome was disrupted from SCD to AD (Yan
et al., 2018). In the current study, SCD exhibited only
primary network (sensory and motor) impairments, while
aMCI and AD progressed to associative network impairments,
such as limbic, default, attention and frontoparietal control
networks. In addition, SCD displayed meso impairment,
aMCI demonstrated local, meso and global scale alterations
(impairment and compensation coexist), but AD had only
global compensation. These findings show a progressive pattern
of functional brain network in AD continuum: impairment
occurs as early as in SCD (decreased SC) and continues
and becomes severe enough in aMCI, then compensation
is warranted.

When focused on both time and spatial cluster-level analysis,
two interesting areas were found. In the left somatomotor
network, centrality at all three levels decreased in SCD but
increased in aMCI and AD. In addition, augmented centrality
at global-scale only in AD exhibited a significantly negative
relationship with cognitive performance (Figure 2). These
findings provide evidence that compensatory mechanisms
followed with clinical mechanisms progressed. As to the right
frontoparietal control network (Figure 3), centralities decreased
at the local scale, increased at the meso scale and coexisted
at the global scale in SCD, while they decreased in aMCI and
increased in AD at all three levels. Furthermore, only decreased
centrality at local-scale in SCD showed a significant positive
association with cognitive performance. We proposed that
local associative network impairment directly affected cognitive
function at the very early stage of AD, but subtle compensatory
function at the meso and global scale balanced further
cognitive impairment.

Based on the results from the current study, we hypothesize
that brain network impairment starts in the primary network
in SCD. Impairment in the associative network also starts at
the local level at this stage and may contribute to the cognitive
decline. As associative network impairment extends from local
to meso and global scales in aMCI, compensatory mechanisms
in the primary network are activated. Such a progressive pattern
across the spectrum of SCD, aMCI, and AD, may underlie
increased network topological scale and gives a dynamical
description of the pathology of AD progression.

Limitations
Several limitations should be mentioned here: first, our study
was not a real cohort, a longitudinal design in the future
would still be necessary to quantitatively elucidate its dynamic
topological changes. Second, we only had resting state functional
magnetic resonance imaging (fMRI) data for this study, adding
biomarkers will be more persuasive. Third, the fMRI data sets
in this study had limited spatial and temporal resolutions,
better spatial-temporal resolutions would definitely strengthen
our conclusion.
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CONCLUSION

SCD had an isolated decrease of SC in the primary (somatomotor
and visual) networks. aMCI had both a decrease and an increase
of global centrality in the primary motor network, as well
as decreases at all three levels in associative (frontoparietal
control, attention, limbic and default) network areas. AD had
increased centrality at the global scale in all seven networks.
In the cluster level, brain network impairment starts in
the primary network in SCD. Impairment in the associative
network also starts at the local level at this stage and may
contribute to the cognitive decline. As associative network
impairment extends from local to meso and global scales in
aMCI, compensatory mechanisms in the primary network are
activated. Such a progressive pattern across the spectrum of SCD,
aMCI, and AD, may underlie increased network topological
scale and gives a dynamical description on the pathology of
AD progression.
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Objective: Stimulus visual patterns, such as size, content, color, luminosity, and interval,

play key roles for brain–computer interface (BCI) performance. However, the three

primary colors to be intercompared as a single variable or factor on the same platform are

poorly studied. In this work, we configured the visual stimulus patterns with red, green,

and blue operating on a newly designed layout of the flash pattern of BCI to study the

waveforms and performance of the evoked related potential (ERP).

Approach: Twelve subjects participated in our experiment, and each subject was

required to finish three different color sub-experiments. Four blocks of the interface were

presented along the edge of the screen, and the other four were assembled in the center,

aiming to investigate the problem of adjacency distraction. Repeated-measures ANOVA

and Bonferroni correction were applied for statistical analysis.

Main results: The averaged online accuracy was 98.44% for the red paradigm,

higher than 92.71% for the green paradigm, and 93.23% for the blue paradigm.

Furthermore, significant differences in online accuracy (p< 0.05) and information transfer

rate (p < 0.05) were found between the red and green paradigms.

Significance: The red stimulus paradigm yielded the best performance. The proposed

design of ERP-based BCI was practical and effective for many potential applications.

Keywords: brain–computer interface, ERP, color of stimulus, visual stimulus, single character paradigm

INTRODUCTION

Brain–computer interface (BCI) enables patients suffering from movement disorders to
communicate with others or interact with the outside world through electroencephalogram (EEG),
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and more
(Vidal, 1973, 1977; Wolpaw et al., 2000, 2002). Evoked related potential (ERP) from EEG/MEG
can be reliably measured by scalp electrodes or sensors (Sutton et al., 1965; Coles and Rugg, 1995).
To date, most research works on BCI can be roughly divided into several categories according to
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the types of signals used, especially ERP-based BCI (Farwell
and Donchin, 1988; Furdea et al., 2009; Kübler et al., 2009;
Zhang et al., 2012; including P300-BCI), motor imagery BCI
(Pfurtscheller and Neuper, 2001; Wang et al., 2006; Hwang et al.,
2009; Jiao et al., 2018), steady-state visual evoked potentials
(SSVEP) BCI (Ortner et al., 2011; Jiao et al., 2016; Nakanishi et al.,
2018; Zhang et al., 2018), hybrid BCI (Pfurtscheller et al., 2010;
Li et al., 2016), and so on. In the present work, we focused on
ERP-based BCI, which is one of the most promising approaches.

A commonly used component in ERP is the visual evoked
potential (VEP) P300 or P3, which is generally elicited by the
oddball paradigm. P300 is characterized by a latency of 250–
500ms after stimulus, and the positive deflection is stronger
than other components (e.g., P100, N170, and N200) prior to it
(Sutton et al., 1965). Therefore, the VEP P300-BCI stands for the
utilization of P300 as the way to discriminate the target and the
non-target. The first VEP P300-BCI, otherwise known as P300
speller, was introduced by Farwell and Donchin (1988). In their
study, subjects were asked to sit in front of a screen with a 6
× 6 matrix presenting 26 letters and 10 digits and required to
count the number of flashes of target characters silently in the
row–column paradigm (RCP). However, adjacency-distraction
errors and double-flash errors are the main defects of RCP. To
decrease the impact of these two, researchers found ways to
address this problem frommultiple levels. Townsend et al. (2010)
designed an 8 × 9 checkerboard paradigm (CBP) to separate
two 6 × 6 matrices and arrange all rows of one matrix to flash
randomly first before the columns, thereby effectively avoiding
both abovementioned errors. Jin et al. (2010) composed a new
method that mathematically combined the stimuli presented to
improve the performance and yielded a higher bit rate than that
of the RCP. Paralleling with RCP, the single-character paradigm
(SCP), in which each character is individually highlighted,
fully capable of avoiding adjacency distraction, has also been
extensively studied (Fazel-Rezai et al., 2012; Jin et al., 2015).
To compare these two mainstream paradigms (RCP and SCP)
fairly, Guger et al. invited 100 healthy subjects to perform a
spelling task, and the result showed that 72.8% (N = 81) of
the subjects spelled RCP with 100% accuracy and 55.3% (N =

38) of the subjects did the same in SCP. However, the averaged
P300 response at Cz for RCP was 7.9 µV lower than the 8.8 µV
achieved in SCP (Guger et al., 2009). Moreover, a modified SCP
called lateral SCP provided a better performance than RCP with
respect to online accuracy and bit rate (Pires et al., 2012). Thus,
RCP and SCP are both promising methods to establish a practical
BCI system.

The effects brought by stimuli have been explored in many
aspects, such as the interstimulus interval (Sellers et al., 2006),
the background color of stimulus (Salvaris and Sepulveda, 2009),
the face stimulus (Zhang et al., 2012; Jin et al., 2014), the moving
stimulus like vertical moving bars (Hong et al., 2009), flipping
characters (Martens et al., 2009), zooming symbols (Cheng et al.,
2018), and so on. As for color, white and black backgrounds
were compared. Consequently, white backgroundwas superior to
the black one in terms of performance (Salvaris and Sepulveda,
2009). Green (onset)/blue (offset) stimulus yielded a better
practical performance in P300-BCI than white/gray stimulus

(Takano et al., 2009). Moreover, the luminosity contrast was also
investigated for P300 speller (Li et al., 2014). The RGB colors
acting as stimuli have been utilized to compare EEG classification
algorithms or feature extraction methods (Rasheed and Marini,
2015; Alharbi et al., 2016). However, the paradigm was limited to
one square pattern responsible for presenting colors under a gray
background, with a stimulus duration of 3 s one time, instead of
the oddball paradigm.

In this study, we introduced a new layout of flash pattern
on the basis of SCP, with red, green, and blue stimuli under a
white background. In addition, aside from P300, other visual
ERP waveforms, such as P200 (P2), N2, and N400 (N4), have
already been proven beneficial to improve BCI performance.
For example, Guo et al. (2008) introduced motion-onset VEPs
including P2 and N2, to deliver control command successfully;
Jin et al. (2014) suggested that N4 helps improve the online
accuracy of ERP-based BCI. Therefore, the waveform features of
P2, N2, P3, and N4 were also considered during ERP analysis in
our study.

MATERIALS AND METHODS

Subjects
Twelve healthy subjects (S1–S12), comprising six males and six
females aged 22–28 years, participated in our experiments. All
subjects had normal color vision, and seven of them participated
in a BCI experiment for the first time. The local ethics committee
approved the consent form and the experimental procedure
before any of the subjects participated. All subjects were informed
of the whole online-and-offline procedure beforehand, and they
were allowed to leave the experiment anytime if they felt
uncomfortable during the experiment.

Experimental Design
A 20-in. LCD, Lenovo UOAFG989, was set with sRGB color
gamut and 1,600 × 900 resolution, and its maximum luminous
intensity was 200 cd/m2 when displaying white. A subject was
seated 70 cm away from the display in a dimly lit laboratory, with
ambient light of 40 ± 9.2 lx. Psychotoolbox from MATLAB was
operated for the flash pattern. Red (255, 117, 117), green (117,
255, 117), and blue (117, 117, 255) colors were chosen to be the
stimuli by turns. The stimulus onset asynchrony (SOA) was set
to 400ms, and the duration of stimulus was 200ms throughout
all experiments.

The specific layout of the pattern is shown Figure 1. Four
square blocks (108 × 108) were distributed at the four corners
of the screen, whereas the other four were assembled in the
center. Altogether, eight square blocks took turns to be the target.
Figure 1A illustrates the original presentation of the pattern
before the experiment began, and Figure 1Bwas merely captured
as an example for the ongoing “blue” experiment. Here, the
color of the stimulus can also be represented by red or green
in their own color sub-experiment. Figure 1C demonstrates the
color configuration of the three paradigms. In this study, three
paradigms were presented to every subject in order. We called
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FIGURE 1 | The layout of the experiment. (A) The original pattern; (B) the screenshot of the “blue” experiment; (C) the legend of the three stimuli.

them R-P (red paradigm), G-P (green paradigm), and B-P (blue
paradigm) for convenience.

The flowchart of the set of experiments is shown in Figure 2.
Each paradigm consisted of offline and online sessions. As
illustrated in Figure 2, one offline experiment had four runs, and
each run included four epochs. One epoch stood for one target
block to be focused on, and 16 trials represented the repeating
times applied in each epoch. When an epoch began, the subject
focused on the target block where the hint showed before and
counted the flashes in the target block silently, at the same time,
ignoring other flashes lighted in non-target blocks. When the
target flash had been shown for the predetermined (i.e., 16 in
this study) times, one epoch finished, and the hint would move
on to the next block. Then, that block would take the place of
the former as the new target to be focused on. After finishing
four runs of offline, a model of the subject would be built. Then,
the online experiment would operate 16 blocks to be the targets
one by one with feedbacks. As for the feedback, the four blocks
near the edge were represented by A (up left), B (up right), C
(bottom left), and D (bottom right), and the four in the center
with E, F, G, and H were assigned in the same way. The number
of trials for recognition was chosen automatically via an adaptive
strategy, which was explained in the section Online Strategy (Jin
et al., 2011). Compared with offline experiments, the online one
saved trials and delivered feedbacks in a timely manner.

Given that the order of “color” displayed could influence the
BCI performance, we arranged S1, S2, S9, and S12 to follow
the order of R(red)–G(green)–B(blue). S3, S4, S6, and S8 were
arranged in G–B–R. S5, S7, S10, and S11 were arranged in B–R–
G (see Table 1). This arrangement could lead to relative fairness
in the subsequent analysis.

Electroencephalogram Acquisition
In this study, the EEG signals were recorded by g.USBamp and
32-channel g.EEGcap (Guger Technologies, Graz, Austria). The

amplifier was set with a sample rate of 256Hz, a sensitivity line
of 100 µV, a band-pass filter from 0.5 to 30Hz, a notch filter at
50Hz to remove AC artifacts, and impedances below 10 k�. All
14 electrodes selected from the 10–20 international system were
F3, Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, O1, Oz, and O2, which
were referenced at right mastoid and grounded at FPz (Figure 3).

Feature Extraction and Classification
After the offline data acquisition for each subject, feature
extraction and classification were performed to build a personal
model for his or her online session later. In terms of filtering,
a third-order Butterworth filter with a band pass from 1 to
30Hz was applied to raw EEG data. Then, according to the
labels attached to every flash (which were simultaneously made
during the data acquisition), the 100-ms pre-stimulus (flash)
and the 800-ms post-stimulus data segments (altogether 900-
ms data segment) were selected. Moreover, the latter 800ms was
reserved after baseline correction by means of the former 100ms.
Thereform, a three-dimensional matrix was constructed by the
factors of channels, sampling rate, and trials realized for one
subject. As for downsampling, the second dimension (related to
time shaft) of the matrix was downsampled to 36Hz, instead of
the original sample rate of 256Hz. Therefore, the feature vector
with 14 channels× 29 time points was accessible for the classifier.

Here, we adopted the Bayesian linear discriminant analysis
(BLDA), which was first developed by Hoffmann et al. (2008)
and successfully applied to a P300-BCI system to classify EEG
data, because of its capability to better overcome the overfitting of
high-dimensional data or data containing noise. Moreover, this
method is relatively efficient in the ERP-BCI system (Chen et al.,
2015). Then, 16-fold cross-validation was performed after model
building, so that the scores of each flash can be achieved, and the
target flash can obtain the highest score among the eight.

To improve the model, we applied a trial selection method
to help eliminate the error trials in offline data. For example,
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FIGURE 2 | Flowchart of our experiments (note: exp here stands for experiment).

TABLE 1 | The order of paradigms for each subject.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

R-P 1 1 3 3 2 3 2 3 1 2 2 1

B-P 2 2 1 1 3 1 3 1 2 3 3 2

G-P 3 3 2 2 1 2 1 2 3 1 1 3

“1” means the subject did the corresponding paradigm first, and “2” represents second

and “3” did the last.

one block needs to be counted for 16 times in one run (see
Figure 2). In Figure 4, we demonstrated the whole process. If
the first trial was recognized as false according to the classifier,
the “first” would be removed (like the red frame in the left
panel of Figure 4), and the 15 remaining trials would fill up;
however, not all the blocks enjoyed 16 times of repetition after
eliminating, so on account of the integrity and uniformity, we
discarded some trials in the green frame and kept all blocks with
15 repetition times (see the right panel of Figure 4). In this case,
we eliminated the distraction brought by the new start of a target
fixation to some extent. This modification was only executed
once, considering the sufficiency of data used to perform the
subsequent overlapping averaging process. Then, the rest of the
trials were sent to the classifier again to rebuild a model for
favorable performance.

Online Strategy
After achieving the model developed on the basis of offline
datasets, the online real-time feedback could be presented
smoothly to the subject every time as one block’s recognition
was completed. However, it took fewer trials than an epoch did
in offline session, because the system judged whether the last
two successive results were the same in every block recognition.

FIGURE 3 | The electrodes selected from the 10–20 system.

If so, the process of trials for the block would be stopped,
and the last result would be shown as the feedback. Otherwise,
the maximum trials of one block, which was set to 16, would
be performed. In this way, the feedback of each block was
printed successively on the screen until the 16 blocks were
completely recognized.

Data Analysis and Statistics
Two important performance indexes are accuracy and
information transfer rate (ITR), which were used to evaluate a
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FIGURE 4 | Example for the error trials before and after model modification.

BCI system. The latter one can be calculated as follows:

B =

{

log2N + Acc · log2Acc+ (1− Acc) · log2

(

1−Acc
N−1

)

0 < Acc < 1

log2N + Acc · log2Acc Acc = 1
(1)

ITR =
B · 60

t
(2)

In formula 1, N denotes the possible choices in one trial, and
whereas every choice shares the equal possibility to be lighted,
here N= 8; Acc represents the classification accuracy. In formula
2, t is the time cost for operating the trials, and ITR (bit/min) can
be achieved through calculation.

In terms of statistics, all the variables were first tested under
Ryan–Joiner test (R-J test), which is similar to the Shapiro–Wilk
test, for normal distribution. Then, repeated-measures ANOVA
(rm-ANOVA) was applied to test the significance brought by the
color factor. However, before RM-ANOVA, Mauchly’s sphericity
test was executed, and if unsatisfactory, Greenhouse–Geisser
correction would be chosen to revise degree of freedom. Finally,
Bonferroni correction was implemented in post hoc comparison.
The significance level was α = 0.05 after Bonferroni correction.

Color Contrast Calculation
Li et al. (2014) investigated the effects of luminosity contrast
on BCI performance. It was reported that higher classification
accuracy was achieved by a high-luminosity contrast; higher
amplitude and shorter latency of VEP P300 were also released
by the high-luminosity contrast stimulus. The following were
the calculation formulas of luminosity contrast mentioned in
Li’s study:

L = 0.2126 ∗ R+ 0.7152 ∗ G+ 0.0722 ∗ B (3)

X =

{

((XsRGB + 0.0550)/1.055 ) ˆ2.4 XsRGB > 0.03928
XsRGB/12.92 XsRGB ≤ 0.03928

(4)

The X above can be R or G or B.

RsRGB = R8bit/255
GsRGB = G8bit/255
BsRGB = B8bit/255

(5)

The ratio between the display color (L1) and the background
color (L2) is

Luminosity Contrast Ratio =
L1 + 0.05

L2 + 0.05
(6)

In this work, we calculated the corresponding ratio for the three
stimuli under white background according to the formulas above
and discussed the results in the section Layout of the Stimulus.

RESULTS

ERP Analysis
Figure 5 shows the grand averaged ERP waveforms over 14
channels with three curves representing three different color
types of stimulus in a single-channel plot. Four kinds of colors
were shadowed behind the neighborhood of peak point, with the
rule that the minimum and the maximum of three peak points
(latency) would be selected, and the range would be formed
[min −10ms, max +10ms]. Such rules were also feasible for
the condition that only one or two curves displayed the desired
signal, whereas the rest did not.

Figure 6 illustrates the discrimination between the target and
the non-target over all sites from the three paradigms.We applied
a time window with 0–800 ms after a stimulus and considered
the target and non-target ERP segments as the inputs of the
calculation shown below to obtain the R-squared values.

r(x)2 =

( √
N1N0

N1 + N0
·
mean

{

x| y = 1
}

−mean
{

x| y = 0
}

std
{

x| y = 1, 0
}

)2

(7)
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FIGURE 5 | Grand averaged evoked related potential (ERP) waveforms of targets across all 12 subjects from three paradigms overall 14 electrodes. Note: Four kinds

of ERP signals (e.g., P2, N2, P3, N4) were demonstrated with different backgrounds in each plot of the electrode if existing.

FIGURE 6 | R-squared value maps of three paradigms throughout all 14 channels for S1–S12 subjects for discrimination between the target and the non-target.

In formula 7, x represents the value; y can be “1” standing for the
target samples, whereas “0” for the non-target ones; and N1 and
N0 are the corresponding numbers of the groups. In Figure 6, the
polar color turned darker as discrimination went more obvious
between the two.

P2

P2 peak is typically evoked following N100 in visual ERP-based
BCI and varies between 150 and 275ms. P2 is related to visual
search, attention, and memory (Freunberger et al., 2007). In
this study, we explored P2 in parieto-occipital areas of the
scalp. Through statistical analysis, the stimulus color significantly
affected the P2 peak latency at electrodes of Oz [F(2, 22) = 8.762,
p < 0.01]. Then, comparison within groups indicated that G-
P’s P2 latency was observed significantly longer than that of B-P
at Oz (p < 0.01).

N2

In Figure 7, the significance of the N2 peak latency was revealed
at O1 [F(2, 22) = 11.672, p < 0.01; G-P > R-P: p < 0.01, G-P >

B-P: p < 0.05], at O2 [F(2, 22) = 30.078, p < 0.01; G-P > R-P: p <

0.01, G-P> B-P: p< 0.001], and at P8 [F(2, 22) = 17.870, p< 0.01;
G-P > R-P: p < 0.01, G-P > B-P: p < 0.001]. Thus, the N2 peak
evoked by G-P was later than that for R-P and B-P significantly at
electrodes O1, O2, and P8, respectively. However, no significance
has been detected either in tests of within-subjects effects or in
post hocmultiple comparisons in terms of N2 amplitude.

Accuracy and Bit Rate of Brain–Computer
Interface
Figure 8A displays the offline accuracy and bit rate, which
was averaged over 12 subjects and overlapping by trials. R-P
yielded a better offline performance depending on the highest
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FIGURE 7 | The N200 latency boxplot with significance at four sites. Note: the

label “*” means the significance of two groups is p < 0.05; meanwhile, **p <

0.01 and ***p < 0.001; the color of the box indicates the

corresponding paradigm.

offline accuracy and the least trials to reach 100%. Furthermore,
Figure 8B depicts the single trial offline classification accuracy,
but no significant difference was found.

Table 2 lists the online performance of 12 subjects in detail,
and p-value was tested among the three paradigms for three
indexes [i.e., accuracy (%), ITR (bit/min), and AVT] closely
behind. However, p-value shows significance in accuracy and ITR
between R-P and G-P.

Effects by Model Modification
By utilizing the method mentioned in the section Feature
Extraction and Classification, the error trials changed,
as displayed in Figure 9. Through two-way RM-ANOVA
with the factors of method (before and after model
modification) and stimulus color, significance was found in
the factor of color [F(2, 22) = 4.942, p < 0.05] and method
[F(1, 11) = 21.868, p < 0.01] while it was not found in
the interaction of the two factors [F(2, 22) = 0.979, p >

0.05]. In post hoc of model modification, error trials were
significantly reduced (p < 0.01). Meanwhile, the sum of error
trials for subjects after the modification was significantly
reduced [F(1, 11) = 21.868, p < 0.01] as well. Thus, the
efficiency of the model modification method in this work
was proved.

Moreover, although stimulus color significantly influenced the
error trials before modification [F(2, 22) = 4.585, p < 0.05] and
after it [F(2, 22) = 4.040, p < 0.05], no significance was found in
post hoc in error trials either before modification or after it.

Effects by the Layout
As mentioned in the section Effects by Model Modification, the
layout of the pattern may also influence the offline accuracy.
Through two-way RM-ANOVA, we found that the interaction
of the two factors was significant [F(2, 22) = 4.424, p <

FIGURE 8 | Offline accuracy and bit rate analysis. (A) Overlapping average per

trial. (B) Single-trial per subject.

0.05]. Therefore, we shifted the two-way RM-ANOVA to one-
way RM-ANOVA to detect the simple effect of each factor.
The layout factor affected error trials significantly in G-P
[F(1, 11) = 6.289, p < 0.05] and in the sum [F(1, 11) = 5.482,
p < 0.05].

When color acted as the factor, significance was only observed
before modification [F(2, 22) = 4.545, p < 0.05; G-P > B-
P: p < 0.05). Nevertheless, the four inner blocks produced
more error trials than the outer ones, and the difference was
significant (Figure 10).

The sum of offline error trials was 48 in the four outer
blocks through the three paradigms, and it counted to 85 in
the inner ones. Specifically, 8,640 times [16 targets × (16–
1) times × 12 subjects × 3 paradigms] was counted by 12
subjects during the three paradigms; thus, 0.56% error rate
occurred in the four outer blocks, and 0.98% occurred in the
inner ones.

Subjects’ Feedback
Subjects were asked to evaluate the tiredness of each paradigm by
scores (1: few; 2: medium; 3: many). To specify the differences, we
also applied Friedman test to investigate the differences on scores.
Friedman test as a type of non-parametric test was appropriate
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TABLE 2 | Online accuracy and bit rate analysis.

Accuracy (%) Bit rate (bit/min) AVT

R-P G-P B-P R-P G-P B-P R-P G-P B-P

S1 100.00 100.00 100.00 24.97 25.71 25.00 2.19 2.19 2.25

S2 100.00 87.50 62.50 27.27 17.07 7.09 2.06 2.31 2.63

S3 100.00 87.50 100.00 23.68 16.20 25.00 2.38 2.44 2.25

S4 100.00 93.75 93.75 23.68 20.17 20.73 2.38 2.31 2.25

S5 100.00 93.75 100.00 24.32 20.17 27.27 2.31 2.31 2.06

S6 100.00 93.75 93.75 26.47 20.73 20.17 2.13 2.25 2.31

S7 100.00 87.50 81.25 26.47 16.62 13.67 2.13 2.38 2.44

S8 100.00 93.75 100.00 25.71 21.32 26.47 2.19 2.19 2.13

S9 100.00 93.75 100.00 24.32 19.13 24.32 2.31 2.44 2.31

S10 93.75 87.50 100.00 20.17 15.79 25.71 2.31 2.50 2.19

S11 87.50 93.75 93.75 16.20 20.73 20.17 2.44 2.25 2.31

S12 100.00 100.00 93.75 26.47 26.47 21.32 2.13 2.13 2.19

AVG 98.44 92.71 93.23 24.14 20.01 21.41 2.25 2.31 2.28

STD 3.72 4.29 10.66 3.01 3.29 5.64 0.12 0.11 0.14

p R-P vs. G-P G-P vs. B-P R-P vs. B-P R-P vs. G-P G-P vs. B-P R-P vs. B-P R-P vs. G-P G-P vs. B-P R-P vs. B-P

0.014 1.000 0.498 0.019 1.000 0.693 0.401 1.000 1.000

AVT refers to an average number of trials consumed to output the feedback; Bonferroni correction has been applied. The bold values mean the highest accuracy, bit rate, and the least

repetition times among those 3 colors, and in the row of p-value, bold one was to highlight the pair which achieved significance.

FIGURE 9 | The error trials before and after modification of the model. Note: the number implies the error trials happened for one subject in one paradigm and the

overall sum of trials was 240 (16 targets × 15 times); the statistical results in this section were all corrected by Bonferroni correction.

for those correlated samples (Table 3). However, no significance
was found toward tiredness (χ2 = 1.267, p > 0.05).

DISCUSSION

The present study mainly focused on the effect of chromatic
stimulus on the performance of an ERP-based BCI and

discussed several related problems stated as follows: (1) the
influence on the offline error trials brought by the layout
and the relationship between the layout and adjacency

distraction, (2) the availability of the conclusion (Li et al.,
2014) applied to the present study that better performance
(including higher accuracy, higher amplitude, and shorter
latency) occurred in a high-luminosity contrast, and (3)
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FIGURE 10 | The error trials contributed by outer and inner blocks. Note: the number implies the error trials happened for one subject in one paradigm and the overall

sum of trials was 240 (16 targets × 15 times); the statistical results in this section were all corrected by Bonferroni correction.

TABLE 3 | Subjects’ feedback to each paradigm.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

R-P 1 1 3 1 2 2 1 2 2 2 3 2

G-P 1 1 1 2 3 2 2 1 1 2 2 1

B-P 2 1 2 1 1 2 2 2 1 2 1 1

A score of “1” means a little tired, “2” means medium, and “3” means quite a lot.

the observation of the ERP components’ waveforms in
this work.

Performance
As for performance, classification accuracy and ITR were the
main indexes to evaluate the performance of a BCI system. The
online result (Table 2) depicted that the highest online averaged
accuracy was obtained by R-P with 98.44%, higher than 92.71%
by G-P, and 93.23% by B-P. In addition, significance was found
between R-P and G-P both over online accuracy (p < 0.05) and
ITR (p < 0.05), under the circumstance that all subjects were
divided into three groups to experience the three paradigms in
three kinds of order. Thus, the effects by the order of process
were eliminated.

To explain the result, some literature in psychology may help.
It was found that longer-wavelength colors including red are
considered as arousing or warm, whereas colors with a shorter
wavelength like green and blue are associated with relaxing
and cool (Nakshian, 1964). For one color as stimulus to be
experienced lasting for 40min at least in our experiment, the
color of stimulus when flashing may exert some psychological
hint to motivate or cool down the emotion of subjects to

some degree. Some psychological experiments found that red
can promote performance on some virtual target-shooting
task (Sorokowski and Szmajke, 2011). They reported that the
participants were able to hit red moving objects significantly
better than blue and black objects, which was much relevant to
our study in both stimulus color and the conclusion. On the
side of biology, it was known that objects’ information of color
was described to be processed in visual area V4 of the human
brain (Dubner and Zeki, 1971) and the cones in human’s eyes
have different light sensitivity to red, green, and blue light. This
paper’s result may give some evidence or reference to help related
biological research.

In related studies, the green/blue flicker paradigm achieved an
80.60% online classification accuracy (Takano et al., 2009). The
paradigm that set a green familiar face as stimulus yielded an
86.1% online accuracy on average (Li et al., 2015). An SSVEP-
BCI utilizing red, green, blue, and violet as stimuli showed that
the violet one gained the highest accuracy of 94.38%, and the red
one obtained 90.21% in wheelchair control application (Singla
et al., 2013). Hence, the novel BCI with chromatic stimulus
is consistent, efficient, and practicable, as judged by extracting
consistent ERP wave features and outstanding mean accuracy
over 90% online experiments for all 12 subjects.

Layout of the Stimulus
In this work, we applied a novel layout paradigm with chromatic
stimulus flashing in blocks on the basis of SCP. The benefits
of this design lie in two parts. One is the problem of double
flash. Considering that eight blocks randomly flashed once
in one trial, and the SOA of one flash is 400ms, a single
target cannot possibly flash twice in a time interval shorter
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than 800ms. The other is adjacency distraction. As shown
in the section Effects by the Layout, the position indeed
influenced the error trials in offline sessions significantly, but
the ratios it caused were 0.56% for the outer blocks and
0.98% for the inner blocks, thereby indicating a comparatively
minor aspect in terms of the whole situation, especially after
model modification.

Color Contrast
As mentioned in the section Color Contrast Calculation, the
color contrast ratio was 2.61:1 for R-P, 1.29:1 for G-P, and
3.66:1 for B-P with a white background. In previous literature
(Nam et al., 2010; Li et al., 2014), all of the values of RGB
channels remained equal, and the groups for contrast were
limited to two. However, when the comparison groups of
stimulus color increased to three in the present study, several
previous results did not show similarity with the trend. In
P300 waveform, no satisfactory significance was shown in
the P300 amplitude of three paradigms within subjects at
Pz, inconsistent with the trend in the literature. For online
accuracy, a higher averaged accuracy was obtained by R-P,
followed by B-P and G-P, as shown in Table 2; hence, G-P had
the lowest color contrast ranked at the bottom, whereas the
results of R-P and G-P cannot be satisfied by that observation.
Moreover, the relationship between color contrast and accuracy
is not linear.

ERP Component
Visual stimulus features such as color are processed in the ventral
stream of visual pathways over the occipitotemporal areas of the
brain (Corbetta et al., 1991; Merigan and Maunsell, 1993).

P2 peak waveform features in the present study resulted
in obtaining a longer latency in G-P at Oz. The oddball
paradigm is one primary way to evoke P2, and its amplitude
can be enhanced to the targets (Ferreira-Santos et al., 2012).
However, in a visual search paradigm, more specific research
has been performed on stimulus features (e.g., color, size,
and orientation) to explore the mechanisms for feature
detection in the brain (Luck and Hillyard, 1994). Thus, the
findings in the present work are relatively supplemented in
this area.

N2, which is an endogenous component similar to P300,
corresponds to visual attention or degree of attention. In the
present study, the N2 latency from G-P was significantly
longer than that of the two other paradigms within all
subjects. This result was caused by a shorter latency
shown in high color contrast, whereas a longer latency
was shown in low color contrast (Li et al., 2014). Here,
“green” obtained the lowest value in color contrast at the
white background.

Meanwhile, P300 and N4 failed to exhibit significance either
in amplitude or in latency. As shown in Figure 5, the three grand
averaged curves were relatively close to each other under the
color shadows of P300 andN4waveforms, thereby indicating that
P300 and N4 were not sensitive to different stimulus colors in
this work.

CONCLUSION

The color of stimulus out of RGB could achieve the best
performance in an ERP-based BCI by designing a novel layout
in a single-character pattern. In detail, R-P yielded the highest
online averaged accuracy and the fastest ITR among the three;
G-P displayed a longer latency in the ERP waveforms of P2
and N2. Moreover, the eight blocks in the paradigm can be
replaced with control commands or be applied to psychological
attention estimation. Further investigation will be performed
on the neural mechanism of our experimental results. Besides,
further improvement may focus on the algorithm improvement,
enhancement of ITR, and fatigue supervision (e.g., heart rate and
body temperature).
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K-complexes identification is a challenging task in sleep research. The detection of
k-complexes in electroencephalogram (EEG) signals based on visual inspection is
time consuming, prone to errors, and requires well-trained knowledge. Many existing
methods for k-complexes detection rely mainly on analyzing EEG signals in time and
frequency domains. In this study, an efficient method is proposed to detect k-complexes
from EEG signals based on fractal dimension (FD) of time frequency (T-F) images coupled
with undirected graph features. Firstly, an EEG signal is partitioned into smaller segments
using a sliding window technique. Each EEG segment is passed through a spectrogram
of short time Fourier transform (STFT) to obtain the T-F images. Secondly, the box
counting method is applied to each T-F image to discover the FDs in EEG signals.
A vector of FD features are extracted from each T-F image and then mapped into an
undirected graph. The structural properties of the graphs are used as the representative
features of the original EEG signals for the input of a least square support vector
machine (LS-SVM) classifier. Key graphic features are extracted from the undirected
graphs. The extracted graph features are forwarded to the LS-SVM for classification.
To investigate the classification ability of the proposed feature extraction combined
with the LS-SVM classifier, the extracted features are also forwarded to a k-means
classifier for comparison. The proposed method is compared with several existing
k-complexes detection methods in which the same datasets were used. The findings of
this study shows that the proposed method yields better classification results than other
existing methods in the literature. An average accuracy of 97% for the detection of
the k-complexes is obtained using the proposed method. The proposed method could
lead to an efficient tool for the scoring of automatic sleep stages which could be useful
for doctors and neurologists in the diagnosis and treatment of sleep disorders and for
sleep research.

Keywords: electroencephalogram, k-complexes, structural undirected graph, fractal dimensions, box counting
and time frequency images
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INTRODUCTION

Sleep can be divided into different sleep stages that include mainly
non-rapid eyes movements (NREM) sleep, rapid eyes movements
(REM) sleep etc. NREM sleep can be further divided into four
stages of drowsiness (S1), light sleep (S2), deep sleep (S3) and
very deep sleep (S4). Recently, the NREM sleep were reduced
by American academy of sleep medicine (AASM) into three
stages in which S3 and S4 were combined into one stage as
slow waves stages (SWS) (Rechtschaffen and Kales, 1968; Iber
et al., 2007; Ranjan et al., 2018). Figure 1 shows the sleep stage
signals and their characteristics (Fraiwan et al., 2012). Analysis
of these sleep waveforms based on their characteristic features
of different stages is an important phase in sleep studies as each
sleep stage has different characteristic waveforms. One of those
important waveforms occurred in electroencephalogram (EEG)
signals and changed over a short time are sleep spindles and
k-complexes waves. K-complexes and sleep spindles patterns are
the key characteristics of S2, and consequently they are often
used to identify S2.

In 1993 k-complexes were first discovered by Loomis
et al. (1938). A k-complex includes a large-amplitude transient
waveform with a single negative sharp wave followed by a
positive sharp wave, and it has a relatively sharp amplitude
that is more than ±75 µV (Bremer et al., 1970; Richard and
Lengelle, 1998; Lajnef et al., 2015). This transient bio-signal
waveform occurs in all sleep stages, but mainly occurs in sleep
stage 2, and it presents in 12–14 Hz waves (Jansen and Desai,
1994). Moreover, in another study (Bremer et al., 1970) it was
reported that the minimum peak to peak amplitude value of
the k-complexes is around 100 µV. Most of these early studies
showed that k-complexes could appear many times during
stage 2 with a maximum time duration between 0.5 and 1.5 s.
Some studies reported that the maximum time duration of
a k-complexes is between 1 and 3 s (Pohl and Fahr, 1995;
Lajnef et al., 2015; Hernández-Pereira et al., 2016; Ghanbari and
Moradi, 2017; Al-Salman et al., 2018). Examples of EEG signals
with and without k-complexes events are shown in Figure 2
(Yücelbaş et al., 2018a).

The k-complexes are very important in both children’s and
adults’ sleep studies and the diagnoses of neurophysiologic and
cognitive disorders (Bremer et al., 1970; Strungaru and Popescu,
1998; Lajnef et al., 2015). Reliable methods for the analysis and
detection of the k-complexes in sleep EEG signals are of great
importance for sleep research and clinical diagnosis (Kokkinos
and Kostopoulos, 2011). Traditionally, k-complexes are visually
examined and marked in an all-night sleep EEG recording by
one or two well-trained experts. This process is time consuming,
specialist dependent, and tedious, due to the fact that there are
typically 1 to 3 k-complexes per minute in stage 2 for young
adults (Amzica and Steriade, 2002; Kam et al., 2004; Ghanbari and
Moradi, 2017; Ranjan et al., 2018). Therefore, the auto detection
of k-complexes is a very important research topic.

In this paper, the fractal dimension (FD) combined with
undirected graphs is used to detect k-complexes in sleep EEG
signals. Firstly, EEG signal is divided into segments of 0.5 s. Each
segment is transformed into a time frequency (T-F) images using

a short time Fourier transform (STFT). Secondly, a box counting
algorithm is applied to each of the T-F image to calculate their
FD. Ten FDs are extracted from each T-F image, and are mapped
to undirected graphs to extract the features of interest. The
least square support vector machine classifier is used to validate
the proposed method. The performance is measured in term
of accuracy, sensitivity, and specificity. The performance of the
proposed method was compared with several existing methods
in the literature. The results demonstrated that the proposed
method achieved a high classification accuracy rate for detecting
k-complexes in EEG signals.

The remainder of this paper is organized as follows: Section
“Related Work” descripts the EEG data used in this paper. Section
“EEG Data Description” illustrates the details of the proposed
methodology. The experimental results are explained in section
“Proposed Method.” Finally, the conclusion is provided in section
“Experimental Results.”

RELATED WORK

Several automatic methods have been developed to detect
and analyze the k-complexes. Those approaches used different
transformation techniques, such as Fourier transform, wavelet
transform, spectral analysis, matching pursuit and autoregressive
modeling (Camilleri et al., 2014). So far, no studies have been
presented to identify k-complex transient events based on their
waveform characteristics, such as a textural descriptor, non-linear
features or their graph connections.

Bankman et al. (1992) used a method based on different set of
features to detect k-complexes in sleep EEG signals. 14 features
were extracted from EEG signals and then used as input into a
neural network. The researchers reported an average of sensitivity
and false positive rate (FPR) of 90 and 8.1%, respectively. Another
study was presented by Hernández-Pereira et al. (2016), in which
k-complexes were also detected based on 14 features extracted
from each sleep EEG signal. The features were then forwarded to
different classifiers to identify k-complexes. An average accuracy
of 91.40% was reported using the features selection method.

Tang and Ishii (1995) proposed a method to identify
k-complexes based on the discrete wavelet transform (DWT)
parameters. The DWT parameters were used to determine the
time duration and amplitude of k-complexes. In their study, they
obtained 87% sensitivity and 10% FPR. More recently, Lajnef
et al. (2015) used a tunable Q-factor wavelet transform for the
detection of k-complexes. An average sensitivity and FPR of 81.57
and 29.54% were reported, respectively.

Another study was presented by Richard and Lengelle (1998),
in which the k-complexes were recognized based on a joint linear
filter in time and time-frequency domains. The k-complexes and
delta waves were identified with an average sensitivity and FPR of
90 and 9.2%, respectively. Yücelbaş et al. (2018b) used a method
to detect k-complexes automatically based on time and frequency
analyses. In their study, an EEG signal was decomposed using a
DWT. An average accuracy rate of 92.29% was achieved.

Noori et al. (2014) used a features selection using a generalized
radial basis function extreme learning machine (MELM-GRBF)
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FIGURE 1 | Typical EEG signals of 30 s belonging to sleep stages for a subject: awake stage, N1, N2, S3, N4, and REM stage.

FIGURE 2 | EEG signal examples: (A) with k-complexes events. (B) without k-complexes.

algorithm to detect k-complexes. In their study, fractal and
entropy features were employed. The EEG signals were divided
into segments using a sliding window technique. The size
of the window was set to 1.0 s. An average sensitivity and
accuracy of 61 and 96.1% were reported. Researchers in Zacharaki
et al. (2013) utilized two steps to detect k-complexes. In the
first step, the k-complex candidates are selected, while the
number of k-complexes is reduced in the second step using
a machine learning algorithm. In that study, four features,
including peak-to-peak amplitude, standard deviation, and a
ratio of power and duration of the negative sharp wave,
were extracted from each segment. An average sensitivity of
83% was reported.

Parekh et al. (2015) detected the k-complexes based on a fast
non-linear optimization algorithm. In that study, only F-score

result was reported. An average F-score of 0.70 and 0.57% for
the detection of the sleep spindles and the k-complexes were
achieved, respectively. Another study was presented by Henry
et al. (1994), in which the k-complexes were classified based on
matched filtering. Each segment was decomposed into a set of
orthonormal functions and wavelets analysis.

Devuyst et al. (2010) used a likelihood threshold parameters
and features extraction method to detect k-complexes. The
performance of the detection was assessed against to two human
experts’ scorings. An average of sensitivity rate of 61.72 and
60.94% for scorer 1 and scorer 2 were obtained. Migotina et al.
(2010) presented a method based on Hjorth parameters and
employed fuzzy decision to identify k-complexes. In that study,
the performance of the proposed method was compared with the
visual human scoring to evaluate their results. All those methods

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2019 | Volume 13 | Article 45187

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00045 June 27, 2019 Time: 15:15 # 4

Al-Salman et al. EEG K-Complexes Detection

for classifying k-complexes in sleep EEG signals were based on
linear features. So far waveform characteristics based features,
such as a textural descriptor, and graph network connections,
have not been used for the detection of k-complexes.

According to the literature, we found that the FD as non-
linear features has been proven to be an efficient approach to
explore the hidden patterns in digital images and signals (Prieto
et al., 2011; Finotello et al., 2015). It has been used to analyze
and classify EEG signals to trace the changes in EEG signals
during different sleep stages, and has also been employed to
recognize different digital image patterns. Yang et al. (2007) and
Sourina and Liu (2011) employed a FD approach to analyze sleep
stages in EEG signals.

Fractal dimension technique was also used by Ali et al. (2016)
for voice recognition. Time frequency (TF) images were also
used by Bajaj and Pachori (2013) to classify sleep stages. Bajaj
et al. (2017) also identified alcoholic EEGs based on T-F images.
Based on our previous study (Al-Salman et al., 2018) we found
that time frequency images coupled with FD yielded promising
results in analyzing and detecting sleep spindles in sleep EEG
signals. Furthermore, undirected graph properties have been used
to analyze and study brain diseases (Vural and Yildiz, 2010; Wang
et al., 2014). Some studies reported that undirected graphs can
be considered as one of the robust approaches to characterize
the functional topological properties in brain networks for both
normal and abnormal brain functioning (Sourina and Liu, 2011;
Li et al., 2013). The relevant techniques were employed in image
processing as a powerful tool to analyze and classify digital images
(Sarsoh et al., 2012).

Recently, a graph approach was used in Diykh et al. (2016) to
classify sleep stages. However, in this work, we have combined
the fractal features with properties of undirected graphs to detect
k-complexes in sleep EEG signals. Based on our knowledge,
fractal graph features approach has not been used in k-complexes
detection before.

EEG DATA DESCRIPTION

The EEG datasets used in this paper were collected by the Dream
project at University of Mons-TCTS Laboratory (Devuyst et al.,
2011). The sleep EEG data sets that were publically available
included 10 recordings acquired from 10 subjects: 4 males and
6 females using a digital 32-channel polygraph (BrainnetTM
system of MEDATEC, Brussels, Belgium) (Devuyst et al., 2010).
The sleep EEG data sets were collected in a 30 min interval of the
central EEG channel for a whole night. The datasets were sampled
at frequency of 200 Hz. Three EEG channels (CZ-A1 or C3-
A1, FP1-A1 and O1-A1) and one submental EMG channel were
recorded from each subject. The k-complexes in this database
were detected visually by two experts. The first expert scored all
the ten recordings, while the second expert only annotated five
recordings out of the 10 EEG recordings. Therefore, the CZ-
A1 channel EEG recordings sampled at 200 Hz, all recording
by expert 1, were used for detecting the k-complexes in this
study. The information about for the database is shown in
Table 1. For more information, please refer to the following

TABLE 1 | Database information from dream database.

Subject ID Sex Age K-complexes
scored by expert 1

K-complexes
scored by expert 2

ID1 Man 20 34 19

ID2 woman 47 45 8

ID3 Woman 24 12 3

ID4 Woman 23 78 14

ID5 Woman 27 39 20

ID6 Man 23 28 –

ID7 Man 27 11 –

ID8 Woman 46 4 –

ID9 Man 27 5 –

ID10 woman 21 16 –

website gives details. The dataset with additional information
is publicly available from http://www.tcts.fpms.ac.be/~devuyst/
Databases/DatabaseKcomplexes.

PROPOSED METHOD

In this work, a new method is presented based on time-
frequency image and graph features to detect k-complexes in
EEG signals. An illustration is given in Figure 3. The EEG
signal is firstly divided into segments using a sliding window
technique. The size of the window is set to 0.5 s with an
overlapping of 0.4 s. Then, each 0.5 s EEG segment is passed
through the spectrogram of STFT to obtain the time-frequency
images (T-F images). FD as a texture descriptor for each
T-F image is calculated based on the box counting method.
The vector of FD from each T-F image is then mapped into
an undirected graph. Three features of {degree distributions,
Jaccard coefficient, and cluster coefficient} from each graph are
extracted and used as the key features to detect k-complexes
in this study. Those features are then forwarded to a least
square support vector machine (LS-SVM) classifier to detected
k-complexes in EEG signals.

Segmentation
Sleep experts have observed that k-complexes normally appear
in EEG signals for 0.5 to 2 s. The sliding window technique was
utilized by Siuly et al. (2011) for the classification of EEG signals.
It was also utilized by Al-Salman et al. (2018) and Zhuang et al.
(2016) to detect sleep spindles in EEG signals. Kam et al. (2004)
employed the sliding window method to detect k-complexes in
their study. Their results showed that applying a sliding window
technique helped to improve satisfactory classification results. As
sleep spindles and k-complexes occur during stage 2 for about
0.5 to 2 s, we tested various window sizes of 1.0, 1.5, and 2.0 s
and overlapping lengths to identify the optimal segment size.
However, we made the window length between 0.5 and 2 s.
We used the same technique in Al-Salman et al. (2018, 2019).
We selected 0.5 window length based on our simulation results.
The simulation results showed that the window size of 0.5 s
was more optimal for identifying EEG characteristics than other
window sizes. Figure 4 shows the EEG signal being dividing
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FIGURE 3 | The methodology of the proposed method for k-complexes detection.
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FIGURE 4 | An example of segmenting an EEG signal into windows using a sliding window technique.

into 0.5 s segments with an overlapping of 0.4 s using a sliding
window technique.

Spectrogram of STFT
Spectrogram of STFT is normally defined as the normalized,
square magnitude of the STFT coefficient (Bajaj et al., 2017;
Al-Salman et al., 2018). The STFT is defined as:

S(n, ω) =

∞∑
x=−∞

y[x]w[n− x]e−jwn (1)

where y[x]w[n− x] is a short time of signal S(n, ω) at time n, and
the discrete of STFT can be formulated as:

S(n, k) = S(n, ω)|ω =
2πk
N

(2)

where N refers to the number of discrete frequencies.
Before Fourier transform was calculated, the centered function

w = [x] at time n was multiplied with signal S. The Fourier
transform is estimated at time n, and the window function, w =
[x] centered at time n, of signal S(n, ω) is considered close to time
n. A fixed positive function was used to obtain the STFT, which is
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denoted as w[x]. Thus, the spectrogram can be formulated as:

SP(n, k) = |S(n, ω)|2 (3)

The signal is divided into smaller blocks to obtain the STFT
coefficients using the sliding window. After each block is
transformed through a Fourier transform, their spectrum is
obtained. As the result, the spectrogram of the signal can be
calculated from the square of the discrete STFT by using Eqs
1 and 2. Figure 5 shows examples of an EEG segment with
a k-complex and an EEG segment without a k-complex event
were transformed into a time frequency image using the STFT.
According to the literature, the spectrogram is more effective
for analyzing non-stationary signals (Siuly and Li, 2012). In this
paper, the spectrogram is applied to each EEG segment to obtain
the T-F images.

Fractal Dimension
Fractal dimension allows us to measure the degree of complexity
of an object. With FD, each figure can be depicted by a series of
fragments. Those fragmented parts can be represented as a small
copy of the original figure (Al-Salman et al., 2018).

Extracting features from EEG signals is a common step to
obtain the key information. The FD technique is one of the
most powerful methods to extract the hidden characteristics
from EEG signals (Nunsong and Woraratpanya, 2015) as well
as to explore the key patterns in biomedical signals and image
processing (Prieto et al., 2011). The FD is commonly used to
analyze and classify EEGs signals (Finotello et al., 2015). Based
on our previous work (Al-Salman et al., 2018), it was found
that extracting features from FD could reduce the complexity of
computation time and also increased the detection accuracy.

In this paper, the box counting algorithm is employed and
applied to estimate the FD (capacity dimensions) of a T-F image
to identify k-complexes in EEG signals. The box counting method
can be described as follows: Suppose that M is a T-F images
and we need to calculate the FD of M. The following main
formula is utilized.

Dim = lim
r→0

log N(r)
log(1/r)

(4)

Based on the equation above, Dim is a FD, N(r) is the total
number of boxes, and r is the size of boxes that are required to
cover image M. To cover the entire T-F image, different sizes of
boxes are tested, and N(r) and r are determined. Figure 6 presents
an example illustrating how the number and size of boxes
were created. More details about the box counting algorithm is
provided in our previous work (Al-Salman et al., 2019).

Features Extraction Based on Fractal
Graphs
Different window sizes of 0.5, 1.0, 1.5, and 2.0 s were tested
in this study to investigate the most suitable number of boxes
required to cover the curve. The number of the boxes that are
required to cover the entire T-F images using 0.5 s is shown in
Table 2, while Table 3 presents the number of boxes with different
sizes of windows. As mentioned before, the FD is calculated after

transferring an EEG segment into T-F images using the STFT.
Then, the box-counting algorithm is applied on each T-F image
to extract the features of interest. The values of those features
range between 1.0 and 2.0. Each element in the FDs is calculated
based on logN(r)/log(1/r). By using the slope of a least square best
straight line, the fractal is obtained. From each T-F image, ten FD
features as a vector are extracted from each TFI.

For example, if the box size r is 16, the size of window is
0.5, 1.0, 1.5, and 2.0 s and the number of boxes is 1232, 1973,
2357 and 3351, respectively, as shown in Table 3. Based on the
equation of logN(r)/log(1/r), the fractal value for the seventh
feature (FD7) is 1.204 with window size 0.5 s, as shown in
Table 2. However, to obtain 10 FDs from each T-F image, the
same procedure is repeated 10 times. In general, the FD values
are between 1.0 and 2.0 and all the FD values are non-integer.
Based on the experimental results during the training phase, the
proposed method provides better classification results using a
window size of 0.5 s than the window sizes of 1.0, 1.5, and 2.0 s.
More details regarding windows sizes will be presented in section
Experimental results.

Structure and Construction of Graph Properties
Undirected graph properties have been used to analyze and
study brain diseases (Vural and Yildiz, 2010; Wang et al., 2014).
The graph may be considered as one of the more robust tools
to characterize the functional topological properties in brain
networks for both normal and abnormal brain functioning (Stam
et al., 2007; Li et al., 2013). It is widely used to identify EEG signals
such as sleep stages, as well as to classify digital images (Sarsoh
et al., 2012; Diykh et al., 2016). In this study, the structure of graph
properties is employed to identify k-complexes from EEG signals.

An undirected graph can be described as a set of nodes and
edges. A graph is a pair of set G = (V, E), where V is a set of
nodes in a graph and E is a set of connections between the nodes
of graphs. Each pair of nodes in a graph is connected by a link.
The connection denotes that there are relationships between each
pair of nodes in a graph (Blondel et al., 2004; Migotina et al.,
2010; Bernhardt et al., 2015). The Euclidean distance has been
used in this study as a similarity measure (Huang and Lai, 2006).
The edges between the first point and others are calculated using
the Euclidean distance. Figure 7 shows a vector of FD as example
X = {1.2, 1.4, 1.3, 0.7, 1.9, 2.2, 0.3, 2.0, 2.8, 4.6, 12.2, . . . }, being
transferred into an undirected graph which is obtained from the
TFIs based on Eq. 4. To construct the undirected graph, each
data point in X was considered to be a node in a graph. v1 is
the first node in the graph corresponding to the first point in the
vector X with a value of 1.2. The edges between this point and the
others were calculated based on Euclidean distance. More details
about Euclidean distance were provided in Zhang and Small
(2006), Zhu et al. (2014), and Jain et al. (1999). Consequently,
a distance matrix (adjacency matrix) is produced according to
Eq. 7. Based on the proposed method, the undirected graph can
be characterized with its degree distributions, cluster coefficient
and Jaccard coefficient. The next section provides more details in
relation to the undirected graph characteristics.

To build the adjacency matrix, we assume that there are
two nodes, v1 and v2, in an undirected graph. Those nodes are
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FIGURE 5 | Time-Frequency Image of an EEG segment by the STFT: (A) with k-complexes events. (B) without k-complexes.

= 1/ 10

FIGURE 6 | An illustration of the box counting algorithm to create the size and the numbers of boxes.

TABLE 2 | The number of boxes in ten scale according to the box size by using 0.5 s window sizes.

Box size r 1 2 4 8 16 32 64 128 256 512 1024

No. of box N(r) 277925 70406 17805 6418 1232 360 105 34 12 4 1

log(1/r) 0 0.30102 0.60205 0.90308 1.20411 1.50514 1.80617 2.10720 2.40823 2.70926 3.01029

log N(r) 5.4439 4.8476 4.2505 3.6645 3.0906 2.4857 2.0212 1.5315 1.0792 0.6021 0

connected if the distance (d) between v1 and v2 is less than or
equal to a pre-determined threshold as explained in the following
(Boccaletti et al., 2006; Huang and Lai, 2006; Lacasa and Toral,
2010; Zhu et al., 2014; Diykh et al., 2016).

(v1, v2) ∈ E, if d(v1, v2)≤ thr (5)

where thr is the pre-determined threshold. Since the structure
of the graph is generally biased by the number of existing
edges, statistical measures should be calculated on graphs
of equal degree k. Therefore, the threshold was defined in
this study by adopting the mean degree as an appropriate
threshold scheme to reveal the informative network topology

which is the average number of edges per nodes of the
graph. More details about adopting the mean degree as
the threshold was provided in Sporns and Zwi (2004),
Stam et al. (2007), Dimitriadis et al. (2009, 2010), and
Micheloyannis et al. (2009).

k =
1
n

n∑
i=1

B(vi, vj); n = number of node; (6)

Graph G can be described by giving a square matrix T × T
called adjacency matrix B. This matrix is used to describe the
connection between all the nodes of the graph. The adjacency
matrix contains zeros in its diagonal. Thus it is considered to be
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TABLE 3 | The number of the boxes in seven scales using different window size of
2.0, 1.5, 1.0, and 0.5 s.

Box size r 1 2 4 8 16 32 64

No. of box N(r)
using 2.0 s

536322 136667 34827 8966 3351 614 168

No. of box N(r)
using 1.5 s

572994 145071 36542 9222 2357 615 168

No. of box N(r)
using 1.0 s

435823 110918 28205 7321 1973 571 166

No. of box N(r)
using 0.5 s

277925 70406 17805 6418 1232 360 105

a symmetrical matrix. The value of this matrix is equal to zero
if there is no connectivity among two nodes (v1 and v1), and
otherwise it is equal to one (Boccaletti et al., 2006). However,
the connectivity matrix of an undirected graph is symmetric as
B(vi, vj) = B(vj, vi).

B(vi, vj)

{
1, if (vi, vj) ∈ E
0, otherwise

(7)

It is clear from Figure 7 that the node v11 of Euclidean distance
has no connection to any other nodes in the graph. That means
that this node is an isolated point in the graph. In this paper,
all the graphs have been constructed with the same number of
nodes. The next section provides more details in relation to the
undirected graph characteristics.

Graph Features
In this study, the adjacency matrix of a graph G has been used to
extract the statistical features. Those statistical features of a graph
can be used for the detection of k-complexes from EEG signals in
this paper. The following section describes the important features
that can be extracted from graph G (Li et al., 2013; Fang and
Wang, 2014; Diykh and Li, 2016).

Degree distributions (DD) of the graph
The DD of graph G, denoted by P(k), is defined to the proportion
of nodes with degree k partitioned by the total number of nodes
in the graph (Stam and Reijneveld, 2007; Zhu et al., 2014; Diykh
et al., 2016). It is obtained by counting the number of nodes
having degree k divided by the total number of nodes (Zhu et al.,
2014). The DD is defined as:

P(k) =
|{v|d(v) = k}|

U
(8)

where d(v) refers to the degree of node v, while U is the total
number of nodes in the graph. For example, in Figure 7, P(k) =( 3

10 , 2
10 , 5

10 , 2
10 , 3

10 , 2
10 , . . . , n

10
)
.

Clustering coefficient (CC) of the graph
The CC can be considered as one of most important metrics
utilized to characterize both local and global structures of a graph,
G. It was used by Stam et al. (2007) and Li et al. (2013) to
analyze brain activities. Assume that vi is a node in the graph.
The clustering coefficient of a given node, vi is calculated as the
proportion of the links among vi’s neighbors. For example, the
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1.44.6
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FIGURE 7 | A vector of fractal dimension is mapped into an undirected graph.
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CC of node vs in Figure 7 is 1 as the node vs has three neighbors:
(v4→ v5, v3→ v5, v5→ v6). Thus, the CC of vs = 1. The average
of the CC of all the nodes is measured as:

CC =
1
U

U∑
i=1

Gvi (9)

where U is the number of the nodes in graph G and Gvi is the
clustering coefficient of node vi.

Jaccard coefficient of the graph
Jaccard coefficient is used to measure the similarity between two
nodes of a graph. Assume vi and vj are two nodes in graph
G. Jaccard coefficient can be defined as a ratio of the set of
the neighboring intersection between vi and vj to the set of the
neighboring unions for the two nodes. Jaccard coefficient was
used by Anuradha and Sairam (2011) to classify digital image.
It was also utilized by Iglesias and Kastner (2013) to analyze
the similarity between two time series. Their results showed
that using a Jaccard coefficient helped to improve satisfactory
classification results. Jaccard coefficient function is calculated
based on the following equation:

M(vi, vj) =
|0(vi) ∩ 0(vj)|

|0(vi) ∪ 0(vj)|
(10)

where 0(vi) and 0(vj) are the sets of neighbors of the two nods,
vi and vj, that have an edge from vi and vj, and M = [0, 1]. In this
study, for each graph, a Jaccard coefficient vector is computed.
Figure 8 shows the main steps of the features extraction process
using the proposed method.

Classification Algorithms
After the three fractal graph features are obtained from each
graph, they are forwarded to a LS-SVM classifier to identify
k-complexes in sleep EEG signals. For comparison, a k-means
classifier is also applied. Based on the literature (Siuly et al.,
2011; Siuly and Li, 2012; Al Ghayab et al., 2016; Al-Salman et al.,
2018, 2019), we found the two classifiers are considered the most
popular and effective methods in biomedical signal classification.
The training parameters of the selected classifiers were presented
in Table 4.

Least Square Support Vector Machine (LS-SVM)
The LS-SVM classifier was first developed by Suyken and
Vandewalle (Guler and Ubeyli, 2007) based on the last version of a
support vector machine. It is widely used to classify various types
of biomedical signals because it has showed great performance
results with a high accuracy rate and low execution time.
Many researchers used the LS-SVM classifier to classify different
characteristic patterns of EEG signals, such as sleep stages, sleep
spindles and epileptic seizures (Sengur, 2009; Siuly and Li, 2012,
2015; Bajaj and Pachori, 2013; Al Ghayab et al., 2016; Diykh et al.,
2016). It was used for the detection of sleep spindles in EEG
signals in our previous work (Al-Salman et al., 2018).

The LS-SVM classifier generally depends on two hyper
parameters, γ and σ. Those parameters should be carefully chosen
due to they can positively or negatively affect the performance of

a method to increase or decrease the classification rate. The radial
basis function (RBF) kernels, γ and σ are empirically selected
during the training session. In this paper, the optimum values for
γ and σ are set to γ = 10 and σ = 1.

K-Means
The k-means classifier is a second classifier being employed in
this study. It is considered as one of the most popular approaches
in biomedical data classification. In general, the k-means classifier
is known as a clustering algorithm (Faraoun and Boukelif, 2006;
Al-Salman et al., 2018). It partitions observations into a number
of groups according to the similarities or dissimilarities among
their patterns. The Euclidean distance for a k-means classifier
is usually used for the dissimilarity measure. It was used by Al-
Salman et al. (2018) for detecting the sleep spindles, and by
Orhan et al. (2011) for detecting the epileptic EEG signals. In
this research, the k-means classifier is used to distinguish between
k-complexes and non-k-complexes waveforms.

Performance Evaluation
In order to evaluate the performance of the proposed method
with different EEG categories, the following metrics, accuracy,
sensitivity and specificity are used in this paper. The main
formulas of those statistical measurements are defined as Tawfik
et al. (2016) and Yücelbaş et al. (2018b).

Accuracy (ACC) =
TP+ TN

TP+ FN+ FP+ TN
;

Sensitivity (SEN) =
TP

TP+ FN
;

Specificity (SPE) =
TN

TN+ FP

(11)

where TN (true negative) is the actual non-k-complexes that are
correctly classified as non-k-complexes. FP (false positive) refers
to the number of k-complexes that are incorrectly determined by
a classifier. TP (true positive) means the actual k-complex waves
that are correctly detected. FN (false negative) shows the actual
k-complexes that are incorrectly marked as non-k-complexes.
More details for those metrics and other measurements are
provided in Al-Salman et al. (2018).

Matthews’s Correlation Coefficient (MCC)
MCC is used in machine learning as a measure of the quality
of binary classifications. It provides a balanced evaluation of
the detector as compared with sensitivity and specificity values,
which can be used even if classes are of unequal size. It is defined
in Migotina et al. (2010) and Matthews (1975):

MCC =
TP.TN− FP.FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(12)

F-Score
One of the most important measurements that are used to show
the overlapping between the two sets. F-score is defined by
weighted sensitivity and precision.

F− score =
2TP

2TP+ FP+ FN
(13)
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FIGURE 8 | A graphical diagram of feature extraction.

Kappa Coefficient
It is a statistic measure used to evaluate the agreement between
two classification results. In this paper, it is employed to evaluate
the agreement between two models, the proposed method and
expert (expert 1). It is defined as below:

Kappa coefficient (k)
TP+TN

N − pre
1− pre

(14)

where, pre = TP+FN
N .TP+FP

N +

(
1− TP+FN

N

)
.
(

1− TP+FP
N

)
, and

N = (TP+ FP+ TN+ FN).

K-Cross Validation
It is a popular approach used for evaluating the performance of
a classification algorithm. It is utilized to estimate the quality
of the classification results by dividing the number of correctly
classified results by the total of the cases. The datasets in section

TABLE 4 | Classifiers’ parameters used in this study.

Classifier Parameters

LS-SVM γ = 10, σ = 1 and RBF kernel

K-means k, ci and xk , where k is the number of clusters and k = 2. ci is
the center of the clusters and ci = 1, and xk is the data points.

“EEG Data Description” are separated into k groups with equal
size. Each time, one group is used as the testing set, while the
remaining subsets (groups) are used as the training set. All the
groups are tested in turn. The testing classification accuracy for
all groups is calculated. In this paper, 6- cross-validation is used
as the accuracy is not improved after k > 6. The average accuracy
for all testing subsets is computed below:

Performance =
1
6

6∑
1

accuracy(k) (15)

where accuracy(k) is the accuracy over the six iterations (k = 1,
2, . . ., 6).

EXPERIMENTAL RESULTS

All the experiments were conducted with the database discussed
in section “EEG Data Description” and three structural graph
features were extracted from each FD of the T-F images in this
study. The features graph were sorted in a descending order based
on their importance as shown in Figure 9. Based on the obtained
results, the proposed method with the three graph features
recorded high classification results, with an average accuracy of
97%. All the experimental results were obtained in a Matlab 2015b

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2019 | Volume 13 | Article 45194

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00045 June 27, 2019 Time: 15:15 # 11

Al-Salman et al. EEG K-Complexes Detection

0

10

20

30

40

50

60

70

80

90

Jaccard cofficient Clustering Coefficient Degree Distrbution

)
%(

yecarucc
A

Graph Features

The performance of the proposed method based on individual graph features

FIGURE 9 | Classification accuracy based on individual graph features.

environment on a computer that has the following features: 3.40
GH Intel (R) CoreTM i7 processor machine, and 8.00 GB RAM.
The experimental results were evaluated in terms of accuracy,
sensitivity, and specificity. The 6-fold cross validation was also
used in this study.

According to Figure 9, some attributes of a graph, such
as the Jaccard coefficient, were more significant that other
graph attributes in recognizing k-complexes. To investigate
the effectiveness of the characteristics of the graph on the
identification of the k-complexes, the mean and standard
deviation measurements for each segment were used in this
study, as shown in Figure 10. From the results in Figure 10, we
can see that the three of the graph features: Jaccard coefficient,
clustering coefficient, and degree distribution can be used as key
attributes to differentiate the k-complexes. All the characteristics
of the graph have reported reasonable results in term of standard
deviation, as shown on Figure 10. Based on the literature,
the obtained results indicate that the three graph features of
{Jaccard coefficient, clustering coefficient, and degree distribution}
can be used to distinguish between k-complexes and non-k-
complexes EEG segments.

The results based on the three features set by the proposed
method are presented in Table 5. Based on the results in Table 5,
it was observed that, the three features set of the graph yields the
highest accuracy for the detection of k-complexes in EEG signals.
The obtained results demonstrated that the proposed method
yielded the best performance with an average accuracy, sensitivity
and specificity of 97, 96.6, and 94.7%, respectively. All the results
in Table 5 were carried out using LS-SVM classifier with a
window size of 0.5 s. For further evaluation, the performance
of the proposed method was also tested using a FPR and kappa
coefficient. The FPR and kappa coefficient have been calculated
for each subject and the average of all the results was investigated.
The average of the FPR and kappa coefficient of the proposed

method was 0.060 and 0.87, respectively. Based on the literature,
the obtained results by the FPR and kappa coefficient provided
evidence that the proposed method has the potential to classify
k-complexes and non-k-complexes in EEG signals.
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FIGURE 10 | Mean and standard deviation of undirected graph features.

TABLE 5 | The performance of the proposed method based on
the DD, JC and CC.

Fold No. Sensitivity % Specificity % Accuracy %

Fold1 97 94 98.2

Fold2 96.3 97.8 97.1

Fold3 97.1 96 97

Fold4 97 94 97.3

Fold5 96 92 95.8

Fold6 97 93 96.8

Average 96.6 94.7 97
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Performance of the Proposed Method
Based on Different Window Sizes
To detect all possible occurrences of the k-complexes in the
original EEG signals, and to assess the ability of the proposed
method to identify the k-complexes, three other window sizes
of 1.0, 1.5, and 2.0 s were tested in this paper. The features
described in Section “Graph Features” were extracted, and the
dataset was divided into six subsets. The average accuracies of the
proposed method were recorded from the 6-fold cross evaluation.
The accuracies against the expert’s scoring using different window
sizes were reported in Figure 11. From the results in Figure 11,
it can be seen that it was difficult to detect k-complexes in EEG
signals with 2.0 s window size, which makes sense since the most
of the occurrences of k-complexes have a window size of 0.5 s.
Our findings show that, there were large disagreements between
the proposed method and the expert (Expert 1) in some datasets
when 1.5 s window size was used.

On the other hand, it was observed that the proposed method
has the capacity to identify k-complexes at a window size of 1.0 s
and there was only slight disagreements between the proposed
method and the expert’s scoring. Our findings show that the
proposed method achieved the highest results when the window
size of 0.5 s with overlapping of 0.4 s was used. The maximum
accuracy was 97%.

Performance of the Proposed Method
Using Receiving Operating
Characteristic Curve
The performance of the proposed method was also evaluated
based on a Receiving Operating Characteristic (ROC) curve.

Figure 12 depicts the ROC analysis results of the LS-SVM
classifier. The ROC is a suitable metric in studying the
dependence of sensitivity and specificity. The relationship
between the true positive rate and FPR were investigated in this
paper using the ROC curve. A good test is the one for which
sensitivity (true positive rate) rises rapidly and 1-specificity (FPR)
hardly increases at all until sensitivity becomes high (Übeyli,
2008). From Figure 12, it is seen that the area value of the
ROC curve is 97, which indicates that the LS-SVM model has
effectively detected the k-complexes in EEG signals using the
extracted features from the graph. Therefore, it is obvious that
the fractal graph features well represent the EEG signals and
the LS-SVM classifier trained on these features achieves a high
classification accuracy.

Performance Comparisons Using
Different Classifiers, Different
Data-Driven Thresholding Scheme and
With Other Existing Studies
Three types of comparisons were conducted in this section.
Firstly, the performance of the proposed method was compared
with a different classifier, k-means classifier. Secondly, the
proposed method was also compared with different data-
driven thresholding scheme. Finally, the proposed method was
compared with other studies that used the same datasets as
described in section “EEG Data Description.”

Comparison With K-Means Classifier
Figure 13 shows the comparison results between the LS-SVM
and k-means classifiers using the extracted features. The same
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FIGURE 12 | Performance evaluation of the proposed approach using the LS-SVM classifier based on the ROC curve.

number of segments were used. The segments were chosen
randomly from the database. The selected segments were
separated into a training set and a testing set, and then were
forwarded to the classifiers, separately, to identify k-complexes.
Based on the results in Figure 13, it can be observed that
the performance of the proposed scheme using the LS-SVM
was better than that by the k-means classifier. The accuracy of
the k-means classifier was degraded from 65 to 51% when the
number of the segments gets to 4000. In terms of accuracy,
sensitivity and specificity, the proposed method based on the
LS-SVM classifier outperformed the k-means.

For more investigation, the execution time of the proposed
method was calculated based on the LS-SVM classifier as well
as to the k-means classifier. Figure 14 shows the complexity
time for the LS-SVM and k-means classifiers. To compute the
performances of the two classifiers, the same computer having
the same settings was used, with the same input data segments.
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FIGURE 13 | The performance comparison between the proposed method
and the k-means classifier.

The complexity time of the proposed method was recorded for
each classifier. From Figure 14, we observed that the proposed
method took an acceptable time although it had more processing
steps involved in the algorithm. Based on the obtained results, the
highest execution time was recorded with the LS-SVM classifier
compared with the k-means classifier. Although converting the
fractal features to the undirected graphs take more time, it
resulted in more accurate results in k-complexes detection.

To shed more light on the comparison, the performance of
the proposed method was also compared with k-means classifiers
for detecting k-complexes in EEG signals based on 6-fold cross
validation. The EEG data were divided into six folds and each
fold was tested six times. The boxplots for each fold based on 6-
fold cross validation were shown in Figures 15, 16. According
to the results in Figure 16, it was observed that there was an
improvement achieved with the proposed method to detect the
k-complexes in EEG signals when the LS-SVM classifier was used
to classify the features compared to the k-means classifier. It is
clear from these results, the extracted features based on fractal
graphs coupled with the LS-SVM classifier have better ability to
distinguish the k-complexes in EEG signals.

Comparison With Different Data-Driven Thresholding
Scheme
The proposed method was tested with different data-driven
thresholding scheme reported in Dimitriadis et al. (2017a,b)
such as minimal spinning tree (MST) and orthogonal minimal
spinning tree (OMST). A spanning tree is a subgraph that
includes all nodes of the original graph but it has no cycles. The
MSTs try to connect simultaneously all the nodes of the graph
by minimizing the cost of the total sum of the weighted links.
An MST based on the Kruskal algorithm was used in this study
to search the MST in an undirected weighted graph and remove
redundant edges. On the other hand, the OMSTs try to capture
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FIGURE 14 | Comparison of the execution time among the proposed method and k-means.

FIGURE 15 | The boxplot of the classification accuracy based on 6-fold cross validation for k-means classifier.

the most significant connections under the constraint of the MST.
More details about the data-drive threshold method was provided
in Dimitriadis et al. (2017a,b).

In this paper, the proposed method was also compared
with MST and OMST approaches; we optimized the mean
degree following a step of 0.1 from mean degree = >5 up
to mean degree = <8 toward the maximization of accuracy.
The best classification performance was obtained when k was
6 and the optimal matching step was 0.2, with an accuracy
of 97%, as shown on Table 6. The main reason for that is
small mean degrees produces more informative features that
further improve classification performance. Also, when the
mean degree was small, features that contributed more to the
classification were also chosen, leading to higher classification
accuracy (Breakspear and Terry, 2002; Rutter et al., 2013; Guo
et al., 2018). Thus, the experimental results showed that the

optimizing mean degree influenced the classification results.
Furthermore, the results in Table 6 indicate that network analysis
of an undirected graph to detect k-complexes in EEG signals
has been realized in binary graphs using MST, OMST and
arbitrary thresholding. However, our findings showed that the
proposed method using an arbitrary threshold reported better
accuracy, sensitivity and specificity than that of those methods:
the MST and OMST. Therefore, in this study, we consider
arbitrary thresholding. Table 6 shows the comparison results
among different data-driven schemes.

Comparison With Other Methods Based on Different
Measurements
For further evaluation, the performances of the proposed method
was compared with other methods based on different metrics,
including F-score, recall, precision and Matthews (MCC).
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FIGURE 16 | The boxplot of the classification accuracy based on 6-fold cross validation for LS-SVM classifier.

Figure 17 shows the result of comparisons based on different
measurements. They were used in different methods to detect
k-complexes in EEG signals (Devuyst et al., 2010; Parekh
et al., 2015; Ghanbari and Moradi, 2017). They conducted their
methods with the same database as used in this study. It can be
seen in Figure 17, that the proposed detection approach has a
better F-score, recall, precision and MCC values compared with
those by other methods. The averages of F-score, recall, precision
and MCC were 0.77, 0.96, 0.78, and 0.83%, respectively. Our
method performed better than other detection methods, and it
achieved higher results compared with those by others.

Comparisons With Other Existing K-Complexes
Classification Methods
Table 7 represents the performance comparisons among the
seven reported methods (Devuyst et al., 2010; Erdamar et al.,
2012; Vu et al., 2012; Krohne et al., 2014; Zamir et al., 2015;
Patti et al., 2016; Ranjan et al., 2018). All these studies used the
same database as discussed in section “EEG Data Description.”
According to the results in Table 7, the proposed method is
the best among the seven methods. Additionally, it achieved a

TABLE 6 | The performance of the proposed method over various
thresholding schemes.

Metrics Types of thresholding schemes

MST OMST Arbitrary thresholding

Accuracy 89% 94.6% 97%

Sensitivity 91% 95% 96.6%

Specificity 94.6% 86.2% 94.7%

high accuracy, sensitivity and specificity of 97, 96.6, and 94.7%
compared with those methods.

Patti et al. (2016) reported their results of the k-complexes
detection with the same database. The average of the sensitivity
results they achieved was 84%. The average accuracy was lower
than that obtained in this study. Vu et al. (2012) focused on
designing a hybrid classifier to detect k-complexes in EEG
signals using a hybrid synergic machine learning method. A set
of features were extracted from each EEG segment and a
representation instance classifier was used to classify the extracted
features. Overall, they reported an average of the classification
accuracy of 90.2%. Based on the obtained results, the proposed
method outperformed the one by Vu et al. (2012).

Another study was made by Devuyst et al. (2010), in which a
likelihood threshold was used to detect k-complexes. That study
was conducted using the same datasets as the ones used in this
paper. The authors reported only true positive rates. The obtained
results in our method were higher than those by Devuyst et al.
(2010). Ranjan et al. (2018) detected k-complexes using a fuzzy
algorithm combined with an artificial neural network. In that
study, features were extracted from each EEG segment and
then forwarded to a fuzzy neural network algorithm to identify
k-complexes in EEG signals. An average accuracy, sensitivity,
and specificity of 87.56, 94.04, and 76.2%, were reported,
respectively. The classification results were also lower than those
by the proposed method. A convert optimization technique was
utilized by Zamir et al. (2015) to detect k-complexes. In that
study, different features were extracted and ranked based on a
feature selection algorithm. The best classification accuracy of
84% was reported. Their accuracy was lower than that of the
proposed method.

Erdamar et al. (2012) detected k-complexes using two main
stages, including a wavelet transformation combined with a
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TABLE 7 | Performance comparisons between the proposed method and other different k-complexes detection approaches with the same datasets.

Authors Method Accuracy Sensitivity Specificity

Patti et al. (2016) Pattern matched wavelets using 400 threshold – 84% –

Vu et al. (2012) Hybrid synergic multi-instance learning machine. 90.2% 70.4% –

Devuyst et al. (2010) Likelihood threshold 61.72%

Ranjan et al. (2018) Fuzzy algorithm combined with artificial neural network 87.56% 94.04% 76.2%

Zamir et al. (2015) Convert optimization technique 84%

Erdamar et al. (2012) Wavelet transformation combined with a Teager energy operator 91% 89 –

Krohne et al. (2014) Wavelet transformation – 74% –

The proposed method T-F images coupled with fractal graph features 97% 96.6% 94.7%

Teager energy operator. In that study, features were extracted
based on the amplitude and duration properties of k-complex
waveforms. The results from both stages were combined to make
a robust method for the detection of k-complexes. In comparison,
the proposed method yielded a high classification accuracy than
that by Erdamar et al. (2012). Krohne et al. (2014) classified
EEG signals into k-complex and non-k-complex segments based
on wavelet transformation. In that study, different datasets were
used. Their results with both databases were lower than our
proposed method. It is clear that the proposed method yielded the

TABLE 8 | Comparisons between the proposed method and other studies based
on the type of features and classifiers used.

Authors Features Classifier ACC

Hernández-Pereira
et al. (2016)

12 frequency features. support vector machine 91.4%

Gala and Mohylova
(2009)

Time and frequency
domain features

neural network 63%

Ranjan et al. (2018) 12 Bankman features fuzzy neural network 86.9%

Noori et al. (2014) Statistic and fractal
features

extreme learning
machine

96%

The proposed
method

Fractal and graph
features

LS-SVM classifier 97%

highest accuracy compared with the seven other methods using
the same datasets.

For further evaluation, the performance of the proposed
method was compared with those by Hernández-Pereira et al.
(2016), Gala and Mohylova (2009), Ranjan et al. (2018), Noori
et al. (2014) based on the types of features and classifiers used.
Table 8 shows the results of the comparison. It can be noticed that
the proposed scheme reported the highest accuracy compared
with the four other methods. The proposed method obtained
an average accuracy of 97% with fractal and graph features.
This demonstrated that the proposed approach achieved the best
performance in terms of classification accuracy.

CONCLUSION

In this paper, the FD technique and undirected graph properties
are used to detect k-complexes in EEG signals. In the proposed
method, each 0.5 s EEG segment was passed through the
spectrogram of the STFT to obtain the time-frequency images
(T-F images). Then, the box counting algorithm was applied to
each T-F image to calculate the FD. A vector of FD was mapped
into an undirected graph to extract the features of interest. Three
features were extracted from each graph and they were forwarded
to a LS-SVM classifier to identify k-complexes in EEG signals.
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The experimental results showed that the graph features achieved
better performance for the detection of k-complexes with an
average accuracy of 97%.

The proposed method was also compared with other existing
methods and with different classifiers to identify the ability
of using fractal graph features to detect k-complexes. Based
on those comparisons the proposed method achieved the best
performance in terms of classification accuracy, sensitivity and
specificity. The maximum averages of accuracy, sensitivity and
specificity obtained using the proposed method are 97, 96.6, and
94.7%, respectively. The outcomes of this study can help the
physicians with diagnosing sleep disorders and potentially it can
reduce the medical costs. In our future work, the fully weighted
version will be taken into consideration as a new methodology to
detect other sleep characteristics such as sleep spindles, Sawtooth
waves, Alpha waves, and vertex waves.
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(2018b). Automatic detection of sleep spindles with the use of STFT, EMD and
DWT methods. Neural Comput. Appl. 29, 17–33. doi: 10.1007/s00521-016-
2445-y

Zacharaki, E. I., Pippa, E., Koupparis, A., Kokkinos, V., Kostopoulos, G. K.,
and Megalooikonomou, V. (2013). “One-class classification of temporal
EEG patterns for K-complex extraction,” in Proceedings of the 35th
Annual International Conference of the IEEE, (Piscataway, NJ: IEEE),
5801–5804.

Zamir, Z. R., Sukhorukova, N., Amiel, H., Ugon, A., and Philippe, C. (2015).
Convex optimisation-based methods for k-complex detection. Appl. Math.
Comput. 268, 947–956. doi: 10.1016/j.amc.2015.07.005

Zhang, J., and Small, M. (2006). Complex network from pseudoperiodic time series:
topology versus dynamics. Phys. Rev. Lett. 96:238701.

Zhuang, X., Li, Y., and Peng, N. (2016). Enhanced automatic sleep spindle
detection: a sliding window-based wavelet analysis and comparison using a
proposal assessment method. Appl. Inform. 3:11.

Zhu, G., Li, Y., and Wen, P. P. (2014). Epileptic seizure detection in EEGs
signals using a fast weighted horizontal visibility algorithm. Comput.
Methods Programs Biomed. 115, 64–75. doi: 10.1016/j.cmpb.2014.
04.001

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer RLL declared a shared affiliation, with no collaboration, with one of
the authors, WA-S, to the handling Editor at the time of review.

Copyright © 2019 Al-Salman, Li and Wen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2019 | Volume 13 | Article 45203

https://doi.org/10.1515/bmte.1998.43.s3.113
https://doi.org/10.1016/j.compeleceng.2015.09.001
https://doi.org/10.1016/j.compeleceng.2015.09.001
https://doi.org/10.1016/j.eswa.2007.02.006
https://doi.org/10.1109/tsmcc.2012.2191775
https://doi.org/10.1109/tsmcc.2012.2191775
https://doi.org/10.1007/s10916-008-9218-9
https://doi.org/10.1016/j.clinph.2013.12.120
https://doi.org/10.1016/j.clinph.2013.12.120
https://doi.org/10.1016/j.ymssp.2006.10.005
https://doi.org/10.1007/s00521-017-2865-3
https://doi.org/10.1007/s00521-016-2445-y
https://doi.org/10.1007/s00521-016-2445-y
https://doi.org/10.1016/j.amc.2015.07.005
https://doi.org/10.1016/j.cmpb.2014.04.001
https://doi.org/10.1016/j.cmpb.2014.04.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


ORIGINAL RESEARCH
published: 28 June 2019

doi: 10.3389/fninf.2019.00044

Edited by:

Tianyi Yan,
Beijing Institute of Technology, China

Reviewed by:
Jiaojian Wang,

University of Pennsylvania,
United States

Xuyuan Zheng,
Tianjin Medical University, China

Bin Wang,
Taiyuan University of Technology,

China

*Correspondence:
Chunyan Liu

lcy_e_mail@163.com
Yuping Wang

wangyuping01@sina.cn

†These authors have contributed
equally to this work

Received: 15 January 2019
Accepted: 27 May 2019
Published: 28 June 2019

Citation:
Han T, Xu Z, Du J, Zhou Q, Yu T,
Liu C and Wang Y (2019) Ictal
High-Frequency Oscillation for

Lateralizing Patients With Suspected
Bitemporal Epilepsy Using Wavelet

Transform and Granger
Causality Analysis.

Front. Neuroinform. 13:44.
doi: 10.3389/fninf.2019.00044

Ictal High-Frequency Oscillation for
Lateralizing Patients With Suspected
Bitemporal Epilepsy Using Wavelet
Transform and Granger Causality
Analysis
Tao Han 1,2,3†, Zhexue Xu 1,2,3†, Jialin Du 1,2,3, Qilin Zhou 1,2,3, Tao Yu 4, Chunyan Liu 1,2,3*
and Yuping Wang 1,2,3*

1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, 2Beijing Key Laboratory of
Neuromodulation, Beijing, China, 3Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing,
China, 4Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China

Identifying lateralization of bilateral temporal lobe epilepsy (TLE) is a challenging
issue; scalp electroencephalography (EEG) and routine band electrocorticography
(ECoG) fail to reveal the epileptogenic focus for further temporal lobectomy treatment.
High-frequency oscillations (HFOs) can be utilized as a biomarker for lateralizing the
onset zone in suspected bitemporal epilepsy. Except subjective vision detect the
HFOs, objective verification should be performed to raise the accuracy. In the present
research, we prospectively studied 10 patients with refractory temporal seizures and
who underwent ECoG with wide-band frequency amplifiers (2,048 Hz); all patients had a
class I outcome after temporal resection. Pre- and ictal HFOs will be analyzed by wavelet
transform (WT) and Granger causality (GC) to objectively verify lateralization of the seizure
onset zone (SOZ). WT analysis showed ictal HFOs in 10 patients mainly covered from
80 to 115 Hz (average, 92.59 ± 10.23 Hz), and there was distinct bandpass boundary
between pre-ictal HFOs and ictal HFOs. GC analysis showed five patients (2, 4, 5, 6,
and 7), no matter the pre-ictal or ictal state, had the highest GC degree in SOZ itself.
The remaining patients (1, 3, 8, 9, and 10) had the highest GC degree in SOZ with its
adjacent regions in the pre-ictal and ictal stages. GC analysis further confirmed the result
of the WT and suggested HFOs are initiated and propagated in the local brain region
mainly, afterward, transmitting to adjacent brain regions. These results indicated that the
combination of WT and GC analyses significantly contributes to accurate lateralization in
patients with suspected bitemporal epilepsy.
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INTRODUCTION

Epilepsy is a chronic neurological disorder manifested by
abnormal excessive or synchronous neuronal activity in the
brain. It affects more than 50 million people worldwide (WHO,
2018). Although most patients could achieve seizure control
with antiepileptic drug (AED) application, unfortunately, despite
more appropriate AED therapy, approximately 30% of patients
still experience recurrent seizures (de Tisi et al., 2011; Kwan
et al., 2011; Barr and Morrison, 2015). Temporal lobe epilepsy
(TLE) is the most common type of partial epilepsy often
refractory to AEDs and referred for epilepsy surgery (Téllez-
Zenteno and Hernández-Ronquillo, 2012). Surgical removal of
brain tissue involved in the seizure onset generation for TLE
is an effective treatment (Schomer and Lewis, 2012) that could
benefit nearly 70% of patients with TLE (de Tisi et al., 2011;
Sherman et al., 2011). So, accurate lateralization is crucial before
temporal lobectomy.

There is a big challenge in lateralizing bilateral TLE; this is
due to conventional scalp electroencephalography (EEG) and
magnetic resonance imaging (MRI) often being non-lateralized
and discordant in ictal localization. In order to overcome
the limitations, intracranial electrodes are often implanted to
confirm the origin of the seizures. Routine band invasive EEG
monitoring fails to identify the seizure laterality. Recently,
high-frequency oscillations (HFOs) have been widely recognized
as a biomarker for the epileptic zone (Jacobs et al., 2012; Maeike
et al., 2012; Dümpelmann et al., 2015). They are grouped into
ripples (80–250 Hz) and fast ripples (250–500 Hz) and have
been associated to seizure genesis (Staba et al., 2002; Urrestarazu
et al., 2007; Bragin et al., 2015). Removal of brain regions with
HFOs seems to result in favorable surgical outcome, and the
ratio between ripple rates in removed and nonremoved contacts
was significantly higher in patients with a favorable outcome
[International League Against Epilepsy (ILAE) classes 1–3]
compared to patients with a poor outcome (ILAE classes 4–6;
Julia et al., 2010). To some extent, HFOs are better biomarker
than others in lateralizing seizure origin in bilateral TLE. Our
previous study had subjectively evaluated the value of HFOs
in lateralizing bitemporal epilepsy (Liu et al., 2016); objectively
investigating HFOs are not performed yet.

Generally, EEG signal is nonstationary, the time–frequency
domain, like wavelet transform (WT; Gadhoumi et al., 2012),
provides higher success than signal features that were extracted
in the time or frequency domain; furthermore, it has been
adopted in automatic seizure detection (Ayoubian et al., 2013).
Thus, it is significantly utilized in detecting the power of HFOs.
One approved viewpoint is seizures are thought to spatially
initiate and propagate from a discrete seizure focus (Bertram
et al., 1998), and whether the HFOs also initiate and propagate
in unilateral temporal lobe and whether these characteristics
contribute more to lateralizing seizure focus remain unrevealed.
An animal model of TLE research highlights the utility of
Granger causality (GC) to reveal dynamic directional temporal
relationships between multichannel local field potential (LFP)
recordings and indicated distinct patterns of directional GC
relationships within the hippocampus prior to and during

seizure onset (Cadotte et al., 2010). Two cases of focal seizure
disorder patients were analyzed by GC to measure causality
across brain regions involved in ictal events, and it was found
that both examples have shown hypercoupling near the seizure
foci and low causality across nearby brain regions (Coben
and Mohammad-Rezazadeh, 2015). So, using GC analysis to
reveal directional relationships may be more helpful to identify
the seizure onset zones (SOZs). We postulate that WT could
objectively reveal HFOs, and GC analysis not only strengthens
the accuracy rate in lateralizing bilateral TLE but discovers
propagating regularity.

MATERIALS AND METHODS

Patient Selection
Ten patients clinically suspected to have bitemporal epilepsy
and who were undergoing investigation for their epilepsies
with intracranial electrode implantation enrolled at Beijing
Xuanwu Hospital Comprehensive Epilepsy Center between
April 2012 and April 2014 (the subjects in this study partly
overlapped with those in our previous work). Patients
had a comprehensive noninvasive evaluation prior to
intracranial exploration, and sites for electrode placement
were individualized based on seizure semiology, clinical
history, and previous electrophysiological investigations;
implanted electrodes are given in Table 1. Basic MRI scanning
was performed on all patients using a Siemens Trios 3-T
scanner (Siemens, Erlangen, Germany) with conventional
epilepsy protocols, including T1WI, T2WI, T2-FLAIR, and
oblique coronal T2-FLAIR. Additionally, ordinary whole-brain
volumetric series were obtained by magnetization-prepared
rapid gradient echo (MPRAGE) sequence, and T2-FLAIR
oblique coronal images of both hippocampi were also acquired
from perpendicular to the long axis. Few patients were
scanned by single photon emission computed tomography
(SPECT), magnetic resonance spectroscopy (MRS), and
magnetoencephalography (MEG). All patients gave written
informed consent and the study was approved by the Medical

TABLE 1 | Number of channels analyzed out of the total bipolar channels
recorded, and description of the sites of electrode insertion.

Patient Channels
analyzed/
recorded

Ictal HFOs
recorded times

Places of electrodes

1 45/48 1 LH, LTB, LTBb, RH, RTB, RTBb
2 16/16 4 LTB, RTB
3 38/38 4 LH, LTP, LTB, RH, RTP, RTB
4 32/32 1 LTP, LTB, RTP, RTB
5 28/28 1 LH, LTB, RH, RTB
6 23/24 1 LH, LTP, RH, RTP
7 25/40 1 LH, LTP, LTB, RH, RTP, RTB
8 44/46 3 LH, LTP, LTB, RH, RTP, RTB
9 40/40 2 LH, LTP, LTB, RH, RTP, RTB
10 39/40 2 LH, LTP, LTB, RH, RTP, RTB

LH, left hippocampus; LTP, left temporal polar; LTB, left temporal-basal region; LTBb, left
bottom of temporal-basal region; RH, right hippocampus; RTP, right temporal polar; RTB,
right temporal-basal region; RTBb, right bottom of temporal-basal region.
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Research Ethics Committee at Xuanwu Hospital Capital
Medical University.

High Sampling Data Recordings
Bilateral strip electrodes with four to eight one-sided circular
contacts (2.3 mm in diameter and with a center-to-center
separation of 10 mm) were placed over the temporal pole
and/or temporal basal region in all 10 patients; effective surface
area was 4.15 mm2. Furthermore, additional depth electrodes
were placed into the mesial temporal lobe structures in eight
patients via the occipitotemporal (Blatt et al., 1997; Van Roost
et al., 1998; Kral et al., 2002); it was composed of four to
six cylindrical contacts (2.3 mm long, 1 mm in diameter,
10 mm apart center to center) that were mounted on a
1-mm-wide flexible plastic probe. Its effective surface was
7.2 mm2. Electrode position was confirmed with postoperative
cranial x-rays, fine-cut computed tomography (3-mm cuts),
and MRI. Electrocorticography (ECoG) data were acquired in
a 128-channel Micromed system (16 bit, bandwidth at 3 dB:
0.5–100 Hz, Mogliano Veneto, Italy) by conventional sampling
rate of 512 Hz and higher sampling rate of 2,048 Hz using
a 256-channel broadband frequency amplifier system (16 bit,
bandwidth at 4 dB: 0.1–500 Hz, Yunshen Technology Limited
Company, China).

The electrode/contact least likely to be involved in seizure
onset and with the least artifacts was selected as a reference.
Seizure onset was defined as earliest occurrence of rhythmic
sinusoidal activity or repetitive spikes that clearly were distinctive
from the background and evolved in frequency and morphology
(Modur et al., 2011). The ictal onset zone was defined as the
contacts that showed the seizure onset alteration in invasive
EEG (iEEG). The iEEG was recorded using an input filter of
0.5–100 Hz and a sensitivity of 500–1,000 µV/cm. HFOs were
filtered as frequencies >80 Hz with a root mean square amplitude
increase of more than five times the standard deviation compared
to the background EEG (Bragin et al., 2015), to observe the
evolution of the HFOs in the pre-ictal and ictal periods.

Marking Ictal High-Frequency Oscillations
Two senior neurologists from Beijing Xuanwu Hospital
Comprehensive Epilepsy Center confirmed the HFOs that
were recorded during the period of implantation. Any HFOs
were excluded if they were not associated with the ictal event.
Electrodes with poor contact were also excluded. For identifying
HFOs, channels were displayed with the maximum time
resolution of the computer monitor (0.6 s, 1,200 samples of a
signal sampled at 2,000 Hz). The amplitude scale was 1 µV/mm.
Characteristic HFOs were chosen visually from unfiltered EEG
signals and viewed at 10 s/page in a bipolar montage wherein
consecutive contacts on each electrode are compared.

Wavelet Transform and Granger Causality
Analyses
Raw data will be preprocessed before the WT and GC in a
brainstorm software1 (Tadel et al., 2011). In order to get distinct

1https://neuroimage.usc.edu/brainstorm/

HFOs, according to the definition of ripples, the bandpass will be
set 80–250 Hz, and the time scope will be set 5 s pre- and ictal
HFOs. The WT of the ECoG was calculated as:

Wa,b =

∫
+∞

−∞

f (t)
1
√
|a|
ψ∗

(
t − b
a

)
dt

As the scale and translation parameters a and b are taken
at discrete values, discrete WT is obtained. The parameters a
and b are often based on powers of two and called dyadic scales
and translations:

aj = 2j, bj,k = k2j for all j, k ∈ Z

So the equation becomes:

ψj,k(t) = 2−j/2ψ(2−j · t − k) for all j, k ∈ Z

The set of ψj,k (t) forms a basis of square integrable space L2 (R).
If the basis function ψj,k (t) is orthogonal, then the

original signal can be reconstructed from the resulting
wavelet coefficients accurately and efficiently without any
loss of information.

GC methods make use of the variance of prediction errors to
extrapolate directional relationships. X1(t) and X2(t) and future
values of X1(t) are going to be predicted by using two different
data sets: using only the past values of X1(t) and by incorporation
of past values of X1(t) and X2(t). If incorporating the past
knowledge of X2(t) permits more accurate prediction of X1, then
X2 could be called a casual to X1 (Cadotte et al., 2008). Suppose
X1 and X2 can be represented by single-variable autoregressive
models, its basic formulae are as follows:

X1(t) =
m∑

j = 1

ajX1(t − j)+ ε11(t)

X2(t) =
m∑

j = 1

bjX2(t − j)+ ε22(t)

A joint predictor of X1(t) can be defined as:

X∗1 (t) =
m∑

j = 1

a∗j X1(t − j)+
m∑

j = 1

b∗j X2(t − j)+ ε12(t)

Here, if the variance of prediction error δ212(ε12) is less than
the variance of δ211(ε11), then it is an indication of a causal
interaction from X2(t) to X1(t). The magnitude of causality from
X2 to X1 is defined as FX2→X1 = ln

(
δ212
δ21

)
; thus, if δ21 = δ212,

then the magnitude of causality from X2 to X1 is zero.
A single electrode or common average referential montage

can result in a bad signal on all channels if the reference contains
high-frequency artifacts; thus, bipolar montages are adopted in
WT analysis. Because GC is to detect connectivity between two
channels, a unipolar montage is adopted in GC analysis. The
GC threshold was set 10% of the higher ranking of all channels.
GC was analyzed separately 2 s prior and 2 s after ictal seizures
between every two channels.

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2019 | Volume 13 | Article 44206

https://neuroimage.usc.edu/brainstorm/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


H
an

etal.
W

T
and

G
C

for
Lateralizing

TLE

TABLE 2 | Clinical characteristics of the suspected bilateral temporal epileptic patients.

Patient Age/
gender

History of
TLE

(years)

Seizure type (outcome) Antiepileptic
medications

Neuroimaging Ictal EEG Ictal ECoG Ictal HFOs Surgery Follow-up
(months)

Pathology

1 22/M 18 Complex partial seizures
(Eagle 1); GTCS (Eagle 1)

PHT, OXC MRI, left HS B L LT LT, LH 24 FCD I

2 35/F 13 Complex partial seizures
(Eagle 1); GTCS (Eagle 1)

PB MRI, left medial
temporal cavernous
hemangioma;

B B LT LT, LH 32 CH

3 33/M 13 Complex partial seizures
(Eagle 1); GTCS (Eagle 1)

VPA, CBZ MRI, left HS; SEPCT,
hypoperfusion in left
temporal cortex

B B LH LT, LH 25 HS

4 45/F 28 Complex partial seizures
(Eagle 1); GTCS (Eagle 1)

CBZ MRI, normal; SPECT,
hypoperfusion in right
temporal cortex;
MEG, left temporal
cortex

B L LT LT, LH 31 FCD I

5 27/M 18 Complex partial seizures
(Eagle 1)

PHT, CBZ MRI, right HS B B RT RT, RH 24 FCD I, HS

6 27/F 4 Complex partial seizures
(Eagle 1); GTCS (Eagle 1)

CBZ, OXC MRI, normal B L LH LT, LH 19 FCD I

7 26/M 5 Complex partial seizures
(Eagle 1); GTCS (Eagle 1)

CBZ, TPM MRI, left HS; SPECT,
hypoperfusion in left
temporal cortex;
MRS, right
hippocampus;
MEG, left
temporal cortex

B L LH LT, LH 11 FCD IIIa, HSIb

8 30/F 14 Complex partial seizures
(Eagle 1)
GTCS (Eagle 1)

TPM, PHT, VPA MRI, normal
SPECT, hypoperfusion
in bilateral temporal
cortex
MRS, right
hippocampus;

B R RT RT, RH 12 FCD IIIa, HS

9 49/F 26 Complex partial seizures
(Eagle 1)

OXC MRI, left HS B L LH LT, LH 11 FCD IIIa, HS

10 26/M 22 Complex partial seizures
(Eagle 1)
GTCS (Eagle 1)

PB, CBZ, VPA MRI, right HA B L LH LT, LH 12 FCD I

GTCS, generalized tonic-clonic seizures; PHT, Phenytoin; OXC, oxcarbazepine; CBZ, carbamazepine; VPA, Sodium Valproate; TPM, Topiramate; PB, phenobarbital; CH, cavernous hemangioma; HS, hippocampal sclerosis; HA,
hippocampal atrophy; L, left; R, right; B, bilateral; LT, left temporal lobe; RT, right temporal lobe; LH, left hippocampus; RH, right hippocampus; FCD, focal cortical dysplasia.
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Surgical Procedure, Follow-Up, and
Outcome Classification
All surgical procedures were operated by a single neurosurgeon
(TY). The resection included a standard temporal lobectomy
of the anterior 4.5–5.5 cm of the temporal lobe, sparing the
superior temporal gyrus. The amygdale and anterior one-half
to two-thirds of the hippocampus were resected and sent for
pathological analysis (Kuzniecky et al., 1993). Specimen analysis
was performed by a neuropathologist Dr. Piao Yueshan (YSP).
The diagnosis of mesial temporal sclerosis was based on the
presence of hippocampal neuronal loss and gliosis (Toga and
Berard-Badier, 1982). Postoperatively, patients were followed-up
by the surgeon (TY). The mean duration of follow-up was
20.1 months (range, 11–32 months; Table 2). Outcome of
operation was determined by a mailed questionnaire and
confirmed both by structured telephone interviews and by chart
reviews. Long-term outcome classification was assessed by the
Engel scale (Wieser et al., 2001).

RESULTS

Patients
Ten patients were included in the study (female/male: 5/5; mean
age: 32.00 ± 8.78). The average duration of seizure disorder was
14.20 ± 8.66 years. MRI scanning was performed on all patients;
SPECT, MRS, and MEG scanning were performed on only some
patients. MRI showed left hippocampal sclerosis (HS) in five
(patients 1, 3, 5, 7, and 9), hippocampal atrophy (HA) in one
(patient 10), left medial temporal cavernous hemangioma (CH)
in one (patient 2), and no clear abnormalities in three patients
(patients 4, 6, and 8). SEPCT showed hypoperfusion in the left
temporal cortex in two (patients 3 and 7), in the right temporal
cortex in one (patient 4), and in the bilateral temporal cortex
in one patient (patient 8). The MRS showed abnormal function
in the right hippocampus (RH; patients 7 and 8). The MEG
showed dipoles in the left hippocampus (LH; patients 4 and 7).
Scalp ictal EEG showed that all the patients had bilateral TLE;
routine band ECoG showed left TLE in six (patients 1, 4, 6,
7, 9, and 10), right TLE in one (patient 8), and bilateral TLE
in three patients (patients 2, 3, and 5). All details are shown
in Table 2.

Wavelet Transform Analysis of
Electrocorticography
After visually detecting the entire video ECoG of each patient,
a total of 20 ECoG segments with HFOs were analyzed in
10 s scope pre- and ictal HFOs. The time–frequency power
was calculated by the formula ECoG signal units2/Hz · 1012.
The HFOs in 10 patients covered from 80 Hz to 115 Hz (average,
92.59 ± 10.23 Hz; Table 3). The representative patient result is
shown in Figure 1.

Granger Causality Analysis of
Electrocorticography
When the electrode with HFOs was confirmed by WT analysis,
causality and connectivity between electrode with HFOs and

TABLE 3 | The time-frequency power of each patient (units: Hz).

Segments/
patients

1 2 3 4

1 85/90 — — —
2 85/95 85/95 85/95 85/95
3 85/90 85/90/100/115 90/95/100 80/85/95
4 80/85 — — —
5 90 — — —
6 95/100/110 — — —
7 80/85/90 — — —
8 85/90 85/90 85/90 85/90
9 90/100 100/110 90/100/115 90/110
10 85/90 85/90 — —

other electrodes were analyzed by GC. Representing results
showed that HFOs originated in the left bottom of the temporal-
basal region (LTBb) in patient 1; the LH had the highest causality
with LTBb (pre-HFOs, 0.92 ± 0.87; ictal HFOs, 0.09 ± 0.06).
HFOs of patient 2 originated in the left temporal-basal region
(LTB), and the GC analysis showed the highest causality occurred
within the LTB (pre-HFOs, 0.13± 0.15; ictal HFOs, 0.05± 0.05).
Patient 3 showed HFOs originated from the LH, the left temporal
polar (LTP) had the biggest GCwith LH (pre-HFOs, 0.14± 0.15),
and LH had the highest causality in the period of ictal HFOs
(ictal HFOs, 0.03 ± 0.02). The HFOs of patient 4 originated
in the LTP, and the GC analysis showed the highest causality
occurred within itself (pre-HFOs, 0.15 ± 0.11; ictal HFOs,
0.12± 0.10). The HFOs of patient 5 originated in right temporal-
basal region (RTB), and the GC analysis showed the highest
causality occurred within itself (pre-HFOs, 0.09 ± 0.06; ictal
HFOs, 0.01 ± 0.01). HFOs of patient 6 originated in the LH,
and the GC analysis showed the highest causality occurred
within itself (pre-HFOs, 1.95 ± 2.18; ictal HFOs, 0.38 ± 0.29).
The HFOs of patient 7 originated in the LH, and the GC
analysis showed the highest causality occurred within itself (pre-
HFOs, 0.09 ± 0.10; ictal HFOs, 0.11 ± 0.15). The HFOs of
patient 8 originated in the right temporal polar (RTP), RTB
had the highest causality with RTP (pre-HFOs, 0.07 ± 0.08),
and RTP had the highest causality within itself in the period
of ictal HFOs (ictal HFOs, 0.04 ± 0.05). The HFOs of patient
9 originated in the LH, it had the highest causality within
itself (pre-HFOs, 0.14 ± 0.12), and the RH had the highest
causality with the LH in the period of ictal HFOs (ictal HFOs,
0.13 ± 0.13). HFOs of patient 10 originated in the LH, it had
highest causality within itself (pre-HFOs, 0.12 ± 0.08), and LTP
had the highest causality with the LH in the period of ictal
HFOs (ictal HFOs, 0.14 ± 0.14). All details are shown in Table 2
and Figure 2.

DISCUSSION

The present research showed that the frequency of ictal HFOs
is around 80–115 Hz by WT analysis, and the GC analysis
indicated, no matter the pre- or ictal HFOs, that highest causality
between electrodes with HFOs mainly originated from the SOZ
and then propagated into adjacent brain regions. Combining
the WT and GC analyses is more significant in verifying
lateralization of suspect bitemporal epilepsy.
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FIGURE 1 | This is the representing result of patient No. 6. All recorded channels are in top left corner, the time scope is 10 s, the red line represents the beginning
of ictal HFOs, blue PANE shows the HFOs by 80–250 Hz filter. The left down corner is the matrix and granger causality (GC) figures which indicates the causality
information. The right line is the time-frequency analyzed by wavelet transform (WT). LH, left hippocampus; LTP, left temporal polar; RH, right hippocampus; RTP,
right temporal polar.

WT is an effective tool in signal processing due to
time–frequency localization and multirate filtering (Acharya
et al., 2011). These properties can be used to extract the desired
local characteristics from an input signal in time and space.
High-frequency intracranial EEG researches have increasing
evidence indicating HFOs could be biomarkers of the seizure
onset region (Jacobs et al., 2008; Khosravani et al., 2009) and play
a critical role in epileptogenicity (Jacobs et al., 2009; Mirowski
et al., 2009); what’s more, it was also consistent with HS or
other lesions observed in the MRI of patients with TLE. Ripple
frequency oscillations are increased in the SOZ more frequently
than fast ripple frequency oscillations, and ripples display higher
amplitude at the transition from the inter-ictal to the ictal state.
Therefore, ripples in the ictal period may have more advantages
in laterality localization. Thus, using WT methods to analyze

the evolution and power changes of ripples in the pre- and
ictal periods may contribute to lateralization of TLE. Previous
researches (Wang et al., 2011; Gadhoumi et al., 2012) developed
a variety of WT analysis methods to predict seizure onset, and
all of them got significant results. Unfortunately, those results
were not verified in patients by surgery outcome. In the present
research, distinct bandpass boundary between pre-ictal HFOs
and ictal HFOs was found by WT analysis, and all patients
underwent unilateral temporal lobectomy and achieved good
surgical results, which were consistent with the laterality of SOZ
determined by high-frequency WT analysis.

Channels were found carrying unequal discriminative
power between pre-ictal and ictal states; analyzing dynamic
characteristics of seizure onset channels may have better
discriminability for lateralizing SOZ (David et al., 2008). Thus,
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FIGURE 2 | These are all representing results in 10 patients regarding the GC analysis. X-axis is the different brain regions, Y-axis is the degree of GC, the bold
circle shows the GC of pre-HFOs, the black square shows the GC of ictal HFOs. The red pane represents the ictal onset region with high-frequency oscillations
(HFOs), the blue pane represents the highest GC with ictal onset region among all brain regions with HFOs either in pre-ictal or in ictal state. LH, left hippocampus;
LTP, left temporal polar; LTB, left temporal-basal region; LTBb, left bottom of temporal-basal region; RH, right hippocampus; RTP, right temporal polar; RTB, right
temporal-basal region; RTBb, right bottom of temporal-basal region.
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based on the results of the time–frequency analysis, GC analysis
was performed on causality and connectivity of pre- and ictal
HFOs to further verify the SOZ. According to our results,
the GC analysis showed HFOs mainly originated in the SOZ;
afterward, it propagated into neighboring brain regions. This
method has shown similar results to dynamic causal modeling
(Murta et al., 2012), directed transfer function (Ge et al., 2007),
and partial directed coherence (Chan et al., 2012) methods
that have plausible estimates of human seizure propagation
pathways; furthermore, it has been consistent with pathways
demonstrated by diffusion tensor imaging (DTI; Bhardwaj et al.,
2010). Preliminary findings have shown regions of increased
connectivity in the regions of the seizure foci in the ictal period
(Liao et al., 2010; Maccotta et al., 2013). In mesial temporal
lobe seizure studies, previous research indicated the presence
of focal HFOs near the time of seizure onset may be close or
within the epileptogenic focus by wavelet analysis; this regularity
was also uncovered by GC analysis in the present study. The
increased connection was found between electrodes in the SOZ
and regions proximal to it in the ictal period. The enhancement
of local connection may supply the pathophysiological basis
about epileptic foci.

CONCLUSION

It is significant to lateralize drug-resistant bilateral temporal
epilepsy by HFOs. Analyzing ictal HFOs objectively and
quantificationally could provide accurate information regarding
location of SOZ; what’s more, combining with the GC
will substantially improve accuracy. GC analysis further
revealed initial focal electrode tightly connected with ictal
HFOs and suggested HFOs initiate and propagate in the
local brain region, afterward transmitting to the anatomically
adjacent brain regions. WT and GC analyses are significant
methods for accurately lateralizing patients with suspected
bitemporal epilepsy.

LIMITATIONS

In this research, GC analysis was adopted to further lateralize
suspected temporal epilepsy. This method was used to quantify
directional temporal relationships between financial time series
originally, and then it was broadly performed in neuroscience
to explore relationships between different brain regions by
investigating directed information flow or causality in the brain.
Based on this method, there are many analytic techniques
developed, such as directed transfer function and partial directed
coherence. Both of them are very useful in calculating the
information flow in the epilepsy network, but they are still under
research. In the present study, we utilize this method, which has
been acknowledged by academics, just adding the evidence for
HFOs location.
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Arterial input function (AIF) is estimated from perfusion images as a basic curve for
the following deconvolution process to calculate hemodynamic variables to evaluate
vascular status of tissues. However, estimation of AIF is currently based on manual
annotations with prior knowledge. We propose an automatic estimation of AIF in
perfusion images based on a multi-stream 3D CNN, which combined spatial and
temporal features together to estimate the AIF ROI. The model is trained by manual
annotations. The proposed method was trained and tested with 100 cases of perfusion-
weighted imaging. The result was evaluated by dice similarity coefficient, which reached
0.79. The trained model had a better performance than the traditional method. After
segmentation of the AIF ROI, the AIF was calculated by the average of all voxels in
the ROI. We compared the AIF result with the manual and traditional methods, and the
parameters of further processing of AIF, such as time to the maximum of the tissue
residue function (Tmax), relative cerebral blood flow, and mismatch volume, which are
calculated in the Section Results. The result had a better performance, the average
mismatch volume reached 93.32% of the manual method, while the other methods
reached 85.04 and 83.04%. We have applied the method on the cloud platform,
Estroke, and the local version of its software, NeuBrainCare, which can evaluate the
volume of the ischemic penumbra, the volume of the infarct core, and the ratio of
mismatch between perfusion and diffusion images to help make treatment decisions,
when the mismatch ratio is abnormal.

Keywords: AIF, multi-stream, 3D CNN, perfusion, MRI

INTRODUCTION

In recent years, ischemic stroke has become a tremendous health problem all over the world
(Naghavi et al., 2017). Stroke incidence in China has increased yearly and stroke has become the
leading cause of death (Li et al., 2015; Zhou et al., 2016). The key to the treatment of stroke is
to rescue the ischemic penumbra using advanced imaging techniques, such as CT/MR perfusion
imaging (Hakim, 1998). However, physicians in suburban hospitals cannot accurately identify the
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ischemic penumbra due to the lack of experience in imaging
interpretation, leading to significant delays in stroke treatment.
Hence, enhancing the capabilities of physicians capabilities
coming from these hospitals is of great significance (Bjørnerud
and Emblem, 2010). In this study, we aimed to setup a platform
based on novel arterial input function (AIF) methodology
on perfusion CT/MRI which enables automatic ischemic
penumbra evaluation.

Perfusion-weighted imaging (PWI) can be used to assess
perfusion parameters for noninvasive diagnosis of stroke
conditions. This method involves monitoring the continuous
changes of the time density curves (TDCs) of a bolus tracer
passing though the capillary bed over time. Quantitative analysis
using dynamic susceptibility contrast (DSC) MRI perfusion
requires determination of the AIF, which is the concentration
of the contrast agent over time in a brain-feeding artery.
The tissue TDC can be considered as a convolution of the
response function with the AIF. To analyze ischemic tissue, the
response function which can be calculated by deconvolution with
the AIF is necessary. We operated a deconvolution with the
TDC on each voxel to obtain hemodynamic maps containing
cerebral blood flow (CBF), cerebral blood volume (CBV), time
to maximum of the tissue residue function (Tmax), and mean
transit time (MTT). The characteristic TDC of a voxel in a
major arterial vessel (like the Basal Artery or the Internal
Carotid Artery) is considered as AIF, which is known as a
reference curve to calculate hemodynamic maps. The AIF is a
key reference curve used in the deconvolution model to obtain
quantitative CBF, CBV, Tmax, and MTT estimation. As it is
the reference curve, AIF has a great influence on the result of
the deconvolution operation. To improve reliability, quality, and
reproducibility of the AIF estimation, several approaches have
been proposed, including alternative measurement techniques
such as application of imaging protocols or data processing.
Lorenz and Calamante proposed a local AIF extraction method
to replace the global AIF (Grüner et al., 2006; Lorenz et al., 2006;
Willats et al., 2011). R. Gruner used the theory of homomorphic
transformations and complex cepstrum analysis to obtain a
voxel-specific AIF (Lorenz, 2004). Murase estimated the AIF
using fuzzy clustering for quantification of CBF (Calamante et al.,
2004). Chen incorporated knowledge about artery structure, fluid
kinetics, and the dynamic temporal property to find the AIF
(Zhu et al., 2011). Peruzzo et al. (2011) draws a ROI, then uses a
recursive cluster analysis on the ROI to select the arterial voxels.
From all these previous studies we realized that deep learning
has not yet been used for AIF extraction, and therefore we
proposed a network to extract the AIF and compared our method
with the traditional method and a combination of Unet3D and
fuzzy c-means.

The AIF obtained from a single voxel or a small region is
not reliable enough, since noise in spatial measurements and
motion in temporal measurements affect the AIF estimation.
Therefore, it is more appropriate to extract the AIF in a
region or volume (Bleeker et al., 2011; Shi et al., 2014). In
addition, the spatial resolution of perfusion sequences is low,
making it difficult to identify vessels. Therefore, the selection of
AIF depends on the expertise, experience, and skill of experts.

High time consumption and low reproducibility are the biggest
disadvantages of manual selection of the AIF. Some approaches
have been proposed to partially or fully automate AIF estimation
(Alsop et al., 2002). Murase et al. (2001), Van Osch et al. (2001),
and Duhamel et al. (2006) extracted the AIF using cluster method,
but a ROI should be marked manually prior to AIF extraction.
Reishofer et al. (2003) extracted the AIF by classification using
criteria which involved inherent features of the arterial input,
such as an early bolus arrival and a fast passage, as well as a high
contrast agent concentration.

MATERIALS AND METHODS

Manual Arterial Input Function
Annotation
For manual AIF annotation, the investigator selects an AIF with
the cursor and marks the position of the AIF on the PWI data.
In the meanwhile he checks the corresponding concentration
curve of the bolus tracer. The investigator first selects a region
of interest associated with the main feeding vessel, such as the
middle cerebral artery. The TDC is displayed according to the
pixel as the cursor moves. The investigator determines the pixel
location in the region of interest, when the curve is consistent
with the AIF characteristics. Subjectively, the ideal AIF is defined
as a curve with large amplitude, small width, fast attenuation, and
it can also be described as a gamma variate function fitted to the
bolus tracer TDC.

3D Convolution
In a 2D network, convolutions only compute features in a plane
on the images. It is not applicable to perfusion data analysis,
which must extract features in multiple volumes on spatial
dimensions and features in multiple frames on the temporal
dimension, since 2D convolution can only compute features on
static images. 3D CNN is more efficient for temporal features
learning than 2D convolution (Prasoon et al., 2013; Kamnitsas
et al., 2015; Pereira et al., 2015).

Multi-Stream 3D CNN
Perfusion data are 4D data, both spatial and temporal features
play an important role in AIF ROI estimation. 3D convolutions
alone cannot perform well in the temporal dimension. Since
perfusion data are 4D data, it is difficult to process it in a single
network. In order to fuse spatial features with temporal features
into our network, we applied a multi-stream 3D CNN that
processes information on both dimensions. Thus, our network
performs operations on the input volume data in both streams
simultaneously. Spatial features such as location information in
brain tissue are extracted in the first stream, while temporal
features such as the TDC information are captured in the second.

The spatial network operates on spatial volumes with a size
of f × s × w × h, where f denotes the number of frames, s
denotes the number of slices, and w and h denote the width and
height of a single slice. The static appearance by itself is a useful
clue, since some features are strongly associated with arteries.
A spatial network is essentially a classification or segmentation
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architecture. The spatial network consists of eight convolution
layers, five max-pooling layers, and two fully connected layers,
followed by a softmax output layer. Convolution layers are all
using 3D convolution with 3× 3× 3 kernels and stride 1 in each
dimension. The number of filters in each of the eight convolution
layers is 64, 128, 256, 256, 512, 512, 512, and 512, respectively. All
max-pooling layers are using 3D pooling with 2 × 2 × 2 kernels,
because the cube is treated as a 3D volume. There are 4096 units
in both fully connected layers.

The temporal network operates on data frames with a size of
s× f ×w× h, where s denotes the number of slices, f denotes the
number of frames, and w and h denote the width and height of a
single slice. This network is therefore different from the spatial
network. The dynamic information is obtained to measure the
TDC. The temporal network consists of convolution layers, max-
pooling layers, and fully connected layers, with numbers of layers
of 8, 5, and 2, respectively; and followed by a softmax output layer.
All convolution kernels and strides are the same as in the spatial
network. All pooling layers have 2× 2× 2 kernels, except the first
max-pooling layer with a 2 × 2 × 1 kernel, and stride 2 × 2 × 1,
in order to retain the temporal information in the early stage and
avoid losing it in the convolution process, since the cube is treated
as a frame volume. There are 4096 units in both fully connected
layers. Each stream is implemented using a 3D CNN, the softmax
function converts a raw value into a posterior probability as a
softmax score, and softmax scores of each stream are combined
by late fusion. The fusion method we chose is the linear support
vector machine (SVM) instead of a full connected layer.

The 3D CNN is shown in Figure 1. Since the spatial network
and the temporal network are similar, we illustrated only one 3D
CNN network. The multi-stream network is shown in Figure 2.

PWI data are arranged in the order of frame volumes, as
shown in Figure 3. We rearranged the data in two dimensions,
slice and frame. Spatial network input should be arranged frame
by frame and slice by slice to locate the ROI. Temporal network
input should be arranged slice by slice and then frame by frame,
since AIF curves can only be extracted from time series, as
shown in Figure 4.

Training
The training of the multi-stream 3D CNN framework for
the segmentation of the AIF is done in two steps: manual
labeling ROI’s perfusion data and auto-labeling based on
similarities among the TDCs.

For labeling, we first proceeded to a manual annotation of the
ROI which is used to extract the AIF. Thereafter, we calculated
the similarity between the TDCs and the AIFs in a neighborhood,
then we input the label into the framework. We labeled each
volume into two classes of regions, namely AIF vessels and no
AIF vessels, respectively.

We constructed an architecture in this paper to segment
the AIF vessels in the perfusion volume. The input image is
the 3D volume region. To improve the performance of the 3D
CNN in this case, we built the multi-stream model with the
spatial and temporal networks. Then, the final probability map
is fused together. The loss function over all training datasets
was minimized through a mini-batch gradient descent approach,

and the minimum batch size was 50 inputs. The spatial learning
process goes through 50 epochs with a learning rate of 0.001 and a
gradient momentum of 0.9. The same parameter settings are used
for epoch number, learning rate, and gradient momentum in the
temporal learning process.

Arterial Input Function Extraction
After the segmentation of the AIF vessels, we calculated the AIF
by averaging all TDCs of voxels in the classified vessels.

EXPERIMENTS

Data Preparation and Pre-processing
In this study, we collected 100 PWI cases in which 30 were healthy
cases and 70 were stroke cases. They were used to train and
evaluate the performance of the different methods. Sixty PWI
cases among the total dataset were acquired on a 1.5T Discovery
MR750 GE MRI scanner with contrast agent at a parameter
setting of a TE = 2.6 ms, a TR = 22 ms, and a flip angle = 20-
degree. The voxel size is 0.43× 0.43× 5.00mm3, and each
volume contains 512× 512× 20× 50 voxels, corresponding to
the width, the height, the number of slices, and the number
of frames, respectively. The other 40 PWI cases were acquired
on a 3T Verio SIEMENS MRI scanner with contrast agent at a
parameter setting of a TE = 3.6 ms, a TR = 21 ms, and a flip
angle = 18-degree, their voxel size is 0.43× 0.43× 6.50mm3 and
each volume size is 512× 512× 18× 35.

The preprocessing for perfusion data includes skull removal,
motion correction, slice time correction, spatial smoothing,
global drift removal, which are general preprocessing stages
for perfusion data. To reduce the impact of the brain skull,
each dataset was preprocessed to remove the brain skull using
the BET2 method (Wels et al., 2009). Motion correction was
performed by registering all the volumes in the time series with
the multiplicative intrinsic component optimization algorithm
(Studholme et al., 1999). We used interpolation to obtain the
data of brain slices at the same time point. Spatial smoothing is
mainly achieved by low-pass filtering, since many researchers use
Gaussian filtering or average filtering, which performances have
almost no difference with the BM3D and NLM denoizing results
in estimating the AIF.

Hardware Settings
In this paper, our experiments were implemented, respectively,
using MATLAB 2017b and Python 3.0 in Window 10 OS.
Environments were made on a desktop computer with eight
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processers, 32 GB
of RAM memory, and NVIDIA GeForce GTX 1080.

Evaluation Method
Network Evaluation
Although manual annotations of 100 cases of PWI sequences
require a considerable amount of time, in each case we
manually segmented the vessels of MIP images on axial planes.
The performance of the proposed method in cerebrovascular
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FIGURE 1 | Single 3D CNN network architecture. The 3D CNN network architecture includes eight convolutional layers, five pooling layers, and two full connected
layers.

FIGURE 2 | Multi-stream 3D CNN network. Each stream is a 3D CNN network, and the streams are combined by a fusion layer using linear SVM.

segmentation is evaluated by comparing MIP post-processed
binary images of the proposed method with manual annotations
of images on axial planes. Because MIP images on axial
planes display most of the blood vessels, the comparison
of MIP binary images on axial planes can better illustrate
cerebrovascular segmentations differences between the proposed
method and manual annotations. Therefore, we evaluated the
binary classification performance of our proposed method with
parameters such as the accuracy, the sensitivity, the specificity,
the precision, and the dice similarity coefficient (DSC), defined
as DSC = 2|A∩B|

(|A|+|B|) , where A and B are ground-truth and
segmentations of the AIF, respectively. DSC ranges from 0 to 1.

AIF Evaluation
Fuzzy c-means is widely used in determination of the AIF (Jipkate
and Gohokar, 2012). Fuzzy c-means clustering was applied to
the TDCs, which can be regarded as n-dimensional vectors, n
denoting the frame number of the perfusion data. These vectors
were grouped into different clusters. The cluster centroids and the

membership matrix were iteratively updated until convergence.
A cost function is used to find a cluster closest to the ideal AIF.

Unet3D is a deep learning network applied to 3D data and
widely used in biomedical image segmentation. We calculated
the maximal intensity projection on the temporal dimension.
Then, we segmented the blood vessels by Unet3D and applied
fuzzy c-means to determine the AIF only in blood vessels
segmented by Unet3D.

Since there is no standard dataset with labeled AIF ROIs,
we can only compare all methods with the manual method.
The result of the manual method is considered as ground-
truth. However, this comparison is not convincing enough, so
we compared the further process result by deconvolution: Tmax
and rCBF; and it is more persuasive. Subjectively, a single blind
investigator will evaluate the shape and location of the AIF result.

The regions in which Tmax is >6 s are considered ischemic
regions. CBF is significantly lower in the ischemic region than in
the contralateral healthy region. Perfusion–diffusion mismatch is
used to identify penumbra in acute stroke. When the apparent
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FIGURE 3 | Data sequence order. The sequence is arranged slice by slice in each frame and then arranged frame by frame.

FIGURE 4 | Arterial input function (AIF) curve extracted from time series. The red point shows the location where AIF is extracted, the value of PWI decreases first
and then increases with time.

diffusion coefficient (ADC) is less than 620, the corresponding
region is defined as an infract core in our application. The
ischemic region beyond the infarct core is considered to be

the ischemic penumbra. Mismatch ratio is the ratio of ischemic
penumbra volume to core infarct volume. The larger the ratio
is, the more tissues can be saved by treatment. Since the infarct
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FIGURE 5 | AIF ROI on each AIF masked on MIP in a single slice. (A) Manual, (B) MS3DCNN, (C) Fuzzy c-means, and (D) U-Net3D + fuzzy c-means, from left to
right.

TABLE 1 | Comparison of DSC value between the automated AIF estimation methods.

Methods Accuracy Sensitivity Specificity Precision DSC

Fuzzy c-means 0.9947 0.5073 0.9997 0.9472 0.6141±0.155

U-Net3D + fuzzy c-means 0.9983 0.7620 0.9993 0.8405 0.7941±0.048

MS3DCNN 0.9982 0.7967 0.9991 0.7981 0.7966±0.035

cores were the same in our case, we compared the volumes of the
ischemic penumbra and the mismatch ratio obtained by the AIF
results, which are presented in our method and the other methods
mentioned above.

RESULTS

We show an example of MIP images on temporal dimensions first
and then on spatial dimensions.

The AIFs were estimated by different methods: manual,
MS3DCNN, fuzzy c-means, and U-Net3D + fuzzy c-means.
Subjectively, a single blinded investigator, who is a Doctor of
Medicine working in the Department of Radiology in Xuanwu
Hospital of Capital Medical University, which has a high level of
neurosurgery and neurology, evaluated the results. Objectively,
we compared the AIF location, the curve characteristics of AIF,

the perfusion maps, and the mismatch volume estimated by all
the other three methods with the same corresponding parameters
but estimated by the manual method, respectively.

The AIF Location
We obtained each AIF ROI on the maximum density projection,
and we compared them, as shown in Figure 5.

Subjectively, the AIF extraction location of all samples
calculated by our method in this paper is similar to that of the
manual annotation. And since the manual annotation of each
doctor will be different, hence the investigator believes that the
ROI results of MS3DCNN can be consistent with those obtained
from manual annotation.

Objectively, we compared the manual annotated AIF location
with those from the three other methods. DSC values were
estimated by comparing cerebrovascular segmentations of the

FIGURE 6 | AIF estimated by manual method, multi-stream 3DCNN, Unet3D + fuzzy c-means, and fuzzy c-means. AIF obtained by multi-stream 3D CNN is closest
to the manual AIF.
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MIP images in axial planes with the corresponding manual
ground-truths. Values in each column are the average of the
testing dataset, as shown in Table 1. Our method has the highest
DSC, with a value of 0.7966, while the average DSC value
of widely used fuzzy c-means method is only 0.6141, which
demonstrates that our method is closest to the ROI of manual
annotation. The result was highly consistent with the subjective
evaluation of the investigator.

The Curve Characteristics
Subjectively, the curve of AIF also conformed to the
morphological characteristics mentioned above, such as
large amplitude, small width, fast attenuation, and gamma-like
shape. In all cases, the investigator believed that AIF obtained
by MS3DCNN can have the characteristics mentioned above,
as shown in Figure 6. The AIF automatically extracted can be
involved in the following perfusion processing by deconvolution.

Due to the different conditions of the patients, including
the physical condition, the severity of the disease, the contrast
injection time, and the time to start the scan, it is difficult to
make statistical analysis of the parameters obtained by direct
comparison. So, we only compared the differences of the curve
parameters between the AIF extracted by the three automated
methods and the AIF extracted by the manual method. The
characteristics are amplitude, the center position, and the crest
width, so the differences are represented by 1amplitude, 1center,
and 1width. Although we processed all the samples, considering
the great number of samples, we only showed 20 of them in
Table 2, and calculated the mean and standard deviation for each
difference of the parameters, as shown in Table 3. Compared with
other methods, MS3DCNN has larger amplitude, higher peak
position, fast attenuation, and narrower curve width.

We calculated the similarity of the curves between each
automated method and the manual method. The similarity is
calculated by Frechet distance, which is greater than or equal to
0. The smaller the Frechet distance between two curves is, the
more similar they will be. For better statistical analysis, all the
curves should be on the same scale. They were normalized by
the peak value of the manual extracted AIF, so the curve value
of manual extracted AIF is between 0 and 1, as a reference. The
similarity of all samples was calculated and the means and the
standard deviation of the similarity were obtained. The mean
value of the similarity of our method was lowest, with the
value of 0.83, indicating that MS3DCNN method is the closest
to the manual method. The standard deviation of our method
was also the lowest, with the value of 0.13, indicating that this
method is more stable.

The Perfusion Maps
We calculated the response curve to the AIF of each pixel in
each sample by deconvolution. Then we calculated the time to
peak of response curves as Tmax, and normalized maximum
slope as rCBF, collectively known as perfusion maps, as shown
in Figures 7, 8.

After observing the perfusion maps and analyzing the patient’s
medical history, the investigator concluded that the perfusion
maps could be used for diagnosis. The distribution of rCBF

TABLE 2 | The difference of curve characteristics between the MS3DCNN and
the manual method.

Sample 1amplitude (a.u.) 1center (s) 1width (s)

1. 21.51 0.68 0.33

2. 17.08 1.31 0.16

3. 11.83 0.15 0.77

4. 19.74 0.58 0.36

5. 47.47 2.97 1.22

6. 11.38 0.31 0.87

7. 29.05 0.38 1.27

8. 37.21 0.56 0.67

9. 12.82 0.11 0.75

10. 32.60 1.29 0.38

11. 25.21 0.78 0.16

12. 4.31 2.64 2.14

13. 1.23 0.23 0.29

14. 27.29 2.45 0.23

15. 15.25 0.18 0.06

16. 17.82 0.35 1.35

17. 2.70 5.24 2.17

18. 25.51 1.08 0.46

19. 19.26 0.61 0.08

20. 11.77 0.70 0.86

Mean 19.10 1.08 0.71

SD 11.04 1.23 0.59

TABLE 3 | Mean and standard deviation of the difference between the automated
methods and the manual method.

Method 1amplitude
(a.u.)

1center (s) 1width (s)

MS3DCNN Mean 18.12 1.05 0.72

SD 11.16 1.21 0.59

Fuzzy c-means Mean 14.08 1.31 0.90

SD 12.32 1.43 0.75

U-Net3D + fuzzy
c-means

Mean 13.98 1.36 0.73

SD 12.21 1.31 0.60

and Tmax maps obtained by the same deconvolution processing
based on the AIF extracted by our method is basically the same
as that of the manual method, the location of ischemic regions
can be clearly located through the perfusion maps, while the
other two methods have lower Tmax and rCBF, which leads us
to underestimate of the size of the ischemic penumbra and the
severity of ischemia, respectively.

We still took the perfusion maps calculated by AIF extracted
manually as the reference, and made an objective comparison by
calculating the difference between the perfusion maps calculated
based on AIF extracted by each automatic method and those
calculated based on AIF extracted by the manual method. The
mean and standard deviation of differences between rCBFs and
Tmaxs are shown in Table 4, represented by 1rCBF and1Tmax.

The Tmax and rCBF values obtained by our method are
larger than those obtained by the other two methods, and their
performance is consistent with that AIF. The values of Tmax and
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FIGURE 7 | rCBF calculated by AIF from (A) Manual, (B) MS3DCNN, (C) fuzzy
c-means, and (D) U-Net3D + fuzzy c-means in each column from left to right.

rCBF are both superior to the latter two methods due to the lower
time to peak and the larger peak value of the AIF.

The Mismatch
We applied our method on a cloud platform, Estroke, http://
www.medimagecloud.com/rsplatform/, and the local version of
its software, NeuBrainCare, which can calculate the penumbra for
stroke perfusion.

We defined the region with Tmax >6 s as the ischemic region,
and the region with ADC which is an additional sequence, less
than 620 as the infarct core. The difference between the two
volumes was defined as the mismatch volume, and the mismatch
volume divided by the ADC < 620 was defined as the mismatch
ratio. The larger the mismatch ratio is, the bigger is the volume
of brain tissue that can be saved. A mismatch annotation and
information was shown in Figure 9, including Tmax > 6 volume
(green regions), ADC < 620 volume (red regions), mismatch
volume, and mismatch ratio.

The infarct core cannot be found in the image of many
samples, so this ratio will be infinite, and for different methods,
the ischemic area will be different because of the AIF extracted
by different method, but the infarct core based on the ADC is the

FIGURE 8 | Tmax calculated by AIF from (A) Manual, (B) MS3DCNN, (C)
fuzzy c-means, and (D) U-Net3D + fuzzy c-means in each column from left to
right.

TABLE 4 | The difference of Tmax and rCBF between the automated methods
and the manual method.

Method 1Tmax (s) 1rCBF (a.u.)

MS3DCNN Mean 0.79 0.76

SD 0.10 0.11

Fuzzy c-means Mean 0.43 0.49

SD 0.20 0.28

U-Net3D + fuzzy c-means Mean 0.39 0.43

SD 0.29 0.24

same. This is the reason we did not compare mismatch ratios, but
only compared the mismatch volumes.

The mismatch volume depends on the severity of the stroke.
For example, some samples have only small ischemic areas, and
others have an entire brain hemisphere tissues with ischemia,
there is a huge difference between such samples. For this reason
we calculated the mean of the mismatch volumes for all samples
with stroke in each method, but without standard deviation,
and the ratio to the manual method as the reference was also
calculated, as shown in Table 5. The result of our method is the
closest to the manual method, with a ratio reaching 93.32%.
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FIGURE 9 | Stroke analysis results of the ischemic region, the infarct core, the mismatch volume, and the mismatch ratio. The infarct core was marked in magenta
while the ischemic region was marked in green.

DISCUSSION

CNN models are deep learning models which have been widely
used for object recognition and segmentation. They are usually
trained with a large amount of images labeled by humans. But
this has not yet been applied for AIF estimation. While automatic
AIF estimation only relies on and is heavily influenced by one’s
prior knowledge, most of the traditional segmentation methods
are unsupervised. These last ones can only extract objects based
on observable or expressed features using prior knowledge. In
this study, we applied a multi-stream 3D CNN to find the AIF
ROI, then we calculate the average curve as AIF.

According to our experimental results, multi-stream 3D
CNN has a good performance in AIF ROI segmentation.
Different blood vessels share many similar features such as
their shapes, while their differences mainly are intensity contrast
and vessel thickness. On the timeline, the changes of each
voxel are continuous and have large amplitude, small width,
fast attenuation, and gamma-like shape. The network extracts
features from both the spatial and the temporal parts, followed
with a fusion classification to output the result. Moreover, to

TABLE 5 | The average mismatch volume and ratio to reference of the automated
methods and the manual method.

Method Average mismatch
volume (ml)

Ratio to
reference (%)

Manual (reference) 48.52 100

MS3DCNN 45.27 93.32

U-Net3D + fuzzy c-means 41.26 85.04

Fuzzy c-means 40.29 83.04

improve the robustness of the proposed method for different kind
of perfusion images, we included from both 1.5T GE and 3.0T
SIEMENS, images of healthy and ischemic brain tissue in the
training dataset.

Because manual annotations from public datasets were not
available, hence we decided to directly compare our method
to other network-based segmentation methods. We therefore
compare our method to a traditional method, and to a
network pre-process method followed by a traditional method.
However, in terms of Dice numbers, our unsupervised method
shows great potential to perform AIF ROI segmentation.
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RAPID is a currently available commercial software which
can measure ischemic penumbra. It has been proved effective in
several international multicenter clinical trials (Lansberg et al.,
2017; Albers et al., 2018; Guenego et al., 2018; Nogueira et al.,
2018). The rate of severe disability and death was reduced from 42
to 22% in the thrombectomy group with this advanced imaging
software. In our study, our method was applied to Estroke,
a cloud-based platform, and the local version of its software,
NeuBrainCare, and it could evaluate ischemic penumbra as
accurate as RAPID with the datasets from more than 40
hospitals in China. AIF methodology improves the confidence of
physicians from suburban hospitals.

CONCLUSION

We proposed a new multi-stream 3D CNN network to estimate
AIF in brain perfusion images. The model was trained by the
labels obtained from manual annotations and similar ROIs based

on annotations, which is cost effective in terms of manual
efforts. This segmentation framework had a good performance
evaluated on perfusion images. The AIF estimation also had a
good performance evaluated on PWI data.
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Stroke causes behavioral deficits in multiple cognitive domains and there is a growing
interest in predicting patient performance from neuroimaging data using machine
learning techniques. Here, we investigated a deep learning approach based on
convolutional neural networks (CNNs) for predicting the severity of language disorder
from 3D lesion images from magnetic resonance imaging (MRI) in a heterogeneous
sample of stroke patients. CNN performance was compared to that of conventional
(shallow) machine learning methods, including ridge regression (RR) on the images’
principal components and support vector regression. We also devised a hybrid method
based on re-using CNN’s high-level features as additional input to the RR model.
Predictive accuracy of the four different methods was further investigated in relation
to the size of the training set and the level of redundancy across lesion images in
the dataset, which was evaluated in terms of location and topological properties of
the lesions. The Hybrid model achieved the best performance in most cases, thereby
suggesting that the high-level features extracted by CNNs are complementary to
principal component analysis features and improve the model’s predictive accuracy.
Moreover, our analyses indicate that both the size of training data and image redundancy
are critical factors in determining the accuracy of a computational model in predicting
behavioral outcome from the structural brain imaging data of stroke patients.

Keywords: deep learning, machine learning, stroke, cognitive deficit, magnetic resonance imaging, brain lesion

INTRODUCTION

Deep learning methods have gained popularity because they often outperform conventional (i.e.,
shallow) machine learning methods and can extract features automatically from raw data with little
or no preprocessing (LeCun et al., 2015). Among the many implementations of deep learning
models, convolutional neural networks (CNNs) (Krizhevsky et al., 2012) are particularly suited
for medical imaging data (Shen et al., 2017). A prominent example is the recent demonstration
that a CNN trained end-to-end from pixels of medical images to disease labels in a skin cancer
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classification problem performed at the level of expert
dermatologists (Esteva et al., 2017). Deep learning has also
been applied to neuroimaging data for brain-based classification
of psychiatric and neurological disorders (Arbabshirani et al.,
2017; Vieira et al., 2017). For example, several studies have
tackled the diagnosis of Alzheimer’s disease and its prodromal
stage (mild cognitive impairment) using magnetic resonance
imaging (MRI) data as input to a CNN (for comprehensive
overviews see Arbabshirani et al., 2017; Vieira et al., 2017).

The use of deep learning on neuroimaging data is particularly
interesting because MRI scans produce 3D images. Though some
studies have used 2D slices of the brain volume as independent
images for training, state-of-the-art deep learning techniques and
massive use of GPU-computing allow to feed a whole 3D image
to a CNN, despite the very high dimensional input, without
decomposition or preprocessing. In the present work we employ
a 3D CNN framework in the context of predicting behavioral
outcomes of stroke patients from MRI lesion images. The latter
can be formalized as a regression problem, where the learning
objective is to map the 3D image of a patient’s brain lesion to
the real-valued score representing the behavioral performance
of the same patient (see Figure 1). This problem has been
previously tackled with conventional machine learning methods
(Price et al., 2010; Hope et al., 2013; Zhang et al., 2014; Corbetta
et al., 2015; Siegel et al., 2016) but not with deep learning.
Moreover, the use of deep learning for regression (rather than
classification) problems in clinical neuroimaging is still sparse
(Vieira et al., 2017).

A widely shared assumption in cognitive neurology and
neuropsychology is that the effect of brain damage on behavior
and cognition depends on location and size of the lesion. This
has led to the long-standing and systematic effort to identify the
relationship between brain structure and function. Specifically,
the vast majority of studies have sought to establish which brain
lesion is associated to a specific (categorically defined) deficit
(Rorden and Karnath, 2004). The latter mapping is reversed
when the attempt is to predict behavioral performance from
lesion information and the task is more challenging because it
implies that lesion-behavior relationships are consistent across
individuals and can be used to predict behavior in new patients
(Price et al., 2017). However, the consistency of the association
is questionable because it depends on multiple factors and non-
linear interactions might be present in the data, thereby calling
for a machine learning approach to this problem (Chen et al.,
2008; Hope et al., 2013; Smith et al., 2013; Zhang et al., 2014;
Siegel et al., 2016; Price et al., 2017). Notably, conventional
machine learning methods typically require extraction and
selection of image features that represent topological information
about the lesion, a critical step that is dispensed with in the deep
learning approach.

In the present study, we take advantage of the data from
a relatively large and heterogeneous cohort of stroke patients
(Corbetta et al., 2015) to investigate the feasibility of a deep
learning model for predicting behavioral performance from
lesion images. We focused on the prediction of language
scores, in line with several previous studies that examined
lesion-behavior relationship in stroke patients using machine

learning (Price et al., 2010; Hope et al., 2013, 2015; Zhang et al.,
2014). Language deficits are a very frequent outcome of stroke
(particularly following left hemisphere damage) and their neural
correlates show lower inter-individual variability in comparison
to other cognitive functions like memory (Siegel et al., 2016).
Moreover, the prospect of predicting the functional recovery
of language has profound implications for clinical practice
(Price et al., 2010).

The main aim of the present study was therefore to assess
the CNN/deep learning approach against conventional (i.e.,
shallow) machine learning methods. Shallow machine learning
has been previously applied on the current stroke dataset using
multivariate ridge regression (RR) trained on features of the
lesion images extracted by principal component analysis (PCA)
to predict patients’ behavioral outcomes (Corbetta et al., 2015;
Siegel et al., 2016). The resulting model (hereafter PCA + RR,
see Figure 2 and “Materials and Methods” section for details),
when trained and evaluated on the language deficit scores using
leave-one-(patient)-out cross-validation, accounted for about
60% of the variance (using r2 as goodness-of-fit measure). This
method, re-implemented in the present study, provides a useful
benchmark for comparative evaluation of the deep learning
approach. Moreover, we broadened the comparison between
deep and shallow machine learning techniques by testing a
kernel-based approach (Vapnik, 1998), that is support vector
regression (SVR). A SVR-based approach has been previously
proposed in the context of multivariate lesion-symptom mapping
in stroke patients (Zhang et al., 2014), where the SVR model’s
ability to predict language deficit scores on the patients’ sample
from the lesion image features was also tested (though with
relatively poor fit).

A complementary aim of the study was to examine how the
different machine learning approaches are affected by the number
of patient cases available for training and by the diversity of
lesions in the sample. State-of-the-art stroke studies typically
include a small number of patients (order of 100; see Corbetta
et al., 2015) in comparison to publicly available databases of
patients suffering from other neurological conditions such as
Alzheimer’s disease (but see Price et al., 2010) This raises the
question of whether the amount of data is adequate for a deep
learning approach and, more generally, how performance of the
different machine learning methods scales with the size of the
training database. Indeed, limited sample size has been identified
as the main bottleneck for neuroimaging-based prediction of
brain disorders (see Arbabshirani et al., 2017, for review and
discussion). Second, we investigated the role of redundancy in the
image database, that is the similarity between a given test image
and the images used to train the model. We therefore assessed
to what extent these two factors are critical in determining the
predictive accuracy of the different machine learning models.

MATERIALS AND METHODS

Dataset
The dataset was obtained from a study on stroke patients carried
out at the Washington University School of Medicine. The study
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FIGURE 1 | Steps involved in the prediction of behavioral outcome in stroke patients from 3D lesion images. Conventional machine learning methods typically rely on
data preprocessing and feature selection, which are dispensed with in deep convolutional neural networks.

FIGURE 2 | Ridge regression method used by Siegel et al. (2016) for predicting behavioral deficits in stroke patients from MRI lesion images.

and all procedures were approved by the Washington University
School of Medicine Internal Review Board; written informed
consent was obtained from all participants in accordance with
the Declaration of Helsinki. Subject enrolment, inclusion and
exclusion criteria, and demographic information are described
in detail in Corbetta et al. (2015); in brief, the study included
132 stroke patients (mean age 52.8 years with range 22–77;
119 right handed, 63 female, 64 right hemisphere damage),
recruited through the inpatient service at Barnes-Jewish Hospital
and the Rehabilitation Institute of St. Louis. Imaging and
behavioral testing session were usually performed on the same
day. Patient scanning was performed on a Siemens 3T Tim-Trio.
Structural scans consisted of a sagittal MP-RAGE T1-weighted
image (TR = 1950 ms, TE = 2.26 ms, flip angle = 9◦, voxel
size = 1.0× 1.0× 1.0 mm, slice thickness = 1.00 mm), a transverse
turbo spin-echo T2-weighted image (TR = 2500 ms, TE = 435 ms,
voxel-size = 1.0 × 1.0 × 1.0 mm, slice thickness = 1.00 mm),
and a sagittal FLAIR (fluid attenuated inversion recovery)
(TR = 7500 ms, TE = 326 ms, voxel-size = 1.5 × 1.5 × 1.5 mm,
slice thickness = 1.50 mm). Individual T1 MRI images were
registered to the Montreal Neurological Institute (MNI) brain
using FSL (FMRIB Software Library) FNIRT (FMRIB non-linear
imaging registration tool) (Andersson et al., 2007). Lesions were
manually segmented on individual structural MRI images (T1-
weighted MPRAGE, T2-weighted spin echo images, and FLAIR
images) using the Analyze biomedical imaging software system
(Robb and Hanson, 1991). Two board-certified neurologists
reviewed all segmentations.

Though the original dataset includes behavioral data for
multiple cognitive domains (e.g., language, memory, attention),
in the present study we focused on predicting performance in
the language domain. As noted in the section “Introduction,”

the rationale for this choice was threefold: (i) a language
impairment is the most common cognitive deficit following
stroke (typically when causing left hemisphere damage); (ii)
language is the cognitive domain in which a shallow machine
learning method has achieved the highest predictive accuracy
on the same dataset (Siegel et al., 2016); and (iii) the problem
of predicting language deficit scores from lesion images has
been attempted with different methods and by different research
groups (Hope et al., 2013; Zhang et al., 2014; Siegel et al., 2016).

Our dataset included all patients who had MRI lesion images
and language scores available (N = 98), which is the same
sample previously used by Siegel et al. (2016) to develop
their RR method (see below for further details). The data
for each patient consisted of a 3D image of the lesion with
a 3 mm isovoxel resolution normalized the MNI coordinate
space (61 × 73 × 61 voxels). The current image resolution
limits the computational burden implied by the large-size 3D
image space and it is fully adequate for representing the spatial
topography of the lesions. The language score of each patient
summarized performance across several language tasks as it
captured their shared variance (first principal component) and it
was normalized to represent impaired performance with negative
values (Siegel et al., 2016). Accordingly, 29 of the stroke patients
presented with a language deficit.

Ridge Regression Method
We re-implemented the RR method and used its performance
as a baseline for assessing the other methods. The pipeline
used in the original study (Siegel et al., 2016) is illustrated in
Figure 2. Lesion images were first preprocessed using PCA to
strongly reduce the high dimensionality of the image space.
Here, we replicated the PCA preprocessing step using singular
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value decomposition (SVD) in python using scikit-learn module.
The first 56 components explained 95% of variance and were
retained as input features for RR. The latter is a method for
modeling the relationship between a scalar dependent variable
y (output) and one or more explanatory variables denoted by
x (input). RR differs from multiple linear regression because it
uses L2-normalization for regularization of model coefficients, so
that unimportant features are automatically down weighted or
eliminated, as given in the cost function below:

n∑
i=1

(wTxi − yi)
2
+ λ||w||22

where n is the number of subjects, w is the weight vector
that describes the relative importance of each feature in x to
the prediction of y, and λ is the regularization coefficient.
Optimal weights were computed across the entire training set
using gradient descent to minimize error for the RR equation.
Training and testing was carried out using a leave-one-out
cross validation (LOOCV) loop (Golland and Fischl, 2003), in
which one patient is left out from training at a time (cycling
through all patients) and used only for testing. In each loop, the
regularization coefficient lambda was optimized by identifying
a lambda between λ = 1 and 150 that minimized leave-one-
out (LOO) prediction error over the entire training dataset. The
optimized lambda was λ = 100 for all LOOCV cycles. Predictions
on the left-out test data were pooled and the model accuracy was
assessed using the square of the Pearson correlation coefficient
between actual and predicted behavioral scores (Siegel et al.,
2016). RR in this work was implemented in python (scikit-learn
module), using linear least square function as loss function and
L2-normalization for regularization.

Support Vector Regression
To broaden the comparison between deep and shallow machine
learning techniques, we also implemented a kernel-based
approach to predicting behavioral scores from brain lesion
images. SVR is a kernel-based learning machine for regression
(Vapnik et al., 1997). Instead of minimizing the observed training
error, SVR attempts to minimize the generalization error bound.
SVR can be thought of as a linear regression function in
a high dimensional feature space where the input data are
mapped via a non-linear function (Cortes and Vapnik, 1995;
Smola and Schölkopf, 2004).

Considering a training dataset {(x1, y1), (x2, y2), . . .
(xl, yl)} ⊂ Rn

× R, the following function is estimated in
SVR for linear regression:

f (x) = 〈w, x〉 + b;where : w, x ∈ Rn, b ∈ R

by minimizing the so-called regularized risk functional
(Vapnik et al., 1997; Vapnik, 1998; Basak et al., 2007)
1
2 ||w||

2
+ C · Remp[f ].

The first term 1
2 ||w||

2 is called the regularization term.
Minimizing this term will make the function as flat as possible.
The second term Remp[f ] is the empirical error measured by the
loss function and C is called the regularization constant which

determines tolerated deviations from the loss function. In this
problem, we used ε – insensitive loss function Lε :

Lε(yi, f (xi))=max{0, |y− f (x)| − ε}

This defines ε tube, so that if the predicted value is within the tube
the loss is zero, while if the predicted point is outside the tube,
the loss is the magnitude of the difference between the predicted
value and the radius ε of the tube. Slack variables ξ, ξ

∗

are used
to deal with infeasible constraints of the optimization problem.
Then the problem can be formulated as:

min
1
2
||w||2 + C

l∑
i=1

(ξi, ξ
∗

i )

subject to


yi − 〈w, xi〉 − b ≤ ε + ξi
〈w, xi〉 + b− yi ≤ ε + ξ

∗

i
ξi, ξ

∗

i ≥ 0

The purpose is to construct a Lagrange function from the
objective function and the corresponding constraints, by
introducing a dual set of variables (Lin et al., 2006). The
constant C > 0 determines the trade-off between the flatness
of f and the amount up to which deviations larger than ε are
tolerated. In cases where non-linear functions are optimized, it is
performed by mapping the input space xi into higher dimensional
space through function φ(xi), which linearises the relationships
between xi and yi. A kernel function K is used to simplify the
mapping. By using the kernel function, the data can be mapped
implicitly into a feature space (without full knowledge of φ),
which is therefore very efficient (Schölkopf and Smola, 2002; Lin
et al., 2006). In this work we only used a radial basis function
(RBF) kernel, which is defined as follows:

K(xi, x)=exp(−γ||x-xi||
2)

The SVR simulations were based on the libSVM framework
implemented in python using sci-kit learn module. We trained
our model and tested its performance using LOO cross-validation
on the full dataset. The learning parameters were set to C = 50 and
ε = 0.1 (note that large value of ε generally gives large errors in
the solution), whereas the RBF kernel coefficient γ was set to the
reciprocal of the number of input features (i.e., the default value
in the SVR implementation).

Convolutional Neural Networks
Convolutional neural networks exploit spatially local correlation
by enforcing a local connectivity pattern between neurons
of adjacent layers. CNN performs image classification by
discovering low level features (such as edges and curves) and then
building up to more abstract representations through a series
of convolutional layers. A typical CNN architecture consists
of at least four different layers namely convolutional layer,
pooling/subsampling layer, fully connected layer, and an output
layer, as explained below.

Convolutional Layer
It comprises of a set of filters, each independently convolved
with the image. These filters (or kernels) have a small receptive
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field but extend through the full depth of the input volume.
During the forward pass, each filter is convolved across the width
and height of the input volume, computing the dot product
between the entries of the filter and the input and producing
a 2D activation map of that filter. As a result, the network
learns filters that activate when it detects some specific type
of feature at some spatial position in the input. Stacking the
activation maps for all filters along the depth dimension forms
the full output volume of the convolution layer. CNNs share
weights in convolutional layers, which means that all spatial
locations share the same convolution kernel, which greatly
reduces the number of parameters needed for a convolution
layer. After each convolutional layer, it is conventional to apply
a non-linear activation function immediately afterward. Deep
CNNs with rectified linear units [ReLUs; f (x) = max(0, x)]
train several times faster than their equivalents with tanh units
(Krizhevsky et al., 2012).

Pooling Layer
It pools the activation of the neurons at one layer into a single
neuron in the next layer. It can use two different pooling
methods: max pooling and average pooling. Max pooling uses the
maximum value from each cluster of neurons at the prior layer.
Average pooling averages the value from each cluster of neurons
at the prior layer. In the present work we used max pooling
because it can boost signal from small regions of the image space
and it is therefore best suited for our dataset, which includes very
small lesions (in contrast, average pooling is more effective in the
case of a large and noisy region of interest in the image). The
pooling layer operates independently on every depth slice of the
input and resizes it spatially. It serves two main purposes: (i) the
number of parameters or weights is reduced, thereby decreasing
the computational cost; and (ii) it controls over-fitting.

Fully Connected and Output Layers
In the fully connected layer every neuron is connected to all
neurons in another layer. Finally, output layer neurons provide
the prediction of the model.

CNN Implementation
The architecture of the CNN used in the present study is depicted
in Figure 3. It includes one convolutional, one pooling, one fully
connected and one output layer. The input layer is fed with a 3D
lesion image (size: 61× 73× 61), followed by a 3D convolutional
layer with four kernels (size: 3× 3× 3). ReLU activation function
is applied on the convolutional layer and the output of this layer is
passed to the pooling layer. 3D max pooling (8× 8× 8) is applied
on the output of the convolutional layer, generating feature maps
of size (8 × 10 × 8). The large pooling stride is motivated by
the fact the size of the lesion is typically small and most of
the image space is therefore occupied by zero values. Finally,
activations are passed to the fully connected layer, consisting
of 500 neurons with ReLU activation function, and then to the
output layer. The output layer is made by a single neuron with
sigmoid activation function, which represents the language score
of the corresponding patient. This allows us to map the entire
lesion image into a single (predicted) behavioral score.

Formally, the CNN implementation employed here can be
described as follows. Consider a 3D MRI image x ∈ <H×W×D

with H × W × D elements (height, width, and depth of an
image), each of them indexed by a triplet (i, j, d) with 0 ≤ i < H,
0 ≤ j < W, and 0 ≤ d < D. D represents the number of slices
in the MRI image. Each slice has H × W elements. Suppose
we are considering the lth layer of a CNN, whose inputs form
an order three tensor xl with xl

∈ <
Hl ×Wl ×Dl . Thus, the triplet

index set (il, jl, dl) refers to one element in xl which is in the
dlth slice at spatial location (il, jl) (at the ilth row and jlth
column). In the convolutional layer multiple kernels are used.
Assuming D kernels are used and each kernel is of spatial span
H × W, we denote all the kernels as f. f is an order four tensor
RH × W × Dl × D. Similarly, we use indexed variables 0 ≤ i < H,
0 ≤ j < W, 0 ≤ dl < Dl, and 0 ≤ d < D to pinpoint a specific
element in the kernel. The basic flow of the CNN structure is
represented by the following equation:

x1
→ w1

→ x2 . . .→ xL−1
→ wL−1

→ xL
→ wL

→ z

The above equation illustrates how a CNN runs layer by layer
in a forward pass. The input x1 goes through the processing in
the first layer. We denote the weights involved in the first layer’s
processing collectively as a tensor w1. The output of the first layer
is x2, which also acts as an input to the next processing layer. This
processing proceeds until output xL.

All CNN models used in this work were implemented in
Tensorflow and were trained on GPUs using the Adam optimizer
(Kingma and Ba, 2014; Abadi et al., 2015). Mean square error
was used as loss function for training. All models were trained
and tested using a LOOCV loop, which was also used to tune
the hyperparameters.

Hybrid Model (RR With CNN and PCA
Features: f + RR)
We also assessed whether the features learned by the CNN at the
top hidden layer provide information that is not captured by the
PCA preprocessing used in the RR model. To this end, we trained
a RR model where the features (neuron activations) encoded in
the fully connected hidden layer of the CNN were added to the
PCA-based features as input to the model.

Quantifying Redundancy
Machine learning algorithms capture structure in the data that
needs to be generalized in order to make predictions from new
data. Therefore, the presence of similar data instances in the
dataset is required for such models to work. However, these
similarities must be defined in the most general manner to
be effective on unseen examples. Trained models are obviously
biased toward the kind of examples they have seen during
training and images that have more similar examples in the
data (redundancy) yield more accurate predictions. We explored
how the redundancy of images, defined in terms of similarity
(or distance metrics) would affect the predictive accuracy of the
models. We defined three types of image-image distances for all
pairs as follows:
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FIGURE 3 | Architecture of the deep convolutional neural network (CNN).

Lesion Centroid Distance
Distance between two images was simply computed in terms of
the Euclidean distance between the centroids of the lesions.

Topological Distance
This index is complementary to lesion-centroid and goes beyond
the centroid comparison. The images are first centered at
their lesion centroids and then images are cropped as per the
larger lesion size, then every pair of voxels is compared in
the transformed pair of images using Euclidean distance. The
differences in voxel-wise comparisons is a measure of how
the lesions differ in terms of topology irrespective of their
centroid positions.

Location + Topological Distance
Since all MRI lesion images are aligned in a common reference
frame, their unbiased topological differences can be measured
by voxel to voxel signal differences. Direct comparison between
images will also implicitly capture the location information as
similar topologies at different locations will be computed as
distant. We therefore computed the Euclidean distance between
each pairs of images.

For each measure of distance between a pair of images a
redundancy score (for each of the above definitions) was assigned
to individual images. Since the models have been trained in a
leave one out manner, the number of times an image occurs
in similar pairs of images at a given threshold informs us
about how much of training data is redundant with this image.
A threshold was chosen as follows: in the full distance matrix,
the number of column values lower than the (mean-SD) in the
row is treated as the redundancy for the image label in that
row. Row-wise thresholding was found to be more suitable as
it not only represents the redundancy of the image but also it
implicitly computes the range of distances of an image with all
the others. After computing the redundancy of every image with
reference to the rest of the data set, two groups of images with

high and low redundancy were created and model performance
was compared between them.

Performance Metrics
Performance of the models was measured using the square of
the Pearson correlation coefficient between actual and predicted
scores (Siegel et al., 2016). Mean absolute error (MAE; i.e., the
absolute difference between predicted and actual score) is also
reported in some of the analyses.

RESULTS

The results presented below are divided into four sub-sections.
We first look at the predictive accuracy of the different
models/approaches. We then investigate how performance is
affected by sample size and redundancy in the training dataset.
Finally, we assess the model on prediction of chronic cognitive
deficit as measured 3 months after the stroke.

Overall Performance of Predictive
Models on the Full Dataset
Multiple models were trained and tested on the dataset as
described in the section “Materials and Methods” using LOO
cross-validation (as in Siegel et al., 2016). Results for the four
different approaches are shown in Figure 4. All models explained
more than 60% of the variance and rank them according to
the r2 values (in parentheses) produced the following order:
Hybrid Model (0.675), SVR (0.657), PCA + RR (0.646), and
CNN (0.627). Notably, the SVR model performed significantly
better than CNN (p = 0.0402, two-tailed) and PCA + RR
(p = 0.0001, two-tailed) in the comparison of r2 values. Therefore,
it appears that deep learning did not lead to performance gains
when evaluated against the two conventional, shallow learning
methods. However, the Hybrid RR model, trained with composite
features from PCA and CNN (the latter corresponding to neuron

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 53229

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00053 July 29, 2019 Time: 16:34 # 7

Chauhan et al. Prediction of Stroke Deficits With Deep Learning

activations in the fully connected hidden layer) outperformed all
other methods (p = 0.0001, two-tailed, for SVR vs. f+ RR). These
observations suggest that for the current dataset, which includes a
relatively small number of samples, avoiding over-fitting is a key
factor. A linear method like RR is therefore the most powerful
when exploiting the rich set of features derived from both PCA
and CNN learning on the lesion images. We will return to the
issue of dataset size in the next section.

Inspection of Figure 4 suggests that accuracy in predicting
a specific range of scores does not necessarily reflect the
ranking of the models’ overall predictive accuracy. For example,
the CNN appears to resolve quantitative differences among
language deficits patients despite the overall poorer model fit.
We performed two supplementary analyses to further investigate
the predictive accuracy of the models from this perspective.
First, since language deficits are very uncommon following right
hemisphere stroke, we compared the different models on the
subset of patients with left hemisphere lesions (N = 57). Note
that focusing on the population of left hemisphere stroke patients
in relation to language deficits is a standard approach and it is
well aligned with potential clinical applications of a computer
model (Hope et al., 2013). The predictive accuracy of the models
(see Figure 5A) was similar to that previously reported for the
full dataset, thereby showing that the latter performance was not
inflated by the inclusion of right hemisphere stroke patients. In
the second analysis (see Figure 5B) we evaluated the models’
predictive accuracy across the range of scores that marks the
presence of cognitive deficit, that is on the subgroup of patients
(N = 29) who showed language deficit (score< 0). We found that

the scores in the deficit range are better predicted by CNN than
PCA + RR (p = 0.0425, two-tailed). These results suggest that
the CNN model is better tuned to the fine-grained, quantitative
prediction of the severity of deficit and help in explaining why
CNN features boost the overall performance of the Hybrid model.
For the sake of completeness, we also evaluated the models’
predictions on the subgroup of patients showing no language
deficit (scores ≥ 0). Performance was very poor across models
(all r2 values < 0.05). This is to be expected because individual
differences within the range of unimpaired performance are
independent of the nature of the lesions. Individual variability
is expected also in the absence of lesions and it is obvious
that it cannot be mapped onto a lesion image in the current
framework. In summary, CNNs appear to extract useful high-
level features that capture the association between 3D lesion
images and language deficit scores.

Role of Dataset Size on Predictive
Accuracy
Despite the favorable performance of CNNs in predicting the
severity of deficit, the limited size of the dataset is likely to
represent a crucial bottleneck. The issue of dataset size in MRI
image analysis and prediction has been highlighted both in
relation to the lesion-behavior mapping problem (Price et al.,
2017) as well as for other types of medical imaging problems
(Cho et al., 2015). Deep learning methods are highly effective
when the number of samples available for training is large
(Russakovsky et al., 2015; Shen et al., 2017). To investigate this

FIGURE 4 | Language scores predicted by the four competing models: (A) Hybrid model, (B) SVR, (C) PCA + RR, and (D) CNN.
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issue in a more systematic way, we assessed how performance
changed as a function of dataset size. We created multiple
cohorts of four differently sized groups of patients (specifically
25, 50, 75, and 90 patients groups were created), which were
randomly sampled from the full dataset. Random sampling was
performed 40 times for each sample size. The models were then
independently trained on all cohorts of the four datasets to assess
generalization performance (LOO cross validation). Results of
these simulations are presented in Figure 6. As can be noted,

CNN’s performance is overall poorer than PCA + RR and
SVR. This gap is especially clear for the smaller sample sizes,
but it remains statistically significant even for the largest one
(p = 0.036, two-tailed, for SVR vs. CNN at size 90). Nevertheless,
the different models show markedly different patterns in terms of
the effect of sample size. While PCA + RR and SVR models are
relatively unaffected by sample size, performance of the CNN (as
well as of the related Hybrid model) show large improvements
with increasing sample size (see inset in Figure 6 for a plot of

FIGURE 5 | Comparison of models’ predictive accuracy on selected subsets of patients: (A) patients with left hemisphere lesions (N = 57), that is the population in
which a language deficit is most common after stroke, and (B) patients with language deficit (N = 29) as attested by a score < 0.

FIGURE 6 | Notched box plot showing the prediction performance (R2) on 40 runs for each sample size and method. At the smaller sample sizes the performance
levels of CNN or Hybrid models are either poorer or statistically similar to that of SVR and PCA-RR models (overlapping notches of the boxplot). However, at sample
size of 90 the Hybrid model outperformed all other models. The inset plots the CNN performance gap (difference in R2 values) with increasing sample size in
comparison to the SVR model; the best fitting function (red line) is extrapolated up to a sample size of 150.
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the performance gap of CNN with respect to SVR). These results
suggest that the dataset size requirement for optimal performance
of deep learning methods has not yet been satisfied and CNNs
might significantly outperform competing models when more
data will become available. By extrapolating the differential
performance plot, we speculate that a few hundred samples
may be needed for the CNN to outperform the SVR model.
Note, however, that this comparison is relevant only for the
conventional CNN approach, because we also established that the
use of (hidden) features extracted by a CNN within a Hybrid (RR-
based) model leads to be best predictive performance, presumably
avoiding over-fitting caused by training them within the standard
CNN framework (as shown in Figure 3).

Role of Data Redundancy on Predictive
Accuracy
Machine learning models acquire knowledge through exposure
to the training data and are therefore sensitive to biases that
may arise from examples that are over- or under-represented
in the dataset. This also applies to a regression problem like
the present one because some lesion patterns are likely to be
more frequent and might therefore lead to better prediction
than less frequent (or even unique) lesion patterns. However,
the effect of the similarities between lesions might differ across
models, particularly because the number of training parameters

is different in each model. We defined three types of image
redundancy indexes based on (a) lesion centroid distances
(centroid redundancy); (b) lesion pixel-wise topological distances
(location + topology redundancy); and (c) distances between
directly superimposed images (raw redundancy) as described in
the section “Materials and Methods.” Then, we grouped the
images into two sets with high vs. low redundancy levels and
we assessed the predictive accuracy of all models on these two
image datasets. Figure 7 shows the performance of the smaller
and larger clusters defined by redundancy levels in each category.
This analysis provides insights into the lesion-predicted language
deficits as follows.

Redundant Models Perform Better
All models show marked differences in predictive accuracy on the
high vs. low redundancy image sets. The models perform very
similarly in the image set in which redundancies are high. Not
surprisingly, a model which has previously seen similar examples
during training is much more accurate in prediction. This is
consistent with the large data set requirements that were found
to be critical for developing robust models as discussed in the
previous section.

Hybrid Models Perform Better in Most Comparisons
In the small redundancy set, the Hybrid model comprehensively
outperformed all other models, except when redundancy was

FIGURE 7 | Average prediction performance for images having large vs. small redundancy levels with other images. Performance is measured by both goodness of
fit (r2) (A–C) and mean absolute error (MAE) (D–F). For these definitions of redundancy, almost all models perform very similarly in the image set in which
redundancies are high (right-sided bars in all panels). In the small redundancy set, the Hybrid model comprehensively outperformed all other models, except in the
location + topology based similarity. Values in the brackets of x-axis labels represent the number of images included in small and large redundancy groups.
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defined using location + topology similarity. The finding
that the Hybrid model performs better on images with
limited redundancy is consistent with the idea that the lesion
features extracted by the CNN are useful for prediction and
complementary to those extracted by the PCA method.

Topology and Location Based Low Redundancy
Produce Somewhat Competing Models
In the case of redundancy being defined by the
location + topology similarity between images, performance
on the low redundancy set was lower for the Hybrid model
compared to the other models (Figures 7B,E). This suggests
that the PCA and CNN features model contrasting properties
in this comparison when redundancy is completely eliminated,
and strictly non-redundant samples are left for training. We
suggest that suboptimal models trained by CNN and PCA
are independent of each other due to multiple and distinct
sub-optimal solutions with similar performance in a high
dimensional space. One explanation for this result is that highly
generalizable features are needed for models to work well on
data with low redundancy level. CNN and PCA-RR models
generalize in different ways because data sets are small and
multiple solutions with a similar (low) performance may emerge
from learning on a large feature set. If that is the case, PCA
and CNN-derived features may be inconsistent with each other,

which in turn is detrimental to overall predictive performance.
Note that this does not apply to the high redundancy set because
there is a much smaller space of possible (good) solutions and
features driving the prediction are likely to be more similar
across learning methods. When redundancy is defined only
along a single dimension, either location (centroid similarity)
or topology (raw similarity), the low redundancy set still
retains images that are redundant on the other dimension.
The CNN-derived and PCA features will be therefore more
similar and combining them in the Hybrid model improves
performance. In summary, we find that redundancy defined
in simple terms as variants of Euclidean distances of lesions
is a critical parameter that determines how accurately a given
model can predict language deficit based on MRI lesion
images. Even though these results are obtained for the current
data set, they are likely to be general in nature and it would
be interesting to examine other MRI diagnostic problems
in this context.

Can Long Term Language Deficits Also
Be Predicted?
One of the most interesting clinical applications of a computer
model connecting brain lesion images to behavioral outcomes
is the prediction of long term deficits. We therefore assessed

FIGURE 8 | Long-term language scores predicted by the four machine learning models: (A) CNN, (B) PCA + RR, (C) SVR, and (D) Hybrid model. Predictive
accuracy is indexed by R2 values.
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all models in terms of the ability to predict the language score
obtained in follow-up re-testing performed 3 months after the
stroke (Ramsey et al., 2017). Indeed, Ramsey et al. (2017) reported
that lesion topography (represented by PCA components of
lesion images) accounted for about 13% of unique variance in
the prediction of language recovery using regression analyses.
Figure 8 summarizes our results (methods identical to the main
analysis) on all patients (N = 74) for whom the long-term deficit
scores were available.

Prediction accuracy for long-term deficit in terms of r2

values (range 0.35–0.59) was lower compared to our previous
results (range 0.63–0.68). However, accuracy is remarkable
when considering that the models did not include patients’
demographic data and/or acute-phase neuropsychological
scores as (additional) predictors (see Hope et al., 2013;
Ramsey et al., 2017).

DISCUSSION

In this work, we assessed deep and shallow machine learning
approaches to predicting cognitive deficits from MRI lesion
images. Conventional (shallow) machine learning methods
typically require extraction and selection of image features that
represent topological information about the lesion, a critical
step that is dispensed with in the deep learning approach. We
compared SVR and CNN techniques to a previously developed
method based on RR. We also developed a Hybrid method
based on re-using CNN’s high-level features together with PCA
image features as input to a RR model, which yielded the
best performance.

Overall, our results suggest that deep learning leverages
predictive performance, which also scales up favorably with the
amount of training data. Dataset size has been highlighted as
a key issue for the lesion-behavior mapping problem (Price
et al., 2017). Though the size of our dataset was far from
optimal for deep learning, our analyses suggest that CNNs are
likely to significantly outperform competing models when more
patient data will become available. Moreover, we observed that
the CNN already outperforms conventional models in resolving
quantitative differences among the subgroup of patients with
language deficit. This is crucial in the context of predicting
the severity of deficit (i.e., a regression problem) as opposed to
the mere presence of deficit (i.e., a classification problem). The
CNN’s tuning to fine-grained prediction of the severity of deficit
also helps explaining why CNN features boosted the overall
performance of the Hybrid model.

We also systematically examined how predictive accuracy is
influenced by data redundancy, defined in terms of similarity
across lesion images using several distance metrics. Our analyses
revealed that training on a dataset that contains multiple
instances of similar lesions is a crucial factor to obtain good
performance: lesion patterns that are more frequent lead to
better prediction than less frequent lesion patterns. This is
in line with the view that limited sample size is the main
bottleneck for neuroimaging-based prediction of brain disorders
(Arbabshirani et al., 2017).

It is worth noting that the performance gains obtained
with deep learning come at the expense of interpretability.
Conventional machine learning models can be readily analyzed
to assess which image features (i.e., which voxels) are particularly
weighted in computing the prediction (see Siegel et al., 2016).
Whether similar results can be obtained from methods that
analyze deep networks in terms of function of intermediate
feature layers (e.g., Zeiler and Fergus, 2014) or hidden neurons’
receptive fields (e.g., Testolin et al., 2017) is an issue for
future work. Conversely, deep learning might also be exploited
to use raw MRI images (rather than lesion images) as
input for predicting behavioral deficits; however, stroke lesion
segmentation remains a challenging problem1 and manual
delineation remains the gold standard. Given the limits of dataset
size, design of an end-to-end pipeline might benefit from a
transfer learning approach (see Wang S. et al., 2019; Wang S.H.
et al., 2019 for applications to neuroimaging).

Other avenues for future research include the assessment
of deep learning models that include connectivity data to
address the question of whether predictive accuracy is leveraged
by information on structural and/or functional disconnection
among brain regions (Forkel et al., 2014; Siegel et al., 2016;
Hope et al., 2018). Finally, the prospect of predicting long-term
deficits and/or the potential for functional recovery has profound
implications for clinical practice.
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The Multiple-Network Poroelastic Theory (MPET) is a numerical model to characterize

the transport of multiple fluid networks in the brain, which overcomes the problem

of conducting separate analyses on individual fluid compartments and losing the

interactions between tissue and fluids, in addition to the interaction between the different

fluids themselves. In this paper, the blood perfusion results from MPET modeling are

partially validated using cerebral blood flow (CBF) data obtained from arterial spin

labeling (ASL) magnetic resonance imaging (MRI), which uses arterial blood water as

an endogenous tracer to measure CBF. Two subjects—one healthy control and one

patient with unilateral middle cerebral artery (MCA) stenosis are included in the validation

test. The comparison shows several similarities between CBF data from ASL and blood

perfusion results from MPET modeling, such as higher blood perfusion in the gray matter

than in the white matter, higher perfusion in the periventricular region for both the healthy

control and the patient, and asymmetric distribution of blood perfusion for the patient.

Although the partial validation is mainly conducted in a qualitative way, it is one important

step toward the full validation of the MPET model, which has the potential to be used as

a testing bed for hypotheses and new theories in neuroscience research.

Keywords: poroelasticity, multiple fluid networks, finite element method, cerebral blood flow, blood perfusion,

arterial spin labeling, magnetic resonance imaging, brain

INTRODUCTION

Computational modeling has shown great potential in biomedical engineering research. The main
advantage is that computational methods can translate mathematical formulations that describe
the inherent complexity of biological systems into computer programs and solve them in a timely
manner. Many software suites have been developed for mechanistic modeling of biological systems,
such as SfePy (Rohan and Cimrman, 2012), FEBio (Maas et al., 2012), and FEniCS (Logg et al.,
2012). In this respect, one of the promising tools is applying the multiple-porosity/multiple-
permeability poroelastic model for modeling of fluid transport and tissue deformation in the brain,
which is called theMultiple-network PoroElastic Theory (MPET). The brain parenchyma is treated
as a deformable solid matrix, permeated by multiple fluid networks (Tully and Ventikos, 2011).
In general, the number of fluid networks can be customized to specific research. For current
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brain modeling, four coupled fluid networks are taken into
account: an arterial network (a), an arteriole/capillary network
(c), a cerebrospinal fluid/interstitial fluid (CSF/ISF) network (e)
and a venous network (v). The directional flows between the
fluid networks are shown in Figure 1, which link all four fluid
compartments together to form a coupled and integrated fluid
domain. The separation of arterial and arteriole networks is
based on the consideration of different resistances between large
and small arteries. Similar implementation was adopted in the
modeling of coronary blood flow in the heart (Smith et al.,
2002; Lee and Smith, 2012), where the arterial tree consists
of several compartments. In general, arterioles are defined as
the primary resistance vessels that enter an organ to distribute
arterial blood into capillary beds, which provides more than 80%
of the resistance to blood flow in the body (Mulvany andAalkjaer,
1990; Christensen and Mulvany, 2001; Martinez-Lemus, 2011).
Therefore, the arterial blood compartment is further segmented
into a high-pressure arterial network and a lower-pressure
arteriole/capillary network (Tully and Ventikos, 2011).

The MPET theory has been successfully used in the modeling
of biomechanical problems, e.g., hydrocephalus (Levine, 2008;
Tully and Ventikos, 2011; Sobey et al., 2012), cerebral oedema
(Vardakis et al., 2016), and Alzheimer’s disease (Guo et al.,
2018; Vardakis et al., 2019). However, there still lacks thorough
and rigorous validation using experimental and clinical data.
Computational tools developed in other fields of biomedical
engineering has shown that once sufficiently validated, they can
be used as testing beds for clinical research, e.g., analyzing risks
and exploring new treatments for diseases (Chen et al., 2018).

The MPET model can generate a wide range of output results,
such as the pressure and Darcy velocity (filtration velocity) of
fluids and brain tissue deformation. This gives the users great
advantage to have a full picture to understand the biomechanical
mechanisms at multiple scales. However, it also brings difficulty
to the validation of the model. Due to the complexity of the
algorithms and the large number of parameters needed to define
the MPET model, it is not feasible to validate the entire model in
one validation test. Therefore, a series of validation tests need to
be designed and conducted to fully validate the numerical model
and this paper aims to be as one step in this process.

One important output that can be seen fromMPET modeling
is blood perfusion, which is represented by the filtration velocity
of the arteriole/capillary blood compartment. Blood perfusion in

FIGURE 1 | The four-network poroelastic model (4-MPET) used for mechanistic modeling of the brain.

the brain can be quantified by cerebral blood flow (CBF), which
is an important parameter to define brain function. For example,
by quantifying regional CBF, Chen et al. (2011) demonstrated
that normal aging has different effects on regional CBF and
gray matter atrophy, although age-related reductions are more
common in cortical perfusion than subcortical CBF. Lassila
et al. (2018) observed evidence of hypoperfusion being associated
with mild cognitive impairment (MCI) status. Moreover, much
research have been conducted to explore the possibility of using
CBF as a biomarker for early diagnosis of Alzheimer’s disease
(AD) and other dementias. One of the findings is decreased blood
flow in praecuneus and/or posterior cingulum, and in the lateral
parietal cortex (Alsop et al., 2010); other studies in AD (Alsop
et al., 2008; Dai et al., 2009; Fleisher et al., 2009) found elevated
CBF in the hippocampus. The hippocampus is associated with
spatial and episodic memory; for example, reduced hippocampal
volume results in an amnestic syndrome, which is a core feature
of AD (Halliday, 2017).

Several methods can be used to measure CBF, such as
computed tomography perfusion (CT perfusion), positron
emission tomography (PET), and single-photon emission
computed tomography; however, CBF measured by different
methods normally cannot be compared directly (Kudo et al.,
2003; Guibert et al., 2013). In addition to the methods mentioned
above, an increasingly popular method to quantify CBF is to
use arterial spin labeling (ASL) magnetic resonance imaging
(MRI). Arterial spin labeling (ASL) is a non-invasive imaging
technique using standard magnetic resonance imaging (MRI)
equipment. The basic idea is that an MRI image can be sensitized
to the effect of inflowing blood spins, if the spins are in a
different magnetic state from that of the static tissue. The
ASL technique based on this idea uses magnetically labeled
arterial blood water as a nominally diffusible tracer for blood
flow measurements. There are several schemes for labeling
arterial blood water, including continuous labeling, pseudo
continuous labeling, and pulsed labeling (Calamante et al., 1999).
Continuous ASL means continuously rotating arterial spins
as they pass a labeling plane just beneath the imaged region
(Williams et al., 1992). Pulsed labeling means rotating arterial
spins in a slab of tissue at one time (Wong et al., 1997),
which is most often used in functional magnetic resonance
imaging (fMRI). The physiological basis for the MRI contrast
mechanisms of ASL is well-known so it provides a biomarker
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for brain function that is portable across scanning platforms or
time (Alsop et al., 2010). ASL perfusion MRI has been used
as a diagnostic tool in clinical practice (Detre et al., 2012;
Alsop et al., 2015), and also in human neuroscience research
(Detre et al., 2009; Shin et al., 2013).

The objective of this paper is to partially validate the blood
perfusion obtained from 4-MPET modeling using CBF data
from ASL images. The paper is organized in the following way.
First, the image collection, including T1-weighted MRI and ASL
MRI, is introduced. The T1-weighted MRI is segmented to
create geometry and mesh for numerical modeling. Second, the
numerical formulation of the 4-MPET model, and the boundary
conditions and parameters used for modeling are described.
Third, the numerical results of blood perfusion are compared
with CBF data obtained from ASL images, and similarities and
differences are discussed. Lastly, some conclusions are drawn
from the validation tests and future work is suggested.

MATERIALS AND METHODS

Clinical Data Collection and Processing
The clinical data were collected at the People’s Liberation Army
(PLA) General Hospital in Beijing, China. Two subjects—one
healthy control and one patient with unilateral middle cerebral
artery (MCA) stenosis, are included in this paper. The ethics
committee of the PLA General Hospital approved the study and
both participants gave informed consent prior to participation in
the study. After data collection, T1-weighted (T1w) MR images
were segmented to create three-dimensional geometries and
meshes of parenchymal tissue and the cerebral ventricles for
numerical modeling; Arterial spin labeling (ASL) MR images
were processed to generate cerebral blood flow (CBF) maps,
which were used for validation of the numerical results.

T1-Weighted MRI
A high-resolution T1w dataset using a 3D Ax FSPGR (fast
spoiled gradient-recalled echo) sequence was acquired and
used to generate masks. The scan parameters were as follows:
repetition time/echo time (TR/TE), 5.9960/2.5400ms; inversion
time, 450ms; bandwidth,±16 kHz; slice thickness, 1mm; matrix,
512 × 512; flip angle, 15◦. Subsequently, these MR images were
segmented to create anatomically accurate three-dimensional
brain geometries using FreeSurfer (Fischl, 2012). The emphasis
here is to capture detailed cortical and subcortical features, such
as the gray and white matter and the cerebroventricular system.
Initially two closed surfaces were created from segmentation—
the outer surface represents the cortical surface of the brain
parenchyma and the inner surface represents the ventricular
wall. Next, the volume formed by the ventricular wall was
deducted from the volume formed by the cortical surface via
a Boolean operation, so the final volumetric domain used for
numerical modeling is the brain parenchyma between the cortical
surface and the ventricular wall (Figure 2). Furthermore, the
brain parenchyma was segmented into separate regions of white
matter and gray matter to characterize their different mechanical
properties (Figure 3), which makes this model more realistic
than previous models using homogeneous representations of

the brain parenchyma (Guo et al., 2018). The final geometric
model was discretized into 4-node tetrahedra elements using
ANSYS (ANSYS, Inc., Canonsburg, USA). The mesh size satisfies
the criterion proposed from mesh sensitivity tests in a previous
paper (Guo et al., 2018) to make sure the numerical results
are convergent.

Arterial Spin Labeling MRI
In order to obtain cerebral blood flow (CBF) data for the
validation of numerical results, the participants were scanned
using 3D pseudo-continuous arterial spin labeling (pCASL)
technology (Discovery 750, GE Healthcare). The technical
parameters are listed as follows: sequence repetition time/echo
time (TR/TE), 5,327/10.5ms; field of view, 240× 240mm;matrix
size, 128 × 128; number of slices, 36; slice thickness, 4mm;
labeling duration, 1,500ms; post-labeling delay, 1,525ms; and
number of excitation, 2; background suppressed. Then the ASL
perfusion maps were expressed as cerebral blood flow (CBF) by
the supporting software of the MR scanner. A skull stripping
function was implemented in the ASL image processing workflow
so the scalp tissues can be removed on the CBF maps by creating
a tissue mask from T1-weighted images (Deibler et al., 2008).
The CBF results are compared with numerical results in section
Results and Discussion.

Multiple-Network Poroelastic Model
Finite Element Model
The multiple-network poroelastic model incorporates
mechanical equilibrium for elastic deformation, mass
conservation of fluids and Darcy’s law for fluid flow in a
coupled manner. The governing equations of the 4-MPET
model are listed as follows, where the primitive variables are the
displacement of the parenchymal tissue (u) and the pressures of
the four fluid networks pi (i= a, c, e, v).

G∇2u+ (G+ λ)∇ε = αa∇pa + αc∇pc + αe∇pe + αv∇pv (1)

Sa
∂pa

∂t
+ αa

∂ε

∂t
=

ka

µa
∇2pa + sca (2)

Sc
∂pc

∂t
+ αc

∂ε

∂t
=

kc

µc
∇2pc + (sac + sec + svc) (3)

Se
∂pe

∂t
+ αe

∂ε

∂t
=

ke

µe
∇2pe + (sce + sve) (4)

Sv
∂pv

∂t
+ αv

∂ε

∂t
=

kv

µv
∇2pv + (scv + sev) (5)

Equation 1 is the equilibrium equation, which describes the
momentum balance in the porous medium. Here, u is the
displacement of the tissue; pi is the pressure in each fluid network;
G is the shear modulus; λ is the Lamé’s constant; ε is the
dilatational strain; αi is the Biot–Willis coefficient for each fluid
network which satisfies φ ≤ αa + αc + αe + αv ≤ 1 (Berryman,
1992; Wang, 2000), where φ is the total porosity. In this paper,
only four fluid networks are considered so the total porosity φ

equals the sum of the porosities of the four individual networks
(Bai et al., 1993; Tully and Ventikos, 2011). It is worth noting
that the shear modulus G and the Lamé’s constant λ are not
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FIGURE 2 | Subject-specific brain geometry obtained by segmentation of T1w MR images and the application of the Boolean operation. The finished model is a

volumetric domain with a cavity representing the ventricles. The tetrahedral mesh created for numerical modeling is demonstrated by cross-sections cut in three

orthogonal directions. The red color represents the ventricular wall.

FIGURE 3 | White and gray matter in the brain model (shown in the horizontal cross-sectional slices). The white matter is represented by the blue color and the gray

matter is represented by the red color.

constant in the domain; they have different values in the gray
matter and the whitematter. Body forces (e.g., gravity) and inertia
terms are neglected in the governing equations based on the
assumption that the acceleration frequencies are low in biological
flows (Tully and Ventikos, 2011; Chou et al., 2016). It should
also be noted that the cross-porosity storage effect (Mehrabian
and Abousleiman, 2014) is not considered in this paper due to
the lack of experimental data to quantify the parameters in a
physiologically realistic way (Vardakis et al., 2017).

Equations 2–5 are continuity equations, which describe the
mass balance of the four fluid networks, respectively. Si is the
specific storage; ki is the permeability for each of the four fluid
networks; µi is the viscosity of each fluid. The assumption
adopted in this paper is that the four fluid domains are isotropic;
therefore ki is a constant. If spatially varying parameters are
available, such as permeability tensors extracted from diffusion-
weighted imaging (DWI), the permeability k can be defined on a
heterogeneous and anisotropic basis (Guo et al., 2018).

The sij terms on the right-hand side of Equations 2–5
(also demonstrated in Figure 1) define spatially varying source
(sij > 0) or sink (sij < 0) terms (Tully and Ventikos, 2011;
Vardakis et al., 2013), which are assumed to be driven by
a hydrostatic pressure gradient of the form, sij = ωij(pi –
pj), where ωij is the transfer coefficient scaling the flow from
network i to network j. The transfer of fluid between the
four fluid networks is derived from physiological considerations
(Tully and Ventikos, 2011) and required to obey the law of
continuity for the entire domain; hence, directionality between
fluid compartments must be accurately specified. These are listed
as follows:

1. Directional fluid transport always occurs from the arterial
network to the arteriole/capillary network:

sac = −sca = |sac| ≥ 0 (6)
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2. Fluid transport from the arteriole/capillary network enter the
CSF/ISF network or the venous network:

sce = −sec = |sec| ≥ 0 (7)

scv = −svc = |svc| ≥ 0 (8)

3. CSF flows into the venous compartment:

sev = −sve = |sev| ≥ 0 (9)

Next, the governing equations are discretized by the finite
element method and implemented in an in-house Fortran code.
Both the displacement field u and the pressures of the four fluid
networks pi (i = a, c, e, v) are approximated in the continuous
piecewise linear polynomial space. The discretized form of the
equilibrium equation is derived from the principle of minimum
potential energy,

Ku−
(

Qapa +Qcpc +Qepe +Qvpv
)

= F (10)

where

K =

∫

�

BTDBd� (11)

Qi =

∫

�

αiB
Thd� (12)

F =

∫

�

NTbd� +

∫

ŴN

NTtNdŴ (13)

K is the stiffness matrix; Qi is the load on the solid phase
contributed from the ith fluid network (i = a, c, e, v); b is
the vector of body force, which is neglected in this paper; N is
the matrix of continuous piecewise linear polynomial functions
(shape functions); and tN is the external force acting on the
boundary ΓN .

The continuity equations of the fluid networks are discretized
using the method of weighted residuals and the continuous
Galerkin formulation. The discretized form of the continuity
equation for one of the four fluid networks is,

Aṗ+ Cp = P (14)

The elements in matrices A, C, and vector P are

Aij = S

∫

�

NiNjd� (15)

Cij =
k

µ

∫

�

(

∂Ni

∂x

∂Nj

∂x
+

∂Ni

∂y

∂Nj

∂y
+

∂Ni

∂z

∂Nj

∂z

)

d� (16)

Pi =

∫

�

sNid� − α

∫

�

ε̇Nid� +

∫

Ŵ2

qNidŴ (17)

Ni is the continuous piecewise linear polynomial function at
node i; and q is the flux prescribed in the Neumann boundary
condition acting on the boundary Γ 2.

The temporal discretization of the governing equations
is implemented using the method of weighted residuals. In
this paper, an implicit backward Euler scheme is used for
time discretization. The final system of discretized governing

equations is solved by the standard KSP linear equation solver
in the PETSc library (Balay et al., 2018a,b). The highly coupled
equations are solved sequentially in a tightly coupledmanner, i.e.,
the pressure and displacement solutions are solved sequentially
during a time-step until a convergence tolerance is reached. At
the end of each time-step, Darcy’s law is used to calculate Darcy
velocities (filtration velocities) of the four fluid networks.

v = −
k

µ
∇p (18)

where v is the Darcy velocity for each of the four fluid
compartments, i.e., the volume of fluid crossing a unit area per
unit time. It should be noted that the focus of this paper is
to validate one of the outputs from 4-MPET modeling—blood
perfusion; here the blood perfusion is represented by the Darcy
velocity of the arteriole/capillary compartment.

Boundary Conditions and Poroelastic Parameters
As illustrated in Figure 2, the simulation domain of the
parenchymal tissue is bounded by two surfaces—the outer
boundary represents the cortical surface and the inner boundary
represents the ventricular wall, both of which need boundary
conditions for the solid phase and the four fluid networks,
respectively; therefore, a total of 10 boundary conditions are
listed in Table 1.

The details of the boundary conditions explained from a
physiological perspective can be found in previous publications
(Tully and Ventikos, 2011; Vardakis et al., 2013; Guo et al., 2018);
a summary is given here and their values can be found in Table 2.
One of the boundary conditions that is closely related to the
modeling in this paper is the arterial blood flow at the cortical
surface (Equation 20). The arterial blood supply to the brain is
mainly provided by two pairs of arteries—internal carotid arteries
and vertebral arteries (Tortora and Derrickson, 2009). Due to the
lack of explicit characterization of vasculature in the 4-MPET
model, the arterial blood supply to the brain is simplified into
a flux boundary condition (Neumann boundary condition) Qa

at the cortical surface, which is applied as pulsatile waveforms
(Figure 4). The numerical simulations run 50 cycles of arterial
blood waveforms to reach a periodic steady state; only the output
data from the final steady state are used for validation in section
Results and Discussion.

For the arteriole/capillary blood compartment, the production
of CSF from the blood results in a pressure drop in the
arteriole/capillary blood (Equation 23), where κc→vent is the
resistance of the flow from the capillary network to the ventricles
(through the choroid plexus), and Qp is the rate of CSF
production. Two assumptions are adopted in this boundary
condition. First, there is no separation of the two extracellular
fluid compartments in the brain—the cerebrospinal fluid (CSF)
and the interstitial fluid (ISF) in the 4-MPET model, which
assumes that all of the CSF/ISF is produced within the ventricles
from blood at a production rateQp. However, it has been reported
that ∼20% of CSF in the human brain originates from brain ISF
(Edsbagge et al., 2004; Lei et al., 2017). In the current 4-MPET
model, this part of CSF production is implicitly embedded in
the combined CSF/ISF compartment. Second, the main site of
CSF production in the ventricles is the choroid plexus, which is
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TABLE 1 | Boundary conditions used in the 4-MPET modeling.

Cortical surface Ventricular wall

Displacement u = 0 (19) No displacement constraints

Arterial blood ∇pan = Qa (20) ∇pan = 0 (21)

Arteriole/capillary blood ∇pcn = 0 (22) κc→vent∇pcn = −Qp (23)

CSF/ISF pe = pv + µeRQ0 (24) Qp = πd4

128µeL

(

pe − pcortial surfacee

)

−
4πke
µe

(

r1 + un1

)2
∇pen+ 4π

(

r1 + un1

)2
u̇ (25)

Venous blood pv = pbp (26) ∇pvn = 0 (27)

TABLE 2 | Poroelastic parameters used in the 4-MPET modeling.

Parameters Values Units Parameters Values Units

αac 0.25 ωac 1.5 × 10−7 m2N−1s−1

αe 0.49 ωcv 1.5 × 10−7 m2N−1s−1

αv 0.01 ωev 1.0 × 10−6 m2N−1s−1

λg 505 Pa ωce 1.0 × 10−8 m2N−1s−1

Gg 216 Pa pbp 650 Pa

λw 1,010 Pa Qp 5.8 × 10−9 m3s−1

Gw 432 Pa Q0 5.8 × 10−9 m3s−1

Sac 2.9 × 10−4 m2N−1 κc→vent 6.0 × 10−4 m6N−1s−1

Se 3.9 × 10−4 m2N−1 µe 8.9 × 10−4 m−2Ns

Sv 1.5 × 10−5 m2N−1 R 8.5 × 1013 m−3

ka,e,v 1.0 × 10−10 m2 d 4.0 × 10−3 m

kcg 1.0 × 10−8 m2 L 7.0 × 10−2 m

kcw 1.0 × 10−10 m2

FIGURE 4 | Arterial blood supply to the brain, which is applied as a flux

boundary condition of the arterial blood compartment at the cortical surface.

a highly vascularized tissue located within each ventricle of the
brain and develops from several locations along the dorsal axis
of the neural tube (Lun et al., 2015). The classical hypothesis
involves the production of CSF at the choroid plexus of the
lateral, third, and fourth ventricles. However, it is still speculative
as to the exact proportions of CSF production in the various

choroid plexus sites (Gupta et al., 2009; Vardakis et al., 2013).
The 4-MPET model simplifies the production of CSF as a
uniform distribution on the entire ventricular wall, instead of
at specific locations. This simplification is consistent with the
homogenization approach adopted for the 4-MPET model.

The CSF/ISF compartment has a Dirichlet boundary
condition at the cortical surface and a mixed boundary condition
at the ventricular wall. At the cortical surface, the boundary
condition (Equation 24) represents the pressure rise resulted
from the absorption of CSF into the venous network, where
pbp is the venous blood pressure at the cortical surface, µe is
the viscosity of CSF, R is the resistance to outflow through
the arachnoid granulations, and Q0 is the out-flux of CSF at
the skull (the rate of absorption Q0 is assumed to be equal
to the production rate Qp in the quasi-steady approach). At
the ventricular wall, the boundary condition (Equation 25)
represents the conservation of the mass of fluid in the ventricles.
Within the ventricles, it is assumed that any CSF that is
produced (Qp) and does not flow through the cerebral aqueduct
(Poiseuille’s law) or the parenchyma must accumulate within
the ventricles, where d and L are the diameter and length of
the cerebral aqueduct, respectively, r1 is the distance from the
center to the ventricular wall, and un1 is the displacement at the
ventricular wall.

Two subject-specific brain models are simulated in this
paper—one healthy control and one patient with unilateral
(right) middle cerebral artery (MCA) stenosis. Unilateral MCA
stenosis and other intracranial artery stenosis are common causes
of ischemic stroke (Mazighi et al., 2006). Previous research
reported a reduced lumen diameter of <50% between normal
and MCA stenosis by Transcranial Doppler (TCD) (Wang et al.,
2014). To account for the reduced blood supply to the right
cerebrum, the arterial blood boundary condition at the cortical
surface is decreased to 50% for the patient.

Table 2 gives the poroelastic parameters used in the numerical
simulations of this paper. These parameters are introduced in
the traditional consolidation theory of poroelastic media (Biot,
1941; Wilson and Aifantis, 1982), and also interpreted from a
physiological sense for the cerebral environment. Most of the
parameters have been used before and the detailed descriptions
can be found in previous studies (Tully and Ventikos, 2011;
Vardakis et al., 2013; Guo et al., 2018).

The main difference of parameters compared with previous
research of MPET modeling (Tully and Ventikos, 2011; Vardakis
et al., 2013; Guo et al., 2018) is the differentiation between the

gray matter and the white matter. In previous work, the entire
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brain parenchyma was treated as a homogeneous domain from
a mechanical perspective; therefore, there was only one value
for elastic constants—shear modulus G and Lamé’s constant λ

(Table 2), respectively. An assumption of single permeability (kc)
was also adopted for the arteriole/capillary fluid network. In
this paper, the segmentation of T1w MR images (section T1-
Weighted MRI) defines separate regions for the gray matter
and the white matter (Figure 3); therefore, different values are
assigned for the mechanical properties of the gray matter and
the white matter. More specifically, previous work of MPET
modeling used a Young’s modulus of 584 Pa (Taylor and Miller,
2004) for the entire brain. However, experiments have found the
gray matter is significantly more compliant than the white matter
(Finan et al., 2017; Testu et al., 2017). Therefore, in this paper the
Young’s modulus of the white matter is twice the value for the
gray matter (Weickenmeier et al., 2017), which results in higher
values of shear modulus G and Lamé’s constant λ for the white
matter (with subscript w) than the gray matter (with subscript g).

Another difference from previous MPET simulations is that
different values of the permeability of the arteriole/capillary
fluid network (kc) are assigned for the white matter and the
gray matter. In the theory of poroelasticity, the permeability
defines the ability of the porous medium to transmit fluids
(Wang, 2000). In general, higher permeability enables the
fluid to flow faster through the porous medium according
to the Darcy’s law (Equation 18). The focus of this paper
is to validate the blood diffusion (Darcy velocity of the
arteriole/capillary compartment) by CBF data from ASL images,
so it is important to characterize the permeability associated with
the arteriole/capillary compartment at a more detailed level than
the other three fluid compartments. The normal average cerebral
blood flow (CBF) in adult humans is about 50 ml/100 g/min
(Lassen, 1985; Fantini et al., 2016) with lower values in the white
matter and higher values in the gray matter (Vavilala et al., 2002);
therefore, in this paper the permeability of the arteriole/capillary
compartment (kc) in the gray matter (with subscript g) is set to
be 100 times the value for the white matter (with subscript w).

RESULTS AND DISCUSSION

The cerebral blood flow (CBF) data from arterial spin labeling
(ASL) images and the numerical results obtained from 4-MPET

modeling are compared in this section. The 4-MPET model
used for numerical simulations can output a wide range of
results. The focus of this paper is to validate the blood perfusion;
therefore, only the Darcy velocity (filtration velocity) of the
arteriole/capillary compartment is shown in this section.

The values of CBF data and blood perfusion from 4-MPET
modeling cannot be compared directly (Guibert et al., 2013). The
unit of CBF normally is ml/100 g/min, which means the blood
volume that flows per unit mass per unit time in brain tissue
(Fantini et al., 2016), whereas the unit of Darcy velocity (filtration
velocity) is m/s, which means the volume of blood crossing a unit
area per unit time. The unit of the filtration velocity (m/s) can be
converted to the unit of CBF (ml/100 g/min) by dividing it by the
density of the brain tissue 1.0 g/cm3 (Barber et al., 1970) and a
reasonable length scale at the order of the size of a gyrus (1 cm)
(Im et al., 2008).

The CBF data and blood perfusion results from 4-MPET
modeling for the healthy control and the patient with unilateral
(right) middle cerebral artery (MCA) stenosis are shown in
Figures 5, 6, respectively. The red color represents regions of
high blood perfusion and the blue color represents low blood
perfusion. There are several similarities that can be seen from
the comparison. The first one is that blood perfusion is higher
in the gray matter than in the white matter, which means a
higher permeability value of the arteriole/capillary compartment
in the gray matter is necessary in order to capture this difference.
Numerical simulations using identical permeability for the gray
matter and the white matter (results are not shown here)
demonstrate that different blood perfusion magnitudes in the
gray matter and the white matter cannot be reflected in these
simulations. In Figures 5, 6, the maximum value in the 4-MPET
modeling results is about 2.0 × 10−4 m/s, which is equivalent to
1.2× 102 ml/100 g/min—within the same order of magnitude of
the maximum value on the CBF maps, 1.1× 102 ml/100 g/min.

In numerical modeling, the blood perfusion is taken as the
Darcy velocity of the arteriole/capillary compartment; therefore
for a more quantitative validation it can also be compared
with published data of the blood flow velocity in capillaries
of the brain. For example, in a review article, Hudetz (1997)
suggested that the red blood cell (RBC) velocity falls in the
range of 5 × 10−4-1.8 × 10−3 m/s within the cerebral capillary
network; Hadjistassou et al. (2015) reported a mean capillary
blood velocity of 7.3 × 10−4 m/s (Lücker et al., 2018); used

FIGURE 5 | Comparison of CBF data obtained from ASL images (upper row) and blood perfusion from 4-MPET modeling (lower row) for the healthy control.
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FIGURE 6 | Comparison of CBF data obtained from ASL images (upper row) and blood perfusion from 4-MPET modeling (lower row) for the patient with unilateral

(right) MCA stenosis.

the red blood cell velocity between 4 × 10−4 and 2 × 10−3

m/s in their computation model. It can be seen from Figures 5,
6 that the blood perfusion results obtained from 4-MPET
modeling are at the same order of magnitude with these
published data.

The second similarity that can be seen from the comparison
is that there is clear symmetry between left and right cerebrums
in the healthy subject (Figure 5), whereas the patient with
unilateral (right) MCA stenosis shows lower blood perfusion
in the right cerebrum (Figure 6). This is consistent with
previous findings (Liu and Li, 2016; Lyu et al., 2016; Lou
et al., 2019), which reported that patients with unilateral MCA
stenosis have significantly lower CBF in the hemispheres of
the stenotic side. A more detailed comparison is shown in
Figure 7, where one slice in the horizontal plane is taken
from the healthy control and the patient, respectively. The
comparison shows that the healthy control has symmetric
distribution of blood perfusion; however, the patient with

unilateral (right) MCA stenosis has normal blood perfusion
in the left cerebrum (highlighted by red dashed lines and

arrows) but lower perfusion in the stenotic side (right). This
also demonstrates that the reduced arterial blood flow boundary

condition applied on the right cortical surface (section Boundary

Conditions and Poroelastic Parameters) is correctly reflected in
the output of blood perfusion, which means that the coupling
directional flow between the arterial blood compartment and the
arteriole/capillary blood compartment (Figure 1) is well-defined,
and is able to capture different flows.

The third similarity is that the periventricular region
shows relatively higher perfusion in the patient with unilateral
MCA stenosis, which can also be identified in the healthy
control (Figure 8). In 4-MPET modeling, this feature is partly
contributed by the local high magnitude of tissue strain in the
periventricular region, which demonstrates that the coupling
between solid deformation and fluid flow plays an important
role in capturing the correct mechanical response. The local

variances of blood perfusion in the periventricular region from

4-MPET modeling are shown in the insets of Figures 8B,D. It
should be noted that the ventricles are not completely visible
on the CBF maps due to resolution characteristics; however,
local regions of high perfusion can still be identified around the

FIGURE 7 | Comparison of symmetric and asymmetric blood perfusion

between the healthy control and the patient with unilateral MCA stenosis.

(A) CBF—healthy control; (B) Blood perfusion—healthy control;

(C) CBF—patient; (D) Blood perfusion—patient, the red arrows point to high

blood perfusion in the gray matter.

visible parts of the ventricular wall, which are highlighted by
red arrows.

It is worth pointing out that very low perfusion can be
seen in the white matter of 4-MPET modeling results, which
is mainly due to the separation of the arterial blood and the
arteriole/capillary blood compartments, and the assumption
of homogenization used in the 4-MPET modeling. The ASL
technique uses arterial blood water as an endogenous tracer to
measure CBF, whereas in the 4-MPET model the arterial blood
is further segmented into a high-pressure arterial network and a
lower-pressure arteriole/capillary network (Tully and Ventikos,
2011) at two separate scales. Therefore, the relatively higher
velocity of arterial blood cannot be seen in the arteriole/capillary
network. The other reason is the assumption of homogenization
adopted in the 4-MPET model, which means that there is no
explicit characterization of the vasculature in the simulations so
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FIGURE 8 | Comparison of blood perfusion in the periventricular region. (A) CBF—healthy control; (B) Blood perfusion—healthy control; (C) CBF—patient; (D) Blood

perfusion—patient. The red arrows point to high blood perfusion. It should be noted that in order to highlight the local variances in the periventricular region, the color

bar in the insets is different from the one used for the entire brain slice.

the regions of high perfusion are smoothed out. Hence, the very
low perfusion in the white matter does not correspond to very
low ASL signal that would be incompatible with a live person.

The numerical results presented in this paper mainly show
qualitative validation, with several limitations that need to be
addressed. First, it can be seen from Figures 7, 8 that the CBF
data from ASL images exhibit higher degree of heterogeneity
in the parenchyma than the blood perfusion results from 4-
MPET modeling. The main reason for this is that there is no
explicit characterization of subcortical structures and vasculature
as input conditions for numerical modeling; therefore, the
heterogeneous distribution of blood perfusion is smoothed out
due to this assumption of homogenization. Another reason is
that some of the high-perfusion regions found on the CBF maps
are large arteries, not arterioles; therefore the blood velocity
is considerably higher than the surroundings. One possible
solution is to assign different values of Young’s modulus by
simply allowing for some heterogeneity within a small range
in the parenchyma, in addition to differentiating between the
white and gray matter. Another possible solution to improve
this is to use heterogeneous properties (e.g., shear modulus)
obtained from magnetic resonance elastography (MRE), which
is a non-invasive imaging method to quantitatively assess the
mechanical properties of biological tissue in vivo (Green et al.,

2008). It is also worth noting that spatially varying permeability
tensors are not incorporated for the CSF/ISF compartment in

the current study, which is another reason for the lack of
heterogeneity in the numerical results. Second, only two subjects

are included in the validation, which makes the sample too

small to conduct a thorough statistical analysis. Once more
data are collected, machine learning, such as the differential

evolution (DE) algorithm for non-linear optimization of finite
element solutions (Storn and Price, 1997; Cao et al., 2006), can
be used to optimize the poroelastic parameters used in 4-MPET
modeling. Third, the partial validation of the MPET model in
this paper only focuses on the arteriole/capillary compartment,
which is not necessarily the most comprehensive scenario to
demonstrate the advantages of the MPET model as a whole—
ideally, experimental, or clinical data should be collected to show
the coupling effects between fluid compartments. Unfortunately,
such data are not available at the moment. Therefore, the strategy
is to validate the fluid compartments in the MPET model one by
one, and then validate the coupling effects once the required data
becomes available.

CONCLUSIONS

The paper demonstrates the extent to which the four-network
poroelastic model (4-MPET) agrees with arterial spin labeling
(ASL) images in terms of blood perfusion. Several similarities
can be found between 4-MPET modeling and cerebral blood
flow (CBF) data obtained from ASL images. First, the blood
perfusion is higher in the gray matter than in the white matter for
both the healthy control and the patient with unilateral middle
cerebral artery (MCA) stenosis. Second, the healthy control
shows symmetric distribution of blood perfusion, whereas the
patient has lower perfusion in the stenotic side of the brain.
Third, the blood perfusion is relatively higher in the local
periventricular region for both the healthy control and the patient
with unilateral MCA stenosis. Although the partial validation is
presented mainly in a qualitative way, it is one important step in
a series of tests toward the full validation of the 4-MPET model.
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This paper also explains the need for more experimental and
clinical data to optimize the boundary conditions and parameters
used in numerical modeling. The potential exists to use the 4-
MPET modeling workflow as a testing bed for hypotheses and
new theories in neuroscience research.
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Automated cerebrovascular segmentation of time-of-flight magnetic resonance
angiography (TOF-MRA) images is an important technique, which can be used to
diagnose abnormalities in the cerebrovascular system, such as vascular stenosis and
malformation. Automated cerebrovascular segmentation can direct show the shape,
direction and distribution of blood vessels. Although deep neural network (DNN)-based
cerebrovascular segmentation methods have shown to yield outstanding performance,
they are limited by their dependence on huge training dataset. In this paper, we propose
an unsupervised cerebrovascular segmentation method of TOF-MRA images based on
DNN and hidden Markov random field (HMRF) model. Our DNN-based cerebrovascular
segmentation model is trained by the labeling of HMRF rather than manual annotations.
The proposed method was trained and tested using 100 TOF-MRA images. The results
were evaluated using the dice similarity coefficient (DSC), which reached a value of
0.79. The trained model achieved better performance than that of the traditional HMRF-
based cerebrovascular segmentation method in binary pixel-classification. This paper
combines the advantages of both DNN and HMRF to train the model with a not so
large amount of the annotations in deep learning, which leads to a more effective
cerebrovascular segmentation method.

Keywords: deep neural network, hidden Markov random field model, cerebrovascular segmentation, magnetic
resonance angiography, unsupervised learning

INTRODUCTION

According to the World Health Organization (WHO) report on the global burden of stroke,
adult stroke mortality rate has reached 39% (Kim and Johnston, 2011). The pathogenesis of
stroke is commonly associated to disorders in human cerebrovascular system (Arvanitakis et al.,
2016), and hence an accurate cerebrovascular segmentation is of vital importance for further
diagnosis and also for computer-aided diagnosis (CAD) (Yan and Kassim, 2005). Time-of-Flight
magnetic resonance angiography (TOF-MRA) is the most widely used imaging technique to
observe a complete cerebrovascular tree, because no contrast agent is required for this technique.
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Automated and accurate cerebrovascular segmentation from
TOF-MRA images is beneficial to quantitatively analyze
cerebrovascular disorders, such as the estimation of vascular
stenosis rate, and also to assess cerebral collateral circulation (Lee
et al., 2005; Bicakci et al., 2006).

In the past few years, many methods for extracting
cerebrovascular trees were developed based on deformable
models (Kavsak et al., 2000; Aylward and Bullitt, 2002; Yim
et al., 2003; Yan and Kassim, 2006; Lorigo et al., 2010), statistical
models (Wilson and Noble, 1997; Zhang et al., 2001; Gan
et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006), and
deep neural network (DNN) (Wilson and Noble, 1997; Zhang
et al., 2001; Gan et al., 2004; Elbaz et al., 2005; Hassouna
et al., 2006). From deformable model-based methods, geodesic
active contours is a typical representative method, which fits
topological structures of blood vessels in TOF-MRA images
with level-set techniques (Lorigo et al., 2010). Yan et al.
proposed an effective segmentation method using capillary
active contours, which extended geodesic active contours to
capillaries modeled on the physical phenomenon of capillary
actions (Yan and Kassim, 2006). However, deformable models
can easily have leakage around the edge (Angelini et al., 2005;
Cengizler et al., 2014). The leakage gets into the area outside
of blood vessels during iterative optimization, especially at
the end and the stenotic parts of blood vessels. Moreover,
in our opinion these models may have a poor performance
on TOF-MRA images with inhomogeneity. Statistical model-
based methods extract cerebrovascular trees by fitting intensity
distributions of different tissues into statistical models such
as Gaussian mixture models. Hidden Markov Random Field
(HMRF) and Expectation-Maximization (EM) framework were
also widely used to segment blood vessels and brain tissue
from MR images (Wilson and Noble, 1997; Zhang et al., 2001;
Gan et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006).
Zhang et al. (2001) firstly introduced HMRF model and EM
algorithms to segment gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF) in brain MR images. Hassouna
et al. (2006) proposed a 3D cerebrovascular segmentation
method using stochastic models, which described the intensity
histogram of MRA images by a finite mixture model consisting
of one Rayleigh and two normal distributions. These stochastics
models also estimated spatial contextual information using 3D
HMRF, then they segmented blood vessels by optimizing HMRF
and EM framework (Hassouna et al., 2006). A drawback of
the abovementioned statistical model-based methods is that
their segmentation performances significantly depend on the
adaptation between statistical model and intensity histogram of
MR images, and therefore their performances are sensitive to the
intensity distortion of TOF-MRA images.

Deep neural network-based cerebrovascular segmentation
methods have been proposed with great successes in semantic
segmentation (Chen et al., 2017; Nakao et al., 2017; Phellan et al.,
2017; Sahin and Ünal, 2017). Chen et al. (2017) proposed a
convolutional auto-encoder named Y-net to segment intracranial
artery in MRA images, of which dice similarity coefficient (DSC)
reached a value of 0.828. Phellan et al. (2017) built a DNN model
consisting of two convolutional layers and two fully connected

layers to extract cerebrovascular trees, of which the achieved
DSC ranged from 0.764 to 0.786. These DNN-based vessel
segmentation methods have outperformed the abovementioned
traditional machine learning methods, but the training sets of
DNN-based methods mostly consisted of TOF-MRA images
from only one type of MR scanner with the same resolution.
According to prior experiences (Simonyan and Zisserman, 2014;
Badrinarayanan et al., 2015; Ronneberger et al., 2015), DNNs
need to be trained with a large amount of various TOF-
MRA images annotated manually in order to keep a good
performance for TOF-MRA images with different resolutions
from different devices. However, since human cerebrovascular
system is complicated and huge, a large amount of manual
annotations of TOF-MRA images is very expensive to obtain.

Given all the aforementioned limitations of existing
cerebrovascular segmentation algorithms, we propose a
new unsupervised cerebrovascular segmentation framework
which combines DNN with HMRF model. It does not require
a large amount of manual annotations and achieves great
performance for TOF-MRA images for different devices and
with different resolutions. We compared two frameworks:
HMRF + SegNet2D and HMRF + U-Net3D. These two
frameworks are assessed on TOF-MRA images with different
resolutions from different devices. The remaining parts of this
paper are organized as follows. Section “Materials and Methods”
provides the mathematical details of the HMRF and EM
algorithm, and the architectures of SegNet and U-Net. In section
“Experiments,” the experimental dataset and experimental
setting are described, while section “Results” shows the various
experiments performed to evaluate the performance of the
proposed method. This is followed by a discussion about our
approach in section “Discussion.” Finally, we give a conclusion
in section “Conclusion.”

MATERIALS AND METHODS

Unsupervised HMRF + DNN-Based
Cerebrovascular Segmentation
In previous studies, DNN-based cerebrovascular segmentation
methods have significantly outperformed traditional methods
(Simonyan and Zisserman, 2014; Badrinarayanan et al., 2015;
Ronneberger et al., 2015). Since the human cerebrovascular
system has the intricate shape and high inter-individual
difference, manual annotations of cerebrovascular trees take
too much time. Thus, researchers often use a small amount
of TOF-MRA images to evaluate the performance of DNN-
based methods even though they necessitate great amount
of data. To solve this problem, we propose an unsupervised
cerebrovascular segmentation framework by adding a HMRF-
based pre-segmentation method before DNN architectures.

The HMRF + DNN framework for cerebrovascular
segmentation mainly consists of two parts, pre-segmentation
of blood vessels using HMRF and DNN architecture. In the
pre-segmentation part, we use HMRF technique to extract
brain blood vessels based on their intensity and spatial
information in TOF-MRA images. Generally, the brain blood
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vessels extracted using HMRF method are thick artery blood
vessels due to the fact that thick blood vessels have strong
intensity differences from brain tissue. Although cerebrovascular
system has the intricate shape, the difference between thick
and small blood vessels is mainly found in the radius of
blood vessels or spatial scale. Therefore, the HMRF-based
segmentation result includes most of the features of blood
vessels except spatial-scaling feature, while the spatial-scaling
feature can be learnt by setting max-pooling layers in the
DNN architecture. The second part, DNN architecture, is
trained by the results of pre-segmentation of blood vessels. In
this paper, 2D SegNet and 3D U-Net are adopted to perform
cerebrovascular segmentation. The workflow of the unsupervised
HMRF + DNN-based cerebrovascular segmentation method is
illustrated in Figure 1.

Cerebrovascular Segmentation Method
Based on HMRF Model and EM
Algorithm
Hidden Markov random field model is extended by Markov
random filed (MRF) and hidden Markov model (HMM) (Zhang
et al., 2001), which consists of a sequence of statistical states
hidden in MRF but observable in the observation field. In TOF-
MRA images, the spatial information can be described by the
associativity between the neighboring pixels, while the intensity
information can be represented into Gaussian mixture models
in each region-of-interest [e.g., brain tissue, vascular trees, and
CSF]. HMRF model can extract cerebrovascular trees using both
the spatial and intensity information.

Let S = {1, 2, 3, . . . , S} represent the set of indices of voxels in
TOF-MRA images, X = {Xi, i ∈ S} and Y = {Yi, i ∈ S} represent
the sets of label and image, L = {1, 2, 3, . . . , L} be the set of
region classes in TOF-MRA images, where S is the number of
voxels and L is the number of region classes. If we assume
that X and Y are two random fields and any pair of (Xi,Yi) is
the pairwise independence, the joint probability distribution of
(Y,X) is:

P(Y,X) =
∏
i∈S

P(Yi,Xi) (1)

According to the MRF theory (Zhang et al., 2001), the labels in S
are related to their neighborhood system, which is defined as N =
{Ni, i ∈ S}, where Ni is the set of labels neighboring i, i /∈ Ni and
i ∈ Nj ≡ j ∈ Ni. A Markov random field X can be represented
with a neighborhood system if and only if:

P(x) > 0, ∀ x ∈ X (2)

P(xi|xS−{i}) = P(xi|xNi) (3)

where S− {i} is the set of indices of voxels except {i} in TOF-
MRA images. Thus the above joint probability (1) can be
reformed into the following expression:

P(Y,X) =
∏
i∈S

P(Yi,Xi|XNi)

=

∏
i∈S

P(Yi|Xi)P(Xi|XNi) (4)

FIGURE 1 | An illustration of the workflow of unsupervised HMRF + DNN-based cerebrovascular segmentation method. Preprocessed TOF-MRA images are
pre-segmented to extract roughly cerebrovascular system using HMRF method, and then these images and rough masks of blood vessels are used to train deep
encoder-decoder network. Finally, blood vessels are pixel-classified by deep encoder-decoder network.
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and the marginal probability distribution of Yi is:

P(Yi|XNi , θ) =
∑
l∈L

P(Yi, l|XNi , θ)

=

∑
l∈L

P(Yi|l,XNi , θl)P(l|XNi) (5)

Where θl = (µl, σl)
T , respectively, µl and σl represent the

expectation and variance of Gaussian distribution.
According to the histogram of intensities of TOF-MRA

images, we assume that the conditional probability distribution
of each region class is a Gaussian distribution. Given Yi = l, Xi
follows a conditional probability distribution:

P(Yi|l) = g(Yi; θl), ∀ l ∈ L (6)

g(Yi; θl) =
1√

2πσ2
l

exp

(
−
(Yi − µl)

2

2σ2
l

)
(7)

Thus, the Gaussian HMRF model is represented as:

P(Yi|XNi , θ) =
∑
l∈L

g(Yi; θl)P(l|XNi) (8)

To find a labeling X̂ of TOF-MRA images, it can be used to
estimate the ground truth labeling X∗ using the maximizing a
posterior (MAP) criterion:

X̂ = arg max
x∈X
{P(y|x)P(x)} (9)

The prior probability of each voxel is different. According to
the Hammersley system theorem (Hammersley and Clifford,
unpublished), since X is considered as a MRF, its prior probability
can be formulated as:

P(X) = Z−1 exp(−U(X)) (10)

where Z is the partition function which is a normalizing constant,
and U(Y) is an energy function:

U(X) =
∑
c∈C

Vc(X) (11)

where Vc(X) is the clique potential function.

P(Y|X) =
1
Z′

exp(−U(Y|X)) (12)

where U(Y|X) is the likelihood energy.

U(Y|X) =
∑
i∈S

U(Yi|Xi)

=

∑
i∈S

[
(Yi − µXi)

2

2σ2
Xi

+ log(σXi)

]
(13)

and Z′ = (2π)(N/2). Thus, it has an obvious relationship
log(P(X|Y)) ∝ −U(X|Y) where:

U(X|Y) = U(Y|X)+ U(X)+ const (14)

is called the posterior energy. Thus, the labeling X̂ can be
estimated by minimizing the posterior energy function:

X̂ = arg min
x∈X
{U(Y|X)+ U(X)} (15)

According to the above derivation, the problem of the optimal
segmentation is equivalent to minimizing the posterior energy
function. To solve the equation (9), we estimate the optimal
parameters of HMRF model using EM algorithm, which is an
iterative optimal algorithm to solve the problem of the estimation
of maximum likelihood or posterior. For more details on EM
algorithm, kindly refer to (Dempster et al., 1977). The brief
description of EM algorithm for optimizing HMRF model is
given as follows.

Start Initialize the estimated parameters θ0.
E-step Calculate the expectation of log joint probability:

Q(θ|θ(t)) = ε[log(P(X,Y|θ))|Y, θ(t)]

=

∑
x∈X

P(x|y, θ(t)). log P(x, y|θ)

M-step Maximize the log joint probability to estimate the new
parameters θ(t+1):

θ(t+1)
= arg max

θ
Q(θ|θ(t))

µ
(t+1)
l =

∑
i∈S P

(t)(l|Yi)Yi∑
i∈S P(t)(l|Yi)

(σ
(t+1)
l )2 =

∑
i∈S P

(t)(l|Yi)(Yi − µl)
2∑

i∈S P(t)(l|Yi)

where P(t)(l|Yi) is estimated by the equation (7) in MRF-MAP
estimation procedure.

Update assign θ(t+1) to θ(t) and repeat from E-step.

Deep Convolutional Encoder-Decoder
Network
Deep convolutional encoder-decoder network (DCEDN) is a new
deep convolutional neural network resulted from modifying the
fully convolutional network (FCN) (Long et al., 2015). It can
provide more precise segmentation results with few training
datasets. The well-known architectures of DCEDN include
SegNet (Badrinarayanan et al., 2015), U-Net (Ronneberger
et al., 2015), and their main ideas consist of trying to
map low resolution features to input resolution for pixel-
wise classification. Their common architecture is illustrated in
Figure 2. There is no fully connected layers in their architectures.
They mainly contain two parts, encoder network and their
corresponding decoder network. Encoder network is designed to
extract feature maps of input images, while decoder network up-
samples low resolution feature maps into the input resolution.
The encoder network consists of a few convolutional layers, batch
normalization layers, rectified linear unit (ReLU) layers and max-
pooling layers. In common, the encoder network is designed as
the traditional architecture for object classification [e.g., VGG16
(Simonyan and Zisserman, 2014)], while the difference compared
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to traditional network for object classification is to memorize the
max-pooling indices in SegNet or the feature maps in U-Net.
Decoder network usually contains the same number of up-
sampling layers, convolutional layers, batch normalization layers
and ReLU layers as the encoder network. Up-sampling layers is
used to up-sample the feature maps from the encoder network.
Finally, the feature maps with the input resolution are pixel-
classified by a soft-max layer, and the probabilities for each
class are output.

In this paper, we performed cerebrovascular segmentation
from TOF-MRA images based on 2D SegNet (Badrinarayanan
et al., 2015) and 3D U-Net (Çiçek et al., 2016). The DCEDN
and SegNet architecture adopted in this paper is illustrated in
Figures 2, 3. The input of SegNet architecture consists of each
2D slice of TOF-MRA images which is resized into 256× 256.
The main structure of the 2D SegNet consists of 8 convolutional
layers, 8 batch normalization layers, 8 ReLU layers, 2 max-pooling
layers, and 2 up-sampling layers and a soft-max layers. Each
convolutional layer contains 80 filters with 3× 3 voxels receptive

field in a 1 voxel stride sliding. The batch normalization layer
after each convolutional layer helps improve the convergence
speed of SegNet, and the ReLU layer can reduce the impact
of the backpropagation vanishing problem. Finally, the pixel
classification is processed in the soft-max layer.

Given that 3D U-Net has achieved remarkable successes in
various biomedical segmentation tasks (Ronneberger et al., 2015;
Çiçek et al., 2016; Tong et al., 2017), we chose 3D U-Net as our
framework example to evaluate the performance of the proposed
method. One of differences with 2D SegNet architecture is that
the input is the 3D volume region of TOF-MRA images, while
each TOF-MRA images is patched into 64× 64× 64 because
of the limitation of the memory. The 3D U-Net architecture
designed in this paper contains the encoder network to encode
the valid feature and the decoder network to up-sample the
low resolution feature back to the input resolution. The encoder
network consists of 6 convolutional layers, and each of them
is followed by a batch normalization layer and a ReLU layer,
and 2 max-pooling layers to change the feature resolution.

FIGURE 2 | An illustration of the common DCEDN architecture.

FIGURE 3 | An illustration of SegNet architecture adopted in this paper. The different layers is indicated by boxes with different colors. The input of this architecture is
256× 256 2D TOF-MRA image. The input size of each convolutional block is denoted at the left bottom, and the number of channels on the top.
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The decoder network consists of 2 up-convolutional layers and
2 convolutional layers, and each of them is followed by a
batch normalization layer and a ReLU layer like the encoder
work. The feature up-sampled by the up-convolutional layer is
concatenated with the correspondingly cropped feature before
the batch normalization layer. Finally, soft-max layer performs
the voxel-based classification and outputs the probabilities for
each cluster. An illustration of the 3D U-Net used in this paper
is displayed in Figure 4.

HMRF + DNN Framework Training
The training of the HMRF + DNN framework for
cerebrovascular segmentation includes two parts, auto-
labeling ROI of TOF-MRA images using the HMRF model
and the training of the DNN model. According to the intensity
distribution of TOF-MRA images, the intensity distributions of
brain tissue and blood vessels can be approximately represented
as Gaussian distributions. Then, we constructed two Gaussian
HMRF models to automatically extract the blood vessels in the
preprocessed TOF-MRF images. The intensity of the background
of TOF-MRA images is zero through preprocessing, so we
labeled the background into an individual class in order to
improve the performance of the algorithms. Thus, in the first
part of HMRF + DNN framework, we labeled each TOF-MRF
images into three classes regions, background, brain tissue and
blood vessels using HMRF model method.

The second part of the HMRF+DNN framework is the DNN
training using TOF-MRA images and their labeling resulted
from the first part. We constructed two architectures in this

paper to segment cerebrovascular trees in TOF-MRA images,
respectively, 2D SegNet and 3D U-Net. The input image of 2D
SegNet consists of each 2D slice of TOF-MRA images, whereas
in the 3D U-Net, the input consists of 3D volume region.
To improve the performance of 2D SegNet in cerebrovascular
segmentation, we built the HMRF+ SegNet2D model with three
sub-SegNets which were, respectively, trained by 2D TOF-MRA
images in axial, sagittal and coronal directions, which is based
on the neurophysiology theory that cerebrovascular systems in
different individuals have similarly 3D topological structures.
Then, the final probability map was estimated by averaging the
probability maps from these three 2D SegNets. The loss function
over the whole training datasets was minimized through a mini-
batch gradient descent approach, and the minimum of batch
size was 50 inputs. The learning process goes through 50 epochs
with a learning rate of 0.001 and a gradient momentum of 0.9.
In 3D U-Net learning process, there are the same parameter
settings in epoch number, learning rate and gradient momentum,
but the minimum of batch size is set as 8 because of the
limitation of memory.

EXPERIMENTS

Data Preparation and Image
Pre-processing
In this study, we collected 100 TOF-MRA cases including
30 healthy cases and 70 stroke cases, which are used to
train and evaluate the performance of different segmentation

FIGURE 4 | An illustration of 3D U-Net architecture. The different layers is indicated by boxes with different colors. The input of this architecture is 64× 64× 64 3D
TOF-MRA volume region. The input size of each convolutional block put at the left bottom, and the number of channels put on the top. The gray arrow represents
the corresponding feature concatenation.
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methods. 60 TOF-MRA cases among the total dataset were
acquired on a 1.5T Discovery MR750 GE MRI scanner without
contrast agent at a parameter setting of a TE = 2.6 ms,
a TR = 22 ms and a flip angle = 20 degree. The voxel
size of each 1.5T TOF-MRA is 0.43× 0.43× 0.59 mm3,
and each volume contains 512× 512× 164 voxels. The
other 40 TOF-MRA cases were acquired on a 3T Verio
SIEMENS MRI scanner without contrast agent at a
parameter setting of a TE = 3.6 ms, a TR = 21 ms
and a flip angle = 18 degree, and their voxel size is
0.30 mm × 0.30 mm × 0.7382 mm and each volume size
is 616× 768× 136.

To reduce the impact of the brain skull on the cerebrovascular
segmentation, the dataset was preprocessed to remove brain
skull using the BET2 method (Wels et al., 2009), which
was followed by a bias correction using multiplicative
intrinsic component optimization (MICO) algorithm (Li
et al., 2014). Then, maximum intensity projection (MIP)
images in axial, sagittal and coronal axis were acquired
with a MIP algorithm. The vessels in MIP images of
each case were manually segmented by medical experts to

evaluate the performance of algorithm, which is illustrated
in Figure 5.

Hardware Settings
In this paper, our experiments were implemented, respectively,
using MATLAB 2017b and Python 3.0 in Window 10 OS.
Environments were made on a desktop computer with eight
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processors, 32 GB
of RAM memory and NVIDIA GeForce GTX 1080.

Evaluation Method
Since manual annotations for 100 cases of TOF-MRA images
need too much time, we manually segmented the vessels in MIP
images of each case in axial, coronal and sagittal directions.
We first adjusted the threshold, to segment high pixels, and
then modified it manually, focusing on the edges and the ends
of the vessels, as well as some small vessels. The performance
of the proposed method in cerebrovascular segmentation is
evaluated by comparing MIP post-processed binary images
resulted from the proposed method with manual annotations,
respectively, in axial, coronal and sagittal directions. Because

FIGURE 5 | The skull stripping and bias correction results. (A) Original TOF-MRA image. (B) Skull stripping result. (C) Bias field. (D) Bias corrected TOF-MRA image.

FIGURE 6 | Healthy person. An illustration of axial MIP images of cerebrovascular segmentation results through HMRF, HMRF + SegNet2D, HMRF + U-Net3D and
manual annotations. (A) TOF-MRA MIP images in axial, coronal and sagittal three axes. (B) MIP images of HMRF result in three axes. (C) MIP images of
HMRF + SegNet2D result in three axes. (D) MIP images of HMRF + U-Net3D result in three axes. (E) Manual annotations in three axes.
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FIGURE 7 | Stroke patient. An illustration of axial MIP images of cerebrovascular segmentation results through HMRF, HMRF + SegNet2D, HMRF + U-Net3D and
manual annotations. (A) TOF-MRA MIP images in axial, coronal, and sagittal three axes. (B) MIP images of HMRF result in three axes. (C) MIP images of
HMRF + SegNet2D result in three axes. (D) MIP images of HMRF + U-Net3D result in three axes. (E) Manual annotations in three axes.

MIP images in axial, coronal and sagittal directions contain
the most information of blood vessels, the comparison of MIP
binary images in axial, coronal and sagittal directions is able to
indicate the difference of cerebrovascular segmentation between
the proposed method and manual annotations. Therefore, the
binary classification performance of the proposed method is
evaluated by accuracy, sensitivity, specificity, precision, and DSC
(Dice, 1945) which is defined as DSC = 2|A∩B|

(|A|+|B|) , where A and B
is, respectively, the ground-truth and segmentations of DCEDN.
DSC ranges from 0 to 1.

RESULTS

We evaluated the performance of HMRF + DNN framework in
cerebrovascular segmentation to compare segmentation results
using HMRF, HMRF + SegNet2D, and HMRF + U-Net3D
methods. We separated all of the 100 TOF-MRA data into
training and testing datasets. We randomly chose 20 TOF-MRA
data from 1.5T GE scanner and 20 TOF-MRA data from 3.0T
SIEMENS scanner to build up the training dataset, while the
other 60 TOF-MRA data were assigned to the testing dataset.
HMRF + SegNet2D and HMRF + U-Net3D were trained using
the training dataset. Then, testing dataset was segmented by
HMRF, trained HMRF + SegNet2D and trained HMRF + U-
Net3D methods, and their results were evaluated according to the
above mentioned method.

We illustrate a case of healthy person of axial MIP
images of segmentation results of HMRF, HMRF + SegNet2D
and HMRF + U-Net3D in TOF-MRF images in Figure 6,
and a case of stroke patient in Figure 7. The evaluation
table for cerebrovascular segmentation results of HMRF,
HMRF + SegNet2D and HMRF + U-Net3D in testing dataset
are reported in Table 1. We also show the evaluation results of
healthy people and stroke patients in Tables 2, 3, respectively.
The DSC values were estimated by comparing the MIP images

of cerebrovascular segmentation in axial, coronal and sagittal
directions with the corresponding manual ground-truths. Values
in each column were the average among the testing dataset.

TABLE 1 | Evaluation of cerebrovascular segmentation evaluation in all samples.

Methods Accuracy Sensitivity Specificity Precision DSC

HMRF 0.9947 0.5073 0.9997 0.9472 0.6141 ± 0.155

HMRF + 0.9982 0.7967 0.9991 0.7981 0.7966 ± 0.035
SegNet2D

HMRF + 0.9983 0.7620 0.9993 0.8405 0.7941 ± 0.048
U-Net3D

The bold values mean the best performance by different method.

TABLE 2 | Evaluation of cerebrovascular segmentation evaluation in healthy
people.

Methods Accuracy Sensitivity Specificity Precision DSC

HMRF 0.9945 0.5072 0.9996 0.9388 0.6139 ± 0.157

HMRF + 0.9982 0.7967 0.9991 0.7981 0.7952 ± 0.065
SegNet2D

HMRF + 0.9983 0.7620 0.9993 0.8405 0.7938 ± 0.058
U-Net3D

The bold values mean the best performance by different method.

TABLE 3 | Evaluation of cerebrovascular segmentation evaluation in stroke
patients.

Methods Accuracy Sensitivity Specificity Precision DSC

HMRF 0.9948 0.5124 0.9997 0.9567 0.6192 ± 0.146

HMRF + 0.9983 0.8006 0.9991 0.8028 0.7969 ± 0.028
SegNet2D

HMRF + 0.9984 0.7708 0.9993 0.8441 0.7947 ± 0.041
U-Net3D

The bold values mean the best performance by different method.
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DISCUSSION

Deep neural network models are supervised deep learning models
which have been widely used to perform object recognition
and segmentation. They are commonly trained with a large
amount of images labeled by humans. However, most of the
traditional segmentation methods are unsupervised, and they can
extract objects based on observable or expressed features using
prior knowledge. To make use of the advantages of both DNNs
and traditional segmentation methods, in the cerebrovascular
segmentation field, we combine traditional machine learning
method with DNN models to achieve unsupervised DNN
training scheme.

According to our experimental results, both HMRF +
SegNet2D and HMRF + U-Net3D have good performances in
cerebrovascular segmentation, and which are better than that of
HMRF although they are trained with the results of HMRF. The
accuracy and the specificity are both high, the accuracy of all three
methods is above 0.99, and the specificity is above 0.999. But the
sensitivity is quite different, sensitivity of HMRF method is just
0.5073, while that of the other two methods can reach a value
above 0.76, which shows that the performance of HMRF with
DNN method is much better than that of HMRF method. Though
the accuracy is high, but the sensitivity is low. Low sensitivity
and high accuracy is due to the imbalance of the negative and
the positive samples. The proportion of blood vessels in human
brain is small, so most samples are negative and a few are positive,
which led to a large amount of negative samples and a small
amount of positive samples. When calculating the accuracy, we
used both true positive and true negative results as numerator,
and all positive and negative samples as denominator, so the
numerator is close to the denominator. But when calculating
the sensitivity, only true positive is used as numerator, while the
denominator is the sum of the true positive and false negative
results. As the number of the negative samples is much larger than
that of the positive samples, the false negative results is large due
to the large base, that makes the sensitivity low.

The statistical results of the healthy people and stroke patients
are similar, although the blood vessels are often smudged in
stroke patients. The DSC is also similar and it is noticed that the
DSC of stroke patients are even a little higher than that of the
healthy people. As shown in Figures 6, 7, the number of vessels
from the stroke patient is less than that of the healthy person, and
the complexity of vascular distribution is low. We think that is
why the stroke DSC value is similar to that of the healthy people,
due to the fact that the details of stroke patients are not as much
as those of the healthy people, which led to a better DSC value.

In fact, many small blood vessels are segmented by
HMRF + SegNet2D and HMRF + U-Net3D, but not by HMRF.
This can be explained from the view of feature extraction. In
TOF-MRA images, different blood vessels share many similar

features such as shapes, while their differences mainly are
intensity contrast and vessel thickness. Since blood vessels
segmented by HMRF are mainly large and high contrast vessels,
DNN models mainly learn the features of large and high contrast
vessels, while max-pooling layers in DNN provide a learning
ability based on the different resolution features of blood vessels.
Thus, DNN models trained by HMRF segmented blood vessels
have stronger ability to recognize smaller blood vessels than
HMRF method. Moreover, to improve the robustness of the
proposed method for different kind of TOF-MRA images, we
mixed 1.5T GE and 3.0T SIEMENS, healthy and ischemia stroke
TOF-MRA images in training dataset.

Because of the limitation to obtain the manual annotations
from public TOF-MRA dataset, it is difficult to directly compare
our method to other DNN-based cerebrovascular segmentation
methods, such as Y-Net (Chen et al., 2017) and CNN method
proposed by Phellan et al. (2017). However, in terms of Dice
numbers, our unsupervised method shows the great potential to
perform automatic cerebrovascular segmentation.

In the future, we will investigate post-processing methods
to boost the performance of the proposed method. Moreover,
we will focus on the accurate segmentation of Willis circle and
stenosis part of brain blood vessels since it can provide a fast and
efficient stenosis detection method.

CONCLUSION

We proposed a new unsupervised cerebrovascular segmentation
framework based on HMRF model and DNN techniques in
brain TOF-MRA images. The DNN model was trained by the
label data obtained from HMRF model rather than manual
annotations, which cost effective in terms of manual efforts. This
cerebrovascular segmentation framework achieved a state-of-art
performance evaluated on both 2D and 3D TOF-MRA images.

AUTHOR CONTRIBUTIONS

SF, YB, HC, and TT designed the model and method. QY
provided the data and analyzed the results. SF and YB wrote the
manuscript. YK and TT reviewed and edited the manuscript. All
authors read and approved the manuscript.

FUNDING

This work was supported by the Neusoft Institute of Intelligent
Healthcare Technology, Co. Ltd. and the Regional Application
Demonstration of Innovative Medical Equipment in Liaoning
Province (2017YFC0114200).

REFERENCES
Angelini, E., Jin, Y., and Laine, A. (2005). “State of the art of level set methods in

segmentation and registration of medical imaging modalities,” in Handbook of

Biomedical Image Analysis, eds J. S. Suri, D. L. Wilson, and S. Laxminarayan,
(Boston, MA: Springer), 47–101. doi: 10.1007/0-306-48608-3_2

Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A., and Schneider,
J. A. (2016). Relation of cerebral vessel disease to Alzheimer’s disease dementia

Frontiers in Neuroinformatics | www.frontiersin.org 9 January 2020 | Volume 13 | Article 77256

https://doi.org/10.1007/0-306-48608-3_2
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00077 December 23, 2019 Time: 16:44 # 10

Fan et al. Segmentation of TOF-MRA Images

and cognitive function in elderly people: a cross-sectional study. Lancet Neurol.
15, 934–943. doi: 10.1016/s1474-4422(16)30029-1

Aylward, S. R., and Bullitt, E. (2002). Initialization, noise, singularities, and scale in
height ridge traversal for tubular object centerline extraction. IEEE Trans. Med.
Imaging 21, 61–75. doi: 10.1109/42.993126

Badrinarayanan, V., Handa, A., and Cipolla, R. (2015). SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise
Labelling, Computer Science. Cambridge: University of Cambridge.

Bicakci, K., Soker, G., Binokay, F., Akgul, E., Aksungur, E., and Sertdemir, Y.
(2006). Estimation of the ratio of renal artery stenosis with magnetic resonance
angiography using parallel imaging technique in suspected renovascular
hypertension. Nephron Clin. Pract. 104, c169–c175. doi: 10.1159/0000
95852

Cengizler, C., Guven, M., and Avci, M. (2014). A fluid dynamics-based deformable
model for segmentation of cervical cell images. Signal Image Video Process. 8,
21–32. doi: 10.1007/s11760-014-0719-3

Chen, L., Xie, Y., Sun, J., Balu, N., Mossabasha, M., Pimentel, K., et al. (2017). Y-
net: 3D Intracranial Artery Segmentation using a Convolutional Autoencoder.
Piscataway, NJ: IEEE.

Çiçek, Ö, Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016).
“3D U-Net: learning dense volumetric segmentation from sparse annotation,”
in Medical Image Computing and Computer-Assisted Intervention – MICCAI
2016, eds S. Ourselin, L. Joskowicz, M. Sabuncu, G. Unal, and W. Wells, (Cham:
Springer), 424–432. doi: 10.1007/978-3-319-46723-8_49

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM Algorithm. J. R. Statist. Soc. 39, 1–38.

Dice, L. R. (1945). Measures of the amount of ecologic association between species.
Ecology 263, 297–302. doi: 10.2307/1932409

Elbaz, A., Farag, A. A., Gimel’Farb, G., and Hushek, S. G. (2005). Automatic
cerebrovascular segmentation by accurate probabilistic modeling of TOF-MRA
images. Med. Image Comput. Comput. Assist. Interv. 3540(Pt 1), 541–627.

Gan, R., Chung, A. C. S., Wong, W. C. K., and Yu, S. C. H. (2004). “Vascular
segmentation in three-dimensional rotational angiography based on maximum
intensity projections,” in Proceedings of the 2004 2nd IEEE International
Symposium on Biomedical Imaging: Nano to Macro, Arlington, VA.

Hassouna, M. S., Farag, A. A., Hushek, S., and Moriarty, T. (2006). Cerebrovascular
segmentation from TOF using stochastic models. Med. Image Anal. 10, 2–18.
doi: 10.1016/j.media.2004.11.009

Kavsak, P., Walsh, M., Srinathan, S., Thorlacius, L., Buse, G. L., Botto, F., et al.
(2000). Fast delineation and visualization of vessels in 3D angiographic images.
IEEE Trans. Med. Imaging 19, 337–346. doi: 10.1109/42.848184

Kim, A. S., and Johnston, S. C. (2011). Global variation in the relative burden
of stroke and ischemic heart disease. Circulation 124, 314–323. doi: 10.1161/
CIRCULATIONAHA.111.018820

Lee, C. C., Ng, H., Yip, C., and Lim, C. (2005). Imaging collateral circulation:
magnetic resonance angiography and perfusion magnetic resonance imaging
at 3 t. Arch. Neurol. 62, 492–493.

Li, C., Gore, J. C., and Davatzikos, C. (2014). Multiplicative intrinsic
component optimization (MICO) for MRI bias field estimation and tissue
segmentation. Magn. Reson. Imaging 32, 913–923. doi: 10.1016/j.mri.2014.
03.010

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for
semantic segmentation,” in Proceedingsof the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA.

Lorigo, L. M., Faugeras, O., Grimson, W. E. L., Keriven, R., Kikinis, R., and Westin,
C. F. (2010). “Co-dimension 2 geodesic active contours for MRA segmentation,”
in Information Processing in Medical Imaging. IPMI 1999. Lecture Notes in
Computer Science, eds A. Kuba, M. Šáamal, and A. Todd-Pokropek, (Berlin:
Springer), 126–139. doi: 10.1007/3-540-48714-x_10

Nakao, T., Hanaoka, S., Nomura, Y., Sato, I., Nemoto, M., Miki, S., et al. (2017).
Deep neural network-based computer-assisted detection of cerebral aneurysms
in MR angiography. J. Magn. Reson. Imaging 47, 948–953. doi: 10.1002/jmri.
25842

Phellan, R., Peixinho, A., Falcão, A., and Forkert, N. D. (2017). “Vascular
segmentation in TOF MRA images of the brain using a deep convolutional
neural network,” in Intravascular Imaging and Computer Assisted Stenting, and
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, ed. M.
Cardoso, (Cham: Springer).

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, eds N. Navab, J. Hornegger,
W. Wells, and A. Frangi, (Cham: Springer), 234–241. doi: 10.1007/978-3-319-
24574-4_28

Sahin, Y. H., and Ünal, G. (2017). “Cerebral vessel classification with
convolutional neural networks,” in Proceedings of the 25th Signal Processing and
Communications Applications Conference (SIU), Antalya.

Simonyan, K., and Zisserman, A. (2014). Very Deep Convolutional Networks for
Large-Scale Image Recognition. Oxford: University of Oxford.

Tong, Q., Ning, M., Si, W., Liao, X., and Qin, J. (2017). “3D Deeply-
Supervised U-Net Based Whole Heart Segmentation,” in Statistical Atlases and
Computational Models of the Heart. ACDC and MMWHS Challenges, ed. M.
Pop, (Cham: Springer).

Wels, M., Zheng, Y., Carneiro, G., Huber, M., Hornegger, J., and Comaniciu, D.
(2009). Fast and robust 3-D MRI brain structure segmentation. Med. Image
Comput. Comput. Assist. Interv. 12(Pt 2), 575–583. doi: 10.1007/978-3-642-
04271-3_70

Wilson, D. L., and Noble, J. A. (1997). “Segmentation of cerebral vessels and
aneurysms from MR angiography data,” in Information Processing in Medical
Imaging. IPMI 1997. Lecture Notes in Computer Science, eds J. Duncan, and G.
Gindi, (Berlin: Springer).

Yan, P., and Kassim, A. A. (2005). MRA image segmentation with capillary active
contours. Med. Image Comput. Comput. Assist. Interv. 8(Pt 1), 51–58. doi:
10.1007/11566465_7

Yan, P., and Kassim, A. A. (2006). Segmentation of volumetric MRA images by
using capillary active contour. Med. Image Anal. 10, 317–329. doi: 10.1016/j.
media.2005.12.002

Yim, P. J., Vasbinder, G. B. C., Ho, V. B., and Choyke, P. L. (2003). Isosurfaces
as deformable models for magnetic resonance angiography. IEEE Trans. Med.
Imaging 227, 875–881. doi: 10.1109/tmi.2003.815056

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR
images through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. doi: 10.1109/
42.906424

Conflict of Interest: SF, YB, and YK were employed by the Neusoft Institute of
Intelligent Healthcare Technology, Co. Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Fan, Bian, Chen, Kang, Yang and Tan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2020 | Volume 13 | Article 77257

https://doi.org/10.1016/s1474-4422(16)30029-1
https://doi.org/10.1109/42.993126
https://doi.org/10.1159/000095852
https://doi.org/10.1159/000095852
https://doi.org/10.1007/s11760-014-0719-3
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.media.2004.11.009
https://doi.org/10.1109/42.848184
https://doi.org/10.1161/CIRCULATIONAHA.111.018820
https://doi.org/10.1161/CIRCULATIONAHA.111.018820
https://doi.org/10.1016/j.mri.2014.03.010
https://doi.org/10.1016/j.mri.2014.03.010
https://doi.org/10.1007/3-540-48714-x_10
https://doi.org/10.1002/jmri.25842
https://doi.org/10.1002/jmri.25842
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-642-04271-3_70
https://doi.org/10.1007/978-3-642-04271-3_70
https://doi.org/10.1007/11566465_7
https://doi.org/10.1007/11566465_7
https://doi.org/10.1016/j.media.2005.12.002
https://doi.org/10.1016/j.media.2005.12.002
https://doi.org/10.1109/tmi.2003.815056
https://doi.org/10.1109/42.906424
https://doi.org/10.1109/42.906424
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


ORIGINAL RESEARCH
published: 07 February 2020

doi: 10.3389/fninf.2019.00079

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2020 | Volume 13 | Article 79

Edited by:

Xi-Nian Zuo,

Institute of Psychology (CAS), China

Reviewed by:

Daoqiang Zhang,

Nanjing University of Aeronautics and

Astronautics, China

Sam Neymotin,

Nathan Kline Institute for Psychiatric

Research, United States

Yi Su,

Banner Alzheimer’s Institute,

United States

*Correspondence:

Junjie Chen

chenjj@tyut.edu.cn

Jie Xiang

xiangjie@tyut.edu.cn

Received: 15 January 2019

Accepted: 24 December 2019

Published: 07 February 2020

Citation:

Cui X, Xiao J, Guo H, Wang B, Li D,

Niu Y, Xiang J and Chen J (2020)

Clustering of Brain Function Network

Based on Attribute and Structural

Information and Its Application in Brain

Diseases. Front. Neuroinform. 13:79.

doi: 10.3389/fninf.2019.00079

Clustering of Brain Function Network
Based on Attribute and Structural
Information and Its Application in
Brain Diseases
Xiaohong Cui, Jihai Xiao, Hao Guo, Bin Wang, Dandan Li, Yan Niu, Jie Xiang* and

Junjie Chen*

College of Information and Computer, Taiyuan University of Technology, Taiyuan, China

At present, the diagnosis of brain disease is mainly based on the self-reported

symptoms and clinical signs of the patient, which can easily lead to psychiatrists’

bias. The purpose of this study is to develop a brain network clustering model to

accurately identify brain diseases based on resting state functional magnetic resonance

imaging (fMRI) in the absence of clinical information. We use cosine similarity and

sub-network kernels to measure attribute similarity and structure similarity, respectively.

By integrating the structure similarity and attribute similarity into one matrix, spectral

clustering is used to achieve brain network clustering. Finally, we evaluate this method on

three diseases: Alzheimer’s disease, Bipolar disorder patients, and Schizophrenia. The

performance of methods is evaluated by measuring clustering consistency. Clustering

consistency is similar to clustering accuracy, which is used to evaluate the consistency

between the clustering labels and clinical diagnostic labels of the subjects. The

experimental results show that our proposed method can significantly improve clustering

performance, with a consistency of 60.6% for Alzheimer’s disease, with a consistency of

100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.

Keywords: graph mining, similarity, sub-network kernels, spectral clustering, Alzheimer’s disease

INTRODUCTION

In recent years, graph mining has become a popular research field and has been widely used
in computer networks (Zou et al., 2017), social network analysis (Halder et al., 2016) and
computational biology (Zhang et al., 2017). In addition, many new kinds of data can be represented
as graphs, such as functional magnetic resonance imaging (fMRI) data. Using fMRI data we can
construct the brain functional connectivity network in which each node represents a brain region
and each edge represents the functional connectivity between two brain regions (Kong and Yu,
2014). These brain networks provide us with a means to explore the function of the human brain
and provide valuable information for clinical diagnosis of neurological diseases, such as Alzheimer’s
disease (AD), Bipolar disorder patients (BD), and Schizophrenia (SC). Therefore, brain network
analysis based on graph mining has become a new research hotspot and attracted increasingly
more researchers.

In brain science studies, some brain network of subjects were given, some of whom suffered
from certain brain diseases (such as AD or BD), while the other group was a normal control group
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without any brain disease. The next task is to distinguish the
two types of subjects accurately. In this problem, most of the
researchers are based on the assumption that brain networks
with similar structures have similar functional characteristics.
Therefore, the key problem is how to measure the similarity of
brain network.

The existing similarity measure of brain networks can be
classified into two main classes (Mheich et al., 2019): (1) the
statistical comparison, where various graph theoretical metrics
(such as efficiency and betweenness) can also be estimated at
node or edge level of the compared networks (Bullmore and
Bassett, 2011). These metrics are then quantitatively compared
between two groups of networks via statistical tests. (2) Graph
matching, where the main purpose is to quantify a similarity
score between two brain networks by considering structure
distance. This method includes: edit distances, hamming distance
(Gao et al., 2010) and kernel methods (Shervashidze et al., 2011).

In this paper, by combining the above two class methods, a
similarity measurement method of brain network based on node
attribute similarity and structural similarity is proposed, and the
method is applied to the clustering of brain network. We use
cosine similarity and sub-network kernels to measure attribute
similarity and structure similarity, respectively. By integrating
the structure similarity and attribute similarity into one matrix,
spectral clustering is used to achieve brain network clustering.

This framework is illustrated in Figure 1. Specifically, for
each brain connectivity network, we first preprocess the fMRI
data and construct a minimum spanning tree (MST) network of

FIGURE 1 | The framework of spectral clustering based on brain network. Firstly, the fMRI data is preprocessed, and the minimum spanning tree (MST) network of the

default mode network (DMN) is constructed. Then, two different types of similarity (attribute similarity and structural similarity) are calculated. Finally, the two kinds of

similarity are effectively combined and the brain network clustering is carried out.

the Default Mode Network (DMN), then compute two different
types of similarity (attribute similarity and structure similarity)
and effectively integrate these for spectral clustering. Finally, we
evaluate the proposed method on three datasets. One dataset
was from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset. The other two dataset were selected from the UCLA
Consortium for Neuropsychiatric Phenomics LA5c Study, and
the study was approved by the UCLA Institutional Review Board.
Cluster consistency is used to evaluate the performance of the
method. The cluster consistency is similar to the clustering
accuracy, which reflects the consistency between the cluster
results and the clinical diagnosis results. It can be seen from
the experimental results that the consistency of the proposed
brain network clustering algorithm is high, which shows that the
clustering of the brain network can be accurately realized without
the clinical diagnosis information.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this study was from three datasets. One was the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu/). The other two were obtained from a
public database, openfMRI dataset (https://www.openfmri.org/).
Its accession number is ds000030.

In the ADNI database, 109 subjects (48 AD patients and
61 NC) were selected for analysis. Of these, 55 participants
(26 AD patients and 29 NCS) were selected from ADNI-2.
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These data meet the following parameter settings: repetition
time (TR) = 3,000ms; echo time (TE) = 30ms; slice thickness
= 3.3mm; flip angle = 80◦; slice number = 48 and 140 time
points. During scanning, all the subjects were instructed to
keep their eyes closed. Another 54 participants (22 AD patients
and 32 NCs) were selected from ADNI-3. These data meet the
following parameter settings: repetition time (TR) = 3,000ms;
echo time (TE) = 30ms; slice thickness = 3.4mm; flip angle =
90◦; slice number = 48 and 197 time points. Table 1 shows the
demographic information of the participants.

In openfMRI database, 49 bipolar disorder patients (BD), 50
schizophrenia (SC) and 49 age- and gender-matched normal
subjects (NC) were selected for analyzing. Data meets the
following parameter settings: repetition time (TR) = 2,000ms;
echo time (TE) = 30ms; slice thickness = 4mm; flip angle
= 90◦; slice number = 34 and 152 time points. The detailed
demographics and clinical features of the patients and normal
controls are described in Table 2.

Many preprocessing steps for the fMRI images were
performed using Data Processing Assistant for Resting-State
fMRI (DPARSF, http://pub.restfmri.net/) (Chao-Gan and Yu-
Feng, 2010), Statistical Parametric Mapping (SPM12) (http://
www.fil.ion.ucl.ac.uk/spm), and the Resting-State fMRI Data
Analysis Toolkit (REST 1.8) packages (Song et al., 2011).
These steps include slice time correction, brain skull removal,
and motion correction followed by temporal pre-whitening,
spatial smoothing, global drift removal, and band pass filtering.
Specifically, the first 10 time points of each subject were removed;
slice-timing correction and image realignment were carried out
on the remaining time points. Because the brain size, shape,
orientation, and gyral anatomy of each subject is different, the
fMRI data of each subject was usually normalized into the
Montreal Neurological Institute (MNI) space (resampled into 3
× 3 × 3 mm3 voxels) by using a unified segmentation on the T1
image. Then, the linear trends of the time courses were removed,
and the effect of nuisance covariates was removed by signal

TABLE 1 | Demographic information of study participants.

Group AD NC

No. of subjects (M/F) 23/25 24/37

Age (mean ± SD) 74.0 ± 8.7 73.0 ± 7.3

MMSE (mean ± SD) 22.8 ± 2.5 28.9 ± 1.2

CDR (mean ± SD) 0.8 ± 0.2 0.0 ± 0.0

AD, Alzheimer’s Disease patients; NC, Normal Control; MMSE, Mini-Mental State

Examination; CDR, Clinical Dementia Rating; M, Male; F, Female.

TABLE 2 | Demographic information of study participants.

Group BD SC NC

No. of subjects (M/F) 28/21 38/12 26/23

Age (mean ± SD) 35.2 ± 9.0 36.5 ± 8.9 31.7 ± 8.9

BD, bipolar disorder patients; SC, schizophrenia patients; NC, Normal Control; M, Male;

F, Female.

regression using the global signal, the six motion parameters,
the cerebrospinal fluid (CSF) and white matter (WM) signals.
Temporal filtering (0.01Hz < f < 0.08Hz) was applied. Lastly,
since we used only gray matter (GM) tissue to construct the
functional connectivity network, the gray matter mask was used
to mask the corresponding fMRI images to eliminate the possible
effects from CSF and WM.

Method
The core of our proposed method is listed below and will be
described comprehensively in the following sections:

(1) Labeling the DMN and generating the MST brain
functional network.

(2) Brain network similarity assessment.
(3) Spectral clustering algorithm based on brain networks.

Labeling the DMN and Generating the MST Brain

Network
Many studies have confirmed that the Default Mode Network
(DMN) maintains a relatively stable state in the whole brain
network, which is suitable for the study of the abnormality of the
brain function network connections. In addition, a large number
of studies have confirmed that AD patients have abnormal
functional connections in the DMN (Mevel et al., 2011; Garcés
et al., 2014). The connection abnormality is mainly reflected in
the decrease of functional connections in the Posterior Cingulate
Cortex (PCC) and Hippocampus (HIP), and the degree of
reduction is positively correlated with the degree of episodic
memory impairment. With the development of the disease, the
impairment of DMN is aggravated gradually. Previous studies
have confirmed that Bipolar disorder (Öngür et al., 2010),
Schizophrenia (Mingoia et al., 2010; Tang et al., 2013) patients
have abnormal functional connections in the DMN. Therefore,
the connection abnormality of the DMN could provide an
imaging marker for monitoring AD, BP, and SC.

(1) Labeling the DMN

In this paper, according to the Automated Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) atlas in concordance with
another study (Ciftçi, 2011), the DMN consisted of 32 locations
and are shown in Table 3. These 32 locations were defined as
the nodes of the brain network, and node time series were
obtained by averaging the corresponding voxel time series in the
anatomical areas. Then, with the Pearson correlation coefficients
between pairs of nodes as connectivity weights, a functional full
connected network was finally constructed for each subject.

(2) Constructing the MST brain network

When building a brain network, the traditional approach is
to convert a fully connected network into a binary network
by setting a threshold. And there is no gold standard for the
selection of thresholds. In addition, because different thresholds
get different binary networks, this will affect the results of
subsequent analysis to a certain extent. In order to avoid the
threshold selection problem and preserve the structure of the
brain network, we adopt the minimum spanning tree network
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correction scheme to construct the unbiased brain network. The
MST method not only preserves the core framework of the
network and ensures the neural interpretability of the network,
but also eliminates the influence of the threshold. The MST
network correction scheme has been widely applied to construct
brain networks. For example, Guo et al. (2017) constructed
minimum spanning tree high-order functional connectivity
networks to identify AD from NC. van Dellen et al. (2018)
constructed the MST structural brain networks of healthy adults,
and concluded that MST was a feasible method to analyze
structural brain networks. Cui et al. (2018) constructed the MST
functional brain network for AD, MCI, and NC, analyzed the
difference of topological structure among them, and classified
them by using topological structural features.

TABLE 3 | AAL structures forming the DMN.

Region Abbreviation

Orbitofrontal cortex (superior) ORBsup

Middle frontal gyrus MFG

Orbitofrontal cortex (middle) ORBmid

Rectus gyrus REC

Anterior cingulate gyrus ACG

Posterior cingulate gyrus PCG

Precuneus PCUN

Hippocampus HIP

Parahippocampus gyrus PHG

Inferior parietal lobule IPL

Angular gyrus ANG

Superior temporal gyrus STG

Temporal pole (superior) TPOsup

Middle temporal gyrus MTG

Temporal pole (middle) TPOmid

Inferior temporal gyrus ITG

In this paper, we constructed the MST brain network based
on the full connected network by employing Kruskal’s algorithm
(Kruskal, 1956). The details of the algorithm used in this study are
as follows: (1) order the weights of the full connected network in
descending order; (2) link the nodes with maximal weight until
all the nodes are linked in a loopless subgraph; (3) skip the link if
the addition of this link leads to a loop.

In this study, the number of nodes in the topology of MST was
32 and the number of edges was 31.

Brain Network Similarity Measure
A brain network has not only attribute features but also
topological features. So the similarity of brain networks was
evaluated by their attribute similarity and structural similarity.
The brain network clustering framework is shown in Figure 2.

1. Brain network attribute similarity

Betweenness is an important graph theoretical metrics in MSTs.
In clinical application, betweenness centrality was used to
compare brain networks of healthy subjects and patients with
schizophrenia, depression and Alzheimer diseases (van den
Heuvel et al., 2010; Yao et al., 2010; Becerril et al., 2011).
Hence, the attribute similarity of brain networks is evaluated by
measuring the similarity of betweenness. Betweenness of nodes is
defined as the number of shortest paths through a node.

The betweenness bi of the node i is defined as
(Tewarie et al., 2015):

bi =
1

(n− 1)(n− 2)

∑

h, j ∈ V
h 6= j, h 6= i

ρi
hj

ρhj
(1)

where ρhj is the number of shortest paths between node h and j;

ρi
hj is the number of shortest paths between node h and j through

the node i; V is the set of nodes; and n is the number of nodes.

FIGURE 2 | The brain network clustering framework. A graph (A) contains a number of inter-connected nodes, each node represents a brain network, different color

represent different brain region. To calculate similarities between brain networks (G and H), we first find similarity between brain networks by taking node attributes

(attribute similarity) and structures (structure similarity) into consideration (B). The similarity matrix (C) is formed by the effective combination of attribute similarity and

structural similarity. Similarity matrix and spectral clustering (D) results in final clustering results in (E).
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The attribute similarity satt (G,H) is calculated using the
cosine similarity method (Nguyen et al., 2011). The formula is
as follows:

satt (G,H) =

∑n
m= 1 bm(G)× bm(H)

√

∑n
m= 1 (bm(G))

2
×

√

∑n
m= 1 (bm(H))2

(2)

where bm(G) is the betweenness of the m-th node in the brain
network G, bm(H) is the betweenness of the m-th node in brain
network H, and n is the number of nodes in the brain network.

2. Brain network structure similarity

A kernel can be seen as a measure of similarity between a pair
of subjects. When a kernel is used for graph data, called a graph
kernel, the data is mapped from the original graph space to the
feature space and further measures the similarity between two
graphs by comparing their topological structure (Shervashidze
et al., 2011).

In this paper, sub-network kernels (Jie et al., 2018) were used
to measure the topological structure similarity of brain networks.
Compared with traditional graph kernels, sub-network kernels
not only take into account the uniqueness of each node in brain
networks, but also capture the multi-level topological properties
of the brain network nodes.

The detailed process of sub-network kernels is summarized
as follows:

(1) We construct a set of sub-networks on each node to reflect the
connectivity of the brain network at multiple levels.

Specifically, G = (V ,E) andH = (V ,E′) represent a pair of brain
networks, where V represents the node set for the networks. E
and E′ represent the edge sets for G and H, respectively. Because
the brain has the same brain area they share the same nodes.

To reflect the multi-level topological properties of brain
networks, we first define two sets of sub-networks on each node
Vi in the networks G and H,

Gh
i = {G

j
i = (V

j
i ,E

j
i)}j= 1,2,··· ,h

Hh
i = {H

j
i = (V

′ j
i,E

′ j
i)}j= 1,2,··· ,h (3)

where V
j
i = {v ∈ V|s(v, vi) ≤ j},E

j
i = {(u, v) ∈ E|u, v ∈

V
j
i },Vi

′j = {v ∈ V|s(v, vi) ≤ j},Ei
′j = {(u, v) ∈ E′|u, v ∈ Vi

′j}

and s(·, vi) is the length of the shortest-path between node Vi and
the other node. Here, h determines the maximum of s(·, vi) and
also defines the number of sub-networks in the set Gh

i and Hh
i .

According to Equation (3), for a brain network of n nodes, we
can obtain n sets of sub-networks:

G = {Gh
1 ,G

h
2 , · · ·,G

h
n}

H = {Hh
1 ,H

h
2 , · · ·,H

h
n}

(2) We can calculate the kernel of brain networks G and H
by calculating the similarity of all sub-network groups from
the same node. The kernel of brain networks G and H is
defined as:

k (G,H) =
1

n

n
∑

i= 1

f (Gh
i ,H

h
i ) (4)

with

f
(

Gh
i ,H

h
i

)

=
1

h

h
∑

j= 1

g(G
j
i,H

j
i) (5)

and

g
(

G
j
i,H

j
i

)

= exp(−
1

2
log(

∣

∣

∣
A
j
i

∣

∣

∣

√

∣

∣

∣
CG

j
i

∣

∣

∣

∣

∣

∣
CH

j
i

∣

∣

∣

)) (6)

where | · | is the determinant, CG
j
i ∈ Rd×d and CH

j
i ∈ Rd×d

are the corresponding covariance matrices which are defined on

the sub-networks G
j
i and H

j
i by Equation (7) (Shrivastava and Li,

2014), respectively, d represents the number of power iterations,

n denotes the number of nodes in the brain network, and A
j
i is

defined in Equation (8).

CW
i,j = cov

(

NWie
∥

∥Wie
∥

∥

1

,
NWje
∥

∥Wje
∥

∥

1

)

(7)

A
j
i =

(CG
j
i + CH

j
i )

2
(8)

where CǫRd×d is a covariance matrix, d is the number of power
iterations, cov denotes the covariance between two vectors, W
denotes the adjacency matrix for the sub-network, e is the vector
of all ones, and ‖·‖1 denotes the l1 norm of a vector. Here, the set

of power iterations on a given vector e,
{

e,We,W2e, . . . ,Wde
}

,

is known as the “d-order Krylov subspace” which contains
sufficient information to describe the adjacency matrix W for
some appropriately chosen d.

Finally, the topological structural similarity between two brain
networksG andH is equal to the kernel of the two brain networks
G and H, and is defined as:

sstr(G,H) = k (G,H) (9)

3. Brain network similarity

Because the similarity of brain networks includes two parts
(attribute similarity and structure similarity), it is necessary to
combine them into one similarity. For this combination, we use
a weight δ to control the degree of contribution of each part.
In addition, since attribute similarity and structure similarity
are two different types, normalization must be performed before
combining them. The normalization is defined as:

snorm (X,Y) =
s(X,Y)

√
s(X,X)s(Y ,Y)

(10)

The similarity sG,H of two brain networks G and H is defined
as follows:

sG,H = δsatt(G,H)+ (1− δ)sstr(G,H) (11)
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So similarity matrix for all brain networks S is defined as follows:

S =

















s11 · · · s1h · · · s1n
...

. . .
...

. . .
...

sg1 · · · sgh · · · sgn
...

. . .
...

. . .
...

sn1 · · · snh · · · snn

















(12)

where sgh represents the similarity between brain networks G and
H, and n represents the number of brain networks. sgh ranges
between 0 (no similarity at all) to 1 (fully similar / same network).

Spectral Clustering Algorithm Based on Brain

Networks
With the similarity matrix S obtained in the above section, we can
formulate the clustering of brain networks as a spectral clustering
(Ng et al., 2002; von Luxburg, 2007) problem, in which brain
networks with a higher similarity tend to be grouped into the
same cluster.

Algorithm 1: Spectral clustering algorithm based on
brain networks
Input: A set of brain networks with each brain network an
undirected graph; and cluster numberm.
Output:m clusters c1,c2. . . cm

1. Initialize the similarity matrix S as an n × n zero matrix, n is
the number of brain networks;

2. Form the brain network attribute similarity matrix satt by
Equation (2);

3. Form the brain network structure similarity matrix sstr by
performing sub-network kernels;

4. Form the similarity matrix S defined by Equation (11) and
Equation (12);

5. Define D to be the diagonal matrix whose (i,i)-element is
the sum of S’s i-th row, and construct the matrix L=D−1/2S

D−1/2 ;
6. Find x1, x2 · · · , xm, the m largest eigenvectors of L, and form

the matrix X = [x1, x2 · · · , xm] ∈ Rn×m by stacking the
eigenvectors in columns;

7. Form the matrix Y from X by renormalizing each of X’s rows
to have unit length;

8. Treating each row of Y as a point in Rm, cluster them into m
clusters via the K-means algorithm;

9. Finally, assign the brain network to cluster ci if and only if row
i of the matrix Y was assigned to cluster ci.

Methodology
In all algorithms, we set the number of clusters to 2 for
classifying the patients and the healthy controls. In addition,
there were certain parameters that needed to be set in the
proposed algorithm: (1) We apply grid search to find the optimal
value for δ. We do grid search for δ in {0.1, 0.2, . . . 0.9}. (2) In
the sub-network kernels, the parameters h and d are set to 3 and

3 for AD, the parameters h and d are set to 3 and 1 for SC and
BP, respectively.

To evaluate the consistency between the clustering labels and
clinical diagnostic labels of the subjects, we defined clustering
consistency as similar to clustering accuracy (Wang et al., 2010),
which can be used to discover one to one relationships between
clusters and clinical classes and can measure the extent to which
each cluster contains data points from the corresponding class.

Clustering consistency sums up the entire matching degree
between all pair class clusters. Clustering consistency can be
computed as

consistency =
1

n
max(

∑

Cm ,Lp

T(Cm, Lp)) (13)

where Cm denotes the m-th (m[{1, 2}) cluster in the final results,
and Lp is the diagnostic p-th (p[{1, 2}) group (patient group and
control group). T(Cm, Lp) is the number of samples that belong
to group p and are assigned to clusterm. n represents the number
of brain networks. Consistency is the maximum sum of T(Cm,
Lp) for all pairs of clusters and groups, and these pairs have
no overlaps.

RESULTS

The minimum spanning tree brain network of the default
mode network was constructed using Kruskal’s algorithm. Then,
According to a certain proportion, the attribute similarity
matrix and the structure similarity matrix were combined
to form a similarity matrix which is used for clustering.
Finally the clustering of the brain network was completed by
spectral clustering.

Clustering Performance
In order to evaluate the clustering performance of our proposed
method, we compared our method with methods that use a
different similarity measure for the same dataset, including:

TABLE 4 | Clustering performance of different similarity measure.

Dataset Similarity

measurement

Consistency

Patient (%) Control (%) Total (%)

AD Node attribute 64.6 54.1 58.7

Kernel method 60.4 39.3 48.6

Siminet 58.3 59 58.7

Our method 62.5 59 60.6

SC Node attribute 90.0 77.6 83.8

Kernel method 98.0 100 98.9

Siminet 58.0 55.1 56.6

Our method 100 100 100

BP Node attribute 53.1 46.9 50

Kernel method 100 100 100

Siminet 63.3 51.0 57.1

Our method 100 100 100

The bolded values represent the clustering performance of our method.
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(1) Spectral clustering algorithm based on node attributes: It
is an existing similarity measure of brain networks only
considering node attribute similarity. We first constructed
the similarity matrix only based on node betweenness and
then used the similarity matrix as the input for normalized
spectral clustering.

(2) Spectral clustering algorithm based on kernel method
(Jie et al., 2018): It is an existing similarity measure of
brain networks only considering structure distance between
two brain networks. We first constructed the similarity
matrix for graphs based on the kernel method and then
used the similarity matrix as the input for normalized
spectral clustering.

(3) Spectral clustering algorithm based on SimiNet (Mheich
et al., 2018): SimiNet takes into account the physical
locations of nodes and the weight difference of edge when
computing similarity between two brain graphs. We first
constructed the similarity matrix for graphs based on
SimiNet and then used the similarity matrix as the input for
normalized spectral clustering.

In all experiments, we evaluate the performance of methods by
measuring clustering consistency. Clustering consistency is used
to find one-to-one relationships between clusters and clinical
classes of the subject, and to measure the extent to which each
cluster contains data points from the same class. Table 4 shows
the clustering performances of the different methods with the
same dataset. The results showed that our proposed method
achieved the best clustering performance, with a consistency
of 60.6% for AD, with a consistency of 100% for SC, with a
consistency of 100% for BP.

DISCUSSION

Performance Evaluations
The clustering performance of four different similarity
measurement methods is listed in Table 4. When the consistency
is 100%, the clustering label of all subjects is consistent with the
clinical diagnostic label, and the clustering accuracy is 100%.
When the consistency is 0%, the clustering label of all subjects is

FIGURE 3 | The cluster result of AD with respect to different values of parameter δ, h, and d.
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inconsistent with the clinical diagnosis label, and the clustering
accuracy is 0%.

As shown in Table 4, among the four similarity measure
methods, our method performed the best on the three datasets in
terms of consistency. The node attribute and the kernel methods
achieved a slightly better result.

The node attribute method directly used the node attributes
of a brain network for calculating the similarity between each
pair of brain networks, which was utilized for the final brain
network clustering. The result shows that the similarity of the
brain network cannot be more accurately determined from the
node attributes (betweenness) alone. The result shows that the
brain disorders are associated with alterations in the hubs. Many
studies have also demonstrated that the hubs of the human brain
are generally implicated with brain disorders (He et al., 2008;
Lynall et al., 2010), such as AD and SC.

The kernel method computed the similarity matrix by
performing sub-network kernels on the brain network. The result

means that when the attributes of the network change, this will
affect the global connection structure of the network. Therefore,
the description of the global structure has a great effect on
the clustering.

SimiNet measures the similarity between the two graphs
according to the node and edge attributes under the spatial
constraints related to the physical position of the nodes. The key
feature of this algorithm is that it takes into account the physical
locations of the network nodes. However, in the not-weight brain
network constructed with rs-fMRI (resting state fMRI) data, the
position of the nodes is the same, so the advantages of the
algorithm are not fully reflected. As shown in Table 4, we can see
that this method achieved a slightly better result.

Different to the above methods, our method combines both
the attribute similarity and structure similarity, where the
attribute similarity captures the topological characteristics of
brain networks and the structure similarity captures the structure
distance. In addition, sub-network kernels were used to measure

FIGURE 4 | The cluster result of SC with respect to different values of parameter δ, h, and d.
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the structural similarity of brain networks. It not only takes
into account the uniqueness of each node, but also captures
the multi-level topological properties of nodes in the networks,
which are essential for defining the similarity measure. These
results indicated that the attribute features and the interior-node
structure were important for graph clustering. So, the similarity
measurement method based on the combination of attributes
and structure can accurately describe the similarity of the brain
network, thus improving the clustering performance.

In addition, the results show that when the method is applied
to different data sets, the clustering performance is also different,
which indicates that the clustering performance is affected by
the data to a certain extent. This is because we choose DMN
as regions of interesting to construct brain network in this
study. The damage degree of DMN is different in different brain
diseases, which affects the performance of clustering.

Effect of Parameters δ, d, and h
To compute the similarity of two graphs, the parameters δ, d, and
h need to be set. d controls the number of power iterations, and

h is the size of a sub-network set. The weight δ is used to control
the degree of contribution of attribute similarity and structure
similarity. In this section, we explore the effect of parameters
δ, d, and h on clustering performance. To analyze the effect
of these parameters on our method, we set different values for
d ∈ {3, 4, 5, 6, 7, 8} and h ∈ {1, 2, 3}, and δ was set from 0.1 to 0.9
with a step of 0.1. Figures 3–5 shows the clustering results of AD,
SC, and BP with respect to different values of these parameters.

From Figure 3 we can see that the consistency for AD is
between 51 and 60.6%. The best clustering performance was
obtained when h = 3 and δ = 0.9, with the consistency of 60.6%.
From Figure 4 we can see that the consistency is between 84
and 100% for SC. The best clustering performance was obtained
when h= 1 and ∈ [0.1, 0.7], with the consistency of 100%. From
Figure 5 we can see that the consistency is between 50 and 100%
for BP. The best clustering performance was obtained when h =

1 and δ ∈ [0.1, 0.7], with the consistency of 100%.
Figures 3–5 shows that, with a fixed h, the curves varied with

the value of d are very smooth, which shows that our method is
very robust to the parameter d. Moreover, we can observe that,

FIGURE 5 | The cluster result of BP with respect to different values of parameter δ, h, and d.
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given a fixed d, the clustering performance is largely affected
by different values of h. When h = 1, our method obtains the
best clustering performance for SC and BP. When h = 3, our
method obtains the best clustering performance for AD. These
results imply that the selection of h is critical for our proposed
method. This is reasonable since the number h controls the size
of a sub-network set for each node in a brain network, and
thus affects the similarity measurement of brain networks. In
additional, these results imply that the selection of δ is critical
for our proposed method. It is because that δ controls the degree
of contribution of attribute similarity and structure similarity.

The experimental results showed that the topological structure
and the attribute features of brain networks play important roles
in clustering brain networks. The setting of parameters is related
to the experimental data.

Limitation
Although the proposed method is effective, when this method
is applied to different datasets, the clustering performance is
different, which indicates that the clustering performance is
affected by the data to a certain extent. In addition, the proposed
method does not take into account a priori knowledge of the
subject, such as Mini-Mental State Examination and Clinical
Dementia Rating. A large number of studies have shown that
making full use of a priori knowledge in the process of searching
for clusters can significantly improve the performance of the
clustering algorithm (Jiao et al., 2012). Therefore, it will be
meaningful to combine this knowledge with spectral clustering.

CONCLUSION

In this paper, we proposed a framework for spectral clustering
based on attribute feature similarity and topological structure
similarity. Specifically, we use cosine similarity to measure the
attribute similarity between brain networks. Then, we use sub-
network kernels to calculate the structure similarity between
brain networks. Finally, according to an optimal parameter δ,
the similarity matrix was obtained by integrating the structure
similarity and attribute similarity, and spectral clustering is
carried out. Hence, this new similarity matrix considers both the
global and local similarity of brain networks. In experiments with
the AD, BP, and SC dataset, we demonstrated that our proposed
method can significantly improve clustering performance in
terms of consistency. In our future work, we will explore the
combination of a priori knowledge and spectral clustering and
carry out further research in this area.
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Real-time neuron detection and neural activity extraction are critical components

of real-time neural decoding. In this paper, we propose a novel real-time neuron

detection and activity extraction system using a dataflow framework to provide

real-time performance and adaptability to new algorithms and hardware platforms.

The proposed system was evaluated on simulated calcium imaging data, calcium

imaging data with manual annotation, and calcium imaging data of the anterior lateral

motor cortex. We found that the proposed system accurately detected neurons

and extracted neural activities in real time without any requirement for expensive,

cumbersome, or special-purpose computing hardware. We expect that the system

will enable cost-effective, real-time calcium imaging-based neural decoding, leading to

precise neuromodulation.

Keywords: real-time image processing, real-time neuron detection, dataflow, calcium imaging, data streammining

1. INTRODUCTION

Real-time neural decoding predicts behavioral variables based on neural activity data, where the
prediction is performed at a pace that keeps upwith the speed of the activity that is beingmonitored.
Neuromodulation devices are becoming one of the most powerful tools for the treatment of
brain disorders, enhancing neurocognitive performance, and demonstrating causality (Bergmann
et al., 2016; Knotkova and Rasche, 2016). A precise neuromodulation system integrates neural
activitymonitoring, real-time neural decoding, and neuromodulation. In precise neuromodulation,
a decoding device predicts a behavioral variable based on neural data streams in real time. Based
on the decoding results, neuromodulation parameters such as timing, frequency, duration, and
amplitude are changed. Precise neuromodulation systems with closed-loop real-time feedback are
superior to the fixed (open-loop) neuromodulation paradigm (deBettencourt et al., 2015; Brocker
et al., 2017; Ezzyat et al., 2017).

A recent direct brain stimulation study demonstrated significant advantages of precise
neuromodulation over open-loop neuromodulation (Ezzyat et al., 2017). This study applied
direct brain stimulation with decoding capability to patients with epilepsy to improve their
memory. The study found that stimulation increased memory function only if delivered when
the decoding device indicated low encoding efficiency, while stimulation decreased memory
function if delivered when the decoding device indicated high encoding efficiency. An open-loop
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neuromodulation system with a fixed stimulation paradigm may
not always facilitate improvement of memory function.

Miniature calcium imaging (e.g., see Ghosh et al., 2011; Kerr
and Nimmerjahn, 2012; Scott et al., 2013) is a neuroimaging tool
that can observe all cells in the field of view in behaving animals,
has high spatial and temporal resolution (single-cell spatial
resolution and sub-second temporal resolution), and enables
chronic imaging. In this paper, we focus on two-photon calcium
imaging. A closed-loop real-time neural decoding system based
on miniature calcium imaging will lead to a powerful, precise
neuromodulation system. The first step in the development of
such a neural decoding system is to have an accurate and fast
Real-time Neuron Detection and Activity Extraction (RNDAE)
system. In our context, an RNDAE system takes as input a
video stream S that is generated by a miniature calcium imaging
device, which is mounted on the head of a behaving animal. The
output produced by the RNDAE system is a set of neuron masks
{n1, n2, . . . , nm} that is detected in S, where m is the number
of detected neurons, along with the neural signal si(k) that is
extracted for each neuron ni. The neural signal si(k) gives the
neural activity associated with neuron ni for each input video
frame k, as represented by the video stream S. See Table S2 for
the definitions of variables and symbols in this article.

The tremendous rate at which miniature calcium imaging
devices produce data imposes major challenges in the design
and implementation of an RNDAE system. For example, during
10 min of imaging, such a device generates 1 G of data at a
frame rate of 10 Hz. Additionally, intensive processing within
and across video frames in the input data stream is required for
accurate detection of neurons and extraction of the associated
neural signals. Furthermore, since algorithms and hardware
platforms relevant to neural signal processing are evolving
rapidly, the design of an RNDAE system should be architected
in a manner that supports flexible adaptation to different
component algorithms and retargeting to different processing
devices. These requirements for complex processing on high-
rate video data and flexible support for hardware/software design
modifications make the development of RNDAE systems a very
difficult task.

In this paper, we develop a novel RNDAE system, called the
NeuronDetection and Signal Extraction Platform (NDSEP), which
is designed to address the challenges described above. NDSEP
provides an experimental platform for neuron detection and
neural signal extraction that provides real-time performance and
adaptability to new algorithms and hardware platforms. NDSEP
also provides a valuable foundation for research and development
of precise neuromodulation systems. The architecture of
NDSEP is based on principles of signal processing-oriented
dataflow models of computation (e.g., see Lee and Parks, 1995;
Bhattacharyya et al., 2019).

In dataflow programming, computational tasks can be
executed whenever they have sufficient data. This property
provides great flexibility to compilers, software synthesis tools,
and system designers to coordinate task execution in ways
that are strategic with respect to the relevant implementation
constraints and objectives. The data-driven semantics of task
execution in dataflow is fundamentally different from procedural

programming languages, such as C and Java, where the
programmer specifies a sequential control flow between tasks in
addition to the tasks themselves. This sequential approach to
programming hides concurrency between tasks, whereas well-
designed dataflow representations expose concurrency explicitly.
A trade-off is that dataflow representations can be highly non-
intuitive to apply to arbitrary types of applications; however, they
have been shown to be well-suited to the broad area of signal and
information processing (e.g., see Bhattacharyya et al., 2019).

Motivated in part by its utility for efficient implementation
on parallel computing platforms, system design using
dataflow methods is widely used for complex signal and
information processing applications. The high-level signal flow
structure that is exposed by well-designed dataflow models is
valuable for design optimization in the context of important
metrics, including those related to processing speed, memory
management, and energy efficiency (Bhattacharyya et al., 2019).
Additionally, dataflow provides a precise, abstract representation
of computational modules and the interaction between modules
within a given signal processing application. The formal,
abstract representation provided by dataflow is of great utility
in migrating implementations across platforms and also for
efficiently expanding, upgrading, or otherwise modifying an
implementation that is targeted to a given platform. Throughout
the presentation of NDSEP in this paper, we therefore emphasize
the ways in which dataflow techniques are employed to help
address the complex and multi-faceted challenges, motivated
above, that are involved in RNDAE system development.

The major contribution of our paper is the rigorous
application of dataflow-based system design methods to real-
time neural decoding. There are many systems, such as CaImAn-
CNMF (Giovannucci et al., 2019) and STNeuroNet (Soltanian-
Zadeh et al., 2019), for neuron detection, which may achieve
higher accuracy than our current implementation. However,
these algorithms are not dataflow-based and therefore they
do not provide the advantages of expandability, cross-platform
portability, and high-level design optimization described above.
All of these features are useful for flexible experimentation with
and practical deployment of neural decoding methods. The main
contribution of this effort can therefore be viewed as the design
of an overall system, not just a single component.

2. BACKGROUND AND RELATED WORK

In this research, we apply advanced methods for dataflow-based
system design to address the challenges identified in section 1 for
RNDAE technology. In this section, we first review related work
on neuron detection and neural signal extraction, and then we
present background on dataflow methods for signal processing
system design.

2.1. Real-Time Neuron Detection
Neuron detection centers on identifying the source (neurons)
in the image field of view (FOV). A straightforward method
for neuron detection is to manually delineate neuron masks.
This manual labeling process is labor-intensive. For semi-
automated/automated neuron detection, a PCA/ICA based
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method (Mukamel et al., 2009) is proposed. This algorithm
first runs PCA to reduce data dimensionality, and then
uses ICA to segment data into statistically independent
spatial and temporal signals. Constrained nonnegative matrix
factorization (CNMF)-based methods for neuron detection are
described in Pnevmatikakis et al. (2016) and Zhou et al.
(2018). Deep learning-based neuron detection methods are
proposed in Apthorpe et al. (2016). Although these semi-
automated/automated neuron detection methods are powerful,
they are not suitable for real-time applications because of long
running time. That is to say, the methods mentioned above are
not in real time, which is in contrast with our method, which is
in real time and will be described later.

Motion correction is a crucial step for accurate neural
detection. For real-time applications, motion correction must
be integrated as part of the neural detection and neural
signal extraction system, as the input arrives directly without
any preprocessing. The motion correction problem can be
solved by image registration (Resendez et al., 2016). However,
these registration algorithms require a running time on the
order of seconds to minutes per frame (Vercauteren et al.,
2009). Real-time applications require optimized and efficient
motion correction.

2.2. Dataflow-Based System Design
Dataflow provides a valuable foundation for the design and
implementation of novel signal and information processing
systems under complex constraints (e.g., see Bhattacharyya
et al., 2019). When dataflow is used as an abstraction for
signal processing system design, applications are represented
as directed graphs, called dataflow graphs (Lee and Parks,
1995). Vertices in dataflow graphs, called actors, represent
computational tasks, such as digital filters, matrix operations, or
image transformations, and each edge represents a first-in, first-
out (FIFO) buffer that stores data as it passes from the output of
one actor to the input of another. Each unit of data within such a
buffer is referred to as a token.

Dataflow actors abstract the detailed implementation of the
corresponding computational tasks while imposing important
constraints on how the actors interface with the surrounding
graph, regardless of the implementation. These dataflow interface
constraints include two major aspects. First, a dataflow actor can
execute (fire) only when certain well-defined conditions on the
buffers associated with its input and output edges are satisfied.
These conditions are typically formulated in terms of the token
populations on the buffers—that is, some minimum amount of
data is required on each input buffer (to provide the input for
the next firing), and some minimum amount of empty space is
required on each output buffer (to store the output generated
by the firing). When the firing conditions described above are
satisfied, the actor (or its next firing) is said to be enabled.

Second, when an actor is fired, it must actually produce and
consume on each output and input port, respectively, a number
of tokens that is consistent with the assumptions that were used
to determine that the firing was enabled.

FIGURE 1 | An example of a simple dataflow graph.

A distinguishing feature of dataflow is that the “program”
(dataflow graph) does not specify the order in which actors
will execute, nor (in the case of a hardware platform with
multiple processors) the processing resource on which each actor
is mapped. Instead, the mapping of actors to processors and
execution ordering of the actors are left up to the system designer
or design tool. The mapping, together with the ordering of actors
that share the same processor, is referred to as the schedule for the
dataflow graph. A general rule of dataflow schedule construction
is that an actor can only be fired (executed next in the evolution
of a schedule) when it is enabled, as described above.

The schedule typically has a great impact on most or all
key implementation metrics, including throughput, latency, and
memory requirements. The decoupling of a dataflow graph
G from the schedule, together with the high-level signal flow
structure exposed by G, provides great flexibility to designers and
design tool developers in constructing schedules. This flexibility
is important for optimizing a schedule with respect to the specific
constraints, objectives, and processing devices that are relevant to
the given application. In this work, we seek to enable and exploit
this flexibility by applying dataflow-based concepts consistently
throughout the RNDAE system design process.

Formally, a dataflow graph is represented as a directed graph
G = (X,E), where X is the set of actors and E is the set of
edges. For each edge in e ∈ E, we denote the source and sink
vertices of e as src(e) and snk(e), respectively. Each edge e has a
nonzero-integer delay associated with it, which gives the number
of initial tokens that are stored in the corresponding FIFO before
the dataflow graph begins execution. A self-loop edge is an edge
es whose source and sink actors are identical (src(es) = snk(es)).

Figure 1 shows a simple dataflow graph with three actors
(X = a, b, c), and two edges e1 = (a, b) and e2 = (b, c). The
“D” on edge (b, c) represents a unit delay. If the delay on an edge
exceeds 1, then we typically annotate the edge with “N D”, where
N is the delay of the edge. If the delay is zero, then we omit
the “D” symbol, and do not provide any annotation on the edge
associated with delay. For example, the absence of a “D” symbol
on (a, b) in Figure 1 indicates that this edge has no delay.

Self-loop edges are often omitted from drawings of dataflow
graphs. However, their presence must be taken into account by
some forms of analysis and optimization. For example, self-loop
edges in general limit the amount of data parallelism that can be
exploited when scheduling a given actor (e.g., see Lin et al., 2018).

For further background on dataflow fundamentals for signal
processing systems, we refer the reader to Lee and Parks (1995)
and Bhattacharyya et al. (2019). For background on more general
foundations of dataflow, we refer the reader to Dennis (1974) and
Gilles (1974).
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3. PROPOSED METHOD

Our NDSEP system is developed and tested for use on video
streams that are acquired from mice using miniature calcium
imaging devices. We especially focus on two-photon calcium
imaging. The NDSEP system is therefore suitable for use in
monitoring neural activity in real time—for example, to help
inform the scientist performing an experiment about how to
adapt experimental options so that subsequently acquired data
is most relevant to the experiment objectives.

The system design of NDSEP incorporates two distinct modes
of operation, which we refer to as the initializationmode and real-
time mode. The purpose of the initialization mode is to optimize
system- and actor-level parameters in relation to the image
characteristics associated with a given experiment. Calcium
imaging data for a given experiment have certain distinctive
characteristics that are influenced by the experimental setup,
including the imaging devices, neuron types, and specific animal
subjects involved. To maximize neuron detection and signal
extraction accuracy, it is important to tune, in relation to these
distinctive characteristics, certain parameters associated with the
neural signal processing algorithms that are employed. Image
characteristics that are relevant in this tuning process include the
size of the neurons being monitored and the brightness of the
firing neurons relative to the background.

For concreteness and for insight into specific optimizations
that we applied to facilitate real-time performance, we describe
in this section selected details on actor implementations in
the current version of NDSEP. These details include, for
example, specific OpenCV functions that are applied within the
actors and associated parameter settings for these functions.
However, we would like to emphasize that the NDSEP framework
is independent of any specific approach for implementing
algorithms or any specific algorithms for image analysis. For
example, one could replace the calls to OpenCV functions with
calls to a different library that provides similar capabilities or
with customized code that is developed by the actor designer. As
another example, one could replace the Neuron Detection actor,
which implements the SimpleBlobDetector algorithm,
with another actor that implements the Holistically nested
Edge Detection (Hed) or MaskRCNN algorithm. The modular,
model-based design of NDSEP facilitates use cases such as
these for experimentation with alternative algorithms and actor
implementations. Such experimentation is useful for gaining
insight into trade-offs between neural decoding accuracy and
real-time performance, which are critical to the overall utility of
a neural decoding system.

In section 4, we evaluate NDSEP using datasets involving both
simulated data and real-world data. The real-world dataset is

acquired from mouse models. Two-photon calcium imaging was
used to image the calcium fluorescence of Anterior Lateral Motor
(ALM) cortex. Thus, in the remainder of the paper, we refer to the

real data as the ALMdataset. More details about the ALMdata we

use is given in section 4.
The remainder of this section is organized as follows. First,

we provide background on a specific form of dataflow modeling
called parameterized synchronous dataflow (PSDF), which is

well-suited to the computational structure of NDSEP. Next, we
present the key actors (dataflow-based software components)
that are involved in NDSEP. We then present the overall system
design for NDSEP, including relevant details of the initialization
mode and real-time mode.

3.1. PSDF Modeling
A variety of specialized dataflow modeling techniques have been
developed for different classes of signal processing applications
(e.g., see Bhattacharyya et al., 2019). For design of NDSEP,
we apply the PSDF model due to its utility in representing
signal processing applications in which dynamic modifications
to system parameters play an important role. PSDF enables
the joint, dataflow-based modeling of (1) subsystems whose
parameters can be modified dynamically (adapting subsystems)
along with (2) subsystems whose results are used to determine
new values of relevant parameters in the adapting subsystems
(controlling subsystems) (Bhattacharya and Bhattacharyya, 2001).

A number of different variants of dataflow have been
developed with an emphasis on supporting dynamic parameter
reconfiguration (e.g., see Desnos and Palumbo, 2019). Among
these, we apply PSDF because PSDF is well-supported in
the software tool, called the lightweight dataflow environment
(LIDE) Lin et al., 2017, that we use in this work for dataflow graph
implementation. Adapting NDSEP to other forms of dynamic-
parameter-integrated dataflow models is an interesting direction
for future work in exploring implementation trade-offs.

In the PSDF modeling approach that we use in NDSEP, the
system-level dataflow graph is composed of two communicating
subgraphs called the subinit graph and body graph. These graphs
are used, respectively, to model the controlling subsystems
and adapting subsystems described above. In NDSEP, the body
graph represents the core signal processing functionality for
neuron detection and activity extraction, while the subinit
graph represents functionality for dynamically computing
new values for selected parameters in the body graph.
In particular, each output port p of the subinit graph is
associated at design time with one or more ordered pairs
((A1(p), P1(p)), (A2(p), P2(p)), . . . (An(p)(p), Pnp(p)(p)), where n(p)
is the number of such ordered pairs associated with p, each Ai(p)
is an actor in the body graph, and each Pi(p) is a parameter of
actor Ai(p). When the PSDF graph executes, each iteration of the
subinit graph is followed by the transmission of values from each
output port p to update each parameter Pi(p) of each actor Ai(p).

More details on the PSDF-based applicationmodel for NDSEP
are discussed in section 3.3.

3.2. Signal Processing Modules in NDSEP
In this section, we discuss the design of the signal processing
actors that are employed in the body graph of NDSEP.

A common approach used in the implementation of the actors
in NDSEP is that actors produce and consume pointers to images
rather than directly producing and consuming image pixels on
their incident dataflow edges. That is, in cases where images
are communicated across a dataflow edge e, we transfer only a
pointer to each communicated image through the FIFO buffer
associated with e rather than writing and reading the entire
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image to and from the buffer. The same approach is used when
communicating matrices across actors. This approach allows us
to adhere to the dataflow principles described in section 2.2
without requiring large overhead for FIFO buffers that carry
streams of images or matrices.

The system-level dataflow graph for NDSEP, including all of
the actors discussed in this section, is developed using the LIDE
tool mentioned in section 3.1. For background on LIDE, we refer
the reader to Lin et al. (2017).

3.2.1. Motion Correction
Motion correction is the first step of image processing in
NDSEP. In real calcium imaging data taken from moving mice,
significant motion can result due to the drift of the implanted
imaging device. This kind of shaking in general may result in
motion translation as well as slight rotation, thereby distorting
the acquired video stream. The goal of motion correction in
NDSEP is to remove such motion translation and rotation from
image frames.

Through profiling of execution time across different actors
in the NDSEP system, we determined early on in the design
process that motion correction contributes significantly to overall
system execution time. More details on system-level profiling
are provided in section 4. Because of the critical role of motion
correction in determining overall system efficiency, we applied
a significant portion of our design effort to optimizing the
accuracy/speed trade-off for this part of NDSEP.

For motion correction, NDSEP utilizes the Enhanced
Correlation Coefficient (ECC) algorithm (Evangelidis and
Psarakis, 2008) for motion detection, which is a core part
of motion correction. We selected ECC because it provides
parameter settings that give significant flexibility in exploring
trade-offs between accuracy and processing speed. Such
exploration is useful in the design of RNDAE systems, where the
objective is to provide acceptable accuracy in real time rather
than maximum accuracy at any cost. ECC is also invariant to
photometric distortions in brightness and contrast.

We employ the ECC function provided by the OpenCV
library (Demiröz, 2019), and call this function within the LIDE-
based actor implementation for the Motion Correction actor.

In addition to using the ECC algorithm, as described
above, we apply two major techniques to improve the real-
time performance of the Motion Correction actor. First, before
comparing frames for motion detection, we downsample the
frames by a factor of 1.67 in each dimension so that the number
of pixels is reduced to one-quarter of the original pixel count. The
downsampled image is currently applied only to the detection
process so that any distortion introduced by it is localized to
the detection step. Applying downsampling strategically in other
parts of NDSEP is a useful direction for future work.

Second, while our motion correction approach takes both
translation and rotation into account, we apply rotation
selectively, only in cases where translation-based motion
correction fails. This optimization is motivated by empirical
observations that, in our experimental context, rotation is
encountered relatively infrequently in frames that are captured
by the neuron imaging device. For example, in the ALM dataset,

the rotation frequency detected by NDSEP is 1.62% and the
mean and maximum rotation angles are 0.0232 and 0.0733
degrees, respectively. We choose rigid motion correction because
of algorithm efficiency for real-time applications. When a single
frame is acquired quickly (<50 ms), the influence of motion
across the frame is relatively uniform, and a rigid correction
can give good results (Thevenaz et al., 1998; Stringer and
Pachitariu, 2019). Translation is more common. Furthermore,
detection and correction of rotation are more computationally
expensive compared to translation. For example, we found that
the “Euclidean” mode for the OpenCV ECC function, which
detects both translation and rotation, takes on average about
three times longer to compute compared to the “Translation
Only” mode.

Figure 2 illustrates a flowchart of the optimized motion
correction approach in NDSEP, which is based on differences
in frequency of occurrence and computational complexity
associated with translation and rotation. As illustrated in
Figure 2, we first apply motion detection with the Translation
Only mode. If motion is detected from this operation, then
the current frame Fc is shifted to compensate for the detected
translation, and the correlation between the shifted frame Fs and
the reference frame Fr is evaluated. On the other hand, if no
motion is detected, the correlation is carried out between Fc and
Fr . If the computed correlation C1 meets or exceeds a threshold
τ1, then Fr is replaced with Fs or Fc, respectively, Fs is produced
on the output edge of the actor, and the current actor firing
is complete.

On the other hand, if the correlation C1 is less than τ1, then
motion detection for both translation and rotation is applied
using the more costly Euclidean mode of OpenCV ECC. If
motion is detected from the Euclidean mode, then a shifted
version F′s of Fr is derived based on the detection result. Then the
correlation C2 between Fr and F′s is carried out, where Fr = F′s
if motion was detected from the Euclidean mode, and Fr =

Fc otherwise.
Again, a thresholding check, using another threshold τ2, is

used to determine how to interpret the correlation result. If C2 ≥

τ2 (similar to the case of C1 exceeding the threshold), then Fr is
replaced with F′s or Fc, respectively; F

′
s is produced on the output

edge of the actor, and the actor firing is complete. Otherwise, a
diagnostic message is sent to a log file associated with the overall
experiment, and Fr is produced on the output edge to complete
the firing.

The diagnostic message generated in this last case identifies
the input frame index and indicates that motion correction has
failed at this index. Such information, which is accumulated in
an experiment log file by all relevant actors, can be useful to
the system designer for continually improving the robustness of
individual actors and the overall system.

The thresholds τ1 and τ2 defined above, which determine
whether to accept the motion correction result or not, are
computed adaptively to track any relevant changes in image
characteristics. This is due to dynamic variation in the
characteristics of calcium imaging frames. For example, some of
the datasets are noisy or have contaminated backgrounds. This
lowers the average correlation value. For the ALM dataset that we
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FIGURE 2 | Flowchart for Motion Correction actor operation in NDSEP.

employed in section 4.3, the noise/contamination level is stable
over short time periods. During short time periods, the impact
of noise/contamination is less significant than the impact of
alignment on correlation value. Therefore, in NDSEP, correlation
values are only compared with close neighbors. For this purpose,
NDSEP stores the 100 most recent correlation values in a queue,
which we refer to as the correlation history queue (CoHisQ). Every
time CoHisQ changes, the mean value CoHisQ and standard
deviation σCoHisQ across all elements in the queue are calculated.
Each threshold τ ∈ {τ1, τ2} is computed from CoHisQ and
σCoHisQ using:

τ = CoHisQ− p(τ )× σCoHisQ, (1)

where p(τ ) is an empirically defined parameter for each of the two
thresholds. In our experiments, we employ p(τ1) = 2 and p(τ2) =
10. The threshold values in τ range from approximately [0.3,
0.95] in our experiments resulting in motion correction success.

The threshold computation approach and its associated
parameters provide an example of an RNDAE-system design
issue for which there aremany possible solutions. Themodularity
and extensibility of NDSEP, based on its dataflow-based
foundations, facilitate experimentation across different solutions
for such design issues.

3.2.2. Preprocessing
The Preprocessing actor is designed to remove image distortion
caused by the imaging device and imaging environment. To
remove distortion caused by the imaging device, the actor
incorporates a Gaussian filter and median filter. Furthermore,
background subtraction is used to remove background effects,
and image equalization is performed. As described in Figure 3,
the output of the preprocessing actor does not affect the neural
signal as it only helps to get the positions of neurons. This
process helps to eliminate the bright background that results

from the firing of neurons in deeper areas of the brain. These
deeply located neurons are not of interest in the targeted class
of experiments, so it is useful to subtract their potentially
strong effect on the image background. To enhance the image’s
contrast, we normalized the image intensities by using (I −

Imin) × 255/(Imax − Imin), where I indicates the current pixel’s
intensity and Imax and Imin represent the maximum intensity
and minimum intensity of the image, respectively. As part of
the Preprocessing actor, we employed the GaussianBlur and
MedianBlur functions from OpenCV. For the GaussianBlur
and MedianBlur functions, we employed a filter size of 3 × 3 in
order to minimize the possible distortion of the small neurons.
The filter size can be reconfigured based on the distortion
level and characteristics of the data. Presently, we only consider
the possible distortion and removal that might occur to small
neuron sizes.

3.2.3. Neuron Detection
The Neuron Detection actor takes an image frame as input,
detects the presence of neurons in the image frame, and outputs
the position and size of each detected neuron. The output
is produced in the form of an nd × 3 matrix δ, where nd
is the number of detected neurons. Each row in the matrix
corresponds to a detected neuron. We refer to δ as a neuron
detection matrix. For each row index i, nd[i][1], and nd[i][2],
respectively, give the x coordinate and y coordinate for the
center of the ith detected neuron, and nd[i][3] gives the
neuron’s radius.

For its core computational task, the Neuron Detection
actor applies the SimpleBlobDetector function from
OpenCV (Demiröz, 2019). The function detects closed contours
(“blobs”), which are assumed to outline the detected neurons.
Among the contours, the function can filter out the blobs
by intensity, size, and shape. The function finds blobs using
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FIGURE 3 | System-level dataflow graph for NDSEP.

the parameter thresholdStep, which denotes the minimum
intensity difference between the inside and outside of a blob.
By using the parameter, it filters out the blobs that have low
intensity difference compared to their backgrounds—that is, it
removes fewer active blobs. Using the parameters Amin and Amax,
which are related to the size of blobs to detect, the function
computes a set of detected blobs, along with their centers and
radii. The parameters Amin and Amax specify the minimum and
maximum sizes (in terms of the number of pixels contained)
of the blobs to detect. Using parameters for circularity, inertia,
and convexity, the function filters out non-neuron-like shapes.
The radius of a blob is computed to be the distance between
the center of the blob and the furthest point from the center. In
this context, a blob can be viewed as a set of connected pixels
in an input image that have some minimum intensity (exceed a
threshold on the pixel value) and satisfy size constraints that are
carefully configured to help ensure that the corresponding image
regions represent neurons within the imaged brain region. Since
the SimpleBlobDetector function is not for segmentation
but for detection, it returns the position of each blob’s center
and its radius. By using SimpleBlobDetector instead of a
segmentation function, we can gain comparable detection results
with faster speed.

To this end, the SimpleBlobDetector function is
configured to filter blobs by size based on two size-related
parameters, which we denote by Amin and Amax (Amin < Amax).

The values of Amin and Amax are determined as part of the
initialization mode for the NDSEP system. The initialization
mode includes an automated training process that configures
parameters such as Amin and Amax. Another parameter of
the SimpleBlobDetector that is configured during the
initialization process is the thresholdStep parameter, which
controls the step size for determining the set of pixel-
intensity thresholds that are used during the blob detection

process (Demiröz, 2019). More details on the initialization mode
are discussed in section 3.3.

The minThreshold parameter for the
simpleBlobDetector function is set to zero in all of
our experiments.

After blob detection within a given firing of the Neuron
Detection actor, a set of neurons η = µ1,µ2, . . . ,µk is identified
in the input image along with their positions and radii. During
real-time operation of the actor, the positions and radii of these
neurons are produced as output in the form of a neuron detection
matrix, as described above.

During its training process, however, further processing using
the set η is performed before producing output. The Neuron
Detection actor is equipped with a parameter that is used to
select whether it operates in training mode or real-time mode. In
NDSEP, Neuron Detection operates in its training mode during
a well-defined system initialization phase (discussed further in
section 3.3) and then operates for the remainder of the given
experiment in its real-time mode.

In the remainder of this section on the Neuron Detection
actor, we discuss the further processing that is performed during
the training process, after η has been determined.

First, if the current firing is not the first firing within the
experiment, the neuron positions in η are compared with those in
δp, which is the detection matrix derived from the previous actor
firing. The previous matrix δp is maintained as a state variable
of the Neuron Detection actor. This state variable is maintained
and used only in the trainingmode. By a state variable, wemean a
data object that is local to the actor and that persists across firings
of the actor. Actor state can be modeled in signal processing
dataflow graphs with self-loop edges (e.g., see Zhou et al., 2014).

If the position of a neuron within η is found to be sufficiently
close to a neuron position in δp, then that neuron is removed
from η. In our current design, “sufficiently close” in this context
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means that the difference in position can be d pixels in both
the x and y dimensions. The parameter d can be determined
by considering how close it should be to be considered as a
neuron that has slight motion. That is to say, the user can define
a distance criterion such that, if the distance is closer than d
pixels, the system can regard the neurons as a single neuron,
but if two close-together neurons are not closer than d pixels,
then the neurons will be considered two different, overlapping
neurons. After removing all neurons from η that are sufficiently
close to corresponding neurons in δp, the remaining neurons in
η are interpreted to be newly discovered neurons in the training
process. Thus, all of the remaining neurons in η are appended to
those in δp. The resulting δp may be unchanged from the previous
firing (if there were no newly discovered neurons), or it may
contain one or more new neurons. The resulting δp is produced
as the output of the training mode firing, and it is also retained as
the updated value of the corresponding state variable in the actor.

3.2.4. Signal Extraction
Each firing of the Signal Extraction actor takes as input a motion-
corrected image frame Fmc and a neuron detection matrix δ

that gives the positions and radii of the neurons that have been
detected in Fmc. The output of the firing is a vector β that gives
the relative intensity of each detected neuron.

Each ith element of β corresponds to a distinct neuron and
is calculated as β[i] = (F(i)(Fmc) − F0)/F0), where F(i)(Fmc) is
the average intensity (average pixel value) across all pixels in the
circle centered at (δ[i][1], δ[i][2]) and having radius δ[i][3] in the
Fmcth image frame. To calculate F0, we followed (Romano et al.,
2017), using the average ROI intensities across a window of time
that immediately precedes a particular experimental event.

Throughout a given experiment, the Signal Extraction actor
produces a sequence of vectors β1,β2, . . . ,βL, where L is the
total number of image frames in the input video sequence
for the experiment (excluding the frames used for system
initialization/training). Each βi is a ν-element vector, where
ν is the total number of neurons that have been detected
throughout the training process for the Neuron Detection actor.
The sequence β1[i],β2[i], . . . ,βr[i] thus provides a sampled
representation of the relative pixel intensity for each ith detected
neuron (1 ≤ i ≤ ν).

3.3. System Design
Figure 3 shows how the different actors described in section 3.2
are integrated into the dataflow graph for the NDSEP system. The
dataflow graph is based on the PSDF model of computation (see
section 3.1). As discussed earlier in this section, the system has
two distinct modes of operation—the initialization mode (also
known as the training mode) and the real-time mode.

The initialization mode is used to configure selected actor
parameters in the body graph using a set of training frames. The
training frames are captured from a calcium imaging device that
is implanted within a given animal subject. The resulting set of
optimized parameters is then applied to perform accurate real-
time processing during neuron image acquisition and analysis
experiments involving the same device and animal subject.
This real-time processing corresponds to the real-time mode of

NDSEP. The set of frames that is processed when in the real-time
mode for a given experiment is referred to as the set of analysis
frames. For more details, see sections 3.2.3, 3.3.2.

3.3.1. Auxiliary Actors
All of the core signal processing actors in Figure 3 have been
discussed in section 3.2. Four additional actors—namely, the
actors labeled ImgSrc, Fork1, Fork2, and SetParams—are also
used, as shown in Figure 3.

Each firing of the ImgSrc actor reads the next image from
the input video sequence from disk into memory, and outputs a
pointer to the memory block that contains the image. This disk-
based interface is used in our current NDSEP prototype, since
our focus is on functional validation and on optimizing trade-
offs between accuracy and real-time performance. For integration
into a complete experimental system, the ImgSrc actor can readily
be replaced by an actor that provides direct software interfacing
with the image acquisition device.

The actors labeled Fork1 and Fork2 are fork actors, also
referred to as broadcast actors. Each firing of a fork actor
consumes one token on its input and produces a copy of the
token on each of its outputs. Since images and matrices are
communicated by reference (through pointers) in NDSEP (see
section 3.2), the fork actors require minimal execution time
compared to the core signal processing modules in the system.

The fourth auxiliary actor, SetParams, is discussed
in section 3.3.2.

3.3.2. Adapting the Neuron Detection Actor
The SetParams actor is used during the initialization process
to adaptively optimize parameters of the Neuron Detection
actor. The objective is to calibrate the selected parameters
to the given calcium imaging device and animal subject so
that neuron detection accuracy is enhanced compared to that
with the use of generic parameter settings. The parameters are
adapted progressively as the training frames are processed in the
initialization mode. Specific parameters that are configured by
the SetParams actor are the Amin, Amax, and thresholdStep
parameters for neuron detection (see section 3.2.3). Before
running the initialization mode, we manually “pre-initialize”
these parameters by considering the size of the input image and
rough size of the neurons. The initialization mode then uses the
pre-initialized parameter values as a starting point and optimizes
the three values through an iterative process (see section 3.2.3).

Many different approaches for adapting neuron detection
processes can be envisioned for use in NDSEP. Presently, we
use a relatively simple adaptation approach that progressively
loosens the filtering constraints of the blob detector used in the
Neuron Detection actor. The constraints are loosened until a pre-
determined target number Tn of neurons is detected. Presently,
we use the empirically determined value Tn = 5. Incorporating
more sophisticated parameter adaptation processes into NDSEP
is a useful direction for future work.

We conducted some simple experiments to help validate our
current adaptation approach. With the simulated data, when we
tried an approach that progressively tightens the constraints, we
observedmore false positives than our proposed approach, which
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progressively loosens the constraints. For example, with the most
noisy set of simulated data, which is described in 4.1, we observed
11%more false positives with progressive tightening compared to
our proposed approach. In this dataset, the progressive tightening
approach also led to a few false negatives, whereas there were no
false negatives resulting from our proposed approach.

3.3.3. Real-Time Mode
For the real-time mode of NDSEP, the iteration count for the
body graph is set to the total number of analysis frames. Thus,
the subinit graph is effectively disabled through the duration
of running in real-time mode. This is because the body graph
continues executing for the specified number of iterations before
control returns to the subinit graph, at which point the neural
decoding process terminates.

In real-time mode, each analysis frame is processed by
correcting motion, detecting neurons, and then extracting
relative pixel intensities for each neuron. The relative pixel
intensities are used, as described in section 3.2.4, to populate the
vector elements for the next time step in the extracted signals for
the neurons.

The output of the real-time mode is the sequence of vectors
β1,β2, . . . ,βL, where L is the number of analysis frames. This
sequence encapsulates a sampled version of the signal extracted
for each neuron. The sequence can be saved for subsequent off-
line analysis or connected to another computational subsystem
for further real-time processing, as would be the case if NDSEP
were embedded within a precise neuromodulation system.

4. EXPERIMENTS

In this section, we present results obtained through experiments
using the proposed platform, NDSEP. We first present
experiments involving simulated data and then experiments
involving real data. The experiments involving real data include
results on neural imaging data that has already been processed
with motion correction and also results on “raw imaging data”
(without motion correction already applied).

4.1. Simulated Data
In this experiment, simulated calcium imaging datasets were used
to assess the proposed platform because the simulated data had
ground-truth. The simulation described interactions among a
set of leaky integrate-and-fire neurons with additive noise. The
neuron model (Gütig and Sompolinsky, 2006) is as follows:

dV

dt
=

Vrest − V

λ
+ θ × λ × (−0.5)× ǫ, (2)

where V is the membrane potential, Vrest is the rest potential, ǫ is
a Gaussian random variable with mean 0 and standard deviation
1, λ is the membrane time constant, and θ is a parameter to
control the noise term. Spikes received through the synapses
cause changes inV . A neuron fires ifV is greater than a threshold.
After firing, a neuron cannot generate a second spike for a brief
time (refractoriness). Such a neuron model can represent many
kinds of postsynaptic potentials or currents described in the
literature (Brette et al., 2007).

Our simulation included 100 neurons. We divided these
100 neurons into two groups: group A and B. Neurons in
group A have no parent nodes, while neurons in group B have
one or two neurons in group A as parent nodes. If a parent
node fires, the membrane potential of the target node will
increase by w = 0.2. This simulation represented a scenario
in which neurons in group A were responsive to external
stimulus, and firing of neurons in group A facilitated firing of
neurons in group B. We generated simulated spike trains with
1,800 time points.

One hundred neuron masks from the Neurofinder 00
dataset (Peron et al., 2016) were chosen as ground-truth neuron
masks. For a given frame t, if neuron i fired, then the intensities
of pixels inside neuron mask i were set to be 128. After this,
we performed exponential smoothing to simulate calcium signal
decay. jGCaMP7f, which is a calcium sensor, has a decay half-
life of around 265 ms (Dana et al., 2019). To simulate imaging
jGCaMP7F using a two-photon microscope at 30 Hz, the decay
half-life in our simulation was set to 8 frames. To simulate
motion, we introduced a global shifting in the x and y axes.
The random translation motion in x or y followed a uniform
distribution in [−10, 10]. Also, to simulate rotation in frames,
datasets were generated with different random rotation ranges
and occurrence probabilities. We used Prot to denote the rotation
occurrence probability, and αrot to denote the rotation range.
For example, if αrot = 5.16 and Prot = 10, then rotation within
[−5.16o, 5.16o] is randomly applied to the simulated data, with a
rotation occurrence probability of 10%.

In addition to the random translation motion, three kinds
of drift are simulated. A slow and constant drift is simulated
according to the trajectory shown in Figure 4B. Motions are
simulated around the ground truth position within 10 pixels,
following the same range that we used for random translation
motion. Slow and constant drift was incorporated by moving
the frame 1 pixel at each time step in the same direction until
it hits the boundary, which is taken to be 10-pixels in the x or
y direction away from the ground truth. Then the direction of
the drift changes according to the trajectory. We simulate small
and large drift by controlling the range of random translation
motion. Motion in x or y follows a uniform distribution in
[−3, 3] or in ([−10,−7]

⋃

[7, 10]) to simulate small drift and
large drift, respectively.

Then we added temporally autocorrelated zero mean noise
with standard deviation σ = 0.4 (Svetunkov, 2019) as well as
shot noise with zero mean and σ = 1.0 (Pilowsky, 2019) to
some of the simulated datasets, called noisy simulated datasets
(NoiseSim). All noisy simulated datasets had Prot = 25 and
αrot = 6.3153, along with the same global translation motion
described above, as shown in Figure 4.

We applied the proposed system to the simulated data.
The system was evaluated in terms of neuron mask detection
accuracy, signal-to-noise ratio, and running time. For neuron
mask detection accuracy, because ground-truth neuron masks
were available, we compared each detected neuron mask with
the corresponding ground-truth neuron mask, and calculated
the recall (the fraction of matched pixels divided by the number
of pixels in the ground truth) and precision (the fraction of
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FIGURE 4 | Simulation of motion and noise. (A) Shows simulated noise. Here, “s” denotes the relative shot noise level, while “c” denotes the relative colored (red)

noise level. For example, s05c15 denotes the noise case in the lower right corner. (B) Shows a trajectory simulating slow and constant drift. Each frame moves 1 pixel

along the path. For example, assume the first frame has x,y-position (0,0), then the second one is at (1,0), the third one is at (2,0), etc.

matched pixels divided by the number of pixels in the detected
neuron mask).

For signal-to-noise ratio, for each detected neuron φ, we first
correlated the detected 1F/F of φ with the ground-truth spike
trains. Given an image frame I and some region r (a connected
subset of pixels) in the frame, 1F/F is a measure of the relative
pixel intensity in r relative to a baseline. The metric is similar to
that used for elements of vector β defined in section 3.2.4. Here,
F represents the baseline pixel intensity, and 1F = R− F, where
R is the average pixel intensity for all pixels in r. When 1F/F
is used in the context of a neuron, the region r consists of all
pixels contained in the neuron. We then calculated the average
correlation coefficient Rs between the neuron time course and

the ground-truth spike trains across all neurons. Next, for each
neuron φ, we randomly selected a region of the image frame
with a size close to the size of φ. For each randomly selected
region r, we correlated 1F/F of r with the ground-truth spike
train of φ. This yielded a correlation coefficient ρ(φ). Then we
calculated the average correlation coefficient across all φ—that
is, the average value of ρ(φ). To avoid selection bias in choosing
random regions, we repeated the above process 1,000 times and
calculated the average value Rn. The signal-to-noise ratio was
then computed as 10 log10(Rs/Rn).

Themotion-corrected images were compared with the ground
truth images. The ideal case here is that the Motion Correction
actor detects the ground-truth x and y motion along with
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TABLE 1 | Motion correction accuracy with different Prot values without noise.

Prot(%) 0 5 10 15 20 25 30 40 50

mean(Mx ) 0.8002 1.1696 0.9322 0.9911 0.6672 1.1643 1.0612 1.0956 1.0225

max(Mx ) 1.6443 1.9522 1.8845 1.7710 1.9838 1.7457 1.9203 1.9470 1.9464

mean(My ) 0.8145 0.7509 0.7655 0.7720 0.7710 0.7903 0.7476 0.7395 0.7146

max(My ) 1.1627 1.2483 1.3923 2.6277 1.4583 1.4413 1.3937 1.4621 1.4736

mean(Mrot )(×10−4) 0.0657 0.2590 0.2666 0.3568 0.5596 0.5988 0.9873 1.2820 2.0379

max(Mrot ) 0.0041 0.0056 0.0042 0.0095 0.0091 0.0067 0.0068 0.0038 0.0040

Rfail (%) 0.5 0.44 0.33 0.38 0.33 0.38 0.22 0.33 0.06

TABLE 2 | Motion correction accuracy with different αrot values without noise.

sin(α) 0.06 0.09 0.11 0.13 0.15 0.17

α 3.4398 5.1636 6.3153 7.4696 8.6269 9.7861

mean(Mx ) 1.0956 1.0257 0.9840 0.9125 1.1493 0.5187

max(Mx ) 1.9470 1.8579 1.8476 2.7967 2.4186 1.1522

mean(My ) 0.7395 1.8579 0.7586 0.7543 0.7357 0.8116

max(My ) 0.7395 1.8579 1.3687 1.3776 1.3771 1.1597

mean(Mrot )(×10−4) 1.2820 1.4704 0.8297 0.6719 0.7182 0.6089

max(Mrot ) 0.0038 0.0045 0.0035 0.0030 0.0041 0.0039

Rfail (%) 0.33 0.27 0.33 1.56 3.80 7.16

TABLE 3 | Motion correction accuracy on simulated noisy datasets (Prot = 25, αrot = 6.3153) with different noise levels.

Noisy case s01c05 s01c10 s01c15 s03c05 s03c10 s03c15 s05c05 s05c10 s05c15

mean(Mx ) 0.7605 1.0310 1.2810 0.5778 1.4274 1.1609 1.1774 1.1628 1.2028

max(Mx ) 1.7837 2.2656 2.8494 2.3209 2.9944 2.5531 2.7935 2.3158 2.1030

mean(My ) 0.9026 0.8362 0.9485 0.8211 0.9484 0.9668 0.8385 0.9608 0.8041

max(My ) 1.6227 1.8998 2.2747 1.3876 1.6665 2.1496 2.2238 2.1455 1.6457

mean(Mrot )(×10−4) 0.6755 0.9516 1.1771 0.7090 1.1146 2.3755 1.5048 1.2410 1.8007

max(Mrot ) 0.0049 0.0042 0.0050 0.0060 0.0081 0.0082 0.0071 0.0080 0.0079

Rfail (%) 0.56 0.56 0.83 0.89 1.50 0.50 0.67 0.89 0.33

the rotation angle. Three matrices are used to evaluate the
performance of motion correction. For each dataset, Mx, My,
andMrot denote x-displacement, y-displacement, and angle error,
respectively. Ratefail denotes the failure rate of motion correction.
When motion correction fails, the frame is not motion-corrected
(see Section 3.2.1).

Table 1 shows our measured results for motion correction
with αrot = 3.43 and different values of Prot . Table 2 shows
results with Prot = 40 and different values of αrot . In Table 1,
we see that as Prot increases, the error also increases. However,
the mean errors of x-displacement and y-displacement are very
small, about 1 pixel in each dimension. The mean rotation
error mean(αrot) is close to zero. Although some rotations are
not detected (the rotation detection rate is not 100%), such
cases are rare. As Table 2 shows, only when αrot reaches 7.46

o

does the motion correction failure rate begin to rise in some
sparsely occurring cases (1.56% failure rate). However, from
our observations, such a large value of the rotation angle is
rare in practice. Table 3 shows the performance of NDSEP in

noisy situations. As the noise level increases, the x, y, and angle
detection error increases. Even in the s05c15 case, which includes
frames that contain large amounts of noise, motion correction
still performs effectively. The mean error of x, y-displacement
remains consistently around 1 pixel, while the mean rotation
error is also comparable to the no-noise case. Compared with the
average neuron size in simulated data, which has a 6.8387 pixel
width and a 6.7634 pixel height, the 1 pixel x, y-displacement
means NDSEP motion correction is effective for simulated data.

To further evaluate the motion correction process in NDSEP,
slow and constant drift is added to the no-noise case s00c00 and
to noisy cases s01c05 and s05c15. Rfail(%) is 5, 2.11, and 4.33,
respectively, for these three cases; mean(Mx) is 0.6518, 0.8707,
and 0.7366, respectively, and mean(My) is 1.4400, 1.4121, and
1.1849, respectively. The results shown above are comparable
with the randommotion drift cases in Tables 1, 2, indicating that
NDSEP-Motion Correction is able to correct slow and constant
drift. Similarly, small and large drift are applied to the no-noise
case s00c00 and noisy cases s03c10 and s05c15. For small drift in
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FIGURE 5 | Neuron detection results from the simulated data. (A) Shows detected neurons (red-perimeter circles) overlaid on the mean map of all frames in the

simulation-derived dataset; (B) Shows ground truth neurons with blue perimeters and detected neurons with red perimeters; (C) Shows representative neural signals

(blue) extracted from the simulated data and ground truth spikes (red).

cases s00c00, s03c10, and s05c15: Rfail(%) is 0 for all three cases,
mean(Mx) is 2.28, 0.85, and 0.82, andmean(My) is 0.41, 0.84, and
0.70, respectively. For large drift: Rfail(%) is 4.5, 0.83, and 26.2,
mean(Mx) is 0.61, 0.89, and 1.17, and mean(My) is 1.45, 1.73,
and 1.06, respectively. For large motions with intensive noise,
the failure rate of 26.2% is higher than in other cases, while in
terms of successful correction output, mean(Mx) and mean(My)
remain comparable to the small drift cases. We anticipate that
image frames with such intensive noise and motion do not often
occur in practice. In the clear small motion case, 2.28 is a little bit
higher than the others, but it is still smaller than the half size of
the neurons, which is about 7 pixels, in the simulated dataset.

From the results described above, we conclude that the
NDSEP Motion Correction can accurately detect motion

translation and rotation—with or without the presence of noise—
in most cases.

For the simulated data, all 97 of the active neurons were
detected by NDSEP. Three neurons should not be detected,
since all three of these were inactive for the duration of the
image sequence. In Figures 5A,B, the ground truth neurons are
depicted as bright blobs, which are overlaid on the mean map of
all 1,800 frames in the simulation-derived dataset in the case of
s03c05. Since different neurons have different firing rates, they
generally appear with different levels of brightness in the mean
map. Each circle with a red perimeter in Figure 5 represents a
detected neuron.

Figure 5C shows signals that have been extracted by NDSEP
for five randomly chosen neurons. The figure also shows the

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 43280

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lee et al. Real-Time Calcium Signal Processing

FIGURE 6 | Results of experiments with the two Neurofinder datasets: (A) shows results from Dataset 01, and (B) shows results from Dataset 03. The ground truth

regions are bounded with red perimeters, and the results from NDSEP are bounded with green perimeters.

corresponding ground truth signals. The signals shown in
red correspond to spike events. These signals have a value
of 1 when the corresponding neuron fires and 0 when the
neuron is not firing. Blue signals indicate 1F/F values for
the detected neurons. From the results in Figure 5, we see
that NDSEP accurately detected the spike events. For these
results, we computed Rs = 0.354, Rn = 0.000011, and
10 log10(Rs/Rn) = 45.08.

4.2. Neurofinder Data
We also performed experiments using the Neurofinder collection
of datasets (Peron et al., 2016). These datasets represent publicly
available, real calcium imaging data that has already been
preprocessed with motion correction. The Neurofinder data
provide ground truth for the position of each neuron. There
are five datasets in the Neurofinder database. The first one
(Dataset 00) contains segmented neurons using fluorescently
labeled anatomical markers. It is possible that neurons are not
firing in Dataset 00 but are still labeled. This is inappropriate for
neuron detection based on neural activity. Datasets 02 and 04
have around 8–41% potentially mislabeled neurons (Soltanian-
Zadeh et al., 2019). Among the five datasets, 00, 02, and
04 are not suitable for evaluating the neuron detection
performance of NDSEP. Therefore, we used Datasets 01 and
03 for our experiments. See Table S1 for details about the
Neurofinder data.

Figure 6 shows the results of our experiments with the two
Neurofinder datasets. The results show that NDSEP is effective
at detecting relatively active neurons. The extracted signals for
ten randomly selected neurons from each dataset are plotted
in Figure 7. Most of the signals in Figure 7B exhibit the signal
characteristics that are described in Resendez et al. (2016).
Technically, these experiments pertain to the combination of
the Preprocessing and Neuron Detection (PND) actors of
NDSEP since the experiments do not involve motion correction

(the Neurofinder input data are already motion-corrected) or
signal extraction. We refer to this actor combination concisely
as NDSEP-PND.

Next, we report the precision, recall, and F1 scores achieved
by NDSEP-PND across each of the two Neurofinder datasets.
The precision is the fraction of true neurons (true positives)
detected among detected neurons. The recall is the fraction
of actual neurons that are detected. The F1 score is defined
as the harmonic mean of precision and recall: F1sore =

2 × (u × v)/(u + v), where u is the precision and v is the
recall. For Dataset 01, the precision, recall, and F1 scores
are 0.6431, 0.5275, and 0.5848, respectively. For Dataset 03,
the precision, recall, and F1 scores are 0.7166, 0.7259, and
0.7212, respectively.

The results on the Neurofinder datasets demonstrate that
NDSEP-PND has an accuracy that is comparable with the
top five neuron detection algorithms from the comparative
experimental study reported on in Klibisz et al. (2017). These top
five previously developed algorithms are HNCcorr Spaen et al.
(2017), Sourcery, UNet2DS, Suite2p (Pachitariu et al., 2017) +
Donuts (Pachitariu et al., 2013), andHNCcorr (Spaen et al., 2017)
+ Conv2din. Of the six algorithms (the five previously developed
ones together with NDSEP-PND), the result of NDSEP-PND
has the fifth-highest accuracy (in terms of recall and precision)
for Dataset 01, and for Dataset 03, NDSEP-PND also has the
fifth-highest accuracy. At the same time, NDSEP-PND achieves
real-time performance, while the other five methods are not real-
time systems. This is a critical advantage of NDSEP-PND in the
context of our work. Also, in relation to the other state-of-the-
art algorithms in the Peron et al. (2016) challenges, Kirschbaum
et al. (2019) (recall= 0.56, precision= 0.85, F1= 0.67 for dataset
01), and Soltanian-Zadeh et al. (2019) (recall= 0.65, precision=

0.57, and F1 = 0.61 for dataset 01, and recall = 0.56, precision =

0.54, F1= 0.55 for dataset 03), NDSEP-PND outputs comparable
results for both datasets.
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FIGURE 7 | Results using the Neurofinder data for extracted signals from randomly selected neurons: (A,C) show the locations of the randomly selected neurons

from Dataset 01 and Dataset 03, respectively; (B,D) show the signals that were extracted by NDSEP from each neuron. Ten neurons were randomly selected from

each of the two datasets.

4.3. Anterior Lateral Motor Cortex Data
As a representative real-world application, an Anterior Lateral
Motor Cortex (ALM) dataset Li et al. (2015) is used to evaluate
NDSEP. This dataset includes 11,189 frames of calcium imaging
that record the anterior motor cortex in mice while the mice are
performing a tactile delay-response task. The motion correction
failure rate Ratefail of NDSEP on the ALM dataset is 0.

Figure 8 shows the results of applying NDSEP to the ALM
dataset. Figure 8A shows the detected neuron masks overlaid
on the mean signal map. We randomly picked 10 neurons
(Figure 8B) and plotted 1F/F (Figure 8C). 1F/F captures
the characteristics of the neural activity. A neuron is detected
only after it fires at least once. For example, 1F/F values of
neurons 8, 9, and 10 were 0 until their first spiking activity
began. In this experiment, NDSEP neuron detection detects 50
neurons. Compared with the ALM ground truth mask, which
has 69 neurons, the recall and precision of NDSEP-based neuron
detection are 72.46 and 69.44%, respectively. Also, the F1 score
is 70.92%.

4.4. Execution Time Measurements
Table 4 shows measured execution times for all of the core
signal processing actors in NDSEP as well as the ImgSrc actor.

The total running time is measured by using time calculation
functions. The times shown in Table 4 are the single frame
execution times, which are calculated by: Single_Frame_Time =
Total_Processing_Time/#Frames_in_Dataset. The mean and
standard deviation of the execution time is calculated by
repeating the associated experiment 10 times under the same
conditions. All execution time measurements are shown in
milliseconds (ms). Only the SetParams and fork actors are not
considered in these execution time experiments. SetParams is
used only in the initialization mode of the application and not
in real-time mode. Thus, the execution time of the SetParams
actor is not relevant to real-time performance. The fork actor is
excluded because it is of minimal complexity and has a negligible
impact on overall performance.

All of the execution time measurements were taken

on a MacBook Pro laptop computer. The computer

was equipped with a 2.5 GHz Intel Core i7 CPU, the
Mac OS High Sierra 10.13.1 operating system, and
16 GB memory.

The experiments on execution time were performed on
all of the four datasets employed in section 4.1 through
section 4.3. Since image registration has already been applied
in the two Neurofinder datasets, we disabled the Motion
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FIGURE 8 | Results for ALM data: (A) shows neuron masks in regions with green perimeters, with ground truth in red, overlaid on the mean map of all frames; (B)

shows randomly selected neurons among the correctly detected result; (C) shows the signals that were extracted from selected neurons in (B).

Correction actor in the experiments with these two datasets.
For the simulated dataset, the two Neurofinder datasets, and
the ALM dataset, average execution times were taken across
1,800, 2,245, and 11,189 frames, respectively. The results in
Table 4 show average execution times per frame for each actor/
dataset combination.

Generally, the Motion Correction actor dominated the overall
execution time for the datasets in which the actor was used.
The signal extraction actor exhibited the largest variation in
execution time. We anticipate that this is because of the strong
dependence of this actor’s execution time on the number of
detected neurons. Also, not only the number of detected neurons
but also how active the neurons are affect the detection actor’s
execution time. As shown in Table 4, the total execution time,
summed across all actors, was less than 22 ms per frame for all
datasets that we experimented with, except for the Neurofinder
03 dataset, which has over 600 neurons detected. Considering
the image acquisition rate, for all four datasets, NDSEP is
shown to provide adequate performance for real-time operation
without the need for expensive, cumbersome, or special-purpose
computing hardware.

4.5. Comparison With Other Platforms
Using the simulated dataset and ALM dataset, we compared
NDSEP-based motion correction with CaImAn-NoRMCorre
(Non-Rigid Motion Correction) and also with ImageJ-SIFT
(Scale Invariant Feature Transform). In addition, a neuron
detection comparison was made among NDSEP-based neuron-
detection, CaImAn-CNMF (CaImAn-Constrained Nonnegative
Matrix Factorization), and CellSort (also known as PCA/ICA).
For details on CaImAn-NoRmCorre, SIFT, CaImAn-CNMF, and
CellSort, we refer the reader to Giovannucci et al. (2019), Lowe
(2004), and Mukamel et al. (2009). Table 6 shows parameters
used in the comparison approaches.

4.5.1. Motion Correction Comparison
The Motion Correction comparison is made on the simulated
dataset. In CaImAn-NoRMCorre, we experimented with both the
rigidmode and non-rigidmode. AlthoughCaImAn-NoRMCorre
is not natively designed to correct rotations, rotations can be
recognized when the grid size is small (the resolution is high).
However, excessively small grid sizes make matches hard to find
and greatly increase computational cost. In our experiments, we
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TABLE 4 | Measured execution times for different actors in NDSEP.

Data ImgSrc

(ms)

Motion

correction (ms)

Pre-processing

(ms)

Detection

(ms)

Signal

extraction (ms)

Total execution

time (ms)

Simulated

(400 × 400)

97 neurons .png

by NDSEP

(Image acquisition rate: 10 Hz)

1.18

(std:0.04)

12.98

(std: 0.84)

0.66

(std: 0.02) 2.72

(std: 0.09)

4.49

(std: 0.14)

22.04

(std:0.87)

(45.37 Hz)

Simulated

(400 × 400)

97-neuron .png

by SIFT

– 131.11

(std: 0.9729)

– – – –

Simulated

(400 × 400)

97-neuron .png

by NoRMCorre-Rigid

– 21.66

(std: 0.31)

– – – –

Simulated

(400 × 400)

97-neuron .png

by NoRMCorre-Nonrigid

– 261.12

(std: 12.75)

– – – –

Simulated

(400 × 400)

97-neuron .png

by CNMF

– – – 27.9382

(std: 0.1476)

– –

Neurofinder 01

(512 × 512)

345-neuron .tiff

by NDSEP

(Image acquisition rate: 7.5Hz)

2.15

(std:0.03)

– 1.11

(std: 0.01)

4.56

(std: 0.02)

14.31

(std: 0.13)

22.13

(std:0.16)

(45.19 Hz)

Neurofinder 03

(498 × 490)

613-neuron .tiff

by NDSEP

(Image acquisition rate: 7.5 Hz)

2.14

(std:0.11)

– 1.19

(std: 0.07)

2.76

(std: 0.68)

33.32

(std: 1.05)

49.42

(std:1.54)

(20.24 Hz)

ALM

(512 × 512)

69-neuron .tif

by NDSEP

(Image acquisition rate: 15 Hz)

3.95

(std:0.04)

11.53

(std: 0.09)

0.71

(std: 0.01)

1.35

(std: 0.01)

3.13

(std: 0.01)

20.67

(std:0.15)

(48.38 Hz)

used an empirically determined grid size of [32, 32], which we
found to provide an efficient balance between the aforementioned
trade-offs. We also applied the cubic shifting method and a small
overlapping region with a size of [16, 16]. All other parameters
are set at the values recommended in Giovannucci et al. (2019).
As with CaImAn-NoRMCorre, we tuned parameters in SIFT to
maximize accuracy. Most of the parameter values that we used
are those recommended in Lowe (2004). We set the maximal
alignment error to two pixels to increase the accuracy, instead
of 10% of the image size as recommended in Lowe (2004).

CaImAn-NoRMCorre is not able to align most of the
rotations, as shown in Figure 9A, especially in the rigid
mode. The high spike values in Figure 9B correspond to
the non-corrected motions. The non-rigid mode has lower
spikes, which correspond to rotations, than the rigid mode.
However, the non-rigid mode exhibits higher error when
correcting translation-only frames. SIFT achieves a relatively
high accuracy for both translations and rotations, but Figure 9B
shows that the root mean square error (RMSE) value increases

as the number of frames increases. This means that the
error accumulates and the accuracy drops as the system
continues processing. This feature makes SIFT inefficient for
our real-time motion correction context. Unlike CaImAn-
NoRMCorre, NDSEP efficiently corrects nearly all simulated
motion translations, shown in Figure 9C, and rotations while
discarding the unusual uncorrected frames.

4.5.2. Neuron Detection Comparison
In our comparison of neuron detection performance,
experiments are performed on two datasets: simulated data
and ALM data. On simulated data, two approaches, NDSEP-
neuron detection and CaImAn-CNMF, are compared. On ALM
data, three approaches, NDSEP-neuron detection, CaImAn-
CNMF, and CellSort, are evaluated. To eliminate the influence
of different motion correction approaches, the input datasets are
first motion-corrected. In particular, the simulated data input is
the motion-correction ground truth used to calculate the RMSE
value in Figure 9B. The ALM input data is motion-corrected
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FIGURE 9 | Motion correction comparison results on simulated dataset

Prot = 25 and αrot = 6.3153 without noise. (A) Shows the uint8 [0, 255]

meanmaps. The display range is [0, 10], where values greater than 10 are

displayed in white. The input data is the meanmap of simulated data with

motion but without noise. The ground truth is the meanmap of the no-motion

simulated data. The remaining four images are the output meanmaps of

NDSEP, SIFT, the rigid mode of CaImAn-NoRMCorre, and the nonrigid mode

of CaImAn-NoRMCorre. (B) Shows the RMSE calculated by performing

frame-by-frame comparison between the output of the four motion correction

methods and the ground truth. (C) Shows the x movement, which is actual

movement applied to simulated data, as a red line vs. movement detected by

NDSEP motion correction as a blue line, including a program-detected failure

in frame 544. Please note motions larger than the 10-pixel upper bound occur

because of the rotations applied around the center of the image.

by CaImAn-NoRMCorre with the rigid mode following
the parameters used to register the simulated data. When

comparing different neuron detection approaches, we compare
only the spatial component—that is, only the locations of the
detected neurons.

In CaImAn-CNMF, the number of neuronsNdet to be detected
is predefined. In our experiments, for simulated data, we set
Ndet = 97 because there are a total of 97 neurons in the
ground truth mask. Ndet is set to 80, a little higher than the
number of neurons in the ALM ground truth. This setting is
used to increase the recall rate. The parameter τ of the Gaussian
kernel is set to half the size of a single neuron. The resulting
values for the simulated and ALM datasets are τ = 3.4 and
τ = 8.0, respectively. The optional parameter P used for
normalization by noise and user feed component centroids is
disabled for simulated data, since the temporally autocorrelated
noise we have cannot be removed in this way. Other parameters
are tuned according to Giovannucci et al. (2019). In CellSort,
which is only tested on the ALM dataset, the value of mu is
set to 0.5, which enables the use of both temporal and spatial
information for segmentation. Other CellSort parameters are set
as recommended in Mukamel et al. (2009).

Table 5 shows that both CaImAn-CNMF and NDSEP detect
all of the 97 neurons when the input frames are free from noise.
However, for noisy input, the CaImAn-CNMF detection rate
CaImAn− CNMFdet drops as the noise intensity increases, while
NDSEP consistently provides 100% accuracy for both noise-
free and noisy input. Thus, our experiments demonstrate that
CaImAn-CNMF neuron detection is vulnerable to noise, while
NDSEP is much more robust. Furthermore, as shown in Table 4,
NDSEP requires significantly less processing time compared to
CaImAn-NoRMCorre, SIFT, and CaImAn-CNMF.

On the ALM dataset, CaImAn-CNMF correctly detects 53
among 69 neurons; the resulting recall is 76.81%, while the
precision is 72.60%. CellSort segments 79 neurons, of which
57 are correct (true positives), and the recall and precision
using CellSort are 82.61 and 72.15%, respectively. For NDSEP,
the corresponding results (shown in section 4.3) are: recall =

72.46% and precision = 69.44%. From these results, we see
that the accuracy of NDSEP neuron detection is comparable
to other state-of-the-art approaches such as CaImAn-CNMF
and CellSort.

5. DISCUSSION

In this paper, we proposed a real-time neuron detection and
neural activity extraction system called the Neuron Detection
and Signal Extraction Platform (NDSEP). NDSEP uses a
novel integration of dataflow-based design architecture and
streamlined algorithms and software modules for real-time
neural signal processing. The dataflow architecture of NDSEP
provides sufficient flexibility to expand the system, experiment
with design trade-offs, and manage complex constraints of real-
time neuron detection and activity extraction (RNDAE) systems.
Such constraints include those involving memory requirements
and cost-effective deployment.

In an experiment based on simulated calcium imaging data,
NDSEP effectively performed motion correction with mean
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TABLE 5 | Neuron detection rate with different noise levels.

Noise level No noise s01c05 s01c10 s01c15 s03c05 s03c10 s03c15 s05c05 s05c10 s05c15

CNMFdet (%) 100 97.9 89.7 74.2 92.8 89.7 74.2 85.6 74.2 68.0

NDSEPdet (%) 100 100 100 100 100 100 100 100 100 100

TABLE 6 | Parameters of other approaches.

Parameter Description Value

CaImAn-NoRMCorre on

Simulated data rigid mode

bin_width Width of each bin 50

max_shift Maximum rigid shift in each direction [30, 30]

init_batch Length of initial batch 10

CaImAn-NoRMCorre on

Simulated data nonrigid mode

grid_size Size of non-overlapping regions [16, 16]

overlap_pre Size of overlapping region [16, 16]

shifts_method Method to apply shifts cubic

init_batch Length of initial batch 50

CellSort on ALM data

mu Parameter (between 0 and 1) specifying

weight of temporal information in

spatio-temporal ICA

0.5

maxrounds Maximum number of rounds of iterations 1,000

CaImAn-CNMF on ALM data

K Number of components to be found 80

tau Size of Gaussian kernel (half size of

neuron)

8

merge_thr Merging threshold 0.2

min_SNR Minimum SNR threshold 1

CaImAn-CNMF on Simulated data

K Number of components to be found 97

tau Size of Gaussian kernel (half size of

neuron)

3.4

errors of x and y displacement of <1 pixel and mean rotation
error close to zero. NDSEP detected all active neurons and
achieved a very high signal-to-noise ratio. For the Neurofinder
database and for a real-world dataset, ALM, NDSEP achieved
comparable results for detection, and the detected neurons
demonstrated typical calcium transient patterns. In all of these
experiments, the execution times were shorter than 25 ms, and
NDSEP achieved real-time performance.

As presented in section 3, the key subsystems in NDSEP
for neural signal processing are system parameter optimization
(represented by the SetParams actor), motion correction, neuron
detection, and neural signal extraction. We have developed and
integrated initial versions of these subsystems through careful
design, experimentation, and optimization to achieve real-time
performance with reasonable system accuracy. However, many
alternative combinations of algorithms, algorithmic parameter
settings, and design optimization techniques can be applied to
achieve the same general functionality as the current version of
NDSEP, which involves themapping of neural image streams into
sets of neurons and their associated signals. These combinations

represent a complex, largely unexplored design space, which
involves trade-offs among real-time performance, neuron
detection and signal extraction accuracy, and computational
resource costs.

In addition to providing a complete system prototype for
RNDAE, NDSEP provides a useful framework for investigating
this design space and for developing further innovations in
algorithms and systems for RNDAE. Such innovations could,
for example, help to further increase the accuracy of neural
signal extraction while maintaining real-time performance.
Alternatively, they could help to reduce system costs without
significantly sacrificing accuracy, thereby contributing to more
cost-effective technologies for scientists, clinicians, or patient-
users. The model-based design architecture of NDSEP, based
on our application of dataflow design methods, helps to
precisely formulate the aforementioned design space in terms
of component subsystems (actors for RNDAE) and precise
interfacing requirements between them. The modularity and
abstract design of the NDSEP architecture greatly facilitate
experimentation with alternative combinations of component
algorithms, algorithm configurations, and hardware/software
realizations of the algorithms.

Four general directions for future work emerge naturally from
the properties described above of the NDSEP architecture and
its utility in defining and exploring important design spaces
for RNDAE system design. The first direction is exploration
into new algorithms and implementations for the four key
component subsystems. Examples of concrete topics in this
direction include applying downsampling strategically in parts
of NDSEP outside of motion correction, where it is already
applied (see section 3.2.1). Another example is incorporating
more sophisticated processes for parameter adaptation and
optimization in the initialization mode of NDSEP, as motivated
in section 3.3.2.

A second direction for future work is in applying the
NDSEP platform to develop novel systems for precise
neuromodulation. The current system will be part of a precise
all optical closed-loop neuromodulation system that combines
calcium image processing (the current system), prediction
(predicting behavioral variables based on neural features), and
neuromodulation (optogenetics). In our recent prior work,
our team has developed pilot versions of prediction (Lee et al.,
2017) and network-based feature extraction (Chen and Lin,
2018) for calcium imaging data. The primary design goal of
NDSEP is real-time data processing. Existing optogenetics
intervention permits millisecond-precision manipulation of
genetically targeted neural populations (Häusser, 2014). In
our future work, we will improve these pilot versions and
integrate them with NDSEP. We expect that our future all-
optical closed-loop neuromodulation system can achieve
real-time performance above 10 Hz, providing neuroscientists
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an open-source, real-time neural decoding system that facilitates
precise neuromodulation.

A third direction for future work is studying design
optimization methods and trade-offs in NDSEP in the
context of overall cost and performance in the enclosing
neuromodulation systems.

A fourth direction for future work is support for higher image
acquisition rates. Results are unpredictable if the speed of the
system is slower than the acquisition rate. The designer must
therefore optimize and test the system carefully to ensure that
constraints imposed by the acquisition rate are satisfied. The
dataflow-based system architecture facilitates these optimization
and testing objectives. Our current system is designed for two-
photon calcium imaging. The typical acquisition rate is 10–30Hz.
Based on Table 4, the current implementation can handle such
an acquisition rate. In the future, if we want to use NDSEP for
high-speed calcium imaging with a 180–490 Hz sampling rate,
hardware acceleration within the framework of dataflow-based
design may be used.

On top of the four main directions described above,
since NDSEP focuses on real-time computation using efficient
detection algorithms, it may have difficulty detecting overlapping
neurons. In addition to this, NDSEP can be extended to be
enabled for one-photon calcium imaging with more noise. More
comparisons to the state-of-the-art methods like OnACID should
be made. Also, NDSEP does not include an actor for neuropil
fluorescence contamination. We will address these limitations in
our future work.

The NDSEP system developed in this study is an efficient,
extensible system based on dataflow design for real-time neuron
detection and neural activity extraction. We expect that the
platform will enable real-time calcium imaging-based neural
decoding, leading to precise neuromodulation.
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