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It has been suggested that musical creativity is mainly formed by implicit knowledge. However, the types of spectro-temporal features and depth of the implicit knowledge forming individualities of improvisation are unknown. This study, using various-order Markov models on implicit statistical learning, investigated spectro-temporal statistics among musicians. The results suggested that lower-order models on implicit knowledge represented general characteristics shared among musicians, whereas higher-order models detected specific characteristics unique to each musician. Second, individuality may essentially be formed by pitch but not rhythm, whereas the rhythms may allow the individuality of pitches to strengthen. Third, time-course variation of musical creativity formed by implicit knowledge and uncertainty (i.e., entropy) may occur in a musician's lifetime. Individuality of improvisational creativity may be formed by deeper but not superficial implicit knowledge of pitches, and that the rhythms may allow the individuality of pitches to strengthen. Individualities of the creativity may shift over a musician's lifetime via experience and training.
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INTRODUCTION


Implicit Knowledge and Creativity in Brain

The brain models external phenomena as a hierarchy of statistical dynamical systems, which encode causal chain structure in the sensorium (Friston et al., 2006; Friston and Kiebel, 2009; Friston, 2010) to maintain low entropy and free energy in the brain (von Helmholtz, 1909), and predicts a future state based on the internalized stochastic model to minimize sensory reaction and optimize motor action regardless of consciousness (Friston, 2005). This prediction associates with the brain's implicit, domain-general, and innate system, called implicit learning or statistical learning (Reber, 1967; Saffran et al., 1996; Cleeremans et al., 1998; Perruchet and Pacton, 2006), in which our brain automatically calculates transitional probabilities (TPs) of sequential phenomena and grasps information dynamics. The terms implicit learning and statistical learning have been used interchangeably and are regarded as the same phenomenon (Perruchet and Pacton, 2006). Because of the implicitness of statistical learning and knowledge, humans are unaware of exactly what they learn (Daikoku et al., 2014). Nonetheless, neurophysiological and behavioral responses disclose implicit learning effects (Francois and Schön, 2011; François et al., 2013; Daikoku et al., 2015, 2016, 2017a,c,d; Koelsch et al., 2016; Yumoto and Daikoku, 2016, 2018; Daikoku and Yumoto, 2017). When the brain implicitly encodes TP distributions that are inherent in dynamical phenomena, several things are automatically expected, including a probable future state with a higher TP, facilitating optimisation of performance based on the encoded statistics despite being unable to describe the knowledge (Broadbent, 1977; Berry and Broadbent, 1984; Green and Hecht, 1992; Williams, 2005; Rebuschat and Williams, 2012), and inhibit neurophysiological response to predictable external stimuli for the efficiency and low entropy of neural processing based on predictive coding (Daikoku, 2018b). The implicit knowledge has been considered to contribute to many types of mental representation: the comprehension and production of complex structural information such as music and language (Rohrmeier and Rebuschat, 2012), intuitive decision-making (Berry and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017), auditory-motor planning (Pearce et al., 2010a,b; Norgaard, 2014), and creativity (Wiggins, 2018) involved in musical composition (Pearce and Wiggins, 2012; Daikoku, 2018a) and musical improvisation (Norgaard, 2014). Additionally, compared to language (Chomsky, 1957; Jackendoff and Lerdahl, 2006), several studies suggest that musical representation including tonality is mainly formed by a tacit knowledge (Delie‘ge et al., 1996; Delie‘ge, 2001; Bigand and Poulin-Charronnat, 2006; Ettlinger et al., 2011; Koelsch, 2011; Huron, 2012). Thus, it is widely accepted that implicit knowledge causes a sense of intuition, spontaneous behavior, skill acquisition based on procedural learning, and is further closely tied to musical production such as intuitive creativity, composition, and playing.

Particularly in musical improvisation, musicians are forced to express intuitive creativity and immediately play their own music based on long-term training associated with procedural and implicit learning (Clark and Squire, 1998; Ullman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus, compared to other types of musical composition in which a composer deliberates and refines a composition scheme for a long time based on musical theory, the performance of musical improvisation is intimately bound to implicit knowledge because of the necessity of intuitive decision-making (Berry and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017) and auditory-motor planning based on procedural knowledge (Pearce et al., 2010a,b; Norgaard, 2014). This suggests that the stochastic distribution calculated from musical improvisation may represent the musicians' implicit and statistical knowledge and individual creativity in music that has been developed via implicit learning. Few studies have investigated the relationship between musical improvisation and implicit knowledge. Here, this study proposed the computational model of improvisational creativity based on the framework of implicit statistical learning.



Computational Model of Musical Creativity

The computational model is often used to understand general music acquisition (Cilibrasi et al., 2004; Backer and van Kranenburg, 2005; Albrecht and Huron, 2012; Ito, 2012; Prince and Schmuckler, 2012; Albrecht and Shanahan, 2013; London, 2013), entropy-based music prediction (Manzara et al., 1992; Ian et al., 1994; Reis, 1999; Pearce and Wiggins, 2006; Cox, 2010), implicit learning, and the metal representation of implicit knowledge (Dubnov, 2010; Wang, 2010; Rohrmeier and Rebuschat, 2012). Particularly, Competitive Chunker (Servan-Schreiber and Anderson, 1990), PARSER (Perruchet and Vinter, 1998), Information Dynamics of Music (IDyOM) (Pearce, 2005; Pearce and Wiggins, 2012), and n-gram models (Pearce and Wiggins, 2004) underpin the hypothesis that music is acquired by extracting and concatenating chunks, which is a main theory of implicit learning and statistical learning. Although experimental approaches are necessary for understanding the real-world brain's function in music acquisition, the modeling approaches partially outperform experimental results under conditions that are impossible to replicate in an experimental approach. For example, they can directly verify much of the real-world music and time-course variation over long time periods (Daikoku, 2018a). Most experimental approaches use the specific paradigms, which are ecologically unrealistic and focus on the specific type of short-term learning effects (e.g., chord perception, prediction, and timing). Additionally, some modeling approaches calculate statistics in music and device models, and also evaluate the validities of these models by neurophysiological and behavioral experiments and provide possibilities of novel tasks for neural and behavioral experiments (Potter et al., 2007; Pearce et al., 2010a,b; Pearce and Wiggins, 2012). A combination of the two approaches is better because each can complement the weak points of the other approach (Daikoku, 2018b).

The n-gram models, which correspond to various-order Markov model (Markov, 1971), calculate TPs of sequences by chopping them into short fragments (n-grams) up to a size of n, and are frequently used in both experimental and computational approaches (Pearce and Wiggins, 2004; Daikoku, 2018b). The online musical production, however, is not the mere chopping of one type of length of sequence, but it is a dynamical prediction to maintain an aesthetic melody with various length of sequence, temporal, and spectral features, and harmony that interact with each other (Lerdahl and Jackendoff, 1983; Hauser et al., 2002; Jackendoff and Lerdahl, 2006). That is, the musical production is not restricted to a single stream of events or a hierarchy but, rather, they interact with various hierarchical structures. Previous computational (Conklin and Witten, 1995; Pearce and Wiggins, 2012) and neural studies (Daikoku and Yumoto, 2017) expanded the n-gram method to modeling the interaction of parallel streams and enhanced the predictive power. However, the model that suffices to explain musical creativity cannot still be devised. Nonetheless, the nth-order Markov models could explain that the prediction continually occurs with each state of sequence and that the entropy in the brain (i.e., the average surprise of outcomes sampled from a probability distribution, Applebaum, 2008) gradually decreases by exposure to musical sequences. Thus, the TP distribution sampled from music based on nth-order Markov models may refer to the characteristics of a composer's superficial-to-deep implicit knowledge: a high-probability transition in music may be one that a composer is more likely to predict and choose based on the latest n states, compared to a low-probability transition. The notion has also been neurophysiologically demonstrated by our previous studies (Daikoku et al., 2017b). The model has also been applied to develop artificial intelligence that give computers learning and decision-making abilities similar to that of the human brain, such as an automatic composition system (Raphael and Stoddard, 2004; Eigenfeldt, 2010; Boenn et al., 2012) and natural language processing (Brent, 1999; Manning and Schütze, 1999). Thus, the Markov model is used in the interdisciplinary realms of neuroscience, behavioral science, engineering, and informatics.



Temporal and Spectral Feature in Musical Creativity

Temporal and spectral features are important pieces of information for which to configure characteristics of each type of music (e.g., individuality, genre, and culture). Additionally, two types of information are not independent of each other, but rather they closely interact. Thus, the relationships between temporal (i.e., rhythm) and spectral (i.e., melody) structures are a large question to understand music creativity. Some researchers indicated that humans cannot learn temporal structure independent of spectral structure (Buchner and Steffens, 2001; Shin and Ivry, 2002; O'Reilly et al., 2008), whereas other researchers demonstrated temporal implicit learning independent of pitch information (Salidis, 2001; Ullén and Bengtsson, 2003; Karabanov and Ulle'n, 2008; Brandon et al., 2012) and vice versa (Daikoku et al., 2017d). Additionally, neurophysiological and psychological studies suggested that humans can learn relative rather than absolute temporal and spectral (Daikoku et al., 2014, 2015) patterns. Thus, the relationships between temporal and spectral features on musical creativity and implicit learning remains controversial. To the best of my knowledge, there are no integrated models that cover temporal and spectral features in musical creativity. The present study first provides the implicit-learning models that unify temporal and spectral features in musical improvisation. Additionally, this study investigated which information (spectral and temporal) and hierarchy (1st to 6th orders) represent the individualities of creativity. To comprehensively understand how musical creativity occurs in the human brain and how temporal and spectral features are integrated to constitute musical individuality, it is necessary to investigate the relationships between spectral and temporal statistics inherent in music via various-order hierarchical models.



Study Purpose

The present study aimed to investigate the statistical differences and interactions between the temporal and spectral structure in improvisation among musicians using various-order Markov models, and to examine which information (spectral and temporal) and hierarchy represent the individualities of musical creativity. The statistical characteristics of the nth-order TP distribution of the spectral (pitch) and temporal sequences (pitch length and rest) in improvisational music were investigated. It was hypothesized that there were general statistical characteristics shared among musicians and specific statistical characteristics that were unique to each musician in both spectral and temporal sequences. Additionally, it was hypothesized that the detectability of the characteristics depends on hierarchy. If so, the individuality may depend on the depth of implicit knowledge. Furthermore, the chronological time-course variations of the entropies (uncertainly) and the predictability of each tone sequence were examined. It was hypothesized that implicit knowledge in music gradually shifts over a composer's lifetime. The present study first provided the findings on which information (spectral and temporal) and hierarchy (1st to 6th orders) represent the individualities of musical creativity.




METHODS


Music Information Extraction

The music played by William John Evans (Autumn Leaves from Portrait in Jazz, 1959; Israel from Explorations, February 1961; I Love You Porgy from Waltz for Debby, June 1961; Stella by Starlight from Conversations with Myself, 1963; Who Can I Turn To? from Bill Evans at Town Hall, 1966; Someday My Prince Will Come from the Montreux Jazz Festival, 1968; A Time for Love from Alone, 1969), Herbert Jeffrey Hancock (Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage from Flood, 1975; Someday My Prince Will Come from The Piano, 1978; Dolphin Dance from Herbie Hancock Trio'81, 1981; Thieves in the Temple from The New Standard, 1996; Cottontail from Gershwin's World, 1998; The Sorcerer from Directions in Music, 2001), and McCoy Tyner (Man from Tanganyika from Tender Moments, 1967; Folks from Echoes of a Friend, 1972; You Stepped Out of a Dream from Fly with the Wind, 1976; For Tomorrow from Inner Voice; 1977; The Habana Sun from The Legend of the Hour, 1981; Autumn Leaves from Revelations, 1988; Just in Time from Dimensions, 1984) were used in the present study. The highest pitches including the length were chosen based on the following definitions: the highest pitches that can be played at a given point in time, pitches with slurs that can be counted as one, and grace notes were excluded. In addition, the rests that were related to highest-pitch sequences were also extracted. This spectral and temporal information were divided into four types of sequences: (1) a pitch sequence without length and rest information (i.e., pitch sequence without rhythms); (2) a rhythm sequence without pitch information (i.e., rhythm sequence without pitches); (3) a pitch sequence with length and rest information (i.e., pitch sequence with rhythms); and (4) a rhythm sequence with pitch information (i.e., rhythm sequence with pitches).



Stochastic Calculation

Pitch Sequence Without Rhythms

For each type of pitch sequence, all pitches were numbered so that the first pitch was 0 in each transition, and an increase or decrease in a semitone was 1 and −1 based on the first pitch, respectively. Representative examples were shown in Figure 1A. This revealed the relative pitch-interval patterns but not the absolute pitch patterns [30, 98]. This procedure was used to eliminate the effects of the change in key on transitional patterns. Interpretation of the key change depends on the musician, and it is difficult to define in an objective manner. Thus, the results in the present study may represent a variation in the statistics associated with relative pitch rather than absolute pitch. According to recent neurophysiological studies, human's implicit-learning system of auditory sequence capture relative rather than absolute transition patterns. In each piece of music for each musician, the TPs of the pitch sequences were calculated as a statistic based on multi-order Markov chains. The probability of a forthcoming pitch was statistically defined by the last pitch to six successive pitches (i.e., first- to six-order Markov chains). The nth-order Markov model is based on the conditional probability of an element en+1, given the preceding n elements:

[image: image]

Rhythm Sequence Without Pitches

The onset times of each note were used for analyses. Although note onsets ignore the length of notes and rests, this methodology can capture the most essential rhythmic features of the music [30,99]. To extract a temporal interval between adjacent notes, all onset times were subtracted from the onset of the preceding note. Then, for each type of rhythm sequence, the second to last temporal interval was divided by the first temporal interval. Representative examples are shown in Figure 1B. This revealed relative rhythm patterns but not absolute rhythm patterns; it is independent of the tempo of each piece of music. In each piece of music in each musician, the TPs of the rhythm sequences were calculated as a statistic based on multi-order Markov chains. The probability of a forthcoming temporal interval was statistically defined by the last temporal interval to six successive temporal intervals, respectively (i.e., first- to six-order Markov chains).


[image: image]

FIGURE 1. Representative phrases of transition patterns in pitch sequence without rhythms (A), rhythm sequences without pitches (B), pitch sequence with rhythms (C), and rhythm sequences with pitches (D). The musical information was extracted by listening music information recording media and originally written for the present study.



Pitch Sequence With Rhythms

The two methodologies of pitch and rhythm sequences were combined. For each type of sequence, all pitches were numbered so that the first pitch was 0 in each transition, and an increase or decrease in a semitone was 1 and −1 based on the first pitch, respectively. Additionally, for each type of pitch sequence, all onset times were subtracted from the onset of the preceding note, and the second to last temporal intervals were divided by the first temporal interval. The representative examples were shown in Figure 1C. For each piece of music for each musician, the TPs of the pitch sequences with rhythms were calculated as a statistic based on multi-order Markov chains. The probability of a forthcoming pitch with temporal information was statistically defined by the last pitch with temporal information to six successive pitches with temporal information, respectively (i.e., first- to six-order Markov chains). In the first-order hierarchical model of the pitch sequence with rhythms, a temporal interval was calculated as a ratio to the crotchet (i.e., quarter note), because only a temporal interval is included for each sequence and the note length cannot be calculated as a relative temporal interval. Thus, the patterns of pitch sequence (p) with rhythms (r) were represented as [p] with [r].

Rhythm Sequence With Pitches

The methodologies of sequence extraction were the same as those of the pitch sequence with rhythm (see Figure 1D), whereas the TPs of the rhythm, but not pitch, sequences were calculated as a statistic based on multi-order Markov chains. The probability of a forthcoming temporal interval with pitch was statistically defined by the last temporal interval with pitch to six successive temporal interval with pitch (i.e., first- to six-order Markov chains). Thus, the relative pattern of rhythm sequence (r) with pitches (p) were represented as [r] with [p].



Statistical Analysis

The TP distributions were analyzed by principal component analysis. The criteria of eigenvalue were set over 1. The first two components (i.e., the first and second highest cumulative contribution ratios) were adopted in the present study. Then, the information contents [I(en+1|en)] of TP were calculated based on information theory (Shannon, 1951). Furthermore, the conditional entropy [H(AB)] in n-order was calculated from information content:
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where P(bj|ai) is a conditional probability of sequence “ai bj.” The entropy were chronologically ordered based on the time courses in which music is played in each musician. The time-course variations of the entropies were analyzed by multiple regression analyses using the stepwise method. The criteria of the variance inflation factor (VIF) and condition index (CI) were set at VIF < 2 and CI < 20 to confirm that there was no multi collinearity (Cohen et al., 2003).

Furthermore, in each musician, seven pieces of music were averaged in each type of sequence. The transitional patterns with first to fifth highest TPs in each musician, which show higher predictabilities in each musician, were used in the regression analyses. The transitional patterns were chronologically ordered based on the time courses in which music is played in each musician. The time-course variations of the TPs were analyzed by multiple regression analyses using the stepwise method. The criteria of the variance inflation factor (VIF) and condition index (CI) were set at VIF < 2 and CI < 20 to confirm that there was no multi collinearity.

The logit transformation was applied to normalize the TPs. Then, using the transitional patterns with first to fifth highest TPs in each musician, the repeated-measure analysis of variances (ANOVAs) with a between-factor player (WJ. Evans vs. HJ. Hancock vs. M. Tyner) and a within-factor sequences for each hierarchy of Markov model were conducted. When we detected significant effects, Bonferroni-corrected post-hoc tests were conducted for further analysis. Statistical significance levels were set at p = 0.05 for all analyses.




RESULTS


PCA

Pitch Sequence Without Rhythms

The eigenvalue and percentages of variance, and the comulative variance and the eigenvectors for the principal components was shown in a Supplementary File. In the first-order hierarchical model (Figure 2A), the two components accounted for 91.445% of the total variance. All of the pieces of music loaded higher than.82 on component 1, suggesting that this explains the general component of jazz musical improvisation in three musicians. The eigenvectors of the pieces of music by W. J. Evans were higher than M. Tyner in component 2, suggesting that this explains a component of W. J. Evans or M. Tyner. The component of H. J. Hancock could not be detected. In the second-order hierarchical model, the two components accounted for 20.365% of the total variance. All of the pieces of music loaded higher than.18 on component 1, suggesting that this explains the general component of jazz musical improvisation in three musicians. In M. Tyner, the eigenvectors other than “The habana sun” were higher than W. J. Evans in component 2, suggesting that this explains a component of W. J. Evans or M. Tyner. The component of H. J. Hancock could not be detected. In the third-order hierarchical model, the two components accounted for 13.818% of the total variance. In H. J. Hancock and M. Tyner, the eigenvectors other than “Cotton tail” were lower than W. J. Evans in component 1, suggesting that this explains a component of W. J. Evans or a component combining H. J. Hancock and M. Tyner. No obvious difference among musicians could be detected in component 2. In the forth-, fifth-, and sixth-order hierarchical models, the two components accounted for 11.663, 10.968, and 10.586% of the total variance, respectively. The eigenvectors of the pieces of music by W. J. Evans were higher than H. J. Hancock and M. Tyner in component 1, suggesting that this explains a component of W. J. Evans or a component combining H. J. Hancock and M. Tyner. The eigenvectors of the pieces of music by H. J. Hancock were generally lower than W. J. Evans and M. Tyner in component 2, suggesting that this explains a weak component of H. J. Hancock or a component combining W. J. Evans and M. Tyner.
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FIGURE 2. Principal component analysis scatter plots in pitch sequence without rhythms (A), rhythm sequences without pitches (B), pitch sequence with rhythms (C), and rhythm sequence with pitches (D). The horizontal and vertical axes represent principal component 1 and 2, respectively. The dots represent each piece of music.



Rhythm Sequence Without Pitches

In the first-order hierarchical model (Figure 2B), only one component, which accounted for 98.685% of the total variance, could be detected. The two components accounted for 91.445% of the total variance. All of the pieces of music loaded higher than.95 on the component, suggesting that this explains the general component of jazz musical improvisation in three musicians. In the second-, third-, forth, fifth-, and sixth-order hierarchical models, the two components accounted for 29.325, 20.985, 17.153, 14.780, and 13.376% of the total variance, respectively. No obvious difference among musicians could be detected in stochastic models of rhythms.

Pitch Sequence With Rhythms

In the first-order hierarchical models (Figure 2C), the two components accounted for 13.481% of the total variance. No obvious difference among musicians could be detected in component 1. In W. J. Evans, the eigenvectors other than “I love you porgy” were higher than M. Tyner in component 2, suggesting that this explains a component of W. J. Evans or M. Tyner. In the second-order hierarchical models, the two components accounted for 11.558% of the total variance. In W. J. Evans, the eigenvectors other than “I love you porgy” were higher than H. J. Hancock and M. Tyner in component 1, suggesting that this explains a component of W. J. Evans or a component combining H. J. Hancock and M. Tyner. No obvious difference among musicians could be detected in component 2. In the third-order hierarchical model, the two components accounted for 10.970% of the total variance. The eigenvectors of the pieces of music by W. J. Evans were higher than H. J. Hancock and M. Tyner in component 1, suggesting that this explains a component of W. J. Evans or a component combining H. J. Hancock and M. Tyner. No obvious difference among musicians could be detected in component 2. In the forth-order hierarchical model, the two components accounted for 10.774% of the total variance. In H. J. Hancock and M. Tyner, the eigenvectors other than “Dolphin dance” were lower than W. J. Evans in component 1, suggesting that this explains a component of W. J. Evans or a component combining H. J. Hancock and M. Tyner. The eigenvectors of the pieces of music by H. J. Hancock were generally lower than W. J. Evans and M. Tyner in component 2, suggesting that this explains a weak component of H. J. Hancock or a component combining W. J. Evans and M. Tyner. In the fifth-order hierarchical model, the two components accounted for 10.515% of the total variance. The eigenvectors of the pieces of music by W. J. Evans were higher than M. Tyner in component 1 and lower than H. J. Hancock in component 2, suggesting that these explain components of W. J. Evans, M. Tyner, and H. J. Hancock. In the sixth-order hierarchical model, the two components accounted for 10.344% of the total variance. In M. Tyner, the eigenvectors other than “For tomorrow” were higher than W. J. Evans and H. J. Hancock in component 1, suggesting that this explains a component of M. Tyner or a component combining W. J. Evans and H. J. Hancock. In W. J. Evans, the eigenvectors other than “Israel” were higher than H. J. Hancock in component 2, suggesting that these explain components of W. J. Evans or H. J. Hancock.

Rhythm Sequence With Pitches

In the first-order hierarchical model (Figure 2D), the two components accounted for 27.736% of the total variance. All of the pieces of music loaded higher than.25 on component 1, suggesting that this explains the general component of jazz musical improvisation in three musicians. The eigenvectors of the pieces of music by W. J. Evans were lower than M. Tyner in component 2, suggesting that this explains a component of W. J. Evans or M. Tyner. In the second-order hierarchical model, the two components accounted for 12.561% of the total variance. The eigenvectors of the pieces of music by W. J. Evans were higher than M. Tyner in component 1, suggesting that this explains a component of W. J. Evans or M. Tyner. No obvious difference among musicians could be detected in component 2. In the third- and forth-order hierarchical models, the two components accounted for 11.135 and 10.658% of the total variance, respectively. The eigenvectors of the pieces of music by W. J. Evans were higher than M. Tyner in component 1, suggesting that this explains a component of W. J. Evans or M. Tyner. In W. J. Evans, the eigenvectors other than “I love you porgy” in the third- and “Israel” in the forth-order hierarchical models were higher than H. J. Hancock in component 2, suggesting that this explains a component of W. J. Evans or H. J. Hancock. In the fifth-order hierarchical model, the two components accounted for 10.386% of the total variance. In M. Tyner, the eigenvectors other than “Autumn leaves” were higher than W. J. Evans in component 1, suggesting that this explains a component of W. J. Evans or M. Tyner. Tyner. The eigenvectors of the pieces of music by H. J. Hancock were generally lower than W. J. Evans and M. Tyner in component 2, suggesting that this explains a weak component of H. J. Hancock or a component combining W. J. Evans and M. Tyner. In the sixth-order hierarchical model, the two components accounted for 10.269% of the total variance. In H. J. Hancock, the eigenvectors other than “The sorcerer” were lower than M. Tyner in component 1, suggesting that this explains a weak component of H. J. Hancock or M. Tyner. In W. J. Evans, the eigenvectors other than “I love you porgy” were lower than M. Tyner in component 2, suggesting that this explains a weak component of W. J. Evans or M. Tyner.



Anova

Pitch Sequence Without Rhythms

In the first-order hierarchical models, the main sequence effect were significant [F(2.99, 53.84) = 7.51, p < 0.001, partial η2 = 0.29, Table 1A]. The main musician effect were significant [F(2, 18) = 4.29, p = 0.030, partial η2 = 0.32]. The TPs in W. J. Evans were significantly higher than those in M. Tyner (p = 0.046). The musician-sequence interactions were significant [F(12) = 6.54, p < 0.001, partial η2 = 0.42, Figure 3 and Tables 1B–D]. The TP of [0, −1] was significantly higher in W. J. Evans than M. Tyner (p = 0.008). The TP of [0, 0] was significantly lower in W. J. Evans than M. Tyner (p = 0.043). The TP of [0, 1] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.003) and M. Tyner (p < 0.001). In the second-order hierarchical models, the main musician effect were significant [F(2, 18) = 7.11, p = 0.005, partial η2 = 0.44]. The TPs in M. Tyner were significantly lower than those in W. J. Evans (p = 0.006) and H. J. Hancock (p = 0.041). The musician-sequence interactions were significant [F(20) = 3.72, p < 0.001, partial η2 = 0.29, Figure 3 and Tables 1B–D]. The TP of [0, −1, −2] was significantly lower in M. Tyner than W. J. Evans (p = 0.006) and H. J. Hancock (p = 0.042). The TP of [0, −2, −3] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.033) and M. Tyner (p < 0.001), and higher in H. J. Hancock than M. Tyner (p = 0.027). The TP of [0, −2, 0] was significantly higher in M. Tyner than W. J. Evans (p = 0.047). The TP of [0, 2, 3] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.005) and M. Tyner (p < 0.001). In the third-order hierarchical models, the main sequence effect were significant [F(5.13, 10.26) = 5.00, p < 0.001, partial η2 = 0.22, Table 1A]. The musician-sequence interactions were significant [F(24) = 3.89, p < 0.001, partial η2 = 0.30, Figure 3 and Tables 1B–D]. The TP of [0, −1, −2, −3] was significantly lower in M. Tyner than W. J. Evans (p < 0.001) and H. J. Hancock (p = 0.008). The TP of [0, −1, −3, −4] was significantly lower in M. Tyner than W. J. Evans (p = 0.003). The TP of [0, −3, −7, −5] was significantly higher in M. Tyner than W. J. Evans (p = 0.040) and H. J. Hancock (p = 0.009). The TP of [0, 0, 0, 0] was significantly lower in W. J. Evans than H. J. Hancock (p = 0.037) and M. Tyner (p = 0.012). The TP of [0, 1, 3, 4] was significantly higher in W. J. Evans than H. J. Hancock (p < 0.001) and M. Tyner (p < 0.001). The TP of [0, 2, 4, 5] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.034) and M. Tyner (p < 0.001), and higher in H. J. Hancock than M. Tyner (p = 0.021). In the forth-order hierarchical models, the main sequence effect were significant [F(4.65, 9.30) = 2.40, p = 0.048, partial η2 = 0.12, Table 1A]. The musician-sequence interactions were significant [F(26) = 5.92, p < 0.001, partial η2 = 0.40, Figure 3 and Tables 1B–D]. The TP of [0, −1, −2, −3, −4] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.015) and M. Tyner (p < 0.001), and higher in H. J. Hancock than M. Tyner (p = 0.024). The TP of [0, −2, −4, 0, −2] was significantly higher in M. Tyner than W. J. Evans (p = 0.008) and H. J. Hancock (p = 0.042). The TP of [0, −3, −2, 2, 5] was significantly higher in W. J. Evans than H. J. Hancock (p < 0.001) and M. Tyner (p < 0.001). The TP of [0, 1, 5, 8, 12] was significantly higher in W. J. Evans than M. Tyner (p = 0.004). The TP of [0,2,3,5,6] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.006) and M. Tyner (p < 0.001). The TP of [0, 5, 3, 0, −4] was significantly higher in M. Tyner than W. J. Evans (p = 0.004) and H. J. Hancock (p = 0.001). In W. J. Evans, the TPs of [0, −3, −2, 2, 5] was significantly higher than those of [0, −1, −2, −3, −4] (p < 0.001), [0, −2, −4,0, −2] (p < 0.001), [0, −2,2,0, −2] (p < 0.001), [0, −3,2,0, −3] (p = 0.021), [0, 0, 0, 0, 0] (p < 0.001), [0, 1, 3, 5, 6] (p < 0.001), [0, 2, 3, 5, 6] (p < 0.001), [0, 2, 3, 5, 7] (p = 0.002), [0, 2, 4, 6, 8] (p < 0.001), and [0,5,3,0, −4] (p < 0.001). The TPs of [0,0,0,0,0] was significantly lower than those of [0, −1, −2, −3, −4] (p = 0.002) and [0, 1, 5, 8, 12] (p = 0.045). The TPs of [0,2,4,6,8] was significantly lower than those of [0, −1, −2, −3, −4] (p < 0.001), [0, 1, 3, 4, 6] (p = 0.008), [0, 1, 5, 8, 12] (p = 0.003), and [0, 2, 3, 5, 6] (p = 0.008). In the fifth-order hierarchical models, the main musician effect were significant [F(2, 18) = 4.13, p = 0.033, partial η2 = 0.32]. The TPs in M. Tyner were significantly lower than those in W. J. Evans (p = 0.006) and H. J. Hancock (p = 0.041). The musician-sequence interactions were significant [F(28) = 7.07, p < 0.001, partial η2 = 0.44, Figure 3 and Tables 1B–D]. The TP of [0, −2, −4,−7, −2, −4] was significantly higher in M. Tyner than W. J. Evans (p = 0.008) and H. J. Hancock (p = 0.008). The TP of [0, −2, −4,0, −2, −4], [0, 1, 3, 4, 6, 7], and [0, 3, 0, 1, 5, 8] was significantly higher in M. Tyner than W. J. Evans (p = 0.022). The TP of [0, −3, −2, 2, 5, 9] was significantly higher in W. J. Evans than and H. J. Hancock and M. Tyner (all: p < 0.001). The TP of [0, 1, 3, 5, 6, 8] was significantly lower in H. J. Hancock than M. Tyner (p = 0.022). In the sixth-order hierarchical models, the musician-sequence interactions were significant [F(28) = 5.09, p < 0.001, partial η2 = 0.36, Figure 3 and Tables 1B–D]. The TP of [0, −1, −2, −3, −4, −5, −6] was significantly lower in M. Tyner than W. J. Evans (p = 0.037). The TP of [0, −2, −4, −7, −2, −4, −7] was significantly higher in M. Tyner than W. J. Evans (p = 0.014) and H. J. Hancock (p = 0.014). The TP of [0, 3, 0, 1, 5, 8, 12] and [0, 4, 7, 4, 5, 9, 12] was significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (p < 0.001).



Table 1. The difference in TPs among pitch sequences without rhythms in each musician.
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FIGURE 3. The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in pitch sequence without rhythms.



Rhythm Sequence Without Pitches

In the first-order hierarchical models, the main sequence effect were significant [F(1.24, 22.36) = 553.50, p < 0.001, partial η2 = 0.97, Table 2A]. The musician-sequence interactions were significant [F(12) = 2.03, p = 0.028, partial η2 = 0.18, Figure 4, Tables 2B–D]. The TP of [1, 3] was significantly higher in M. Tyner than W. J. Evans (p = 0.015) and H. J. Hancock (p = 0.023). The TP of [1, 0.333] was significantly higher in M. Tyner than W. J. Evans (p = 0.006) and H. J. Hancock (p = 0.002). In the second-order hierarchical models, the main sequence effect were significant [F(2.09, 37.68) = 74.54, p < 0.001, partial η2 = 0.81, Table 2A]. The musician-sequence interactions were significant [F(12) = 2.07, p = 0.025, partial η2 = 0.19, Figure 4, Tables 2B–D]. The TP of [1, 0.333] was significantly higher in H. J. Hancock than W. J. Evans (p = 0.015). In W. J. Evans, the TPs of [1, 1, 1] was significantly higher than those of [1, 0.5, 1], [1, 1, 1.5], [1, 1, 2], [1, 2, 1], and [1, 2, 2] (all: p < 0.001). The TPs of [1,0.5,0.5] was significantly higher than those of [1, 0.5, 1] (p = 0.013), [1,1,1.5] (p < 0.001), [1, 1, 2] (p < 0.001), and [1, 2, 2] (p = 0.003). The TPs of [1, 2, 1] was significantly higher than [1, 0.5, 1] (p = 0.034), [1, 1, 1.5] (p < 0.001), and [1, 1, 2] (p = 0.001). The TPs of [1, 2, 1] was significantly higher than [1, 1, 1.5] (p < 0.001) and [1, 1, 2] (p < 0.001). In H. J. Hancock, the TPs of [1, 1, 1] was significantly higher than those of [1, 0.5, 1], [1, 1, 1.5], [1, 1, 2], [1, 2, 1], and [1, 2, 2] (all: p < 0.001). The TPs of [1, 0.5, 0.5] was significantly higher than those of [1, 1, 1.5] (p < 0.001) and [1, 1, 2] (p = 0.001). The TPs of [1, 2, 1] was significantly higher than [1, 2, 2] (p = 0.027), [1, 0.5, 1] (p = 0.038), [1, 1, 1.5] (p < 0.001), and [1, 1, 2] (p < 0.001). The TPs of [1, 2, 2] was significantly higher than [1, 1, 1.5] (p < 0.001) and [1, 1, 2] (p = 0.037). The TPs of [1, 1, 1.5] was significantly lower than those of [1, 1, 2] (p = 0.006) and [1, 0.5, 1] (p = 0.015). In the third-order hierarchical models, the main sequence effect were significant [F(2.80, 50.41) = 45.17, p < 0.001, partial η2 = 0.72, Table 2A]. The musician-sequence interactions were significant [F(14) = 2.58, p = 0.03, partial η2 = 0.22, Figure 4, Tables 2B–D]. The TP of [1,0.667, 0.667, 0.667] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.016). The TP of [1, 1, 1, 1.5] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.002) and M. Tyner (p = 0.043). In the forth-order hierarchical models, the main sequence effect were significant [F(2.62, 47.21) = 22.03, p < 0.001, partial η2 = 0.55, Table 2A]. In the fifth-order hierarchical models, the main sequence effect were significant [F(3.02, 54.32) = 16.21, p < 0.001, partial η2 = 0.47, Table 2A]. The musician-sequence interactions were significant [F(16) = 2.11, p = 0.011, partial η2 = 0.19, Figure 4, Tables 2B–D]. In the sixth-order hierarchical models, the main sequence effect were significant [F(3.28, 59.06) = 17.89, p < 0.001, partial η2 = 0.50, Table 2A]. The musician-sequence interactions were significant [F(16) = 2.22, p = 0.007, partial η2 = 0.20, Figure 4 and Tables 2B–D].



Table 2. The difference in TPs among rhythm sequences without pitches in each musician.
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FIGURE 4. The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in rhythm sequences without pitches.



Pitch Sequence With Rhythms

The relative pattern of Pitch sequence (p) with rhythms (r) were represented as [p] with [r]. In the first-order hierarchical models, the musician-sequence interactions were significant [F(28) = 1.89, p = 0.006, partial η2 = 0.17, Figure 5]. The TP of [0, 1] with [0.5] was significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (p < 0.001). In the second-order hierarchical models, the musician-sequence interactions were significant [F(28) = 3.58, p = 0.006, partial η2 = 0.28, Figure 5]. The TP of [0, −1, −2] with [1, 0.5], [0, 4,7] with [1, 0.5], and [0, −3, −2] with [1, 1.5] was significantly higher in W. J. Evans than M. Tyner (p = 0.031, p = 0.038, and p = 0.023, respectively). The TP of [0, 4, 7] with [1,1] was significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (p < 0.001). The TP of [0, 7, 0] with [1, 1] was significantly higher in H. J. Hancock than M. Tyner (p = 0.029). The TP of [0, 4, 2] with [1, 2] was significantly higher in M. Tyner than W. J. Evans (p = 0.005) and H. J. Hancock (p = 0.007). The TP of [0, 2, 0] with [1, 3] was significantly higher in H. J. Hancock than W. J. Evans (p = 0.043). In the third-order hierarchical models, the musician-sequence interactions were significant [F(28) = 4.91, p < 0.001, partial η2 = 0.35, Tables 3A,B and Figure 5]. The TP of [0, −1, −2, −3] with [1,0.5,0.5] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.036) and M. Tyner (p = 0.007). The TP of [0, −2, −5, −7] with [1, 1, 1] was significantly lower in W. J. Evans than H. J. Hancock (p = 0.042). The TP of [0, −2, 2, 0] with [1, 1, 1], and [0, 5, 3, 0] with [1, 1, 1] was significantly higher in M. Tyner than W. J. Evans (p = 0.039 and p = 0.004, respectively). The TP of [0, −4, 3, 0] with [1, 1, 1] was significantly higher in M. Tyner than W. J. Evans (p = 0.031) and H. J. Hancock (p = 0.013). The TP of [0, 1, 5, 8] with [1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.011) and M. Tyner (p < 0.001). The TP of [0, 2, 4, 5] with [1, 1, 1] was significantly lower in M. Tyner than W. J. Evans (p < 0.001) and H. J. Hancock (p = 0.041). The TP of [0, 3, 0, 1] with [1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.027) and M. Tyner (p = 0.001). The TP of [0, 7, 4, 5] with [1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.027) and M. Tyner (p = 0.001). In the forth-order hierarchical models, the musician-sequence interactions were significant [F(28) = 6.90, p < 0.001, partial η2 = 0.43, Tables 3A,B and Figure 5]. The TP of [0, −2, −3, −5, −6] with [1, 1, 1, 1], and [0, 1, 5, 8, 12] with [1, 1, 1, 1] was significantly lower in M. Tyner than W. J. Evans (all: p = 0.002). The TP of [0, −2, −4, 0, −2] with [1, 1, 1, 1], [0, −3, −7, −5, −3] with [1, 1, 1, 1], and [0, −3, 2, −1,−5] with [1, 1, 1, 1] was significantly higher in M. Tyner than W. J. Evans and H. J. Hancock (p = 0.008, p = 0.001, and p = 0.014, respectively). The TP of [0, −3, −2, 2, 5] with [1, 1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.009) and M. Tyner (p = 0.002). The TP of [0, −3, −2, 2, 5] with [1, 1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (all: p < 0.001). The TP of [0, −3, −5, −7, −5] with [1, 1, 1, 1] was significantly higher in M. Tyner than W. J. Evans (p = 0.017). The TP of [0, −3, −2, 2, 5] with [1, 1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.002) and M. Tyner (p < 0.001). The TP of [0, −3, −2, 2, 5] with [1, 1, 1, 1] was significantly higher in H. J. Hancock than M. Tyner (p = 0.035). In the fifth-order hierarchical models, the musician-sequence interactions were significant [F(28) = 6.38, p < 0.001, partial η2 = 0.42, Tables 3A,B and Figure 5]. The TP of [0, −2, −3, −4, −5, −6] with [1, 1, 1, 1, 1], and [0, 1, 3, 5, 6, 8] with [1, 1, 1, 1, 1] was significantly lower in M. Tyner than H. J. Hancock (p = 0.022 and p = 0.035, respectively). The TP of [0, −2, −4, 0, −2, −4] with [1, 1, 1, 1, 1], and [0, −2, −5, 0, −2, −5] with [1, 1, 1, 1, 1] was significantly higher in M. Tyner than W. J. Evans and H. J. Hancock (all: p = 0.014). The TP of [0, −3, −2, 2, 5, 9] with [1, 1, 1, 1, 1], [0, 1, 3, 4, 6, 7] with [1, 1, 1, 1, 1], and [0,3,0,1,5,8] with [1, 1, 1, 1, 1] was significantly higher in Evans than H. J. Hancock and M. Tyner (all: p < 0.001). In the sixth-order hierarchical models, the musician-sequence interactions were significant [F(28) = 4.20, p < 0.001, partial η2 = 0.32, Tables 3A,B and Figure 4]. The TP of [0, −2, −4, −7, −2, −4, −7] with [1, 1, 1, 1, 1, 1] was significantly higher in M. Tyner than W. J. Evans and H. J. Hancock (all: p = 0.014). The TP of [0, 3, 0, 1, 5, 8, 12] with [1, 1, 1, 1, 1, 1] was significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (all: p = 0.001).
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FIGURE 5. The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in pitch sequence with rhythms.





Table 3. The difference in TPs among pitch sequences with rhythms in each musician.
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Rhythm Sequence With Pitches

In the first-order hierarchical models, the main sequence effect were significant [F(13, 234) = 4.45, p < 0.001, partial η2 = 0.20, Table 4]. The musician-sequence interactions were significant [F(26) = 3.54, p < 0.001, partial η2 = 0.28, Figure 6 and Table 4]. The TP of [1,1] with [0, −3, −6] was significantly lower in W. J. Evans than M. Tyner (p = 0.037). The TP of [1, 1] with [0, −4, −6], and [1,1] with [0, 3, 6] was significantly higher in W. J. Evans than M. Tyner (all: p = 0.025). The TP of [1, 1] with [0, 4, 6] was significantly higher in M. Tyner than W. J. Evans (p = 0.001) and H. J. Hancock (p = 0.004). In the second-order hierarchical models, the musician-sequence interactions were significant [F(24) = 5.53, p < 0.001, partial η2 = 0.42, Figure 6 and Table 4]. The TP of [1, 1, 1] with [0, −1, −3, −4] was significantly lower in M. Tyner than W. J. Evans (p < 0.001) and H. J. Hancock (p = 0.001). The TP of [1, 1, 1] with [0, −2, −4, −2], [1, 1, 1] with [0, −3, −7, −5] was significantly higher in M. Tyner than W. J. Evans and H. J. Hancock (p < 0.001). The TP of [1, 1, 1] with [0, −1, −3, −4] was significantly lower in H. J. Hancock than W. J. Evans (p = 0.007) and M. Tyner (p = 0.001). The TP of [1, 1, 1] with [0, −2, −4, −2], and [1, 1, 1] with [0, −3, −7, −5] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.005) and M. Tyner (p < 0.001). The TP of [1, 1, 1] with [0, 2, 4, 5] was significantly lower in M. Tyner than W. J. Evans (p = 0.048). The TP of [1, 1, 1] with [0, 5, 3, 0] was significantly higher in M. Tyner than W. J. Evans (p = 0.002). In the third-order hierarchical models, the main sequence effect were significant [F(5.05, 90.90) = 2.91, p = 0.017, partial η2 = 0.14, Table 4]. The musician-sequence interactions were significant [F(26) = 5.88, p < 0.001, partial η2 = 0.40, Figure 6 and Table 4]. The TP of [1, 1, 1, 1] with [0, −1, −2, −3, −4] was significantly lower in M. Tyner than W. J. Evans (p = 0.040) and H. J. Hancock (p = 0.046). The TP of [1, 1, 1, 1] with [0, −2, −4, −7, −2], [1, 1, 1, 1] with [0, −2, 2, 0, −2] were significantly higher in M. Tyner than W. J. Evans (p = 0.008 and p = 0.015, respectively) and H. J. Hancock (p = 0.008 and p = 0.015, respectively). The TP of [1, 1, 1, 1] with [0, −3, −2, 2, 5] was significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (all: p = 0.001). The TP of [1, 1, 1, 1] with [0, −3, 2, 0, −3] was significantly lower in W. J. Evans than M. Tyner (p = 0.038). The TP of [1, 1, 1, 1] with [0, 1, 3, 4, 6], and [1, 1, 1, 1] with [0, 2, 3, 5, 6] was significantly higher in W. J. Evans than M. Tyner (p = 0.046 and p = 0.002, respectively). The TP of [1, 1, 1, 1] with [0, 1, 5, 8, 12] was significantly higher in W. J. Evans than H. J. Hancock (p = 0.006) and M. Tyner (p < 0.001). In the forth-order hierarchical models, musician-sequence interactions were significant [F(28) = 5.58, p < 0.001, partial η2 = 0.38, Figure 6 and Table 4]. The TP of [1, 1, 1, 1, 1] with [0, −2, −4, −7, −2, −4], and [1, 1, 1, 1, 1] with [0, −2, −5, 0, −2, −5] were significantly higher in M. Tyner than W. J. Evans and H. J. Hancock (all: p = 0.008). The TP of [1, 1, 1, 1, 1] with [0, −3, −2, 2, 5, 9], [1, 1, 1, 1, 1] with [0, 1, 3, 4, 6, 7], and [1, 1, 1, 1, 1] with [0, 3, 0, 1, 5, 8], were significantly higher in W. J. Evans than H. J. Hancock and M. Tyner (all: p < 0.001). In the fifth-order hierarchical models, the musician-sequence interactions were significant [F(28) = 2.31, p < 0.001, partial η2 = 0.21, Figure 6 and Table 4]. The TP of [1, 1, 1, 1, 1, 1] with [0, −2, −4, −7, −2, −4, −7] was significantly higher in M. Tyner than W. J. Evans and H. J. Hancock (all: p = 0.008).



Table 4. The difference in TPs among rhythm sequences with pitches in each musician.
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FIGURE 6. The difference in TPs among W.J. Evans (red), H.J. Hancock (blue), and M. Tyner (green) in rhythm sequence with pitches.





Regression Analysis

Pitch Sequence Without Rhythms

Results were shown in Table 5A. In W. J. Evans, no significant regression equation was detected in the first-, second-, forth-, and sixth-order hierarchical models. In the third-order hierarchical model, a significant regression equation was found [F(2, 4) = 16.19, p = 0.012], with an adjusted R2 of 0.84. The predicted chronological order is equal to 9.43–17.98 (transition of [0, −3, −7, −5]) −7.23 (transition of [0, 2, 4, 5]). The TPs of [0, 2, 4, 5] and [0, −3, −7, −5] gradually decreased consistently with the ascending chronological order ([0, −3, −7, −5] p = 0.007, [0, 2, 4, 5] p = 0.031). In the fifth-order hierarchical model, a significant regression equation was found [F(1, 5) = 14.74, p = 0.012], with an adjusted R2 of 0.70. The predicted chronological order is equal to 5.33–9.31 (transition of [0, 2, 3, 5, 7, 8]). The TPs of [0, 2, 3, 5, 7, 8] gradually decreased consistently with the ascending chronological order (p = 0.012). In H. J. Hancock, no significant regression equation was detected in all of the hierarchical models. In M. Tyner, no significant regression equation was detected in the first-, third-, forth-, fifth-, and sixth-order hierarchical models. Only in the second-order hierarchical model, a significant regression equation was found [F(2, 4) = 31.04, p = 0.004], with an adjusted R2 of 0.91. The predicted chronological order is equal to −3.68 + 28.30 (transition of [0, −2, −5]) + 10.59 (transition of [0, 2, 0]). The TPs of [0, −2, −5] and [0, 2, 0] gradually increased consistently with the ascending chronological order ([0, −2, −5] p = 0.003, [0, 2, 0] p = 0.038). These TPs were significant predictors of the chronological order.



Table 5. Regression analyses based on the stepwise method.
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Rhythm Sequence Without Pitches

Results were shown in Table 5B. In W. J. Evans, no significant regression equation was detected in the first-, third-, forth-, fifth-, and sixth-order hierarchical models. In the second-order hierarchical model, a significant regression equation was found [F(1, 5) = 16.85, p = 0.009], with an adjusted R2 of 0.73. The predicted chronological order is equal to −1.29 + 17.75 (transition of [1, 2, 2]). The TPs of [1, 2, 2] gradually increased consistently with the ascending chronological order (p = 0.009). In H. J. Hancock, no significant regression equation was detected in the second-, third-, forth-, fifth-, and sixth-order hierarchical models. In the first-order hierarchical model, a significant regression equation was found [F(3, 3) = 82.70, p = 0.002], with an adjusted R2 of 0.98. The predicted chronological order is equal to 12.73–583.67 (transition of [1, 0.333])−79.86 (transition of [1, 1.5]) + 33.53 (transition of [1, 2]). The TPs of [1, 0.333] and [1, 1.5] gradually decreased and those of [1, 2] gradually increased consistently with the ascending chronological order (p = 0.001, p = 0.007, and p = 0.034, respectively). In M. Tyner, no significant regression equation was detected in the first-, second-, third-, fifth-, and sixth-order hierarchical models. In the forth-order hierarchical model, a significant regression equation was found [F(1, 5) = 9.08, p = 0.030], with an adjusted R2 of 0.57. The predicted chronological order is equal to 0.82 + 5.37 (transition of [1, 2, 1, 2, 1]). The TPs of [1, 2, 1, 2, 1] gradually increased consistently with the ascending chronological order (p = 0.030). These TPs were significant predictors of the chronological order.

Pitch Sequence With Rhythms

Results were shown in Table 5C. In W. J. Evans, no significant regression equation was detected in all of the hierarchical models. In H. J. Hancock, no significant regression equation was detected in the first-, third-, forth-, fifth-, and sixth-order hierarchical models. In the second-order hierarchical model, a significant regression equation was found [F(1, 5) = 8.33, p = 0.034], with an adjusted R2 of 0.55. The predicted chronological order is equal to 3.0 + 10.50 (transition of [0, 4, 2] with [1, 2]). The TPs of [0, 4, 2] with [1, 2] gradually increased consistently with the ascending chronological order (p = 0.034). In M. Tyner, no significant regression equation was detected in the first-, second-, fifth-, and sixth-order hierarchical models. In the third-order hierarchical model, a significant regression equation was found [F(1, 5) = 12.99, p = 0.015], with an adjusted R2 of 0.67. The predicted chronological order is equal to 5.44–3.72 (transition of [0, 0, 0, 0] with [1, 1, 1]). The TPs of [0, 0, 0, 0] with [1, 1, 1] gradually decreased consistently with the ascending chronological order (p = 0.015). In the forth-order hierarchical model, a significant regression equation was found [F(1, 5) = 7.35, p = 0.042], with an adjusted R2 of 0.51. The predicted chronological order is equal to 5.67–3.33 (transition of [0, −3, 2, −1, −5] with [1, 1, 1, 1]). The TPs of [0, −3, 2, −1, −5] with [1, 1, 1, 1] gradually decreased consistently with the ascending chronological order (p = 0.042). These TPs were significant predictors of the chronological order.

Rhythm Sequence With Pitches

Results were shown in Table 5D. In W. J. Evans, no significant regression equation was detected in the first-, third-, and sixth-order hierarchical models. In the second-order hierarchical model, a significant regression equation was found [F(2, 4) = 13.80, p = 0.016], with an adjusted R2 of 0.81. The predicted chronological order is equal to 3.61–4.72 (transition of [1, 1, 1] with [0, 2, 4, 6]) + 2.61 (transition of [1, 1, 1] with [0, −2, −5, −9]). The TPs of [1, 1, 1] with [0, 2, 4, 6] gradually decreased (p = 0.006) and the TPs of [1, 1, 1] with [0, −2, −5, −9] gradually increased (p = 0.049) consistently with the ascending chronological order. In the forth-order hierarchical model, a significant regression equation was found [F(1, 5) = 17.72, p = 0.008], with an adjusted R2 of 0.74. The predicted chronological order is equal to 5.33–629.65 (transition of [1, 1, 1, 1, 1] with [0, −3, −2, 0, 1, 3]). The TPs of [1, 1, 1, 1, 1] with [0, −3, −2, 0, 1, 3] gradually decreased consistently with the ascending chronological order (p = 0.008). In the fifth-order hierarchical model, a significant regression equation was found [F(1, 5) = 8.33, p = 0.034], with an adjusted R2 of 0.55. The predicted chronological order is equal to 5.00–3.50 (transition of [1, 1, 1, 1, 1, 1] with [0, −3, −2, 0, 1, 3, 4]). The TPs of [1, 1, 1, 1, 1, 1] with [0, −3, −2, 0, 1, 3, 4] gradually decreased consistently with the ascending chronological order (p = 0.034). In H. J. Hancock, no significant regression equation was detected in the second-, third-, forth-, fifth-, and sixth-order hierarchical models. In the first-order hierarchical model, a significant regression equation was found [F(1, 5) = 15.06, p = 0.012], with an adjusted R2 of 0.70. The predicted chronological order is equal to 12.64–11.40 (transition of [1, 1] with [0, −2, −3]). The TPs of [1, 1] with [0, −2, −3] gradually decreased consistently with the ascending chronological order (p = 0.012). These TPs were significant predictors of the chronological order. In M. Tyner, no significant regression equation was detected in all of the hierarchical models.

Time-Course Variation of Entropy

Results were shown in Table 6. In the rhythm sequence with pitches in H. J. Hancock, significant regression equation was detected in the higher- but not lower-order hierarchical models. In the fifth-order hierarchical model, a significant regression equation was found [F(1, 5) = 10.58, p = 0.023], with an adjusted R2 of 0.62. The predicted chronological order is equal to 5.73–193.34. The entropies of rhythm sequence with pitches gradually decreased (p = 0.023) consistently with the ascending chronological order. In the sixth-order hierarchical model, a significant regression equation was found [F(1, 5) = 9.28, p = 0.029], with an adjusted R2 of 0.58. The predicted chronological order is equal to 5.67–272.31. The entropies of rhythm sequence with pitches gradually decreased (p = 0.029) consistently with the ascending chronological order. No significant regression equation was detected in W.J. Evans and M.Tyner.



Table 6. Time–course variation of entropy (rhythm sequence with entropies).
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DISCUSSION


Interpretation of Multi-Order Hierarchical Models for Implicit Learning

In the context of implicit-learning models on information theory and predictive coding (Friston, 2005; Pearce and Wiggins, 2012; Rohrmeier and Rebuschat, 2012), the TP distribution sampled from musical improvisation based on n-order Markov models may refer to the characteristics of a composer's superficial-to-deep (i.e., n-order) implicit knowledge: a tone with high TP compared to a tone with a low TP may be one that a composer is more likely to predict and choose based on the latest n tones. The notion has been neurophysiologically demonstrated by our previous studies on predictive coding (Daikoku et al., 2017b). Using the various-order Markov stochastic models that unify temporal and spectral features in musical improvisation, the present study investigated the stochastic difference of temporal and spectral features among musicians, and clarified which information (pitch and rhythm) and depth (1st to 6th orders) represent the individualities of improvisational creativity and how they interact with each other.



Hierarchy

The results of principal component analysis (PCA) suggested that the lower-order models represented general statistical characteristics shared among musicians, whereas higher-order models represented specific statistical characteristics that were unique to each musician (Figure 1). In the 1st-order models of any type of temporal and spectral sequences, and 2nd-order models of sequences other than pitch sequence with rhythm, component 1 showed general characteristics in improvisation. These results suggest that the individuality of improvisational creativity depends on the depth of implicit knowledge. This hypothesis could also be underpinned by ANOVA results. To understand the differences between TPs in each sequence among musicians, only the transitional patterns with first to fifth highest TPs from each musician, which showed higher predictabilities in each musician, were analyzed using an ANOVA. In lower-order models, universal sequences that are common among musicians could be detected. For example, in a 1st-order model of pitch sequence without rhythm (Figure 3, top), the extracted sequences of [0, 0], [0, −1], [0, 1], [0, −2], [0, 2], [0, −3], and [0, 3] correspond to repetition of the same tone, and semi-tone, whole-tone, and minor-third transitions. These sequences are frequently exploited in many types of music (e.g., Classical, Jazz), are easier to immediately play because of the small pitch intervals, and lead to a smooth melody. However, in the 6th-order model (Figure 3, bottom), the TPs for the sequences of [0, 3, 0, 1, 5, 8, 12] and [0, −2, −4, −7, −2, −4, −7] were different among musicians. Although the difference could also be detected even in the 1st-order model, higher-order models showed a larger difference of TPs among musicians, suggesting that individuality of musical prediction and production is larger with a deeper implicit knowledge. In summary, the results of the present study suggest that the individuality of improvisational creativity may be formed by deeper implicit knowledge, whereas lower-order implicit knowledge may be shared among musicians.



Pitch and Rhythm

In the pitch sequences with and without rhythms and the rhythm sequence with pitches (Figures 1A,C,D), W. J. Evans' and M. Tyner's components could be detected in any-order model. In a rhythm sequence without pitch (Figure 1B), however, no obvious difference among musicians could be detected. These results suggest that individuality of musical creativity is shaped by spectral, rather than temporal, implicit knowledge. However, the results also suggest that temporal knowledge at least contributes to formation of individuality; TP distribution of pitch sequences “with” rhythms, compared to those “without” rhythms, showed clear individuality among three musicians from a lower-order model (i.e., 4th-order model). Additionally, in two types of rhythm sequences without and with pitches (Figures 2B,D, respectively), TP distribution with, but not without, pitches showed individuality of improvisation. This suggests that temporal and spectral implicit knowledge interact with each other. The ANOVA results support these PCA findings. In lower-order models, the extent of the difference in TPs among musicians is larger for pitch sequences with rhythms (Figure 7) than for those without rhythm (Figure 3). Additionally, in two types of rhythm sequences without and with pitches (Figures 5, 7, respectively), the extent of the TP difference among musicians is larger in rhythm sequences with, compared to without, pitches. Together, these results suggest that the individuality of improvisational creativity may essentially be formed by pitch, but not rhythm, implicit knowledge. However, implicit knowledge of rhythm may strengthen individuality.



Time-Course Variation of Implicit Knowledge

In all types of spectro-temporal sequences of each hierarchy, time-course variation of TPs in some sequences could be detected. There were two types of time-course variations: TPs that gradually decrease, and those that gradually increase, consistent with the chronological order. Thus, implicit knowledge of pitch and rhythm could be shifted over a musician's life. However, the findings suggested that the time-course variations in TPs do not depend on hierarchy and spectro-temporal features, while the individuality among musicians may depend on these features. This suggests that the shifts in implicit knowledge may occur in each musician's lifetime, regardless of spectro-temporal features and the depth of knowledge. It may be interesting to investigate if the findings of gradual shifts in TPs reflect those of implicit knowledge via experience and training. Learning to play the piano enhances auditory-motor skills based on procedural knowledge (Norgaard, 2014), which corresponds to implicit knowledge (Clark and Squire, 1998; Ullman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus, through experience and long-term training over the player's life, implicit knowledge that is tied to musical expression may shift (Daikoku et al., 2012). On the other hand, the time-course variations of the entropies, which represent uncertainly in music (Pearce and Wiggins, 2006), could be detected in higher-order hierarchy in one musician. Future study is needed to investigate the relationships of time-course variation between specific phrase and general uncertainty. In addition, the results of the present study cannot completely support the hypothesis because time-course variations among only seven pieces of music for each musician were investigated. Further research is needed to verify a larger number of music pieces in a musician's lifetime, and to examine behavioral and neurophysiological results.



General Discussion: Informatics and Neural Aspects in Musical Creativity

In summary, the present study found three types of results on improvisational music and implicit knowledge: hierarchy, spectro-temporal features, and time-course variation. First, the lower-order TP distribution represented general characteristics shared among musicians, whereas higher-order TP distribution detected specific characteristics that were unique to each musician. Thus, the individuality of improvisational creativity might be formed by deeper (i.e., higher-order), but not superficial (i.e., lower-order), implicit knowledge. Second, the TP distribution with pitch information detected specific characteristics that were unique to each musician, whereas the TP distribution with only rhythm information could not detect differences among musicians. Thus, the individuality of improvisational creativity may essentially be formed by spectral (i.e., pitch), but not temporal (i.e., rhythm), implicit knowledge, whereas the rhythms may allow the individuality of pitches to strengthen. Third, TPs of some phrase were gradually decreased, and increased consistent with the chronological order for each musician, regardless of hierarchy and spectro-temporal feature in the TP distributions. Thus, time-course variation of implicit knowledge in pitches and rhythms may occur throughout a musician's lifetime regardless of the depth of knowledge. On the other hand, the time-course variations of the entropies, which represent uncertainly in music (Pearce and Wiggins, 2006), could be detected in higher-order hierarchy in one musician.

It is generally considered that musical expression in improvisation is mainly shaped by tacit knowledge (Delie‘ge et al., 1996; Koelsch et al., 2000; Delie‘ge, 2001; Bigand and Poulin-Charronnat, 2006; Ettlinger et al., 2011; Koelsch, 2011; Huron, 2012). Particularly, the expression of musical improvisation, compared to other types of musical composition in which a composer deliberates a composition scheme for a long time based on musical theory, forces musicians to continually predict each forthcoming tone, and immediately play the melody based on intuitive decision-making and auditory-motor planning, which are considered to tie in with procedural and implicit knowledge (Berry and Dienes, 1993; Reber, 1993; Clark and Squire, 1998; Ullman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Norgaard, 2014; Müller et al., 2016; Perkovic and Orquin, 2017). Thus, the musical improvisation may be more strongly related to the implicit knowledge, compared to other types of music. Few studies have investigated the relationship between musical improvisation and implicit learning via computational model (Norgaard, 2014) and neural correlate (Adhikari et al., 2016; Lopata et al., 2017). In a series of my previous neurophysiological studies using Markov stochastic models and other studies on music, implicit learning of pitch, harmony, and dyad chord could be reflected in event-related responses (ERP/ERF) based on predictive coding (Daikoku et al., 2014, 2015, 2016, 2017a; Daikoku and Yumoto, 2017; Moldwin et al., 2017). Other studies also detected neural correlates to the motor control for auditory prediction and production when playing the piano (Bianco et al., 2016), and to improvisational creativity of music (Pinho et al., 2015; Adhikari et al., 2016; Lopata et al., 2017). These studies suggest that the mental representation of a musician's knowledge facilitates optimisation of motor actions (Daikoku et al., 2018) in the framework of information theory on brain function. The findings of the present study were based on relative but not absolute stochastic feature of music. Thus, the results in this study could support the previous neurophysiological and psychological studies that suggest that human's brain learn relative rather than absolute temporal and spectral (Daikoku et al., 2014, 2015) patterns.

The verification of computational models and the neural correlates have also been performed in previous studies (see review, Rohrmeier and Rebuschat, 2012). For example, the n-gram models calculate probability of sequential patterns by chopping them into short fragments (n-grams) up to a size of n. This model, which is frequently verified by neural approaches, is considered to correspond to chunking and word-segmentation processes in implicit learning (Saffran et al., 1996). The online perception and production of real-world dynamical music, however, is not the mere chopping of sequential patterns like word segmentation, but dynamical prediction to maintain an aesthetic melody with various temporal and spectral features, hierarchical structure, and harmony, which interact with each other (Lerdahl and Jackendoff, 1983; Hauser et al., 2002; Jackendoff and Lerdahl, 2006). Musical prediction and the representation constantly occurs with each state of sequences during learning and playing music. In addition, they are not restricted to a single stream of events or hierarchy but, rather, they interact with each parallel stream (Conklin and Witten, 1995; Pearce and Wiggins, 2012). Given the real-world phenomenon of music perception and prediction, various-order Markov models may be able to express dynamical and hierarchical creativity that occur in a musician's brain when they play music (Pearce and Wiggins, 2012), and to interdisciplinarily verify lower-to-deeper implicit knowledge and its representation using one experiment via neurophyisiological and informatics approaches. Using the models, however, future study is needed to also investigate other aspects of music such as harmony, non-adjacent dependency, and tree-structure nature of melody and harmony.

In conclusion, the present study suggested that the formation of individuality of musical creativity may depend on spectro-temporal features and hierarchy. The present study first provides the hierarchical implicit-learning model that unifies temporal and spectral features in musical improvisationa and creativity and that is interdisciplinarily verifiable using neurophysiological, behavioral, and information-thepretic approaches.
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Epilepsy is a neurological disorder that affects approximately fifty million people according to the World Health Organization. While electroencephalography (EEG) plays important roles in monitoring the brain activity of patients with epilepsy and diagnosing epilepsy, an expert is needed to analyze all EEG recordings to detect epileptic activity. This method is obviously time-consuming and tedious, and a timely and accurate diagnosis of epilepsy is essential to initiate antiepileptic drug therapy and subsequently reduce the risk of future seizures and seizure-related complications. In this study, a convolutional neural network (CNN) based on raw EEG signals instead of manual feature extraction was used to distinguish ictal, preictal, and interictal segments for epileptic seizure detection. We compared the performances of time and frequency domain signals in the detection of epileptic signals based on the intracranial Freiburg and scalp CHB-MIT databases to explore the potential of these parameters. Three types of experiments involving two binary classification problems (interictal vs. preictal and interictal vs. ictal) and one three-class problem (interictal vs. preictal vs. ictal) were conducted to explore the feasibility of this method. Using frequency domain signals in the Freiburg database, average accuracies of 96.7, 95.4, and 92.3% were obtained for the three experiments, while the average accuracies for detection in the CHB-MIT database were 95.6, 97.5, and 93% in the three experiments. Using time domain signals in the Freiburg database, the average accuracies were 91.1, 83.8, and 85.1% in the three experiments, while the signal detection accuracies in the CHB-MIT database were only 59.5, 62.3, and 47.9% in the three experiments. Based on these results, the three cases are effectively detected using frequency domain signals. However, the effective identification of the three cases using time domain signals as input samples is achieved for only some patients. Overall, the classification accuracies of frequency domain signals are significantly increased compared to time domain signals. In addition, frequency domain signals have greater potential than time domain signals for CNN applications.

Keywords: epilepsy, electroencephalogram, convolutional neural networks, time domain signals, frequency domain signals


INTRODUCTION

Epilepsy, one of the most common neurological conditions characterized by epileptic seizures, is the second most common neurological disorder behind stroke, according to the World Health Organization (WHO). Seizures may occur, regardless of the circumstances or host attributes (Ahmadi et al., 2018). Patients with epilepsy suffer from sudden and unforeseen seizures, during which they are unable to protect themselves and are vulnerable to suffocation, death, or injury due to fainting and traffic accidents (Yan et al., 2016a; Mutlu, 2018). To date, this disease is mainly treated with medications and surgery; no cure exists, and treatments with anticonvulsants are not completely efficacious for all of types of epilepsy (López-Hernández et al., 2011; Yan et al., 2015).

Electroencephalography (EEG) plays an important role in detecting epilepsy, as it measures differences in voltage changes between electrodes along the subject's scalp by sense ionic currents flowing within brain neurons and provides temporal and spatial information about the brain (Misulis, 2013; Pachori and Patidar, 2014). Detection with EEG requires a direct examination by a physician as well as a substantial amount of time and effort. Furthermore, experts with differing levels of diagnostic experience sometimes report discrepant opinions on the diagnostic results (Wang et al., 2016a; Yan et al., 2017a). Therefore, the development of an automated, computer-aided method for the diagnosis of epilepsy is urgently needed (Iasemidis et al., 2005; Martis et al., 2015).

In previous studies, various detection algorithms for epileptiform EEG data have been proposed (De et al., 2008; Chen et al., 2013). Existing methods for the detection of seizures use hand-engineered techniques for feature extraction from EEG signals (Pei et al., 2018), such as time domain, frequency domain, time-frequency domain, and nonlinear signal analyses (Swapna et al., 2013; Yan et al., 2017b). After feature extraction, the selected features must be classified to recognize different EEG signals using all types of classifiers (Chen et al., 2017). Hamad et al. used the discrete wavelet transform method to extract a feature set and then trained the support vector machine (SVM) with a radial basis function, showing that the proposed gray wolf optimizer SVM approach is capable of detecting epilepsy and thus further enhancing diagnosis (Hamad et al., 2017). Subasi et al. established a hybrid model to optimize the SVM parameters based on the genetic algorithm and particle swarm optimization, showing that the proposed hybrid SVM is an efficient tool for neuroscientists to detect epileptic seizures using EEG (Subasi et al., 2017). However, these methods do not eliminate the requirement for manual feature selection (Jing et al., 2015; Wang et al., 2016b). Feature extraction is a key step in determining the classification, as it largely determines its accuracy. We boldly envision a method in which classification is performed without complex feature extraction, and the recent development of deep learning (DL) has provided a new avenue for addressing this issue.

DL has entered the mainstream in computer vision and machine learning in the last several years, exhibiting near-human and superhuman abilities to perform many tasks, such as object detection and sequence learning (Ahmedt-Aristizabal et al., 2018). Feature extraction prior to classification seems to be more preferable than directly inputting raw EEG samples into the classifier. However, in some recent studies, feature extraction was not performed, and the DL models were instead trained with raw EEG signals (Acharya et al., 2017; Hussein et al., 2018).

While most of these studies were performed based on time domain signals, some previous studies on EEG have also reported significant hidden information in the frequency domain. Wendung et al. focused on a specific category of methods based on analyses of the spatial properties of EEG signals in the time and frequency domains. These methods have been applied to both interictal and ictal recordings and share the common objective of localizing the subsets of brain structures involved in both types of paroxysmal activity (Wendung et al., 2009). Wen et al. proposed a genetic algorithm-based frequency domain feature search method that exhibited good extensibility (Wen and Zhang, 2017). Therefore, we conducted this study based on frequency domain signals and compared the seizure detection performances of both the frequency and time domains.

Here, original signals based on the time or frequency domain were directly input into the convolutional neural network (CNN) instead of extracting all feature types. We tested this method on the intracranial Freiburg database and the scalp CHB-MIT database. We not only detected binary epilepsy scenarios, e.g., interictal vs. ictal and interictal vs. preictal, but also verified the ability of this method to classify a ternary case, e.g., interictal vs. ictal vs. preictal. We compared the different performances between the time and frequency domain signals using CNN as a classifier.

This paper is organized as follows: the data, specific method proposed and performance indices are presented in the second section. Detailed experimental results are presented in the third section, and the analyses are discussed in the fourth section. The conclusions from this study are provided in the fifth section.



MATERIALS AND METHODS


Dataset Description

One of the databases utilized in this study was prepared by the Epilepsy Center at the University Hospital of Freiburg, Germany. The database contains intracranial EEG (iEEG) data from 21 patients with medically intractable focal epilepsy that were recorded during invasive presurgical epilepsy monitoring. Intracranial grid, strip, and depth electrodes were utilized to obtain a high signal-to-noise ratio and fewer artifacts and to record directly from focal areas. The EEG data were acquired using a Neurofile NT digital video EEG system with 128 channels at a 256-Hz sampling rate (data from patient 12 were sampled at 512 Hz but downsampled to 256 Hz) (Zhang and Parhi, 2016) and a 16-bit analog-to-digital converter. All patients in the experiment had experienced 2–5 seizures, and the dataset contains recordings of 87 seizures from 21 patients. In this database, six contacts were selected for each patient by a visual inspection of the iEEG data by experienced epileptologists: three near the epileptic focus (epileptogenic zone) and three in remote locations involved in seizure spread and propagation. The subjects ranged in age from 10 to 50 years and included 13 women and 8 men. Three different seizure types were represented among the subjects, including simple partial (SP), complex partial (CP), and generalized tonic-clonic (GTC), and all subjects had experienced at least two types. The epileptic focus was located in neocortical brain structures in eleven patients, in the hippocampus in eight patients, and in both locations in two patients. The seizure onset times and epileptiform activities were annotated by certified epileptologists at the Epilepsy Center.

The other database used in this study was an open-source EEG database from CHB-MIT (http://physionet.org/cgi-bin/atm/ATM). The recordings were collected from 23 children with epilepsy using scalp electrodes, and EEG data were provided by the Massachusetts Institute of Technology (MIT, USA). The study included 17 females that ranged in age from ~1.5 to 19 years and five males that ranged in age from 3 to 22 years. The age and sex information for one child was lost. All subjects were asked to stop related treatments 1 week before data collection. The sampling frequency for all patients was 256 Hz. The seizure start and end times were labeled explicitly based on expert judgments, and the number and durations of seizure events varied for each subject.

For the detection of ictal, preictal and interictal signals, many segments were chosen for these two open-source databases. The period when patients experience seizure onset is named the ictal state and is easily detected from raw signals by experts. The interictal period corresponds to the normal state between two seizures. The transition from the interictal period to the ictal period is the preictal period. In this study, the differences were evaluated by applying the CNN to each patient, and the moving-window technique was employed to divide raw recordings into 1-s epochs.



Time and Frequency Domain Signals

In the present study, we used time or frequency domain signals as inputs for classification. The frequency domain is a coordinate system that describes the frequency features of the signals. A frequency spectrogram reflects the relationship between the frequency and amplitude of a signal and is often used to analyze signal features (Wen and Zhang, 2017). For each channel, we first converted the time domain signals into frequency domain signals using the fast Fourier transform (FFT) method (Rasekhi et al., 2013).

Figure 1A shows the interictal, preictal, and ictal recordings of a channel from the time domain of patient 3 in the Freiburg database. The EEG signal is obviously nonlinear and nonstationary in nature, while the signal is highly complex, and a visual interpretation of the signals is difficult (Acharya et al., 2017). Figure 1B shows the frequency domain signals resulting from the application of FFT to the interictal, preictal, and ictal recordings shown in Figure 1A. The x-axis represents the frequency, whereas the y-axis represents the amplitude. Significant variations are observed among the ictal, preictal, and interictal signals at certain frequencies, and these features are suitable for classification. In contrast, the amplitudes at some other frequencies are difficult to distinguish, and these enclosed features are ineffective. Classifiers require a number of effective features. Compared with time domain signals, frequency domain signals are more obvious in EEG data (Ren and Wu, 2014).
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FIGURE 1. The interictal, preictal and ictal recordings from patient 1. (A) Recordings of the time domain. (B) Recordings of the frequency domain.





CNN

The use of CNNs for large-scale imaging and video recognition has been very successful (Sermanet et al., 2013; Simonyan and Zisserman, 2014a) due to the establishment of large public image repositories, such as ImageNet (Deng et al., 2009), and high-performance computing systems, such as large-scale distributed clusters (Dean et al., 2012; Simonyan and Zisserman, 2014b). Recently, some studies have begun applying CNNs to EEG signals (Ullah et al., 2018), and research interest in using CNNs for seizure prediction has increased, probably because these methods have been used extensively and are thus better established and more familiar in the research community.

A CNN consists of an input and an output layer, as well as multiple hidden layers. The hidden layers of a CNN typically consist of convolutional layers, pooling layers and fully connected layers. Convolutional layers apply a convolution operation to the input, transferring the result to the next layer. The convolution emulates the response of an individual neuron to visual stimuli. Convolutional networks may include local or global pooling layers that combine the outputs of neuron clusters in one layer into a single neuron in the next layer. Mean pooling uses the average value from each cluster of neurons in the previous layer. Fully connected layers connect every neuron in one layer to every neuron in another layer. The CNN is in principle the same as the traditional multi-layer perceptron neural network.

Compared with traditional classifiers, CNNs have obvious advantages for analyzing high-dimensional data. CNNs employ a parameter sharing scheme, which is used in convolutional layers to control and reduce the number of parameters. A pooling layer is designed to progressively reduce the spatial size of the representation and the number of parameters and computation in the network, and subsequently control overfitting.

As shown in Figure 2, a multichannel time series based on time or frequency domain signals was directly input into a CNN as the input layer. The CNN models we used consisted of three main layers. Structurally, CNNs have convolutional layers interspersed with pooling layers, followed by fully connected layers. The convolutional layer, which has 6 feature maps connected to the input layer via 5*5 kernels, consists of kernels that slide across the EEG signals. A kernel comprises the matrix to be convolved with the input EEG signal and stride (stride = 1) and controls the extent to which the filter convolves across the input signal. The second layer comprises a 2*2 mean pooling layer and is mainly used to extract key features and reduce the computational complexity of the network. The final fully connected layer outputs the classification result (i.e., ictal, preictal, or interictal) using sigmoid activation.
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FIGURE 2. Illustration of the CNN.



In this study, we designed a CNN with no more than three layers for multiple reasons. On one hand, the number of samples acquired during ictal and preictal recordings is usually much smaller than the number acquired during the interictal period in the epilepsy database, leading to a serious imbalance in the number of samples, and a simple structure meets the demand for fewer samples. In addition, the small number of electrodes also limits the number of layers in the network to some extent. On the other hand, a simple training structure is more conducive to the online clinical diagnosis of epileptic signals (Yan et al., 2018).

The detection system was tested on all patients. The dataset was further randomly partitioned into training and independent testing sets via 6-fold cross validation to ensure that the results were valid and generalizable for making predictions from new data. Each of the six subsets acts as an independent holdout test set for the model trained with the remaining five subsets (Xiang et al., 2015). During each run, five subsets are used for training, and the remaining subset is used for testing, providing the advantage that all test sets are independent of one another (Kevric and Subasi, 2014). Numerous trials were performed to test which of the internal architectures analyzed in our experiment provided the most reasonable and proper results until the mean squared error curve normalized, as shown in Figure 3.
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FIGURE 3. Mean squared error.





Prediction of Performance Indices

The statistical measures for assessing the classification performance included accuracy (acc), sensitivity (sen) and specificity (spe), which were calculated as follows:
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P denotes the number of samples during a preictal or ictal period, N denotes the number of samples during an interictal period, FP denotes the number of samples in an interictal period that were mistaken for a preictal or ictal period, FN denotes the number of samples in a preictal or ictal period that were mistaken for an interictal period, and TP and TN denote the numbers of samples that were accurately classified. These three measures were used to evaluate the performance of the method to assess binary classification problems. For three-class problems, only accuracy was considered.




RESULTS

The methodology described here was evaluated using the Freiburg and CHB-MIT databases based on time and frequency domain signals. This system was tested on three cases: two types of experiments involving binary classification problems [(i) interictal vs. preictal and (ii) interictal vs. ictal] and one three-class problem (interictal vs. ictal vs. preictal). We trained and tested our method for each patient individually, and the classification results for all patients analyzed are presented in Table 1 through Table 4. The average accuracy, sensitivity and specificity values obtained are also indicated.



Table 1. Frequency domain signal results for all patients in the Freiburg database.
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Results From the Freiburg Database

Results for the Frequency Domain Signals

The experimental results of the segment-based performance assessment of this method for patients in the Freiburg database are listed in Table 1. The detection quality obviously varied with the subjects due to the individual differences in humans. The final row of Table 1 displays the average results of the three statistical measures (accuracy, sensitivity, and specificity) for all 21 patients.

The mean accuracy of classification between the interictal and preictal signals was 96.7%, and the average sensitivity and specificity values were 96.7 and 96.8%, respectively. The best classification results were observed for patients 9, 11, 13, 14, and 21, while some patients had poor results, such as patient 8. The sensitivity and specificity values for this patient were very unsatisfactory—at 83.3 and 79.7%, respectively. Overall, the accuracy of classification was >90% for nearly all the patients, except for patients 8 and 16. The classification sensitivity and specificity values for these patients were relatively balanced.

Good results were also obtained for classification between interictal and ictal signals, as this method exhibited average accuracy, sensitivity, and specificity values of 95.4, 93.7, and 97.2%, respectively. The classification accuracy for patient 8 was less than 90%, while this value was >90% for all other patients. The binary classification of signals from patient 9 remained satisfactory. The results presented in the table show that the classification sensitivities and specificities for each patient were clearly balanced.

For the classification of interictal, ictal, and preictal signals, only the accuracy of every patient is presented; the average accuracy of classification among the 21 patients was 92.3%. Among these patients, the accuracies of classification for nine patients were >95%, which was considered a great result, and the classification accuracies were good for eight patients, with values ranging between 90 and 95%. The accuracy of signal classification for the other four patients was <90%.

Results for the Time Domain Signals

Table 2 reports the classification results for time domain signals from patients in the Freiburg database. The average accuracies of the three experiments were 91.1, 83.8, and 85.1%, respectively.



Table 2. Time domain signal results for all patients in the Freiburg database.
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For interictal vs. preictal signals, the averages of three measures were >90% for all patients. However, unsatisfactory results for either accuracy, sensitivity or specificity values were obtained for six patients. Almost ideal results were obtained for some individuals, such as patients 2, 3, 15, and 19.

When classifying the interictal and ictal segments, the overall results were slightly worse, as values of only 83.8, 80.4, and 87.1% were obtained for the three measures, respectively. An accuracy of >90% was achieved for only seven patients, and the accuracy of classifying signals from patient 8 was <60%. Accuracies between 60 and 70% were obtained for patients 11 and 15, and the accuracies of classifying signals from all other patients was generally good.

For the three-class problem, the average accuracy was 85.1%, and a 90% classification accuracy was reported for 67% of the patients, with the highest value reaching 98.1%. Notably, the accuracy of signal classification in some patients, such as patients 8 and 9, was very unsatisfactory.

Comparison of the Frequency and Time Domains

Figure 4 presents the comparison of accuracy values based on the time and frequency domains for all patients in the two types of binary classification problems and the three-class problem. In the three experiments, the average accuracies of the frequency domain were higher than those of the time domain. As shown in Figure 4A, better results were obtained for the classification of interictal vs. preictal signals using the time domain than the frequency domain in some patients, while the opposite trend was observed in the other patients. The results were far worse using the time domain than the frequency domain for several patients, such as patients 8 and 9. As depicted in Figure 4B, the frequency domain results were better at classifying the interictal vs. ictal signals than the time domain results for all patients, except patient 20. The frequency and time domain results were very similar for patient 14. The results shown in Figure 4C are similar to those shown in Figure 4A; however, the average performance of the frequency domain was higher than the time domain.
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FIGURE 4. Comparison of accuracies in the Freiburg database based on frequency and time domain signals. (A) Interictal vs. preictal. (B) Interictal vs. ictal. (C) Interictal vs. ictal vs. preictal.





Results From the CHB-MIT Database

Results for the Frequency Domain Signals

Table 3 shows the results for all patients in the CHB-MIT database based on frequency domain signals. Similar to the Freiburg database, three different experiments were conducted using patients from this database.



Table 3. Frequency domain signal results for all patients in the CHB-MIT database.
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For the classification of interictal and preictal signals, the average accuracy, sensitivity and specificity of results obtained using this database were 95.6, 94.2, and 96.9%, respectively. The best results for the three measures were obtained from patients 8 and 20, while the classification accuracy was unsatisfactory (84.0%) for some patients, such as patient 21. The classification accuracy for patient 17 was <90%. Overall, the accuracy, sensitivity and specificity values of classification were >90% for most patients.

When applying this method to the classification of interictal and ictal signals, the average values of the three measures were >90% for all patients, and the average results were better than the classification of interictal and preictal signals. From the overall perspective of all patients, the sensitivities of classification for patients 14 and 21 were <90% but >85%. All other values of the three measures were >90%.

For the three-class problem, an accuracy of 93.0% was obtained, and the classification results for some patients, such as patients 1 and 9, were very good. A poor accuracy of signal classification was observed only for patient 14. The accuracy of signal classification for four patients (patients 16, 21, 23, and 24) was unsatisfactory, ranging from 80 to 90%, while the accuracy of signal classification for the other patients was >90%.

Results for the Time Domain Signals

Table 4 shows the time domain signal data for all patients in the CHB-MIT database. The average performances of the three experiments were obviously poor, with average accuracies of 59.5, 62.3, and 47.9%, respectively. A good result was obtained in the three experiments for only one patient, while the results for all other patients were disappointing. The diagnostic performances of classifying interictal vs. preictal signals in some patients, such as patients 4 and 5, were maintained at only a random level, and the results obtained for patients 22 and 23 were very poor and below random levels. The average accuracy of classification of interictal and ictal segments was slightly better than the classification of interictal and preictal signals. Inevitably, the accuracy of classification for individual subjects was maintained at only random or lower than random levels. The average accuracy of classifying interictal vs. ictal vs. preictal signals was 47.9%.



Table 4. Time domain signal results for all patients in the CHB-MIT database.
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Comparison of the Frequency and Time Domains

Figure 5 summarizes the comparison of the classification performances based on frequency and time domain signals from subjects in the CHB-MIT database. Generally, the three cases were detected effectively using frequency domain signals. The classification based on the frequency domain was remarkably more accurate than classification based on the time domain. The mean accuracies of classification calculated using frequency domain signals were 95.6, 97.5, and 93.0% for the three experiments, which were significantly greater than values calculated using time domain signals (59.5, 62.3, and 47.9%, respectively). The classification performances calculated using the frequency domain were higher than those calculated using the time domain signals for all patients.
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FIGURE 5. Comparison of accuracies based on frequency and time domain signals from subjects in the CHB-MIT database. (A) Interictal vs. preictal. (B) Interictal vs. ictal. (C) Interictal vs. ictal vs. preictal.






DISCUSSION


Comparison With Other Methods

Many other methods for detecting epileptic seizures have been proposed by other researchers. For example, Shoeb and Guttag presented a patient-specific machine learning technique based on the CHB-MIT database. They extracted spectral and spatial features and then combined non-EEG features to form a feature vector; an SVM was then used for classification. Their approach detected 96% of 173 test seizures in an event-based assessment (Shoeb and Guttag, 2010). A method based on the Freiburg database was presented in another study (Patnaik and Manyam, 2008) in which the authors used wavelet transform and neural networks together with the application of harmonic weight for classification; this method presented an average specificity and sensitivity of 99.19 and 91.29%, respectively. Another patient-specific seizure detection method using the Freiburg database has been described (Yuan et al., 2012). The fractal intercept derived from fractal geometry was extracted as a novel nonlinear feature of EEG signals, and the relative fluctuation index was calculated as a linear feature. The feature vector consisting of the two EEG descriptors was fed into a single-layer neural network for classification. For the segment-based level, the sensitivity was 91.72%, and the specificity was 94.89%. These existing methods for the detection of seizures use hand-engineered techniques to extract features from EEG signals. Their performance strongly depends on the selection of hyperparameters and the data, and research requires not only a wealth of expertise but also a substantial amount of labor. Therefore, automatic feature learning has a substantial advantage over the traditional methods of manual feature extraction (Ullah et al., 2018). CNNs are a type of a DL method that processes data without requiring manual feature extraction or selection. CNNs extract features more discriminatively and robustly than hand-designed features and adapt to internal data structures (Cun, 1995).

Of course, some studies have used DL for seizure detection. A 13-layer deep CNN algorithm was implemented to detect normal, preictal and seizure classes using the Bonn database (Acharya et al., 2017). The proposed technique exhibited accuracy, specificity and sensitivity values of 88.67, 90.00, and 95%, respectively, but the 13-layer deep CNN may obviously require a substantial amount of labor to elucidate the best network structure. In our study, the CNN included only three main layers, and the network was very simple compared with the deep network. Meanwhile, satisfactory results were obtained from both databases analyzed using the same network. In addition, a 1-s time segment was used for detection once the model was completely trained. All of these features provide great possibilities for real-time detection in the clinic.

Compared with the studies described above, our study reported equal or even better performance. For the Freiburg database, we obtained average accuracies of 96.7, 95.4, and 94.3% for all three experiments, while the average accuracies obtained using the CHB-MIT database were 95.6, 97.5, and 93% for the three cases analyzed. In the present study, we analyzed two types of binary classification problems and a three-class problem using both intracranial data and scalp data based on the proposed method. Three-class problems have rarely been tested using data from these two databases and achieved good results, and a large number of results will be powerful for proving the feasibility of the method.



Frequency and Time Domains

Many existing automatic seizure detection techniques use traditional signal processing and machine learning techniques. Some of these techniques show good accuracy for one problem but fail to perform accurately for others, e.g., they classify seizure vs. nonseizure cases with good accuracy but show poor performance for distinguishing normal vs. ictal vs. interictal signals (Zhang et al., 2017). One of the remaining challenges is the development of a generalized model that classifies both binary and ternary problems. Therefore, we tested this system on three cases: (i) interictal vs. preictal, (ii) interictal vs. ictal and (iii) interictal vs. ictal vs. preictal. The results obtained from all three experiments exhibited >90% accuracy, even for the ternary problem based on the frequency domain, although the performance of the system for classifying the ternary problem was decreased to a certain degree. For all three cases, the frequency domain performed better than the time domain.

In addition, one challenge underlying the development of a successful seizure detection method is that some methods exhibit excellent results based on their own databases, but their performance decreases when other databases are used. Thus, the identification of a method that adequately adapts to multiple datasets is challenging. Furthermore, the characteristics of EEG analyses of different brain locations, patient ages, patient sexes and seizure types vary significantly among patients with epilepsy, leading to substantial individual differences (Wilson et al., 2004; Yang et al., 2018). In this study, we used two completely different databases to test related methods, and the patients in these two databases exhibited several types of seizures and large age ranges. According to our results, the average accuracy of results based on the frequency domain was better than results based on the time domain in all experiments, regardless of whether the Freiburg or CHB-MIT database was used. In addition, better results were obtained for most patients when the frequency domain was analyzed. Therefore, this method might be adapted to account for individual differences or other epileptic databases to a certain extent. The accuracy range was smaller in the frequency domain than in the time domain across all patients in both databases. Therefore, individual differences may have less of an impact on the performance of the method based on the frequency domain than on the time domain, indicating greater stability.

Finally, seizure detection is challenging because the electrical activity of the brain is mediated by numerous classes of neurons with overlapping characteristics (Shoeb and Guttag, 2010), and improvements in the detection performance by extracting more effective features and excluding irrelevant features or redundant features among different classes is thus impossible. In our study of the Freiburg database, the performance of the time domain was better than the frequency domain for some patients, but the average performance of the frequency domain was still better. For the CHB-MIT database, the frequency domain performed better than the time domain in almost all situations. In other words, both the two-class and three-class signals were effectively detected using frequency domain signals. The classification based on the frequency domain was remarkably more accurate, sensitive and specific than classification based on the time domain for both databases. Therefore, the CNN may more easily extract more effective features based on the frequency domain than on the time domain.



Impacts of the Two Databases

We completed three sets of experiments using two different public databases. For the analysis of frequency domain signals in the Freiburg database, average accuracies of 96.7, 95.4, and 92.3% were obtained for the three experiments. For the CHB-MIT database, the average accuracies of the three experiments were 95.6, 97.5, and 93%. Comparable performances were observed in these two datasets when frequency domain segments were used as input samples. However, the two sets of data showed significant differences when the original signal was used as the training data. For the Freiburg database, the average accuracies were 91.1, 83.8, and 85.1% in the three experiments, while the average accuracies for the CHB-MIT database were only 59.5, 62.3, and 47.9%. One potential explanation for this discrepancy is that the data in the Freiburg database were obtained from intracranial signals, while the signals in the CHB-MIT database were obtained from scalp electrodes. Intracranial signals have a high signal-to-noise ratio and few artifacts, while signals from scalp electrodes contain more noise interference, which may result in the extraction of low-quality features. Another potential explanation for this discrepancy is that the signals in the Freiburg database were recorded directly from focal areas, while signals in the CHB-MIT database were recorded from whole-brain electrodes, and more redundant information may have been included. Intracranial EEGs also include features that are not observed within the scalp EEGs because of the spatial averaging effect of the dura and skull (Shoeb and Guttag, 2010).




CONCLUSIONS

Currently, epileptic activity in EEG recordings is mainly examined using a number of traditional and trending technologies. Automation of this process presents many advantages, including a faster diagnosis, continuous monitoring, and reduction in the overall cost of medical treatment (Yan et al., 2016b). We conducted experiments to compare the performances of time and frequency domain signals. The method not only avoided the complex feature extraction process but also used a very simple CNN structure. Both the Freiburg and CHB-MIT datasets were analyzed to confirm the validity of our method, and frequency domain signals performed better than time domain signals. When frequency domain signals were analyzed, both two- and three-class problems were solved with satisfactory results. One limitation of this study is that the large volumes of continuous EEG recordings required for deep learning algorithms are limited. In addition, the non-abruptness phenomenon and inconsistency of the signals, along with different brain location, patient ages, patient sexes and seizure types are challenging issues that affect the consistency of performance. In the future, we plan to apply this method to online epileptic signal detection. After classification, our next research object is to develop a successful seizure forecasting model.
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Recent neurophysiological and computational studies have proposed the hypothesis that our brain automatically codes the nth-order transitional probabilities (TPs) embedded in sequential phenomena such as music and language (i.e., local statistics in nth-order level), grasps the entropy of the TP distribution (i.e., global statistics), and predicts the future state based on the internalized nth-order statistical model. This mechanism is called statistical learning (SL). SL is also believed to contribute to the creativity involved in musical improvisation. The present study examines the interactions among local statistics, global statistics, and different levels of orders (mutual information) in musical improvisation interact. Interactions among local statistics, global statistics, and hierarchy were detected in higher-order SL models of pitches, but not lower-order SL models of pitches or SL models of rhythms. These results suggest that the information-theoretical phenomena of local and global statistics in each order may be reflected in improvisational music. The present study proposes novel methodology to evaluate musical creativity associated with SL based on information theory.

Keywords: creativity, Markov model, N-gram, improvisation, statistical learning, machine learning, uncertainty, entropy


INTRODUCTION


Statistical Learning in the Brain: Local and Global Statistics

The notion of statistical learning (SL) (Saffran et al., 1996), which includes both informatics and neurophysiology (Harrison et al., 2006; Pearce and Wiggins, 2012), involves the hypothesis that our brain automatically codes the nth-order transitional probabilities (TPs) embedded in sequential phenomena such as music and language (i.e., local statistics in nth-order levels) (Daikoku et al., 2016, 2017b,c; Daikoku and Yumoto, 2017), grasps the entropy/uncertainty of the TP distribution (i.e., global statistics) (Hasson, 2017), predicts the future state based on the internalized nth-order statistical model (Daikoku et al., 2014; Yumoto and Daikoku, 2016), and continually updates the model to adapt to the variable external environment (Daikoku et al., 2012, 2017d). The concept of brain nth-order SL is underpinned by information theory (Shannon, 1951) involving n-gram or Markov models. TP (local statistics) and entropy (global statistics) are used to estimate the statistical structure of environmental information. The nth-order Markov model is a mathematical system based on the conditional probability of sequence in which the probability of the forthcoming state is statistically defined by the most recent n state (i.e., nth-order TP). A recent neurophysiological study suggested that sequences with higher entropy are learned based on higher-order TP whereas those with lower entropy are learned based on lower-order TP (Daikoku et al., 2017a). Another study suggested that certain regions or networks perform specific computations of global statistics (i.e., entropy) that are independent of local statistics (i.e., TP) (Hasson, 2017). Few studies, however, have investigated how perceptive systems of local and global statistics interact. It is important to examine the entire process of brain SL in both computational and neurophysiological areas (Daikoku, 2018b).



Statistical Learning and Information Theory

Local Statistics: Nth-Order Transitional Probability

Research suggests that there are two types of coding systems involved in brain SL (see Figure 1): nth-order TPs (local statistics at various order levels) (Daikoku et al., 2017a; Daikoku, 2018a) and uncertainty/entropy (global statistics) (Hasson, 2017). The TP is the conditional probability of an event B, given that the most recent event A has occurred—this is written as P(B|A). The nth-order TP distributions sampled from sequential information such as music and language can be expressed by nth-order Markov models (Markov, 1971). The nth-order Markov model is based on the conditional probability of an event en+1, given the preceding n events based on Bayes' theorem [P(en+1|en)]. From a psychological viewpoint, the formula can be interpreted as positing that the brain predicts a subsequent event en+1 based on the preceding events en in a sequence. In other words, learners expect the event with the highest TP based on the latest n states, and are likely to be surprised by an event with lower TP. Furthermore, TPs are often translated as information contents [ICs, -log21/P(en+1|en)], which can be regarded as degrees of surprising and predictable (Pearce and Wiggins, 2006). A lower IC (i.e., higher TPs) means higher predictability and smaller surprise whereas a higher IC (i.e., lower TPs) means lower predictability and larger surprise. In the end, a tone with lower IC may be one that a composer is more likely to predict and choose as the next tone compared to tones with higher IC. IC can be used in computational studies of music to discuss the psychological phenomena involved in prediction and SL.
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FIGURE 1. Relationship between order of transitional probabilities, entropy, conditional entropy, and MI illustrated using a Venn diagram. The degree of dependence on Xi for Xi+1 is measured by MI (MI (I(X;Y)) = entropy (H(Xi+1)] – conditional entropy [H(Xi+1|Xi))). The MI of sequences in this figure is more than 0. Thus, each event Xi+1 in the sequence is dependent on a preceding event Xi.



Global Statistics: Entropy and Uncertainty

Entropy (i.e., global statistics, Figure 1) is also used to understand the general predictability of a sequence (Manzara et al., 1992; Reis, 1999; Cox, 2010). It is calculated from probability distribution, interpreted as uncertainty (Friston, 2010), and used to evaluate the neurophysiological effects of global SL (Harrison et al., 2006) as well as decision making (Summerfield and de Lange, 2014), anxiety (Hirsh et al., 2012), and curiosity (Loewenstein, 1994). A previous study reported that the neural systems of global SL were partially independent of those of local SL (Hasson, 2017). Furthermore, reorganization of learned local statistics requires more time than the acquisition of new local statistics, even if the new and previously acquired information sets have equivalent entropy levels (Daikoku et al., 2017d). Some articles, however, suggest that the global statistics of sequence modulate local SL (Daikoku et al., 2017a). Furthermore, uncertainty of auditory and visual statistics is coded by modality-general, as well as modality-specific, neural systems (Strange et al., 2005; Nastase et al., 2014). This suggests that the neural basis that codes global statistics, as well as local statistics, is a domain-general system. Although domain-general and domain-specific learning system in the brain are under debate (Hauser et al., 2002; Jackendoff and Lerdahl, 2006), there seems to be neural and psychological interactions in perceptions between local and global statistics.

Depth: Mutual Information

Mutual information (MI) and pointwise MI (PMI) are measures of the mutual dependence between two variables. PMI refers to each event in sequence (local dependence), and MI refers to the average of all events in the sequence (global dependence). In the framework of SL based on TPs [P(en+1|en)], MI explains how an event en+1 is dependent on the preceding event en. Thus, MI is key to understanding the order of SL. For example, a typical oddball sequence consisting of a frequent stimulus with high probability of appearance and a deviant stimulus with low probability of appearance has weak dependence between two adjacent events (en, en+1) and shows low MI, because event en+1 appears independently of the preceding events en. In contrast, an SL sequence based on TPs, but not probabilities of appearance, has strong dependence on the two adjacent events and shows larger MI. For example, a typical SL paradigm that consists of the concatenation of pseudo-words with three stimuli has large MI until second-order Markov or tri-gram models [i.e., P(C|AB)] whereas it has low MI from third-order Markov or four-gram models [i.e., P(D|ABC)]. Thus, MI is sometimes used to evaluate levels of SL in both neurophysiological (Harrison et al., 2006) and computational studies (Pearce et al., 2010). In sum, the three types of information-theoretical evaluations of SL models (i.e., IC, entropy, and MI) can be explained in terms of psychological aspects. (1) IC reflects local statistics. A tone with lower IC (i.e., higher TPs) may be one that a composer is more likely to predict and choose as the next tone compared to tones with higher IC. (2) Entropy reflects global statistics and is interpreted as the uncertainty of whole sequences. (3) MI reflects the levels of orders in statistics and is interpreted as the dependence of preceding sequential events in SL. Using them, the present study investigated how local statistics, global statistics, and the levels of the orders in musical improvisation interact.



Musical Improvisation

Implicit statistical knowledge is considered to contribute to the creativity involved in musical composition and musical improvisation (Pearce and Wiggins, 2012; Norgaard, 2014; Wiggins, 2018). Additionally, it is widely accepted that implicit knowledge causes a sense of intuition, spontaneous behavior, skill acquisition based on procedural learning, and creativity, and is also closely tied to musical expression, such as composition, playing, and intuitive creativity. Particularly, in musical improvisation, musicians are forced to express intuitive creativity and immediately play their own music based on long-term training associated with procedural and implicit learning (Clark and Squire, 1998; Ullman, 2001; Paradis, 2004; De Jong, 2005; Ellis, 2009; Müller et al., 2016). Thus, compared to other types of musical composition in which a composer deliberates and refines a composition scheme for a long time based on musical theory, the performance of musical improvisation is intimately bound to implicit knowledge because of the necessity of intuitive decision making (Berry and Dienes, 1993; Reber, 1993; Perkovic and Orquin, 2017) and auditory-motor planning based on procedural knowledge (Pearce et al., 2010; Norgaard, 2014). This suggests that the stochastic distribution calculated from musical improvisation may represent the musicians' implicit knowledge and creativity in music that has been developed via implicit learning. Few studies have investigated the relationship between musical improvisation and implicit statistical knowledge. The present study, using real-world improvisational music, first proposed a computational model of musical creativity in improvisation based on TP distribution, and examined how local statistics, global statistics, and hierarchy in music interact.




METHODS


Extraction of Spectral and Temporal Information

General Methodologies

The three musicians of William John Evans (Autumn Leaves from Portrait in Jazz, 1959; Israel from Explorations, February 1961; I Love You Porgy from Waltz for Debby, June 1961; Stella by Starlight from Conversations with Myself, 1963; Who Can I Turn To? from Bill Evans at Town Hall, 1966; Someday My Prince Will Come from the Montreux Jazz Festival, 1968; A Time for Love from Alone, 1969), Herbert Jeffrey Hancock (Cantaloupe Island from Empyrean Isles, 1964; Maiden Voyage from Flood, 1975; Someday My Prince Will Come from The Piano, 1978; Dolphin Dance from Herbie Hancock Trio '81, 1981; Thieves in the Temple from The New Standard, 1996; Cottontail from Gershwin's World, 1998; The Sorcerer from Directions in Music, 2001), and McCoy Tyner (Man from Tanganyika from Tender Moments, 1967; Folks from Echoes of a Friend, 1972; You Stepped Out of a Dream from Fly with the Wind, 1976; For Tomorrow from Inner Voice; 1977; The Habana Sun from The Legend of the Hour, 1981; Autumn Leaves from Revelations, 1988; Just in Time from Dimensions, 1984) were used in the present study. The highest pitches with length were extracted based on the following definitions: the highest pitches that can be played at a given point in time, pitches with slurs that can be counted as one, and grace notes were excluded. In addition, the rests that were related to highest-pitch sequences were also extracted. This spectral and temporal information were divided into four types of sequences: [1] a pitch sequence without length and rest information (i.e., pitch sequence without temporal information); [2] a temporal sequence without pitch information (i.e., temporal sequence without pitches); [3] a pitch sequence with length and rest information (i.e., pitch sequence with temporal information); and [4] a temporal sequence with pitch information (i.e., temporal sequence with pitches).

Pitch Sequence Without Temporal Information

For each type of pitch sequence, all of the intervals were numbered so that an increase or decrease in a semitone was 1 and −1 based on the first pitch, respectively. Representative examples were shown in Figure 2. This revealed the relative pitch-interval patterns but not the absolute pitch patterns. This procedure was used to eliminate the effects of the change in key on transitional patterns. Interpretation of the key change depends on the musician, and it is difficult to define in an objective manner. Thus, the results in the present study may represent a variation in the statistics associated with relative pitch rather than absolute pitch.


[image: image]

FIGURE 2. Representative phrases of each type of transition pattern. Red: pitch transition, Blue: rhythm (temporal) transition. (A) Pitch; (B) Rhythm.



Temporal Sequence Without Pitches

The onset times of each note were used for analyses. Although, note onsets ignore the length of notes and rests, this methodology can capture the most essential rhythmic features of the music (Povel, 1984; Norgaard, 2014). To extract a temporal interval between adjacent notes, all onset times were subtracted from the onset of the preceding note. Then, for each type of temporal sequence, the second to last temporal interval was divided by the first temporal interval. Representative examples are shown in Figure 2. This revealed relative rhythm patterns but not absolute rhythm patterns; it is independent of the tempo of each piece of music.

Pitch Sequence With Temporal Information

The two methodologies of pitch and temporal sequences were combined. For each type of sequence, all of the intervals were numbered so that an increase or decrease in a semitone was 1 and −1 based on the first pitch, respectively. Additionally, for each type of pitch sequence, all onset times were subtracted from the onset of the preceding note, and the second to last temporal intervals were divided by the first temporal interval. The representative examples were shown in Figure 2. On the other hand, a temporal interval of first-order model was calculated as a ratio to the crotchet (i.e., quarter note), because only a temporal interval is included for each sequence and the note length cannot be calculated as a relative temporal interval. Thus, the patterns of pitch sequence (p) with temporal information (t) were represented as [p] with [t].

Temporal Sequence With Pitches

The methodologies of sequence extraction were the same as those of the pitch sequence with rhythm (see Figure 2), whereas the TPs of the rhythm, but not pitch, sequences were calculated as a statistic based on multi-order Markov chains. The probability of a forthcoming temporal interval with pitch was statistically defined by the last temporal interval with pitch to six successive temporal interval with pitch (i.e., first- to six-order Markov chains). Thus, the relative pattern of temporal sequence (r) with pitches (p) were represented as [t] with [p].



Modeling and Analysis

The TPs of the sequential patterns were calculated based on 0th−5th-order Markov chains. The nth-order Markov chain is the conditional probability of an event en+1, given the preceding n events based on Bayes' theorem:

[image: image]

The ICs (I[en+1|en]) and conditional entropy [H(B|A)] in the nth-order TP distribution (hereafter, Markov entropy) were calculated using TPs in the framework of information theory.
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where P(bj|ai) is a conditional probability of sequence “ai bj.” Then, MI [I(X;Y)] were calculated in 1st-, 2nd-, and 3rd-order Markov models. MI is an information theoretic measure of dependency between two variables (Cover and Thomas, 1991). The MI of two discrete variables X and Y can be defined as

[image: image]

where p(x,y) is the joint probability function of X and Y, and p(x) and p(y) are the marginal probability distribution functions of X and Y, respectively. From entropy values, the MI can also be expressed as

[image: image]

where H(X) and H(Y) are the marginal entropies, H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y) is the joint entropy of X and Y (Figure 1). Based on psychological and information-theoretical concepts, the Equation (5) can be regarded that the amount of entropy (uncertainty) remaining about Y after X is known. That is, the MI is corresponding to reduction in entropy (uncertainty). Then, the transitional patterns with 1st−20th highest TPs in all musicians, which show higher predictabilities in each musician, were used as local statistics of familiar phrases. The applied familiar phrases and the TPs were shown in Supplementary material. The TPs of familiar phrases were averaged. Repeated-measure analysis of variances (ANOVAs) with factors of order and type of sequence were conducted in each IC, entropy, and MI. Furthermore, the global statistics and MI in each order were compared with local statistics of familiar phrases by Pearson's correlation analysis. Statistical significance levels were set at p = 0.05 for all analyses.




RESULTS


Local vs. Global Statistics

The means of IC, conditional entropy, and mutual information were shown in Figure 3. The means of IC, conditional entropy, and mutual information were shown in Figure 3. The main sequence effect were significant [IC: F(2.39, 47.89) = 1010.07, p < 0.001, partial η2 = 0.98; Entropy: F(1.20, 23.92) = 828.82, p < 0.001, partial η2 = 0.98; MI: F(2.00, 39.91) = 225.54, p < 0.001, partial η2 = 0.92] (Table 1). The main order effect were significant [IC: F(2.05, 40.93) = 2909.59, p < 0.001, partial η2 = .99; Entropy: F(1.55, 31.03) = 2166.02, p < 0.001, partial η2 = 0.99; MI: F(1.68, 33.59) = 2468.35, p < 0.001, partial η2 = 0.99] (Table 1). The order-sequence interactions were significant [IC: F(3.39, 67.76) = 592.24, p < 0.001, partial η2 = 0.97; Entropy: F(2.25, 44.94) = 282.95, p < 0.001, partial η2 = 0.93; MI: F(1.82, 36.45) = 351.48, p < 0.001, partial η2 = 0.95)] (Table 1).
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FIGURE 3. The means of information content (IC), Conditional entropy, and mutual information (MI). Error bars represent standard errors of the means. P, pitch sequence; R, rhythm sequence; PwR, pitch sequence with rhythms; RwP, rhythm sequence with pitches.





Table 1. ANOVA results.
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Local vs. Global Statistics

All of the results in correlation analysis are shown in Figure 4. In pitch sequence without temporal information, 1st−5th-order models showed that the conditional entropies of the TP distributions were moderately (0.4 ≦ |r| < 0.7) related to the ICs of TPs of familiar phrases (1st: r = 0.65, p = 0.001; 2nd: r = 0.66, p = 0.001; 3rd: r = 0.63, p = 0.002; 4th: r = 0.66, p = 0.001; 5th: r = 0.69, p = 0.001). In pitch sequence with temporal information, 1st-, 4th, and 5th-order models showed that the conditional entropies of the TP distributions were moderately (0.4 ≦ |r| < 0.7) related to the ICs of TPs of familiar phrases (1st: r = 0.58, p = 0.006; 4th: r = 0.49, p = 0.023; 5th: r = 0.43, p = 0.049), and 2nd- and 3rd-order models showed that the conditional entropies of the TP distributions were strongly (0.7 ≦ |r| < 1.0) related to the ICs of TPs of familiar phrases (2nd: r = 0.73, p < 0.001; 3rd: r = 0.82, p < 0.001). In temporal sequence with pitches, 0th−5th-order models showed that the conditional entropies of the TP distributions were moderately (0.4 ≦ |r| < 0.7) related to the ICs of TPs of familiar phrases (0th: r = 0.68, p = 0.001; 1st: r = 0.61, p = 0.004; 2nd: r = 0.72, p < 0.001; 3rd: r = 0.45, p = 0.043; 4th: r = 0.45, p = 0.004; 5th: r = 0.47, p = 0.003).
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FIGURE 4. The correlation analysis between conditional entropy (global statistics) and ICs of familiar phrases (local statistics) based on zeroth- to fifth-order Markov models of pitch and temporal (rhythm) sequences.





Local Statistics vs. Hierarchy

All of the results are shown in Figure 5. In pitch sequence without temporal information, 3rd−5th-order models showed that the MI of the TP distributions were moderately (0.4 ≦ |r| < 0.7) related to the ICs of TPs of familiar phrases (3rd: r = 0.45, p = 0.043; 4th: r = 0.45, p = 0.043; 5th: r = 0.47, p = 0.03). In pitch sequence with temporal information, 2nd- and 3rd-order models showed that the MI of the TP distributions were moderately (0.4 ≦ |r| < 0.7) related to the ICs of TPs of familiar phrases (2nd: r = 0.44, p = 0.046; 3rd: r = 0.49, p = 0.025).
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FIGURE 5. The correlation analysis between MI and ICs of familiar phrases (local statistics) based on zeroth- to fifth-order Markov models of pitch and temporal (rhythm) sequences.






DISCUSSION


Psychological Notions of Information Theory

The present study investigated how local statistics (TP and IC), global statistics (conditional entropy), and levels of orders (MI) in musical improvisation interact. The TP, IC, conditional entropy, and MI can be calculated based on Markov models, which are also applied to psychological and neurophysiological studies on SL (Harrison et al., 2006; Furl et al., 2011; Daikoku, 2018b). Based on psychological and neurophysiological studies on SL (Harrison et al., 2006; Pearce et al., 2010; de Zubicaray et al., 2013; Daikoku et al., 2015; Monroy et al., 2017), these three pieces of information can be translated to psychological indices: a tone with lower IC (i.e., higher TPs) may be one that a composer is more likely to predict and choose as the next tone compared to tones with higher IC whereas entropy and MI are interpreted as the global predictability of the sequences and the levels of order for the prediction, respectively. Previous studies also suggest that musical creativity in part depends on SL (Pearce, 2005; Pearce et al., 2010; Omigie et al., 2012, 2013; Pearce and Wiggins, 2012; Hansen and Pearce, 2014; Norgaard, 2014), and that musical training and experience is associated with the cognitive model of probabilistic structure in the music involved in SL (Pearce, 2005; Pearce and Wiggins, 2006; Pearce et al., 2010; Omigie et al., 2012, 2013; Pearce and Wiggins, 2012; Hansen and Pearce, 2014; Norgaard, 2014). The present study, using improvisational music by three musicians, examined how local and global statistics embedded in music interact, and discussed them from the interdisciplinary viewpoint of SL.



Local vs. Global Statistics

In pitch sequence with and without temporal information, higher-order (1st−5th order) models detected positive correlations between global (conditional entropy) and local statistics (IC) in musical improvisation whereas no significance was detected in a lower-order (0th order) model. To understand the local statistics of familiar phrases, the present study used only the transitional patterns that showed the 1st−20th highest TPs for all musicians, which can be interpreted as higher predictabilities for each musician. Thus, the results suggest that, when the TPs of familiar phrases are decreased, the conditional entropy (uncertainty) of the entire TP distribution is increased. This finding is mathematically and psychologically reasonable. When improvisers are attempting to use various types of phrases, the variability of sequential patterns is increasing. In the end, the ICs (degree of surprise) of familiar phrases are positively correlated with the conditional entropy (uncertainty) of the entire sequential distribution. It is of note that this correlation could not be detected in a lower-order (0th order) model, and that no correlation was detected in a temporal sequence without pitches. This suggests that the interaction between local and global statistics may be stronger in the SL of spectral sequence compared to that of temporal sequence. Furthermore, these correlations may be detectable in higher-order models. This may suggest that higher-order SL can connect with grasping entropy. In sum, skills of musical improvisation and intuition may strongly depend on SL of pitch compared with that of rhythm. In addition, this phenomenon on intuition may occur in higher-, but not lower-order levels in SL. The higher-order SL model of pitches may be important to grasp the entire process of hierarchical SL in musical improvisation.



Local Statistics vs. Hierarchy

In pitch sequences without temporal information, higher-order (3rd−5th order) models showed negative correlations between dependence of previous events (MI) and local statistics (IC), and no significance was detected in lower-order (0th−2nd order) models. This finding is also mathematically and psychologically reasonable. When players strongly depend on previous sequential information to improvise music, they tend to use familiar phrases because familiar phrases with higher TPs P(Xi+1|Xi) tend to have strong dependence on previous sequential information (Xi). In the end, the ICs (degree of surprise) of familiar phrases are decreased when improvisers depend on previous sequential information that can be detected as larger MIs. Interestingly, this correlation could not be detected in a lower-order model (0th order), and no correlation was detected in the temporal sequence without pitches. As shown in the correlation between local and global statistics, the interaction between local statistics and levels of orders may be stronger in the SL of spectral sequence compared to that of temporal sequence. Furthermore, these correlations may be detectable in higher-order models. In contrast, fourth- and fifth-order models of pitch sequence with temporal information did not show correlations. Thus, rhythms may modulate the levels of orders in the SL of pitches in improvisational music (Daikoku, 2018c). This hypothesis may be supported in the models of temporal sequence with pitches. No correlation was detected in temporal sequence (Daikoku et al., 2018) with pitches. Future study is needed to investigate how rhythms affect improvisational music, and how the SL of rhythms interact with those of pitches. It is of note that the present study did not directly investigate the improviser's statistical knowledge of music, as only the statistics of music were analyzed. However, the transition probabilities shape only a small part of their respective styles. Future study should investigate the SL of music from many improvisers using interdisciplinary approaches of neurophysiology and informatics in parallel. The methodologies in this study are missing important information that constructs music such as beat, stresses, and ornamental note, which inspire the rhythm and intonation. Furthermore, the present study only analyzed three improvisers. To discuss universal phenomena in SL associated with improvisation, future study will be needed to examine a body of pieces of music.




CONCLUSION

The present study investigated how local statistics (TP and IC), global statistics (entropy), and levels of orders (MI) in musical improvisation interact. Generally, the interactions among local statistics and global statistics were detected in higher-order SL models of pitches, but not lower-order SL models of spectral sequence or SL models of temporal sequence. The results of the present study suggested that information-theoretical phenomena of local and global statistics in each hierarchy can be reflected in improvisational music. These results support a novel methodology to evaluate musical creativity associated with SL based on information theory.
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Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse activity compared to other systems, however, whether sparseness and neurogenesis interact during memory encoding remains elusive. We implement a novel learning rule consistent with experimental findings of competition among adult-born neurons in a supervised multilayer feedforward network trained to discriminate between contexts. From this rule, the DG population partitions into neuronal ensembles each of which is biased to represent one of the contexts. This corresponds to a low dimensional representation of the contexts, whereby the fastest dimensionality reduction is achieved in sparse models. We then modify the rule, showing that equivalent representations and performance are achieved when neurons compete for synaptic stability rather than neuronal survival. Our results suggest that competition for stability in sparse models is well-suited to developing ensembles of what may be called memory engram cells.
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1. INTRODUCTION


1.1. What Is Known

The hippocampal dentate gyrus (DG) is known to participate in the generation and maintenance of spatio-contextual memories via groups of cells whose activity is causally responsible for the recollection of particular associations (Josselyn et al., 2015; Tonegawa et al., 2015). The DG is noted for a combination of distinctive properties, including adult neurogenesis of the principle granule cells (Wu et al., 2015; Gonçalves et al., 2016) and extremely sparse activity (Jung and McNaughton, 1993; Leutgeb et al., 2007; Danielson et al., 2016; Diamantaki et al., 2016).

Since most adult-born neurons rapidly die, it has long been hypothesized that they must compete amongst themselves, and with mature neurons, for survival dependent upon their contribution to behavior (Bergami and Berninger, 2012). Consistent with this notion, newly adult-born cells integrate into the DG in an experience-dependent manner (Kempermann et al., 1997b; Gould et al., 1999; Bergami et al., 2015; Alvarez et al., 2016; Zhuo et al., 2016), and numerous studies have demonstrated that either ablation (Clelland et al., 2009; Sahay et al., 2011), or in vivo silencing of activity (Danielson et al., 2016; Zhuo et al., 2016) or synaptic output (Nakashiba et al., 2012) of these cells impairs discrimination of hippocampus-dependent associative memories, while enhancing survival of these cells can enhance such performance (Sahay et al., 2011). Similar interventions that silence adult-born cells after learning have shown that retrieval of recent memories is impaired (Gu et al., 2012).

Experience induces synaptic competition among adult-generated granule cells for contacts to CA3 neurons resulting in axonal retraction by mature cells induced by young cells (Yasuda et al., 2011). Elsewhere in both the central (Fitzsimonds et al., 1997; Tao et al., 2000; Du and Poo, 2004) and peripheral nervous systems (Sharma et al., 2010; Zhou et al., 2012), the strength of a neurons output synapses can retrogradely adjust the strength of its input synapses. It has been suggested that this biological phenomenon could encode a neurons performance errors to achieve a similar effect to the artificial backpropagation of error so commonly employed in training neural networks (Harris, 2008). Adult-born DG granule cells reach their targets in CA3 after about 4–6 weeks (Toni et al., 2008), overlapping with when they begin to participate in memory encoding (Clelland et al., 2009; Sahay et al., 2011; Nakashiba et al., 2012; Danielson et al., 2016; Zhuo et al., 2016), and thus may begin to receive signals from CA3 that indicate the success of their contribution to useful representations. The combination of these results suggests that neurogenesis may endow the DG with a kind of learning rule—DG neurons compete with each other for target-derived factors through their synaptic contact to CA3, in turn, influencing their probability of survival. Such a learning rule is the focus of our study.

In an apparently distinct thread of research, sparse activity in recurrent Hopfield-like networks is shown to reduce the interference between stored memories (Tsodyks and Feigel'man, 1988; Amit and Fusi, 1994) and, in models of vision, to enable the efficient representation of naturalistic images as combinations of statistically independent components (Olshausen and Field, 1996; Bell and Sejnowski, 1997), ideas that have roots in the efficient coding hypothesis (Barlow, 1961). In cortical models consisting of a single hidden layer multilayer perceptron with random input weights, it has been shown that pattern decorrelation (often called pattern separation in the neurogenesis literature) is not sufficient to yield proper memory retrieval in the presence of noise (Barak et al., 2013; Babadi and Sompolinsky, 2014). Instead, memory retrieval depends upon a balance between decorrelation of input patterns and generalization of those patterns to the correct class. In such models, sparseness improves memory retrieval by reducing the tradeoff between decorrelation and generalization (Barak et al., 2013). This apparent tradeoff has been analytically expressed in terms that reflect the counterintuitive amplification of noise by sparse coding (Babadi and Sompolinsky, 2014). As a result, there is a theoretical limit on the benefits provided by sparseness in a hidden layer with random input weights (Barak et al., 2013; Babadi and Sompolinsky, 2014). This limitation led some authors to suggest that random weighting is at least partly responsible for limiting the benefits of sparse coding (Babadi and Sompolinsky, 2014).



1.2. Our Contribution

One interpretation of these studies is that pattern classification performance, rather than pattern separation, as it has been defined in the neurogenesis literature, may be the appropriate measure of memory performance. We hone our questions into a framework similar to that employed in previous studies of sparse cortical representations (Barak et al., 2013; Babadi and Sompolinsky, 2014), a single-hidden layer, randomly connected feedforward neural network. Within this framework we represent the activities of the neurogenic cells of the dentate gyrus in the hidden layer. With only minimal assumptions, such a network can learn generalizable, nonlinear classifications (Barak et al., 2013), while allowing us to implement sparse coding, synaptic plasticity, and competition among DG neurons for contact with CA3. By supervising the output, the network is trained and then tested for discrimination between sets of input patterns.

We first demonstrate that our neuronal turnover rule, employing randomly drawn input weights, markedly increases the discrimination performance over the initial condition of random projection that was previously studied (Barak et al., 2013; Babadi and Sompolinsky, 2014). The rule exploits sparse coding such that the longer neuronal turnover is allowed to proceed, the sparser the optimal coding level. Since our input weights are always drawn randomly, our results suggest that the sparsening of the optimal code is due to the achievement of a particular hidden layer representation rather than a structuring of the input weights, as was the case explored by Babadi and Sompolinsky. Thus our work complements theirs by suggesting a learning rule via which very sparse codes are optimal for random input weights without require fine tuning.

We show that our rule induces a contextual preference among DG neurons, partitioning the population into ensembles whose average activities are biased for their respective contexts. This is equivalent to dimensionality reduction of the contextual representations in the DG. The final classification performed by the CA3 readout thereby suffers less errors during generalization. We demonstrate that the final achievable discrimination between contextual memories is constrained by the distribution of singular values of the DG representation, such that the sparse code can evolve to a greater difference in the representation space. We then construct a more general model based on evidence that the strength of a neurons output synapses can influence that of its input synapses via internal signals (Fitzsimonds et al., 1997; Tao et al., 2000; Du and Poo, 2004; Sharma et al., 2010; Zhou et al., 2012). This rule similarly reduces the dimensionality of the representation while shifting the activity-dependence toward sparser levels, improving memory performance. Our results suggest that axonal competition for target-mediated stability in sparse models is a novel form of encoding that does not require synaptic fine-tuning, and could be employed across many sparsely coded systems of the brain.




2. MATERIALS AND METHODS


2.1. Representations of Contexts

We represent the activity state of a population of EC neurons in response to a stimulus as a vector ξ, the elements of which neurons that are either spiking, ξj = +1, or not spiking ξj = −1. Patterns are split evenly into two contexts representing the two contexts that the network must learn. The synaptic current of a given DG unit i for pattern μ is defined as:

[image: image]

and its activity is given by a threshold function of the synaptic current controlled by θ:

[image: image]

The CA3 synaptic current is defined similarly as the weighted sum of the input from DG:

[image: image]

For every μ'th pattern we want the output of the trained network, [image: image] to be equal to a randomly pre-chosen target output state for the CA3 unit, either spiking ημ = +1, or not spiking, ημ = −1, for all patterns.



2.2. Training the Network With Neurogenesis

The task of the network is to use the training patterns to find a W such that when presented with patterns of a given class to which the network has not been explicitly trained it can correctly generalize, i.e., it will still output the correct class. We train the CA3 output weights in a similar manner to Barak et al. (2013). We assume that the activity of the EC consists of random, uncorrelated prototype patterns, ξ, that determine their corresponding current in the DG, [image: image]. We then assume there is noise, or variability in the system such that each prototype pattern is actually represented by a group of noisy instances of the prototype that are generated by flipping the sign of elements of the vector ξ with a fixed probability ν = 0.2. This allows us to calculate the mean synaptic current of a given DG unit i for pattern μ as:

[image: image]

Consider the difference between two noisy instances of a prototype pattern, say [image: image] at the t-th iteration and [image: image] at the t′-th iteration:

[image: image]

Here the sign accompanying “2” will be absorbed into Jij to simplify the calculation because [image: image].

[image: image]

Here [image: image] because [image: image]. On the other hand, let [image: image], then we have

[image: image]

Hence, the variance of each DG unit is given by

[image: image]

Since the synaptic currents of the i-th DG unit for noisy instances are sum of many randomly altered numbers, those synaptic currents can be assumed to be Gaussian. The expected value of the activity of the i-th DG unit can be deduced by

[image: image]

where [image: image] and [image: image] are probability density function and cumulative density function, respectively, of a normal distribution with mean [image: image] and variance [image: image]. To arrive at the desired target output, e.g., [image: image] for all μ, the cost function

[image: image]

should be minimized. We then find the linear least squared error solution to W,

[image: image]

by taking the Moore-Penrose pseudoinverse of the matrix [image: image],

[image: image]

[image: image]

where S* is the pseudoinverse of S, U and V are the matrices of left and right singular vectors, respectively, and Σ is the matrix of singular values. Here the Moore-Penrose pseudoinverse enables us to look for the best approximation using column vectors of [image: image]. The approximation is also the best-fit solution minimizing the cost function. More explanation about Moore-Penrose pseudoinverse can be found in Appendix A.

To implement the synaptic competition underlying neurogenesis we compare three different models. In Model 1 (Figures 1, 2, 3, 5), at each time step we kill DG units corresponding to the bottom 30% of absolute values in vector W, i.e., the input weights to those units are re-randomized. In Model 2 we explore a multicontext case presented in Figure 6 in which each DG unit projects to multiple CA3 units, therefore we take the sum of the absolute value of each DG units weight vector and compare this value across all DG units.


[image: image]

FIGURE 1. Neurogenesis enhances generalization performance. (A) In Model 1, after a weight vector is assigned by training, DG units with weak weights to CA3 are replaced with new randomly connected units. (B) At each day of training the network is tested with randomly generated patterns belonging to one of the two contexts. This generalization error decreases as a function of the number of iterations of neural turnover. Single simulation (gray) and mean of many simulations (black), before (red point) and after (orange point) neurogenesis. (C,D) CA3 Synaptic current distribution for all test patterns representing the two contexts before (C) and after (D) 128 iterations (days) of neural turnover. Results are from a network of 200 EC, 500 DG neurons and a single CA3 readout. Each context consists of 50 EC patterns with input noise, ν, fixed at 0.2, and theta is chosen to yield a coding level of f = 0.04, turnover rate is fixed at 0.30 (See Experimental Procedures). (E) Mean error is shown decreasing as a function of the number of iterations of neural turnover for three different coding levels. (F) Error is shown as a function of coding level before and after 128 iterations of neural turnover. After neurogenesis the performance is improved at all levels of sparseness (all coding levels, f). (G) The coding level at which minimum error occurs (optimal f) is plotted vs. the number of iterations of neural turnover. Neural turnover favor a sparser (reduced) coding level. Mean error is calculated as the mean of 20 simulations.




[image: image]

FIGURE 2. Neurogenesis exploits the low noise of the sparse code to outperform dense DG coding. (A) Distribution of CA3 current at t = 0 (before) vs. t = 128 (after) for the dense activity case of f = 0.5 for a group of test patterns generated from a single prototype pattern belonging to the (+) context. Vertical dashed line at 0 represents the activity threshold of the CA3 neuron (B) Same as in (A), but for the sparse case of f = 0.04. (C,D) Normalized CA3 readout weight distribution in dense (C) and sparse (D) cases. (E) Signal at CA3 vs. time for f = 0.5 (blue) and f = 0.04 (red). (F) Readout noise at CA3 vs. time for f = 0.5 (blue) and f = 0.04 (red). (G) Signal to noise ratio (SNR), calculated as data in (E) over data in (F). Demonstrates the advantage given by slower scaling of variance in the sparse case of f = 0.04. The results are plotted as the mean of 20 simulations.




[image: image]

FIGURE 3. Neurogenesis clusters context representations in DG activity space. (A) Matrix of pairwise correlations between training patterns represented in the DG, ordered by context so that patterns 1–50 correspond to the (+) context and patterns 51–100 correspond to (-) context. For a single simulation the correlation matrix of patterns for f = 0.50 before (left) and after (right) 128 iterations of neural turnover. (B) Same as in (A) but for f = 0.04. (C) Training patterns from the two contexts are projected onto the principal components. For visual clarity only the means of all training patterns for each of the 100 prototypes are projected. Closed and open circles correspond to the (+) and (-) contexts, respectively. Dense coding, f = 0.50, before (left) and after (right) 128 iterations of neural turnover. (D) as in (C) but for sparse coding of f = 0.04. (E) Mean correlation between patterns of opposite contexts (between) and patterns of the same context (within), calculated as mean of 20 simulations. (F) Schematic illustration of context discrimination by neurogenesis. Closed and open circles represent the patterns of the two respective contexts. Intuitively, as neuronal turnover and retraining proceeds the patterns in DG space are shifted in dimensions that are mostly parallel to the weight vector, over time leading to greater separation. All above results are from a single simulation.



In Model 3 presented in Figure 7, rather than re-randomizing all input weights of selected DG units, we determine the probability of synaptic turnover of each DG unit from a linear transfer function of its DG-CA3 weight (Figure S3A). Results presented in Figure 7 are from the mean of 100 simulations with a slope = 2.5 for the linear transfer function.



2.3. Analyzing Performance of the Network

To evaluate the performance of the network, the signal-to-noise ratio is introduced. The signal is defined by the square of the expectation of the difference between CA3 synaptic currents corresponding to (+) context, i.e., ημ = +1, and (−) context, i.e., ημ = −1, among all the patterns.

[image: image]

To progress, we define the context-bias of a given DG unit i, Ψi, as the difference between the fraction of (+) context patterns, [image: image], and the fraction of (−) context patterns, [image: image], to which it responds.

[image: image]

where [image: image] is the fraction of (±) context patterns activating DG unit i. On the other hand,

[image: image]

[image: image]

[image: image]

Note that S here is a matrix, whose column vectors are activities of DG neurons for different input patterns. η is a label vector, where entries are expected output (CA3) of the patterns. Then we can then express the context-bias in terms of S and η in a matrix-vector equation as:

[image: image]

With this, the signal can be expressed as

[image: image]

[image: image]

On the other hand, we define the noise as the sum of variances of this current for the (+) and (−) contexts respectively:

[image: image]

[image: image]

[image: image]

From these expressions we derive the signal to noise ratio (SNR) in terms of [image: image] and WT.

[image: image]

[image: image]

[image: image]

This expression allows us to observe the intuitive relationship between the context-bias of DG cells and the SNR. The second term in the numerator of Equation (22) should vanish as N → ∞, as it sums random numbers centered at zero.

For WT,

[image: image]

In the presentation of our results it is useful to let [image: image] where ui is the i-th column of U, so that

[image: image]

observing the weight vector as a weighted sum of projected context-bias vectors. The derivation of this equation can be found in Appendix B.



2.4. Dimensionality of DG Contextual Representation

From above, the weight vector is defined as:

[image: image]

Permitting us to rewrite the weight vector as a linear sum of coefficients producted with their respective left singular vectors:

[image: image]

where D is the dimension of the square matrix U. The D dimensions are ranked from 1 to D according to their corresponding coefficients. We define a cumulative weight vector of a given dimensionality as:

[image: image]

where d takes a value from 1 to D, representing the number of dimensions chosen for a given cumulative weight vector. We then define the cumulative performance, [image: image], where the error is calculated for every cumulative weight vector (Figure S3C).



2.5. Model Parameters

All results in Figures 1–5 are from a network with 200 EC, 500 DG units and a single CA3 unit. Data in Figure 6 are from the same size network except that the number of CA3 units is increased to 3 to allow for multicontext discrimination. In Figures 1, 2, 3, 4, 7 the network was trained with the mean representation of each of 100 prototype patterns as described above. In Figure 6 the network was trained with 8 groups of 12 prototypes, to represent 8 subcontexts, by calculating the mean representation of each prototype assuming some variability as described above. In Figure 5 the network is the same size, however, training consisted of 100 noisy instances of 100 prototypes, rather than using the mean representation of each prototype. This is because we wished to relate the results of this training directly to the equations that we derived for the SNR from the SVD as above. Both types of training gave similar qualitative results, therefore they are not explicitly compared.


[image: image]

FIGURE 4. Dimensionality reduction due to neurogenesis. (A) Relative magnitudes of ranked singular values, λ(i)/λ(1). The singular values are calculated for the centered DG activity matrix for a single simulation. In both cases the relative magnitudes of singular values drop after turnover of DG neurons. The sparse case (f = 0.04) shows larger drops than the dense case (f = 0.50). (B) Color-maps of classification error comparing predefined coding level, f, and restricted dimension d at different times, t = 0th day and t = 128th day. The number of dimensions used to calculate W is restricted to d, according to Equation (28). The error is the average error measured from 20 simulations. Before neuronal turnover, the map is relatively flat. After neuronal turnover there is a large region of low dimensionality over which the classification performance of the network maintains low error. Dashed line: contour for err = 0.15. Dot-Dashed Curve: contour for err = 0.20. Dotted line: contour for err = 0.25.




[image: image]

FIGURE 5. Selection of context-biased DG units takes advantage of the singular value distribution of the sparse code. (A,B) DG-CA3 weight vs. context-bias of individual DG neurons before and after neurogenesis for f = 0.50 (A) and f = 0.04 (B). Marginal histograms show the projected distributions. In both cases the DG-CA3 weights and the context-bias of DG neuron evolve to a bimodal distribution in which they are correlated. (C) Inverse square singular values, [image: image], sorted by index, i. (D) The influence of the context-bias vector on the weight vector is determined by the relationship between [image: image] and [image: image] over time. Plot shows the dense case (f = 0.50) and sparse case (f = 0.10) before and after neuronal turnover (128 iterations). (E) ‖W‖ grows more rapidly as a function of ‖Ψ‖ in the sparse case. Arrows label the direction of evolution. (F) WTΨ grows more rapidly in the sparse case than in the dense case as a function of the product ‖W‖‖Ψ‖. Arrow labels the direction of evolution. (G) WTΨ grows more rapidly in time in the sparse case, and determines the scale up of the SNR. All results are calculated from a single simulation. (H) Dense coding (blue, top) results in a reduced contribution of separating components, [image: image] while sparse coding (red, bottom) results in less reduction in the contribution of these components, promoting greater separation of contexts in DG activity space.






3. RESULTS


3.1. Network Model for Adult Neurogenesis in the Formation of Associative Memories

We implement a feed-forward multilayer perceptron in which pattern discrimination (classification) is the readout of performance. The model consists of a three-layer network including entorhinal cortical inputs (EC), dentate gyrus (DG), and a CA3 output (Figure 1A). We assume that a given DG cell receives a weighted sum of its inputs from the EC. Thus the total current into the i'th DG cell in response to the μ'th EC pattern, ξμ, is given by [image: image] where the weights, Jj, are drawn randomly from a normal distribution, [image: image], and its activity is determined by the nonlinear function of this current, [image: image], where we refer to θ as the activation threshold, which is a tunable parameter we use to control the coding level, i.e., the expected value of the fraction of patterns to which a given unit responds, defined as [image: image] We define a context as a group of prototypical activity patterns generated in the EC, where each pattern represents a stimulus that is present in the given context. We assume that there is random variability in the environment, or within the system such that among these patterns each binary element may be flipped with probability ν. Averaging for each prototype over the input noise ν, we obtain corresponding mean input currents for each DG cell for each prototype pattern, [image: image], with variance [image: image] (See Materials and Methods). This gives us a set of mean prototype activity patterns in the space of DG activity, where each neurons activity is defined as [image: image]. The network is said to perform contextual discrimination when the CA3 output correctly reads out the DG patterns according to the target label for the EC context to which those patterns belong.

To train the network, we randomly assign to the μ-th EC pattern, a CA3 target, ημ, taking the value +1 or −1. Thus, assuming that θ is held constant during training, the task of the network is to find a input weight matrix, J, and an output weight vector, W, such that [image: image], where [image: image] is the matrix of DG prototype patterns, and η is the corresponding vector of context labels.

We hypothesize that neurogenesis provides a mechanism by which biology breaks this problem into two steps. We assume that, as in the brain, the time-scale of neurogenesis is much slower than that for synaptic plasticity, allowing us to train the output weights, W, independently of the input weights, J. Many learning rules could be used to train W, such as Hebbs rule, or Support Vector Machine (with a linear kernel), or Linear Discriminant Analysis. We obtained qualitatively similar results with all of these, therefore, to simplify later analysis, we use the pseudoinverse rule yielding [image: image], where [image: image] is the Moore-Penrose pseudoinverse of the matrix of DG prototype patterns, and WT is the transpose of the output weight vector, W, whose elements are the DG-CA3 weights of the population of DG units (See Materials and Methods). Next we assume that DG neurons compete with each other for connection to CA3 such that the absolute value of Wi determines their probability of survival, i.e., neurons with large values will receive some trophic signal allowing them to survive, while those with values below some threshold will die, to be replaced by a new randomly connected unit (Figure 1A). Thus training is summarized as follows:

1. Initialize the matrix of random EC-DG weights, J.

2. Calculate DG-CA3 weight vector, W, by [image: image].

3. Eliminate DG units with the weakest |Wi|s at a predefined percentage (to be stated in the following).

4. Those DG units are replaced by new DG units. The EC-DG weights connecting to those new DG units are randomly drawn from a normal distribution [image: image].

5. Repeat and start from Step 2.

Since the cell cycle in biology corresponds to about 24 h, and each iteration of our model represents the death and birth of neurons, one iteration corresponds to roughly one biological day (the time axes is labeled “days”). One should note that the DG neurons considered in this model are those mature enough to emerge into the dentate gyrus and reach CA3. Those immature adult-born cells unable to reach CA3 are not considered in this model.

We test the network by presenting EC input patterns with a fraction of ν bits flipped (corresponding to input noise, or variability) that belong to a known context, taking the CA3 output for the μ-th test pattern as [image: image], where N is the total number of DG units. Then we measure the error on a given test pattern, [image: image], and mean over all test patterns, [image: image], yielding the generalization error. Neuronal turnover of the weakest 30% of DG neurons per day results in a steadily decreasing mean error as a function of the number of iterations (days) of contextual associative learning (Figure 1B), thus increasing the performance of this framework relative to the randomly initialized network corresponding to the case studied by Barak et al. (2013) and Babadi and Sompolinsky (2014). The choice of 30% may seem arbitrary, but further clarification will follow. The error in Figure 1B is determined by the overlap between the two underlying distributions of total synaptic current into CA3 for the two contexts in the presence of variability on the input (Figure 1C). The sign of the CA3 readout should be opposite for each of the two possible associations, positive or negative for a given pattern belonging to the context with (+1) or (−1) context, respectively. After 128 days of neural turnover the spread between the distributions increases such that the overlap between them, is decreased (Figure 1D). From Figure 1B we see that the initial drop in error occurs rapidly, i.e., most of the performance gain from neurogenesis occurs within a week.



3.2. Neurogenesis Interacts With Sparse Activity to Enhance Contextual Discrimination

Sparseness of granule cell firing is likely induced via a combination of cell-intrinsic and extrinsic properties (Marin-Burgin et al., 2012). We control sparseness by adjusting θ which represents the combination of these effects, determining the cells coding level, f. Neurogenesis increases performance at all coding levels (Figures 1E,F). The optimal code becomes mores sparse and appears to plateau at around 4–5% of DG cells active (Figure 1G). Thus, in contrast to the initial optimal coding level of around 10–15% active, similar to previous reports in a similar framework (Barak et al., 2013; Babadi and Sompolinsky, 2014), our best performance is achieved at a very sparse activity level that continues to sparsen with time (Figure 1G).

The error reduction depends on the turnover rate, i.e., the fraction of neurons targeted for turnover per day (Figure S1A), such that longer periods of learning (more iterations of neurogenesis) favored lower turnover rates (Figure S1B). On average, the optimal rate of turnover is a monotonically decreasing function of the number of days learning (Figure S1C), yielding an optimal turnover rate of around 0.3 at 128 days of learning.

We next analyzed the dynamics of the population of DG neurons. The survival rate of neurons during the time course of encoding the contexts depended on their age, i.e., those born more recently have a survival advantage (Figure S1D), indicating the gradual replacement of existing cells with those that are newly born. Neuronal replacement is highest at the beginning of learning, with a fraction of around 0.7 of 1-day old neurons surviving, but after 256 days of learning even 1-day old neurons survive at a very low rate of around 0.04. Whenever there is a sudden change of the contexts in the 2-class case, or addition of a context in the multiclass case, we would indeed see a sudden jump in the survival rate of newborn neurons. Therefore the survival rate of newborn neurons scales with the learning rate, or the encoding of new information, consistent with experimental findings (Kempermann et al., 1997a,b; Gould et al., 1999).

To explore the relationship between connectivity and sparse coding, we tested the networks performance for varying degrees of connectivity from EC to DG (Figure S2A). The performance degrades as input connectivity is reduced, with the performance of sparsely coded models suffering more than that of more densely coded models (Figures S2A,B). Nevertheless the optimal coding level is a steeply monotonically decreasing function of the connectivity that is sparse above a connectivity of around 2.5% (Figure S2C), suggesting that sparse models perform well over a large range of connectivities.

We next analyzed the CA3 readout to determine why the memory performance scales up more quickly in the sparse vs. the dense coding case as a function of neurogenesis. We observe the total synaptic current coming into CA3 from the DG for a single test pattern that belongs to the (+) context. Accordingly we see that neurogenesis causes a positive shift in the distribution of total synaptic current into CA3 for both the dense (Figure 2A) and sparse (Figure 2B) cases with the normalized output weights shown in panels C and D, respectively. However, there is an accompanying increase in the spread of this distribution countering the performance gain given by the increased signal, since the tail of the distribution causes errors when it crosses the CA3 decision boundary (Figure 2A).

We define the Signal to Noise ratio (SNR) as:

[image: image]

where h+ and h− are the total synaptic current into CA3 from the patterns of the (+) and (−) contexts, respectively, and [image: image] and [image: image] are the respective variances of that current across patterns. In both the dense and sparse cases neurogenesis contributes to a scale-up of the signal (Figure 2E) and the noise (Figure 2F). Yet, in the signal-to-noise ratio (SNR) we see the superior performance of the sparse case (Figure 2G). Due to synaptic competition, the distribution of DG-CA3 weights gradually shifts to higher efficacy synapses for both the dense (Figure 2C) and the sparse case (Figure 2D).



3.3. Neurogenesis, Synaptic Plasticity, and Sparse Activity Cooperatively Facilitate Dimensionality Reduction

We then ask how the representation in the DG changes over time. Prior to neurogenesis there is no correlation among the patterns representing the two contexts for either the dense or sparse case (Figures 3A,B, left). After neurogenesis proceeds, for both the dense and sparse case, patterns that belong to a given context become correlated to each other, while those that belong to different contexts become anticorrelated (Figures 3A,B, right). Note that for the same amount of neural turnover, the sparse case always achieves a more correlated representation (Figure 3E). Figure 3E shows the mean correlations within the same context and across different contexts shown in panels A and B. It suggests that the representations in DG for different patterns in the same context are similar, while representations for patterns in different contexts are more different after training.

For a closer look of the representations before and after the neurogenesis training, Principal Components Analysis (PCA) was used for presentations. Principal Components Analysis reveals that, initially the DG activity patterns are randomly distributed (Figures 3C,D, left) but after neurogenesis proceeds, patterns representing the two contexts become clustered, and separated, for both the dense and the sparse case (Figures 3C,D, right), while the sparse case clearly shows greater separation along PC1 (Figure 3D, right). Note that, though we do not show it here, the separation between clusters became observable after only 10–15 days. Since it becomes clearer with a long simulation time, we report the state at the 128th day for comparison.

We intuitively illustrate the effect of neuronal turnover (Figure 3F). Synaptic plasticity, between the DG and CA3, assigns a weight vector at a given time, t, Wt. This weight vector defines a perpendicular hyperplane that separates the patterns defining the two contexts from each other in the space DG activity. Weak synapses, i.e., elements of the weight vector that are near zero, lie in dimensions that are almost perpendicular to the weight vector, and almost parallel to the hyperplane. By killing and replacing those DG units that have weak synapses to CA3 and mostly perpendicular to W, neuronal turnover randomly shifts the patterns in a direction that is mostly parallel to the hyperplane. On average, after this shift, the contexts are easier to separate when synaptic plasticity draws a new weight vector, Wt+1, and the cycle continues as such. Though step-to-step improvement on a single instantiation is noisy (Figure 1B, gray trace) the average performance appears to monotonically decrease (Figure 1B, black trace).

To observe the influence of neurogenesis and sparse coding on dimensionality, we observe the singular values, λ(i), of the centered DG activity matrix, S, corresponding to the standard deviation of activity patterns in the i'th dimension. The ratio of λ(i)/λ(1) decreases after neurogenesis for all components in both the dense and sparse case, but the decrease is more profound in the sparse case (Figure 4A). To see more clearly how the number of dimensions affects classification performance we observe the effect of restricting the number of components in the weight vector. Observing Equation (28), the weight vector can be decomposed into a sum of weighted components, [image: image]. We observe how the classification error varies as we incrementally add back components to the weight vector up to dimensionality d, plotting a color map of the number of restricted dimensions vs. coding level. Before neurogenesis this map is relatively flat (Figure 4B, left panel), indicating a weak dependence of dimensionality on coding level. In contrast, after neurogenesis the map exhibits a sharp drop in error after a only around 20 components, especially in the sparse coding range around f = 0.04 (Figure 4B, right panel). This indicates that neurogenesis reduces the effective dimensionality required for maximal performance at a fixed coding level, and that sparse coding allows for a greater reduction in dimensionality.



3.4. The Separation Between Contexts Is Determined by the Context-Bias of Selected DG Neurons

To simplify analysis in the next two sections it is useful to consider training with the matrix of noisy prototype patterns, S, rather than the matrix of mean prototype patterns, [image: image] (See Materials and Methods). We next observe how neuronal competition affects the organization of the DG neuronal population. We define the context-bias of a given DG cell, Ψi, as the fraction of patterns it responds to belonging to the (+) context minus those that belong to the (−) context:

[image: image]

Therefore, the context-bias takes a value between −1 and +1 and is equal to 0 in cases where a DG cell responds to the same number of (−) and (+) context patterns. For the entire DG population, this can be expressed as the context-bias vector, Ψ,

[image: image]

where each column of S is a pattern of DG activity, and η is the vector of target CA3 activities (either −1 or +1) for each respective input pattern and is the total number of patterns. The derivation can be found in Equation (15). Note that Ψ is equivalent to the separation between the means of the patterns representing the two respective contexts (See Materials and Methods). Neurogenesis selects for neurons that are biased for each of the two contexts (Figures 5A,B, Top histogram). Therefore, the distribution of Ψi partitions into 3 groups, those that are biased to respond to context (−), those that are biased toward context (+), and newborn randomly generated neurons whose context-bias is centered on zero (Figure 5B). The two biased groups of surviving neurons therefore form an ensemble that can be thought of as memory engrams for their respective contexts. Note that a DG cells context-bias is correlated with its weight to CA3 (Figures 5A,B, scatter plot). On average, the dense case (Figure 5A, top histogram) consists of DG cells that are more biased between the two contexts than the DG cells of the sparse case (Figure 5B, top histogram). This is because the maximum difference between a neurons responsiveness to the two contexts is limited by the total fraction of patterns to which a neuron can respond, i.e., the coding level. With neuronal turnover, in both cases, the average context-bias, and the average CA3 weight increases (Figures 5A,B, top histograms, right histograms, respectively).

We can express the SNR in these terms for a set of training patterns as (See Materials and Methods):

[image: image]

The inner product between the DG-CA3 weight vector and the context-bias vector, WTΨ, determines the SNR between contexts. With neuronal turnover, the increase in absolute weight (Figures 5A,B, side histograms), and absolute context-bias (Figures 5A,B, top histograms) results in increased inner product, WTΨ, for both the dense and sparse cases (Figure 5G), accounting for the increase in the SNR. However, the SNR grows more quickly in the sparse case (Figure 2G).



3.5. Extremely Sparse Coding Allows the Context-Bias of Individual Units to More Closely Determine the Output

We next address the dynamics with which the context-bias and weight vectors change as functions of each other. The purpose of this section is to give mathematical intuition for how neurogenesis takes advantage of sparse coding. In particular, we will discuss how the eigen-components of W and Ψ are interacting with each other in the dense coding case and sparse coding case. Note, as described above that the SNR is determined by the product of the weight vector, W, and the selectivity vector, Ψ. Furthermore, a DG cells synaptic weight determines its probability of survival. The weight vector is defined as:
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where S* is the pseuodoinverse of the matrix of patterns in DG space. Using the Singular Value Decomposition (see Materials and Methods) we can re-express this in a way that allows us to intuitively understand the relationship between the context-bias vector and the weight vector. First we define [image: image] as the projection of the context-bias vector, Ψ, onto the respective i-th left singular projection matrix, [image: image].
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As noted above, Ψ is equivalent to the vector of mean separation between the contexts. Therefore, each vector [image: image] represents the separation between the context means in the direction of a given singular vector, ui, which expresses the direction of the ith largest component of the activity patterns in DG space. [image: image] can be thought of as the contribution along the singular vector, ui, to the mean separation between contexts, Ψ. Note that the singular vectors with large singular values represent the most important dimensions of the distribution of patterns in DG space.

Above, we noted that the two contexts separate from each other as neuronal turnover proceeds. Correspondingly, ‖Ψ‖, the euclidean length of Ψ, increases over time (top histograms of Figures 5A,B, and a summary in Figure 5E). However the dense and sparse cases differ in the way dimensionality is reduced. To observe this we now express the weight vector in terms of [image: image] as:

[image: image]

where 2P is a constant scale factor equal to twice the total number of patterns, and σi are the i-th singular values of the matrix S. The derivation can be found in Appendix B. We see that the weight vector is merely a weighted sum of [image: image]. Here a tradeoff emerges. Somewhat counterintuitively, the contributions of the [image: image] are scaled down by their respective [image: image]. Thus, though certain singular vectors may represent the mean separation between contexts, their contribution to the weight vector is limited by their singular values. In other words, the more a given [image: image] determines the mean separation, the more it is scaled down by its respective [image: image].

In order to investigate the difference between dense coding and sparse coding cases, let us look into the distributions of singular values. In Figure 5C, the ranked reciprocals of the square of singular values, [image: image], for different cases are presented. The scale-down effect in the dense case is more significant than in the sparse case for the ranks within a neighborhood of the rank 1. Thus, the weight vector in the dense case is subject to more shrinking of the [image: image] by their respective [image: image] and the elements of the weight vector have a narrower distribution in the dense case than in the sparse case prior to neurogenesis (Figure 5D for individual contributions and side histograms of Figures 5A,B for full distributions).

Due to the differences in scaling factors shown in panel C, ‖W‖ has a larger magnitude in the sparse case compared to the dense case despite that ‖Ψ‖ has smaller values, as shown in panel E. In addition to the difference in the magnitude, the normalized inner product (WTΨ)/(‖W‖ ‖Ψ‖) of the sparse case is larger than that of the dense case (Figure 5F), implying that the cosine distance between W and Ψ is smaller in the sparse case. In addition, neuronal turnover increases the inner product more rapidly in the sparse case (Figure 5G). Because WTΨ represents the degree of separation between the presentations of (+) context and (−) context, sparse coding is superior to dense coding in the context separation. This situation is schematically illustrated in Figure 5H.



3.6. The Neurogenesis Learning Rule Generalizes to Multiple Contexts

We next analyze patterns of activity in a model with multiple CA3 units to enable the encoding of an arbitrary number of distinct contexts. We use a similar neurogenesis rule in Model 2, in which the DG units compete for trophic signals, except now a DG neurons survival is determined by the sum of the absolute value of its output weights (Figure 6A, see section Materials and Methods) such that those neurons with a sum ranking in the bottom 30% of the population are turned over. In this case we have a weight matrix, W in which the elements of each column represents the DG-CA3 weights of a given output CA3 unit. We train the network with 8 contexts and test the network as before, by presenting a novel pattern, μ but now we compare the pattern of CA3 activities represented in the vector [image: image] to the vector representing the target CA3 pattern specified by ημ. Requiring a match between these patterns for correct classification, we can then define the error for the μ-th pattern at CA3 as [image: image]. The mean error across test patterns decreases similarly to the generalization error of the two-context case, and again demonstrates the superiority of the sparse case with a coding level of f = 0.04 (Figure 6B). One may notice that the less-sparse case with a coding level of f = 0.15 has a similar performance level with f = 0.04. The setting with f = 0.15 may be benefited from the increase in multiplicity in representations for this multiple-context case, c.f., Figure 1E. However, the superiority of sparse coding still holds by comparing with the setting with f = 0.50.


[image: image]

FIGURE 6. Neuronal turnover rule can be generalized to encode multiple contexts. (A) In Model 2, multiple context discrimination is performed by using multiple readout units each with trained weights. The turnover rule sums the absolute readout weights of all units and eliminates the units ranking in the bottom 30%. (B) Generalization error decreases with neurogenesis, and the sparse code is optimal for the multicontext case, shown as the mean of 20 simulations (input noise, ν = 0.05, 12 prototypes per context). (C) For a single simulation, pairwise correlation matrix of patterns in DG space before neurogenesis. (D) Same as in (C) after 512 days of neurogenesis. Patterns evolve into correlated groups in DG space. (E) Projection of patterns in DG space onto PCs, before neurogenesis. (F) Same as in (E) after 512 iterations of neurogenesis. Clusters emerge from a random arrangement, and move apart from each other. (G) As in (E) but projection of test patterns onto PCs, day 0 before neurogenesis. (H) as in (G) but after day 512 of neurogenesis. Patterns representing distinct contexts cluster together, and become separated from each other.



Similar to the two-context case, the pairwise correlation of the training patterns in DG space demonstrates a clustering after neurogenesis (Figures 6C,D) in which patterns that are members of the same context tend to be correlated. PCA is used to observe the spread of the training patterns in DG space. The training patterns are initially randomly distributed in DG space (Figure 6E) but evolve into separated clusters with neuronal turnover (Figure 6F). To observe the effect of this separation on test patterns that the network has never seen before we project them onto the PCs of the DG representation of the training set, and mark any errors with a gray x (Figures 6G,H). Before neurogenesis, patterns of a given context are often misclassifed due to the lack of separation between the contexts (Figure 6G). After neurogenesis, the separation between training patterns of the contexts (Figure 6F), reduces the probability of such errors on test patterns (Figures 6B,H).



3.7. A Model of Synaptic Turnover Achieves Similar Performance With Lower Material Cost

The models analyzed above assume that when a DG neuron has a weak connection to CA3, that neuron dies. However, the turnover rate that yields the best performance is about 30% of DG cells per day for 128 days of neuronal turnover (Figures S1B,C). We therefore explored a model assuming that biology seeks to conserve the material of synapses and neurons that might allow us to predict a realistic rate of neuronal turnover. In Model 3, as in the above models, the connections between DG and CA3 are trained with the pseudoinverse rule. Instead of neuronal turnover of units with weak DG-CA3 weights, we now implement synaptic turnover. A strong connection from the DG to CA3 results in a trophic signal that stabilizes that units EC-DG synapses, while a weak DG-CA3 weight is destabilizing (Figure 7A). We implement stability via the probability of EC-DG synaptic turnover. We assume a linear transfer function (See Materials and Methods, Figure S3A) between a DG units output weight to CA3 and the probability of that units input EC-DG weights being re-randomized, resulting in a random subset of that units EC-DG weights being chosen for re-randomization at each iteration. A slope of 2.5 was optimal in our simulations for the linear transfer function (Figure S3B). This rule results in similar improvement in performance to the prior rule that assumes that a fixed fraction of neurons turnover (Figure 7B). The same geometric intuition as the prior model applies (Figure 7F). The result as before is a reduced dimensionality of the contextual representations, such that reconstruction of an output weight vector that gives maximal cumulative performance (See Materials and Methods) can be achieved with far fewer dimensions (Figure S3C). Similar to Model 1 and 2, the optimal coding level becomes sparser with iterations of turnover (Figures 7C,F).
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FIGURE 7. A synaptic turnover rule generalizes neuronal turnover to allow prediction of biological rates. (A) In Model 3, the strength of a DG neurons weight to CA3 is used to determine the probability of turnover of EC-DG synapses onto that neuron. (B) Error vs. time for synaptic turnover model with slope set to 2.5, is similar to Model 1 in which a fixed fraction of 0.30 DG units are turned over. (C) the optimal coding level is between 4 and 5% as in the prior model. (D) Fraction of synapses turned over as a function of time for different coding levels, f. The sparsely coded DG requires greater synaptic turnover. Yet Model 3, for all f, requires less turnover than Model 1 (dotted black line) for a similar level of performance. (E) Fraction of neurons turned over vs. time. The sparse case requires more DG units to be turned over. (F) For each time point, the coding level at which optimal performance is achieved is evaluated, and plotted as optimal coding level. The optimal coding level becomes more sparse in time as in Model 1 and 2. (G) The tradeoff between cumulative synaptic turnover vs. cumulative reduction in error is best resolved by the sparse DG. (H) same as in G but for neural turnover. (I) Cumulative neuronal replacement of DG vs. time, corresponding well with experimental data suggesting around 10% of the mature DG is replaced by adult-born cells (Imayoshi et al., 2008). All results are calculated as the mean of 100 simulations, with slope = 2.5 for the linear transfer function (See Experimental Procedures). See also Figure S1.



We then ask, what is the difference among different coding levels in terms of the cellular material turnover required to enable encoding? The total number of synapses turned over in this model is greatly reduced compared to the fixed turnover model, for all coding levels (Figure 7D). Since synaptic stability is thought to determine neuronal survival in several systems (Segal, 2010), including adult-born granule cells in the DG (Doengi et al., 2016), we made a similar assumption in the model to allow us to estimate the rate of neuronal turnover. We chose the conservative assumption that a neuron dies only if all of its synapses are targeted for turnover. With this assumption, the rate of neuronal turnover relative to the previous model drops by two orders of magnitude across all coding levels to range between 0.006 and 0.001 (Figure 7E), similar to the low rate of less than 1% that has been reported in rats (Cameron and McKay, 2001), 0.03–0.06% in the 2 month old mouse (Kempermann et al., 1997b), or 0.004% in humans (Spalding et al., 2013). Our results provide theoretical support to the findings that an extremely low rate of day-to-day neuronal turnover is sufficient to significantly alter memory performance.

The cumulative replacement of preexisting cells with newborn cells is also very low, ranging between 10—22% after 128 days of turnover across all coding levels (Figure 7I) similar to experimental results that have been previously reported in mice (Imayoshi et al., 2008). We see that for the same level of total synaptic or neural replacement, the cumulative error reduction is greater for the sparse case than for the dense case (Figure 7G), implying that sparse coding enables the learning rule to conserve on material turnover.




4. DISCUSSION


4.1. Neuronal Turnover in a Sparsely Active Dentate Gyrus

It is said to be paradoxical that the DG replenishes its neurons daily even though activity levels are very sparse on average (Piatti et al., 2013). Our results suggest that the sparseness of the DG is actually exploited by adult neurogenesis to find low-dimensional contextual representations that enhance memory encoding (Figures 3C,D). Placing synaptic turnover upstream of neuronal turnover performs similarly (Figure 7), suggesting that similar underlying processes could apply in other systems. As discussed below, such a model may help unify seemingly disparate findings in the neurogenesis literature.

Prior computational models of neurogenesis have implemented neuronal turnover by re-randomization (Chambers et al., 2004; Deisseroth et al., 2004; Becker, 2005; Crick and Miranker, 2006; Chambers and Conroy, 2007; Aimone et al., 2009; Finnegan and Becker, 2015), or by adding new neurons (Weisz and Argibay, 2012) with random synaptic weights. Here we contribute by explicitly addressing the interaction between sparseness and neurogenesis, and evaluating the consequences of a learning rule based on competition for target-derived stability.

The DG is significantly more sparse than most brain regions with a coding level estimated around 0.02–0.04 (Jung and McNaughton, 1993; Leutgeb et al., 2007; Danielson et al., 2016; Diamantaki et al., 2016). In our model, the optimal sparseness for memory encoding evolves to a very sparse coding level as a function of the total amount of time over which the network has undergone encoding via neurogenesis (Figure 1G). This seems to suggest that the sparse code found in the DG may be tuned as such to make the best use of neuronal turnover in memory encoding - though we don't evaluate mechanisms of tuning sparseness, it could be accomplished on a multi-synaptic level such as by feedback inhibition, or by a homeostatic increase in firing threshold.

During neurogenesis, new neurons compete for synaptic contact (Figure 1A). As neurons compete and some replace others, the DG neuronal activities evolve to a low-dimensional representation of the two contexts that are to be learned (Figure 3). In this low-dimensional representation the activity-patterns representing the two contexts are grouped into distinct clusters representing the contexts (Figures 3C,D, 6H).

In a similar framework to ours it was known that there is a limit to how sparse a randomly connected network can be before a tradeoff emerges such that further sparseness actually impairs performance (Barak et al., 2013; Babadi and Sompolinsky, 2014). Babadi and Sompolinsky (2014) demonstrated analytically that the optimality of the sparse code is constrained by amplification of noise by random input weights that is mitigated when a hebbian learning rule is implemented on those weights. Given that hebbian learning structures the input weights to represent correlations among the inputs, they suggested that limitations on the effectiveness of sparse coding might emerge due to the unstructured nature of random weights. We first show that either neuronal (Figure 1B) or synaptic turnover (Figure 7B) improves the performance over the initial condition of random projection studied by Barak et al. (2013) and Babadi and Sompolinsky (2014). Furthermore, we demonstrate that a very sparse code can in fact be optimal even given random input weights (Figures 1G, 7F), implying that fine-tuning, such as the hebbian learning they employed (Babadi and Sompolinsky, 2014), is not always necessary at very sparse coding levels. Instead, via competition for target-derived stability, the sparse code facilitates the search for randomly connected neurons that collectively yield a low dimensional representation of the contextual inputs (Figure 5H).

Decomposing the CA3 weight vector allows us to see the higher correlation between the discriminative components, [image: image] and their contribution to the weight vector, [image: image], in the sparse case (Figure 5F). In other words, in the sparse case there exist discriminative components with singular values sufficiently small such that they can be strongly represented in the weight vector.

As a result, with each iteration (day), the synaptic strength of a DG neuron to CA3 can more readily grow in proportion to its contribution to the mean separation between contexts (Figures 5E,F). The overlap between these terms then scales up more quickly in the sparse case (Figures 5F,G). This greater coupling between the mean separation of contexts in the DG and the weights to CA3 (Figure 5D) thereby allows neurogenesis to more rapidly find separated contextual representations in the sparse case (Figures 3C,D). This greater separation allows the network to generalize better to new instances of the same context (Figures 1E, 6B).



4.2. Biological Predictions

The major prediction of this study is the dimensionality reduction of contextual codes in the dentate gyrus (DG). This prediction is in principle testable by recording the activity of a population of DG cells that includes both mature and immature neurons during contextual discrimination tasks. Then, analyses similar to those employed in the present study will be applicable to explore how the dimensionality of DG representation evolves during learning and how the dimensionality reduction is affected by the blockade of neurogenesis. Our results are also consistent with several experimental findings. Adult-born neurons are initially hyperexcitable, then gradually acquire the sparse firing characteristics of their mature counterparts (Schmidt-Hieber et al., 2004; Dieni et al., 2013). Correspondingly, input specificity increases with time (Marin-Burgin et al., 2012). This is consistent with the sparsening of the optimal coding level with time in our model (Figures 1G, 7F). Furthermore, if we assume that newborn DG cells initially have very few connections, greater hyperexcitability (higher coding level, f) is necessary for optimal performance (Figures S2B,C).

The preference in our model for an average sparse coding level in the presence of neurogenesis (Figure 1F) is consistent with findings that neurogenesis induces a sparser code in the dentate gyrus (Ikrar et al., 2013) while blockade of neurogenesis results in increased average activity in the dentate gyrus (Burghardt et al., 2012; Lacefield et al., 2012). Meanwhile, increasing the excitability of the DG while neurogenesis is intact may impair contextual discrimination (Jinde et al., 2012).

The initial condition of our model, is equivalent to the encoding of novel contexts. As the contexts become familiar over time, the optimal neurogenesis rate decreases in the neuronal turnover model (Figure S1C), as does the predicted neuronal turnover in the synaptic turnover model (Figure 7E). This is consistent with experimental findings that novelty increases the neurogenesis rate (Kempermann et al., 1997b; Gould et al., 1999). Correspondingly, as the contextual encoding proceeds, their survival rate decreases with time, i.e., exceedingly few adult-born cells survive (Figure S1D). Therefore, relatively few mature cells are replaced and most of the cell death is replacement of immature cells by other immature cells. This is because a very old cell is already part of a favorable representation that enables discrimination and it is improbable to find a new cell that can better contribute. Thus newly adult-born cells have a survival advantage during novel encoding such as would occur during environmental enrichment, similar to what has been found experimentally (Kempermann et al., 1997b; Gould et al., 1999), while mature cells have the advantage under familiarity. Contextual novelty may explain why axonal retraction of mature DG cells results from a losing competition with adult-born cells in the juvenile rat (Yasuda et al., 2011), but not in adult mice in their homecage (Lopez et al., 2012). Since adults have already sufficiently encoded their environment, it is perhaps necessary to expose adults to enriched or novel environments (Kempermann et al., 1997b; Gould et al., 1999) to observe significant outcompeting of mature DG cells by new cells. However, this prediction in survival rate should not be confused with the overall survival rate of all new-born dentate gyrus granule cells. The survival rate mentioned here considers only those dentate gyrus cells able to reach CA3 for competitions. For those newly generated dentate gyrus granule cells failed to emerge into the system, we consider that they are invisible in the model.

Our results are consistent with the presence of high-efficacy, so-called detonator synapses, at the Mossy Fiber (MF) terminals of DG axons to CA3 (McNaughton and Morris, 1987; Jonas et al., 1993; Treves and Rolls, 1994; Henze et al., 1997, 2002; Rollenhagen et al., 2007; Vyleta et al., 2016). The sparse activity of the DG causes the output weights to be larger than in less sparse systems, as the weights of sparse models are of greater magnitude for equivalent context-bias (Figure 5E). Furthermore, neuronal turnover during contextual learning leads to faster growth of the weights in the sparse model compared to those of the dense model (Figure 5E). This is consistent with the experimental finding that contextual learning increases the average synaptic efficacy of MF terminals of axons from the DG to CA3 (Galimberti et al., 2006).



4.3. Neuronal vs. Synaptic Turnover

It has been estimated that only around 0.03–0.09% of granule cells are turned over in the adult rodent DG (Kempermann et al., 1997b; Cameron and McKay, 2001), or 0.004% in humans (Spalding et al., 2013). These results have often raised the question - how can such a small number of cells significantly influence behavior (Piatti et al., 2013)? Indeed, there is a stark lack of consensus on whether adult hippocampal neurogenesis always positively correlates with DG-dependent learning (Frankland, 2013; Akers et al., 2014; Lipp and Bonfanti, 2016). Bats show no adult DG neurogenesis for the majority of species studied (Amrein, 2015), though bats clearly exhibit hippocampal place cells, and spatio-contextual reasoning that is attributed to the hippocampus (Finkelstein et al., 2016). Numerous comparative studies have demonstrated heterogeneous adult neurogenesis rates across mammalian species that does not seem to depend on their need for spatial reasoning (Cavegn et al., 2013; Amrein, 2015; van Dijk et al., 2016).

Experimental interventions that suggest a lack of positive correlation between neurogenesis rates and learning of DG-dependent tasks (Wood et al., 2001; Bartolomucci et al., 2002; Holmes et al., 2002; Bizon and Gallagher, 2003; Akirav et al., 2004; Leuner et al., 2004, 2006; Van der Borght et al., 2005), or that learning does not necessarily increase the number of new neurons (van Praag et al., 1999; Döbrössy et al., 2003; Ambrogini et al., 2004; Olariu et al., 2005; Pham et al., 2005; Snyder et al., 2005; Van der Borght et al., 2005), suggest that neuronal turnover is not always the relevant correlate of learning in the DG. Substantial evidence that depletion of neurogenesis does not impair such learning (Shors et al., 2001, 2002; Madsen et al., 2003; Raber et al., 2004; Snyder et al., 2005; Meshi et al., 2006; Frankland, 2013; Groves et al., 2013; Urbach et al., 2013) suggests that molecular mechanisms modulating DG synaptic processes can remain intact and support learning, without requiring neuronal turnover.

Placing synaptic turnover upstream of somatic turnover, as in Model 3 (Figure 7A), may help unify these findings. Synaptic turnover, rather than neuronal turnover may be the relevant measurement with which to correlate DG-dependent learning that is targetable by molecular and cellular interventions in the neurogenic niche. DG neurons compete for CA3 target factors, and those losing the competition have their input synapses destabilized (Figure 7A). If the amount of synaptic destabilization crosses a threshold (in our case, all input synapses destabilized) then the neuron dies. With these assumptions, we indeed find a very low optimal neurogenesis rate (Figure 7E) in the biologically reported range of a fraction of a percent (Kempermann et al., 1997b; Cameron and McKay, 2001; Spalding et al., 2013). This suggests that, via the same form of competition, en masse synaptic turnover could underlie learning, while only a minority of neurons actually turn over. Such a synaptic-turnover-driven neuronal turnover rule is consistent with evidence that activity-dependent competition among mature and immature DG granule cells for CA3 targets (Yasuda et al., 2011), and their input-synaptic stability (Tashiro et al., 2006; Doengi et al., 2016) appears to promote neuronal survival. Furthermore, there is a well-known overlap between factors that influence synaptic plasticity, and those that influence neurogenesis in the DG (Vivar et al., 2013), and many of these same factors influence synaptic stability more generally throughout the central nervous system (Vicario-Abejón et al., 2002). Future behavioral studies in animal models of modulated neurogenesis may benefit from measuring markers of synaptic stability, such as adhesion molecules required for synapse maintenance (Doengi et al., 2016), rather than somatic markers of neurogenesis.



4.4. Concluding Remarks

Sparse coding is prevalent throughout many systems of the brain (Barak et al., 2013; Babadi and Sompolinsky, 2014). Our results suggest that neuronal or synaptic turnover in sparsely active regions of the brain may embody a novel learning rule that enhances the clustering of associated activity patterns, and thereby memory encoding and retrieval. Sparseness entails a lower metabolic cost since few neurons are active at any time, and our results further suggest that learning in a sparse layer via turnover conserves synaptic (Figure 7D) or somatic material (Figure 7E), perhaps a previously unrecognized metabolic benefit to sparse coding. The learning curves of all implemented models suggest that differing degrees of sparseness across systems may be found to correspond to the timescale over which they are required to represent memories. Since the optimal sparseness of these models increases as a function of encoding time, we might think of the high sparseness of the DG as being tuned to enable retrieval of episodes that are encoded over long periods of time. Consistent with this timescale, amnesiac patient H.M. lost not only the ability to encode novel information, but also the ability to retrieve memories up to 11 years prior to the removal of his hippocampus (Corkin, 2002). Further investigation of the relationship between synaptic stability and neuronal survival (Doengi et al., 2016) may yield insight into how neuronal turnover and synaptic turnover are coupled. Our work, and that of others (Marin-Burgin et al., 2012; Bergami et al., 2015; Alvarez et al., 2016) suggests that local regulation of sparse activity in the DG may be critical during the addition of new synapses or new neurons that occurs during learning. Similar processes may regulate brain development in general.
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APPENDICES



A. MOORE PENROSE PSEUDOINVERSE GUARANTEES A LEAST-SQUARE SOLUTION

Let us consider a linear system:

[image: image]

For a given y and a given A, we would like to look for a solution to x minimizing the square residual given by

[image: image]
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The gradient of the residual is

[image: image]

[image: image] implies

[image: image]

Suppose A is a matrix with linearly independent columns, we have

[image: image]

Here A* ≡ (ATA) −1 AT is the Moore-Penrose pseudoinverse of A. The solution to x deduced by the Moore-Penrose pseudoinverse should be guaranteed to be the least-square solution.

In our model, the output weights is solved by Moore-Penrose inverse. One may consider replacing ηT with y, [image: image] with A and W with x in the linear system here. Since [image: image] is generated from linearly independent input and random input weights, and θ is chosen to match the coding level f, the rows of the matrix [image: image] should also be linearly independent. The argument concerning Moore-Penrose pseudoinverse in this appendix follows.



EXPRESSION OF W IN TERMS OF [image: image]

Given that
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where matrices U, V and Σ are the matrix given by singular-value decomposition. Note that singular-value decomposition is a generalized eigendecomposition. Diagonal entries of Σ stores eigenvalues of the matrix [image: image], while matrices V and U store left-singular and right-singular vectors. On the other hand,
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Therefore,
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Let us consider the entries of WT,
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Therefore, the matrix-vector form is given by
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where [image: image] and ui is the ith column of the matrix U.
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Epilepsy is one of the most common chronic neurological diseases. High-frequency oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone. However, visual marking of HFOs is a time-consuming and laborious process. Several automated techniques have been proposed to detect HFOs, yet these are still far from being suitable for application in a clinical setting. Here, ripples and fast ripples from intracranial electroencephalograms were detected in six patients with intractable epilepsy using a convolutional neural network (CNN) method. This approach proved more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient, the Cohen's kappa coefficients comparing automated detection and visual analysis results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector was capable of reliable estimates of ripples and fast ripples with higher sensitivity and specificity than four other HFO detectors. Our detector may be used to assist clinicians in locating epileptogenic zone in the future.

Keywords: epilepsy, convolutional neural network, high-frequency oscillations, ripples, fast ripples, automated detection


INTRODUCTION

Epilepsy is one of the most common chronic neurological diseases, with an incidence of between 0.5 and 1% (Jacobs et al., 2012; Chaibi et al., 2013), affecting about 67 million people worldwide (Holden et al., 2005; Makeyev et al., 2017). Most patients are treated successfully with antiepileptic drugs, although about 30% still suffer from medically refractory epilepsy (Kwan and Brodie, 2000; Pati and Alexopoulos, 2010; Tamilia et al., 2017). For these individuals, surgical removal of the epileptogenic zone (EZ), where such seizures originate, is considered the most promising treatment; however, surgical resection depends on correct delimitation of the EZ (Jacobs et al., 2012; Tamilia et al., 2017). Accurate delimitation of the EZ is the main determinant of successful epilepsy surgery.

High-frequency oscillations (HFOs) have been defined as events with four consecutive oscillations between 80 and 500 Hz that clearly rise above the baseline (Zelmann et al., 2009). Another definition is a root mean square (RMS) amplitude increase of more than five times the standard deviation compared with background electroencephalogram (EEG), a duration of at least 6 ms, and more than six peaks (positive plus negative) more than three standard deviations above the mean baseline (Staba et al., 2002). Traditionally, EEG frequencies are believed to be relevant up to the beta, theta, and gamma band (Wang et al., 2017; Yan et al., 2017a,b). But recent findings in rodents and humans have shown a possible relation between HFOs and the EZ (Bragin et al., 1999; Staba et al., 2002; Jacobs et al., 2010). Furthermore, two post-surgical studies have indicated a good correlation between surgical outcome and the removal of tissue corresponding to channels with high HFO rates (Jacobs et al., 2010; Wu et al., 2010). HFOs have gradually emerged as promising new biomarkers for the identification of EZ (Jirsch et al., 2006; Jacobs et al., 2010, 2012; Chou et al., 2016; Cimbalnik et al., 2016; Fedele et al., 2016). HFOs can be subdivided according to their spectral range into ripples (80–200Hz) and fast ripples (200–500 Hz, FRs) (Jacobs et al., 2012; Pail et al., 2013). Whereas, ripples may reflect inhibitory field potentials that synchronize neuronal activity, thus facilitating information transfer over long distances, fast ripples are pathological and are believed to reflect summated action potentials of spontaneously bursting neurons (Cendes and Meador, 2018).

Nevertheless, detection of HFOs is complicated and time-consuming owing to their short duration and low amplitude (Lopez-Cuevas et al., 2013; Gliske et al., 2016). Existing detection methods can be categorized into automated detection and visual marking, which is a highly time-consuming process (it takes about 10 h to visually mark HFOs in a ten-channel 10-min recording) (Staba et al., 2002; Gardner et al., 2007; Zelmann et al., 2009), and prone to reviewer bias and drift in judgement (Cimbalnik et al., 2018). As a consequence, the development of automated HFO detectors is crucial for the eventual utilization of HFOs in clinical settings.

Several automated HFO detectors have been developed by different research groups. In 2002, Staba et al. (2002) introduced automated detection of HFOs based on the RMS feature of the band-pass-filtered signals. Thresholding-based approaches have become popular since the pioneering work of Staba et al. (2002), for example, those based on short-time line-length (Gardner et al., 2007), complex Morlet wavelet transforms (Chaibi et al., 2013), the Hilbert envelope (Dumpelmann et al., 2012), and approximate entropy (Lopez-Cuevas et al., 2013). Since 2010, detection algorithms have been designed to tackle the problem of low specificity through various approaches. Dumpelmann et al. (2012) chose signal power, line-length, and instantaneous frequency as input features, and used a radial basis function neural network to detect HFOs. Zelmann et al. (2010) improved the RMS detector by computing the energy threshold from baseline segments, Chaibi et al. (2013) combined RMS and empiric mode decomposition, and Ren et al. (2018) used the maximum distributed peak points method to improve baseline determination accuracy. However, most of the automated HFO processing methods still had drawbacks such as low specificity and high rates of false positives. These detectors are still unsuitable for application in a clinical setting.

In recent years, deep learning has been widely applied in diverse domains such as computer vision, natural language processing, and speech recognition (LeCun et al., 2015). It forms the basis of various machine learning algorithms that model high-level data abstractions, and does not rely on handcrafted features (LeCun et al., 2015; Schmidhuber, 2015). The convolutional neural network (CNN), as a deep learning algorithm, has shown remarkable performance in challenging two-dimensional (2D) medical image computing problems, such as classification of lung image patches with interstitial lung disease (Li et al., 2014), breast cancer classification from mammography (Kaur, 2016), and the classification of nuclear cataract severity from eye examination images (Gao et al., 2015). CNN is a biologically inspired hierarchical multilayered neural network approach that simulates the human visual cortex and detects translation invariance features (Alotaibi and Mahmood, 2016). CNN is superior to other approaches in that it conducts automatic learning for complex features from raw data and performs the classification in an end-to-end manner (Sors et al., 2018). CNN has also shown outstanding effectiveness in solving the EEG signal classification problem. Johansen et al. (2016) developed a CNN model for detecting spikes in EEGs of epileptic patients. Achilles et al. (2016) showed the superior learning performance of CNN for epileptic seizure detection. Therefore, we proposed that CNN could be used for automated detection of ripples and fast ripples in patients with intractable epilepsy. In this study, we converted a 1D intracranial EEG (iEEG) signal to 2D image signals and transformed the detection of ripples and fast ripples into a binary classification of ripples and non-ripples, as well as fast ripples and non-fast ripples. Then, a CNN model was built to classify ripples and non-ripples, as well as fast ripples and non-fast ripples. Finally, we compared the performance of our detector with the other four HFO detectors integrated in RIPPLELAB. The ultimate goal was to provide the location of EZ through the distribution of HFO generation.



METHODS


Subjects

Patients diagnosed with medically intractable epilepsy who underwent excision of epileptic foci in the functional neurosurgery department of Xuanwu Hospital of Capital Medical University were recruited from March 2016 to May 2017. A total of 19 participants (12 males and seven females) with a mean age of 22 years (SD = 10; range 10–42 years) were included in the study. Intracranial data were recorded, with a sampling frequency of 4,096 Hz. Patient characteristics and electrode implantation sites are listed in Table 1. All patients gave informed consent in agreement with the Research Ethics Board of Xuanwu Hospital.



Table 1. Clinical characteristics and implantation sites of the 19 patients.
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Data Preprocessing

We recorded interictal samples of 5 min during the slow-wave sleep period from each patient, as there is less muscle activities and more frequent occurrences of HFOs during slow-wave sleep compared with wakefulness (Zelmann et al., 2009; Burnos et al., 2014). There was also the advantage that a 5-min segment could provide the same information as a longer interval when identifying HFOs during slow-wave sleep (Zelmann et al., 2009). Slow-wave sleep was defined by at least 25% delta activity by visual inspection of 30-s epochs. Data samples were selected if they were recorded at least 2 h before or after a seizure, to reduce the influence of seizures on our analysis. Data containing noise or artifacts, such as sharp transients with very large amplitudes or irregular signals, were excluded. The data were transformed to a bipolar montage for further analysis, which means that the potential difference between two adjacent active electrodes in the skull is recorded as iEEG.

The two kinds of HFOs were analyzed separately, owing to the different generation mechanisms and electrophysiological characteristics of ripples and fast ripples. A zero-phase finite impulse response filter was used to perform band-pass filtering for the data. The cutoff frequencies were 80–200 and 200–500 Hz for ripples and fast ripples, respectively (see Figure 1).
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FIGURE 1. Data preprocessing. First row: one second of raw data. Second row: one second of filtered (80–200Hz) data. Third row: one second of filtered (200–500Hz) data. Fourth row: Time-frequency analysis of raw data.



As interictal HFOs are commonly short (<330 ms) and rare (Lopez-Cuevas et al., 2013), the iEEG signals were divided into one-second time series. Grayscale was used to characterize the amplitude of iEEG signals, so that a 1D iEEG signal could be converted to a row of the 2D grayscale image (see Supplementary Figures 1, 2). Then, we converted each row of the grayscale image to four rows.



Visual Marking of HFOs

For each channel, the first minute of the iEEG was independently analyzed by two experienced reviewers. The concordance between the two reviewers was assessed in line with the Cohen's kappa coefficient for each channel (Jacobs et al., 2010). For channels with kappa <0.5, the two reviewers worked together to review the events in the first minute and established a consensus, based on which, or if kappa >0.5, the remaining 4 min of the iEEG were marked accordingly by one of the reviewers.

Among the channels for the 19 patients, a total of 49,340 ripples and 19,734 fast ripples were analyzed by reviewers. The remaining data were tagged as non-ripples and non-fast ripples, respectively.



CNN Classifier

CNN requires fewer complex steps of feature extraction compared to traditional neural networks. The feature extraction is achieved by the convolutional layers and sub-sampling layers of CNN, with advantages in terms of the complex non-linear mapping of low-dimensional feature space that can be obtained from the high-dimensional feature space for use in classification. In this work, CNN has roles in both feature extraction and the classification of HFOs. Details of the proposed CNN model are shown in Figure 2.


[image: image]

FIGURE 2. Architecture of our CNN model.



Input images were 4*1,024 pixels in size, and were normalized to have zero mean and unit variance. This normalization achieves faster convergence and avoids local minima. In the model, the normalized input is processed by convolutional blocks, where each block consists of three layers: the convolutional layer, batch normalization layer and non-linear activation layer (leaky ReLU was chosen as the activation function in this study). The output of the leaky ReLU layer is passed to a max pooling layer. In an attempt to avoid overfitting, dropout is applied before the three fully connected layers. The output of the last fully connected layer is passed to a softmax layer, which serves as a classifier and predicts the class of the input signal.

Architecture of CNN Model

Convolutional layers

CNN, as a simple neural network, makes use of convolution in place of general matrix multiplication. The convolutional layers, which detect local conjunctions of features from the previous layer, constitute the main components of the CNN model. A convolutional layer consists of neurons that are connected to the local receptive field of the previous layer. The feature map of the previous layer is convoluted with the convolution kernel. Then, the activation function is applied to produce one output matrix. The process is defined as:

[image: image]

where f() represents the activation function, leaky ReLU; l indicates the number of layers; k is the kernel matrix; and b is a bias value.

Batch normalization layer

During training, the distribution of feature maps changes owing to the updating of parameters, making the CNN model learning harder to fit. This phenomenon was called covariate shift by Ioffe et al. (Ioffe and Szegedy, 2015), who proposed batch normalization as a solution. Batch normalization accelerates network training, combined with a reduction of the sensitivity to network initialization. The batch normalization layer normalizes the activations and gradients propagating through the network, making network training an easier optimization problem. In our CNN model, a batch normalization layer is applied after each convolutional layer.

Max pooling layer

The max pooling operation reports the maximum output within a rectangular neighborhood. This layer not only reduces the spatial size of the feature map, but also removes redundant spatial information, which is beneficial for translation and scaling of invariance to small shifts and distortions. The max pooling layer makes it possible to increase the number of filters in deeper convolutional layers without increasing the required computational load per layer.

Dropout layer

Dropout regularization is an effective way to address the overfitting phenomenon in the neural network training process. A dropout algorithm is applied to facilitate the generalization ability of the network by randomly disabling neurons in each layer during training.

Softmax layer

The softmax activation function normalizes the output of the fully connected layer. It constructs a hypothetical function to calculate the probability of the input samples being divided into each category, and then adjusts the parameters to make the correct tags corresponding to the maximum probability. The softmax activation function is deployed to approximate the expected output between 0 and 1 in our binary classification. The classification output of the network is “1” in the presence of HFOs and “0” for non-HFOs.

Details of Learning

After defining the network structure, we specified the training options. Our CNN model uses the minibatch and stochastic gradient descent algorithms. The minibatch is set at 256. Cross entropy serves as the loss function. The maximum number of epochs are assigned a value of 20. An epoch is a full training cycle on the entire training data set, in which the training begins with an initial learning rate of 0.01 and the learning rate decreases by a factor of five every five epochs. The CNN training was performed on an NVIDIA Quadro M4000 with computational capability of 5.9 and a clock rate of 800 MHz.



Statistical Analysis

A 10-fold cross-validation approach, namely ten partitions for training and test sets, 90% for training and 10% for testing, was employed to measure the stability of the performance of the proposed CNN model. The performance metrics included specificity and sensitivity. Previous studies of automated HFO detection also adopted these metrics (Dumpelmann et al., 2012), and they are appropriate for comparison of our model with other methods. The calculations were as follows:
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where true positive (TP) refers to the visually marked HFOs that are detected by the CNN model; false positive (FP) refers to automatically detected events that do not overlap with visually marked HFOs; and false negative (FN) means visually marked HFOs that are missed by the detector.

Cohen's kappa coefficient was computed to evaluate the agreement between automated detection and visually marked results. Kappa <0 indicates that an agreement is due purely to chance, kappa >0.5 means excellent consistency, and kappa = 1 indicates complete agreement (Zelmann et al., 2009).

Then, the Spearman's rank correlation was applied to assess the association between automated detection and visually marked results (Dumpelmann et al., 2012). The number of HFOs detected by visual marking and automated detection in each channel were counted. A correlation coefficient of 0.5–1 represented a strong correlation.

Finally, the Mann–Whitney U-test was applied to compare the HFO rates in the EZ channels and other channels (Dumpelmann et al., 2015).

All statistical analyses used SPSS Statistics (IBM Corporation, Armonk, NY, USA), version 22. The level of significance was set at p < 0.05. Results were expressed as mean ± standard deviation.




RESULTS


Different Sample Sizes

Visually marked data were used to train the CNN model, consisting of HFOs and the low-amplitude activity here termed non-HFO. The ratio of HFOs to non-HFOs was 1:1. Ninety percent of the data were taken as training samples, and the model was tested on the remaining 10%. Ripples and fast ripples, representing different physiological significance, were, respectively, applied to train the CNN model.

We changed the number of sample data points to test whether the sample size affects CNN performance; the results are shown in Figure 3. The more training samples were used, the more accurate was the detection of HFOs. As the number of training samples increased from 4,934 to 49,340, the accuracy of ripple detection increased from 87.84+1.97 to 90.83+1.78% (see Figure 3A). Similarly, the accuracy of fast ripple detection increased from 83.25±1.27 to 87.65±1.13% as the number of training samples increased from 1,973 to 19,730 (see Figure 3B).
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FIGURE 3. Effects of different sample sizes on CNN performance. The green line represents the accuracy of HFOs (ripples for A and fast ripples for B), and the yellow line represents the accuracy of non-HFOs (non-ripples for A and non-fast ripples for B).





Selection of the Best Model

There are numerous parameters in a CNN that have a significant impact on its classification accuracy. The settings used tend to be based on experience and practical considerations. Thus, it was important to conduct quantitative analysis of the parameters in our CNN. Seven CNN models were taken into consideration in our initial analysis to select the best model, as shown in Table 2. We performed experiments using 10-fold cross-validation with all seven models on the same sample, with a total of 48,480 ripples and 48,480 non-ripples, as well as 19,730 fast ripples and 19,730 non-fast ripples.



Table 2. The specifications of seven CNN models and their mean performance using 10-fold cross-validation.
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Model M1 was designed based on the traditional concept wherein the number of kernels increases in each layer with increasing network depth, whereas in models M2 to M7 (pyramid models), the number of kernels decreased with increasing network depth. The pyramid models have the advantage of reducing the number of learning parameters compared with traditional models, which avoids the risk of overfitting.

The average performance results for 10-fold cross-validation of different models are shown in Table 2. The average accuracies (over all models) were 92.43% for ripples, 87.9% for non-ripples, 87.85% for fast ripples, and 92.47% for non-fast ripples. Based on the overall results, the pyramid models (M2 to M7) showed better performance than the traditional model (M1); in most cases, the best results were given by model M4 for ripples and M6 for fast ripples. The CNN worked better with a dropout of 0.5 and 64 neurons in the fully connected layer rather than 128 neurons. Model M4 was used to detect ripples and M6 was used for fast ripples for all further analysis in this study.



Selection of the Ratio of HFOs to non-HFOs

The specificity of HFOs is correlated with the rate of false positives, that is, the automatically detected events that do not overlap with visually marked HFOs. When an HFO: non-HFO ratio of 1:1 was used to train the CNN model, the accuracy was not satisfactory with either non-ripples or non-fast ripples. In order to minimize false positive rates and improve the specificity of HFO detection, we increased the ratio of HFOs to non-HFOs by increasing the number of non-HFOs to two, three, four, and five times the number of HFOs, while keeping the number of HFOs constant. As shown in Figure 4, increasing the number of non-HFOs raised the accuracy of non-HFO detection within a certain range; on the other hand, the sensitivity of HFO detection decreased. In order to improve the specificity of HFO detection while maintaining a reasonable sensitivity, we chose the ratio of ripples to non-ripples to be 1:4, and the ratio of fast ripples to non-fast ripples to be 1:3, to train the CNN model.
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FIGURE 4. Effects of different ratios of HFOs to non-HFOs on performance of the CNN. The green solid line represents ripples, the blue solid line represents non-ripples, the green broken line represents fast ripples, and the blue broken line represents non-fast ripples.





Comparison of Visual and Automated Detection Results

The CNN model based on the optimum configuration was run to test the performance objectively. In this part, data from one patient were selected as the testing samples, and data from the remaining 18 patients were selected as the training samples. The results for six patients are shown in Table 3: the average sensitivities were 77.04% for ripples and 83.23% for fast ripples, and the average specificities were 72.27% for ripples and 79.36% for fast ripples. Our automated HFO detector based on the CNN model could detect HFOs well, and there were advantages in terms of computational time. Our detector took only about 20 s to process 5 min of 90 channels iEEG data using an Intel® Xeon® CPU E5-2650 v4 @ 2.2 GHz processor and 64 GB RAM.



Table 3. Comparison of results between our detector and the other four detectors.
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At present, the most important consequence of automated detection systems is the reduction in the time required for analysis and the elimination of subjective factors. It is also necessary to ensure a strong correlation between visual and automated analysis results. In this study, we calculated the Cohen's kappa coefficient of the visual marking and automated detection results for patient 1. The kappa values for the two results were 0.541 for ripples and 0.777 for fast ripples. Spearman's rank correlation was used to calculate the correlation between the automated detection and visual analysis results for each channel. The significant correlations (0.862 for ripples and 0.938 for fast ripples, p < 0.01) indicated that our detector achieved reliable estimates of HFO counts and reflected the topographical distribution of HFO generation. A visual representation of the distribution of HFOs for all electrodes is displayed below in Figure 5, showing the ripple and fast ripple counts for visual analysis and automated detection for patient 1 for each channel.


[image: image]

FIGURE 5. Comparison of results between visual marking and automated detection for patient 1. Blue and red represent ripples and fast ripples, respectively. (A) Patient 1: visual making results. (B) Patient 1: automatic detecting results.





Comparison With Four Other Detectors

To evaluate the performance of our detector, it was necessary to compare its results with those of other detectors for analysis of the same data. Here, we compared our detector with four well-known detectors implemented in the RIPPLELAB application (Navarrete et al., 2016), Short Time Energy detector (STE), Short Line Length detector (SLL), Hilbert detector (HIL), and MNI detector (MNI). Detailed descriptions of this algorithm are available in the original publication (Navarrete et al., 2016). The results of our comparison are presented in Table 3. Our detector showed markedly higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples 79.36% for fast ripples) than the four detectors except the specificity of STE detector for ripples (83.14%) and the sensitivity of MNI detector for fast ripples (74.77%).



Comparison of HFO Rates in the EZ and Other Channels

In this study, we considered the brain area of the removed contacts of patient 1 as the EZ, for whom a good outcome was obtained (Engel I). The mean HFO rates in the 38 channels within the EZ were compared with those of 44 channels outside the EZ; the results are shown in Table 4. The mean HFO rates in the EZ were 32.9 for ripples and 25.4 for fast ripples. In the other channels, the mean HFO rates were 16.2 for ripples and 2.2 for fast ripples. The Mann-Whitney U-test was employed to compare the HFO rates in the EZ and other channels, showing that HFO rates were significantly higher in the EZ channels than outside (p < 0.05).



Table 4. Mean HFO rates for channels in the EZ and other channels.
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Missed HFOs and False Detections of Our Detector

Our detector showed excellent comprehensive performance in detecting ripples and fast ripples from iEEG signals, but there were still some missed HFOs and false detections. Some typical examples of these are shown in Figure 6. Our detector was not sensitive to HFOs with low amplitudes, and sharp transients (e.g., epileptic spikes or sharp waves) might have been misclassified as HFOs owing to their high-pass filter response as oscillations, leading to an overestimation of HFO rates (Benar et al., 2010).


[image: image]

FIGURE 6. Example of missed HFOs and false detections in the first patient. The dotted rectangles represent ripples marked only by visual detections. The red lines delineate false detections.






DISCUSSION

HFOs are considered to be promising biomarkers for the identification of EZ (Jacobs et al., 2010, 2012; Cimbalnik et al., 2016). Visual marking is characterized by its heavy workload, consumption of time, and vulnerability to errors. In this study, an efficient and novel framework was integrated with CNN for the automated detection of HFOs, as a solution to this challenging medical processing problem. This approach is expected to relieve the burden on clinicians and to provide a useful tool for HFO detection in clinical settings. Compared with the four other detectors, our detector achieved better comprehensive performance: a higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples). In addition, our detector could automatically analyze ripples and fast ripples separately, enabling direct comparison of HFOs in two different frequency bands. Thus, our detector has significant potential for use in clinical practice.


Parameter Optimization

Various parameters determine both the computational performance and the accuracy of a CNN model. We compared the classification performance of our models under different parameter conditions; the results are presented in Table 2. Changes in parameters were correlated with changes in accuracy of HFOs. The models M1 and M2 achieved accuracies of 90.83 and 92.33%, respectively, for ripples, indicating that pyramid models (M2 to M7) performed better than the traditional model (M1). The early CNN model proposed by Lecun et al. (1998) introduced the strict pyramidal approach. Ullah et al. (Ullah and Petrosino, 2016) also demonstrated that giving pyramidal structure to CNNs can allow the number of parameters to be scaled down, as well as reducing memory consumption on disk; thus, the simple strict pyramidal model outperforms many existing sophisticated approaches.

As shown in Table 2, the CNN with model M4 provided the best results for ripples, while the model M6 was best for fast ripples. Both of them showed slightly higher performance than others but involved the minimum number of parameters among all the models. Model M4 and M6 were adopted for all other analysis processes in this work, as they were considered the optimal models.



Comparison With Other Four Detectors

Several automated HFO detectors have been reported, some of which were high specific, but low sensitive. In this study, we compared our detector with the other four detectors provided by RIPPLELAB (Navarrete et al., 2016), STE detector, SLL detector, HIL detector, and MNI detector. Our detector utilized the CNN model to detect HFOs from iEEG signals. This model resulted in excellent sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples). Our detector had a better performance than the SLL detector, HIL detector, and MNI detector. Although the STE detector had a higher specificity (83.14%) for ripples than our detector, its sensitivity (14.74% for ripples and 16.37% for fast ripples) was much lower than ours. The sensitivity is as significant as the specificity, because a detector with low sensitivity cannot delineate the distribution of HFOs in different channels, while low specificity may overestimate the amount of excitatory tissue that needs to be resected according to HFO analysis. Based on full consideration of these two factors, our detector seemed to perform better than the other four detectors. Only detectors with excellent sensitivity and specificity are appropriate for clinical use.



Resection of HFO-Generating Areas Correlates With Outcome of Epilepsy Surgery

As was shown in many of the previous studies, brain regions with a high rate of HFOs are often correlated with EZ (Jacobs et al., 2010; Wu et al., 2010; Dumpelmann et al., 2015). Signal processing aims to detect HFOs from iEEG signals and to identify electrode sites exhibiting high HFO rates. For patient 1, the Cohen's kappa coefficient demonstrated excellent concordance between the visual marking and automated detection results (0.541 for ripples and 0.777 for fast ripples) for our detector. In addition, the high Spearman's rank correlation between the visual analysis and automated detection (0.862 for ripples and 0.938 for fast ripples, p < 0.01) indicated that our detector is a practical tool for identifying channels with high HFO counts. Brain areas containing LIF 3-12, LC 1-8, and LSF 1-12 were removed by surgery. As shown in Figure 5, most of the brain tissue with high HFO rates was resected, resulting in a good outcome (Engel I).

Our automated detector also provided reliable information about the distribution of HFO rates between channels (see Table 4). The mean HFO rates were significantly higher in EZ channels than elsewhere (Mann–Whitney U-test, p < 0.05). This indicates that HFO rates can provide additional information about patient outcomes.



The Optimal Ratio of HFOs and non-HFOs

Our automated detector was designed as a supplementary diagnostic tool for the localization of EZ requiring surgical resection. Thus, the detector required good sensitivity and specificity, with a need to remove as many false positive events as possible with a reasonable sensitivity. The specificity of HFOs is correlated with the accuracy of non-HFOs. Hence, the accuracy of non-HFOs was improved so as to enhance the specificity of HFOs. When a sample with a 1:1 ratio of HFOs:non-HFOs was used to train the CNN model, the accuracy was not satisfactory for detecting either non-ripples or non-fast ripples. Subdividing the iEEG signals in HFOs and non-HFOs resulted in too many types of activities (e.g., baseline, epileptic spikes, and sharp waves) being contained in the non-HFOs, which made the non-HFO data insufficient. Therefore, we increased the number of non-HFOs to two, three, four, and five times the number of HFOs, with the number of HFOs kept constant, so as to improve the accuracy of non-HFOs. As shown in Figure 3, increasing the number of non-HFOs did raise the accuracy of non-HFOs within a certain range, on the other hand, the sensitivity of HFOs decreased. To improve the specificity of HFOs with a reasonable sensitivity, we chose a ratio of ripples to non-ripples of 1:4, and a ratio of fast ripples to non-fast ripples of 1:3, to train the CNN model.



Limitations and Future Work

Although the CNN model overcame some important issues in HFO detection, there still were some limitations. A potential weakness of implementing the CNN model in this way is that it did not utilize any cross-channel information. Moreover, the CNN model could not obtain the start and stop time, amplitude, or energy of HFOs. Future work should focus on further enhancement of performance of the CNN model.




CONCLUSION

With the continuous accumulation of medical data, there is an increasing need for the feature extraction and classification to predict class labels for patient's clinical data. In this study, we present an efficient detector powered by the CNN to detect ripples and fast ripples automatically. This method has achieved satisfactory performance compared with existing approaches, which might be utilized in a clinical setting in the future. Our detector is, therefore, valuable for identifying EZ during pre-surgical or intraoperative evaluation.
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This paper describes continuing research on the building of neurocognitive models of the internal mental and brain processes of children using a novel adapted combination of existing computational approaches and tools, and using electro-encephalographic (EEG) data to validate the models. The guiding working model which was pragmatically selected for investigation was the established and widely used Adaptive Control of Thought-Rational (ACT-R) modeling architecture from cognitive science. The anatomo-functional circuitry covered by ACT-R is validated by MRI-based neuroscience research. The present experimental data was obtained from a cognitive neuropsychology study involving preschool children (aged 4–6), which measured their visual selective attention and word comprehension behaviors. The collection and analysis of Event-Related Potentials (ERPs) from the EEG data allowed for the identification of sources of electrical activity known as dipoles within the cortex, using a combination of computational tools (Independent Component Analysis, FASTICA; EEG-Lab DIPFIT). The results were then used to build neurocognitive models based on Python ACT-R such that the patterns and the timings of the measured EEG could be reproduced as simplified symbolic representations of spikes, built through simplified electric-field simulations. The models simulated ultimately accounted for more than three-quarters of variations spatially and temporally in all electrical potential measurements (fit of model to dipole data expressed as R2 ranged between 0.75 and 0.98; P < 0.0001). Implications for practical uses of the present work are discussed for learning and educational applications in non-clinical and special needs children's populations, and for the possible use of non-experts (teachers and parents).

Keywords: EEG, Event-Related Potentials, neurocognitive modeling, visual attention, word comprehension, personalization, inclusive education, educational neurofeedback


INTRODUCTION

The primary goal of this paper is to report on continuing research on the building of cognitive models of the internal mental or brain processes of children by using the measurements of electroencephalographic (EEG) data in order to validate the models constructed. Furthermore, as a secondary but consequentially related goal, this paper explores prospective, possible implications in terms of designing useful neuro-technologies for learning and education, with specific consideration of two major themes currently debated in education: personalization and inclusion. The presented data were collected from neuropsychological experiments conducted with children from 4 to 6 years of age, which measured their visual selective attention and word comprehension in two separate computerized tasks. The collection and analysis of Event-Related Potentials (ERPs) from the data of scalp EEGs allowed for the identification within the cortex of dipoles as the sources of electrical activity.

In over fifty years of research, psychology, neuroscience, cognitive science, and other allied disciplines have clearly shown that to specify the neural/mental processes involved in a task from a human agent, behaviorally manifested differences in the extent of responses and their latency are necessary but not sufficient (Frank and Badre, 2015). Further steps are required to specify which structures and which functional pathways are putatively involved (Griffiths, 2015). In principle, analysis of verbal protocols (Ericsson and Simon, 1993), and other forms of verbal reports (see Runge et al., 2017) could be used to build converging validity for neurocognitive models using the “phenomenology-neural-behavior triangulation” (see Flanagan and Dryden, 1998). However, determining all these elements in young (i.e., infants and preschoolers) children escalates complexity further. This is where the present study, involving neuro-computational modeling (henceforth shortened as neurocognitive modeling), comes into play. A background question permeating this work concerns how much reduction is tolerable in order to achieve models that could one day be relatively easily implemented for real-world, practical applications for learning (ideally by users such as, for example, educators, teachers, and parents or the learners themselves, the children). For these reasons, the present work assumes the very pragmatic tactic of combining already existing and validated computational tools in a novel way.

As the starting point, the guiding working model which was pragmatically selected for investigation was the established and widely used ACT-R cognitive modeling architecture (ACT-R research Group, 2019). The MRI-based circuitry covered by ACT-R (see Figure 3) overlaps considerably with the circuitry considered and studied by many neuroscience research programs (see Borghi et al., 2013) independently from computational and modeling applications. The advantage of such an approach is that the correlates considered could in turn be modeled and verified as functional pathways through the building blocks of ACT-R. And of course, the results of the modeling can feed back to inform theory about neurocognitive functions and structures (for examples see Polk and Seifert, 2002). This cycle informed the design of the present study and is represented graphically in Figure 1.


[image: image]

FIGURE 1. Process flow representation of the present study.



As represented in the process flow of Figure 1, from the initial collection of children's EEG data in an experiment involving two tasks measuring aspects of different but related cognitive processes, using a type of Independent Component Analysis (Jung et al., 2001) we extracted and isolated single-trial ERPs and identified dipoles, indicating their likely sources within the cortex and other (Subcortical) parts of the brain. We then mapped this information onto a generalized ACT-R neurocognitive model with multiple interactive components. At the same time, from scalp single-trial ERPs from the three key brain cortical areas postulated in ACT-R, we simulated simple spike representation using a reductionist electric-field estimation procedure, which allowed us to reconstruct the cortical activity over time for the two tasks as it would happen in each individual trial. Finally, we compared the neurocognitive model and the reconstructed activity to assess whether the two types of results could be coherently integrated as a whole product.

The need for relatively precise spatial localization and connectivity in the model was further insured by adopting basic neural-spiking simulation techniques to be able to confirm the following: (1) the time latency of ERP activity linked to the identified patterns of activation within the ACT-R architecture; and (2) validity of the postulated meaning of the ERP components (i.e., higher amplitude reflecting the relevant increased neural recruitment in the involved structures). Our expectation was that the combination of already popular and widely used modeling approaches would provide converging evidence supporting the hypothesized processes of attention and acquisition of the word meanings and implicate a network of connections overlapping in key cortical networks, in particular, those involved in the occipital-temporal-prefrontal long-range connections (see Table 1, and Figure 1) shared by the two types of tasks in developing brains (see D'Angiulli et al., 2015). For the latter reason, in this paper we focused our analyses on the selected electrodes of interest corresponding to the main cortical areas involved in those neural networks.



Table 1. Times and locations of modules in ACT-R model for selective attention and PPVT tasks.

[image: image]






MATERIALS AND METHODS

In the following “Experiment” subsection, we describe two behavioral tasks with a sample of young children: one measured the activation of the sensorimotor and perceptual systems engaged in a visual selective attention task, the other task measured linguistic-conceptual and semantic memory systems engaged in a word-verification task. Both tasks were part of a large developmental cognitive neuroscience research program, and were published as primary data analysis reports elsewhere (Van Roon and D'Angiulli, 2014; D'Angiulli et al., 2015). In what follows, we provide a summary of the essential steps to illustrate how the entire protocol can be replicated. However, readers interested in more details on the human experimentation side should consult the cited reports. ERPs were extracted from continuous EEGs time-locked to the task stimuli, to identify the sources of electrical activity within the cortex known as dipoles. Subsequently, in the subsection titled “Neurocognitive Modeling,” we describe how the results of the experimental tasks were used as secondary data analysis and manipulation to build neuro-computational models that could reproduce localizations, dynamic connectivity among areas, patterns of neural spiking, and timings of measured EEG (see Figure 1). An important point of difference with the previously published results is that we present here novel analysis focusing on selected samples of the best instances of observed single-trial ERPs (across different subjects) as identified by a type of ICA. That is, in creating the models we did not use grand averages of already-averaged ERPs across all trials.


Experiment

Participants

Participants were initially selected from a prospective cohort of children recruited in the context of a separate, non-overlapping, larger research program on early development screening (D'Angiulli et al., 2009). Based on the extensive developmental literature (Bornstein and Lamb, 2011) and given the scope of our study, we identified as the optimal target developmental period the one corresponding to the age range of 4.5–6.5 years. To recruit the initial pool of participants, an information package was distributed to all parents whose children attended the same daycare of a middle-sized Canadian city. This study was approved by the institutional research ethics boards of Thompson Rivers University and Carleton University in accordance with the 1964 Declaration of Helsinki ethical standards and the Tri-Council Policy Statement (http://www.pre.ethics.gc.ca/pdf/eng/tcps2-2014/TCPS_2_FINAL_Web.pdf). Parents signed a consent form and completed a brief questionnaire on demographic and socioeconomic information about their family, including a clause to consent to this follow-up study including collecting EEG, and behavioral and cognitive measures from their children. Materials explaining what was involved were included in the package and presented at the daycare to teachers and parents during small information sessions. Thus, only general information about the present study was provided to our target families and children. Hypotheses and purposes of the study were only given (verbally to children and through a written take-home page to parents) at debriefing after the study but not at the recruitment stage. After screening for the families' socioeconomic and demographic background information and individuals' daycare records, the prospective participants were matched by age, gender, ethnicity, reported health/physical development and “computeracy” (ownership and use of internet and computers, including video gaming). Thirty families were then re-contacted by mail, of which seventeen returned completed and signed consent for the present study. Children were given a gift card of $5 for their participation and also received a book of stickers at the end of the study. Written parental informed consent and the children's active assent was obtained according to a protocol approved by research ethics boards from all of the involved institutions.

The final sample of 13 children [nine boys; four girls; mean age (SD) = 5.10 (0.75)] was obtained after exclusion of three (female) participants from the initial sample of 16 (two children had an insufficient number of artifact-free or artifact-corrected usable EEG data and/or did not meet the minimal required performance level (accuracy >75%) in one task, hence their data were discarded after preliminary diagnostic analysis). Following strict inclusion criteria, participants were carefully selected to represent, despite some age variation, a relatively homogeneous group of healthy, typically-developing children. The participants scored all within 0.5 standard deviations from the mean on the following standardized age-normed control measures: parents completed the Behavioral Rating Inventory of Executive Function—Preschool Version (BRIEF-P) from Psychological Assessment Resources (PAR), Inc. (Gioia et al., 2005); and the preschool Child Behavioral Checklist (CBCL/1½−5 years; Achenbach, 2009). In addition to the above measures, the participants exceeded expectations in the Early Development Instrument (Janus et al., 2007) in all developmental domains (i.e., physical health and well-being; social knowledge and competence; emotional health and maturity; language and cognitive development; communication skills and general knowledge).

Furthermore, according to parent reports and daycare records, the participants were typically-developing children with no history of medication or referral to disability assessment or services. All were Caucasian with normal or corrected-to-normal vision and no hearing or other known sensory impairments. The children lived in the same neighborhood, corresponding to the same catchment area for the daycare center they attended. All children were from middle-upper class family socioeconomic backgrounds.

Apparatus and Procedures

Behavioral tasks

For the visual selective attention task, the method followed the standard protocol of Akshoomoff (2002) represented in Figure 2A. For this task, children viewed a computer screen which displayed either a picture of a duck or a picture of a turtle that remained on the screen for 500 ms and was followed by a 500 ms ISI. Children were instructed to watch the computer screen and, every time they saw a duck, to push a button, and not to push the button if they saw something else (this requires that children ignore irrelevant stimuli while paying attention to the target stimulus). For one quarter of the trials a duck was displayed, and for the remaining three quarters a turtle was displayed. Each child was given 12 trials or practice periods, followed by 150 trials each.
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FIGURE 2. (A) Visual selective attention task. (B) Computerized version of the Peabody Picture Vocabulary Test.



The task of word verification was a computerized version of the standard Picture Peabody Vocabulary Test (PPVT-III), which measures receptive vocabulary and word comprehension (Dunn and Dunn, 2007). The test includes 19 sets, each set includes 24 items: 24 target words presented aurally and 24 corresponding displays containing four-color pictures arranged on the screen, with each picture having a rectangular frame with a different color (spatial layout and colors of frame were randomly shuffled from trial to trial). For each trial and item in a stimulus set, children were seated in front of a computer and heard a word over insert headphones (with sound set at 70 dB). They were then asked to decide which one of the four pictures on the computer screen corresponded to the target word (see Figure 2B). Children were instructed to verify the meaning of the target spoken word by selecting the picture that best illustrated its meaning by clicking on a response keypad having four buttons with colors matching the color-coded frames inscribing the stimulus pictures. All children were instructed to consider all the buttons appropriately to give the correct manual response. The words were prerecorded from the voice of an English-speaking female experimenter at a rate of 250 Hz. Each new trial was self-initiated, upon pressing any button in the response keypad. A set was completed successfully unless three consecutive words were incorrectly verified; in this event, the test was discontinued and the particular set was considered the maximum performance level assigned to the subject.

The stimulus sets are arranged in order of increasing abstractness and complexity as operationally reflected in difficulty so that the task can be calibrated to the participant's appropriate vocabulary level (norm-based critical range). The strong relationship of the type of processes measured by the PPVT and language comprehension has been well-documented (e.g., Carroll, 1993; Kamil and Hiebert, 2005). Accordingly, correlations between PPVT and kindergarten language comprehension are typically very strong (median r > 0.65, see Dunn and Dunn, 2007). Thus, performance on PPVT is very unlikely to reflect just shallow linguistic processing in preschool children. This is also abundantly confirmed by overwhelming evidence in the context of aphasiology, intelligence, and clinical neuropsychology literature in both children and adults—research fields in which, at least for the last three decades, the PPVT has been used as a criterion measure of semantic elaboration.

In both tasks, the children were all tested individually in a sound-proof electromagnetically-shielded EEG booth. Each child was positioned in front of the computer so that his or her eyes were ~38 cm from the screen. Children were reminded of instructions or could communicate with experimenters and attending parents in the adjacent control room through an intercom speaker system (parents and experimenters had a back view of the child through a window but also had a frontal and facial view through a Bluetooth camera). The children were reminded of the importance of not speaking, moving/turning their head, clinching teeth, or blinking soon after they had given their manual response and before initiating a new trial. Each task required five minutes for completion.

EEG Data Acquisition and Recording Procedures

The EEG was recorded with EEG Quick caps with Ag-AgCl electrodes (Compumedics Neuroscan, Charlotte, NC, USA). Each participant had 11 Ag-AgCl electrode sites (Cz, F3, F4, Fz, O1, O2, Oz, P7, P8, Pz, T7, and T8) applied according to the 10–20 system of electrode application (Nuwer et al., 1998) as used previously (e.g., D'Angiulli et al., 2008, 2013). The decision of having the number of electrodes smaller than 32 was dictated by previous work and pilot studies in children of similar ages, showing no critical loss of reliability in source analysis results (Griffiths et al., 2011). All electrodes were referenced to nose tip. Impedances were kept below 5 kOhms. The vertical electrooculograms (VEOG) were recorded from two split bipolar electrodes on the left and right supraorbital ridge (VEOGU, L and R) as well as the left and right zygomatic arch (VEOG, L and R). The signal from the electrodes was amplified and digitized by a SynAmps2 and a SCAN™ 4.3 EEG system (Compumedics Neuroscan, Charlotte, NC, United States), with filter settings at 0.15 Hz (high pass) and 100 Hz (low pass). The data from all channels were digitized online at a sampling rate of 1,000 Hz.

EEG artifact reduction

Ocular artifact reduction was conducted through the eye-movement correction included in the EEGlab package (Delorme and Makeig, 2004). To verify, confirm reliability, and validate our procedure, we correlated our edited data to the data obtained with two additional independently conducted procedures: a manual eye-movement rejection based on visual-score scanning procedure, and on the eye movement reduction algorithm devised by Semlitsch et al. (1986), which consists of constructing an average artifact response and then subtracting it from the EEG channels on a sweep-by-sweep, point-by-point basis. The agreement between the edited data with our procedure and the two confirmatory procedures was high (r = 0.89 with artifact rejection and r = 0.95, both p < 0.0001).

General ERP processing and analysis

In this section we describe procedures and analysis parameters that did not vary depending on the nature of the EEG/ERP data, the more specific approaches to the data relative to each subset of tasks are described in the relative sections of the results.

The electrode locations were mapped using the EEGLAB BESA standard-10-5-385 cap model. Each participant's EEG was epoched (200 ms pre-stimulus and 1,000 ms post-stimulus) and averaged with respect to the event of interest, which acted as the anchor for the epoching (the stimulus or 0 ms mark). For the attention task, the considered epoch was anchored on the presentation of the duck or turtle. For the PPVT task, there were two types of epochs: one anchored on the presentation of the word and the other anchored on the subsequent presentation of the four-picture display. Baseline correction was based on the 200 ms pre-stimulus interval.

The analysis of the EEG data was conducted using EEGLAB software from the University of California, San Diego, which runs on the proprietary software MATLAB (Delorme and Makeig, 2004). Event-Related Potentials (ERPs) were then derived from the continuous EEG recordings using two complementary averaging techniques: (1) Grand averaging of averaged ERPs across subjects; (2) averages of single-trial ERPs across subjects. Performance accuracy rates (>75%) insured that the children carried out the tasks at threshold in pressing the button when appropriate.

For each task, the quantification of the effects was based on maps representing normalized averaged scalp electrical activity (see below), as well as on essential analysis including separated focused contrast analyses using Z (standard normal deviate) tests or t-tests. The latter procedures were used to calculate the mean standardized difference (in micro-volts) needed in each electrode location in order for the neural activation patterns to be significantly different from one another; such differences can be directly interpreted as effect sizes in the same meaningful metric (Shadish and Haddock, 1994). Contrasts between mean amplitudes were conducted just for the time windows of interest but took into account standard deviations and standard errors of the baseline mean across the entire ERP epochs. Additionally, for ease of interpretation, some of the standardized mean differences valid for all the simultaneous multiple comparisons between types of events are indicated in the depiction of the ERP waveforms in the Figures. p-values were corrected for multiple comparisons using the Simes-Bonferroni procedure (Simes, 1986).



Neurocognitive Modeling

In this section, we describe methods used for building the neurocomputational models (neurocognitive model, in short) of visualization correlates for both the attention and the word-verification tasks we used. The observed EEG/ERP results from the two tasks were used to build models to identify sources of task-related ERP activity (electrical energy), and then to reproduce the pattern and timings of measured ERP peaks.

Independent Component Analysis

Further analysis consisted of Independent Component Analysis (ICA) of single-trial ERPs (Jung et al., 2001) as well as subsequent ICA for components of ERPs. This technique mathematically determines sets of discrete separate functions that may efficiently explain all measurements as signals which are maximally independent (the FASTICA algorithm was used, Hyvärinen and Oja, 1997). As an example, a single middle occipital area was discerned from the initial simultaneous reaction of three posterior electrodes. While the location and the timing of components can be calculated with ICA, a magnitude which is absolute cannot be estimated similarly, as there inherently exists an ambiguity between component magnitude and attenuation from it to the point of measurement.

ACT-R Framework

ACT-R, as developed by John R. Anderson, provides a system for modeling that is commonly used in cognitive science (Anderson and Lebiere, 1998). By this architecture, cognition arises from parallel interactions of modules which are independent. Procedural memory is modeled as a system of production by ACT-R, and specifically one of rules—namely, rules of if/then. A system of buffers and chunks manages communication both to and from the Procedural Model (see Figure 3). In ACT-R, chunks are composed of short lists of information which are predicated (i.e., a chunk could so represent the word “dog” as “Is a”:dog, “Name”:Fido, “Color”:brown, “Size”:large). A buffer can contain only one chunk at a time. At least one buffer exists for every module, and therefore a buffer that is visual, and another that is auditory, and another that is declarative, and so forth. Buffer instructions are received by the modules, which send their own results of activity to the buffers. Altogether, buffers may be regarded to form the working memory; they can alternately be considered to represent the current task context. When an “if condition” matches the buffer content, productions are said to “fire.” Buffer content is altered by the part of production known as “then.” Each production requires 50 ms, and productions can fire only one-by-one. Module functions serve to determine the time required of each module to return a result. If for example a specific memory is requested by a production from the Declarative Memory Module, a stronger memory will deliver the results sooner. ACT-R therefore renders strong predictions about internal events.
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FIGURE 3. The organization of information in ACT–R.



The standard version of ACT-R was written in LISP. However, we adopted Python ACT-R, which is a recent re-implementation of the architecture (Stewart and West, 2005). This supports most of the functions of ACT-R release six while allowing programming in a more compact and accessible syntax using the Python language.

Module Localization

The term “module” is here defined as a function which is local to some area and which also links with a given task process (as distinct from the language modules of Chomsky or the domain-specific modules of Fodor) but which is similar to the generalization offered by Kosslyn (1994). Functional Magnetic Resonance Imaging (fMRI) has accounted for much of the research as it links ACT-R module activity to areas specific in the brain. [The relevant papers can be found on the website for ACT-R (ACT-R research Group, 2019). Those estimates for module location which are proven the best are found listed in (Anderson and Byrne, 2004). In addition, an exhaustive review of these brain area functions can be found in Anderson (2007)]. As an example, the central coordinator for productions is determined to be the caudate of the basal ganglia. Hippocampal control is responsible for declarative memory, whereas attention toward conflicting stimuli is controlled by the anterior cingulate cortex. Declarative memory finds its support from the frontal cortex, whereas visual processing occurs within the occipital lobe along with additional processing in the parietal lobe (Figure 3).

FMRI is ideal for the use of localization. It is, however, generally recognized as being too slow for the detection of events as they would fall within the timeframe of ACT-R. Anderson has avoided this limitation by electing to model the prospective BOLD response in accordance with module activation time course (Anderson et al., 2003), yet this approach nonetheless involves a delay mismatch in real time, as the recording of activation lags behind the processing of cognition by some seconds. And even the so-called event-related fMRI still has a time resolution that is effectively inferior to the one obtained by EEG measurements. Herein, we intended to explore with EEG for much the same reasons, so as to capitalize on the superior time (millisecond) resolution of ERPs. (For a different, but successful example of ERP-based ACT-R modeling, see Cassenti, 2007; Cassenti et al., 2011).

Dipole Location

Dipolar analysis was applied for identifying the location of areas of the brain as indicative of the origin of the signals. “Dipole” is a term in physics that refers to one pair of charges which are closely spaced, one being positive and the other being negative. The dipole can create an electrical field, or voltage, at a given distance depending upon the strength and the orientation. One section of the brain can possess many thousands of neurons oriented in a single direction and firing all at once. It may represent a cortical column, a lower structure nucleus, or a ganglion belonging to the basal ganglia, for example. In their firing. these neurons produce voltage, to be measured as EEG in surface scalp electrodes (see Onton and Makeig, 2006). In EEGLAB, the component titled DIPFIT was employed for the estimation of a set of dipoles in both single-trial and average data of ERP to explain the independent components which were extracted. The dipole is defined as a region of the cortex wherein many thousands of neurons act in parallel such that their total electrical field amounts to the scalp measurement of EEG. DIPFIT regularly locates one or perhaps two dipoles for each specific region as it appears to have produced the independent individual components in each single trial. The MRI-based spherical head model with standard Tailarach coordinates appropriate to age as of EEGLAB was chosen.

Electric-Field Modeling

The next stage was to create a model that reproduced the average ERP activity measured across participants using extraction of single-trial ERPs. An ACT-R model of the process would, at minimum, predict that the visual module (occipital) would be activated by the displayed picture and would place a representation of the picture in the visual buffer (parietal). Next, the “parietal” representation would be used to retrieve the instruction about what to do for that animal from declarative memory (temporal), which in turn would be placed in the declarative memory buffer (frontal). For our purposes, the model was primarily built to reproduce the electrical activity measured rather than behavioral results.

In the neurocognitive model, each module was assumed to generate between one and two dipoles in the dipole-fitting stage of location identification for the simulation of electrical activity. It was believed that the module produced its electrical energy in the rising and falling of a wave. For the purpose of modeling, there was an assumption of a basic triangular wave, with its peak at the module center (simplified spike model). The resultant electrical field or voltage was thereupon calculated at the surface head of each electrode as the total sum contribution of the individual dipoles. Since the peak activities of the components occurred at different times in the observed data, it was not necessary to add the effects of more than one dipole at a given time.

(i) The estimation of independent dipole effect reads as below (see Figure 4): The square of the distance (r) from electrode to dipole as obtained from Pythagoras is calculated.

(ii) The square of the distance (r) from electrode to dipole as obtained from Pythagoras is calculated.

(iii) The electrode potential of the dipole is calculated from Coulomb's law (i.e,: k × p × cos(θ)/r2), where p equals the dipole strength while k remains constant. It is unnecessary to determine the value of the constant as the models employ relative magnitude.

(iv) Lastly, ERP signal simulations were compared to experimental measurements.
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FIGURE 4. Calculating an electric dipole field.



Elsewhere, we have provided proof-of-concept demonstrating that the above method can be used consistently to describe internal neural activity (Griffiths et al., 2011). In this paper, we extend that preliminary work by showing that the set of building blocks are stable across diverse tasks and can be used to reproduce results for further tasks.




RESULTS


Behavioral Data

Descriptive analysis on the behavioral data showed that for the attention task, accuracy was very high (M = 89.85%; SD = 5.03) and relatively rapid (mean RTs = 745 ms, SD = 366.17). Age correlated significantly with accuracy [r(13) = 0.61, p < 0.05] but not with RTs. On the longer PPVT task, children took on average 3.5 s (SD = 0.78) to respond from when the picture set was presented. Similarly as with the attention task, accuracy was relatively high as all children completed successfully between 2 and 6 sets of target words, with most children being within ±1 SD from the mean in terms of age-normed standard scores. There was no correlation between age and performance accuracy or RTs on the PPVT test.



ERP Data

Constrained by our modeling approach (see sections Dipole Location and Electric-Field Modeling), our ERP analysis focused selectively on the electrodes corresponding to the brain areas hypothesized and tested by ACT-R. We therefore report only significant results concerning those electrodes of interest for the hypothesized models and test thereof. For results concerning the entire EEG montage across the scalp, we refer the readers to the aforementioned published reports.

For the attention task, grand averages of the ERP were calculated for the duck and turtle events, and the latter were then plotted as scalp maps. The array of scalp diagrams in Figure 5 shows the response for the duck (top) and turtle (bottom). The maps are views of the scalp from the top of the head and oriented with the anterior (frontal) areas at the top of the circle and the posterior (occipito-parietal areas) at the bottom. They are plotted as a function of time at every 100 ms. These provide a global dynamic view of the neural activity for all subjects during the tasks and therefore show several interesting features.
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FIGURE 5. Bottom and top arrays: Scalp maps for selective attention task events (turtle, depicted with dashed lines, and duck, depicted with solid black lines). The graphs in the middle show ERP waveforms corresponding to the scalps at selected midline electrodes. Dark blue and red scalp areas represent significance at p < 0.05 in the Simes-Bonferroni corrected T-test band across the entire epoch (see text). We next focused our analysis on the two key proposed predictions. Figure 6B shows waveforms concurrent with the word-verification event for concrete and abstract sets of PPVT words, wherein the more concrete words included only items from the first set, and the more abstract included only items from the very last set successfully completed by each subject; given that the number of trials was reduced, the ERPs were smoothened to allow for a clearer evaluation of effects critical to this context. The most important and significant differences are highlighted in Figure 6C with gray frame boxes, for the site where the largest activation was detected through scalp maps, at the right occipital electrode (O2). As predicted, there was higher positive activation concurrently with concrete than with abstract words in the first 100 ms of the PPVT task [t(13) = 6.52; p < 0.0001]. Conversely, there was higher positive activation concurrently with abstract than with concrete words in the 750–850 ms interval [t(13) = 7.71; p < 0.0001].



In the attention task, at 100 ms, both duck and turtle ERPs showed a high bilateral response in the posterior area, suggesting visual processing of the duck/turtle image. That was followed at 200 ms by strong frontal activity, perhaps indicating working memory determining the course of action. At 700 ms there was more bilateral frontal activity coinciding with the typical button press time. Focused contrasts revealed the strongest bilateral effects in the midline electrodes. The graphs in the middle of Figure 5 show the largest significant differences (the shaded areas in the figure) between attended (duck) and unattended (turtle) waveforms in the midline electrodes: between 300 and 500 ms in the occipital electrode, between 400 and 600 ms, and between 600 and 800 in the parietal electrode, and between 500 and 1,000 ms in the frontal electrode [all contrasts: t(13) > 2.27, p < 0.05]. On average, the largest peak amplitude detected in the examined time windows was 28.4 μV (relative to baseline activity estimated at Z = 2.60, p < 0.01).

Grand averages for the ERPs of the PPVT were calculated and plotted as scalp maps as well. Figure 6A shows scalp maps for the event interval between presentation of the word and presentation of pictures (i.e., picture verification), and for the event of seeing the pictures display (i.e., PPVT pictures). Strikingly, the maps for ERPs concurrent to seeing the PPVT pictures are virtually identical to those observed concurrent to the viewing of the turtle—that is, the distracter event during attention (compare the bottom arrays of scalp maps in Figures 5, 6A against each other). Nevertheless, the maps for the word verification event show early co-activation of opposite polarity in right anterior and bilateral posterior electrodes from 100 to 200 ms. After 300 ms, the activity spread out mostly in the right side across the centro-parietal and temporal electrodes. To verify that deep elaboration occurred, the bottom panel of Figure 6 also displays (unfiltered) ERPs after hearing the target word, split by correct and incorrect PPVT trials, at Fz which was the most representative electrode. In the window between 400 and 900 ms, although the direction of the effect is reversed at about half of this interval, there is a significant difference between the waveforms of correctly and incorrectly identified words [the maximal effect is similar across, that is, a mean difference of about 5 μV, t(13) = 4.23, p < 0.01].
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FIGURE 6. (A) Scalp maps for the word-verification task events (viewing pictures and verifying the word). (B) Filtered single-trial ERP waveforms of correct vs. incorrect word-verification trials at electrode FZ. (C) Filtered single-trial ERP waveforms for the verification of concrete and abstract words; the gray dashed-line frames show regions of significant effects (see details in text).



The maximum value of the ERP voltage for each of the participants was computed between 0 and 200 ms at electrode O2 during the attention task, collapsed across correct duck and turtle trials. The participants were then subdivided into two groups based on the median split of the ERP voltage: one Low and one High early activity group; the PPVT concrete vs. abstract analysis was re-run separately for the latter two groups. The two graphs in Figure 7 show the ERPs at electrode O2, corresponding to PPVT event word-verification. The top graph shows the PPVT O2 ERPs for the seven subjects in the Low early activity group. The second graph shows the ERPs for the seven subjects in the High early activity group. In both graphs, the blue stands for the concrete PPVT word set (first set) and the red for the abstract (last set), as in the analyses presented previously. Confirming our second main prediction, at electrode O2 the late ERP activity (750–850 ms interval) was significantly higher for concrete than for abstract word verification in both groups [High: t(13) = 4.00, p < 0.001; Low: t(13) = 3.11, p < 0.01]. The effect size of the difference in late ERP activity between concrete and abstract word-verification was again predicted by the early ERP activity (0–200 ms interval) during the attention task. The individual variation of early perceptual/attentional processing predicted the variation of late activity related to word-verification, within the High early activity group (r = 0.83) as well as within the Low early activity group (r = 0.76). Importantly, when the effect sizes of the differentials of activity corresponding to concrete vs. abstract words were compared in the two groups (graphically represented by the bidirectional arrows in the right panel of Figure 7), this test did not yield significant differences (Z = 0.27; p = 0.79), showing that the level in early activity was similarly predictive of late activity in both groups.
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FIGURE 7. (A,B) Filtered single-trial ERP waveforms during the concrete vs. abstract word-verification task in high and low early activity groups. (C) Scalp map of single-trial ERP activity during the attention task and representation of predictions (black arrows) of the ERP differences in the regions shown by the black outline frames. Bidirectional black arrows represent statistical comparison (“n.s.”: non-significant).





Control Comparisons Between Behavioral Data, Subject Data and ERP Data

Several multiple regression analyses were run to test possible associative relationships of ERP and EEG frequency bands (event-related band power analysis) with a host of control variables such as age, accuracy, and RTs on the tasks, as well as subjects' profiles used for screening and sample selection (CBCL, BRIEF-P, EDI). All effects were far from being significant (all p's > 0.50). This result showed that in the main findings we have reported above these other factors were not likely to be confounding.



Modeling Data

Application of the ICA routine yielded from the experimental data between 8 and 13 separate components for ERP activity related to both attention and word-verification tasks, averaged across subjects. Only for a short period of time were the independent components resolved to be active. Their modeling was thereby facilitated as for separate minimally overlapping processes. The presence of each component was verified either by one or two dipoles through running the DIPFIT routine.

Simulation of EEG activity was achieved by construction of a computer model comprising eight modules, corresponding to those components found to be most prominent. When activated, each individual module was assumed to produce one or two dipoles lasting for its duration. Activation was modeled as a simplified spike, rising linearly to a peak and then dropping at the same rate. Dipoles were assumed to have been generated at the DIPFIT estimated location consistently with the locations assumed to be standard in ACT-R. The Talairach database was applied to map the corresponding regions of the brain (Lancaster and Fox, 2010). The models matched the distribution of experimentally measured potentials reasonably well. Overall, the models accounted for more than 75% of the spatial and temporal variation of electrical potentials; the model for dipole data fit expressed as R2 had a range of between 0.75 and 0.98—a fit of excellent quality when it is considered that the calculations contained many approximations and simplifications. An analysis of sensitivity suggested that measuring the scalp EEG voltage to ±10% precision would result in localizing a dipole within 2–3 mm. In particular, we were able to isolate three key processes associated with particular events during the tasks, which are detailed next.

Figures 8–10 present the most relevant results of the source analysis and simulation against the experimental results, specifically, during (1) perceiving and attending to the picture of the duck or turtle as well as the PPVT pictures, and (2) verifying abstract words. The top left-hand plots show contour lines of an ICA-derived single-trial ERP averaged over the subjects for the same target (the picture of the duck), but measured at different locations and at different times during the attention task. The views are from above, with the nose at the top of the diagram and the ears at the side. Darker areas indicate more positive voltage responses in the ERP. The bottom left-hand plots show the electric fields calculated from the model for those four modules. The times selected are the peaks of activity for those assumed to underlie the neurocognitive modules. On the right hand, the locations of the dipoles responsible for the fields are shown as small inverted pin symbols with lines indicating the orientation-positive polarity of voltage.
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FIGURE 8. Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for early positive activity during the attention task for the target (duck). Right top: Dipole location. Bottom Left: Electric-field model of the component.
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FIGURE 9. Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for late positive activity during the attention task for the target (duck). Right top: Dipole location. Bottom Left: Electric-field model of the component.
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FIGURE 10. Left top: Spatial resolution and time course of the single-trial ERP component derived with ICA for late positive activity during the word-verification task. Right top: Dipole location. Bottom Left: Electric field model of the component. As far as the simulation results for the PPVT task (auditory-word perception followed by word verification process), Table 1 contains all the processes that were required to simulate the complete ERP signal for one epoch. Each line corresponds to one module within the cognitive model having the source location of one or of two electric dipoles. The times as they appear represent peaks in activity for every module.



A single dipole explained the strong response at 100 ms concurrent with processing pictures in both tasks. The location of this dipole was in the posterior head in correspondence with the occipital areas as anticipated for attention and visual processing. The independent component in its time course produced a single spike at 100 ms, with negligible activity before it or after. It was therefore possible to model it in the form of a simple spike at 100 ms, reaching 50 ms on either side, and otherwise at zero (see Figure 8). Similarly, for verification of abstract words spike activity was isolated but deeper (see 3D representation in Figure 10) in the temporo-occipital area. For the attention task, another process was isolated in the frontal lobes with another clearly identified spike at about 700 ms (see Figure 9), the latter appearing appears quite distinct from late occipital responses.

The output of the simulation closely reproduced the scalp electrical activity as measured in the experiment. In fact, the bottom panel of Figure 11 shows the electric field simulations next to the dipole analysis for the two types of events. The main three components we have described above are integrated with others in the simulation of the entire waveform. Importantly, two of these components, the early and late positivity, are observed during perception and word comprehension. The component representing the manual response shows clearly a different timing than that for late positive activity; this result is important because it rules out possible confounding factors between imagery and motor processes.
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FIGURE 11. Reconstruction of most relevant ERP peaks as identified by ICA through electric field modeling for the two main phases of the PPVT task, auditory processing of the word (bottom panel), followed by picture processing (top panel) (also refer to Table 1 above).






DISCUSSION

The present findings suggest that the EEG data of children can be simulated with use of a neurocognitive model, which assumes for each process that one to two electric dipoles are generated where the center of functionality is to be found for that function. Functionality mappings of ACT-R were proven to be robust in their use for EEG modeling. The standard locations of functions and the timings for productions were applicable. The experimental work described throughout this paper utilized results obtained from children which were first employed for the measurement of executive functions. Since the tasks may be considered relatively easy for children, the data may be considered optimal for the modeling of the cognitive processes of young children. Other future studies in modeling might make use of longitudinal results from the data of children and adults to offer a means of comparison in order to provide a test bench comparison of how modules may more specifically change throughout the course of development.

Adult neurocognitive modeling has usually been conducted for the purpose of the reproduction of averaged outward experimental behaviors of participants including response times and error rates. If, however, the objective is to simulate internal processes, it is advised that participants' differences (individual differences) be effectively considered. Our data of individual children showed that there were large individual differences in the processes taking place in the brain. For example, the activity in their pre-frontal areas revealed large variability between individuals (see Griffiths et al., 2009; D'Angiulli et al., 2010). These kinds of differences would have to be taken into consideration during any modeling specifically of individuals for personalized neurotechnologies (see the discussion as below). For example, ACT-R models usually only contain productions that are related to the task at hand. To reproduce the overall brain activity during the task, other processes such as environmental checks taking place in the brain need to be incorporated. It will therefore also be necessary to render tasks simple to ensure that consistent components be isolated for the sake of efficient modeling. Notwithstanding the general variability of EEG data, the technique of dipole analysis appears to be a very promising way to determine the localization, time course, and especially sequencing of neural events for the purpose of building increasingly complex neurocognitive simulations.

There are already links between ACT-R modeling and the learning sciences and education. For example, modeling based on fMRI imaging data has already been used to monitor children's mathematical learning procedures (e.g., Qin et al., 2004) and strategies (Tenison et al., 2014). However, the focus of these types of studies has mainly been to understand the processes underlying mathematical and arithmetic problem-solving during structured lab testing. In addition, research on ACT-R models has been used to build “cognitive tutors,” that is, computer-tutoring programs that implement the ACT-R architecture for the teaching of algebra, geometry, and integrated math (Anderson et al., 1995). The type of neurocognitive models described in the present study may be a further development in the possible application for learning and education by using ACT-R or other architectures for closed-loop brain training or, in other words, educational neurofeedback for practical uses with non-clinical populations and, in particular, with young children with or without special needs. In contrast to fMRI applications, EEG-based applications are relatively inexpensive, portable and wireless, and are more child-friendly in that they can tolerate to a certain extent some mobility and can be used in open spaces rather than a scanner. As a way of concluding the paper, possible future applications and research directions are discussed next with considerations for both progress and limitations of this research.

As discussed by Fairclough (2009), neurocognitive modeling could be integrated in closed-loop brain training to (i) induce the desired optimal psychological state prior to learning experience or examination (as suggested by sports neurofeedback, Hammond, 2007), to (ii) teach children about biological systems using biofeedback games (self-regulation exercises plus knowledge of human biology, see Sitaram et al., 2017), and to (iii) design adaptive educational software which in real time can keep the learner motivated, to avoid disengagement or boredom, as suggested by video games research (Lécuyer et al., 2008; Mishra et al., 2016; Kasemsap, 2017). Compatible with the traditional closed-loop brain training paradigm, in the first two instances (applications i and ii) the user works with the processed biological signal to develop a degree of self-regulation which can become a stable individual cognitive trait with practice (Sitaram et al., 2017). As far as it concerns the third instance (application iii), the software may be developed to be adaptive so that it may personalize and optimize the learning process for an individual. In other words, an efficient, optimal mind/brain state is being created on the fly by dynamic software adaptation to facilitate learning. It is unclear whether the latter application is as effective for encouraging self-regulatory strategies as traditional biofeedback, or whether it can serve as a potent tool for optimizing the learning process itself. The fact, however, that the neurocognitive modeling feedback is represented through content (simplified spikes) and that is congruent with the underlying brain processes might suggest that it could guide children to use natural mental strategies such as mental imagery (Scharnowski et al., 2015), which tend to be more successful in leading to learning and transfer.

Thus, in principle, it seems reasonable to speculate that EEG-based neurocognitive modeling of children's data could be used for indicating when/how teaching methods need to be revised, or as an assessment tool technique, monitoring how long children are engaged, interested or focused, as well as their actual understanding of materials and performance during the tests. EEG-based neurocognitive modeling may also help the teacher in assessing individual differences in specific aptitudes and preferences, demonstrating which learner has an aptitude for a subject or activity by the intensity, and patterns of activation in certain areas. It could therefore be used to assign students or groups of students to subjects or help them develop matching preferences to topics or projects.

Given that EEG patterns of young children differ from adults, a motivation for the current research was to model specifically children's data and use an approach that could lead to valid implementations. Accordingly, one of the implications is that the practical issues of recognition and classification of EEG patterns in young children can be minimized with increasing progress in the use of the approach. Because the technique demonstrated here can be designed so that models are not dependent on verbal or motor response, it could be used with young children—in particular, preschoolers. A future direction for research would be to adapt to extend the present approach to even younger children so that age is for any practical purpose virtually irrelevant. Single-trial ERPs could be measured routinely during learning, class or homework activity, and provided that one day the markers will allow early detection for learning difficulties, and especially reading and math disabilities. Suitable preventive teaching methods or early interventions could be put in place before the problems start having their negative effects. Importantly, it may be possible to detect or confirm clinical conditions such as ADHD by examining EEG activity showing, for example, the relative ratio of beta and theta EEG frequencies generated in certain ROIs in the brain.

In addition to the potential usefulness for diagnostic purposes, a better specification of the neural dynamics through EEG-based neurocognitive modeling may afford to describe the learning process more accurately, and to adapt teaching accordingly. In video games research, some applications are already enabling computer activities to respond to the affective states of the user classified as being, for example, bored, angry, excited, or confused. This approach can be directly transferred into education environments where information, activities, tasks and exercises can be tailored at an appropriate level and in an enticing way. Furthermore, the feedback the system uses about the person's state could become part of neurofeedback itself, as it could be used for supporting practice and training of key aspects of executive functions and attention.

It seems plausible that personalized neurofeedback in education likely will not be a stand-alone, but one of many tools for the learners. An interesting approach would be to integrate EEG-based neurocognitive modeling in systems that use multiple techniques over time for changing behavior (see NASA PlayAttention; Palsson and Pope, 2002). This application could be similar to those used to enter the optimal mind/brain state or to improve performance by practicing to generate relevant EEG timing, patterns and intensities at certain frequencies, or through learning interfaces in which desired states are elicited indirectly.

The present research though is only an initial step toward the development of the learning environments hypothesized above. At this point, EEG-based neurocognitive modeling only supports a relatively reliable identification of generic states; personalization will require many layers of improvement and fine tuning to allow monitoring to identify an individual state and then training to replicate it consistently and reliably. The present research opens up many interesting questions for future research regarding knowledge representation in educational neurofeedback. Can neurofeedback based on the simplified spike representation as shown here with EEG-based neurocognitive modeling be a suitable method of communicating information? And can it be used as an appropriate way for ensuring that information is presented meaningfully to young children? It is unclear at this point if it is more sensible to use such an approach to engage and monitor rather than to teach per se. Many questions hinge on the type of interface for education. Should it relate directly to a subject such as human biology, as discussed earlier, or can it be more abstract, and simply inducing the desired mind/brain state could be sufficient? Can shared cooperative or competitive environments be created to be more engaging to achieve the desired state? Also, many other very important related practical aspects such as aesthetics (the appearance of the interface and electrodes), wearability, mobility/portability, and degree of invasiveness are in need of much more future research.

All analyses, simulations and modeling included in this paper involved a novel combination of existing, commercially available or even open source tools that are widely available and used in the research and consumer communities. Therefore, a third implicit goal of this paper was to show that the approach used here, or a similar approach, could in principle be adopted relatively easily by non-experts in educational and pedagogical settings. However, it is important to point out that there are limitations in terms of reliability, that is, precision of measurement afforded by the existing tools we used. The particular implementation of ACT-R used in this study is based on a spherical head assumption, which makes possible mapping ERP activity onto MRI-based anatomo-functional structures. However, the extraction of ERP data under the sphericity assumption employs the common average across the scalp as the reference channel for the recorded EEG data. Other reference methods, specifically the reference electrode standardization technique (REST) (Yao, 2001), have been shown to give more precise temporal information on EEG recordings. However, even with the current limitations of the tools, the approach we used seems reasonably robust in terms of the validity of neurocognitive modeling, because it focused on insuring that those tools identified and measured the internal processes as predicted. Ultimately, the validity was insured by comparison with a body of ACT-R modeling work, which has been done in both adults and children. We are not aware of currently widely available EEG-based ACT-R applications in children that used REST. Therefore, we suggest that an important extension of the present work is for future research to devise ways to assess the validity and reliability of REST in ACT-R neurocognitive modeling of children's data, thereby establishing a base of knowledge and use for the benefit of non-experts.

In conclusion, the retooling of existing computational techniques in novel ways such as the one demonstrated by our study opens a host of possible innovations in neurotechnological applications for personalized and inclusive education. Although we are still far from actual effective implementation of credible and dependable neurotech for learning, thinking about their potential and how we will use them and when they will be ready is crucial so that education tools can be properly designed from inception. All stakeholders (teachers, students, academics, and parents) need to be involved at the onset—that is, from now—as part of research development to create systems that are useful, usable and meet the highest ethical and safety standards.
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Purpose: To build a mathematical model based magnetic resonance (MR) method to simulate drug anisotropic distribution in vivo in the interstitial space (ISS) of the brain.

Materials and Methods: An injection of signal intensity-related gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA), which is an exogenous drug, was administered, and its diffusion was traced in the ISS of the brain using MRI. Dynamic MRI scans were performed to monitor and record the changes in signal intensity in each pixel of the region of interest. The transport parameters were calculated using the modified equation to simulate three-dimensional anisotropic diffusion, which was resolved using a Laplace transform and a linear regressive model.

Results: After Gd-DTPA was introduced into the caudate nucleus, its distribution was demonstrated in real time. As the Gd-DTPA gradually cleared, the associated hyperintensity attenuated over time. The average diffusion coefficient (D) and the clearance rate constant (k) were (1.305 ± 0.364) × 10−4 mm2/s and (1.40 ± 0.206) × 10−5 s−1, respectively.

Discussion: The combination of trace-based MRI and modified diffusion mathematical models can visualize and measure the three-dimensional anisotropic distribution of drugs in the ISS of the brain.

Keywords: interstitial space, anisotropic diffusion, mathematical model, brain, magnetic resonance, Gd-DTPA


INTRODUCTION

Despite rapid progress in neuroscience, traditional oral or intravenous administration for brain diseases have consistently shown low efficiency (Fisher et al., 2009; Wolak and Thorne, 2013) and much more research needed to understand the brain activity underlying emotion, behavior, etc. (Yan et al., 2017a,b). Administering therapeutics through the interstitial space (ISS) of brain is considered a promising method of treating brain diseases based on the fluid dynamics of the interstitial fluid (ISF) in the ISS (N'djin et al., 2014; Lonser et al., 2015). This novel delivery strategy has demonstrated certain advantages compared with traditional drug delivery, including the ability to bypass the blood-brain barrier, wider targeted distributions throughout the brain volume, and reduced side effects (Xi et al., 2014). For example, the administration of a small dose cytidinediphosphate choline through the ISS of the brain demonstrated a greater efficiency for preventing trial ischemic stroke (Han et al., 2011). Despite its advantages, clinical therapies cannot be administered using this method until a greater understanding has been developed of the anatomy and physiology of the ISS as well as the regularity of drug distribution and clearance. So an appropriate mathematical model, which can stimulate drug distribution in ISS, is crucial to the emerging achievements and applications of the promising administration.

Based on recent anatomy development, brain is the particular example of porous media, where the ISS is the irregular, tortuous and narrow (mostly from 38 to 64 nm) space between neural cells and capillaries, and it occupies approximately 15–20% of the total brain volume and is filled with ISF (Sykova and Nicholson, 2008). Many important neural actives occur in the ISS, including neural cell communication, information processing and integration of coordinated responses to changes in the microenvironment (Xie et al., 2013; Kastellakis et al., 2015). It is believed that bulk flow and diffusion are the mechanisms underlying drug distribution in the ISS, which means that drugs can be driven by both the pressure gradient and the concentration gradient according to the fluid law of the ISF (Han et al., 2012). If the influence of pressure is neglected, diffusion is the sole factor in the distribution of drug ions in ISS. In a porous media several factors can impose constraints on the diffusion process. The primary factor is the geometrical structure and secondary are specialized features of medium. Substances contained in the ISF have a broad spectrum of physical and chemical differences and these differences influence the pH and viscosity of the ISF and impose constraints on the diffusion process (Shi et al., 2015). Currently, approaches for measuring the ISS in vivo primarily include radioactive tracers, real-time ion introduction, and integrated optical imaging. Based on Fick's second law of diffusion and the appropriate equation for ISS, these methods can measure the morphological parameters of the ISS in the local brain tissue (60~100 μm) (Sykova and Nicholson, 2008). However, they are sophisticated and cannot be used to monitor the drug distribution through the ISS of the brain due to their limitation of low image resolution and detection depth.

Tracer-based magnetic resonance imaging (MRI) technology employs gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) to visual the transport procession the brain ISS, and the diffusion and clearance of the tracer over time at any pixel within the brain can be monitored and quantized (Kroenke and Neil, 2004; Han et al., 2014). The technique is based on the signal intensity increment (ΔSI) and its time course (ΔSI/Δt), which can be used to obtain the rule for the tracer concentrations at any point within the brain over time (C/Δt) (Xu et al., 2011). The technique demonstrates the anisotropic diffusion properties in brain ISS. Based on the isotropic diffusion equation applied in previous studies, a novel mathematical diffusion model was established for MR technique which can simulate the anisotropic diffusion process, and resolve the significant parameters of the diffusion and clearance process of Gd-DTPA in the brain ISS, including the diffusion coefficient (D) and the clearance rate constant (k).



MATERIALS AND METHODS


MRI Protocols

A 3.0T MRI system (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) with an eight-channel wrist coil was used with magnetization-prepared rapid acquisition gradient echo sequences (MPRAGE). The sequence parameters are as follows: repetition time = 1,500 ms, flip angle = 9°, field of view = 30 mm, slice thickness = 0.5 mm, resolution = 512 × 96, and voxel = 0.5 × 0.5 mm.



Animal Models

The study was conducted in accordance with national guidelines, and the protocols were approved by the Ethics Committee of Peking University Health Center (Approval No. LA 2009-008). The experiments were performed on male Sprague Dawley rats weighing 280–360 g. Eight rats were anesthetized with an intraperitoneal injection of chloral hydrate (400 mg/kg) and then fixed in a stereotactic coordinate system (Lab Standard Stereotaxic-Single, Stoelting Co, Illinois, USA).Prior to injection, a MRI scan was performed to confirm the puncture position and obtain a basic reference image. A 2 μl dose of Gd-DTPA was slowly injected into the caudate nucleus of the brain at a rate of 0.2 μl/min according to pre-scan images. MRI scans were performed at 10, 30, 60, 90, 120, 180, 240, 300, and 360 min after injection.

MATLAB-based software was developed to co-register the MR images of the same rat before and after the injection. The before-scanned images were then subtracted from the post-scanned images, and the signal intensity increment of the processed MR images was recorded using the associated software and denoted by ΔSI, which was used in the subsequent calculations (Figure 1). More detailed description on data processing method can be found in our prior paper (Han et al., 2014).


[image: image]

FIGURE 1. (A) Image of a rat brain prior to Gd-DTPA administration; (B) Image of a rat brain 10 min after administration. (C) Subtracted image. The data (ΔSI) for the tracer distribution along the X-axis and Z-axis can be obtained by calculating a series of rat brain images at different time points.





Mathematical Model

For convenience, we assumed that the concentration at moment t and position be C = C(x, y, z, t). Drugs diffuse from areas of higher to lower concentrations. According to Fick's law, the amount of a drug that crosses the surface differential element ΔSI within time differential element Δt is proportional to the normal differential quotient of the concentration along the surface, and the proportionality constant is the diffusion coefficient D. Conversely, an amount of the drug will be cleared through its combination with receptors, metabolism and entrance into brain cells. If the clearing rate is proportional to the concentration, then the proportional constant is the clearance rate constant k and self-secretion by nerve cells will result in an increase in endogenous drugs, such as dopamine in the case of Alzheimer's disease.

First, we selected a piecewise smooth and closed surface of the brain ISS and assumed that the space it encloses is Ω . From moment t to t + Δt, Fick's law and the Gauss formula indicate that the quality of the drug that enters Ω by crossing surface S is as follows,

[image: image]

where cosα, cosβ, cosγ are the external normal cosine of, and DxDyDz are the effective diffusion coefficients of the drugs in three orthotropic directions in the brain ISS. According to the Gauss formula,
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The loss quantity of drugs caused by clearance is as follows,

[image: image]

Where k is the clearance constant. Suppose Q is a source. Volume fraction of ISS is denoted by α and may be formally defined as,
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This term Q is divided by the volume fraction, reflecting the fact that molecules released into the ISS are restricted to a smaller volume than if they had access to the entire brain tissue. Then we have,
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In addition, a change of the drug concentration is as follows,
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According to the law of mass conservation,
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Based on the arbitrariness of Δt, the following is obtained,

[image: image]



Parameter Solution of Special Convection Diffusion Equations Based on the Exact Solution

By using Fourier Transform, we can obtain the exact solution of the three-dimensional convection diffusion Equation (1). However, the exact solution is very complex, and several special convection diffusion equations are applied in practical applications. Here we present two types of exact solutions for convection diffusion equations frequently used in health care. To simplify the problem, we assume that all coefficients of the equations are constants and provide special initial conditions and boundary conditions.

Instantaneous point-source convection diffusion model. For the convection diffusion Equation (1), the following initial and boundary conditions are given,
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Where source term is instantaneous point-source presented as follows,
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Where δ is the Dirac Function and M is the tracer mass, then the exact solution of the convection diffusion equation can be depicted as,

[image: image]

This model is easy to use medically in practice, for one simple instantaneous injection can satisfy all assumptions listed above.



Continuous Point-Source Convection Diffusion Model

In the case of continuous injection, the concentration can be regarded as the integral of instantaneous point-source injection within a unit time over time domain,
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Where C0 is the concentration and q is the velocity of injection.

Several groups (more than five groups) of data, which includes tracer concentration distribution and the corresponding time and position, can be measured using MRI. The measured data are substituted into the exact solution of the above equation, parameters of Dx,Dy,Dz,k,α can be attained using least square method. Then the average diffusion coefficient can be calculated as,
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RESULTS

Real-time monitoring of the distribution of Gd-DTPA in the ISS revealed that after the Gd-DTPA tracer was injected into the ISS, signal intensity in the caudate nucleus increased. Gd-DTPA was uniformly dissipated to the anterolateral frontal and temporal cortices; no distribution in posteromedial thalamus was observed. The tracer was nearly cleared at 240 minutes, and an increased signal intensity was not demonstrated subsequently (Figure 2).
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FIGURE 2. Coronal MR images demonstrate the process of diffusion and clearance of Gd-DTPA in the ISS of rat brain. After the Gd-DTPA tracer was injected into the ISS, the signal intensity of the caudate nucleus increased, and the hyper-intensity distributed around and the intensity attenuated gradually, which was related to the clearance of Gd-DTPA over time. Moreover, the anisotropic diffusion properties was demonstrated. Gd-DTPA was uniformly dissipated to the anterolateral frontal and temporal cortices and its distribution in posteromedial thalamus was not observed.



Among the currently available brain ISS measurement techniques, the tracer-based MRI technique is unique in producing 3-D images of substance distributions in ISS. The images can demonstrate the diffusion progression in arbitrary directions (Figure 3).
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FIGURE 3. Distribution of Gd-DTPA demonstrated in real time in ISS of rat brains using multi-view images. The sagittal (upper) images demonstrate the process of Gd-DTPA anterior and ventral-dorsal diffusion. The axial (lower) demonstrate the lateral and ventral-dorsal Gd-DTPA diffusion.



In addition to visualization of diffusion progression in ISS, the tracer-based MRI technique provides quantitative measures of the distribution rate (Figure 4). Observed drug concentrations at different times and locations gave parameter estimates average D = 1.305 ± 0.364 × 10−4 and k = 1.40 ± 0.206 × 10−5 s−1.
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FIGURE 4. (A) was the 3D wireframe and the height of the contour line represents the level of D. Panel (B) was a contour map superimposed on the original MR image. They were drawn with a Python package named Matplotlib.



A comparison of the novel tracer-based MRI and classical approaches is provided in Table 1.



Table 1. The comparison of the novel tracer-based MRI and classical approaches.
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DISCUSSION

In our research, drug diffusion and clearance in the ISS of the brain can be monitored in real time using multi-view MR images. Superiority in the safety, enhanced soft-tissue contrast and global imaging advantages, MRI is an excellent technique for the in vivo imaging of biological tissues (Hosseini et al., 2016; Chen et al., 2018; Yan et al., 2018).

Among the currently available ISS measurement techniques, MRI is unique in that it can detect the ISS in the deep regions at the whole-brain scale (Lei et al., 2017). Gd-DTPA is the preferred contrast-drug in clinic applications and has been used to trace substance transport in the ISS in previous studies (Benjaminsen et al., 2008). Gd-DTPA can shorten the spin-lattice relaxation time of the hydrogen nuclei in water molecules within an effective distance of 2.5 angstroms and highlight endogenous water molecules in T1-weighted MR images (Patil and Johnson, 2011). After the drug is injected into the ISS, it will diffuse and be cleared, which presents as the attenuation of signal intensity in a series of MR images. MPRAGE sequence was used to acquire a series of 3D MR images. Additionally, a MATLAB-based software was developed to post-process these images, including the removal of MRI noise and the rigid registration and conversion of MR signal intensity increment to Gd-DTPA concentrations. The technique, which can be referred to as a tracer-based MRI, can image the distribution and clearance of Gd-DTPA in the ISS and provide mathematical models by recording the varying drug concentrations with respect to time with the goal of estimating the drug diffusion and clearance parameters, including the effective diffusion coefficient D and the clearance rate constant k.

The effective diffusion coefficient is defined as the diffusion scope of the substances through a medium in unit time, where the unit is. This measure reflects the rate of diffusion in the medium and is affected by various factors, such as the ISS structure, dead space, cell matrix-induced blockages, negative ions attached to molecules and drug characteristics, which is the most intuitive parameter for indicating the drug diffusion scope in the brain (Nicholson, 2005). By using different methods or tracers, the measurements of the effective diffusion coefficient of substances in the ISS varied from 0.38 to 20 × 10−4mm2/s (Sykova and Nicholson, 2008).

The clearance rate k indicates the loss of the drug from the brain ISS and includes the amount of the drug that enters the blood-brain barrier, combines with receptors, enters cells and drains from the brain ISS. The rate of drug drainage in the brain ISS has the greatest effect on the k value. According to Nicholson's research, the main methods by which drugs drain from the brain include blood circulation, lymph circulation and cerebrospinal fluid circulation (Iliff et al., 2013; Louveau et al., 2015). Therefore, to maintain an effective drug concentration level to cure diseases, the k-value must be accurately estimated.

This research establishes modified mathematical models using Cartesian and spherical coordinates that simulate the anisotropic diffusion process using numerical differentiation and a linear regressive method. There are several key points related to the approach that should be discussed. Firstly, the effective diffusion coefficient and the clearance rate k are affected by the characteristics of the administered drug, such as the structure, size and polarity of the drug molecule. Therefore, to obtain these parameters for certain drugs using animal models, it is essential to inject a MR tracer, such as Gd-DTPA, to mark the drugs. After acquiring the data, our model will estimate the corresponding parameters. Secondly, drug administration in the proposed model is performed through bolus injection rather than by continuous administration, and the concentration gradient becomes the sole driving force and diffusion dominates. Mériaux recently announced an interesting result that 7T MRI, combined with a non-invasive probe delivery technique, could be used to estimate the tortuosity values in deep tissue regions in vivo with excellent sensitivity, together with spatial and temporal resolutions (Mériaux et al., 2018). However, even if imaged by the most advanced MR, nanoscale ECS cannot be addressed directly at present. In our opinion, it is a complex and time-consuming project for ECS research, that involves MR protocol and probe, signal detection and processing, mathematical models, test, and trial. Developing appropriate mathematical model and signal processing should be its key highlights. Drug delivery by ECS is the most promising field in the research on ECS, and a platform using 1.5T or 3T MRI can be developed more easily than one using 7T MRI. Lastly, thanks to that the tracer Gd-DTPA is not self-secreted in the brain, the parameter value that reflects the endogenous drug dose change is zero, and the drug dose presents a continuous decline to a stable state at a concentration of zero.
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Abnormal Entropy Modulation of the EEG Signal in Patients With Schizophrenia During the Auditory Paired-Stimulus Paradigm
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The complexity change in brain activity in schizophrenia is an interesting topic clinically. Schizophrenia patients exhibit abnormal task-related modulation of complexity, following entropy of electroencephalogram (EEG) analysis. However, complexity modulation in schizophrenia patients during the sensory gating (SG) task, remains unknown. In this study, the classical auditory paired-stimulus paradigm was introduced to investigate SG, and EEG data were recorded from 55 normal controls and 61 schizophrenia patients. Fuzzy entropy (FuzzyEn) was used to explore the complexity of brain activity under the conditions of baseline (BL) and the auditory paired-stimulus paradigm (S1 and S2). Generally, schizophrenia patients showed significantly higher FuzzyEn values in the frontal and occipital regions of interest (ROIs). Relative to the BL condition, the normalized values of FuzzyEn of normal controls were decreased greatly in condition S1 and showed less variance in condition S2. Schizophrenia patients showed a smaller decrease in the normalized values in condition S1. Moreover, schizophrenia patients showed significant diminution in the suppression ratios of FuzzyEn, attributed to the higher FuzzyEn values in condition S1. These results suggested that entropy modulation during the process of sensory information and SG was obvious in normal controls and significantly deficient in schizophrenia patients. Additionally, the FuzzyEn values measured in the frontal ROI were positively correlated with positive scores of Positive and Negative Syndrome Scale (PANSS), indicating that frontal entropy was a potential indicator in evaluating the clinical symptoms. However, negative associations were found between the FuzzyEn values of occipital ROIs and general and total scores of PANSS, likely reflecting the compensation effect in visual processing. Thus, our findings provided a deeper understanding of the deficits in sensory information processing and SG, which contribute to cognitive deficits and symptoms in patients with schizophrenia.

Keywords: schizophrenia, electroencephalogram, fuzzy entropy, sensory gating, complexity


INTRODUCTION

The sensory gating (SG) deficit is considered a core deficit among patients with schizophrenia. SG is a normal suppression function of the brain that filters the input of irrelevant information and is believed to be essential to sustain attention in a changing environment and for appropriate responses to afferent stimuli (Braff and Geyer, 1990; Zhu et al., 2013). Schizophrenia patients have demonstrated deficits in SG, which could lead to sensory inundation, excess irrelevant sensory information in the brain, resulting in abnormal information processing, selective attention and cognitive deficits in patients (Adler et al., 2004; Potter et al., 2006; Shaikh et al., 2011; Dalecki et al., 2016; Zhu et al., 2017).

In the auditory modality, SG has usually been studied in a paired-stimulus paradigm: two brief, identical stimuli are presented with a 400 ms stimulus onset asynchrony (Santos et al., 2010; Sánchez-Morla et al., 2013). However, both stimuli elicit a positive potential 50 ms post-stimulus (P50), and the amplitude of potential to the second stimulus is normally attenuated. This phenomenon was considered a measure of input inhibitory, also called P50 suppression. Previous studies have proven that patients with schizophrenia showed a smaller amplitude than normal controls, possibly related to the deficit in SG (Bramon et al., 2004; Chang et al., 2011; Keil et al., 2016). The P50 suppression impairment reported in schizophrenia was thus assumed to reflect an inhibitory input impairment and was argued to be an endophenotype for schizophrenia (Leonard et al., 1996; Korzyukov et al., 2007; Thaker, 2008; Quednow et al., 2012). Recently, our study suggested that schizophrenia patients showed a smaller amplitude to the first stimulus than that of normal controls, which was attributed to the deficit in SG (Zhu et al., 2017). The poor SG in schizophrenia patients was considered to be more related to the diminished processing of S1 than to the deficient gating of S2 (Blumenfeld and Clementz, 2001; Johannesen et al., 2005).

The electroencephalogram (EEG) contains the dynamic properties of brain activity (Acharya et al., 2015). Recently, the dynamic properties were explored by utilizing complexity analyses such as Shannon entropy (ShEn), approximate entropy (ApEn), and Lempel–Ziv complexity (LZC) (Li et al., 2008; Akar et al., 2015; Molina et al., 2017). By analyzing the resting-state EEG signal, schizophrenia patients showed increased complexity, associated with a higher variability or “irregularity” in their brain signals (Akar et al., 2015; Bachiller et al., 2015). Additionally, a difference was found between schizophrenia patients and normal controls in the frontal and temporal regions (Sokunbi et al., 2014). Among complexity analysis approaches, entropy-based algorithms have been useful and robust estimators to evaluate EEG regularity or predictability (Takahashi et al., 2010; Sharma et al., 2015). Entropies measure the probability of a new pattern in a time series; the greater the probability of generating a new pattern is, the greater the complexity of the sequence will be. The entropy with fuzzy structure showed a great performance, including fuzzy entropy (FuzzyEn) (Chen et al., 2007) and Inherent fuzzy entropy (Inherent FuzzyEn) (Cao and Lin, 2018). Moreover, FuzzyEn and Inherent FuzzyEn have been widely applied in the feature extraction and classification of EEG signals in the area of Alzheimer's disease, epilepsy, migraine and healthcare applications (Cao et al., 2015, 2018a,b,c; Xiang et al., 2015).

In addition to analyzing the complexity of the resting state, the complexity of brain activity during information processing was further analyzed. Normal controls displayed decreased complexity (entropy) during tasks (Li et al., 2008; Bachiller et al., 2015; Chu et al., 2017). However, patients showed a significant reduction in task-related changes compared with controls. For example, schizophrenia patients showed a significant reduction in response to both target and distractor tones in an auditory oddball paradigm using spectral entropy (SpEn) (Bachiller et al., 2015). By analyzing the EEG signals evoked by three different types of emotions, the ApEn at the Fz electrode was significantly associated with the total scores of Positive and Negative Syndrome Scale (PANSS) in schizophrenia patients. Furthermore, normal controls and markedly ill schizophrenia patients could be classified with an identification as high as 81.5% (Chu et al., 2017). These entropies and other complex measurements demonstrated that the dynamic properties were sensitive to the neural activity and state of the brain, and provided an important approach to investigate the mechanisms of abnormal cognition in schizophrenia patients. Using the auditory paired-stimulus paradigm, schizophrenia patients showed deficits in sensory information processing and SG, contributing to cognitive deficits and symptoms in these patients (Light et al., 2000; Johannesen et al., 2005; Dalecki et al., 2016; Zhu et al., 2017). However, the mechanisms of entropy modulation during the auditory paired-stimulus paradigm in schizophrenia remain unclear.

In the present study, we used FuzzyEn, a simpler entropy with a fuzzy structure, and an auditory paired-stimulus paradigm to analyze the dynamic complexity of EEG signals, between schizophrenia patients and normal controls, in order to further investigate the entropy modulation mechanisms of SG in schizophrenia. Accordingly, we found abnormal SG in the frontal and occipital regions. FuzzyEn is a useful method to study the complexity of SG and to look for dynamical evidence of abnormal SG in patients. It is also a potential way to study the complexity of the brain diseases.



MATERIALS AND METHODS


Participants

In our study, 61 schizophrenia inpatients [41 men and 20 women, mean age = (37 ± 1.25)] from the Beijing Huilongguan Hospital participated in the experiment. The patients fulfilled the diagnostic criteria for schizophrenia according to the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) (Guze, 2006). The exclusion criteria included cardiovascular or neurological disease, a history of a head injury with loss of consciousness, physical abnormalities, and meeting DSM-IV criteria for substance dependence or current mood or anxiety disorders. They had been treated with the antipsychotic medication of a stable dose for more than 1 month, and did not take clozapine, were pregnant or breastfeeding. The average duration of illness was 14.22 years. The symptomatology was assessed by the PANSS (Kay et al., 1987).

Additionally, 55 age- and sex-matched normal controls were recruited from the staff of the Beijing Huilongguan Hospital [31 men and 24 women, mean age = (41 ± 1.59)]. None of the normal controls had any history of mental illness or substance abuse.

There was no statistically significant difference in age, sex ratio and education between the normal controls and schizophrenia patients. All the participants had normal hearing abilities. The protocol was approved by the ethics committee of the Beijing Huilongguan Hospital, and written informed consent was obtained from all participants after the procedures had been fully explained. The demographical and clinical evaluations of the subjects are listed in Table 1.



Table 1. Demographic and clinical variables of the normal controls and schizophrenia patients.
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Data Recordings

The experiment was implemented in an acoustically and electrically shielded room. All the subjects were asked to wash their hair to ensure clean skin. They were seated in a comfortable chair and were asked to relax and focus their eyes on the “cross” symbol 80 cm ahead. The recording of auditory-evoked potentials was performed using the signal generator and data acquisition system of a fully functional digital 64-channel electroencephalography system (Brain Products, Germany) complying with the international 10–20 system. The resistance of all electrodes was <5 kΩ. EEG was acquired with a sampling frequency of 500 Hz. Eye movements were recorded via electrooculography using Ag/AgCl disc electrodes that were placed at the outer canthus and below the right eye.

The classical auditory paired-stimulus paradigm was used in our previous studies (Tan et al., 2014). The auditory paired-stimulus paradigm (S1 and S2) was also introduced in this study, and 60 paired clicks were delivered binaurally through headphones. The intertrial interval was 10 s with a 500 ms interstimulus interval between S1 and S2. The clicks consisted of broad-band square waves that were 1 ms in duration with an intensity of 80 dB. Electrical signals from the scalp were amplified and bandpass filtered with a 0.01–100-Hz analog filter and without a 50-Hz notch filter. We evaluated SG by computing the complexity of the auditory-evoked response in the auditory paired-stimulus paradigm. The experimental process of data acquisition is shown in Figure 1.


[image: image]

FIGURE 1. Auditory paired-stimulus paradigm. In the experimental procedure, the subject remained quiet and sat in a chair, facing the “cross” symbol on the front screen, and received paired-clicks through the ears. The time interval between the two stimuli was 500 ms, and 60 repetitions were conducted. Each test interval was 10 s.





Data Preprocessing

The whole process of data preprocessing was performed on BrainVision analysis 2.0. First, we chose the average reference electrode that is commonly used in EEG data preprocessing. Next, digital filtering used a bandpass of 0.5~50-Hz and 24 dB/oct. EEG recordings were then segmented into 1,300 ms-length epochs from −400 to 900 ms with respect to the onset of S1 (60 samples per subject). Baseline correction was performed using the averaged EEG data from −400 to 0 ms before the S1. Electrooculogram (EOG) exerted great influence on EEG; thus, ocular correction was necessary to correct the muscle influence caused by eye movement or blinking. The Artifact Rejection transform was asked to search the data set for physical artifacts following segmentation and to remove or mark segments with artifacts. Then, by enabling individual channel mode, “Bad Interval” markers were written in channels in which artifacts occurred. The segments with artifacts were removed and the new data set only contained the segments without artifacts. Next, we exported the EEG data of 60 electrodes for further analysis.



FuzzyEn Algorithm

Abundant research has indicated that entropy-based approaches have revealed novel insights into various brain activities, in order to understand the temporal dynamics of complexity. FuzzyEn uses a fuzzy membership function to measure the degree of similarity of vectors, rather than the two-valued function in the SampEn-based algorithm, so the calculated entropy values are continuous and smooth (Chen et al., 2007). Additionally, compared with ApEn and sample entropy (SampEn), FuzzyEn has less dependence and sensitivity to phase space dimension and similarity tolerance. The robustness and continuity of measure values are therefore better. The algorithm is described below.

The phase-space reconstruction is performed on u(i) according to the sequence order, and a set of m-dimensional (m ≤ N −2) vectors are obtained as follows:
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Fuzzy membership function as follows:
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where r is the similarity tolerance.
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[image: image], the distance between two vectors [image: image] and [image: image], is the maximum difference values between the corresponding elements of the two vectors. According to the fuzzy membership function, the similarity degree [image: image] between two vectors [image: image] and [image: image] is as follows:

[image: image]

Defining the function φ(n, r), and repeating the steps above in the same manner, a set of (m + 1)-dimensional vectors can be reconstructed according to the order of sequence, defined as φm+1(n, r). Finally, the FuzzyEn value for the time series with a sequence length of N can be expressed as follows:

[image: image]

Generally, too large of a similarity tolerance will lead to a loss of useful information. However, if the similarity tolerance is underestimated, the sensitivity to noise will be increased significantly. In the present study, m = 2 and r = 0.25 × SD, where SD denotes the standard deviation of the time series (Xiang et al., 2015). A large FuzzyEn value indicates a more random time series, whereas a small FuzzyEn value indicates that the time series is regular.



FuzzyEn Measurement for the Paired-Stimulus Paradigm

After preprocessing, we exported the data and calculated the FuzzyEn values using MATLAB 2016b (Figure 2). We determined the entropy values at baseline (BL, range from −400 to 0 ms relative to the onset of S1), S1 (range from 0 to 400 ms), and S2 (range from 500 to 900 ms) for controls and patients. Each channel acquired the corresponding mean value under different conditions for each subject. Finally, we calculated the FuzzyEn mean of each group. To more intuitively observe the changes relative to BL, a normalized method was used, the formula of which is as follows:

[image: image]

Note: The S indicates the stimulus of S1 or S2.
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FIGURE 2. Experimental flowchart. Signal collection and preprocessing, FuzzyEn measurement and Analysis. The EEG signals were recorded using 64 channels of the Vision Recorder system, EEG data pre-processing included re-reference, filtering, segmentation, baseline correction, ocular correction, and artifact rejection; EEG complexity was estimated using FuzzyEn; then normalized values and suppression ratios were calculated.



One indicator of measuring SG is the suppression rate. The traditional method is to calculate the amplitude generated by S1 to suppress the amplitude generated by S2. In our experiment, we analyzed the suppression ratio (SR) from the perspective of complexity as follows:
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Statistical Analysis

Statistical analysis was performed with SPSS 16.0. For the group comparisons of the demographic and clinical variables, we used chi-square tests for categorical variables and independent-sample t-tests for continuous variables. To explore differences among conditions, a paired t-test was computed. All p-values were two-tailed, and the significance level was set to p < 0.05 and corrected using the false discovery rate (FDR) (Benjamini and Hochberg, 1995) and Bonferroni correction (Armstrong, 2015). Pearson's r coefficients were computed to investigate the correlations.




RESULTS


FuzzyEn Values of EEG During the Auditory Paired-Stimulus Paradigm

As shown in Figure 3A, FuzzyEn maps of BL, S1, and S2 showed significantly larger FuzzyEn values in schizophrenia patients than in normal controls (p < 0.05, corrected) in the frontal and occipital regions. We further defined two regions of interest (ROIs), the frontal ROI (AF3, AF4, F1, F2, Fz), and occipital ROI (Oz, O1, O2), respectively (Figure 3B). By repeated measures analysis of variance (ANOVA), we found a significant main effect of group [F(1, 113) > 204.036; p < 0.001] and condition [F(2, 226) > 14.699; p < 0.001] in these two ROIs. There were significant group-by-condition interaction effects on the frontal ROI [F(2, 226) = 12.094; p < 0.001] and occipital ROI [F(2, 226) = 24.297, p < 0.001]. By post hoc test, the schizophrenia patients showed larger FuzzyEn values than the normal controls in two ROIs, especially in the frontal ROI (t > 15.159; p < 0.001, corrected). Such differences in the S1 condition were most significant (t = 15.845; p < 0.001, corrected).
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FIGURE 3. Brain topography and histogram of FuzzyEn values in three states. Panel (A) shows the topographic map of entropy in the three states of the two groups. The darker the color in the first two columns was, the greater the entropy would be. The third column took the logarithm of the p-value of the statistical test: the darker the color was, the greater the difference would be. Panel (B) represents the ROI histograms of the two most significant brain regions. Black represents normal controls, while red represents schizophrenia patients. ***Less than the significance p-value of 0.001.



To exclude the interference of the BL status, we normalized the FuzzyEn values of S1 and S2 relative to that of BL. The brain topographic maps of normalized values are shown in Figure 4A. We found that schizophrenia patients had significantly larger normalized values of S1 than the normal controls in the frontal and occipital ROIs (p < 0.05, corrected), values that were in line with the FuzzyEn maps. However, there were no differences in the normalized values of S2 (p > 0.2, corrected). We also exported the normalized values in the frontal and occipital ROIs (Figure 4B). Repeated measures ANOVA tests also found significant differences in group [F(1, 113) > 9.495; p < 0.01] and condition [F(1, 113) > 135.079; p < 0.01]. Importantly, we found significant group-by-condition interaction effects on the frontal ROI [F(1, 113) = 67.597; p < 0.001] and occipital ROI [F(1, 113) = 59.878; p < 0.001]. The post hoc test showed significantly larger normalized values in the S1 condition for schizophrenia patients than those for normal controls in these two ROIs (t > 8.370; p < 0.001, corrected). By contrast, there were no such differences in the S2 condition.
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FIGURE 4. Characteristic distribution of the normalized values for S1 and S2 in each group. Panel (A) shows the topographic map of the normalized values of the two groups. The darker the color was in the first two columns, the greater the value would be. The third column took the logarithm of the p-value of the statistical test; the darker the color was, the greater the difference between groups would be. Panel (B) represents the normalized ROI box plot of the two ROIs.





Complexity Suppression in Sensory Gating

Based on the theory of SG, the strength of SG was determined by calculating the gating ratio. A lower gating ratio indicated weaker SG function. The FuzzyEn map is shown in Figure 5A. We determined two ROIs (Figure 5B), the frontal ROI (FC1, FCz, Fz) and occipital ROI (Oz, O1, O2). In these ROIs, the suppression ratios of normal controls were significantly higher than those of schizophrenia patients [frontal ROI (t = 8.578; p < 0.001, corrected) and occipital ROI (t = 7.862; p < 0.001, corrected)].
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FIGURE 5. Brain topographic map and ROIs. In (A), the first two plots represent the suppression ratios, and the darker the color was, the greater the suppression ratio would be. The third plot was the result of the two-sample t-test. The logarithm was taken, and the darker the color was, the greater the difference would be. Panel (B) shows the ROI histogram, including the frontal ROI and occipital ROI. Black and red represent the suppression ratios of the controls and patients, respectively. ***Less than the significance p-value of 0.001.





Correlation of FuzzyEn Values in the Frontal and Occipital ROIs

Figure 6 shows the correlation of FuzzyEn values between the frontal and occipital ROIs. Normal controls showed a positive correlation under all three conditions (r > 0.779; p < 0.001), while there was no correlation between the two ROIs in patients with schizophrenia (r < 0.260; p > 0.05). Additionally, no correlation was found in the normalized values and suppression ratios in the frontal and occipital ROIs, for both normal controls and schizophrenia patients.
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FIGURE 6. Scatter plots of the associations between the frontal ROI and occipital ROI in normal controls and schizophrenia patients. Black represents normal controls, and red represents schizophrenia patients. The two ROIs in the normal controls showed a positive correlation. No correlation was found between the two ROIs in the patients. ***Less than the significance p-value of 0.001.





Relationships Between Complexity and Clinical Features

The PANSS was mainly used to assess the presence or absence of schizophrenia and the severity thereof (Kay et al., 1987). We performed correlation analyses between the PANSS scores and mean FuzzyEn values of electrodes with a significant difference among the three states (Table 2). The FuzzyEn values showed positive correlations with positive scores of PANSS (PANSSP) in Fz and AF3, as well as with negative scores of PANSS (PANSSN) in AF3 (r > 0.260; p < 0.05). By contrast, the FuzzyEn values in Oz and O2 (r < −0.263; p < 0.05) exhibited a negative correlation with the general scores of PANSS (PANSSG) and total scores of PANSS (PANSSTOTAL). No correlation was found between the PANSS scores and normalized values and suppression ratios in patients.



Table 2. Results of the correlation analyses between the FuzzyEn and PANSSP, PANSSN, PANSSG, and PANSSTOTAL scores in the patient group.
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DISCUSSION

The abnormality of SG is one of the important mechanisms in schizophrenia (Bramon et al., 2004; Chang et al., 2011). In this study, FuzzyEn was used to analyze the dynamic properties of the EEG signal during the paired-stimulus paradigm, to detect evidence of the complexity of abnormal entropy modulation in schizophrenia. We found that schizophrenia patients showed significantly higher FuzzyEn values in the frontal and occipital ROIs. Relative to BL, schizophrenia patients showed a smaller decrease in FuzzyEn values in conditions S1 and S2 than the normal controls. Moreover, schizophrenia patients showed significantly diminished suppression ratios of FuzzyEn, attributed to the higher FuzzyEn values in the S1 condition. The abnormal FuzzyEn values were positively associated with PANSSP measured in the frontal ROI; by contrast, FuzzyEn values were negatively associated with PANSSG and PANSSTOTAL in the occipital ROI.


Abnormal Entropy in Schizophrenia

EEG signals were complex non-linear dynamic signals (Akar et al., 2015), and it was challenging to accurately extract the EEG signal characteristics. In the present study, we found that schizophrenia patients had obviously higher FuzzyEn values than the normal controls in the BL and stimuli conditions. Consistent with previous studies, patients with schizophrenia had more complex resting-state neural activity and showed increased complexity across the brain using the LZC, compared with the normal controls (Fernández et al., 2011). Additionally, as reported previously using multiscale entropy, schizophrenia patients had a higher complexity than controls (Takahashi et al., 2010). The increase in FuzzyEn values indicates that few neurons participated in the information processing and increase in dynamic complexity, and is linked to an increase in the number of simultaneously active states reflecting the system's degree of freedom (Bob et al., 2007). Furthermore, entropy is an indicator of the probability of generating a new pattern in a time series (Richman and Moorman, 2000; Chen et al., 2007). Compared with the normal controls, the brain activity of patients with schizophrenia was more active and excited, the probability of generating a new pattern of EEG signals was greater, and the complexity of EEG was higher(Zhao et al., 2013). FuzzyEn measurement in EEG signals might be more suitable to capture imperceptible changes in different physiological and cognitive states of the human brain (Hosseini and Naghibisistani, 2011; Mu et al., 2017).

Our results showed significant differences in FuzzyEn values between controls and patients with schizophrenia in the frontal ROI. Previous studies also found a considerable difference in this region (Li et al., 2008; Mathalon and Ford, 2008; Nenadic et al., 2014; Goldstein et al., 2015). The frontal ROI was responsible for memory problems that were associated with the regulation of behavior and cognitive perception (Highley et al., 2001; Yan et al., 2016a). For schizophrenia patients, the impairment of metacognitive function might be mediated by the frontal ROI (Asmal et al., 2016). It was suggested that a disturbance in dopamine signaling to the prefrontal cortex may underlie the abnormalities observed in this region, in social cognition studies of schizophrenia (Sokunbi et al., 2014).

Moreover, a significant difference was also found in the occipital ROI. It is well-known that the occipital ROI is popularly associated with the processing of vision (Yanl and Wu, 2010). Schizophrenia has been associated with an altered structure and function of the occipital cortex (Bjorkquist and Herbener, 2013). Patients with schizophrenia might have deficits in their attention when they were instructed to fixate on the central cross (Dalecki et al., 2016), thereby causing lower entropy values in the occipital ROI. Moreover, there is sufficient evidence to support the notion of a reduction in the overall volume of the occipital ROI in schizophrenia patients (Bilder et al., 1999).



Abnormal Complexity in the Processing Stimulus in Schizophrenia

In this study, we found that normal controls showed a larger decrease in the FuzzyEn values when processing the S1 stimulus. Such a decrease of complexity in the task state implied a more intense or widespread activation of the cerebral resources, reflecting the activated state of ‘internal concentration’ (Li et al., 2008). Similarly, a previous study also reported that the entropy decrease in normal controls could be associated with an irregularity decrease of the EEG signals during the processing of tones (Bachiller et al., 2015). The complexity measured by LZC decreases from the resting state to the tasking state, due to the increase in synchronization during mental activity (Li et al., 2008). Recently, Thilakvathi et al. demonstrated that the complexity of brain activity comes from the neuronal level (Thilakvathi et al., 2017). The higher the complexity is, the more disordered the neuron activity will be. Thus, the decreased complexity in the tasking state might be related to the increase in neuronal activity synchronization.

However, the FuzzyEn values of S1 in schizophrenia patients were significantly higher than those in the normal controls. Compared with the normal controls, after normalization with BL, the schizophrenia patients also showed a smaller decrease in the S1 condition. A weak decrease in complexity in the S1 condition suggested that schizophrenia patients may be less sensitive to novel or relevant sound stimuli and had a lower degree of reactivity, consistent with the result of event-related potential (ERP) in our previous studies (Zhu et al., 2017). It was previously reported that bioelectrical responses to both novelty and relevance, during an auditory oddball task, were attenuated in patients with schizophrenia. The activity modulation was significantly smaller in schizophrenia patients than in the controls, suggesting that the response to both novelty and salience was flattened in schizophrenia patients. Moreover, other results also showed widespread hypoactivation in response to novelty in schizophrenia patients (Laurens et al., 2005).



Deficit of Sensory Gating in Schizophrenia

In normal controls, the FuzzyEn values of S2 showed a smaller decrease, a finding that was consistent with the FuzzyEn values of S1. The smaller decrease in S2 was considered as suppression of SG (Boutros et al., 1993; Greenwood et al., 2015). Additionally, the phenomenon of suppression was further confirmed by smaller normalized values in the S2 condition and significant suppression ratios of complexity. As mentioned above, the decreased complexity was found in the tasking state. In the S1 condition, the brain's cognitive system considered the stimulus as novel and relevant, the neurons focused on processing this stimulus, and the neuronal activity became orderly; thus, the probability of a new pattern was reduced, and the complexity decreased. In the S2 condition, S1 activates an inhibitory system (Greenwood et al., 2015), suppressing the response to S2 and filtering out the irrelevant information. The suppression marked the order of brain neuron activity decline, and the probability of a new pattern increased. Thus, these results implied that the complexity was sensitive to evaluate SG by calculating the suppression ratio.

We further found that the suppression ratios of complexity in schizophrenia patients were weak and obviously smaller than those in normal controls. The reduced suppression ratios indicated their abnormal SG in the presence of S2 stimuli. A large body of evidence suggests that a significant proportion of patients with schizophrenia had SG impairments (Bramon et al., 2004; Chang et al., 2011). It was theorized that the positive and perhaps negative symptoms of schizophrenia resulted from sensory overload and/or impairments in the response to sensory input within the central nervous system (Keil et al., 2016). However, we found no difference in the normalized values of S2 between schizophrenia patients and the normal controls. The higher FuzzyEn values in the S1 condition were attributed to the abnormal suppression ratios of complexity in schizophrenia patients. In line with our findings, Adler et al demonstrated that patients with schizophrenia had difficulty processing sequentially presented sensory stimuli (Adler et al., 2004). Some studies showed that SG deficits were more related to a diminished response to the S1 condition in schizophrenia patients than to a deficient gating of the response to the S2 condition (Blumenfeld and Clementz, 2001; Johannesen et al., 2005; Zhu et al., 2017). Molina et al. thought the more dynamic (in terms of modulation) regions in the healthy brain showed hampered dynamics in schizophrenia (Molina et al., 2017).



Relationships Between Complexity and Clinical Features

In the present study, we further found that FuzzyEn values in the frontal ROI (FZ and AF3) showed positive correlations with PANSSP and PANSSN. Higher FuzzyEn values and higher PANSSP or PANSSN scores indicated a more serious disease (Kay et al., 1987; Leucht et al., 2005; Cerquera et al., 2017). These findings indicated that the higher complexity of EEG signals was associated with the more serious clinical symptoms. Consistent with our result, previous studies have also reported that the physiological and cognitive states of the brain could be determined using complexity measurements in EEG signals (Bachiller et al., 2015; Molina et al., 2017). These findings indicate that complexity could be a useful indicator to reveal the physiological states of the brain and clinical characteristics.

Interestingly, the FuzzyEn values in the occipital ROI (Oz and O2) exhibited negative correlations with the PANSSG and PANSSTOTAL. We thought that these negative correlations were associated with the compensation in visual information processing (Bjorkquist and Herbener, 2013). The occipital ROI would show more loading of visual information processing; thus, the activity of the neurons in the occipital ROI became more orderly, and the entropy values would decrease. Additionally, we found correlations between FuzzyEn values in the frontal and occipital ROIs in normal controls (Figure 6). The schizophrenia patients with more serious clinical symptoms required more attention to focus on the central “cross” symbol and more visual information processing (Dalecki et al., 2016), leading to the decrease in FuzzyEn values and lack of consistency of FuzzyEn values across subjects. The negative associations between FuzzyEn values and clinical symptoms in schizophrenia patients reflected a phenomenon of compensation in the occipital ROI to maintain focus on the central “cross” (Yan et al., 2016b).

No correlation was found between the PANSS scores and normalized values and suppression ratios in patients. Moreover, other studies found no relationship between SG deficits and performance on cognitive tests (Fernã et al., 2013; Sánchez-Morla et al., 2013). Our results proved that the SG deficits may be an indicator associated with chronic schizophrenia itself; thus, they were independent of the severity of the disease (Adler et al., 2004; Turetsky et al., 2007).



Limitations

There were several limitations in our study. First, all patients had chronic schizophrenia and were undergoing long-term treatment with antipsychotics. We could not distinguish whether the difference in the complexity between the controls and patients was affected by antipsychotic treatments. Therefore, the complexity of SG in schizophrenia warrants further investigation in the first episode, with drug-naïve patients and using a longitudinal design. Second, we could not correlate the ERP component of the resting state and SG with the FuzzyEn values; thus, the relationship between complexity and ERP needs further research.

Moreover, since EEG is composed of non-linear signals, EEG complexity is fundamentally mercurial and varying. Intrinsic modes extracted from empirical mode decomposition (EMD) would benefit from eliminating noise/trends in EEG signals (Huang et al., 1998), which can improve EEG complexity evaluation. So Inherent FuzzyEn, which endows fuzzy membership function with EMD by eliminating trend oscillations, has the robustness to noise, non-linear and non-stable signals. It can also operate EEG signals across a range of time scales (Cao et al., 2018c). Previous research has shown that entropies with a fuzzy structure (Inherent FuzzyEn and FuzzyEn) exhibited better performance, and that the performance of Inherent FuzzyEn was the best (Cao and Lin, 2018). We will use the Inherent FuzzyEn to investigate the abnormal SG in patients of schizophrenic under the auditory paired-stimulus paradigm in the future.




CONCLUSIONS

In this study, FuzzyEn was used to extract the non-linear feature of EEG signals under BL and paired stimuli, focused on the changes in the complexity of SG between normal controls and schizophrenia patients. In our study, we found that the FuzzyEn values of schizophrenia patients were higher than those of the controls, in three conditions in the frontal and occipital ROIs. The increase in FuzzyEn values represented an increase in the probability of the time series producing new patterns in the brain. When processing information in the stimulus condition, the complexities were reduced in the normal controls, but few changes occurred in the patients with schizophrenia. From the perspective of complexity, the suppression ratios of SG in the controls were significantly higher than those in patients with schizophrenia. Additionally, the differences in the complexity of SG were mainly due to S1. FuzzyEn offered the evidence of abnormal SG in schizophrenia, and complexity analysis might be an important way to understand SG in future studies. This study could facilitate the diagnostic interpretation of the complexity for schizophrenia conditions.
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The mainstream method used for the analysis of task functional Magnetic Resonance Imaging (fMRI) data, is to obtain task-related active brain regions based on generalized linear models. Machine learning as a data-driven technical method is increasingly used in fMRI data analysis. The language task data, including math task and story task, of the Human Connectome Project (HCP) was used in this work. We chose a linear support vector machine as a classifier to classify math and story tasks and compared them with the activated brain regions of a SPM statistical analysis. As a result, 13 of the 25 regions used for classification in SVM were activated regions, and 12 were non-activated regions. In particular, the right Paracentral Lobule and right Rolandic Operculum which belong to non-activated regions, contributed most to the classification. Therefore, the differences found in machine learning can provide a new understanding of the physiological mechanisms of brain regions under different tasks.
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INTRODUCTION

In functional magnetic resonance data analysis, GLM (generalized linear models) are one of the most common model-based methods that correlate measured hemodynamic signals with controlled experimental variables (Friston et al., 1994; Holmes and Friston, 1998). Specifically, each voxel of the functional Magnetic Resonance Imaging (fMRI) image and the experimental paradigm are analyzed by a generalized linear model, and each voxel corresponds to a coefficient Bata of a regression equation, and all coefficients are combined to form a statistical parameter map (Yan et al., 2011; Wu et al., 2012). In a group analysis, a one sample t-test is performed on the statistical parameter maps of all subjects to determine the activation region of the group (Beckmann et al., 2003). Although the GLM is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches (Zhang et al., 2009). For example, machine learning as a data-driven technology is not only sensitive to subtle spatial differentiation patterns, but also capable of exploring the inherent multivariate nature of high-dimensional image data (Norman et al., 2006). Since machine learning can find features that contribute most to classification (Meier et al., 2012; Lv et al., 2015), differences found can provide a new understanding of the physiological mechanisms of brain regions under different tasks.

Applying machine learning methods to neuroimaging data began with the work of Haxby et al. (2001), who recognized the distribution characteristics of visual cortex activation patterns from functional MRI. At present, machine learning has been widely used in fMRI data classification (Yan et al., 2017a,b) to explore the cognitive state of the brain (Yan et al., 2018). Under different visual stimulation conditions, the stimulus may be different visual pictures (objects or people, shoes or bottles), raster stimulation at different angles, etc., and the type of task received by the subject is determined by classifying the collected fMRI data (Haxby et al., 2001; Kamitani and Tong, 2005; Norman et al., 2006). Machine learning is used in psychiatry to distinguish patients from controls. Patients with severe depression (Fu et al., 2008) were classified with an accuracy rate of 70 to 80%. Individuals and controls with autism spectrum disorder were distinguished based on two fMRI experiments (Chanel et al., 2016). Machine learning is therefore a promising method used to detect brain state (Ecker and Murphy, 2014). Machine learning mostly uses support vector machines as classifiers in functional magnetic resonance data classification (De et al., 2008; Pereira et al., 2009; Ecker et al., 2010; Xin et al., 2013).

When the number of features far exceeds the number of subjects, it will cause problem which commonly occurs in machine learning known as the curse of dimensionality (Bellman, 1961). If the dimension reduction of features cannot be performed, it is easy to cause over-fitting (Guyon, 2003). Over fitting means that the model has poor generalization ability, that is, the ability to accurately predict new samples is poor (Mayer et al., 2009). Therefore, feature selection is required before training the model (De et al., 2007; Pereira et al., 2009; Mwangi et al., 2014).

In this study, we sought to explore the effects of activated brain regions and inactivated brain regions on the classification results of functional magnetic resonance data for different tasks. We extracted the average t value of the generalized linear model as the eigenvector and chose the Lasso regression algorithm (Tibshirani, 1996) for feature dimension reduction. Using a linear support vector machine, the classification weight was used as an index to evaluate the importance of each brain region in the classification and compared this with the group analysis results. Results revealed two brain regions that did not appear in the activated brain region but contributed significantly to the classification, namely the right Paracentral Lobule and the right Rolandic Operculum.



MATERIALS AND METHODS

Participants

Experimental data for 1046 healthy subjects was obtained from the open source database, WU-Minn Human Connectome Project (HCP) Data - 1200 Subjects (HCP_1200), published by the Public Connectome Data1. Most participants were between the ages of 22 and 35. All participants had no previously documented history of psychiatric, neurological or medical disorders that affected their brain function. Of the 1046 participants, 560 were female and 486 were male, 223 were between the ages of 22–25, 455 were between the ages of 26–30, 357 were between the ages of 31–35 and 11 were over the age of 36. We used the 3T MR Language Task fMRI Preprocessed sessions.

Experimental Paradigms

The language task contained an auditory story presentation with comprehension questions and math problems. It consisted of two runs that each had eight blocks (four story blocks and four math blocks) randomly combined. The length of each block varied, but the average length was about 30 s. In order to complete a 3.8 min run, the math task blocks needed to match the length of the story task blocks, and additional math tasks were added when the total length was less than 3.8 min. The story blocks presented participants with a brief auditory story (around 5–9 sentences) adapted from a collection of Aesop’s fables. After each story, the participant was asked about the topic of the story, in the form of a 2-alternative forced-choice question. For example, after a story about an eagle that saves a man who had done him a favor, participants were asked, “Was that about revenge or reciprocity?” Participants pressed a button under the right index finger to select the first choice or a button under the right middle finger to select the second choice. Math tasks were also presented in a phonetic manner, requiring participants to complete simple addition and subtraction problems. Each series of arithmetic operations ended with the word “equals” followed by two alternative choices, e.g., “Four plus twelve, minus two plus nine, equals twenty-two or twenty-three?” The participants pushed a button to select either the first or the second answer (Binder et al., 2011; Barch et al., 2013).

fMRI Data Acquisition

Whole-brain EPI acquisitions were acquired with a 32 channel head coil on a modified 3T Siemens Skyra with TR = 720 ms, TE = 33.10 ms, flip angle = 52°, BW = 2290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, with a multi-band acceleration factor of 8 (Feinberg et al., 2010; Moeller et al., 2010). For further information please refer to Ugurbil et al. (2013) for an overview of the acquisition details of the task fMRI. Two runs of each task were acquired, one with a right-to-left phase encoding and the other with a left-to-right phase encoding.

fMRI Data Processing

Preprocessing

We used the 3T MR Language Task fMRI Preprocessed data. This data was processed using FSL and FreeSurfer. The steps included gradient unwarping, motion correction, fieldmap-based EPI distortion correction, brain-boundary-based registration of EPI to a structural T1-weighted scan, non-linear (FNIRT) registration into MNI152 space, and grand-mean intensity normalization. In addition, spatial smoothing was done with an 8 mm full-width at half-maximum Gaussian core (Figure 1) for GLM analysis.
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FIGURE 1. Data processing flowchart for SPM and machine learning analysis.



SPM Statistical Analysis

In order to identify the differences between the two tasks and to evaluate the significance of functional activation, we used a GLM analysis. In the first level (within-subject) analysis, the data was skillfully modeled in GLM. Four kinds of contrast images were created for each participant, including math task, story task, math vs. story task and story vs. math task. In the second-level analysis, the contrast (con files) images were used from the first-level analyses of all 1046 subjects. The four conditions were analyzed by one-sample t-test analysis. The SPM (T) map of math and story tasks were obtained and the threshold was p < 0.05(FWE) at voxel level. To eliminate artifacts, we used math contrasts and story contrasts as a mask and the mask threshold was p < 0.001 at voxel level for math vs. story and story vs. math tasks, respectively. The SPM (T) map of math vs. story and story vs. math tasks were then obtained and the threshold was p < 0.05(FWE) at voxel level. These results were used to analyze the activation of brain functions and were compared with the results of machine learning.

Classification Using Machine Learning

After the SPM2 processed individual data, the spmT file was generated for each of the two experimental conditions. Under GRETNA (Wang et al., 2015), the AAL903 (Anatomical Automatic Labeling) template was used to segment the brain region of the spmT file, and the average statistical T value of each brain region was extracted to generate a 90 × 1 feature matrix. For a total of 1046 participants, the feature vector was: math task 1046 × 90, story task 1046 × 90. The characteristics of 800 subjects were selected as a training set. The math task tag was 1, the story task tag was -1 and the training set was sent to the classifier for classification. The remaining 246 subjects were used as the prediction test set. Before classification, a z-score was used to normalize the preprocessed training set. And the Lasso regression algorithm was used for feature selection. Then the linear support vector machine was used as the kernel function and the 10-fold cross-validation was used to calculate the correct rate of training. Brain region contribution results could also be obtained while establishing a classification model. Finally, the test set was sent to the classifier to obtain the classification label and the accuracy of the prediction result was calculated. In order to obtain the optimal classification result, it was necessary to debug the classification parameters to predict the correctness of the results as the debugging standard. It included two parameters, one was the regularization parameter α of the Lasso algorithm, and it directly determined the number of features. The larger the alpha, the sparser the model, therefore, more regression coefficients β were set to 0, thus deleting some features to achieve feature selection. The other was the penalty coefficient C of the linear support vector machine, and it directly determined the accuracy of training. The value of C was generally between 0.01 and 0.1. The contribution of the brain region was proposed under two preconditions: firstly, the feature was extracted based on the region partitioned by the brain template, so that the feature was associated with the three-dimensional brain structure, therefore, each feature corresponded to a brain region; secondly, the linear support vector machine was selected as the classifier, because the weight of the linear support vector machine was in one-to-one correspondence with the feature vector. The larger the weight value, the more important the corresponding feature was to the establishment of the classification decision surface. Through the relationship between the features and the brain regions and the relationship between features and classification weights, the corresponding relationship between brain regions and weights was established. In simple terms, the contribution of the brain region, was the weight value of the optimal decision function, of the linear support vector machine classifier.



RESULTS

Behavioral Data

The behavioral data were collected from 1046 participants during the fMRI experiments. Only one subject’s data was lost during the experiment. We used the average reaction time and correct rate data of 1045 participants for statistical analysis. There were two tasks. The mean reaction times (RT) (Figure 2A) and the mean accuracy (Figure 2B) were 3.79 ± 0.38 s and 83.28% (SD 3.42), respectively, for the math task and 3.50 ± 0.39 s and 92.57% (SD 12.94), respectively, for the story task. Two tailed two-sample t-tests were performed to compare the mean RTs and the mean accuracy between the math task and story task. The results showed that the math task had a slower reaction time compared to the story task (t = 17.260, P < 0.001). And the accuracy of the math task was significantly lower than the story task (t = 15.834, P < 0.001).
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FIGURE 2. Behavioral results. (A) Mean reaction time for the math stimuli and story stimuli. (B) Mean accuracy rates for the math stimuli and story stimuli.



Imaging Data

Group Analysis Results

The specific group results of the four groups of activated brain regions were shown in Table 1. The activations of math and story tasks showed that both the left and right temporal lobe were activated (Figures 3A,B). In addition to the temporal lobe, in the math task, the brain area with a greater activation intensity included: the left Precentral Gyrus, left Middle Temporal Gyrus, left Superior Temporal Gyrus, right Inferior Frontal Gyrus and the right Middle Frontal Gyrus (Wang et al., 2007). In the story task, the brain area with a greater activation intensity included: the left Inferior Frontal Gyrus, left Middle Frontal Gyrus and the right Inferior Semi-Lunar Lobule. Compared to the story results (Figure 3C), the math results included: the left Inferior Frontal Gyrus, left Inferior Parietal Lobule and the left Superior Parietal Lobule which had a higher activation intensity than the story task; while the Superior Parietal Lobule and Inferior Parietal Lobule only activated in the math task. Compared with the math results (Figure 3D), the brain area of the story task, the left Inferior Temporal Gyrus, Superior Temporal Gyrus and the Middle Temporal Gyrus, had a significantly higher activation intensity than the math task, and the Parahippocampal Gyrus Amygdala on the left and right sides only activated in the story task (Binder et al., 2011; Barch et al., 2013).

TABLE 1. Activated regions during the two auditory stimuli and the different activated regions between them.
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FIGURE 3. Global brain activation of the group analysis. (A) Math shows a three-dimensional brain activation map in the math task. (B) Story shows a three-dimensional brain activation map in the story task. (C) Math vs. Story shows the difference of activated brain regions between the Math task relative to the Story task. (D) Story vs. Math shows the difference of activated brain regions between the Story task relative to the Math task. WM = working memory, IPS = Intraparietal sulcus, AC = Auditory cortex, SMA = Supplementary Motor Area.



Parameter Debugging Result

As shown in Figure 4A, it was found that as the α increased, the number of features decreased exponentially. Therefore, in order to reduce the dimensional disaster and improve the classification performance of the classifier, the appropriate number of important features were selected, α were taken as: 0.001, 0.002, 0.003, 0.005, 0.007, 0.01, and the corresponding feature numbers were: 38, 25, 19, 11, 9, 8. Next, the penalty coefficient C of the linear support vector machine was debugged, and finally the accuracy of the prediction result was used as a criterion for evaluating the performance of the classifier. As shown in Figure 4B, when α = 0.002, C = 0.09, the highest classification accuracy rate was 87.60%. The current parameters and the effects of the trained models could be visually evaluated by plotting the ROC curve and the AUC indicator. As shown in Figure 4C, the area under the curve was 0.96, which was close to 1, indicating that the classifier had a good classification effect.
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FIGURE 4. (A) The relationship between the regularization parameter alpha of the Lasso regression algorithm and the number of feature selections (B) The relationship between the penalty coefficient C of the linear support vector machine and the correct rate of the prediction result under different alpha values (C) ROC curve of optimal classification results.



Machine Learning Results

As shown in Figure 5, a three-dimensional brain region contribution distribution map in six directions was shown. Some regions tended to exhibit higher classification weights than others. In particular, if the weight of some areas was at least greater than the average weight of all areas, plus a standard deviation of one time, we considered these areas to have significant weights (Tian et al., 2011). The mean value plus the standard deviation of the contribution was equal to 0.0614. The brain region with a contribution greater than 0.0614 was considered significant, including: the right Paracentral Lobule, right Rolandic Operculum and the right Inferior Parietal Lobule, excluding the supramarginal and angular gyri.
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FIGURE 5. Three-dimensional contribution of brain regions for classification. Each node represented a brain region divided by AAL90 (Anatomical Automatic Labeling template). The node colors represent different regions and the node size was scaled according to the weight value of the brain regions. The greater the contribution of the brain region, the larger the radius of the node.



Comparing the classified brain region contribution results and the group analysis activation region results, as shown in Table 2, it was found that 13 of the 25 characteristic brain regions overlapped with the group analysis activated brain regions. Among the 13 brain regions, there were 11 brain regions that overlapped with a different activation map between the math task and the story task. The 11 brain regions were: the left and right Inferior Parietal Lobe (not include supramarginal and angular gyri), left and right Middle Frontal Gyrus, left Supramarginal Gyrus, right Superior Parietal Gyrus, right Superior Frontal Gyrus, dorsolateral, right Inferior Frontal Gyrus, opercular part, right Angular Gyrus, left Amygdala, left Heschl Gyrus. Moreover, these coincident regions had strong activation in the group analysis results (t values were greater than 18). The remaining 12 brain regions did not overlap with the group analysis activation region results, including the two brain regions with significant contributions: the right Paracentral Lobule and right Rolandic Operculum.

TABLE 2. Comparison with degrees between the brain region contribution and group analysis: Label and regions represent the brain region label and brain region name of the classification result under the AAL90 template.

[image: image]



DISCUSSION

One of the experimental paradigms designed by Wang et al. was the auditory computing task in Mandarin Chinese and English. The calculation included addition and multiplication. It is similar to the math task. Study participants included 19 adult native Mandarin Chinese speakers, with no history of speech or hearing impairments. The active brain regions of the calculation task in English after the group analysis include: the left Precentral Gyrus, left Middle Temporal Gyrus, right Inferior Frontal Gyrus, and the right Middle Frontal Gyrus (Wang et al., 2007). Barch et al. (2013) chose 77 participants (58 women and 19 men) and all participants were aged between 22 and 35, with no previously documented history of psychiatric, neurological or medical disorders that are known to influence brain function. Binder et al. (2011) chose 34 healthy, right-handed adults as participants. (17 women and 17 men), aged between 18 and 50 years (mean 29 years). They all used the same experimental paradigm of this article, and similar results were obtained: the story vs. math results showed that the largest activation cluster involved the temporal lobe and strong medial temporal activation involved the uncus, amygdala, and the anterior hippocampus, extending posteriorly into the parahippocampal and posterior fusiform gyrus.

Comparative Analysis of Brain Region Contribution and Group Results

The contribution of brain regions is to combine the different partitions of the three-dimensional physiological structure in the brain space, with the weights of the classifiers. Therefore, the brain region contribution degree reflects the importance of different brain regions to the classification results. The higher the contribution value is, the more important the brain area is for classification results. Classification is to compare the differences between the two categories. Therefore, the results of the classification mostly coincided with the differential activation of the brain region. These overlapping brain regions were: the Middle Frontal Gyrus, which is involved in expressive language processes including semantics (Brown et al., 2010), grammar and syntax. Broca’s area played a role in syntactic processing during Chinese reading comprehension, verbal fluency (Abrahams et al., 2003), and verbal working memory (Leung et al., 2002). Inferior Parietal Lobule has been involved in the perception of emotions, facial stimuli and interpretation of sensory information. The left Supramarginal Gyrus was most likely involved with language perception and processing (Gazzaniga et al., 2013). The left Heschl Gyrus, which is found in the area of the primary auditory cortex buried within the lateral sulcus of the human brain, was the first cortical structure to process incoming auditory information. The Heschl Gyrus was active during auditory processing under fMRI for tone and semantic tasks (Warrier et al., 2009). The right Superior Frontal Gyrus, dorsolateral, is involved in self-awareness, in coordination with the action of the sensory system (Goldberg and Harel, 2006; Wang et al., 2017). The Amygdala plays a major role in memory, decision making, and emotional response (including fear, anxiety, and aggression), which is thought to be part of the limbic system (Amunts et al., 2005). The left Amygdala, plays a major role in memory, decision making, and emotional response (including fear, anxiety, and aggression), which is thought to be part of the limbic system (Amunts et al., 2005). Moreover, the intensity of activation of these overlapping brain regions in the results of the group analysis reflected the correctness of the classification features and could identify brain regions with large activation differences between the two tasks.

There were 12 brain regions in the feature brain region that did not coincide with the group activation results, including two brain regions with significant contributions: the right Paracentral Lobule, which is concerned with Motor and sensory innervations of the contralateral lower extremity (Spasojević et al., 2013) and it is also responsible for control of defecation and urination, and the right Rolandic Operculum. Some studies have proven that articulatory disorders correspond with lesions of the Rolandic Operculum (Tonkonogy and Goodglass, 1981). The reason for the significant difference between the classification result and the group analysis result can be explained by using the Paracentral Lobule brain area as an example. On the one hand, when comparing the brain regions of the two task differences in the group analysis, a mask (Gajdoš et al., 2016) was added to eliminate the pseudo activation. The mask was defined by the activation of the brain area of the math or story task. As shown in Figure 6, the T value of the brain region (label number 70) was negative for both tasks. Therefore, the differential activation of the brain area must be included in the scope of the single task activation brain area. The main function of the Paracentral Lobule brain area is to control the movement of the contralateral lower limbs and sensory innervation. The functionality of the Paracentral Lobule was independent of the activation of the task and was not activated in the separate analysis of math and story tasks. Therefore, the differential brain regions of the two tasks were unlikely to show activation in the Paracentral Lobule brain region. On the other hand, from the classification principle (Cherkassky, 1997), machine learning did not need to consider the problem of pseudo activation. The selection of features was not limited to the activation range, but the whole brain range. The linear support vector machine mapped the feature vector from the Euclid space to the Hilbert space, making the data set linearly separable in the high-dimensional space. In Hilbert space, finding such a decision surface, not only separated the two types of features, but also made the distance between the two types of features, to this decision surface, as large as possible (Schölkopf, 2000; Huang et al., 2012). The greater the distance between the two types of features, the greater the weight of the classifier, and the greater the contribution value of the brain region corresponding to the feature. Therefore, the contribution essentially reflected the difference between the two types of features corresponding to the brain region in the Hilbert space. The Paracentral Lobule brain region had the highest contribution, indicating that the distance between the corresponding features of the brain region was very far in the high-dimensional space. We speculated that the difference in this brain region was not obvious in low-dimensional space, and statistical analysis did not show any significance.
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FIGURE 6. The averaged T value in inactivated brain regions under two tasks. The numbers on the 12-column chart represented the brain area number of the AAL90 template, the gray box represented the math task, and the orange represented the story task. The number of asterisks represented the degree of p value. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.



Machine learning used the difference between the two tasks for classification. Among the negatively activated brain regions, the difference was more obvious, so the contribution in classification was higher than that in the activated brain region. However, the mechanism of these negatively activated brain regions in task execution remains unclear. This is because, in the two tasks used within the brain regions involved, the mechanism was quite different from the mechanism for negatively activating the brain region, therefore, there was no need to use negative activation brain regions for task execution. Depending on the supply of cerebral blood flow, the higher the degree of correlation of the regional function, the greater the degree of cerebral blood flow supply.

We compared the T values of 12 inactive brain regions for two tasks, as shown in Figure 6. The T values of brain regions in both tasks were mostly negative, and the paired sample t-test mostly had a p value of less than 0.05. This showed that there was a significant difference between the two tasks in the negative activation of brain regions. The negative activation of brain regions varied greatly among different tasks, suggesting that in addition to activating brain regions, negative activation of brain regions played an important role in brain research.

In order to study the contribution of the brain region to the classification, the linear support vector machine was selected as the classifier, because the weight value of the classifier reflected the importance of the feature to the classifier. In addition, Lasso regression was selected as the feature selection method, which was related to the training of the final machine learning algorithm model. The training model was trained based on the input training data. After the training was completed, the features were sorted based on the model representation and the importance of the features. It was only a screening process. If a feature has a strong influence on the classification performance, it will be retained, and will be zero if it has no effect on the classifier. This method did not change the correspondence between brain regions and features.



CONCLUSION

In this paper, the average T value of the one-sample generalized linear model was extracted as the eigenvector. The Lasso regression algorithm and the linear support vector machine were used for classification, and the result was compared with the SPM group analysis activation result. It was found that there were coincident brain regions and non-coincident brain regions: the coincident brain regions were mostly the difference between tasks to activate the brain regions, and the activation intensity was strong. Non-coincident brain regions included brain regions with significant classification contributions, right Paracentral Lobule and right Rolandic Operculum. The difference between the two results was mainly due to the difference in the algorithm. In the statistical analysis, in order to eliminate pseudo-activation, the differential activation was limited to a single task activation range; while machine learning did not need to consider pseudo-activation, which can be from the scope of the whole brain, it found feature brain regions that were not related to task activation but contributed significantly to classification. In summary, the contribution of the brain region was from another perspective, analyzing the difference between the two states of brain activity, and finding important brain regions with no statistical difference. This suggested an important role for negative activation of brain regions in brain research.



DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data can be found here: https://db.humanconnectome.org/.



AUTHOR CONTRIBUTIONS

MW, CL, JW, YL, XZ, and XL analyzed the data using SPM. MW, WZ, RC, YW, and YF analyzed the data using machine learning. MW and CL prepared the figures, and drafted the manuscript. WZ and RC contributed substantial to wrote and revised the manuscript. All authors contributed to manuscript development, and read and approved the final manuscript.



FUNDING

This study was financially supported by the grants from the National Natural Science Foundation of China (Grant Nos. 61727807, 81771909, 31600933, 61701323, 81671776, and 61633018), the Beijing Municipal Science and Technology Commission (Grant Nos. Z161100002616020, Z131100006813022, and PXM2017_026283_000002), the Yang Fan Plan of Beijing Municipal Administration of Hospitals (Clinical Innovation Project, Grant No. XMLX201714), the Capital Medical University Fundamental and Clinical Foundations of China (Grant Nos. 16JL-L08 and 17JL68), and the Excellent Talents Programme of Beijing (Grant No. 2016000020124G098).



FOOTNOTES

1 https://db.humanconnectome.org/
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Background: The hippocampus and hippocampal subfields have been found to be diversely affected in Alzheimer’s Disease (AD) and early stages of Alzheimer’s disease by neuroimaging studies. However, our knowledge is still lacking about the trajectories of the hippocampus and hippocampal subfields atrophy with the progression of Alzheimer’s disease.

Objective: To identify which subfields of the hippocampus differ in the trajectories of Alzheimer’s disease by magnetic resonance imaging (MRI) and to determine whether individual differences on memory could be explained by structural volumes of hippocampal subfields.

Methods: Four groups of participants including 41 AD patients, 43 amnestic mild cognitive impairment (aMCI) patients, 35 subjective cognitive decline (SCD) patients and 42 normal controls (NC) received their structural MRI brain scans. Structural MR images were processed by the FreeSurfer 6.0 image analysis suite to extract the hippocampus and its subfields. Furthermore, we investigated relationships between hippocampal subfield volumes and memory test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition) and the regression model analyses were controlled for age, gender, education and eTIV.

Results: CA1, subiculum, presubiculum, molecular layer and fimbria showed the trend toward significant volume reduction among four groups with the progression of Alzheimer’s disease. Volume of left subiculum was most strongly and actively correlated with performance across AVLT measures.

Conclusion: The trend changes in the hippocampus subfields and further illustrates that SCD is the preclinical stage of AD earlier than aMCI. Future studies should aim to associate the atrophy of the hippocampal subfields in SCD with possible conversion to aMCI or AD with longitudinal design.

Keywords: Alzheimer’s disease, amnestic mild cognitive impairment, subjective cognitive decline, magnetic resonance imaging, hippocampal subfields


INTRODUCTION

The pathophysiological process of Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, which is thought to have begun many years before the diagnosis. With the disease progression, as the preclinical AD, subjective cognitive decline (SCD) have worse cognition than normal controls (NC), while objective examination shows that they have not yet reached the level of amnestic mild cognitive impairment (aMCI) or AD dementia (Molinuevo et al., 2017). The main manifestation of SCD is the decline in memory rather than other domains of cognition. It is formally proposed and standardized by Subjective Cognitive Decline Initiative (SCD-I) in a conceptual framework for research on subjective cognitive decline (Jessen et al., 2014). After adjustment for age, sex and education, the stage of neuropsychological examination below threshold was mild cognitive impairment (MCI) or prodromal AD (Petersen et al., 2018). Subsequently, if there are significant interferences in the ability of work or daily activities, cognitive decline progresses onward to the stage of AD dementia (Sperling et al., 2011; Jack et al., 2018). These clinical symptoms are caused by the accumulation of pathology leading to the macrostructural disorder of the brain, of which the hippocampus atrophy is the most obvious.

The hippocampus is composed of several subfields with different histological characteristics, rather than a homogeneous structure. Hippocampal atrophy is the most significant structural biomarker of AD imaging (Ritchie et al., 2018). Differential changes in hippocampal atrophy can be relatively easily obtained from magnetic resonance imaging (MRI). The hippocampus and hippocampal subfields are found to be diversely affected in Alzheimer’s Disease (AD) and early stages of Alzheimer’s disease by neuroimaging studies (de Flores et al., 2015; Chetelat, 2018). The hippocampal atrophy of AD patients was most significantly involved subiculum and CA1 subfields (Blanken et al., 2017). Other studies have showed that there were more extensive and more evident atrophies in DG/CA3 or subiculum at the lower end of the hippocampus (de Flores et al., 2015). Studies on prodromal AD showed that the focal atrophy of CA1-2 of MCI patients is more obvious than that of normal aging patients (Jessen et al., 2010). The atrophy first appeared in the presubiculum and subiculum of the hippocampus at MCI (Carlesimo et al., 2015). However, SCD subjects are more difficult to identify from the NC because the SCD group showed that the left total hippocampal volume was small with statistically significant difference, while the right total hippocampal volume did not change significantly (van der Flier et al., 2004; Jessen et al., 2006). The atrophy of hippocampal surface is mainly in CA1, and the other regions have obvious overlap with AD (Perrotin et al., 2017; Evans et al., 2018). The atrophy of the memory-related hippocampus and hippocampal subfields is one of the earliest macroscopic features of the trajectories of Alzheimer’s disease, and has been reported in autopsies and neuroimaging studies (Braak and Braak, 1991; Frisoni et al., 2008; Mueller et al., 2011; Mak et al., 2017). To our best knowledge, there is little research on the subfield of hippocampus and relationship with memory in SCD.

We hypothesized that there may be 1) a change in the hippocampal subfields at different stages of AD in accordance to the trajectory of Alzheimer’s disease and 2) a relationship between hippocampal subfield volume and memory status (de Flores et al., 2015; Perrotin et al., 2015; Evans et al., 2018). The purpose of this study was to identify which subfields of the hippocampus differ in the trajectories of Alzheimer’s disease by magnetic resonance imaging (MRI). In addition, to determine whether individual differences on memory could be explained by structural volumes of hippocampal subfields.



MATERIALS AND METHODS

Participants

We prepared 161 right-handed Chinese Han participants including 35 SCD patients, 43 aMCI patients and 41 AD patients, and 42 NC subjects from our databank (NCT: 02225964, 02353845, 02353884, and 03370744). The cognitive functions of all the subjects were assessed by experienced neurologists. Including the Clinical Dementia Rating Scale (CDR) (Morris, 1993), the Chinese version of the Mini-Mental State Examination (MMSE), the Beijing version of Montreal Cognitive Assessment (MoCA) (Lu et al., 2011), the auditory verbal learning test (AVLT) (Guo et al., 2007), an activities of daily living (ADL) assessment, and Hamilton depression rating scale.

The normal controls did not present cognitive decline complaints and their performance in MMSE, MoCA and AVLT were in normal range. The patients with SCD were diagnosed based on the criteria proposed by SCD-I in 2014 (Jessen et al., 2014), including (1) self-reported experience of persistent decline in memory compared to a previous state (within the last 5 years); (2) performance within the normal range on MMSE or MoCA (adjusted for age, sex, and education); (3) the Clinical Dementia Rating (CDR) score is 0. The patients were diagnosed with aMCI using the Petersen criteria (Petersen, 2004), which have been described in our previous studies (Shu et al., 2018): (a) presence of memory complaint, confirmed by an informant; (b) presence of objective memory impairment measured by MMSE, MoCA and AVLT; (c) failure reach the standard of dementia; (d) CDR score of 0.5. The inclusion criteria for SCD were based on the recent research criteria proposed by National Institute of Aging-Alzheimer’s Association (NIA-AA) criteria for clinically probable AD (Sperling et al., 2011): (a) meeting the criteria for dementia; (b) recessive and gradual onset for more than 6 months, not a sudden attack; (c) hippocampal atrophy confirmed by structural MRI; (d) CDR score is equal or greater than 1. Exclusion criteria were prior history of the activities of daily living disorder, stroke, mental disorders, cancer, drug abuse, epilepsy, brain tumors, Parkinson’s disease, encephalitis and hypoxic brain damage. All subjects underwent brain MRI examination. The detailed demographic and clinical characteristics of participants are shown in Table 1.

TABLE 1. Characteristics of the subjects.
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The study approved by the medical research ethics committee and the institutional review board of Xuanwu Hospital, Capital Medical University, Beijing, China. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Image Acquisition

The 3T magnetic resonance imaging system (MAGNETOM Trio Tim; Siemens, Erlangen, Germany) was used for image acquisition at the Department of Radiology, XuanWu Hospital, Capital Medical University. T1-weighted MRI scans were acquired at the sagittal plane by using a magnetization prepared rapid acquisition gradient echo sequence with the following parameters: TR = 1900 ms, TE = 2.2 ms, FA = 9°, inversion time (TI) = 900 ms, matrix = 256 × 256, slices = 176, thickness = 1.0 mm and Voxel size = 1 × 1 × 1 mm3.

Image Processing

Structural MR Images were processed by the FreeSurfer image analysis suite, which can be downloaded free of charge from the website (version 6.0.0, http://freesurfer.net/) (Mueller et al., 2018).

First, the entire hippocampal formation was segmented using the routine volumetric FreeSurfer pipeline. Briefly, T1-weighted MR images were corrected for within-subject head motion; then, non-brain tissues were removed using a hybrid watershed/surface deformation algorithm (Segonne et al., 2004). The resulting images were further affine registered to the Talairach space. Subsequently, segmentation of the subcortical and cortical structures (including the hippocampus) was conducted using a probabilistic brain atlas (Fischl et al., 2002). The estimated total intracranial volume (eTIV) of each subject was also calculated using the standard FreeSurfer processing pipeline by exploiting the relationship between the intracranial volume and the linear transformation to the atlas template (Buckner et al., 2004). The eTIV was used to correct for individual differences in head size in the subsequent statistical analysis. Automated segmentation of hippocampal subfields was performed using a built-in module of FreeSurfer, in which a Bayesian statistical model with Markov random field priors was used to estimate the label of each subfield (Van Leemput et al., 2009). This method has been successfully applied to detect hippocampal abnormalities in specific subfields in many neuropsychiatric diseases (Kuhn et al., 2012; Haukvik et al., 2015). A bounding box containing the hippocampus that was upsampled to a 0.5 mm isotropic resolution was applied to this module. This approach relied on a tetrahedral mesh-based probabilistic atlas of the hippocampal formation, which was constructed from the manual delineation of the right hippocampus based on ultra-high-resolution T1-weighted scans (0.38 × 0.38 × 0.8 mm3) of 10 normal subjects. By maximizing the posterior probability of a segmentation, the left and right hippocampi were automatically segmented into twelve subfields: hippocampal tail, parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, hippocampus–amygdala transition area (HATA), granule cell layer of dentate gyrus (GC-DG), molecular layer, fimbria, and hippocampal fissure. In this manuscript, the method for automated segmentation is standard. Additionally, the method for segmentation is validated to be accurate by Iglesias et al. (2015). The hippocampal subfield segmentation results are illustrated in Figure 1. The entire hippocampal volume was defined as the sum of the volume of all hippocampal subfields.
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FIGURE 1. Hippocampal subfield segmentation.



Statistical Analysis

Statistical analysis was carried out using Statistical Package for Social Sciences software (SPSS, version 21.0). All the statistical tests were two-tailed. Categorization of demographic variables was assessed using Chi-square test. Continuous demographic variables were evaluated through ANOVA. In this study, the estimated total intracranial volume (eTIV) was used as a covariate to control head size. Statistically significant differences based on ANOVA (P < 0.05) were further explored using Bonferroni post hoc analysis. In the post hoc analysis, the differences between the individual experimental group and the control group were assessed. The left and right hemisphere measurements were analyzed, respectively. In addition, covariance analysis was used to analyze the volume differences in individual hippocampal subfield with age, sex, years of education and eTIV as covariates. Furthermore, we investigated relationships between hippocampal subfield volumes and memory test variables (AVLT-immediate recall, AVLT-delayed recall, AVLT-recognition) through the regression model analyses controlled for age, gender, education and eTIV.



RESULTS

Demographic Data

The demographic characteristics of the normal control, the patients of SCD, the patients of aMCI and the patients of AD are shown in Table 1. Four groups of age, sex, and educational level were well-matched (P > 0.05 for each group comparison). Comparing SCD and NC groups, there were no significant differences in MoCA, MMSE, immediate recall part of AVLT, the recognition part of AVLT, while significant difference (P = 0.012) in the delayed recall part of AVLT. The patients with AD and aMCI had significant lower scores in MoCA, MMSE, and AVLT compared with the healthy control participants (P < 0.005).

Comparisons of Hippocampal Subregion Volumes

We tested differences in whole hippocampal volume and all subfields among four groups using ANCOVA with age, years of education, and eTIV as covariates. Table 2 shows the statistical results of hippocampal subfields and hippocampal volumes. The volume of the left whole hippocampus was significantly different between NC, SCD, aMCI and AD in Figure 2. However, there was no statistically significant difference in the right whole hippocampus between NC and SCD. Compared with NC, aMCI group and AD group showed significant decreases in right whole hippocampal volume in Figure 3. In addition, the significant decreases were found for SCD and NC in the volume of hippocampal tail, subiculum, presubiculum, molecular layer HP, GC-ML-DG and CA4 of left hippocampal subfields, right presubiculum and fimbria of right hippocampal subfields. Most of the hippocampal subfields showed significant volumetric difference except hippocampal fissure and left parasubiculum between aMCI and NC groups. The significant differences in the hippocampal volume were detected between the AD and NC except right hippocampal-fissure. Furthermore, in our study, CA1, subiculum, presubiculum, molecular layer and fimbria showed the trend toward significant volume reduction among four groups with the trajectories of Alzheimer’s disease.

TABLE 2. Comparison of hippocampus and hippocampal subregions volume in normal controls and patients with SCD, aMCI and AD.
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FIGURE 2. Comparison of hippocampal subregions volume in normal controls and patients with SCD, aMCI and AD. ∗P < 0.05.
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FIGURE 3. Comparison of hippocampal volume in normal controls and patients with SCD, aMCI and AD. ∗P < 0.05.



Relationship Between AVLT and Hippocampal Subregion Volumes

In a first step, all potential risk factors (age, education years, sex, GM volume of hippocampal subfields, TIV) were correlated with AVLT scores and only variables correlated with AVLT score at P < 0.2 were used in subsequent stepwise linear regressions. This was performed to avoid too many independent variables. In the regression model, variables were removed when P > 0.05. Table 3 presents the results of the linear regression analyses. In our study, volume of left subiculum of all the four groups was most strongly and actively correlated with performance of AVLT three measures.

TABLE 3. Linear Regression Models for Different AVLT scores.
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DISCUSSION

In this study, we investigated the volumetric difference of hippocampus and hippocampal subregions among AD, aMCI, SCD, and NC subjects. There were also trends in some hippocampal subregions with the trajectories of Alzheimer’s disease in addition to the volumetric differences between the four groups. Furthermore, we studied AVLT and typical hippocampal subfields related with memory. It also shown trends with the trajectories of Alzheimer’s disease.

In our study, we found that the differences of hippocampus and hippocampal subfields with age, years of education, and eTIV as covariates. The effect of the size of the brain in different subjects was excluded. Our study showed that the difference in volumes was in the left whole hippocampus as that of previous studies (van der Flier et al., 2004; Jessen et al., 2006). We further divided the volume of the hippocampus, and the volumetric subfields of SCD, aMCI and AD were compared with the volumetric subfields of the NC. The hippocampal subfields volume of AD had significant differences except for right hippocampal fissure. There were also volumetric differences of aMCI in hippocampal tail, subiculum, presubiculum, molecular layer HP, GC-ML-DG, CA4, CA3, fimbria, HATA and right parasubiculum. These were consistent with previous studies (Kang et al., 2018; Su et al., 2018). Previous studies had shown that the volume of the whole hippocampus and hippocampal subfields of SCD and NC were not consistent (van der Flier et al., 2004; Jessen et al., 2006; Carr et al., 2017). But our research found that the volumes of SCD were different from those of NC in left whole hippocampus hippocampal tail, subiculum, presubiculum, molecular layer HP, GC-ML-DG and CA4 of left hippocampal subregions, right presubiculum and right fimbria. Of note, we observed the trend in the CA1, subiculum, presubiculum, molecular layer and fimbria subregions, which were in line with the previous studies, but their studies rarely involved the trajectories of Alzheimer’s disease (Perrotin et al., 2015; Carr et al., 2017; Lindberg et al., 2017). The obvious atrophic structures in AD are located at CA1, subiculum and the presubiculum (Carlesimo et al., 2015). The atrophy of CA1 in MCI has also been reported, which is related to the increased risk of conversion from MCI to AD (Apostolova et al., 2006). In our study, we found that the hippocampus-related subfields had changed as early as SCD stages, however, not all of them showed trend changes. Trend-changing parts are rich in fibers and synapses, which also provide intrahippocampal connections and receive inputs from the hypothalamic lobe and thalamic nucleus. This is strongly correlated with memory impairment in AD patients (Lace et al., 2009). Our finding about the hippocampal volume reduction are consistent with neuropathological findings in the progression of AD disease (Mizutani and Kashara, 1995). In our study, the atrophies of CA1, subiculum, presubiculum, molecular layer and fimbria subregions among SCD, aMCI and AD groups suggest that they may be a potential early biomarker for detecting AD at the SCD stage. These results similarly suggest that, compared with normal control subjects, the difference in the volumes of hippocampal subfields and the trend of these changes could show the evolution of AD in the earlier stage.

The functions of the hippocampal subfield were different, which were related to memory, executive function, attention deficits and so on (Serkova et al., 2016; Evans et al., 2018). The analysis of subfield volumes has been applied to memory neuroscience suggesting that subregion such as CA1, CA3 and dentate gyrus in memory is important (Kesner, 2013; Tamnes et al., 2014; Suthana et al., 2015). In our study, the scores of delayed recalls of AVLT were more closely related to the changes of hippocampal subfields than the score of immediate memory and recognition. As we all knew delayed recalls reflect the episodic memory which was impaired first in AD. Furthermore, the scores of delayed recalls of AVLT were better correlated with left subiculum. It implied that left subiculum might tell diseases earlier as an imaging biomarker (Duara et al., 2012; Jessen et al., 2014; Tamnes et al., 2014; Suthana et al., 2015).

There are limitations in our study. Firstly, the main limitation is the lack of high risk group but asymptomatic control group besides the four groups (AD, aMCI, SCD and NC). In future design, we will collect the high risk but asymptomatic control group. Furthermore, this study was based on cross-sectional data, longitudinal follow-up studies of the same cohort are conducted to identify early imaging markers for disease transformation and prediction. Finally, we only studied hippocampal subregion volume by structural MRI. The combination of the multimodal imaging (i.e., structural, functional MR imaging and positron emission tomography technique) could be used in our future research.



CONCLUSION

Our findings show that the trend changes in the hippocampus subfield and further illustrate that SCD is the preclinical stage of AD earlier than aMCI. The susceptibility of hippocampal subfield to AD pathological damage is different, so the volume of hippocampal subfield is better than the total volume of hippocampus in identifying early AD. It can better review the trajectory of AD, understand the mechanism, and identify sensitive biological indicators at different stages of AD.
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The interaction between dorsal and ventral attention networks (VANs) is mediated by the middle frontal gyrus (MFG), which is functionally connected to both networks. However, the direct role of the MFG in selective and sustained attention remains controversial. In the current study, we used transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe the connectivity dynamic changes of MFG-associated regions during different attention modes. The participants underwent visual, selective, and sustained attention tasks to observe TMS-induced network changes. Twenty healthy participants received single-pulse TMS over the left or right MFG during tasks, while synchronous EEG data was acquired. Behavioral results were recorded and time-varying brain network analyses were performed. We found that the MFG is involved in attention processing and that sustained attention was preferentially controlled by the right MFG. Moreover, compared with the right hemisphere, the left hemisphere was associated with selective attention tasks. Visual and selective attention tasks induced MFG-related changes in network nodes were within the left hemisphere; however, sustained attention induced changes in network nodes were in the bilateral posterior MFG. Our findings indicated that the MFG plays a crucial role in regulating attention networks. In particular, TMS-induced MFG alterations influenced key nodes of the time-varying brain network, leading to the reorganization of brain network modules.

Keywords: middle frontal gyrus, TMS-EEG, attention, time-varying network, reorganization


INTRODUCTION

Understanding the physiological mechanism of complex brain functions, such as attention, is a major challenge in neuroscience. Attention plays a crucial role in our ability to organize thoughts and actions into meaningful behaviors (Kim et al., 2016). Maintaining attention, including selective and sustained attention, is one of the most widely used abilities in humans. Chronic attention difficulties are characteristic of many neurodevelopmental disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder (ADHD; Kooistra et al., 2010; Keehn et al., 2013). Attentional mechanisms are required to selectively enhance the most task-relevant information (Jia et al., 2017). Nonetheless, despite research indicating the importance of the middle frontal gyrus (MFG) for maintaining the integrity of attention networks (Gogulski et al., 2017), no study has systematically compared the role of the MFG in different attention modes (such as selective or sustained attention).

Functional magnetic resonance imaging (fMRI) has provided evidence that the MFG is active in block and event-related analyses of attention tasks, suggesting its importance in sustained attention/vigilance (Neale et al., 2015). Most brain network studies use fMRI-based analyses for functional connectivity because it has higher spatial resolution; however, the relatively slow temporal course of fMRI limits its ability to characterize network operation and observe dynamic processes. In addition, it is susceptible to artifacts produced from head movements (Rathee et al., 2017), and it utilizes either resting or task states of participants without external interfering stimuli. Therefore, fMRI is imperfect for studying top-down attention.

Transcranial magnetic stimulation (TMS) pulses can induce the synchronization of distant cortical areas, and thereby modulate information processing and alter functional connectivity patterns in specialized, interconnected cortical modules (Massimini et al., 2005). Therefore, TMS is a unique method for studying brain-behavior dynamics in humans (Pascual-Leone et al., 1999, 2000; Walsh and Cowey, 2000; Wu et al., 2016). To date, brain connectivity between different regions using electroencephalography (EEG) has shown causal communication mechanisms between distinct attention networks (Pang and Snead, 2016; Christoforou et al., 2017). TMS combined with EEG (TMS-EEG) will provide an important method to study brain networks.

New hardware developments, such as improved EEG amplifier technology and advanced data processing techniques, have removed the TMS-induced artifacts that had previously rendered concurrent TMS-EEG impossible (Rogasch and Fitzgerald, 2013). In addition, EEG analytical methods have developed from a directed transfer function (Kaminski and Blinowska, 1991) to an adapted, directed transfer function (ADTF; Wilke et al., 2007). This method can be used to measure connections between different brain regions at different frequencies in time (Zhang et al., 2017; Li et al., 2018). Hot spots or key nodes can be identified from active regions. These are the core elements of a whole network in a certain time epoch, which can dynamically change with time (Wang et al., 2017; Yan et al., 2018). Furthermore, modules can be identified as a group of nodes that are more strongly connected between each other than nodes in different modules within the network (Rathee et al., 2017). Subsequently, a single-pulse TMS (sTMS) alters neural activity in the stimulated area and modulates the excitability of interconnected distant sites (Siebner et al., 2001). Further, TMS-EEG can be applied to quantify this brain network connectivity (Thut and Miniussi, 2009).

This study aimed to directly test the contributions of MFG to different attention modes in healthy subjects and whether this contribution is asymmetrical relative to different modes. We hope that this research will contribute to a deeper understanding of time-varying brain connections and dynamic changes in key nodes in cortical areas related to the MFG.



MATERIALS AND METHODS


Participants

Twenty healthy, right-handed individuals (10 males, mean age = 27.3 years, SD = 3.81) with normal or corrected-to-normal visual acuity were paid to participate in our experiment. All participants provided written informed consent for the study and publication. The study had the approval of the Xuanwu Hospital Ethics Committee and was in accordance with the Declaration of Helsinki.



Attention Modes

We used three different attention modes in our experiment:


(1)   Visual attention task. Participants were instructed to attend to the numbers that were presented between 0 and 9 randomly, with no choice component (Figure 1Aa).

(2)   Selective attention task. Participants were instructed to attend to the numbers that were presented between 0 and 9 and respond whenever they saw a “0” (Figure 1b).

(3)   Sustained attention task. Participants were instructed to attend to the numbers that were presented 1–9 and respond when they saw three consecutive odd or even numbers (“triplets”) in any sequence (e.g., 1, 3, 5 or 8, 4, 2; see Figure 1c).




[image: image]

FIGURE 1. Schematic representation of experimental design. (A,a) Example of only visual attention task. (b) Example of target response in selective attention task block (number “0”). (c) Example of target response in sustained attention task block (triplets “8, 4, 2”). (B) Illustration of the concurrent transcranial magnetic stimulation (TMS)-electroencephalography (EEG) protocol and attention modes during sTMS. sTMS, single TMS.



All stimuli were controlled by a stimulus system (STIM, Neurosoft Labs Inc., Sterling, VA, USA) that presented numbers pseudo-randomly and with equal probability. The onset-to-onset interval and duration were 600 ms, without an inter-stimulus interval in all three conditions. All numbers were presented in white font on a black background. To ensure that the selective and sustained attention task blocks were matched for motor activation, both block types presented eight targets (“0” or odd/even triplets) appearing at a rate of four per 30 s. The selective and sustained attention conditions both included four blocks, with each block containing 200 numbers. There was a 1-min rest period between blocks without TMS stimulus.



Neuronavigation

Participants’ heads were co-registered with their T1 MRI images using BrainSight™ frameless stereotaxic software (Rogue Research, Montreal, QC, Canada) to confirm the anatomical locus of stimulation. A Magstim Super-Rapid Stimulator (Magstim Co., Whitland, Dyfed, UK) was used to deliver the magnetic stimulation. TMS sessions corresponded to two targeted areas: (1) left MFG (center of BA 9); and (2) right MFG (center of BA 9).



Measurements of Rest Motor Threshold

sTMS was applied with a figure-of-eight coil (70 mm diameter) connected to a monophasic Magstim stimulator (Magstim Company Ltd., London, UK). The stimulating coil was positioned tangentially to the skull with the coil handle pointing backward and laterally at 45° from the anterior-posterior axis. The left “motor hot spot” was determined as the site where the TMS consistently elicited the largest motor evoked potentials (MEPs) from the right first dorsal interosseous (FDI) muscle. This spot was marked on the scalp with a waterproof pen alongside the front edge of the TMS coil. The surface electromyography was recorded using disc-shaped Ag-AgCl electrodes that were placed in a tendon-belly arrangement. The resting motor threshold (RMT) was defined as the lowest stimulus intensity that elicited a minimum MEP amplitude of 50 μV in the completely relaxed FDI muscle in at least 5 out of 10 consecutive trials.



EEG Data Acquisition

EEG data were acquired using a magnetic field-compatible EEG amplifier (Yunshen Ltd, Beijing, China) and cap (Greentek Ltd, Wuhan, China) with 32 TMS-compatible electrodes positioned according to the 10/20 system and digitized with a sample rate of 1,024 Hz. The CPz and nasal tip electrodes served as the reference and ground, respectively. During the entire experimental task, electrode impedances were maintained below 5 kΩ.



Experimental Procedure

Participants were positioned on a semi-reclined chair with their forearms lying on armrests; care was taken to maintain a relaxed posture. Participants wore earplugs to avoid ambient and coil discharge noises. They were instructed to stay motionless without falling asleep. Each participant first completed the selective and sustained attention tasks without TMS to compare reaction times and correct response rates with responses during TMS application. We verified that the subjects remained alert by continuous EEG monitoring.

TMS was performed using a monophasic Magstim stimulator (Magstim Company Ltd, London, UK), which generates a maximum magnetic field of 1.5 T. sTMS was delivered through a figure-of-eight focal coil over the left or right MFG. The order of sTMS was randomized and there was a 30-min interval between each experiment (90% RMT). The sTMS interval was 4 s to avoid any TMS effect. Participants completed the three attention tasks during sTMS. The order of tasks was randomized, and there was a 10-min interval between tasks (Figure 1B). Left and right MFG were disturbed separately with a 30-min interval between experiments.



EEG Data Analysis


Time-Varying Network Analysis

EEG data analysis was divided into pre-processing and time-varying network analyses. The time-varying network analysis required several segmentations to enable the construction of a reliable network to capture the brain architectures and networks. In this study, we used TMS disturbances as stimulus labels. For each labeled disturbance event, the time point corresponding to the peak of the label was set as time “0.” Then, data corresponding to 0.5 s before and 1 s after “0” were extracted (total segment length, 1.5 s). Next, to reduce the calculation load in the time-varying network analysis, segments were eight-rate down-sampled (Li et al., 2016), resulting in 32 Hz. ADTF was used to construct the time-varying networks and uncover the dynamic information processing during TMS disturbance (Wilke et al., 2007). We used a time-varying multivariate adaptive autoregressive model and ADTF to calculate the time-varying brain network (Zhang et al., 2017); this process is included in the Supplementary Material Appendix. The normalized total information outflow of the jth node is further estimated in Equation 1 as:
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where n is the total number of nodes.

When each node (n) has been calculated for each sample time point (t), a directional edge (i to j) can be displayed. From Equation 1, we can derive an outflow that denotes the time-varying of each node across different time points, as demonstrated in Figure 3. We defined the key node as the node with the highest degree of connectivity at various time points. The key node will change over time and at that sample time point, the edges quantity of this key node determines their connection strength.
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FIGURE 2. Reaction time and accuracy on each attention task. (A) Mean reaction time of correct responses in the selective attention task. (B) Correct response rate in the selective attention task. (C) Mean reaction time of correct responses in the sustained attention task. (D) Correct response rate in the sustained attention task. S, single TMS, L, left hemisphere, R, right hemisphere, MFG, middle frontal gyrus. *p < 0.05.
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FIGURE 3. Application of sTMS to the left MFG (A) and right MFG (B) induced changes in the time-varying networks in different attention modes. Time: after single TMS. Red lines: enhanced connections; black arrows: the direction of information flow; green lines: weakened connections; blue arrows: the direction of information flow.





Behavioral Data Analyses

All results from the attention tasks were averaged across the 20 participants, and statistical analyses were used to identify differences in dynamic network patterns between attention modes.

Post hoc pairwise comparisons were used to compare the reaction times and correct response rates between attentional modes. Statistical significance was set at p < 0.05.





RESULTS


Behavioral Results

We recorded the response time and accuracy of different attention tasks that were used to evaluate the contribution of the MFG to attention processing. There were no significant differences in response time or accuracy in the selective attention task during sTMS in the right or left MFG. Interestingly, participants showed an improvement in accuracy in the sustained attention task when sTMS was applied to the right MFG (p < 0.05; Figure 2).



Dynamic Network Patterns

The corresponding MFG time-varying network patterns of the different attention modes are shown in Figure 3. Specifically, application of sTMS to the left MFG induced changes in the time-varying networks in different attention modes. The left temporal and right central area connection was initially weakened (76–450 ms) but was followed by an enhanced bilateral temporal connection (450–1,000 ms). The left MFG induced a longer inhibition of the left temporal region in the sustained attention task, as compared to the other attention modes (Figure 3A). Additionally, application of sTMS to the right MFG induced time-varying network alterations in different attention modes. The connection between the left temporal and parietal lobes was initially weakened (76–256 ms) but was followed by an enhanced bilateral temporal connection (450–1,000 ms). MFG-induced inhibition of the left temporal connection was observed in the sustained attention task at 560 ms. This inhibition was observed at 450 ms in the other tasks (Figure 3B).

The time-varying network patterns from different attention modes are shown in Figure 3. These data reveal key network nodes located in different brain regions. Moreover, local brain regions close to the attention zones are activated at the differential time-points.

Furthermore, the association between the MFG and key nodes were altered during different attention modes (Figure 4). For example, when sTMS was applied to the left MFG during the visual attention task, key nodes in the left frontal region to the left posterior region were enhanced, and key nodes from the right posterior region to the left frontal region were weakened. When sTMS was applied to the left MFG during the selective attention task, key nodes from the left frontal region to the left posterior region were enhanced and were weakened in the right posterior region. Enhanced key nodes from the left and right posterior region and weakened key nodes in the left and right frontal region were observed when sTMS was applied to the left MFG during the sustained attention task. Following sTMS application to the right MFG during the visual attention task, the key nodes from the right frontal region to the left posterior region were enhanced, and the key nodes from the left posterior region to the right frontal region were weakened. The selective attention task revealed a change in the enhanced key nodes from the right frontal region to left posterior region and weakened key nodes changed from the right posterior region to the right frontal region. The sustained attention task revealed alterations in the enhanced key nodes from the right frontal region to the bilateral posterior region, and weakened key nodes changed from the left frontal region.
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FIGURE 4. Key nodes were altered during different attention modes. Red digits: conversion time of enhanced key nodes. Green digits: conversion time of weakened key nodes. Red lines and arrows: the direction of enhanced key nodes information flow. Green lines and arrows: the direction of weakened key nodes information flow. S, single TMS, L, left hemisphere, R, right hemisphere, MFG, middle frontal gyrus.



Our analyses revealed similar results in the left and right MFG in both selective and sustained attention modes; however, the visual and selective attention tasks revealed a hemispheric asymmetry, with key nodes associated with MFG in the left hemisphere. The sustained attention task revealed bilateral key nodes and increased connections between hemispheres.




DISCUSSION

Previous studies have noted the importance of the prefrontal cortex and frontal-parietal network in attention and our results have shown that the MFG makes a significant contribution to attention processing. Furthermore, we found that sTMS application in the right MFG can improve sustained attention. Interestingly, MFG-associated visual and selective attentional network key nodes were altered in the left hemisphere from the frontal region to posterior regions; however, sustained attention key nodes showed bilateral information exchange with right or left sTMS application.

The prefrontal lobe has been linked to attention in humans; however, its mechanism and role have not been fully elucidated. The earliest therapeutic use of repetitive TMS (rTMS) for ADHD led to an improvement in clinical global depression and ADHD-IV scales (Weaver et al., 2012). Similarly, our results indicate that sTMS application to the right MFG can have a positive effect on sustained attention. The left hemisphere is more associated with selective attention, and our results indicate bilateral MFG activation in sustained attention tasks. Further, disturbance of the right MFG may activate the right hemisphere and facilitate network connections with other regions to improve sustained attention ability. These results indicate a possible therapeutic potential for sTMS in the right MFG in individuals with sustained attention deficits.

Selective and sustained attention are primarily controlled by the dorsal attention network (DAN) and the ventral attention network (VAN; Corbetta and Shulman, 2002). There is a hemispheric asymmetry between attention networks, which results in the functional lateralization of the MFG (Corbetta and Shulman, 2011; Koch et al., 2011; Thiebaut et al., 2011; Neale et al., 2015). Lesion-based studies in ADHD have indicated that unbalanced interhemispheric interactions between the bilateral MFG account for the hemispheric specialization of attention function (Epstein et al., 2009; Nagashima et al., 2014). Current data indicate that the functional asymmetry of MFG is linked with different brain networks. This is supported by our data showing asymmetric connectivity of the MFG between different attention modes.

sTMS application to the MFG induced changes to time-varying networks in different attention modes, which included enhanced and weakened connections. The visual and selective attention task revealed alterations in the location of enhanced connections from the frontal region to the posterior region in the left hemisphere and weakened connections from the posterior region to the front brain. In contrast, the sustained attention task revealed changes to enhanced connections bilaterally in the posterior region and altered weakened connections in the frontal region. This indicates that the MFG has different roles in different attention modes, and right MFG has its most important role in sustained attention processing (Caruana et al., 2015; Han et al., 2018). Previous data have shown that TMS affects performance when applied to either hemisphere (Duecker et al., 2013; Platz et al., 2016); however, we found a strong right MFG effect. This indicates that this frontal region may have a spatially biased functional role.

Previous studies of brain structure analysis, based on functional connectivity patterns, have shown modular organization. These are classified into four modules that are associated with different functions: occipital (perception), central and sensorimotor (action), and frontoparietal (executive functions) modules; and the default mode network (spontaneous cognition). This indicates that there is a well-defined network organization in the brain at rest and during task performance (Laird et al., 2005; Crossley et al., 2013). The present study revealed that reorganization of brain network modules might contribute to attention processing. Furthermore, there are differences in network topology between different attention modes. We have demonstrated that the left hemisphere plays a leading role in visual and selective attention processes (Fink et al., 1997; Yamaoka and Michimata, 2015; Sweeti et al., 2018).

The time-varying network in this study highlighted that the MFG plays an important role in dynamic network changes that are involved in attentional processing and may have a regulatory function in attention processing, particularly the right MFG in sustained attention. Studies have reported that the right posterior parietal cortex has stronger anatomical connections with the ipsilateral MFG than the left posterior parietal cortex (Wu et al., 2016). In the current study, we discovered that the right hemisphere preferentially mediates sustained attention, due to unbalanced interactions between the bilateral frontoparietal networks. Correct response rate can be improved by stimulating the right MFG during sustained attention tasks and increasing the interhemispheric parietal network connections. These asymmetric connections were associated with behavioral performances.

This study has a few limitations, some of which may merit future investigation. First, the brain regions to which sTMS was applied were relatively limited and only located in the prefrontal cortex. Next, although we used three attention modes in the present study, there are many attention-related tasks that can be used to assess network changes. Finally, the sample size of this study was small. Future studies should address these limitations.



CONCLUSIONS

We sought to assess the role of the MFG in different attention modes by using sTMS to induce dynamic changes to brain networks. We have confirmed that the MFG is involved in attention processing, and our findings suggest that there is an asymmetry of sustained attention control towards the right MFG. Moreover, the left hemisphere is more involved in selective attention tasks than the right hemisphere. Our principal findings demonstrate that during visual and selective attention, MFG-related networks were situated in the left hemisphere, whereas sustained attention led to a greater activation of key nodes in the bilateral posterior region of the brain. These findings suggest that sTMS-induced MFG disturbances can cause key nodes in brain networks altered and reorganized.
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Objective: Epilepsy is a chronic brain disease, which is prone to relapse and affects individuals of all ages worldwide, particularly the very young and elderly. Up to one-third of these patients are medically intractable and require resection surgery. However, the outcomes of epilepsy surgery rely upon the clear identification of epileptogenic zone (EZ). The combination of cortico-cortical evoked potential (CCEP) and electrocorticography (ECoG) provides an opportunity to observe the connectivity of human brain network and more comprehensive information that may help the clinicians localize the epileptogenic focus more precisely. However, there is no standard analysis method in the clinical application of CCEPs, especially for the quantitative analysis of abnormal connectivity of epileptic networks. The aim of this paper was to present an approach on the batch processing of CCEPs and provide information relating to the localization of EZ for clinical study.

Methods: Eight medically intractable epilepsy patients were included in this study. Each patient was implanted with subdural grid electrodes and electrical stimulations were applied directly to their cortex to induce CCEPs. After signal preprocessing, we constructed three effective brain networks at different spatial scales for each patient, regarding the amplitudes of CCEPs as the connection weights. Graph theory was then applied to analyze the brain network topology of epileptic patients, and the topological metrics of EZ and non-EZ (NEZ) were compared.

Results: The effective connectivity network reconstructed from CCEPs was asymmetric, both the number and the amplitudes of effective CCEPs decreased with increasing distance between stimulating and recording sites. Besides, the distribution of CCEP responses was associated with the locations of EZ which tended to have higher degree centrality (DC) and nodal shortest path length (NLP) than NEZ.

Conclusion: Our results indicated that the brain networks of epileptics were asymmetric and mainly composed of short-distance connections. The DC and NLP were highly consistent to the distribution of the EZ, and these topological parameters have great potential to be readily applied to the clinical localization of the EZ.

Keywords: epilepsy, CCEP, ECoG, effective connection, graph theory


INTRODUCTION

Epilepsy is one of the most common and chronic neurological disorders and is usually caused by excessive and abnormal firing of neurons in the brain cortex. Epilepsy is characterized by recurrent seizures and the symptoms can be diverse, including staring, tonic movements, muscle spasms and impaired consciousness (Pitkänen et al., 2016). The pathogenesis of epilepsy is complex as a result of the multifactorial nature and its heterogeneity. For example, brain injury, stroke and genetic mutations, can all induce epilepsy (van Mierlo et al., 2014). Globally, approximately 70 million people have epilepsy, and up to 30% of these patients have medically intractable epilepsy (Singh and Trevick, 2016). In China, 9 million people suffer from epilepsy, a condition which is usually treated with anti-epileptic drugs (AEDs). While the effects of AEDs are not satisfactory, one possible option is resective surgery of the epileptogenic zone (EZ), a procedure which can benefit patients by reducing or eliminating seizure activity (Vos et al., 2016; Yue et al., 2017). However, incomplete resection of the focus, or damage incurred by normal brain regions during surgery may fail to achieve an effect, or may even aggravate the condition (van Mierlo et al., 2014). Precise delineation of the EZ is the key to epilepsy surgery; however, abnormal connectivity of epileptic networks makes it difficult for the clinicians to delineate the epileptogenic focus unambiguously.

Electroencephalography (EEG) is one of the most important techniques for the diagnosis and treatment of epilepsy patients. EEG can record the electric signals generated by neurons in the brain with higher temporal resolution than magnetic resonance imaging (MRI), positron emission tomography (PET) and other techniques, and is also easy to operate, which can reveal the neural mechanism of human brain during complex cognitive and affective tasks and contribute unique information for the advance of neuroscience (Yan et al., 2017a,b). EEG is now universally regarded as the gold standard for the localization of EZ. Electrocorticography (ECoG) uses electrodes implanted on the surface of the cortex, which can provide recording and stimulation data directly from the cortical surface of the human brain. With high temporal resolution, good spatial resolution and high signal-noise ratio, ECoG has been widely used in preoperative assessment for resection surgery (Enatsu and Mikuni, 2016). Matsumoto et al. (2004) were the first to use low-frequency electrical stimulation to the cortex in eight refractory epilepsy patients, and analyzed the distribution of response potentials to study the connectivity of the language network; this method was termed cortico-cortical evoked potential (CCEP). CCEP is the response potential recorded at one cortical region when a single pulse of electrical current was applied at another remote location of the cortex. This technique allows us to evaluate effective connectivity between the stimulating and recording sites or in different cortical regions, thus providing information on the direction of connectivity, which cannot be detected by functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI) or any other imaging methods (Koubeissi et al., 2012).

Furthermore, epilepsy is a complex network disease associated with spatial organization of epileptic cortices, functional connectivity alternations and pattern of seizure, the abnormal connectivity of epileptic network makes it difficult to localize the EZ (Mears and Pollard, 2016). In recent years, the application of CCEP and the advancements of other neuroimaging techniques have brought about great progress in the precise localization of the EZ and human brain network mapping (Araki et al., 2015; Kamada et al., 2017; Fox et al., 2018). It is also important to mention that graph theory provides significant benefit for the studies of brain network connectivity, which is now widely used to analyze data arising from EEG, MRI, and fMRI (Sha et al., 2017; Yan et al., 2018). As a method of network analysis, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph is made up with nodes, which are connected by edges (Bullmore and Bassett, 2011). Analyzing CCEP with graph theory can provide meaningful descriptions of large-scale brain networks, and this method has been shown to provide a means to probe the human brain network and to evaluate the cortical excitability (Vecchio et al., 2015; Keller et al., 2018; Parker et al., 2018).

Due to the huge amounts of data created by EEG, the complexities of data processing and the lack of a systematic method for reconstructing the brain network based on CCEPs, there are still some difficulties in the clinical application of CCEPs. In this study, we used CCEP mapping in a cohort of refractory epilepsy patients implanted with ECoG electrodes, and measured the topological properties of the brain network by graph theory in order to offer a convenient and effective batch processing application of CCEPs and help the clinicians localize the EZ in a precise manner.



METHODS

Subjects

Eight subjects (7 males and 1 female; mean age: 21.5 years, range: 13–28 years) with medically intractable epilepsy were enrolled at Beijing Institute of Functional Neurosurgery at Xuanwu Hospital Capital Medical University. All patients were implanted with subdural grid electrodes for the invasive evaluation for epilepsy surgery. Patients’ demographic characteristics and clinical information are illustrated in Table 1. The EZ was defined by experienced clinical epileptologists with comprehensive based on the resected areas in epilepsy surgery, combing with the postoperative pathology results, long-term video EEG recordings, clinical symptoms and neuroimaging. The other implanted brain area out of EZ was defined as non-EZ (NEZ). The prognoses of all patients involved in this study are overall good. All patients involved in this study gave their informed consent and all procedures were approved by the Medical Research Ethics Committee at Xuan Wu Hospital of Capital Medical University.

TABLE 1. Clinical information of the patients.
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CCEP Procedure

During the pre-surgical evaluation, single-pulse stimulations were delivered to pairs of adjacent electrodes with a bipolar setup. Stimulation was conducted with a constant current square wave pulse which was 0.3 ms in duration, a pulse frequency of 1 Hz, and 50 trials per electrode pair. ECoG was continuously recorded with a 128-channel digital EEG system at 1024 Hz. Patients were awake and remained still at the time of CCEP recording. All programming was performed in Matlab R2016b (The MathWorks Inc., Natick, MA, United States).

Preprocessing and Feature Extraction of CCEPs

First, the responses of each channel over the same stimulation electrodes were averaged with a time window of 1000 ms, time-locked to the stimulus (the stimulus was set as zero point, 200 ms pre-stimulation and 800 ms post-stimulation). After averaging, the baseline drift of CCEP on each channel was eliminated, the interval between −100 ms and −5 ms prior to the stimulation pulse was set as baseline (Trebaul et al., 2016). Analyses of CCEP were conducted on electrode-pair level and on region level. The gross anatomy atlas and Brodmann’s Areas (BA) atlas were used to parcellate the brain area implanted with electrodes into several regions. Each electrode was assigned to a specific brain region of the atlas. Original ECoGs were averaged according to paired electrodes or among the same brain regions.

Each CCEP consists of an early sharp negative response (N1, 10–50 ms post-stimulation) and a subsequent slow-wave (N2, 50–300 ms post-stimulation) (Matsumoto et al., 2017). Here we only focused on the earliest response. Combining with the waveform characteristics of CCEP and the characteristics of ECoG signals actually acquired in this research, we decided to set the largest peak of CCEP during the period of 16–40 ms post-stimulus as the index of connectivity between the stimulating and recording sites. The first 16 ms was excluded from our analysis due to stimulation artifacts. In order to reduce the effect of variations among different channels, the amplitudes of CCEP at each site were normalized and converted into Z-scores.

Effective Network Construction and Graph Theorical Analysis

In this paper, the normalized CCEP amplitudes were set as the connection between two sites (electrode pairs or regions). Three different kinds of weighted connectivity matrices were observed from CCEPs: (1) connected matrices based on electrode-pairs, (2) connected matrices based on gross anatomy atlas, and (3) connected matrices based on BA atlas. Each row corresponding to a stimulation site and each column to a recording site. Then, a threshold was set as six times the standard deviation (SD) to identify the effective CCEP connectivity for each patient (Keller et al., 2014). If the amplitude of CCEP exceeded the threshold, the connectivity from the stimulating site to the recording site was effective, the corresponding element in binary connected matrix was set to value “1,” if not, the connectivity was ineffective, and the corresponding element in binary matrix was set to value “0.” Thus, three kinds of binary matrices were generated for each patient (electrode-pair level, gross anatomy-region level and BA-region level), which were then applied as masks to captured the underlying effective CCEP connectivity in the corresponding CCEP-weighted connectivity matrices. Finally, three different effective CCEP networks were reconstructed.

In order to characterize network topology, graph theory mathematical techniques were employed to analyze CCEP matrices. The electrode pairs and brain regions were defined as nodes of the network, and the effective CCEP amplitudes were defined as the edges (Rubinov and Sporns, 2010; Bullmore and Bassett, 2011). We computed widely used complex network measures to analyze the topological properties of the brain network in a quantitative manner, as detailed below.

Betweenness centrality (BC): a measure of centrality in a network based on shortest paths.
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Where δij is the number of shortest paths between node i and j within network G, and δij (k) is the number of those paths which pass through node k.

Degree centrality (DC): it reflects the information communication ability of the given node in the network, which is defined as the sum of all neighboring link weights.
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N is the total number of nodes in the network G, aij indicates the effective connection between node i and j, which is the amplitude of effective CCEP recorded at node j when node i was stimulated.

Nodal clustering coefficient (NCP): a measure of the degree to which nodes tend to cluster together in the network G.
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Where Ei denotes the number of edges that was actually connected with node i, and ki is the number of neighbors of node i. If a node i have ki neighbors, ½ki (ki − 1) edges could exist among this node.

Nodal efficiency (NE): it characterizes the efficiency of parallel information transfer of a given node in this network.
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dij denotes the length of the shortest path between node i and node j.

Nodal local efficiency (NLE): a measure of the information exchanged among the immediate neighbor nodes, when node i is removed.
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Where Gi is the local subnetwork consisting only of a node i’s immediate neighbors, but not the node i itself, ki is the number of nodes in subnetwork Gi.

Nodal shortest path length (NLP): it quantifies the mean distance of routing efficiency between the given nodes i and the other nodes in the network.
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Statistical Analysis

We used Pearson’s correlations to assess how effective CCEPs related to the distance between stimulating and recording sites. Additionally, to illustrate the differences between the topological properties of EZ and NEZ, the computed topological properties of electrode-pairs and parcellated regions located in EZ and NEZ were averaged. And paired-sample t-test was used to test for group difference of EZ and NEZ in network topologies.



RESULTS

Temporal and Spatial Distribution of CCEPs

Eight drug resistant epilepsy patients with different anatomical EZ locations were included in this study, a total of 712 contacts were implanted. Thousands of CCEP responses were recorded with subdural electrode strips when low-frequency electrical stimulus was applied to the cortex directly. We reconstructed three connectivity networks with different spatial scales, electrode-pair-level and region-level based on the gross anatomy and BA atlas. Distance between electrode-pairs was calculated using the Euclidean distance between the midpoints of the electrodes of each pair (Keller et al., 2014). The strength of effective CCEPs decreased significantly with the increase of distance between stimulating and recording sites (R = −0.335, P < 0.001). As shown in Figure 1A, when the distance increasing, the effective CCEPs became less and the amplitudes became lower. Figure 1B shows the CCEP responses at different recording sites (R1 and R2), when electrode S1 was stimulated. The one (R1) closer to the stimulating site had higher amplitude and smaller latency than the farther one (R2).
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FIGURE 1. Spatial and temporal distribution of CCEPs. (A) The distribution of CCEPs across the distance between stimulating and recording electrode pairs. The effective CCEP responses became less and the amplitudes got lower when the distance increasing. (B) When electrode S1 was stimulated, the CCEP responses at different recording sites (R1 and R2) was shown respectively. Potential N1 of CCEP recorded at R1 had higher amplitude and smaller latency than the one at R2, which located farther to S1 than R1.



Topologies of EZ and NEZ in Effective Brain Networks

Two different templates were used to parcellate the brain areas of epileptics, the gross anatomy atlas based on Nissl plates and the BAs atlas defined by cytoarchitectural organization of neurons. We constructed two region-level brain networks for each patient. These parcellated regions were classified into two categories, one located in the EZ and the other located in NEZ. We computed the widely used graph theoretical measures to characterize the topological properties of brain networks, including BC, DC, NCP, NE, NLE, and NLP, and compared the topologies of EZ and NEZ.

Connectivity Analysis Based on the Gross Anatomy Atlas

A total of 14 regions of the gross anatomy atlas were involved in this study with a mean of 9 (min–max: 7–11) per patient. The constructed brain networks of patients P1–P8 were shown in Figure 2. Regions located in EZ tended to strongly connected with each other in most of the epileptic patients. When pairs of electrodes in EZ were stimulated, the effective CCEP responses with high amplitudes usually located in regions of EZ. The distributions of the graph metrics averaged across all patients are presented in Figure 3. Significant differences were observed in DC and NLP (paired-sample t-test, P < 0.05) between EZ and NEZ. Compared with that in NEZ, DC, and NLP significantly increased in EZ, which means that regions in EZ have high integration in the effective brain networks. While, the other graph metrics (BC, NCP, NE, and NLE) did not show any significant difference between EZ and NEZ.
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FIGURE 2. The weighted brain networks reconstructed with the effective CCEP responses, using the gross anatomy atlas to parcellate brain regions. Nodes are represented by circularly arranged segments, of which located in epileptogenic zone (EZ) is colored by orange and the others blue. Edges are presented with ribbons of which connected with EZ regions are colored by orange and the others blue. The stronger the connection is, the thicker the connected ribbon is. Each ribbon has a direction, it starts at the stimulated/outgoing region which it touches, and ends at the recording/ingoing region which it does not touch. The three outer rings are stacked bar plots that represent relative contributions of a region (outgoing/ingoing/totally). Panels (A–H) were the weighted brain networks corresponding to patients P1–P8. Abbreviations: PrG, precentral gyrus; PoG, postcentral gyrus; OrG, orbital gyri; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; SPL, superior parietal lobule; SMG, supramarginal gyrus; ANG, angular gyrus; STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; TP, temporal pole and OcG, occipital gyrus.
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FIGURE 3. The weighted brain network reconstructed from the CCEP responses based on the BA atlas. Regions located in EZ were colored by orange, and the others in non-epileptogenic zone (NEZ) were colored by blue. Abbreviations: BC, betweenness centrality; DC, degree centrality; NCP, nodal clustering coefficient; NE, nodal efficiency; NLE, nodal local efficiency; NLP, nodal shortest path length. ∗P < 0.05.



Connectivity Analysis Based on the BA Atlas

In this study, a total of 23 regions of BA atlas were used for network construction with a mean of 12 (min–max: 8–13) per patient. Figure 4 presents the weighted brain networks of the eight patients studied in this study. Regions in EZ were also strongly connected with each other in the effective networks base on BA atlas, which is similar to the connectivity of the networks reconstructed with the gross anatomy atlas. As shown in Figure 5, NLP of EZ were significantly higher than that in NEZ (paired-sample t-test, P < 0.05), which was consistent with the results computed based on the gross anatomy atlas. While DC (paired-sample t-test, P = 0.081), BC and other topological properties did not show any significant difference between EZ and NEZ in the effective networks reconstructed based on the BA atlas. The insignificant difference of the distribution of DC between EZ and NEZ may due to brain parcellation with different atlas. Compared with the gross anatomy atlas, BA atlas parcellates brain into regions more detailly. Some high-amplitude CCEPs located in EZ might be assigned into the same BA region with other low-amplitude CCEPs of NEZ. Accordingly, the averaged responses of this region may get lower.
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FIGURE 4. The weighted brain networks reconstructed with the effective CCEP responses, using the Brodmann’s area (BA) atlas to parcellate brain regions. Nodes are represented by circularly arranged segments, of which located in EZ were colored by orange and the others blue. Edges are presented with ribbons of which connected with EZ regions are colored by orange and the others blue. The stronger the connection is, the thicker the connected ribbon is. Each ribbon has a direction, it starts at the stimulated/outgoing region which it touches, and ends at the recording/ingoing region which it does not touch. The three outer rings are stacked bar plots that represent relative contributions of a region (outgoing/ingoing/totally). Panels (A–H) were the weighted brain networks corresponding to patients P1–P8.




[image: image]

FIGURE 5. The graph metrics of brain networks reconstructed with the effective CCEP responses, using the BA atlas to parcellate brain region. Regions located in EZ were colored by orange, and the others in NEZ were colored by blue. ∗P < 0.05.





DISCUSSION

This study investigated the effective connectivity derived from direct electrophysiological recordings of CCEPs in eight medically intractable epilepsy patients, three different connectivity networks over different spatial scales were constructed for each patient. Graph theory was employed to analyze brain network topology, and graph metrics of EZ and NEZ were compared. We confirmed that connectivity networks reconstructed with CCEP amplitudes can indicate the effective connectivity of brain networks both at the electrode-pair-level and at the region-level. Importantly, EZ regions tend to have higher DC and NLP in comparison with NEZ, integration of local connectivity increased in regions of EZ.

Effective Connectivity of Networks Reconstructed With CCEPs

In the last decades, direct cortical stimulation has been used as a useful investigational tool for epilepsy surgery, the evoked potentials CCEPs have been proved to be a powerful method for exploring the effective and functional connectivity in the living human. In our study, N1 potential of CCEP was regarded as the indication of the connection strength, which has been proved to be able to reflect the strength of connectivity between two brain regions (Fox et al., 2018). We fund that the effective networks observed from CCEP were asymmetric both in strength and in direction, CCEP connectivity networks mainly consisted with short-distance connections and few long-distance connections (see Figures 1, 2, 4). These findings are consistent with the results reported by Keller et al. (2014) who analyzed the brain network topology of 15 patients with medically intractable epilepsy. Trebaul et al. (2018) developed a large multicenter CCEP database with 213 epilepsy patients to analyze the human cortico-cortical connections. They also found that CCEP strengths were negatively corrected with the distance.

Furthermore, comparing with the other methods for CCEP quantitative analysis, like root mean square (RMS) (Enatsu et al., 2013) and analyzing the broadband gamma signals of CCEPs (Crowther et al., 2019), the way we used to quantify CCEPs is much easier and faster especially for the calculation of large sample size, and the important characteristics of CCEPs were preserved well. Additionally, in the constructed networks of our results, most of the regions located in PoG (postcentral gyrus), PrG (precentral gyrus) and frontal cortex exhibited strengthened connections, which is consistent with the distribution of hubs in the human brain network (van den Heuvel and Sporns, 2013). Entz et al. (2014) analyzed CCEPs from 25 refractory epilepsy patients and identified several major hub regions in the human brain, which mostly overlapped with the classical distribution of hubs. Together, these findings suggest that reconstructing effective brain networks with CCEP amplitudes we used is credible.

Graph Metrics of Epileptogenic Zone

It has been recognized that epilepsy is a network disease of varying scales across multiple brain regions (Bartolomei et al., 2017). Moreover, the abnormal connectivity of brain networks has been proved to be associated with the localization of EZ, which may be a potential biomarker for the diagnosis and treatment of epilepsy. In this study, we applied two different brain atlases to parcellate brain areas and constructed brain networks with CCEPs at region level and found that alterations of effective network connectivity kept in line with the distributions of EZ. The connectivity matrices reconstructed with different atlases were similar to each other. Strong connections were observed among regions of EZ that exhibited higher effective connectivity than regions in NEZ (see in Figures 2, 4). The current findings are consistent with CCEP studies by Mouthaan et al. (2016) and Lagarde et al. (2018).

Moreover, many other researchers also have reported the high integration of effective connectivity and strong interictal connectivity of epileptogenic and propagation zones in epilepsy patients with EEG, MRI and fMRI. Tousseyn et al. (2017) used CCEPs and interictal single photon emission computed tomography (SPECT) to analyze network connectivity in 31 refractory focal epilepsy patients. They suggested that the distributions of hyper-perfusion in SPECT overlapped with the effective connectivity networks. This study combined functional connectivity and effective connectivity of the brain network, thus reconfirmed the reliability of CCEPs. Parker et al. (2018) found a significant overlap between structural networks of DTI and effective networks of CCEPs, and suggested structural connection strength in the epileptic focus tended to be higher. Hong et al. applied graph theory to analyze the structural connectivity and resting-state functional connectivity of 154 epilepsy patients and 82 healthy controls (Hong et al., 2017). Increased graph metrics were observed in EZ in the structural networks. Contrarily, inter-regional functional connectivity was decreased in regions of EZ because of the formal structure-function coupling. Overall, our findings are supportive to the concept of hyperexcitable cortex of EZ (Valentín et al., 2005; Bartolomei et al., 2017). That is, there is an imbalance between excitation and inhibition of activities in EZ, and the cortex excitability of focus areas is higher than others. Despite of the multifactorial nature of epilepsy and its heterogeneity, our study analyzed the effectivity network connectivity of CCEPs at region level and revealed the group pattern of network abnormalities of EZ.

Notably, the connectivity of networks constructed with different atlases was not exactly the same. For example, in the network of patient P1 that was constructed with the gross anatomy atlas, regions of EZ, inferior temporal gyrus (ITG) and middle temporal gyrus (MTG), only connected with each other, which can be seen in Figure 2A. As shown in Figure 3A, strong connections were also observed in the corresponding EZ regions BA21 and BA22 in the effective network based on BA atlas of P1. But region BA22 also connected with BA44, which located in the frontal gyrus. When comparing the networks with different spatial scales, the differences of graph measures between EZ and NEZ in networks based on the gross anatomy atlas seemed to be more significant in comparison with the ones computed from networks based on the BA atlas. This may be due to the inappropriate assignations of electrodes when we constructed brain networks at region level, significant CCEP responses of EZ may be averaged with the insignificant CCEPs of NEZ mistakenly. Also, epileptogenic cerebral lesion not respect for anatomic boundaries and the inappropriate electrode localization also had an impact on the effective connectivity of brain networks.

However, there are some limitations in this presented study. Only 8 epileptic patients with multiple anatomical locations were included. On one hand, the limited number of epilepsy patients and the different anatomical EZ locations of these patients could have reduced the statistical power of the data. On the other hand, the small spatial sampling CCEP signals available in a single patient could have made the study of effective connectivity in a limited scale, and the connectivity estimated from CCEP amplitudes depends on the stimulation parameters partially. More patients with the same anatomical locations of EZ and smaller individual differences will be included in our further study. Furthermore, in our results, the network reconstructed with the gross anatomy atlas seemed to perform better in the localization of EZ than the network based on BA atlas. More samples are needed to verify this result, and many other brain atlases should also be included in further studies. In addition, as recording ECoGs with electrode grids implanted on the brain cortex is invasive, it is impossible to compare the difference of effective connectivity networks between epileptics and healthy controls. Other measures of effective connectivity, like DTI, MRI and high-density EEG recordings can be used for comparison, combined with CCEP in the following study.



CONCLUSION

We proposed a batch processing application of CCEPs based on MATLAB, and described the graph theory we used to analyze the topology of brain networks derived from CCEPs. We also explored the localization of the EZ with graph metrics of effective network. CCEPs recorded from patients with medically refractory epilepsy reflected the asymmetric distribution of brain network connectivity. Brain networks mainly consisted of short-distance connections. Regions in the EZ usually had higher DC and NLP than those out of the zone. This information has great potential to be applied to localize the epileptic focus clinically.

In summary, the analysis of complex brain network connectivity based on the feature extraction of CCEPs can provide effective and accurate information relating to the localization and delineation of EZ, thus helping epileptologists to make appropriate clinical decisions.
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The abnormality occurs at molecular, cellular as well as network levels in patients with Alzheimer’s disease (AD) prior to diagnosis. Most previous connectivity studies were conducted at 1 out of 3 (local, meso and global) scales in subjects covering only part of the entire AD spectrum (subjective cognitive decline, SCD; amnestic mild cognitive impairment, aMCI; and then fully manifest AD). Data interpretation within the framework of disease progression is therefore difficult. The current study included 3 age- and sex-matched cohorts: SCD (n = 32), aMCI (n = 37) and fully-established AD (n = 30). A group of healthy elderly subjects (n = 40) were included as a normal control (NC). Network connectivity was examined at the local (degree centrality), meso [subgraph centrality (SC)], and global (eigenvector and page-rank centralities) levels. As compared to NC, SCD subjects had isolated decrease of SC in primary (somatomotor and visual) networks. aMCI subjects had decreased centralities at all three scales in associative (frontoparietal control, dorsal attention, limbic and default) networks. AD subjects had increased centrality at the global scale in all seven networks. There was a positive association between Montreal Cognitive Assessment (MoCA) scores and DC in the frontoparietal control network in SCD, a negative relationship between Mini-Mental State Examination (MMSE) scores and EC in the somatomotor network in AD. These findings suggest that the primary network is impaired as early as in SCD. Impairment in the associative network also starts at the local level at this stage and may contribute to the cognitive decline. As associative network impairment extends from local to meso and global scales in aMCI, compensatory mechanisms in the primary network are activated.

Keywords: network neuroscience, brain connectivity, centrality, Alzheimer’s disease, subjective cognitive decline, amnestic mild cognitive impairment


INTRODUCTION

Brain pathology of Alzheimer’s disease (AD) occurs decades before the manifestations of clinical AD (Dubois et al., 2016). With the pathological cascade, three different stages show the progression of AD: preclinical AD, mild cognitive impairment (MCI) and late stage of AD (Sperling et al., 2011). Subjective cognitive decline (SCD) in the setting of preclinical AD is defined by self-perception of worsening cognitive capacity but no impairment in cognition on standard neuropsychological assessments and no evidence for MCI or prodromal AD or dementia (Jessen et al., 2014). SCD can significantly predict MCI or dementia (Rabin et al., 2017). MCI, especially amnestic mild cognitive impairment (aMCI), progresses to AD or other forms of dementia more than people without MCI (Kantarci et al., 2009). Such a three-stage continuum of AD progression (SCD, aMCI, and AD) offers us a systematic perspective to study AD.

Resting-state functional magnetic resonance imaging (rfMRI) has been increasingly used as a reliable method (Zuo and Xing, 2014) to detect brain network abnormalities in aMCI (Agosta et al., 2012; Bharath et al., 2017; Wang et al., 2018b) or AD (Binnewijzend et al., 2014; Wang et al., 2018b). The rfMRI findings in AD and MCI are rather consistent across different studies in different networks, such as default mode network (Agosta et al., 2012), somatomotor network (Albers et al., 2015), dorsal attention network (Qian et al., 2015), limbic network (Nestor et al., 2003), and frontoparietal control network (Agosta et al., 2012; Brier et al., 2012; Munro et al., 2015). Nevertheless, relatively few studies have been systematically examined across the entire three-stage continuum of AD progression. Furthermore, rare quantitative conclusions of brain network changes have been drawn on the dynamical mechanism of the disease deterioration. Meanwhile, from a methodological view, most previous studies focused on a single scale of functional brain organization in AD, e.g., only at the global scale (Supekar et al., 2008; Binnewijzend et al., 2014) or only at the local scale (Grady et al., 2003; Klaassens et al., 2017). Thus, an examination of multi-scale network topology across SCD, aMCI, and AD would enhance the current understanding of neuroimaging pathology of AD progression.

Network analyses of human brain functional connectomes, based on graph theory, can advance our understanding of the multi-scale intrinsic architecture of the human brain connectome using different centralities (Zuo et al., 2012). Degree centrality (DC) is the number of direct connections to a brain network node and reflects local-scale connectivity. Subgraph centrality (SC) characterizes the odd-cyclic subgraph or closed walk of the network node, and represents a connectivity measure at meso-scale (Zuo et al., 2012). Both eigenvector centrality (EC) and page-rank centrality (PC) determine the nodal connectivity with their adjacency connectivity at global-scale (Zuo et al., 2012). More information about DC, SC, EC, and PC can also be seen in Supplementary Materials 1. Recently, a few studies have applied network centrality at a single scale, such as EC (Binnewijzend et al., 2014; Adriaanse et al., 2016; Lou et al., 2016; Qiu et al., 2016) or DC (Guo et al., 2016) in MCI or AD.

In this study, we aimed to draw a full picture of functional changes by using network centrality at multi-scale (DC, SC, EC, PC) in AD continuum (SCD, aMCI, and AD) and age- and sex-matched healthy elderly subjects as normal control (NC). Additionally, we evaluated the relationship between network centrality at multi-scale and cognitive performances. Given the three stages of AD continuum, we hypothesized that a progression-dependent pattern of network centrality changes was detectable at multiple scales.



MATERIALS AND METHODS


Participants

All our subjects are from the database (NCT 02353884, 02353845, 02225964). A total of 188 patients, including 47 SCD, 93 aMCI and 48 AD, were recruited from the memory clinic of neurology department of Xuanwu Hospital, Capital Medical University. While 92 NC were recruited by advertisement from the local community. All the subjects had no history of stroke, head injury, or other major neuropsychiatric illness, such as Parkinson’s disease, encephalitis, epilepsy, psychosis or congenital mental growth retardation, alcohol or drug abuse, and other diseases or treatments that can affect cognitive functions (Morris, 1993). After being age- and sex-matched for each group, 139 subjects (40 NC, 32 SCD, 37 aMCI, 30 AD) were included for final analysis.



Demographic, Clinical, and Cognitive Variables

The diagnoses for SCD, aMCI, and AD were made in consensus by two consultant psychiatrists. The criteria for AD has been reported in detail in the previous study (Wang et al., 2014). Briefly, we diagnosed AD using the revised version of Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-IV) Criteria (American Psychiatric Association, 1994) for Dementia and the National Institute of Neurologic and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) Criteria (McKhann et al., 1984) for possible or probable AD. In addition, patients with AD had the Clinical Dementia Rating scale (CDRs) score of 1 and were older than 50 years old (Morris, 1993). The criteria of aMCI was as follows: (1) memory complaint (if possible) confirmed by an informant; (2) preserved activities of daily living; (3) the scores for the Chinese version of the Mini-Mental State Examination (MMSE) ≥ 24; (4) CDRs score = 0.5 (Portet et al., 2006); (5) not demented according to the DSM-IV (Petersen et al., 1999, 2001; Petersen, 2003); and (6) age older than 50 years old. More information about the criteria of aMCI has been described in detail in a previous study (Zhang et al., 2017). The criteria of SCD (Shu et al., 2018) included: (1) self-reported persistent memory decline, which was confirmed by informants; (2) performing normally on the MMSE or the Beijing version of the Montreal Cognitive Assessment (MoCA; adjusted for age, sex, and education); (3) CDRs score = 0; and (4) age older than 50 years old. The criteria of NC were: (1) no self-reported persistent memory decline; (2) performing normally on the MMSE or MoCA (adjusted for age, sex, and education); (3) CDRs score = 0; and (4) age older than 50 years old.

We obtained information on age, sex and years of education via interview, and developed a standard clinical evaluation protocol as described above to collect scores for MMSE, Auditory Verbal Learning Test (AVLT), MoCA, and CDRs from all the participants.



MRI Acquisition and Processing

Magnetic resonance imaging (MRI) scans were acquired at a 3.0 T Siemens scanner (Erlangen, Germany) at Beijing Xuanwu Hospital, Capital Medical University. Participants were all instructed to lie quietly and close their eyes, and received a T1-weighted structural MRI scan (MP-RAGE sequence: TR = 1,900 ms, TE = 2.2 ms, TI = 900 ms, FA = 9°, matrix = 256 × 256, slice thickness = 1.0 mm; 176 sagittal slices, no gap) and a rfMRI scan (EPI sequence: TR = 2,000 ms, TE = 40 ms, FA = 90°, 28 axial slices, 4 mm isotropic voxel, matrix = 64 × 64) of 8 min.

Both structural and functional image preprocessing were completed in the Connectome Computation System (CCS1), which has been described previously (Xu et al., 2015). Briefly, CCS extended the network centrality analyses (Zuo et al., 2012) from 3D volumetric element (voxel) to 2D surface element (vertex) by projecting the 3D rfMRI images onto 2D cortical surfaces (Chen et al., 2014). Such an analytic strategy has been demonstrated to be more effective to mitigate partial volume effects and increase test-retest reliability of rfMRI analyses (Zuo et al., 2013; Zuo and Xing, 2014). First, T1 images were employed to reconstruct individual cortical surfaces (Ségonne et al., 2004, 2007). Second, rfMRI images were preprocessed in individual native spaces to equilibrate, de-spike, correct slice time and motion, normalize global mean intensity, regress out the white matter, cerebrospinal fluid and Friston-24 motion parameters, band-pass (0.01–0.1 Hz) filter and remove linear and quadratic trends of the timeseries signals. Finally, the rfMRI images were matched to their individual structural images using a boundary-based registration (BBR) algorithm (Greve and Fischl, 2009). They were then further projected onto the fsaverage5 cortical surfaces in the standard MNI space (10,242 vertices per hemisphere and 4 mm inter-vertex gap on average; Thomas Yeo et al., 2011).

Quality control procedure was carried out with CCS to high-quality preprocessed brain images for network centrality analysis. Specifically, screenshots were obtained for skull stripping, tissue segmentation, surface reconstruction, BBR image registration, and the head motion correction during rfMRI (Jiang et al., 2015). For those individuals with any of the first three showing bad quality, the brain extraction will be invented by manually editing. Meanwhile, head motion of each participant met following criterion: the mean frame-wise displacement (meanFD) < 0.2 mm, the maximum degree of rotational movement (maxRot) ≤ 2° and the maximum distance of translational movement (maxTran) ≤ 2 mm.



Network Centrality Mapping and Statistics

The procedure of mapping the centrality metrics for individual functional connectomes completely followed the methods described by Zuo et al. (2012), except that the connectomes were constructed on cortical surfaces. The fsaverage5 cortical surface meshes consisted of 17,064 vertices with the preprocessed rfMRI time series. Fisher-z transformed Pearson’s correlations were calculated between each paired vertices. The significance above the threshold (p = 0.0001, uncorrected) was used to determine an edge connecting. This generated individual binary adjacency matrices for subsequent network centrality computation. Specifically, given a node, its degree centrality (DC) was computed as the number of the edges connecting to the node, and commonly measured a nodal direct connectivity at a local network scale. SC measures the participation of a node in all subgraphs at a meso network scale and is calculated based on the first 20 eigenvalues and eigenvectors of the adjacency matrix. At a global network scale, eigenvector centrality (EC), which is the first eigenvector of the adjacency matrix, is the one that corresponds to the largest eigenvalue and can measure global features of the graph. PC is a variant EC and introduces a small probability of 0.15 for random damping to handle walking traps on a graph. All these four metrics of network centrality have been shown with moderate to high test-retest reliability in 3D volume space and should be more reliable for their versions of 2D surface space as computed in the present work, due to the previous observation on the reliability improvement of local functional connectivity with updates of computational space (Zuo et al., 2013).

For each of the four types of network centrality described above, its full cortical maps were first adjusted by individual intracranial volume and then fed the subsequent FreeSurfer group analysis to evaluate various group-level statistics. A FSGD (FreeSurfer Group Descriptor) file was constructed for the four groups of participants (NC, SCD, aMCI, and AD) to implement a set of ANCOVA using general linear models that considered diagnosis, sex, age, and years of education as covariates with three contrasts of group comparisons (SCD vs. NC, aMCI vs. NC, AD vs. NC). The vertex-wise significance values for each contrast of the group comparisons were corrected with false discovery rate (FDR) method (corrected p = 0.05, minimal surface cluster area = 25 mm2). The partial correlations between the mean centrality at cluster-level within most abnormal topology metrics (≥ 2 stages of SCD, aMCI, and AD) and behavioral measurements (MMSE, AVLT, MoCA) were also evaluated after controlling age, sex, and years of education. We used the Bonferroni corrections for multiple comparisons at P < 0.05 and for groups at all three scales.

For the purpose of locating the network at both network-level and area-level, we reported the results with brain regions showing significant changes across the groups using the cortical parcellation of both functional networks (see Figure 1A), derived by Yeo et al. (2011) and anatomical Destrieux Atlas derived by Fischl et al. (2004).
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FIGURE 1. Multi-scale network centrality changes in AD progression. (A) The seven networks map in Yeo et al. (2011). (B) SC in SCD vs. NC. The reduced SC in SCD was located in the left somatomotor network (left paracentral cortex) and the right visual network (right occipital cortex). (C) DC in aMCI vs. NC. The reduced DC in aMCI were located in the right default network (orbital gyri), the right limbic network (parahippocampal areas) and the right frontoparietal control network (middle temporal area). (D) SC in aMCI vs. NC. Except for the default, limbic and frontoparietal control network, the reduced SC in aMCI extended to the left default network (orbital cortex) and the right dorsal attention network (superior parietal areas). (E) PC in aMCI vs. NC. Significant decreases of PC in aMCI were observed within the default network (right middle temporal and bilateral orbital gyrus), the right somatomotor network (precentral area), the right dorsal attention network (superior parietal area) and the left limbic network (orbital areas), whereas significant increases of PC in aMCI were detectable within the left somatomotor network (paracentral area). (F) PC in AD vs. NC. The increased PC in AD were located in the visual network (occipital areas), the left somatomotor network (paracentral area), the left limbic network (temporal pole), the left dorsal attention network (inferior temporal area), the left default network (superior frontal gyrus) and the right ventral attention network (superior frontal area). (G) EC in AD vs. NC. A significant increase of EC was found in the right frontoparietal control network (inferior temporal sulcus). All the above tests were thresholded at an false discovery rate (FDR) corrected significance level of p < 0.05. Gray curves indicate the boundaries according to the seven networks map in Yeo et al. (2011). Abbreviations: NC = normal control; SCD = subjective cognitive decline; aMCI = amnestic mild cognitive impairment; AD = Alzheimer’s disease; DC = degree centrality; SC = subgraph centrality; PC = page-rank centrality; EC = eigenvector centrality.






RESULTS

Age, sex and years of education were well matched among groups. There were significant differences in MMSE, AVLT and MoCA scores among groups (p < 0.001). AD had significantly lower scores than the other three groups by subgroups analyzed (Table 1).


TABLE 1. Demographic information and behavioral measurements.
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Meso-scale Network Centrality Reduced in SCD

Compared with NC, SC was decreased in the left somatomotor network (paracentral cortex) and the right visual network (occipital cortex) in SCD patients (Table 2, Figure 1B).


TABLE 2. Full list of brain regions with significant SC differences between SCD and NC.
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Multi-scale Network Centrality Altered in aMCI

Compared with NC, DC was decreased in the right default network (orbital gyri), the limbic network (left orbital and right parahippocampal areas) and the right frontoparietal control network (middle temporal area) in aMCI (Figure 1C). In aMCI, SC was decreased in the limbic network (left orbital cortex and right parahippocampal area), the left default network (the orbital cortex), the right dorsal attention network (superior parietal areas) and the right frontoparietal control network (middle temporal area; Figure 1D). In aMCI, PC was decreased in the default network (bilateral orbital gyrus, right middle temporal and left frontal areas), the right somatomotor network (precentral area), the right dorsal attention network (superior parietal area) and the bilateral limbic network (orbital areas), whereas, it was increased in the left somatomotor network (paracentral area; Table 3, Figure 1E).


TABLE 3. Full list of brain regions with significant centralities differences between aMCI and NC.
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Global-Scale Network Centrality Enhanced in AD

Compared with NC, AD had an increase of global network centrality but lacked any centrality changes at both local and meso scales (Table 4). PC was increased in the visual network (occipital areas), the left somatomotor network (paracentral area), the left limbic network (temporal pole), the left dorsal attention network (inferior temporal area), the left default network (superior frontal gyrus) and the right ventral attention network (superior frontal area; Figure 1F). EC was increased in the right frontoparietal control network (inferior temporal sulcus; Figure 1G).


TABLE 4. Full list of brain regions with significant centralities differences between AD and NC.
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Post hoc Cluster-Level Analyses

Compared with NC, the area of the left somatomotor network showed changes in centralities at local, meso and global scales in AD progression. DC, SC, PC and EC decreased in SCD but increased in aMCI and AD. When the relationship between the centralities and cognitive performance was deeply analyzed, negative associations between SC and AVLT-Recognition scores in NC (r = −0.4093, p < 0.05) and between EC and MMSE total scores in AD (r = −0.4908, p < 0.05) were found (Figure 2).
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FIGURE 2. Post hoc cluster-level analyses in the left somatomotor network. Multi-scale centrality and behavioral performance in the left somatomotor network region among NC, SCD, aMCI and AD. Compared with NC, the area of the left somatomotor network showed centralities change at local, meso and global scales in AD progression. Mean DC, SC and EC values decreased in SCD, increased in aMCI and AD. The scatter plot exhibited negative association between: (1) mean SC values and auditory verbal learning test (AVLT)-Recognition scores in the NC (r = −0.4093, p < 0.05); and (2) mean EC values and Mini-Mental State Examination (MMSE) total scores in the AD (r = −0.4908, p < 0.05).



Compared with NC, the area of the right frontoparietal control network also exhibited multi-scale network centrality changes in AD progress. SCD had a decrease of DC and PC and an increase of SC and EC. DC, SC, PC, and EC decreased in aMCI but increased in AD. SCD group showed a significant positive association between DC and MoCA scores (Figure 3).
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FIGURE 3. Post hoc cluster-level analyses in the right frontoparietal control network. aMCI showed the lowest centralities at local, meso and global scales in the area of the right frontoparietal control network. The scatter plot exhibited a positive association between mean DC values and Montreal Cognitive Assessment (MoCA) total scores in the SCD (r = 0.5076, p < 0.05).






DISCUSSION

The main finding of the present study is that different functional network centralities changed at different scale levels across the spectrum of SCD, aMCI, and AD. aMCI exhibited multi-scale abnormal centralities, while SCD and AD exhibited single-scale abnormal centrality: (1) primary, meso-scale, and impairment in SCD; (2) both primary and associative, impairment and compensation coexisted in aMCI; and (3) both primary and associative, extended global compensation in widespread networks in AD.


Meso-scale Topological Impairment in Primary Network in SCD

In this study, we observed decreased meso centrality (SC) in the left somatomotor network and right visual network in individuals with SCD. It is worth noting that we found no enhanced centralities in SCD. Compensatory mechanisms, frequently proposed in aMCI (Qi et al., 2010) and AD (Agosta et al., 2012), seem to have not yet happened at this point since brain network impairments are not yet severe enough. The motor system receives sensory information for movement control (Rizzolatti et al., 1997). Many pyramidal and extrapyramidal motor impairments affect a substantial portion of AD patients and progressively worsen along with cognitive impairment (Albers et al., 2015). The onset of accelerated rates of motor decline can occur 12 years before the onset of MCI in initially cognitively healthy adults (Buracchio et al., 2010). In the present study, the decrement of multi-scale centrality in the somatomotor network may indicate motor dysfunction and further supports the theory that motor impairment could occur at an early stage of AD, or even precede the onset of the cognitive impairment for AD by a decade and longer (Albers et al., 2015). The previous study has detected an increased functional brain network efficiency during the audiovisual task in aging (Wang et al., 2018a), while there is a negative connection between within-network functional connectivity in the visual network and levels of SCD (Contreras et al., 2017). These results indicate visual network impairment beginning from SCD. Our result provides further evidence for topological impairment in the visual network, which may be associated with early indications of cognitive impairment. In summary, these findings might help us to better identify or understand early, multi-scale primary network (e.g., sensory and motor) impairments caused by the early AD.



Multi-scale Topological Impairment and Compensation Activated in aMCI

Global-scale centrality impairment and compensation in primary network coexist in aMCI. We found both increased and decreased PC in aMCI in the somatomotor network. Earlier studies have reported both increased and decreased brain connectivity in aMCI as well (Qi et al., 2010; Wang et al., 2015). In contrast to SCD with only decreased centrality at the meso scale and AD with only increased centrality at global-scale, aMCI exhibited bidirectional alterations of brain network centrality at the global-scale. Summarizing the content, we draw a conclusion that disconnection syndrome (Qiu et al., 2016) and compensation in primary network coexist in aMCI.

Multi-scale centrality impairment in associative networks occurs in aMCI. We found decreased DC, SC, and PC in the limbic and default mode network, reduced SC and PC in the dorsal attention network, as well as declined DC and SC in the frontoparietal control network in aMCI. In previous studies, atrophy (Callen et al., 2001) and hypometabolism (Nestor et al., 2003) in the limbic network in AD have been widely reported. Brain alterations in the default mode network in aMCI, such as amyloid deposition (Agosta et al., 2012), atrophy (Thompson et al., 2003), decreased activity (Sorg et al., 2007), and reduced connectivity (Qi et al., 2010) have also been reported. Our findings in the two networks (limbic and default) are consistent with previous studies and add the evidence for functional disconnection in aMCI. In the present study, significant meso- and global-scale topological impairments were found in the dorsal attention network but not in the ventral attention network. These findings suggest that functional connectivity appears to be preferentially affected in the dorsal attention network and preserved or less impaired in the ventral attention network in aMCI (Sorg et al., 2007; Qian et al., 2015). Dorsal attention network is involved in the endogenous attention orienting (top-down) process (Fox et al., 2006), while ventral attention network is responsible for reorienting attention in response to salient sensory stimuli (Fox et al., 2006; bottom-up process). In aMCI patients, deteriorations in goal-relevant processing such as divided attention and selective attention (Dannhauser et al., 2005; Redel et al., 2010) have occurred, while still retain the ability for bottom-up processing (Zhang et al., 2015). This asymmetric pattern of network topology impairments of attention networks might help us better understand attention deficits in patients with aMCI. As for the frontoparietal control network, previous studies are not quite consistent. One study reported decreased connectivity in aMCI (Munro et al., 2015), while another one reported increased connectivity (Agosta et al., 2012). The discrepancy between these studies may be attributed to differences in severity of cognitive impairment and diagnostic criteria for patients. Centrality alterations, at the local and meso rather than global scales in our study, may suggest relatively less impairment in the frontoparietal control network in the stage of aMCI.



Global Compensation in All Seven Networks in AD

An intriguing finding of this study is that we probe a unique pattern of compensation in AD patients: enhanced global centrality in large scale was observed in all seven networks (both primary and associative networks). This result is consistent with previous studies, which revealed increased activity and connectivity in AD (Zhou et al., 2010; Agosta et al., 2012). A possible reason for such augments in AD may be that additional neural resources are recruited to compensate for losses. And this hypothesis has been supported by earlier studies showing that patients with AD are able to succeed in episodic memory tasks due to compensatory neuronal activity (Buckner, 2004; Schwindt and Black, 2009). There is an alternate network, a compensation network, consisting of the left posterior temporal cortex, calcarine cortex, posterior cingulate, and the vermis (Stern et al., 2000). Our study showed that centrality enhanced at the global scale in AD, which suggests that compensation in this stage of the disease has extended from local to remote. Furthermore, compensation is also active in both primary and associative networks.



Progressed From Local to Global, Impairment to Compensation in AD Continuum

Our previous study showed that the rich club of the human connectome was disrupted from SCD to AD (Yan et al., 2018). In the current study, SCD exhibited only primary network (sensory and motor) impairments, while aMCI and AD progressed to associative network impairments, such as limbic, default, attention and frontoparietal control networks. In addition, SCD displayed meso impairment, aMCI demonstrated local, meso and global scale alterations (impairment and compensation coexist), but AD had only global compensation. These findings show a progressive pattern of functional brain network in AD continuum: impairment occurs as early as in SCD (decreased SC) and continues and becomes severe enough in aMCI, then compensation is warranted.

When focused on both time and spatial cluster-level analysis, two interesting areas were found. In the left somatomotor network, centrality at all three levels decreased in SCD but increased in aMCI and AD. In addition, augmented centrality at global-scale only in AD exhibited a significantly negative relationship with cognitive performance (Figure 2). These findings provide evidence that compensatory mechanisms followed with clinical mechanisms progressed. As to the right frontoparietal control network (Figure 3), centralities decreased at the local scale, increased at the meso scale and coexisted at the global scale in SCD, while they decreased in aMCI and increased in AD at all three levels. Furthermore, only decreased centrality at local-scale in SCD showed a significant positive association with cognitive performance. We proposed that local associative network impairment directly affected cognitive function at the very early stage of AD, but subtle compensatory function at the meso and global scale balanced further cognitive impairment.

Based on the results from the current study, we hypothesize that brain network impairment starts in the primary network in SCD. Impairment in the associative network also starts at the local level at this stage and may contribute to the cognitive decline. As associative network impairment extends from local to meso and global scales in aMCI, compensatory mechanisms in the primary network are activated. Such a progressive pattern across the spectrum of SCD, aMCI, and AD, may underlie increased network topological scale and gives a dynamical description of the pathology of AD progression.



Limitations

Several limitations should be mentioned here: first, our study was not a real cohort, a longitudinal design in the future would still be necessary to quantitatively elucidate its dynamic topological changes. Second, we only had resting state functional magnetic resonance imaging (fMRI) data for this study, adding biomarkers will be more persuasive. Third, the fMRI data sets in this study had limited spatial and temporal resolutions, better spatial-temporal resolutions would definitely strengthen our conclusion.




CONCLUSION

SCD had an isolated decrease of SC in the primary (somatomotor and visual) networks. aMCI had both a decrease and an increase of global centrality in the primary motor network, as well as decreases at all three levels in associative (frontoparietal control, attention, limbic and default) network areas. AD had increased centrality at the global scale in all seven networks. In the cluster level, brain network impairment starts in the primary network in SCD. Impairment in the associative network also starts at the local level at this stage and may contribute to the cognitive decline. As associative network impairment extends from local to meso and global scales in aMCI, compensatory mechanisms in the primary network are activated. Such a progressive pattern across the spectrum of SCD, aMCI, and AD, may underlie increased network topological scale and gives a dynamical description on the pathology of AD progression.
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Objective: Stimulus visual patterns, such as size, content, color, luminosity, and interval, play key roles for brain–computer interface (BCI) performance. However, the three primary colors to be intercompared as a single variable or factor on the same platform are poorly studied. In this work, we configured the visual stimulus patterns with red, green, and blue operating on a newly designed layout of the flash pattern of BCI to study the waveforms and performance of the evoked related potential (ERP).

Approach: Twelve subjects participated in our experiment, and each subject was required to finish three different color sub-experiments. Four blocks of the interface were presented along the edge of the screen, and the other four were assembled in the center, aiming to investigate the problem of adjacency distraction. Repeated-measures ANOVA and Bonferroni correction were applied for statistical analysis.

Main results: The averaged online accuracy was 98.44% for the red paradigm, higher than 92.71% for the green paradigm, and 93.23% for the blue paradigm. Furthermore, significant differences in online accuracy (p < 0.05) and information transfer rate (p < 0.05) were found between the red and green paradigms.

Significance: The red stimulus paradigm yielded the best performance. The proposed design of ERP-based BCI was practical and effective for many potential applications.

Keywords: brain–computer interface, ERP, color of stimulus, visual stimulus, single character paradigm


INTRODUCTION

Brain–computer interface (BCI) enables patients suffering from movement disorders to communicate with others or interact with the outside world through electroencephalogram (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and more (Vidal, 1973, 1977; Wolpaw et al., 2000, 2002). Evoked related potential (ERP) from EEG/MEG can be reliably measured by scalp electrodes or sensors (Sutton et al., 1965; Coles and Rugg, 1995). To date, most research works on BCI can be roughly divided into several categories according to the types of signals used, especially ERP-based BCI (Farwell and Donchin, 1988; Furdea et al., 2009; Kübler et al., 2009; Zhang et al., 2012; including P300-BCI), motor imagery BCI (Pfurtscheller and Neuper, 2001; Wang et al., 2006; Hwang et al., 2009; Jiao et al., 2018), steady-state visual evoked potentials (SSVEP) BCI (Ortner et al., 2011; Jiao et al., 2016; Nakanishi et al., 2018; Zhang et al., 2018), hybrid BCI (Pfurtscheller et al., 2010; Li et al., 2016), and so on. In the present work, we focused on ERP-based BCI, which is one of the most promising approaches.

A commonly used component in ERP is the visual evoked potential (VEP) P300 or P3, which is generally elicited by the oddball paradigm. P300 is characterized by a latency of 250–500 ms after stimulus, and the positive deflection is stronger than other components (e.g., P100, N170, and N200) prior to it (Sutton et al., 1965). Therefore, the VEP P300-BCI stands for the utilization of P300 as the way to discriminate the target and the non-target. The first VEP P300-BCI, otherwise known as P300 speller, was introduced by Farwell and Donchin (1988). In their study, subjects were asked to sit in front of a screen with a 6 × 6 matrix presenting 26 letters and 10 digits and required to count the number of flashes of target characters silently in the row–column paradigm (RCP). However, adjacency-distraction errors and double-flash errors are the main defects of RCP. To decrease the impact of these two, researchers found ways to address this problem from multiple levels. Townsend et al. (2010) designed an 8 × 9 checkerboard paradigm (CBP) to separate two 6 × 6 matrices and arrange all rows of one matrix to flash randomly first before the columns, thereby effectively avoiding both abovementioned errors. Jin et al. (2010) composed a new method that mathematically combined the stimuli presented to improve the performance and yielded a higher bit rate than that of the RCP. Paralleling with RCP, the single-character paradigm (SCP), in which each character is individually highlighted, fully capable of avoiding adjacency distraction, has also been extensively studied (Fazel-Rezai et al., 2012; Jin et al., 2015). To compare these two mainstream paradigms (RCP and SCP) fairly, Guger et al. invited 100 healthy subjects to perform a spelling task, and the result showed that 72.8% (N = 81) of the subjects spelled RCP with 100% accuracy and 55.3% (N = 38) of the subjects did the same in SCP. However, the averaged P300 response at Cz for RCP was 7.9 μV lower than the 8.8 μV achieved in SCP (Guger et al., 2009). Moreover, a modified SCP called lateral SCP provided a better performance than RCP with respect to online accuracy and bit rate (Pires et al., 2012). Thus, RCP and SCP are both promising methods to establish a practical BCI system.

The effects brought by stimuli have been explored in many aspects, such as the interstimulus interval (Sellers et al., 2006), the background color of stimulus (Salvaris and Sepulveda, 2009), the face stimulus (Zhang et al., 2012; Jin et al., 2014), the moving stimulus like vertical moving bars (Hong et al., 2009), flipping characters (Martens et al., 2009), zooming symbols (Cheng et al., 2018), and so on. As for color, white and black backgrounds were compared. Consequently, white background was superior to the black one in terms of performance (Salvaris and Sepulveda, 2009). Green (onset)/blue (offset) stimulus yielded a better practical performance in P300-BCI than white/gray stimulus (Takano et al., 2009). Moreover, the luminosity contrast was also investigated for P300 speller (Li et al., 2014). The RGB colors acting as stimuli have been utilized to compare EEG classification algorithms or feature extraction methods (Rasheed and Marini, 2015; Alharbi et al., 2016). However, the paradigm was limited to one square pattern responsible for presenting colors under a gray background, with a stimulus duration of 3 s one time, instead of the oddball paradigm.

In this study, we introduced a new layout of flash pattern on the basis of SCP, with red, green, and blue stimuli under a white background. In addition, aside from P300, other visual ERP waveforms, such as P200 (P2), N2, and N400 (N4), have already been proven beneficial to improve BCI performance. For example, Guo et al. (2008) introduced motion-onset VEPs including P2 and N2, to deliver control command successfully; Jin et al. (2014) suggested that N4 helps improve the online accuracy of ERP-based BCI. Therefore, the waveform features of P2, N2, P3, and N4 were also considered during ERP analysis in our study.



MATERIALS AND METHODS


Subjects

Twelve healthy subjects (S1–S12), comprising six males and six females aged 22–28 years, participated in our experiments. All subjects had normal color vision, and seven of them participated in a BCI experiment for the first time. The local ethics committee approved the consent form and the experimental procedure before any of the subjects participated. All subjects were informed of the whole online-and-offline procedure beforehand, and they were allowed to leave the experiment anytime if they felt uncomfortable during the experiment.



Experimental Design

A 20-in. LCD, Lenovo UOAFG989, was set with sRGB color gamut and 1,600 × 900 resolution, and its maximum luminous intensity was 200 cd/m2 when displaying white. A subject was seated 70 cm away from the display in a dimly lit laboratory, with ambient light of 40 ± 9.2 lx. Psychotoolbox from MATLAB was operated for the flash pattern. Red (255, 117, 117), green (117, 255, 117), and blue (117, 117, 255) colors were chosen to be the stimuli by turns. The stimulus onset asynchrony (SOA) was set to 400 ms, and the duration of stimulus was 200 ms throughout all experiments.

The specific layout of the pattern is shown Figure 1. Four square blocks (108 × 108) were distributed at the four corners of the screen, whereas the other four were assembled in the center. Altogether, eight square blocks took turns to be the target. Figure 1A illustrates the original presentation of the pattern before the experiment began, and Figure 1B was merely captured as an example for the ongoing “blue” experiment. Here, the color of the stimulus can also be represented by red or green in their own color sub-experiment. Figure 1C demonstrates the color configuration of the three paradigms. In this study, three paradigms were presented to every subject in order. We called them R-P (red paradigm), G-P (green paradigm), and B-P (blue paradigm) for convenience.
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FIGURE 1. The layout of the experiment. (A) The original pattern; (B) the screenshot of the “blue” experiment; (C) the legend of the three stimuli.



The flowchart of the set of experiments is shown in Figure 2. Each paradigm consisted of offline and online sessions. As illustrated in Figure 2, one offline experiment had four runs, and each run included four epochs. One epoch stood for one target block to be focused on, and 16 trials represented the repeating times applied in each epoch. When an epoch began, the subject focused on the target block where the hint showed before and counted the flashes in the target block silently, at the same time, ignoring other flashes lighted in non-target blocks. When the target flash had been shown for the predetermined (i.e., 16 in this study) times, one epoch finished, and the hint would move on to the next block. Then, that block would take the place of the former as the new target to be focused on. After finishing four runs of offline, a model of the subject would be built. Then, the online experiment would operate 16 blocks to be the targets one by one with feedbacks. As for the feedback, the four blocks near the edge were represented by A (up left), B (up right), C (bottom left), and D (bottom right), and the four in the center with E, F, G, and H were assigned in the same way. The number of trials for recognition was chosen automatically via an adaptive strategy, which was explained in the section Online Strategy (Jin et al., 2011). Compared with offline experiments, the online one saved trials and delivered feedbacks in a timely manner.


[image: image]

FIGURE 2. Flowchart of our experiments (note: exp here stands for experiment).



Given that the order of “color” displayed could influence the BCI performance, we arranged S1, S2, S9, and S12 to follow the order of R(red)–G(green)–B(blue). S3, S4, S6, and S8 were arranged in G–B–R. S5, S7, S10, and S11 were arranged in B–R–G (see Table 1). This arrangement could lead to relative fairness in the subsequent analysis.



Table 1. The order of paradigms for each subject.

[image: image]






Electroencephalogram Acquisition

In this study, the EEG signals were recorded by g.USBamp and 32-channel g.EEGcap (Guger Technologies, Graz, Austria). The amplifier was set with a sample rate of 256 Hz, a sensitivity line of 100 μV, a band-pass filter from 0.5 to 30 Hz, a notch filter at 50 Hz to remove AC artifacts, and impedances below 10 kΩ. All 14 electrodes selected from the 10–20 international system were F3, Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, O1, Oz, and O2, which were referenced at right mastoid and grounded at FPz (Figure 3).


[image: image]

FIGURE 3. The electrodes selected from the 10–20 system.





Feature Extraction and Classification

After the offline data acquisition for each subject, feature extraction and classification were performed to build a personal model for his or her online session later. In terms of filtering, a third-order Butterworth filter with a band pass from 1 to 30 Hz was applied to raw EEG data. Then, according to the labels attached to every flash (which were simultaneously made during the data acquisition), the 100-ms pre-stimulus (flash) and the 800-ms post-stimulus data segments (altogether 900-ms data segment) were selected. Moreover, the latter 800 ms was reserved after baseline correction by means of the former 100 ms. Thereform, a three-dimensional matrix was constructed by the factors of channels, sampling rate, and trials realized for one subject. As for downsampling, the second dimension (related to time shaft) of the matrix was downsampled to 36 Hz, instead of the original sample rate of 256 Hz. Therefore, the feature vector with 14 channels × 29 time points was accessible for the classifier.

Here, we adopted the Bayesian linear discriminant analysis (BLDA), which was first developed by Hoffmann et al. (2008) and successfully applied to a P300-BCI system to classify EEG data, because of its capability to better overcome the overfitting of high-dimensional data or data containing noise. Moreover, this method is relatively efficient in the ERP-BCI system (Chen et al., 2015). Then, 16-fold cross-validation was performed after model building, so that the scores of each flash can be achieved, and the target flash can obtain the highest score among the eight.

To improve the model, we applied a trial selection method to help eliminate the error trials in offline data. For example, one block needs to be counted for 16 times in one run (see Figure 2). In Figure 4, we demonstrated the whole process. If the first trial was recognized as false according to the classifier, the “first” would be removed (like the red frame in the left panel of Figure 4), and the 15 remaining trials would fill up; however, not all the blocks enjoyed 16 times of repetition after eliminating, so on account of the integrity and uniformity, we discarded some trials in the green frame and kept all blocks with 15 repetition times (see the right panel of Figure 4). In this case, we eliminated the distraction brought by the new start of a target fixation to some extent. This modification was only executed once, considering the sufficiency of data used to perform the subsequent overlapping averaging process. Then, the rest of the trials were sent to the classifier again to rebuild a model for favorable performance.


[image: image]

FIGURE 4. Example for the error trials before and after model modification.





Online Strategy

After achieving the model developed on the basis of offline datasets, the online real-time feedback could be presented smoothly to the subject every time as one block's recognition was completed. However, it took fewer trials than an epoch did in offline session, because the system judged whether the last two successive results were the same in every block recognition. If so, the process of trials for the block would be stopped, and the last result would be shown as the feedback. Otherwise, the maximum trials of one block, which was set to 16, would be performed. In this way, the feedback of each block was printed successively on the screen until the 16 blocks were completely recognized.



Data Analysis and Statistics

Two important performance indexes are accuracy and information transfer rate (ITR), which were used to evaluate a BCI system. The latter one can be calculated as follows:
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In formula 1, N denotes the possible choices in one trial, and whereas every choice shares the equal possibility to be lighted, here N = 8; Acc represents the classification accuracy. In formula 2, t is the time cost for operating the trials, and ITR (bit/min) can be achieved through calculation.

In terms of statistics, all the variables were first tested under Ryan–Joiner test (R-J test), which is similar to the Shapiro–Wilk test, for normal distribution. Then, repeated-measures ANOVA (rm-ANOVA) was applied to test the significance brought by the color factor. However, before RM-ANOVA, Mauchly's sphericity test was executed, and if unsatisfactory, Greenhouse–Geisser correction would be chosen to revise degree of freedom. Finally, Bonferroni correction was implemented in post hoc comparison. The significance level was α = 0.05 after Bonferroni correction.



Color Contrast Calculation

Li et al. (2014) investigated the effects of luminosity contrast on BCI performance. It was reported that higher classification accuracy was achieved by a high-luminosity contrast; higher amplitude and shorter latency of VEP P300 were also released by the high-luminosity contrast stimulus. The following were the calculation formulas of luminosity contrast mentioned in Li's study:
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The X above can be R or G or B.
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The ratio between the display color (L1) and the background color (L2) is

[image: image]

In this work, we calculated the corresponding ratio for the three stimuli under white background according to the formulas above and discussed the results in the section Layout of the Stimulus.




RESULTS


ERP Analysis

Figure 5 shows the grand averaged ERP waveforms over 14 channels with three curves representing three different color types of stimulus in a single-channel plot. Four kinds of colors were shadowed behind the neighborhood of peak point, with the rule that the minimum and the maximum of three peak points (latency) would be selected, and the range would be formed [min −10 ms, max +10 ms]. Such rules were also feasible for the condition that only one or two curves displayed the desired signal, whereas the rest did not.


[image: image]

FIGURE 5. Grand averaged evoked related potential (ERP) waveforms of targets across all 12 subjects from three paradigms overall 14 electrodes. Note: Four kinds of ERP signals (e.g., P2, N2, P3, N4) were demonstrated with different backgrounds in each plot of the electrode if existing.



Figure 6 illustrates the discrimination between the target and the non-target over all sites from the three paradigms. We applied a time window with 0–800 ms after a stimulus and considered the target and non-target ERP segments as the inputs of the calculation shown below to obtain the R-squared values.

[image: image]

In formula 7, x represents the value; y can be “1” standing for the target samples, whereas “0” for the non-target ones; and N1 and N0 are the corresponding numbers of the groups. In Figure 6, the polar color turned darker as discrimination went more obvious between the two.
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FIGURE 6. R-squared value maps of three paradigms throughout all 14 channels for S1–S12 subjects for discrimination between the target and the non-target.



P2

P2 peak is typically evoked following N100 in visual ERP-based BCI and varies between 150 and 275 ms. P2 is related to visual search, attention, and memory (Freunberger et al., 2007). In this study, we explored P2 in parieto-occipital areas of the scalp. Through statistical analysis, the stimulus color significantly affected the P2 peak latency at electrodes of Oz [F(2, 22) = 8.762, p < 0.01]. Then, comparison within groups indicated that G-P's P2 latency was observed significantly longer than that of B-P at Oz (p < 0.01).

N2

In Figure 7, the significance of the N2 peak latency was revealed at O1 [F(2, 22) = 11.672, p < 0.01; G-P > R-P: p < 0.01, G-P > B-P: p < 0.05], at O2 [F(2, 22) = 30.078, p < 0.01; G-P > R-P: p < 0.01, G-P > B-P: p < 0.001], and at P8 [F(2, 22) = 17.870, p < 0.01; G-P > R-P: p < 0.01, G-P > B-P: p < 0.001]. Thus, the N2 peak evoked by G-P was later than that for R-P and B-P significantly at electrodes O1, O2, and P8, respectively. However, no significance has been detected either in tests of within-subjects effects or in post hoc multiple comparisons in terms of N2 amplitude.
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FIGURE 7. The N200 latency boxplot with significance at four sites. Note: the label “*” means the significance of two groups is p < 0.05; meanwhile, **p < 0.01 and ***p < 0.001; the color of the box indicates the corresponding paradigm.





Accuracy and Bit Rate of Brain–Computer Interface

Figure 8A displays the offline accuracy and bit rate, which was averaged over 12 subjects and overlapping by trials. R-P yielded a better offline performance depending on the highest offline accuracy and the least trials to reach 100%. Furthermore, Figure 8B depicts the single trial offline classification accuracy, but no significant difference was found.
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FIGURE 8. Offline accuracy and bit rate analysis. (A) Overlapping average per trial. (B) Single-trial per subject.



Table 2 lists the online performance of 12 subjects in detail, and p-value was tested among the three paradigms for three indexes [i.e., accuracy (%), ITR (bit/min), and AVT] closely behind. However, p-value shows significance in accuracy and ITR between R-P and G-P.



Table 2. Online accuracy and bit rate analysis.
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Effects by Model Modification

By utilizing the method mentioned in the section Feature Extraction and Classification, the error trials changed, as displayed in Figure 9. Through two-way RM-ANOVA with the factors of method (before and after model modification) and stimulus color, significance was found in the factor of color [F(2, 22) = 4.942, p < 0.05] and method [F(1, 11) = 21.868, p < 0.01] while it was not found in the interaction of the two factors [F(2, 22) = 0.979, p > 0.05]. In post hoc of model modification, error trials were significantly reduced (p < 0.01). Meanwhile, the sum of error trials for subjects after the modification was significantly reduced [F(1, 11) = 21.868, p < 0.01] as well. Thus, the efficiency of the model modification method in this work was proved.
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FIGURE 9. The error trials before and after modification of the model. Note: the number implies the error trials happened for one subject in one paradigm and the overall sum of trials was 240 (16 targets × 15 times); the statistical results in this section were all corrected by Bonferroni correction.



Moreover, although stimulus color significantly influenced the error trials before modification [F(2, 22) = 4.585, p < 0.05] and after it [F(2, 22) = 4.040, p < 0.05], no significance was found in post hoc in error trials either before modification or after it.



Effects by the Layout

As mentioned in the section Effects by Model Modification, the layout of the pattern may also influence the offline accuracy. Through two-way RM-ANOVA, we found that the interaction of the two factors was significant [F(2, 22) = 4.424, p < 0.05]. Therefore, we shifted the two-way RM-ANOVA to one-way RM-ANOVA to detect the simple effect of each factor. The layout factor affected error trials significantly in G-P [F(1, 11) = 6.289, p < 0.05] and in the sum [F(1, 11) = 5.482, p < 0.05].

When color acted as the factor, significance was only observed before modification [F(2, 22) = 4.545, p < 0.05; G-P > B-P: p < 0.05). Nevertheless, the four inner blocks produced more error trials than the outer ones, and the difference was significant (Figure 10).
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FIGURE 10. The error trials contributed by outer and inner blocks. Note: the number implies the error trials happened for one subject in one paradigm and the overall sum of trials was 240 (16 targets × 15 times); the statistical results in this section were all corrected by Bonferroni correction.



The sum of offline error trials was 48 in the four outer blocks through the three paradigms, and it counted to 85 in the inner ones. Specifically, 8,640 times [16 targets × (16–1) times × 12 subjects × 3 paradigms] was counted by 12 subjects during the three paradigms; thus, 0.56% error rate occurred in the four outer blocks, and 0.98% occurred in the inner ones.



Subjects' Feedback

Subjects were asked to evaluate the tiredness of each paradigm by scores (1: few; 2: medium; 3: many). To specify the differences, we also applied Friedman test to investigate the differences on scores. Friedman test as a type of non-parametric test was appropriate for those correlated samples (Table 3). However, no significance was found toward tiredness (χ2 = 1.267, p > 0.05).



Table 3. Subjects' feedback to each paradigm.
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DISCUSSION

The present study mainly focused on the effect of chromatic stimulus on the performance of an ERP-based BCI and discussed several related problems stated as follows: (1) the influence on the offline error trials brought by the layout and the relationship between the layout and adjacency distraction, (2) the availability of the conclusion (Li et al., 2014) applied to the present study that better performance (including higher accuracy, higher amplitude, and shorter latency) occurred in a high-luminosity contrast, and (3) the observation of the ERP components' waveforms in this work.


Performance

As for performance, classification accuracy and ITR were the main indexes to evaluate the performance of a BCI system. The online result (Table 2) depicted that the highest online averaged accuracy was obtained by R-P with 98.44%, higher than 92.71% by G-P, and 93.23% by B-P. In addition, significance was found between R-P and G-P both over online accuracy (p < 0.05) and ITR (p < 0.05), under the circumstance that all subjects were divided into three groups to experience the three paradigms in three kinds of order. Thus, the effects by the order of process were eliminated.

To explain the result, some literature in psychology may help. It was found that longer-wavelength colors including red are considered as arousing or warm, whereas colors with a shorter wavelength like green and blue are associated with relaxing and cool (Nakshian, 1964). For one color as stimulus to be experienced lasting for 40 min at least in our experiment, the color of stimulus when flashing may exert some psychological hint to motivate or cool down the emotion of subjects to some degree. Some psychological experiments found that red can promote performance on some virtual target-shooting task (Sorokowski and Szmajke, 2011). They reported that the participants were able to hit red moving objects significantly better than blue and black objects, which was much relevant to our study in both stimulus color and the conclusion. On the side of biology, it was known that objects' information of color was described to be processed in visual area V4 of the human brain (Dubner and Zeki, 1971) and the cones in human's eyes have different light sensitivity to red, green, and blue light. This paper's result may give some evidence or reference to help related biological research.

In related studies, the green/blue flicker paradigm achieved an 80.60% online classification accuracy (Takano et al., 2009). The paradigm that set a green familiar face as stimulus yielded an 86.1% online accuracy on average (Li et al., 2015). An SSVEP-BCI utilizing red, green, blue, and violet as stimuli showed that the violet one gained the highest accuracy of 94.38%, and the red one obtained 90.21% in wheelchair control application (Singla et al., 2013). Hence, the novel BCI with chromatic stimulus is consistent, efficient, and practicable, as judged by extracting consistent ERP wave features and outstanding mean accuracy over 90% online experiments for all 12 subjects.



Layout of the Stimulus

In this work, we applied a novel layout paradigm with chromatic stimulus flashing in blocks on the basis of SCP. The benefits of this design lie in two parts. One is the problem of double flash. Considering that eight blocks randomly flashed once in one trial, and the SOA of one flash is 400 ms, a single target cannot possibly flash twice in a time interval shorter than 800 ms. The other is adjacency distraction. As shown in the section Effects by the Layout, the position indeed influenced the error trials in offline sessions significantly, but the ratios it caused were 0.56% for the outer blocks and 0.98% for the inner blocks, thereby indicating a comparatively minor aspect in terms of the whole situation, especially after model modification.



Color Contrast

As mentioned in the section Color Contrast Calculation, the color contrast ratio was 2.61:1 for R-P, 1.29:1 for G-P, and 3.66:1 for B-P with a white background. In previous literature (Nam et al., 2010; Li et al., 2014), all of the values of RGB channels remained equal, and the groups for contrast were limited to two. However, when the comparison groups of stimulus color increased to three in the present study, several previous results did not show similarity with the trend. In P300 waveform, no satisfactory significance was shown in the P300 amplitude of three paradigms within subjects at Pz, inconsistent with the trend in the literature. For online accuracy, a higher averaged accuracy was obtained by R-P, followed by B-P and G-P, as shown in Table 2; hence, G-P had the lowest color contrast ranked at the bottom, whereas the results of R-P and G-P cannot be satisfied by that observation. Moreover, the relationship between color contrast and accuracy is not linear.



ERP Component

Visual stimulus features such as color are processed in the ventral stream of visual pathways over the occipitotemporal areas of the brain (Corbetta et al., 1991; Merigan and Maunsell, 1993).

P2 peak waveform features in the present study resulted in obtaining a longer latency in G-P at Oz. The oddball paradigm is one primary way to evoke P2, and its amplitude can be enhanced to the targets (Ferreira-Santos et al., 2012). However, in a visual search paradigm, more specific research has been performed on stimulus features (e.g., color, size, and orientation) to explore the mechanisms for feature detection in the brain (Luck and Hillyard, 1994). Thus, the findings in the present work are relatively supplemented in this area.

N2, which is an endogenous component similar to P300, corresponds to visual attention or degree of attention. In the present study, the N2 latency from G-P was significantly longer than that of the two other paradigms within all subjects. This result was caused by a shorter latency shown in high color contrast, whereas a longer latency was shown in low color contrast (Li et al., 2014). Here, “green” obtained the lowest value in color contrast at the white background.

Meanwhile, P300 and N4 failed to exhibit significance either in amplitude or in latency. As shown in Figure 5, the three grand averaged curves were relatively close to each other under the color shadows of P300 and N4 waveforms, thereby indicating that P300 and N4 were not sensitive to different stimulus colors in this work.




CONCLUSION

The color of stimulus out of RGB could achieve the best performance in an ERP-based BCI by designing a novel layout in a single-character pattern. In detail, R-P yielded the highest online averaged accuracy and the fastest ITR among the three; G-P displayed a longer latency in the ERP waveforms of P2 and N2. Moreover, the eight blocks in the paradigm can be replaced with control commands or be applied to psychological attention estimation. Further investigation will be performed on the neural mechanism of our experimental results. Besides, further improvement may focus on the algorithm improvement, enhancement of ITR, and fatigue supervision (e.g., heart rate and body temperature).
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K-complexes identification is a challenging task in sleep research. The detection of k-complexes in electroencephalogram (EEG) signals based on visual inspection is time consuming, prone to errors, and requires well-trained knowledge. Many existing methods for k-complexes detection rely mainly on analyzing EEG signals in time and frequency domains. In this study, an efficient method is proposed to detect k-complexes from EEG signals based on fractal dimension (FD) of time frequency (T-F) images coupled with undirected graph features. Firstly, an EEG signal is partitioned into smaller segments using a sliding window technique. Each EEG segment is passed through a spectrogram of short time Fourier transform (STFT) to obtain the T-F images. Secondly, the box counting method is applied to each T-F image to discover the FDs in EEG signals. A vector of FD features are extracted from each T-F image and then mapped into an undirected graph. The structural properties of the graphs are used as the representative features of the original EEG signals for the input of a least square support vector machine (LS-SVM) classifier. Key graphic features are extracted from the undirected graphs. The extracted graph features are forwarded to the LS-SVM for classification. To investigate the classification ability of the proposed feature extraction combined with the LS-SVM classifier, the extracted features are also forwarded to a k-means classifier for comparison. The proposed method is compared with several existing k-complexes detection methods in which the same datasets were used. The findings of this study shows that the proposed method yields better classification results than other existing methods in the literature. An average accuracy of 97% for the detection of the k-complexes is obtained using the proposed method. The proposed method could lead to an efficient tool for the scoring of automatic sleep stages which could be useful for doctors and neurologists in the diagnosis and treatment of sleep disorders and for sleep research.
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INTRODUCTION

Sleep can be divided into different sleep stages that include mainly non-rapid eyes movements (NREM) sleep, rapid eyes movements (REM) sleep etc. NREM sleep can be further divided into four stages of drowsiness (S1), light sleep (S2), deep sleep (S3) and very deep sleep (S4). Recently, the NREM sleep were reduced by American academy of sleep medicine (AASM) into three stages in which S3 and S4 were combined into one stage as slow waves stages (SWS) (Rechtschaffen and Kales, 1968; Iber et al., 2007; Ranjan et al., 2018). Figure 1 shows the sleep stage signals and their characteristics (Fraiwan et al., 2012). Analysis of these sleep waveforms based on their characteristic features of different stages is an important phase in sleep studies as each sleep stage has different characteristic waveforms. One of those important waveforms occurred in electroencephalogram (EEG) signals and changed over a short time are sleep spindles and k-complexes waves. K-complexes and sleep spindles patterns are the key characteristics of S2, and consequently they are often used to identify S2.


[image: image]

FIGURE 1. Typical EEG signals of 30 s belonging to sleep stages for a subject: awake stage, N1, N2, S3, N4, and REM stage.



In 1993 k-complexes were first discovered by Loomis et al. (1938). A k-complex includes a large-amplitude transient waveform with a single negative sharp wave followed by a positive sharp wave, and it has a relatively sharp amplitude that is more than ±75 μV (Bremer et al., 1970; Richard and Lengelle, 1998; Lajnef et al., 2015). This transient bio-signal waveform occurs in all sleep stages, but mainly occurs in sleep stage 2, and it presents in 12–14 Hz waves (Jansen and Desai, 1994). Moreover, in another study (Bremer et al., 1970) it was reported that the minimum peak to peak amplitude value of the k-complexes is around 100 μV. Most of these early studies showed that k-complexes could appear many times during stage 2 with a maximum time duration between 0.5 and 1.5 s. Some studies reported that the maximum time duration of a k-complexes is between 1 and 3 s (Pohl and Fahr, 1995; Lajnef et al., 2015; Hernández-Pereira et al., 2016; Ghanbari and Moradi, 2017; Al-Salman et al., 2018). Examples of EEG signals with and without k-complexes events are shown in Figure 2 (Yücelbaş et al., 2018a).


[image: image]

FIGURE 2. EEG signal examples: (A) with k-complexes events. (B) without k-complexes.



The k-complexes are very important in both children’s and adults’ sleep studies and the diagnoses of neurophysiologic and cognitive disorders (Bremer et al., 1970; Strungaru and Popescu, 1998; Lajnef et al., 2015). Reliable methods for the analysis and detection of the k-complexes in sleep EEG signals are of great importance for sleep research and clinical diagnosis (Kokkinos and Kostopoulos, 2011). Traditionally, k-complexes are visually examined and marked in an all-night sleep EEG recording by one or two well-trained experts. This process is time consuming, specialist dependent, and tedious, due to the fact that there are typically 1 to 3 k-complexes per minute in stage 2 for young adults (Amzica and Steriade, 2002; Kam et al., 2004; Ghanbari and Moradi, 2017; Ranjan et al., 2018). Therefore, the auto detection of k-complexes is a very important research topic.

In this paper, the fractal dimension (FD) combined with undirected graphs is used to detect k-complexes in sleep EEG signals. Firstly, EEG signal is divided into segments of 0.5 s. Each segment is transformed into a time frequency (T-F) images using a short time Fourier transform (STFT). Secondly, a box counting algorithm is applied to each of the T-F image to calculate their FD. Ten FDs are extracted from each T-F image, and are mapped to undirected graphs to extract the features of interest. The least square support vector machine classifier is used to validate the proposed method. The performance is measured in term of accuracy, sensitivity, and specificity. The performance of the proposed method was compared with several existing methods in the literature. The results demonstrated that the proposed method achieved a high classification accuracy rate for detecting k-complexes in EEG signals.

The remainder of this paper is organized as follows: Section “Related Work” descripts the EEG data used in this paper. Section “EEG Data Description” illustrates the details of the proposed methodology. The experimental results are explained in section “Proposed Method.” Finally, the conclusion is provided in section “Experimental Results.”



RELATED WORK

Several automatic methods have been developed to detect and analyze the k-complexes. Those approaches used different transformation techniques, such as Fourier transform, wavelet transform, spectral analysis, matching pursuit and autoregressive modeling (Camilleri et al., 2014). So far, no studies have been presented to identify k-complex transient events based on their waveform characteristics, such as a textural descriptor, non-linear features or their graph connections.

Bankman et al. (1992) used a method based on different set of features to detect k-complexes in sleep EEG signals. 14 features were extracted from EEG signals and then used as input into a neural network. The researchers reported an average of sensitivity and false positive rate (FPR) of 90 and 8.1%, respectively. Another study was presented by Hernández-Pereira et al. (2016), in which k-complexes were also detected based on 14 features extracted from each sleep EEG signal. The features were then forwarded to different classifiers to identify k-complexes. An average accuracy of 91.40% was reported using the features selection method.

Tang and Ishii (1995) proposed a method to identify k-complexes based on the discrete wavelet transform (DWT) parameters. The DWT parameters were used to determine the time duration and amplitude of k-complexes. In their study, they obtained 87% sensitivity and 10% FPR. More recently, Lajnef et al. (2015) used a tunable Q-factor wavelet transform for the detection of k-complexes. An average sensitivity and FPR of 81.57 and 29.54% were reported, respectively.

Another study was presented by Richard and Lengelle (1998), in which the k-complexes were recognized based on a joint linear filter in time and time-frequency domains. The k-complexes and delta waves were identified with an average sensitivity and FPR of 90 and 9.2%, respectively. Yücelbaş et al. (2018b) used a method to detect k-complexes automatically based on time and frequency analyses. In their study, an EEG signal was decomposed using a DWT. An average accuracy rate of 92.29% was achieved.

Noori et al. (2014) used a features selection using a generalized radial basis function extreme learning machine (MELM-GRBF) algorithm to detect k-complexes. In their study, fractal and entropy features were employed. The EEG signals were divided into segments using a sliding window technique. The size of the window was set to 1.0 s. An average sensitivity and accuracy of 61 and 96.1% were reported. Researchers in Zacharaki et al. (2013) utilized two steps to detect k-complexes. In the first step, the k-complex candidates are selected, while the number of k-complexes is reduced in the second step using a machine learning algorithm. In that study, four features, including peak-to-peak amplitude, standard deviation, and a ratio of power and duration of the negative sharp wave, were extracted from each segment. An average sensitivity of 83% was reported.

Parekh et al. (2015) detected the k-complexes based on a fast non-linear optimization algorithm. In that study, only F-score result was reported. An average F-score of 0.70 and 0.57% for the detection of the sleep spindles and the k-complexes were achieved, respectively. Another study was presented by Henry et al. (1994), in which the k-complexes were classified based on matched filtering. Each segment was decomposed into a set of orthonormal functions and wavelets analysis.

Devuyst et al. (2010) used a likelihood threshold parameters and features extraction method to detect k-complexes. The performance of the detection was assessed against to two human experts’ scorings. An average of sensitivity rate of 61.72 and 60.94% for scorer 1 and scorer 2 were obtained. Migotina et al. (2010) presented a method based on Hjorth parameters and employed fuzzy decision to identify k-complexes. In that study, the performance of the proposed method was compared with the visual human scoring to evaluate their results. All those methods for classifying k-complexes in sleep EEG signals were based on linear features. So far waveform characteristics based features, such as a textural descriptor, and graph network connections, have not been used for the detection of k-complexes.

According to the literature, we found that the FD as non-linear features has been proven to be an efficient approach to explore the hidden patterns in digital images and signals (Prieto et al., 2011; Finotello et al., 2015). It has been used to analyze and classify EEG signals to trace the changes in EEG signals during different sleep stages, and has also been employed to recognize different digital image patterns. Yang et al. (2007) and Sourina and Liu (2011) employed a FD approach to analyze sleep stages in EEG signals.

Fractal dimension technique was also used by Ali et al. (2016) for voice recognition. Time frequency (TF) images were also used by Bajaj and Pachori (2013) to classify sleep stages. Bajaj et al. (2017) also identified alcoholic EEGs based on T-F images. Based on our previous study (Al-Salman et al., 2018) we found that time frequency images coupled with FD yielded promising results in analyzing and detecting sleep spindles in sleep EEG signals. Furthermore, undirected graph properties have been used to analyze and study brain diseases (Vural and Yildiz, 2010; Wang et al., 2014). Some studies reported that undirected graphs can be considered as one of the robust approaches to characterize the functional topological properties in brain networks for both normal and abnormal brain functioning (Sourina and Liu, 2011; Li et al., 2013). The relevant techniques were employed in image processing as a powerful tool to analyze and classify digital images (Sarsoh et al., 2012).

Recently, a graph approach was used in Diykh et al. (2016) to classify sleep stages. However, in this work, we have combined the fractal features with properties of undirected graphs to detect k-complexes in sleep EEG signals. Based on our knowledge, fractal graph features approach has not been used in k-complexes detection before.



EEG DATA DESCRIPTION

The EEG datasets used in this paper were collected by the Dream project at University of Mons-TCTS Laboratory (Devuyst et al., 2011). The sleep EEG data sets that were publically available included 10 recordings acquired from 10 subjects: 4 males and 6 females using a digital 32-channel polygraph (BrainnetTM system of MEDATEC, Brussels, Belgium) (Devuyst et al., 2010). The sleep EEG data sets were collected in a 30 min interval of the central EEG channel for a whole night. The datasets were sampled at frequency of 200 Hz. Three EEG channels (CZ-A1 or C3-A1, FP1-A1 and O1-A1) and one submental EMG channel were recorded from each subject. The k-complexes in this database were detected visually by two experts. The first expert scored all the ten recordings, while the second expert only annotated five recordings out of the 10 EEG recordings. Therefore, the CZ-A1 channel EEG recordings sampled at 200 Hz, all recording by expert 1, were used for detecting the k-complexes in this study. The information about for the database is shown in Table 1. For more information, please refer to the following website gives details. The dataset with additional information is publicly available from http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseKcomplexes.

TABLE 1. Database information from dream database.
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PROPOSED METHOD

In this work, a new method is presented based on time-frequency image and graph features to detect k-complexes in EEG signals. An illustration is given in Figure 3. The EEG signal is firstly divided into segments using a sliding window technique. The size of the window is set to 0.5 s with an overlapping of 0.4 s. Then, each 0.5 s EEG segment is passed through the spectrogram of STFT to obtain the time-frequency images (T-F images). FD as a texture descriptor for each T-F image is calculated based on the box counting method. The vector of FD from each T-F image is then mapped into an undirected graph. Three features of {degree distributions, Jaccard coefficient, and cluster coefficient} from each graph are extracted and used as the key features to detect k-complexes in this study. Those features are then forwarded to a least square support vector machine (LS-SVM) classifier to detected k-complexes in EEG signals.


[image: image]

FIGURE 3. The methodology of the proposed method for k-complexes detection.




Segmentation

Sleep experts have observed that k-complexes normally appear in EEG signals for 0.5 to 2 s. The sliding window technique was utilized by Siuly et al. (2011) for the classification of EEG signals. It was also utilized by Al-Salman et al. (2018) and Zhuang et al. (2016) to detect sleep spindles in EEG signals. Kam et al. (2004) employed the sliding window method to detect k-complexes in their study. Their results showed that applying a sliding window technique helped to improve satisfactory classification results. As sleep spindles and k-complexes occur during stage 2 for about 0.5 to 2 s, we tested various window sizes of 1.0, 1.5, and 2.0 s and overlapping lengths to identify the optimal segment size. However, we made the window length between 0.5 and 2 s. We used the same technique in Al-Salman et al. (2018, 2019). We selected 0.5 window length based on our simulation results. The simulation results showed that the window size of 0.5 s was more optimal for identifying EEG characteristics than other window sizes. Figure 4 shows the EEG signal being dividing into 0.5 s segments with an overlapping of 0.4 s using a sliding window technique.


[image: image]

FIGURE 4. An example of segmenting an EEG signal into windows using a sliding window technique.





Spectrogram of STFT

Spectrogram of STFT is normally defined as the normalized, square magnitude of the STFT coefficient (Bajaj et al., 2017; Al-Salman et al., 2018). The STFT is defined as:

[image: image]

where y[x]w[n-x] is a short time of signal S(n,ω) at time n, and the discrete of STFT can be formulated as:

[image: image]

where N refers to the number of discrete frequencies.

Before Fourier transform was calculated, the centered function w = [x] at time n was multiplied with signal S. The Fourier transform is estimated at time n, and the window function, w = [x] centered at time n, of signal S(n,ω) is considered close to time n. A fixed positive function was used to obtain the STFT, which is denoted as w[x]. Thus, the spectrogram can be formulated as:

[image: image]

The signal is divided into smaller blocks to obtain the STFT coefficients using the sliding window. After each block is transformed through a Fourier transform, their spectrum is obtained. As the result, the spectrogram of the signal can be calculated from the square of the discrete STFT by using Eqs 1 and 2. Figure 5 shows examples of an EEG segment with a k-complex and an EEG segment without a k-complex event were transformed into a time frequency image using the STFT. According to the literature, the spectrogram is more effective for analyzing non-stationary signals (Siuly and Li, 2012). In this paper, the spectrogram is applied to each EEG segment to obtain the T-F images.


[image: image]

FIGURE 5. Time-Frequency Image of an EEG segment by the STFT: (A) with k-complexes events. (B) without k-complexes.





Fractal Dimension

Fractal dimension allows us to measure the degree of complexity of an object. With FD, each figure can be depicted by a series of fragments. Those fragmented parts can be represented as a small copy of the original figure (Al-Salman et al., 2018).

Extracting features from EEG signals is a common step to obtain the key information. The FD technique is one of the most powerful methods to extract the hidden characteristics from EEG signals (Nunsong and Woraratpanya, 2015) as well as to explore the key patterns in biomedical signals and image processing (Prieto et al., 2011). The FD is commonly used to analyze and classify EEGs signals (Finotello et al., 2015). Based on our previous work (Al-Salman et al., 2018), it was found that extracting features from FD could reduce the complexity of computation time and also increased the detection accuracy.

In this paper, the box counting algorithm is employed and applied to estimate the FD (capacity dimensions) of a T-F image to identify k-complexes in EEG signals. The box counting method can be described as follows: Suppose that M is a T-F images and we need to calculate the FD of M. The following main formula is utilized.

[image: image]

Based on the equation above, Dim is a FD, N(r) is the total number of boxes, and r is the size of boxes that are required to cover image M. To cover the entire T-F image, different sizes of boxes are tested, and N(r) and r are determined. Figure 6 presents an example illustrating how the number and size of boxes were created. More details about the box counting algorithm is provided in our previous work (Al-Salman et al., 2019).


[image: image]

FIGURE 6. An illustration of the box counting algorithm to create the size and the numbers of boxes.





Features Extraction Based on Fractal Graphs

Different window sizes of 0.5, 1.0, 1.5, and 2.0 s were tested in this study to investigate the most suitable number of boxes required to cover the curve. The number of the boxes that are required to cover the entire T-F images using 0.5 s is shown in Table 2, while Table 3 presents the number of boxes with different sizes of windows. As mentioned before, the FD is calculated after transferring an EEG segment into T-F images using the STFT. Then, the box-counting algorithm is applied on each T-F image to extract the features of interest. The values of those features range between 1.0 and 2.0. Each element in the FDs is calculated based on logN(r)/log(1/r). By using the slope of a least square best straight line, the fractal is obtained. From each T-F image, ten FD features as a vector are extracted from each TFI.

TABLE 2. The number of boxes in ten scale according to the box size by using 0.5 s window sizes.
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TABLE 3. The number of the boxes in seven scales using different window size of 2.0, 1.5, 1.0, and 0.5 s.

[image: image]

For example, if the box size r is 16, the size of window is 0.5, 1.0, 1.5, and 2.0 s and the number of boxes is 1232, 1973, 2357 and 3351, respectively, as shown in Table 3. Based on the equation of logN(r)/log(1/r), the fractal value for the seventh feature (FD7) is 1.204 with window size 0.5 s, as shown in Table 2. However, to obtain 10 FDs from each T-F image, the same procedure is repeated 10 times. In general, the FD values are between 1.0 and 2.0 and all the FD values are non-integer. Based on the experimental results during the training phase, the proposed method provides better classification results using a window size of 0.5 s than the window sizes of 1.0, 1.5, and 2.0 s. More details regarding windows sizes will be presented in section Experimental results.


Structure and Construction of Graph Properties

Undirected graph properties have been used to analyze and study brain diseases (Vural and Yildiz, 2010; Wang et al., 2014). The graph may be considered as one of the more robust tools to characterize the functional topological properties in brain networks for both normal and abnormal brain functioning (Stam et al., 2007; Li et al., 2013). It is widely used to identify EEG signals such as sleep stages, as well as to classify digital images (Sarsoh et al., 2012; Diykh et al., 2016). In this study, the structure of graph properties is employed to identify k-complexes from EEG signals.

An undirected graph can be described as a set of nodes and edges. A graph is a pair of set G = (V, E), where V is a set of nodes in a graph and E is a set of connections between the nodes of graphs. Each pair of nodes in a graph is connected by a link. The connection denotes that there are relationships between each pair of nodes in a graph (Blondel et al., 2004; Migotina et al., 2010; Bernhardt et al., 2015). The Euclidean distance has been used in this study as a similarity measure (Huang and Lai, 2006). The edges between the first point and others are calculated using the Euclidean distance. Figure 7 shows a vector of FD as example X = {1.2, 1.4, 1.3, 0.7, 1.9, 2.2, 0.3, 2.0, 2.8, 4.6, 12.2, …}, being transferred into an undirected graph which is obtained from the TFIs based on Eq. 4. To construct the undirected graph, each data point in X was considered to be a node in a graph. v1 is the first node in the graph corresponding to the first point in the vector X with a value of 1.2. The edges between this point and the others were calculated based on Euclidean distance. More details about Euclidean distance were provided in Zhang and Small (2006), Zhu et al. (2014), and Jain et al. (1999). Consequently, a distance matrix (adjacency matrix) is produced according to Eq. 7. Based on the proposed method, the undirected graph can be characterized with its degree distributions, cluster coefficient and Jaccard coefficient. The next section provides more details in relation to the undirected graph characteristics.
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FIGURE 7. A vector of fractal dimension is mapped into an undirected graph.



To build the adjacency matrix, we assume that there are two nodes, v1 and v2, in an undirected graph. Those nodes are connected if the distance (d) between v1 and v2 is less than or equal to a pre-determined threshold as explained in the following (Boccaletti et al., 2006; Huang and Lai, 2006; Lacasa and Toral, 2010; Zhu et al., 2014; Diykh et al., 2016).

[image: image]

where thr is the pre-determined threshold. Since the structure of the graph is generally biased by the number of existing edges, statistical measures should be calculated on graphs of equal degree k. Therefore, the threshold was defined in this study by adopting the mean degree as an appropriate threshold scheme to reveal the informative network topology which is the average number of edges per nodes of the graph. More details about adopting the mean degree as the threshold was provided in Sporns and Zwi (2004), Stam et al. (2007), Dimitriadis et al. (2009, 2010), and Micheloyannis et al. (2009).
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Graph G can be described by giving a square matrix T × T called adjacency matrix B. This matrix is used to describe the connection between all the nodes of the graph. The adjacency matrix contains zeros in its diagonal. Thus it is considered to be a symmetrical matrix. The value of this matrix is equal to zero if there is no connectivity among two nodes (v1 and v1), and otherwise it is equal to one (Boccaletti et al., 2006). However, the connectivity matrix of an undirected graph is symmetric as B(vi, vj) = B(vj, vi).

[image: image]

It is clear from Figure 7 that the node v11 of Euclidean distance has no connection to any other nodes in the graph. That means that this node is an isolated point in the graph. In this paper, all the graphs have been constructed with the same number of nodes. The next section provides more details in relation to the undirected graph characteristics.



Graph Features

In this study, the adjacency matrix of a graph G has been used to extract the statistical features. Those statistical features of a graph can be used for the detection of k-complexes from EEG signals in this paper. The following section describes the important features that can be extracted from graph G (Li et al., 2013; Fang and Wang, 2014; Diykh and Li, 2016).


Degree distributions (DD) of the graph

The DD of graph G, denoted by P(k), is defined to the proportion of nodes with degree k partitioned by the total number of nodes in the graph (Stam and Reijneveld, 2007; Zhu et al., 2014; Diykh et al., 2016). It is obtained by counting the number of nodes having degree k divided by the total number of nodes (Zhu et al., 2014). The DD is defined as:

[image: image]

where d(v) refers to the degree of node v, while U is the total number of nodes in the graph. For example, in Figure 7, [image: image].



Clustering coefficient (CC) of the graph

The CC can be considered as one of most important metrics utilized to characterize both local and global structures of a graph, G. It was used by Stam et al. (2007) and Li et al. (2013) to analyze brain activities. Assume that vi is a node in the graph. The clustering coefficient of a given node, vi is calculated as the proportion of the links among vi’s neighbors. For example, the CC of node vs in Figure 7 is 1 as the node vs has three neighbors: (v4 → v5, v3 → v5, v5 → v6). Thus, the CC of vs = 1. The average of the CC of all the nodes is measured as:

[image: image]

where U is the number of the nodes in graph G and Gvi is the clustering coefficient of node vi.



Jaccard coefficient of the graph

Jaccard coefficient is used to measure the similarity between two nodes of a graph. Assume vi and vj are two nodes in graph G. Jaccard coefficient can be defined as a ratio of the set of the neighboring intersection between vi and vj to the set of the neighboring unions for the two nodes. Jaccard coefficient was used by Anuradha and Sairam (2011) to classify digital image. It was also utilized by Iglesias and Kastner (2013) to analyze the similarity between two time series. Their results showed that using a Jaccard coefficient helped to improve satisfactory classification results. Jaccard coefficient function is calculated based on the following equation:

[image: image]

where Γ(vi) and Γ(vj) are the sets of neighbors of the two nods, vi and vj, that have an edge from vi and vj, and 𝐌=[0, 1]. In this study, for each graph, a Jaccard coefficient vector is computed. Figure 8 shows the main steps of the features extraction process using the proposed method.


[image: image]

FIGURE 8. A graphical diagram of feature extraction.







Classification Algorithms

After the three fractal graph features are obtained from each graph, they are forwarded to a LS-SVM classifier to identify k-complexes in sleep EEG signals. For comparison, a k-means classifier is also applied. Based on the literature (Siuly et al., 2011; Siuly and Li, 2012; Al Ghayab et al., 2016; Al-Salman et al., 2018, 2019), we found the two classifiers are considered the most popular and effective methods in biomedical signal classification. The training parameters of the selected classifiers were presented in Table 4.

TABLE 4. Classifiers’ parameters used in this study.

[image: image]


Least Square Support Vector Machine (LS-SVM)

The LS-SVM classifier was first developed by Suyken and Vandewalle (Guler and Ubeyli, 2007) based on the last version of a support vector machine. It is widely used to classify various types of biomedical signals because it has showed great performance results with a high accuracy rate and low execution time. Many researchers used the LS-SVM classifier to classify different characteristic patterns of EEG signals, such as sleep stages, sleep spindles and epileptic seizures (Sengur, 2009; Siuly and Li, 2012, 2015; Bajaj and Pachori, 2013; Al Ghayab et al., 2016; Diykh et al., 2016). It was used for the detection of sleep spindles in EEG signals in our previous work (Al-Salman et al., 2018).

The LS-SVM classifier generally depends on two hyper parameters, γ and σ. Those parameters should be carefully chosen due to they can positively or negatively affect the performance of a method to increase or decrease the classification rate. The radial basis function (RBF) kernels, γ and σ are empirically selected during the training session. In this paper, the optimum values for γ and σ are set to γ = 10 and σ = 1.



K-Means

The k-means classifier is a second classifier being employed in this study. It is considered as one of the most popular approaches in biomedical data classification. In general, the k-means classifier is known as a clustering algorithm (Faraoun and Boukelif, 2006; Al-Salman et al., 2018). It partitions observations into a number of groups according to the similarities or dissimilarities among their patterns. The Euclidean distance for a k-means classifier is usually used for the dissimilarity measure. It was used by Al-Salman et al. (2018) for detecting the sleep spindles, and by Orhan et al. (2011) for detecting the epileptic EEG signals. In this research, the k-means classifier is used to distinguish between k-complexes and non-k-complexes waveforms.




Performance Evaluation

In order to evaluate the performance of the proposed method with different EEG categories, the following metrics, accuracy, sensitivity and specificity are used in this paper. The main formulas of those statistical measurements are defined as Tawfik et al. (2016) and Yücelbaş et al. (2018b).

[image: image]

where TN (true negative) is the actual non-k-complexes that are correctly classified as non-k-complexes. FP (false positive) refers to the number of k-complexes that are incorrectly determined by a classifier. TP (true positive) means the actual k-complex waves that are correctly detected. FN (false negative) shows the actual k-complexes that are incorrectly marked as non-k-complexes. More details for those metrics and other measurements are provided in Al-Salman et al. (2018).


Matthews’s Correlation Coefficient (MCC)

MCC is used in machine learning as a measure of the quality of binary classifications. It provides a balanced evaluation of the detector as compared with sensitivity and specificity values, which can be used even if classes are of unequal size. It is defined in Migotina et al. (2010) and Matthews (1975):
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F-Score

One of the most important measurements that are used to show the overlapping between the two sets. F-score is defined by weighted sensitivity and precision.

[image: image]



Kappa Coefficient

It is a statistic measure used to evaluate the agreement between two classification results. In this paper, it is employed to evaluate the agreement between two models, the proposed method and expert (expert 1). It is defined as below:

[image: image]

where, [image: image], and N = (TP + FP + TN + FN).



K-Cross Validation

It is a popular approach used for evaluating the performance of a classification algorithm. It is utilized to estimate the quality of the classification results by dividing the number of correctly classified results by the total of the cases. The datasets in section “EEG Data Description” are separated into k groups with equal size. Each time, one group is used as the testing set, while the remaining subsets (groups) are used as the training set. All the groups are tested in turn. The testing classification accuracy for all groups is calculated. In this paper, 6- cross-validation is used as the accuracy is not improved after k > 6. The average accuracy for all testing subsets is computed below:

[image: image]

where (k) is the accuracy over the six iterations (k = 1, 2, …, 6).





EXPERIMENTAL RESULTS

All the experiments were conducted with the database discussed in section “EEG Data Description” and three structural graph features were extracted from each FD of the T-F images in this study. The features graph were sorted in a descending order based on their importance as shown in Figure 9. Based on the obtained results, the proposed method with the three graph features recorded high classification results, with an average accuracy of 97%. All the experimental results were obtained in a Matlab 2015b environment on a computer that has the following features: 3.40 GH Intel (R) CoreTM i7 processor machine, and 8.00 GB RAM. The experimental results were evaluated in terms of accuracy, sensitivity, and specificity. The 6-fold cross validation was also used in this study.


[image: image]

FIGURE 9. Classification accuracy based on individual graph features.



According to Figure 9, some attributes of a graph, such as the Jaccard coefficient, were more significant that other graph attributes in recognizing k-complexes. To investigate the effectiveness of the characteristics of the graph on the identification of the k-complexes, the mean and standard deviation measurements for each segment were used in this study, as shown in Figure 10. From the results in Figure 10, we can see that the three of the graph features: Jaccard coefficient, clustering coefficient, and degree distribution can be used as key attributes to differentiate the k-complexes. All the characteristics of the graph have reported reasonable results in term of standard deviation, as shown on Figure 10. Based on the literature, the obtained results indicate that the three graph features of {Jaccard coefficient, clustering coefficient, and degree distribution} can be used to distinguish between k-complexes and non-k-complexes EEG segments.


[image: image]

FIGURE 10. Mean and standard deviation of undirected graph features.



The results based on the three features set by the proposed method are presented in Table 5. Based on the results in Table 5, it was observed that, the three features set of the graph yields the highest accuracy for the detection of k-complexes in EEG signals. The obtained results demonstrated that the proposed method yielded the best performance with an average accuracy, sensitivity and specificity of 97, 96.6, and 94.7%, respectively. All the results in Table 5 were carried out using LS-SVM classifier with a window size of 0.5 s. For further evaluation, the performance of the proposed method was also tested using a FPR and kappa coefficient. The FPR and kappa coefficient have been calculated for each subject and the average of all the results was investigated. The average of the FPR and kappa coefficient of the proposed method was 0.060 and 0.87, respectively. Based on the literature, the obtained results by the FPR and kappa coefficient provided evidence that the proposed method has the potential to classify k-complexes and non-k-complexes in EEG signals.

TABLE 5. The performance of the proposed method based on the DD, JC and CC.

[image: image]


Performance of the Proposed Method Based on Different Window Sizes

To detect all possible occurrences of the k-complexes in the original EEG signals, and to assess the ability of the proposed method to identify the k-complexes, three other window sizes of 1.0, 1.5, and 2.0 s were tested in this paper. The features described in Section “Graph Features” were extracted, and the dataset was divided into six subsets. The average accuracies of the proposed method were recorded from the 6-fold cross evaluation. The accuracies against the expert’s scoring using different window sizes were reported in Figure 11. From the results in Figure 11, it can be seen that it was difficult to detect k-complexes in EEG signals with 2.0 s window size, which makes sense since the most of the occurrences of k-complexes have a window size of 0.5 s. Our findings show that, there were large disagreements between the proposed method and the expert (Expert 1) in some datasets when 1.5 s window size was used.


[image: image]

FIGURE 11. Performance comparisons by the proposed method using different window sizes.



On the other hand, it was observed that the proposed method has the capacity to identify k-complexes at a window size of 1.0 s and there was only slight disagreements between the proposed method and the expert’s scoring. Our findings show that the proposed method achieved the highest results when the window size of 0.5 s with overlapping of 0.4 s was used. The maximum accuracy was 97%.



Performance of the Proposed Method Using Receiving Operating Characteristic Curve

The performance of the proposed method was also evaluated based on a Receiving Operating Characteristic (ROC) curve. Figure 12 depicts the ROC analysis results of the LS-SVM classifier. The ROC is a suitable metric in studying the dependence of sensitivity and specificity. The relationship between the true positive rate and FPR were investigated in this paper using the ROC curve. A good test is the one for which sensitivity (true positive rate) rises rapidly and 1-specificity (FPR) hardly increases at all until sensitivity becomes high (Übeyli, 2008). From Figure 12, it is seen that the area value of the ROC curve is 97, which indicates that the LS-SVM model has effectively detected the k-complexes in EEG signals using the extracted features from the graph. Therefore, it is obvious that the fractal graph features well represent the EEG signals and the LS-SVM classifier trained on these features achieves a high classification accuracy.


[image: image]

FIGURE 12. Performance evaluation of the proposed approach using the LS-SVM classifier based on the ROC curve.





Performance Comparisons Using Different Classifiers, Different Data-Driven Thresholding Scheme and With Other Existing Studies

Three types of comparisons were conducted in this section. Firstly, the performance of the proposed method was compared with a different classifier, k-means classifier. Secondly, the proposed method was also compared with different data-driven thresholding scheme. Finally, the proposed method was compared with other studies that used the same datasets as described in section “EEG Data Description.”


Comparison With K-Means Classifier

Figure 13 shows the comparison results between the LS-SVM and k-means classifiers using the extracted features. The same number of segments were used. The segments were chosen randomly from the database. The selected segments were separated into a training set and a testing set, and then were forwarded to the classifiers, separately, to identify k-complexes. Based on the results in Figure 13, it can be observed that the performance of the proposed scheme using the LS-SVM was better than that by the k-means classifier. The accuracy of the k-means classifier was degraded from 65 to 51% when the number of the segments gets to 4000. In terms of accuracy, sensitivity and specificity, the proposed method based on the LS-SVM classifier outperformed the k-means.


[image: image]

FIGURE 13. The performance comparison between the proposed method and the k-means classifier.



For more investigation, the execution time of the proposed method was calculated based on the LS-SVM classifier as well as to the k-means classifier. Figure 14 shows the complexity time for the LS-SVM and k-means classifiers. To compute the performances of the two classifiers, the same computer having the same settings was used, with the same input data segments. The complexity time of the proposed method was recorded for each classifier. From Figure 14, we observed that the proposed method took an acceptable time although it had more processing steps involved in the algorithm. Based on the obtained results, the highest execution time was recorded with the LS-SVM classifier compared with the k-means classifier. Although converting the fractal features to the undirected graphs take more time, it resulted in more accurate results in k-complexes detection.


[image: image]

FIGURE 14. Comparison of the execution time among the proposed method and k-means.



To shed more light on the comparison, the performance of the proposed method was also compared with k-means classifiers for detecting k-complexes in EEG signals based on 6-fold cross validation. The EEG data were divided into six folds and each fold was tested six times. The boxplots for each fold based on 6-fold cross validation were shown in Figures 15, 16. According to the results in Figure 16, it was observed that there was an improvement achieved with the proposed method to detect the k-complexes in EEG signals when the LS-SVM classifier was used to classify the features compared to the k-means classifier. It is clear from these results, the extracted features based on fractal graphs coupled with the LS-SVM classifier have better ability to distinguish the k-complexes in EEG signals.


[image: image]

FIGURE 15. The boxplot of the classification accuracy based on 6-fold cross validation for k-means classifier.




[image: image]

FIGURE 16. The boxplot of the classification accuracy based on 6-fold cross validation for LS-SVM classifier.





Comparison With Different Data-Driven Thresholding Scheme

The proposed method was tested with different data-driven thresholding scheme reported in Dimitriadis et al. (2017a, b) such as minimal spinning tree (MST) and orthogonal minimal spinning tree (OMST). A spanning tree is a subgraph that includes all nodes of the original graph but it has no cycles. The MSTs try to connect simultaneously all the nodes of the graph by minimizing the cost of the total sum of the weighted links. An MST based on the Kruskal algorithm was used in this study to search the MST in an undirected weighted graph and remove redundant edges. On the other hand, the OMSTs try to capture the most significant connections under the constraint of the MST. More details about the data-drive threshold method was provided in Dimitriadis et al. (2017a, b).

In this paper, the proposed method was also compared with MST and OMST approaches; we optimized the mean degree following a step of 0.1 from mean degree = >5 up to mean degree = <8 toward the maximization of accuracy. The best classification performance was obtained when k was 6 and the optimal matching step was 0.2, with an accuracy of 97%, as shown on Table 6. The main reason for that is small mean degrees produces more informative features that further improve classification performance. Also, when the mean degree was small, features that contributed more to the classification were also chosen, leading to higher classification accuracy (Breakspear and Terry, 2002; Rutter et al., 2013; Guo et al., 2018). Thus, the experimental results showed that the optimizing mean degree influenced the classification results. Furthermore, the results in Table 6 indicate that network analysis of an undirected graph to detect k-complexes in EEG signals has been realized in binary graphs using MST, OMST and arbitrary thresholding. However, our findings showed that the proposed method using an arbitrary threshold reported better accuracy, sensitivity and specificity than that of those methods: the MST and OMST. Therefore, in this study, we consider arbitrary thresholding. Table 6 shows the comparison results among different data-driven schemes.

TABLE 6. The performance of the proposed method over various thresholding schemes.
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Comparison With Other Methods Based on Different Measurements

For further evaluation, the performances of the proposed method was compared with other methods based on different metrics, including F-score, recall, precision and Matthews (MCC). Figure 17 shows the result of comparisons based on different measurements. They were used in different methods to detect k-complexes in EEG signals (Devuyst et al., 2010; Parekh et al., 2015; Ghanbari and Moradi, 2017). They conducted their methods with the same database as used in this study. It can be seen in Figure 17, that the proposed detection approach has a better F-score, recall, precision and MCC values compared with those by other methods. The averages of F-score, recall, precision and MCC were 0.77, 0.96, 0.78, and 0.83%, respectively. Our method performed better than other detection methods, and it achieved higher results compared with those by others.


[image: image]

FIGURE 17. Performance comparison of the proposed method for k-complex detection using different assessment measures.





Comparisons With Other Existing K-Complexes Classification Methods

Table 7 represents the performance comparisons among the seven reported methods (Devuyst et al., 2010; Erdamar et al., 2012; Vu et al., 2012; Krohne et al., 2014; Zamir et al., 2015; Patti et al., 2016; Ranjan et al., 2018). All these studies used the same database as discussed in section “EEG Data Description.” According to the results in Table 7, the proposed method is the best among the seven methods. Additionally, it achieved a high accuracy, sensitivity and specificity of 97, 96.6, and 94.7% compared with those methods.

TABLE 7. Performance comparisons between the proposed method and other different k-complexes detection approaches with the same datasets.

[image: image]

Patti et al. (2016) reported their results of the k-complexes detection with the same database. The average of the sensitivity results they achieved was 84%. The average accuracy was lower than that obtained in this study. Vu et al. (2012) focused on designing a hybrid classifier to detect k-complexes in EEG signals using a hybrid synergic machine learning method. A set of features were extracted from each EEG segment and a representation instance classifier was used to classify the extracted features. Overall, they reported an average of the classification accuracy of 90.2%. Based on the obtained results, the proposed method outperformed the one by Vu et al. (2012).

Another study was made by Devuyst et al. (2010), in which a likelihood threshold was used to detect k-complexes. That study was conducted using the same datasets as the ones used in this paper. The authors reported only true positive rates. The obtained results in our method were higher than those by Devuyst et al. (2010). Ranjan et al. (2018) detected k-complexes using a fuzzy algorithm combined with an artificial neural network. In that study, features were extracted from each EEG segment and then forwarded to a fuzzy neural network algorithm to identify k-complexes in EEG signals. An average accuracy, sensitivity, and specificity of 87.56, 94.04, and 76.2%, were reported, respectively. The classification results were also lower than those by the proposed method. A convert optimization technique was utilized by Zamir et al. (2015) to detect k-complexes. In that study, different features were extracted and ranked based on a feature selection algorithm. The best classification accuracy of 84% was reported. Their accuracy was lower than that of the proposed method.

Erdamar et al. (2012) detected k-complexes using two main stages, including a wavelet transformation combined with a Teager energy operator. In that study, features were extracted based on the amplitude and duration properties of k-complex waveforms. The results from both stages were combined to make a robust method for the detection of k-complexes. In comparison, the proposed method yielded a high classification accuracy than that by Erdamar et al. (2012). Krohne et al. (2014) classified EEG signals into k-complex and non-k-complex segments based on wavelet transformation. In that study, different datasets were used. Their results with both databases were lower than our proposed method. It is clear that the proposed method yielded the highest accuracy compared with the seven other methods using the same datasets.

For further evaluation, the performance of the proposed method was compared with those by Hernández-Pereira et al. (2016), Gala and Mohylova (2009), Ranjan et al. (2018), Noori et al. (2014) based on the types of features and classifiers used. Table 8 shows the results of the comparison. It can be noticed that the proposed scheme reported the highest accuracy compared with the four other methods. The proposed method obtained an average accuracy of 97% with fractal and graph features. This demonstrated that the proposed approach achieved the best performance in terms of classification accuracy.

TABLE 8. Comparisons between the proposed method and other studies based on the type of features and classifiers used.
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CONCLUSION

In this paper, the FD technique and undirected graph properties are used to detect k-complexes in EEG signals. In the proposed method, each 0.5 s EEG segment was passed through the spectrogram of the STFT to obtain the time-frequency images (T-F images). Then, the box counting algorithm was applied to each T-F image to calculate the FD. A vector of FD was mapped into an undirected graph to extract the features of interest. Three features were extracted from each graph and they were forwarded to a LS-SVM classifier to identify k-complexes in EEG signals. The experimental results showed that the graph features achieved better performance for the detection of k-complexes with an average accuracy of 97%.

The proposed method was also compared with other existing methods and with different classifiers to identify the ability of using fractal graph features to detect k-complexes. Based on those comparisons the proposed method achieved the best performance in terms of classification accuracy, sensitivity and specificity. The maximum averages of accuracy, sensitivity and specificity obtained using the proposed method are 97, 96.6, and 94.7%, respectively. The outcomes of this study can help the physicians with diagnosing sleep disorders and potentially it can reduce the medical costs. In our future work, the fully weighted version will be taken into consideration as a new methodology to detect other sleep characteristics such as sleep spindles, Sawtooth waves, Alpha waves, and vertex waves.
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Identifying lateralization of bilateral temporal lobe epilepsy (TLE) is a challenging issue; scalp electroencephalography (EEG) and routine band electrocorticography (ECoG) fail to reveal the epileptogenic focus for further temporal lobectomy treatment. High-frequency oscillations (HFOs) can be utilized as a biomarker for lateralizing the onset zone in suspected bitemporal epilepsy. Except subjective vision detect the HFOs, objective verification should be performed to raise the accuracy. In the present research, we prospectively studied 10 patients with refractory temporal seizures and who underwent ECoG with wide-band frequency amplifiers (2,048 Hz); all patients had a class I outcome after temporal resection. Pre- and ictal HFOs will be analyzed by wavelet transform (WT) and Granger causality (GC) to objectively verify lateralization of the seizure onset zone (SOZ). WT analysis showed ictal HFOs in 10 patients mainly covered from 80 to 115 Hz (average, 92.59 ± 10.23 Hz), and there was distinct bandpass boundary between pre-ictal HFOs and ictal HFOs. GC analysis showed five patients (2, 4, 5, 6, and 7), no matter the pre-ictal or ictal state, had the highest GC degree in SOZ itself. The remaining patients (1, 3, 8, 9, and 10) had the highest GC degree in SOZ with its adjacent regions in the pre-ictal and ictal stages. GC analysis further confirmed the result of the WT and suggested HFOs are initiated and propagated in the local brain region mainly, afterward, transmitting to adjacent brain regions. These results indicated that the combination of WT and GC analyses significantly contributes to accurate lateralization in patients with suspected bitemporal epilepsy.

Keywords: bilateral temporal epilepsy, localization, lateralization, wavelet transform, Granger causality


INTRODUCTION

Epilepsy is a chronic neurological disorder manifested by abnormal excessive or synchronous neuronal activity in the brain. It affects more than 50 million people worldwide (WHO, 2018). Although most patients could achieve seizure control with antiepileptic drug (AED) application, unfortunately, despite more appropriate AED therapy, approximately 30% of patients still experience recurrent seizures (de Tisi et al., 2011; Kwan et al., 2011; Barr and Morrison, 2015). Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy often refractory to AEDs and referred for epilepsy surgery (Téllez-Zenteno and Hernández-Ronquillo, 2012). Surgical removal of brain tissue involved in the seizure onset generation for TLE is an effective treatment (Schomer and Lewis, 2012) that could benefit nearly 70% of patients with TLE (de Tisi et al., 2011; Sherman et al., 2011). So, accurate lateralization is crucial before temporal lobectomy.

There is a big challenge in lateralizing bilateral TLE; this is due to conventional scalp electroencephalography (EEG) and magnetic resonance imaging (MRI) often being non-lateralized and discordant in ictal localization. In order to overcome the limitations, intracranial electrodes are often implanted to confirm the origin of the seizures. Routine band invasive EEG monitoring fails to identify the seizure laterality. Recently, high-frequency oscillations (HFOs) have been widely recognized as a biomarker for the epileptic zone (Jacobs et al., 2012; Maeike et al., 2012; Dümpelmann et al., 2015). They are grouped into ripples (80–250 Hz) and fast ripples (250–500 Hz) and have been associated to seizure genesis (Staba et al., 2002; Urrestarazu et al., 2007; Bragin et al., 2015). Removal of brain regions with HFOs seems to result in favorable surgical outcome, and the ratio between ripple rates in removed and nonremoved contacts was significantly higher in patients with a favorable outcome [International League Against Epilepsy (ILAE) classes 1–3] compared to patients with a poor outcome (ILAE classes 4–6; Julia et al., 2010). To some extent, HFOs are better biomarker than others in lateralizing seizure origin in bilateral TLE. Our previous study had subjectively evaluated the value of HFOs in lateralizing bitemporal epilepsy (Liu et al., 2016); objectively investigating HFOs are not performed yet.

Generally, EEG signal is nonstationary, the time–frequency domain, like wavelet transform (WT; Gadhoumi et al., 2012), provides higher success than signal features that were extracted in the time or frequency domain; furthermore, it has been adopted in automatic seizure detection (Ayoubian et al., 2013). Thus, it is significantly utilized in detecting the power of HFOs. One approved viewpoint is seizures are thought to spatially initiate and propagate from a discrete seizure focus (Bertram et al., 1998), and whether the HFOs also initiate and propagate in unilateral temporal lobe and whether these characteristics contribute more to lateralizing seizure focus remain unrevealed. An animal model of TLE research highlights the utility of Granger causality (GC) to reveal dynamic directional temporal relationships between multichannel local field potential (LFP) recordings and indicated distinct patterns of directional GC relationships within the hippocampus prior to and during seizure onset (Cadotte et al., 2010). Two cases of focal seizure disorder patients were analyzed by GC to measure causality across brain regions involved in ictal events, and it was found that both examples have shown hypercoupling near the seizure foci and low causality across nearby brain regions (Coben and Mohammad-Rezazadeh, 2015). So, using GC analysis to reveal directional relationships may be more helpful to identify the seizure onset zones (SOZs). We postulate that WT could objectively reveal HFOs, and GC analysis not only strengthens the accuracy rate in lateralizing bilateral TLE but discovers propagating regularity.



MATERIALS AND METHODS


Patient Selection

Ten patients clinically suspected to have bitemporal epilepsy and who were undergoing investigation for their epilepsies with intracranial electrode implantation enrolled at Beijing Xuanwu Hospital Comprehensive Epilepsy Center between April 2012 and April 2014 (the subjects in this study partly overlapped with those in our previous work). Patients had a comprehensive noninvasive evaluation prior to intracranial exploration, and sites for electrode placement were individualized based on seizure semiology, clinical history, and previous electrophysiological investigations; implanted electrodes are given in Table 1. Basic MRI scanning was performed on all patients using a Siemens Trios 3-T scanner (Siemens, Erlangen, Germany) with conventional epilepsy protocols, including T1WI, T2WI, T2-FLAIR, and oblique coronal T2-FLAIR. Additionally, ordinary whole-brain volumetric series were obtained by magnetization-prepared rapid gradient echo (MPRAGE) sequence, and T2-FLAIR oblique coronal images of both hippocampi were also acquired from perpendicular to the long axis. Few patients were scanned by single photon emission computed tomography (SPECT), magnetic resonance spectroscopy (MRS), and magnetoencephalography (MEG). All patients gave written informed consent and the study was approved by the Medical Research Ethics Committee at Xuanwu Hospital Capital Medical University.


TABLE 1. Number of channels analyzed out of the total bipolar channels recorded, and description of the sites of electrode insertion.
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High Sampling Data Recordings

Bilateral strip electrodes with four to eight one-sided circular contacts (2.3 mm in diameter and with a center-to-center separation of 10 mm) were placed over the temporal pole and/or temporal basal region in all 10 patients; effective surface area was 4.15 mm2. Furthermore, additional depth electrodes were placed into the mesial temporal lobe structures in eight patients via the occipitotemporal (Blatt et al., 1997; Van Roost et al., 1998; Kral et al., 2002); it was composed of four to six cylindrical contacts (2.3 mm long, 1 mm in diameter, 10 mm apart center to center) that were mounted on a 1-mm-wide flexible plastic probe. Its effective surface was 7.2 mm2. Electrode position was confirmed with postoperative cranial x-rays, fine-cut computed tomography (3-mm cuts), and MRI. Electrocorticography (ECoG) data were acquired in a 128-channel Micromed system (16 bit, bandwidth at 3 dB: 0.5–100 Hz, Mogliano Veneto, Italy) by conventional sampling rate of 512 Hz and higher sampling rate of 2,048 Hz using a 256-channel broadband frequency amplifier system (16 bit, bandwidth at 4 dB: 0.1–500 Hz, Yunshen Technology Limited Company, China).

The electrode/contact least likely to be involved in seizure onset and with the least artifacts was selected as a reference. Seizure onset was defined as earliest occurrence of rhythmic sinusoidal activity or repetitive spikes that clearly were distinctive from the background and evolved in frequency and morphology (Modur et al., 2011). The ictal onset zone was defined as the contacts that showed the seizure onset alteration in invasive EEG (iEEG). The iEEG was recorded using an input filter of 0.5–100 Hz and a sensitivity of 500–1,000 μV/cm. HFOs were filtered as frequencies >80 Hz with a root mean square amplitude increase of more than five times the standard deviation compared to the background EEG (Bragin et al., 2015), to observe the evolution of the HFOs in the pre-ictal and ictal periods.



Marking Ictal High-Frequency Oscillations

Two senior neurologists from Beijing Xuanwu Hospital Comprehensive Epilepsy Center confirmed the HFOs that were recorded during the period of implantation. Any HFOs were excluded if they were not associated with the ictal event. Electrodes with poor contact were also excluded. For identifying HFOs, channels were displayed with the maximum time resolution of the computer monitor (0.6 s, 1,200 samples of a signal sampled at 2,000 Hz). The amplitude scale was 1 μV/mm. Characteristic HFOs were chosen visually from unfiltered EEG signals and viewed at 10 s/page in a bipolar montage wherein consecutive contacts on each electrode are compared.



Wavelet Transform and Granger Causality Analyses

Raw data will be preprocessed before the WT and GC in a brainstorm software1 (Tadel et al., 2011). In order to get distinct HFOs, according to the definition of ripples, the bandpass will be set 80–250 Hz, and the time scope will be set 5 s pre- and ictal HFOs. The WT of the ECoG was calculated as:


[image: image]


As the scale and translation parameters a and b are taken at discrete values, discrete WT is obtained. The parameters a and b are often based on powers of two and called dyadic scales and translations:


[image: image]


So the equation becomes:
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The set of Ψj,k (t) forms a basis of square integrable space L2 (R).

If the basis function Ψj,k (t) is orthogonal, then the original signal can be reconstructed from the resulting wavelet coefficients accurately and efficiently without any loss of information.

GC methods make use of the variance of prediction errors to extrapolate directional relationships. X1(t) and X2(t) and future values of X1(t) are going to be predicted by using two different data sets: using only the past values of X1(t) and by incorporation of past values of X1(t) and X2(t). If incorporating the past knowledge of X2(t) permits more accurate prediction of X1, then X2 could be called a casual to X1 (Cadotte et al., 2008). Suppose X1 and X2 can be represented by single-variable autoregressive models, its basic formulae are as follows:
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A joint predictor of X1(t) can be defined as:
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Here, if the variance of prediction error [image: image] is less than the variance of [image: image], then it is an indication of a causal interaction from X2(t) to X1(t). The magnitude of causality from X2 to X1 is defined as [image: image]; thus, if [image: image], then the magnitude of causality from X2 to X1 is zero.

A single electrode or common average referential montage can result in a bad signal on all channels if the reference contains high-frequency artifacts; thus, bipolar montages are adopted in WT analysis. Because GC is to detect connectivity between two channels, a unipolar montage is adopted in GC analysis. The GC threshold was set 10% of the higher ranking of all channels. GC was analyzed separately 2 s prior and 2 s after ictal seizures between every two channels.



Surgical Procedure, Follow-Up, and Outcome Classification

All surgical procedures were operated by a single neurosurgeon (TY). The resection included a standard temporal lobectomy of the anterior 4.5–5.5 cm of the temporal lobe, sparing the superior temporal gyrus. The amygdale and anterior one-half to two-thirds of the hippocampus were resected and sent for pathological analysis (Kuzniecky et al., 1993). Specimen analysis was performed by a neuropathologist Dr. Piao Yueshan (YSP). The diagnosis of mesial temporal sclerosis was based on the presence of hippocampal neuronal loss and gliosis (Toga and Berard-Badier, 1982). Postoperatively, patients were followed-up by the surgeon (TY). The mean duration of follow-up was 20.1 months (range, 11–32 months; Table 2). Outcome of operation was determined by a mailed questionnaire and confirmed both by structured telephone interviews and by chart reviews. Long-term outcome classification was assessed by the Engel scale (Wieser et al., 2001).


TABLE 2. Clinical characteristics of the suspected bilateral temporal epileptic patients.
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RESULTS


Patients

Ten patients were included in the study (female/male: 5/5; mean age: 32.00 ± 8.78). The average duration of seizure disorder was 14.20 ± 8.66 years. MRI scanning was performed on all patients; SPECT, MRS, and MEG scanning were performed on only some patients. MRI showed left hippocampal sclerosis (HS) in five (patients 1, 3, 5, 7, and 9), hippocampal atrophy (HA) in one (patient 10), left medial temporal cavernous hemangioma (CH) in one (patient 2), and no clear abnormalities in three patients (patients 4, 6, and 8). SEPCT showed hypoperfusion in the left temporal cortex in two (patients 3 and 7), in the right temporal cortex in one (patient 4), and in the bilateral temporal cortex in one patient (patient 8). The MRS showed abnormal function in the right hippocampus (RH; patients 7 and 8). The MEG showed dipoles in the left hippocampus (LH; patients 4 and 7). Scalp ictal EEG showed that all the patients had bilateral TLE; routine band ECoG showed left TLE in six (patients 1, 4, 6, 7, 9, and 10), right TLE in one (patient 8), and bilateral TLE in three patients (patients 2, 3, and 5). All details are shown in Table 2.



Wavelet Transform Analysis of Electrocorticography

After visually detecting the entire video ECoG of each patient, a total of 20 ECoG segments with HFOs were analyzed in 10 s scope pre- and ictal HFOs. The time–frequency power was calculated by the formula ECoG signal units2/Hz · 1012. The HFOs in 10 patients covered from 80 Hz to 115 Hz (average, 92.59 ± 10.23 Hz; Table 3). The representative patient result is shown in Figure 1.


TABLE 3. The time-frequency power of each patient (units: Hz).
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FIGURE 1. This is the representing result of patient No. 6. All recorded channels are in top left corner, the time scope is 10 s, the red line represents the beginning of ictal HFOs, blue PANE shows the HFOs by 80–250 Hz filter. The left down corner is the matrix and granger causality (GC) figures which indicates the causality information. The right line is the time-frequency analyzed by wavelet transform (WT). LH, left hippocampus; LTP, left temporal polar; RH, right hippocampus; RTP, right temporal polar.





Granger Causality Analysis of Electrocorticography

When the electrode with HFOs was confirmed by WT analysis, causality and connectivity between electrode with HFOs and other electrodes were analyzed by GC. Representing results showed that HFOs originated in the left bottom of the temporal-basal region (LTBb) in patient 1; the LH had the highest causality with LTBb (pre-HFOs, 0.92 ± 0.87; ictal HFOs, 0.09 ± 0.06). HFOs of patient 2 originated in the left temporal-basal region (LTB), and the GC analysis showed the highest causality occurred within the LTB (pre-HFOs, 0.13 ± 0.15; ictal HFOs, 0.05 ± 0.05). Patient 3 showed HFOs originated from the LH, the left temporal polar (LTP) had the biggest GC with LH (pre-HFOs, 0.14 ± 0.15), and LH had the highest causality in the period of ictal HFOs (ictal HFOs, 0.03 ± 0.02). The HFOs of patient 4 originated in the LTP, and the GC analysis showed the highest causality occurred within itself (pre-HFOs, 0.15 ± 0.11; ictal HFOs, 0.12 ± 0.10). The HFOs of patient 5 originated in right temporal-basal region (RTB), and the GC analysis showed the highest causality occurred within itself (pre-HFOs, 0.09 ± 0.06; ictal HFOs, 0.01 ± 0.01). HFOs of patient 6 originated in the LH, and the GC analysis showed the highest causality occurred within itself (pre-HFOs, 1.95 ± 2.18; ictal HFOs, 0.38 ± 0.29). The HFOs of patient 7 originated in the LH, and the GC analysis showed the highest causality occurred within itself (pre-HFOs, 0.09 ± 0.10; ictal HFOs, 0.11 ± 0.15). The HFOs of patient 8 originated in the right temporal polar (RTP), RTB had the highest causality with RTP (pre-HFOs, 0.07 ± 0.08), and RTP had the highest causality within itself in the period of ictal HFOs (ictal HFOs, 0.04 ± 0.05). The HFOs of patient 9 originated in the LH, it had the highest causality within itself (pre-HFOs, 0.14 ± 0.12), and the RH had the highest causality with the LH in the period of ictal HFOs (ictal HFOs, 0.13 ± 0.13). HFOs of patient 10 originated in the LH, it had highest causality within itself (pre-HFOs, 0.12 ± 0.08), and LTP had the highest causality with the LH in the period of ictal HFOs (ictal HFOs, 0.14 ± 0.14). All details are shown in Table 2 and Figure 2.
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FIGURE 2. These are all representing results in 10 patients regarding the GC analysis. X-axis is the different brain regions, Y-axis is the degree of GC, the bold circle shows the GC of pre-HFOs, the black square shows the GC of ictal HFOs. The red pane represents the ictal onset region with high-frequency oscillations (HFOs), the blue pane represents the highest GC with ictal onset region among all brain regions with HFOs either in pre-ictal or in ictal state. LH, left hippocampus; LTP, left temporal polar; LTB, left temporal-basal region; LTBb, left bottom of temporal-basal region; RH, right hippocampus; RTP, right temporal polar; RTB, right temporal-basal region; RTBb, right bottom of temporal-basal region.






DISCUSSION

The present research showed that the frequency of ictal HFOs is around 80–115 Hz by WT analysis, and the GC analysis indicated, no matter the pre- or ictal HFOs, that highest causality between electrodes with HFOs mainly originated from the SOZ and then propagated into adjacent brain regions. Combining the WT and GC analyses is more significant in verifying lateralization of suspect bitemporal epilepsy.

WT is an effective tool in signal processing due to time–frequency localization and multirate filtering (Acharya et al., 2011). These properties can be used to extract the desired local characteristics from an input signal in time and space. High-frequency intracranial EEG researches have increasing evidence indicating HFOs could be biomarkers of the seizure onset region (Jacobs et al., 2008; Khosravani et al., 2009) and play a critical role in epileptogenicity (Jacobs et al., 2009; Mirowski et al., 2009); what’s more, it was also consistent with HS or other lesions observed in the MRI of patients with TLE. Ripple frequency oscillations are increased in the SOZ more frequently than fast ripple frequency oscillations, and ripples display higher amplitude at the transition from the inter-ictal to the ictal state. Therefore, ripples in the ictal period may have more advantages in laterality localization. Thus, using WT methods to analyze the evolution and power changes of ripples in the pre- and ictal periods may contribute to lateralization of TLE. Previous researches (Wang et al., 2011; Gadhoumi et al., 2012) developed a variety of WT analysis methods to predict seizure onset, and all of them got significant results. Unfortunately, those results were not verified in patients by surgery outcome. In the present research, distinct bandpass boundary between pre-ictal HFOs and ictal HFOs was found by WT analysis, and all patients underwent unilateral temporal lobectomy and achieved good surgical results, which were consistent with the laterality of SOZ determined by high-frequency WT analysis.

Channels were found carrying unequal discriminative power between pre-ictal and ictal states; analyzing dynamic characteristics of seizure onset channels may have better discriminability for lateralizing SOZ (David et al., 2008). Thus, based on the results of the time–frequency analysis, GC analysis was performed on causality and connectivity of pre- and ictal HFOs to further verify the SOZ. According to our results, the GC analysis showed HFOs mainly originated in the SOZ; afterward, it propagated into neighboring brain regions. This method has shown similar results to dynamic causal modeling (Murta et al., 2012), directed transfer function (Ge et al., 2007), and partial directed coherence (Chan et al., 2012) methods that have plausible estimates of human seizure propagation pathways; furthermore, it has been consistent with pathways demonstrated by diffusion tensor imaging (DTI; Bhardwaj et al., 2010). Preliminary findings have shown regions of increased connectivity in the regions of the seizure foci in the ictal period (Liao et al., 2010; Maccotta et al., 2013). In mesial temporal lobe seizure studies, previous research indicated the presence of focal HFOs near the time of seizure onset may be close or within the epileptogenic focus by wavelet analysis; this regularity was also uncovered by GC analysis in the present study. The increased connection was found between electrodes in the SOZ and regions proximal to it in the ictal period. The enhancement of local connection may supply the pathophysiological basis about epileptic foci.



CONCLUSION

It is significant to lateralize drug-resistant bilateral temporal epilepsy by HFOs. Analyzing ictal HFOs objectively and quantificationally could provide accurate information regarding location of SOZ; what’s more, combining with the GC will substantially improve accuracy. GC analysis further revealed initial focal electrode tightly connected with ictal HFOs and suggested HFOs initiate and propagate in the local brain region, afterward transmitting to the anatomically adjacent brain regions. WT and GC analyses are significant methods for accurately lateralizing patients with suspected bitemporal epilepsy.



LIMITATIONS

In this research, GC analysis was adopted to further lateralize suspected temporal epilepsy. This method was used to quantify directional temporal relationships between financial time series originally, and then it was broadly performed in neuroscience to explore relationships between different brain regions by investigating directed information flow or causality in the brain. Based on this method, there are many analytic techniques developed, such as directed transfer function and partial directed coherence. Both of them are very useful in calculating the information flow in the epilepsy network, but they are still under research. In the present study, we utilize this method, which has been acknowledged by academics, just adding the evidence for HFOs location.
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Arterial input function (AIF) is estimated from perfusion images as a basic curve for the following deconvolution process to calculate hemodynamic variables to evaluate vascular status of tissues. However, estimation of AIF is currently based on manual annotations with prior knowledge. We propose an automatic estimation of AIF in perfusion images based on a multi-stream 3D CNN, which combined spatial and temporal features together to estimate the AIF ROI. The model is trained by manual annotations. The proposed method was trained and tested with 100 cases of perfusion-weighted imaging. The result was evaluated by dice similarity coefficient, which reached 0.79. The trained model had a better performance than the traditional method. After segmentation of the AIF ROI, the AIF was calculated by the average of all voxels in the ROI. We compared the AIF result with the manual and traditional methods, and the parameters of further processing of AIF, such as time to the maximum of the tissue residue function (Tmax), relative cerebral blood flow, and mismatch volume, which are calculated in the Section Results. The result had a better performance, the average mismatch volume reached 93.32% of the manual method, while the other methods reached 85.04 and 83.04%. We have applied the method on the cloud platform, Estroke, and the local version of its software, NeuBrainCare, which can evaluate the volume of the ischemic penumbra, the volume of the infarct core, and the ratio of mismatch between perfusion and diffusion images to help make treatment decisions, when the mismatch ratio is abnormal.

Keywords: AIF, multi-stream, 3D CNN, perfusion, MRI


INTRODUCTION

In recent years, ischemic stroke has become a tremendous health problem all over the world (Naghavi et al., 2017). Stroke incidence in China has increased yearly and stroke has become the leading cause of death (Li et al., 2015; Zhou et al., 2016). The key to the treatment of stroke is to rescue the ischemic penumbra using advanced imaging techniques, such as CT/MR perfusion imaging (Hakim, 1998). However, physicians in suburban hospitals cannot accurately identify the ischemic penumbra due to the lack of experience in imaging interpretation, leading to significant delays in stroke treatment. Hence, enhancing the capabilities of physicians capabilities coming from these hospitals is of great significance (Bjørnerud and Emblem, 2010). In this study, we aimed to setup a platform based on novel arterial input function (AIF) methodology on perfusion CT/MRI which enables automatic ischemic penumbra evaluation.

Perfusion-weighted imaging (PWI) can be used to assess perfusion parameters for noninvasive diagnosis of stroke conditions. This method involves monitoring the continuous changes of the time density curves (TDCs) of a bolus tracer passing though the capillary bed over time. Quantitative analysis using dynamic susceptibility contrast (DSC) MRI perfusion requires determination of the AIF, which is the concentration of the contrast agent over time in a brain-feeding artery. The tissue TDC can be considered as a convolution of the response function with the AIF. To analyze ischemic tissue, the response function which can be calculated by deconvolution with the AIF is necessary. We operated a deconvolution with the TDC on each voxel to obtain hemodynamic maps containing cerebral blood flow (CBF), cerebral blood volume (CBV), time to maximum of the tissue residue function (Tmax), and mean transit time (MTT). The characteristic TDC of a voxel in a major arterial vessel (like the Basal Artery or the Internal Carotid Artery) is considered as AIF, which is known as a reference curve to calculate hemodynamic maps. The AIF is a key reference curve used in the deconvolution model to obtain quantitative CBF, CBV, Tmax, and MTT estimation. As it is the reference curve, AIF has a great influence on the result of the deconvolution operation. To improve reliability, quality, and reproducibility of the AIF estimation, several approaches have been proposed, including alternative measurement techniques such as application of imaging protocols or data processing. Lorenz and Calamante proposed a local AIF extraction method to replace the global AIF (Grüner et al., 2006; Lorenz et al., 2006; Willats et al., 2011). R. Gruner used the theory of homomorphic transformations and complex cepstrum analysis to obtain a voxel-specific AIF (Lorenz, 2004). Murase estimated the AIF using fuzzy clustering for quantification of CBF (Calamante et al., 2004). Chen incorporated knowledge about artery structure, fluid kinetics, and the dynamic temporal property to find the AIF (Zhu et al., 2011). Peruzzo et al. (2011) draws a ROI, then uses a recursive cluster analysis on the ROI to select the arterial voxels. From all these previous studies we realized that deep learning has not yet been used for AIF extraction, and therefore we proposed a network to extract the AIF and compared our method with the traditional method and a combination of Unet3D and fuzzy c-means.

The AIF obtained from a single voxel or a small region is not reliable enough, since noise in spatial measurements and motion in temporal measurements affect the AIF estimation. Therefore, it is more appropriate to extract the AIF in a region or volume (Bleeker et al., 2011; Shi et al., 2014). In addition, the spatial resolution of perfusion sequences is low, making it difficult to identify vessels. Therefore, the selection of AIF depends on the expertise, experience, and skill of experts. High time consumption and low reproducibility are the biggest disadvantages of manual selection of the AIF. Some approaches have been proposed to partially or fully automate AIF estimation (Alsop et al., 2002). Murase et al. (2001), Van Osch et al. (2001), and Duhamel et al. (2006) extracted the AIF using cluster method, but a ROI should be marked manually prior to AIF extraction. Reishofer et al. (2003) extracted the AIF by classification using criteria which involved inherent features of the arterial input, such as an early bolus arrival and a fast passage, as well as a high contrast agent concentration.



MATERIALS AND METHODS


Manual Arterial Input Function Annotation

For manual AIF annotation, the investigator selects an AIF with the cursor and marks the position of the AIF on the PWI data. In the meanwhile he checks the corresponding concentration curve of the bolus tracer. The investigator first selects a region of interest associated with the main feeding vessel, such as the middle cerebral artery. The TDC is displayed according to the pixel as the cursor moves. The investigator determines the pixel location in the region of interest, when the curve is consistent with the AIF characteristics. Subjectively, the ideal AIF is defined as a curve with large amplitude, small width, fast attenuation, and it can also be described as a gamma variate function fitted to the bolus tracer TDC.



3D Convolution

In a 2D network, convolutions only compute features in a plane on the images. It is not applicable to perfusion data analysis, which must extract features in multiple volumes on spatial dimensions and features in multiple frames on the temporal dimension, since 2D convolution can only compute features on static images. 3D CNN is more efficient for temporal features learning than 2D convolution (Prasoon et al., 2013; Kamnitsas et al., 2015; Pereira et al., 2015).


Multi-Stream 3D CNN

Perfusion data are 4D data, both spatial and temporal features play an important role in AIF ROI estimation. 3D convolutions alone cannot perform well in the temporal dimension. Since perfusion data are 4D data, it is difficult to process it in a single network. In order to fuse spatial features with temporal features into our network, we applied a multi-stream 3D CNN that processes information on both dimensions. Thus, our network performs operations on the input volume data in both streams simultaneously. Spatial features such as location information in brain tissue are extracted in the first stream, while temporal features such as the TDC information are captured in the second.

The spatial network operates on spatial volumes with a size of f × s × w × h, where f denotes the number of frames, s denotes the number of slices, and w and h denote the width and height of a single slice. The static appearance by itself is a useful clue, since some features are strongly associated with arteries. A spatial network is essentially a classification or segmentation architecture. The spatial network consists of eight convolution layers, five max-pooling layers, and two fully connected layers, followed by a softmax output layer. Convolution layers are all using 3D convolution with 3 × 3 × 3 kernels and stride 1 in each dimension. The number of filters in each of the eight convolution layers is 64, 128, 256, 256, 512, 512, 512, and 512, respectively. All max-pooling layers are using 3D pooling with 2 × 2 × 2 kernels, because the cube is treated as a 3D volume. There are 4096 units in both fully connected layers.

The temporal network operates on data frames with a size of s × f × w × h, where s denotes the number of slices, f denotes the number of frames, and w and h denote the width and height of a single slice. This network is therefore different from the spatial network. The dynamic information is obtained to measure the TDC. The temporal network consists of convolution layers, max-pooling layers, and fully connected layers, with numbers of layers of 8, 5, and 2, respectively; and followed by a softmax output layer. All convolution kernels and strides are the same as in the spatial network. All pooling layers have 2 × 2 × 2 kernels, except the first max-pooling layer with a 2 × 2 × 1 kernel, and stride 2 × 2 × 1, in order to retain the temporal information in the early stage and avoid losing it in the convolution process, since the cube is treated as a frame volume. There are 4096 units in both fully connected layers. Each stream is implemented using a 3D CNN, the softmax function converts a raw value into a posterior probability as a softmax score, and softmax scores of each stream are combined by late fusion. The fusion method we chose is the linear support vector machine (SVM) instead of a full connected layer.

The 3D CNN is shown in Figure 1. Since the spatial network and the temporal network are similar, we illustrated only one 3D CNN network. The multi-stream network is shown in Figure 2.


[image: image]

FIGURE 1. Single 3D CNN network architecture. The 3D CNN network architecture includes eight convolutional layers, five pooling layers, and two full connected layers.




[image: image]

FIGURE 2. Multi-stream 3D CNN network. Each stream is a 3D CNN network, and the streams are combined by a fusion layer using linear SVM.



PWI data are arranged in the order of frame volumes, as shown in Figure 3. We rearranged the data in two dimensions, slice and frame. Spatial network input should be arranged frame by frame and slice by slice to locate the ROI. Temporal network input should be arranged slice by slice and then frame by frame, since AIF curves can only be extracted from time series, as shown in Figure 4.


[image: image]

FIGURE 3. Data sequence order. The sequence is arranged slice by slice in each frame and then arranged frame by frame.




[image: image]

FIGURE 4. Arterial input function (AIF) curve extracted from time series. The red point shows the location where AIF is extracted, the value of PWI decreases first and then increases with time.





Training

The training of the multi-stream 3D CNN framework for the segmentation of the AIF is done in two steps: manual labeling ROI’s perfusion data and auto-labeling based on similarities among the TDCs.

For labeling, we first proceeded to a manual annotation of the ROI which is used to extract the AIF. Thereafter, we calculated the similarity between the TDCs and the AIFs in a neighborhood, then we input the label into the framework. We labeled each volume into two classes of regions, namely AIF vessels and no AIF vessels, respectively.

We constructed an architecture in this paper to segment the AIF vessels in the perfusion volume. The input image is the 3D volume region. To improve the performance of the 3D CNN in this case, we built the multi-stream model with the spatial and temporal networks. Then, the final probability map is fused together. The loss function over all training datasets was minimized through a mini-batch gradient descent approach, and the minimum batch size was 50 inputs. The spatial learning process goes through 50 epochs with a learning rate of 0.001 and a gradient momentum of 0.9. The same parameter settings are used for epoch number, learning rate, and gradient momentum in the temporal learning process.




Arterial Input Function Extraction

After the segmentation of the AIF vessels, we calculated the AIF by averaging all TDCs of voxels in the classified vessels.




EXPERIMENTS


Data Preparation and Pre-processing

In this study, we collected 100 PWI cases in which 30 were healthy cases and 70 were stroke cases. They were used to train and evaluate the performance of the different methods. Sixty PWI cases among the total dataset were acquired on a 1.5T Discovery MR750 GE MRI scanner with contrast agent at a parameter setting of a TE = 2.6 ms, a TR = 22 ms, and a flip angle = 20-degree. The voxel size is 0.43 × 0.43 × 5.00mm3, and each volume contains 512 × 512 × 20 × 50 voxels, corresponding to the width, the height, the number of slices, and the number of frames, respectively. The other 40 PWI cases were acquired on a 3T Verio SIEMENS MRI scanner with contrast agent at a parameter setting of a TE = 3.6 ms, a TR = 21 ms, and a flip angle = 18-degree, their voxel size is 0.43 × 0.43 × 6.50mm3 and each volume size is 512 × 512 × 18 × 35.

The preprocessing for perfusion data includes skull removal, motion correction, slice time correction, spatial smoothing, global drift removal, which are general preprocessing stages for perfusion data. To reduce the impact of the brain skull, each dataset was preprocessed to remove the brain skull using the BET2 method (Wels et al., 2009). Motion correction was performed by registering all the volumes in the time series with the multiplicative intrinsic component optimization algorithm (Studholme et al., 1999). We used interpolation to obtain the data of brain slices at the same time point. Spatial smoothing is mainly achieved by low-pass filtering, since many researchers use Gaussian filtering or average filtering, which performances have almost no difference with the BM3D and NLM denoizing results in estimating the AIF.



Hardware Settings

In this paper, our experiments were implemented, respectively, using MATLAB 2017b and Python 3.0 in Window 10 OS. Environments were made on a desktop computer with eight Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processers, 32 GB of RAM memory, and NVIDIA GeForce GTX 1080.



Evaluation Method


Network Evaluation

Although manual annotations of 100 cases of PWI sequences require a considerable amount of time, in each case we manually segmented the vessels of MIP images on axial planes. The performance of the proposed method in cerebrovascular segmentation is evaluated by comparing MIP post-processed binary images of the proposed method with manual annotations of images on axial planes. Because MIP images on axial planes display most of the blood vessels, the comparison of MIP binary images on axial planes can better illustrate cerebrovascular segmentations differences between the proposed method and manual annotations. Therefore, we evaluated the binary classification performance of our proposed method with parameters such as the accuracy, the sensitivity, the specificity, the precision, and the dice similarity coefficient (DSC), defined as [image: image], where A and B are ground-truth and segmentations of the AIF, respectively. DSC ranges from 0 to 1.



AIF Evaluation

Fuzzy c-means is widely used in determination of the AIF (Jipkate and Gohokar, 2012). Fuzzy c-means clustering was applied to the TDCs, which can be regarded as n-dimensional vectors, n denoting the frame number of the perfusion data. These vectors were grouped into different clusters. The cluster centroids and the membership matrix were iteratively updated until convergence. A cost function is used to find a cluster closest to the ideal AIF.

Unet3D is a deep learning network applied to 3D data and widely used in biomedical image segmentation. We calculated the maximal intensity projection on the temporal dimension. Then, we segmented the blood vessels by Unet3D and applied fuzzy c-means to determine the AIF only in blood vessels segmented by Unet3D.

Since there is no standard dataset with labeled AIF ROIs, we can only compare all methods with the manual method. The result of the manual method is considered as ground-truth. However, this comparison is not convincing enough, so we compared the further process result by deconvolution: Tmax and rCBF; and it is more persuasive. Subjectively, a single blind investigator will evaluate the shape and location of the AIF result.

The regions in which Tmax is >6 s are considered ischemic regions. CBF is significantly lower in the ischemic region than in the contralateral healthy region. Perfusion–diffusion mismatch is used to identify penumbra in acute stroke. When the apparent diffusion coefficient (ADC) is less than 620, the corresponding region is defined as an infract core in our application. The ischemic region beyond the infarct core is considered to be the ischemic penumbra. Mismatch ratio is the ratio of ischemic penumbra volume to core infarct volume. The larger the ratio is, the more tissues can be saved by treatment. Since the infarct cores were the same in our case, we compared the volumes of the ischemic penumbra and the mismatch ratio obtained by the AIF results, which are presented in our method and the other methods mentioned above.





RESULTS

We show an example of MIP images on temporal dimensions first and then on spatial dimensions.

The AIFs were estimated by different methods: manual, MS3DCNN, fuzzy c-means, and U-Net3D + fuzzy c-means. Subjectively, a single blinded investigator, who is a Doctor of Medicine working in the Department of Radiology in Xuanwu Hospital of Capital Medical University, which has a high level of neurosurgery and neurology, evaluated the results. Objectively, we compared the AIF location, the curve characteristics of AIF, the perfusion maps, and the mismatch volume estimated by all the other three methods with the same corresponding parameters but estimated by the manual method, respectively.


The AIF Location

We obtained each AIF ROI on the maximum density projection, and we compared them, as shown in Figure 5.


[image: image]

FIGURE 5. AIF ROI on each AIF masked on MIP in a single slice. (A) Manual, (B) MS3DCNN, (C) Fuzzy c-means, and (D) U-Net3D + fuzzy c-means, from left to right.



Subjectively, the AIF extraction location of all samples calculated by our method in this paper is similar to that of the manual annotation. And since the manual annotation of each doctor will be different, hence the investigator believes that the ROI results of MS3DCNN can be consistent with those obtained from manual annotation.

Objectively, we compared the manual annotated AIF location with those from the three other methods. DSC values were estimated by comparing cerebrovascular segmentations of the MIP images in axial planes with the corresponding manual ground-truths. Values in each column are the average of the testing dataset, as shown in Table 1. Our method has the highest DSC, with a value of 0.7966, while the average DSC value of widely used fuzzy c-means method is only 0.6141, which demonstrates that our method is closest to the ROI of manual annotation. The result was highly consistent with the subjective evaluation of the investigator.

TABLE 1. Comparison of DSC value between the automated AIF estimation methods.

[image: image]



The Curve Characteristics

Subjectively, the curve of AIF also conformed to the morphological characteristics mentioned above, such as large amplitude, small width, fast attenuation, and gamma-like shape. In all cases, the investigator believed that AIF obtained by MS3DCNN can have the characteristics mentioned above, as shown in Figure 6. The AIF automatically extracted can be involved in the following perfusion processing by deconvolution.


[image: image]

FIGURE 6. AIF estimated by manual method, multi-stream 3DCNN, Unet3D + fuzzy c-means, and fuzzy c-means. AIF obtained by multi-stream 3D CNN is closest to the manual AIF.



Due to the different conditions of the patients, including the physical condition, the severity of the disease, the contrast injection time, and the time to start the scan, it is difficult to make statistical analysis of the parameters obtained by direct comparison. So, we only compared the differences of the curve parameters between the AIF extracted by the three automated methods and the AIF extracted by the manual method. The characteristics are amplitude, the center position, and the crest width, so the differences are represented by Δamplitude, Δcenter, and Δwidth. Although we processed all the samples, considering the great number of samples, we only showed 20 of them in Table 2, and calculated the mean and standard deviation for each difference of the parameters, as shown in Table 3. Compared with other methods, MS3DCNN has larger amplitude, higher peak position, fast attenuation, and narrower curve width.

TABLE 2. The difference of curve characteristics between the MS3DCNN and the manual method.

[image: image]

TABLE 3. Mean and standard deviation of the difference between the automated methods and the manual method.

[image: image]

We calculated the similarity of the curves between each automated method and the manual method. The similarity is calculated by Frechet distance, which is greater than or equal to 0. The smaller the Frechet distance between two curves is, the more similar they will be. For better statistical analysis, all the curves should be on the same scale. They were normalized by the peak value of the manual extracted AIF, so the curve value of manual extracted AIF is between 0 and 1, as a reference. The similarity of all samples was calculated and the means and the standard deviation of the similarity were obtained. The mean value of the similarity of our method was lowest, with the value of 0.83, indicating that MS3DCNN method is the closest to the manual method. The standard deviation of our method was also the lowest, with the value of 0.13, indicating that this method is more stable.



The Perfusion Maps

We calculated the response curve to the AIF of each pixel in each sample by deconvolution. Then we calculated the time to peak of response curves as Tmax, and normalized maximum slope as rCBF, collectively known as perfusion maps, as shown in Figures 7, 8.


[image: image]

FIGURE 7. rCBF calculated by AIF from (A) Manual, (B) MS3DCNN, (C) fuzzy c-means, and (D) U-Net3D + fuzzy c-means in each column from left to right.




[image: image]

FIGURE 8. Tmax calculated by AIF from (A) Manual, (B) MS3DCNN, (C) fuzzy c-means, and (D) U-Net3D + fuzzy c-means in each column from left to right.



After observing the perfusion maps and analyzing the patient’s medical history, the investigator concluded that the perfusion maps could be used for diagnosis. The distribution of rCBF and Tmax maps obtained by the same deconvolution processing based on the AIF extracted by our method is basically the same as that of the manual method, the location of ischemic regions can be clearly located through the perfusion maps, while the other two methods have lower Tmax and rCBF, which leads us to underestimate of the size of the ischemic penumbra and the severity of ischemia, respectively.

We still took the perfusion maps calculated by AIF extracted manually as the reference, and made an objective comparison by calculating the difference between the perfusion maps calculated based on AIF extracted by each automatic method and those calculated based on AIF extracted by the manual method. The mean and standard deviation of differences between rCBFs and Tmaxs are shown in Table 4, represented by ΔrCBF andΔTmax.

TABLE 4. The difference of Tmax and rCBF between the automated methods and the manual method.

[image: image]

The Tmax and rCBF values obtained by our method are larger than those obtained by the other two methods, and their performance is consistent with that AIF. The values of Tmax and rCBF are both superior to the latter two methods due to the lower time to peak and the larger peak value of the AIF.



The Mismatch

We applied our method on a cloud platform, Estroke, http://www.medimagecloud.com/rsplatform/, and the local version of its software, NeuBrainCare, which can calculate the penumbra for stroke perfusion.

We defined the region with Tmax >6 s as the ischemic region, and the region with ADC which is an additional sequence, less than 620 as the infarct core. The difference between the two volumes was defined as the mismatch volume, and the mismatch volume divided by the ADC < 620 was defined as the mismatch ratio. The larger the mismatch ratio is, the bigger is the volume of brain tissue that can be saved. A mismatch annotation and information was shown in Figure 9, including Tmax > 6 volume (green regions), ADC < 620 volume (red regions), mismatch volume, and mismatch ratio.


[image: image]

FIGURE 9. Stroke analysis results of the ischemic region, the infarct core, the mismatch volume, and the mismatch ratio. The infarct core was marked in magenta while the ischemic region was marked in green.



The infarct core cannot be found in the image of many samples, so this ratio will be infinite, and for different methods, the ischemic area will be different because of the AIF extracted by different method, but the infarct core based on the ADC is the same. This is the reason we did not compare mismatch ratios, but only compared the mismatch volumes.

The mismatch volume depends on the severity of the stroke. For example, some samples have only small ischemic areas, and others have an entire brain hemisphere tissues with ischemia, there is a huge difference between such samples. For this reason we calculated the mean of the mismatch volumes for all samples with stroke in each method, but without standard deviation, and the ratio to the manual method as the reference was also calculated, as shown in Table 5. The result of our method is the closest to the manual method, with a ratio reaching 93.32%.

TABLE 5. The average mismatch volume and ratio to reference of the automated methods and the manual method.

[image: image]




DISCUSSION

CNN models are deep learning models which have been widely used for object recognition and segmentation. They are usually trained with a large amount of images labeled by humans. But this has not yet been applied for AIF estimation. While automatic AIF estimation only relies on and is heavily influenced by one’s prior knowledge, most of the traditional segmentation methods are unsupervised. These last ones can only extract objects based on observable or expressed features using prior knowledge. In this study, we applied a multi-stream 3D CNN to find the AIF ROI, then we calculate the average curve as AIF.

According to our experimental results, multi-stream 3D CNN has a good performance in AIF ROI segmentation. Different blood vessels share many similar features such as their shapes, while their differences mainly are intensity contrast and vessel thickness. On the timeline, the changes of each voxel are continuous and have large amplitude, small width, fast attenuation, and gamma-like shape. The network extracts features from both the spatial and the temporal parts, followed with a fusion classification to output the result. Moreover, to improve the robustness of the proposed method for different kind of perfusion images, we included from both 1.5T GE and 3.0T SIEMENS, images of healthy and ischemic brain tissue in the training dataset.

Because manual annotations from public datasets were not available, hence we decided to directly compare our method to other network-based segmentation methods. We therefore compare our method to a traditional method, and to a network pre-process method followed by a traditional method. However, in terms of Dice numbers, our unsupervised method shows great potential to perform AIF ROI segmentation.

RAPID is a currently available commercial software which can measure ischemic penumbra. It has been proved effective in several international multicenter clinical trials (Lansberg et al., 2017; Albers et al., 2018; Guenego et al., 2018; Nogueira et al., 2018). The rate of severe disability and death was reduced from 42 to 22% in the thrombectomy group with this advanced imaging software. In our study, our method was applied to Estroke, a cloud-based platform, and the local version of its software, NeuBrainCare, and it could evaluate ischemic penumbra as accurate as RAPID with the datasets from more than 40 hospitals in China. AIF methodology improves the confidence of physicians from suburban hospitals.



CONCLUSION

We proposed a new multi-stream 3D CNN network to estimate AIF in brain perfusion images. The model was trained by the labels obtained from manual annotations and similar ROIs based on annotations, which is cost effective in terms of manual efforts. This segmentation framework had a good performance evaluated on perfusion images. The AIF estimation also had a good performance evaluated on PWI data.
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A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images
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Stroke causes behavioral deficits in multiple cognitive domains and there is a growing interest in predicting patient performance from neuroimaging data using machine learning techniques. Here, we investigated a deep learning approach based on convolutional neural networks (CNNs) for predicting the severity of language disorder from 3D lesion images from magnetic resonance imaging (MRI) in a heterogeneous sample of stroke patients. CNN performance was compared to that of conventional (shallow) machine learning methods, including ridge regression (RR) on the images’ principal components and support vector regression. We also devised a hybrid method based on re-using CNN’s high-level features as additional input to the RR model. Predictive accuracy of the four different methods was further investigated in relation to the size of the training set and the level of redundancy across lesion images in the dataset, which was evaluated in terms of location and topological properties of the lesions. The Hybrid model achieved the best performance in most cases, thereby suggesting that the high-level features extracted by CNNs are complementary to principal component analysis features and improve the model’s predictive accuracy. Moreover, our analyses indicate that both the size of training data and image redundancy are critical factors in determining the accuracy of a computational model in predicting behavioral outcome from the structural brain imaging data of stroke patients.
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INTRODUCTION

Deep learning methods have gained popularity because they often outperform conventional (i.e., shallow) machine learning methods and can extract features automatically from raw data with little or no preprocessing (LeCun et al., 2015). Among the many implementations of deep learning models, convolutional neural networks (CNNs) (Krizhevsky et al., 2012) are particularly suited for medical imaging data (Shen et al., 2017). A prominent example is the recent demonstration that a CNN trained end-to-end from pixels of medical images to disease labels in a skin cancer classification problem performed at the level of expert dermatologists (Esteva et al., 2017). Deep learning has also been applied to neuroimaging data for brain-based classification of psychiatric and neurological disorders (Arbabshirani et al., 2017; Vieira et al., 2017). For example, several studies have tackled the diagnosis of Alzheimer’s disease and its prodromal stage (mild cognitive impairment) using magnetic resonance imaging (MRI) data as input to a CNN (for comprehensive overviews see Arbabshirani et al., 2017; Vieira et al., 2017).

The use of deep learning on neuroimaging data is particularly interesting because MRI scans produce 3D images. Though some studies have used 2D slices of the brain volume as independent images for training, state-of-the-art deep learning techniques and massive use of GPU-computing allow to feed a whole 3D image to a CNN, despite the very high dimensional input, without decomposition or preprocessing. In the present work we employ a 3D CNN framework in the context of predicting behavioral outcomes of stroke patients from MRI lesion images. The latter can be formalized as a regression problem, where the learning objective is to map the 3D image of a patient’s brain lesion to the real-valued score representing the behavioral performance of the same patient (see Figure 1). This problem has been previously tackled with conventional machine learning methods (Price et al., 2010; Hope et al., 2013; Zhang et al., 2014; Corbetta et al., 2015; Siegel et al., 2016) but not with deep learning. Moreover, the use of deep learning for regression (rather than classification) problems in clinical neuroimaging is still sparse (Vieira et al., 2017).
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FIGURE 1. Steps involved in the prediction of behavioral outcome in stroke patients from 3D lesion images. Conventional machine learning methods typically rely on data preprocessing and feature selection, which are dispensed with in deep convolutional neural networks.



A widely shared assumption in cognitive neurology and neuropsychology is that the effect of brain damage on behavior and cognition depends on location and size of the lesion. This has led to the long-standing and systematic effort to identify the relationship between brain structure and function. Specifically, the vast majority of studies have sought to establish which brain lesion is associated to a specific (categorically defined) deficit (Rorden and Karnath, 2004). The latter mapping is reversed when the attempt is to predict behavioral performance from lesion information and the task is more challenging because it implies that lesion-behavior relationships are consistent across individuals and can be used to predict behavior in new patients (Price et al., 2017). However, the consistency of the association is questionable because it depends on multiple factors and non-linear interactions might be present in the data, thereby calling for a machine learning approach to this problem (Chen et al., 2008; Hope et al., 2013; Smith et al., 2013; Zhang et al., 2014; Siegel et al., 2016; Price et al., 2017). Notably, conventional machine learning methods typically require extraction and selection of image features that represent topological information about the lesion, a critical step that is dispensed with in the deep learning approach.

In the present study, we take advantage of the data from a relatively large and heterogeneous cohort of stroke patients (Corbetta et al., 2015) to investigate the feasibility of a deep learning model for predicting behavioral performance from lesion images. We focused on the prediction of language scores, in line with several previous studies that examined lesion-behavior relationship in stroke patients using machine learning (Price et al., 2010; Hope et al., 2013, 2015; Zhang et al., 2014). Language deficits are a very frequent outcome of stroke (particularly following left hemisphere damage) and their neural correlates show lower inter-individual variability in comparison to other cognitive functions like memory (Siegel et al., 2016). Moreover, the prospect of predicting the functional recovery of language has profound implications for clinical practice (Price et al., 2010).

The main aim of the present study was therefore to assess the CNN/deep learning approach against conventional (i.e., shallow) machine learning methods. Shallow machine learning has been previously applied on the current stroke dataset using multivariate ridge regression (RR) trained on features of the lesion images extracted by principal component analysis (PCA) to predict patients’ behavioral outcomes (Corbetta et al., 2015; Siegel et al., 2016). The resulting model (hereafter PCA + RR, see Figure 2 and “Materials and Methods” section for details), when trained and evaluated on the language deficit scores using leave-one-(patient)-out cross-validation, accounted for about 60% of the variance (using r2 as goodness-of-fit measure). This method, re-implemented in the present study, provides a useful benchmark for comparative evaluation of the deep learning approach. Moreover, we broadened the comparison between deep and shallow machine learning techniques by testing a kernel-based approach (Vapnik, 1998), that is support vector regression (SVR). A SVR-based approach has been previously proposed in the context of multivariate lesion-symptom mapping in stroke patients (Zhang et al., 2014), where the SVR model’s ability to predict language deficit scores on the patients’ sample from the lesion image features was also tested (though with relatively poor fit).
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FIGURE 2. Ridge regression method used by Siegel et al. (2016) for predicting behavioral deficits in stroke patients from MRI lesion images.



A complementary aim of the study was to examine how the different machine learning approaches are affected by the number of patient cases available for training and by the diversity of lesions in the sample. State-of-the-art stroke studies typically include a small number of patients (order of 100; see Corbetta et al., 2015) in comparison to publicly available databases of patients suffering from other neurological conditions such as Alzheimer’s disease (but see Price et al., 2010) This raises the question of whether the amount of data is adequate for a deep learning approach and, more generally, how performance of the different machine learning methods scales with the size of the training database. Indeed, limited sample size has been identified as the main bottleneck for neuroimaging-based prediction of brain disorders (see Arbabshirani et al., 2017, for review and discussion). Second, we investigated the role of redundancy in the image database, that is the similarity between a given test image and the images used to train the model. We therefore assessed to what extent these two factors are critical in determining the predictive accuracy of the different machine learning models.



MATERIALS AND METHODS

Dataset

The dataset was obtained from a study on stroke patients carried out at the Washington University School of Medicine. The study and all procedures were approved by the Washington University School of Medicine Internal Review Board; written informed consent was obtained from all participants in accordance with the Declaration of Helsinki. Subject enrolment, inclusion and exclusion criteria, and demographic information are described in detail in Corbetta et al. (2015); in brief, the study included 132 stroke patients (mean age 52.8 years with range 22–77; 119 right handed, 63 female, 64 right hemisphere damage), recruited through the inpatient service at Barnes-Jewish Hospital and the Rehabilitation Institute of St. Louis. Imaging and behavioral testing session were usually performed on the same day. Patient scanning was performed on a Siemens 3T Tim-Trio. Structural scans consisted of a sagittal MP-RAGE T1-weighted image (TR = 1950 ms, TE = 2.26 ms, flip angle = 9°, voxel size = 1.0 × 1.0 × 1.0 mm, slice thickness = 1.00 mm), a transverse turbo spin-echo T2-weighted image (TR = 2500 ms, TE = 435 ms, voxel-size = 1.0 × 1.0 × 1.0 mm, slice thickness = 1.00 mm), and a sagittal FLAIR (fluid attenuated inversion recovery) (TR = 7500 ms, TE = 326 ms, voxel-size = 1.5 × 1.5 × 1.5 mm, slice thickness = 1.50 mm). Individual T1 MRI images were registered to the Montreal Neurological Institute (MNI) brain using FSL (FMRIB Software Library) FNIRT (FMRIB non-linear imaging registration tool) (Andersson et al., 2007). Lesions were manually segmented on individual structural MRI images (T1-weighted MPRAGE, T2-weighted spin echo images, and FLAIR images) using the Analyze biomedical imaging software system (Robb and Hanson, 1991). Two board-certified neurologists reviewed all segmentations.

Though the original dataset includes behavioral data for multiple cognitive domains (e.g., language, memory, attention), in the present study we focused on predicting performance in the language domain. As noted in the section “Introduction,” the rationale for this choice was threefold: (i) a language impairment is the most common cognitive deficit following stroke (typically when causing left hemisphere damage); (ii) language is the cognitive domain in which a shallow machine learning method has achieved the highest predictive accuracy on the same dataset (Siegel et al., 2016); and (iii) the problem of predicting language deficit scores from lesion images has been attempted with different methods and by different research groups (Hope et al., 2013; Zhang et al., 2014; Siegel et al., 2016).

Our dataset included all patients who had MRI lesion images and language scores available (N = 98), which is the same sample previously used by Siegel et al. (2016) to develop their RR method (see below for further details). The data for each patient consisted of a 3D image of the lesion with a 3 mm isovoxel resolution normalized the MNI coordinate space (61 × 73 × 61 voxels). The current image resolution limits the computational burden implied by the large-size 3D image space and it is fully adequate for representing the spatial topography of the lesions. The language score of each patient summarized performance across several language tasks as it captured their shared variance (first principal component) and it was normalized to represent impaired performance with negative values (Siegel et al., 2016). Accordingly, 29 of the stroke patients presented with a language deficit.

Ridge Regression Method

We re-implemented the RR method and used its performance as a baseline for assessing the other methods. The pipeline used in the original study (Siegel et al., 2016) is illustrated in Figure 2. Lesion images were first preprocessed using PCA to strongly reduce the high dimensionality of the image space. Here, we replicated the PCA preprocessing step using singular value decomposition (SVD) in python using scikit-learn module. The first 56 components explained 95% of variance and were retained as input features for RR. The latter is a method for modeling the relationship between a scalar dependent variable y (output) and one or more explanatory variables denoted by x (input). RR differs from multiple linear regression because it uses L2-normalization for regularization of model coefficients, so that unimportant features are automatically down weighted or eliminated, as given in the cost function below:
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where n is the number of subjects, w is the weight vector that describes the relative importance of each feature in x to the prediction of y, and λ is the regularization coefficient. Optimal weights were computed across the entire training set using gradient descent to minimize error for the RR equation. Training and testing was carried out using a leave-one-out cross validation (LOOCV) loop (Golland and Fischl, 2003), in which one patient is left out from training at a time (cycling through all patients) and used only for testing. In each loop, the regularization coefficient lambda was optimized by identifying a lambda between λ = 1 and 150 that minimized leave-one-out (LOO) prediction error over the entire training dataset. The optimized lambda was λ = 100 for all LOOCV cycles. Predictions on the left-out test data were pooled and the model accuracy was assessed using the square of the Pearson correlation coefficient between actual and predicted behavioral scores (Siegel et al., 2016). RR in this work was implemented in python (scikit-learn module), using linear least square function as loss function and L2-normalization for regularization.

Support Vector Regression

To broaden the comparison between deep and shallow machine learning techniques, we also implemented a kernel-based approach to predicting behavioral scores from brain lesion images. SVR is a kernel-based learning machine for regression (Vapnik et al., 1997). Instead of minimizing the observed training error, SVR attempts to minimize the generalization error bound. SVR can be thought of as a linear regression function in a high dimensional feature space where the input data are mapped via a non-linear function (Cortes and Vapnik, 1995; Smola and Schölkopf, 2004).

Considering a training dataset {(x1, y1),(x2, y2),… (xl, yl)}⊂ Rn × R, the following function is estimated in SVR for linear regression:
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by minimizing the so-called regularized risk functional (Vapnik et al., 1997; Vapnik, 1998; Basak et al., 2007) [image: image]||w||2 + C ⋅ Remp[f].

The first term [image: image]||w||2 is called the regularization term. Minimizing this term will make the function as flat as possible. The second term Remp[f] is the empirical error measured by the loss function and C is called the regularization constant which determines tolerated deviations from the loss function. In this problem, we used 𝜖 – insensitive loss function L𝜖:

[image: image]

This defines 𝜖 tube, so that if the predicted value is within the tube the loss is zero, while if the predicted point is outside the tube, the loss is the magnitude of the difference between the predicted value and the radius 𝜖 of the tube. Slack variables ξ,ξ∗ are used to deal with infeasible constraints of the optimization problem. Then the problem can be formulated as:
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The purpose is to construct a Lagrange function from the objective function and the corresponding constraints, by introducing a dual set of variables (Lin et al., 2006). The constant C > 0 determines the trade-off between the flatness of f and the amount up to which deviations larger than 𝜖 are tolerated. In cases where non-linear functions are optimized, it is performed by mapping the input space xi into higher dimensional space through function ϕ(xi), which linearises the relationships between xi and yi. A kernel function K is used to simplify the mapping. By using the kernel function, the data can be mapped implicitly into a feature space (without full knowledge of ϕ), which is therefore very efficient (Schölkopf and Smola, 2002; Lin et al., 2006). In this work we only used a radial basis function (RBF) kernel, which is defined as follows:
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The SVR simulations were based on the libSVM framework implemented in python using sci-kit learn module. We trained our model and tested its performance using LOO cross-validation on the full dataset. The learning parameters were set to C = 50 and 𝜖 = 0.1 (note that large value of 𝜖 generally gives large errors in the solution), whereas the RBF kernel coefficient γ was set to the reciprocal of the number of input features (i.e., the default value in the SVR implementation).

Convolutional Neural Networks

Convolutional neural networks exploit spatially local correlation by enforcing a local connectivity pattern between neurons of adjacent layers. CNN performs image classification by discovering low level features (such as edges and curves) and then building up to more abstract representations through a series of convolutional layers. A typical CNN architecture consists of at least four different layers namely convolutional layer, pooling/subsampling layer, fully connected layer, and an output layer, as explained below.

Convolutional Layer

It comprises of a set of filters, each independently convolved with the image. These filters (or kernels) have a small receptive field but extend through the full depth of the input volume. During the forward pass, each filter is convolved across the width and height of the input volume, computing the dot product between the entries of the filter and the input and producing a 2D activation map of that filter. As a result, the network learns filters that activate when it detects some specific type of feature at some spatial position in the input. Stacking the activation maps for all filters along the depth dimension forms the full output volume of the convolution layer. CNNs share weights in convolutional layers, which means that all spatial locations share the same convolution kernel, which greatly reduces the number of parameters needed for a convolution layer. After each convolutional layer, it is conventional to apply a non-linear activation function immediately afterward. Deep CNNs with rectified linear units [ReLUs; f(x) = max(0, x)] train several times faster than their equivalents with tanh units (Krizhevsky et al., 2012).

Pooling Layer

It pools the activation of the neurons at one layer into a single neuron in the next layer. It can use two different pooling methods: max pooling and average pooling. Max pooling uses the maximum value from each cluster of neurons at the prior layer. Average pooling averages the value from each cluster of neurons at the prior layer. In the present work we used max pooling because it can boost signal from small regions of the image space and it is therefore best suited for our dataset, which includes very small lesions (in contrast, average pooling is more effective in the case of a large and noisy region of interest in the image). The pooling layer operates independently on every depth slice of the input and resizes it spatially. It serves two main purposes: (i) the number of parameters or weights is reduced, thereby decreasing the computational cost; and (ii) it controls over-fitting.

Fully Connected and Output Layers

In the fully connected layer every neuron is connected to all neurons in another layer. Finally, output layer neurons provide the prediction of the model.

CNN Implementation

The architecture of the CNN used in the present study is depicted in Figure 3. It includes one convolutional, one pooling, one fully connected and one output layer. The input layer is fed with a 3D lesion image (size: 61 × 73 × 61), followed by a 3D convolutional layer with four kernels (size: 3 × 3 × 3). ReLU activation function is applied on the convolutional layer and the output of this layer is passed to the pooling layer. 3D max pooling (8 × 8 × 8) is applied on the output of the convolutional layer, generating feature maps of size (8 × 10 × 8). The large pooling stride is motivated by the fact the size of the lesion is typically small and most of the image space is therefore occupied by zero values. Finally, activations are passed to the fully connected layer, consisting of 500 neurons with ReLU activation function, and then to the output layer. The output layer is made by a single neuron with sigmoid activation function, which represents the language score of the corresponding patient. This allows us to map the entire lesion image into a single (predicted) behavioral score.
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FIGURE 3. Architecture of the deep convolutional neural network (CNN).



Formally, the CNN implementation employed here can be described as follows. Consider a 3D MRI image x ∈ℜH ×W × D with H × W × D elements (height, width, and depth of an image), each of them indexed by a triplet (i, j, d) with 0 ≤i < H, 0 ≤j < W, and 0 ≤d < D. D represents the number of slices in the MRI image. Each slice has H × W elements. Suppose we are considering the lth layer of a CNN, whose inputs form an order three tensor xl with xl ∈ℜHl × Wl × Dl. Thus, the triplet index set (il, jl, dl) refers to one element in xl which is in the dlth slice at spatial location (il, jl) (at the ilth row and jlth column). In the convolutional layer multiple kernels are used. Assuming D kernels are used and each kernel is of spatial span H × W, we denote all the kernels as f. f is an order four tensor ℜH×W×Dl×D. Similarly, we use indexed variables 0 ≤i < H, 0 ≤j < W, 0 ≤dl < Dl, and 0 ≤d < D to pinpoint a specific element in the kernel. The basic flow of the CNN structure is represented by the following equation:
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The above equation illustrates how a CNN runs layer by layer in a forward pass. The input x1 goes through the processing in the first layer. We denote the weights involved in the first layer’s processing collectively as a tensor w1. The output of the first layer is x2, which also acts as an input to the next processing layer. This processing proceeds until output xL.

All CNN models used in this work were implemented in Tensorflow and were trained on GPUs using the Adam optimizer (Kingma and Ba, 2014; Abadi et al., 2015). Mean square error was used as loss function for training. All models were trained and tested using a LOOCV loop, which was also used to tune the hyperparameters.

Hybrid Model (RR With CNN and PCA Features: f + RR)

We also assessed whether the features learned by the CNN at the top hidden layer provide information that is not captured by the PCA preprocessing used in the RR model. To this end, we trained a RR model where the features (neuron activations) encoded in the fully connected hidden layer of the CNN were added to the PCA-based features as input to the model.

Quantifying Redundancy

Machine learning algorithms capture structure in the data that needs to be generalized in order to make predictions from new data. Therefore, the presence of similar data instances in the dataset is required for such models to work. However, these similarities must be defined in the most general manner to be effective on unseen examples. Trained models are obviously biased toward the kind of examples they have seen during training and images that have more similar examples in the data (redundancy) yield more accurate predictions. We explored how the redundancy of images, defined in terms of similarity (or distance metrics) would affect the predictive accuracy of the models. We defined three types of image-image distances for all pairs as follows:

Lesion Centroid Distance

Distance between two images was simply computed in terms of the Euclidean distance between the centroids of the lesions.

Topological Distance

This index is complementary to lesion-centroid and goes beyond the centroid comparison. The images are first centered at their lesion centroids and then images are cropped as per the larger lesion size, then every pair of voxels is compared in the transformed pair of images using Euclidean distance. The differences in voxel-wise comparisons is a measure of how the lesions differ in terms of topology irrespective of their centroid positions.

Location + Topological Distance

Since all MRI lesion images are aligned in a common reference frame, their unbiased topological differences can be measured by voxel to voxel signal differences. Direct comparison between images will also implicitly capture the location information as similar topologies at different locations will be computed as distant. We therefore computed the Euclidean distance between each pairs of images.

For each measure of distance between a pair of images a redundancy score (for each of the above definitions) was assigned to individual images. Since the models have been trained in a leave one out manner, the number of times an image occurs in similar pairs of images at a given threshold informs us about how much of training data is redundant with this image. A threshold was chosen as follows: in the full distance matrix, the number of column values lower than the (mean-SD) in the row is treated as the redundancy for the image label in that row. Row-wise thresholding was found to be more suitable as it not only represents the redundancy of the image but also it implicitly computes the range of distances of an image with all the others. After computing the redundancy of every image with reference to the rest of the data set, two groups of images with high and low redundancy were created and model performance was compared between them.

Performance Metrics

Performance of the models was measured using the square of the Pearson correlation coefficient between actual and predicted scores (Siegel et al., 2016). Mean absolute error (MAE; i.e., the absolute difference between predicted and actual score) is also reported in some of the analyses.



RESULTS

The results presented below are divided into four sub-sections. We first look at the predictive accuracy of the different models/approaches. We then investigate how performance is affected by sample size and redundancy in the training dataset. Finally, we assess the model on prediction of chronic cognitive deficit as measured 3 months after the stroke.

Overall Performance of Predictive Models on the Full Dataset

Multiple models were trained and tested on the dataset as described in the section “Materials and Methods” using LOO cross-validation (as in Siegel et al., 2016). Results for the four different approaches are shown in Figure 4. All models explained more than 60% of the variance and rank them according to the r2 values (in parentheses) produced the following order: Hybrid Model (0.675), SVR (0.657), PCA + RR (0.646), and CNN (0.627). Notably, the SVR model performed significantly better than CNN (p = 0.0402, two-tailed) and PCA + RR (p = 0.0001, two-tailed) in the comparison of r2 values. Therefore, it appears that deep learning did not lead to performance gains when evaluated against the two conventional, shallow learning methods. However, the Hybrid RR model, trained with composite features from PCA and CNN (the latter corresponding to neuron activations in the fully connected hidden layer) outperformed all other methods (p = 0.0001, two-tailed, for SVR vs. f + RR). These observations suggest that for the current dataset, which includes a relatively small number of samples, avoiding over-fitting is a key factor. A linear method like RR is therefore the most powerful when exploiting the rich set of features derived from both PCA and CNN learning on the lesion images. We will return to the issue of dataset size in the next section.
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FIGURE 4. Language scores predicted by the four competing models: (A) Hybrid model, (B) SVR, (C) PCA + RR, and (D) CNN.



Inspection of Figure 4 suggests that accuracy in predicting a specific range of scores does not necessarily reflect the ranking of the models’ overall predictive accuracy. For example, the CNN appears to resolve quantitative differences among language deficits patients despite the overall poorer model fit. We performed two supplementary analyses to further investigate the predictive accuracy of the models from this perspective. First, since language deficits are very uncommon following right hemisphere stroke, we compared the different models on the subset of patients with left hemisphere lesions (N = 57). Note that focusing on the population of left hemisphere stroke patients in relation to language deficits is a standard approach and it is well aligned with potential clinical applications of a computer model (Hope et al., 2013). The predictive accuracy of the models (see Figure 5A) was similar to that previously reported for the full dataset, thereby showing that the latter performance was not inflated by the inclusion of right hemisphere stroke patients. In the second analysis (see Figure 5B) we evaluated the models’ predictive accuracy across the range of scores that marks the presence of cognitive deficit, that is on the subgroup of patients (N = 29) who showed language deficit (score < 0). We found that the scores in the deficit range are better predicted by CNN than PCA + RR (p = 0.0425, two-tailed). These results suggest that the CNN model is better tuned to the fine-grained, quantitative prediction of the severity of deficit and help in explaining why CNN features boost the overall performance of the Hybrid model. For the sake of completeness, we also evaluated the models’ predictions on the subgroup of patients showing no language deficit (scores ≥ 0). Performance was very poor across models (all r2 values < 0.05). This is to be expected because individual differences within the range of unimpaired performance are independent of the nature of the lesions. Individual variability is expected also in the absence of lesions and it is obvious that it cannot be mapped onto a lesion image in the current framework. In summary, CNNs appear to extract useful high-level features that capture the association between 3D lesion images and language deficit scores.
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FIGURE 5. Comparison of models’ predictive accuracy on selected subsets of patients: (A) patients with left hemisphere lesions (N = 57), that is the population in which a language deficit is most common after stroke, and (B) patients with language deficit (N = 29) as attested by a score < 0.



Role of Dataset Size on Predictive Accuracy

Despite the favorable performance of CNNs in predicting the severity of deficit, the limited size of the dataset is likely to represent a crucial bottleneck. The issue of dataset size in MRI image analysis and prediction has been highlighted both in relation to the lesion-behavior mapping problem (Price et al., 2017) as well as for other types of medical imaging problems (Cho et al., 2015). Deep learning methods are highly effective when the number of samples available for training is large (Russakovsky et al., 2015; Shen et al., 2017). To investigate this issue in a more systematic way, we assessed how performance changed as a function of dataset size. We created multiple cohorts of four differently sized groups of patients (specifically 25, 50, 75, and 90 patients groups were created), which were randomly sampled from the full dataset. Random sampling was performed 40 times for each sample size. The models were then independently trained on all cohorts of the four datasets to assess generalization performance (LOO cross validation). Results of these simulations are presented in Figure 6. As can be noted, CNN’s performance is overall poorer than PCA + RR and SVR. This gap is especially clear for the smaller sample sizes, but it remains statistically significant even for the largest one (p = 0.036, two-tailed, for SVR vs. CNN at size 90). Nevertheless, the different models show markedly different patterns in terms of the effect of sample size. While PCA + RR and SVR models are relatively unaffected by sample size, performance of the CNN (as well as of the related Hybrid model) show large improvements with increasing sample size (see inset in Figure 6 for a plot of the performance gap of CNN with respect to SVR). These results suggest that the dataset size requirement for optimal performance of deep learning methods has not yet been satisfied and CNNs might significantly outperform competing models when more data will become available. By extrapolating the differential performance plot, we speculate that a few hundred samples may be needed for the CNN to outperform the SVR model. Note, however, that this comparison is relevant only for the conventional CNN approach, because we also established that the use of (hidden) features extracted by a CNN within a Hybrid (RR-based) model leads to be best predictive performance, presumably avoiding over-fitting caused by training them within the standard CNN framework (as shown in Figure 3).
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FIGURE 6. Notched box plot showing the prediction performance (R2) on 40 runs for each sample size and method. At the smaller sample sizes the performance levels of CNN or Hybrid models are either poorer or statistically similar to that of SVR and PCA-RR models (overlapping notches of the boxplot). However, at sample size of 90 the Hybrid model outperformed all other models. The inset plots the CNN performance gap (difference in R2 values) with increasing sample size in comparison to the SVR model; the best fitting function (red line) is extrapolated up to a sample size of 150.



Role of Data Redundancy on Predictive Accuracy

Machine learning models acquire knowledge through exposure to the training data and are therefore sensitive to biases that may arise from examples that are over- or under-represented in the dataset. This also applies to a regression problem like the present one because some lesion patterns are likely to be more frequent and might therefore lead to better prediction than less frequent (or even unique) lesion patterns. However, the effect of the similarities between lesions might differ across models, particularly because the number of training parameters is different in each model. We defined three types of image redundancy indexes based on (a) lesion centroid distances (centroid redundancy); (b) lesion pixel-wise topological distances (location + topology redundancy); and (c) distances between directly superimposed images (raw redundancy) as described in the section “Materials and Methods.” Then, we grouped the images into two sets with high vs. low redundancy levels and we assessed the predictive accuracy of all models on these two image datasets. Figure 7 shows the performance of the smaller and larger clusters defined by redundancy levels in each category. This analysis provides insights into the lesion-predicted language deficits as follows.
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FIGURE 7. Average prediction performance for images having large vs. small redundancy levels with other images. Performance is measured by both goodness of fit (r2) (A–C) and mean absolute error (MAE) (D–F). For these definitions of redundancy, almost all models perform very similarly in the image set in which redundancies are high (right-sided bars in all panels). In the small redundancy set, the Hybrid model comprehensively outperformed all other models, except in the location + topology based similarity. Values in the brackets of x-axis labels represent the number of images included in small and large redundancy groups.



Redundant Models Perform Better

All models show marked differences in predictive accuracy on the high vs. low redundancy image sets. The models perform very similarly in the image set in which redundancies are high. Not surprisingly, a model which has previously seen similar examples during training is much more accurate in prediction. This is consistent with the large data set requirements that were found to be critical for developing robust models as discussed in the previous section.

Hybrid Models Perform Better in Most Comparisons

In the small redundancy set, the Hybrid model comprehensively outperformed all other models, except when redundancy was defined using location + topology similarity. The finding that the Hybrid model performs better on images with limited redundancy is consistent with the idea that the lesion features extracted by the CNN are useful for prediction and complementary to those extracted by the PCA method.

Topology and Location Based Low Redundancy Produce Somewhat Competing Models

In the case of redundancy being defined by the location + topology similarity between images, performance on the low redundancy set was lower for the Hybrid model compared to the other models (Figures 7B,E). This suggests that the PCA and CNN features model contrasting properties in this comparison when redundancy is completely eliminated, and strictly non-redundant samples are left for training. We suggest that suboptimal models trained by CNN and PCA are independent of each other due to multiple and distinct sub-optimal solutions with similar performance in a high dimensional space. One explanation for this result is that highly generalizable features are needed for models to work well on data with low redundancy level. CNN and PCA-RR models generalize in different ways because data sets are small and multiple solutions with a similar (low) performance may emerge from learning on a large feature set. If that is the case, PCA and CNN-derived features may be inconsistent with each other, which in turn is detrimental to overall predictive performance. Note that this does not apply to the high redundancy set because there is a much smaller space of possible (good) solutions and features driving the prediction are likely to be more similar across learning methods. When redundancy is defined only along a single dimension, either location (centroid similarity) or topology (raw similarity), the low redundancy set still retains images that are redundant on the other dimension. The CNN-derived and PCA features will be therefore more similar and combining them in the Hybrid model improves performance. In summary, we find that redundancy defined in simple terms as variants of Euclidean distances of lesions is a critical parameter that determines how accurately a given model can predict language deficit based on MRI lesion images. Even though these results are obtained for the current data set, they are likely to be general in nature and it would be interesting to examine other MRI diagnostic problems in this context.

Can Long Term Language Deficits Also Be Predicted?

One of the most interesting clinical applications of a computer model connecting brain lesion images to behavioral outcomes is the prediction of long term deficits. We therefore assessed all models in terms of the ability to predict the language score obtained in follow-up re-testing performed 3 months after the stroke (Ramsey et al., 2017). Indeed, Ramsey et al. (2017) reported that lesion topography (represented by PCA components of lesion images) accounted for about 13% of unique variance in the prediction of language recovery using regression analyses. Figure 8 summarizes our results (methods identical to the main analysis) on all patients (N = 74) for whom the long-term deficit scores were available.


[image: image]

FIGURE 8. Long-term language scores predicted by the four machine learning models: (A) CNN, (B) PCA + RR, (C) SVR, and (D) Hybrid model. Predictive accuracy is indexed by R2 values.



Prediction accuracy for long-term deficit in terms of r2 values (range 0.35–0.59) was lower compared to our previous results (range 0.63–0.68). However, accuracy is remarkable when considering that the models did not include patients’ demographic data and/or acute-phase neuropsychological scores as (additional) predictors (see Hope et al., 2013; Ramsey et al., 2017).



DISCUSSION

In this work, we assessed deep and shallow machine learning approaches to predicting cognitive deficits from MRI lesion images. Conventional (shallow) machine learning methods typically require extraction and selection of image features that represent topological information about the lesion, a critical step that is dispensed with in the deep learning approach. We compared SVR and CNN techniques to a previously developed method based on RR. We also developed a Hybrid method based on re-using CNN’s high-level features together with PCA image features as input to a RR model, which yielded the best performance.

Overall, our results suggest that deep learning leverages predictive performance, which also scales up favorably with the amount of training data. Dataset size has been highlighted as a key issue for the lesion-behavior mapping problem (Price et al., 2017). Though the size of our dataset was far from optimal for deep learning, our analyses suggest that CNNs are likely to significantly outperform competing models when more patient data will become available. Moreover, we observed that the CNN already outperforms conventional models in resolving quantitative differences among the subgroup of patients with language deficit. This is crucial in the context of predicting the severity of deficit (i.e., a regression problem) as opposed to the mere presence of deficit (i.e., a classification problem). The CNN’s tuning to fine-grained prediction of the severity of deficit also helps explaining why CNN features boosted the overall performance of the Hybrid model.

We also systematically examined how predictive accuracy is influenced by data redundancy, defined in terms of similarity across lesion images using several distance metrics. Our analyses revealed that training on a dataset that contains multiple instances of similar lesions is a crucial factor to obtain good performance: lesion patterns that are more frequent lead to better prediction than less frequent lesion patterns. This is in line with the view that limited sample size is the main bottleneck for neuroimaging-based prediction of brain disorders (Arbabshirani et al., 2017).

It is worth noting that the performance gains obtained with deep learning come at the expense of interpretability. Conventional machine learning models can be readily analyzed to assess which image features (i.e., which voxels) are particularly weighted in computing the prediction (see Siegel et al., 2016). Whether similar results can be obtained from methods that analyze deep networks in terms of function of intermediate feature layers (e.g., Zeiler and Fergus, 2014) or hidden neurons’ receptive fields (e.g., Testolin et al., 2017) is an issue for future work. Conversely, deep learning might also be exploited to use raw MRI images (rather than lesion images) as input for predicting behavioral deficits; however, stroke lesion segmentation remains a challenging problem1 and manual delineation remains the gold standard. Given the limits of dataset size, design of an end-to-end pipeline might benefit from a transfer learning approach (see Wang S. et al., 2019; Wang S.H. et al., 2019 for applications to neuroimaging).

Other avenues for future research include the assessment of deep learning models that include connectivity data to address the question of whether predictive accuracy is leveraged by information on structural and/or functional disconnection among brain regions (Forkel et al., 2014; Siegel et al., 2016; Hope et al., 2018). Finally, the prospect of predicting long-term deficits and/or the potential for functional recovery has profound implications for clinical practice.
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The Multiple-Network Poroelastic Theory (MPET) is a numerical model to characterize the transport of multiple fluid networks in the brain, which overcomes the problem of conducting separate analyses on individual fluid compartments and losing the interactions between tissue and fluids, in addition to the interaction between the different fluids themselves. In this paper, the blood perfusion results from MPET modeling are partially validated using cerebral blood flow (CBF) data obtained from arterial spin labeling (ASL) magnetic resonance imaging (MRI), which uses arterial blood water as an endogenous tracer to measure CBF. Two subjects—one healthy control and one patient with unilateral middle cerebral artery (MCA) stenosis are included in the validation test. The comparison shows several similarities between CBF data from ASL and blood perfusion results from MPET modeling, such as higher blood perfusion in the gray matter than in the white matter, higher perfusion in the periventricular region for both the healthy control and the patient, and asymmetric distribution of blood perfusion for the patient. Although the partial validation is mainly conducted in a qualitative way, it is one important step toward the full validation of the MPET model, which has the potential to be used as a testing bed for hypotheses and new theories in neuroscience research.

Keywords: poroelasticity, multiple fluid networks, finite element method, cerebral blood flow, blood perfusion, arterial spin labeling, magnetic resonance imaging, brain


INTRODUCTION

Computational modeling has shown great potential in biomedical engineering research. The main advantage is that computational methods can translate mathematical formulations that describe the inherent complexity of biological systems into computer programs and solve them in a timely manner. Many software suites have been developed for mechanistic modeling of biological systems, such as SfePy (Rohan and Cimrman, 2012), FEBio (Maas et al., 2012), and FEniCS (Logg et al., 2012). In this respect, one of the promising tools is applying the multiple-porosity/multiple-permeability poroelastic model for modeling of fluid transport and tissue deformation in the brain, which is called the Multiple-network PoroElastic Theory (MPET). The brain parenchyma is treated as a deformable solid matrix, permeated by multiple fluid networks (Tully and Ventikos, 2011). In general, the number of fluid networks can be customized to specific research. For current brain modeling, four coupled fluid networks are taken into account: an arterial network (a), an arteriole/capillary network (c), a cerebrospinal fluid/interstitial fluid (CSF/ISF) network (e) and a venous network (v). The directional flows between the fluid networks are shown in Figure 1, which link all four fluid compartments together to form a coupled and integrated fluid domain. The separation of arterial and arteriole networks is based on the consideration of different resistances between large and small arteries. Similar implementation was adopted in the modeling of coronary blood flow in the heart (Smith et al., 2002; Lee and Smith, 2012), where the arterial tree consists of several compartments. In general, arterioles are defined as the primary resistance vessels that enter an organ to distribute arterial blood into capillary beds, which provides more than 80% of the resistance to blood flow in the body (Mulvany and Aalkjaer, 1990; Christensen and Mulvany, 2001; Martinez-Lemus, 2011). Therefore, the arterial blood compartment is further segmented into a high-pressure arterial network and a lower-pressure arteriole/capillary network (Tully and Ventikos, 2011).


[image: image]

FIGURE 1. The four-network poroelastic model (4-MPET) used for mechanistic modeling of the brain.



The MPET theory has been successfully used in the modeling of biomechanical problems, e.g., hydrocephalus (Levine, 2008; Tully and Ventikos, 2011; Sobey et al., 2012), cerebral oedema (Vardakis et al., 2016), and Alzheimer's disease (Guo et al., 2018; Vardakis et al., 2019). However, there still lacks thorough and rigorous validation using experimental and clinical data. Computational tools developed in other fields of biomedical engineering has shown that once sufficiently validated, they can be used as testing beds for clinical research, e.g., analyzing risks and exploring new treatments for diseases (Chen et al., 2018).

The MPET model can generate a wide range of output results, such as the pressure and Darcy velocity (filtration velocity) of fluids and brain tissue deformation. This gives the users great advantage to have a full picture to understand the biomechanical mechanisms at multiple scales. However, it also brings difficulty to the validation of the model. Due to the complexity of the algorithms and the large number of parameters needed to define the MPET model, it is not feasible to validate the entire model in one validation test. Therefore, a series of validation tests need to be designed and conducted to fully validate the numerical model and this paper aims to be as one step in this process.

One important output that can be seen from MPET modeling is blood perfusion, which is represented by the filtration velocity of the arteriole/capillary blood compartment. Blood perfusion in the brain can be quantified by cerebral blood flow (CBF), which is an important parameter to define brain function. For example, by quantifying regional CBF, Chen et al. (2011) demonstrated that normal aging has different effects on regional CBF and gray matter atrophy, although age-related reductions are more common in cortical perfusion than subcortical CBF. Lassila et al. (2018) observed evidence of hypoperfusion being associated with mild cognitive impairment (MCI) status. Moreover, much research have been conducted to explore the possibility of using CBF as a biomarker for early diagnosis of Alzheimer's disease (AD) and other dementias. One of the findings is decreased blood flow in praecuneus and/or posterior cingulum, and in the lateral parietal cortex (Alsop et al., 2010); other studies in AD (Alsop et al., 2008; Dai et al., 2009; Fleisher et al., 2009) found elevated CBF in the hippocampus. The hippocampus is associated with spatial and episodic memory; for example, reduced hippocampal volume results in an amnestic syndrome, which is a core feature of AD (Halliday, 2017).

Several methods can be used to measure CBF, such as computed tomography perfusion (CT perfusion), positron emission tomography (PET), and single-photon emission computed tomography; however, CBF measured by different methods normally cannot be compared directly (Kudo et al., 2003; Guibert et al., 2013). In addition to the methods mentioned above, an increasingly popular method to quantify CBF is to use arterial spin labeling (ASL) magnetic resonance imaging (MRI). Arterial spin labeling (ASL) is a non-invasive imaging technique using standard magnetic resonance imaging (MRI) equipment. The basic idea is that an MRI image can be sensitized to the effect of inflowing blood spins, if the spins are in a different magnetic state from that of the static tissue. The ASL technique based on this idea uses magnetically labeled arterial blood water as a nominally diffusible tracer for blood flow measurements. There are several schemes for labeling arterial blood water, including continuous labeling, pseudo continuous labeling, and pulsed labeling (Calamante et al., 1999). Continuous ASL means continuously rotating arterial spins as they pass a labeling plane just beneath the imaged region (Williams et al., 1992). Pulsed labeling means rotating arterial spins in a slab of tissue at one time (Wong et al., 1997), which is most often used in functional magnetic resonance imaging (fMRI). The physiological basis for the MRI contrast mechanisms of ASL is well-known so it provides a biomarker for brain function that is portable across scanning platforms or time (Alsop et al., 2010). ASL perfusion MRI has been used as a diagnostic tool in clinical practice (Detre et al., 2012; Alsop et al., 2015), and also in human neuroscience research (Detre et al., 2009; Shin et al., 2013).

The objective of this paper is to partially validate the blood perfusion obtained from 4-MPET modeling using CBF data from ASL images. The paper is organized in the following way. First, the image collection, including T1-weighted MRI and ASL MRI, is introduced. The T1-weighted MRI is segmented to create geometry and mesh for numerical modeling. Second, the numerical formulation of the 4-MPET model, and the boundary conditions and parameters used for modeling are described. Third, the numerical results of blood perfusion are compared with CBF data obtained from ASL images, and similarities and differences are discussed. Lastly, some conclusions are drawn from the validation tests and future work is suggested.



MATERIALS AND METHODS


Clinical Data Collection and Processing

The clinical data were collected at the People's Liberation Army (PLA) General Hospital in Beijing, China. Two subjects—one healthy control and one patient with unilateral middle cerebral artery (MCA) stenosis, are included in this paper. The ethics committee of the PLA General Hospital approved the study and both participants gave informed consent prior to participation in the study. After data collection, T1-weighted (T1w) MR images were segmented to create three-dimensional geometries and meshes of parenchymal tissue and the cerebral ventricles for numerical modeling; Arterial spin labeling (ASL) MR images were processed to generate cerebral blood flow (CBF) maps, which were used for validation of the numerical results.

T1-Weighted MRI

A high-resolution T1w dataset using a 3D Ax FSPGR (fast spoiled gradient-recalled echo) sequence was acquired and used to generate masks. The scan parameters were as follows: repetition time/echo time (TR/TE), 5.9960/2.5400 ms; inversion time, 450 ms; bandwidth, ±16 kHz; slice thickness, 1 mm; matrix, 512 × 512; flip angle, 15°. Subsequently, these MR images were segmented to create anatomically accurate three-dimensional brain geometries using FreeSurfer (Fischl, 2012). The emphasis here is to capture detailed cortical and subcortical features, such as the gray and white matter and the cerebroventricular system. Initially two closed surfaces were created from segmentation—the outer surface represents the cortical surface of the brain parenchyma and the inner surface represents the ventricular wall. Next, the volume formed by the ventricular wall was deducted from the volume formed by the cortical surface via a Boolean operation, so the final volumetric domain used for numerical modeling is the brain parenchyma between the cortical surface and the ventricular wall (Figure 2). Furthermore, the brain parenchyma was segmented into separate regions of white matter and gray matter to characterize their different mechanical properties (Figure 3), which makes this model more realistic than previous models using homogeneous representations of the brain parenchyma (Guo et al., 2018). The final geometric model was discretized into 4-node tetrahedra elements using ANSYS (ANSYS, Inc., Canonsburg, USA). The mesh size satisfies the criterion proposed from mesh sensitivity tests in a previous paper (Guo et al., 2018) to make sure the numerical results are convergent.


[image: image]

FIGURE 2. Subject-specific brain geometry obtained by segmentation of T1w MR images and the application of the Boolean operation. The finished model is a volumetric domain with a cavity representing the ventricles. The tetrahedral mesh created for numerical modeling is demonstrated by cross-sections cut in three orthogonal directions. The red color represents the ventricular wall.




[image: image]

FIGURE 3. White and gray matter in the brain model (shown in the horizontal cross-sectional slices). The white matter is represented by the blue color and the gray matter is represented by the red color.



Arterial Spin Labeling MRI

In order to obtain cerebral blood flow (CBF) data for the validation of numerical results, the participants were scanned using 3D pseudo-continuous arterial spin labeling (pCASL) technology (Discovery 750, GE Healthcare). The technical parameters are listed as follows: sequence repetition time/echo time (TR/TE), 5,327/10.5 ms; field of view, 240 × 240 mm; matrix size, 128 × 128; number of slices, 36; slice thickness, 4 mm; labeling duration, 1,500 ms; post-labeling delay, 1,525 ms; and number of excitation, 2; background suppressed. Then the ASL perfusion maps were expressed as cerebral blood flow (CBF) by the supporting software of the MR scanner. A skull stripping function was implemented in the ASL image processing workflow so the scalp tissues can be removed on the CBF maps by creating a tissue mask from T1-weighted images (Deibler et al., 2008). The CBF results are compared with numerical results in section Results and Discussion.



Multiple-Network Poroelastic Model

Finite Element Model

The multiple-network poroelastic model incorporates mechanical equilibrium for elastic deformation, mass conservation of fluids and Darcy's law for fluid flow in a coupled manner. The governing equations of the 4-MPET model are listed as follows, where the primitive variables are the displacement of the parenchymal tissue (u) and the pressures of the four fluid networks pi (i = a, c, e, v).
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Equation 1 is the equilibrium equation, which describes the momentum balance in the porous medium. Here, u is the displacement of the tissue; pi is the pressure in each fluid network; G is the shear modulus; λ is the Lamé's constant; ε is the dilatational strain; αi is the Biot–Willis coefficient for each fluid network which satisfies ϕ ≤ αa + αc + αe + αv ≤ 1 (Berryman, 1992; Wang, 2000), where ϕ is the total porosity. In this paper, only four fluid networks are considered so the total porosity ϕ equals the sum of the porosities of the four individual networks (Bai et al., 1993; Tully and Ventikos, 2011). It is worth noting that the shear modulus G and the Lamé's constant λ are not constant in the domain; they have different values in the gray matter and the white matter. Body forces (e.g., gravity) and inertia terms are neglected in the governing equations based on the assumption that the acceleration frequencies are low in biological flows (Tully and Ventikos, 2011; Chou et al., 2016). It should also be noted that the cross-porosity storage effect (Mehrabian and Abousleiman, 2014) is not considered in this paper due to the lack of experimental data to quantify the parameters in a physiologically realistic way (Vardakis et al., 2017).

Equations 2–5 are continuity equations, which describe the mass balance of the four fluid networks, respectively. Si is the specific storage; ki is the permeability for each of the four fluid networks; μi is the viscosity of each fluid. The assumption adopted in this paper is that the four fluid domains are isotropic; therefore ki is a constant. If spatially varying parameters are available, such as permeability tensors extracted from diffusion-weighted imaging (DWI), the permeability k can be defined on a heterogeneous and anisotropic basis (Guo et al., 2018).

The sij terms on the right-hand side of Equations 2–5 (also demonstrated in Figure 1) define spatially varying source (sij > 0) or sink (sij < 0) terms (Tully and Ventikos, 2011; Vardakis et al., 2013), which are assumed to be driven by a hydrostatic pressure gradient of the form, sij = ωij(pi – pj), where ωij is the transfer coefficient scaling the flow from network i to network j. The transfer of fluid between the four fluid networks is derived from physiological considerations (Tully and Ventikos, 2011) and required to obey the law of continuity for the entire domain; hence, directionality between fluid compartments must be accurately specified. These are listed as follows:

1. Directional fluid transport always occurs from the arterial network to the arteriole/capillary network:
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2. Fluid transport from the arteriole/capillary network enter the CSF/ISF network or the venous network:

[image: image]

[image: image]

3. CSF flows into the venous compartment:
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Next, the governing equations are discretized by the finite element method and implemented in an in-house Fortran code. Both the displacement field u and the pressures of the four fluid networks pi (i = a, c, e, v) are approximated in the continuous piecewise linear polynomial space. The discretized form of the equilibrium equation is derived from the principle of minimum potential energy,
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where
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K is the stiffness matrix; Qi is the load on the solid phase contributed from the ith fluid network (i = a, c, e, v); b is the vector of body force, which is neglected in this paper; N is the matrix of continuous piecewise linear polynomial functions (shape functions); and tN is the external force acting on the boundary ΓN.

The continuity equations of the fluid networks are discretized using the method of weighted residuals and the continuous Galerkin formulation. The discretized form of the continuity equation for one of the four fluid networks is,
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The elements in matrices A, C, and vector P are
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Ni is the continuous piecewise linear polynomial function at node i; and q is the flux prescribed in the Neumann boundary condition acting on the boundary Γ2.

The temporal discretization of the governing equations is implemented using the method of weighted residuals. In this paper, an implicit backward Euler scheme is used for time discretization. The final system of discretized governing equations is solved by the standard KSP linear equation solver in the PETSc library (Balay et al., 2018a,b). The highly coupled equations are solved sequentially in a tightly coupled manner, i.e., the pressure and displacement solutions are solved sequentially during a time-step until a convergence tolerance is reached. At the end of each time-step, Darcy's law is used to calculate Darcy velocities (filtration velocities) of the four fluid networks.

[image: image]

where v is the Darcy velocity for each of the four fluid compartments, i.e., the volume of fluid crossing a unit area per unit time. It should be noted that the focus of this paper is to validate one of the outputs from 4-MPET modeling—blood perfusion; here the blood perfusion is represented by the Darcy velocity of the arteriole/capillary compartment.

Boundary Conditions and Poroelastic Parameters

As illustrated in Figure 2, the simulation domain of the parenchymal tissue is bounded by two surfaces—the outer boundary represents the cortical surface and the inner boundary represents the ventricular wall, both of which need boundary conditions for the solid phase and the four fluid networks, respectively; therefore, a total of 10 boundary conditions are listed in Table 1.



Table 1. Boundary conditions used in the 4-MPET modeling.

[image: image]




The details of the boundary conditions explained from a physiological perspective can be found in previous publications (Tully and Ventikos, 2011; Vardakis et al., 2013; Guo et al., 2018); a summary is given here and their values can be found in Table 2. One of the boundary conditions that is closely related to the modeling in this paper is the arterial blood flow at the cortical surface (Equation 20). The arterial blood supply to the brain is mainly provided by two pairs of arteries—internal carotid arteries and vertebral arteries (Tortora and Derrickson, 2009). Due to the lack of explicit characterization of vasculature in the 4-MPET model, the arterial blood supply to the brain is simplified into a flux boundary condition (Neumann boundary condition) Qa at the cortical surface, which is applied as pulsatile waveforms (Figure 4). The numerical simulations run 50 cycles of arterial blood waveforms to reach a periodic steady state; only the output data from the final steady state are used for validation in section Results and Discussion.



Table 2. Poroelastic parameters used in the 4-MPET modeling.
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FIGURE 4. Arterial blood supply to the brain, which is applied as a flux boundary condition of the arterial blood compartment at the cortical surface.



For the arteriole/capillary blood compartment, the production of CSF from the blood results in a pressure drop in the arteriole/capillary blood (Equation 23), where κc→vent is the resistance of the flow from the capillary network to the ventricles (through the choroid plexus), and Qp is the rate of CSF production. Two assumptions are adopted in this boundary condition. First, there is no separation of the two extracellular fluid compartments in the brain—the cerebrospinal fluid (CSF) and the interstitial fluid (ISF) in the 4-MPET model, which assumes that all of the CSF/ISF is produced within the ventricles from blood at a production rate Qp. However, it has been reported that ~20% of CSF in the human brain originates from brain ISF (Edsbagge et al., 2004; Lei et al., 2017). In the current 4-MPET model, this part of CSF production is implicitly embedded in the combined CSF/ISF compartment. Second, the main site of CSF production in the ventricles is the choroid plexus, which is a highly vascularized tissue located within each ventricle of the brain and develops from several locations along the dorsal axis of the neural tube (Lun et al., 2015). The classical hypothesis involves the production of CSF at the choroid plexus of the lateral, third, and fourth ventricles. However, it is still speculative as to the exact proportions of CSF production in the various choroid plexus sites (Gupta et al., 2009; Vardakis et al., 2013). The 4-MPET model simplifies the production of CSF as a uniform distribution on the entire ventricular wall, instead of at specific locations. This simplification is consistent with the homogenization approach adopted for the 4-MPET model.

The CSF/ISF compartment has a Dirichlet boundary condition at the cortical surface and a mixed boundary condition at the ventricular wall. At the cortical surface, the boundary condition (Equation 24) represents the pressure rise resulted from the absorption of CSF into the venous network, where pbp is the venous blood pressure at the cortical surface, μe is the viscosity of CSF, R is the resistance to outflow through the arachnoid granulations, and Q0 is the out-flux of CSF at the skull (the rate of absorption Q0 is assumed to be equal to the production rate Qp in the quasi-steady approach). At the ventricular wall, the boundary condition (Equation 25) represents the conservation of the mass of fluid in the ventricles. Within the ventricles, it is assumed that any CSF that is produced (Qp) and does not flow through the cerebral aqueduct (Poiseuille's law) or the parenchyma must accumulate within the ventricles, where d and L are the diameter and length of the cerebral aqueduct, respectively, r1 is the distance from the center to the ventricular wall, and [image: image] is the displacement at the ventricular wall.

Two subject-specific brain models are simulated in this paper—one healthy control and one patient with unilateral (right) middle cerebral artery (MCA) stenosis. Unilateral MCA stenosis and other intracranial artery stenosis are common causes of ischemic stroke (Mazighi et al., 2006). Previous research reported a reduced lumen diameter of <50% between normal and MCA stenosis by Transcranial Doppler (TCD) (Wang et al., 2014). To account for the reduced blood supply to the right cerebrum, the arterial blood boundary condition at the cortical surface is decreased to 50% for the patient.

Table 2 gives the poroelastic parameters used in the numerical simulations of this paper. These parameters are introduced in the traditional consolidation theory of poroelastic media (Biot, 1941; Wilson and Aifantis, 1982), and also interpreted from a physiological sense for the cerebral environment. Most of the parameters have been used before and the detailed descriptions can be found in previous studies (Tully and Ventikos, 2011; Vardakis et al., 2013; Guo et al., 2018).

The main difference of parameters compared with previous research of MPET modeling (Tully and Ventikos, 2011; Vardakis et al., 2013; Guo et al., 2018) is the differentiation between the gray matter and the white matter. In previous work, the entire brain parenchyma was treated as a homogeneous domain from a mechanical perspective; therefore, there was only one value for elastic constants—shear modulus G and Lamé's constant λ (Table 2), respectively. An assumption of single permeability (kc) was also adopted for the arteriole/capillary fluid network. In this paper, the segmentation of T1w MR images (section T1-Weighted MRI) defines separate regions for the gray matter and the white matter (Figure 3); therefore, different values are assigned for the mechanical properties of the gray matter and the white matter. More specifically, previous work of MPET modeling used a Young's modulus of 584 Pa (Taylor and Miller, 2004) for the entire brain. However, experiments have found the gray matter is significantly more compliant than the white matter (Finan et al., 2017; Testu et al., 2017). Therefore, in this paper the Young's modulus of the white matter is twice the value for the gray matter (Weickenmeier et al., 2017), which results in higher values of shear modulus G and Lamé's constant λ for the white matter (with subscript w) than the gray matter (with subscript g).

Another difference from previous MPET simulations is that different values of the permeability of the arteriole/capillary fluid network (kc) are assigned for the white matter and the gray matter. In the theory of poroelasticity, the permeability defines the ability of the porous medium to transmit fluids (Wang, 2000). In general, higher permeability enables the fluid to flow faster through the porous medium according to the Darcy's law (Equation 18). The focus of this paper is to validate the blood diffusion (Darcy velocity of the arteriole/capillary compartment) by CBF data from ASL images, so it is important to characterize the permeability associated with the arteriole/capillary compartment at a more detailed level than the other three fluid compartments. The normal average cerebral blood flow (CBF) in adult humans is about 50 ml/100 g/min (Lassen, 1985; Fantini et al., 2016) with lower values in the white matter and higher values in the gray matter (Vavilala et al., 2002); therefore, in this paper the permeability of the arteriole/capillary compartment (kc) in the gray matter (with subscript g) is set to be 100 times the value for the white matter (with subscript w).




RESULTS AND DISCUSSION

The cerebral blood flow (CBF) data from arterial spin labeling (ASL) images and the numerical results obtained from 4-MPET modeling are compared in this section. The 4-MPET model used for numerical simulations can output a wide range of results. The focus of this paper is to validate the blood perfusion; therefore, only the Darcy velocity (filtration velocity) of the arteriole/capillary compartment is shown in this section.

The values of CBF data and blood perfusion from 4-MPET modeling cannot be compared directly (Guibert et al., 2013). The unit of CBF normally is ml/100 g/min, which means the blood volume that flows per unit mass per unit time in brain tissue (Fantini et al., 2016), whereas the unit of Darcy velocity (filtration velocity) is m/s, which means the volume of blood crossing a unit area per unit time. The unit of the filtration velocity (m/s) can be converted to the unit of CBF (ml/100 g/min) by dividing it by the density of the brain tissue 1.0 g/cm3 (Barber et al., 1970) and a reasonable length scale at the order of the size of a gyrus (1 cm) (Im et al., 2008).

The CBF data and blood perfusion results from 4-MPET modeling for the healthy control and the patient with unilateral (right) middle cerebral artery (MCA) stenosis are shown in Figures 5, 6, respectively. The red color represents regions of high blood perfusion and the blue color represents low blood perfusion. There are several similarities that can be seen from the comparison. The first one is that blood perfusion is higher in the gray matter than in the white matter, which means a higher permeability value of the arteriole/capillary compartment in the gray matter is necessary in order to capture this difference. Numerical simulations using identical permeability for the gray matter and the white matter (results are not shown here) demonstrate that different blood perfusion magnitudes in the gray matter and the white matter cannot be reflected in these simulations. In Figures 5, 6, the maximum value in the 4-MPET modeling results is about 2.0 × 10−4 m/s, which is equivalent to 1.2 × 102 ml/100 g/min—within the same order of magnitude of the maximum value on the CBF maps, 1.1 × 102 ml/100 g/min.


[image: image]

FIGURE 5. Comparison of CBF data obtained from ASL images (upper row) and blood perfusion from 4-MPET modeling (lower row) for the healthy control.




[image: image]

FIGURE 6. Comparison of CBF data obtained from ASL images (upper row) and blood perfusion from 4-MPET modeling (lower row) for the patient with unilateral (right) MCA stenosis.



In numerical modeling, the blood perfusion is taken as the Darcy velocity of the arteriole/capillary compartment; therefore for a more quantitative validation it can also be compared with published data of the blood flow velocity in capillaries of the brain. For example, in a review article, Hudetz (1997) suggested that the red blood cell (RBC) velocity falls in the range of 5 × 10−4-1.8 × 10−3 m/s within the cerebral capillary network; Hadjistassou et al. (2015) reported a mean capillary blood velocity of 7.3 × 10−4 m/s (Lücker et al., 2018); used the red blood cell velocity between 4 × 10−4 and 2 × 10−3 m/s in their computation model. It can be seen from Figures 5, 6 that the blood perfusion results obtained from 4-MPET modeling are at the same order of magnitude with these published data.

The second similarity that can be seen from the comparison is that there is clear symmetry between left and right cerebrums in the healthy subject (Figure 5), whereas the patient with unilateral (right) MCA stenosis shows lower blood perfusion in the right cerebrum (Figure 6). This is consistent with previous findings (Liu and Li, 2016; Lyu et al., 2016; Lou et al., 2019), which reported that patients with unilateral MCA stenosis have significantly lower CBF in the hemispheres of the stenotic side. A more detailed comparison is shown in Figure 7, where one slice in the horizontal plane is taken from the healthy control and the patient, respectively. The comparison shows that the healthy control has symmetric distribution of blood perfusion; however, the patient with unilateral (right) MCA stenosis has normal blood perfusion in the left cerebrum (highlighted by red dashed lines and arrows) but lower perfusion in the stenotic side (right). This also demonstrates that the reduced arterial blood flow boundary condition applied on the right cortical surface (section Boundary Conditions and Poroelastic Parameters) is correctly reflected in the output of blood perfusion, which means that the coupling directional flow between the arterial blood compartment and the arteriole/capillary blood compartment (Figure 1) is well-defined, and is able to capture different flows.


[image: image]

FIGURE 7. Comparison of symmetric and asymmetric blood perfusion between the healthy control and the patient with unilateral MCA stenosis. (A) CBF—healthy control; (B) Blood perfusion—healthy control; (C) CBF—patient; (D) Blood perfusion—patient, the red arrows point to high blood perfusion in the gray matter.



The third similarity is that the periventricular region shows relatively higher perfusion in the patient with unilateral MCA stenosis, which can also be identified in the healthy control (Figure 8). In 4-MPET modeling, this feature is partly contributed by the local high magnitude of tissue strain in the periventricular region, which demonstrates that the coupling between solid deformation and fluid flow plays an important role in capturing the correct mechanical response. The local variances of blood perfusion in the periventricular region from 4-MPET modeling are shown in the insets of Figures 8B,D. It should be noted that the ventricles are not completely visible on the CBF maps due to resolution characteristics; however, local regions of high perfusion can still be identified around the visible parts of the ventricular wall, which are highlighted by red arrows.


[image: image]

FIGURE 8. Comparison of blood perfusion in the periventricular region. (A) CBF—healthy control; (B) Blood perfusion—healthy control; (C) CBF—patient; (D) Blood perfusion—patient. The red arrows point to high blood perfusion. It should be noted that in order to highlight the local variances in the periventricular region, the color bar in the insets is different from the one used for the entire brain slice.



It is worth pointing out that very low perfusion can be seen in the white matter of 4-MPET modeling results, which is mainly due to the separation of the arterial blood and the arteriole/capillary blood compartments, and the assumption of homogenization used in the 4-MPET modeling. The ASL technique uses arterial blood water as an endogenous tracer to measure CBF, whereas in the 4-MPET model the arterial blood is further segmented into a high-pressure arterial network and a lower-pressure arteriole/capillary network (Tully and Ventikos, 2011) at two separate scales. Therefore, the relatively higher velocity of arterial blood cannot be seen in the arteriole/capillary network. The other reason is the assumption of homogenization adopted in the 4-MPET model, which means that there is no explicit characterization of the vasculature in the simulations so the regions of high perfusion are smoothed out. Hence, the very low perfusion in the white matter does not correspond to very low ASL signal that would be incompatible with a live person.

The numerical results presented in this paper mainly show qualitative validation, with several limitations that need to be addressed. First, it can be seen from Figures 7, 8 that the CBF data from ASL images exhibit higher degree of heterogeneity in the parenchyma than the blood perfusion results from 4-MPET modeling. The main reason for this is that there is no explicit characterization of subcortical structures and vasculature as input conditions for numerical modeling; therefore, the heterogeneous distribution of blood perfusion is smoothed out due to this assumption of homogenization. Another reason is that some of the high-perfusion regions found on the CBF maps are large arteries, not arterioles; therefore the blood velocity is considerably higher than the surroundings. One possible solution is to assign different values of Young's modulus by simply allowing for some heterogeneity within a small range in the parenchyma, in addition to differentiating between the white and gray matter. Another possible solution to improve this is to use heterogeneous properties (e.g., shear modulus) obtained from magnetic resonance elastography (MRE), which is a non-invasive imaging method to quantitatively assess the mechanical properties of biological tissue in vivo (Green et al., 2008). It is also worth noting that spatially varying permeability tensors are not incorporated for the CSF/ISF compartment in the current study, which is another reason for the lack of heterogeneity in the numerical results. Second, only two subjects are included in the validation, which makes the sample too small to conduct a thorough statistical analysis. Once more data are collected, machine learning, such as the differential evolution (DE) algorithm for non-linear optimization of finite element solutions (Storn and Price, 1997; Cao et al., 2006), can be used to optimize the poroelastic parameters used in 4-MPET modeling. Third, the partial validation of the MPET model in this paper only focuses on the arteriole/capillary compartment, which is not necessarily the most comprehensive scenario to demonstrate the advantages of the MPET model as a whole—ideally, experimental, or clinical data should be collected to show the coupling effects between fluid compartments. Unfortunately, such data are not available at the moment. Therefore, the strategy is to validate the fluid compartments in the MPET model one by one, and then validate the coupling effects once the required data becomes available.



CONCLUSIONS

The paper demonstrates the extent to which the four-network poroelastic model (4-MPET) agrees with arterial spin labeling (ASL) images in terms of blood perfusion. Several similarities can be found between 4-MPET modeling and cerebral blood flow (CBF) data obtained from ASL images. First, the blood perfusion is higher in the gray matter than in the white matter for both the healthy control and the patient with unilateral middle cerebral artery (MCA) stenosis. Second, the healthy control shows symmetric distribution of blood perfusion, whereas the patient has lower perfusion in the stenotic side of the brain. Third, the blood perfusion is relatively higher in the local periventricular region for both the healthy control and the patient with unilateral MCA stenosis. Although the partial validation is presented mainly in a qualitative way, it is one important step in a series of tests toward the full validation of the 4-MPET model. This paper also explains the need for more experimental and clinical data to optimize the boundary conditions and parameters used in numerical modeling. The potential exists to use the 4-MPET modeling workflow as a testing bed for hypotheses and new theories in neuroscience research.
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Automated cerebrovascular segmentation of time-of-flight magnetic resonance angiography (TOF-MRA) images is an important technique, which can be used to diagnose abnormalities in the cerebrovascular system, such as vascular stenosis and malformation. Automated cerebrovascular segmentation can direct show the shape, direction and distribution of blood vessels. Although deep neural network (DNN)-based cerebrovascular segmentation methods have shown to yield outstanding performance, they are limited by their dependence on huge training dataset. In this paper, we propose an unsupervised cerebrovascular segmentation method of TOF-MRA images based on DNN and hidden Markov random field (HMRF) model. Our DNN-based cerebrovascular segmentation model is trained by the labeling of HMRF rather than manual annotations. The proposed method was trained and tested using 100 TOF-MRA images. The results were evaluated using the dice similarity coefficient (DSC), which reached a value of 0.79. The trained model achieved better performance than that of the traditional HMRF-based cerebrovascular segmentation method in binary pixel-classification. This paper combines the advantages of both DNN and HMRF to train the model with a not so large amount of the annotations in deep learning, which leads to a more effective cerebrovascular segmentation method.
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INTRODUCTION

According to the World Health Organization (WHO) report on the global burden of stroke, adult stroke mortality rate has reached 39% (Kim and Johnston, 2011). The pathogenesis of stroke is commonly associated to disorders in human cerebrovascular system (Arvanitakis et al., 2016), and hence an accurate cerebrovascular segmentation is of vital importance for further diagnosis and also for computer-aided diagnosis (CAD) (Yan and Kassim, 2005). Time-of-Flight magnetic resonance angiography (TOF-MRA) is the most widely used imaging technique to observe a complete cerebrovascular tree, because no contrast agent is required for this technique. Automated and accurate cerebrovascular segmentation from TOF-MRA images is beneficial to quantitatively analyze cerebrovascular disorders, such as the estimation of vascular stenosis rate, and also to assess cerebral collateral circulation (Lee et al., 2005; Bicakci et al., 2006).

In the past few years, many methods for extracting cerebrovascular trees were developed based on deformable models (Kavsak et al., 2000; Aylward and Bullitt, 2002; Yim et al., 2003; Yan and Kassim, 2006; Lorigo et al., 2010), statistical models (Wilson and Noble, 1997; Zhang et al., 2001; Gan et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006), and deep neural network (DNN) (Wilson and Noble, 1997; Zhang et al., 2001; Gan et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006). From deformable model-based methods, geodesic active contours is a typical representative method, which fits topological structures of blood vessels in TOF-MRA images with level-set techniques (Lorigo et al., 2010). Yan et al. proposed an effective segmentation method using capillary active contours, which extended geodesic active contours to capillaries modeled on the physical phenomenon of capillary actions (Yan and Kassim, 2006). However, deformable models can easily have leakage around the edge (Angelini et al., 2005; Cengizler et al., 2014). The leakage gets into the area outside of blood vessels during iterative optimization, especially at the end and the stenotic parts of blood vessels. Moreover, in our opinion these models may have a poor performance on TOF-MRA images with inhomogeneity. Statistical model-based methods extract cerebrovascular trees by fitting intensity distributions of different tissues into statistical models such as Gaussian mixture models. Hidden Markov Random Field (HMRF) and Expectation-Maximization (EM) framework were also widely used to segment blood vessels and brain tissue from MR images (Wilson and Noble, 1997; Zhang et al., 2001; Gan et al., 2004; Elbaz et al., 2005; Hassouna et al., 2006). Zhang et al. (2001) firstly introduced HMRF model and EM algorithms to segment gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in brain MR images. Hassouna et al. (2006) proposed a 3D cerebrovascular segmentation method using stochastic models, which described the intensity histogram of MRA images by a finite mixture model consisting of one Rayleigh and two normal distributions. These stochastics models also estimated spatial contextual information using 3D HMRF, then they segmented blood vessels by optimizing HMRF and EM framework (Hassouna et al., 2006). A drawback of the abovementioned statistical model-based methods is that their segmentation performances significantly depend on the adaptation between statistical model and intensity histogram of MR images, and therefore their performances are sensitive to the intensity distortion of TOF-MRA images.

Deep neural network-based cerebrovascular segmentation methods have been proposed with great successes in semantic segmentation (Chen et al., 2017; Nakao et al., 2017; Phellan et al., 2017; Sahin and Ünal, 2017). Chen et al. (2017) proposed a convolutional auto-encoder named Y-net to segment intracranial artery in MRA images, of which dice similarity coefficient (DSC) reached a value of 0.828. Phellan et al. (2017) built a DNN model consisting of two convolutional layers and two fully connected layers to extract cerebrovascular trees, of which the achieved DSC ranged from 0.764 to 0.786. These DNN-based vessel segmentation methods have outperformed the abovementioned traditional machine learning methods, but the training sets of DNN-based methods mostly consisted of TOF-MRA images from only one type of MR scanner with the same resolution. According to prior experiences (Simonyan and Zisserman, 2014; Badrinarayanan et al., 2015; Ronneberger et al., 2015), DNNs need to be trained with a large amount of various TOF-MRA images annotated manually in order to keep a good performance for TOF-MRA images with different resolutions from different devices. However, since human cerebrovascular system is complicated and huge, a large amount of manual annotations of TOF-MRA images is very expensive to obtain.

Given all the aforementioned limitations of existing cerebrovascular segmentation algorithms, we propose a new unsupervised cerebrovascular segmentation framework which combines DNN with HMRF model. It does not require a large amount of manual annotations and achieves great performance for TOF-MRA images for different devices and with different resolutions. We compared two frameworks: HMRF + SegNet2D and HMRF + U-Net3D. These two frameworks are assessed on TOF-MRA images with different resolutions from different devices. The remaining parts of this paper are organized as follows. Section “Materials and Methods” provides the mathematical details of the HMRF and EM algorithm, and the architectures of SegNet and U-Net. In section “Experiments,” the experimental dataset and experimental setting are described, while section “Results” shows the various experiments performed to evaluate the performance of the proposed method. This is followed by a discussion about our approach in section “Discussion.” Finally, we give a conclusion in section “Conclusion.”



MATERIALS AND METHODS


Unsupervised HMRF + DNN-Based Cerebrovascular Segmentation

In previous studies, DNN-based cerebrovascular segmentation methods have significantly outperformed traditional methods (Simonyan and Zisserman, 2014; Badrinarayanan et al., 2015; Ronneberger et al., 2015). Since the human cerebrovascular system has the intricate shape and high inter-individual difference, manual annotations of cerebrovascular trees take too much time. Thus, researchers often use a small amount of TOF-MRA images to evaluate the performance of DNN-based methods even though they necessitate great amount of data. To solve this problem, we propose an unsupervised cerebrovascular segmentation framework by adding a HMRF-based pre-segmentation method before DNN architectures.

The HMRF + DNN framework for cerebrovascular segmentation mainly consists of two parts, pre-segmentation of blood vessels using HMRF and DNN architecture. In the pre-segmentation part, we use HMRF technique to extract brain blood vessels based on their intensity and spatial information in TOF-MRA images. Generally, the brain blood vessels extracted using HMRF method are thick artery blood vessels due to the fact that thick blood vessels have strong intensity differences from brain tissue. Although cerebrovascular system has the intricate shape, the difference between thick and small blood vessels is mainly found in the radius of blood vessels or spatial scale. Therefore, the HMRF-based segmentation result includes most of the features of blood vessels except spatial-scaling feature, while the spatial-scaling feature can be learnt by setting max-pooling layers in the DNN architecture. The second part, DNN architecture, is trained by the results of pre-segmentation of blood vessels. In this paper, 2D SegNet and 3D U-Net are adopted to perform cerebrovascular segmentation. The workflow of the unsupervised HMRF + DNN-based cerebrovascular segmentation method is illustrated in Figure 1.
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FIGURE 1. An illustration of the workflow of unsupervised HMRF + DNN-based cerebrovascular segmentation method. Preprocessed TOF-MRA images are pre-segmented to extract roughly cerebrovascular system using HMRF method, and then these images and rough masks of blood vessels are used to train deep encoder-decoder network. Finally, blood vessels are pixel-classified by deep encoder-decoder network.




Cerebrovascular Segmentation Method Based on HMRF Model and EM Algorithm

Hidden Markov random field model is extended by Markov random filed (MRF) and hidden Markov model (HMM) (Zhang et al., 2001), which consists of a sequence of statistical states hidden in MRF but observable in the observation field. In TOF-MRA images, the spatial information can be described by the associativity between the neighboring pixels, while the intensity information can be represented into Gaussian mixture models in each region-of-interest [e.g., brain tissue, vascular trees, and CSF]. HMRF model can extract cerebrovascular trees using both the spatial and intensity information.

Let S = {1,2,3,…,S} represent the set of indices of voxels in TOF-MRA images, X = {Xi,i ∈ S} and Y = {Yi,i ∈ S} represent the sets of label and image, L = {1,2,3,…,L} be the set of region classes in TOF-MRA images, where S is the number of voxels and L is the number of region classes. If we assume that X and Y are two random fields and any pair of (Xi,Yi) is the pairwise independence, the joint probability distribution of (Y,X) is:

[image: image]

According to the MRF theory (Zhang et al., 2001), the labels in S are related to their neighborhood system, which is defined as N = {Ni,i ∈ S}, where Ni is the set of labels neighboring i,i∉Ni and i ∈ Nj≡j ∈ Ni. A Markov random field X can be represented with a neighborhood system if and only if:
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where S−{i} is the set of indices of voxels except {i} in TOF-MRA images. Thus the above joint probability (1) can be reformed into the following expression:
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and the marginal probability distribution of Yi is:
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Where θl = (μl,σl)T, respectively, μl and σl represent the expectation and variance of Gaussian distribution.

According to the histogram of intensities of TOF-MRA images, we assume that the conditional probability distribution of each region class is a Gaussian distribution. Given Yi = l, Xi follows a conditional probability distribution:
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Thus, the Gaussian HMRF model is represented as:
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To find a labeling [image: image] of TOF-MRA images, it can be used to estimate the ground truth labeling X∗ using the maximizing a posterior (MAP) criterion:
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The prior probability of each voxel is different. According to the Hammersley system theorem (Hammersley and Clifford, unpublished), since X is considered as a MRF, its prior probability can be formulated as:
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where Z is the partition function which is a normalizing constant, and U(Y) is an energy function:
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where Vc(X) is the clique potential function.
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where U(Y|X) is the likelihood energy.
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and Z′ = (2π)(N/2). Thus, it has an obvious relationship log(P(X|Y))∝−U(X|Y)where:

[image: image]

is called the posterior energy. Thus, the labeling [image: image] can be estimated by minimizing the posterior energy function:
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According to the above derivation, the problem of the optimal segmentation is equivalent to minimizing the posterior energy function. To solve the equation (9), we estimate the optimal parameters of HMRF model using EM algorithm, which is an iterative optimal algorithm to solve the problem of the estimation of maximum likelihood or posterior. For more details on EM algorithm, kindly refer to (Dempster et al., 1977). The brief description of EM algorithm for optimizing HMRF model is given as follows.

Start Initialize the estimated parameters θ0.

E-step Calculate the expectation of log joint probability:
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M-step Maximize the log joint probability to estimate the new parameters θ(t+1):
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where [image: image] is estimated by the equation (7) in MRF-MAP estimation procedure.

Update assign θ(t + 1) to θ(t) and repeat from E-step.



Deep Convolutional Encoder-Decoder Network

Deep convolutional encoder-decoder network (DCEDN) is a new deep convolutional neural network resulted from modifying the fully convolutional network (FCN) (Long et al., 2015). It can provide more precise segmentation results with few training datasets. The well-known architectures of DCEDN include SegNet (Badrinarayanan et al., 2015), U-Net (Ronneberger et al., 2015), and their main ideas consist of trying to map low resolution features to input resolution for pixel-wise classification. Their common architecture is illustrated in Figure 2. There is no fully connected layers in their architectures. They mainly contain two parts, encoder network and their corresponding decoder network. Encoder network is designed to extract feature maps of input images, while decoder network up-samples low resolution feature maps into the input resolution. The encoder network consists of a few convolutional layers, batch normalization layers, rectified linear unit (ReLU) layers and max-pooling layers. In common, the encoder network is designed as the traditional architecture for object classification [e.g., VGG16 (Simonyan and Zisserman, 2014)], while the difference compared to traditional network for object classification is to memorize the max-pooling indices in SegNet or the feature maps in U-Net. Decoder network usually contains the same number of up-sampling layers, convolutional layers, batch normalization layers and ReLU layers as the encoder network. Up-sampling layers is used to up-sample the feature maps from the encoder network. Finally, the feature maps with the input resolution are pixel-classified by a soft-max layer, and the probabilities for each class are output.
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FIGURE 2. An illustration of the common DCEDN architecture.


In this paper, we performed cerebrovascular segmentation from TOF-MRA images based on 2D SegNet (Badrinarayanan et al., 2015) and 3D U-Net (Çiçek et al., 2016). The DCEDN and SegNet architecture adopted in this paper is illustrated in Figures 2, 3. The input of SegNet architecture consists of each 2D slice of TOF-MRA images which is resized into 256×256. The main structure of the 2D SegNet consists of 8 convolutional layers, 8 batch normalization layers, 8 ReLU layers, 2 max-pooling layers, and 2 up-sampling layers and a soft-max layers. Each convolutional layer contains 80 filters with 3×3 voxels receptive field in a 1 voxel stride sliding. The batch normalization layer after each convolutional layer helps improve the convergence speed of SegNet, and the ReLU layer can reduce the impact of the backpropagation vanishing problem. Finally, the pixel classification is processed in the soft-max layer.
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FIGURE 3. An illustration of SegNet architecture adopted in this paper. The different layers is indicated by boxes with different colors. The input of this architecture is 256×256 2D TOF-MRA image. The input size of each convolutional block is denoted at the left bottom, and the number of channels on the top.


Given that 3D U-Net has achieved remarkable successes in various biomedical segmentation tasks (Ronneberger et al., 2015; Çiçek et al., 2016; Tong et al., 2017), we chose 3D U-Net as our framework example to evaluate the performance of the proposed method. One of differences with 2D SegNet architecture is that the input is the 3D volume region of TOF-MRA images, while each TOF-MRA images is patched into 64×64×64 because of the limitation of the memory. The 3D U-Net architecture designed in this paper contains the encoder network to encode the valid feature and the decoder network to up-sample the low resolution feature back to the input resolution. The encoder network consists of 6 convolutional layers, and each of them is followed by a batch normalization layer and a ReLU layer, and 2 max-pooling layers to change the feature resolution. The decoder network consists of 2 up-convolutional layers and 2 convolutional layers, and each of them is followed by a batch normalization layer and a ReLU layer like the encoder work. The feature up-sampled by the up-convolutional layer is concatenated with the correspondingly cropped feature before the batch normalization layer. Finally, soft-max layer performs the voxel-based classification and outputs the probabilities for each cluster. An illustration of the 3D U-Net used in this paper is displayed in Figure 4.
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FIGURE 4. An illustration of 3D U-Net architecture. The different layers is indicated by boxes with different colors. The input of this architecture is 64×64×64 3D TOF-MRA volume region. The input size of each convolutional block put at the left bottom, and the number of channels put on the top. The gray arrow represents the corresponding feature concatenation.




HMRF + DNN Framework Training

The training of the HMRF + DNN framework for cerebrovascular segmentation includes two parts, auto-labeling ROI of TOF-MRA images using the HMRF model and the training of the DNN model. According to the intensity distribution of TOF-MRA images, the intensity distributions of brain tissue and blood vessels can be approximately represented as Gaussian distributions. Then, we constructed two Gaussian HMRF models to automatically extract the blood vessels in the preprocessed TOF-MRF images. The intensity of the background of TOF-MRA images is zero through preprocessing, so we labeled the background into an individual class in order to improve the performance of the algorithms. Thus, in the first part of HMRF + DNN framework, we labeled each TOF-MRF images into three classes regions, background, brain tissue and blood vessels using HMRF model method.

The second part of the HMRF + DNN framework is the DNN training using TOF-MRA images and their labeling resulted from the first part. We constructed two architectures in this paper to segment cerebrovascular trees in TOF-MRA images, respectively, 2D SegNet and 3D U-Net. The input image of 2D SegNet consists of each 2D slice of TOF-MRA images, whereas in the 3D U-Net, the input consists of 3D volume region. To improve the performance of 2D SegNet in cerebrovascular segmentation, we built the HMRF + SegNet2D model with three sub-SegNets which were, respectively, trained by 2D TOF-MRA images in axial, sagittal and coronal directions, which is based on the neurophysiology theory that cerebrovascular systems in different individuals have similarly 3D topological structures. Then, the final probability map was estimated by averaging the probability maps from these three 2D SegNets. The loss function over the whole training datasets was minimized through a mini-batch gradient descent approach, and the minimum of batch size was 50 inputs. The learning process goes through 50 epochs with a learning rate of 0.001 and a gradient momentum of 0.9. In 3D U-Net learning process, there are the same parameter settings in epoch number, learning rate and gradient momentum, but the minimum of batch size is set as 8 because of the limitation of memory.



EXPERIMENTS


Data Preparation and Image Pre-processing

In this study, we collected 100 TOF-MRA cases including 30 healthy cases and 70 stroke cases, which are used to train and evaluate the performance of different segmentation methods. 60 TOF-MRA cases among the total dataset were acquired on a 1.5T Discovery MR750 GE MRI scanner without contrast agent at a parameter setting of a TE = 2.6 ms, a TR = 22 ms and a flip angle = 20 degree. The voxel size of each 1.5T TOF-MRA is 0.43×0.43×0.59mm3, and each volume contains 512×512×164 voxels. The other 40 TOF-MRA cases were acquired on a 3T Verio SIEMENS MRI scanner without contrast agent at a parameter setting of a TE = 3.6 ms, a TR = 21 ms and a flip angle = 18 degree, and their voxel size is 0.30 mm × 0.30 mm × 0.7382 mm and each volume size is 616×768×136.

To reduce the impact of the brain skull on the cerebrovascular segmentation, the dataset was preprocessed to remove brain skull using the BET2 method (Wels et al., 2009), which was followed by a bias correction using multiplicative intrinsic component optimization (MICO) algorithm (Li et al., 2014). Then, maximum intensity projection (MIP) images in axial, sagittal and coronal axis were acquired with a MIP algorithm. The vessels in MIP images of each case were manually segmented by medical experts to evaluate the performance of algorithm, which is illustrated in Figure 5.
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FIGURE 5. The skull stripping and bias correction results. (A) Original TOF-MRA image. (B) Skull stripping result. (C) Bias field. (D) Bias corrected TOF-MRA image.




Hardware Settings

In this paper, our experiments were implemented, respectively, using MATLAB 2017b and Python 3.0 in Window 10 OS. Environments were made on a desktop computer with eight Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processors, 32 GB of RAM memory and NVIDIA GeForce GTX 1080.



Evaluation Method

Since manual annotations for 100 cases of TOF-MRA images need too much time, we manually segmented the vessels in MIP images of each case in axial, coronal and sagittal directions. We first adjusted the threshold, to segment high pixels, and then modified it manually, focusing on the edges and the ends of the vessels, as well as some small vessels. The performance of the proposed method in cerebrovascular segmentation is evaluated by comparing MIP post-processed binary images resulted from the proposed method with manual annotations, respectively, in axial, coronal and sagittal directions. Because MIP images in axial, coronal and sagittal directions contain the most information of blood vessels, the comparison of MIP binary images in axial, coronal and sagittal directions is able to indicate the difference of cerebrovascular segmentation between the proposed method and manual annotations. Therefore, the binary classification performance of the proposed method is evaluated by accuracy, sensitivity, specificity, precision, and DSC (Dice, 1945) which is defined as [image: image], where A and B is, respectively, the ground-truth and segmentations of DCEDN. DSC ranges from 0 to 1.



RESULTS

We evaluated the performance of HMRF + DNN framework in cerebrovascular segmentation to compare segmentation results using HMRF, HMRF + SegNet2D, and HMRF + U-Net3D methods. We separated all of the 100 TOF-MRA data into training and testing datasets. We randomly chose 20 TOF-MRA data from 1.5T GE scanner and 20 TOF-MRA data from 3.0T SIEMENS scanner to build up the training dataset, while the other 60 TOF-MRA data were assigned to the testing dataset. HMRF + SegNet2D and HMRF + U-Net3D were trained using the training dataset. Then, testing dataset was segmented by HMRF, trained HMRF + SegNet2D and trained HMRF + U-Net3D methods, and their results were evaluated according to the above mentioned method.

We illustrate a case of healthy person of axial MIP images of segmentation results of HMRF, HMRF + SegNet2D and HMRF + U-Net3D in TOF-MRF images in Figure 6, and a case of stroke patient in Figure 7. The evaluation table for cerebrovascular segmentation results of HMRF, HMRF + SegNet2D and HMRF + U-Net3D in testing dataset are reported in Table 1. We also show the evaluation results of healthy people and stroke patients in Tables 2, 3, respectively. The DSC values were estimated by comparing the MIP images of cerebrovascular segmentation in axial, coronal and sagittal directions with the corresponding manual ground-truths. Values in each column were the average among the testing dataset.


[image: image]

FIGURE 6. Healthy person. An illustration of axial MIP images of cerebrovascular segmentation results through HMRF, HMRF + SegNet2D, HMRF + U-Net3D and manual annotations. (A) TOF-MRA MIP images in axial, coronal and sagittal three axes. (B) MIP images of HMRF result in three axes. (C) MIP images of HMRF + SegNet2D result in three axes. (D) MIP images of HMRF + U-Net3D result in three axes. (E) Manual annotations in three axes.



[image: image]

FIGURE 7. Stroke patient. An illustration of axial MIP images of cerebrovascular segmentation results through HMRF, HMRF + SegNet2D, HMRF + U-Net3D and manual annotations. (A) TOF-MRA MIP images in axial, coronal, and sagittal three axes. (B) MIP images of HMRF result in three axes. (C) MIP images of HMRF + SegNet2D result in three axes. (D) MIP images of HMRF + U-Net3D result in three axes. (E) Manual annotations in three axes.



TABLE 1. Evaluation of cerebrovascular segmentation evaluation in all samples.
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TABLE 2. Evaluation of cerebrovascular segmentation evaluation in healthy people.
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TABLE 3. Evaluation of cerebrovascular segmentation evaluation in stroke patients.
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DISCUSSION

Deep neural network models are supervised deep learning models which have been widely used to perform object recognition and segmentation. They are commonly trained with a large amount of images labeled by humans. However, most of the traditional segmentation methods are unsupervised, and they can extract objects based on observable or expressed features using prior knowledge. To make use of the advantages of both DNNs and traditional segmentation methods, in the cerebrovascular segmentation field, we combine traditional machine learning method with DNN models to achieve unsupervised DNN training scheme.

According to our experimental results, both HMRF + SegNet2D and HMRF + U-Net3D have good performances in cerebrovascular segmentation, and which are better than that of HMRF although they are trained with the results of HMRF. The accuracy and the specificity are both high, the accuracy of all three methods is above 0.99, and the specificity is above 0.999. But the sensitivity is quite different, sensitivity of HMRF method is just 0.5073, while that of the other two methods can reach a value above 0.76, which shows that the performance of HMRF with DNN method is much better than that of HMRF method. Though the accuracy is high, but the sensitivity is low. Low sensitivity and high accuracy is due to the imbalance of the negative and the positive samples. The proportion of blood vessels in human brain is small, so most samples are negative and a few are positive, which led to a large amount of negative samples and a small amount of positive samples. When calculating the accuracy, we used both true positive and true negative results as numerator, and all positive and negative samples as denominator, so the numerator is close to the denominator. But when calculating the sensitivity, only true positive is used as numerator, while the denominator is the sum of the true positive and false negative results. As the number of the negative samples is much larger than that of the positive samples, the false negative results is large due to the large base, that makes the sensitivity low.

The statistical results of the healthy people and stroke patients are similar, although the blood vessels are often smudged in stroke patients. The DSC is also similar and it is noticed that the DSC of stroke patients are even a little higher than that of the healthy people. As shown in Figures 6, 7, the number of vessels from the stroke patient is less than that of the healthy person, and the complexity of vascular distribution is low. We think that is why the stroke DSC value is similar to that of the healthy people, due to the fact that the details of stroke patients are not as much as those of the healthy people, which led to a better DSC value.

In fact, many small blood vessels are segmented by HMRF + SegNet2D and HMRF + U-Net3D, but not by HMRF. This can be explained from the view of feature extraction. In TOF-MRA images, different blood vessels share many similar features such as shapes, while their differences mainly are intensity contrast and vessel thickness. Since blood vessels segmented by HMRF are mainly large and high contrast vessels, DNN models mainly learn the features of large and high contrast vessels, while max-pooling layers in DNN provide a learning ability based on the different resolution features of blood vessels. Thus, DNN models trained by HMRF segmented blood vessels have stronger ability to recognize smaller blood vessels than HMRF method. Moreover, to improve the robustness of the proposed method for different kind of TOF-MRA images, we mixed 1.5T GE and 3.0T SIEMENS, healthy and ischemia stroke TOF-MRA images in training dataset.

Because of the limitation to obtain the manual annotations from public TOF-MRA dataset, it is difficult to directly compare our method to other DNN-based cerebrovascular segmentation methods, such as Y-Net (Chen et al., 2017) and CNN method proposed by Phellan et al. (2017). However, in terms of Dice numbers, our unsupervised method shows the great potential to perform automatic cerebrovascular segmentation.

In the future, we will investigate post-processing methods to boost the performance of the proposed method. Moreover, we will focus on the accurate segmentation of Willis circle and stenosis part of brain blood vessels since it can provide a fast and efficient stenosis detection method.



CONCLUSION

We proposed a new unsupervised cerebrovascular segmentation framework based on HMRF model and DNN techniques in brain TOF-MRA images. The DNN model was trained by the label data obtained from HMRF model rather than manual annotations, which cost effective in terms of manual efforts. This cerebrovascular segmentation framework achieved a state-of-art performance evaluated on both 2D and 3D TOF-MRA images.
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At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.

Keywords: graph mining, similarity, sub-network kernels, spectral clustering, Alzheimer's disease


INTRODUCTION

In recent years, graph mining has become a popular research field and has been widely used in computer networks (Zou et al., 2017), social network analysis (Halder et al., 2016) and computational biology (Zhang et al., 2017). In addition, many new kinds of data can be represented as graphs, such as functional magnetic resonance imaging (fMRI) data. Using fMRI data we can construct the brain functional connectivity network in which each node represents a brain region and each edge represents the functional connectivity between two brain regions (Kong and Yu, 2014). These brain networks provide us with a means to explore the function of the human brain and provide valuable information for clinical diagnosis of neurological diseases, such as Alzheimer's disease (AD), Bipolar disorder patients (BD), and Schizophrenia (SC). Therefore, brain network analysis based on graph mining has become a new research hotspot and attracted increasingly more researchers.

In brain science studies, some brain network of subjects were given, some of whom suffered from certain brain diseases (such as AD or BD), while the other group was a normal control group without any brain disease. The next task is to distinguish the two types of subjects accurately. In this problem, most of the researchers are based on the assumption that brain networks with similar structures have similar functional characteristics. Therefore, the key problem is how to measure the similarity of brain network.

The existing similarity measure of brain networks can be classified into two main classes (Mheich et al., 2019): (1) the statistical comparison, where various graph theoretical metrics (such as efficiency and betweenness) can also be estimated at node or edge level of the compared networks (Bullmore and Bassett, 2011). These metrics are then quantitatively compared between two groups of networks via statistical tests. (2) Graph matching, where the main purpose is to quantify a similarity score between two brain networks by considering structure distance. This method includes: edit distances, hamming distance (Gao et al., 2010) and kernel methods (Shervashidze et al., 2011).

In this paper, by combining the above two class methods, a similarity measurement method of brain network based on node attribute similarity and structural similarity is proposed, and the method is applied to the clustering of brain network. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering.

This framework is illustrated in Figure 1. Specifically, for each brain connectivity network, we first preprocess the fMRI data and construct a minimum spanning tree (MST) network of the Default Mode Network (DMN), then compute two different types of similarity (attribute similarity and structure similarity) and effectively integrate these for spectral clustering. Finally, we evaluate the proposed method on three datasets. One dataset was from Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The other two dataset were selected from the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study, and the study was approved by the UCLA Institutional Review Board. Cluster consistency is used to evaluate the performance of the method. The cluster consistency is similar to the clustering accuracy, which reflects the consistency between the cluster results and the clinical diagnosis results. It can be seen from the experimental results that the consistency of the proposed brain network clustering algorithm is high, which shows that the clustering of the brain network can be accurately realized without the clinical diagnosis information.


[image: Figure 1]
FIGURE 1. The framework of spectral clustering based on brain network. Firstly, the fMRI data is preprocessed, and the minimum spanning tree (MST) network of the default mode network (DMN) is constructed. Then, two different types of similarity (attribute similarity and structural similarity) are calculated. Finally, the two kinds of similarity are effectively combined and the brain network clustering is carried out.




MATERIALS AND METHODS


Data Acquisition and Preprocessing

The data used in this study was from three datasets. One was the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). The other two were obtained from a public database, openfMRI dataset (https://www.openfmri.org/). Its accession number is ds000030.

In the ADNI database, 109 subjects (48 AD patients and 61 NC) were selected for analysis. Of these, 55 participants (26 AD patients and 29 NCS) were selected from ADNI-2. These data meet the following parameter settings: repetition time (TR) = 3,000 ms; echo time (TE) = 30 ms; slice thickness = 3.3 mm; flip angle = 80°; slice number = 48 and 140 time points. During scanning, all the subjects were instructed to keep their eyes closed. Another 54 participants (22 AD patients and 32 NCs) were selected from ADNI-3. These data meet the following parameter settings: repetition time (TR) = 3,000 ms; echo time (TE) = 30 ms; slice thickness = 3.4 mm; flip angle = 90°; slice number = 48 and 197 time points. Table 1 shows the demographic information of the participants.


Table 1. Demographic information of study participants.

[image: Table 1]

In openfMRI database, 49 bipolar disorder patients (BD), 50 schizophrenia (SC) and 49 age- and gender-matched normal subjects (NC) were selected for analyzing. Data meets the following parameter settings: repetition time (TR) = 2,000 ms; echo time (TE) = 30 ms; slice thickness = 4 mm; flip angle = 90°; slice number = 34 and 152 time points. The detailed demographics and clinical features of the patients and normal controls are described in Table 2.


Table 2. Demographic information of study participants.
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Many preprocessing steps for the fMRI images were performed using Data Processing Assistant for Resting-State fMRI (DPARSF, http://pub.restfmri.net/) (Chao-Gan and Yu-Feng, 2010), Statistical Parametric Mapping (SPM12) (http://www.fil.ion.ucl.ac.uk/spm), and the Resting-State fMRI Data Analysis Toolkit (REST 1.8) packages (Song et al., 2011). These steps include slice time correction, brain skull removal, and motion correction followed by temporal pre-whitening, spatial smoothing, global drift removal, and band pass filtering. Specifically, the first 10 time points of each subject were removed; slice-timing correction and image realignment were carried out on the remaining time points. Because the brain size, shape, orientation, and gyral anatomy of each subject is different, the fMRI data of each subject was usually normalized into the Montreal Neurological Institute (MNI) space (resampled into 3 × 3 × 3 mm3 voxels) by using a unified segmentation on the T1 image. Then, the linear trends of the time courses were removed, and the effect of nuisance covariates was removed by signal regression using the global signal, the six motion parameters, the cerebrospinal fluid (CSF) and white matter (WM) signals. Temporal filtering (0.01 Hz < f < 0.08 Hz) was applied. Lastly, since we used only gray matter (GM) tissue to construct the functional connectivity network, the gray matter mask was used to mask the corresponding fMRI images to eliminate the possible effects from CSF and WM.



Method

The core of our proposed method is listed below and will be described comprehensively in the following sections:

(1) Labeling the DMN and generating the MST brain functional network.

(2) Brain network similarity assessment.

(3) Spectral clustering algorithm based on brain networks.


Labeling the DMN and Generating the MST Brain Network

Many studies have confirmed that the Default Mode Network (DMN) maintains a relatively stable state in the whole brain network, which is suitable for the study of the abnormality of the brain function network connections. In addition, a large number of studies have confirmed that AD patients have abnormal functional connections in the DMN (Mevel et al., 2011; Garcés et al., 2014). The connection abnormality is mainly reflected in the decrease of functional connections in the Posterior Cingulate Cortex (PCC) and Hippocampus (HIP), and the degree of reduction is positively correlated with the degree of episodic memory impairment. With the development of the disease, the impairment of DMN is aggravated gradually. Previous studies have confirmed that Bipolar disorder (Öngür et al., 2010), Schizophrenia (Mingoia et al., 2010; Tang et al., 2013) patients have abnormal functional connections in the DMN. Therefore, the connection abnormality of the DMN could provide an imaging marker for monitoring AD, BP, and SC.

(1) Labeling the DMN

In this paper, according to the Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) atlas in concordance with another study (Ciftçi, 2011), the DMN consisted of 32 locations and are shown in Table 3. These 32 locations were defined as the nodes of the brain network, and node time series were obtained by averaging the corresponding voxel time series in the anatomical areas. Then, with the Pearson correlation coefficients between pairs of nodes as connectivity weights, a functional full connected network was finally constructed for each subject.


Table 3. AAL structures forming the DMN.
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(2) Constructing the MST brain network

When building a brain network, the traditional approach is to convert a fully connected network into a binary network by setting a threshold. And there is no gold standard for the selection of thresholds. In addition, because different thresholds get different binary networks, this will affect the results of subsequent analysis to a certain extent. In order to avoid the threshold selection problem and preserve the structure of the brain network, we adopt the minimum spanning tree network correction scheme to construct the unbiased brain network. The MST method not only preserves the core framework of the network and ensures the neural interpretability of the network, but also eliminates the influence of the threshold. The MST network correction scheme has been widely applied to construct brain networks. For example, Guo et al. (2017) constructed minimum spanning tree high-order functional connectivity networks to identify AD from NC. van Dellen et al. (2018) constructed the MST structural brain networks of healthy adults, and concluded that MST was a feasible method to analyze structural brain networks. Cui et al. (2018) constructed the MST functional brain network for AD, MCI, and NC, analyzed the difference of topological structure among them, and classified them by using topological structural features.

In this paper, we constructed the MST brain network based on the full connected network by employing Kruskal's algorithm (Kruskal, 1956). The details of the algorithm used in this study are as follows: (1) order the weights of the full connected network in descending order; (2) link the nodes with maximal weight until all the nodes are linked in a loopless subgraph; (3) skip the link if the addition of this link leads to a loop.

In this study, the number of nodes in the topology of MST was 32 and the number of edges was 31.



Brain Network Similarity Measure

A brain network has not only attribute features but also topological features. So the similarity of brain networks was evaluated by their attribute similarity and structural similarity. The brain network clustering framework is shown in Figure 2.

1. Brain network attribute similarity


[image: Figure 2]
FIGURE 2. The brain network clustering framework. A graph (A) contains a number of inter-connected nodes, each node represents a brain network, different color represent different brain region. To calculate similarities between brain networks (G and H), we first find similarity between brain networks by taking node attributes (attribute similarity) and structures (structure similarity) into consideration (B). The similarity matrix (C) is formed by the effective combination of attribute similarity and structural similarity. Similarity matrix and spectral clustering (D) results in final clustering results in (E).


Betweenness is an important graph theoretical metrics in MSTs. In clinical application, betweenness centrality was used to compare brain networks of healthy subjects and patients with schizophrenia, depression and Alzheimer diseases (van den Heuvel et al., 2010; Yao et al., 2010; Becerril et al., 2011). Hence, the attribute similarity of brain networks is evaluated by measuring the similarity of betweenness. Betweenness of nodes is defined as the number of shortest paths through a node.

The betweenness bi of the node i is defined as (Tewarie et al., 2015):

[image: image]

where ρhj is the number of shortest paths between node h and j; [image: image] is the number of shortest paths between node h and j through the node i; V is the set of nodes; and n is the number of nodes.

The attribute similarity satt(G, H) is calculated using the cosine similarity method (Nguyen et al., 2011). The formula is as follows:

[image: image]

where bm(G) is the betweenness of the m-th node in the brain network G, bm(H) is the betweenness of the m-th node in brain network H, and n is the number of nodes in the brain network.

2. Brain network structure similarity

A kernel can be seen as a measure of similarity between a pair of subjects. When a kernel is used for graph data, called a graph kernel, the data is mapped from the original graph space to the feature space and further measures the similarity between two graphs by comparing their topological structure (Shervashidze et al., 2011).

In this paper, sub-network kernels (Jie et al., 2018) were used to measure the topological structure similarity of brain networks. Compared with traditional graph kernels, sub-network kernels not only take into account the uniqueness of each node in brain networks, but also capture the multi-level topological properties of the brain network nodes.

The detailed process of sub-network kernels is summarized as follows:

(1) We construct a set of sub-networks on each node to reflect the connectivity of the brain network at multiple levels.

Specifically, G = (V, E) and H = (V, E′) represent a pair of brain networks, where V represents the node set for the networks. E and E′ represent the edge sets for G and H, respectively. Because the brain has the same brain area they share the same nodes.

To reflect the multi-level topological properties of brain networks, we first define two sets of sub-networks on each node Vi in the networks G and H,

[image: image]

where [image: image],[image: image],[image: image],[image: image] and s(·, vi) is the length of the shortest-path between node Vi and the other node. Here, h determines the maximum of s(·, vi) and also defines the number of sub-networks in the set [image: image] and [image: image].

According to Equation (3), for a brain network of n nodes, we can obtain n sets of sub-networks:

[image: image]

(2) We can calculate the kernel of brain networks G and H by calculating the similarity of all sub-network groups from the same node. The kernel of brain networks G and H is defined as:

[image: image]

with
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and
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where |·| is the determinant, [image: image] and [image: image] are the corresponding covariance matrices which are defined on the sub-networks [image: image] and [image: image] by Equation (7) (Shrivastava and Li, 2014), respectively, d represents the number of power iterations, n denotes the number of nodes in the brain network, and [image: image] is defined in Equation (8).
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where CϵRd × d is a covariance matrix, d is the number of power iterations, cov denotes the covariance between two vectors, W denotes the adjacency matrix for the sub-network, e is the vector of all ones, and ‖·‖1 denotes the l1 norm of a vector. Here, the set of power iterations on a given vector e,{e, We, W2e, …, Wde}, is known as the “d-order Krylov subspace” which contains sufficient information to describe the adjacency matrix W for some appropriately chosen d.

Finally, the topological structural similarity between two brain networks G and H is equal to the kernel of the two brain networks G and H, and is defined as:

[image: image]

3. Brain network similarity

Because the similarity of brain networks includes two parts (attribute similarity and structure similarity), it is necessary to combine them into one similarity. For this combination, we use a weight δ to control the degree of contribution of each part. In addition, since attribute similarity and structure similarity are two different types, normalization must be performed before combining them. The normalization is defined as:

[image: image]

The similarity sG,H of two brain networks G and H is defined as follows:

[image: image]

So similarity matrix for all brain networks S is defined as follows:

[image: image]

where sgh represents the similarity between brain networks G and H, and n represents the number of brain networks. sgh ranges between 0 (no similarity at all) to 1 (fully similar / same network).



Spectral Clustering Algorithm Based on Brain Networks

With the similarity matrix S obtained in the above section, we can formulate the clustering of brain networks as a spectral clustering (Ng et al., 2002; von Luxburg, 2007) problem, in which brain networks with a higher similarity tend to be grouped into the same cluster.


Algorithm 1: Spectral clustering algorithm based on brain networks

[image: Algorithm 1]



Methodology

In all algorithms, we set the number of clusters to 2 for classifying the patients and the healthy controls. In addition, there were certain parameters that needed to be set in the proposed algorithm: (1) We apply grid search to find the optimal value for δ. We do grid search for δ in {0.1, 0.2, … 0.9}. (2) In the sub-network kernels, the parameters h and d are set to 3 and 3 for AD, the parameters h and d are set to 3 and 1 for SC and BP, respectively.

To evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects, we defined clustering consistency as similar to clustering accuracy (Wang et al., 2010), which can be used to discover one to one relationships between clusters and clinical classes and can measure the extent to which each cluster contains data points from the corresponding class.

Clustering consistency sums up the entire matching degree between all pair class clusters. Clustering consistency can be computed as

[image: image]

where Cm denotes the m-th (m[{1, 2}) cluster in the final results, and Lp is the diagnostic p-th (p[{1, 2}) group (patient group and control group). T(Cm, Lp) is the number of samples that belong to group p and are assigned to cluster m. n represents the number of brain networks. Consistency is the maximum sum of T(Cm, Lp) for all pairs of clusters and groups, and these pairs have no overlaps.





RESULTS

The minimum spanning tree brain network of the default mode network was constructed using Kruskal's algorithm. Then, According to a certain proportion, the attribute similarity matrix and the structure similarity matrix were combined to form a similarity matrix which is used for clustering. Finally the clustering of the brain network was completed by spectral clustering.


Clustering Performance

In order to evaluate the clustering performance of our proposed method, we compared our method with methods that use a different similarity measure for the same dataset, including:

(1) Spectral clustering algorithm based on node attributes: It is an existing similarity measure of brain networks only considering node attribute similarity. We first constructed the similarity matrix only based on node betweenness and then used the similarity matrix as the input for normalized spectral clustering.

(2) Spectral clustering algorithm based on kernel method (Jie et al., 2018): It is an existing similarity measure of brain networks only considering structure distance between two brain networks. We first constructed the similarity matrix for graphs based on the kernel method and then used the similarity matrix as the input for normalized spectral clustering.

(3) Spectral clustering algorithm based on SimiNet (Mheich et al., 2018): SimiNet takes into account the physical locations of nodes and the weight difference of edge when computing similarity between two brain graphs. We first constructed the similarity matrix for graphs based on SimiNet and then used the similarity matrix as the input for normalized spectral clustering.

In all experiments, we evaluate the performance of methods by measuring clustering consistency. Clustering consistency is used to find one-to-one relationships between clusters and clinical classes of the subject, and to measure the extent to which each cluster contains data points from the same class. Table 4 shows the clustering performances of the different methods with the same dataset. The results showed that our proposed method achieved the best clustering performance, with a consistency of 60.6% for AD, with a consistency of 100% for SC, with a consistency of 100% for BP.


Table 4. Clustering performance of different similarity measure.
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DISCUSSION


Performance Evaluations

The clustering performance of four different similarity measurement methods is listed in Table 4. When the consistency is 100%, the clustering label of all subjects is consistent with the clinical diagnostic label, and the clustering accuracy is 100%. When the consistency is 0%, the clustering label of all subjects is inconsistent with the clinical diagnosis label, and the clustering accuracy is 0%.

As shown in Table 4, among the four similarity measure methods, our method performed the best on the three datasets in terms of consistency. The node attribute and the kernel methods achieved a slightly better result.

The node attribute method directly used the node attributes of a brain network for calculating the similarity between each pair of brain networks, which was utilized for the final brain network clustering. The result shows that the similarity of the brain network cannot be more accurately determined from the node attributes (betweenness) alone. The result shows that the brain disorders are associated with alterations in the hubs. Many studies have also demonstrated that the hubs of the human brain are generally implicated with brain disorders (He et al., 2008; Lynall et al., 2010), such as AD and SC.

The kernel method computed the similarity matrix by performing sub-network kernels on the brain network. The result means that when the attributes of the network change, this will affect the global connection structure of the network. Therefore, the description of the global structure has a great effect on the clustering.

SimiNet measures the similarity between the two graphs according to the node and edge attributes under the spatial constraints related to the physical position of the nodes. The key feature of this algorithm is that it takes into account the physical locations of the network nodes. However, in the not-weight brain network constructed with rs-fMRI (resting state fMRI) data, the position of the nodes is the same, so the advantages of the algorithm are not fully reflected. As shown in Table 4, we can see that this method achieved a slightly better result.

Different to the above methods, our method combines both the attribute similarity and structure similarity, where the attribute similarity captures the topological characteristics of brain networks and the structure similarity captures the structure distance. In addition, sub-network kernels were used to measure the structural similarity of brain networks. It not only takes into account the uniqueness of each node, but also captures the multi-level topological properties of nodes in the networks, which are essential for defining the similarity measure. These results indicated that the attribute features and the interior-node structure were important for graph clustering. So, the similarity measurement method based on the combination of attributes and structure can accurately describe the similarity of the brain network, thus improving the clustering performance.

In addition, the results show that when the method is applied to different data sets, the clustering performance is also different, which indicates that the clustering performance is affected by the data to a certain extent. This is because we choose DMN as regions of interesting to construct brain network in this study. The damage degree of DMN is different in different brain diseases, which affects the performance of clustering.



Effect of Parameters δ, d, and h

To compute the similarity of two graphs, the parameters δ, d, and h need to be set. d controls the number of power iterations, and h is the size of a sub-network set. The weight δ is used to control the degree of contribution of attribute similarity and structure similarity. In this section, we explore the effect of parameters δ, d, and h on clustering performance. To analyze the effect of these parameters on our method, we set different values for d ∈ {3, 4, 5, 6, 7, 8} and h ∈ {1, 2, 3}, and δ was set from 0.1 to 0.9 with a step of 0.1. Figures 3–5 shows the clustering results of AD, SC, and BP with respect to different values of these parameters.


[image: Figure 3]
FIGURE 3. The cluster result of AD with respect to different values of parameter δ, h, and d.



[image: Figure 4]
FIGURE 4. The cluster result of SC with respect to different values of parameter δ, h, and d.



[image: Figure 5]
FIGURE 5. The cluster result of BP with respect to different values of parameter δ, h, and d.


From Figure 3 we can see that the consistency for AD is between 51 and 60.6%. The best clustering performance was obtained when h = 3 and δ = 0.9, with the consistency of 60.6%. From Figure 4 we can see that the consistency is between 84 and 100% for SC. The best clustering performance was obtained when h = 1 and ∈ [0.1, 0.7], with the consistency of 100%. From Figure 5 we can see that the consistency is between 50 and 100% for BP. The best clustering performance was obtained when h = 1 and δ ∈ [0.1, 0.7], with the consistency of 100%.

Figures 3–5 shows that, with a fixed h, the curves varied with the value of d are very smooth, which shows that our method is very robust to the parameter d. Moreover, we can observe that, given a fixed d, the clustering performance is largely affected by different values of h. When h = 1, our method obtains the best clustering performance for SC and BP. When h = 3, our method obtains the best clustering performance for AD. These results imply that the selection of h is critical for our proposed method. This is reasonable since the number h controls the size of a sub-network set for each node in a brain network, and thus affects the similarity measurement of brain networks. In additional, these results imply that the selection of δ is critical for our proposed method. It is because that δ controls the degree of contribution of attribute similarity and structure similarity.

The experimental results showed that the topological structure and the attribute features of brain networks play important roles in clustering brain networks. The setting of parameters is related to the experimental data.



Limitation

Although the proposed method is effective, when this method is applied to different datasets, the clustering performance is different, which indicates that the clustering performance is affected by the data to a certain extent. In addition, the proposed method does not take into account a priori knowledge of the subject, such as Mini-Mental State Examination and Clinical Dementia Rating. A large number of studies have shown that making full use of a priori knowledge in the process of searching for clusters can significantly improve the performance of the clustering algorithm (Jiao et al., 2012). Therefore, it will be meaningful to combine this knowledge with spectral clustering.




CONCLUSION

In this paper, we proposed a framework for spectral clustering based on attribute feature similarity and topological structure similarity. Specifically, we use cosine similarity to measure the attribute similarity between brain networks. Then, we use sub-network kernels to calculate the structure similarity between brain networks. Finally, according to an optimal parameter δ, the similarity matrix was obtained by integrating the structure similarity and attribute similarity, and spectral clustering is carried out. Hence, this new similarity matrix considers both the global and local similarity of brain networks. In experiments with the AD, BP, and SC dataset, we demonstrated that our proposed method can significantly improve clustering performance in terms of consistency. In our future work, we will explore the combination of a priori knowledge and spectral clustering and carry out further research in this area.
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Real-time neuron detection and neural activity extraction are critical components of real-time neural decoding. In this paper, we propose a novel real-time neuron detection and activity extraction system using a dataflow framework to provide real-time performance and adaptability to new algorithms and hardware platforms. The proposed system was evaluated on simulated calcium imaging data, calcium imaging data with manual annotation, and calcium imaging data of the anterior lateral motor cortex. We found that the proposed system accurately detected neurons and extracted neural activities in real time without any requirement for expensive, cumbersome, or special-purpose computing hardware. We expect that the system will enable cost-effective, real-time calcium imaging-based neural decoding, leading to precise neuromodulation.

Keywords: real-time image processing, real-time neuron detection, dataflow, calcium imaging, data stream mining


1. INTRODUCTION

Real-time neural decoding predicts behavioral variables based on neural activity data, where the prediction is performed at a pace that keeps up with the speed of the activity that is being monitored. Neuromodulation devices are becoming one of the most powerful tools for the treatment of brain disorders, enhancing neurocognitive performance, and demonstrating causality (Bergmann et al., 2016; Knotkova and Rasche, 2016). A precise neuromodulation system integrates neural activity monitoring, real-time neural decoding, and neuromodulation. In precise neuromodulation, a decoding device predicts a behavioral variable based on neural data streams in real time. Based on the decoding results, neuromodulation parameters such as timing, frequency, duration, and amplitude are changed. Precise neuromodulation systems with closed-loop real-time feedback are superior to the fixed (open-loop) neuromodulation paradigm (deBettencourt et al., 2015; Brocker et al., 2017; Ezzyat et al., 2017).

A recent direct brain stimulation study demonstrated significant advantages of precise neuromodulation over open-loop neuromodulation (Ezzyat et al., 2017). This study applied direct brain stimulation with decoding capability to patients with epilepsy to improve their memory. The study found that stimulation increased memory function only if delivered when the decoding device indicated low encoding efficiency, while stimulation decreased memory function if delivered when the decoding device indicated high encoding efficiency. An open-loop neuromodulation system with a fixed stimulation paradigm may not always facilitate improvement of memory function.

Miniature calcium imaging (e.g., see Ghosh et al., 2011; Kerr and Nimmerjahn, 2012; Scott et al., 2013) is a neuroimaging tool that can observe all cells in the field of view in behaving animals, has high spatial and temporal resolution (single-cell spatial resolution and sub-second temporal resolution), and enables chronic imaging. In this paper, we focus on two-photon calcium imaging. A closed-loop real-time neural decoding system based on miniature calcium imaging will lead to a powerful, precise neuromodulation system. The first step in the development of such a neural decoding system is to have an accurate and fast Real-time Neuron Detection and Activity Extraction (RNDAE) system. In our context, an RNDAE system takes as input a video stream S that is generated by a miniature calcium imaging device, which is mounted on the head of a behaving animal. The output produced by the RNDAE system is a set of neuron masks {n1, n2, …, nm} that is detected in S, where m is the number of detected neurons, along with the neural signal si(k) that is extracted for each neuron ni. The neural signal si(k) gives the neural activity associated with neuron ni for each input video frame k, as represented by the video stream S. See Table S2 for the definitions of variables and symbols in this article.

The tremendous rate at which miniature calcium imaging devices produce data imposes major challenges in the design and implementation of an RNDAE system. For example, during 10 min of imaging, such a device generates 1 G of data at a frame rate of 10 Hz. Additionally, intensive processing within and across video frames in the input data stream is required for accurate detection of neurons and extraction of the associated neural signals. Furthermore, since algorithms and hardware platforms relevant to neural signal processing are evolving rapidly, the design of an RNDAE system should be architected in a manner that supports flexible adaptation to different component algorithms and retargeting to different processing devices. These requirements for complex processing on high-rate video data and flexible support for hardware/software design modifications make the development of RNDAE systems a very difficult task.

In this paper, we develop a novel RNDAE system, called the Neuron Detection and Signal Extraction Platform (NDSEP), which is designed to address the challenges described above. NDSEP provides an experimental platform for neuron detection and neural signal extraction that provides real-time performance and adaptability to new algorithms and hardware platforms. NDSEP also provides a valuable foundation for research and development of precise neuromodulation systems. The architecture of NDSEP is based on principles of signal processing-oriented dataflow models of computation (e.g., see Lee and Parks, 1995; Bhattacharyya et al., 2019).

In dataflow programming, computational tasks can be executed whenever they have sufficient data. This property provides great flexibility to compilers, software synthesis tools, and system designers to coordinate task execution in ways that are strategic with respect to the relevant implementation constraints and objectives. The data-driven semantics of task execution in dataflow is fundamentally different from procedural programming languages, such as C and Java, where the programmer specifies a sequential control flow between tasks in addition to the tasks themselves. This sequential approach to programming hides concurrency between tasks, whereas well-designed dataflow representations expose concurrency explicitly. A trade-off is that dataflow representations can be highly non-intuitive to apply to arbitrary types of applications; however, they have been shown to be well-suited to the broad area of signal and information processing (e.g., see Bhattacharyya et al., 2019).

Motivated in part by its utility for efficient implementation on parallel computing platforms, system design using dataflow methods is widely used for complex signal and information processing applications. The high-level signal flow structure that is exposed by well-designed dataflow models is valuable for design optimization in the context of important metrics, including those related to processing speed, memory management, and energy efficiency (Bhattacharyya et al., 2019). Additionally, dataflow provides a precise, abstract representation of computational modules and the interaction between modules within a given signal processing application. The formal, abstract representation provided by dataflow is of great utility in migrating implementations across platforms and also for efficiently expanding, upgrading, or otherwise modifying an implementation that is targeted to a given platform. Throughout the presentation of NDSEP in this paper, we therefore emphasize the ways in which dataflow techniques are employed to help address the complex and multi-faceted challenges, motivated above, that are involved in RNDAE system development.

The major contribution of our paper is the rigorous application of dataflow-based system design methods to real-time neural decoding. There are many systems, such as CaImAn-CNMF (Giovannucci et al., 2019) and STNeuroNet (Soltanian-Zadeh et al., 2019), for neuron detection, which may achieve higher accuracy than our current implementation. However, these algorithms are not dataflow-based and therefore they do not provide the advantages of expandability, cross-platform portability, and high-level design optimization described above. All of these features are useful for flexible experimentation with and practical deployment of neural decoding methods. The main contribution of this effort can therefore be viewed as the design of an overall system, not just a single component.



2. BACKGROUND AND RELATED WORK

In this research, we apply advanced methods for dataflow-based system design to address the challenges identified in section 1 for RNDAE technology. In this section, we first review related work on neuron detection and neural signal extraction, and then we present background on dataflow methods for signal processing system design.


2.1. Real-Time Neuron Detection

Neuron detection centers on identifying the source (neurons) in the image field of view (FOV). A straightforward method for neuron detection is to manually delineate neuron masks. This manual labeling process is labor-intensive. For semi-automated/automated neuron detection, a PCA/ICA based method (Mukamel et al., 2009) is proposed. This algorithm first runs PCA to reduce data dimensionality, and then uses ICA to segment data into statistically independent spatial and temporal signals. Constrained nonnegative matrix factorization (CNMF)-based methods for neuron detection are described in Pnevmatikakis et al. (2016) and Zhou et al. (2018). Deep learning-based neuron detection methods are proposed in Apthorpe et al. (2016). Although these semi-automated/automated neuron detection methods are powerful, they are not suitable for real-time applications because of long running time. That is to say, the methods mentioned above are not in real time, which is in contrast with our method, which is in real time and will be described later.

Motion correction is a crucial step for accurate neural detection. For real-time applications, motion correction must be integrated as part of the neural detection and neural signal extraction system, as the input arrives directly without any preprocessing. The motion correction problem can be solved by image registration (Resendez et al., 2016). However, these registration algorithms require a running time on the order of seconds to minutes per frame (Vercauteren et al., 2009). Real-time applications require optimized and efficient motion correction.



2.2. Dataflow-Based System Design

Dataflow provides a valuable foundation for the design and implementation of novel signal and information processing systems under complex constraints (e.g., see Bhattacharyya et al., 2019). When dataflow is used as an abstraction for signal processing system design, applications are represented as directed graphs, called dataflow graphs (Lee and Parks, 1995). Vertices in dataflow graphs, called actors, represent computational tasks, such as digital filters, matrix operations, or image transformations, and each edge represents a first-in, first-out (FIFO) buffer that stores data as it passes from the output of one actor to the input of another. Each unit of data within such a buffer is referred to as a token.

Dataflow actors abstract the detailed implementation of the corresponding computational tasks while imposing important constraints on how the actors interface with the surrounding graph, regardless of the implementation. These dataflow interface constraints include two major aspects. First, a dataflow actor can execute (fire) only when certain well-defined conditions on the buffers associated with its input and output edges are satisfied. These conditions are typically formulated in terms of the token populations on the buffers—that is, some minimum amount of data is required on each input buffer (to provide the input for the next firing), and some minimum amount of empty space is required on each output buffer (to store the output generated by the firing). When the firing conditions described above are satisfied, the actor (or its next firing) is said to be enabled.

Second, when an actor is fired, it must actually produce and consume on each output and input port, respectively, a number of tokens that is consistent with the assumptions that were used to determine that the firing was enabled.

A distinguishing feature of dataflow is that the “program” (dataflow graph) does not specify the order in which actors will execute, nor (in the case of a hardware platform with multiple processors) the processing resource on which each actor is mapped. Instead, the mapping of actors to processors and execution ordering of the actors are left up to the system designer or design tool. The mapping, together with the ordering of actors that share the same processor, is referred to as the schedule for the dataflow graph. A general rule of dataflow schedule construction is that an actor can only be fired (executed next in the evolution of a schedule) when it is enabled, as described above.

The schedule typically has a great impact on most or all key implementation metrics, including throughput, latency, and memory requirements. The decoupling of a dataflow graph G from the schedule, together with the high-level signal flow structure exposed by G, provides great flexibility to designers and design tool developers in constructing schedules. This flexibility is important for optimizing a schedule with respect to the specific constraints, objectives, and processing devices that are relevant to the given application. In this work, we seek to enable and exploit this flexibility by applying dataflow-based concepts consistently throughout the RNDAE system design process.

Formally, a dataflow graph is represented as a directed graph G = (X, E), where X is the set of actors and E is the set of edges. For each edge in e ∈ E, we denote the source and sink vertices of e as src(e) and snk(e), respectively. Each edge e has a nonzero-integer delay associated with it, which gives the number of initial tokens that are stored in the corresponding FIFO before the dataflow graph begins execution. A self-loop edge is an edge es whose source and sink actors are identical (src(es) = snk(es)).

Figure 1 shows a simple dataflow graph with three actors (X = a, b, c), and two edges e1 = (a, b) and e2 = (b, c). The “D” on edge (b, c) represents a unit delay. If the delay on an edge exceeds 1, then we typically annotate the edge with “N D”, where N is the delay of the edge. If the delay is zero, then we omit the “D” symbol, and do not provide any annotation on the edge associated with delay. For example, the absence of a “D” symbol on (a, b) in Figure 1 indicates that this edge has no delay.


[image: Figure 1]
FIGURE 1. An example of a simple dataflow graph.


Self-loop edges are often omitted from drawings of dataflow graphs. However, their presence must be taken into account by some forms of analysis and optimization. For example, self-loop edges in general limit the amount of data parallelism that can be exploited when scheduling a given actor (e.g., see Lin et al., 2018).

For further background on dataflow fundamentals for signal processing systems, we refer the reader to Lee and Parks (1995) and Bhattacharyya et al. (2019). For background on more general foundations of dataflow, we refer the reader to Dennis (1974) and Gilles (1974).




3. PROPOSED METHOD

Our NDSEP system is developed and tested for use on video streams that are acquired from mice using miniature calcium imaging devices. We especially focus on two-photon calcium imaging. The NDSEP system is therefore suitable for use in monitoring neural activity in real time—for example, to help inform the scientist performing an experiment about how to adapt experimental options so that subsequently acquired data is most relevant to the experiment objectives.

The system design of NDSEP incorporates two distinct modes of operation, which we refer to as the initialization mode and real-time mode. The purpose of the initialization mode is to optimize system- and actor-level parameters in relation to the image characteristics associated with a given experiment. Calcium imaging data for a given experiment have certain distinctive characteristics that are influenced by the experimental setup, including the imaging devices, neuron types, and specific animal subjects involved. To maximize neuron detection and signal extraction accuracy, it is important to tune, in relation to these distinctive characteristics, certain parameters associated with the neural signal processing algorithms that are employed. Image characteristics that are relevant in this tuning process include the size of the neurons being monitored and the brightness of the firing neurons relative to the background.

For concreteness and for insight into specific optimizations that we applied to facilitate real-time performance, we describe in this section selected details on actor implementations in the current version of NDSEP. These details include, for example, specific OpenCV functions that are applied within the actors and associated parameter settings for these functions. However, we would like to emphasize that the NDSEP framework is independent of any specific approach for implementing algorithms or any specific algorithms for image analysis. For example, one could replace the calls to OpenCV functions with calls to a different library that provides similar capabilities or with customized code that is developed by the actor designer. As another example, one could replace the Neuron Detection actor, which implements the SimpleBlobDetector algorithm, with another actor that implements the Holistically nested Edge Detection (Hed) or MaskRCNN algorithm. The modular, model-based design of NDSEP facilitates use cases such as these for experimentation with alternative algorithms and actor implementations. Such experimentation is useful for gaining insight into trade-offs between neural decoding accuracy and real-time performance, which are critical to the overall utility of a neural decoding system.

In section 4, we evaluate NDSEP using datasets involving both simulated data and real-world data. The real-world dataset is acquired from mouse models. Two-photon calcium imaging was used to image the calcium fluorescence of Anterior Lateral Motor (ALM) cortex. Thus, in the remainder of the paper, we refer to the real data as the ALM dataset. More details about the ALM data we use is given in section 4.

The remainder of this section is organized as follows. First, we provide background on a specific form of dataflow modeling called parameterized synchronous dataflow (PSDF), which is well-suited to the computational structure of NDSEP. Next, we present the key actors (dataflow-based software components) that are involved in NDSEP. We then present the overall system design for NDSEP, including relevant details of the initialization mode and real-time mode.


3.1. PSDF Modeling

A variety of specialized dataflow modeling techniques have been developed for different classes of signal processing applications (e.g., see Bhattacharyya et al., 2019). For design of NDSEP, we apply the PSDF model due to its utility in representing signal processing applications in which dynamic modifications to system parameters play an important role. PSDF enables the joint, dataflow-based modeling of (1) subsystems whose parameters can be modified dynamically (adapting subsystems) along with (2) subsystems whose results are used to determine new values of relevant parameters in the adapting subsystems (controlling subsystems) (Bhattacharya and Bhattacharyya, 2001).

A number of different variants of dataflow have been developed with an emphasis on supporting dynamic parameter reconfiguration (e.g., see Desnos and Palumbo, 2019). Among these, we apply PSDF because PSDF is well-supported in the software tool, called the lightweight dataflow environment (LIDE) Lin et al., 2017, that we use in this work for dataflow graph implementation. Adapting NDSEP to other forms of dynamic-parameter-integrated dataflow models is an interesting direction for future work in exploring implementation trade-offs.

In the PSDF modeling approach that we use in NDSEP, the system-level dataflow graph is composed of two communicating subgraphs called the subinit graph and body graph. These graphs are used, respectively, to model the controlling subsystems and adapting subsystems described above. In NDSEP, the body graph represents the core signal processing functionality for neuron detection and activity extraction, while the subinit graph represents functionality for dynamically computing new values for selected parameters in the body graph. In particular, each output port p of the subinit graph is associated at design time with one or more ordered pairs ((A1(p), P1(p)), (A2(p), P2(p)), …(An(p)(p), Pnp(p)(p)), where n(p) is the number of such ordered pairs associated with p, each Ai(p) is an actor in the body graph, and each Pi(p) is a parameter of actor Ai(p). When the PSDF graph executes, each iteration of the subinit graph is followed by the transmission of values from each output port p to update each parameter Pi(p) of each actor Ai(p).

More details on the PSDF-based application model for NDSEP are discussed in section 3.3.



3.2. Signal Processing Modules in NDSEP

In this section, we discuss the design of the signal processing actors that are employed in the body graph of NDSEP.

A common approach used in the implementation of the actors in NDSEP is that actors produce and consume pointers to images rather than directly producing and consuming image pixels on their incident dataflow edges. That is, in cases where images are communicated across a dataflow edge e, we transfer only a pointer to each communicated image through the FIFO buffer associated with e rather than writing and reading the entire image to and from the buffer. The same approach is used when communicating matrices across actors. This approach allows us to adhere to the dataflow principles described in section 2.2 without requiring large overhead for FIFO buffers that carry streams of images or matrices.

The system-level dataflow graph for NDSEP, including all of the actors discussed in this section, is developed using the LIDE tool mentioned in section 3.1. For background on LIDE, we refer the reader to Lin et al. (2017).


3.2.1. Motion Correction

Motion correction is the first step of image processing in NDSEP. In real calcium imaging data taken from moving mice, significant motion can result due to the drift of the implanted imaging device. This kind of shaking in general may result in motion translation as well as slight rotation, thereby distorting the acquired video stream. The goal of motion correction in NDSEP is to remove such motion translation and rotation from image frames.

Through profiling of execution time across different actors in the NDSEP system, we determined early on in the design process that motion correction contributes significantly to overall system execution time. More details on system-level profiling are provided in section 4. Because of the critical role of motion correction in determining overall system efficiency, we applied a significant portion of our design effort to optimizing the accuracy/speed trade-off for this part of NDSEP.

For motion correction, NDSEP utilizes the Enhanced Correlation Coefficient (ECC) algorithm (Evangelidis and Psarakis, 2008) for motion detection, which is a core part of motion correction. We selected ECC because it provides parameter settings that give significant flexibility in exploring trade-offs between accuracy and processing speed. Such exploration is useful in the design of RNDAE systems, where the objective is to provide acceptable accuracy in real time rather than maximum accuracy at any cost. ECC is also invariant to photometric distortions in brightness and contrast.

We employ the ECC function provided by the OpenCV library (Demiröz, 2019), and call this function within the LIDE-based actor implementation for the Motion Correction actor.

In addition to using the ECC algorithm, as described above, we apply two major techniques to improve the real-time performance of the Motion Correction actor. First, before comparing frames for motion detection, we downsample the frames by a factor of 1.67 in each dimension so that the number of pixels is reduced to one-quarter of the original pixel count. The downsampled image is currently applied only to the detection process so that any distortion introduced by it is localized to the detection step. Applying downsampling strategically in other parts of NDSEP is a useful direction for future work.

Second, while our motion correction approach takes both translation and rotation into account, we apply rotation selectively, only in cases where translation-based motion correction fails. This optimization is motivated by empirical observations that, in our experimental context, rotation is encountered relatively infrequently in frames that are captured by the neuron imaging device. For example, in the ALM dataset, the rotation frequency detected by NDSEP is 1.62% and the mean and maximum rotation angles are 0.0232 and 0.0733 degrees, respectively. We choose rigid motion correction because of algorithm efficiency for real-time applications. When a single frame is acquired quickly (<50 ms), the influence of motion across the frame is relatively uniform, and a rigid correction can give good results (Thevenaz et al., 1998; Stringer and Pachitariu, 2019). Translation is more common. Furthermore, detection and correction of rotation are more computationally expensive compared to translation. For example, we found that the “Euclidean” mode for the OpenCV ECC function, which detects both translation and rotation, takes on average about three times longer to compute compared to the “Translation Only” mode.

Figure 2 illustrates a flowchart of the optimized motion correction approach in NDSEP, which is based on differences in frequency of occurrence and computational complexity associated with translation and rotation. As illustrated in Figure 2, we first apply motion detection with the Translation Only mode. If motion is detected from this operation, then the current frame Fc is shifted to compensate for the detected translation, and the correlation between the shifted frame Fs and the reference frame Fr is evaluated. On the other hand, if no motion is detected, the correlation is carried out between Fc and Fr. If the computed correlation C1 meets or exceeds a threshold τ1, then Fr is replaced with Fs or Fc, respectively, Fs is produced on the output edge of the actor, and the current actor firing is complete.


[image: Figure 2]
FIGURE 2. Flowchart for Motion Correction actor operation in NDSEP.


On the other hand, if the correlation C1 is less than τ1, then motion detection for both translation and rotation is applied using the more costly Euclidean mode of OpenCV ECC. If motion is detected from the Euclidean mode, then a shifted version [image: image] of Fr is derived based on the detection result. Then the correlation C2 between Fr and [image: image] is carried out, where [image: image] if motion was detected from the Euclidean mode, and Fr = Fc otherwise.

Again, a thresholding check, using another threshold τ2, is used to determine how to interpret the correlation result. If C2 ≥ τ2 (similar to the case of C1 exceeding the threshold), then Fr is replaced with [image: image] or Fc, respectively; [image: image] is produced on the output edge of the actor, and the actor firing is complete. Otherwise, a diagnostic message is sent to a log file associated with the overall experiment, and Fr is produced on the output edge to complete the firing.

The diagnostic message generated in this last case identifies the input frame index and indicates that motion correction has failed at this index. Such information, which is accumulated in an experiment log file by all relevant actors, can be useful to the system designer for continually improving the robustness of individual actors and the overall system.

The thresholds τ1 and τ2 defined above, which determine whether to accept the motion correction result or not, are computed adaptively to track any relevant changes in image characteristics. This is due to dynamic variation in the characteristics of calcium imaging frames. For example, some of the datasets are noisy or have contaminated backgrounds. This lowers the average correlation value. For the ALM dataset that we employed in section 4.3, the noise/contamination level is stable over short time periods. During short time periods, the impact of noise/contamination is less significant than the impact of alignment on correlation value. Therefore, in NDSEP, correlation values are only compared with close neighbors. For this purpose, NDSEP stores the 100 most recent correlation values in a queue, which we refer to as the correlation history queue (CoHisQ). Every time CoHisQ changes, the mean value [image: image] and standard deviation σCoHisQ across all elements in the queue are calculated. Each threshold τ ∈ {τ1, τ2} is computed from [image: image] and σCoHisQ using:

[image: image]

where p(τ) is an empirically defined parameter for each of the two thresholds. In our experiments, we employ p(τ1) = 2 and p(τ2) = 10. The threshold values in τ range from approximately [0.3, 0.95] in our experiments resulting in motion correction success.

The threshold computation approach and its associated parameters provide an example of an RNDAE-system design issue for which there are many possible solutions. The modularity and extensibility of NDSEP, based on its dataflow-based foundations, facilitate experimentation across different solutions for such design issues.



3.2.2. Preprocessing

The Preprocessing actor is designed to remove image distortion caused by the imaging device and imaging environment. To remove distortion caused by the imaging device, the actor incorporates a Gaussian filter and median filter. Furthermore, background subtraction is used to remove background effects, and image equalization is performed. As described in Figure 3, the output of the preprocessing actor does not affect the neural signal as it only helps to get the positions of neurons. This process helps to eliminate the bright background that results from the firing of neurons in deeper areas of the brain. These deeply located neurons are not of interest in the targeted class of experiments, so it is useful to subtract their potentially strong effect on the image background. To enhance the image's contrast, we normalized the image intensities by using (I − Imin) × 255/(Imax − Imin), where I indicates the current pixel's intensity and Imax and Imin represent the maximum intensity and minimum intensity of the image, respectively. As part of the Preprocessing actor, we employed the GaussianBlur and MedianBlur functions from OpenCV. For the GaussianBlur and MedianBlur functions, we employed a filter size of 3 × 3 in order to minimize the possible distortion of the small neurons. The filter size can be reconfigured based on the distortion level and characteristics of the data. Presently, we only consider the possible distortion and removal that might occur to small neuron sizes.
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FIGURE 3. System-level dataflow graph for NDSEP.




3.2.3. Neuron Detection

The Neuron Detection actor takes an image frame as input, detects the presence of neurons in the image frame, and outputs the position and size of each detected neuron. The output is produced in the form of an nd × 3 matrix δ, where nd is the number of detected neurons. Each row in the matrix corresponds to a detected neuron. We refer to δ as a neuron detection matrix. For each row index i, nd[i][1], and nd[i][2], respectively, give the x coordinate and y coordinate for the center of the ith detected neuron, and nd[i][3] gives the neuron's radius.

For its core computational task, the Neuron Detection actor applies the SimpleBlobDetector function from OpenCV (Demiröz, 2019). The function detects closed contours (“blobs”), which are assumed to outline the detected neurons. Among the contours, the function can filter out the blobs by intensity, size, and shape. The function finds blobs using the parameter thresholdStep, which denotes the minimum intensity difference between the inside and outside of a blob. By using the parameter, it filters out the blobs that have low intensity difference compared to their backgrounds—that is, it removes fewer active blobs. Using the parameters Amin and Amax, which are related to the size of blobs to detect, the function computes a set of detected blobs, along with their centers and radii. The parameters Amin and Amax specify the minimum and maximum sizes (in terms of the number of pixels contained) of the blobs to detect. Using parameters for circularity, inertia, and convexity, the function filters out non-neuron-like shapes. The radius of a blob is computed to be the distance between the center of the blob and the furthest point from the center. In this context, a blob can be viewed as a set of connected pixels in an input image that have some minimum intensity (exceed a threshold on the pixel value) and satisfy size constraints that are carefully configured to help ensure that the corresponding image regions represent neurons within the imaged brain region. Since the SimpleBlobDetector function is not for segmentation but for detection, it returns the position of each blob's center and its radius. By using SimpleBlobDetector instead of a segmentation function, we can gain comparable detection results with faster speed.

To this end, the SimpleBlobDetector function is configured to filter blobs by size based on two size-related parameters, which we denote by Amin and Amax (Amin < Amax).

The values of Amin and Amax are determined as part of the initialization mode for the NDSEP system. The initialization mode includes an automated training process that configures parameters such as Amin and Amax. Another parameter of the SimpleBlobDetector that is configured during the initialization process is the thresholdStep parameter, which controls the step size for determining the set of pixel-intensity thresholds that are used during the blob detection process (Demiröz, 2019). More details on the initialization mode are discussed in section 3.3.

The minThreshold parameter for the simpleBlobDetector function is set to zero in all of our experiments.

After blob detection within a given firing of the Neuron Detection actor, a set of neurons η = μ1, μ2, …, μk is identified in the input image along with their positions and radii. During real-time operation of the actor, the positions and radii of these neurons are produced as output in the form of a neuron detection matrix, as described above.

During its training process, however, further processing using the set η is performed before producing output. The Neuron Detection actor is equipped with a parameter that is used to select whether it operates in training mode or real-time mode. In NDSEP, Neuron Detection operates in its training mode during a well-defined system initialization phase (discussed further in section 3.3) and then operates for the remainder of the given experiment in its real-time mode.

In the remainder of this section on the Neuron Detection actor, we discuss the further processing that is performed during the training process, after η has been determined.

First, if the current firing is not the first firing within the experiment, the neuron positions in η are compared with those in δp, which is the detection matrix derived from the previous actor firing. The previous matrix δp is maintained as a state variable of the Neuron Detection actor. This state variable is maintained and used only in the training mode. By a state variable, we mean a data object that is local to the actor and that persists across firings of the actor. Actor state can be modeled in signal processing dataflow graphs with self-loop edges (e.g., see Zhou et al., 2014).

If the position of a neuron within η is found to be sufficiently close to a neuron position in δp, then that neuron is removed from η. In our current design, “sufficiently close” in this context means that the difference in position can be d pixels in both the x and y dimensions. The parameter d can be determined by considering how close it should be to be considered as a neuron that has slight motion. That is to say, the user can define a distance criterion such that, if the distance is closer than d pixels, the system can regard the neurons as a single neuron, but if two close-together neurons are not closer than d pixels, then the neurons will be considered two different, overlapping neurons. After removing all neurons from η that are sufficiently close to corresponding neurons in δp, the remaining neurons in η are interpreted to be newly discovered neurons in the training process. Thus, all of the remaining neurons in η are appended to those in δp. The resulting δp may be unchanged from the previous firing (if there were no newly discovered neurons), or it may contain one or more new neurons. The resulting δp is produced as the output of the training mode firing, and it is also retained as the updated value of the corresponding state variable in the actor.



3.2.4. Signal Extraction

Each firing of the Signal Extraction actor takes as input a motion-corrected image frame Fmc and a neuron detection matrix δ that gives the positions and radii of the neurons that have been detected in Fmc. The output of the firing is a vector β that gives the relative intensity of each detected neuron.

Each ith element of β corresponds to a distinct neuron and is calculated as β[i] = (F(i)(Fmc) − F0)/F0), where F(i)(Fmc) is the average intensity (average pixel value) across all pixels in the circle centered at (δ[i][1], δ[i][2]) and having radius δ[i][3] in the Fmcth image frame. To calculate F0, we followed (Romano et al., 2017), using the average ROI intensities across a window of time that immediately precedes a particular experimental event.

Throughout a given experiment, the Signal Extraction actor produces a sequence of vectors β1, β2, …, βL, where L is the total number of image frames in the input video sequence for the experiment (excluding the frames used for system initialization/training). Each βi is a ν-element vector, where ν is the total number of neurons that have been detected throughout the training process for the Neuron Detection actor. The sequence β1[i], β2[i], …, βr[i] thus provides a sampled representation of the relative pixel intensity for each ith detected neuron (1 ≤ i ≤ ν).




3.3. System Design

Figure 3 shows how the different actors described in section 3.2 are integrated into the dataflow graph for the NDSEP system. The dataflow graph is based on the PSDF model of computation (see section 3.1). As discussed earlier in this section, the system has two distinct modes of operation—the initialization mode (also known as the training mode) and the real-time mode.

The initialization mode is used to configure selected actor parameters in the body graph using a set of training frames. The training frames are captured from a calcium imaging device that is implanted within a given animal subject. The resulting set of optimized parameters is then applied to perform accurate real-time processing during neuron image acquisition and analysis experiments involving the same device and animal subject. This real-time processing corresponds to the real-time mode of NDSEP. The set of frames that is processed when in the real-time mode for a given experiment is referred to as the set of analysis frames. For more details, see sections 3.2.3, 3.3.2.


3.3.1. Auxiliary Actors

All of the core signal processing actors in Figure 3 have been discussed in section 3.2. Four additional actors—namely, the actors labeled ImgSrc, Fork1, Fork2, and SetParams—are also used, as shown in Figure 3.

Each firing of the ImgSrc actor reads the next image from the input video sequence from disk into memory, and outputs a pointer to the memory block that contains the image. This disk-based interface is used in our current NDSEP prototype, since our focus is on functional validation and on optimizing trade-offs between accuracy and real-time performance. For integration into a complete experimental system, the ImgSrc actor can readily be replaced by an actor that provides direct software interfacing with the image acquisition device.

The actors labeled Fork1 and Fork2 are fork actors, also referred to as broadcast actors. Each firing of a fork actor consumes one token on its input and produces a copy of the token on each of its outputs. Since images and matrices are communicated by reference (through pointers) in NDSEP (see section 3.2), the fork actors require minimal execution time compared to the core signal processing modules in the system.

The fourth auxiliary actor, SetParams, is discussed in section 3.3.2.



3.3.2. Adapting the Neuron Detection Actor

The SetParams actor is used during the initialization process to adaptively optimize parameters of the Neuron Detection actor. The objective is to calibrate the selected parameters to the given calcium imaging device and animal subject so that neuron detection accuracy is enhanced compared to that with the use of generic parameter settings. The parameters are adapted progressively as the training frames are processed in the initialization mode. Specific parameters that are configured by the SetParams actor are the Amin, Amax, and thresholdStep parameters for neuron detection (see section 3.2.3). Before running the initialization mode, we manually “pre-initialize” these parameters by considering the size of the input image and rough size of the neurons. The initialization mode then uses the pre-initialized parameter values as a starting point and optimizes the three values through an iterative process (see section 3.2.3).

Many different approaches for adapting neuron detection processes can be envisioned for use in NDSEP. Presently, we use a relatively simple adaptation approach that progressively loosens the filtering constraints of the blob detector used in the Neuron Detection actor. The constraints are loosened until a pre-determined target number Tn of neurons is detected. Presently, we use the empirically determined value Tn = 5. Incorporating more sophisticated parameter adaptation processes into NDSEP is a useful direction for future work.

We conducted some simple experiments to help validate our current adaptation approach. With the simulated data, when we tried an approach that progressively tightens the constraints, we observed more false positives than our proposed approach, which progressively loosens the constraints. For example, with the most noisy set of simulated data, which is described in 4.1, we observed 11% more false positives with progressive tightening compared to our proposed approach. In this dataset, the progressive tightening approach also led to a few false negatives, whereas there were no false negatives resulting from our proposed approach.



3.3.3. Real-Time Mode

For the real-time mode of NDSEP, the iteration count for the body graph is set to the total number of analysis frames. Thus, the subinit graph is effectively disabled through the duration of running in real-time mode. This is because the body graph continues executing for the specified number of iterations before control returns to the subinit graph, at which point the neural decoding process terminates.

In real-time mode, each analysis frame is processed by correcting motion, detecting neurons, and then extracting relative pixel intensities for each neuron. The relative pixel intensities are used, as described in section 3.2.4, to populate the vector elements for the next time step in the extracted signals for the neurons.

The output of the real-time mode is the sequence of vectors β1, β2, …, βL, where L is the number of analysis frames. This sequence encapsulates a sampled version of the signal extracted for each neuron. The sequence can be saved for subsequent off-line analysis or connected to another computational subsystem for further real-time processing, as would be the case if NDSEP were embedded within a precise neuromodulation system.





4. EXPERIMENTS

In this section, we present results obtained through experiments using the proposed platform, NDSEP. We first present experiments involving simulated data and then experiments involving real data. The experiments involving real data include results on neural imaging data that has already been processed with motion correction and also results on “raw imaging data” (without motion correction already applied).


4.1. Simulated Data

In this experiment, simulated calcium imaging datasets were used to assess the proposed platform because the simulated data had ground-truth. The simulation described interactions among a set of leaky integrate-and-fire neurons with additive noise. The neuron model (Gütig and Sompolinsky, 2006) is as follows:
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where V is the membrane potential, Vrest is the rest potential, ϵ is a Gaussian random variable with mean 0 and standard deviation 1, λ is the membrane time constant, and θ is a parameter to control the noise term. Spikes received through the synapses cause changes in V. A neuron fires if V is greater than a threshold. After firing, a neuron cannot generate a second spike for a brief time (refractoriness). Such a neuron model can represent many kinds of postsynaptic potentials or currents described in the literature (Brette et al., 2007).

Our simulation included 100 neurons. We divided these 100 neurons into two groups: group A and B. Neurons in group A have no parent nodes, while neurons in group B have one or two neurons in group A as parent nodes. If a parent node fires, the membrane potential of the target node will increase by w = 0.2. This simulation represented a scenario in which neurons in group A were responsive to external stimulus, and firing of neurons in group A facilitated firing of neurons in group B. We generated simulated spike trains with 1,800 time points.

One hundred neuron masks from the Neurofinder 00 dataset (Peron et al., 2016) were chosen as ground-truth neuron masks. For a given frame t, if neuron i fired, then the intensities of pixels inside neuron mask i were set to be 128. After this, we performed exponential smoothing to simulate calcium signal decay. jGCaMP7f, which is a calcium sensor, has a decay half-life of around 265 ms (Dana et al., 2019). To simulate imaging jGCaMP7F using a two-photon microscope at 30 Hz, the decay half-life in our simulation was set to 8 frames. To simulate motion, we introduced a global shifting in the x and y axes. The random translation motion in x or y followed a uniform distribution in [−10, 10]. Also, to simulate rotation in frames, datasets were generated with different random rotation ranges and occurrence probabilities. We used Prot to denote the rotation occurrence probability, and αrot to denote the rotation range. For example, if αrot = 5.16 and Prot = 10, then rotation within [−5.16o, 5.16o] is randomly applied to the simulated data, with a rotation occurrence probability of 10%.

In addition to the random translation motion, three kinds of drift are simulated. A slow and constant drift is simulated according to the trajectory shown in Figure 4B. Motions are simulated around the ground truth position within 10 pixels, following the same range that we used for random translation motion. Slow and constant drift was incorporated by moving the frame 1 pixel at each time step in the same direction until it hits the boundary, which is taken to be 10-pixels in the x or y direction away from the ground truth. Then the direction of the drift changes according to the trajectory. We simulate small and large drift by controlling the range of random translation motion. Motion in x or y follows a uniform distribution in [−3, 3] or in ([−10, −7]⋃[7, 10]) to simulate small drift and large drift, respectively.


[image: Figure 4]
FIGURE 4. Simulation of motion and noise. (A) Shows simulated noise. Here, “s” denotes the relative shot noise level, while “c” denotes the relative colored (red) noise level. For example, s05c15 denotes the noise case in the lower right corner. (B) Shows a trajectory simulating slow and constant drift. Each frame moves 1 pixel along the path. For example, assume the first frame has x,y-position (0,0), then the second one is at (1,0), the third one is at (2,0), etc.


Then we added temporally autocorrelated zero mean noise with standard deviation σ = 0.4 (Svetunkov, 2019) as well as shot noise with zero mean and σ = 1.0 (Pilowsky, 2019) to some of the simulated datasets, called noisy simulated datasets (NoiseSim). All noisy simulated datasets had Prot = 25 and αrot = 6.3153, along with the same global translation motion described above, as shown in Figure 4.

We applied the proposed system to the simulated data. The system was evaluated in terms of neuron mask detection accuracy, signal-to-noise ratio, and running time. For neuron mask detection accuracy, because ground-truth neuron masks were available, we compared each detected neuron mask with the corresponding ground-truth neuron mask, and calculated the recall (the fraction of matched pixels divided by the number of pixels in the ground truth) and precision (the fraction of matched pixels divided by the number of pixels in the detected neuron mask).

For signal-to-noise ratio, for each detected neuron ϕ, we first correlated the detected ΔF/F of ϕ with the ground-truth spike trains. Given an image frame I and some region r (a connected subset of pixels) in the frame, ΔF/F is a measure of the relative pixel intensity in r relative to a baseline. The metric is similar to that used for elements of vector β defined in section 3.2.4. Here, F represents the baseline pixel intensity, and ΔF = R−F, where R is the average pixel intensity for all pixels in r. When ΔF/F is used in the context of a neuron, the region r consists of all pixels contained in the neuron. We then calculated the average correlation coefficient Rs between the neuron time course and the ground-truth spike trains across all neurons. Next, for each neuron ϕ, we randomly selected a region of the image frame with a size close to the size of ϕ. For each randomly selected region r, we correlated ΔF/F of r with the ground-truth spike train of ϕ. This yielded a correlation coefficient ρ(ϕ). Then we calculated the average correlation coefficient across all ϕ—that is, the average value of ρ(ϕ). To avoid selection bias in choosing random regions, we repeated the above process 1,000 times and calculated the average value Rn. The signal-to-noise ratio was then computed as 10log10(Rs/Rn).

The motion-corrected images were compared with the ground truth images. The ideal case here is that the Motion Correction actor detects the ground-truth x and y motion along with the rotation angle. Three matrices are used to evaluate the performance of motion correction. For each dataset, Mx, My, and Mrot denote x-displacement, y-displacement, and angle error, respectively. Ratefail denotes the failure rate of motion correction. When motion correction fails, the frame is not motion-corrected (see Section 3.2.1).

Table 1 shows our measured results for motion correction with αrot = 3.43 and different values of Prot. Table 2 shows results with Prot = 40 and different values of αrot. In Table 1, we see that as Prot increases, the error also increases. However, the mean errors of x-displacement and y-displacement are very small, about 1 pixel in each dimension. The mean rotation error mean(αrot) is close to zero. Although some rotations are not detected (the rotation detection rate is not 100%), such cases are rare. As Table 2 shows, only when αrot reaches 7.46o does the motion correction failure rate begin to rise in some sparsely occurring cases (1.56% failure rate). However, from our observations, such a large value of the rotation angle is rare in practice. Table 3 shows the performance of NDSEP in noisy situations. As the noise level increases, the x, y, and angle detection error increases. Even in the s05c15 case, which includes frames that contain large amounts of noise, motion correction still performs effectively. The mean error of x, y-displacement remains consistently around 1 pixel, while the mean rotation error is also comparable to the no-noise case. Compared with the average neuron size in simulated data, which has a 6.8387 pixel width and a 6.7634 pixel height, the 1 pixel x, y-displacement means NDSEP motion correction is effective for simulated data.


Table 1. Motion correction accuracy with different Prot values without noise.
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Table 2. Motion correction accuracy with different αrot values without noise.
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Table 3. Motion correction accuracy on simulated noisy datasets (Prot = 25, αrot = 6.3153) with different noise levels.
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To further evaluate the motion correction process in NDSEP, slow and constant drift is added to the no-noise case s00c00 and to noisy cases s01c05 and s05c15. Rfail(%) is 5, 2.11, and 4.33, respectively, for these three cases; mean(Mx) is 0.6518, 0.8707, and 0.7366, respectively, and mean(My) is 1.4400, 1.4121, and 1.1849, respectively. The results shown above are comparable with the random motion drift cases in Tables 1, 2, indicating that NDSEP-Motion Correction is able to correct slow and constant drift. Similarly, small and large drift are applied to the no-noise case s00c00 and noisy cases s03c10 and s05c15. For small drift in cases s00c00, s03c10, and s05c15: Rfail(%) is 0 for all three cases, mean(Mx) is 2.28, 0.85, and 0.82, and mean(My) is 0.41, 0.84, and 0.70, respectively. For large drift: Rfail(%) is 4.5, 0.83, and 26.2, mean(Mx) is 0.61, 0.89, and 1.17, and mean(My) is 1.45, 1.73, and 1.06, respectively. For large motions with intensive noise, the failure rate of 26.2% is higher than in other cases, while in terms of successful correction output, mean(Mx) and mean(My) remain comparable to the small drift cases. We anticipate that image frames with such intensive noise and motion do not often occur in practice. In the clear small motion case, 2.28 is a little bit higher than the others, but it is still smaller than the half size of the neurons, which is about 7 pixels, in the simulated dataset.

From the results described above, we conclude that the NDSEP Motion Correction can accurately detect motion translation and rotation—with or without the presence of noise—in most cases.

For the simulated data, all 97 of the active neurons were detected by NDSEP. Three neurons should not be detected, since all three of these were inactive for the duration of the image sequence. In Figures 5A,B, the ground truth neurons are depicted as bright blobs, which are overlaid on the mean map of all 1,800 frames in the simulation-derived dataset in the case of s03c05. Since different neurons have different firing rates, they generally appear with different levels of brightness in the mean map. Each circle with a red perimeter in Figure 5 represents a detected neuron.


[image: Figure 5]
FIGURE 5. Neuron detection results from the simulated data. (A) Shows detected neurons (red-perimeter circles) overlaid on the mean map of all frames in the simulation-derived dataset; (B) Shows ground truth neurons with blue perimeters and detected neurons with red perimeters; (C) Shows representative neural signals (blue) extracted from the simulated data and ground truth spikes (red).


Figure 5C shows signals that have been extracted by NDSEP for five randomly chosen neurons. The figure also shows the corresponding ground truth signals. The signals shown in red correspond to spike events. These signals have a value of 1 when the corresponding neuron fires and 0 when the neuron is not firing. Blue signals indicate ΔF/F values for the detected neurons. From the results in Figure 5, we see that NDSEP accurately detected the spike events. For these results, we computed Rs = 0.354, Rn = 0.000011, and 10log10(Rs/Rn) = 45.08.



4.2. Neurofinder Data

We also performed experiments using the Neurofinder collection of datasets (Peron et al., 2016). These datasets represent publicly available, real calcium imaging data that has already been preprocessed with motion correction. The Neurofinder data provide ground truth for the position of each neuron. There are five datasets in the Neurofinder database. The first one (Dataset 00) contains segmented neurons using fluorescently labeled anatomical markers. It is possible that neurons are not firing in Dataset 00 but are still labeled. This is inappropriate for neuron detection based on neural activity. Datasets 02 and 04 have around 8–41% potentially mislabeled neurons (Soltanian-Zadeh et al., 2019). Among the five datasets, 00, 02, and 04 are not suitable for evaluating the neuron detection performance of NDSEP. Therefore, we used Datasets 01 and 03 for our experiments. See Table S1 for details about the Neurofinder data.

Figure 6 shows the results of our experiments with the two Neurofinder datasets. The results show that NDSEP is effective at detecting relatively active neurons. The extracted signals for ten randomly selected neurons from each dataset are plotted in Figure 7. Most of the signals in Figure 7B exhibit the signal characteristics that are described in Resendez et al. (2016). Technically, these experiments pertain to the combination of the Preprocessing and Neuron Detection (PND) actors of NDSEP since the experiments do not involve motion correction (the Neurofinder input data are already motion-corrected) or signal extraction. We refer to this actor combination concisely as NDSEP-PND.


[image: Figure 6]
FIGURE 6. Results of experiments with the two Neurofinder datasets: (A) shows results from Dataset 01, and (B) shows results from Dataset 03. The ground truth regions are bounded with red perimeters, and the results from NDSEP are bounded with green perimeters.



[image: Figure 7]
FIGURE 7. Results using the Neurofinder data for extracted signals from randomly selected neurons: (A,C) show the locations of the randomly selected neurons from Dataset 01 and Dataset 03, respectively; (B,D) show the signals that were extracted by NDSEP from each neuron. Ten neurons were randomly selected from each of the two datasets.


Next, we report the precision, recall, and F1 scores achieved by NDSEP-PND across each of the two Neurofinder datasets. The precision is the fraction of true neurons (true positives) detected among detected neurons. The recall is the fraction of actual neurons that are detected. The F1 score is defined as the harmonic mean of precision and recall: F1sore = 2 × (u × v)/(u + v), where u is the precision and v is the recall. For Dataset 01, the precision, recall, and F1 scores are 0.6431, 0.5275, and 0.5848, respectively. For Dataset 03, the precision, recall, and F1 scores are 0.7166, 0.7259, and 0.7212, respectively.

The results on the Neurofinder datasets demonstrate that NDSEP-PND has an accuracy that is comparable with the top five neuron detection algorithms from the comparative experimental study reported on in Klibisz et al. (2017). These top five previously developed algorithms are HNCcorr Spaen et al. (2017), Sourcery, UNet2DS, Suite2p (Pachitariu et al., 2017) + Donuts (Pachitariu et al., 2013), and HNCcorr (Spaen et al., 2017) + Conv2din. Of the six algorithms (the five previously developed ones together with NDSEP-PND), the result of NDSEP-PND has the fifth-highest accuracy (in terms of recall and precision) for Dataset 01, and for Dataset 03, NDSEP-PND also has the fifth-highest accuracy. At the same time, NDSEP-PND achieves real-time performance, while the other five methods are not real-time systems. This is a critical advantage of NDSEP-PND in the context of our work. Also, in relation to the other state-of-the-art algorithms in the Peron et al. (2016) challenges, Kirschbaum et al. (2019) (recall = 0.56, precision = 0.85, F1 = 0.67 for dataset 01), and Soltanian-Zadeh et al. (2019) (recall = 0.65, precision = 0.57, and F1 = 0.61 for dataset 01, and recall = 0.56, precision = 0.54, F1 = 0.55 for dataset 03), NDSEP-PND outputs comparable results for both datasets.



4.3. Anterior Lateral Motor Cortex Data

As a representative real-world application, an Anterior Lateral Motor Cortex (ALM) dataset Li et al. (2015) is used to evaluate NDSEP. This dataset includes 11,189 frames of calcium imaging that record the anterior motor cortex in mice while the mice are performing a tactile delay-response task. The motion correction failure rate Ratefail of NDSEP on the ALM dataset is 0.

Figure 8 shows the results of applying NDSEP to the ALM dataset. Figure 8A shows the detected neuron masks overlaid on the mean signal map. We randomly picked 10 neurons (Figure 8B) and plotted ΔF/F (Figure 8C). ΔF/F captures the characteristics of the neural activity. A neuron is detected only after it fires at least once. For example, ΔF/F values of neurons 8, 9, and 10 were 0 until their first spiking activity began. In this experiment, NDSEP neuron detection detects 50 neurons. Compared with the ALM ground truth mask, which has 69 neurons, the recall and precision of NDSEP-based neuron detection are 72.46 and 69.44%, respectively. Also, the F1 score is 70.92%.


[image: Figure 8]
FIGURE 8. Results for ALM data: (A) shows neuron masks in regions with green perimeters, with ground truth in red, overlaid on the mean map of all frames; (B) shows randomly selected neurons among the correctly detected result; (C) shows the signals that were extracted from selected neurons in (B).




4.4. Execution Time Measurements

Table 4 shows measured execution times for all of the core signal processing actors in NDSEP as well as the ImgSrc actor. The total running time is measured by using time calculation functions. The times shown in Table 4 are the single frame execution times, which are calculated by: Single_Frame_Time = Total_Processing_Time/#Frames_in_Dataset. The mean and standard deviation of the execution time is calculated by repeating the associated experiment 10 times under the same conditions. All execution time measurements are shown in milliseconds (ms). Only the SetParams and fork actors are not considered in these execution time experiments. SetParams is used only in the initialization mode of the application and not in real-time mode. Thus, the execution time of the SetParams actor is not relevant to real-time performance. The fork actor is excluded because it is of minimal complexity and has a negligible impact on overall performance.


Table 4. Measured execution times for different actors in NDSEP.
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All of the execution time measurements were taken on a MacBook Pro laptop computer. The computer was equipped with a 2.5 GHz Intel Core i7 CPU, the Mac OS High Sierra 10.13.1 operating system, and 16 GB memory.

The experiments on execution time were performed on all of the four datasets employed in section 4.1 through section 4.3. Since image registration has already been applied in the two Neurofinder datasets, we disabled the Motion Correction actor in the experiments with these two datasets. For the simulated dataset, the two Neurofinder datasets, and the ALM dataset, average execution times were taken across 1,800, 2,245, and 11,189 frames, respectively. The results in Table 4 show average execution times per frame for each actor/dataset combination.

Generally, the Motion Correction actor dominated the overall execution time for the datasets in which the actor was used. The signal extraction actor exhibited the largest variation in execution time. We anticipate that this is because of the strong dependence of this actor's execution time on the number of detected neurons. Also, not only the number of detected neurons but also how active the neurons are affect the detection actor's execution time. As shown in Table 4, the total execution time, summed across all actors, was less than 22 ms per frame for all datasets that we experimented with, except for the Neurofinder 03 dataset, which has over 600 neurons detected. Considering the image acquisition rate, for all four datasets, NDSEP is shown to provide adequate performance for real-time operation without the need for expensive, cumbersome, or special-purpose computing hardware.



4.5. Comparison With Other Platforms

Using the simulated dataset and ALM dataset, we compared NDSEP-based motion correction with CaImAn-NoRMCorre (Non-Rigid Motion Correction) and also with ImageJ-SIFT (Scale Invariant Feature Transform). In addition, a neuron detection comparison was made among NDSEP-based neuron-detection, CaImAn-CNMF (CaImAn-Constrained Nonnegative Matrix Factorization), and CellSort (also known as PCA/ICA). For details on CaImAn-NoRmCorre, SIFT, CaImAn-CNMF, and CellSort, we refer the reader to Giovannucci et al. (2019), Lowe (2004), and Mukamel et al. (2009). Table 6 shows parameters used in the comparison approaches.


4.5.1. Motion Correction Comparison

The Motion Correction comparison is made on the simulated dataset. In CaImAn-NoRMCorre, we experimented with both the rigid mode and non-rigid mode. Although CaImAn-NoRMCorre is not natively designed to correct rotations, rotations can be recognized when the grid size is small (the resolution is high). However, excessively small grid sizes make matches hard to find and greatly increase computational cost. In our experiments, we used an empirically determined grid size of [32, 32], which we found to provide an efficient balance between the aforementioned trade-offs. We also applied the cubic shifting method and a small overlapping region with a size of [16, 16]. All other parameters are set at the values recommended in Giovannucci et al. (2019). As with CaImAn-NoRMCorre, we tuned parameters in SIFT to maximize accuracy. Most of the parameter values that we used are those recommended in Lowe (2004). We set the maximal alignment error to two pixels to increase the accuracy, instead of 10% of the image size as recommended in Lowe (2004).

CaImAn-NoRMCorre is not able to align most of the rotations, as shown in Figure 9A, especially in the rigid mode. The high spike values in Figure 9B correspond to the non-corrected motions. The non-rigid mode has lower spikes, which correspond to rotations, than the rigid mode. However, the non-rigid mode exhibits higher error when correcting translation-only frames. SIFT achieves a relatively high accuracy for both translations and rotations, but Figure 9B shows that the root mean square error (RMSE) value increases as the number of frames increases. This means that the error accumulates and the accuracy drops as the system continues processing. This feature makes SIFT inefficient for our real-time motion correction context. Unlike CaImAn-NoRMCorre, NDSEP efficiently corrects nearly all simulated motion translations, shown in Figure 9C, and rotations while discarding the unusual uncorrected frames.


[image: Figure 9]
FIGURE 9. Motion correction comparison results on simulated dataset Prot = 25 and αrot = 6.3153 without noise. (A) Shows the uint8 [0, 255] meanmaps. The display range is [0, 10], where values greater than 10 are displayed in white. The input data is the meanmap of simulated data with motion but without noise. The ground truth is the meanmap of the no-motion simulated data. The remaining four images are the output meanmaps of NDSEP, SIFT, the rigid mode of CaImAn-NoRMCorre, and the nonrigid mode of CaImAn-NoRMCorre. (B) Shows the RMSE calculated by performing frame-by-frame comparison between the output of the four motion correction methods and the ground truth. (C) Shows the x movement, which is actual movement applied to simulated data, as a red line vs. movement detected by NDSEP motion correction as a blue line, including a program-detected failure in frame 544. Please note motions larger than the 10-pixel upper bound occur because of the rotations applied around the center of the image.




4.5.2. Neuron Detection Comparison

In our comparison of neuron detection performance, experiments are performed on two datasets: simulated data and ALM data. On simulated data, two approaches, NDSEP-neuron detection and CaImAn-CNMF, are compared. On ALM data, three approaches, NDSEP-neuron detection, CaImAn-CNMF, and CellSort, are evaluated. To eliminate the influence of different motion correction approaches, the input datasets are first motion-corrected. In particular, the simulated data input is the motion-correction ground truth used to calculate the RMSE value in Figure 9B. The ALM input data is motion-corrected by CaImAn-NoRMCorre with the rigid mode following the parameters used to register the simulated data. When comparing different neuron detection approaches, we compare only the spatial component—that is, only the locations of the detected neurons.

In CaImAn-CNMF, the number of neurons Ndet to be detected is predefined. In our experiments, for simulated data, we set Ndet = 97 because there are a total of 97 neurons in the ground truth mask. Ndet is set to 80, a little higher than the number of neurons in the ALM ground truth. This setting is used to increase the recall rate. The parameter τ of the Gaussian kernel is set to half the size of a single neuron. The resulting values for the simulated and ALM datasets are τ = 3.4 and τ = 8.0, respectively. The optional parameter P used for normalization by noise and user feed component centroids is disabled for simulated data, since the temporally autocorrelated noise we have cannot be removed in this way. Other parameters are tuned according to Giovannucci et al. (2019). In CellSort, which is only tested on the ALM dataset, the value of mu is set to 0.5, which enables the use of both temporal and spatial information for segmentation. Other CellSort parameters are set as recommended in Mukamel et al. (2009).

Table 5 shows that both CaImAn-CNMF and NDSEP detect all of the 97 neurons when the input frames are free from noise. However, for noisy input, the CaImAn-CNMF detection rate CaImAn−CNMFdet drops as the noise intensity increases, while NDSEP consistently provides 100% accuracy for both noise-free and noisy input. Thus, our experiments demonstrate that CaImAn-CNMF neuron detection is vulnerable to noise, while NDSEP is much more robust. Furthermore, as shown in Table 4, NDSEP requires significantly less processing time compared to CaImAn-NoRMCorre, SIFT, and CaImAn-CNMF.


Table 5. Neuron detection rate with different noise levels.
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Table 6. Parameters of other approaches.
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On the ALM dataset, CaImAn-CNMF correctly detects 53 among 69 neurons; the resulting recall is 76.81%, while the precision is 72.60%. CellSort segments 79 neurons, of which 57 are correct (true positives), and the recall and precision using CellSort are 82.61 and 72.15%, respectively. For NDSEP, the corresponding results (shown in section 4.3) are: recall = 72.46% and precision = 69.44%. From these results, we see that the accuracy of NDSEP neuron detection is comparable to other state-of-the-art approaches such as CaImAn-CNMF and CellSort.





5. DISCUSSION

In this paper, we proposed a real-time neuron detection and neural activity extraction system called the Neuron Detection and Signal Extraction Platform (NDSEP). NDSEP uses a novel integration of dataflow-based design architecture and streamlined algorithms and software modules for real-time neural signal processing. The dataflow architecture of NDSEP provides sufficient flexibility to expand the system, experiment with design trade-offs, and manage complex constraints of real-time neuron detection and activity extraction (RNDAE) systems. Such constraints include those involving memory requirements and cost-effective deployment.

In an experiment based on simulated calcium imaging data, NDSEP effectively performed motion correction with mean errors of x and y displacement of <1 pixel and mean rotation error close to zero. NDSEP detected all active neurons and achieved a very high signal-to-noise ratio. For the Neurofinder database and for a real-world dataset, ALM, NDSEP achieved comparable results for detection, and the detected neurons demonstrated typical calcium transient patterns. In all of these experiments, the execution times were shorter than 25 ms, and NDSEP achieved real-time performance.

As presented in section 3, the key subsystems in NDSEP for neural signal processing are system parameter optimization (represented by the SetParams actor), motion correction, neuron detection, and neural signal extraction. We have developed and integrated initial versions of these subsystems through careful design, experimentation, and optimization to achieve real-time performance with reasonable system accuracy. However, many alternative combinations of algorithms, algorithmic parameter settings, and design optimization techniques can be applied to achieve the same general functionality as the current version of NDSEP, which involves the mapping of neural image streams into sets of neurons and their associated signals. These combinations represent a complex, largely unexplored design space, which involves trade-offs among real-time performance, neuron detection and signal extraction accuracy, and computational resource costs.

In addition to providing a complete system prototype for RNDAE, NDSEP provides a useful framework for investigating this design space and for developing further innovations in algorithms and systems for RNDAE. Such innovations could, for example, help to further increase the accuracy of neural signal extraction while maintaining real-time performance. Alternatively, they could help to reduce system costs without significantly sacrificing accuracy, thereby contributing to more cost-effective technologies for scientists, clinicians, or patient-users. The model-based design architecture of NDSEP, based on our application of dataflow design methods, helps to precisely formulate the aforementioned design space in terms of component subsystems (actors for RNDAE) and precise interfacing requirements between them. The modularity and abstract design of the NDSEP architecture greatly facilitate experimentation with alternative combinations of component algorithms, algorithm configurations, and hardware/software realizations of the algorithms.

Four general directions for future work emerge naturally from the properties described above of the NDSEP architecture and its utility in defining and exploring important design spaces for RNDAE system design. The first direction is exploration into new algorithms and implementations for the four key component subsystems. Examples of concrete topics in this direction include applying downsampling strategically in parts of NDSEP outside of motion correction, where it is already applied (see section 3.2.1). Another example is incorporating more sophisticated processes for parameter adaptation and optimization in the initialization mode of NDSEP, as motivated in section 3.3.2.

A second direction for future work is in applying the NDSEP platform to develop novel systems for precise neuromodulation. The current system will be part of a precise all optical closed-loop neuromodulation system that combines calcium image processing (the current system), prediction (predicting behavioral variables based on neural features), and neuromodulation (optogenetics). In our recent prior work, our team has developed pilot versions of prediction (Lee et al., 2017) and network-based feature extraction (Chen and Lin, 2018) for calcium imaging data. The primary design goal of NDSEP is real-time data processing. Existing optogenetics intervention permits millisecond-precision manipulation of genetically targeted neural populations (Häusser, 2014). In our future work, we will improve these pilot versions and integrate them with NDSEP. We expect that our future all-optical closed-loop neuromodulation system can achieve real-time performance above 10 Hz, providing neuroscientists an open-source, real-time neural decoding system that facilitates precise neuromodulation.

A third direction for future work is studying design optimization methods and trade-offs in NDSEP in the context of overall cost and performance in the enclosing neuromodulation systems.

A fourth direction for future work is support for higher image acquisition rates. Results are unpredictable if the speed of the system is slower than the acquisition rate. The designer must therefore optimize and test the system carefully to ensure that constraints imposed by the acquisition rate are satisfied. The dataflow-based system architecture facilitates these optimization and testing objectives. Our current system is designed for two-photon calcium imaging. The typical acquisition rate is 10–30Hz. Based on Table 4, the current implementation can handle such an acquisition rate. In the future, if we want to use NDSEP for high-speed calcium imaging with a 180–490 Hz sampling rate, hardware acceleration within the framework of dataflow-based design may be used.

On top of the four main directions described above, since NDSEP focuses on real-time computation using efficient detection algorithms, it may have difficulty detecting overlapping neurons. In addition to this, NDSEP can be extended to be enabled for one-photon calcium imaging with more noise. More comparisons to the state-of-the-art methods like OnACID should be made. Also, NDSEP does not include an actor for neuropil fluorescence contamination. We will address these limitations in our future work.

The NDSEP system developed in this study is an efficient, extensible system based on dataflow design for real-time neuron detection and neural activity extraction. We expect that the platform will enable real-time calcium imaging-based neural decoding, leading to precise neuromodulation.
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