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Editorial on the Research Topic

Magnetohydrodynamic Waves in the Solar Atmosphere: Heating and Seismology

Historically, following the seminal paper on what is now called “Alfvén” waves (Alfvén, 1942), the
theoretical understanding of Magnetohydrodynamic (MHD) waves in uniform media of infinite
extent rapidly reached substantial sophistication as summarized in the classics by Cowling (1957)
and Braginskii (1965). In particular, the role that MHD waves may play in heating the solar
atmosphere was pointed out by Cowling as early as in the 1950s (see Cowling, 1962, and references
therein). That the structuring in the physical parameters of the solar atmospheremay strongly affect
MHDwaves was then recognized (e.g., Uchida, 1968; Rosenberg, 1970; Zaitsev and Stepanov, 1975).
Even though they paved the way for the now-called “coronal seismology,” most modeling studies
(e.g., Uchida, 1970; Edwin and Roberts, 1983; Poedts et al., 1990) focused on utilizing the waves
for coronal heating (e.g., Ionson, 1978; Hollweg et al., 1982). This modeling was an endeavoring
effort, however, because no observational feedback was available, given the lack of instrumental
development at the time. Indeed, some scientists even believed that there were no waves in the
solar corona. Despite the lack of observational support, many pioneering papers appeared in this
subject area.

Substantial indirect evidence suggesting that MHD waves played a key role in explaining the
strong emission and broad non-thermal line widths in the upper chromosphere, transition region
and corona already existed from observations with Skylab (Feldman et al., 1988), HRTS (Dere and
Mason, 1993), and SUMER (Chae et al., 1998). However, there are two key times in transforming
the field of coronal wave studies from its early stages to its current level.

The first key discovery was the direct imaging of coronal waves in the SOHO and TRACE
era (late 1990s and early 2000s). This came in three important papers that showed the direct
evidence of (1) slow waves in footpoints of coronal loops (Berghmans and Clette, 1999) and (2)
transverse kink waves in flaring active regions (Aschwanden et al., 1999; Schrijver et al., 1999). The
big impact of these papers is in the fact they provided ample feedback on the earlier models for
coronal waves. As a result, these discoveries have triggered an avalanche of observational papers
on these types of waves, accompanied with detailed analytical and numerical models. Because
direct imaging observations of waves suggested insufficient energy for coronal heating (a topic still
under debate, see e.g., Terradas et al., 2018), research focus expanded toward their seismological
potential (Nakariakov and Ofman, 2001). With coronal seismology, the aim is to use observed wave
properties to obtain physical properties of the coronal structure with which the wave is associated,
by the comparison with models.
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The second key discovery was the realization that MHD
waves are truly omnipresent in the solar atmosphere. This was
shown explicitly for the first time with the CoMP instrument
(Tomczyk et al., 2007), which only narrowly preceded the
Hinode observations (De Pontieu et al., 2007). More recently,
a comprehensive analysis of EUV movies of the corona
demonstrated the omni-presence of decayless kink oscillations
of coronal loops, interpreted as natural standing oscillations
continuously sustained by some still debated mechanism
(Anfinogentov et al., 2015). These papers have transformed
the field, because the observed wave events went from rare
observations to space-filling in the corona. Furthermore, the
current instrumentation allows to spatially, temporally and
spectrally resolve individual aspects of waves. As a result, many
researchers are once again considering heating aspects of MHD
waves in the solar corona, eschewing somewhat the seismology
aspect. Still, it has not been conclusively shown if and how
these waves contribute to coronal heating (Arregui, 2015; Hinode
Review Team et al., 2019, chapter 6.1).

It must be noted that wave based coronal heating theories
are aplenty, and that many of those are theoretically able
to produce and maintain a corona (for a review see e.g.,
Priest, 2014). However, the real challenge lies in identifying key
observable predictions from these theories that would allow to
discriminate them against observations. This challenge implies,
on one hand, conducting advanced numerical simulations
of the various wave physical processes—a task that requires
enormous amount of computing power due to both, the
local and global aspects of wave propagation and dissipation
in the heterogeneous solar atmosphere. On the other hand,
the challenge requires the synthesis of observable quantities
(imaging and spectropolarimetry) from the numerical results,
targeting specific instruments and observation conditions—a
task known as forward modeling, only possible through the
continuous development of atomic databases such as CHIANTI
(Dere et al., 1997), and forward modeling codes such as FoMo
(Van Doorsselaere et al., 2016).

The historical perspective shows clear trends in the field
of MHD waves in the solar atmosphere, in parallel with
the development of instrumentation, data analysis techniques,
computing power and numerical modeling codes: first there
was a strong focus on wave heating, later a strong emphasis
on seismology, and now both heating and seismological aspects

and their combination are on the cutting edge of the ongoing
research efforts.

The main motivation in organizing this special issue in
Frontiers of Astronomy & Space Sciences is the 20th anniversary
of the discovery of waves in the solar corona. Celebrating the first
aforementioned key discovery, our aim for this issue was to give
an overview of the current efforts in the field, through the display
of currently ongoing Research Topics. This issue shows that there
is a healthy balance between observational and modeling papers
in the field of MHD waves in the solar atmosphere, following the
larger trend in solar physics. Moreover, the two main directions
in the field are reflected very well in this content collection:
using the observed MHD waves for coronal seismology and
coronal heating. This shows perhaps that a new balance has
been found within the community between these two important
research directions.

In the current special issue, we see also an accent on the basic
understanding of wave phenomena in MHD and beyond. This
shows two aspects: (1) Wave behavior in MHD is not completely
understood yet at a theoretical level, and (2) a significant effort
is now being done to understand what is happening beyond
MHD (e.g., two fluids). This opens up potential for even more
applications in the solar atmosphere, and indicates that there is a
lot of room to expand, perhaps by focusing on the smaller scales
that are not accessible by MHD waves.
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Propagating kink waves have been observed in many magnetic waveguides in the solar

atmosphere, like coronal magnetic loops, spicules, and fine structures of prominences.

There are also observational evidences that these waves are damped. At present

resonant absorption is considered as the most likely candidate for explaining this

damping. First the attenuation of propagating kink waves due to resonant absorption

was studied using the simplest model with a straight magnetic tube and the density

only varying in the radial direction. Later a more advanced model with the density also

varying along the tube was used. It was shown that the variation of the wave amplitude

along the tube is determined by the combined effect of resonant damping and the

longitudinal density variation. In our article we extend the analysis of resonant damping

of propagating kink waves to take into account the magnetic loop expansion. We also

consider non-stationary magnetic tubes to model, for example, cooling coronal loops. In

particular, we found that cooling enhances the wave amplitude and the loop expansion

makes this effect more pronounced.

Keywords: solar atmosphere, plasma, waves, magnetic field, resonant absorption

1. INTRODUCTION

Propagating kink waves have been observed in many magnetic waveguides in the solar atmosphere,
like coronal magnetic loops (Tomczyk et al., 2007; Tomczyk and McIntosh, 2009), spicules (De
Pontieu et al., 2007; He J. et al., 2009; He J.-S. et al., 2009), fine structures of prominences (Okamoto
et al., 2007), and in filament threads (Lin et al., 2007, 2009). It was also observed that these waves
damp. At present resonant absorption is considered as the most likely candidate for explaining this
damping. The theoretical modeling of the spatial damping of traveling kink waves due to resonant
absorption has been carried out by Terradas et al. (2010) and Verth et al. (2010) analytically, and by
Pascoe et al. (2010, 2011) numerically. In all these article the simplest model of a straight magnetic
tube with the density only varying in the radial direction was used.

Later mode sophisticate models were used. Soler et al. (2011a) took into account the effect of
partial ionization in the single-fluid approximation. As a result, kink waves were damped by both
resonant absorption and ion-neutral collisions. Soler et al. (2011b) studied the resonant absorption
of propagating kink waves in the presence of flow. Soler et al. (2011c) investigated the propagation
and resonant absorption of kink waves in a magnetic tube with the density varying both
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along and across the tube. They showed that the variation of the
wave amplitude along the tube is determined by the combined
effect of resonant damping and the longitudinal density variation.
Ruderman et al. (2010) studied the effect of non-linearity on the
resonant damping of propagating kink waves and showed that
non-linearity can strongly enhance the damping efficiency.

All papers cited above used the theory of resonant damping
that can be called classical. In this theory the wave amplitude
decays exponentially with the distance from the place where
it is driven. This result is based on the assumption that
a propagating kink wave is an eigenmode of the linearized
dissipative magnetohydrodynamics (MHD). In the case of
standing kink oscillations (Ruderman and Roberts, 2002) showed
that after the initial perturbation the kink oscillation of a
perturbed magnetic tube is very well-described by an eigenmode
of the linear dissipative MHD after a transitional time of order
of the oscillation period everywhere but in a vicinity of the
resonant surface. However, in the vicinity of the resonant surface
phase mixing continues until it creates perturbations with so
small spatial scale that viscosity and/or resistivity stops it. Only
after that the perturbation is described by an eigenmode of the
linear dissipative MHD everywhere. It was shown numerically
that, for typical parameters of coronal magnetic loops, the
time when the phase mixing stops is at least by an order
of magnitude larger than the typical damping time of kink
oscillations (Arregui, 2015).

Hence, we conclude that the main assumption of the classical
theory of resonant damping is not satisfied. This problem
was addressed numerically by Pascoe et al. (2012, 2013), and
analytically by Hood et al. (2013). It was shown that at the
initial stage the amplitude variation with the distance from
the driver is described by the Gaussian profile. And only later
the amplitude decays exponentially. As a result, the damping
length of a kink wave is somewhat longer than that predicted
by the classical theory of resonant damping. Hence, to correctly
describe the spatial damping of propagating kink waves we need
to use the advanced theory developed by Hood et al. (2013).
The importance of Gaussian damping strongly depends on the
thickness of the transitional layer where the density drops from
large value inside the tube to low value in the surrounding
plasma. It also depends on the ratio of densities inside and outside
the tube. The distance where the transition from the Gaussian to
exponential damping occurs reduces fast when the thickness of
the layer decreases, and also when the ratio of densities increases.

Ruderman and Terradas (2013) carried out an analytical
analysis of resonant damping of standing kink waves similar to
that made by Hood et al. (2013) for propagating kink waves.
They, in particular, concluded that the classical theory of resonant
damping underestimates the damping time. But, for typical
values of coronal magnetic loop parameters, the error never
exceeds 20%. Although a similar estimate was not obtained for
propagating kink waves, on the basis of the analogy between the
spatial damping of propagating waves and temporal damping
of standing waves, we believe that, although the classical theory
of resonant damping underestimates the damping length, the
error is quite moderate. On the other hand, the advanced theory
of resonant damping is much more complex than the classical

theory. Hence, in this article we will use the classical theory of
resonant damping.

Sometime it is observed that waveguides in the solar
atmosphere are non-stationary. For example, Aschwanden
and Terradas (2008) and Aschwanden and Schrijver (2011)
reported observations of kink oscillations of cooling coronal
loops. Inspired by these observations Ruderman (2011b) and
Shukhobodskiy et al. (2018) studied the resonant damping of
kink oscillations of cooling coronal magnetic loops. Morton et al.
(2010) and Ballester et al. (2018) investigated the propagation
of magnetosonic waves in a cooling plasma. In our paper we
extend their analysis to propagating kink waves in non-stationary
magnetic flux tubes. In particular, we study the kink wave
propagation in cooling coronal loops.

Our article is organized as follows. In the next section we
formulate the problem and present the governing equations. In
section 3 we derive the equation governing the evolution of
kink waves propagating along non-stationary magnetic tubes. In
section 4we derive the expression determining resonant damping
of kink waves. In section 5 we derive the equation for the
wave amplitude. In section 6 we consider kink wave propagation
in static and non-expanding magnetic tubes. In section 7 we
study kink wave propagation in non-stationary and expanding
magnetic tubes. Finally, in section 8 we summarize the results
obtained in the paper.

2. PROBLEM FORMULATION AND
GOVERNING EQUATIONS

We study propagating kink waves along a straight magnetic tube
with the circular cross-section of variable radius (see Figure 1).
The characteristic radius of the tube cross-section is R∗. Since the
tube expands the magnetic field is spatially dependent, but the
scale of its spatial variation is L∗ ≫ R∗. This assumption implies
that we consider a thin magnetic tube. Below we use cylindrical
coordinates r, ϕ, z with the z-axis coinciding with the tube
axis. We consider an axisymmetric equilibrium meaning that all
equilibrium quantities are independent of ϕ. The magnetic field
is not twisted meaning that its azimuthal component is zero.
Its radial and axial components are expressed in terms of the
magnetic flux function ψ as

Br = −1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (2.1)

Ruderman et al. (2017) (Paper I in what follows) showed that in
the thin tube approximation

ψ = 1

2
r2h(z). (2.2)

This expression is valid both in the tube and in its immediate
surrounding.

It follows from Equations (2.1) to (2.2) that

Br = −1

2
rh′(z), Bz = h(z). (2.3)
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FIGURE 1 | Sketch of the equilibrium.

Since h′(z) ∼ h(z)/L∗, it follows that

Br

Bz
= O(ε), B = h(z)

[
1+O

(
ε2

)]
, (2.4)

where ε = R∗/L∗ and B = (B2r + B2z)
1/2 is the magnetic

field magnitude.
The plasma density varies both along and across the tube.

The tube consists of a core region and a boundary layer where
the density monotonically decreases from its value ρi inside the
tube to its value ρe in the surrounding plasma. Here and below
the indices “i” and “e” indicate that a quantity is calculated in
the core region and in the surrounding plasma, respectively. The
characteristic thickness of the boundary layer is lR∗, where l≪ 1.
This implies that we use the thin boundary approximation. The
transitional layer boundaries are defined by equations

r = R(z)(1− l/2), r = R(z)(1+ l/2). (2.5)

Now it follows from the magnetic flux conservation that the
magnetic field tube magnitude and the tube radius are related by
the approximate equation

BR2 = const. (2.6)

It follows from Equations (2.2) to (2.6) that the transitional layer
boundaries are magnetic field lines and their equations can be

written in an alternative form as

ψ = ψi ≡
1

2
BR2

(
1− l

2

)2

, ψ = ψe ≡
1

2
BR2

(
1+ l

2

)2

.

(2.7)
In the core region and in the surrounding plasma the
characteristic scale of density variation is L∗ both in the
longitudinal and radial direction. In the transitional layer the
characteristic scale of density variation in the longitudinal
direction is also L∗, but it is lR∗ in the radial direction. The density
also can depend on time. The temporal variation of density can
cause the plasma flow along the magnetic field lines. Again, the
velocity only weakly varies in the radial direction in the core
region and outside of the tube, but it varies on the scale lR∗ in
the transitional layer. The density ρ and velocity U = (Ur , 0,Uz)
are related by the mass conservation equation

∂ρ

∂t
+ 1

r

∂(ρrUr)

∂r
+ ∂(ρUz)

∂z
= 0. (2.8)

Since the velocity is parallel to the magnetic field it follows from
Equation (2.4) that

Ur

Uz
= O(ε), U = Uz

[
1+O

(
ε2

)]
, (2.9)

where U = (U2
r +U2

z )
1/2 is the velocity magnitude. We integrate

Equation (2.8) over the area of the tube core cross-section, that is
over a circle of radius R(z)(1− l/2). As a result we obtain

R2(1− l/2)2
(
∂ρ

∂t
+ ∂(ρUz)

∂z

)
+ 2(ρrUr)

∣∣
r=R(1−l/2)

= 0. (2.10)

It follows from Equations (2.3), (2.4), to (2.6) that hR2 = const.
Using this equation and Equations (2.3), (2.4), and (2.9) yields

Ur

U

∣∣∣∣
r=R(1−l/2)

= Br

B

∣∣∣∣
r=R(1−l/2)

= −h′R(1− l/2)

2h
= R′(1− l/2).

(2.11)
Substituting this result in Equation (2.10) we obtain in the leading
order approximation with respect to ε and l

∂ρi

∂t
+ 1

R2
∂(ρiR

2Ui)

∂z
= 0. (2.12)

Next we integrate (Equation 2.8) over the ring regionR(1+l/2) ≤
r ≤ ςR, where ς−1≫ l and ς is of the order of unity. This yields

R2
(
ς2−1− l− l2/4

) (
∂ρ

∂t
+ ∂(ρUz)

∂z

)
+2(ρrUr)

∣∣∣
ςR

r=R(1+l/2)
= 0.

(2.13)
Similar to Equation (2.9) we obtain

Ur

U

∣∣∣∣
r=ςR

= ςR′. (2.14)
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Using Equation (2.11) with −l substituted for l and (2.14) we
obtain from Equation (2.13)

R2
(
ς2 − 1− l− l2/4

) (
∂ρ

∂t
+ ∂(ρUz)

∂z

)

+2RR′
(
(ρU)

∣∣∣
ςR

− (ρU)
∣∣∣
r=R(1+l/2)

)
= 0.

In the leading order approximation with respect to ε and l we
neglect l in comparison with unity, and take Uz ≈ U and

(ρU)
∣∣∣
ςR

≈ (ρU)
∣∣∣
r=R(1+l/2)

in Equation (2.13). Then, dividing the obtained equation by
R2(ς2 − 1) yields

∂ρe

∂t
+ 1

R2
∂(ρeR

2Ue)

∂z
= 0. (2.15)

It was shown in Paper I that long linear kink waves, which are
waves with the wavelength much larger than R∗, in an expanding
and non-stationary magnetic tube is described by the equation

ρi

(
∂

∂t
+ Ui

R2
∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+ Ue

R2
∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2B2

µ0

∂2η

∂z2
= L,

(2.16)

where

L = δP

R2
+ B2

µ0

∂2(lη + δη)
∂z2

− ρe

(
∂

∂t
+ Ue

R2
∂

∂z
R2

)(
∂

∂t
+ Ue

∂

∂z

)
(lη + δη). (2.17)

In this equations µ0 is the magnetic permeability of free space,
P is the perturbation of magnetic pressure,

η = ξ⊥i

R
, (2.18)

and ξ⊥ is the plasma displacement in the ϕ = const plane and
perpendicular to the magnetic field lines. In the case of non-
expanding tube ξ⊥ = ξr , where ξr is the radial component
of the plasma displacement. In a slowly expanding tube ξ⊥ =
ξr[1 + O(ε)]. In the thin tube approximation ξ⊥i is independent
of r. This property is same as that first obtained in the case of non-
expanding magnetic tubes (e.g., Ruderman and Erdélyi, 2009).
The quantities δη and δP are the jumps across the transitional
layer defined by

δη = 1

R

(
ξ⊥

∣∣
ψ=ψe

− ξ⊥
∣∣
ψ=ψi

)
, δP = P

∣∣
ψ=ψe

− P
∣∣
ψ=ψi

.

(2.19)
Equation (2.17) with the right-hand side defined by Equation
(2.19) is used below to study the propagation of kink waves.

In the thin tube approximation the radial and azimuthal
components of both the plasma displacement and magnetic
field perturbation are independent of r inside the tube and
proportional to r−2 outside the tube. The wave energy density is
equal to the sum of the kinetic and magnetic energy density. The
kinetic energy density is proportional to the sum of the squares of
the radial and azimuthal components of the plasma displacement,
and the magnetic energy density is proportional to the sum of the
squares of the radial and azimuthal components of the magnetic
field perturbation. Hence, the wave energy density is independent
of r inside the tube and proportional to r−4 outside the tube.
The energy behavior in the boundary layer strongly depends
on the dissipative coefficients and can be either monotonic or
oscillatory. At distances from the place where the wave is driven
that are much smaller than the damping distance the wave energy
density in the transitional layer is quite small, of the order of
l/R∗ ≪ 1. However, at distances comparable with the damping
distance almost all energy is concentrated in the transition layer
due to resonant absorption.

3. DERIVATION OF THE EVOLUTIONARY
EQUATION

In this section we consider propagation of kink waves along an
expanding and non-stationary magnetic tube. Using Equations
(2.12) and (2.15) we transform Equation (2.11) to

(ρi + ρe)
∂2η

∂t2
+ 2(ρiUi + ρeUe)

∂2η

∂t∂z

+
(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
∂2η

∂z2

+
{
∂

∂t
(ρiUi + ρeUe)+

1

R4
∂

∂z

[
R4(ρiU

2
i + ρeU2

e )
]} ∂η
∂z

−
[
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
∂η

∂t
= 0. (3.1)

Now we consider waves with the length much longer than R∗, but
much shorter than L∗. We denote the ratio of the characteristic
wavelength to L∗ as ǫ≪ 1. The condition the wavelength is much
larger than R∗ implies that ǫ≫ ε = R∗/L∗. We also assume that
the wave period is much shorter than the characteristic scale of
the temporal density variation. To study the wave propagation
we look for the solution to Equation (3.1) in the form

η = S exp(iǫ−1θ), (3.2)

where θ is real and S is complex (Bender and Orszag, 1978). The
presence of transitional layer results in the resonant damping
of waves. We will see below that the damping length is of the
order l−1 times the wavelength. On the other hand, the effect
of inhomogeneity manifests itself on a distance from the place
where the wave is driven that is of the order of ǫ−1 times the
wavelength. We would like to derive the equation for the wave
amplitude that takes both effects into account in the same order
approximation. In accordance with this we put l = ǫ. When l≫ǫ

the effect of resonant absorption strongly dominates the effect of
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the axial density variation that can be neglected. In the opposite
case where l≪ ǫ the effect of the axial density variation strongly
dominates the effect of resonant absorption. We will see below
that L is of the order of ǫ−1 when l = ǫ. This estimate inspires us
to introduce L̃ = ǫL. The characteristic time of wave damping
due to resonant absorption is ǫ−1 times the wave period. If the
characteristic time of density variation is much larger than that
time then its effect can be neglected. On the other hand, if the
characteristic time of density variation is much smaller then the
damping time then the effect of density variation will strongly
dominate the wave damping. We aim to study the competition of
the two effects. In accordance with this we assume that the ratio
of the wave period to the characteristic time of density variation
is of the order of ǫ. Substituting η = S exp(iǫ−1θ) in Equation
(3.1) and collecting terms proportional to ǫ−2 in the obtained
equation yields

(ρi+ρe)ω2−2(ρiUi+ρeUe)kω+
(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
k2 = 0,

(3.3)
where

ω = −∂θ
∂t

, k = ∂θ

∂z
. (3.4)

This approximation is usually called the approximation of
geometrical optics.

Next, we collect terms proportional to ǫ−1. This results in

(ρi + ρe)
(
S
∂ω

∂t
+ 2ω

∂S

∂t

)
+ 2(ρiUi + ρeUe)

(
S
∂ω

∂z
+ ω∂S

∂z
− k

∂S

∂t

)

−
(
ρiU

2
i + ρeU2

e −
2B20
µ0

) (
S
∂k

∂z
+ 2k

∂S

∂z

)

−
{
∂

∂t
(ρiUi + ρeUe)+

1

R4
∂

∂z

[
R4(ρiU

2
i + ρeU2

e )
]}

kS

−
[
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωS = ie−il−1θ L̃. (3.5)

Multiplying this equation by SR4 and using Equation (2.6)
we obtain

R4(ρi + ρe)
∂(ωS2)

∂t
− R4(ρiUi + ρeUe)

[
∂(kS2)

∂t
− ∂(ωS2)

∂z

]

− ∂

∂z

[(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
kR4S2

]

−kR4S2
∂

∂t
(ρiUi + ρeUe)

−
[
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωR4S2 = ie−il−1θSR4L̃.

(3.6)

We further transform this equation to

∂

∂t

{
R4S2

[
(ρi + ρe)ω − (ρiUi + ρeUe)k

]}

+ R4(ρiUi + ρeUe)
∂(ωS2)

∂z
− ∂

∂z

[(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
kR4S2

]

−
[
2
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωR4S2

= ie−il−1θSR4L̃. (3.7)

We now transform the terms on the left-hand side of this
equation that are not full derivatives. Using Equations (2.12) and
(2.15) we obtain

R4(ρiUi + ρeUe)
∂(ωS2)

∂z

−
[
2
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωR4S2

= R4(ρiUi + ρeUe)
∂(ωS2)

∂z

+
[
2 (ρiUi + ρeUe)

∂R2

∂z
+ R2

∂

∂z
(ρiUi + ρeUe)

]
ωR2S2

= R4(ρiUi + ρeUe)
∂(ωS2)

∂z
+ ωS2 ∂

∂z

[
R4(ρiUi + ρeUe)

]

= ∂

∂z

[
(ρiUi + ρeUe)ωR

4S2
]
. (3.8)

Using this result we reduce Equation (3.7) to

∂

∂t

{
R4S2

[
(ρi + ρe)ω − (ρiUi + ρeUe)k

]}

+ ∂

∂z

{
R4S2

[
(ρiUi + ρeUe)ω −

(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
k

]}

= ie−il−1θSR4L̃. (3.9)

Finally, introducing

V = ω

k
, E = R4S2

[
(ρi + ρe)ω − (ρiUi + ρeUe)k

]
, (3.10)

and using Equation (3.3) we rewrite Equation (3.9) as

∂E

∂t
+ ∂(VE)

∂z
= ie−il−1θSR4L̃. (3.11)

Here E is proportional to the wave energy density per unit length
along the magnetic tube.

Below we assume that the temporal variation of the density is
very slow. To be specific, we consider as an example kink waves
in cooling coronal loops. One observation of kink oscillation of a
cooling coronal loop was reported by Aschwanden and Schrijver
(2011). In this event the period of fundamental mode was 395 s,
and the loop length was 163 Mm. Hence, the phase speed of
the kink wave was 893 km/s. The cooling time was 2050 s.
Taking this time as the characteristic time in Equation (2.12),
and the loop length as the characteristic length, we obtain the
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estimate Ui ∼ 80 km/s. Aschwanden and Schrijver (2011) did
not give any information about the temperature of the plasma
surrounding the loop. Cooling mainly occurs due to radiation
with the intensity proportional to the plasma density squared.
The plasma in the loop is much denser than that surrounding the
loop. Hence, even if the external plasma cools, its cooling time
is much larger than that of the plasma in the loop, and we can
expect thatUe≪Ui. Consequently, we conclude that in the event
reported by Aschwanden and Schrijver (2011) the speed of the
flow induced by cooling is much smaller than the phase speed.

On the basis of this example we introduce the definition that
the temporal density variation is very slow if the flow speed
induced by this variation is much smaller than the phase speed.
The assumption that the temporal density variation is very slow
enables us to neglect the terms containing Ui and Ue in Equation
(3.3). In addition, we only consider waves propagating in the
positive z-direction. Then Equation (3.3) reduces to

ω = Ckk, C2
k =

2B2

µ0(ρi + ρe)
. (3.12)

We also can neglect the terms proportional to Ui and Ue in the
expression for E and write it in the approximate form as

E = (ρi + ρe)ωR4S2. (3.13)

4. DERIVATION OF EXPRESSION FOR L̃

The assumption that the temporal variation of density is very
slow enables us to use the linear equations of static MHD to
describe the plasma motion in the transitional layer. However,
we take the dependence of the density on time. To remove
the singularity at the resonant surface we take the viscosity
into account. Below we use the system of equations derived by
Shukhobodskiy and Ruderman (2018). In this system ψ is used
as an independent variable instead of r. Since Shukhobodskiy and
Ruderman (2018) considered a static problem with the density
independent on time they took the perturbation of all variables
proportional to e−iωt . However, it is easy to restore the time
dependence. It suffices to substitute ∂/∂t for −iω. As a result,
we obtain

P = − 1

µ0

(
rB2

∂w

∂ψ
+ iB2

ξϕ

r
− Br

∂w

∂z
+ Bz

w

r

)
, (4.1)

∂2w

∂t2
= rB2Bz

µ0ρ

∂

∂z

(
Bz

r2B2
∂(rw)

∂z

)
+ B2

ρ

[
Br
∂

∂z

(
P

B2

)

− rB2
∂

∂ψ

(
P

B2

) ]
+ ν ∂

∂t

(
r2B2z

∂2w

∂ψ2
− w

r2

)
, (4.2)

∂2ξϕ

∂t2
= − iP

ρr
+ Bz

µ0ρr

∂

∂z

[
r2Bz

∂

∂z

(
ξϕ

r

)]

+ν ∂
∂t

(
r2B2z

∂2ξϕ

∂ψ2
− ξϕ

r2

)
. (4.3)

In these equations ξϕ is the ϕ-component of the plasma
displacement, w = Bξ⊥, and ν is the kinematic viscosity. We
note that r is the function of ψ and z. These equations are valid
both in the transitional layer as well as in the core region and
external plasma where we can neglect the terms proportional
to ν. The characteristic scale of variation of perturbations with
respect to z is lε−1R∗≫R∗. The characteristic time of variation of
perturbations is lε−1R∗/V∗, where V∗ is the characteristic value
of the phase speed. We can take V2

∗ = B2∗/(µ0ρ∗), where B∗
and ρ∗ are the characteristic values of the magnetic field and
density, respectively. Using these estimates we obtain that P ∼
l−2ε2V2

∗R
−1
∗ ξϕ . Then the ratio of the left-hand side of Equation

(4.1) to the second term in the brackets in this equation is of
the order of l−2ε2 ≪ 1, which implies that the left-hand side of
Equation (4.1) can be neglected. The ratio of the third term in the
brackets on the right-hand side of Equation (4.1) to the fourth
term is l−1ε2 ≪ 1, so the third term also can be neglected. As a
result, Equation (4.1) reduces to

r2B
∂w

∂ψ
+ iBξϕ + w = 0. (4.4)

Finally, since in the core region the dependence of both B and ξ⊥
on ψ can be neglected, in this region we also can drop the first
term in Equation (4.4).

In the WKB method all dependent variables must have the
same functional form. In accordance with this, recalling that
η = S exp(iǫ−1θ) and l = ǫ, we put

w = ŵeil
−1θ , ξϕ = ξ̂ϕe

il−1θ , P = P̂eil
−1θ . (4.5)

Using the relations w = Bξ⊥, η = ξ⊥i/R and η = S exp(iǫ−1θ),
and taking into account that the dependence of ξ⊥ on ψ in the
core region can be neglected we obtain the expression valid in
the core region,

ŵi = BRS. (4.6)

Substituting Equations (4.5) and (4.6) in Equation (4.1) with
the small terms neglected, and in Equation (4.3) with ν = 0,
and collecting the leading terms with respect to l we obtain the
following equations valid in the core region,

iξ̂ϕ + RS = 0, (4.7)

P̂ = −il−2rρ

(
ω2 − B2k2

µ0ρ

)
ξ̂ϕ . (4.8)

Eliminating ξ̂ϕ from these equations yields

P̂ = l−2rρRS

(
ω2 − B2k2

µ0ρ

)
. (4.9)

Now we proceed to calculating L̃. First we further simplify
Equations (4.2)–(4.4). We note that we can take r(ψ , z) ≈ R(z)
in the transitional layer. Using Equations (2.3) and (2.4) we also
take Bz ≈ B. We can disregard the dependence of B onψ . Finally,
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the characteristic scale of both the density and perturbations of all
quantities in the transitional layer is ψe −ψi = lBR2. Using these
estimates we can easily show that the second term in the square
brackets in Equation (4.2) strongly dominates the first term, and
the second terms in brackets in terms proportional to ν are much
smaller than the first terms. Finally, the ratio of the third and first
terms in Equation (4.4) is of the order of l. Hence, the third term
can be dropped. Then, using Equation (2.6) we reduce the system
of Equations (4.2)–(4.4) to

r2
∂w

∂ψ
+ iξϕ = 0, (4.10)

∂2w

∂t2
= B2

µ0ρR

∂2(wR)

∂z2
− RB2

ρ

∂P

∂ψ
+ νR2B2 ∂3w

∂t∂ψ2
, (4.11)

∂2ξϕ

∂t2
= − iP

ρR
+ RB2

µ0ρ

∂2

∂z2

(
ξϕ

R

)
+ νR2B2 ∂

3ξϕ

∂t∂ψ2
. (4.12)

4.1. Solution Outside of the Dissipative
Layer
To obtain the solution in the transitional layer we use the method
of matched asymptotic expansions (e.g., Bender and Orszag,
1978). In accordance with this method we split the transitional
layer in the dissipative layer and two layers sandwiching this layer
where we can neglect viscosity. We look for the solution to the
linear dissipative MHD in the dissipative layer and to the linear
ideal MHD outside of this layer. Then wematch the two solutions
in the two overlap layer where the both solutions are valid. The
solution in the dissipative layer is called internal, and the solution
outside of the dissipative layer external.

We start from looking for the solution to the linear idealMHD
outside of the dissipative layer embracing the resonance surface
defined by the equation ψ = ψA, where ψA is determined by
the condition VA(ψA) = Ck. Since the variation of P in the
transitional layer is of the order of lPi, we can substitute Pi(ψ =
ψi) for P in Equation (4.12). Now, we substitute Equations (4.5)
and (4.6) in Equations (4.10)–(4.12). Since we need to calculate
L̃ in the leading order approximation with respect to l, we only
keep leading terms. As a result, we obtain

R2
∂ŵ

∂ψ
+ iξ̂ϕ = 0, (4.13)

k2
(
C2
k − V2

A

)
ŵ = l2RB2

ρ

∂P̂

∂ψ
, (4.14)

(
C2
k − V2

A

)
ξ̂ϕ = iρi

ρA
RS

(
C2
k − V2

Ai

)
, (4.15)

where VA = B(µ0ρ)
−1/2 is the Alfvén speed and ρA = ρ(ψ =

ψA). When deriving Equations (4.14) and (4.15) we used the
relation ω = Ckk. It follows from Equation (4.15) that

ξ̂ϕ =
iρiRS(C

2
k
− V2

Ai)

ρA(C
2
k
− V2

A)
. (4.16)

We see that there is a singularity of ξ̂ϕ at ψ = ψA(t, z).
Substituting Equation (4.16) in Equation (4.13) and integrating
the obtained equation yields

ŵ =





ŵ(ψ = ψi)+
∫ ψ

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1, ψ < ψA,

ŵ(ψ = ψe)−
∫ ψe

ψ

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1, ψ > ψA.

(4.17)

While ξ̂ϕ has a singularity of the form (ψ − ψA)
−1, ŵ only

has a logarithmic singularity. Finally, substituting this result in
Equation (4.14) and integrating the obtained equation results in

8̂ =





8̂(ψ = ψi)+
k2(C2

k
− V2

Ai)

l2RB2∫ ψ
ψi

(
ŵ(ψ = ψi)+

∫ ψ1

ψi

S(C2
k
−V2

Ai)

R(C2
k
−V2

A)
dψ2

)
dψ1, ψ < ψA,

8̂(ψ = ψe)−
k2(C2

k
− V2

Ai)

l2RB2∫ ψe

ψ

(
ŵ(ψ = ψe)−

∫ ψe

ψ1

S(C2
k
−V2

Ai)

R(C2
k
−V2

A)
dψ2

)
dψ1, ψ > ψA,

(4.18)
where 8̂ is defined by the equation

∂8̂

∂ψ
= 1

ρ

∂P̂

∂ψ
. (4.19)

It is easy to see that P̂ is continuous at ψ = ψA.

4.2. Solution Inside the Dissipative Layer
We now look for the solution in the dissipative layer embracing
the resonant surface. Ruderman et al. (1995) was the first to
show that solution character in the dissipative layer depends
on the value of viscosity (see also Ruderman and Roberts,
2002; Goossens et al., 2011). The spatial dependence of variable
perturbations in the dissipative layer is monotonic when the
viscosity is not very small, while it is oscillatory for very small
values of viscosity. Ruderman et al. (1995) studied a planar
problem where the transition from monotonic to oscillatory
behavior is determined by the relative values of two small
parameters, the ratio of the thickness of transitional layer to the
wavelength, and the inverse Reynolds number. He also studied
the temporal damping of kink waves. However, the results that
he obtained is easily translated to the spatial damping and
cylindrical geometry. In this case, the variable spatial dependence
is determined by the relative values of three small parameters,
l, ε = R∗/L∗, and the inverse Reynolds number Re−1, where
Re = R∗V∗/ν. The parameter determining the character of
the spatial variation of variable perturbations in the dissipative
layer is l(εRe)1/3. When l(εRe)1/3 ≪ 1 the spatial dependence
of variable perturbations in the dissipative layer is monotonic,
while it is oscillatory when l(εRe)1/3 & 1. We mainly aim to
apply the results of this study to the solar atmosphere, where
the typical value is l & 0.1, ε & 0.01, while Re ≫ 106, so that
l(εRe)1/3 > 1, which implies that the behavior of perturbations
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in the dissipative layer is oscillatory. However, in this case the
equations describing the motion in the dissipative layer are very
complex and, at present, it is not clear how to solve them. On
the other hand, we only need to calculate the jumps of w and P
across the dissipative layer. Ruderman et al. (1995) found that
these jumps are independent of the value of viscosity. The only
condition that must be satisfied is that Re is sufficiently large,
so that the thickness of the dissipative layer is much smaller
than the thickness of the transitional layer. This result was later
confirmed in subsequent studies (see, e.g., the review byGoossens
et al., 2011). The solution of equations describing the plasma
motion in the dissipative layer in the case when l(εRe)1/3 ≪ 1
is relatively simple. The result that the jumps of w and P across
the dissipative layer are independent of l(εRe)1/3 was obtained
for a static magnetic tube with a constant cross-section radius.
However, it looks like a viable conjecture to assume that this
result remains correct even for a non-stationary and expanding
tube. We note that the following derivation is similar to that in
the case of a non-expanding tube. The only difference that in the
case of a non-expanding tube we use the variable r, while in our
derivation we use the variable ψ instead.

Hence, we assume that l(εRe)1/3 ≪ 1. Since the thickness of
the dissipative layer is much smaller than the thickness of the
transitional layer we can approximate any equilibrium quantity
in the dissipative layer by its first non-zero term of Taylor
expansion with respect toψ−ψA. In particular, we can substitute
ρA = ρ(ψ = ψA) for ρ and take

C2
k − V2

A = −1(ψ − ψA), 1 = ∂V2
A

∂ψ

∣∣∣∣
ψ=ψA

. (4.20)

Since we assume that the density monotonically decreases in the
radial direction in the transitional layer, it follows that 1 > 0.
Now, substituting Equation (4.5) in Equation (4.12), collecting
terms of the order of l−2, using Equations (4.9) and (4.20), and
substituting P(ψ = ψi) for P we obtain

1(ψ − ψA)ξ̂ϕ + ilνk−1CkR
2B2

∂2ξ̂ϕ

∂ψ2
= − iρi

ρA
RS

(
C2
k − V2

Ai

)
.

(4.21)
When deriving this equation we took into account that ω = Ckk.

The thickness of the dissipative layer is defined by the
condition that the two terms on the left-hand side of Equation
(4.21) are of the same order. Using Equations (2.2) and (2.4) we
easily obtain that this thickness is

δA =
(

lνCk

kRB1

)1/3

∼ lR∗(εRe)
−1/3. (4.22)

Then the condition that the thickness of the dissipative layer is
much smaller than the thickness of the transitional layer reduces
to εRe ≫ 1. For typical conditions in the solar atmosphere this
inequality is definitely satisfied. Together with the condition that
the spatial behavior of variable perturbations in the dissipative
layer is non-oscillatory this gives

1≪ εRe≪ l−3. (4.23)

The solution in the dissipative layer has to match the solution
outside of this layer in the overlap layer defined by δA ≪ |r −
rA| ≪ lR∗. Using Equation (4.16) we obtain that the solution in
the overlap layer has the form

ξ̂ϕ = −
iρiRS(C

2
k
− V2

Ai)

ρA1(ψ − ψA)
+O

(
(ψ − ψA)

−2
)
. (4.24)

Hence, the solution to Equation (4.21) must have this form for
|ψ − ψA| ≫ R∗B∗δA. The solution to Equation (4.21) satisfying
this condition is obtained in Appendix A. It is given by Equation
(A6). Using Equation (A1) we rewrite it as

ξ̂ϕ = −
ρiS(C

2
k
− V2

Ai)

ρAB1δA
F(9), (4.25)

where

9 = ψ − ψA

RBδA
, F(9) =

∫ ∞

0
exp

(
iσ9 − 1

3σ
3
)
dσ . (4.26)

Using Equations (4.25) and (4.26) we obtain fromEquation (4.13)

ŵ =
ρiS(C

2
k
− V2

Ai)

ρAR1
G(9), (4.27)

where

G(9) =
∫ ∞

0

eiσ9 − 1

σ
e−σ

3/3dσ . (4.28)

The functions F(9) andG(9) were introduced by Goossens et al.
(1995).

Finally, substituting Equation (4.5) in Equation (4.11),
collecting terms of the order of l−2, and using the relation ω =
Ckk, and Equations (4.20) and (4.22), and (4.26)–(4.28) we obtain

∂8̂

∂9
=
ρik

2Sδ2A(C
2
k
− V2

Ai)

l2ρA

(
dF

d9
−9G(9)

)
. (4.29)

4.3. Matching Solutions
The matching procedure is the following. First we find the
asymptotic expansion of the internal solution valid for 9 ≫ 1.
Next we find the expansion of the external solution valid for
|ψ − ψA| ≪ BR2. Then we substitute ψ − ψA = RBδA9 in this
expansion. The matching condition is that the leading terms of
the two expansions must coincide.

We found that it is more convenient to compare not the
expansions but the jumps across the dissipative layer. The jump
of w across the dissipative layer is given by w(9) − w(−9) with
9≫ 1. We obtain

G(9)− G(−9) = 2i

∫ ∞

0

sin(σ9)

σ
e−σ

3/3dσ

= 2i

∫ ∞

0

sin σ

σ

[
1+

(
e−σ

3/393 − 1
)]

dσ

= π i+ 2i

∫ ∞

0

sin σ

σ

(
e−σ

3/393 − 1
)
dσ . (4.30)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 8 March 2019 | Volume 6 | Article 1014

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Ruderman et al. Resonant Damping of Kink Waves

It is obvious that the second term in this expression tends to zero
as9 → ∞. Using this result we obtain from Equation (4.27) that
the jump of ŵ across the dissipative layer is

ŵ(9)− ŵ(−9) =
π iρiS(C

2
k
− V2

Ai)

ρAR1
[1+ o(1)]. (4.31)

Using Equation (4.17) we obtain another asymptotic expression
for the jump of ŵ across the dissipative layer,

ŵ(ψ−ψA)− ŵ(ψA−ψ) = δŵ−P

∫ ψe

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ+ o(1),

(4.32)
where δŵ = ŵ(ψ = ψe) − ŵ(ψ = ψi) and P indicates the
principal Cauchy part of an integral. This asymptotic expression
is valid for |ψ − ψA| ≪ 1. The leading terms of the two
asymptotic expressions, one given by Equation (4.31) and the
other by Equation (4.32), must coincide. It follows from this
condition that

δŵ =
π iρiS(C

2
k
− V2

Ai)

ρAR1
+ P

∫ ψe

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ . (4.33)

Now we calculate δ8̂ = 8̂(ψ = ψe) − 8̂(ψ = ψi).
Using Equation (4.29) we obtain that the jump of P across the
dissipative layer is given by

8̂(9) − 8̂(−9)

=
ρik

2Sδ2A(C
2
k
− V2

Ai)

l2ρA

∫ 9

−9

(
dF

d91
−91G(91)

)
d91. (4.34)

The integral on the right-hand side of this equation is evaluated
in Appendix B. Using Equation (B8) we obtain

8̂(9)−8̂(−9) = −
π iρik

2SδA(C
2
k
− V2

Ai)9
2

2l2ρA
[1+o(1)]. (4.35)

This result and the matching condition imply that the expansion
with respect to ψ − ψA of the jump of P across the dissipative
layer calculated using the external solution must start from the
term proportional to (ψ−ψA)

2. In particular, it follows from this
condition that the term in this expansion proportional to unity
must be zero. Using Equation (4.18) we write this condition as

δ8̂ =
k2(C2

k
− V2

Ai)

l2RB2

[ ∫ ψe

ψA

(
ŵ(ψ = ψe)−

∫ ψe

ψ

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1

)
dψ

+
∫ ψA

ψi

(
ŵ(ψ = ψi)+

∫ ψ

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1

)
dψ

]
. (4.36)

where δ8̂ = 8̂(ψ = ψe)− 8̂(ψ = ψi). Since δŵ/ŵ = O(l) and
we only need to calculate δ8̂ in the leading order approximation
with respect to l, we can substitute ŵ(ψ = ψe) ≈ ŵ(ψ = ψi) =
RBS. Then, noticing that the only quantity that depends on ψ in
Equation (4.36) is VA, each single integral is of the order of l, and
each double integral is of the order of l2, we reduce this equation
in the leading order approximation with respect to l to

δ8̂ =
k2S(C2

k
− V2

Ai)(ψe − ψi)

l2B
. (4.37)

We note that we would obtain exactly the same expression for
δ8̂ if we assume from the very beginning that we can neglect
the jump of the pressure perturbation across the dissipative layer.
This assumption was first made ad hog by Hollweg and Yang
(1988). Later it was rigorously proved in 1D plasma equilibrium
by Goossens et al. (1995).

Since the jump of 8 across the dissipative layer is zero, it
follows that the expression for 8 obtained using the ideal MHD
equations is a continuous function in the whole transitional layer.
Then, using Equation (4.37) we obtain from Equation (4.18) the
expression valid in the whole transitional layer in the leading
order approximation with respect to l,

8̂ = 8̂(ψ = ψi)+
k2S(C2

k
− V2

Ai)(ψ − ψi)

l2B
. (4.38)

When deriving this expression we neglected the second terms in
the brackets in Equation (4.18) because their ratios to the first
terms are of the order of l. Using Equation (4.19) we obtain

δP̂ ≡ P̂(ψ = ψe)− P̂(ψ = ψi) =
k2S(C2

k
− V2

Ai)

l2B

∫ ψe

ψi

ρ(ψ) dψ .

(4.39)
Now we proceed to calculating L̃. We substitute η = Seiǫ

−1θ ,

δη = (δŵ/RB)eiǫ
−1θ , and δP = δP̂ eiǫ

−1θ in Equation (2.17).
Then, using Equation (3.12) and the condition of very slow
temporal density variation implying that Ue ≪ Ck we obtain

L̃ = eiǫ
−1θ

[
l
δP̂

R2
− 1

2
(ρi − ρe)ω2

(
S+ l−1 δŵ

RB

) ]
. (4.40)

Finally, using Equations (4.33) and (4.37) we arrive at

L̃ = 2eiǫ
−1θωCkS(ρi + ρe)(ϒ − iγ), (4.41)

where

γ =
πkC2

k
(ρi − ρe)2

8lρABR21(ρi + ρe)
, (4.42)

ϒ = k(ρi − ρe)
4(ρi + ρe)

(
− 1+

C2
k

lρiBR2
P

∫ ψe

ψi

ρ − ρi
C2
k
− V2

A

dψ

)
. (4.43)

5. DERIVATION OF GOVERNING
EQUATION FOR THE WAVE AMPLITUDE

The wave evolution is described by Equation (3.11) with E and
L̃ given by Equations (3.13) and (4.41), respectively. We write
S = Aeiχ . Then, substituting Equations (3.13) and (4.41) in
Equation (3.11), multiplying the obtained equation by e−2iχ , and
separating the real and imaginary parts yields

∂Q

∂t
+ ∂(CkQ)

∂z
= −2γCkQ, (5.1)

∂χ

∂t
+ Ck

∂χ

∂z
= Ckϒ , (5.2)
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where Q = (ρi + ρe)ωR
4A2. Equation (5.1) determines the

temporal and spatial dependence of the wave amplitude, while
Equation (5.2) describes a small phase shift. We are mainly
interested in the variation of the wave amplitude in space and
time, so we do not use Equation (5.2) below.

6. WAVE PROPAGATION ALONG A STATIC
AND NON-EXPANDING WAVEGUIDE

In this section we reproduce the results previously obtained for
static and non-expanding waveguides. Hence, we assume that the
tube radius is constant and equal to R.

6.1. Waveguide Homogeneous in the Axial
Direction
Here we consider the same problem as that studied by Terradas
et al. (2010), which is the resonant damping of kink waves
propagating along a magnetic tube homogeneous in the axial
direction. We now assume that the density only varies in the
radial direction. We assume that a harmonic wave is driven at
z = 0 and propagates in the region z > 0. In that case A
is independent of time and it follows from Equation (5.1) that
A = A0e

−γz , where A0 is the amplitude at z = 0. Using the
relation ψ = 1

2Br
2 we obtain from Equation (4.20)

1 = − B

µ0ρ
2
AR

dρ

dr

∣∣∣∣
A

. (6.1)

In this case both k and ω are constant. Hence, θ = kz−ωt, which
implies that the wavenumber is k∗ = l−1k. Now, using Equation
(6.1) and the relation Ck = VA(rA) yields

γ

k∗
= π(ρi − ρe)2

8R(ρi + ρe)|dρ/dr|A
. (6.2)

This expression coincides with that obtained by Terradas et al.
(2010) (see their Equation (10) withm = 1).

6.2. Waveguide With the Density Varying in
the Axial Direction
Now we study the resonant damping of kink waves propagating
along a magnetic tube with the density varying along the tube.
This problem was first addressed by Soler et al. (2011c). We aim
to reproduce their results. We assume that ρi(z)/ρe(z) = ζ =
const and ρ(r, z)/ρe(z) = f (r). Previously these assumptions
were made by Dymova and Ruderman (2006) when studying
resonant damping of standing kink waves, and by Soler et al.
(2011c) when studying resonant damping of propagating kink
waves. We again assume that the kink wave with the amplitude
A0 and the constant frequency ω is driven at z = 0. Since now Ck

is a function of z, the same is true for the wavenumber: k(z) =
ω/Ck(z). Note that in non-scaled variables the wavenumber is
k∗(z) = l−1k(z).

Since Q is again independent of t it immediately follows from
Equation (5.1) that

A = A0

√
Ck

Cf
exp

(
−

∫ z

0
γ(z1) dz1

)
. (6.3)

When deriving this equation we used the relation ρiC
2
k
= ρfC

2
f
.

Equation (6.1) remains valid. Then, using the relation ρ(r, z) =
f (r)ρe(z) we obtain from Equation (4.42)

γ = ω(ζ − 1)

2πG(ζ + 1)Ck(z)
, (6.4)

where

G = 4lR|f ′(rA)|
π2(ζ − 1)

. (6.5)

G = 4/π2 for the linear density profile, and 2/π for the
sinusoidal density profile. After substituting Equation (6.4) in
Equation (6.3) we obtain the equation coinciding with Equation
(38) in Soler et al. (2011c).

7. WAVE PROPAGATION ALONG AN
EXPANDING AND NON-STATIONARY
WAVEGUIDE

As an example of application of the general theory we consider
a generalization of the same problem that was studied by Soler
et al. (2011c), and take the loop expansion and cooling into
account. We first describe the general method for studying the
wave propagation, and then apply it to a particular loop with
given cross-section radius and density variation along the tube,
and the temporal density variation.

7.1. General Theory
We assume that a kink wave is driven at one of the loop footpoints
and impose the boundary condition

ω = ω0, A = A0 at z = 0. (7.1)

Driving starts at t = 0. Before that the loop is at rest, so we also
have the initial condition

A = 0 at t = 0. (7.2)

The equations describing the wave propagation are solved for
t > 0 and z > 0.

We start from calculating θ(t, z). It follows from dispersion
Equation (3.12), ω = Ckk, and Equation (3.4) that θ(t, z) satisfies
the equation

∂θ

∂t
+ Ck(t, z)

∂θ

∂z
= 0. (7.3)

Since θ(t, z) is defined with the accuracy up to an additive
constant we can take θ(0, 0) = 0. Then it follows from Equation
(7.1) that

θ = −ω0t at z = 0. (7.4)

Since the loop is at rest at t = 0 we can take

θ = 0 at t = 0. (7.5)
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The equation of characteristics of Equation (7.3) is

dz

dt
= Ck(t, z). (7.6)

It follows from Equation (7.3) that θ = const along a
characteristic. We consider the characteristic that starts at the
coordinate origin. Let its equation be z = zb(t), where zb(0) =
0. This characteristic separates the perturbed and unperturbed
regions in the (t, z)-plane, so we will call it the boundary
characteristic. Let us consider a point with coordinates (t1, z1)
satisfying the condition z1 > zb(t1). This implies that this point
is above the boundary characteristic. Since the characteristic
containing the point (t1, z1) cannot intersect the boundary
characteristic, it follows that it starts at the z-axis. Then, using
Equation (7.5) we obtain θ(t1, z1) = 0.

Now we consider a point (t1, z1) that is below the boundary
characteristic meaning that z1 < zb(t1). Let the characteristic
containing this point starts at t = τ (t1, z1) on the t-axis. Then
θ(t1, z1) = −ω0τ (t1, z1). As a result, we determine θ(t, z) in the
whole region t > 0, z > 0. Differentiating θ(t, z) with respect to t
we calculate ω. Then k = ω/Ck.

Next we proceed to solving Equation (5.1). The equation
of characteristics of this equation is also Equation (7.6). The
variation of Q along the characteristic is defined by

dQ

dt
= −

(
2γCk +

∂Ck

∂z

)
Q. (7.7)

After substituting in this equation a solution to Equation (7.6)
found when calculating θ(t, z) , Equation (7.7) becomes the
equation determining the variation of Q along a characteristic.
The solution to this equation must satisfy the initial condition

Q = (ρi + ρe)ω0R
4A2

0 at t = τ (t1, z1). (7.8)

In this equation the equilibrium quantities are calculated at t = τ

and z = 0.
We now consider a point (t1, z1) with z1 > zb(t1), which

implies that it is above the boundary characteristic. In that case
the characteristic that contains this point starts at the z-axis
where A = 0. Then it follows that A(t1, z1) = 0, that is the tube is
at rest for z > zb(t). Hence, the equation z = zb(t) describes the
propagation of the wave front along the magnetic tube. Below we
apply the general theory to particular cases.

7.2. Wave Propagation in Cooling and
Expanding Coronal Loop
We now consider the kink wave propagation in a coronal loop
of half-circle shape immersed in an isothermal atmosphere. We
assume that the loop is in a vertical plane. Cooling of coronal
plasma mainly occurs due to radiation. The radiation intensity
is proportional to the plasma density squared. Since the plasma
density inside the loop is substantially higher than that of the
surrounding plasma, the plasma inside the loop cools much faster
than that outside the loop. This observation inspires us to make
a viable assumption that cooling only occurs inside the loop,

while its temperature outside the loop does not change. Then the
density inside and outside the loop is given by

ρi = ρf exp

(
− L

πH(t)
sin

πz

L

)
, ρe =

ρf

ζ
exp

(
− L

πH0
sin

πz

L

)
,

(7.9)
where L is the length of the loop. Following to Aschwanden and
Terradas (2008) and Ruderman (2011a,b) we assume that the
plasma density inside the loop decreases exponentially, so that

H(t) = H0e
−t/tc . (7.10)

Here we do not discuss the mechanisms of coronal loop
cooling, although the main cause of cooling of moderately hot
coronal loops with the temperature of the order of or less
than 1.5 MK is the radiative cooling. Magyar et al. (2015)
studied transverse oscillations of radiatively cooling coronal
loops numerically. They did not present the dependence of
temperature on time. However, in general their results related
to the time dependence of the oscillation amplitude are in
good agreement with that obtained by Ruderman (2011a,b) who
assumed the exponential temperature decay. Hence, it seems
that the exponential dependence of temperature on time is
a reasonable approximation. The pressure inside the loop is
assumed to be in equilibrium with the outside medium during
the cooling. Since the plasma beta in the corona is very low
this condition does not impose any serious restriction on the
plasma parameters.

We adopt a model of expanding coronal loop first introduced
by Ruderman et al. (2008), and later also used by Shukhobodskiy
and Ruderman (2018) and Shukhobodskiy et al. (2018). In this
model the cross-section radius of the magnetic tube is given by

R(z) = Rf λ

√
cosh(L/2lc)− 1

cosh(L/2lc)− λ2 + (λ2 − 1) cosh(z/lc − L/2lc)
.

(7.11)
Here lc is a free parameter with the dimension of length, and λ is
the expansion factor equal to the ratio of the cross-section radius
at the loop apex and footpoints, that is λ = R(L/2)/Rf . In our
numerical study we took L/lc = 6 and l = 0.2. Here it is worth
making a comment. In section 2 we imposed the condition that
L∗ ≫ R∗, where L∗ is the characteristic scale of the tube radius
variation along the tube, and R∗ is the characteristic tube radius.
In the model that we adopted here L∗ = lc = L/6. Since typically
L ∼ 50R∗, it follows that L∗/R∗ ∼ 8. Hence, the condition
L∗ ≫ R∗ is satisfied. The condition that the speed of the flow
caused by cooling is much smaller than the phase speed is

N = L(tcCf )
−1 ≪ 1. (7.12)

In our analysis we neglect the effect of the tube curvature and
consider it as straight. To our knowledge the effect of tube
curvature on the propagation and damping of kink waves has
not been studied. However, it was studied in the case of standing
waves. Van Doorsselaere et al. (2004) analytically and Terradas
et al. (2006) numerically showed that the coronal loop curvature
has very minor effect on the frequency and damping of kink
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FIGURE 2 | Dependence of the wave front position on time. The calculations continued until the wave front reaches the other end of the magnetic tube. The left

panels correspond to λ = 1 and the right to λ = 1.5. The upper, middle, and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed,

dotted, and dash-dotted curves correspond to N = 1/3, N = 0.2, N = 0.1, and N = 0, respectively.

oscillations. It looks like a viable assumption that the same is true
for propagating waves when the curvature radius is much larger
than the tube radius.

The main aim of our study is to investigate the effect of
cooling on the kink wave propagation. Since cooling decreases
ρi it increases Ck. Hence, the stronger the cooling is the faster
the wave perturbation launched at one footpoint at t = 0
reaches the other footpoint. We studied the wave propagation
for N = 0 (no cooling), N = 0.1 (slow cooling), N =

0.2 (moderate cooling), and N = 1/3 (strong cooling). In
the case of strong cooling the wave front arrives at the second
footpoint at t = tend. In all other cases the wave front
arrives at the second footpoint at t > tend. We calculated the
spatial dependence of the wave frequency, wavenumber, and
the amplitude at t = tend. At z = 0 the wave frequency is
l−1ω0 and the wavenumber is l−1ω0/Cf . In our calculation we
took the wavelength at z = 0 equation to one fifth of L, that
is L = 10π lCf /ω0 = 2πCf /ω0.
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FIGURE 3 | Dependence of the frequency on the distance along the loop for T = Tend. The left panels correspond to λ = 1 and the right to λ = 1.5. The upper,

middle, and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed, dotted, and dash-dotted curves correspond to N = 1/3,

N = 0.2, N = 0.1, and N = 0, respectively.

We introduce the dimensionless variables and parameters,

T = tω0

l
, Z = zω0

lCf
, � = lω

ω0
, K =

lkCf

ω0
, Tend = tendω0

l
,

κ = L

πH0
, α = N

10π
= L

10π tcCf
. (7.13)

Using the relation BR2 = const we obtain

C2
k =

C2
f
R4
f
(ζ + 1)

R4[ζ exp(−κeαT sin(0.1Z))+ exp(−κ sin(0.1Z))] .
(7.14)

Then the characteristic Equation (7.6) reduces to

dZ

dT
=

R2
f

√
ζ + 1

R2
√
ζ exp(−κeαT sin(0.1Z))+ exp(−κ sin(0.1Z))

.

(7.15)
The quantity Tend is defined by the equation Zb(Tend) =
ω0L(lCf )

−1, where Zb(T) is the solution to Equation (7.15) with
α = 1/30π satisfying the initial condition Zb(0) = 0. Using
Equation (7.15) we calculated the dependence of the wave front
position on time for various values of κ and λ. This dependence
is shown in Figure 2. We see that the stronger the cooling is the
faster the wave front moves. This results is not surprising because
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FIGURE 4 | Dependence of the wave number on the distance along the loop for t = tend. The left panels correspond to λ = 1 and the right to λ = 1.5. The upper,

middle, and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed, dotted, and dash-dotted curves correspond to N = 1/3,

N = 0.2, N = 0.1, and N = 0, respectively.

the cooling causes the enhancement of the phase speed Ck. We
can also see that the effect of cooling is rather weak, although the
tube expansion makes it more pronounced.

We also calculated the dimensionless frequency � and
wavenumber K for various values of λ, �, and κ . The results
are presented in Figures 3, 4. First of all, we note the frequency
is constant when there is no cooling as it must be. When there
is cooling, in a non-expanding loop the frequency increases
with the distance from the footpoint where the wave is driven.
The stronger the cooling is the more pronounced this effect is.
However, this effect is quite weak. The dependence of frequency

on the cooling rate is much stronger in an expanding loop. We
see that it is especially strong when the tube expands and the loop
height substantially exceeds the atmospheric scale height. The
situation with the wavenumber is quite similar. Again cooling
almost does affect it in non-expanding loops, while in expanding
loops the effect of cooling is quite noticeable.

Finally, Figure 5 displays the variation of the amplitude along
the loop. It is worth noticing that, in most cases, the amplitude
first increases and then starts to decay. The amplitude increase
is related with the stratification, while the decay is cased by
the resonant damping. We can see that cooling always results
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FIGURE 5 | Dependence of the amplitude on the distance along the loop for t = tend. The left panels correspond to λ = 1 and the right to λ = 1.5. The upper, middle,

and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed, dotted, and dash-dotted curves correspond to N = 1/3, N = 0.2,

N = 0.1, and N = 0, respectively.

in the amplification of waves. This result is similar to that
found by Ruderman (2011a,b); Ruderman et al. (2017), and
Shukhobodskiy et al. (2018) in the case of standing kink waves.

8. SUMMARY AND CONCLUSIONS

In this article we studied the kink wave propagation along an
expanding magnetic tube with the density varying along the
tube and in time. The tube consists of the core region where
the density is almost independent of the radial coordinate, and
the boundary layer where the density decreasing fast from its

value inside the core region to its value in the surrounding
plasma. This value is assumed to be thin meaning that its
thickness is much smaller than the tube radius. We used
the cold plasma approximation. We also used the thin tube
approximation meaning that the wave length is much larger
than the tube radius, and the short wave approximation meaning
that the wavelength is much smaller than the characteristic
scale of the density and tube radius variation along the tube.
Using the WKB method we derived the equation describing the
dependence of the wave amplitude on time and on the distance
along the tube.
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First we studied the kink wave propagation in a magnetic
tube homogeneous in the axial direction. In this case the only
effect affecting the wave propagation is the wave damping due
to resonant absorption. We reproduced the results previously
obtained by Terradas et al. (2010).

We then proceeded to studying the kink wave propagation in
a magnetic tube with the density varying in the axial direction.
In this case the wave propagation are affected both by resonance
absorption and the axial inhomogeneity. We reproduced the
analysis by Soler et al. (2011c).

Finally, we studied the kink wave propagation in an expanding
and non-stationary magnetic tube. We obtained the general
expressions determining the spatial and temporal dependence of
wave frequency, wavenumber, and amplitude. We then applied
the general theory to a particular case of kink wave propagating
along a cooling coronal loop. We assumed that the loop has a
half-circle shape and immersed in an isothermal atmosphere, the
temperature of plasma inside the loop decays exponentially, while
the temperature of the surrounding plasma does not change.
We adopted the dependence of the loop cross-section on the
distance along the loop previously used by Ruderman et al.
(2008, 2017) and Shukhobodskiy et al. (2018). The equations
governing the wave propagation were solved numerically. We
assumed that the wave was started to be driven at one of the
footpoints at the same time when the plasma inside the loop
started to cool. Our main aim was to study the dependence
of the wave properties on the intensity of cooling. First we
studied the dependence of the distance that the wavefront

travels on time. We found that the stronger the cooling is the

larger the distance that the wave front travel at a given time.
This is an expected result because cooling enhances the phase
speed thus accelerating the wavefront. We also calculated the
dependence of the wave frequency and wave number on the
distance along the tube. When doing so we chose the moment
of time when the wavefront arrives at the second footpoint
in the case of strongest cooling. The general conclusion is
that cooling results in the increase of the wave frequency.
In contrast, it is difficult to make any definite conclusion
about the effect of cooling on the wavenumber. Finally, we
investigated the dependence of the wave amplitude on the
distance along the tube. In most cases the amplitude first
growths due to the equilibrium quantity variation along the
tube, and then its starts to decay due to resonant damping. We
found that cooling enhances the wave amplitude. This result
is similar to one previously obtained for standing kink waves
(Ruderman, 2011a,b; Shukhobodskiy et al., 2018).
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APPENDIX

A. Solution to Equation (4.21)
In this section we obtain the solution to Equation (4.21)
satisfying the asymptotic condition Equation (4.24). To simplify
calculations we introduce the notation

9 = ψ − ψA

RBδA
, h =

ρiS(C
2
k
− V2

Ai)

ρAB1δA
. (A1)

Using this notation we rewrite Equation (4.21) as

9ξ̂ϕ + i
∂2ξ̂ϕ

∂92
= −ih. (A2)

To solve this equation we use the Fourier transform with respect
to9 defined by

F[ξ̂ϕ] =
∫ ∞

−∞
ξ̂ϕe

−iσ9d9 , ξ̂ϕ = 1

2π

∫ ∞

−∞
F[ξ̂ϕ]e

iσ9dσ .

(A3)
Applying this transform to Equation (A2) we obtain

∂

∂σ
F[ξ̂ϕ]+ σ 2F[ξ̂ϕ] = −2πhδ(σ ), (A4)

where δ(σ ) is the delta-function. The solution to this equation
decaying as |σ | → ∞ is given by

F[ξ̂ϕ] = −2πhH(σ )e−σ
3/3, (A5)

where H(σ ) is the Heaviside step function. Calculating the
inverse Fourier transform we obtain

ξ̂ϕ = −h

∫ ∞

0
exp

(
iσ9 − 1

3σ
3
)
dσ . (A6)

Using the integration by parts we obtain the asymptotic
expression valid for |9| ≫ 1,

ξ̂ϕ = − ih

9
+O

(
9−2

)
. (A7)

Using Equation (A1) it is straightforward to verify that Equation
(A7) coincides with Equation (4.24).

B. Evaluation of Integral in Equation (4.34)
In this section we evaluate the integral on the right-hand side of
Equation (4.34) for |9≫ 1. We immediately obtain

∫ 9

−9

(
91G(91)−

dF

d91

)
d91 = −F(9)+ F(−9)

+
∫ 9

−9
91G(91) d91. (B1)

It is obvious that

F(9)− F(−9) = 2i

∫ ∞

0
sin(σ9) e−σ

3/3dσ = O(1). (B2)

Changing the order of integration we obtain

∫ 9

−9
91G(91) d91 = 2i

∫ ∞

0
[sin(σ9)−(σ9) cos(σ9)]

e−σ
3/3

σ 3
dσ .

(B3)
Then, using the integration by parts yields

∫ 9

−9
91G(91) d91 = i92

∫ ∞

0

sin(σ9)

σ
e−σ

3/3dσ+I(9), (B4)

where

I(9) = i

∫ ∞

0

[
(σ9) cos(σ9)− sin(σ9)

]
e−σ

3/3dσ . (B5)

Again using the integration by parts we obtain

I(9) = i

∫ ∞

0

(
σ 3 − 2

)
sin(σ9)e−σ

3/3dσ = O(1). (B6)

With the aid of the variable substitution we obtain

∫ ∞

0

sin(σ9)

σ
e−σ

3/3dσ =
∫ ∞

0

sin σ

σ
e−σ

3/392
dσ = π

2
[1+o(1)].

(B7)
Using Equations (B1), (B2), (B4), (B6), and (B7) we finally
arrive at

∫ 9

−9

(
91G(91)−

dF

d91

)
d91 =

π i

2
92[1+ o(1)]. (B8)
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Exploiting the general dispersion relation describing all waves in an ideal ion-electron

fluid, we revisit established treatments on wave families in a cold ion-electron plasma.

These contain the magnetohydrodynamic Alfvén and fast waves at low frequencies,

long wavelengths, but are enriched by short wavelength resonance behaviors,

electrostatic and electromagnetic mode types, and cut-off frequencies distinguishing

propagating from evanescent waves. Our theoretical treatment exploits purely polynomial

expressions, which for the cold ion-electron case only depend on 2 parameters: the ratio

of masses over charges µ and the ratio E of the electron gyro frequency to the combined

ion-electron plasma frequency. We provide a complete description of all waves, which

stresses the intricate variation of all five branches of eigenfrequencies ω(k,ϑ ) depending

on wavenumber k and angle ϑ between wavevector andmagnetic fieldB. Corresponding

5-mode phase and group diagrams provide insight on wave transformations and

energy transport. Special cases, like the high frequency modes in magneto-ionic theory

following from Appleton-Hartree dispersion relations, are naturally recovered and critically

discussed. Faraday rotation for electromagnetic waves is extended to all propagation

angles ϑ . The discussion covers all cold ion-electron plasma waves, up into the

relativistic regime.

Keywords: waves, cold plasmas, 2-fluid theory, magnetohydrodynamic, electromagnetic wave theory

1. INTRODUCTION

The theory of wave propagation in ion-electron plasmas is covered in many textbooks (Stix,
1992; Boyd and Sanderson, 2003; Bittencourt, 2004; Chen, 2016; Thorne and Blandford, 2017),
and can be considered established. The starting point for many treatments is based on a 2-
fluid approach, where one solves for plane wave solutions exp

[
i(k · x− ωt)

]
in an otherwise

homogeneous medium, usually magnetized with uniform magnetic field B. In the rest frame of
a homogeneous ion-electron mixture, assumed to be charge-neutral such that number densities
obey ne = Zni when ions have charge number Z, the equilibrium electric field and current vanish,
while each species has its own pressure pe, pi. The dispersion relation betweenwave frequencyω and
wavenumber k =| k | is then usually obtained from linearizing theMaxwell equations, traditionally
introducing dielectric, susceptibility and conductivity tensors, to quantify displacement vector,
polarization vector and current vector relations to the electric field, respectively. In general, this
leaves a large variety of wave modes that are particularly aware of the orientation angle ϑ between
wavevector k and the magnetic field B, while the wave properties can differ greatly according to
frequency and wavelength. Indeed, when we have electron and ion masses given by me and mi,
the plasma is characterized by its ratio of masses over charges µ = Zme/mi, and this background
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ion-electron mixture introduces its own set of typical frequencies
and wavelengths. The former include the electron and ion plasma

frequencies ωpe =
√
e2ne/ǫ0me and ωpi = √

µωpe and the
electron and ion cyclotron frequencies �e = eB/me (where
electron charge is −e) and �i = µ�e. Lenghscales relate to
typical speeds in the system, such as the light speed c = 1/

√
µ0ǫ0

and the electron and ion sound speeds. One such lengthscale
is the skin depth δ = c/ωp, where it turns out convenient to
combine the plasma frequencies into ω2

p = ω2
pe + ω2

pi. The

governing dispersion relation equally follows (e.g., Goedbloed
and Poedts, 2004) from a standard linearization of the governing
equations of motion for each species, combined with Maxwell
equations. We will in what follows rewrite and analyse this
general form of the dispersion relation, but specify deliberately
to the cold ion-electron case, where the species pressures (and
sound speeds) vanish pe = 0 = pi. We can normalize all
frequencies to the plasma frequency ω̄ = ω/ωp, and for such cold
ion-electron plasma, only two dimensionless parameters remain
in the description, namely

E = �e/ωp , I = �i/ωp . (1)

That only two parameters cover the full complexity of wave
modes in a cold ion-electron plasma is well-known, and is at the
basis of the classical Clemmow-Mullaly-Allis plots that feature
in most textbooks (Stix, 1992; Bittencourt, 2004; Thorne and
Blandford, 2017), which classify wave modes and associated
wave normal surfaces (plots of ω/k vs. ϑ , which are figures of
revolution about B). In what follows, we will discuss all wave
modes and suggest a new classification scheme based on the
polynomial form of the governing dispersion relation. That
the ideal two-fluid description leads to a 12th order polynomial
in the wave frequency ω is well-known (Denisse and Delcroix,
1961), although one frequently exploits lower order polynomials
to cover e.g., only the high frequency electromagnetic waves
(following e.g., the Appleton-Hartree description), or conversely
focuses on the three low frequency branches that relate to
the magnetohydrodynamic (MHD) slow, Alfvén and fast mode
pairs (Stringer, 1963; Ishida et al., 2005; Damiano et al.,
2009; Bellan, 2012; Zhao, 2015). An eight order polynomial
approximation, valid above the lower hybrid frequency, was
exploited in Zhao (2017) to cover whistler waves and the three
high frequency electromagnetic mode pairs. We will instead start
from the full 12th order equation, only making the cold plasma
assumption, such that the slow MHD modes become marginal
solutionsω2 = 0.Wemake contact with thementioned textbook
treatments, showing how the usual dielectric tensor treatments
are indeed mathematically fully equivalent. The advantage of the
polynomial method over the dielectric tensormethod is the direct
relationship of the solutions of the dispersion equation to the
primitive two-fluid variables, which would also be exploited in
corresponding numerical time stepping codes. This advantage
was also pointed out by Bellan (2012), who gave a similar analysis
for the low frequency domain. The present paper exploits the
polynomial method to full effect to provide the crucial phase and
groups diagrams for all values of the parameters, together with
their animations.

2. DISPERSION RELATION FOR COLD
ION-ELECTRON PLASMAS

Following Goedbloed and Poedts (2004), the general dispersion
relation for an ideal ion-electron fluid can be written as a twelfth-
order polynomial in ω̄, where one distinguishes six pairs of
forward and backward propagatingmodes, since the expression is
actually sixth order in ω̄2. This already eliminated a pair ω̄2 = 0
of marginal entropy-like modes, and the special case of a cold
ion-electron fluid can factor out another ω̄2 = 0 solution,
corresponding to the slow magnetohydrodynamic (backward
and forward) waves. It is a matter of algebra to show that the
remaining 10th order polynomial can be rewritten to

k̄4Ā(ω̄2, λ2)− k̄2ω̄2B̄(ω̄2, λ2)+ ω̄4C̄(ω̄2) = 0 , (2)

where k̄ = δk, λ2 = cos2 ϑ , containing three 3rd order
polynomials in ω̄2 given by

Ā = ω̄6 − (1+ E2 + I2)ω̄4

+
[
(1+ EI)EI + λ2(E2 + I2 − EI)

]
ω̄2 − λ2(EI)2 , (3)

B̄ = 2ω̄6 − (4+ 2E2 + 2I2)ω̄4 +
[
2(1+ EI)2

+ (1+ λ2)(E2 + I2 − EI)
]
ω̄2 − EI(1+ EI)(1+ λ2) , (4)

C̄ = (ω̄2 − 1)
[
ω̄4 − (2+ E2 + I2)ω̄2 + (1+ EI)2

]
. (5)

Unlike most textbook treatments, which take Equation (2) at
fixed frequency and solve for both roots in k̄2, we will consider a
given wavenumber k̄, and use the dispersion relation to quantify
all five roots in ω̄2. In what follows, we will also systematically
drop the overbars on k̄ and ω̄, as we will always work with
dimensionless frequencies and wavenumbers.

2.1. Cut-Off Frequencies
Cut-off frequencies relate to large wavelength (small wavenumber
k) limiting behavior, and Equation (2) reveals instantly that
special frequencies then follow from the zeros of the C̄
polynomial. These are computed simply as

ω2
c = 1 , (6)

ω2
u,l = 1+ E2 + I2

2
± | E− I |

√
(E+ I)2

4
+ 1 . (7)

Hence, the ω2
c = 1 cutoff happens exactly at the combined

plasma frequency (this reads as ω2 = ω2
p when restoring

dimensions). The latter pair ω2
u,l

distinguishes the upper
(+) from the lower (−) cut-off frequency. For E = 0,
the three cut-offs coincide at the plasma frequency
(noting that I = µE).

In general, the three cut-off frequencies are independent of the
angle ϑ , but their relative ordering is influenced by the values of
both parameters E, I or equivalently, E andµ. Sinceµ is normally
considered fixed in a specific plasma (e.g., it assumes the value
µ ≈ 1/1,836 in a fully ionized hydrogen plasma), the magnetic
field strength in essence determines the other parameter E, going
from unmagnetized E = 0 cases, to strongly magnetized regimes
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E → ∞. A special case is obtained for an electron-positron or
pair plasma where µ = 1, when ω2

u,l
coincide to ω2

l
= ω2

u =
1+ E2 (Keppens and Goedbloed, in press). For an arbitrary µ, it
is clear that ω2

u ≥ 1 (and the equality holds for the unmagnetized
case E = 0), but the lower cut-off may be below, equal to,
or above unity. The equality of ω2

c with ω2
l
corresponds to the

specific field strength where E = 1/µ − 1. A plot of the three
cut-off frequencies for a µ = 1/1,836 hydrogen plasma vs. E
is shown in Figure 1. The vertical dashed lines indicate special
values for E, e.g., where E = 1/µ − 1, where the ordering of the
three cut-offs changes. The right panel in Figure 1 shows a zoom
on the behavior near this value. The above exact expressions
for the cut-off frequencies, valid for all values of E, can also
be used to get approximate expressions in limits of small or
large E regimes. Obviously, the small E limit makes all cut-offs
approach their unmagnetized regime: all 3 become the plasma
frequency. The opposite, large E limit is easily evaluated to give
as upper and lower cut-off (both way above the third cut-off at
plasma frequency):

lim
E→∞

ω2
u = E2 , (8)

lim
E→∞

ω2
l = E2µ2 . (9)

2.2. Resonances
Resonances occur at large wavenumbers (short wavelengths), and
Equation (2) shows that then the zeros of Ā come into play. The
three resonances obtained from Ā = 0 can be computed using
standard root-finding for polynomial expressions (or, could be
explicitly obtained through Cardano’s formulae for the roots of
a third order polynomial). For a given set of parameters (E, I)
or (E,µ), the 3 resonances still depend on the orientation angle
ϑ . The exact variation of the three resonances at any (ϑ ,E,µ)
requires to compute the three roots from

ω6 −
[
1+ E2(1+ µ2)

]
ω4

+E2
[
µ + µ2E2 + λ2(1− µ + µ2)

]
ω2 − λ2E4µ2 = 0 . (10)

For each of the three resonances, we typically find monotonic
behavior ω(ϑ) between the extremal angles of parallel to
perpendicular orientation. Figure 1 also shows the range in
values obtained for the three resonances, for the same fixed value
of µ = 1/1,836, as function of the remaining E parameter.
Three different colors indicate the three resonance ranges. The
top (purple) one is seen to stay above unity, and stays between
the upper cut-off and E2 for large E. This purple resonance range
always shows increasing frequencies when going from parallel
(solid) to perpendicular (dashed) behavior. The middle (blue)
range is bounded from above by E2, and stays below unity until

we reach the E =
√

µ2 − µ + 1/µ value, which lies in between
the dotted lines shown at E = 1/µ−1 and E = 1/µ (right panel).
Ultimately, its range becomes bounded by the µ2E2 curve. This
blue resonance will relate to the fast magnetosonic wave branch.
The lowest resonance range (red) always stays below the µ2E2

line and below unity. In fact, this resonance range extends all
the way to zero at exactly perpendicular orientation, and will be
shown to relate to the Alfvén branch.

We can get approximate expressions for the three resonances
by setting µ = 0 (which is unphysical, but is at the basis of the
often used Appleton-Hartree dispersion relation, see section 5.3).
We then obtain one solution at zero frequency (which will relate
to the red or Alfvén branch), and the purple and blue resonances
become

ω2 ≈ 1
2

[
1+ E2 ±

√
(1+ E2)2 − 4E2λ2

]
. (11)

Note that settingµ = 0 eliminates the (normalized) ion cyclotron
frequency I from the description.

The plots for the general µ 6= 0 case in Figure 1 reveal
how the red resonance range actually always decreases in
frequency, with angle going from parallel to perpendicular,
while the purple one is always increasing in frequency, going
from parallel to perpendicular orientations. The blue resonance
range on the other hand first decreases in frequency, up to the

value E =
√

µ2 − µ + 1/µ. From then on, the blue range
increases in frequency from parallel to perpendicular. The dashed
(perpendicular) and solid (parallel) limits are easily obtained
analytically, since

Ā(λ = 0) = ω2
[
ω4 − (1+ E2 + I2)ω2 + (1+ EI)EI

]
, (12)

Ā(λ = 1) = (ω2 − 1)
[
ω4 − (E2 + I2)ω2 + (EI)2

]
. (13)

The solutions to the perpendicular (λ = 0) case are thus
threefold: one at zero frequency, related to non-propagation of
Alfvén waves perpendicular to the magnetic field, the other two
solutions from ω4− (1+E2+ I2)ω2+ (1+EI)EI = 0 are known
as the upper and lower hybrid resonance, given by our purple
and blue dashed lines in Figure 1, respectively. These upper and
lower hybrid resonances are thus generally given by

ω2
± = 1

2

[
1+ E2 + I2 ±

√
(1+ E2 + I2)2 − 4(1+ EI)EI

]
.

(14)
Their limits for lowmagnetization (E≪1) become 1 and 0, as the
electrostatic mode remains and the fast mode becomes marginal
(see further). In the limit of high magnetization (E≫ 1), we find
that ω2

+ ≈ E2 while ω2
− ≈ µ2E2 = I2.

It can be noted that for the pair plasma case where µ =
1, the above discussion of resonances and cut-offs simplifies
significantly: e.g., the blue resonance range collapses on the curve
E2. Also, for a pair plasma, the purple resonance range extends
(at exactly perpendicular propagation) to the upper cut-off value
ω2
u (Keppens and Goedbloed, in press).

2.3. Low and High Frequency Limits
The dispersion relation Equation (2) also shows clearly the limits
at both high and low frequencies, where the plane wave phase
speed vph = ω/k attains a finite value. At high frequencies,
we find that we obtain a double-valued solution at light speed
behavior, as we can instantly write this limit as

(1− v2ph)
2 = 0 . (15)

Hence, we expect two solutions that will behave as
electromagnetic waves at high frequencies. These high frequency
solutions, together with a finite phase speed, require large
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FIGURE 1 | Cut-off frequencies and resonance frequencies ordering for given µ, as function of E. The right panel is a zoom on the behavior near E = 1/µ. Note the

horizontal logarithmic scale for E-values in the left (weakly magnetized plasma), vs. a linear scale in the right panel (strongly magnetized). The upper and lower cut-offs

ω2
u,l are plotted as gray solid lines (the ω2

c = 1 is the middle horizontal line). The vertical dashed gray lines indicate the special values E = 1, E = 1/µ− 1 and E = 1/µ.

For each E value, the three colored (purple, blue and red) curve pairs indicate resonance ranges, where parallel propagation corresponds to the solid line, and

perpendicular to the dashed line. The red range reaches its perpendicular limit at zero frequency, hence no dashed red line appears.

wavenumbers. Hence, together with the three resonances that
occur at large wavenumbers, these two will serve to organize the
5 solution branches.

At low frequencies, we similarly retrieve the following
solutions

v2ph,F = EI

1+ EI
, (16)

v2ph,A = λ2
EI

1+ EI
. (17)

These are actually fast (F) and Alfvén (A) waves, at least at
large wavelengths (required to make the phase speed finite at
low frequencies). Hence, they will augment the 3 cut-offs to
organize the 5 solution branches. The combination EI/(1 + EI)
can be recognized as the relativistically correct expression for
the Alfvén speed vA. This speed is more commonly written in
terms of the magnetization parameter σ = B2/(µ0c

2ρh) where
ρ = neme + nimi and the specific enthalpy h = 1 for a cold
plasma, and we get (temporarily restoring dimensions):

v2A
c2

= EI

1+ EI
= σ

1+ σ
= B2

ρhµ0c2 + B2
. (18)

3. DISPERSION DIAGRAMS

We will now analyse dispersion diagrams, which are obtained as
solutions ω2(k,ϑ) to the general dispersion relation. We first fix a

parameter set (E,µ). Then, at fixed wavenumber and orientation,
Equation (2) is a polynomial of degree 5 in ω2, and due to
the symmetry of the underlying determinant (Goedbloed and
Poedts, 2004), there will always be five real solutions. We will
first address the special orientations of parallel and perpendicular
propagation. We plot in Figure 2 two dispersion diagrams, one
for parallel (left) and one for perpendicular (right) orientation,
for the choice where µ = 1/1,836 and E = 1.5.

3.1. Parallel Propagation
A first observation we can directly make from Equation (2) is that
parallel propagation (λ = 1) can always factor out the solution
ω2 = 1, since Ā(ω2 = 1, λ = 1) = 0 = B̄(ω2 = 1, λ = 1).
This solution is also retained at all angles when E = 0, where
it actually represents the electrostatic mode, which is a non-
propagating plasma oscillation. We will find that E 6= 0 cases will
turn this mode into a propagating solution, for all angles away
from parallel.

The other 4 pairs in Equation (2) for λ = 1 are intricately
mixed, but it is possible to write the remaining 8th order
expression as

[
ω4 + ω3|E− I| − ω2(1+ EI + k2)− ω|E− I|k2 + k2EI

]

×
[
ω4 − ω3|E− I| − ω2(1+ EI + k2)+ ω|E− I|k2 + k2EI

]
= 0 .

(19)

Note that |E − I| = (1 − µ)E as µ ≤ 1, and in the case
of a pair plasma (µ = 1), this leads to a full factorization
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FIGURE 2 | Dispersion diagram for a hydrogen ion-electron plasma at E = 1.5. Shown are the 5 branches at parallel (Left) and perpendicular (Right) propagation.

The dashed black line corresponds to light speed behavior.

of all solution branches (Keppens and Goedbloed, in press).
However, for µ 6= 1, Equation (19) does not seem to offer real
advantage, since the original formulation was already a 4th order
polynomial in ω2, and its four solution pairs ω2

1 , ω2
2 , ω2

3 and
ω2
4 retain their meaning as forward and backward propagating

mode pairs. Instead, both factors in Equation (19) mix forward
and backward pairs: if ωi is solution to its first factor, −ωi

will be a solution to its second factor. Still, many textbook
treatments in fact rely on the factorization in Equation (19).
This, as we will discuss further on, implies a description in
left and right circularly polarized waves, and indeed left and
right circular polarizations switch roles when going forward or
backward in time, or under mirror symmetry (see also Keppens
and Demaerel, 2016). It is important to note that the forward-
backward means of categorizing the solutions is fully consistent
with combined PT symmetry, i.e., flipping the time direction and
mirroring space.

We rather use the original Equation (2) to compute at which
k-values any of the other 4 branches intersects with the ω2 = 1
solution. This will prove useful when we vary the orientation
angle ϑ away from parallel, as we will show further on: these k-
values are special as they correspond to those locations where we
will first witness avoided crossings of branches. This turns out to
be at values

k2 = EI ± |E− I|
EI − 1± |E− I| . (20)

Of course, only positive values need to be considered for k2.
A careful analysis of Equation (20) shows that only one sign
combination is positive as long as E < 1, and hence in such cases

only one other branch will intersect the ω2 = 1 range (e.g., see
Figure 2 for E = 0.5, left panel: in this case, the cyan and purple
branch cross). However, both sign combinations are positive for
1 < E < 1/µ− 1, implying that two branches intersect the ω2 =
1 branch (e.g., see Figure 2 for E = 1.5, left panel: here we find
a crossing between the cyan and both purple and blue branches).
Further one positive value (i.e., one intersection) follows in the
narrow range 1/µ − 1 < E < 1/µ, and both sign combinations
are positive when 1/µ < E, leading again to two crossings of
the ω2 = 1 branch. When E > 1/µ, the branches crossing
ω2 = 1 are actually the fast (blue) and Alfvén (red) branch,
instead of the purple and blue branch found in Figure 2 (for
E = 1.5, left panel). In the limit E → ∞, both sign combinations
in Equation (20) lead to k2 = 1, since then the fast and Alfvén
branch essentially coincide, as seen from Equations (16–17).
Note that the pair plasma case is again naturally contained as a
special case where E = I. Knowing explicitly the special k-values
where branches cross at parallel orientation is also especially
useful when wanting to quantify the full phase and group speed
variations for all branches, as done in section 4: the phase and
group diagrams display intricate wave exchange occuring at
these wavenumbers.

3.2. Perpendicular Propagation
At perpendicular propagation (λ = 0), one marginal frequency
pair ω2 = 0 is contained in Equation (2), and this mode
relates to the long wavelength Alfvén waves, which do not
propagate perpendicular to the magnetic field. Another solution
at perpendicular propagation is found to be ω2 − 1 − k2 = 0.
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Indeed, for λ = 0, we can factor Equation (2) into

ω2(ω2 − 1− k2)
{
ω6 − ω4(2+ E2 + I2 + k2)+ ω2

[
(1+ EI)2 + k2(1+ E2 + I2)

]

−k2EI(1+ EI)
}
= 0 . (21)

In the special case of a pair plasma (E = I), a complete
factorization can be obtained, as the final term then becomes
(ω2 − 1 − E2)(ω4 − ω2(1 + E2 + k2) + k2E2). The latter term
also factorizes in the unphysical limit where µ = 0, making
I = 0 (see further on in section 5.3), which makes the 6th order
term write as ω2(ω4 − ω2(2 + E2 + k2) + 1 + k2(1 + E2)).
The branch ω2 − 1 − k2 = 0 is in plasma physics referred
to as the ‘ordinary’ or O mode. The three solutions mixed up
in the 6th order term are collectively named ‘extraordinary’ or
E (or X, depending on the textbook at hand). In line with this
terminology, and acknowledging the fact that one of these three
solutions will be a high frequency electromagnetic wave, we will
use the label ωX (and the black color) for its highest frequency
solution, and call ωO (in cyan color) the mode that relates to the
ω2 = 1+ k2 branch.

Figure 2, right panel, shows the 5 solution branches for
perpendicular propagation, for a hydrogen plasma case where
E = 1.5. The marginal (red) Alfvén-related branch is
mentioned in the figure for completeness. The ordinary mode
ω2 − 1− k2 = 0 branch (cyan) starts horizontally at unit
normalized frequency and goes up like ∝ k2. Direct comparison
with its parallel counterpart (right panel) shows how the (purple
and cyan) branches have changed connectivity between their
long wavelength vs. short wavelength behavior. This is due to
avoided crossings, that show up in oblique orientations, which
we discuss next.

3.3. Oblique Orientations
At any orientation different from parallel or perpendicular, we
must resort to numerical evaluation of the 5 roots in Equation (2),
which is rather straightforward. Figure 3 shows this for two
representative angles for the case with (E,µ) = (1.5, 1/1,836).
Its left panel took a very small angle ϑ = 0.001, while the
right panel has ϑ = π/3. Comparison with Figure 2 shows that
oblique propagation demonstrates avoided crossings of branches,
occurring near the special k values computed from Equation (20).
The inset in the left panel shows this avoided crossing quite
clearly. Note how the blue, purple and cyan branch are all
affected. Indeed, when we animate the dispersion curves for this
case E = 1.5 with angle, only the parallel case is special in its
connectivity showing true branch crossings, and all other angles
have the 5 branches neatly ordered in frequency: the red lies
below the blue, found in turn below the purple, which is below
the cyan, and the black branch always lies at the top.

This behavior is generic, and the avoided crossings occur
according to the predictions on the basis of Equation (20), as is
illustrated in Figure 4 for a case where E = 0.5 and only one
branch intersects the ω2 = 1 branch at parallel orientation. The
left panel of Figure 4 shows the avoided crossing between the
cyan and purple branch, again at ϑ = 0.001 (note the inset).

Since for E-values beyond E = 1/µ − 1, the cut-off ordering
changes as discussed before with ω2

l
> ω2

c , avoided crossings
affect the blue branch only up to E = 1/µ. Beyond E > 1/µ,
both the blue and red branch will demonstrate avoided crossings.

The color scheme of the branches in Figures 2–4 is chosen
in accord with the red, blue and purple resonance ranges we
discussed in section 2.2 and quantified in Figure 1. We introduce
a convenient labeling (A/F/M/O/X) for the 5 wave modes
through ωA (red), ωF (blue), ωM (purple), ωO (cyan) and ωX

(black). Indeed, for all but parallel orientations, the red (Alfvén
at small wavenumber), blue (Fast at small wavenumber) and
purple branch connect to the corresponding resonance value
at that angle. The parallel case is different, since then avoided
crossings become true crossings, and only then the cyan branch
becomes the non-propagating solution ω2 = 1, its purple branch
crosses it to go to electromagnetic behavior, while the blue and
red branch connect to the other two resonance frequencies.
This is of particular interest, since textbook classifications of
wave modes in a cold plasma rely on specific wave properties
at parallel or perpendicular orientations. Our analysis suggests
that it is more natural to organize the waves according to the
5 branches retained in Equation (2), and handle the special
cases when branches can cross separately. In the special case
of a pair plasma, a further avoided crossing with the then
special (non-propagating) branch ω2 = 1+ E2 at perpendicular
orientations can occur, and needs to be accounted for (Keppens
and Goedbloed, in press).

4. 5-MODE PHASE AND GROUP
DIAGRAMS

4.1. Phase Diagrams
We can show the full complexity of the 5 wave mode pairs in a
cold plasma in an alternative way. Up till now, we stressed the
i = 1, 2, . . . 5 solutions ω2

i (k,ϑ) for fixed ϑ , and plotted them
in dispersion diagram views vs. k. We can also stress the full
and intricate variation with angle ϑ , by fixing a wavenumber
k. It is then insightful to plot the dimensionless phasespeed
ωi/kc for all 5 modes, and all angles. This is best done in polar
plots where we show (ωi/kc)n̂, where n̂ = k/k. These are
surfaces of revolution about the magnetic field direction, so that
we can plot their 2D cross-section and take the magnetic field
to be horizontal (i.e., B = Bêx), making n̂ = (cosϑ , sinϑ).
These phase diagrams then vary with wavenumber k, but the
ordering of the branches discussed previously means that at all
but parallel orientations, they remain always nested surfaces. The
special k values where branches cross at parallel orientations,
represent mode transformations occuring when the surfaces
locally touch oneanother.

We plot some representative 5-mode phase diagrams in
Figure 5 for the hydrogen case at E = 1.5, shown previously
in dispersion diagrams in Figures 2, 3. At large wavelengths
(small k), we can recognize that the red and blue branch
correspond to the long wavelength, low frequency Alfvén
and fast magnetohydrodynamic (MHD) modes, respectively.
At small wavelengths (large k), the cyan and black branches
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FIGURE 3 | Dispersion diagram for a hydrogen ion-electron plasma at E = 1.5. Shown are the 5 branches at near-parallel ϑ = 0.001 (left) and oblique ϑ = π/3

propagation. The former shows avoided crossings (see inset). The dashed black line corresponds to light speed behavior.

FIGURE 4 | Dispersion diagram for a hydrogen ion-electron plasma at E = 0.5. Shown are the 5 branches at parallel (Left) and near-parallel ϑ = 0.001 (Right)

propagation. The latter shows avoided crossings (see inset). The dashed black line corresponds to light speed behavior.

correspond to phase speeds nearing the light speed, and they
are the familiar electromagnetic waves. Note that all branches
that (partly) lie above the dashed vertical line in Figures 2–4

have phase speeds above the light speed c, which does not
pose any physical problem as we are quantifying phase speeds
here. It is even possible to identify when branches go from
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superluminal to subluminal phase speeds, happening at specific
k−ϑ combinations for particularly the purple branch. Animated
views (available from the first author’s homepage1) of these 5-
mode phase diagrams reveal their variations with wavenumber
most clearly, as well as the mode transformations happening
at parallel orientation, when these nested surfaces of revolution
locally touch at specific k values (from Equation 20).

4.2. Group Diagrams
While the 5-mode phase diagrams provide insight in the wave
transformations, the way energy is transported is quantified
from the group speed. Here, the real power of the polynomial
representation comes in, since starting from the dispersion
relation (2) written as

ω10 + c4ω
8 + c3ω

6 + c2ω
4 + c1ω

2 + c0 = 0 , (22)

we can easily compute the corresponding group speed ∂ω/∂k

by implicit derivation. The dependency of the coefficients
ci(E, I; k2, λ2) implies that we only need to use ∂k2/∂k = 2k and

∂λ2/∂k = 2λ/k[b̂ − λn̂] where b̂ = B/B and n̂ = k/k. The
resulting expression can be manipulated into

∂ω

∂k
= −λk

P4

P9
b̂+

(
λ2kP4 − kP8

P9

)
n̂ . (23)

In this expression, we find the following polynomials

P4 = ω4(EI − E2 − I2)+ ω2
[
(1+ EI)EI + k2(E2 + I2 − EI)

]

− k2E2I2 , (24)

P8 = −2ω8 + ω6α6 − ω4α4 + ω2α2 − 2λ2E2I2k2 , (25)

P9 = 5ω9 + 4c4ω
7 + 3c3ω

5 + 2c2ω
3 + c1ω . (26)

In the P8 polynomial, the α6,4,2 coefficients are

α6 = 4+ 2E2 + 2I2 + 2k2 , (27)

α4 = 2(1+ EI)2 + (1+ λ2)(E2 + I2 − EI)

+ 2k2(1+ E2 + I2) , (28)

α2 = (1+ EI)(1+ λ2)EI + 2k2
[
(1+ EI)EI

+ λ2(E2 + I2 − EI)
]
. (29)

These (admittedly lengthy) expressions can, however, easily be
evaluated for each of the 5 branches, and this for all directions and
wavenumbers. Indeed, the only thing we need to do is to compute
the 5 solutions as zeros of the polynomial in Equation (22)
(which is how all previous results shown were obtained), and
then evaluate the RHS of expression (23) accordingly. Zeros of
the P9 polynomial may need special treatment, but those actually
correspond to the double roots of the original polynomial. Since
we found that the branches almost never intersect (except at
the special crossings discussed previously), this situation hardly
occurs. At perpendicular orientations, the Alfvén related branch
is marginal ωA = 0, but this case can also be handled separately
(it has zero group speed).

1http://perswww.kuleuven.be/Rony_Keppens

The resulting 5-mode group speed diagrams are intricate, and
some are shown in Figure 6 for the same hydrogen plasma with
E = 1.5. The variation with wavenumber provides fascinating
views on the anisotropy inherent in all 5 wave modes. At
the special wavenumbers where modes transform, also these
diagrams show drastic deformations, which are only appreciated
in animated views (available from the first author’s homepage1).
In Figure 6, the top left panel corresponds to long wavelength
behavior, where the typical Friedrichs diagram containing Alfvén
(red) and fast (blue) waves is recovered, while the other three
waves have all smaller groupspeeds. This is opposite to the
behavior at short wavelengths, where the two electromagnetic
modes (purple ωO or O and black ωX or X) have group
speeds that approach the light circle. As group speeds, all speeds
obtained with formula (23) lie within the light circle, but their
relative ordering and morphology is rather complicated. This is
shown at selected wavenumbers in the four panels of Figure 6.

5. RELATION TO TEXTBOOK TREATMENTS

5.1. Refractive Index Views
Textbook treatments (e.g., Stix, 1992; Bittencourt, 2004; Thorne
and Blandford, 2017) rather emphasize that the dispersion
relation Equation (2) gives direct information on the refractive
index n2 = k2/ω2. When we consider a given frequency ω, next
to the choice of (E,µ) and an orientation ϑ , the solutions to
Equation (2) follow directly from

n2 =
B̄±

(
B̄2 − 4ĀC̄

) 1
2

2Ā
. (30)

At most two real solutions can exist at given frequency, and this is
then used to classify the wave modes in various types. Frequency
ranges where only one real solution is found, or no real solution
at all, must be accounted for. Of course, two complex solutions
can always be found, but then the waveform exp

[
i(k · x− ωt)

]

adopted with real ω and complex k has an evanescent, instead
of propagating behavior. Using the solution (30) in Equation (2),
after adding a factor Ān2 on each side of the equality sign, allows
one to write the solutions also as (Bittencourt, 2004)

n2 = 1− 2(Ā− B̄+ C̄)

2Ā− B̄±
(
B̄2 − 4ĀC̄

) 1
2

. (31)

The discriminant appearing in Equations (30-31) can be
reworked to

B̄2 − 4ĀC̄ =
[
ω2(E2 + I2 − EI)− EI(1+ EI)

]2
sin4 ϑ

+ 4(ω2 − 1)2(E− I)2ω2 cos2 ϑ . (32)

This expression is general, and can be used to rewrite
Equation (31) for the special cases of parallel or perpendicular
orientations to the formulae in Equations (19–21).
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FIGURE 5 | Selected 5-mode phase diagrams at three different values of k = 0.1 (top row), 0.5 (bottom left), 2.0 (bottom right). The dashed black circle always

indicates the light circle, hence notice the varying scale. This is for a hydrogen plasma with E = 1.5, as in Figures 2, 3, and we exploit the same color scheme:

electromagnetic modes are black (ωX ) and cyan (ωO), followed by purple (ωM or Middle), blue (ωF or Fast) and red (ωA or Alfvén) wave. Note that in the k = 2 (bottom

right) plot, at parallel orientation (horizontal central line), mode exchanges occurred between the cyan, purple and blue branches. We always show all 5 branches,

such that the red Alfvén branch requires further zooming in to see its details: this is done in the top right panel for the k = 0.1 case.

For completeness, we note that textbook treatments typically
exploit the following quantities

R = ω2 − ω(E− I)− (1+ EI)

(ω − E)(ω + I)
, (33)

L = ω2 + ω(E− I)− (1+ EI)

(ω + E)(ω − I)
, (34)

P = ω2 − 1

ω2
. (35)

These appear in the combinations S = (R + L)/2 and D =
(R − L)/2, which obey the equality S2 − D2 = RL, and together
with P, they build up the cold plasma dielectric tensor, which
relates the displacement vector D (giving ∇ × B = µ0∂D/∂t,
including displacement currents) to the electric field E through
D = ǫ0ǫ · E, with

ǫ =




S −iD 0
iD S 0
0 0 P


 . (36)
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FIGURE 6 | Selected 5-mode group diagrams at four different values of k = 0.0005, 0.75, 1.5, 2.5. The dashed black circle (with unit radius) always indicates the light

circle, notice the varying scale used in the top left plot. This is for a hydrogen plasma with E = 1.5, as in Figures 2, 3, 5 phase, using the same color scheme:

electromagnetic modes are black (ωX ) and cyan (ωO), followed by purple (ωM or Middle), blue (ωF or Fast) and red (ωA or Alfvén) wave.

We wrote the tensor components here with the 3rd dimension
parallel to B, and the k-B plane as the 1-3 plane. The dispersion
relation, and all discussions of polarization in terms of the wave
electric field orientation w.r.t. B and k, then follow from

k× (k× E) + (ω2/c2)ǫ · E = 0 . (37)

The governing dispersion relation is still given by Equation (30),
where the only difference appears as follows: Ā → A, where Ā =
ω2(ω2−E2)(ω2− I2)A, and similarly for B̄ and C̄. In the A, B and
C formulations, one can write C = PRL, A = S sin2 ϑ +P cos2 ϑ ,

andB = RL sin2 ϑ+PS(1+cos2 ϑ). It is then customary to rewrite
the governing dispersion relation as

tan2 ϑ = −P(n2 − R)(n2 − L)

(Sn2 − RL)(n2 − P)
. (38)

From this latter expression, one can see that n2 → ∞ implies
tan2 ϑ = −P/S, and this latter formula gives Ā = 0, which we
used to discuss cold plasma resonances. Cut-offs on the other
hand are found from P = 0, R = 0 or L = 0, and these make
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C̄ = ω2(ω2 − E2)(ω2 − I2)PRL vanish. Since further

D = (I − E)ω

(ω2 − E2)(ω2 − I2)
, (39)

the pair plasma case leaves D = 0 (rendering the dielectric tensor
diagonal), while S = L = R.

One may recognize the dispersion relation for parallel
propagation given by Equation (19) as n2 = L and n2 = R,
with P = 0 giving the ω2 = 1 factor. The n2 = R and n2 =
L correspond to right-hand and left-hand circularly polarized
waves, respectively. We note again that this mixes forward and
backward mode pairs from the original formulation. Similarly,
the “ordinary” ω2 − 1 − k2 = 0 branch from perpendicular
propagation in Equation (21) can be written as n2 = P. The
remaining “extraordinary” term, can then be recognized from
Equation (38) as n2 = RL/S.

We can plot all dispersion diagrams in terms of the refractive
index, and this is done in Figure 7, for exactly the same
parameters as taken in Figure 3. Note again the avoided
crossings at near-parallel orientations (left panel). The horizontal
dashed lines are indicating fixed frequencies where log10 ω =
−4,−0.1, 0.1, respectively. These return in Figure 8 below.

5.2. CMA Related Wave Normal Surfaces
The standard way to discuss cold ion-electron plasma waves,
uses the refractive index viewpoint and the solutions obtained
as in Equation (30). When both solutions are real, these 2
solutions at fixed frequency lead to a first classification as being
“fast” or “slow,” depending on their corresponding phase speed.
Two more labels relate to the limiting behaviors at parallel and
perpendicular orientations. At parallel orientations, we obtained
Equation (19) which (artificially) separates 4 of the 5 mode pairs
into n2 = R or right-hand circularly polarized waves, vs. n2 = L
for left-hand polarized waves. A corresponding R or L label is
then used to classify the mode. At perpendicular orientation,
we noted that Equation (21) contains the “ordinary” (O) mode
ω2 − 1 − k2 = 0, next to the 3 “extraordinary” (E) ones mixed
up in n2 = RL/S. Collectively, the labels fast/slow, L/R, and
O/E then serve to identify specific wave mode behavior. We note
however that both classifications miss out one of the 5 branches,
since the ω2 = 1 solution is left out from the L/R scheme, and
the marginal ω2

A = 0 pair is left out from the O/E scheme. To
make matters worse, the 5 branches show avoided crossings as
soon as one deviates from exactly parallel orientations (and in
the case of a pair plasma, this is also true at exactly perpendicular
orientations, see Keppens and Goedbloed, in press), and this
seems unaccounted for in textbook treatments. That the branches
that are left out from the L/R vs. O/E labeling do not correspond
at all (one being cyan or ωO, the other being red or ωA for the
E = 1.5 case used in our figures), is yet another aspect to be
considered.

A way to categorize the diversity of wave modes in a
cold plasma is using the classical Clemmow-Mullaly-Allis or
CMA diagram (Stix, 1992). When plotting 1/ω2 vs. EI/ω2 (or
variations thereoff, like E2/ω2 or E/ω), the lines corresponding
to P = 0, R = 0 or R = ∞ and L = 0 or L = ∞, S = 0 and

RL = PS divide this phase-space into sixteen distinct regions.
These regions correspond to differences in wave propagation
characteristics, best visualized through the wave normal surfaces,
which plot phase velocity (1/n)[ϑ] for all anglesϑ . The 16 regions
correspond to topologically distinct morphologies of the wave
normal surface plots, and they can contain zero, one or two
solutions depending on the chosen frequency. In Figure 8, we
show this CMA-related view of the wave normal surfaces for the
E = 1.5 hydrogen plasma considered earlier, and this at three
fixed frequencies such that log10(ω) = −4,−0.1, 0.1, from left
to right. These frequencies are also indicated in the refractive
index plots shown in Figure 7, and we adopted the coloring
scheme we introduced for labeling the 5 wave modes ωA (red),
ωF (blue), ωM (purple), ωO (cyan) and ωX (black). Note e.g.,
how the blue ωF branch is in the textbook way a “fast” mode
for the left panel, while it becomes a “slow” mode in the middle
panel, although in all cases it corresponds to the blue branch
that behaves as fast MHD waves at long wavelengths. We did
not add the traditional L/R or O/E labels to the surfaces, as they
confuse wave modes due to avoided crossings. Indeed, at ϑ = 0
Figure 2 (left panel) shows that at log10(ω) = 0.1 one intersects
the purple and blue branch which are L and R, respectively, while
at any finite angle (see Figure 2, right panel or Figure 3) the cyan
ωO and purple ωM branch matter. The ϑ = π/2 panel from
Figure 2 has ωO as cyan being “ordinary” or O, while ωF , ωX

and ωM are all “extraordinary” or E, but has no label for the
Alfvén mode, while it appears as the “slow” mode in the leftmost
panel of Figure 8. We rather opt to use the 5-mode identification
which appears naturally, and handle the complications of avoided
crossings separately.

5.3. Magneto-Ionic Theory and the
Appleton-Hartree Relation
Awell-known special case of the general cold ion-electron plasma
dispersion relation is the Appleton-Hartree equation. It ignores
ion motion, and assumes that one is interested in high frequency
waves only. In particular, it is valid for frequencies above the
electron plasma frequency ωpe (the dimensional quantity where
ω2
pe = e2ne/ǫ0me), which should be above the ion plasma and

ion gyrofrequency. The Appleton-Hartree relation describes high
frequency electromagnetic waves that travel at arbitrary angle ϑ ,
and is used in magneto-ionic theory (Bittencourt, 2004; Thorne
and Blandford, 2017).

The Appleton-Hartree relation turns out to be a rather curious
limit of the general dispersion relation, where one sets the charge
to mass ratio to the unphysical value µ = 0 (or equivalently,
where one sets I = 0). This limit of Equation (2) allows one
to factor out a ω2 = 0 pair, and one is left with the 8th order
polynomial (4th order in ω2) given by

ω8 − ω6(3+ E2 + 2k2)+ ω4
[
3+ E2 + 2k2(2+ E2)+ k4

]

− ω2
[
1+ k2(2+ (1+ λ2)E2)+ k4(1+ E2)

]
+ k4λ2E2 = 0 .

(40)

Textbook discussions (Bittencourt, 2004; Chen, 2016; Thorne
and Blandford, 2017) rather write this relation in the form given
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FIGURE 7 | Dispersion diagram for a hydrogen ion-electron plasma at E = 1.5, this time displayed in refractive index view. The parameters and panels correspond to

the E = 1.5 hydrogen plasma at near-parallel ϑ = 0.001 (left) and oblique ϑ = π/3 propagation from Figure 3. The horizontal dashed lines correspond to the fixed

frequencies for which Figure 8 shows wave normal surfaces.

FIGURE 8 | Wave normal surfaces at fixed frequencies for the hydrogen ion-electron plasma at E = 1.5.

by Equation (31), where if we exploit expression (32), we can
write Equation (40) also as

n2 = 1− 1/ω2

1− (E2/ω2) sin2 ϑ

2(1−1/ω2)
±

(
(E2/ω2) sin4 ϑ

4(1−1/ω2)2
+ (E2/ω2) cos2 ϑ

)1/2 .

(41)
It is clear that the polynomial form (40) is preferable, to discuss
how its four solution pairs relate to the original 5 from the full
dispersion relation (2). Note that the assumption of µ = 0

means that the dimensionless frequency used in these expression
is actually ω̄ = ω/ωpe (where previously it meant ω/ωp).

Figure 9 shows the dispersion relation comparison between
the 5 modes of the true ion-electron dispersion relation at
E = 1.5, and the 4-mode approximation made by Appleton-
Hartree. The bottom panel actually quantifies the differences in
frequencies, which are hardly distinguishable in the top panel.
The approximate dispersion relation (40) also has the ω2 = 1
solution for exactly parallel orientation, and we find indeed at this
near-parallel angle a similar avoided crossing behavior for the 4
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FIGURE 9 | Comparing the Appleton-Hartree approximation to the actual

hydrogen ion-electron plasma dispersion diagram for E = 1.5, at a

near-parallel orientation (ϑ = 0.001). The top panel shows the branches (ωA is

off the scale shown) as in Figure 3 (left panel) in the same color scheme, while

the gray lines that are overplotted correspond to the 4 modes of the

Appleton-Hartree approximation. The inset shows their agreement near the

avoided crossings. The bottom panel quantifies their difference: this is largest

at small wavenumbers.

retained modes. The Appleton-Hartree approximation contains
the I = 0 limit of the crossings from Equation (20), so it has
k2 = E/(E± 1) as special wavenumbers. Note that the Appleton-
Hartree relation always discards the Alfvén related branch ωA.
The limit µ = 0 obviously implies that all subtleties related
to field strengths above E = 1/µ − 1, which enrich the actual
dispersion relation with cut-off frequencies that change their
relative ordering (see section 2.1 and Figure 1) are completely left
out of this approximation. Since we noted that beyond E = 1/µ
both the ωF and ωA branch will demonstrate avoided crossings,
this aspect can not be discussed on the basis of Appleton-
Hartree. Finally, the assumption µ = 0 is obviously completely
inappropriate for a pair plasma, where E = I and µ = 1.

5.4. Faraday Rotation
A final well-known effect that is described by the (cold) ion-
electron plasma dispersion relation is Faraday rotation (FR).
The effect is usually described for purely parallel propagation,
where as noted earlier, the dispersion relation in the form of
Equation (19) is recognized as the product (n2 − L)(n2 − R) =
0. At fixed frequency ω, and paying special attention to the
high-frequency electromagnetic branches (which are those for
frequencies ω > ωu above the upper cutoff frequency from
Equation 7), the solution from n2 − L is left circularly polarized
(LCP), while n2 = R is right circularly polarized (RCP). The
corresponding breaking nL and nR indices differ through their
difference in wavenumber, as nL − nR = c1k/ω. A linearly

polarized wave (which can always be decomposed in a LCR and
RCP wave) that travels along a magnetic field ends up with its
plane of polarization rotated over a finite angle. We can quantify
this in a variety of ways, e.g., by using the expressions (33, 34), we
find that without any approximation, we can write

n2L − n2R = 2(E− I)ω

(ω2 − E2)(ω2 − I2)
. (42)

This expression demonstrates that for purely parallel
propagation, the Faraday effect vanishes for an electron-
positron plasma (see also Stewart and Laing, 1992), and that
we can approximate the difference in breaking index using the
Appleton-Hartree-type recipe (µ = 0, high frequencies) to the
textbook expression

nL − nR ≈ E

ω3

[
≡

�eω
2
pe

ω3

]
, (43)

where the expression between brackets temporarily restores the
dimensions. We can then use this latter expression to get the
usual quantification for the change in angle χ for a linearly
polarized wave, written with the so-called rotation measure
RM as

χ = RM λ2 = e3λ2

8π2m2
eǫ0c

3

∫
B‖ne dl , (44)

where the integral is along the line of sight (LOS) and B‖ is the
component of B along it.

We note however that the proxy from Equation (43) is better
written as (E − I)/ω3 to allow for the vanishing FR effect when
µ = 1 and propagation is along the magnetic field (ϑ = 0).
Moreover, we meanwhile recognize that this difference in phase
speed between the high-frequency wave pair can actually be
quantified readily for all angles ϑ . The FR effect for a specific E =
1.5 hydrogen plasma case is then shown in Figure 10, where the
left panel shows the actual ϑ = 0 variation in nL−nR as function
of frequency in red, the proxy from Equation (43) in blue, and
the exact expression (42) in dashed red-blue. The right panel
quantifies 1n(ϑ ,ω), where the parallel (red line) result is the
same as in the left panel. It is clear from this plot that the variation
is a smooth function of ϑ , and that one can meaningfully extend
the FR quantification, as a corresponding phase speed difference
at fixed frequency, for all angles (and for all local magnetic field
and number density values incorporated in E). In that sense,
the widely adopted RM quantification from Equation (44) is a
(usually good) approximation only, since the integral quantifying
the line of sight variation of the parallel magnetic field may just
as well take the local 1n(ϑ ,ω;E) value into account when a field
region with varying orientation in B is traversed by a wave with
fixed LOS-oriented wavevector k.

This realization is important to revisit the claim that electron-
positron plasmas do not show any Faraday rotation (Stewart
and Laing, 1992): this statement is true for purely parallel
propagation, but a quantification for all angles similar to what
is shown in Figure 10, right panel, shows that finite to large
1n(ϑ ,ω;E) exist for cold electron-positron plasmas, especially
near ϑ = π/2 and at frequencies just above ωu.
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FIGURE 10 | Faraday rotation for an E = 1.5 proton-electron plasma. The left panel quantifies with the blue solid line the textbook expression nL − nR ≈ E/ω3 as

function of frequency (above the upper cut-off frequency, indicated as a vertical dotted line). The actual, exact value of nL − nR is given by the red solid line. The

dashed red-blue line shows the exact correspondence for the n2
L
− n2

R
variation. The right panel repeats the red solid line at parallel propagation, but shows how the

difference in breaking index between the two electromagnetic waves varies smoothly with angle ϑ .

6. CONCLUSIONS

We have revisited the cold ion-electron plasma wave theory, and
summarize our main findings as follows:

• The traditional means of using the plasma dielectric tensor for
obtaining dispersion relations is equivalent to our polynomial-
based treatment. This polynomial description emphasizes
the 5 real solution pairs ±ωX , ±ωO, ±ωM , ±ωF , and
±ωA of forward-backward propagating waves, at fixed (real)
wavenumber k. The only plasma parameters that matter are
the dimensionless ratios µ and E.

• The traditional labeling of waves as fast/slow, L/R, O/E type,
which rather fixes a real frequency ω and solves for (real or
complex) k has some distinct disadvantages, since avoided
crossings of the 5 branches actually alters the connectivity
between small and large wavenumber solution branches, from
those found at parallel (and sometimes also perpendicular, as
in pair plasmas) behavior. The fast/slow terminology confuses
the established ordering of MHDwaves at low frequency, large
wavenumber in slow-Alfvén-fast, which is the cornerstone
of all MHD spectroscopy (Goedbloed and Poedts, 2004;
Goedbloed et al., 2010, 2019). Our cold assumption has
removed the slow MHD waves from the description, which
will return in warm plasmas.

• We can use the polynomial representation to predict the
wavenumbers for avoided crossings by Equation (20), and at
fixed µ, the prevailing E value dictates which and how many
branches cross. Our description is valid for all combinations

of (E,µ), and covers especially also the high magnetization
regime where E > 1/µ. It covers all cold plasma waves, up
to full relativistic magnetization.

• The polynomial dispersion relation form gives us a direct
means to quantify and visualize the full 5-mode phase and
group diagrams, for all wavenumbers k, which contain all
relevant information on wave anisotropy and energy flow.
These are very different from the wave normal surfaces at fixed
frequencies, which are exploited in the CMA classification.
In particular, they show intricate changeovers when the
wavenumber crosses the special values from Equation (20).

• The Appleton-Hartree dispersion relation is a curious,
unphysical limit setting µ = 0, which gives satisfactory
agreement on the high-frequency waves (and also contains
some of the avoided crossings). It fails completely for pair
plasmas, and misses all intricacy associated with E > 1/µ −
1 regimes.

• Faraday rotation can be meaningfully extended to propagation
angles different fromϑ = 0, and the corresponding exact value
of the refractive index difference 1n(ϑ ,ω;E) depending on
angle, frequency and E can easily be quantified and used for
rotation measure computations.

Further work should discuss the full variation of the wave
polarizations, based on the 6 × 6 matrix formulation
exploited in Goedbloed and Poedts (2004) and Goedbloed
et al. (2019), which led to the polynomial dispersion
relation. Also, the effects of a warm plasma can be easily
incorporated, since then a 6th order polynomial in ω2
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enters, bringing in the slow MHD modes. This is left for
future work.
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This paper investigates the mixed properties of MHD waves in a non-uniform plasma.

It starts with a short revision of MHD waves in a uniform plasma of infinite extent. In

that case the MHD waves do not have mixed properties. They can be separated in

Alfvén waves and magneto-sonic waves. The Alfvén waves propagate parallel vorticity

and are incompressible. In addition they have no parallel displacement component. The

magneto-sonic waves are compressible and in general do have a parallel component of

displacement but do not propagate parallel vorticity. This clear separation has been the

reason why there has been a strong inclination in the literature to use this classification

in the study of MHD waves in non-uniform plasmas. The main part of this paper is

concerned with MHD waves in a non-uniform plasma. It is shown that the MHD waves

in that situation in general propagate both vorticity and compression and hence have

mixed properties. Finally, the close connection between resonant absorption and MHD

waves with mixed properties is discussed.

Keywords: magnetohydrodynamics (MHD), Sun: atmosphere, Sun: magnetic fields, Sun: corona, Sun:

oscillations, waves

1. INTRODUCTION

Most textbooks on Magnetohydrodynamics (MHD) and plasma physics contain at least an
elementary discussion of MHD waves in a uniform plasma of infinite extent (see e.g., Thompson,
1964; Mestel and Weiss, 1974; Goedbloed, 1983; Goossens, 2003; Goedbloed and Poedts, 2004;
Walker, 2004). It is shown that the MHDwaves are either Alfvén waves or slow/fast magneto-sonic
waves. The Alfvén waves are incompressible and propagate parallel vorticity. They do not have a
parallel component of displacement and are driven by magnetic tension only. The magneto-sonic
waves are compressible and have a parallel component of displacement. They do not propagate
parallel vorticity and are driven by pressure and magnetic tension. In non-uniform plasmas the
situation can be very different. The clear division between Alfvén waves and magneto-sonic waves
is no longer present. The MHD waves have mixed properties in non-uniform plasmas. Mixed
properties mean that the general rule is that MHD waves propagate both parallel vorticity as in
classic Alfvén waves and compression as in classic magneto-sonic waves. This behavior causes
exciting wave physics. For instance, the phenomenon of MHD waves with mixed properties can
lead to damping, with relevance in explaining the attenuation observed in coronal and prominence
oscillations and discussed by Goossens et al. (2002a, 2011), Terradas et al. (2006), Arregui et al.
(2008), Pascoe et al. (2010, 2011), among many others. The use of the information on wave
damping has also been found useful to perform solar coronal seismology (see e.g., Goossens
et al., 2002a, 2008; Arregui et al., 2007; Goossens, 2008). The mixed properties arise because in

40
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an inhomogeneous plasma the Eulerian perturbation of total
pressure couples with the dynamics of the motion (Hasegawa
and Uberoi, 1982). Mathematically this is translated into the
fact that the differential equations for the radial component of
the Lagrangian displacement ξr and the Eulerian perturbation
of total pressure P′ are coupled to algebraic equations for
compression ∇ · Eξ , the parallel and perpendicular projections
of the Lagrangian displacement ξ‖, ξ⊥, and vorticity ∇ × Eξ 1.
The coupling of the equations is due to the coupling functions
CA and CS which were introduced by Sakurai et al. (1991b) in
their study of resonant absorption. The relevance of the coupling
functions goes beyond resonant absorption. The spatial behavior
of the coupling functions and of the local Alfvén frequency ωA

and local cusp frequencyωC determine the spatial behavior of the
various components of velocity and vorticity and of compression.
The simultaneous presence of compression and vorticity is hard
to avoid.

Goossens et al. (2009) investigated the forces that drive
these waves and found that the magnetic tension force always
dominates the pressure force for the kink mode. In addition,
they showed that compression is small in the particular case of
thin tubes. Hence, these waves do not have the typical properties
of fast magneto-sonic waves and behave more as Alfvén waves.
Goossens et al. (2011) reconsidered these waves in their section
on quasi-modes and decided to call them surface Alfvén waves.
In the present paper, we continue the theoretical investigation of
the nature of the waves. In section 2, we describe pure Alfvén
and pure magneto-acoustic waves in a uniform plasma of infinite
extent, by analysing their eigenfrequencies, eigenfunctions,
vorticity and compression. In section 3, the analysis is generalized
to MHD waves in non-uniform plasmas, which propagate both
compression and parallel vorticity at the same time. This leads to
new expressions for the components of vorticity that are derived
for axi-symmetric/non-axi-symmetric motions in a non-uniform
1-dimensional cylindrical plasma. In section 4, we show that
resonant Alfvén /slow waves are characterized by strong shear
in the perpendicular/parallel component of displacement with
large values of the parallel/perpendicular component of vorticity.
This strong shear causes violent KH-instabilities (Terradas et al.,
2008; Antolin et al., 2018) that accelerate the damping of the
MHDwaves and facilitate heating of plasma (Antolin et al., 2015;
Arregui, 2015; Terradas and Arregui, 2018).

2. LINEAR MHD WAVES OF A UNIFORM
PLASMA OF INFINITE EXTENT

The properties of MHD waves in a uniform plasma of infinite
extent are often used to characterize MHD waves in general.
For a uniform plasma of infinite extent the MHD waves can
be subdivided into two classes with distinct properties. The first
class contains the magneto-sonic waves. They are compressive

1The standard definition of vorticity in fluid dynamics is ∇ × Ev. Here the analysis

uses the Lagrangian displacement Eξ and ∇ × Eξ is referred to as vorticity. Since

Ev = −iωEξ it follows that ∇ × Ev = −iω∇ × Eξ . ∇ · Ev is a measure for the rate of

variation of the volume of a material fluid element. In the present paper ∇ · Eξ is

referred to as compression.

but do not propagate parallel vorticity. The second class contains
the Alfvén waves. Alfvén waves propagate parallel vorticity and
are incompressible. The equilibrium quantities are constant. The
constant magnetic field

EB0 = B0E1z , (1)

is used to define the direction of the z- axis of a Cartesian system
of coordinates. The equilibrium density and pressure are constant

p0 = constant, ρ0 = constant. (2)

In what follows Eξ is the Lagrangian displacement. In the
present subsection the background is static and uniform. As a
consequence solutions can be obtained in the form of plane
harmonic waves and Eξ is written

Eξ (Er; t) = Ê
ξ exp(i(Ek.Er−ωt)) = Ê

ξ exp(i(kxx+kyy+kzz−ωt)). (3)

Here
Ê
ξ is the constant amplitude of Eξ , Ek = kxE1x + kyE1y + kzE1z

is the wave vector, and ω is the frequency of the wave. In what
follows the hat on Eξ will be dropped. Since the constant magnetic
field defines a preferred direction a clever choice of dependent
wave variables is X,Y ,Z defined as

kzξz = X = displacement parallel to EB0,
∇ · Eξ = i Ek · Eξ = i Y = compression,

(∇ × Eξ )z = i (Ek× Eξ )z = i Z = component of vorticity

parallel to EB0. (4)

X,Y ,Z are dimensionless quantities and allow us to obtain an
elegant version of the governing equations. In terms of these
variables the equations for linear ideal MHD waves can be
written as

ω2X − k2zv
2
SY = 0,

k2v2AX + (ω2 − k2(v2A + v2S))Y = 0,

(ω2 − ω2
A)Z = 0. (5)

vA, vS are the Alfvén velocity and the velocity of sound. They are
defined by

v2A = B20
µ ρ0

, v2S =
γp0

ρ0
. (6)

ωA is the local Alfvén frequency. It is defined as

ω2
A = (Ek · EB)2

µρ
= k2z v

2
A = k2‖ v

2
A. (7)

In a uniform plasma vA, vS,ωA are constant. In a non-uniform
plasma these quantities depend on position.

The system (5) consists of two uncoupled subsets of equations.
The first subset is the third equation for the variable Z. The
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second subset contains the wave variables ξz and Y . The first type
of MHD waves are characterized by

Y = 0, Z 6= 0, ξz = 0, ω2 = ω2
A. (8)

They are the classic Alfvén waves. The eigenfrequencies
associated with the Alfvén waves (8) are infinitely degenerate as

they only depend on the parallel component of the wave vector Ek.
Alfvén waves do not cause compression and have no component
of the displacement parallel to the magnetic field. They are the
only waves that propagate parallel vorticity in a uniform plasma
of infinite extent. The only restoring force is the magnetic tension
force. Note also that Alfvén waves in a uniform plasma of infinite

extent exist for any wave vector Ek = (kx, ky, kz).

The displacement Eξ for Alfvén waves is

EξA = (−
ky

kx
E1x + E1y)ξy = (E1x −

kx

ky
E1y)ξx. (9)

For ky = 0 we obtain the popular result EξA = ξyE1y. These y-
independent Alfvén waves are a special case. In the cylindrical
case ky = 0 and ky 6= 0 correspond to respectively axisymmetric
waves with m = 0 and to non-axisymmetric waves with m 6= 0
with m the azimuthal wave number. For a wave vector with both
horizontal components of the wave vector different from zero
both horizontal components of the displacement vector are non-
zero. Let us now keep ky 6= 0, kz 6= 0 and mimic a situation
with non-uniformity in the x- direction and a resonant condition
where lim kx → +∞ so that | ky | ≪ | kx |, | kz | ≪ | kx |.
Find then

| ξy |
| ξx |

= | kx |
| ky |

≫ 1, EξA ≈ ξy E1y. (10)

The motion in the Alfvén wave is predominantly in the
y- direction and rapidly varying in the x- direction. The
displacement (10) is not y- independent because of the factor
exp(ikyy) with ky 6= 0. The ≈ sign means that the two
components (ξx, ξy) are non-zero but ξy is far larger in absolute
value than ξx. The two components are needed to satisfy the
incompressibility condition.

For a general wave vector Ek = (kx, ky, kz)
t the three

components of vorticity ∇ × Eξ are non-zero. In addition to
the parallel component (∇ × Eξ )z also the components in planes
normal to EB0 are non-zero:

(∇ × Eξ )z = i(kxξy − kyξx), (∇ × Eξ )x = −ikzξy,

(∇ × Eξ )y = ikzξx, ξx = −
ky

kx
ξy. (11)

For our later discussion on resonant Alfvén waves it is instructive
to look at the components of vorticity∇×Eξ under conditions that
mimic resonant behavior, i.e., when | ky | ≪ | kx |, | kz | ≪ | kx |
and find that

| (∇ × Eξ )z |
| (∇ × Eξ )x |

≈ | kx |
| kz |

≫ 1,
| (∇ × Eξ )z |
| (∇ × Eξ )y |

≈ | kx |
| kz |

| kx |
| ky |

≫ 1.

Hence

| (∇ × Eξ )y | ≪ | (∇ × Eξ )x | ≪ | (∇ × Eξ )z |,

so that

∇ × Eξ ≈ (∇ × Eξ )z E1z ≈ ikx ξy E1z . (12)

Here also the ≈ sign means that the three components (∇ × Eξ )
are non-zero but the parallel component is far larger in absolute
value than the two horizontal components.

The second class of MHD waves corresponds to

Y 6= 0, Z = 0, ξz = ξ‖ 6= 0. (13)

They are the magneto-sonic waves. They cause compression
but do not propagate parallel vorticity. However, they cause
horizontal vorticity. Their displacement has a component parallel
to themagnetic field that is driven by themagnetic pressure force.
The dispersion relation is

(ω2)2 − k2(v2S + v2A)ω
2 + k2zk

2v2Sv
2
A = 0. (14)

The well-known solutions for the eigenfrequencies are

ω2 = ω2
sl,f =

k2(v2S + v2A)

2



1±

(
1− 4ω2

C

k2(v2S + v2A)

)1/2


 .

(15)
k2 = k2x + k2y + k2z , ωC, and vC are the cusp frequency, and the
cusp velocity.

ω2
C = v2S

v2S + v2A
ω2
A = k2||v

2
C = k2zv

2
C, v2C = v2Sv

2
A

v2S + v2A
. (16)

In Equation (15) “sl” corresponds to the minus sign, and “f”
to the plus sign. The corresponding waves are the slow and
fast magneto-sonic waves. The frequencies of the magneto-sonic
waves depend on the three components (kx, ky, kz) of the wave

vector Ek. They depend in the same way on kx and ky because of

isotropy in the planes normal to EB0. It is instructive to consider
the variation of ω2

sl,f
as function of kx for fixed values of (ky, kz).

The cut-off frequencies ωI ,ωII are defined as

ω2
I = ω2

sl(kx = 0, ky, kz), ω2
II = ω2

f (kx = 0, ky, kz). (17)

Also

limkx→∞ ω2
sl = ω2

C, limkx→∞ ω2
f = ∞ (18)

The cut-off frequencies ωI , ωII and the characteristic frequencies
ωA, ωC obey the sequence of inequalities

ω2
C ≤ ω2

sl ≤ ω2
I ≤ ω2

A ≤ ω2
II ≤ ω2

f < +∞. (19)

Hence the spectrum of linear motions of a uniform plasma of
infinite extent can be divided in a slow subspectrum ]ωC, ωI],
a degenerate Alfvén point spectrum ωA and a fast subspectrum
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[ωII , +∞[. The first equality in (18) means that ωC is an
accumulation point of the slow subspectrum.

The magneto-sonic waves are driven by tension and pressure
forces and cause variations in density and pressure and
horizontal vorticity.

The solutions for the eigenfunctions are

Eξsl,f = (E1x +
ky

kx
E1y +

ω2
sl,f

− k2v2A

ω2
sl,f

kz

kx
E1z) ξx, (20)

or equivalently,

Eξsl,f = (
ω2
sl,f

ω2
sl,f

− k2v2A

kx

kz
E1x +

ω2
sl,f

ω2
sl,f

− k2v2A

ky

kz
E1y + E1z)ξz . (21)

The popular view is that the horizontal motion (ξx, ξy) is the
dominant motion for fast waves while the parallel motion ξz
is the dominant motion for slow waves. In order to point out
that this is not the general rule, ξx is used as the measuring
unit in (20) and ξz in (21). It is straightforward to show that in
general the parallel component in (20) is not small compared
to the horizontal components, and similarly that the horizontal
components in (21) are not per semuch smaller than the parallel
component. However, for strong magnetic fields, i.e., vA ≫ vS it
can be shown that

Eξf ≈ (E1x +
ky

kx
E1y) ξx; Eξsl ≈ ξzE1z . (22)

The popular view corresponds to the limiting case of a
strong field.

The parallel component of vorticity (∇× Eξ )z = iZ is of course
zero. However, the horizontal components are non-zero

∇ × Eξ = −i kz
k2 v2A
ω2
sl,f

ξx (
ky

kx
E1x − E1y). (23)

For ky = 0 the expressions (20) for the displacement Eξ and (23)

for vorticity ∇ × Eξ can be simplified to

Eξsl,f = (E1x +
ω2
sl,f

− k2v2A

ω2
sl,f

kz

kx
E1z) ξx, ∇ × Eξ = i kz

k2 v2A
ω2
sl,f

ξx E1y.

(24)
Keep ky 6= 0, kz 6= 0 and finite and mimic a situation with non-
uniformity in the x- direction and a turning point where kx = 0
and find

Eξsl,f = (
ω2
I,II

ω2
I,II − k2v2A

ky

kz
E1y + E1z)ξz . (25)

In summary for a uniform plasma of infinite extent the
division is clear. The equation for vorticity is uncoupled from
the equations for compression and parallel displacement. The
waves have either parallel vorticity and no compression and
no parallel displacement, these are the Alfvén waves, or they

have compression and parallel displacement and no parallel
vorticity, they are magneto-sonic waves. There are no waves with
compression and parallel vorticity at the same time. There is no
mixing of properties.

For a pressureless plasma with

v2S = 0, (26)

the solutions for the magnetosonic waves are

ω2
C = 0, ω2

sl = 0, ω2
f = k2v2A,

ξz = 0, Eξf = (E1x +
ky

kx
E1y) ξx, ∇ × Eξ = −i kz

ξx (
ky

kx
E1x − E1y). (27)

In this situation there are no slow waves and the fast magneto-
sonic waves have no parallel motions. The parallel motions are
driven by the gradient of plasma pressure and here plasma
pressure vanishes by assumption. The absence of slow waves
and of parallel motions is a general result for a pressureless
plasma. In what follows, no particular attention will be devoted
to pressureless plasmas. The equations for MHD waves for a
pressureless plasma are easily obtained by putting v2S = 0 in the
general equations.

3. MIXED PROPERTIES IN NON-UNIFORM
PLASMAS

The aim of the present section is to show that MHD waves in
a non-uniform plasma have mixed properties. In general they
propagate compression and parallel vorticity at the same time.
The phenomenon of mixed properties follows from the fact that
the equations that describe the linear motions are coupled, unlike
for the case of a uniform plasma of infinite extent. In particular
the focus is on MHD waves on 1-D cylindrical plasma columns.
The equilibrium model is a straight cylindrical plasma column of
radius R in static equilibrium. In what follows we use cylindrical
coordinates r,ϕ, z. The magnetic field has both an axial and an
azimuthal component

EB0 = Bz,0E1z + Bϕ,0E1ϕ . (28)

The equilibrium density ρ0(r), equilibrium pressure p0(r), and
the components of the equilibrium magnetic field Bz,0(r),Bϕ,0(r)
are functions of r or constant. The equilibrium quantities satisfy
the equation of static equilibrium

d

dr
(p0 +

B20
2µ

) = −
B2ϕ,0

µr
, B20 = B2ϕ,0 + B2z,0. (29)

In a nonuniform plasma v2S, v2A, ω2
A, and ω2

C are functions
of position. In what follows f ′ and δf denote respectively the
Eulerian and Lagrangian variation of a quantity f . In linear theory
they are related as

δf = f ′ + df0

dr
ξr , (30)
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with f0 the equilibrium value of f . In the following equations

P′ = p′ + EB0 · EB′/µ is the Eulerian perturbation of total
pressure; p′ is the Eulerian perturbation of plasma pressure. Eξ is
the Lagrangian displacement.

We use the mixed field line / magnetic surface triad (Eb, En, Eπ)
defined by Goedbloed et al. (2010) in their Equations (17.23).
In the present case of a straight cylindrical flux tube with the
equilibrium magnetic field EB0 defined in the Equation (28)

En = E1r , Eb = E1B = E1‖, Eπ = E1⊥,

with E1‖, E1⊥ the unit vectors in the magnetic surfaces respectively
parallel and perpendicular to the magnetic field lines.

ξr is the radial component of Lagrangian displacement and
ξ‖, ξ⊥ are the projections of the Lagrangian displacement in the
magnetic surfaces parallel and perpendicular to themagnetic field
lines:

ξ⊥ = (ξϕBz,0 − ξzBϕ,0)/B, ξ‖ = Eξ · EB0/B0. (31)

Since the equilibrium quantities are independent of ϕ and z
the wave variables can be put proportional to the exponential
factor exp[i(mϕ + kzz)] with m, kz the azimuthal and axial
wave numbers, m is an integer. For example, for the Lagrangian
displacement we write

Eξ (Er; t) = Ê
ξ (r) exp(i(mϕ + kzz − ωt)). (32)

Ê
ξ (r) is the radially varying amplitude of Eξ . In what follows the
hat on Eξ and on the other wave variables will be omitted. It is
convenient to introduce the wave vector Ek = (0,m/r, kz).

The linear MHD waves can be described by two ordinary
differential equations for ξr and P′ (see e.g., Appert et al., 1974;
Sakurai et al., 1991b; Goossens et al., 1992, 1995)

D
d(r ξr)

dr
= C1r ξr − C2r P

′,

D
dP′

dr
= C3ξr − C1P

′. (33)

The coefficient functions D,C1,C2,C3 are given by

D = ρ0(v
2
S + v2A)(ω

2 − ω2
A)(ω

2 − ω2
C),

C1 = 2

µr
B2ϕ,0 ω4 − (v2S + V2

A)(ω
2 − ω2

C)
2mfB

µr2
Bϕ,0,

C2 = ω4 − (v2S + v2A)(ω
2 − ω2

C)

(
m2

r2
+ k2z

)

= (ω2 − ω2
I )(ω

2 − ω2
II),

C3 = D

[
ρ0 (ω

2 − ω2
A)+

2Bϕ,0

µ

d

dr

(
Bϕ,0

r

)]

+
4ω4B4ϕ,0

µ2r2
− 4ρ0 (v

2
S + v2A)(ω

2 − ω2
C)ω

2
A

B2ϕ,0

µr2
. (34)

vA and vS are the Alfvén speed and the speed of sound as before
and are defined in Equation (6). In a non-uniform plasma they
are functions of position. The quantities fB and gB are defined as

fB = Ek· EB0 = kzBz,0+
m Bϕ,0

r
, gB = (Ek×EB0)E1r =

m Bz,0

r
−kzBϕ,0.

(35)
The frequencies ωA and ωC are the local Alfvén frequency and
the local cusp frequency as before. They are defined for the planar
case in Equation (7). Here in the cylindrical case their squares are
defined as

ω2
A = f 2B

µρ0
=

(
kzBz,0 +

m

r
Bϕ,0

)2

µρ0
, ω2

C = v2S
v2S + v2A

ω2
A. (36)

Note that ωA and ωC are functions of position. For a given
set of wave numbers (m, kz) ωA and ωC map out two ranges
of frequencies known as the Alfvén continuum and the cusp
continuum. The frequencies ωI , ωII are defined as

ω2
I,II =

1

2
(
m2

r2
+ k2z ) (v

2
S + v2A)




1±


1−

4ω2
C

(
m2

r2
+ k2z )(v

2
S + v2A)




1/2

.

(37)

They are the cylindrical analogues of the Cartesian cut-
off frequencies defined in (17). Here they are not cut-off
frequencies but rather frequencies that restrict the Sturmian
or anti-Sturmian behavior of the spectrum as explained by
Goedbloed (1975, 1983).

To emphasize that parallel motions are solely driven by the
gradient plasma pressure force, the parallel component of the
equation of motion is written as

ρ0 ω2 ξ‖ =
ifB

B0
δp. (38)

δp is the Lagrangian variation of plasma pressure.
For the discussion of the mixed properties it is necessary to

look at the wave variables ξ⊥, ξ‖,∇ · Eξ and (∇ × Eξ ). They
are given by expressions in ξr and P′ and their derivatives.
Algebraic expressions for ξ⊥, ξ‖,∇ · Eξ can be found in
e.g., Sakurai et al. (1991b)

ρ0(ω
2 − ω2

A)ξ⊥ = i

B0
CA,

ρ0(ω
2 − ω2

C)ξ‖ = ifB

B0

v2S

v2S + v2A
CS,

∇ · Eξ = −ω2

ρ0 (v
2
S + v2A)(ω

2 − ω2
C)

CS. (39)

The coupling functions are defined as (see e.g.,
Sakurai et al., 1991b)

CA = gB P′ − 2fBBϕ,0Bz,0

µr
ξr , CS = P′ −

2B2ϕ,0

µr
ξr . (40)
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They are linear combinations of P′ and ξr . The coefficients of
ξr in CA and CS vanish when the equilibrium magnetic field
is straight Bϕ,0 = 0. CA depends on the azimuthal wave
numberm and the longitudinal wave number kz . CS on the other
hand is independent of the wave numbers (m, kz). The coupling
functions play an essential role for the mixing properties of MHD
waves and for resonant absorption. They are called coupling
functions for the good reason that they couple the differential
equations (33) for ξr and P′ to the expressions for all of the
remaining wave variables ξ⊥, ξ‖,∇ · Eξ , (∇×Eξ ). First they couple
the differential equations for ξr and P′ to the algebraic equations
(39) for ξ⊥, ξ‖,∇ · Eξ . When CA 6= 0 the first equation of (39)
implies that ξ⊥ 6= 0. Similarly when CS 6= 0 the second and third
equation of (39) imply that∇·Eξ 6= 0.When in addition to CS 6= 0
also vS 6= 0 it follows that ξ‖ 6= 0.

Let us now consider (∇ × Eξ ). In section 2 it was
pointed out that a division of linear waves can be based
on compression, parallel displacement and parallel vorticity.
A characterization based on the components (ξx, ξy, ξz) is in
general not possible. When we move from Cartesian geometry
to cylindrical geometry the horizontal components (ξx, ξy) are

replaced by the components (ξr , ξ⊥) in the planes normal to EB0
and ξz is replaced by the component ξ‖ parallel to the equilibrium
magnetic field. For a uniform plasma of infinite extent, the MHD
waves could be divided into incompressible waves that propagate
parallel vorticity, i.e., the Alfvén waves and waves that propagate
compression and have a parallel displacement component i.e., the
magneto-sonic waves. In what follows it will be shown that for a
non-uniform plasma MHD waves propagate both compression
and parallel vorticity and have non-zero radial, perpendicular
and parallel components of displacement and vorticity. To the
best of our knowledge expressions for the components of (∇×Eξ )
are not available in the literature. They are

(∇ × ξ )r = i
gB

B0
ξ‖ − i

fB

B0
ξ⊥,

(∇ × Eξ )‖ = dξ⊥
dr

+ P⊥ξ⊥ + P‖ξ‖ − i
gB

B0
ξr ,

(∇ × Eξ )⊥ = −dξ‖
dr

+ Q⊥ξ⊥ + Q‖ξ‖ + i
fB

B0
ξr . (41)

Expressions for P⊥, P‖,Q⊥,Q‖ are

P⊥ = Bz,0

B0

1

r

d

dr

(
rBz,0

B0

)
+ Bϕ,0

B0

d

dr

(
Bϕ,0

B0

)
,

P‖ = Bz,0

B0

1

r

d

dr

(
rBϕ,0

B0

)
− Bϕ,0

B0

d

dr

(
Bz,0

B0

)
,

Q⊥ = Bz,0

B0

d

dr

(
Bϕ,0

B0

)
− Bϕ,0

B0

1

r

d

dr

(
rBz,0

B0

)
,

Q‖ = −Bz,0

B0

d

dr

(
Bz,0

B0

)
+ Bϕ,0

B0

1

r

d

dr

(
rBϕ,0

B0

)
.

The Equations (41) show that the components of (∇ × Eξ ) can
be expressed in terms of (ξr , ξ⊥, ξ‖). Since ξ⊥, ξ‖ are expressed in

terms of ξr and P′ it follows that also the components of (∇ × Eξ )
can be expressed in terms of ξr and P′. When (ξr , ξ⊥, ξ‖) are
non-zero, the components of vorticity are in general also non-
zero. All of the wave variables are coupled. The MHD waves
have mixed properties, they propagate both compression and
parallel vorticity and have non-zero radial, perpendicular and
parallel components of displacement and vorticity. In general all
wave variables are non-zero. A situation in which a subset of the
wave variables is not coupled to the other wave variables is an
exception. Such a situationwill appear for axi-symmetricmotions
in the presence of a straight field. The clear division into Alfvén
waves and magneto-sonic waves that exists for a uniform plasma
of infinite extent does not any longer hold.

Hence in general for linear MHD waves on a non-
uniform plasma

ξr 6= 0, P′ 6= 0,

ξ⊥ 6= 0, ξ‖ 6= 0,

∇ · Eξ 6= 0, (∇ × Eξ ) 6= 0. (42)

Let us consider the special case of axi-symmetric motions with
m = 0. The expressions for fB, gB, CA, CS can be simplified to

fB = kzBz,0, gB = −kz Bϕ,0,

CA = −kzBϕ,0{P′ + 2
B2z,0 ξr

µr
}, CS = P′ − 2

B2ϕ,0

µr
ξr . (43)

For a twisted magnetic field with both a longitudinal component
Bz,0 and a non-zero azimuthal component Bϕ,0, the coupling
functions CA and CS are non-zero. This implies that the
preceding analysis on mixed properties also applies to axi-
symmetric motions. The axi-symmetric motions propagate
vorticity and compression. The situation is different when the
magnetic field is straight.

Since CA and CS are functions of position the coupling of the
equations depends on position and so does the strength of the
mixing of the wave properties. For example a wave can start off as
a predominantly fast wave, change into a wave that has both fast
and Alfvén properties and turn into a predominantly Alfvénic
wave. MHD waves have mixed properties and have different
appearances in different parts of the plasma because of the
inhomogeneity of the plasma. This phenomenon was discussed
by Goossens et al. (2002b), Goossens (2008), and Goossens et al.
(2011, 2012, 2014).Waves with mixed properties are also referred
to as coupled MHD waves (Pascoe et al., 2010, 2011). This is a
rather strange name as it seems to suggest that there are two or
more waves involved.

Let us now focus on MHD waves in the presence of a straight
field. For a straight field (Bϕ,0 = 0) the magnetic surfaces are
cylinders: r = constant, and the ϕ- and z- directions are the
directions in the magnetic surfaces respectively perpendicular
and parallel to the magnetic field lines. The r- direction is normal
to the magnetic surfaces. Hence ξr is associated with motions
normal or across magnetic surfaces; ξ‖ = ξz are motions along
the magnetic field lines and ξ⊥ = ξϕ are motions in the magnetic
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surfaces perpendicular to the magnetic field lines. For a straight
field the expressions for fB, gB, CA, CS are simplified to

fB = kzBz,0, gB = m

r
Bz,0,

CA = gB P′ = m

r
Bz,0 P

′, CS = P′. (44)

The coupling functions CA, CS only contain P′. The coefficients
of ξr in CA and CS vanish when Bϕ,0 = 0. Hence the coupling of
the waves variables is solely due to P′ as will become clear in what
follows. As far as the wave numbers (m, kz) are concerned, CA no
longer depends on kz , only onm.

The differential equations (33) for ξr and P′ and the algebraic
equations for ξ⊥, ξ‖,∇ · Eξ (39) are now

D
d(rξr)

dr
= −C2rP

′,

dP′

dr
= ρ0 (ω

2 − ω2
A)ξr ,

ρ0 (ω
2 − ω2

A)ξϕ = im

r
P′,

ρ0(ω
2 − ω2

C)ξz = ikz
v2S

v2S + v2A
P′, ρ0 ω2ξz = ikzδp,

∇ · Eξ = −ω2P′

ρ0 (v
2
S + v2A)(ω

2 − ω2
C)

.

(45)

Use now (41) and note that for a straight field

P⊥ = 1

r
, P‖ = 0, Q⊥ = 0, Q‖ = 0,

to obtain

(∇ × ξ )r = i(
m

r
ξz − kzξϕ),

(∇ × ξ )ϕ = −dξz

dr
+ ikzξr ,

(∇ × ξ )z = dξϕ

dr
+ ξϕ

r
− i

m

r
ξr .

(46)

Equations (45) and (46) govern the MHD waves on a non-
uniform straight cylindrical plasma column with a straight
magnetic field. There is a natural subdivision between,
respectively, axi-symmetric motions with m = 0 and non-
axisymmetric motions with m 6= 0. The reason being
that the equation for ξϕ for m = 0 is decoupled from the
remaining equations. Let us first focus on axi-symmetric motions
withm = 0.

CA = 0, CS = P′. (47)

The equation for ξ⊥ = ξϕ is decoupled from the
remaining equations

ρ0 (ω
2 − ω2

A) ξϕ = 0. (48)

Equation (48) can be satisfied in two ways. First of all by choosing

ω2 = ω2
A, ξϕ 6= 0. (49)

The second choice is

ω2 6= ω2
A, ξϕ = 0. (50)

The solutions given in (49) and (50) correspond respectively
to the axi-symmetric Alfvén waves and the sausage magneto-
sonic waves. The axi-symmetric MHD waves are decoupled
in sausage magneto-sonic waves and axi-symmetric Alfvén
waves. The solutions for the axi-symmetric magneto-sonic
waves are

P′ 6= 0,

ξr 6= 0, ξz 6= 0, ξϕ = 0,

∇ · Eξ = −ω2P′

ρ0(v
2
S + v2A)(ω

2 − ω2
C)

6= 0,

(∇ × Eξ )r = 0, (∇ × Eξ )z = 0.

(∇ × Eξ )ϕ = −ikz
d

dr

{
v2S

v2A + v2S

1

ρ0(ω
2 − ω2

C)

}
P′

+ ikz
ω2

ρ0(ω
2 − ω2

A)(ω
2 − ω2

C)

v2A

v2A + v2S

dP′

dr
. (51)

The solutions for the axi-symmetric Alfvén waves are

P′ = 0,

ξr = 0, ξz = 0, ξϕ 6= 0,

∇ · Eξ = 0,

(∇ × Eξ )r = −ikzξϕ , (∇ × Eξ )ϕ = 0, (∇ × Eξ )z =
1

r

d

dr
(rξϕ).

(52)

For an axi-symmetric non-uniform 1-dimensional cylindrical
plasma this is the only case where pure Alfvén waves show up in
the analysis. Each magnetic surface oscillates with its own local
Alfvén frequency. In a twisted magnetic field, CA 6= 0 for m = 0
so that the equations are coupled and the corresponding MHD
waves have mixed magneto-acoustic and Alfvén properties. Also
CS 6= 0 for any azimuthal wave number m. The absence of
pure Alfvén waves in a non-uniform 1-D cylindrical plasma for
azimuthal wave numbers m 6= 0 is in stark contrast to the
situation for amagnetic flux tube with piece wise constant density
and magnetic field. Spruit (1982) showed that solutions with
∇ · Ev = 0 exist for any m. H. Spruit correctly identified these
solutions as Alfvén waves. Flow patterns for Alfvén waves with
m = 0 and m = 1 are shown on Figure 1 in Spruit (1982). In
addition to the Alfvén waves there are compressive waves. The
fact that pure non-axisymmetric Alfvén waves do not exist in a
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non-uniform straight plasma cylinder is an illustration of how
the non-uniformity produces waves with mixed properties.

Let us now turn back to the non-axisymmetric MHD waves
with m 6= 0. Actually the analysis also holds for axi-symmetric
MHD waves with ξϕ = 0. Excluded from the analysis are the axi-
symmetric Alfvén waves defined in (52). The Equation (46) can
be rewritten as

(∇ × ξ )r = kz
m

r

v2A
v2S + v2A

ω2

ρ0(ω2 − ω2
A)(ω

2 − ω2
C)

P′,

(∇ × ξ )ϕ = −ikz
d

dr

{
v2S

v2A + v2S

1

ρ0(ω
2 − ω2

C)

}
P′

+ ikz
ω2

ρ0(ω
2 − ω2

A)(ω
2 − ω2

C)

v2A

v2A + v2S

dP′

dr
,

(∇ × ξ )z = −i
m

r

1
{
ρ0(ω

2 − ω2
A)
}2

d

dr

{
ρ0(ω

2 − ω2
A)
}
P′(53)

Note that the expressions for the components of vorticity for axi-
symmetric magneto-sonic waves can be obtained from (53) by
puttingm = 0.

Here all wave variables are coupled and all wave variables
are non-zero. In case of a straight field, it is the non-zero
Eulerian perturbation of total pressure P′ 6= 0 that produces
MHD waves with mixed properties reminiscent of Alfvén waves
and magneto-sonic waves. See also the comments by Hasegawa
and Uberoi (1982) in their Chapter 3 on MHD waves in an
inhomogeneous medium.

Special interest goes to the components of ∇ × ξ . It is obvious
that (∇×ξ )r 6= 0 irrespective if the equilibrium is uniform or not.
The same is true for (∇ × ξ )ϕ . The second term is always non-
zero. The first term is non-zero for a non-uniform equilibrium
and for a piece-wise constant density model the derivative results
in a delta-function contribution. The parallel component (∇×ξ )z
is non-zero for a non-uniform equilibrium with

d

dr

{
ρ0(ω

2 − ω2
A)
}

(54)

different from zero. In a fully non-uniform equilibrium this
condition is satisfied everywhere. In a piece-wise constant density
model the derivative results in a delta-function contribution.

Let us try to understand the cause of the vorticity. The
equilibriummodel is a 1-D straight cylinder with the equilibrium
quantities functions of the radial distance r to the axis. There
is no baroclinic source of vorticity since the iso-surfaces of
density and pressure coincide. Equations (41) combined with
the expressions for P⊥, P‖,Q⊥,Q‖ in principle contain all the
information. They are rather complicated and do not allow a
straightforward interpretation. Physical insight can be gained by
considering the case of a straight field. For a straight field the
equation of motion in the horizontal planes follows from the 2nd
and 3rd equations of Equation (45).

− ρ0 ω2 Eξh = −∇hP
′ − ρ0 ω2

A
Eξh. (55)

Eξh is the displacement in horizontal planes and ∇h is the gradient
operator in horizonal planes

Eξh = (ξr , ξϕ , 0), ∇h = (
d

dr
, i

m

r
, 0).

The left hand side of Equation (55) is mass density times
acceleration. The first term in the right hand side of Equation (55)
is the horizontal gradient total pressure force; the second term is
mass density times the magnetic tension force

ET = −ω2
A
Eξh, − 1

ρ0
∇hP

′ = −(ω2 − ω2
A)Eξh.

Hence

− 1

ρ0
∇hP

′ = ω2 − ω2
A

ω2
A

ET. (56)

The importance of tension force compared to the horizontal
pressure force depends on the frequency of the wave.Whenω2 ≈
ω2
A the magnetic tension force dominates; when ω2 >> ω2

A then
the the horizontal pressure force dominates; when ω2 << ω2

A
the horizontal pressure force and the magnetic tension force are
of equal strength. For other values of ω2 the actual ratio has to
be computed.

From Equation (55)

ω2 (∇ × Eξh) = ∇ × (
1

ρ0
∇hP

′)−∇ × ET. (57)

This shows that vorticity generated by the horizontal motions is
due to the horizontal component of the gradient pressure force
and the magnetic tension force. Equation (55) can be solved
for ξh as

Eξh = 8 ∇hP
′, 8 = 1

ρ0(ω
2 − ω2

A)
. (58)

We can use Equation (56) to estimate for the relative contribution
of the magnetic tension force and the horizontal gradient
pressure force to the vorticity. Since (ω2 − ω2

A)/ω
2
A is non-

constant in a non-uniform plasma we anticipate that the
magnetic tension force is the dominant contributor to vorticity
for ω2 ≈ ω2

A; while the horizontal pressure force is the dominant
contributor for ω2 >> ω2

A. Since

∇ × ∇hP
′ = kz

m

r
P′E1r + ikz

dP′

dr
E1ϕ ,

the result for vorticity is

∇ × Eξh =
d8

dr

im

r
P′E1z + kz 8

{
m

r
P′ E1r + i

dP′

dr
E1ϕ

}
. (59)

Equation (59) follows from Equation (53) when we remove from
this equation the contribution due to the parallel motions.
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In the same manner, we can consider the equation of motion
parallel to the magnetic field lines. From the 4th equation of
Equation (45) it follows that ξz is given by

ξz = ikz 9 P′, 9 = 1

ρ0(ω
2 − ω2

C)

v2S

v2S + v2A
. (60)

The result for vorticity associated with the parallel motion is then

∇ × (ξzE1z) = ikz

{
−d9

dr
P′E1ϕ + 9(−dP′

dr
E1ϕ + i m

r
P′E1r)

}
.

(61)
This shows that vorticity generated by the parallel motions is due
to the gradient pressure and vanishes in a pressureless plasma
when v2S = 0. The sum of ∇ × Eξh given by Equation (59) and

∇ × (ξzE1z) given by Equation (61) is equal to the result given in
Equation (53).

Equations (58) and (59) show that the horizontal motions
and vorticity associated with horizontal motions are controlled
by the function

8 = 1

ρ0(ω
2 − ω2

A)
.

Conversely Equations (60) and (61) show that the parallel
motions and vorticity associated with parallel motions are
controlled by the function

9 = 1

ρ0(ω
2 − ω2

C)

v2S

v2S + v2A
.

For non-axisymmetric MHD waves on a non-uniform plasma
column with a straight magnetic field all wave variables are non-
zero and coupled. The coupling factor is P′. This means that any
given variable can be expressed in terms of another wave variable.
Let us see what we can do with for example compression and
parallel vorticity. Together with the parallel displacement ξz these
are the two quantities that were used in section 2 to distinguish
between Alfvén waves andmagneto-sonic waves. The expressions
for compression ∇ · Eξ and for parallel vorticity (∇ × Eξ )z for
non-axisymmetric motions in a straight field can be rewritten in
compact form as

∇ · Eξ = NC P′, (∇ × Eξ )z = i m NV P′, (62)

with

NC = −ω2

ρ0 (v
2
S + v2A)(ω

2 − ω2
C)

,

NV = −1

r
{
ρ0(ω

2 − ω2
A)
}2

d

dr

{
ρ0(ω

2 − ω2
A)
}
. (63)

The ratio of parallel vorticity to compression is

| (∇ × Eξ )z |
| ∇ · Eξ |

=| m | | NV |
| NC | . (64)

In addition to the parallel component of vorticity also the
components in horizontal planes, i.e., (∇ × Eξ )ϕ , (∇ × Eξ )r are
as a rule non-zero in a non-uniform plasma. MHD waves turn
out to be very efficient in situ generators of vorticity in non-
uniform plasmas. This equation shows that a non-axisymmetric
compressional motion immediately generates vorticity and vice
versa a vortical motion generates compression. It is impossible
to have one property without the other one. MHD waves that
propagate compression but no vorticity or vice versa do not exist.
The waves have always mixed properties.

The cylindrical model with a straight magnetic field has a
Cartesian analogue. The Cartesian version has a vertical magnetic
field along the z- axis and the direction of inhomogeneity
along the x- axis. The cylindrical case with a straight field
and axi-symmetric waves with m = 0 then corresponds to
ky = 0. For ky = 0 the Cartesian equations for the wave
variables are decoupled in equations for the magneto-sonic
waves and equations for Alfvén waves. However, for ky 6= 0
the equations are coupled and the MHD waves have mixed
properties. Examples of this behavior can be found in Tirry and
Berghmans (1997), Tirry et al. (1997), De Groof and Goossens
(2000, 2002), and De Groof et al. (2002).

4. RESONANT ABSORPTION OF MHD
WAVES

Let us turn to the discussion of resonant absorption and resonant
MHD waves. We have already pointed out that the coupling
functions CA and CS depend on position. This implies that
the strength of the mixing of the wave properties depends
on position. MHD waves have mixed properties and have
different appearances in different parts of the plasma because
of the inhomogeneity of the plasma. The phenomenon that the
properties of MHDwaves change as the wave propagates through
a non-uniform environment is most clearly at work in resonant
absorption. For example, in case of resonant Alfvén waves the
MHD wave arrives at a position where it can behave as an
almost pure Alfvén wave. Similarly, in case of resonant cusp
waves the MHD arrives at a position where it can behave as a
slow wave for perpendicular propagation. Resonant absorption
and resonant waves have been discussed previously (see e.g.,
Goossens et al., 2011). We shall review aspects related to the
displacement components ξr , ξ⊥, ξ‖, and P′. We shall focus on

the behavior of compression∇·Eξ and vorticity∇×Eξ for resonant
waves. The coupling functions CA and CS play an important
role here also. Look back at the expression for the coefficient
function D (34). The local Alfvén frequency ωA(r) and the local
cusp frequency ωC(r) vary with position r and they map out two
intervals of frequencies

AC = [min ωA(r), max ωA(r) ],

SC = [min ωC(r), max ωC(r) ]

They are known as the Alfvén continuum (AC) and the slow or
cusp continuum (SC) (Appert et al., 1974; Chen and Hasegawa,
1974; Goedbloed, 1983). For a frequency ω either in the Alfvén
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continuum or the slow continuum the coefficient functionD = 0
at the position rA where the frequency is equal to the local Alfvén
frequency ω = ωA(rA) or at the position rC where the frequency
is equal to the local cusp frequency ω = ωC(rC). The system
of differential equations (33) have regular singular points at the
positions r = rA and r = rC.

Let us first consider the Alfvén continuum. For a frequency in
the Alfvén continuum the dispersion relation for Alfvén waves
is locally satisfied. Each magnetic surface oscillates at its own
Alfvén continuum frequency. Let us determine the structure
of the MHD wave with a frequency in the Alfvén continuum.
The MHD waves live on [0,+∞[ in the r- direction. Solutions
over the full spatial interval can be found in Poedts et al.
(1989, 1990), Sakurai et al. (1991a), Goossens and Poedts (1992),
Tirry and Goossens (1996), Ruderman and Roberts (2002), Van
Doorsselaere et al. (2004), and Soler et al. (2013). Away from the
resonant surface the MHD wave can be predominantly magneto-
sonic. During its propagation through the non-uniform plasma
the MHD wave might change in a wave that has both magneto-
sonic and Alfvén properties. Close to and at the resonant surface
the MHD wave is almost completely an Alfvén wave. Here we
focus on the spatial behavior close to the singular point r = rA
where ω = ωA(rA). We follow Sakurai et al. (1991b), Goossens
et al. (1992, 1995), and Tirry and Goossens (1996). They used
Frobenius-Fuchs solutions around the singular point r = rA
where ω = ωA(rA) and introduced a new radial variable
s = r − rA. This analysis is valid in the interval [−sA, sA]
where the linear Taylor polynomial is an accurate approximation
of ω2 − ω2

A(r):

ω2 − ω2
A ≈ 1A s, 1A = d

dr
(ω2 − ω2

A)rA (65)

The outcome of the application of the Frobenius-Fuchs method
is the fundamental conservation law for resonant Alfvén waves

CA(s) ≡ gBP
′ − 2fBBϕ,0 Bz,0

µrA
ξr = constant, (66)

and the solutions for ξr and P′

ξr(s) = gB

ρ0 B
2
0 1A

CA ln(| s |)+
{

ξ− s < 0
ξ+ s > 0,

P′(s) = 2fBBϕ,0Bz,0

µrA ρ0 B
2
01A

CA ln(| s |)+
{
P′− s < 0
P′+ s > 0.

(67)

All equilibrium quantities are evaluated at s = 0 (r = rA).
The solutions for ξr and P′ are characterized by a logarithmic
singularity and a jump. The jump in a quantity Q is defined as

[Q] = lim
s→0+

Q(s)− lim
s→0−

Q(s).

Recall the equation for ξ⊥

ρ0(ω
2 − ω2

A)ξ⊥ = i

B0
CA.

Hence close to s = 0

s ξ⊥ ≈ i
CA

ρ0 B0 1A
. (68)

This means that ξ⊥ has a 1/s- singularity and a δ(s)- contribution.
These singularities dominate those present in ξr and P′. The
equation for the parallel component ξ‖ is

ρ0(ω
2 − ω2

C)ξ‖ =
ifB

B0

v2S

v2S + v2A
CS.

The coefficient of ξ‖ in the left hand side of this equation is
finite and non-zero for frequencies in the Alfvén continuum. The
function CS is a linear combination of ξr and P′ and can contain
a logarithmic term ln(| s |) and a jump. This implies that ξ‖
contains at most a logarithmic term ln(| s |) and a jump and is
dominated by ξ⊥. Hence close to s = 0 we are in a situation that
closely resembles that described in Equation (10) when we make
the transformation

x → r, y →⊥, z →‖ (69)

and note that

| ξ‖ | ≤ | ξr | ≪ | ξ⊥, EξA ≈ ξ⊥E1⊥. (70)

The motion (70) in the Alfvén wave is predominantly in the ⊥-
direction and rapidly varying in the r- direction. The ≈ sign
means that the three components (ξ‖, ξr , ξ⊥) are non-zero but ξ⊥
is far larger in absolute value than the two other components.

Consider now Equations (41) for the components of ∇ × Eξ
and identify the first term in the right hand side of the equation
for (∇ × Eξ )‖ as the dominant term overall. Hence

(∇ × Eξ )‖ ≈ dξ⊥
dr

= d

dr

{
1

ρ0(ω2 − ω2
A)

i CA

B0

}

≈ − i CA

B0

1
{
ρ0(ω

2 − ω2
A)
}2

d

dr

{
ρ0(ω

2 − ω2
A)
}

≈ −i
CA

ρ0 B0 1A

1

s2
. (71)

(∇×Eξ )‖ has a 1/s2- singularity. The remaining components (∇×
Eξ )r and (∇ × Eξ )⊥ are non-zero and both have a 1/s- singularity
when fB 6= 0 and Q⊥ 6= 0. Hence use the transformation (69) to
help us to identify the inequalities (12) but now as

| (∇ × Eξ )⊥ | ≤ | (∇ × Eξ )r) | ≪ | (∇ × Eξ )‖ |, (72)

so that

∇ × Eξ ≈ (∇ × Eξ )‖E1‖. (73)

Here also the ≈ sign means that the three components (∇ × Eξ )
are non-zero but the parallel component is far larger in absolute
value than the two horizontal components.
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In summary

lim
s→0

| ξ⊥ |
| ξr |

= +∞, lim
s→0

| ξ⊥ |
| ξ‖ |

= +∞, lim
s→0

| (∇ × Eξ )‖ |
| (∇ × Eξ )r,⊥ |

= +∞. (74)

Hence the dominant dynamics is in the perpendicular motions.
The jumps in ξr and P′ (67) are due to dissipative effects. At and
in the vicinity of the resonant position s = 0 the resonant MHD
wave has very strong Alfvén wave properties. Its properties match
the properties derived on the basis of very simple principles
for Alfvén waves that mimic a resonant situation in section 2.
The resonant Alfvén wave is linked to the outside world by the
coupling function CA.

A comment on the case of axi-symmetric motions withm = 0.
The expressions for fB, gB, CA, CS for axi-symmetric motions
are given in (43). In particular it was pointed out that for
a twisted magnetic field with both a longitudinal component
Bz,0 and a non-zero azimuthal component Bϕ,0 the coupling
functions CA and CS are non-zero. Hence the preceding analysis
on resonant properties also applies to axi-symmetric motions.
Resonant absorption of axi-symmetric motions in the Alfvén
continuum was investigated by Giagkiozis et al. (2016) for an a
non-straight magnetic field and in the slow continuum by Yu
et al. (2017a,b) for a straight magnetic field. In addition, the
preceding analysis for the behavior of the various variables can be
repeated for a pressureless plasma. The additional simplification
is that ξ‖ = 0. The behavior of the resonant waves at and in the
vicinity of the resonant position is to a large extent insensitive to
plasma pressure.

The mathematical results in (68) for ξ⊥ and (71) for (∇ ×
Eξ )‖ mean that there are strong counterstreaming flows in the
perpendicular direction at and close to s = 0. Of course in reality
infinite values for ξ⊥ do not occur. We shall see that these infinite
values are replaced by finite and very large values. This is the
basis for the Kelvin-Helmholtz instability in Alfvén waves first
investigated by Terradas et al. (2008) and subsequently studied
by several groups (see e.g., Antolin et al., 2014, 2015, 2018).

Let us now turn to the slow continuum. The analysis for a
frequency in the slow continuum parallels that for Alfvén waves
(see e.g., Sakurai et al., 1991b; Goossens and Ruderman, 1995).
The MHD waves live on [0,∞[ . Here we focus on the spatial
behavior close to the singular point r = rC where ω = ωC(rC).
The variable s is now defined as s = r − rC with rC the position
whereω2 = ω2

C(rC). This analysis is valid in the interval [−sC, sC]
where the linear Taylor polynomial is an accurate approximation
of ω2 − ω2

C(r):

ω2 − ω2
C ≈ 1C s, 1C = d

dr
(ω2 − ω2

C)rC . (75)

The outcome is the fundamental conservation law for resonant
slow waves

CS(s) ≡ P′ −
2B2ϕ,0 ξr

µr
= constant, (76)

and the solutions for ξr and P′

ξr(s) = ω4
C

(B20/µ) ω2
A 1C

CS ln(| s |)+
{

ξ− s < 0
ξ+ s > 0,

P′(s) =
2 ω4

C B2ϕ,0

rC B20 ω2
A 1C

CS ln(| s |)+
{
P′− s < 0
P′+ s > 0.

(77)

Recall the equation for ξ‖

ρ0(ω
2 − ω2

C)ξ‖ =
ifB

B0

v2S

v2S + v2A
CS.

Hence close to s = 0

s ξ‖ =
ifB

B0 ρ0 1C

v2S

v2S + v2A
CS. (78)

This means that ξ‖ has a 1/s- singularity and a δ(s)- contribution.
These singularities dominate those present in ξr and P′.

The equation for the perpendicular component ξ⊥ is

ρ0(ω
2 − ω2

A)ξ⊥ = i

B0
CA.

The coefficient of ξ⊥ in the left hand side of this equation is
finite and non-zero for frequencies in the cusp continuum. The
function CA is a linear combination of ξr and P′ and can contain
a logarithmic term ln(| s |) and a jump. This implies that ξ⊥
contains at most a logarithmic term ln(| s |) and a jump and is
dominated by ξ‖. Hence close to s = 0 we are in a situation

| ξ⊥ | ≤ | ξr | ≪ | ξ‖ |, EξS ≈ ξ‖E1‖. (79)

The motion (79) in the slow wave is predominantly in the ‖-
direction and rapidly varying in the r- direction. The ≈ sign
means that the three components (ξ‖, ξr , ξ⊥) are non-zero but ξ‖
is far larger in absolute value than the two other components.

Recall from (39) the equation for ∇ · Eξ as

∇ · Eξ = −ω2

ρ0 (v
2
S + v2A)(ω

2 − ω2
C)

CS

and find that in the vicinity of s = 0 ∇ · Eξ behaves as

s (∇ · Eξ ) = − ω2
C

ρ0 1C (v2S + v2A)
CS. (80)

∇ · Eξ has a 1/s- singularity and a δ(s)- contribution in the same
way as ξ‖. Consider now Equations (41) for the components of

∇ × Eξ and identify the first term in the right hand side of the
equation for (∇ × Eξ )⊥ as the dominant term overall. Hence

(∇ × Eξ )⊥ ≈ −dξ‖
dr

= − d

dr

{
1

ρ0(ω2 − ω2
C)

ifB

B0

v2S

v2S + v2A
CS

}

≈ ifB

B0

v2S

v2S + v2A
CS

1
{
ρ0(ω

2 − ω2
C)
}2

d

dr

{
ρ0(ω

2 − ω2
C)
}
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≈ i
fB

ρ0 B0 1C

v2S

v2S + v2A
CS

1

s2
. (81)

(∇ × Eξ )⊥ has a 1/s2-singularity. The remaining components
(∇ × Eξ )r and (∇ × Eξ )‖ are non-zero and both have a 1/s-
singularity when gB 6= 0 and P‖ 6= 0.

| (∇ × Eξ )‖ | ≤ | (∇ × Eξ )r) | ≪ | (∇ × Eξ )⊥ |, (82)

so that

∇ × Eξ ≈ (∇ × Eξ )⊥E1⊥. (83)

Here also the ≈ sign means that the three components
(∇ × Eξ ) are non-zero but the perpendicular component
is far larger in absolute value than the radial and parallel
components.

In summary

lim
s→0

| ξ‖ |
| ξr |

= +∞, lim
s→0

| ξ‖ |
| ξ⊥ | = +∞, lim

s→0

| (∇ × Eξ )⊥ |
| (∇ × Eξ )r,‖ |

= +∞. (84)

The dominant dynamics is in the component in the
magnetic surfaces and parallel to the magnetic field lines.
In the vicinity of the resonant magnetic surface the
wave is almost exactly a slow wave in a homogeneous
plasma with its wave vector almost perpendicular to the
magnetic field.

The mathematical results in (78) for ξ‖ and (81) for

∇ × Eξ⊥ mean that there are strong counterstreaming flows
in the parallel direction at and close to s = 0. Of
course in reality infinite values for ξ⊥ do not occur. We
shall see that these infinite values are replaced by finite
and very large values. Our prediction is that this is the
basis for the Kelvin-Helmholtz instability in slow resonant
waves. This possible Kelvin-Helmholtz instability has not yet
been studied.

5. CONCLUSIONS

Pure Alfvén waves and pure magneto-acoustic waves exist in
a uniform plasma of infinite extent. In a non-uniform plasma
the MHD waves combine the properties of the classic Alfvén
waves and of magneto-sonic waves in a uniform plasma of
infinite extent. The mixing of the properties is controlled by the
coupling functions CA and CS. The general rule is that MHD
waves in a non-uniform plasma propagate both compression
and parallel vorticity and that the parallel, perpendicular, and
radial components of displacement and vorticity are non-zero.
Vortex motions driven by MHD waves are as far as we can
anticipate not different from vortex motions generated by other
sources. Our analysis shows that MHD waves in non-uniform

plasmas are very efficient in situ generators of vorticity. In a
non-uniform plasma MHD waves can fill the whole space with
vorticity. Vortex motions are expected to be very prominent
where resonant conditions are satisfied. The signatures of vortex
motions in the process of resonant Alfvén damping are very
strong sheared azimuthal motions. Observational aspects of
these strong sheared azimuthal motions and possible turbulent
behavior have been investigated by Okamoto et al. (2015) and
compared to results of numerical simulations by Antolin et al.
(2015). Of course in a pressureless plasma the parallel component
of the displacement is zero. The exception to the general rule
of mixed properties are axi-symmetric waves in the presence
of a straight magnetic field. The coupling functions depend
on position. Hence as an MHD waves propagates through a
non-uniform plasma its properties change. Resonant absorption
is a clear example of this phenomenon. In case of resonant
Alfvén waves the MHD wave arrives at a position where it
behaves as an almost pure Alfvén wave. Similarly, in case of
resonant cusp waves the MHD arrives at a position where it
behaves as a slow wave for perpendicular propagation. Resonant
absorption for MHD waves with frequencies in the Alfvén / slow
continuum is controlled by the coupling functions CA and CS.
Analysis of themotions associated with the resonant Alfvén /slow
waves shows that the resonant waves are characterized by strong
shear in the perpendicular/parallel component of displacement
with large values of the parallel/perpendicular component of
vorticity. This strong shear causes violent KH-instabilities that
accelerate the damping of the MHD waves and facilitate heating
of plasma.
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The transverse structure of coronal loops plays a key role in the physics but the small

transverse scales can be difficult to observe directly. For wider loops the density profile

may be estimated by forward modeling of the transverse intensity profile. The transverse

density profile may also be estimated seismologically using kink oscillations in coronal

loops. The strong damping of kink oscillations is attributed to resonant absorption and

the damping profile contains information about the transverse structure of the loop.

However, the analytical descriptions for damping by resonant absorption presently only

describe the behavior for thin inhomogeneous layers. Previous numerical studies have

demonstrated that this thin boundary approximation produces poor estimates of the

damping behavior in loops with wider inhomogeneous layers. Both the seismological and

forward modeling approaches suggest loops have a range of layer widths and so there is

a need for a description of the damping behavior that accurately describes such loops.

We perform a parametric study of the damping of standing kink oscillations by resonant

absorption for a wide range of inhomogeneous layer widths and density contrast ratios,

with a focus on the values most relevant to observational cases. We describe the

damping profile produced by our numerical simulations without prior assumption of

its shape and compile our results into a lookup table which may be used to produce

accurate seismological estimates for kink oscillation observations.

Keywords: magnetohydrodynamics (MHD), Sun: corona, Sun: magnetic fields, Sun: oscillations, waves and

instabilities

1. INTRODUCTION

Coronal loops are modeled as density structures in the solar atmosphere which act as waveguides
for several types of magnetohydrodynamic (MHD) modes. One of the most readily detectable
are standing kink oscillations, which causes periodic transverse perturbations of the loop axis.
These oscillations were first detected using the Transition Region And Coronal Explorer (TRACE;
Aschwanden et al., 1999, 2002; Nakariakov et al., 1999). The number of observations has greatly
increased since the launch of the Atmospheric Imaging Assembly (AIA; Lemen et al., 2012)
onboard the Solar Dynamics Observatory (SDO). Catalogs of observations have been produced
by Zimovets and Nakariakov (2015) and Goddard et al. (2016). Kink oscillations attract a lot of
attention due to their potential for seismological studies of the coronal plasma (e.g., reviews by
De Moortel and Nakariakov, 2012; Stepanov et al., 2012; Pascoe, 2014; De Moortel et al., 2016),
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in particular to estimate the strength of the coronal magnetic
field (e.g., Nakariakov et al., 1999; Nakariakov and Ofman, 2001;
Van Doorsselaere et al., 2007; White and Verwichte, 2012; Pascoe
et al., 2016; Sarkar et al., 2016).

Kink oscillations are observed to be strongly damped, only
having a detectable amplitude for a few cycles, which is
attributed to resonant absorption (e.g., Chen and Hasegawa,
1974). Coronal loops are modeled as having a higher density
than the surrounding plasma, and for resonant absorption to take
place only requires that the transition between the higher and
lower density plasma is smooth. Inside this inhomogeneous layer,
wave energy is transferred from kink to Alfvén modes where
the local Alfvén speed matches the kink speed Ck. The timescale
of this process is comparable to the period of oscillation (e.g.,
Hollweg and Yang, 1988; Goossens et al., 1992, 2002; Ruderman
and Roberts, 2002).

Resonant absorption is a robust mechanism which occurs
even in loops which are not cylindrically symmetric (Terradas
et al., 2008b; Pascoe et al., 2011). Furthermore, numerical
studies demonstrate that the Kelvin-Helmholtz instability (e.g.,
Terradas et al., 2008a; Antolin et al., 2015; Okamoto et al.,
2015; Magyar and Van Doorsselaere, 2016; Hillier et al., 2019)
is most efficient in loops with thin inhomogeneous layers. This
instability leads to a mixing of plasma and effective widening of
the inhomogeneous layer (e.g., Goddard et al., 2018; Karampelas
and Van Doorsselaere, 2018) in addition to increased heating due
to phase mixing (e.g., Heyvaerts and Priest, 1983; Karampelas
et al., 2017; Pagano et al., 2018; Guo et al., 2019) which can
account for observations of broad differential emission measures
in coronal loops (Van Doorsselaere et al., 2018).

The transverse density profile can be described by two
dimensionless parameters; the density contrast ratio being the
ratio of the density at the center of the loop to the density far
from it ζ = ρ0/ρe, and the width of the inhomogeneous layer
normalized to the minor loop radius ǫ = l/R. The damping rate
due to resonant absorption depends on both of these parameters.
For this reason the problem is underdetermined when trying
to infer ζ and ǫ from the (exponential) damping time alone
and some additional information is required (e.g., Goossens
et al., 2008; Arregui and Asensio Ramos, 2014; Arregui and
Goossens, 2019). Pascoe et al. (2013) produced a more accurate
description of the damping profile due to resonant absorption,
which includes the initial Gaussian damping regime of kink
oscillations in addition to the later exponential damping regime.
This damping profile is characterized by two damping times
and so allows both ζ and ǫ to be estimated. This method
was first applied by Pascoe et al. (2016) and later extended by
Pascoe et al. (2017a,c) to include additional effects such as a
time-dependent period of oscillation, the presence of additional
parallel harmonics, and the use of Bayesian analysis (e.g.,
Arregui et al., 2013; Arregui, 2018) to improve the estimation
of uncertainties. This seismological method requires both the
Gaussian and exponential damping regimes to be accurately
detected in the data and so depends on the oscillation data having
a sufficiently high quality.

Another method for estimating ǫ is by forward modeling the
appearance of the density profile for direct comparison with the

transverse EUV intensity profile of the loop (Goddard et al.,
2017; Pascoe et al., 2017b). It is possible to apply both of these
methods simultaneously to observational data. This was recently
demonstrated by Pascoe et al. (2018) for a loop for which the
oscillation data alone was too noisy to allow strong constraint
of ζ and ǫ. However, the spatial information from the intensity
profile produced a strong constraint on ǫ, such that the oscillation
data was only required to infer ζ when both methods were
applied simultaneously. On the other hand, the value of ǫ ≈ 0.9
for this observation is significantly outside the validity of the
thin boundary (TB) approximation. To correct for this effect,
Pascoe et al. (2018) performed a narrow parametric study using
the TB estimate as a starting point. The result of this study
was a change in the estimated value of ζ from the TB value
of 2.3 to a value of 2.8 based on numerical simulations for
ǫ = 0.9. This case demonstrates the need for a seismological
method that can account for the behavior of kink oscillations
in loops with wide inhomogeneous layers without the need for
separate studies and corrections applied afterwards. The use of
a self-consistent seismological method is particularly important
for future development of techniques for data analysis where
multiple observational signatures are forward modeled and a
systematic error arising from the TB approximation would have a
deleterious influence on other observables. For example, the EUV
intensity is I ∝ ρ2 and so a change in inferred density contrast
from 2.3 to 2.8 in the example above corresponds to an intensity
change by a factor of approximately 1.5.

In this paper we study the behavior of kink oscillations
of coronal loops for various transverse density profiles. Our
aim is to provide a simple method of estimating the damping
profile for a chosen profile which may be used for seismological
investigations. The damping profiles for resonant absorption
used in previous studies and this one are described in section 2.
The results of our parametric study and the generation of a
lookup table (LUT) are presented in section 3. In section 4 we
present examples of the application of our method to synthetic
test cases and observational data. Conclusions are presented in
section 5.

2. DAMPING PROFILE FOR KINK
OSCILLATIONS

Initial applications of resonant absorption to explain the strong
damping of kink oscillations (Goossens et al., 1992, 2002;
Ruderman and Roberts, 2002) considered only the asymptotic
state of the system. The damping profile was an exponential of
the form

D (t) = exp

(
− t

τd

)
, (1)

τd = 4P

π2κǫ
, (2)

where τd is the exponential damping time, P is the period
of oscillation, κ = (ρ0 − ρe)/(ρ0 + ρe) and the factor
4/π2 corresponds to a linear transition between ρ0 and ρe. In

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 April 2019 | Volume 6 | Article 2255

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Pascoe et al. Coronal Seismology Using a Lookup Table

this paper we consider a linear profile for the density in the
inhomogeneous layer since it is the simplest smooth profile, can
describe the widest range of possible structures, and is the only
profile for which the analytical solution for all times is presently
known (see discussion section 6.2 of Pascoe et al., 2018).

Numerical simulations by Pascoe et al. (2012) demonstrated
that the damping profile of strongly damped propagating kink
oscillations is more accurately described by a Gaussian damping
profile rather than an exponential one. The existence of these
two regimes was reconciled by the analytical description derived
by Hood et al. (2013) which described the damping profile
for all times and demonstrates that Gaussian and exponential
profile can be obtained in the limits of small and large time,
respectively. The derivation by Hood et al. (2013) was performed
for propagating kink waves with the damping rate expressed in
terms of damping length scales but we may consider the case
of standing kink waves with a damping time using the long
wavelength limit λ = CkP, giving

D (t) = exp

(
− t2

2τ 2g

)
, (3)

τg = 2P

πκǫ1/2
. (4)

We note that the relationship between damping length
scales (propagating waves) and timescales (standing waves)
has been demonstrated explicitly for the exponential regime
(e.g., comparing the derivations of Goossens et al., 2002;
Terradas et al., 2010) but presently not the Gaussian regime.
Nonetheless we demonstrate the applicability of this relationship
(proposed by Pascoe et al., 2010) by comparison with our
numerical simulations. The applicability of this relationship has
also previously been demonstrated in numerical simulations
by Ruderman and Terradas (2013) and Magyar and Van
Doorsselaere (2016).

Pascoe et al. (2013) proposed a general damping profile (GDP)
that combined both of these damping regimes into a single
approximation. This is described in terms of a switch from
the Gaussian damping profile that applies at the start of the
oscillation to the exponential profile which applies later.

D (t) =





exp

(
− t2

2τ 2g

)
t ≤ ts

As exp
(
− t−ts

τd

)
t > ts

, (5)

ts = P

κ
, (6)

where the switch from the Gaussian to exponential damping
regime occurs at ts and As = D (t = ts).

The above damping profiles are also based on the thin tube
approximation. In this limit the period of the fundamental
standing kink mode is

Pk = 2L/Ck (7)

where L is the loop length, and the kink speed for a low-β plasma
(uniform magnetic field) is

Ck = CA0

√
2ζ

ζ + 1
, (8)

where CA0 is the internal Alfvén speed. The thin tube thin
boundary (TTTB) approximation for the period of oscillation of
kink modes therefore depends on ζ but not ǫ (Goossens et al.,
2008). However, the parametric studies by Van Doorsselaere et al.
(2004) and Soler et al. (2014) find that Pk does depend on ǫ

outside of the applicability of the TB approximation.
To illustrate the different damping profiles, Figure 1 shows the

results of our numerical simulations (described in section 3) for
three values of ǫ with ζ = 2. For this value of density contrast
the GDP suggests a switch from the Gaussian to exponential
damping regime at t = 3P. For kink oscillations in low density
contrast loops such as these, the Gaussian damping profile (blue
curves) provides a much better description than the exponential
damping profile (red curves), and the general damping profile
(green curves) further improves the description for later times. As
expected, all three analytical profiles become poorer as ǫ increases
and the TB approximation becomes less appropriate.

In this paper we wish to characterize the damping behavior
of kink oscillations as accurately as possible, and without prior
assumption of the form of the damping profile. The plus
symbols in Figure 1 represent the amplitudes Ai which we use
to characterize the oscillation. These amplitudes are defined at
every half cycle of the oscillation. The LUT damping profile
(dashed lines) is constructed from these amplitudes by spline
interpolation. The dashed lines indicate that this method allows
us to accurately describe the damping of the kink oscillation,
albeit at a cost of requiring more information. The exponential
and Gaussian damping profiles can each be characterized by
a single parameter, i.e., the damping time τd or τg. The
GDP combines both the Gaussian and exponential damping
regimes and so is characterized by both these damping times
(with the switch time given in terms of these two parameters
in Equation 6). For the six cycles indicated in Figure 1 our
interpolation method uses 13 parameters, or more generally 2n+
1 parameters for n cycles. On the other hand, this number is
still sufficiently small that the results of hundreds of numerical
simulations can be compiled into a lookup table of minimal size.

For each of the three simulations in Figure 1, and the
additional simulations presented in section 3, the amplitudes
Ai used to describe the LUT damping profile were found by a
least-squares fit to the data using MPFIT (Markwardt, 2009).
Simulation data covered at least six cycles of the oscillation, with
a greater number for simulations with smaller values of ζ or ǫ for
which the damping is weaker and so there are a greater number
of cycles at an observable amplitude. This is also intended to
ensure that the exponential damping regime is present in the
data, which occurs later for smaller ζ . This allows the damping
profile to be extrapolated beyond the number of simulated cycles
using an exponential profile with the last measured damping
time. We require that the LUT damping profile function is able
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FIGURE 1 | Comparison of kink oscillations calculated by numerical simulations (solid lines) with the analytical damping profiles (colored lines). The red, blue, and

green lines correspond to the exponential, Gaussian, and general damping profiles, respectively. The plus symbols represent the amplitudes used to characterize the

oscillation in our lookup table (LUT). The LUT damping profiles (dashed lines) are constructed from these amplitudes by spline interpolation. The left, middle, and

right panels show the results for ǫ = 0.1, 0.5, and 1.0, with ζ = 2 for all cases.

to return results for arbitrary values of time in order for it to
appropriately handle requests from the user or from a fitting
routine transparently i.e., without needing to take the details of
individual simulations into account.

3. PARAMETRIC STUDY

In this section we study the behavior of kink oscillations in
coronal loops for various combinations of ζ and ǫ. Soler
et al. (2014) and Van Doorsselaere et al. (2004) performed
similar numerical studies investigating the damping time for
the exponential regime. These studies demonstrated that the
thin boundary approximation produces poor estimates of the
damping behavior in loops with wider inhomogeneous layers.

As in Soler et al. (2014), we consider L/R = 100 which
is typical for observations of standing kink oscillations. Weak
dependence of the damping on the longitudinal wavenumber
kz has been demonstrated by Van Doorsselaere et al. (2004).
Numerical simulations were performed using a Lax-Wendroff
code to solve the linearMHD equations in cylindrical coordinates

(r, θ , z) for m = 1 symmetry corresponding to kink oscillations
(and the Alfvén waves generated by resonant absorption). The
magnetic field is constant and aligned with the z-direction.
This code was previously used in Pascoe et al. (2012, 2013,
2015) and Hood et al. (2013) to study the spatial damping of
propagating kink waves and here is applied to the case of the
temporal damping of standing kink waves by appropriate choice
of boundary and initial conditions. The boundary conditions
are line-tied to simulate the loop footpoints being fixed in the
photosphere, while the boundary in the r-direction is placed
sufficiently far away to not affect the results. The fundamental
longitudinal harmonic of the standing kink mode is excited by a
perturbation to the radial and azimuthal velocities of the form

v (r, θ , z) = (vr , vθ , vz) = (ξr cos θ , ξθ sin θ , 0) sin (πz/L), (9)

ξr (r) =
{

1 r ≤ R
R2/r2 r > R

, (10)

ξθ (r) =
{

−1 r ≤ R

R2/r2 r > R
. (11)

In the following simulations, the numerical domain covers r =
[0, 10R] and z = [0, 100R], with a resolution of 1, 000 × 1, 000
grid points. Each of our 300+ simulations took approximately
1 h to run using 80 × 2.8 GHz processor cores. We study the
standing mode by considering the variation in the amplitude of
the transverse velocity measured at the loop apex z = L/2.

Figure 2 shows the simulations performed in our parametric
study which were used to generate the first version of our lookup
table. The solid, dashed, and dotted lines correspond to the

damping rates shown in the right panel. These damping profiles
are based on the TB approximation for the Gaussian damping

profile and so will not accurately describe the behavior for large

ǫ but serve as an indication of the range of parameters we are
interested in considering with respect to observational studies.

The curves demonstrate that we are not equally interested in all

regions of the ζ -ǫ parameter space. Large amplitude standing
kink oscillations are typically observed for fewer than 6 cycles

(e.g., Goddard and Nakariakov, 2016) and so we are mainly
interested in parameters which produce this level of damping.
The dotted, solid, and dashed lines correspond to τg/P = 1, 2,

and 5, respectively, and indicate the parameters we expect to be
relevant to observations. For large values of both ζ and ǫ, kink
oscillations would be very strongly damped and hence unlikely
to be reliably detected. The shorter time series available would

also generally limit the seismological information that could be
obtained. Unlike ǫ which has the defined upper limit of 2, there is
no upper limit for ζ . However, the damping rate is asymptotic in
this limit and so we can consider a reasonable upper limit, which
is taken to be 7 in this study but may be extended in the future
(e.g., high contrast filament threads considered by Arregui et al.,
2008). For small values of both ζ and ǫ the oscillations would
be weakly damped. Such oscillations are not typically observed,
although we are still interested in the behavior for small values
of ǫ with regard to checking convergence of our results to the
analytical profiles based on the TB approximation.

The distribution of the simulations we have performed reflects
these areas of interest. When compiling the results of these
simulations into a lookup table, it is therefore not convenient
to use a 2D array to describe the ζ -ǫ plane. Instead, the results
are considered as a list of scattered positions in the parameter
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FIGURE 2 | The black circles denote the 300 numerical simulations that comprise version 1.0 of our LUT. The solid, dashed, and dotted lines correspond to the

damping rates shown in the right panel. These damping profiles are based on the TB approximation for the Gaussian damping profile but serve as an indication of the

range of parameters we are interested in considering with respect to observational studies.

space using the IDL routine GRIDDATA which can be used to
interpolate our simulation results to return the damping profile
for an arbitrary value of ζ and ǫ. Additional simulations were
performed for testing purposes, including generating synthetic
observational data used in section 4. These additional simulations
are not included version 1.0 LUT but may be in future
applications of the LUT to actual observational data. The use of
a LUT and interpolation methods for scattered data allows the
method to be improved over time by incorporating additional
results as they are obtained. Other examples of a LUT strategy for
solar applications include the CHIANTI emission database (Del
Zanna et al., 2015) used as part of EUV forward modeling codes
such as FOMO (Van Doorsselaere et al., 2016), and the CAISAR
code for inversions of solar Ca II spectra (Beck et al., 2015).

The LUT and the corresponding IDL code are available at
https://github.com/djpascoe/kinkLUT. The routine requires as
input the values of ǫ, ζ , and the normalized times tn = t/P
at which the damping profile is desired. The value of each
amplitude Ai is determined by 2D interpolation of the simulation
results using the IDL routine GRIDDATA. (In this paper we
use the linear method, chosen as the simplest method with
fewest assumptions, for which requested grid points are linearly
interpolated from triangles formed by Delaunay triangulation.
These triangles were constructed with the TRIANGULATE
routine and are included in the LUT save file). The damping
profile is then returned by spline interpolation of these
amplitudesAi for the user-requested times tn. This procedure can
be used within a forward modeling function used for comparing
a model with data. For example, a simple model for an oscillation
with a single harmonic and no background trend, as considered
in this paper, is

y (t) = A0 sin

(
2π t

P
+ φ

)
DLUT (tn, ǫ, ζ ) , (12)

where A0 is the initial amplitude of a sinusoidal oscillation with
period P and phase shift φ, and the damping profileDLUT is based
on our lookup table.We demonstrate the results of such amethod
in section 4.

3.1. Dependence of Period of Oscillation
and Damping Rate on Transverse Density
Profile
Here we compare the results of our parametric study with the
analytical profiles discussed in section 2 and previous numerical
studies.

Figure 3 shows the dependence of the kink mode behavior
on ζ . For an exponential or Gaussian damping profile it is
convenient to characterize the damping with the damping time
(or length scale for propagating waves). However, in this study we
make no assumption about the shape of the damping profile and
so we consider the damping which has occurred after a certain
time, or a certain number of oscillation cycles since the period of
oscillation also depends on ζ . The colored lines correspond to the
theoretical damping rates based on the TB approximation and an
exponential (red), Gaussian (blue), or general (green) damping
profile.

The top panels of Figure 3 demonstrate the case of a thin
inhomogeneous layer (ǫ = 0.1) where the TB approximation
is appropriate. The top left panel reproduces the known
dependence of the shape of the damping profile on ζ . For
lower density contrasts the Gaussian profile better describes the
damping. The GDP which combines both profiles, with a switch
from Gaussian to exponential that depends on ζ , provides a
significantly better approximation for all values of ζ . The switch
time occurs at 5P for ζ = 1.5 and so the general and Gaussian
damping profiles are identical for ζ ≤ 1.5.

The bottom panels of Figure 3 demonstrate the case of a finite
inhomogeneous layer (ǫ = 0.5) where the TB approximation
is less appropriate. The estimated period of oscillation is still
reasonable but the damping is being significantly overestimated.
The amplitude is taken at the earlier time of 2.5P since the
damping is stronger for the larger value of ǫ. At this earlier time,
the Gaussian damping profile is always a better approximation
than the exponential profile for the range of ζ ≤ 7 considered.
The switch time occurs at 2.5P for ζ ≈ 2.3, and so it is
expected that the Gaussian estimate is better than the exponential
estimate for density contrasts lower than this value. However,
it also remains a better overall estimate for contrasts not too
much above this value due to the exponential estimate being
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FIGURE 3 | Dependence of the damping of the kink oscillation on the density contrast ratio ζ . The top panels show results for ǫ = 0.1 and the bottom panels for

ǫ = 0.5. The left panels show the kink oscillation amplitude (plus symbols) taken at a fixed time (t = 5P or 2.5P) The colored lines show the estimates based on the

general damping profile (green), Gaussian damping profile (blue), and exponential damping profile (red). The right panels show the variation of the period of oscillation

compared with the theoretical value Pk.

so poor during the first cycle or so. The Gaussian estimate
therefore does not become poorer than the exponential estimate
by the time of 2.5P considered in the bottom panel of Figure 3,
whereas it does in the top panel. Whether the Gaussian or
exponential estimate is better therefore depends on not only
when the switch occurs but also how much data is considered
after that switch. The general damping profile provides the best
approximation for all parameters and times, but is also inaccurate
when there is significant damping due to the limitations of the TB
approximation it is based upon.

The right panels of Figure 3 show the fractional error in
the period of oscillation estimated as Pk by Equation (7). The
errors are typically very small since the thin tube approximation
(ω/kz = Ck) is appropriate for our simulations with L/R = 100.
The error increases with ζ due to the stronger dispersion present
in higher contrast loops, and is also found to increase with ǫ (see
also Figures 4, 6).

Figure 4 shows the dependence of the kink mode behavior on
ǫ. The top panels show results for ζ = 2 at t = 2.5P, i.e., the
behavior at an early time for a low density contrast ratio. For
ζ = 2 the switch for Gaussian to exponential occurs at t = 3P and
so the Gaussian and general damping profiles are identical before
this time, and are a significantly better approximation than the
exponential profile. The bottom panels show results for ζ = 7 at
t = 5P, i.e., having both a sufficiently high density contrast and a
sufficiently large number of cycles for the exponential damping

profile to always be a better approximation than the Gaussian
profile, though the GDP remains an improvement over both.

Figure 5 shows 2D contours for the amplitude of the kink
oscillation at t = 3P (top left panel) and the fractional errors
of the corresponding estimates based on the TB approximation.
The errors tend to zero in the appropriate limit ǫ → 0, otherwise
each approximation underestimates the amplitude. The Gaussian
and GDP estimates are also accurate in the limit ζ → 1 since
they describe the initial stage of resonant absorption, whereas the
exponential estimates remain poor in this limit when ǫ > 0.

Figure 6 shows the fractional error in the period of oscillation
estimated using the TB approximation (Equation 7). The TB
approximation underestimates the period of oscillation. The
dependence of the error on ζ and ǫ is similar to that found
by Soler et al. (2014) (i.e., being proportional to the strength
of the damping due to resonant absorption) but the magnitude
is smaller, remaining less than 6%. Soler et al. (2014) report an
error of up to 45% in their study which considers ζ up to 20,
whereas we restrict our attention to the parameter range most
relevant to observations (e.g., ζ ≤ 3.5 for the largest values of ǫ

in Figure 2). However, even accounting for this there remains a
discrepancy and Soler et al. (2014) find errors greater than 30%
for a comparable parameter range.

Figure 7 shows the difference in fractional error using the
exponential damping profile alone compared with the GDP
based on Figure 5. It indicates the GDP analysis is always an

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 April 2019 | Volume 6 | Article 2259

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Pascoe et al. Coronal Seismology Using a Lookup Table

FIGURE 4 | Dependence of the damping of the kink oscillation on the inhomogeneous layer width ǫ. The top panels show results for ζ = 2 and the bottom panels

for ζ = 7. The left panels show the kink oscillation amplitude (plus symbols) taken at a fixed time (t = 5P or 2.5P) The colored lines show the estimates based on the

general damping profile (green), Gaussian damping profile (blue), and exponential damping profile (red). The right panels show the variation of the period of oscillation

compared with the theoretical value Pk.

improvement over the exponential profile, and the difference is
largest for lower ζ , typically ∼ 60% for ζ < 2 and ∼ 30% for
ζ > 2. The right panel of Figure 7 shows how the fractional error
(averaged over 300 numerical simulations) varies as a function
of time for each of the profiles based on the TB approximation.
Each of the errors increase in time due to the cumulative effect
of overestimating the damping rate, however the GDP remains
at all times a significantly better estimate of the kink oscillation
amplitude. The GDP (Equation 6) is a simple modification of the
exponential damping profile with no additional parameters and
so this improved estimate comes at effectively no computational
cost. Our LUT method is based on several interpolation routines
and so is slower to calculate than the GDP but remains practical.

The larger errors for analysis based on the exponential profile
arise because it provides a very poor description for the initial
behavior of kink oscillations. Pascoe et al. (2013) demonstrate
that the seismological estimate based on the exponential profile
is significantly improved by ignoring the first two cycles of the
oscillation and only analysing the remaining data. However, this
is not a practical solution for detailed analysis of oscillations
since it means the initial amplitude cannot be estimated, which
is important for nonlinear effects. It would also hinder the
potential to detect higher harmonic oscillations which have a
shorter period and so typically only exist for the first few cycles of
the fundamental mode (e.g., Pascoe et al., 2017a). For example,
if the fundamental mode is observable for six cycles then the
third harmonic with P3 ≈ P1/3 but the same damping per

period would only be detectable during the first two cycles of the
fundamental mode.

4. SEISMOLOGICAL APPLICATION

In this section we demonstrate the application of our LUT as
a seismological tool to use the observed damping of a kink
oscillation to infer information about the transverse density
profile of the oscillating loop.

Figure 8 shows the results of a test of our method for a kink
oscillation simulated in a loop with ζ = 2.15 and ǫ = 0.75.
This data point is not included in version 1.0 of our LUT used
in the following analysis. The top panel shows the analyzed
oscillation which includes uniformly distributed random noise
with a maximum amplitude of 5% of the initial kink oscillation
amplitude. The middle and bottom panels show 2D histograms
approximating the marginalized posterior probability density
function for ζ and ǫ based on 105 Markov chain Monte Carlo
(MCMC) samples of the GDP and LUT models, respectively
(see also Pascoe et al., 2017a, 2018). This data comes from a
simulation with an inhomogeneous layer width that is sufficiently
large for the TB approximation to produce inaccurate results. The
GDP approach overestimates the value of ǫ, and correspondingly
underestimates the value of ζ .

The seismological estimates in Figure 8 demonstrate that it
is important to consider the dependence of the damping on ζ
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FIGURE 5 | Amplitude of the kink oscillation at t = 3P (top left) and the fractional errors of the corresponding estimates based on the TB approximation and an

exponential (top right), Gaussian (bottom left), or the general (bottom right) damping profiles.

FIGURE 6 | Error in the period of oscillation estimate based on the TB

approximation as given by Equation (7).

and ǫ, aside from the quality of the observational data. Due
to the asymptotic nature of the inversion curve, the extent to
which ζ and ǫ are constrained depends on whether the density
contrast is high or low; near the low-ζ asymptote ζ is well-
constrained but ǫ is poorly constrained, and vice versa for the
high-ζ asymptote. This is demonstrated in Figure 8 where the

GDP inversion underestimates the actual value of ζ = 2.15 and
produces very low estimates of ζ . The red bars indicate the 95%
credible intervals and show the value of ζ is well-constrained (but
excludes the actual value of ζ due to the systematic error from
the TB approximation). In comparison, the inversion results
using the LUT are less constrained for ζ but the maximum a
posteriori probability (MAP) estimate of ζ ≈ 2.11 is consistent
with the actual value for the synthetic data. The nature of these
constraints makes 2D histograms such as those in Figure 9 the
simplest way of representing the available information for the
transverse density profile. Quoting confidence intervals alone can
be misleading if the asymptotic behavior is not kept in mind.
Furthermore, 1D histograms for ζ and ǫ would generally not
be well described using a normal distribution (they have been
approximated by the exponentially modified Gaussian function
by Pascoe et al., 2017a) and so estimates of uncertainties based
on assuming this distribution would not be accurate.

Figure 9 shows the results of a test of our method for a loop

with a thin boundary layer ζ = 3.75 and ǫ = 0.15 (this data point

is again not included in version 1.0 of our LUT). In this limit we
see both the GDP and LUT inversions producing good estimates

of the actual value of ǫ. The asymptotic behavior means ζ is far

less constrained than ǫ, and less constrained for the LUT results

since the inferred value of ζ is larger (it is underestimated using
the GDP).
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FIGURE 7 | Difference between the fractional error using the exponential damping profile alone compared with the GDP (left), and the mean fractional error as a

function of time for each of the three TB profiles (right).

4.1. Comparison With Previous
Spatiotemporal Analysis
Pascoe et al. (2018) presented a method for spatiotemporal
analysis of coronal loops which used both the transverse EUV
intensity profile and the standing kink oscillation to constrain the
properties of the coronal loop. In that work the spatial analysis
(forward modeling of the transverse EUV profile) provided a
value of ǫ ≈ 0.9 and so a narrow parametric study for that
particular observation was performed to estimate the effect of
a thick inhomogeneous layer on the seismological component
of their analysis. Here we demonstrate how the results may be
reproduced from the much wider parametric study in this paper.

Figure 10 shows the results of applying our method to the
oscillation of Leg 1 as previously analyzed. We consider the
prior for ǫ with the form of a normal distribution with a
mean of 0.9 and standard deviation of 0.1 (e.g., Figure 4 of
Pascoe et al., 2018). The seismological analysis of the oscillation
then proceeds as in section 4.1 of Pascoe et al. (2018), with
results based on 106 MCMC samples of a model consisting of
a damped sinusoidal oscillation which begins at a start time
t0 ≈ 4 minutes and having a background trend described by
spline interpolation using six reference points across the time
series.We consider both the GDP and LUT damping profiles. The
top panels in Figure 10 show the loop position (plus symbols)
with the color contour representing the normalized posterior
predictive probability density for each damping profile model.
The GDP (left panels) results infer a value of ζ = 2.1+0.4

−0.2 (based
on the MAP value and 95% credible interval) consistent with the
previous analysis. The narrow parametric study in section 6.4 of
Pascoe et al. (2018) suggested ζ ≈ 2.8 as an improved estimate,
correcting for the TB approximation used in the GDP. The right
panels of Figure 10 show our analysis using the LUT damping
profile, which infers ζ = 2.9+0.9

−0.5, consistent with that estimate.
The Bayes factor (e.g., Jeffreys, 1961; Kass and Raftery, 1995) for
the LUTmodel compared with the GDP is K = 1.5, i.e., too small
to distinguish which model is better based on their reproduction
of the data alone. This is in contrast to the very strong Bayesian
evidence for the GDP compared with an exponential damping
profile found in Pascoe et al. (2018). For this data, the shape
of the damping profile produced by the LUT is very similar to

the shape produced by the GDP (but significantly different to
an exponential damping profile), though the inferred values of
ζ and ǫ that correspond to that shape differ. Considering that
ǫ ≈ 0.9 whereas the GDP is based on the TB approximation, the
LUTmethod is more appropriate on the basis of self-consistency.
The GDP underestimates the LUT density contrast ratio by
approximately 25%, and analysis using an exponential damping
profile underestimates ζ by approximately 50%.

The observation considered by Pascoe et al. (2018) was one
for which the spatial analysis provided a well-constrained value
of ǫ, independent of the seismological analysis. It was therefore
possible in that study to consider the correction to the TB
approximation in terms of the dependence on ζ alone, requiring
only a narrow 1D parametric study for the estimate. The LUT
for the 2D parametric study in this paper allows the method in
Pascoe et al. (2018) to be extended to a greater number of loops
where the spatial information might not be as conclusive on its
own but can assist in further constraining the seismologically-
inferred parameters.

5. CONCLUSIONS

In this paper we have performed a parametric study for the
dependence of the damping of standing kink oscillations by
resonant absorption on the density contrast ratio ζ and the
width of the inhomogeneous layer ǫ. Previous studies (Van
Doorsselaere et al., 2004; Soler et al., 2014) have demonstrated the
inaccuracy of the classical analytical description for the damping
rate τd, which is based on the TB approximation, when applied
to loops with large values of ǫ. We have expanded on these
studies by developing a description of the damping profile which
includes the initial non-exponential regime, and summarized
our results into a lookup table which may be used to produce
improved estimates of loop parameters.

The method presented in this paper makes analysis simpler
in terms of not requiring an additional step to correct for the
effect of a wide inhomogeneous layer, as in Pascoe et al. (2018),
and automatically propagates the corresponding uncertainties.
Being self-consistent also makes the method more suitable than
the TB approximation as a starting point to include other
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FIGURE 8 | The top panel shows a test kink oscillation simulated for ζ = 2.15

and ǫ = 0.75 with noise added. The middle and bottom panels show the

seismologically estimated transverse density structure based on the GDP and

LUT methods, respectively. The color contours represent the normalized 2D

histograms approximating the marginalized posterior probability density

function. The red error bars correspond to the MAP value and 95% credible

intervals, and the green circle indicates the actual density profile parameters.

effects which depend on the density profile parameters. On
the other hand, this work only accounts for the influence of
wide inhomogeneous layers on the kink oscillation damping
profile, with other assumptions and approximations needing to
be considered.

FIGURE 9 | Seismological test as in Figure 8 for ζ = 3.75 and ǫ = 0.2.

The simulations performed in this paper use a linear profile for
the density in the inhomogeneous layer. In terms of the damping
rate due to resonant absorption, the key physical parameter is the
gradient of the Alfvén speed at the resonance location. Arregui
and Goossens (2019) discuss how the choice of density profile
(e.g., linear or sinusoidal in the inhomogeneous layer) affects
the seismologically-inferred loop parameters, since they have
different constants of proportionality (e.g., Goossens et al., 2002;
Roberts, 2008; Soler et al., 2014) between the damping time and
the loop parameters (ζ , ǫ). Arregui and Goossens (2019) note
that seismological applications have so far used the linear profile
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FIGURE 10 | Analysis of the oscillation reported in Pascoe et al. (2018) using the GDP and LUT damping profile. The top panels show the position of Leg 1 (plus

symbols) with the color contour representing the normalized posterior predictive probability density for each damping model. Bottom panels as in Figure 8.

and that choosing a different profile would return a different
answer. However, presently no such choice exists since the linear
profile is the only one for which a full analytical solution is
known (Hood et al., 2013; Ruderman and Terradas, 2013). The
linear profile is therefore the natural choice of profile for use
in this study, to allow a comparison of numerical results with
the TB approximations in the limit ǫ → 0. Pascoe et al.
(2018) estimate that the difference in the seismological results
using the linear and sinusoidal density profiles is . 10%.
However, these two profiles are not the only possible choices. If
some profile (other than the linear one used) should be shown
to be more appropriate for coronal loops then it would be
simple (though computationally expensive) to reproduce our
parametric study for that profile. If the spatial resolution of
loops is sufficiently high then it is possible to test different
profiles by forward modeling the EUV profile (e.g., Aschwanden
et al., 2007; Goddard et al., 2017; Pascoe et al., 2017b, 2018).
Such methods still typically involve further assumptions or
approximations (e.g., loops having a cylindrical cross-section and
azimuthal symmetry) however the aim of these investigations
should not be considered the impossible task of inferring the
precise density profile of coronal loops but rather estimating the
most appropriate characteristic scales that influence the relevant
physical processes. Resonant absorption, phase mixing, and the
Kelvin-Helmholtz instability all depend on the transverse loop
structure. In this context it is not required that the coronal loop
density profile is exactly linear for the analysis based on this
profile (or any other simplified model) to provide accurate and

useful estimates of parameters such as the size of the transverse
inhomogeneity l = ǫR.

Our LUT is also based on results of numerical simulations
for the linear regime and so excludes the effect of the Kelvin-
Helmholtz instability (KHI). The current technique is therefore
more suitable for loops with wider inhomogeneous layers in
which KHI develops at a slower rate. Simulations by Magyar
and Van Doorsselaere (2016) suggest KHI is weak for ǫ &

0.5 and the weaker development for larger values of ǫ is
also evident in simulations by Goddard et al. (2018) and
Pagano et al. (2018). In principle the same LUT strategy could
be extended to include effects such as KHI by performing
a similar parametric study with a third parameter being
the amplitude of the oscillation, A0, with the study in this
paper representing the ζ -ǫ plane in the limit A0 → 0.
However this wider parametric study (ζ , ǫ, A0) where each
data point is based a 3D nonlinear simulation would be
orders of magnitude more computationally expensive than our
current one. A wider parametric study which describes the
evolution of the loop, e.g., the development of fine structure
by KHI, would also require additional observable signatures
to be modeled and compared with data. In the current study
we focus on the shape of the damping profile due to resonant
absorption. Additional observational signatures have recently
been considered by Antolin et al. (2017) based on forward
modeling techniques (Van Doorsselaere et al., 2016) to describe
the appearance of loops observed simultaneously in multiple
EUV channels.
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Our parametric study was also performed for thin loops
which satisfy the long wavelength approximation kzR ≪ 1. As
a first approximation the effect of a large kz may be considered
in terms of reducing the kink mode phase speed from Ck,
but otherwise not influencing the damping per cycle (Van
Doorsselaere et al., 2004). Variations in the loop length in time
can account for a time-dependent period of oscillation (e.g.,
Nisticò et al., 2013; Russell et al., 2015; Pascoe et al., 2017c)
but should also remain well-approximated by considering the
damping per cycle provided by our LUT as unaffected. The period
of oscillation (and ratios of periods for different longitudinal
harmonics) can also be affected by longitudinal structuring
due to gravity (e.g., Andries et al., 2005). Cooling of coronal
loops causes the scale height to vary in time, accompanied by
decreases in the period and period ratio (Morton and Erdélyi,
2009) and an amplification of kink oscillation which acts against
the damping due to resonant absorption (Ruderman, 2011).
Numerical simulations suggest this effect is typically small but
could be approximately 10% for larger amplitude oscillations
(Magyar et al., 2015). Similarly, the period of oscillation and
period ratio can be affected by expansion of the loop at the apex
(Verth and Erdélyi, 2008) and a time-dependent expansion can
also reduce the damping of kink oscillations (Shukhobodskiy

et al., 2018). It may be possible to include effects such as
these which modify the period of oscillation relative to Pk and
introduce additional damping/amplification terms into a more
general oscillation model alongside our LUT damping profile for
resonant absorption. However, including loop evolution which
affects the transverse structuring of the loop, such as KHI, would
be more challenging.
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Recent observations support the propagation of a number of magnetohydrodynamic

(MHD) modes which, under some conditions, can become unstable and the developing

instability is the Kelvin–Helmholtz instability (KHI). In its non-linear stage the KHI

can trigger the occurrence of wave turbulence which is considered as a candidate

mechanism for coronal heating. We review the modeling of tornado-like phenomena in

the solar chromosphere and corona as moving weakly twisted and spinning cylindrical

flux tubes, showing that the KHI rises at the excitation of high-mode MHD waves. The

instability occurs within a wavenumber range whose width depends on the MHD mode

numberm, the plasma density contrast between the rotating jet and its environment, and

also on the twists of the internal magnetic field and the jet velocity. We have studied KHI

in two twisted spinning solar polar coronal hole jets, in a twisted rotating jet emerging

from a filament eruption, and in a rotating macrospicule. The theoretically calculated KHI

development times of a few minutes for wavelengths comparable to the half-widths of

the jets are in good agreement with the observationally determined growth times only for

high order (10 6 m 6 65) MHD modes. Therefore, we expect that the observed KHI in

these cases is due to unstable high-order MHD modes.

Keywords: magnetic fields, magnetohydrodynamics (MHD), solar jets, MHD waves and instabilities, numerical

methods

1. INTRODUCTION

Solar jets are ubiquitous in the solar atmosphere and recent observations have revealed that they are
related to small scale filament eruptions. They are continuously observed by the Extreme-ultraviolet
Imaging Spectrometer (EIS) (Culhane et al., 2007) on board Hinode (Kosugi et al., 2007) satellite,
Atmospheric Imaging Assembly (AIA) (Lemen et al., 2012), on board the Solar Dynamics
Observatory (SDO) (Pesnell et al., 2012), as well as from the Interface Region Imaging Spectrograph
(IRIS) (De Pontieu et al., 2014) alongside the Earth-based solar telescopes. The physical parameters
of various kinds of solar jets have been reported in a series of articles (see for instance, Schmieder
et al., 2013; Sterling et al., 2015; Panesar et al., 2016a; Chandra et al., 2017; Joshi et al., 2017, and
references cited in). It was established that more of the solar jets possess rotational motion. Such
tornado-like jets, termed macrospicules, were firstly detected in the transition region by Pike and
Mason (1998) using observations by the Solar and Heliospheric Observatory (SOHO) (Domingo
et al. , 1995). Rotational motion in macrospicules was also explored by Kamio et al. (2010), Curdt
and Tian (2011), Bennett and Erdélyi (2015), Kiss et al. (2017, 2018). Type II spicules, according
to De Pontieu et al. (2012) and Martínez-Sykora et al. (2013), along with the coronal hole EUV
jets (Liu et al., 2009; Nisticò et al., 2009, 2010; Shen et al., 2011; Chen et al. , 2012; Hong et al.,
2013; Young and Muglach, 2014a,b; Moore et al., 2015), and X-ray jets (Moore et al., 2013), can

68
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rotate, too. Rotating EUV jet emerging from a swirling flare
(Zhang and Ji, 2014) or formed during a confined filament
eruption (Filippov et al., 2015) confirm once again the
circumstance that the rotational motion is a common property
of many kinds of jets in the solar atmosphere.

The first scenario for the numerical modeling of hot X-ray
jets was reported by Heyvaerts et al. (1997) and the basic idea
was that a bipolar magnetic structure emerges into a unipolar
pre-existing magnetic field and reconnects to form hot and fast
jets that are emitted from the interface between the fields into
contact. Later on, by examining many X-ray jets in Hinode/X-
Ray Telescope coronal X-ray movies of the polar coronal holes,
Moore et al. (2010) found that there is a dichotomy of polar
X-ray jets, namely “standard” and “blowout” jets exist. Fang
et al. (2014) studied the formation of rotating coronal jets
through numerical simulation of the emergence of a twisted
magnetic flux rope into a pre-existing open magnetic field.
Another scenario for the nature of solar jets was suggested by
Sterling et al. (2015), according to which the X-ray jets are due to
flux cancellation and/or “mini-eruptions” rather than emergence.
An alternative model for solar polar jets due to an explosive
release of energy via reconnection was reported by Pariat et al.
(2009). Using three-dimensional MHD simulations, the authors
demonstrated that this mechanism does produce massive, high-
speed jets. In subsequent two articles (Pariat et al., 2015, 2016),
Pariat and co-authors, presented several parametric studies of
a three-dimensional numerical MHD model for straight and
helical solar jets. On the other side, Panesar et al. (2016b)
have shown that the magnetic flux cancellation can trigger
the solar quiet-region coronal jets and they claim that the
coronal jets are driven by the eruption of a small-scale filament,
called a “minifilament.” The small-scale chromospheric jets, like
microspicules, were first numerically modeled by Murawski et al.
(2011). Using the FLASH code, they solved the two-dimensional
ideal MHD equations to model a macrospicule, whose physical
parameters match those of a solar spicule observed. Another
mechanism for the origin of macrospicules was proposed by
Kayshap et al. (2013), who numerically modeled the triggering
of a macrospicule and a jet.

It is natural to expect, that solar jets, being magnetically
structured entities, should support the propagation of different
type of MHD waves: fast and slow magnetoacoustic waves and
torsional Alfvén waves. All these waves are usually considered
as normal MHD modes traveling along the jet. Owing to the
presence of a velocity shear near the jet–surrounding plasma
interface, every jet can become unstable and the most universal
instability which emerges is the Kelvin–Helmholtz (KH) one.
The simplest configuration at which one can observe the KHI is
the two semi-infinite incompressible magnetized plasmas flowing
with different velocities provided that the thin velocity shear at
the interface exceeds some critical value (Chandrasekhar, 1961).
Recently, Cheremnykh et al. (2018a) theoretically established
that shear plasma flows at the boundary of plasma media can
generate eight MHD modes, of which only one can be unstable
due to the development of the KHI. Ismayilli et al. (2018)
investigated a shear instability of the KH type in a plasma
with temperature anisotropy under the MHD approximation.

The KHI of the magnetoacousic waves propagating in a steady
asymmetric slab, and more specifically the effect of varying
density ratios was explored by Barbulescu and Erdélyi (2018).
A very good review on the KHI in the solar atmosphere, solar
wind, and geomagnetosphere in the framework of ideal MHD the
reader can find in Mishin and Tomozov, 2016.

In cylindrical geometry, being typical for the solar jets,
the KHI exhibits itself as a vortex sheet running on the jet–
environment boundary, which like in the flat geometry, is
growing in time if the axial velocity of the jet in a frame of
reference attached to the surrounding plasma exceeds a threshold
value (Ryu et al., 2000). In its non-linear stage, the KHI trigger the
wave turbulence which is considered as one of the main heating
mechanisms of the solar corona (Cranmer et al, 2015). The
development of the KHI in various cylindrical jet–environment
configurations has been studied in photospheric jets (Zhelyazkov
and Zaqarashvili, 2012), in solar spicules (Zhelyazkov, 2012;
Ajabshirizadeh et al., 2015; Ebadi, 2016), in high-temperature
and cool solar surges (Zhelyazkov et al., 2015a,b), in magnetic
tubes of partially ionized compressible plasma (Soler et al., 2015),
in EUV chromospheric jets (Zhelyazkov et al., 2016; Bogdanova
et al., 2018), in soft X-ray jets (Vasheghani Farahani et al.,
2009; Zhelyazkov et al., 2017), and in the twisted solar wind
flows (Zaqarashvili et al., 2014). A review on KHI in the solar
atmosphere, including some earlier studies, the reader can find
in Zhelyazkov (2015).

The first modeling of the KHI in a rotating cylindrical
magnetized plasma jet was done by Bondenson et al. (1987).
Later on, Bodo et al. (1989, 1996) carried out a study of
the stability of flowing cylindrical jet immersed in constant
magnetic field B0. The authors used the standard procedure
for exploring the MHD wave propagation in cylindrical flows
considering that all the perturbations of the plasma pressure p,
fluid velocity v, and magnetic field B, are ∝ exp[i(−ωt + kz +
mθ)]. Here, ω is the angular wave frequency, k the propagating
wavenumber, andm the azimuthal mode number. Using the basic
equations of ideal magnetohydrodynamics, Bodo et al. (1989,
1996) derived a Bessel equation for the pressure perturbation
and an expression for the radial component of the fluid velocity
perturbation. The found solutions in both media (the jet and
its environment) are merged at the perturbed tube boundary
through the conditions for continuity of the total (thermal plus
magnetic) pressure and the Lagrangian displacement. The latter
is defined as the ratio of radial velocity perturbation component
and the angular frequency in the corresponding medium. The
obtained dispersion relation is used for examining the stability
conditions of both axisymmetric, m = 0 (Bodo et al., 1989), and
non-axisymmetric, |m| > 1 modes (Bodo et al., 1996). In a recent
article, Bodo et al. (2016) performed a linear stability analysis of
magnetized rotating cylindrical jet flows in the approximation of
zero thermal pressure. They focused their analysis on the effect of
rotation on the current driven mode and on the unstable modes
introduced by rotation. In particular, they found that rotation has
a stabilizing effect on the current driven mode only for rotation
velocities of the order on the Alfvén speed. Themore general case,
when both the magnetic field and jet flow velocity are twisted,
was studied by Zaqarashvili et al. (2015) and Cheremnykh et al.
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(2018b), whose dispersion equations for modes with m > 2,
represented in different ways, yield practically identical results.

The main goal of this review article is to suggest a way of using
the wave dispersion relation derived in Zaqarashvili et al. (2015)
to study the possibility for the rising and development of KHI in
rotating twisted solar jets. Among the enormous large number
of observational studies of rotating jets with different origin or
nature, we chose those which provide the magnitudes of axial
and rotational speeds, jet width and height alongside the typical
plasma parameters like electron number densities and electron
temperature of the spinning structure and its environment. Thus,
the targets of our exploration are: (i) the spinning coronal hole jet
of 2010 August 21 (Chen et al. , 2012); (ii) the rotating coronal
hole jet of 2011 February 8 (Young and Muglach, 2014a), (iii)
the twisted rotating jet emerging from a filament eruption on
2013 April 10–11 (Filippov et al., 2015), and (iv) the rotating
macrospicule observed by Pike and Mason (1998) on 1997
March 8.

The paper is organized as follows: in the next section, we
discuss the geometry of the problem, equilibrium magnetic field
configuration and basic physical parameters of the explored jets.
Section 3 is devoted to a short, concise, derivation of the wave
dispersion relation. Section 4 deals with numerical results for
each of the four jets and contain the available observational
data. In the last section 5, we summarize the main findings
in our research and outlook the further improvement of the
used modeling.

2. THE GEOMETRY, MAGNETIC FIELD,
AND PHYSICAL PARAMETERS IN A JET
MODEL

Wemodel whichever jet as an axisymmetric cylindrical magnetic
flux tube with radius a and electron number density ni
(or equivalently, homogeneous plasma density ρi) moving
with velocity U . We consider that the jet environment is
a rest plasma with homogeneous density ρe immersed in
a homogeneous background magnetic field Be. This field,
in cylindrical coordinates (r,φ, z), possesses only an axial
component, i.e., Be = (0, 0,Be) (Note that the label “i” is
abbreviation for interior, and the label “e” denotes exterior). The
magnetic field inside the tube, Bi, and the jet velocity, U , we
assume, are uniformly twisted and are given by the vectors

Bi =
(
0,Biφ(r),Biz

)
and U =

(
0,Uφ(r),Uz

)
, (1)

respectively. We note, that Biz and Uz , are constant. Concerning
the azimuthal magnetic and flow velocity components, we
suppose that they are linear functions of the radial position r and
evaluated at r = a they correspondingly are equal to Biφ(a) ≡
Bφ = Aa and Uφ = �a, where A and � are constants. Here, � is
the jet angular speed, deduced from the observations. Hence, in
equilibrium, the rigidly rotating plasma column, that models the
jet, must satisfy the following force-balance equation (see, e.g.,

Chandrasekhar, 1961; Goossens et al., 1992)

d

dr

(
pi +

B2i
2µ

)
=

ρiU
2
φ

r
−

B2iφ

µr
, (2)

where µ is the plasma permeability and pt = pi + B2i /2µ
with B2i = B2iφ(r) + B2iz is the total (thermal plus magnetic)
pressure. According to Equation (2), the radial gradient of the
total pressure should balance the centrifugal force and the force
owing to the magnetic tension. After integrating Equation (2)
from 0 to a, taking into account the linear dependence of Uφ and
Biφ on r, we obtain that

pt(a) = pt(0)+
1

2
ρiU

2
φ(a)−

B2iφ(a)

2µ
,

where pt(0) = p1(0) + B2iz/2µ. Integrating Equation (2) from 0
to any r one can find the radial profile of pt inside the tube. Such
an expression of pt(r), obtained, however, from an integration of
the momentum equation for the equilibrium variables, have been
obtained in Zhelyazkov et al. (2018)—see Equation (2) there. It is
clear from a physical point of view that the internal total pressure
(evaluated at r = a) must be balanced by the total pressure of the
surrounding plasma which implies that

p1(0)+
B2iz
2µ

−
B2iφ(a)

2µ
+ 1

2
ρiU

2
φ(a) = pe +

B2e
2µ

.

This equation can be presented in the form

p1(0)+
1

2
ρiU

2
φ(a)+

B2iz
2µ

(
1− ε21

)
= pe +

B2e
2µ

, (3)

where p1(0) is the thermal pressure at the magnetic tube axis,
and pe denotes the thermal pressure in the environment. In the
pressure balance Equation (3), the number ε1 ≡ Bφ/Biz =
Aa/Biz represents the magnetic field twist parameter. Similarly,
we define ε2 ≡ Uφ/Uz as a characteristics of the jet velocity
twist. We would like to underline that the choice of plasma and
environment parameters must be such that the total pressure
balance Equation (3) is satisfied. In our case, the value of ε2 is
fixed by observationally measured rotational and axial velocities
while the magnetic field twist, ε1, has to be specified when using
Equation (3). We have to note that Equation (3) is a corrected
version of the pressure balance equation used in Zhelyazkov et al.
(2018) and Zhelyazkov and Chandra (2018).

From measurements of n and T for similar coronal hole EUV
jets (Nisticò et al., 2009, 2010), we take n inside the jet to be
ni = 1.0 × 109 cm−3, and assume that the electron temperature
is Ti = 1.6 MK. The same quantities in the environment are,
respectively, ne = 0.9 × 109 cm−3 and Te = 1.0 MK. Note
that the electron number density of the blowout jet observed by
Young and Muglach (2014a) is in one order lower. The same
applies for its environment. We consider that the background
magnetic field for both hole coronal jets is Be = 3 G. The values
of n and T of the rotating jet emerging from a filament eruption,
observed by Filippov et al. (2015), were evaluated by us and they
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are ni = 4.65 × 109 cm−3 and Ti = 2.0 MK, respectively. From
the same data set, we have obtained ne = 4.02 × 109 cm−3 and
Te = 2.14 MK. The background magnetic field, Be, with which
the pressure balance Equation (3) is satisfied, is equal to 6 G. For
the rotating macrospicule we assume that ni = 1.0 × 1010 cm−3

and ne = 1.0×109 cm−3 to have at least one order denser jet with
respect to the surrounding plasma. Our choice for macrospicule
temperature is Ti = 5.0× 105 K, while that of its environment is
supposed to be Te = 1.0 × 106 K. The external magnetic field,
Be, was taken as 5 G. All aforementioned physical parameters
of the jets are summarized in Table 1. The plasma beta was
calculated using (6/5)c2s/v

2
A, where cs = (γ kBT/mion)

1/2 is the
sound speed (in which γ = 5/3, kB is the Boltzmann’s constant,T
the electron temperature, and mion the ion or proton mass), and
vA = B/(µnionmion)

1/2 is the Alfvén speed, in which expression
B is the full magnetic field =(B2φ + B2z)

1/2, and nion is the ion or
proton number density.

3. WAVE DISPERSION RELATION

A dispersion relation for the propagation of high-mode (m > 2)
MHD waves in a magnetized axially moving and rotating twisted
jet was derived by Zaqarashvili et al. (2015) and Cheremnykh
et al. (2018b). That equation was obtained, however, under the
assumption that both media (the jet and its environment) are
incompressible plasmas. As seen from the last column in Table 1,
plasma beta is greater than 1 in the first, third, and fourth jets
which implies that the plasma of each of the aforementioned
jets can be considered as a nearly incompressible fluid (Zank
and Matthaeus, 1993). It is seen from the same table that the
plasma beta of the second jet is less than one as is in each of
the jet environments and that is why it is reasonable to treat
them as cool media. Thus, the wave dispersion relation, derived,
for instance, in Zaqarashvili et al. (2015), has to be modified. In
fact, we need two modified versions: one for the incompressible
jet–cool environment configuration, and other for the cool jet–
cool environment configuration. We are not going to present in
details the derivation of the modified dispersion equations on
the basis of the governing MHD equations, but will only sketch
the essential steps in that procedure. The main philosophy in
deriving the wave dispersion equation is to find solutions for the
total pressure perturbation, ptot, and for the radial component,
ξr of the Lagrangian displacement, ξ , and merge them at the
tube perturbed boundary through the boundary conditions for
their (ptot and ξr) continuity (Chandrasekhar, 1961). In the
case of the first configuration, we start with the linearized ideal
MHD equations, governing the incompressible dynamics of the
perturbations in the spinning jet

∂

∂t
v+(U ·∇)v+(v·∇)U = −∇ptot

ρi
+ (Bi · ∇) b

ρiµ
+ (b · ∇)Bi

ρiµ
, (4)

∂

∂t
b−∇ × (v× Bi) −∇ × (U × b) = 0, (5)

∇ · v = 0, (6)

∇ · b = 0, (7)

where v = (vr , vφ , vz) and b = (br , bφ , bz) are the perturbations
of fluid velocity and magnetic field, respectively, and ptot is
the perturbation of the total pressure, pt = pi + B2i /2µ. The
Lagrangian displacement, ξ , can be found from the fluid velocity
perturbation, v, using the relation (Chandrasekhar, 1961)

v = ∂ξ

∂t
+ (U · ∇) ξ − (ξ · ∇)U . (8)

Further on, assuming that all perturbations are
∝ exp

[
i
(
−ωt +mφ + kzz

)]
and considering that the rotation

and the magnetic field twists in the jet are uniform, that is,

Uφ(r) = �r and Biφ(r) = Ar, (9)

where � and A are constants, from the above set of Equations
(4–8), we obtain the following dispersion equation of the MHD
wave with mode number m (for details see Zaqarashvili et al.,
2015):

(
σ 2 − ω2

Ai

)
Fm(κia)− 2m

(
σ� + AωAi/

√
µρi

)

ρi
(
σ 2 − ω2

Ai

)2 − 4ρi
(
σ� + AωAi/

√
µρi

)2

= Pm(κea)

ρe
(
ω2 − ω2

Ae

)
−
(
ρi�2 − A2/µ

)
Pm(κea)

, (10)

where

Fm(κia) =
κiaI

′
m(κia)

Im(κia)
and Pm(κea) =

κeaK
′
m(κea)

Km(κea)
.

In above expressions, the prime means differentiation of the
Bessel functions with respect to their arguments,

κ2
i = k2z


1− 4

(
σ� + AωAi/

√
µρi

σ 2 − ω2
Ai

)2

 and

κ2
e = k2z

[
1− (ω/ωAe)

2
]

are the squared wave amplitude attenuation coefficients in the jet
and its environment, in which

ωAi =
(m
r
Biφ + kzBiz

)
/
√

µρi and ωAe = kzBe/
√

µρe

are the local Alfvén frequencies in both media, and

σ = ω − m

r
Uφ − kzUz

is the Doppler-shifted angular wave frequency in the jet. We note
that in the case of incompressible coronal plasma (Zaqarashvili
et al., 2015), κe = kz , because at an incompressible environment
the argument of the modified Bessel function of second kind, Km,
and its derivative, K ′

m, is kza.
The basic MHD equations for an ideal cool plasma are,

generally, the same as the set of Equations (4–8) with
Equation (6) replaced by the continuity equation

∂ρ1

∂t
= −∇ · (ρ0v1 + ρ1U) = 0.
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TABLE 1 | Jets physical parameters derived from observational data.

Kind of Be ne ni Te Ti βe βi

jet (G) (×109 cm−3) (×109 cm−3) (MK) (MK)

Standard coronal hole 3.0 0.90 1.00 1.00 1.6 0.348 2.079

Blowout coronal hole 3.0 0.15 0.17 2.00 1.7 0.116 0.115

Filament eruption 6.0 4.02 4.65 2.14 2.0 0.831 17.24

Macrospicule 5.0 0.10 1.00 1.00 0.5 0.139 2.248

Recall that for cold plasmas the total pressure reduces to the
magnetic pressure only, that is pt = B21/2µ, the z component
of the velocity perturbation is zero, i.e., v1 = (v1r , v1φ , 0), while
B1 = (B1r ,B1φ ,B1z). The above equation, which defines the
density perturbation, is not used in the derivation of the wave
dispersion relation because we are studying the propagation and
stability of Alfvén-wave-like perturbations of the fluid velocity
and magnetic field. Following the standard scenario for deriving
the MHD wave dispersion relation (Zhelyazkov and Chandra,
2018), we finally arrive at:

(
σ 2 − ω2

Ai

)
Fm(κ

c
i a)− 2m

(
σ� + AωAi/

√
µρi

)

ρi
(
σ 2 − ω2

Ai

)2 − 4ρi
(
σ� + AωAi/

√
µρi

)2

= Pm(κ
c
ea)

ρe
(
ω2 − ω2

Ae

)
−
(
ρi�2 − A2/µ

)
Pm(κc

ea)
, (11)

where

Fm(κ
c
i a) =

κc
i aI

′
m(κ

c
i a)

Im(κ
c
i a)

and Pm(κ
c
ea) =

κc
eaK

′
m(κ

c
ea)

Km(κc
ea)

.

Here, the wave attenuation coefficient in the internal medium has
the form

κc
i = kz



1− 4

(
σ� + AωAi/

√
µρi

σ 2 − ω2
Ai

)2




1/2 (
1− σ 2

ω2
Ai

)1/2

,

while that in the environment, with� = 0 and A = 0, is given by

κc
e = kz

(
1− ω2

ω2
Ae

)1/2

.

Note that (i) both dispersion relations, (10) and (11), have
similar forms—the difference is in the expressions for the
wave attenuation coefficient inside the jet, namely κc

i =
κi
[
1− σ 2/ω2

Ai

]1/2
; and (ii) the wave attenuation coefficients in

the environments are not surprisingly the same, that is, κc
e =

κe ≡
[
1− ω2/ω2

Ae

]1/2
.

4. NUMERICAL SOLUTIONS, WAVE
DISPERSION, AND GROWTH RATE
DIAGRAMS

In studying at which conditions the high (m > 2) MHD modes
in a jet–coronal plasma system become unstable, that is, all

the perturbations to grow exponentially in time, we have to
consider the wave angular frequency, ω, as a complex quantity:
ω ≡ Re(ω) + i Im(ω) in contrast to the wave mode number,
m, and propagating wavenumber, kz , which are real quantities.
The Re(ω) is responsible for the wave dispersion while the Im(ω)
yields the wave growth rate. In the numerical task for finding
the complex solutions to the wave dispersion relation (10) or
(11), it is convenient to normalize all velocities with respect to
the Alfvén speed inside the jet, defined as vAi = Biz/

√
µρi, and

the lengths with respect to a. Thus, we have to search the real
and imaginary parts of the non-dimensional wave phase velocity,
vph = ω/kz , that is, Re(vph/vAi) and Im(vph/vAi) as functions of
the normalized wavenumber kza. The normalization of the other
quantities like the local Alfvén and Doppler-shifted frequencies
alongside the Alfvén speed in the environment, vAe = Be/

√
µρe,

requires the usage of both twist parameters, ε1 and ε2, and also of
the magnetic fields ratio, b = Be/Biz . The non-dimensional form
of the jet axial velocity, Uz , is given by the Alfvén Mach number
MA = Uz/vAi. Another important non-dimensional parameter is
the density contrast between the jet and its surrounding medium,
η = ρe/ρi. Hence, the input parameters in the numerical task of
finding the solutions to the transcendental Equation (10) or (11)
(in complex variables) are: m, η, ε1, ε2, b, and MA. Zaqarashvili
et al. (2015) have established that KHI in an untwisted (A =
0) rotating flux tube with negligible longitudinal velocity can
occur if

a2�2

v2Ai
>

1+ η

1+ |m|η
(kza)

2

|m| − 1
(1+ b2). (12)

This inequality says that each MHD wave with mode number
m > 2, propagating in a rotating jet can become unstable. This
instability condition can be used also in the cases of slightly
twisted spinning jets, provided that the magnetic field twist
parameter, ε1, is a number lying in the range of 0.001–0.005,
simply because the numerical solutions, for example, to Equation
(10) show that practically there is no difference between the
instability ranges at ε1 = 0, and at 0.001 or 0.005. An important
step in our study is the supposition that the deduced from
observations jet axial velocity, Uz , is the threshold speed for the
KHI occurrence. Then, for fixed values of m, η, Uφ = �a, vAi,
and b, the inequality (12) can be rearranged to define the upper
limit of the instability range on the kza-axis

(kza)rhs <

{(
Uφ

vAi

)2 1+ |m|η
1+ η

|m| − 1

1+ b2

}1/2

. (13)
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According to the above inequality, the KHI can occur for
nondimensional wavenumbers kza less than (kza)rhs. On the
other hand, one can talk for instability if the unstable wavelength,
λKH = 2π/kz , is shorter than the height of the jet, H, which
means that the lower limit of the instability region is given by:

(kza)lhs >
π1ℓ

H
, (14)

where 1ℓ is the jet width. Hence, the instability range in the kza-
space is (kza)lhs < kza < (kza)rhs. Note that the lower limit,
(kza)lhs, is fixed by the width and height of the jet, while the upper
limit, (kza)rhs, depends on several jet–environment parameters.
At fixed Uφ , vAi, η, and b, the (kza)rhs is determined by the
MHD wave mode number, |m|. As seen from inequality (13),
with increasing the m, that limit shifts to the right, that is, the
instability range becomes wider. The numerical solutions to the
wave dispersion relation (10) confirm this and for given m one
can obtain a series of unstable wavelengths, λKH = π 1ℓ/kza, as
the shortest one takes place at kza ≈ (kza)rhs. For relatively small
mode numbers, when even the shortest unstable wavelengths
turn out to be a few tens megameters, that could hardly be
associated with the observed KH ones. As observations show,
the KHI vortex-like structures running at the boundary of the
jet, have the size of the width or radius of the flux tube (see,
for instance, Figure 1 in Zhelyazkov et al., 2018). Therefore,
we have to look for such an m, whose instability range would
accommodate the expected unstable wavelength presented by its
nondimensional wavenumber, kza = π1ℓ/λKH. An estimation
of the required mode number for an ε1 = 0.005-rotating flux
tube can be obtained by presenting the instability criterion (12)
in the form

η|m|2 + (1− η)|m| − 1− (kza)
2(1+ η)(1+ b2)

(Uφ/vAi)2
> 0. (15)

We will use this inequality for obtaining the optimal m for each
of the studied jets by specifying the value of that kza (along with
the other aforementioned input parameters) which corresponds
to the expected unstable wavelength λKH.

4.1. Kelvin–Helmholtz Instability in a
Standard Polar Coronal Hole Jet
Chen et al. (2012) observationally studied the jet event of 2010
August 21, which occurred in the coronal hole region, close to the
north pole of the Sun. Figure 1 presents the jet’s evolution in AIA
304 Å. The jet started around 06:07 UT, reached its maximum
height around 06:40 UT. During the evolution of the jet between
06:32 and 06:38 UT, small scale moving blobs appeared on the
right boundary. We interpret these blobs, shown by arrows in
Figure 1, as evidence of KHI. By tracking six identified moving
features in the jet, Chen et al. (2012) found that the plasma
moved at an approximately constant speed along the jet’s axis.
Inferred from linear and trigonometric fittings to the axial and
transverse heights of the six tracks, the authors have found that
the mean values of the axial velocity, Uz , transfer/rotational
velocity, Uφ , angular speed, �, rotation period, T, and rotation
radius, a, are 114 km s−1, 136 km s−1, 0.81◦s−1 (or 14.1 ×

10−3 rad s−1), 452 s, and 9.8 × 103 km, respectively. The height
of the jet is evaluated as H = 179 Mm.

It seems reasonable the shortest unstable wavelength, λKH,
to be equal to 10 Mm (approximately half of the jet width,
1ℓ = 19.6 Mm), which implies that its position on the kza
one-dimensional space is kza = 6.158. The input parameters,
necessary to find out that MHD wave mode number, whose
instability range will contain the nondimensional wavenumber
of 6.158, using inequality (15), are accordingly (see Table 1) η =
0.9, b = 1.834, vAi = 112.75 km s−1, and Uφ = 136 km s−1

(We note, that the values of b and vAi were obtained with the
help of Equation (3) assuming that the magnetic field twist is
ε1 = 0.005). With these entry data, from inequality (15) one
obtains that |m| > 15 should provide the required instability
region or window. The numerical solutions to Equation (10)
show that this value ofm is overestimated—anm = 11 turns out
to be perfect for the case. The discrepancy between the predicted
and computed value of |m| is not surprising because inequality
(15) yields only an indicative value. The input parameters for
finding the solutions to the dispersion Equation (10) are as
follows: m = 11, η = 0.9, ε1 = 0.005, ε2 = 1.2, b = 1.834,
and MA = 1.01 (=114/112.75). The results of computations
are graphically presented in Figure 2. From that figure, one can
obtain the normalized wave phase velocity, Re(vph/vAi), and the
normalized growth rate, Im(vph/vAi), of the unstable λKH =
10 Mm wave, both read at the purple cross points. From the
same plot, one can find the instability characteristics at another
wavelength, precisely λKH = 12 Mm, whose position on the kza-
axis is fixed at kza = 5.131. The values of nondimensional wave
phase velocity and growth rate can be read from the green cross
points. The KHI wave growth rate, γKH, growth time, τKH =
2π/γKH, and wave velocity, vph, in absolute units, estimated from
the plots in Figure 2, for the two wavelengths, are

γKH ∼= 23.09× 10−3 s−1, τKH ∼= 4.5 min, vph ∼= 178 km s−1,

for λKH = 10 Mm,

and

γKH ∼= 50.65× 10−3 s−1, τKH ∼= 2.1 min, vph ∼= 202 km s−1,

for λKH = 12 Mm.

Let us recall that the value of the Alfvén speed used in the
normalization is vAi = 112.75 km s−1. We see that the two wave
phase velocities are slightly super-Alfvénic and when moving
along the kza-axis to the left, the normalized wave velocity
becomes higher. If we fix a kza-position near the lower limit of
the unstable region, (kza)lhs = 0.344, say, at kza = 0.513, which
means λKH = 120 Mm, the KHI characteristics obtained from
the numerical solutions to Equation (10) are τKH = 1.4 min
and vph = 1 473 km s−1, respectively. As we have discussed
in Zhelyazkov et al. (2018), “the KHI growth time could be
estimated from the temporal evolution of the blobs in their initial
stage and it was found to be about 2–4 min,” so the instability
developing times of 2.1 and 4.5 min obtained from our plots are
in good agreement with the observations.
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FIGURE 1 | AIA 304 Å images showing the detailed evolution of the jet observed on 2010 August 21. The small moving blobs on the right side boundary of the jet as

indicated by white arrows, could be produced by a KHI.

FIGURE 2 | (Left) Dispersion curve of the m = 11 MHD mode propagating along a twisted incompressible coronal hole jet at η = 0.9, b = 1.834, MA = 1.01,

ε1 = 0.005, and ε2 = 1.2. (Right) Normalized growth rate curve of the m = 11 MHD mode computed at the same input parameters as in the left panel. The crosses of

purple and green lines yield the normalized values of the wave phase velocity and the wave growth rate at the two unstable wavelengths of 10 and 12 Mm, respectively.

A specific property of the instability kza-ranges is that for
a fixed mode number, m, their widths depend upon ε1 and
with increasing the value of ε1, the instability window becomes
narrower and at some critical ε1 its width equals zero. In our
case that happens with εcr1 = 0.653577 at (kza)lhs = 0.344. In
Figure 3, curves of dimensionless vph and γKH have been plotted
for several ε1 values. Note that each larger value of ε1 implies
an increase in Biφ . But that increase in Biφ requires an increase
in Biz too, in order the total pressure balance Equation (3) to
be satisfied under the condition that the hydrodynamic pressure
term and the environment total pressure are fixed. The increase
in Biz (and in the full magnetic field Bi) implies a decrease both in
the magnetic field ratio, b, and in the Alfvén Mach number, MA.
Thus, gradually increasing the magnetic field twist ε1 from 0.005
to 0.653577, we get a series of dispersion and growth rate curves

with progressively diminishing parameters b and MA. The red
growth rate curve in the right panel of Figure 3 has been obtained
for εcr1 = 0.653577 with MA = 0.7652 and it visually fixes
the lower limit of all other instability windows. The azimuthal
magnetic field Bcriφ that stops the KHI, computed at Bi = 2.58 G,
is equal to 1.4 G.

4.2. Kelvin–Helmholtz Instability in a
Blowout Polar Coronal Hole Jet
Young and Muglach (2014a) observed a small blowout jet at
the boundary of the south polar coronal hole on 2011 February
8 at around 21:00 UT. The evolution of jet observed by the
AIA is displayed in Figure 4. The jet activity was between
20:50 and 21:15 UT. This coronal hole is centered around x =
−400 arcsec, y = −400 arcsec. The jet has very broad and faint
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FIGURE 3 | (Left) Dispersion curves of the unstable m = 11 MHD mode propagating along a twisted incompressible jet in a coronal hole at η = 0.9, ε2 = 1.2, and the

following values of ε1 (from right to left): 0.005, 0.4, 0.5, 0.55, 0.6, 0.625, 0.645, and 0.653577 (red curve in the right plot). Alfvén Mach numbers for these curves are,

respectively 1.01, 0.93, 0.88, 0.84, 0.81, 0.79, 0.77, and 0.7653. (Right) Growth rates of the unstable m = 11 mode for the same input parameters. The azimuthal

magnetic field that corresponds to εcr1 = 0.653577 (the instability window with zero width) and stops the KHI onset is equal to 1.4 G.

FIGURE 4 | AIA 193 top (a–d) and 304 Å bottom (e–h) images showing the evolution of the jet observed on 2011 February 8 marked by white arrows could be

produced by KHI. For the better visibility of the jet, we have saturated the image at the foot-point. The ellipse in the (c,h) represents the east edge of the jets. In 304 Å

at ∼21:08 UT we have observed the blob structures at the eastern boundary. The enlarged view of the blobs is shown in the inset in (h).
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structure and is ejected in the south direction. We could see
the evolution of jet in the AIA 193 Å clearly. However, in AIA
304 Å the whole jet is not visible. Moreover, we observe the
eastern boundary of the jet in AIA 304 Å. During its evolution
in 304 Å we found the blob structures at the jet boundary.
These blobs could be due to the KHI as reported in previous
observations (see for example Zhelyazkov et al., 2018). At the jet
initiation/base site, we observed the coronal hole bright points.
These bright points are the results of coronal low-laying loops
reconnection (Madjarska, 2019).

According to Young and Muglach (2014a) estimations, the jet
is extended for H = 30 Mm with a width of 1ℓ = 15 Mm. The
jet duration is 25 min and the bright point is not significantly
disrupted by the jet occurrence. The jet n is ni = 1.7× 108 cm−3,
while that of the surrounding coronal plasma we assume to be

ne = 1.5 × 108 cm−3. The jet temperature is Ti = 1.7 MK and
the environment one is Te = 2.0 MK. The jet axial velocity is
Uz = 250 km s−1 and the rotational one is Uφ = 90 km s−1.
Assuming a magnetic field twist ε1 = 0.025 and Be = 3 G, from
Equation (3), we obtain η = 0.882, vAi = 494.7 km s−1 (Alfvén
speed in the environment is vAe = 534.0 km s−1), and b = 1.014.
We note, that while in the derivation of Equation (11) we have
neglected the thermal pressures, here, in using Equation (3), we
kept them. If we anticipate that the shortest unstable wavelength
is equal to 7.5 Mm (with kza = 2π), the mode number m
whose instability range would accommodate the aforementioned
wavelength, according to inequality (15) must be at least |m| =
71. The numerics show that the suitable m is |m| = 65. Thus,
the input parameters for obtaining the numerical solutions to
Equation (11) are: m = 65, η = 0.882, ε1 = 0.025, ε2 = 0.36

FIGURE 5 | (Left) Dispersion curve of the m = 65 MHD mode propagating along a twisted cool coronal hole jet at η = 0.882, b = 1.014, MA = 0.5, ε1 = 0.025, and

ε2 = 0.36. (Right) Normalized growth rate curve of the m = 65 MHD mode computed at the same input parameters as in the left panel. The crosses of purple and

green lines yield the normalized values of the wave phase velocity and the wave growth rate at the two unstable wavelengths of 7.5 and 15 Mm, respectively.

FIGURE 6 | (Left) Dispersion curves of the unstable m = 65 MHD mode propagating along a twisted cool jet in a coronal hole at η = 0.882, ε2 = 0.36, and the

following values of ε1 (from right to left): 0.025, 0.06, 0.08, 0.095, and 0.10682 (red curve in the right plot). Alfvén Mach numbers for these curves are, respectively

0.505, 0.505, 0.504, 0.503, and 0.5026. (Right) Growth rates of the unstable m = 65 mode for the same input parameters. The azimuthal magnetic field that

corresponds to εcr1 = 0.10682 (the instability window with zero width) and stops the KHI onset is equal to 0.3 G.
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(=90/250), b = 1.014, and MA = 0.505 (∼=250.0/494.7). The
results are illustrated in Figure 5. Along with λKH = 7.5 Mm
(purple lines), we have calculated the KHI characteristics also for
λKH = 15 Mm (at kza = π) (green lines), and they are

γKH = 72.0× 10−3 s−1, τKH ∼= 1.5 min, vph ∼= 618 km s−1,

for λKH = 7.5 Mm,

and

γKH ∼= 342.75× 10−3 s−1, τKH ∼= 0.3 min, vph ∼= 1106 km s−1,

for λKH = 15 Mm.

It is seen from the left panel that the unstablem = 65MHDwaves
are generally super-Alfvénic. Since the instability developing

times of the m = 65 mode are relatively short, that is, much less
than the jet lifetime of 25 min, we can conclude that the KHI in
this jet is relatively fast.

With the increase in the parameter ε1, the instability region,
as seen from the right panel of Figure 6, becomes narrower and
at the lower limit (kza)lhs = π/2 with εcr1 = 0.10682 and
MA = 0.5026 its width is equal to zero. In other words, there is no
longer instability. Therefore, the critical azimuthal magnetic field
that suppresses the KHI is Bcriφ

∼= 0.3 G—obviously a relatively
small value.

4.3. Kelvin–Helmholtz Instability in a Jet
Emerging From a Filament Eruption
Filippov et al. (2015) observationally studied three jets events
originated from the active region NOAA 11715 (located on the

FIGURE 7 | Evolution of the jet associated with a filament eruption observed on 2013 April 10–11 in AIA 304 Å. The structure shown by arrows can be due to the KHI.

FIGURE 8 | (Left) Dispersion curve of the m = 10 MHD mode propagating along a twisted incompressible emerging from a filament eruption jet at η = 0.864,

b = 4.36, MA = 2.27, ε1 = 0.1, and ε2 = 1.8. (Right) Normalized growth rate curve of the m = 10 MHD mode computed at the same input parameters as in the left

panel. The crosses of green and purple lines yield the normalized values of the wave phase velocity and the wave growth rate at the two unstable wavelengths of 12

and 15 Mm, respectively.
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FIGURE 9 | Growth rate curves of the unstable m = 10 MHD mode

propagating along a twisted incompressible emerging from a filament eruption

jet at η = 0.864, ε2 = 1.8, and the following values of ε1 (from right to left): 0.1

(orange), 0.6 (green), 0.8 (purple), and 0.9 (blue).

west limb) on 2013 April 10–11. These authors claim that the
jets originated from the emergence of a filament having a null-
point (inverted Y) topology. We have considered the second
event described in that paper for a detailed study. The jet electron
number density, ni, and electron temperature, Ti, both listed
in Table 1, have been calculated by us using the techniques
elaborated by Aschwanden et al. (2013). This technique requires
the data from the six 94, 131, 171, 193, 211, and 335 Å AIA/SDO
EUV channels. In addition to the electron number densities and
electron temperatures in the jet and surrounding plasma, we have
also estimated the jet width as 1ℓ≈30 Mm, its height as H =
180 Mm, and have found the jet lifetime to be 30 min. The two
important parameters, axial and azimuthal velocities, according
to the observations, are Uz = 100 and Uφ = 180 km s−1,
respectively. The time evolution of the jet in AIA 304 Å is shown
in Figure 7 and we have observed vortex type structures in the
eastern side of the jet, which are indicated by arrows. These
structures implicitly indicate for occurrence of KHI.

With the typical n and Te (see Table 1), rotating velocityUφ =
180 km s−1, assumed Be = 6 G, and ε1 = 0.1, Equation (3) yields
η = 0.864, b = 4.36, and vAi = 44.00 km s−1 (for comparison,
the Alfvén speed in the environment is vAe = 206.3 km s−1). We
note that the choice of ε1 was made taking into account the fact
that the inclination of the treads of the jet in the event on 2013
April 10, detected by SDO/AIA, yields a relationship between Biφ
and Biz , which was evaluated as ε1 ≈ 0.1. If we assume that the
shortest unstable wavelength is λKH = 12 Mm, which is located
at kza = 2.5π on the kza-axis, from inequality (15) we find that
a MHD wave with |m| = 12 would provide an instability region,
accommodating the non-dimensional kza = 2.5π . It turns out
that a suitable mode number ism = 10. The wave dispersion and
growth rate diagrams are shown in Figure 8. In that instability
range one can also find the instability characteristics at kza = 2π ,
which corresponds to λKH = 15 Mm. The input parameters for
finding the solutions to Equation (10) are: m = 10, η = 0.864,
ε1 = 0.1, ε2 = 1.8, b = 4.36, andMA = 2.27 (=100/44) The KHI

parameters at the aforementioned wavelengths are as follows:

γKH ∼= 33.51× 10−3 s−1, τKH ∼= 3.1 min, vph ∼= 170 km s−1,

for λKH = 12 Mm,

and

γKH ∼= 46.06× 10−3 s−1, τKH ∼= 2.3 min, vph ∼= 198 km s−1,

for λKH = 15 Mm.

The KHI developing or growth times seem reasonable and the
wave phase velocities are super-Alfvénic ones.

It is intriguing to see how the width of the instability range will
shorten as the magnetic field twist ε1 is increased. Our numerical
computations indicate that for a noticeable contraction of the
instability window one should change the magnitude of ε1
with relatively large steps. The results of such computations are
illustrated in Figure 9. It is necessary to underline that at values
of ε1 close to 1, (i) βi becomes <1 and the jet has to be treated
as a cool medium, which implies a new wave dispersion relation
and probably a higher wave mode number,m; (ii) one cannot use
ε1 > 1, because in that case the instability is of another kind,
namely kink instability (Lundquist, 1951; Hood and Priest, 1979;
Zaqarashvili et al., 2014). At this “pathological” case, one cannot
reach the lower limit of the instability range, (kza)lhs = 0.524, and
consequently we are unable to evaluate that azimuthal magnetic
field, Bcrφ , which will stop the KHI onset!

4.4. Kelvin–Helmholtz Instability in a
Spinning Macrospicule
As we have mentioned in section 1, Pike and Mason (1998)
did a statistical study of the dynamics of solar transition region
features, like macrospicules. These features were observed on
the solar disk and also on the solar limb by using data from
the Coronal Diagnostic Spectrometer (CDS) onboard SOHO. In
addition, in their article, Pike and Mason (1998) discussed the
unique CDS observations of a macrospicule first reported by Pike
and Harrison (1997) along with their own (Pike and Mason)
observations from theNormal Incidence Spectrometer (NIS). This
spectrometer covers the wavelength range from 307 to 379 Å
and that from 513 to 633 Å using a microchannel plate and
CCD combination detector. The details of macrospicule events
observed near the limb are given in Table 1 in Pike and Mason,
1998, while those of macrospicule events observed on the disk are
presented in Table 2. The main finding in the study of Pike and
Mason (1998) was the rotation in these features based on the red
and blue shifted emission on either side of the macrospicule axes.
According to the authors, the detected rotation assuredly plays
an important role in the dynamics of the transition region. Using
the basic observational parameters obtained by Pike and Mason
(1998), Zhelyazkov and Chandra (2019) examined the conditions
for KHI rising in the macrospicule. Let us discuss that study
as follows.

Our (Zhelyazkov and Chandra, 2019) choice for modeling
namely the macrospicule observed on 1997 March 8 at 00:02 UT

(see Table 2 in Pike and Mason, 1998) was made taking into
account the fact that this macrospicule possesses the basic
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characteristics of the observed over the years tornado-like jets—
the axial velocity of the jet was Uz = 75 km s−1, while its
rotating speed, we evaluate to be Uφ = 40 km s−1. For the other
characteristics of the macrospicule such as lifetime, maximum
width, average flow velocity, and maximum length or height,
we used some average values obtained from a huge number of
observations and specified in Kiss et al. (2017) as 16.75±4.5 min,
6.1 ± 4 Mm, 73.14 ± 25.92 km s−1, and 28.05 ± 7.67 Mm,
respectively. For our study here, we take the macrospicule width
to be 1ℓ = 6 Mm, its height H = 28 Mm, and lifetime of the
order on 15min. The basicmacrospicule physical parameters (see
Table 1) with Uφ = 40 km s−1, ε1 = 0.005, and Be = 5 G yield
(using Equation 3) η = 0.1, Alfvén speed vAi = 60.6 km s−1

(while in the surrounding plasma we have vAe ∼= 345 km s−1),
and b = 1.798. The excited MHD mode, whose instability
window would contain a λKH = 3 Mm, is |m| = 52. Performing
the numerical computations with the input parameters: m =
52, η = 0.1, ε1 = 0.005, ε2 = 0.53 (=40/75), b = 1.798,
and MA = 1.24 (=75/60.6), we get plots very similar to those
pictured in Figure 2, which (the plots) allow us to find the KHI
characteristics for the two wavelengths of 3 and 5 Mm, exactly

γKH ∼= 48.38× 10−3 s−1, τKH ∼= 2.2 min, vph ∼= 361 km s−1,

for λKH = 3 Mm,

and

γKH ∼= 184.8× 10−3 s−1, τKH ∼= 0.57 min, vph ∼= 556 km s−1,

for λKH = 5 Mm.

One observes that at both unstable wavelengths the
corresponding phase velocities are supper-Alfvénic. Moreover,
the two growth times of 2.2 and ∼0.6 min seem reasonable
bearing in mind the fact that the macrospicule lifetime is about
15 min, which implies that the KHI at the selected wavelengths is
rather fast. The Bcriφ that suppresses the KHI onset, equals 0.57 G
and was calculated with εcr1 = 0.202085 and MA = 1.2119. Our
study (Zhelyazkov and Chandra, 2019) shows that a decrease in
the background magnetic field to Be = 4.8 G would require the
excitation of MHD wave with mode number m = 48, at which
the KHI characteristics at the wavelengths of 3 and 5 Mm are
very close to those obtained withm = 52.

5. SUMMARY AND OUTLOOK

In this article, we have studied the emerging of KHI in four
different spinning solar jets (standard and blowout coronal
hole jets, jet emerging from a filament eruption, and rotating
macrospicule) due to the excitation of high-mode (m > 2)
MHDwaves traveling along the jets. First and foremost, wemodel
each jet as a vertically moving with velocity U cylindrical twisted
magnetic flux tube with radius a. There are four basic steps in the
modeling as follows:

• Topology of jet–environment magnetic and velocity fields For
simplicity, we assume that the plasma densities of the jet and
its environment, ρi and ρe, respectively, are homogeneous.

Generally they are different and the density contrast is
characterized by the ratio ρe/ρi = η. The twisted internal
magnetic and velocity fields are supposed to be uniform,
that is, represented in cylindrical coordinates, (r,φ, z), by
the vectors Bi = (0,Biφ(r),Biz) and U = (0,Uφ(r),Uz),
where their azimuthal components are considered to be linear
functions of the radial position r, viz. Biφ(r) = Ar and
Uφ(r) = �r, where A and � (the azimuthal jet velocity)
are constants. We note that Biz and Uz are also constants.
It is convenient the twists of the magnetic field and the flow
velocity of the jet to be characterized by the two numbers
ε1 = Biφ(a)/Biz ≡ Aa/Biz and ε2 = Uφ(a)/Uz ≡ �a/Uz ,
respectively. Note that �a is the jet rotational speed Uz . The
surrounding coronal or chromospheric plasma is assumed to
be immobile and embedded in a constant magnetic field Be =
(0, 0,Be). In our study, the density contrast, η, varies from 0.1
to 0.9, the magnetic field twist, ε1, can have a wide range of
magnitudes from 0.005 to 0.95 (it has to be less than 1 in order
to avoid the rising of the kink instability), while the velocity
twist parameter, ε2, is fixed by the observationally measured
rotational and axial speeds.

• Listing of the basic physical parameters and determination
of plasmas betas In general, at a fixed density contrast, the
plasma beta is controlled by the magnetic field (inside or
outside the magnetic flux tube) and the electron temperatures
of the jet and surrounding plasma. The values of these
physical parameters should satisfy the total pressure balance
Equation (3) at all levels (equilibrium and perturbational).
Our practice is to fix Be, and using Equation (3) to determine
the internal Alfvén speed defined as vAi = Biz/

√
µρi. It is

worth underlying that the usage of Equation (3) requires the
specification of ε1. In our four cases, for finding the KHI
characteristics, we took ε1 to be equal to 0.005, 0.025, or 0.1.
The electron temperatures in the jets are from 500,000 K for
themacrospicule to 2.0MK in the jet emerging from a filament
eruption. The electron temperatures of surrounding plasmas
are 2.14 MK in the active solar region (Filippov et al., 2015),
2.0 MK in the blowout coronal hole jet (Young and Muglach,
2014a), and 1.0 MK in the environments of the standard
coronal hole jet (Chen et al. , 2012) and the macrospicule.
With background magnetic fields of 3–6 G, rotating velocities
of 40–180 km s−1, and ε1 = 0.005, the total pressure
balance Equation (3) yields plasma betas of the first, third,
and fourth jets greater than 1 and those of the environments
and the internal medium of the second jet much <1 (see
Table 1). With these plasma beta values one can consider
the media of the standard coronal hole jet, the rotating jet
emerging from a filament eruption, and microspicule as nearly
incompressible plasmas, while the internal medium of the
blowout coronal hole jet and the surrounding magnetized
plasma in the four cases can be treated as a cool medium
(Zank and Matthaeus, 1993).

• Solving of the wave dispersion relation and finding the
KHI characteristics For finding the solutions to the MHD
wave dispersion Equations (10) or (11), which are a slight
modification of the ‘basic’ dispersion relation derived in
Zaqarashvili et al., 2015, it is necessary to specify the following
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input data: the wave mode number, m, the density contrast,
η, the two twist parameters ε1 and ε2, the magnetic fields
ratio, b [obtainable from Equation (3)], and the Alfvén
Mach number MA = Uz/vAi. The roots of the dispersion
Equations (10) or (11) are the normalized wave phase
velocity and instability growth rate as functions of the non-
dimensional wavenumber kza. From plots which graphically
represent the found solutions, one obtains at the anticipated
wavelengths (given by their kza-values on the horizontal kza-
axes) the corresponding Re(vph/vAi) and Im(vph/vAi) values.
From them, one can find in absolute units the KHI growth
rate, γKH, the instability developing or growth time, τKH =
2π/γKH, and the corresponding wave phase velocity, vph. The
MHD wave mode numbers at which we were able to calculate
the instability characteristics at wavelengths comparable to the
radius or width of the jet are between 10 and 65 and the KHI
growth times at those wavelengths are of the order on a few
minutes, generally in good agreement with the observations.
It is curious to note that in searching KHI growth times
of the order on few seconds, when studying the dynamics
and stability of small-scale rapid redshifted and blueshifted
excursions, appearing as high-speed jets in the wings of the
Hα line, Kuridze et al. (2016) had to assume the excitation
of MHD waves with mode numbers up to 100. A typical
property of the instability developing times, owing to the shape
of the plotted dispersion curves, is that with increasing the
examined wavelength the growth times become shorter—for
instance, at λKH = 10 Mm the KHI developing time in the
coronal hole jet (Chen et al. , 2012) is around 4.5 min, while
at λKH = 12 Mm it is equal to ∼=2.1 min. A change in Be can
influence the MHD mode number m, which would yield an
instability region similar or identical to that seen in Figure 2. It
is necessary to mention that the width of the instability range
except by changing the MHD wave mode number, m, can be
regulated by increasing or diminishing the parameter ε1.

• Finding the critical azimuthal magnetic field which suppresses
the emergence of KHI It was numerically established, that any
increase in ε1 yields to the shortening of the instability range.
This observation implies that there should exist some critical
ε1, at which the upper limit of the instability range coincides
with the lower one—in that case the width of the instability
window is zero, which means that there is no longer any
instability. With such an εcr1 , one can calculate the Bcriφ , which
stops the KHI appearance. For the rotating blowout coronal
hole jet this Bcriφ is relatively small—it is equal to ≈0.3 G,
while for the standard coronal hole jet it is 1.4 G. It is worth
noticing that due to the specific parameters of the jet emerging
from a filament eruption, we were unable to find a Bcriφ , which
would stop the KHI onset because with values of ε1 close to
1 our dispersion relation becomes inappropriate (the internal
medium being nearly incompressible becomes a cool one) and
we cannot calculate that ε1 at which the lower limit, (kza)lhs =
0.524, can be reached (see Figure 9).

In this article, we also corrected the total pressure
balance equation used in Zhelyazkov et al. (2018) and
Zhelyazkov and Chandra (2018), which turns out to be

erroneous. The true total balance equation is given by
Equation (3). In fact, the corrected pressure balance equation,
used here, changes the mode numbers at which the KHI occurs,
namely fromm = 12 tom = 11 for the coronal hole jet and from
m = 18 to m = 10 for the rotating jet emerging from a filament
eruption. The computed KHI developing or growth times
in the aforementioned articles, nonetheless, are not changed
noticeably—they are of the same order with these computed
in this paper. In addition, there is another improvement issue,
scilicet when studying how the increasing ε1 shortens the
instability region, one has to apply Equation (3) for obtaining
the appropriate values of b = Be/Biz and vAi = Biz/

√
µρi,

and subsequently MA = Uz/vAi. Thus, one can claim that
Equation (3) plays an important role in the numerical studies of
the KHI in various solar jets.

Our approach in investigating the KHI in rotating twisted
solar jets can be improved in the following directions: (i)
to assume some radial profile of the plasma density of the
jet, which immediately will require additional study on the
occurrence of continuous spectra and resonant wave absorption
(Goedbloed and Poedts, 2004), alongside to see to what extent
these phenomena will influence the instability growth times; (ii)
to investigate the impact of the non-linear azimuthal magnetic
and velocity fields radial profiles on the emergence of KHI;
and (iii) to derive a MHD wave dispersion relation without
any simplifications like considering the jet and its environment
as incompressible or cool plasmas—this will show how the
compressibility will change the picture. We should also not forget
that the non-linearity, as Miura and Pritchett (1982) and Miura
(1984) claim, can lead to the saturation of the KHI growth, and to
formation of non-linear waves. Nevertheless, even in its relatively
simple form, our way of investigating the conditions under which
the KHI develops is flexible enough to explore that event in any
rotating solar jet in case that the basic physical and geometry
parameters of the jet are provided by observations.
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The high temporal, spatial and spectral resolution of Interface Region Imaging

Spectrograph (IRIS) has provided new insights into the understanding of different

small-scale processes occurring at the chromospheric and transition region (TR)

heights. We study the dynamics of high-frequency oscillations of active region (AR

2376) moss as recorded by simultaneous imaging and spectral data of IRIS. Wavelet

transformation, powermaps generated from slit-jaw images in the Si IV 1400Å passband,

and sit-and-stare spectroscopic observations of the Si IV 1403Å spectral line reveal the

presence of high-frequency oscillations with∼1–2min periods in the bright moss regions.

The presence of such low periodicities is further confirmed by intrinsic mode functions

(IMFs) as obtained by the empirical mode decomposition (EMD) technique. We find

evidence of the presence of slow waves and reconnection-like events, and together they

cause the high-frequency oscillations in the bright moss regions.

Keywords: sun, chromopshere, transition region, moss, oscillations, MHD wave

1. INTRODUCTION

Understanding the processes responsible for the heating of the upper atmosphere is the central
problem in solar physics. Though highly debated (see reviews Klimchuk, 2006; Reale, 2010; Parnell
and De Moortel, 2012), two widely accepted mechanisms for converting magnetic energy into
thermal energy are impulsive heating by nano-flares (Parker, 1988) and heating by dissipation
of waves (Arregui, 2015). The heating processes are generally proposed to occur on small spatial
and temporal scales, which were difficult to observe with the typical resolution of the previous
instruments. In the very recent past, the advent of instruments with better temporal resolutions,
several evidences of high-frequency oscillations of sub-minute periodicities have been reported
to be present from the chromosphere (Gupta and Tripathi, 2015; Shetye et al., 2016; Ishikawa
et al., 2017; Jafarzadeh et al., 2017) up to the corona (Morton and McLaughlin, 2013, 2014; Testa
et al., 2013; Pant et al., 2015; Samanta et al., 2016) at sub-arcsec spatial scales. The small-scale
quasi-periodic flows resulting from oscillatory magnetic reconnection as well as the presence of
various Magnetohydrodynamic (MHD) waves produce such observed perturbations in imaging
and spectroscopic observables. These periodic/quasi-periodic perturbations/oscillations observed
at such finer scales in space and time can thus be regarded as the manifestations of the reoccurring
dynamic heating processes present at similar spatial (sub-arcsec) and temporal (sub-minute) scales.

Various MHD waves could be present simultaneously along with quasi-periodic flows or their
presence could entirely be non-concurrent. The plausible mechanism/s for their origin might also
be directly coupled in some cases or completely independent in others. For instances, Gupta and
Tripathi (2015) detected short-period variability (30–90 s) within explosive events observed in TR
by IRIS (De Pontieu et al., 2014) and related them to repetitive magnetic reconnection events.
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On the other hand, Jafarzadeh et al. (2017) observed high-
frequency of periods 30–50 s in Ca II H bright-points
in the chromosphere using the SUNRISE Filter Imager
(SuFI; Gandorfer et al., 2011). They found the evidence of both
compressible (sausage mode) and incompressible (kink mode)
waves to be present in the magnetic bright-points. Shetye et al.
(2016) reported transverse oscillations and intensity variations
(∼ 20–60 s) in chromospheric spicular structures using the CRisp
Imaging SpectroPolarimeter (CRISP; Scharmer et al., 2008)
on the Swedish 1-m Solar Telescope. They argued that high-
frequency helical kink motions are responsible for transverse
oscillations and compressive sausage modes to result in intensity
variations. They further found evidence of mode coupling
between compressive sausage and non-compressive kink modes
and speculated the presence of other spicules and flows possibly
acting as the external drivers for the mode-coupling.

Using the total solar eclipse observations of 11 July
2010 (Singh et al., 2011), Samanta et al. (2016) detected
significant oscillations with periods ∼6–20 s in coronal
structures. They attributed these high-frequency oscillations as
a mixture of different MHD waves and quasi-periodic flows.
Using the High-resolution Coronal Imager [Hi-C; Kobayashi
et al. (2014)] data, Testa et al. (2013) observed variability
on time-scales of 15–30 s to be present in the moss regions
as observed in the upper TR, which they found to be
mostly located at the foot-points of coronal loops. They
regarded such oscillations as the signatures of heating events
associated with reconnection occurring in overlying hot
coronal loops, i.e., impulsive nano-flares. More recently, from
the Chromospheric Lyα SpectroPolarimeter (CLASP; Kano
et al., 2012) observations, Ishikawa et al. (2017) also reported
short temporal variations in the solar chromosphere and TR
emission of an active region with periodicities of ∼10–30 s. They
attributed these intensity variations to waves or jets from the
lower layers instead of nano-flares. Morton and McLaughlin
(2013, 2014) analyzed the same active region moss observations
of Hi-C as by Testa et al. (2013) and observed the presence of
transverse oscillations with periodicities of 50–70 s. Pant et al.
(2015) also studied the same region in Hi-C observations
and detected quasi-periodic flows as well as transverse
oscillations with short periodicities (30–60 s) in braided
structures of the moss. They indicated coupling between the
sources of transverse oscillations and quasi-periodic flows, i.e.,
magnetic reconnection, such that they could be possibly driving
each other.

In the present work, we concentrate on the high-
frequency (∼1–2min) dynamics of active region (AR
2376) moss as observed by IRIS. IRIS have provided
an unprecedented view of the solar chromosphere
and transition region with high temporal, spatial and
spectral resolution. The joint imaging and spectroscopic
observations of IRIS at high cadence provide us with
a unique opportunity to have a detailed analysis of
different characteristics and mechanisms involved in
the generation of high-frequency oscillations in TR
moss regions.

2. DETAILS OF THE OBSERVATION

IRIS observations of active region (AR 2376) moss, observed on
2015-07-05 from 05:16:15 UT to 07:16:23 UT is considered for
the present analysis. Figure 1 shows the observation region on
the solar disk, as outlined in the image taken in the 171Å pass-
band of AIA (Atmospheric Imaging Assembly; Lemen et al.,
2012) and slit-jaw image (SJI) in 1400Å at a particular instance
observed by the IRIS. The bottom panel shows a typical light-
curve at a particular location A (marked in the full FOV above) in
themoss region in SJ 1400Å intensity. The nature of the variation
of intensity clearly reveals the presence of small amplitude
quasi-periodic variations along with comparatively larger
amplitude variations.

Centered at 146′′, 207′′, the imaging data (slit-jaw images or
SJIs) have a field of view (FOV) of 119′′ × 119′′. The SJIs are
taken with a cadence of 13 s and have spatial resolution ≈ 0.33′′.
The simultaneous large sit-and stare spectroscopic data has a
cadence of 3.3 s with the slit-width of 0.35′′ and pixel size along
the solar-Y axis to be 0.1664′′ with slit length of 119′′. Every
observation in this data-set has an exposure time of 2 s. The high
cadence of these data-sets provides us a unique opportunity to
investigate the high-frequency dynamics in this region with high
significance level.

We use IRIS SJIs centered at the Si IV 1400Å passband which
samples emission from the transition region (TR). For spectral
analysis, we concentrate on the Si IV (1403Å) line formed at
log10 T ≈ 4.9K which is one of the prominent TR emission
lines observed with the IRIS and is free from other line blends.
For density diagnostics, we use the O IV (1401Å) TR line along
with Si IV (1403Å) (Keenan et al., 2002; Young et al., 2018). The
calibrated level 2 data of IRIS is used in the study. Dark current
subtraction, flat-field correction, and geometrical correction have
been taken into account in the level 2 data. We employ wavelet
analysis (Torrence and Compo, 1998) and empirical mode
decomposition (EMD; Huang et al., 1998) techniques in order to
detect and characterize the high-frequency oscillations in slit-jaw
(SJ) intensity (section 3.1) and different spectral properties i.e.,
total intensity, peak intensity, Doppler velocity, and Doppler
width (section 3.2).

3. DATA-ANALYSIS AND RESULTS

3.1. Imaging Analysis From Si IV 1400Å SJIs
Wavelet analysis is performed at each pixel location of SJ
FOV to obtain the period of SJ intensity variability over the
observed moss region. As shown in Figure 1, a typical light curve
corresponding to a single pixel location for the entire duration
reveals presence of quasi-periodic small and large amplitude
intensity fluctuations. Figure 2A shows a representative example
(selected at random) of wavelet analysis results corresponding
to the pixel location marked as A in SJ FOV (Figure 1) for a
duration of 20min. It should be noted that in most of results
we show the wavelet and EMD analysis corresponding to 20 min
interval only so that the temporal variations in intensity can
be studied more carefully, particularly as we are interested in
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FIGURE 1 | AIA 171Å image marking the observed region by IRIS and SJI at a particular instance as observed by IRIS in the Si IV 1400Å passband. The bottom

panel shows the SJ intensity light curve at location A marked in SJI FOV for the complete duration of the observation.

FIGURE 2 | (A) Wavelet analysis, and (B) EMD analysis result for the Si IV 1400Å SJ intensity variation with time from 35 to 55 min of the observation at location A.

The details about the different panels are explained in the text (section 3.1).
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the shorter periodicities. The top panel in Figure 2A shows the
variation of SJ intensity with time. The middle-panel shows the
background (trend) subtracted intensity which is further used to
obtain wavelet power spectrum (lower panels). The background
(trend) is obtained by taking the 10-point running average of
the intensity variation. The bottom left panel displays a wavelet
power spectrum (color inverted) with 99% significance levels
and the bottom right panel displays a global wavelet power
spectrum (wavelet power spectrum summed over time) with 99%
global significance.

The power spectra obtained reveals the presence of short-
period variability in the SJ intensity light-curve, with a distinct
power peak at a period of 1.6min. It is important to note that
even without considering the background trend, we obtain a
power peak at the same period in wavelet spectra but with
low significance level. Empirical mode decomposition (EMD)
is also employed at a few locations in the SJ FOV. Figure 2B
shows the different intrinsic mode functions (IMFs) obtained
from EMD for the same SJ light-curve as shown in Figure 2A.
Here only the first four IMFs are shown as the further IMFs
contain the larger background trends. The dominant period (P)
mentioned in the figure for each IMF is calculated using fast-
Fourier transform (FFT). The period of the first four IMFs for
the particular example shown in Figure 2B are 0.74, 1.25, 2.85,
and 3.99min. The EMD analysis reinforces the detection of the
presence of short periodicities (1–2min) in the moss region
as obtained by wavelet analysis. The presence of periodicities
< 1min can also be noted from the Figure 2, though these
are below the significance level of 99% as shown in wavelet
power spectra. Such oscillations have very small amplitudes, are
present even for shorter-duration and could be damping fast.
Hence, the oscillations with periods < 1min may carry smaller
amount of energy and may not be so important as those with
periods > 1min which may be distributed over larger spatial and
temporal extents.

To focus on the distribution of power as calculated from

the wavelet method, we obtain the power maps of SJ intensity

over the full FOV in 1–2min and 2–4min period intervals
(Figure 3) by considering the entire duration of the observation.

The entire duration of the observations is chosen to understand

the global dynamics of the active region moss. On comparison
of power maps with the SJ images (Figure 3) and AIA images
(Figure 1), it can be observed that the significant power of
high-frequency (1–2min) as well as low-frequency (2–4min)
oscillations is generally present only in bright regions of the
moss. Figure 3 also shows the time-average SJI with the power
contours of 1–2min variability in red and 2–4min in yellow. The
power contours enclose the locations with the value of significant
power to be more than 100, in respective period range. The finer
and smaller spatial extents of the contours at various locations
over the field of view suggest that these oscillations possess high
power in the localized regions within the bright moss. Moreover,
the comparison of power between short (1–2min) and long (2–
4min) periodicities, as showcased in Figure 3, reveals that the
power in 1–2min variability is, in general, less than that in
2–4min.

3.2. Spectral Analysis From
Si IV 1403Å Emission Line
To characterize periodicities present in the spectrograph data,
we produce power maps of the spectral parameters obtained
by fitting a single Gaussian to the Si IV 1403Å emission spectra
using wavelet analysis. The analysis was performed over the
entire duration of the observations. At few instances, we
interpolate the spectral parameters where a Gaussian fitting could
not be performed due to poor signal to noise. The power maps,
shown in Figure 4, clearly showcase the significant power along
the slit, predominantly present in the period range of 0.83–
2.36min corresponding to pixel locations of the bright moss
regions (wherever the slit crosses the bright moss). This confirms
the presence of short-period oscillations in Si IV 1403Å spectra
along with the Si IV 1400Å SJ intensity (described in section 3.1)
in various locations of the moss region.

Now we shift our focus to shorter time intervals where data
gaps due to poor signal-to-noise are absent. This allow us to
investigate the correlation between different spectral parameters
using wavelet and EMD analysis. Further, taking the intervals
of 20 min is sufficient because we are primarily interested in
shorter periods like, 1–2 min. Figure 5A shows the wavelet
maps of total intensity variation for a duration of 20min at
a particular location along the slit (marked as B in the SJ
FOV in Figure 1). Total intensity signifies the summed intensity
over the wavelength range. Figure 6A shows the wavelet maps
of Doppler velocity at the same location B and same time-
interval as shown for total intensity in Figure 5. Note that the
location B is very close to location A so that a comparison can
be made with the periodicities found at location A using SJI.
Moreover, the same time-interval is shown in Figures 2, 5, and
6 for better illustration. Figure 7 shows the variation of peak
intensity, Doppler width, total intensity and Doppler velocity
of Si IV 1403Å line at location B along with the spectral line-
profile at a particular instance. The observational uncertainties
are shown in the left panel over the observed line-profile. These
errors are taken into account while fitting the Gaussian profile
(green solid curve). The fitting errors of the respective spectral
parameters are shown in the adjacent light curves in orange. It
can be clearly observed that the errors in the spectral parameters
are much less than the amplitude of oscillations. For instance,
the average magnitude of error over the Doppler velocity light
curve shown in Figures 6, 7 is 0.5 km/s, whereas the amplitude of
oscillation of its IMFs (as shown in Figure 6) is more than 1 km/s
in most of the cases. The oscillations in the spectral parameters
are well above the error values in general and thus significant.
An animation of the Figure 7 is available as the supplementary
material (Supplementary Video 1) in the online version which
shows the evolution of the spectral line profile with time.

The background trends for the spectral parameter light curves
(in Figures 5, 6) are obtained by considering the 35-point
running average of the light-curves. The dominant power peaks
are observed to be present 1.5min for total intensity, 1.7min
for peak intensity, 1.7min for Doppler velocity, and 1.5min for
Doppler width in the respective power spectra. Here again, the
presence of periodicities of < 1min can be seen in the wavelet.
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FIGURE 3 | Power maps showing the significant power obtained from the Si IV 1400Å SJ intensity variation in the period range of 1–2 min and 2–4 min. The

rightmost panel shows the average SJ intensity image with contours of significant power in 1–2 min periods in red and 2–4 min in yellow, delineating the bright regions

of the moss.

FIGURE 4 | Power maps showing the significant power obtained from the variation of different spectral parameters of Si IV 1403Å emission line in the period range of

0.3–6.7 min.

It can be clearly observed that such oscillations are present for
very short durations and thus of not much significance over
the longer durations. Also, such short periodicities could be
due to the presence of noise which is picked up by wavelet at
higher-frequencies.

The EMD technique is applied over the spectral variations
in order to segregate the different periodicities present in their

light curves. Figures 5B, 6B, respectively, shows the first four
IMFs and their periods (P) of total intensity and Doppler velocity
variation for the duration of 20min at the location B. The first
four IMFs (IMF0, IMF1, IMF2, and IMF3) are observed to
contain the short-period variabilities (0.2–2min). The successive
IMFs are observed to have periodicities of more than 2min
and hence not discussed in the present analysis. To perform a
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FIGURE 5 | (A) Wavelet analysis, and (B) EMD analysis result for the Si IV 1403Å total intensity variation with time from 35 to 55 min of the observation at location B

along the slit.

FIGURE 6 | Same as Figure 5 but for Doppler velocity.

statistical study of correlation and phase-relationship between
Doppler velocity and total intensity, we study 40 different light-
curves (cases), each of duration 20min. These cases are selected
to be located in the close neighborhood of the power contours
of 1–2min periodicities (red contours in the average SJ image
in Figure 3). The locations of the selected cases are marked in

black along the slit in the SJ image in Figure 3. Few specific time-
intervals are considered at these locations in order to have further
study about phase-relationship between Doppler velocity and
total intensity.

Figure 8 shows the histograms of the period of oscillations for
different IMFs of total intensity and Doppler velocity with the
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FIGURE 7 | Left panel shows the observed spectral line profile (black symbols with the observational errors) of Si IV 1403Å emission line at location B, with the

Gaussian fit (green solid curve) for a particular instance. Panels on the right show the light-curves (in black) with the fitting errors (in orange) of different spectral

parameters at B for a duration of 20min. The green solid symbol over the light-curves marks the instant for which the spectral profile is shown in the left panel. The

dotted lines shows some instances of the possible reconnection flows. An animation of this figure is available as the supplementary material

(Supplementary Video 1) in the online version which shows the evolution of the spectral profile with time.

mean periods listed in the figure. As reflected by the value of
mean periods, we will further regard the IMF0 to be associated
with the periodicity of ∼0.17min, IMF1 with ∼0.40min, IMF2
with ∼0.72min and IMF3 with ∼1.26min. The power maps
in Figure 4 shows the absence of significant power in the
periods below 0.6min. Henceforth, for the further analysis
about phase-relationship, we consider only the third and fourth
IMFs, i.e., IMF2 and IMF3. The phase-relation between Doppler
velocity and total intensity at the short-periodicities is studied
by correlating their respective IMFs for the 40 cases. Figure 9
shows the histograms of the phase difference between Doppler
velocity and total intensity by considering IMF2 and IMF3. The
sign convention for the values of phase-shifts considered here
is such that the positive values phase-shift signifies the Doppler
velocity to be leading with respect to the total intensity. The
histogram of IMF2 reveal the presence of preferred phase-shifts

at ∼ ±3T/8 (∼ ±3π/4) where T = 0.72min, is the time period
of oscillation. The histogram of IMF3 shows the dominant phase-
shifts at∼ −T/2 (∼ −π) where T = 1.26min.

The presence of a dominant phase shift of ∼T/2 for
periodicities of ∼1.26min (IMF3) indicates the presence of
reconnection events. As shown in Figure 7, the increase in the
intensity is accompanied by the increase in the Doppler width
and decrease in Doppler velocity (blue-shifted flows, De Pontieu
et al., 2009; De Pontieu and McIntosh, 2010) at many instances
throughout the light-curve. Few of such instances are shown by
vertical dotted lines in Figure 7. In case of phase-shifts of∼±T/2
or ∼±π , the reconnection process results in near simultaneous
variation in the spectral parameters with the resultant mass
flow projected toward the line-of-sight (blue-shifts or negative
Doppler velocity). As the TR emission lines are red-shifted in
general, the flows toward the line-of-sight (blue-shifted flows)
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FIGURE 8 | Histograms showing the distribution of periods of the first four IMFs of total intensity in red and Doppler velocity in blue for the 40 selected cases.

FIGURE 9 | Histograms showing the distribution of phase-difference between total intensity and Doppler velocity for IMF2 and IMF3 for the 40 selected cases.

will appear to decrease the Doppler speeds simultaneously with
the increase in the intensity and width (phase-shift of ∼±T/2 or
∼±π). On the other hand, the flows away from the line-of-sight
will increase the value of the Doppler speeds with an increase
in the line intensity and width (∼ zero phase-shift). It can be
observed from Figure 7 and also indicated by Figure 9 that the

red-shifted flows (cases with zero phase difference) occur less
frequently compared to blue-shifted flows (cases with phase shifts
of ±T/2). As shown in Figure 7, the instances of large amplitude
fluctuations, which mostly have phase shift of ∼T/2 between
Doppler velocity and total intensity, can be regarded as the
clear signatures of quasi-periodic outflows (toward the observer)
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resulting from the reconnection process. The other instances of
small amplitude fluctuations can be due the presence of slow
magneto-acoustic waves.

Very recently, Hansteen et al. (2014) and Brooks et al.
(2016) have reported the presence of transition region fine loops
with the aid of IRIS observations and numerical simulations.
Such small scale loops with loop lengths of ∼1 to 2 Mm can
harbor slow standing waves with periods of ∼1min in transition
region. It is worth noting at this point that Wang et al. (2003);
Taroyan et al. (2007); Taroyan and Bradshaw (2008) reported
the presence of standing slow waves exclusively in hot coronal
loops. In addition, Pant et al. (2017) reported the existence
of standing slow waves in cool coronal loops (∼0.6 MK). In
this work, we found evidence of the existence of slow waves
in Si IV 1403Å emission line whose formation temperature is
∼60000 K. In an ideal case, the phase-shift of∼±T/4 is attributed
to the presence of standing slow waves in the solar atmosphere
(Wang et al., 2003; Taroyan et al., 2007; Taroyan and Bradshaw,
2008; Moreels and Van Doorsselaere, 2013). Further, it should be
noted that the intensity and velocity changes phase in time due
to the heating and cooling of the plasma (Taroyan and Bradshaw,
2008) and due to presence of imperfect waveguides and drivers
in reality, which deviates from the theoretical considerations
(Keys et al., 2018). Thus the phase shift between intensity
and velocity oscillations might differ in different regions and
different time as showcased in Figure 10. Figure 10 shows the
representative examples of the IMFs (IMF2 and IMF3) at location
B along the slit. The phase-shift between Doppler velocity and
total intensity (φ) obtained using the correlation techniques
is also mentioned in the respective panels. The comparison
between of the respective IMFs of intensity and Doppler velocity
fluctuations clearly depicts that the phase-shift between them
changes continuously throughout the entire duration. This could
be due to the intermittent nature of the flows and waves that
might result in departure from the theoretically expected values
of the phase-shifts. Hence we conjecture that the statistically
dominant phase shift of ∼±3T/8 for periodicities of ∼0.72min
(IMF2) is due to the presence of small-scale flows along with slow
standing waves in TR fine loops. This supports both wave and
reconnection like scenario to be responsible for the periodicities
of 1–2min in moss regions, which is discussed in details
in section 4.

3.3. Density Diagnostics From Si IV
1403Å and O IV 1401Å Emission Lines
In order to obtain the information about density variations
associated with the presence of waves and/or reconnection flows,
in the moss regions, we attempt to estimate density along the
slit using Si IV 1403Å (λ = 1402.77Å) and O IV 1401Å (λ =
1401.16Å) spectral lines from the IRIS spectra (as suggested
by Young et al., 2018). They introduced an empirical correction
factor to normalize Si IV/O IV line intensity ratios. As first
mentioned by Dupree (1972), the observed intensities of lines
from the lithium and sodium-like iso-electronic sequences are
usually stronger than that expected by the emission measures
from other sequences formed at the same temperature. Hence,

such a correction factor is important to be applied to silicon line
intensities. Table 2 of Young et al. (2018) gives the theoretical
ratios of different lines after employing the correction factor (see
QS DEM method as explained in Young, 2018; Young et al.,
2018). We use the Si IV (1402.77)/O IV (1401.16) line ratio from
Table 2 of Young et al. (2018) for the estimation of electron
density at a temperature of log T/K = 4.88 (temperature of
maximum ionization of Si IV).

As the O IV 1401Å line is very weak in IRIS spectra, the
spectra is averaged over 7 pixels along the slit. In such averaging,
for instance, the data value of the first 7 spatial pixels are
replaced by their average value, the next 7 pixels are replaced by
their respective average data-value, and so on. Similarly, time-
averaging is also performed by considering 4 time steps along
the temporal axis. In order to improve S/N, such averaging is
performed only over O IV 1401Å spectra as Si IV 1403Å spectra
contains significantly good signal. Figures 11A,B shows the
time-sequence maps of peak intensity along the slit for
the Si IV 1403Å and O IV 1401Å line-profiles. A comparison
between the two maps clearly shows that despite averaging the
spectra (as explained above), we are able to obtain good S/N only
for very few isolated O IV 1401Å line-profiles in order to perform
a reliable Gaussian fit, hence the peak intensity values for the
O IV 1401Å line are shown only for those isolated few pixels.

Figure 11C shows the theoretical Si IV (1403)/O IV (1401)
ratio-density curve (Young et al., 2018) in solid black and
the estimated density values are over-plotted in magenta. The
density time-sequence map is also showcased in Figure 11D.
Note that we could estimate the density only at very few instances
of some of the locations, as limited by the poor signal in
O IV 1401Å spectra. It can be observed in Figure 11D that we
cannot find considerable examples of continuous density signal
along time for some significant amount of duration over the
entire observation. It is completely unreliable to perform any
time series analysis over such light-curves. It appears that there
are definite changes in the density but to relate those changes with
intensity and other line parameters for identification of the wave
mode is beyond the quality of the current observations. Thus, we
are still unable to obtain any results related to density oscillations
with the present data.

4. CONCLUSIONS

In the present article, we study high-frequency dynamics of
active region moss by using high spatially and spectrally
resolved observations of IRIS, with the fast cadence of 13 s
for imaging and 3.3 s for spectral data. The techniques of
wavelet and EMD analysis are employed in conjunction to
explore the characteristics of the high-frequency oscillations.
We have observed the persistent presence of periodicities
in the 1–2min range in the Si IV 1400Å SJ intensity as
well as in different spectral parameters (total intensity, peak
intensity, Doppler velocity, and Doppler width) derived from the
Si IV 1403Å emission line. The power maps deduced from the SJ
intensity variations show the concentration of power in short-
periodicities generally in the bright regions of the moss. This
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FIGURE 10 | Representative examples of the IMFs at location B along the slit, showing the respective comparisons between Doppler velocity and total intensity

oscillations, and depicting that the phase-shift between them changes continuously.

FIGURE 11 | (A,B) Time-sequence maps of peak intensity of the Si IV (1403Å) and O IV (1401Å) line. (C) Theoretical Si IV (1403)/O IV (1401) ratio density curve in solid

black and the estimated values of the density in magenta corresponding to the observed ratios. (D) Time-sequence map of the estimated density.
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result is in agreement with the study of Pant et al. (2015), where
the authors reported high-frequency quasi-periodic oscillations
concentrated over localized regions in the active region moss.
However, no attempts were made to understand the nature
of variability due to the lack of spectral data. That study was
performed using the 193Å passband of Hi-C which is sensitive
to coronal temperatures. In this work, we find similar signatures
in TR. Additionally, the power maps of the spectral parameters
also reveal the predominance of significant power in the 1–2min
period range.

We study the phase difference between Doppler velocities and
total intensity. Our study supports both wave and reconnection
like scenario to be responsible for the periodicities of 1–2min in
moss regions. Studying the phase relationships, we can conclude
that the periodicity of 1.26min with dominant phase shifts
of ∼ −T/2 (∼ −π) is predominantly due to the outflows
resulting from the reconnection process. On the other hand,
the periodicity of 0.72min with dominant phase shifts of
∼ ±3T/8 (∼ ±3π/4) can be regarded as the collective signatures
of the small-scale flows and slow standing modes existing
within the transition region fine loops of lengths 1–2 Mm.
Hence qualitatively, we can conjecture that the high-frequency
oscillations of ∼1min, observed in the bright moss regions
are possibly due to the combination of slow magneto-acoustic
waves and reconnection events. As explained in section 3.3, we
cannot obtain any reliable results from the density variations,
although we are able to estimate the average density of
the moss regions but to reliably study the density variation
much better quality of data is required. The high-frequency
oscillations in the moss regions can be due to compressive
waves. The key to distinguish between the different modes
conclusively is to study the density variations which is not
possible with present data because of low data-counts present
in the O IV 1410Å emission line. Some new instruments, with
better sensitivity in the FUV wavelengths, especially in the
density sensitive lines, may provide new insight and will enable

us to specifically detect the particular wave modes responsible for
such oscillations.
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Recent observations with the Atmospheric Imaging Assembly (AIA) instrument on the

SDO spacecraft have revealed the existence of decayless coronal kink oscillations. These

transverse oscillations are not connected to any external phenomena like flares or coronal

mass ejections, and show significantly lower amplitudes than the externally excited

decaying oscillations. Numerical studies have managed to reproduce such decayless

oscillations in the form of footpoint driven standing waves in coronal loops, and to treat

them as a possible mechanism for wave heating of the solar corona. Our aim is to

investigate the correlation between the observed amplitudes of the oscillations and input

the energy flux from different drivers. We perform 3D MHD simulations in single, straight,

density-enhanced coronal flux tubes for different drivers, in the presence of gravity.

Synthetic images at different spectral lines are constructed with the use of the FoMo

code. The development of the Kelvin-Helmholtz instability leads to mixing of plasma

between the flux tube and the hot corona. Once the KHI is fully developed, the amplitudes

of the decayless oscillations show only a weak correlation with the driver strength. We

find that low amplitude decayless kink oscillations may correspond to significant energy

fluxes of the order of the radiative losses for the Quiet Sun. A clear correlation between the

input energy flux and the observed amplitudes from our synthetic imaging data cannot

be established. Stronger drivers lead to higher vales of the line width estimated energy

fluxes. Finally, estimations of the energy fluxes by spectroscopic data are affected by

the LOS angle, favoring combined analysis of imaging and spectroscopic data for single

oscillating loops.

Keywords: solar corona, forward modeling, magnetohydrodynamics, corona loops, decayless oscillations

1. INTRODUCTION

Over the past 20 years, observations of the Sun have shown the existence of waves and oscillations
throughout the solar corona (Aschwanden, 2006; DeMoortel andNakariakov, 2012). The discovery
of transverse magnetohydrodynamic (MHD) standing (Aschwanden et al., 1999; Nakariakov et al.,
1999) waves in coronal loops, and propagating waves in open magnetic field structures (Verwichte
et al., 2005) has lead to many observational and numerical studies. The ubiquity of such waves has
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also been established in prominence threads (Okamoto et al.,
2007), coronal loops (McIntosh et al., 2011), as well as greater
areas of the corona (Tomczyk et al., 2007; Tomczyk and
McIntosh, 2009; Thurgood et al., 2014; Morton et al., 2016),
renewing the interest on the effects of these waves in the
solar atmosphere.

Analytical studies on the nature of the transverse oscillations
in inhomogeneous plasmas (Zajtsev and Stepanov, 1975; Ryutov
and Ryutova, 1976; Edwin and Roberts, 1983; Allcock and
Erdélyi, 2017) have described the different surface waves expected
in a non-uniform plasma. In order to explain the observed
damping of such oscillations (Tomczyk and McIntosh, 2009;
Terradas et al., 2010; Verth et al., 2010; Pascoe et al., 2016a,
2017; Pascoe et al., 2019), extensive theoretical and numerical
work has also been performed. The mechanisms of resonant
absorption and mode coupling (Sakurai et al., 1991; Goossens
et al., 1992, 2011; Ruderman and Roberts, 2002; Arregui et al.,
2005; Pascoe et al., 2012, 2016b, 2018; De Moortel et al., 2016;
Yu et al., 2017) are considered the reason behind this spatial
and temporal attenuation of the oscillations, by transferring
the energy of the global kink mode to local azimuthal Alfvén
modes. Through phase mixing (Heyvaerts and Priest, 1983; Soler
and Terradas, 2015), the energy is then transferred to ever
decreasing smaller scales until it gets dissipated by resistivity
and viscosity (Ofman et al., 1994a,b, 1998; Poedts and Boynton,
1996). Observational studies of waves in the solar chromosphere
and corona (De Pontieu et al., 2007; Tomczyk and McIntosh,
2009; Morton et al., 2012) suggest the existence of enough energy
flux to sustain the radiative losses of ∼100 W m−2 for the
non-active region corona (Withbroe and Noyes, 1977). In De
Moortel and Pascoe (2012) it was shown that LOS integration of
footpoint driven multistrand coronal loop oscillations leads to an
underestimation of the wave energy. In Antolin et al. (2017) it
was found for a non-driven oscillating loop that the wave energy
ends up underestimated through the localization of the energy by
resonant absorption. Recent simulations of coronal loop waves
(Pagano and De Moortel, 2017, 2019; Pagano et al., 2018) have
not reported sufficient heating to balance the radiative losses.

Alongside the high amplitude, externally initiated, decaying
transverse oscillations in coronal loops (Verwichte et al., 2009,
2010;White and Verwichte, 2012;White et al., 2012) a new group
of small-amplitude decayless transverse oscillations have been
identified in coronal loops (Nisticò et al., 2013; Anfinogentov
et al., 2015; Duckenfield et al., 2018), with amplitudes ∼0.1–
0.4 Mm. These decayless oscillations have been interpreted
in different ways over the years. They have been treated
as continuously driven kink waves with a footpoint driver
(Afanasyev et al., 2019; Guo et al., 2019; Karampelas et al., 2019),
as a self-oscillatory process due to the interaction of the loops
with quasi-steady flows (Nakariakov et al., 2016), or as a line of
sight (LOS) effect from the development of the Kelvin-Helmholtz
instability (KHI) (Antolin et al., 2016) in impulsive standing
loop oscillations.

The development of the KH instability has been theorized
in plasma structures were standing surface waves are observed
(Heyvaerts and Priest, 1983; Browning and Priest, 1984;
Zaqarashvili et al., 2015; Barbulescu et al., 2019; Hillier et al.,

2019), caused by the strong shear velocities generated by the
azimuthal Alfvén waves. Recent numerical studies (Terradas
et al., 2008, 2018; Antolin et al., 2014; Antolin et al., 2018; Magyar
and Van Doorsselaere, 2016; Howson et al., 2017; Karampelas
et al., 2017) have confirmed the development of transverse
wave induced Kelvin-Helmholtz (TWIKH) rolls for standing
kink waves. Additional work has been performed in order to
develop methods of identifying the effects of KHI in oscillating
loops (Goddard et al., 2018; Van Doorsselaere et al., 2018).
Spatially extended TWIKH rolls have been found in the case
of continuously driven standing waves, which fully deform the
initial monolithic loop cross-section into a fully turbulent one
(Karampelas and Van Doorsselaere, 2018; Karampelas et al.,
2019). These spatially extended TWIKH rolls in simulations
of continuously driven loops have also been reported as sites
of mixing of plasma and heating in the solar corona, by
effectively spreading the effects of phase mixing across the
cross-section of loops (Afanasyev et al., 2019; Karampelas et al.,
2017, 2019; Guo et al., 2019).

One of the main challenges in creating an efficient wave
heating model is to find a way of providing a high enough energy
flux over large periods of time, while still remaining within the
constraints imposed by the observational data. The decayless
oscillations seem to be ideal candidates for prolonged energy
input in such a model, and also pose the constraint of having
relatively small oscillation amplitudes. In Guo et al. (2019), the
use of a mixed Alfvén and transverse footpoint driver suggested
as a way of increasing the total energy input while retaining small
amplitudes in the synthetic images. The authors in Afanasyev
et al. (2019) suggest the use of broadband drivers as a way to
include additional energy for a decreased observational impact,
while still maintaining sufficient energy input. In the current
work, we study the effects of transverse footpoint drivers of
different strengths on the observational signatures of the induced
oscillations in synthetic images. The aim is to detect the existence
of a correlation between the input energy flux and the oscillation
amplitudes and to determine the observed fluxes from synthetic
spectroscopic and imaging data, and set possible constraints for
future work.

2. MATERIALS AND METHODS

2.1. Basic Setup
For our 3D simulations, we use straight, density-enhanced
magnetic flux tubes in a low-β coronal environment, following
Karampelas et al. (2019). This setup models gravitationally
stratified, active region coronal loops in ideal MHD, in the
presence of numerical resistivity. Each loop has a full length (L)
of 200 Mm and an initial minor radius (R) of 1 Mm, which is
constant with height. The radial density profile of our cylindrical
flux tubes at the footpoint is

ρ(x, y) = ρe + (ρi − ρe)
1

2
(1− tanh((

√
x2 + y2/R− 1) b)). (1)

We denote the basic values of our physical parameters with the
index i (e) for internal (external) values, with respect to our tube.
The external and internal density at the footpoint are equal to
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ρe = 109µmp cm
−3 = 0.836×10−12 kg m−3 (µ = 0.5 andmp is

the proton mass) and ρi = 3× ρe. We denote the coordinates in
the plane perpendicular to the loop axis by x and y , and by z the
coordinate along its axis. b = 20 sets the width of the boundary
layer to ℓ ∼ 0.3R. For the models studied, we set the temperature
to be constant with height and equal to Te = 3 × Ti = 2.7 MK.
Finally, we consider an initial uniform magnetic field parallel to
the flux tube axis (along the z-axis) equal to Bz = 22.8 G. This
gives us a plasma β = 0.018.

Gravity varies sinusoidally along the flux tube, corresponding
to a semi-circular loop with major radius Lπ−1, and takes a
zero value at the loop apex (z = 0) and a maximum absolute
value at the footpoints (z = ±100 Mm). Due to the hydrostatic
equilibrium we have stratification of pressure and temperature
along the loop. To counteract the initial pressure imbalance at
the loop boundary caused by the gravitational stratification, the
magnetic field is restructuring inside the flux tube, once we
let the system reach a semi-equilibrium state after one period.
By the end of the relaxation period, neither of temperature,
pressure, nor density deviate significantly from their initial state,
as in Karampelas et al. (2019). The radial profiles of density
and temperature at several positions along the z-axis are shown
in Figure 1.

2.2. Boundary Conditions and Driver
Our tubes are driven from the footpoint (z = 100
Mm), using a continuous, monoperiodic “dipole-like” driver
(Karampelas et al., 2017), inspired by that used by Pascoe et al.
(2010). The period of the driver is P ≃ 2L/ck, coinciding
with the corresponding fundamental eigenfrequency for our
gravitationally stratified flux tube (Edwin and Roberts, 1983;
Andries et al., 2005). For a kink speed of ck = 1,167 km s−1 we
obtain a period of P = 171 s. The driver at the bottom boundary

FIGURE 1 | Radial profile of the initial density (with black) and temperature

(with blue) for our gravitationally stratified, cylindrical flux tubes at different

heights, right before the introduction of the driver. The apex is located at z = 0

and the footpoint at z = 100 Mm. x = 0 is the center of the loop at t = 0.

has a uniform and time varying velocity inside the loop,

{υx, υy} = {υ(t), 0} =
{
υ0 cos(

2π t

P
), 0

}
, (2)

where υ0 (in km s−1) is the peak velocity amplitude. Outside the
loop, the velocity follows the relation

{υx, υy} = υ(t)R2
{

(x− α(t))2 − y2

((x− α(t))2 + y2)2
,

2(x− α(t))y

((x− α(t))2 + y2)2

}
,

(3)
where α(t) = υ0 (0.5 P/π) sin(2π t/P) is a function that recentres
the driver, tracking the footpoint. A transition region following
the density profile exists between the two areas, in order to avoid
any numerical instabilities due to jumps in the velocity.

We study five different models (“D1,” “D2,” “D4,” “D6,” and
“D8,”), each for a different corresponding value of υ0 = 1, 2, 4, 6,
and 8 km s−1.

At the bottom boundary, we also keep the velocity component
parallel to the z-axis (vz) antisymmetric (z = 100 Mm) and
we extrapolate the values for density and pressure, using the
equations for hydrostatic equilibrium. A zero normal gradient
condition is used to extrapolate the values of each magnetic
field component through the bottom boundary. Studying the
fundamental standing kink mode for an oscillating flux tube
allows us to take advantage of the inherent symmetries of this
mode, as well as the symmetric nature of our driver. In the top
boundary at z = 0, the location of the loop apex, we kept vz , Bx,
and By antisymmetric in the x−y plane at the apex. The rest of the
quantities on that boundary are defined as symmetric. Thus, only
half the loop is simulated along the loop axis. All side boundaries
are set to outflow (Neumann-type, zero-gradient) conditions for
all variables.

2.3. Numerical Method and Grid
The 3D ideal MHD problem is solved using the PLUTO code
(Mignone et al., 2018), with the extended GLM method from
Dedner et al. (2002) keeping the solenoidal constraint on the
magnetic field. We use the finite volume piecewise parabolic
method (PPM) and the characteristic tracing method for the
timestep. The domain dimensions are (x, y, z) = (16, 6, 100)
Mm for models D1, D2, and D4, and (x, y, z) = (16, 10, 100)
Mm for models D6 and D8. The latter was chosen in order to
properly resolve the expanded turbulent loop cross-section from
the stronger drivers. We have cell dimensions of 40×40×1562.5
km for all models. The resolution is higher in the x − y plane, to
better resolve the small-scale structures that appear in the loop
cross section. The density scale height of our setup is 28 Mm, and
is close to the value of the loop major radius Lπ−1 ∼ 64 Mm.
Alongside the lack of radiation or thermal conduction, this allows
for a coarser resolution on the z-axis, that can still sufficiently
model the density stratification along the flux tube. In all of
our models, we also have the inevitable numerical dissipation
effects, which lead to values of effective resistivity and viscosity
many orders of magnitude larger than the expected ones in the
solar corona.
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2.4. Forward Modeling
We use the FoMo code (Van Doorsselaere et al., 2016) to create
synthetic images and compare to real observations. We focus
on the use of the Fe XII 193 Å emission line, with maximum
formation temperature of logT = 6.19, in order to create
spectroscopic data of our flux tubes. The 193 Å line tracks the
warmer flux tube boundary layer (Antolin et al., 2016, 2017)
and is better suited for our studies of driven oscillations with
turbulent cross-sections (Karampelas et al., 2019). The same
analysis has been performed for the Fe IX 171 Å line. This line has
a maximum formation temperature of logT = 5.93, and is more
sensitive to the colder plasma from the loop interior. We also use
the ‘Imaging’ functionality of ‘fomo-c’ from FoMo, in order to
create emission images for the corresponding AIA channels.

We create time-distancemaps of the loop apex for eachmodel,
by placing a slit at LOS angles equal to 0◦ (perpendicular to the
axis of the oscillation, or x axis), 45◦ and 90◦ (parallel to the
axis of the oscillation). To better compare to the observations
of decayless coronal loop oscillations, we degrade the original
spatial resolution of the AIA synthetic images to that of SDO/AIA
(0′′.6). Then we resample the data to match the pixel size of the
target instrument. A similar process is used for the spectroscopic
data, where we try to mimic Hinode/EIS by taking a plate-scale
of 1′′ and a Gaussian PSF of 3′′ FWHM (Antolin et al., 2017; Guo
et al., 2019), while also adding poisson distributed photon noise.
For the spectroscopic data we also reduce the initial spectral
resolution from 3 to 36 km s−1 for the degraded spectrum. The
temporal resolution is kept at ∼11 s, which is very close to both
that of AIA and EIS instruments.

3. RESULTS

We drive our loops for fifteen cycles. As in Karampelas et al.
(2017), the first waves to reach the apex (z = 0) are the azimuthal

Alfvén waves at the boundary layer of our tube, thanks to their
higher propagation speed, followed by the propagating kink
waves. Because of the symmetry at the apex, the driver induced
waves lead to the initiation of a standing oscillation resembling
the fundamental kink mode for gravitationally stratified loops
(Andries et al., 2005; Magyar et al., 2015; Karampelas et al., 2019).

Once the standing mode is initiated, we have the gradual
development of the KH instability and the expansion of the
flux tube cross-section (Karampelas et al., 2017). By performing
forward modeling for our setups, we construct time distance
maps of our oscillations at the apex, for the different spectral
lines. Two examples of these forward modeling time-distance
maps are presented in Figure 2. There we see the apex
displacement over time for the D2 and D4 model in the 171
and 193 Å AIA channels. As expected for loops with turbulent
cross-sections (Karampelas et al., 2019), the development of the
KH instability and the spatially extended TWIKH rolls lead to
extensive mixing of the loop with the surrounding plasma. For
our setup of a cold loop embedded in a warmer corona, this leads
to a big emission drop in the Fe IX 171 Å line.

By saturating the image of the 171 Å emission line for

model D4, we can see that this drop occurs faster for stronger

drivers. A smaller drop is also observed in the 193 Å line,
for stronger drivers, and is caused by the drop of the average
density of the emitting plasma, and its mixing with the
surrounding plasma (Karampelas et al., 2017), due to the
spatially extended TWIKH rolls. In coronal observations we
expect to mostly see the cooling stage of loops (Viall and
Klimchuk, 2012). The loops observed performing these decayless
observations are expected to be driven for long periods of
time, while cooling from higher initial temperatures. Hence,
the observed decayless regime should correspond to the later
stages of our simulations, where we observe the mixing induced
emission drop.

FIGURE 2 | Synthetic time-distance maps for the D2 model in the Fe IX 171 Å (A) and Fe XII 193 Å (B) and for the D4 model in the Fe IX 171 Å (C) and Fe XII 193 Å

(D) lines at the apex. The time distance maps show the emission (in ergs cm−2s−1sr−1) for the numerical resolution panels of our model. For the D4 model, the

intensity in the 171 Å line is saturated, in order to clearly depict the drop in the emission. The LOS angle is 0◦.
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In Figure 3 we present additional synthetic images for the
D2 model, both at numerical and instrument resolution. In that
figure, we see the 193 ÅAIA channel for the emission intensity
at 0◦ LOS angle, as well as the Doppler velocities for the Fe XII
193 Å line at 0 and 90◦ angles. We observe the development of
emission peaks prior to the development of the TWIKH rolls, due
to the excitation of higher order harmonics and the deformation
of the flux tube from the combined effect of the inertia and
fluting modes (Andries et al., 2005; Ruderman et al., 2010;
Yuan and Van Doorsselaere, 2016; Antolin et al., 2017; Terradas
et al., 2018). Once the KHI develops, we see the emergence of
stronger emission peaks in the 193 Å channel, stronger Doppler
velocities perpendicular to the direction of the oscillation, and
the gradual expansion of the resonant flows across the loop cross-
section (Antolin et al., 2015; Karampelas and Van Doorsselaere,
2018). The latter is evident in the bottom panels of Figure 3,
where we look at the loop from the side. These out of phase
movements from the TWIKH rolls are present in all of our
models and get more intense and spatially extended the stronger
each driver is.

We track the oscillations in the constructed time-distance
maps for our models by setting a threshold value off Ithr =
Imin + 0.1(Imax − Imin), where I is the intensity across the
loop on each frame, Imax is its maximum value and Imin

is the background intensity. The point with this intensity is

defined as the ‘edge’of the loop. A spline interpolation for the
position is used to inhibit tracking errors, with the number of
interpolation points being half the number of frames in the TD
map. We present the displacement of the apex for each loop
in Figure 4, where panels for all the models are shown at a
0◦ LOS angle. An initial increase of the amplitude is followed
by saturation and an eventual drop in the second half of the
simulations. This is the stage of the simulations where the
decayless regime should correspond to. In the last stages, we see
that the D2 and D4 models show similar values of displacement,
while the D6 and D8 models show lower amplitudes than the
former ones.

We see that similar profiles are obtained for both emission
lines used in the present work. The synthetic images in the
171 Å line show higher initial amplitudes than those in the 193
Å line. This is because the loop core has the highest transverse
velocities before the development of the KH instability. The loop
boundary layer has radially decreasing υx velocities, as result
of the driver shape that we use at the footpoint, leading to
smaller displacements than the loop core, as seen in the two
emission lines, each being more sensitive to the corresponding
loop region. A similar thing was observed in Antolin et al.
(2016). In that work, the loop core showed a higher oscillation
amplitude than the loop boundary layer, before the initiation of
the KHI. In our models, the constant driving leads to overall

FIGURE 3 | Forward modeling results for the D2 model in the Fe XII 193 Å line at the apex. The left panels show the images for numerical resolution and the right

panels the images for the targeted instruments. (A,B) Show the emission intensity (in ergs cm−2s−1sr−1) for numerical and for AIA resolution respectively. (C,D)

Show the Doppler velocity (in km s−1) at 0◦, for numerical and for EIS resolution respectively. (E,F) Doppler velocity (in km s−1) at 90◦, for numerical and for EIS

resolution, respectively.
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FIGURE 4 | Time distance maps of the oscillation amplitude for the five models. The apex displacements were obtained by tracking the loop edge in synthetic

emission images of the Fe XII 193 Å line for (A,B) and of the Fe IX 171 Å line for (C,D), at 0◦.

stronger displacements, while the deformation of the loop cross-
section leads to higher amplitudes in the 193 Å line for the given
temperature distribution.

In Figure 4 we get a small phase difference between the D1
model and all the rest. This small change in the phase between the
observed displacement and the driving frequency is a LOS effect
and caused by the integration of the emission across TWIKH rolls
with varying phases. A similar phase shift was observed for the
turbulent layer of oscillating loops performing in Antolin et al.
(2016). For the D1 model, the slower development of the KHI
leads to a delay in the manifestation of that phase difference.
Similar trends have been observed for synthetic images at 45◦,
with the difference that the obtained displacements are smaller
due to the projection of the oscillation plane on the plane of
sky (POS).

In order to determine whether the obtained amplitude drop in
Figure 4 is caused purely by the development of strong azimuthal
resonant flows and the KH eddies, we plot in Figure 5 the
input energy flux (J m−2 s−1) for each driver. The Poynting

fluxes are calculated for a surface area of 3 × 3 Mm2 in
the centre of the bottom boundary. This square contains the
loop footpoint of each model, and provides 80% of the total
energy input from the spatially localized driver. The curves in
Figure 5 represent the time evolution of the average values of
the fluxes.

We can see that the efficiency of the drivers change over
time, with the strongest changes happening for the stronger
drivers. These variations with time are the result of the boundary
conditions employed here. The zero normal gradient condition
for the magnetic field allowed it to freely evolve with time,
instead of fixing its value at the footpoint. This is affecting the
Poynting flux from the driver in the bottom boundary, causing
the evolution of the energy input, similarly to Guo et al. (2019)
and Karampelas et al. (2019). In the scope of this study, we do not
focus on creating a realistic model for a driver, but we focus on
the effects of the driver strength on the synthetic data. Therefore,
tracking the evolution of the driver efficiency is sufficient within
the context of the current study. The initial increase in the energy
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FIGURE 5 | Evolution of the average values of the energy fluxes provided by

the driver of each model (in W m−2) over time.

flux is followed by a drop, which is again more pronounced in the
models with the stronger drivers. By comparing the curves for the
models D2 and D4 with the synthetic images of Figure 2, we see
place that this drop takes place when the loops become turbulent
due to the KHI.

Focusing at the last 6 cycles of the the simulation in Figure 5,
we see that D4 shows a stronger input than D6, while still
remaining weaker than D8. D2 on the other hand remains
weaker from all the aforementioned ones, providing almost half
or less as much input flux. This is in contrast to the results
of Figure 4, where the oscillation amplitude of the D2 model
was comparable to that of the D4 model, and higher than the
respective amplitudes of models D6 and D8. This shows that the
previously obtained amplitudes are affected by the development
of the out of phase movements of the spatially extended TWIKH
rolls. All the drivers provide fluxes within the range of the
radiative losses of the non-active region corona (Withbroe and
Noyes, 1977), with the exception of D1, which is significantly
weaker than the rest.

After calculating the input energy flux and the observed loop
displacements, we plot amplitude-flux diagrams in Figure 6. For
these diagrams, we took the average of the (absolute values)
of the maximum displacements and fluxes, for each model, at
time intervals 19.95 − 28.5, 28.5 − 34.2, and 34.2 − 42.75 min.
The diagrams contain the amplitudes traced fromAIA-resolution
synthetic images of 171 and 193 AIA channels at both 0 and
45◦ LOS angle. Taking this and the results from Figure 4 into
account, we explain the differences between the 171 and 193
ÅAIA channels as LOS effects of our models. The highest values
of the amplitudes are obtained for the highest driver input fluxes.
However, a clear correlation is absent for fluxes ≤110 W m−2.
Instead, we see a relatively uniform distribution of amplitudes
among the different fluxes in that region. The corresponding
amplitudes are below 1 Mm as we look perpendicular to the
oscillation direction (0◦). At a LOS angle of 45◦, the value of these
amplitudes is between 0.15 and 0.55Mm, placing themwithin the

range of the observed decayless oscillations (Nisticò et al., 2013;
Anfinogentov et al., 2015).

Finally, we want to calculate the observed kinetic energy flux
(Wm−2) across the line of sight, for a specific spectral line. Based
on the work of Antolin et al. (2017), we calculate the Doppler
energy flux as:

Fobs =
1

2

∫

⊥LOS
< ρλ(l, t) > υDop,λ(l, t)

2 ck

L⊥LOS
dl⊥, (4)

and the non-thermal energy flux as:

Fobs =
1

2

∫

⊥LOS
< ρλ(l, t) >

(
ξλ(l, t)

2 − ξλ,th(l, t)
2
) ck

L⊥LOS
dl⊥.

(5)
With ck = 1,167 km s−1 we denote the kink speed. L⊥LOS is the
length of the domain across the LOS, υDop,λ the Doppler velocity
(in km s−1) for the spectral line, ξλ the corresponding Doppler
width in km s−1, and the thermal width (in km s−1):

ξλ,th =
c

λ0

√
TλkB

µmp
. (6)

With c we denote the speed of light, λ0 the wavelength at rest
for the spectral line, kB the Boltzmann constant, mp the proton
mass and with µ the atomic weight in proton masses of the
emitting element. The emitting temperature Tλ is taken as an
approximation from the ξλ,th in the beginning of the simulations,
where the velocities along the LOS are practically zero. The
quantity < ρλ(l, t) > is based on the emissivity-weighted average
density from Antolin et al. (2017):

< ρλ(l, t) >=
∫
//LOS ρǫ(l, t)ds

(∫
//LOS ǫ(l, t)ds

)
|max

, (7)

where we instead divide the integral of density times emissivity
with the maximum value of the integrated emissivity along the
LOS at each frame. The fluxes from all setups are then normalized
to the domain dimensions of models D6 and D8 for all setups, to
make direct comparisons possible between the different models.

We plot our results for the Fe XII 193 Å spectral line in
Figure 7, following Hinode/EIS spatial, spectral and temporal
resolution. For a LOS angle of 90◦, we observe an initial increase
in the energy flux estimated by the Doppler velocities, which
persisted for the duration of the simulations for models D1
and D2. For the models D4, D6, and D8 we observe a drop
in the estimated Doppler energy flux, in the last cycles of the
simulations. This drop appears once the turbulent loop cross-
section shows very strong out of phase flows, due to the TWIKH
rolls. These azimuthal flows do not register in the Doppler
velocities at this angle, leading to the aforementioned drop. A
similar behavior was observed in Antolin et al. (2017) for a non-
driven transverse oscillation. We also see a correlation with the
drop of the input energy flux, as observed for the the models D4,
D6, and D8. However, a similar correlation is not observed for
the D1 and D2 models. This shows that the observed drop in the
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FIGURE 6 | Diagrams of the average oscillation amplitudes as a function of the average energy input for each model. In (A) we have a 0◦ LOS angle and in (B) we

have a 45◦ LOS angle. Data from the Fe XII 193 Å line and the Fe IX 171 Å line were used. The loops displacements for the two lines were obtained by tracking their

edge in the corresponding synthetic emission images.

FIGURE 7 | Average values of the Doppler (A) and non-thermal (B) energy fluxes for a LOS angle of 90◦, based on synthetic spectroscopic data from the Fe XII 193

Å line.

Doppler energy flux is the combined result of the input drop and
the loop deformation by the TWIKH rolls.

The diagram of the non-thermal energy flux in Figure 7 shows
a saturation once the KHI fully deforms the loop cross-section.
This agrees with the results of Antolin et al. (2017), where a
similar saturated domain was obtained after the manifestation
of the KHI. For the models D4, D6, and D8, this saturation
takes place before the drop in the Doppler energy flux. The small
increase of the non-thermal energy flux observed in the later
parts of the simulation, does not fully compensate for the drop
in the Doppler energy flux. This shows that the aforementioned
Doppler flux follows closely the input energy flux, in the case of
continuously driven oscillating loops. We also observe that the
non-thermal energy fluxes are increasing for stronger drivers.
This suggests that the observed correlation between line widths
and Doppler shifts reported by McIntosh and De Pontieu (2012)
can correspond to a continuous input of transverse MHD waves,

supporting their hypothesis. However, the use of a single loop
for each driver excludes the LOS effects of integrating over many
structures, and cannot give a safe statistical result to be compared
with the observations (McIntosh and De Pontieu, 2012).

We see a disagreement between the total observed (Doppler
+ non-thermal) energy flux, for a LOS angle of 90◦, and the
input in Figure 5 for models D1 and D2. The former, as seen
in Figure 8 is overestimated with respect to the input energy
flux during the later part of the respective simulations. This
comes in contrast with the results of Antolin et al. (2017), where
the estimated total energy flux was lower than the available
energy flux calculated directly from the simulation data. This
disagreement is due to the inaccuracies introduced through
the method of estimating the density and temperature of the
emitting plasma from the synthetic data. The latter appears in
the correction for the thermal terms in the non-thermal energy
fluxes. Additional uncertainty can be caused by the angle of
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FIGURE 8 | Average values of the total observed (Doppler and non-thermal) energy fluxes, based on synthetic spectroscopic data from the Fe XII 193 Å line. A LOS

angle of 90◦ (A) and 0◦ (B) was considered.

FIGURE 9 | Average values of the total observed (Doppler and non-thermal)

energy fluxes with the additional term by tracking the oscillation on the POS.

The values are based on the synthetic images for the Fe XII 193 Å line and the

193 AIA channel.

observation. As seen in Figure 8, the total observed energy for
a LOS angle of 0◦ follows the development of the TWIKH rolls
and leads to an underestimation of the energy flux.

The uncertainty revolving around the LOS angle can be
bypassed by a combined approach of multiple observations. Once
a small angle of observation is identified by combining the energy
diagrams and the spectra, like those in Figure 4, we can then
approximate the total energy fluxes. We achieve this by adding
an additional term to the sum of the Doppler and non-thermal
energy fluxes. This additional term is derived from Equation (4),
by replacing the Doppler velocities with the the velocity derived
from the displacement of the oscillating loop, like in the time-
distance maps of Figure 4. The results of these calculation are
presented in Figure 9, and show a better agreement with the
input energy than the underestimated fluxes in Figure 8B.

4. DISCUSSION

In the present work we aimed to study the effects of different
transverse drivers in the dynamics and energetics of decayless
oscillations in coronal loops, through the use of synthetic
images. We modeled the decayless oscillations as the standing
waves from continuously footpoint-driven straight flux tubes, in
the presence of gravity. We performed MHD simulations for
footpoint drivers of different strengths and performed forward
modeling to our data, constructing time-distance maps at the
loop apex.We then degraded the spatial and spectral resolution of
our signal, targeting different instruments, namely the SDO/AIA
and Hinode/EIS. From the created acquired synthetic images for
the 193 and the 171 Å lines we studied the oscillation amplitudes
in the plane of sky (POS) at the apex, generated by the five
different drivers. To do so, we tracked the “edge” of the loop from
the emission images, which is defined by threshold value for the
intensity, set slightly higher than the background intensity.

In Figure 2 we observe the drop of the emission in synthetic
images for both lines employed here. This drop is the result of
the spatially extended TWIKH rolls, expanding the loop cross-
section and causing mixing with the surrounding plasma. This
drop in the emission is stronger and occurs faster for stronger
drivers, as we can see in the example of Figure 2 for the D2
and D4 models. In observations we mostly expect to observe
loops during their cooling stage (Viall and Klimchuk, 2012),
starting from unknown higher temperatures of formation. For
decayless oscillations, we therefore expect them to be already
in a turbulent state, because of the continuous driving. Any
change in the strength of the driver could then lead to sudden
changes in the observed emission in various lines, depending on
the temperature gradient between the loop and the surrounding
plasma, as well as the temperature of said coronal plasma.

In Figure 4 we see that the final values of the amplitudes
are comparable between the different drivers. We are mostly
interested in the second half of the simulations, during which
the KHI has deformed the cross-section of each loop. This is
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because we expect the loops performing decayless oscillations to
be already in a turbulent state. During that phase, we can observe
higher oscillation amplitudes from weaker drivers. This becomes
obvious by comparing these time distance maps and the input
energy flux diagrams of Figure 5 for the D4 and D8 models. The
D4 model showed bigger displacements toward the end of the
simulations than D8 model, despite having a less efficient driver
at that stage of the simulations. In addition to that, the D2 model
showed very similar amplitudes to the D4, D6, and D8 models,
despite providing less than half the energy flux of these drivers.
This result is a clear indication of the importance of the out of
phase flows, developed by the TWIKH rolls, in the characteristics
of the observed oscillations.

Following the results of Figure 7, we observe a drop in the
Doppler energy flux for the models D4, D6, and D8. This drop
is primarily related to the respective drop of the input energy
flux, and secondarily to the development of the TWIKH rolls,
since the drop in the input energy flux of models D1 and D2
does is not followed by a drop in their Doppler flux. This is
related to the less deformed loop cross-sections expected for
weaker drivers in continuously driven oscillations of coronal
loops (Karampelas and Van Doorsselaere, 2018). The connection
between the Doppler energy flux and the resonant flows has also
been established in Antolin et al. (2017), for a small-amplitude
non-driven transverse oscillation of coronal loop.

From the diagram of the non-thermal energy flux over time in
Figure 7, we observe the saturation of the energy flux, attributed
to the turbulent motions present across the loop cross-section.
We also observe a positive correlation between the average
values of the saturated non-thermal energy fluxes and the driver
efficiency from Figure 5. This suggests that a continuous input
of transverse MHD waves could lead to the observed correlation
between line widths andDoppler shifts reported byMcIntosh and
De Pontieu (2012). However, the small number of measurements
(one observation per loop per driver) does not allow us to acquire
safe statistical results. Furthermore, our study has excluded the
LOS effects of integrating over many structures, which prevents
us from making a direct comparison with the observations
(McIntosh and De Pontieu, 2012).

By taking into account the results of Figure 9, we see that
the sum of the non-thermal and Doppler energy flux can lead
to different values, depending on the angle of observation and
the methods used in the calculations. By adding an additional
term, derived by estimating the oscillation velocity from the
time-distance maps, we can compensate for the effects of the
observation angle when calculating the energy fluxes.

We need to stress here that the observed saturation in the
amplitudes is not caused by numerical dissipation, but is instead
the combined result of the strong out of phase flows generated
by the TWIKH rolls and the effects of plasma mixing in the
emission. Scaling tests with setups of higher resolution, as well
as past results (Guo et al., 2019; Karampelas et al., 2019) have
revealed a similar saturation in the oscillation amplitudes. In
Karampelas et al. (2019), we have seen that the input energy
from our drivers turns into kinetic energy (strong out of phase
flows), magnetic energy and internal energy of the plasma (wave

heating). The derived spectra in that study reveal a turbulent
profile, represented by the inertial range. This inertial range is
connected to the existence of smaller scales and is present as
long as the KHI is not suppressed by the very large dissipation
parameters. The development of these smaller scales could
be observed in the Doppler velocities and non-thermal line-
widths from spectroscopic observations. These observations,
however, would be dependent upon the angle of observation, the
instrumental resolution, as well as the assumptions used for the
initial temperature and density profile.

Finally, from Figure 9 we conclude that we cannot obtain
a clear correlation between the driver input and the observed
oscillation amplitudes just from the synthetic imaging data. In
our setups, the amplitudes between 0.15 and 0.55 Mm were
evenly distributed over a wide range of input fluxes, up to 110
W m−2. Small amplitude oscillations can potentially be hiding
enough energy to sustain the non-active region corona (∼100 W
m−2) (Withbroe and Noyes, 1977). The development of spatially
extended TWIKH rolls can mask its observational signatures,
by causing out of phase movements of the loop plasma and
affecting the emission at various lines. This is relevant when
explaining the observed decayless oscillations (Nisticò et al.,
2013; Anfinogentov et al., 2015) as the result of continuous
footpoint driving of a coronal loop, and stresses the need for
combined instrument observations.

To summarize our results, the mixing of plasma caused by the
developed KHI affects the emission in synthetic images, leading
to a drop once the loop cross-section becomes turbulent. The
developed TWIKH rolls show strong out of phase flows, which
lead to the saturation of the oscillation amplitudes for each
model. For different angles, we obtain oscillation amplitudes near
the observed ones, which do not show a clear correlation with
the input energy from the driver. These observed amplitudes can
potentially carry enough energy to sustain the radiative losses
from the Quiet Sun. A better correlation can be obtained between
the input energy and the spectroscopic results from the Doppler
energy flux and the non-thermal energy fluxes. All of our results,
however, are dependent upon the angle of observations and the
approximations used, hinting toward the need for combined
spectroscopic and imaging observations.

Apart from our suggestion that small-amplitude decayless
oscillations contain enough energy flux to support the QS, there
are other ways to introduce additional energy within the context
of such observed waves. In De Moortel and Pascoe (2012), it
was shown that the wave energy is significantly underestimated
by integration of multiple loops along the LOS. In that work,
the kinetic energy estimated by the LOS Doppler velocities was
∼ 5 − 20% of the energy in the domain. A combination of a
kink and Alfvén driver (Guo et al., 2019) can also provide more
energy into the system, while retaining a similar profile in AIA
synthetic images. Alternatively, the use of a broadband driver
could also increase the driver efficiency, for only small deviations
from the expected oscillation amplitudes. The detection of such
higher harmonics in decayless oscillations by Duckenfield et al.
(2018) suggests that the latter method should be studied further
in future works.
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Linear Waves in Partially Ionized
Plasmas in Ionization
Non-equilibrium
Istvan Ballai*

Plasma Dynamics Group, School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom

We aim to investigate the properties of linear Alfvén and slow magnetoacoustic waves in

a partially ionized plasma in ionization non-equilibrium. The propagation characteristics

of these waves are studied within the framework of a two-fluid plasma in terms of

the collisional strength between heavy particles for different degrees of ionization. In

the ionization non-equilibrium state the rates of ionization and recombinations are not

equal. For analytical progress we assume a background that is ionization equilibrium,

the non-equilibrium is driven by perturbations in the system, therefore, non-equilibrium

effects are related to the perturbed state of the plasma. Using simple analytical methods,

we show that ionization non-equilibrium can provide an additional coupling between

ions and neutrals (implicitly a secondary damping mechanism in the collisionless limit)

and this process is able to keep the neutrals in the system even in the collisionless

limit. Due to the coupling between different species waves become dispersive. The

present study improves our understanding of the complexity of dynamical processes

partially ionized plasma in the lower solar atmosphere and solar prominences. Our

results clearly show that the problem of partial ionization and non-equilibrium ionization

introduce new aspects of plasma dynamics with consequences on the evolution waves

and their dissipation.

Keywords: partial ionization, plasma, waves and instabilities, solar chromosphere, collision, ionization,
recombination

1. INTRODUCTION

One of the most intriguing aspects that have been largely omitted so far in the field of dynamical
process in solar plasmas is that the plasma in the lower atmosphere is partially ionized, with plasma
made up from charged particles and neutrals that are interacting through collision. Although the
exact degree of ionization is not fully known, the ratio of electron density to neutral hydrogen
density covers a few orders of magnitude from the photosphere to the top of the chromosphere. The
ionization state of the plasma is a very important factor, as the collision between various species will
significantly enhance transport processes that control the appearance and evolution of instabilities
in the presence of inhomogeneous flows. Depending on the range of frequencies we are interested
in, the description of the dynamics in these regions can be described within the framework of single
fluid magnetohydrodynamics (MHD) (for frequencies smaller than the ion-neutral frequency),
two-fluid MHD (when frequencies of interest are larger than the ion-neutral collisional frequency),
or multi-fluid description (in the high-frequency regime when waves’ frequency is comparable to
the electron-ion collisional frequency).
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Research in the dynamical evolution of physical phenomena
in the solar atmosphere is based on the assumption of ionization
equilibrium and the equilibrium Maxwellian distribution of
particles. However, this model is not accurate for rapidly
changing phenomena (e.g., high frequency waves, shock waves),
for rapid energy releases where high-energy tail of the electron
distribution are observed. Non-equilibrium ionization can occur
during heating or cooling events, significantly affecting line
intensities and subsequently the plasma diagnostics (Bradshaw
and Mason, 2003; Bradshaw et al., 2004). Departures from the
equilibrium Maxwellian distribution have also been inferred
from chromospheric and transition region line emission
(Dzifčáková and Kulinová, 2011). In the chromosphere the
ionization/recombination relaxation times scales are of the order
of 103−105 s (Carlsson and Stein, 2002), meaning that dynamics
occurring below this scales will be affected by non-equilibrium
effects. Because the relaxation timescale is much longer than
dynamic timescales, H ionization does not have time to reach its
equilibrium value and its fluctuations are much smaller than the
variation of its statistical equilibrium value appropriate for the
instantaneous conditions. The problem of waves and oscillations
in two fluid partially ionized plasmas is a relatively new area of
solar physics, nevertheless some fundamental properties of such
environments are already established (see, e.g., Soler et al., 2010,
2013; Zaqarashvili et al., 2011; Ballester et al., 2018b).

The process of non-equilibrium ionization is very much
related to the process of irreversible physics via inelastic
collision between particles. In the present paper we will restrict
our attention to collision impact ionization and radiative
recombination. In addition, we assume that the collision between
particles can lead to either ionization of recombination, while
the processes of collisions leading to excited states of articles
will be neglected. This approximation requires that the collision
involving neutrals would imply an energy exchange that is at
least equal to the first ionization potential, while excited states
(if they appear) will have a lifetime that is much shorter than the
dynamical scales involved in our problem.

The paper is structured as follows: in section 2 we introduce
the necessary equations with their implications and limitations.
Given the complexity of the problem, here we are employing
a simplified model. In section 3 we study the propagation
characteristics of Alfvén waves and investigate the effect of non-
equilibrium ionization on the propagation speed of waves and
their damping with respect to the collisional parameter between
particles for different ionization degrees of the plasma. Using a
simple configuration the wave characteristics of decoupled slow
waves are studied in section 4. Finally our results are summarized
in section 5.

2. BASIC EQUATIONS AND ASSUMPTIONS

The physical processes of ionization and recombination are far
from trivial given the multitude of mechanisms that can result
in one or more electrons being removed from a neutral atom
and the reversed process of combination between positive ions
and an energetic electrons to form neutral atoms. However,

for simplicity here we are going to concentrate on collisions,
as the main mechanism that can generate ions and neutrals.
In order to describe the effects on non-equilibrium ionization
and recombination processes let us introduce the quantities Ŵr

q,
denoting the interaction rate of process r, affecting fluid q (Leake
et al., 2012; Meier and Shumlak, 2012; Maneva et al., 2017).
The radiative recombination rate of ions is proportional to the
number of ions (with number density ni) and electrons (with
number density ne) of the system, and it is given by,

Ŵrec
n = nineR. (1)

In the above equation the recombination frequency, R, is given
by Cox and Tucker (1969) and Moore and Fung (1972)

R = 5.2×10−20
√
X
(
0.4288+ 0.5 lnX + 0.4698X−1/3

)
(m3 s−1),

where X = Aǫi/T(eV) is a quantity that is defined as the
ratio between the ionization potential and thermal energy, and
the constant A takes the value of 0.6. In can be shown that at
temperatures we can find in the lower part of the chromosphere
the electrons in hydrogen atoms are predominantly in the ground
state (corresponding to n = 1 energy level), meaning that ǫi
is the first ionization potential, therefore ǫi = 13.6 eV. Indeed,
the relative population at the n = 2 energy level compared
to the ground level in the hydrogen atom is given by the
Boltzmann equation,

N2

N1
= g2

g1
e−(E2−E1)/kBT ,

where gn = 2n2 is the statistical weight of each energy level,
E1 = ǫi and E2 = 3.4 eV are the energies of electrons on the two
levels. In a H plasma at T = 104 K we can obtain that N2/N1 =
2.5 × 10−5, while at T = 4 × 103 K, this ratio is of the order of
10−13. We should point out here that the radiative recombination
should be treated with care. Under normal circumstances the
recombination takes place as a result of the collision between a
positive ion (proton in a H plasma) and an electron that has an
energy, at least, equal to ǫi. As a result of this interaction a photon
is emitted that can further ionize the neutral H atoms. With a
significant amount of neutral H, the emitted photon will have
a higher probability of being absorbed by a neutral atom in the
neighborhood of emission, with a creation of an ion. Therefore,
recombination to the ground state has virtually no effect on the
ionization state of the plasma. However, in our analysis we are
going to consider that the photon emitted during recombination
escapes, this corresponds to the response of optically thin plasma
to ionizing radiation.

Since we are dealing with spatial scales that are larger than the
Debye radius in a H plasma, the plasma can be considered to be
quasi-neutral, therefore, ne = ni. In addition, for simplicity we
are going to deal with a uni-thermal plasma, where Te = Ti =
Tn = T.

The impact ionization reaction takes place as a result of the
collisional interaction between neutrals (with number density nn)
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FIGURE 1 | The variation of the real and imaginary part of the dimensionless

frequency for slow magnetoacoustic waves with respect to the dimensionless

collisional frequency, a1, for two different values of the ionization degree of the

plasma (color coded). Solid lines represent solutions obtained in the ionization

non-equilibrium and dashed lines denote the slow waves in

ionization equilibrium.

and electrons with energies larger than the ionization potential.
As a result, the ionization rate of neutrals is given by,

Ŵion
i = nnneI = nnniI, (2)

where I is the ionization rate and is given empirically by Cox and
Tucker (1969) and Moore and Fung (1972)

I = 2.34× 10−14
√
XeX (m3 s−1).

In order to determine the variation of the
ionization/recombination rates in the solar atmosphere we
use the VAL III C model (Vernazza et al., 1981) to plot the
height dependence of these two quantities on logarithmic scale
(see Figure 1). It is obvious that the variation with height of
these rates follows closely the variation of the characteristic
values typical for the atmospheric model employed here.
Accordingly, the height-dependance of the recombination rate
(R) resembles the height-dependance of the number density,
while the ionization rate (I) shows similarity with the variation
of the temperature, meaning that these physical quantities are
the ones that determine the shape of variation with height.
Both rates show an extreme value at the height of about
500 km (bottom of chromosphere, the point corresponding
to the temperature minimum in the VALIII C model). The
ionization rate overcomes the recombination rate at a height
of 2 Mm, a height that corresponds to a temperature of
approximately 7660 K.

The other effect we are going to consider is the collision
between particles. Assuming a uni-thermal plasma, electrons
will have their velocity (thermal velocity)

√
mi/me times larger

than the thermal velocity of ions (and neutrals), where me and
mi are the masses of electrons and ions, respectively. During
collisions between electrons and neutrals, electrons suffer a large

change in momentum, but small change in their energy (given
approximately by

√
me/mi). In contrast, ion-neutral collisions

are less frequent than electron-neutral collisions, however, the
momentum exchange between these particles can influence the
most propagation of waves, therefore, we are going to consider
this effect as the dominant collisional mechanism. Collision
between ions and neutrals will also ensure that neutrals (that
are not influenced by the presence of magnetic field) are kept in
the system.

In order to assess the importance of all physical effects
included in our model, let us define the characteristic times
involved connected to ionization, recombination, and collision as

τi =
1

nnI
, τr =

1

niR
, τc =

1

νin
,

where νin is the collisional frequency between ions and neutrals
defined as,

νin = 4nnσin

(
kBT

πmi

)1/2

,

with σin = 1.16 × 10−18 m2 being the ion-neutral collisional
cross section (Vranjes and Krstic, 2013), and kB is the Boltzmann
constant. Obviously, the waves we are interested in must have
periods that are larger than any of these times. It is clear that
the smallest time scale is the collisional time scale (basically
τc gives the time between two consecutive collisions) and for
most of lower solar atmosphere this characteristic time is several
orders of magnitude smaller than ionization and recombination
time. For temporal scales that are near or shorter than the ion-
neutral collisional time the plasma dynamics has to be described
within the framework of two-fluid magnetohydrodynamics,
where charged particles (here denoted by index i) and neutrals
(denoted by an index n) can have separate behavior, depending
on the relative strength of collision.

Before embarking on finding the characteristics of waves in
non-equilibrium plasmas we need to discuss one more limitation
of the problem we are going to consider. In the presence of non-
equilibrium ionization and recombination, the linearized mass
conservation equations for the two species are written as,

∂ρi

∂t
+ ρ0i∇ · vi = mi

(
Ŵion
i + Ŵrec

i

)
, (3)

∂ρn

∂t
+ ρ0n∇ · vn = mn

(
Ŵion
n + Ŵrec

n

)
, (4)

where ρ0i,0nandρi,n are the background and perturbation values
of the densities for ions and neutrals, respectively and vi and
vn are the velocity perturbations for the two species. In the
above equations Ŵion

i = −Ŵion
n and Ŵrec

i = −Ŵrec
n . A direct

consequence of the above two equation is that the processes
of ionization and recombination are not balanced, particles
are created and annihilated during the temporal length of the
dynamics we are interested in. In addition, these two equations
also imply that under normal circumstances (and in a static
equilibrium) the equilibrium density of ions and neutrals should
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be time dependent quantities, i.e., the background state of the
plasma is changing in time. In the absence of this temporal
change the ionization and recombination rates must be equal
and the system will be in equilibrium. Unfortunately, the
description of a physical process when the background is a
time-dependent is one of the most complex tasks, as it requires
cumbersome mathematics.

We have three possibilities to deal with this problem. The
first possibility is to leave the background as time dependent,
and determine the evolution of perturbations. This task could
be easily accomplished by numerical investigations. The second
possibility to deal with the temporal variation of the background
that makes the problem mathematically tractable would be to
impose the condition that the ionization and recombination
rates are much longer than the variation rate of the equilibrium
density, that could be occurring over the scales presented by
Carlsson and Stein (2002). In addition, temporal variation of
perturbations (for instance their frequency) are of the same order
as the ionization and recombination rates, so

1

ρ0i

dρ0i

dt
,
1

ρ0n

dρ0n

dt
≪ ω, nnI, niR.

Finally, as a third possibility is to deal with this problem
by assuming that non-equilibrium effects appear only in the
perturbed state (and this is the possibility employed in the
present paper). Similar to the assumption by, e.g., Brandenburg
and Zweibel (1995), we can fix the rate of ionization and
the recombination rate is chosen in such a way that in the
unperturbed stage the right-hand sides of Equations (3, 4) are
identically zero. The problem with this approach is that only one
of the rates can be realistic, the chosen value of the other rate
is artificially imposed. Assuming a VAL IIIC atmospheric model
this assumption agrees with realistic values in the photosphere,
i.e., in a weakly ionized region of the solar atmosphere. In our
study we will employ the later assumption and choose,

R = n0n

n0i
I.

With this assumption the characteristic times for ionization and
recombination defined earlier become equal. This assumption
also means that the empirical formula for R given earlier becomes
redundant, as its value will be always given in terms of I, as above

The dynamics of the coupled two fluids is given by a set
of linearized equations that describe the conservation of mass
(given earlier by Equations 3–4), together with a conservation of
momentum, induction equation and energy equation (see, e.g.,
Zaqarashvili et al., 2011; Khomenko et al., 2014; Maneva et al.,
2017; Martinez-Gomez et al. , 2017),

ρ0i
∂vi

∂t
+∇pi −

1

µ0
(∇ × b)× B0 = mivnŴ

ion
i −miviŴ

rec
n

+minniνin(vn − vi) =

= ρ0i

(νin

2
+ n0nI

)
(vn − vi) (5)

ρ0n
∂vn

∂t
+∇pn = miviŴ

rec
n −mivnŴ

ion
i −minniνin(vn − vi) =

= −ρ0i

(νin

2
+ n0nI

)
(vn − vi) (6)

∂b

∂t
= ∇ × (vi × B0), (7)

∂pi

∂t
= −c2Siρ0i∇ · vi + c2Simi

(
Ŵion
i + Ŵrec

i

)
(8)

∂pn

∂t
= −c2Snρ0n∇ · vn + c2Snmn

(
Ŵion
n + Ŵrec

n

)
(9)

∇ · b = 0, (10)

where B0 is the background magnetic field, vi = (vix, viy, viz)
and vn = (vnx, vny, vnz) are the components of the velocity
perturbation of ions and neutrals, pi and pn are the pressure
perturbations of the ion and neutral fluids, b = (bx, by, bz)
is the magnetic field perturbation, and min = mimn/(mi +
mn) ≈ mi/2 is the reduced mass. Frictions between charged
and neutral (close-range interaction) particles is ensured via
collisional processes. The above equations must be supplemented
by the equation of state for ions and neutrals pi,n = ni,nkBTi,n

As explained earlier, the ionization non-equilibrium is present
only in the perturbed state, the perturbations we are considering
to take place will drive the system out of ionization equilibrium.
Equations (5, 6) are the linearized momentum equations of
the ion-electron fluid and neutrals, respectively. The terms
on their right-hand side express the transfer of momentum
between ions and neutrals through the diffusion of one species
into the other. As a result of collisions, particles can loose
energy and momentum.The same equations reveal an interesting
aspect of non-equilibrium plasma. When the background is in
equilibrium, in the limit of vanishing collisions (νin = 0) the
only dynamics that can be described is related to ions and the
momentum equation reduces to the standard equation used in
MHD. Of course, such a limit cannot exist as in that case there
is nothing that can keep neutrals in the system and the two-
fluid description is meaningless. However, in the ionization non-
equilibrium the two-fluid description can be applied even in the
vanishing collision limit, as the creation and annihilation of ions
generates a force per unit volume that acts to keep neutrals in
the system.

The above system of equations will be used to study
the properties of magnetic and slow magnetoacoustic waves
propagating in non-equilibrium plasma and compare these with
the values we obtain in the ionization equilibrium.

3. ALFVÉN WAVES

The simplest wave to study are Alfvén waves, for which the
only restoring force is the Lorentz force and the driving force of
Alfvén waves is themagnetic tension.We assume a homogeneous
equilibriummagnetic field, B0, pointing in the z-direction. Alfvén
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waves will propagate plasma along the magnetic field and they
will be polarized in the y-direction. Given the properties of
Alfvén waves, the pressure terms in Equations (5–6) are neglected
and, therefore, Equations (8, 9) are not needed. As a result, the
dynamics of Alfvén waves is described by the system of Equations

ρ0i
∂viy

∂t
= B0

µ

∂by

∂z
+ ρ0iν̃in(vny − viy), (11)

ρ0n
∂vny

∂t
= −ρ0iν̃in(vny − viy), (12)

∂by

∂t
= B0

∂viy

∂z
, (13)

where

ν̃in = νin

2
+ n0nI,

is themodified ion-neutral collisional frequency by the ionization
non-equilibrium effects. Obviously, if I = 0, then we recover the
case of Alfvén waves in ionization equilibrium, a case discussed
earlier by Zaqarashvili et al. (2011).

Let us Fourier-analyse the system of Equations (11–13)
considering that all perturbations are proportional to exp[i(kz −
ωt)], where k is the real wavenumber along the z-axis. The neutral
fluid exerts a drag force against the motion of ions around the
magnetic field and, therefore, Alfvén waves will decay. As a result,
the frequency of waves, ω, will be a complex quantity, with
negative imaginary part of it describing the damping of waves.
After simple calculations the dispersion relation of Alfvén waves
is obtained to be

ω3 + iω2ν̃in(1+ χ)− k2v2Aω − ik2v2Aχν̃in = 0, (14)

where χ = n0i/n0n ≈ ρ0i/ρ0n. In the absence of any partially
ionized effects (e.g., ν̃in = 0) the dispersion relation would
reduce to the standard dispersion relation for Alfvén waves ω =
±kvA. The third order polynomial (14) describes the propagation
of two Alfvén waves (propagating in opposite direction) and a
third mode that is non-oscillatory (i.e., its frequency has a zero
real part).

Let us introduce the dimensionless quantities,

� = ω

kvA
, a = νin

kvA
, ξn = ρ0n

ρ0
, Ĩ = n0I

kvA
, (15)

where n0 = n0i + n0n is the total number density of the plasma
and ρ0 is the total mass density. After some simple calculations
the dispersion relation can be written in dimensionless form as,

�3 + i�2N(1+ χ)− � − iχN = 0, (16)

where N = a/2 + ξn Ĩ. Luckily some analytical progress can be
made by assuming that Alfvén waves will have a small damping.
Accordingly, the dimensionless frequency of waves can be written
as � = �r + i�i (with both �r , �i real quantities) and we
write |�i| ≪ |�r|. Focussing only on the forward propagating

modes, the real and imaginary part of the frequencies can be
easily obtained as,

�r =
(
1− ξn(a+ 2ξn Ĩ)

2

4ξ 2n + (a+ ξn Ĩ)2

)1/2

, (17)

and

�i = −ξ 2n
a+ 2ξn Ĩ

4ξ 2n + (a+ ξn Ĩ)2
. (18)

It is obvious that the imaginary part of the frequency is negative,
meaning that waves will damp, regardless what is the strength
of collisions between particles or degree of ionization. The
corresponding values for ionization equilibrium can be found
once the quantity Ĩ is set to zero. In ionization equilibrium the
imaginary part of the frequency tends to zero when the collisional
frequency, a, is set to zero, i.e., Alfvén waves in collisionless
plasma do not damp. In this case the governing equations
describe the dynamics of ions alone, while the dynamics of
neutrals becomes undetermined. Since ions and neutrals do not
interact through collisions, the possibility of having neutrals
in such systems becomes a problem (technically speaking the
plasma can be considered collisionless when the mean free path
between collisions is much larger than the lengths over which the
plasma quantities vary). In the limit of strong collisions (a ≫ 1)
the imaginary part of the frequency becomes smaller and at
a → ∞ the mixture of ions and neutrals behaves like a single
fluid with no damping; this limit corresponding to the MHD
limit. Before further discussion we need to clarify that the term
“collisionless" used above refers to the case when the collisional
frequency between ions and neutrals becomes zero. However, this
does not exclude the possibility of having collisions between ions
and electrons and neutrals and electrons, i.e., the collisions that
affect the ionization state of the plasma.

In contrast, in the ionization non-equilibrium, when we
set the collisional frequency to zero we arrive to a critical
damping rate,

�cr
i = − ξn Ĩ

2+ 2Ĩ2
, (19)

meaning that Alfvén waves will damp even in the
absence of collisions between ions and neutrals and the
ionization/recombination processes will ensure that the mixture
of ions and neutrals stay coupled. The damping whose rate is
given by Equation (19) constitute a new damping mechanism
that roots itself in the additional drag force generated by
different drift velocities of ions and neutrals during the process
of ionization and recombination. For the sake of completeness,
we should mention that Landau damping is also a mechanism
that appears in collisionless plasmas, and this damping is
not associated with an increase in entropy, and therefore is a
thermodynamically reversible process. It remains to be seen
whether the damping mechanism described in the present study
has the same properties as Landau damping. The damping we
discuss here can be due to the fact that with the number of
ions changing in time, more and more ions become attached to
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FIGURE 2 | The variation of the recombination rate (R, shown in red line) and the ionization rate (I, blue line) with height (on logarithmic scale) in the lower solar

atmosphere based on a VALIII C solar atmosphere model (Vernazza et al., 1981).

magnetic field lines, increasing their inertia, eventually causing
the attenuation of Alfvén waves.

Let us investigate the variation of the real and imaginary parts
of the dimensionless frequency of forward propagating Alfvén
waves in terms of the dimensionless collisional frequency, a
for three different values of the relative neutral density (ξn =
0.2, 0.5, 0.8). Clearly ξn = 0 describes a fully ionized plasma,
while the limit ξn = 1 corresponds to a completely neutral fluid.
The upper panel of Figure 2 shows the variation of the real part
of the dimensionless frequency (solid lines) for the three values
of ξn and the corresponding dispersion curves corresponding
to the ionization equilibrium (shown by dashed lines). Here the
dimensionless quantity � can be understood as the propagation
speed of Alfvén waves in units of Alfvén speed, vA.

First of all it is clear that for very large collisional frequency
the propagation speed of Alfvén waves and damping rate in the
two regimes become identical and in a strongly collisional plasma
the propagation speed of Alfvén waves and their damping rate are
not influenced by collisions between ions and neutrals. Secondly,
Alfvén waves in ionization non-equilibrium will propagate with
a lower speed and the difference in propagation speed increases
with the number of neutrals in the system. Furthermore, the
more ionized the plasma is, the faster these Alfvén waves will
propagate. Similarly, as long as the collisional frequency is larger

than (
√
Ĩ2 + 4− Ĩ)ξn, Alfvén waves in ionization equilibrium will

have a larger damping rate (smaller damping time) than those
waves that propagate in a plasma in ionization non-equilibrium,
however, these differences are not significant. For collisional
frequency smaller than this threshold value, Alfvén waves damp
much quicker in a non-equilibrium plasma. As pointed our
earlier, the damping rate of Alfvén waves in equilibrium plasma
tends to zero in the collisionless plasma. In contrast, in a non-
equilibrium collisionless plasma, Alfvén waves damp with a rate

given by �cr
i . In conclusion, in a strongly collisional plasma

the propagation and attenuation of Alfvén waves is independent
whether the plasma is in ionization equilibrium or not. Here the
collisional time is at least one order of magnitude larger than
the characteristic time for ionization and any non-uniformity
that could potentially influence the characteristics of waves is
smoothed out by collisions.

Finally we need to mention that Alfvén waves in the present
configuration become dispersive, and dispersion is proportional
to ν̃2in. Figure 2 also shows that for a given collisional parameter,
a, waves with shorter wavelength will propagate slower and the
larger the amount of neutrals in the system, the more dispersive
Alfvén waves are.

4. SLOW MAGNETOACOUSTIC MODES

To be able to decouple magnetoacoustic modes, we assume that
slow magnetoacoustic waves propagate along the background
magnetic field and the dominant dynamics occurs in the z
direction. Since the species of the plasma have the same
temperature, we can write

c2Si =
γ (pi + pe)

ρi0
= γ kB(Ti + Te)

mi
= 2γ kBTn

mn
= 2γ pn

ρ0n
= 2c2Sn.

Since slow waves propagate along the background magnetic
field we assume that all perturbations are proportional to
ei(kz−ωt). This particular choice for the form of perturbations
and background magnetic field can reduce the slow waves to
acoustic modes. The dynamics of linear slow waves propagating
along the magnetic field in a partially ionized plasma in the
presence of non-equilibrium ionization is described by the
system of Equations (3–10) where perturbations are considered
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to be proportional to the exponential factor introduced above.
Accordingly the set of equations used are,

ρi = k
in0iIρ0nvnz + ρ0i(ω + in0iI)viz

ω(ω + in0iI)
, (20)

ρn = k
ρ0n(ω + in0nI)vnz + in0nρ0iIviz

ω(ω + in0iI)
, (21)

(ω + iν̃in)viz −
kc2Si
ρ0i

ρi − iν̃invnz = 0, (22)

(ω + iν̃in)vnz −
kc2Sn
ρ0n

ρi − iν̃inviz = 0. (23)

These four equations can be reduced a set of coupled
equations for the z-components of ion and neutral velocities.
The compatibility condition of this system gives us the
dispersion relation,

ω4 + iω3A− ω2B− ik2ωC + D = 0, (24)

where the coefficients A, B, C, and D depend on the parameters
of the problem. This fourth-order polynomial in ω describes
the propagation of two families of waves: one associated to
ions, and the other one to neutrals. Due to collisions and non-
equilibrium effects, the two kinds of modes are coupled. Again,
let us introduce similar dimensionless quantities as in the case of
Alfvén waves, but now we use the quantity kcSn to write variables
and constants in dimensionless form. As a result, the dispersion
relation reduces to,

�4 + i�3A1 − �2B1 − i�C1 + D1 = 0, (25)

where the constant coefficients are given by,

A1 = 2Ĩ1 +
a1

2ξn
, B1 = 3+ Ĩ21 +

a1 Ĩ1

2ξn
+

C1 = (2− ξn)
[a1
2

+ Ĩ1(1+ ξn)
]
, D1 = 2+ a1 Ĩ1

2ξn
(2− ξn)+ Ĩ21 (2− ξn)

where the parameters a1 and Ĩ1 are defined in the same way as
parameters a and Ĩ given by Equation (15), but the quantity that
is used to write them in dimensionless form is kcSn. In the absence
of collisions and ionization non-equilibrium the two pairs of
sound waves are propagating with the sound speed of ions and
neutrals, with the wave associated to ions propagating faster.

Figure 3 shows the variation of the dimensionless frequency
of slow waves (or the phase speed of slow waves in units of the
neutral sound speed) with respect to the dimensionless collisional
parameter, a1, for two distinct values of the ionization factor, ξn
(0.2 and 0.8, respectively). Due to the collision between particles
and non-equilibrium effects, the quantity � is complex, where
the imaginary part describes the temporal modification of the

amplitude of waves. The upper panel of Figure 3 shows the real
part of �, while the lower panel shows the imaginary part of this
quantity. Similar to the plot obtained for Alfvén waves, the solid
lines denote the dispersion curves for slow waves in ionization
non-equilibrium, while dashed line correspond to the case when
the plasma is in ionization equilibrium.

It is clear that for the whole spectrum of parameters, the
imaginary part of the frequency will be negative, meaning that
slow waves will damp; this result is in agreement with the
conclusions of previous studies by, e.g., Braginskii (1965) and
Zaqarashvili et al. (2011). The two sets of waves shown in
Figure 3 have different behavior in terms of collisional frequency.
Let us concentrate first on the dispersion curves obtained for the
real part of the frequency. Depending on the amount of neutrals
in the system, the ion-acoustic waves can have an enhanced
propagation speed in the limit of weakly collisional plasma. For
ξn = 0.2 (black curves) the slow wave that corresponds to
an ionization equilibrium travels slightly faster, however very
quickly the propagation speed of these slow waves in the two
regimes is equal. When the amount of neutrals is increased
(red lines) we can see that the wave corresponding to the non-
equilibrium state propagates faster but at the value of a1 ≈ 2.5
the two speeds become identical. At this point the collisions
between ions and neutrals become so frequent that their effect
can overcome any modification due to the additional change in
the ionization degree of the plasma.

On the other hand the slow waves associated to neutrals
display a completely different behavior. In a plasma with ξn = 0.2
these slow waves have a smaller phase speed, and the speed in a
non-equilibrium plasma is slightly larger than the corresponding
value obtained in an equilibrium state. Once the amount of
neutrals is increased (the curves corresponding to ξn = 0.8) the
slow waves in an equilibrium plasma is larger, and this relation is
maintained again, until the dimensionless collisional frequency,
a, reaches the value of a1 ≈ 2.5, after which, for a given value
of a1, the neutral slow waves in equilibrium plasma propagates
faster. It is also clear that at a1 ≈ 2.5 the propagation speed of
ion-slow waves and neutral-slow wave is equal. Similar to the
results obtained by Zaqarashvili et al. (2011), the neutral-slow
waves can exist up to a certain level of collisional rate and the
value of collision where these waves cease to exist increases with
the amount of neutrals in the system. At this point the collision
between neutrals and ions is so frequent that the mixture of
charged and neutral particles starts behaving like a single fluid.
Increasing the frequency of collisions between ions and neutrals
cause a slow down of neutral-slow waves.

Now let us concentrate on the imaginary part of the frequency.
It is clear that regardless what is the ionization degree of the
plasma, the damping rate of ion-acoustic modes is very small,
practically these waves can propagate with no attenuation for
any value of collision. In contrast, the neutral-slow waves have a
very different behavior. These waves show a very strong damping
(with damping times of the order of the period of waves, or
larger). For both ionization degrees chosen here, the damping
time of neutral-slow waves is decreasing with the increase in
the collisional frequency. Comparing the results we obtained in
the two regimes, it is clear that the neutral-slow waves in an
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FIGURE 3 | The variation of the real (Upper) and imaginary part (Lower) of the dimensionless frequency, �, for Alfvén waves with respect to the dimensionless

collisional frequency, a for three different values of the ionization degree of the plasma (color coded). Solid lines represent solutions obtained in the ionization

non-equilibrium while dashed line denote the Alfvén waves in ionization equilibrium.

ionization equilibrium plasma have no damping in the absence of
collision (as we would expect), however, in the presence of non-
equilibrium these waves decay due to ionization/recombination
processes and—in the absence of collisions—the damping time
of these waves is independent on the amount of neutrals in the
system. Once the collisional rate in increased, the mode that
corresponds to smaller amount of neutrals will have a shorter
damping time.

Similar to Alfvén waves, slow magnetoacoustic modes will
also be dispersive, however the ion-acoustic modes will be
practically non-dispersive (similar to the slow waves in the
MHD description), while neutral-acoustic modes are strongly
dispersive, again waves with larger wavelength traveling faster.
Figure 3 also shows that in the case of neutral-acoustic modes
there will be always a critical wavenumber above which these
modes do not propagate.

It is very likely that the problem of propagation and decay
of these waves will display a different behavior once the full
polarization in the xz plane is considered. In that case slow
waves will have a magnetic component and it remains to be seen
how these waves will behave for different value of plasma-beta.
However, this consideration requires numerical investigation.

5. CONCLUSIONS

Given the nature of partially ionized plasma in the lower
solar plasma and prominences requires a different approach.
For particular high frequencies range a two-fluid description is
needed and neutrals can considerably influence the properties
of waves. This framework was used to study the characteristics
of Alfvén and slow waves propagation along a unidirectional

homogeneous magnetic field. The novelty of our research resides
in consideration of the effects of ionization non-equilibrium,
i.e., the case when the rates at which neutrals are ionized
through impact ionization and ions recombine with energetic
electrons through radiative recombination are not equal. Our
results show that this effect is more important when the
collisional frequency is comparable with the frequency of waves.
Any information about the existence of two fluids and the
drag forces exerted by neutrals upon ions is lost in the case
of strong collisions. Here the plasma behaves like a single
fluid and the dynamics can be confidently described within
the framework is MHD. We ought to mention that the non-
equilibrium applies only to the perturbed state of the plasma;
in the background state the plasma remains in ionization
equilibrium. This assumption was needed to be able to make
analytical progress.

Using a simple configuration we studied separately Alfvén
and slow magnetoacoustic modes. The collision between heavy
particles and non-equilibrium effects renders the frequency of
waves to be complex, where the imaginary part of it describes
damping. One of the main results of our investigation is that
in a plasma that is in ionization non-equilibrium waves can
damp even in the collisionless limit. In this case waves will
damp due to the drag forces by neutrals that appear due to
the ionization non-equilibrium. Given that waves are damped
even in the collisionless limit makes us to think about the
physical explanation of this effect to be similar as the theory
of Landau damping. However, this statement needs to be
investigated properly in the future. The processes of ionization
and recombination will increase the degree of entropy in the
system that could cause the additional damping.
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Finally we should mention our results should treated with
precaution when making far reaching conclusions valid for
the whole photosphere and/or chromosphere. For simplicity
the present study assumed collisional ionization and radiative
recombination as the dominant mechanisms that determine
the non-equilibrium, however, in reality this can change from
region to region in the solar atmosphere. It is very likely
that in the dense photosphere photoinduction and three-
body recombination are more important effects. In addition,
most of the partially ionized plasma is optically thick, in
which case a similar treatment as presented by Ballester et al.
(2018a) is needed. Moreover, the relatively low temperature
plasma in these regions means that the gravitational scale-
height is short, therefore, in the case of waves traveling

over long distances in the solar lower atmosphere, the
gravitational stratification could influence the propagation of
waves and work against the damping of waves. It remains
to be seen how a realistic variation of ionization and
recombination rate together with stratification will affect the
characteristics of waves.

AUTHOR CONTRIBUTIONS

IB is the sole author of this paper and it contains original research.

ACKNOWLEDGMENTS

IB acknowledges the financial support by STFC UK.

REFERENCES

Ballester, J. L., Alexeev, I., Collados, M., Downes, T., Pfaff, R. F., Gilbert, H., et al.

(2018b). Partially ionized plasmas in astrophysics. Space Sci. Rev. 241, 58–206.

doi: 10.1007/s11214-018-0485-6

Ballester, J. L., Carbonell, M., Soler, R., Terradas, J. (2018a). The temporal

behaviour of MHD waves in partially ionised prominence-like

plasma: effect of heating and cooling. Astron. Astrophys. 609, 6–22.

doi: 10.1051/0004-6361/201731567

Bradshaw, S. J., Del Zanna, G., and Mason, H. E. (2004). On the consequences of a

non-equilibrium ionisation balance for compact flare emission and dynamics.

Astron. Astrophys. 425, 287–299. doi: 10.1051/0004-6361:20040521

Bradshaw, S. J., and Mason, H. E. (2003). The radiative response of solar

loop plasma subject to transient heating. Astron. Astrophys. 407, 1127–1138.

doi: 10.1051/0004-6361:20030986

Braginskii, S. I. (1965). Transport Processes in a Plasma. Rev. Plasma Phys. 1,

205–283.

Brandenburg, A., and Zweibel, E. G. (1995). Effects of pressure and resistivity

on the ambipolar diffusion singularity: too little, too late. Astrophys. J. 448,

734–635. doi: 10.1086/176001

Carlsson, M., and Stein, R. F. (2002). Dynamic hydrogen ionization. Astrophys. J.

572, 626–635. doi: 10.1086/340293

Cox, D. P., and Tucker, W. H. (1969). Ionization equilibrium and radiative cooling

of a low-density plasma. Astrophys. J. 157:1157. doi: 10.1086/150144
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The inhomogeneous solar corona is continuously disturbed by transverse MHD waves.

In the inhomogeneous environment of coronal flux tubes, these waves are subject to

resonant absorption, a physical mechanism of mode conversion in which the wave

energy is transferred to the transition boundary layers at the edge between these flux

tubes and the ambient corona. Recently, transverse MHD waves have also been shown

to trigger the Kelvin-Helmholtz instability (KHI) due to the velocity shear flows across

the boundary layer. Also, continuous driving of kink modes in loops has been shown

to lead to fully turbulent loops. It has been speculated that resonant absorption fuels

the instability by amplifying the shear flows. In this work, we show that this is indeed

the case by performing simulations of impulsively triggered transverse MHD waves in

loops with and without an initially present boundary layer, and with and without enhanced

viscosity that prevents the onset of KHI. In the absence of the boundary layer, the

first unstable modes have high azimuthal wavenumber. A boundary layer is generated

relatively late due to the mixing process of KHI vortices, which allows the late onset of

resonant absorption. As the resonance grows, lower azimuthal wavenumbers become

unstable, in what appears as an inverse energy cascade. Regardless of the thickness of

the initial boundary layer, the velocity shear from the resonance also triggers higher order

azimuthal unstable modes radially inwards inside the loop and a self-inducing process

of KHI vortices occurs gradually deeper at a steady rate until basically all the loop is

covered by small-scale vortices. We can therefore make the generalization that all loops

with transverse MHD waves become fully turbulent and that resonant absorption plays

a key role in energizing and spreading the transverse wave-induced KHI rolls all over

the loop.

Keywords: magnetohydrodynamics (MHD), sun: activity, sun: corona, sun: oscillations, resonant absorption,

instabilities

1. INTRODUCTION

The solar corona is continuously disturbed by perturbations at photospheric and chromospheric
levels, either locally by means of e.g., convective motions or reconnection, or globally, by means
of the internal oscillations of the Sun leaking radially outwards (and particularly p-modes).
These continuous perturbations generate stress in the magnetic field and energy release processes
lead to upflow of material that fills the coronal magnetic field with plasma, thereby generating
coronal loops.
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The particulars of coronal loop generation and destruction
is, however, still a matter of debate. Observations mostly show
the cooling stage of coronal loops [1], in which loops appear
and disappear in specific bandpasses a time that can be either
large or small [2], depending on the radiative cooling time
and also on the unresolved substructure of loops [3–5]. Loops
are thought to be composed of elementary substructures called
strands. These strands may be elementary in the magnetic sense,
being associated with tiny concentrations of magnetic field in
the photosphere (of a few 100 km in width, e.g., [6]), or may
be elementary in the sense of their independent thermodynamic
evolution due to the fact that transport coefficients in the corona,
and thus most plasma processes, are field aligned. On the other
hand, the heating stage of the strands forming a loop is still
unresolved, and are thought to occur in very short time and
on very small spatial scales. Estimations of loop widths in the
corona are thus based on the observed widths during the process
of cooling, assuming that neighboring field lines composing
the loop evolve more or less similarly. Even though there is a
debate on how many strands actually compose a coronal loop
on average [7], there seems to be consensus over the observed
width of coronal loops (or the envelope of the strand bundle).
Indeed, observations in coronal lines indicate an average coronal
loop width of roughly 2 Mm [4, 8, 9], confirmed also at higher
resolution by the characteristic width of coherent catastrophic
cooling of loops [10, 11].

Besides the substructure of loops, other very relevant
questions in coronal loop dynamics are how large are their
boundary layers and what actually defines them [12–14]. The
relevance lies particularly in the field of MHD waves. Kink waves
(a particular class of transverse MHD waves characterized by the
transverse displacement of the entire waveguide, [15, 16]) have
been shown to permeate the corona and may be a candidate to
heat the corona [17–20]. An observational characteristic of these
waves is their fast damping and the leading theory explaining the
damping is resonant absorption [21–26], also known as mode
coupling in the case of propagating modes, contrary to standing
modes [27–31]. During this process the plasma motions involved
in the kink mode vary, and pass from initially being coherent
lateral displacements of the loop’s axis (thus affecting the whole
loop) to azimuthal displacements highly localized in the regions
within the loop where the resonance occurs. This happens where
the kink speed matches the local Alfvén speed (or, in the case of
driven propagatingmodes, where the kink frequencymatches the
local Alfvén frequency). These locations are usually assumed to
be primarily at the edges of loops, although non-uniform loop
distributions with resonance locations within the loop evolve
similarly due to the collective nature of the kink mode [32, 33].

The formation process of coronal loops is very likely 3D,
involving the local magnetic field topology and the conversion of
the magnetic free energy into kinetic and thermal energies. This
means that the initial energy deposition can have a characteristic
area across the field over which magnetic field lines are affected
roughly equally. This is the case for instance either through
magnetic reconnection (case in which the field lines reconnect
along separatrices) or through waves (case in which the diffusion
process is linked to the 3D nature of the wave). This argument

therefore poses a big question on how is the boundary layer
of a coronal loop characterized. If the heating process is very
spatially localized (which may be more the case of magnetic
reconnection) it may suggest that the subsequent upflow into the
loop from chromospheric evaporation is equally highly localized
and therefore that the boundary layer separating the loop with
the external medium is very thin [12]. If, however, the heating
process has a smooth spatial distribution (for instance in the case
of a wave produced by convective motions, which are usually
coherent over some area) the width of the loop should be broader
from the beginning.

The thinner the boundary layer, the more concentrated
the azimuthal motions from resonant absorption will be [34]
and therefore the larger the velocity shear produced with
the surroundings. This velocity shear is additional to the
velocity shear that is naturally produced by the (global) lateral
displacement from the kink mode [35]. This velocity shear
from the global motion happens between the internal motion
of the loop and the (dipole-like) motion of the external plasma
(produced by the displacement of the loop). On the other hand,
it has been speculated that the resonance increases the shear with
the external (dipole-like) motion due to the increase in amplitude
in the azimuthalmotions around the loop edge that the resonance
entails [36]. Additionally, the resonance also produces an internal
velocity shear between the inner shells of the loop due to phase
mixing [37]. For these reasons it has been assumed that resonant
absorption enhances the generation of dynamic instabilities due
to shear flows [38]. In this paper, we study the effects of these
additional shearing layers from the resonance and assess their
influence on the generation of dynamic instabilities, and in
particular the Kelvin-Helmholtz instability.

Transverse wave-induced Kelvin-Helmholtz rolls (also known
as TWIKH rolls) are expected to exist from a large amount
of recent numerical simulations in coronal conditions [36, 39–
41], and also in prominences [38] and spicules [42]. Although
TWIKH rolls have still not been observed directly due to
the lack of instrumental resolution [43], there are a number
of indirect observational characteristics that seem to match
current spectroscopic and imaging observations, such as the
generation of strand-like structure [36], the observed 3D motion
of prominence strands combined with heating [38, 44], the
differential emission measure broadening of loops [45] or
the corrugated Doppler shift transitions across spicules [42].
Karampelas and Van Doorsselaere [46] have shown that the
continuous driving of kink waves in loops leads to fully turbulent
loops due to the TWIKH rolls. The potential existence of
TWIKH rolls is particularly interesting for coronal heating since
it provides a means to the waves to dissipate their energy
[47]. Indeed, the generated turbulent-like regime of vortices and
current sheets in the TWIKH rolls leads to additional wave
dissipation [38, 41].

TWIKH rolls differ from the more generally known velocity
shear-induced KHI vortices [48–51] in that the velocity shear is
not laminar, constant and field-aligned, but oscillatory and at an
angle to the magnetic field (perpendicular in the case of non-
twisted flux tubes). The non-zero angle of the wave vector with
the magnetic field implies a lower magnetic tension opposing the
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development of the instability. [52, 53] have analytically shown
that this constitutes a major difference leading to flux tubes being
always K-H unstable to such flow, regardless of the amount
of twist. This finding supports previous numerical results of
TWIKH rolls produced by very low amplitude kink modes [36].

The article is organized as follows. We introduce the
numerical model in section 2, together with the initial conditions,
MHD equations and details of the code. In section 3 we present
the results, which we discuss in section 4 and conclude the paper.

2. NUMERICAL MODEL

2.1. Initial Conditions
The numerical model consists of a straight, cylindrical flux tube
(with circular cross-section) in pressure equilibrium with the
background, representing a coronal loop. Our experiments (and
the results we obtain) are largely independent of the conditions
within the flux tube and the corresponding contrast with the
ambient corona. This is because the specifics of the KHI are
relatively insensitive to the density and magnetic field contrast,
compared to the velocity shear, boundary layer thickness and
loop radius to length ratio. For instance, uniform temperature
or uniform magnetic field (hence, a cool or hot loop) would
lead to the same results [43]. The presence of magnetic twist in
the loop delays the onset of the KHI [51, 54, 55] but does not
suppress it [52].

As observed in some loops [25], here we choose loops that are
all hotter and denser than the background by a factor of 3, i.e.,
Ti/Te = 3 and ρi/ρe = 3. Correspondingly, the loop-aligned
magnetic field is slightly lower than the background field to
keep pressure balance. We set the external temperature and total
number density to Te = 106 K and ne = 109 cm−3, respectively.
The external and internal magnetic fields are Be = 18.63 G and
Bi = 17.87 G, respectively. The plasma β parameter outside and
inside the flux tube is equal to 0.01 and 0.098, respectively.

We consider different cases of loops with and without
boundary layer. This layer connects the internal and external
plasma and is described as follows:

ρ(x, y) = ρe + (ρi − ρe)ζ (x, y), (1)

where

ζ (x, y) = 1

2

(
1− tanh

(
b

(
r(x, y)− 1

2

)))
. (2)

Here, (x, y) denotes the plane perpendicular to the loop axis
(along z). The r(x, y) =

√
(x2 + y2)/w term denotes the

normalized distance from the loop center andw = 2Mmdenotes
the loop width (diameter). We take the case of a loop with b =
0.01, which essentially describes a step function between internal
and external plasma (and therefore no boundary layer), and a
second case with b = 16, leading to a boundary layer width of
0.4 R, with R = 1 Mm, the radius of the loop.

At t = 0 a transverse perturbation in x aimed at triggering
mainly the fundamental kink mode is set by imposing a velocity
perturbation along the loop that has the same spatial distribution
of the density. That is, we have vx = v0 sin(zπ/L)ζ (x, y),

where z denotes the distance along the loop, L = 200 Mm,
and v0 = 16.6 km s−1. Given that the internal Alfvén speed
is vA,i = 1006 km s−1, the initial amplitude A relative to
internal Alfvén speed corresponds to A/vA,i = 0.0165, and can
therefore be considered nonlinear, since, as defined by Ruderman
and Goossens [56], the non-linearity parameter ν ≈ AL

R =
3.3 is larger than 1. This velocity is chosen to mimic usually
observed kink mode amplitudes (most of the energy of the initial
perturbation leaks out, and the average velocity in the first quarter
oscillation is equal to ≈ 9 km s−1). Following the perturbation,
the loop oscillates with a standing kink mode with a period of
P ≈ 315 s, approximately equal to the expected period, given
that the kink speed is ck = 1256 km s−1. It is worth mentioning
that this numerical model corresponds to the impulsively excited
loop model used in Van Doorsselaere et al. [45].

The choice of no boundary layer initially for one of our
flux tube cases has a 2-fold motivation. As explained in the
introduction, it is not unreasonable to think that when a loop
first forms, presumably by an impulsive heating event somewhere
along the loop, if the heating is very localized in space it
may trigger very localized chromospheric evaporation, thereby
producing a sharp boundary layer. The second reason behind this
choice has to do with the late onset of resonant absorption, a time
delay that allows to investigate more properly the role it has on
the KHI.

2.2. MHD Equations and Numerical
Scheme
We solve the following set of resistive MHD equations
without gravity:

∂ρ

∂t
+∇ · (ρEv) = 0, (3)

∂

∂t
(ρEv)+∇ ·

[
ρEvEv+

(
p+

EB2
8π

)
EI −

EBEB
4π

]
= 0, (4)

∂ EB
∂t

+∇ × (
η

µ
Ej− Ev× EB) = 0, (5)

∂

∂t

(
p

γ − 1
+ 1

2
ρEv2 +

EB2
8π

)
+∇ ·

[(
γ p

γ − 1
+ 1

2
ρEv2

)
Ev

+
(

η

c
Ej− 1

4π
Ev× EB

)
× EB

]
= 0, (6)

p = 2kb

mp
ρT, (7)

where ρ,T, p, Ev, EB and Ej denote the usual quantities of mass
density, temperature, pressure, velocity, magnetic field and
current density, respectively. We take a fully ionized hydrogen
plasma, so that ρ = 1

2mpn, with mp the proton mass and n the
total number density (hence, we assume that the electron number
density is half the value of n). The quantity EI denotes the identity
tensor. Also, kb denotes Boltzmann’s constant, c is the speed of
light, µ is the magnetic permeability and η is the resistivity. We
adopt an anomalous resistivity model following Sato and Hayashi
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FIGURE 1 | TWIKH vortices throughout, for a loop without initial boundary layer and no viscosity. From top to bottom rows we have the cross-section at the apex of

the loop of, respectively, the total number density (in units of 109 cm−3), the temperature (log T ), the flow velocity (in km s−1), the z−vorticity component (in s−1) and

the z−current density component (in cgs units). The 3 columns, from left to right, show 3 instances in time, respectively at t = 154 s ≈ P/2, t = 371 s ≈ 1.2 P, and

t = 2, 334 s ≈ 7.4 P, where P = 315 s is the period of the kink mode. The half ellipse in white (or black in the flow velocity panels) corresponds to the ellipses

calculated in section 3.2. See also the accompanying movie in the Supplementary Material.

[57], Ugai [58], and Miyagoshi and Yokoyama [59], given by:

η =
{
0, for vd < vc,

η0(vd/vc − 1)2, for vd ≥ vc,
(8)

where η0 is the resistivity parameter, vd ≡ j/(en) is the ion-
electron drift velocity (with e the elementary electric charge
and j =

√
(j2x + j2y + j2z) the total current density), vc is

the threshold above which anomalous resistivity sets in. We
set η0 = 3.3 × 1014 cm−2 s−1, which is much higher than
the Spitzer resistivity in the solar corona (104 cm−2 s−1) and
decreases the magnetic Reynolds number down to 10-100, that
is, 3 orders of magnitude smaller than in cases without resistivity.
This ensures fast dissipation of the strong currents. The average
value of vd in our simulation is 2.5 × 10−4 km s−1. We
therefore choose vc = 0.15 km s−1, which ensures that the
anomalous resistivity only comes into play when strong currents
are produced. This treatment ensures a spatial localization of
the anomalous resistivity and helps deal more realistically with

current sheets (see [60] for the effect of this parameter on
magnetic reconnection in current sheets). In particular, the use of
anomalous resistivity in our model ensures that strong currents
generated, for instance, by the sharp spatial gradients, do not
produce spurious results in the solution of the MHD equations.
We note however that in the present simulations we do not obtain
such strong currents and the threshold velocity drift vc is almost
never reached.

Our model also includes an explicit, constant and artificial
viscosity [61], and by controlling its magnitude we can model
conditions close to ideal (and more realistic, by setting it to
very small values), or highly viscous (unrealistic) conditions that
prevent dynamic instabilities to set in. We choose to include
the case of a flux tube with boundary layer and with enhanced
viscosity in order to artificially prevent the onset of the KHI. All
other simulated models have very low viscosity and close to ideal.

The numerical simulations are performed with the CIP-
MOCCT code [62], which uses the cubic-interpolated
pseudoparticle/propagation scheme (CIP, [63]) to solve the
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FIGURE 2 | TWIKH vortices throughout for a loop with initial boundary layer and no viscosity. The same variables as in Figure 1 are shown, setting the same minima

and maxima for better visualization. The same times are shown, except for the middle panel, for which we select a later time of t = 504 s ≈ 1.6 P, corresponding to

the first formation of KHI vortices. See also the accompanying movie in the Supplementary Material.

mass conservation, momentum and energy equations, while
the method of characteristics-constrained transport (MOCCT,
[64, 65]) is used to solve the induction equation. The CIP-
MOCCT code has been shown to maintain sharp contact
surfaces [66, 67], thereby reducing the effect of diffusivity on the
sharp spatial gradients in our model and those obtained by the
dynamic instabilities.

The numerical box has a size of (512, 256, 50) in (x, y, z) and
we model only a quarter of a loop profiting of the kink mode’s
symmetries, in order to have a high spatial resolution while
keeping the simulation at feasible levels. The box has a non-
uniform grid along x and y, where these axes describe the plane
perpendicular to the loop, x is along the direction of oscillation,
and only half the loop is modeled in y. The box has a uniform grid
along z, which is parallel to the loop axis and only half the length
of the loop is modeled. We use symmetric boundary conditions
in all boundary planes except for the x boundary planes, where
periodic boundary conditions are imposed. In this way the full
loop hosting a fundamental kink mode is modeled. The smallest
grid cell in the (x, y) plane has a size of 15.6 km and is kept
constant in the region where the loop oscillates. The x and y grids

cell sizes are allowed to increase above distances of ≈ 4 R (where
R is the radius) and the maximum distance from the center is
16 R along both axes. The grid cell along z is uniform and has
a size of 2, 000 km. From a parameter study, we estimate that
the effective (combined explicit and numerical) Reynolds and
Lundquist numbers in the code are of the order of 104−105 [38].
The simulation with enhanced viscosity has a Lundquist number
of the order of 10− 100.

3. RESULTS

3.1. TWIKH Rolls Throughout the Loop
We show in Figures 1–3 different instances of the evolution for
various quantities for the 3 loop cases we have considered (no
boundary layer and no viscosity, with boundary layer and no
viscosity, and with boundary layer and with viscosity). Among
these quantities we show the z-component of the vorticity, ωz =
∂vy/∂x − ∂vx/∂y, and the z-component of the current density,
jz = 1/µ(∂By/∂x − ∂Bx/∂y). These quantities are particularly
useful to track the development of resonant absorption and KHI
vortices and current sheets generated by dynamic instabilities.
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FIGURE 3 | No TWIKH vortices for a loop with initial boundary layer and with enhanced viscosity. The same variables as in Figure 1 are shown. Note that the minima

and maxima (notably for the velocities, vorticity and the current density) are smaller than for Figures 1, 2 due to the enhanced viscosity. The same times as in

Figure 1 are shown. See also the accompanying movie in the Supplementary Material.

Due to the sharp contact discontinuity around the loop for
the case without boundary layer and no viscosity, as soon as the
perturbation starts, TWIKH rolls form around the side edges.
This is expected since a flux tube (straight or twisted) is always
unstable to the KHI [52], the sharp contact discontinuity and
no viscosity ensures that the scale length where the velocity
shear first exists is small enough to trigger these high azimuthal
modes, and high azimuthal mode numbers have the highest
growth rate. Additionally to these vortices at the side of the
loop, we can see vortices at the wake. These vortices correspond
to Rayleigh-Taylor (RT) vortices (and also lead to rolls in 3D,
extending all along the loop), characterized by the finger-like
structures (also produced for strong perturbations in dense,
spicule-like structures with thicker boundary layers, [42]). As
seen in Figure 2, these initial small-scale vortices (both, RT and
KHI types) are absent for the case with initial boundary layer and
no viscosity, since the scale length where the velocity shear first
exists is larger than the size of these unstable modes.

After a period of oscillation (second column in Figures 1, 2)
we note the appearance of larger vortices for the cases without

viscosity. The boundary layer thickness is increased due to the
vortices. After several periods (third column in Figures 1, 2) the
global mode oscillation has largely damped (true for all cases), the
boundary layer thickness has significantly increased to a radius or
so without any significant difference between the models without
viscosity and the vortices have expanded radially outwards and
inwards. At a late stage only small-scale vortices remain, seen
mainly in the vorticity and current density maps. On the other
hand, the case with viscosity shows no dynamic instabilities and
its boundary layer thickness remains largely unchanged between
the initial and final stages (Figure 3).

In Figure 4 we show the evolution of the displacement of
the loop axis at the apex and along the direction of oscillation.
Since the models have slightly different maximum velocities
and, correspondingly, different maximum displacements (all
within 0.5 R and 0.6 R), to better visualize the damping we
normalize the displacement by the respective maximum values.
The displacement of the flux tube can be calculated in multiple
ways. One way is to calculate the center of mass of the middle
slice y = 0 at the apex for each time step. Another way is
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FIGURE 4 | Displacement of the loop axis (at apex) with time. For each time

step we define the center of the loop as the center of mass. The result over

time is plotted for the loop with no initial boundary and no viscosity (black solid

curve), with initial boundary layer and no viscosity (red dashed curve) and with

initial boundary layer and viscosity (blue dotted curve). We also overlay the fits

to the maxima and minima of each profile performed with a damped Gaussian

function (see text for details).

to fit a Gaussian of the density profile along the direction of
oscillation at each time step. We choose the former method to
calculate the damping, since this method suffers less influence
from the vortices at the boundaries. In the rest of the paper,
and in particular for section 3.2 we are more interested in the
displacement of the boundary of the flux tube rather than the
displacement of the loop’s core, and hence we choose the second
method for those cases.

In Figure 4 we can see that the effect on the damping time of
not having an initial boundary layer and no viscosity is to extend
it. This is expected since resonant absorption is delayed due to
the initial absence of the boundary layer, which is created soon
after by the KHI and RT vortices. As demonstrated by Pascoe
et al. [68], Pascoe et al. [69], and Hood et al. [70], the damping
of a fundamental kink mode due to resonant absorption is first
governed by a Gaussian envelope and later on by an exponential
envelope, and the switching time depends on the boundary
layer thickness and the density contrast. To better quantify the
damping time we therefore choose to fit the maxima of each
profile with damped Gaussians of the form v(t) exp(−t2/L2g) (and
we therefore define the damping time only by the Gaussian
envelope time). Doing so we obtain damping times of 1,303 s
(= 4.13 P), 1,280 s (= 4.06 P), and 1,030 s (= 3.27 P),
respectively, for the cases of no initial boundary layer and no
viscosity, initial boundary layer and no viscosity, and initial
boundary layer and viscosity. The absence of an initial boundary
layer means that the switch occurs slightly later and therefore less
damping is obtained, as can indeed be seen. Also, by comparing
the cases with and without viscosity, we can see that the presence
of viscosity strongly reduces the damping time. In addition, at
long times the cases with dynamic instabilities and no viscosity
never damp completely.We discuss probable causes for this effect
in section 4.

To compare with observations we can fit the envelopes of the
oscillating profiles with an exponential rather than a Gaussian,

and we find values between 2.2 and 2.6 P for all models.
Accordingly, there is not much difference between the models
since a boundary transition layer is rapidly formed due to the
KHI. Comparing with linear damping (≈ 3.2 P, [21, 71]) we can
see that the damping from our models with KHI with nonlinear
amplitudes lead to stronger damping compared to the linear
case, as has been found already by Magyar and Van Doorsselaere
[40], who suggested this mechanism to explain the observed
dependence of kink oscillation damping on the amplitude [72].

To see the extent of the KHI vortices we plot in Figure 5 the
time-distance maps of density and z-vorticity cuts parallel to the
y axis, moving with the flux tube and always crossing its center
(where the center is defined with the Gaussian fit method as
explained above). This method is better than tracking the center
of mass since it takes more properly into account the radial extent
of the KHI and RT vortices (relative to the Gaussian fit, the center
of mass is displaced much less). Figure 5, and particularly the z-
vorticity maps for the cases without viscosity show that the radial
layers where the TWIKH rolls are generated move more rapidly
inward than outward at a fast rate in the 1 − 2 periods (to t =
7 − 10 min), from y = 0.6 R to y = 1.3 R. Note that during this
time interval the boundary layer thickness for the case without
initial boundary layer increases steadily, while the increase is
more abrupt for the case with initial boundary layer. This is due
to the absence of small-scale KHI vortices initially for the latter
model. The vortices then largely stop extending outward while
they keep extending inward more gradually and at a steady rate
until the end of the simulation (t = 69 min, corresponding to
13 periods), when the vortices have extended from y = 0.2 R to
y = 1.4 R. The inward extension of vortices for the case with
initial boundary layer seems to be slightly slower. On the other
hand, the model with viscosity has a much lower vorticity that
is concentrated around the resonant layer, and is diffused away
relatively rapidly. An important consequence of this result is that
impulsively excited kink waves generate turbulent loops, and thus
that probably all loops in the solar corona are in a turbulent state.

The density panels of Figure 5 for the cases without viscosity
show that the first set of vortices at the boundary edge increase
in size, producing deep entrances of the external material toward
the loop center. The following sets of vortices that continuously
develop are only internal and small-scale vortices, seen mainly
in the vorticity maps since they do not produce large density
changes. We can see that the changes in both the density and
vorticity are slightly larger in the case of no initial boundary
layer. The herringbone pattern seen in the vorticity panel reflects
an apparent super slow wave propagation of the kind discussed
by Kaneko et al. [73], produced by the phase mixing of the
continuously produced KHI vortices.

3.2. Effect From Resonant Absorption
As investigated in, e.g., [43], the KHI smoothens the boundary
layer. Hence, the influence of the KHI on resonant absorption
is to increase the layer where the resonance (and phase mixing)
occurs. In our simulation with no initial boundary layer we have
only the KHI at first and only at later times (even if shortly
after) the combined effect from KHI and resonant absorption.
On the other hand, the simulation with enhanced viscosity has no
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FIGURE 5 | Outward and inward expansion of the vortices. For each loop model we take a parallel cut to the y axis across the loop passing through its center at each

time step (see text for details on the procedure) and plot the resulting time-distance maps of the density (top panels) and z−vorticity (bottom panels) cuts. From left to

right the columns correspond, respectively, to the model with no initial boundary layer and no viscosity, the model with initial boundary layer and no viscosity, and the

model with initial boundary layer and viscosity. Note that the time range in the simulation with initial boundary layer and viscosity is slightly more extended in order to

better visualize the inner vortices reaching the core of the loop. Note also that the extrema for the z−vorticity are much smaller for the enhanced viscosity case.

KHI and only resonant absorption. Hence, by comparing these 3
models we can investigate the effect of the resonance on the KHI.

To investigate more carefully the development of resonant
absorption we calculate the azimuthal velocity vφ for each loop
model, taking the center of the loop obtained through Gaussian
fitting of the density profile explained previously. For each radial
distance from the loop’s center, we then calculate the azimuthal
velocity amplitude by averaging the absolute value over ellipses
around the center. We choose ellipses instead of circles since the
loop cross-section deforms considerably due to high order radial
modes and the KH and RT vortices [43, 55]. Since the ellipses are
modified over time, we define the radial distance as the distance
from the loop’s center along the cut parallel to the y axis. For
each time step, we find the semi-major and semi-minor axes of an
ellipse along x and the axis parallel to y passing through the loop’s
center by locating (through interpolation) the position where the
density is equal to 2 ne(t = 0), that is, the intermediate value
between the internal and external density values at the beginning
of the simulation. Therefore, we define this density point as the
middle of the loop boundary layer. We also apply a temporal
smoothing to the obtained variation of the ellipse axes over time,
in order to get rid of the high frequency perturbations from the
vortices. The temporal smoothening for the ellipse’ s semi-axis
parallel to the y axis has a very long boxcar width of 950 s in
order to catch the long term variations only and not those from
the high-frequency ones from the vortices. For a given time step
we then take different self-similar ellipses with respect to the
ellipse that fits the loop edge by changing the radial distance and
keeping the same ratio between the axes. In Figures 1–3 (and
the accompanying movies in the Supplementary Material) we

overlay for each panel the ellipse fitting the loop edge obtained
with this technique.

In Figure 6 we show for each loop model the time-distance
diagram of the azimuthal velocity amplitude averaged along
each self-similar ellipse located at different radial distances from
the loop’s center. The fringe pattern indicating high azimuthal
velocity power has double the frequency of the kink mode, as
expected. Note that the fringes within a short radius distance
decrease in amplitude. This damping also reflects the damping
seen in Figure 4. At the same time the amplitude of the region
located within the contour where the kink speed is roughly
equal to the local Alfvén speed increases. This is characteristic
of resonant absorption. Note that for the model without initial
boundary layer the amplitude within this contour reaches a
maximum at t ≈ 15 min (roughly 3 periods) and extends to
≈ 26 min. For the model with initial boundary layer and no
viscosity the maximum amplitude in the resonant layer is found
at ≈ 7 min and extends to ≈ 23 min. On the other hand, the
model with enhanced viscosity shows a maximum amplitude in
the resonant layer at ≈ 7 min and extends to only ≈ 16 min
due to the enhanced viscosity. Note that for the models with
KHI the region of resonance is shifted inward toward the loop’s
center in time. We have checked that the kink speed is roughly
constant throughout the simulation. Hence, this shift is due to
the variation of the boundary layer due to the KHI. The regions
outside of the contour show also significant amplitudes that grow
with a similar rate as resonant absorption. At t > 30 min in
both models most of the power within the resonant region has
disappeared, while the regions of highest power have now shifted
inwards (with a smaller power region outward). This shows
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FIGURE 6 | Azimuthal velocity amplitude from the loop’s center. For each loop model, the azimuthal velocity amplitude (in absolute value) is calculated along moving

ellipses around the loop’s center that evolve through time. The ellipses are self-similar and their semi-major to semi-minor axis ratio matches the ellipse fitting the edge

of the loop at each time step. Hence, for each ellipse at a given radial distance from the loop’s center, we obtain an average value of the azimuthal velocity amplitude

(in absolute value). The upper and lower dashed contours correspond, respectively, to the regions where the local Alfvén speed is 10% higher and 10% lower than the

kink speed (see text for further details). From left to right the columns correspond, respectively, to the model with no initial boundary layer and no viscosity, the model

with initial boundary layer and no viscosity, and the model with initial boundary layer and viscosity. Note that the color table has not been normalized to the same

maximum between all loop models.

that the energy from the resonant flows have transferred to the
TWIKH rolls within the loop, themselves being triggered by the
velocity shear produced by the resonance.

Hence we can see that the effect of the resonance on the KHI is
to trigger the instability within the loop. The resonance acts as a
localized energy reservoir by incrementing the azimuthal velocity
shear in the loop’s boundary layer.

3.3. High Azimuthal Wave Modes
We investigate now more closely the contribution from high
azimuthal wavenumbers on the KHI dynamics. For this we follow
the procedure of Terradas et al. [55] and calculate the Discrete
Fourier Transform on the radial (vrR) and azimuthal velocities
(vφR), and also on the density (ρR) at a distance R from the loop
center. These quantities are computed over the ellipses described
in the previous section. Themapping of these quantities along the
circumference of the ellipses is uniform with respect to the angle
φ. Using the same notation as in Terradas et al. [55] we calculate:

G(p) = 1

N

N−1∑

k=0

g(k)e−i 2πN pk, (9)

where g(k) denotes either vφR, vrR or ρR, N is the total number
of modes (p = 0, 1, ...N − 1). We show for all models the
contribution for the first 5 azimuthal modes to each quantity in
Figure 7. It is worth to mention that due to the parity of vφR, vrR
and ρR they are, respectively, purely imaginary, real and real
functions, and that the dominant terms are shown in Figure 7

and the following figures.
The p = 1 mode has the dominant contribution overall for all

models and for all quantities, except for ρR(t < 10 min). For the
models developing KHI, the p = 2 mode has a significant power,
similar or even higher to the p = 1 mode in some instances for
the azimuthal velocity (and for the density at the beginning of the
simulation). The higher ordermodes (p > 2) also have significant
power. For the model without initial boundary layer, these higher

order modes have the dominant power at the beginning of the
simulation for the azimuthal velocity and density, compared to
the model with initial boundary layer and no viscosity. For the
latter, the higher order modes become dominant after 1 − 2
periods. And at the end of the simulations with KHI all modes
for the azimuthal velocity have similar power.

As explained in Terradas et al. [55] in the absence of KHI the
excitation of the p = 2 is produced mostly by the nonlinear
effect of the inertia from the loop’s motion (a squashing effect,
described analytically in Ruderman and Goossens [56]), its
frequency is double that of the kink mode, and the amplitude
of the p = 2 mode is smaller than that of the p = 1 mode
by the square of the amplitude. These properties can be seen in
Figure 7 for the model with initial boundary layer and viscosity.
The higher azimuthal wavenumbers increase their power only
once the KHI has set in, as can be seen when comparing the
3 models. The higher order modes correspond to the small
KHI and RT vortices that populate the edge of the loop, which
are the fastest growing unstable modes in the model without
initial boundary layer. In the case with an initial boundary layer
the length scale over which velocity shear exists is larger, and
therefore the first unstable modes have larger wavelength, and it
is only in the nonlinear stage of the instability that higher order
modes develop.

In the cases with KHI, all the high order modes have much
higher power than that predicted by linear theory. The ellipses
we construct are co-moving with the loop’s edge and therefore
we largely reduce the power coming from the deformation of
the loop due to its inertia and also the nonlinear influence from
the radial modes (hence, the power of p = 1 and p = 2). The
large power still present in these modes and the higher order
ones is due to the fact that the edge of the flux tube does not
correspond to the spatial extent of the KHI vortices (as can

be seen in Figures 1, 2 and the accompanying movies in the

Supplementary Material). Hence, the vortices cross the ellipse
boundary each time they form. This is particularly the case at the
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FIGURE 7 | Fourier coefficients for the azimuthal and radial velocities and the density. We show the contribution of the azimuthal modes to each quantity along an

ellipse fitting the edge of the loop by calculating the Discrete Fourier Transform (Equation 9). We only show the first 5 modes (see legend for line style).

beginning of the simulation (when the deformation of the flux
tube is large). Hence, the significant power at the beginning of
the simulation without initial boundary layer comes mostly from
the KHI. The observed increase of the power of all modes over the
first 15 min (matching the time at maximum azimuthal velocity
amplitude) is due to an influence from resonant absorption. The
overall effect over the first 15 min is to have an apparent inverse
energy cascade, where the lower order modes have increasing
power in time (a trend that is particularly clear in the vφR and ρR
panels in Figure 7). Indeed, this is not observed in the case with
initial boundary layer and no viscosity, for which once the higher
order modes set in, all modes show an amplitude that remains
roughly constant until t ≈ 20 min.

To investigate the generation of high azimuthal wavenumbers
across each loop’s cross section we now calculate the Discrete
Fourier Transform on the azimuthal velocity along various of
the self-similar ellipses located at different radii from the loop’s
center, described in the previous section. We thus take vφr for
r = 0.3 R, 0.4 R, 0.5 R, 0.6 R, 0.8 R, 1 R, 1.2 R and 1.4 R and
show in Figures 8–10 (respectively for the loop without initial
boundary layer and no viscosity, with initial boundary layer and
no viscosity and with initial boundary layer and with viscosity)
the corresponding contribution of the first 5 modes to the
total signal.

Away from the region where most of the KHI occurs we
mostly have the dipole (azimuthal) field generated by the kink
mode (R1 = 1.4 R panel in Figure 8), and its damping is
similar to the damping observed in the same layer in the model
without KHI. Note however, that higher order modes have
nonetheless higher power even at this distance from the loop’s
center, reflecting a rapid but small influence of the KHI even
at this distance. As we approach the KHI region in the models

without viscosity, an increase of power in all modes can be seen,
as noted previously (R2 = 1.2 R,R3 = 1 R,R4 = 0.8 R panels
in Figures 8, 9). As we pass from r = R to r = 0.8 R we can
see for the model without initial boundary layer that the time
of maximum power of all modes has been shifted to later times,
from t = 15 min to t = 20 − 25 min. For the model with
initial boundary layer, significant power in the high order modes
at r = 0.8 R can be observed until t ≈ 20 min. This time shift
(and time interval) matches the time of maximum resonance (or
significant resonance), which is seen in Figure 6, and the spatial
shift of the resonance from R to 0.8 R in the same time interval.
Therefore, this further supports that the resonance is acting as
catalyst of the KHI in both models without viscosity, irrespective
of the presence of an initial boundary layer.

As we move further radially inward in the case without KHI,
no significant difference in power for vφRi is observed. On the
other hand, for the cases with KHI we note a temporal shift to
later times of the power increase in the high azimuthal wave
modes. This suggests that the KHI self-induces itself, layer after
layer deeper into the loop, starting from the resonant layer at
the edge of the flux tube, which acts as an energy reservoir for
the velocity shear. Moreover, even after the energy from the
resonance has largely disappeared the inner vortices continue to
trigger deeper KHI vortices. Thus, we can predict that both entire
loops become eventually turbulent.

As mentioned in section 3 the model without initial boundary
layer shows a slightly faster inward propagation of the KHI
vortices. This can be explained by the fact that by allowing the
boundary layer to develop naturally due to the KHI, the velocity
shear that is produced by resonant absorption is slightly higher
than in the model with initial boundary layer, thereby increasing
the effectiveness for KHI.
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FIGURE 8 | Fourier coefficients for the azimuthal velocity vφRi at radial distances Ri for the case without initial boundary layer and no viscosity. We show the

contribution of the azimuthal modes to the azimuthal velocity along self-similar ellipses whose semi-minor axis has various lengths Ri (as indicated in the panels). The

semi-major to semi-minor axis ratio of all ellipses matches the ellipse fitting the edge of the loop at each time step (see text for further details). We show the first 5

azimuthal wave modes (see the legend for the corresponding line style).

4. DISCUSSION AND CONCLUSIONS

In this paper we have taken three different loop models: a
coronal loop without an initial boundary layer, a coronal loop
with initial boundary layer, and a coronal loop with initial
boundary layer and unrealistically high viscosity. We have
simulated a perturbation leading to a fundamental kink mode,
matching the usually observed amplitudes of transverse MHD
waves. Although the case without an initial boundary layer
is a rather extreme case of coronal loop formation and may
be unrealistic, we do this mainly to investigate the effect that
resonant absorption has on the development of the KHI. Also,
a possible physical justification for sharp boundary layers is

the case of a highly spatially confined energy deposition, for
instance through magnetic reconnection, that would result in

a spatially confined chromospheric evaporation and therefore

sharp boundary layer for a loop.
By taking a sharp boundary layer we manage to delay the

onset of resonant absorption in that loop compared to the case
with initial boundary layer. As soon as the loop starts oscillating

the small length scale over which the velocity shear takes place
at the edges of the flux tube triggers the TWIKH rolls. At the
wake of the flux tube RT rolls are also generated. High azimuthal
wave modes are generated first, as expected since they are the
fastest growing modes [52]. Lower and more energetic wave
modes grow after 1 − 2 periods, not only from the KHI but
also due to the squashing of the loop produced by the inertia
[55, 56]. These low order modes are the first ones that grow
in the case of an initial boundary layer. Higher order modes
follow as well in the nonlinear stage of the KHI. Hence, this
initial process can be seen as an apparent inverse energy cascade,
produced mainly by the initially sharp boundary layer in that
loop model. Due to KHI, the layer thickens quickly, and with it
resonant absorption starts to take place. As the resonance reaches
a maximum amplitude so does the power of high azimuthal
wave modes. The time interval and spatial extent of significant
resonance power matches the time interval and spatial extent
of significant power in the high order azimuthal modes. The
resonance triggers, in particular, TWIKH rolls radially inwards
inside the loops and a self-inducing process of TWIKH rolls
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FIGURE 9 | Fourier coefficients for the azimuthal velocity vφRi at radial distances Ri for the case with initial boundary layer and no viscosity. See Figure 8 for

more details.

occurs gradually deeper at a steady rate (producing a super slow
apparent wave propagation of the kind discussed by Kaneko et al.
[73]) until they end up covering basically the entire loops.

In this paper, we have proven that also impulsively excited
loops, regardless of their initial boundary layer thickness
eventually render the loop’s cross-section to a turbulent state, as
was previously proven for continuously driven loops [46]. This
has as important implication that probably all observed loops
(which undergo transverse oscillations at some point in their life,
[20]) are in a turbulent state.

This investigation shows that resonant absorption is key to
energize TWIKH rolls and spread them all over the loop. In our
cases of only one perturbation only high azimuthal wave modes
reach the loop center, and therefore the energy transfer to the
inner layers is small in the absence of continuous driving. K-H
rolls have also been analytically and numerically predicted from
the shear flow of other transverse waves, such as torsional Alfvén
waves [37, 47, 51, 74]. Our results suggest that in the absence of
continuous driving the absence of resonant absorption in these
cases may lead to important differences. Namely, the absence of
velocity shear at the resonance layer would fail to induce inner
KHI vortices eventually making the entire loop turbulent in the
self-induction process we have found.

In the case of the loop with an initially present boundary
layer, resonant absorption starts occurring immediately after the
impulsive excitation, which produces a slightly stronger damping
than in a case with no initial boundary layer and hence a
relatively faster switch from a Gaussian damping profile to an
exponential damping profile [68–70]. From Figure 4 we can see
that some differences indeed arise between cases with or without
initial boundary layer. But more importantly, there are strong
deviations from both the Gaussian and exponential damping
during the evolution, due to the KHI. Since the switch between
the Gaussian and exponential damping profiles is mostly defined
by the density ratio and the boundary layer thickness, It is usually
considered that the envelope can be used for seismology. This is
of course not valid in our models, since this switch is controlled
by the width of the boundary layer that varies extremely over time
due to KHI.

Based on the comparison between the models with and
without boundary layers leading to TWIKH rolls, we predict that
loops with larger boundary transitions would lead to somewhat
longer times (but on the same order) for the loops to become
fully turbulent. This is because thicker boundary layers imply
lower velocity shear and hence a delay on the onset of the
KHI. On the other hand, a loop with a thicker boundary
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FIGURE 10 | Fourier coefficients for the azimuthal velocity vφRi at radial distances Ri for the case with initial boundary layer and with viscosity. See Figure 8 for

more details.

transition implies a more energetic resonant flow, and therefore
a larger energy reservoir for the self-inducing process of KHI
inwards. Hence, the vortices reaching the loop core may be larger
(more energetic).

Another interesting feature seen in Figure 4 and in Figures 8–
10 is that the global kink mode (p = 1) does not seem
to damp completely for t > 30 min within the flux tube
(for r < 0.5 R). This result was also noticed by Magyar
and Van Doorsselaere [40], and they suggested an explanation
based on KHI energy being transferred to the core of the
loop. Indeed, our experiments confirm this hypothesis. It is
also possible to have a feedback mechanism from the TWIKH
rolls on the loop, due to an overall vorticity imbalance (and
therefore momentum imbalance) within the loop due to the
TWIKH rolls, as is observed in the phenomenon of vortex
shedding [75, 76]. The slight change in period and beat at
t ≈ 25 − 30 min for the inner shells and for the center
of mass oscillation (Figure 4), compared to the model without
KHI, supports this theory. If true, this could be another possible
mechanism to generate the observed decayless transverse
oscillations [20, 77, 78].

Given that loops eventually become fully turbulent following
a kink oscillation, a relevant question is the timescale on which
this happens. This is particularly relevant in the context of
coronal heating, since the small scales produced by dynamic
instabilities can be a means for wave dissipation. Our models
show that the loops become fully turbulent after 13 − 14
periods (69 − 72 min), which is a very long timescale for
coronal heating and therefore the wave dissipation rate over
the entire loop may be too small to account for coronal
heating. In the cases of continuous driving at the natural
frequency of the loop, as in the numerical experiments by
Karampelas and Van Doorsselaere [46], the situation improves,
since the amplitudes obtained at the apex are on average stronger
and the loops become fully turbulent after ≈ 7.5 periods
(2000 s in their model), which may still be considered long for
coronal heating.
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Video 1 | TWIKH vortices throughout, for a loop without initial boundary layer and

no viscosity. From top to bottom rows we have the cross-section at the apex of

the loop of, respectively, the total number density (in units of 109 cm−3), the

temperature (log T ), the flow velocity (in km s−1), the z−vorticity component (in

s−1) and the z−current density component (in cgs units). The half ellipse in white

(or black in the flow velocity panels) corresponds to the ellipses calculated in

section 3.2. This animation corresponds to Figure 1.

Video 2 | TWIKH vortices throughout for a loop with initial boundary layer and no

viscosity. The same variables as in Video 1 (or Figure 1) are shown, setting the

same minima and maxima for better visualisation. This animation corresponds

to Figure 2.

Video 3 | No TWIKH vortices for a loop with initial boundary layer and with

enhanced viscosity. The same variables as in Video 1 (or Figure 1) are shown.

Note that the minima and maxima (notably for the velocities, vorticity, and the

current density) are smaller than for Videos 1, 2 (Figures 1, 2) due to the

enhanced viscosity. This animation corresponds to Figure 3.
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Ever since their detection two decades ago, standing kink oscillations in coronal loops

have been extensively studied both observationally and theoretically. Almost all driven

coronal loop oscillations (e.g., by flares) are observed to damp through time often with

Gaussian or exponential profiles. Intriguingly, however, it has been shown theoretically

that the amplitudes of some oscillations could be modified from Gaussian or exponential

profiles if cooling is present in the coronal loop systems. Indeed, in some cases

the oscillation amplitude can even increase through time. In this article, we analyse

a flare-driven coronal loop oscillation observed by the Solar Dynamics Observatory’s

Atmospheric Imaging Assembly (SDO/AIA) in order to investigate whether models of

cooling can explain the amplitude profile of the oscillation and whether hints of cooling

can be found in the intensity evolution of several SDO/AIA filters. During the oscillation

of this loop system, the kink mode amplitude appears to differ from a typical Gaussian

or exponential profile with some hints being present that the amplitude increases. The

application of cooling coronal loop modeling allowed us to estimate the density ratio

between the loop and the background plasma, with a ratio of between 2.05 and 2.35

being returned. Overall, our results indicate that consideration of the thermal evolution

of coronal loop systems can allow us to better describe oscillations in these structures

and return more accurate estimates of the physical properties of the loops (e.g., density,

scale height, magnetic field strength).

Keywords: solar corona, coronal loop oscillations, magnetohydrodynamics, kink oscillations, cooling

1. INTRODUCTION

Standing kink oscillations were first observed in coronal loops by Aschwanden et al. (1999) and
Nakariakov et al. (1999) using high-resolution imaging data collected by the Transition Region
And Coronal Explorer (TRACE; Handy et al., 1999). Those authors found that a flare in the local
Active Region (AR) caused the magnetic field guide of the coronal loop to shake from side-to-
side in a manner analogous to oscillations of a guitar string. One of the most interesting aspects
of kink oscillations in coronal loops was their rapid damping profiles, with many examples of
flare-driven coronal loop oscillations damping to sub-resolution spatial scales within two or three
periods. Such damping has been explained through a number of physical mechanisms, such as
resonant absorption (e.g., Goossens et al., 2002; Ruderman and Roberts, 2002), phase mixing, and
foot-point damping.
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Over the past decade, data from the Solar Dynamics
Observatory’s Atmospheric Imaging Assembly (SDO/AIA; Lemen
et al., 2012) has been used to perform statistical analyses of
coronal loop oscillations (e.g., Zimovets and Nakariakov, 2015;
Goddard et al., 2016). Specifically, Goddard et al. (2016) analyzed
the damping profiles of 58 coronal loops finding that the
amplitudes through time of the majority of oscillations could be
modeled by exponential or quasi-exponential (close to but not
exactly exponential) profiles. More recently, Pascoe et al. (2016)
suggested that Gaussian profiles may model damping profiles
of coronal loops as well, if not better, than exponential profiles
in a large number of cases. It was, however, pointed out by
Goddard et al. (2016) that some events were non-exponential
(and also likely non-Gaussian) meaning, for some coronal loop
oscillations, additional physics must be employed to explain the
amplitude profiles. Interestingly, it has been shown analytically
that it is possible that some driven coronal loops could oscillate
and damp in a manner not adequately modeled by Gaussian nor
exponential profiles through time.

As the majority of modeling of coronal loop oscillations
is conducted using static background parameters (e.g.,
temperature, density), one opportunity to consider additional
physics theoretically is to incorporate some form of time-
dependence (see for example, Dymova and Ruderman, 2005;
Al-Ghafri and Erdélyi, 2013; Erdélyi et al., 2014). Morton and
Erdélyi (2009) considered the damping of coronal loops due
to cooling through time and found, that for typical oscillatory
periods, cooling could play a key role in explaining observed
damping profiles (this was shown further in Morton and Erdélyi,
2010). The idea that amplification of coronal loop oscillations
could occur due to cooling within coronal loops that contained
flow was first suggested by Ruderman (2011b). This work was
expanded upon in Ruderman (2011a) with the inclusion of a
resonant layer, where it was found that cooling could cancel
out the damping due to resonant absorption in some cases. The
effects of loop expansion were considered for cooling coronal
loops when no resonant layer was observed by Ruderman et al.
(2017). Again it was found that amplification of the coronal loop
oscillations could occur.

A more complete analysis comprising of loop expansion,
resonant absorption, and cooling was recently conducted by
Shukhobodskiy and Ruderman (2018) and Shukhobodskiy et al.
(2018) for time independent and time dependent densities,
respectively. Those authors found that in some cases, the
combined effects of expansion and cooling could dominate over
resonant absorption leading to a slowing down of the damping
of the oscillations or even, in some cases, a brief amplification
in kink mode coronal loop oscillations. Such amplification would
only be short-lived and would be followed by the continued decay
of the oscillation to sub-resolution levels. Additionally, assuming
that both the external and internal densities were longitudinally
stratified, the authors showed that the ratio of the frequency of
a fundamental mode on the decrement of the kink oscillation
is independent on the particular form of the density profile. A
similar result was obtained previously by Dymova and Ruderman
(2006) for kink oscillations in non-expanding magnetic flux
tubes. It is possible, therefore, that accounting for cooling when

modeling coronal loop oscillations may provide better fits for
coronal loop oscillations, especially when increases in amplitude
are evident. Additionally, important seismological information
could be obtained from the system (such as the density ratio
between the loop and the background) if one were to consider
cooling which could help improve future numerical modeling.

The development of modeling of time-dependent coronal
loop temperatures has a strong foundation in observations.
Numerous authors have discussed the temperature evolution
of coronal loop arcades, with cooling often being inferred
through the observed progression of loops from hot to cold
channels through time (see for example, Winebarger and
Warren, 2005; López Fuentes et al., 2007; Aschwanden and
Terradas, 2008). It is well-known that coronal loops can cool
quickly, over the course of two or three oscillatory periods
(e.g., Aschwanden and Terradas, 2008), through processes
such as the thermal instability, which can often lead to the
occurrence of coronal rain (see Antolin et al., 2015 and references
within). Such cooling means the application of theories which
are not magnetohydrostatic, such as those recently developed
by Shukhobodskiy et al. (2018), are important for further
understanding and modeling coronal loop oscillations more
generally. It should be noted that Morton and Erdélyi (2010)
did conduct an application of theoretical work to observed kink
oscillations, however, those authors did not include effects which
could lead to amplification in their model.

In this article, we apply the theoretical models developed
by Shukhobodskiy et al. (2018) to the amplitude profile of
a kink oscillation in a coronal loop within AR 11598. We
aim to showcase the seismological potential of cooling models
through the inference of the density ratio between the loop
and the background plasma. Our work is setup as follows: In
the Observations section we describe the data studied here and
the data analysis methods; In the Results section we present
our results including the application of the theoretical modeling
and any evidence for cooling in the AR; In the Discussion
and Conclusions we draw our conclusions and provide some
suggestions about future work.

2. OBSERVATIONS

2.1. Data and Feature Selection
The data studied in this article were sampled by the SDO/AIA
instrument on the 20th October 2012 between 17:50 UT and
18:50 UT. The 300′′×300′′ field-of-view (FOV) analyzed here was
focused on AR 11598 and was initially centered on co-ordinates
of xc = −959′′, yc = −85′′. Four channels (namely the 304 Å,
171 Å, 193 Å, and 131 Å) were downloaded for analysis, using
the ssw_cutout_service.pro routine, meaning we are able to make
inferences about the thermal evolution of the loop system. The
loop system is only weakly detectable in the 131 Å images and,
as such, these data are not studied in detail in the remainder of
this article. These data do, however, indicate that the coronal loop
existed at non-flaring temperatures. Data in the UV sampled by
the SDO/AIA instrument have a typical cadence of 12 s and a
pixel scale of 0.6′′. As the oscillations analyzed here were driven
by a flare in the same AR as the coronal loops, some frames
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FIGURE 1 | The evolution of the coronal loop system during the hour around the oscillations analyzed here. Plotted are the SDO/AIA 304 Å (top), 171 Å (middle),

and 193 Å (bottom) channels. The white slit over-laid on the middle row indicates the location of the slit analyzed in this article.

were returned with a lower exposure time meaning the loop
was difficult to detect due to the lower signal to noise ratio. For
these frames, synthetic filling data was created with the intensity
of each pixel being taken as the average intensity for that pixel
in the frame before and the frame after. This should have no
influence on our results as the loop analyzed here oscillates with
periodicities well above the cadence of that data. This coronal
loop oscillation was previously discussed by Goddard et al. (2016)
(Event 40, Loop 2) and its damping was classified as being best
described by a combination of exponential and non-exponential
fitting. This event was further analyzed by Pascoe et al. (2016,
2017) who suggested that the presence of multiple harmonics
could explain the complicated amplitude profiles observed within
this event. This interpretation was supported by the research
of Pagano et al. (2018).

The general evolution of the loop system analyzed here is

plotted in Figure 1 for the 304 Å (top row), 171 Å (middle row),
and 193 Å (bottom row) channels. At 17:50 UT, the coronal loop
system can be detected in both the 171 Å and 193 Å channels,
with the white line over-laid on the 171 Å images indicating the
location of the slit studied here. The location of the flare in the
AR, which occurred at approximately 18:08 UT, is pin-pointed by
the typical disturbance patterns on the 193 Å image in the third
column. In the southern part of the FOV (around 100′′ south of
the oscillation analyzed here), a large coronal loop arcade can be

observed in all panels up until 18:19 UT. Over the subsequent 30
min (between 18:20 UT and 18:50 UT), however, the loop system
completely fades from view in the coronal channels and large
amounts of coronal rain are detected in the 304 Å data, draining
material from the loops. The loop system completely fades from
view by 18:49 UT.

2.2. Tracking the Loop Displacement and
Model Fitting
In Figure 2, we plot a zoomed in FOV of the oscillation analyzed
here for five time-steps (top row). The white line over-laid on
these images indicates the location of the slit analyzed in this
article. The co-ordinates of this slit are the same as for Loop
40, Event 2 included in the table of Goddard et al. (2016). This
event was studied subsequently by Pascoe et al. (2016, 2017);
Pagano et al. (2018). Following the construction of the time-
space diagram from 171 Å images (plotted in the bottom panel
of Figure 2), we applied a Canny edge-detection algorithm to
obtain approximations for the coronal loop boundaries. The
output for this edge detection routine is over-laid on the time-
space diagram in Figure 3 (blue lines). In order to model the
oscillation of the loop axis, we assumed that the displacement
is guided by midpoints between the boundaries of the upper
loop as shown by the red dots in Figure 3. If we assume that
the loop is cylindrical and radially symmetric, then the errors
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FIGURE 2 | (Top) The coronal loop system analyzed here plotted using 171 Å data at five times during the oscillation. The white lines indicate the slit studied in this

article, which corresponds to Loop 40, Event 2 from Goddard et al. (2016). (Bottom) Time-space diagram constructed from the slit over-laid on the 171 Å data. The

dashed vertical lines indicates the time steps plotted in the top row (from left to right). The bright chord starting and finishing at 12′′ is the oscillation studied in

this article.

associated by this fitting can be assumed to be less than 1 pixel.
Understanding whether such assumptions are justified would
require much higher resolution data and so should be studied in
the future. As the loop axis returned through time is qualitatively
similar to that plotted in Figure 1 of Pascoe et al. (2016) for
the same event, in the following we assume that this oscillation
profile is accurate and, therefore, neglect any further potential
errors in our fitting. Ignoring any further errors introduced
through the loop fitting is justified in this case, as our study
aims to show, in principle, that including the effects of cooling
could have important implications for coronal loop modeling.
A larger statistical study conducted using a variety of fitting
methods in the future will be required to fully understand the
prevalence and importance of coronal loop cooling on kink-
mode oscillations.

The oscillation extracted from this time-space diagram is
plotted with red dots in Figure 4. The approximate background
trend of the loop was modeled by a polynomial of the 8th degree
on all obtained data points (i.e., from frame 0 to 300) and is
over-laid for the region of interest (between frames 130 and 230)
as the green line in Figure 4. The 8th order polynomial was
selected as it best tracked the background of the amplitude profile
throughout the entire time-series (including the parts where no
oscillation was detected). It should be noted that a number of
background trends with different orders were tested with each
returning similar seismological results. This is because the ratio
of the internal and external densities, which we can calculate
from this model, is dependent only on where, in this case, the
increment to the amplitude is (which did not change for any
background trend), not how large it is. This will be discussed in
further detail later in the article.

The numerical fitting of the red points is done by considering
the summation of four equations of Gaussian form:

f (amp) =
4∑

i=1

Ai exp[−(−µi + t)2/(2σ 2
i )]/(

√
2π/σ 2

i ), (1)

where Ai, µi, and σi are variables to be fitted for each peak,
t is time (in frames), and f (amp) is the final fitted function.
The benefit of such fits over a typical sinusoidal fit is that no
periodicity is assumed a priori. This fitting was completed using
the Wolfram Mathematica 11.3 procedure Non-linearModelFit
(which guarantees continuity of the summed functions) and
is plotted as the blue line over-laid on Figure 4. It is clear
that this blue line accurately models the detected oscillation,
however, it does slightly under-estimate the returned amplitude
between frames 170 and 200. Therefore, we stress that the
increase in amplitude detected during this oscillation (discussed
subsequently) will be under-estimated by our model.

3. RESULTS

3.1. Theoretical Modeling and Observed
Amplitude Profiles
In this section, we fit the observed oscillatory profile plotted in
Figure 4 using the theoretical model proposed by Shukhobodskiy
et al. (2018). The model proposed by those authors consisted
of a straight magnetic flux tube with varying cross section
along its length. The tube was modeled with three layers: the
core which contained an arbitrary flow and oscillated as a
solid body; a transitional layer (or annulus) with monotonically
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FIGURE 3 | Zoomed time-space diagram from Figure 2 with the Canny edge-detection output (blue lines) and the returned oscillation profile (red line) over-laid. The

returned oscillation is qualitatively similar to the oscillation returned by Pascoe et al. (2016) for the same event.

FIGURE 4 | The position-time dependence of the coronal loop. Red dots

correspond to data points collected from the 171 Å time-space diagram

plotted in Figure 3. The green line corresponds to the fitted 8th-order

background trend and the blue line is the Gaussian fit of the observed data

points computed of the form (Equation 1). The two vertical dashed lines

indicate the boundaries of the area over which numerical fitting took place. The

Gaussian fit under-estimates the oscillation amplitude between frames 170

and 200 meaning the amplitude at this time will be under-estimated.

decaying density from the core to the external layer; and the
surrounding background plasma. See Figure 5 for a detailed
schematic of this model. Ruderman et al. (2017) obtained the
governing equation for such a model under the assumptions
of a thin tube with thin boundaries, by considering jumps of
displacement and pressure across the transitional layer. However,
this equation was not closed as jump conditions were not
defined in terms of the displacement. Later, Shukhobodskiy
and Ruderman (2018) and Shukhobodskiy et al. (2018), closed
that system for the time independent and time dependent
densities, respectively.

In the model applied here, we consider a loop of half-circular
shape, where the curvature affects only the density distribution.
The temperature is modeled to be exponentially decaying in time
(similar to the profiles studied in, for example, Aschwanden and
Terradas, 2008; Morton and Erdélyi, 2010; Ruderman, 2011a;

FIGURE 5 | Equilibrium configuration of theoretical model. The black lines with

labels r, φ, and z correspond to the cylindrical polar coordinates system. B(r, z)

is the background magnetic field, U(t, r, z) is the background flow parallel to the

magnetic field, R(z) is the radius of the tube, l is a constant determining the

thickness of the transitional layer, ρi (t, r, z) is the density in the internal region,

ρe (t, r, z) is the density in external region, ρt (t, r, z) is the monotonically

decaying density in the transitional layer from ρi (t, r, z) to ρe(t, r, z), L is the

length of tube for the standing waves and the characteristic value of the

wavelength for propagating waves.

Ruderman et al., 2017) and is approximated by:

T(t) = T0 exp(−t/tcool), (2)

where T0 is the constant external temperature and tcool is the
cooling time (assumed to be the total lifetime of the oscillation
here). Additionally, we describe the variation of the loop cross-
section with height, z, in a manner similar to that discussed by
Ruderman et al. (2008, 2017) and Shukhobodskiy et al. (2018).
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This takes the form:

R(z) = Rf λ

√
cosh(L/2Lc)− 1

cosh(L/2Lc)− λ2 + (λ2 − 1) cosh(z/Lc)
, (3)

where Rf is the radius of the magnetic flux tube at the foot-
points, λ = R(0)/Rf is the expansion factor and Lc is an arbitrary
constant. Please note that Lc should be selected such that the
expansion factor can be consistent with observations of coronal
loops (1 < λ < 1.5). We also assume, similarly to Ruderman and
Roberts (2002) and Goossens et al. (2002), that the density in the
transitional layer has a linear profile modeled by:

ρt(r, z) =
ρi + ρe

2
+ (ρi − ρe)

R− r

lR
, (4)

where l is a constant determining the width of the transition layer
and ρi and ρe are the internal and external densities, respectively.

Using these equations, Shukhobodskiy et al. (2018) showed
that the dimensionless amplitude, A where A(0) = 1, of the kink
mode may be approximated by:

d(̟5+A2)

dt
= −α̟ 2|5−|A2, (5)

where:

5± =
∫ 1

0
X2λ4

[
ζ exp

(
−κeτ cos

πz

2

)
± exp

(
−κcos

πz

2

)]
dZ, (6)

α =
π lCf tcool

4L
, (7)

and:

ζ = ρi

ρe
, Z = 2z

L
, τ = t

tcool
, ̟ = ωL

Cf
,

κ = L

πH0
, C2

f =
2ζB2

f

µ0ρf (1+ ζ )
. (8)

Here, µ0 is the magnetic permeability of the free space, ω is the
oscillation frequency, H0 is the external scale height, and ρf and
Bf are the density of plasma and magnetic field strength at the
foot-points inside the loop. Additionally, X is determined by the
following boundary value problem:

∂2X

∂Z2
+ ̟ 2λ4X

4(ζ + 1)

[
ζ exp

(
−κeτ cos

πZ

2

)

+ exp

(
−κ cos

πZ

2

)]
= 0, (9)

where X is the function of Z defined by the boundary values:

X = 0 at Z = −1, X = 0 at Z = 1. (10)

In order to obtain results comparable with observed amplitude
profiles, we set At = A(0)AOb(0), where AOb(0) is the measured
initial amplitude of the observed oscillation, At is the factor by

FIGURE 6 | The absolute value of the displacement of the Gaussian fitted

position profile (blue line from Figure 4) from the background 8th order

polynomial trend (green line from Figure 4) through time. The cut-out in the

top right corner provides a magnified view of the region on the graph bounded

by the black dashed box. This cut-out clearly shows the deviation of the

damping profile from a typical Gaussian or exponential fit during this time due

to a slight increase in the measured amplitude (compared to the background

trend). Similar results are found for other background polynomial trends.

which the dimensionless amplitude is scaled, and set L/Lc =
6 (similar to the values used by Ruderman et al., 2008, 2017;
Shukhobodskiy et al., 2018). This allows us to obtain results
for loop expansion factors in the range of 1–1.5, consistent
with values discussed in the literature for coronal loops (see
for example, Klimchuk, 2000; Watko and Klimchuk, 2000). In
Figure 6, we plot the absolute displacement of the observed
oscillation through time by subtracting the fitted displacement
(blue line in Figure 4) from the background trend (green line
in Figure 4). We define the initial amplitude of the oscillation,
AOb(0), by the first peak in Figure 6. The observed amplitude
profile is then constructed by calculating all values of the peaks
in Figure 6 and using the Interpolation procedure in Wolfram
Mathematica 11.3.

The most interesting region of Figure 6 (denoted by the
dashed black box over-laid between frames 160 and 185) is
plotted in the zoomed cut-out in the top right corner of the
panel. It is immediately clear that peak four is slightly larger than
peak three indicating an amplitude increase potentially occurs
through time. Such an increase would be in agreement with the
theoretical model of Shukhobodskiy et al. (2018) which suggests
that cooling in the loop system can lead to wave amplification.We
note that cooling does not strictly lead to an amplification of the
oscillation, it only modifies the damping profile fromGaussian or
exponential. Therefore, although the amplitude increase plotted
here is sub-resolution, the fact that the oscillation is not damping
in a manner consistent with a Gaussian or exponential profile
is enough to suggest some sort of cooling may be occurring.
It should also be noted that larger amplitude increases (greater
than 1 pixel) were found for lower order polynomials, however,
we only focus on the 8th order fitting here as that is sufficient
as a proof of concept. The increase in the amplitude can be
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FIGURE 7 | The dependence of the amplitude of the coronal loop oscillation

on time. Green points correspond to maxima of the peaks plotted in Figure 6,

the blue line is the fitted observed amplitude-time profile, and the red line

represents the theoretical amplitude-time profile with ζ = 2.2, λ = 1.05,

κ = 2.4, and α = 1.4.

clearly seen in Figure 7, where the blue line plots a fit between
the measured peak amplitudes (green circles) through time.
The red line over-laid on Figure 7 indicates the line of best fit
calculated by solving the system of Equations (2–10) numerically.
A maximum χ2 value was found by looping over all variables,
hence this is numerically expensive. It was assumed that the
cooling starts at the first peak and ends in the last peak of Figure 6
(i.e., that tcool is equal to the lifetime of the oscillation).

The software used to obtain these theoretical solution is
Wolfram Mathematica 11.3. The numerical procedure for
obtaining the theoretical results may be summarized as follows:
To obtain the solution to the boundary value problem,
Equations (9) and (10), we used the NDEigensystem procedure;
Equation (6) was then integrated numerically using the
NIntegrate procedure subject to the GlobalAdaptive method
(which uses various numerical integration methods and chooses
the most accurate and fastest version for the particular problem).
Finally we obtained the amplitude of the oscillation by using the
NDSolve procedure.

The application of this model revealed several interesting
effects with regards seismology of the loop system. Firstly, it was
found that ζ (the density ratio at the foot-points of the loop at t =
0) and κ (the scale height) determine the position of the turning
points of the amplitude profile (i.e., where the gradient of the
amplitude profile is zero). However, the effect of κ on the position
of the turning point reduces as the value of κ itself increases. As
a result, we can neglect this effect for sufficiently long loops with
κ > 1.6. Therefore, by minimizing the difference between the
turning points of the theoretical and observed amplitude profiles
we can determine an approximate value of ζ for this system
without knowing any other background parameters. For the
example studied here, fitting a density ratio of between 2.05 and
2.35 provides sufficiently good approximations for the position
of the local amplitude increase. As this work aims to provide a

proof-of-concept of the application of cooling theory to coronal
loop oscillations and as the density ratio is only dependent on
where the amplitude deviates from a Gaussian or exponential
decay, we neglect any errors in the measured amplitude (green
dots) here; however, the effects of any errors on our seismological
should be analyzed using a larger statistical sample in the future.
The differences in nature between the red and blue curves are
due to the spline fitting used here. Secondly, the values of κ , α,
and λ determine the speed of the amplitude decay. Unfortunately,
for the example studied here, various sets of these parameters
return similar shapes and amplitude profiles meaning we are
unable to provide accurate seismological estimates at this stage. A
larger statistical sample of cooling events and further numerical
work will be required to attempt to estimate such values in
the future.

3.2. Evidence for Cooling in the AR
Evidence of cooling in the coronal loop system can be inferred
through analysis of the intensities within SDO/AIA imaging
channels. For the loop studied here, no evidence of coronal
rain formation was found in the 304 Å filter indicating that
catastrophic cooling likely did not take place within this loop.
The loop intensity within the 171 Å and 193 Å filters did
appear to decrease slightly (potentially below any level of
significance) during the oscillation, however, whether this was
due to cooling, some line-of-sight effects (e.g., the supposition
of multiple loops within one pixel), or purely noise is unknown.
The flare within the local AR lead to large swathes of saturation
and fringing patterns on the 193 Å data meaning we were
unable to study the temporal evolution of the loop in detail
in this wavelength during the period of interest for cooling
for this event. Future work should aim to analyse a larger
statistical sample of coronal loop oscillations with non-Gaussian
and non-exponential damping profiles in order to detect
whether direct signatures of cooling can be found within the
loops themselves.

Significant cooling can be inferred elsewhere in this AR during
the course of this oscillation, however. Large amounts of coronal
rain can be observed in the 304 Å channel in the loop system
approximately 100′′ south of the loop analyzed here potentially
indicating the occurrence of the thermal instability during the
flare. The after-effects of this rain are evident in the top row of
Figure 1 (at approximately xc = −200′′, yc = −990′′). Initially
(at 17:50 UT), the loop is bright in the 304 Å channel. As the
rain forms, the loop system completely fades from view (by 18:50
UT). The coronal rain in the chromospheric 304 Å channel is
accompanied by a reduction in the intensity of the loop system
in the coronal 171 Å and 193 Å channels further supporting the
hypothesis that cooling occurred. The application of the theories
tested here on loops which are catastrophically cooling would be
an interesting project for the future.

4. DISCUSSION AND CONCLUSIONS

In this article, we have studied a flare-driven kink oscillation
in a coronal loop observed in AR 11598 by the SDO/AIA
instrument (Figure 1). This oscillation corresponded to Loop

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 June 2019 | Volume 6 | Article 45139

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Nelson et al. Oscillations of Cooling Coronal Loops

40, Event 2 from Goddard et al. (2016). The specific slit
analyzed here is indicated by the white line over-laid on the top
row of Figure 2, with the returned time-space diagram being
plotted in the bottom panel of Figure 2. In Figure 3 the time-
space diagram is plotted with the output from a Canny edge-
detection algorithm over-laid in blue. The mid-points between
the edge-detection outputs (red dots) were assumed to track
the displacement of the center of the loop as it oscillated. The
returned oscillation was qualitatively similar to that returned
by Pascoe et al. (2016) for the same event indicating that our
fitting method was sound. This oscillation was then fitted with
a summation of four Gaussian functions (corresponding to the
four peaks in the oscillation) of the form Equation 1 and an 8-
th order background trend removed (the blue and green lines
in Figure 4, respectively). Again, it should be emphasized that
numerous background trends were tested in order to assure that
we were not introducing important effects in our subsequent
analysis.

Once the oscillation and the background had been fitted, we
removed the background trend from the oscillation and plotted
the absolute values of the kink mode (see Figure 6) through
time. The cut-out over-laid on Figure 6 clearly highlights a
deviation in oscillatory amplitude from a typical Gaussian or
exponential damping between frames 160 and 185 (18:22 UT
– 18:27 UT). Indeed, there are even hints that an amplitude
increase could be present, however, this is small. It should
be noted that some background trends returned profiles with
amplitude increases of over 1 pixel. Such an amplitude increase
would obviously not be expected from a typical Gaussian or
exponential decay (as has been considered previously by, for
example, Goddard et al., 2016; Pascoe et al., 2016). However,
models proposed by Shukhobodskiy and Ruderman (2018) and
Shukhobodskiy et al. (2018) which consider cooling within
the system can account for amplitude increases. Therefore,
in addition to the multiple harmonics scenario suggested by
Pascoe et al. (2017), future work should consider cooling when
trying to understand complex amplitude profiles in coronal
loop oscillations.

Although there were some hints that the loop faded slightly
in the coronal 171 Å and 193 Å channels over the course
of the hour-long dataset analyzed here, it is unclear whether
this is an effect of cooling, due to line-of-sight effects, or
purely noise. Little other evidence for cooling could be obtained
through analysis of SDO/AIA time-series. Additionally, no
evidence of coronal rain was observed in the 304 Å channel.
More obvious cooling could be observed within the local

AR, however, in a loop system located approximately 100′′

south of the loop analyzed here. This loop contains large
amounts of coronal rain in the 304 Å channel potentially

hinting at the occurrence of the thermal instability, or
catastrophic cooling. The effects of such catastrophic cooling
on coronal loop oscillations would be an interesting topic for
future study.

The key seismological result obtained here is that the location
in time at which the amplitude begins to increase (an effect of the
cooling on the oscillation) is dictated solely by the ratio between
the internal and external densities for sufficiently large coronal
loops. Therefore, fitting the model such that the difference
between the observed turning point and the theoretical fitting
point is minimized (as is shown in Figure 7) allows us to calculate
an estimate of the density ratio, ζ , an important parameter for
modeling. For this loop, inversions of the theoretical model
provide a good fit to the observed amplitude profiles when ζ is
in the range 2.05–2.35 (i.e., the loop foot-point is initially more
than twice as dense as its surroundings).

In order to follow on from this work, we aim to complete
two further studies. Firstly, we will conduct a statistical analysis
of oscillations within potentially cooling coronal loops in the
solar corona. This will provide important constraints on density
ratios of loops for future modeling. Secondly, through further
numerical work, it should prove possible to conduct further
seismology in order to return values such as the scale height
of the loop and the annulus thickness. These values will, again,
provide further constraints for future modeling. Overall, the
theoretical work of Shukhobodskiy et al. (2018) has proved adept
at modeling the oscillations of the loop analyzed here and should
be considered by authors in the future when analysing coronal
loop oscillations.
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Diagnosing the solar atmospheric plasma is one of the major challenges in solar physics.

Magnetohydrodynamic (MHD) waves, by means of applying the powerful concept of

solar magneto-seismology (SMS), provide a tool to obtain diagnostic insight into the

magnetized solar plasma in MHD waveguides. This paper provides a road-map of simple

but applicable models of solar atmospheric waveguides in the framework of Cartesian

geometry. We focus on exploiting the diagnostic potential of waveguide asymmetry and

consider the effects of steady flow. In particular, the dispersion relation describing linear

MHD wave propagation along a multi-layered MHD waveguide is derived. Aiming at

lower solar atmospheric applications of SMS, the special case of a single magnetic slab

embedded in an asymmetric magnetized plasma environment is revisited. As a proof of

concept, the Amplitude Ratio Method is used to make a seismological estimate of the

local Alfvén speed in several chromospheric fibrils that exhibit asymmetric oscillations.

Absolute ratios of boundary oscillations between 1.29 and 3.42 are detected and, despite

the significant errors expected, the local Alfvén speed estimates agree with previously

derived estimates from magnetic field extrapolations. Finally, the effects of asymmetric

shear flows present in these slab MHD waveguides are considered as a suitable model

of Kelvin-Helmholtz instability initiation that is applicable, for example, to coronal mass

ejection flanks.

Keywords: solar atmosphere, plasma, waves, magnetohydrodynamics (MHD), magnetic fields, magneto-
seismology, fibrils, magnetic bright points

1. INTRODUCTION

Over the past few decades, vast improvements in solar telescope technology, with the likes of both
space-borne instrumentation, e.g., Solar and Heliospheric Observatory (SoHO), Solar Dynamics
Observatory (SDO), and Interface Region Imaging Spectograph (IRIS), and ground-based solar
observing facilities, e.g., Dunn Solar Telescope (DST) and Swedish Solar Telescope (SST), have
enabled us to resolve the fine sub-structure within many of the larger magnetic features that
bejewel the solar atmosphere. Considering the development of the next generation of observational
mega-projects, such as the rather imminent commencement of the Daniel K. Inouye Solar
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Telescope (DKIST) and, within a decade, that of European Solar
Telescope (EST), this trend looks set to continue, whichmotivates
solar physicists to fill the gaps in theoretical understanding.

Magnetohydrodynamic (MHD) waves are a key in our
understanding of the physical processes in the hot solar plasma.
MHD waves are not only a mechanism to transfer non-thermal
energy between distant locations in the solar plasma, that is
then dissipated by physical processes that are yet to be fully
understood, like resonant absorption (Goossens et al., 2011),
phase mixing (Heyvaerts and Priest, 1983), non-linear shock
damping (Ballai and Ruderman, 2011), rather, they are also
excellent tools to be exploited for plasma diagnostics by solar
magneto-seismology (SMS) (see the reviews by Andries et al.,
2009; Ruderman and Erdélyi, 2009; Mathioudakis et al., 2013).
SMS employs the measured properties of MHD waves, e.g.,
amplitude, frequency, and phase speed, and, using a suitable
inversion, yields information about the waveguide properties that
are often very hard to measure (e.g., magnetic field, gravity,
magnetic scale heights, or density).

There are two geometric building-blocks that are popular to
model solar atmospheric waveguides: the cylindrical flux tube
and the magnetic slab waveguides. The present work focuses
on the latter, which can be used in the first approximation to
model a wide variety of solar atmospheric structures, including
prominences, magnetic bright points, light bridges and their
corresponding light walls, coronal hole boundary layers, the
flank structure of coronal mass ejections, as well as several
magnetospheric regions. First studied as an interface between
two semi-infinite plasmas (Roberts, 1981b), the currently
frequently used and popular format of the theory of MHD
wave propagation in Cartesian geometry has been developed
to describe magnetic slabs embedded in symmetric (Roberts,
1981a; Edwin and Roberts, 1982) and asymmetric environments
(Allcock and Erdélyi, 2017; Zsámberger et al., 2018), and multi-
layered plasmas (Ruderman, 1992; Shukhobodskaia and Erdélyi,
2018). Collective standing modes of a multi-layered Cartesian
waveguide modeling multi-fibril prominence oscillations (Díaz
et al., 2005; Díaz and Roberts, 2006) and coronal loop
oscillations (Luna et al., 2006) have been studied. MHD
wave theory in Cartesian waveguides has been explored in
terms of SMS by Roberts et al. (1984), and more recently
by Allcock and Erdélyi (2018).

Aside from providing a description and nomenclature of
solar atmospheric wave physics, the theoretical studies have
driven progress in SMS. The asymmetric environment of solar
waveguides has been theoretically proposed as a proxy for
local inhomogeneity, e.g., in the magnetic field, density, and
temperature. This inhomogeneity, through the Amplitude Ratio
and the Minimum Perturbation Shift Methods, can be exploited
for SMS (Allcock and Erdélyi, 2018). With the sub-structure
resolution that these techniques require being reached by some
of the currently available instrument suits for solar atmospheric
waveguide structures, we are now able to apply these techniques.

The aims of this paper are two-fold. First, we bring together
the linear theory of MHD wave propagation in Cartesian
waveguides modeled by magnetic steady slab equilibria, focusing
on the effects of asymmetry surrounding the slab and steady

states representing plasma flows. Secondly, we exploit the SMS
diagnostic power of waveguide asymmetry by making the first
inversion of the local Alfvén speed in chromospheric fibrils
using the Amplitude Ratio Method, an SMS technique that has
developed out of asymmetric waveguide theory.

The structure of the paper is as follows. Section 2 introduces a
general model of a multi-layered MHD waveguide, for which the
dispersion relation for linear magneto-acoustic waves is derived.
Special cases of this model are discussed in section 3, including
a magnetic slab in an asymmetric non-magnetic environment
(section 3.1) and magnetic environment (section 3.2). Section 4
applies these models to the low solar atmosphere, first, to
estimate the local Alfvén speed in chromospheric fibrils using
solar magneto-seismology (section 4.1), then to present mode
identification in high-plasma-beta regions (section 4.2). Section 5
analyses the effects of steady flows on linear MHD perturbations
and instabilities of a multi-layered solar plasma.

2. GENERAL MULTI-LAYERED WAVEGUIDE
MODEL

Let us first consider a model of a plasma structured by an
arbitrary number of interfaces with different homogeneous
magnetic fields, temperatures, and densities, illustrated by
Figure 1 in Cartesian geometry. Such a model could be useful
for studying linear MHD wave propagation in observed solar
atmospheric structures closer to the photosphere, such as
magnetic bright points, sunspot light bridges, or light walls.

In what follows, we consider an infinite compressible inviscid
structured static plasma with magnetic field B(x) ẑ, where

B(x) =





B0, for x < x0,
B1, for x0 ≤ x < x1,
. . .

Bn, for xn−1 ≤ x < xn,
Bn+1, for x ≥ xn.

We ignore the effects of gravity. We denote the equilibrium
kinetic plasma pressure, the density, and temperature by pj, ρj,
and Tj, respectively, with subscript j that varies from 0 to n +
1. In total, there are n + 2 regions, all of which, in general,
are magnetized.

We assume that the perturbations within themagnetic slab are
governed by the ideal MHD equations,

ρ
Dv

Dt
= −∇p− 1

µ0
B× (∇ × B),

∂ρ

∂t
+∇ · (ρv) = 0,

D

Dt

(
p

ργ

)
= 0, (2.1)

∂B

∂t
= ∇ × (v× B),

where µ0 is the magnetic permeability of free space, γ is the
adiabatic index, variables v = (vx, vy, vz), B, p, and ρ are velocity,
magnetic field, kinetic pressure, and density, at time t. The Alfvén
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FIGURE 1 | The equilibrium configuration of a layered magnetized plasma. The blue arrows represent the vertical magnetic field, B(x)̂z. The kinetic pressure, pj,

density, ρj , and temperature, Tj are equilibrium parameters. The subscript j corresponds to the relevant slab and varies from 0 to n+ 1.

and sound speeds in the jth region are vAj = Bj/
√

µρj and cj =√
γ pj/ρj, respectively. For the system to remain in equilibrium,

pressure balance across each interface is required, i.e.,

p0 +
B20
2µ

= p1 +
B21
2µ

= . . . = pn +
B2n
2µ

. (2.2)

Equation (2.2) yields the following relation between characteristic
speeds and density ratios for any two regions:

ρi

ρj
=

c2j + 1
2γ v

2
Aj

c2i + 1
2γ v

2
Ai

We linearize the governing equations by setting, for each variable
f , f = fj + f ′, where fj is the background variable in region j and
f ′ is the comparatively much smaller perturbation variable, then
neglecting terms of quadratic or higher order in perturbation
variables. For brevity, we drop the ′ hereafter.We seek plane wave
solutions to the linearized governing equations of the form

vx(x, t) = v̂x(x)e
i(kz−ωt), vy(x, t) = 0, vz(x, t) = v̂z(x)e

i(kz−ωt),

(2.3)

representing wave propagation in the ẑ−direction, where ω is the
angular frequency and k is the wavenumber in the ẑ-direction.
Substituting solutions (2.3) into the system of Equation (2.1),
and combining the obtained equations, we derive an ordinary
differential equation for v̂x representing transverse motions
inside the magnetic slab,

d2̂vx

dx2
−m2

j v̂x = 0, (2.4)

where

m2
j =

(k2v2Aj − ω2)(k2c2j − ω2)

(c2j + v2Aj)(k
2c2Tj − ω2)

, c2Tj =
c2j v

2
Aj

c2j + v2Aj
. (2.5)

Note that k = (0, 0, k), the system is homogeneous in the y-
direction, and this derivation deals with magnetoacoustic modes
and not Alfvén modes, since vy = 0. Now, we assume that the
perturbations vanish at infinity, so that v̂x → 0 as x → ±∞. We
note that m2

j may take positive or negative values for j from 1 to

n. Since the wave amplitudes decay exponentially at infinity, we
obtain a general solution of Equation (2.4) given by

v̂x(x) =





P0(coshm0x+ sinhm0x), for x < x0,

P1 coshm1x+Q1 sinhm1x, for x0 < x < x1,

. . .

Pn coshmnx+Qn sinhmnx, for xn−1 < x < xn,

Pn+1(coshmn+1x− sinhmn+1x), for x > xn,

(2.6)
where Pi and Qj are constants with i = 0, 1, . . . n + 1 and
j = 1, 2, . . . n.

The total (kinetic plus magnetic) pressure perturbation,
PT(x, t), satisfies the equation

∂PT

∂t
= ρjv

2
Aj

∂vz

∂z
− ρj(c

2
j + v2Aj)∇ · v. (2.7)

Considering PT(x, t) in a Fourier form, PT(x, t) = p̂(x)ei(kz−ωt),
and using Equations (2.1) and (2.7), we obtain

p̂(x) = v̂x(x)





30/m0, for x < x0,

31/m1, for x0 < x < x1,

. . .

3n/mn, for xn−1 < x < xn,

3n+1/mn+1, for x > xn,

(2.8)

with

3j = −
iρj(k

2v2Aj − ω2)

mjω
, for j = 0, 1, . . . n+ 1. (2.9)

Let us now establish appropriate boundary conditions. For
physical solutions, the velocity, vx(x, t), and total pressure,
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PT(x, t), have to be continuous across the boundaries x = xj for
j = 0 . . . n. Equations (2.6) and (2.8) give us 2(n + 1) coupled
homogeneous algebraic equations:

P0(coshm0x0 + sinhm0x0) = P1 coshm1x0 +Q1 sinhm1x0,

30P0(coshm0x0 + sinhm0x0) = 31(P1 sinhm1x0 +Q1 coshm1x0),

P1 coshm1x1 +Q1 sinhm1x1 = P2 coshm2x1 +Q2 sinhm2x1,

31(P1 sinhm1x1 +Q1 coshm1x1) = 32(P2 sinhm2x1

+ Q2 coshm2x1), . . .

Pn−1 coshmn−1xn−1 + Qn−1 sinhmn−1xn−1

= Pn coshmnxn−1

+ Qn sinhmnxn−1,

3n−1(Pn−1 sinhmn−1xn−1 + Qn−1 coshmn−1xn−1)

= 3n(Pn sinhmnxn−1

+ Qn coshmnxn−1),

Pn coshmnxn + Qn sinhmnxn = Pn+1

(coshmn+1xn − sinhmn+1xn),

3n(Pn sinhmnxn + Qn coshmnxn) = 3n+1Pn+1

(sinhmn+1xn − coshmn+1xn),

(2.10)

where Pi and Qj are constant with respect to x. Then, we define
Q0 = P0 and Qn+1 = −Pn+1 and rewrite the above boundary
conditions into the following compact form

Pj coshmjxj +Qj sinhmjxj = Pj+1 coshmj+1xj

+ Qj+1 sinhmj+1xj,

3j(Pj sinhmjxj +Qj coshmjxj) = 3j+1(Pj+1 sinhmj+1xj

+ Qj+1 coshmj+1xj),

(2.11)

for j = 0, 1, . . . n. One of the advantages of the above form is its
simplistic format which enables it to be used in numerical studies
for sufficiently large values of n.

We now rearrange the obtained boundary conditions into the
following compact matrix form:

M
(
P0, P1, Q1, . . . Pn, Qn, Pn+1

)T = 0, (2.12)

whereM is a [2n+ 2]× [2n+ 2] matrix. The precise form of the
matrix is given in Appendix A by Equations (A1)–(A5).

In order to have a non-trivial solution of the system, the
determinant of the matrixMmust be equal to zero:

detM = 0. (2.13)

Equation (2.13), the general dispersion relation, prescribes the
nature of linear MHD waves that can propagate along a static
multi-layered waveguide, visualized by Figure 1. The solutions to
this equation, given by the angular frequency, ω, as a function
of the wavenumber, k, correspond to the eigenfrequencies of
the system.

3. MAGNETIC SLAB IN AN ASYMMETRIC
ENVIRONMENT

In order to make analytical progress, we now analyze two
special cases of this model in Cartesian geometry, namely, a
slab in an asymmetric non-magnetic (section 3.1) and magnetic
(section 3.2) homogeneous background plasma. These special
cases bring the waveguide model closer to reality as there are
several phenomena in the solar atmosphere that can be well
modeled by isolated magnetic slabs, including prominences
(Arregui et al., 2012), elongated magnetic bright points (Berger
and Title, 1996), and light walls (Yang et al., 2015), to name a few.

3.1. Slab in an Asymmetric Non-magnetic
Environment
By letting n = 1 and letting the left and right regions be magnetic
field free, i.e., B0 = B2 = 0, we reduce the general multi-
waveguide structure to a single magnetic slab waveguide in a
non-magnetic environment (Figure 2). This waveguide model
was studied by Allcock and Erdélyi (2017) and is summarized in
this section.

Under this configuration, the parameters mj and 3j

reduce to

m2
0 = k2 − ω2

c20
, m2

1 =
(k2v2A − ω2)(k2c21 − ω2)

(c21 + v2A1)(k
2c2T1 − ω2)

, m2
2 = k2 − ω2

c22
,

(3.1)
and

30 =
iρ0ω

m0
, 31 = −

iρ1(k
2v2A1 − ω2)

m1ω
, 32 =

iρ2ω

m2
, (3.2)

respectively. By letting x0 = −x1, the matrix form of the
dispersion relation, Equation (2.13), reduces to

det




C0 − S0 −C1 S1 0
30(C0 − S0) 31S1 −31C1 0

0 C1 S1 S2 − C2

0 31S1 31C1 −32(S2 − C2)


 = 0, (3.3)

where Ci = coshmix1 and Si = sinhmix1, for i = 0, 1, 2. This
can be written in non-matrix form as

32
1 + 3032 + 31(30 + 32) coth 2m1x1 = 0. (3.4)

Using the original notation, the dispersion relation is

ω4m2
1 +

ρ1

ρ0
m0

ρ1

ρ2
m2(k

2v2A1 − ω2)2 −m1ω
2(k2v2A1 − ω2)

(
ρ1

ρ0
m0 +

ρ1

ρ2
m2

)
coth 2m1x1 = 0.(3.5)

This agrees with the dispersion relation derived by Allcock and
Erdélyi (2017), with a different subscript labeling.

This has implications for mode identification. Most notably,
Table 1 highlights that merely observing cross-sectional
oscillation is insufficient for the identification of sausage modes,
and merely observing axial oscillation is insufficient for the
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FIGURE 2 | The equilibrium configuration for a magnetic slab in an asymmetric non-magnetic environment.

identification of kink modes. It is a combination of these features
and the phase relationship of the boundary oscillations that
allows us to accurately identify these modes.

The eigenmodes can be further categorized as surface and
bodymodes, depending on whether the solution to the governing
equations is evanescent or spatially oscillatory, respectively,
within the slab. The main physical implication of this is that
the amplitude, or wave power in observations, peaks at the
boundaries of the waveguide for surface modes, and at one
or more anti-nodes within the waveguide for body modes.
Compared to body modes, surface modes are significantly more
sensitive to the background plasma and hence the background
asymmetry (Allcock and Erdélyi, 2017).

3.2. Slab in an Asymmetric Magnetic
Environment
Generalizing the stationary slab embedded in an asymmetric
plasma leads us to the model of the magnetic slab embedded
in an asymmetric magnetic environment. By letting n =
1, but keeping the magnetic fields in the external regions
(unlike in section 3.1), we reduce the general multi-waveguide
structure to a single magnetic slab waveguide in an asymmetric
homogeneous non-magnetic environment (see Figure 3, and also
Zsámberger et al., 2018).
In this case, the parameters related to the wavenumbers and the
total pressure in all three domains are expressed as

m2
j =

(
k2v2Aj − ω2

) (
k2c2j − ω2

)

(
v2Aj + c2j

) (
k2c2Tj − ω2

) ,

3j = −
iρj

ω

k2v2Aj − ω2

mj
, for j = 0, 1, 2. (3.6)

By letting x0 = −x1, we obtain the following dispersion relation

m2
1

(
k2v2A0 − ω2

) (
k2v2A2 − ω2

)
+ ρ1

ρ0
m0

ρ1

ρ2
m2

(
k2v2A1 − ω2

)2

+ ρ1m1

(
k2v2A1 − ω2

) [m2

ρ2

(
k2v2A0 − ω2

)
+ m0

ρ0

(
k2v2A2 − ω2

)]

coth 2m1x1 = 0. (3.7)

TABLE 1 | The defining characteristics of each category of eigenmode.

Mode Boundary oscillation
phase relationship

Cross-sectional
oscillation?

Axial
oscillation?

Sausage In anti-phase Yes No

Kink In phase No Yes

Quasi-sausage In anti-phase Yes Yes

Quasi-kink In phase Yes Yes

For the full derivation of the dispersion relation using the shifted
coordinate system (defined by x0 = −x1, as in section 3.1),
see Allcock and Erdélyi (2017) for the externally field-free, and
Zsámberger et al. (2018) for the externally magnetic asymmetric
slab system. Note also that if we remove the external magnetic
fields, Equation (3.7) reduces to the dispersion relation for the
externally field-free one-slab system (Equation 3.5).

In general, the solutions of the exact dispersion relation
for both the externally field-free and magnetic asymmetric
slab systems are the mixed-nature quasi-sausage and quasi-
kink modes. Figure 4 shows a few characteristic examples
of how the introduction of asymmetry influences the
distribution of the transverse velocity perturbation of these
eigenmodes under circumstances corresponding to lower solar
atmospheric environments.

4. APPLICATION TO THE LOWER SOLAR
ATMOSPHERE

In this section, we discuss two of the different diagnostic
approaches and methods that are possible to pursue with
asymmetric slab models. First, we demonstrate the power of the
so-called amplitude ratio method with a specific application to
surface waves, by briefly outlining the solar magneto-seismology
theory of asymmetric MHD waveguides (section 4.1.1), and then
applying this theory we estimate the Alfvén speed in several
chromospheric fibrils (sections 4.1.2–4.1.7). Then, to illustrate
how body waves can be used for diagnostic purposes, we discuss
the analytical solutions of the asymmetric slab environment when
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FIGURE 3 | Equilibrium configuration for the magnetic slab in an asymmetric magnetic environment.

FIGURE 4 | Distribution of the transverse velocity perturbation amplitude (v̂x ) in a strongly magnetized slab and its rarefied asymmetric environment, plotted with solid

black curves, as a function of the transverse spatial coordinate, x. Lighter gray shading represents lower background densities, while the blue arrows show the

equilibrium magnetic fields, and darker gray shading corresponds to higher background densities. In (A), a slow quasi-kink surface mode, in (B), a slow

quasi-sausage surface mode, in (C), a fast quasi-kink body mode of order one, and in (D), a fast quasi-sausage body mode of order one is presented. (A,B)
correspond to a thin slab (kx1 = 0.685), while (C,D) represent a wide slab (kx1 = 2.790). These solutions to the dispersion relation (Equation 3.7) were obtained

numerically, for a slab system characterized by vA1 = 0.7c1, vA0 = 0.2c1, vA2 = 0.1c1, c0 = 2.23c1, c2 = 1.87c1, ρ0/ρ1 = 0.28, and ρ2/ρ1 = 0.4.

the kinetic pressure dominates the magnetic pressure, as occurs
in the low solar atmosphere (section 4.2).

4.1. Solar Magneto-Seismology With
Asymmetric Waveguides
At present, some properties of the solar atmosphere, such as
the strength of the magnetic field in the chromosphere and

the corona, are very hard to measure directly from emitted

or absorbed radiation. To get an estimate of such parameters,

we must rely on observables which depend on the unknown
parameter by proxy. The asymmetry of solar MHD waveguides
is a proxy for the internal magnetic field. In this section, we
summarize the Amplitude Ratio Method for solar magneto-
seismology of asymmetric waveguides, first derived by Allcock
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and Erdélyi (2018), and use it to make the first demonstration
of an inversion of the local Alfvén speed in the solar atmosphere
using asymmetric MHD waves.

4.1.1. Amplitude Ratio Method
MHD waves perturb waveguides in the solar atmosphere in a
non-uniform manner. Moreover, the wave power is distributed
transversely across the waveguide in a way unique to the mode
of oscillation and the background parameters. In particular,
asymmetry in the background parameters is mirrored by
asymmetry in the transverse distribution of wave power, that is,
in the eigenfunction (e.g., Figure 4). One way to quantify this
asymmetry is to take the ratio of the signed amplitudes, RA, at
each interface of the waveguide, i.e.,

RA = ξ̂x(x1)

ξ̂x(−x1)
, (4.1)

where ξ̂x is the transverse displacement and is evaluated at each
boundary, ±x1. Through derivation of the eigenfunctions for
each mode (see Allcock and Erdélyi, 2018, for more details),
we can express this in terms of the wave parameters and
equilibrium parameters,

RA = −ρ0m2

ρ2m0

[
(k2v2A1 − ω2)m0

ρ1
ρ0

− ω2m1
1

tanhm1x1

(k2v2A1 − ω2)m2
ρ1
ρ2

− ω2m1
1

tanhm1x1

]
, (4.2)

for quasi-sausage modes, and

RA = ρ0m2

ρ2m0

[
(k2v2A1 − ω2)m0

ρ1
ρ0

− ω2m1 tanhm1x1

(k2v2A1 − ω2)m2
ρ1
ρ2

− ω2m1 tanhm1x1

]
, (4.3)

for quasi-kink modes. For quasi-sausage modes, the amplitude
ratio is negative due to the anti-phase boundary oscillations, and
for quasi-kink modes, the amplitude ratio is positive due to the
in-phase boundary oscillations. By taking all the other parameters
as measured inputs, the internal Alfvén speed, vA1, can be
estimated by numerically inverting this equation. In the following
application of this SMS technique, we use the Amplitude Ratio
Method, as described above, to estimate the Alfvén speed in
several chromospheric fibrils.

4.1.2. Alfvén Speed Inversion of Chromospheric

Fibrils
The Alfvén speed in the chromospheric quiet Sun is highly
inhomogeneous, due to the many magnetic structures that
make up the magnetic canopy, and undergoes a steep
gradient from 15 km s−1 in photospheric flux tubes to
1, 000 km s−1 in the corona (van Ballegooijen et al., 2011).
Techniques including photospheric magnetic field extrapolation
and magneto-seismology make up an arsenal of methods for
characterizing the chromospheric magnetic field, yet the Alfvén
speed in specific chromospheric structures remains hard to
determine (Wiegelmann et al., 2014). Here, we apply the
Amplitude Ratio Method to diagnose the Alfvén speed in several
chromospheric fibrils as a demonstration of a new magneto-
seismology technique to add to the picture.

The data were taken from observations close to the disk center
with a narrow-band 0.25 Å Hα core (6562.8 Å) filter on the
29th September 2010 using the Rapid Oscillations in the Solar
Atmosphere (ROSA) imager on the Dunn Solar Telescope (Jess
et al., 2010). The data show a dynamic sea of dark dense fibrils
that map, at least partially, the inter-network magnetic field
overlying the bright and less dense plasma that permeates the
quiet Sun (Leenaarts et al., 2012). The implementation of the
Amplitude Ratio Method involves resolving sub-fibril structure,
for which the ROSA instrument’s high spatial (150 km) and
temporal resolution (7.68 s) were necessary and just barely
sufficient, with 10-20 pixels across each fibril.

More information about the observations is detailed by
Morton et al. (2012), who originally used the same data for
the analysis of ubiquitous MHD waves in the chromosphere.
They interpreted the observed fibril oscillations as concurrent
sausage and kink modes of circular cross-sectional magnetic
flux-tubes. In the present analysis, we propose an alternative
interpretation that the oscillations are MHD oscillations in
asymmetric waveguides. Evidence in favor of the present
interpretation comes from the observation that the oscillations
in the transverse axial displacement, the cross-sectional width,
and the integrated intensity across the fibrils are both in phase
and demonstrate a similar phase speed (see Morton et al., 2012).
However, we wish to make it clear that this interpretation is
takenmainly to demonstrate a new SMS technique which depends
on the existence of waveguide asymmetry. The evidence for or
against either interpretation (concurrent modes in symmetric
waveguides or individual modes in asymmetric waveguides) is
too weak to be strongly conclusive.

In the absence of MHDwave theory in asymmetric cylindrical
waveguides, we model each fibril as an isolated magnetic
slab whose boundaries are parallel discontinuities between the
uniform internal plasma and the asymmetric external plasma
(e.g., Figure 2). Only sufficiently isolated fibrils that maintain
their structure for at least a full period were analyzed.

4.1.3. Boundary Tracking
A primary slit is placed perpendicularly across each fibril and
time-distance data produced from an average of the intensities
across the primary slit and two parallel neighboring slits, placed
at a distance of 1 pixel either side (Figure 5A). This averaging
technique over several slits is used to increase the signal-to-
noise ratio.

To find the boundaries of the fibrils so that the boundary
oscillation amplitudes can be determined, we fit a Gaussian
function to each time frame of the time-distance data
(Figure 5B). The boundaries are taken to be the positions along
the slit at which the fitted Gaussian reaches half-maximum. Due
to the limited number of data-points across each fibril, the high
signal-to-noise ratio, and to improve the fitting stability, for time
frames when the Gaussian fitting failed, the fitting domain was
reduced to 10 pixels either side of the boundaries on the previous
time step.

Fibrils for which the stabilized Gaussian fitting failed on
a significant proportion of time steps were omitted from the
analysis. The boundaries were cross-checked and the small
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FIGURE 5 | (A) A typical example of a ROSA Hα fibril taken at t = 399.36 s from the start of the observational window. The middle slit is placed perpendicular to the

fibril. The mean of the intensities along the middle slit and two parallel slits at a pixel each side at each time step is plotted in (B). The white dots correspond to the

boundaries of the fibril, calculated as the position of half-maximum of the fitted Gaussian. Axis values are in units from the bottom left of the observational domain.

FIGURE 6 | (A) Top and (B) bottom boundary positions along the averaged slits given in Figure 5A (black line), detrended with a cubic polynomial. The error bounds

on each point are the pixel size and therefore correspond to the error in the observations rather than the error in the trend fitting so represent a lower bound on the

total error. The boundaries are fitted with a sinusoid (red line).

number of isolated anomalous points were smoothed over using
a linear interpolation between the preceding and following time
frames. The width of each fibril was taken as the mean distance
between the boundaries throughout the time window for which
the stabilized Gaussian fitting was successful.

4.1.4. Frequency and Amplitude Measurement
For each fibril, both sets of boundary data were then detrended
with a cubic polynomial fit by least-squares regression. The
detrended boundaries were then fit with a sinusoidal curve
(Figure 6) due to there being too few data points to make
wavelet analysis useful. The frequency of each wave is taken to
be the average of the frequencies of both boundary sinusoids.
The amplitude ratio is the signed ratio of the amplitudes of the
boundary sinusoids.

4.1.5. Phase Speed Measurement
For each fibril, we plotted the cross-sectional width variation
through time at five parallel slits, each five pixels apart and
perpendicular the fibril. The widths at each time-step were
calculated as the position of the half-maximum of the fitted

Gaussian function along each slit. The intensity along each of
the five slits used for the phase speed measurement is the mean
of the intensities across three parallel slits spaced a pixel apart,
as described in section 4.1.3. The width variation was smoothed
with a 3-point box-car function and the temporal lag in the
smoothed width variation was fitted with a straight line (see
Figure 7). The gradient of this line is the estimated phase speed.

The measured phase speeds assume that the fibril waveguides
are parallel to the plane-of-sky (PoS). In reality, the waveguides
are inclined at some angle θ to the PoS. Therefore, the true phase
speed will be a factor of sec(θ) greater than the measured phase
speed. Unfortunately, using the given data it is impossible to
infer the angle θ . The best we can do is use the fact that the
fibrils tend to track the magnetic field of the magnetic canopy,
which is dominated by a horizontal magnetic field, to motivate
the assumption that θ is small. Under this assumption, we can
take sec(θ) ≈ 1, to leading order, from which it follows that the
true phase speed is approximately equal to the measured phase
speed in the observational plane.

Additionally, it might appear that we have assumed that the
oscillations are approximately polarized in the PoS because the
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FIGURE 7 | Five parallel slits, spaced by five pixels, are placed perpendicular

to each fibril. The widths, calculated from the fitted Gaussian along each slit,

are plotted and displaced in the y-direction by five pixels = 250 km, the

distance between each slit. The peaks and troughs of the width oscillations are

fitted by a straight line, the gradient of which is approximately the phase speed.

amplitudes are measured in the observational plane. However,
the amplitudes only enter the inversion calculation as a ratio,
therefore eliminating any projection effects anyway.

4.1.6. Inversion Procedure
Using the results from section 4.1.2, we employed a numerical
inversion procedure to estimate the Alfvén speed within the
fibrils (more information can be found in Allcock and Erdélyi,
2018). First, for each fibril oscillation, the mode of oscillation
(quasi-sausage or quasi-kink) was determined by assessment of
the phase-shift between the oscillations on each boundary. After
prescribing all the parameters apart from the internal Alfvén
speed, vA1, in Equations (4.2) or (4.3) (depending on the mode
identified), the secant method was used to find the Alfvén
speed estimation.

For each inversion, we specified an internal sound speed of
c0 = 10 km s−1 and density ratios of ρ1/ρ0 = 0.1 and
ρ2/ρ0 = 0.2, and vice versa depending on which side had the
largest amplitude. In the absence of any density-sensitive proxies
from the data, they were chosen to match the order of magnitude
difference between the densities external and internal to the fibrils
as expected from previous fibril observations (Leenaarts et al.,
2012; Morton et al., 2012).

To reduce the chance of finding the wrong root when the
inverse problem is multi-valued, a hundred initial values for vA
evenly spaced between 1 and 200 km s−1 were tried and only
fibrils for which the inversion produced the same value for almost
all of the initial values were included in the results.

4.1.7. Results
We made a successful inversion of five chromospheric fibrils
and recorded the parameters in Table 2. Two of the fibrils were
identified as oscillating in the quasi-kink mode and three in
the quasi-sausage mode. All of the identified MHD modes are
expected to be fast modes due to their phase speeds exceeding

the expected sound speed. Fibril 1 exhibited a change in direction
of propagation before breaking up. The other fibril oscillations
propagated in one direction for the duration of the time for which
Gaussian fitting was successful. The inverted Alfvén speeds agree
with expected values for chromospheric fibrils (Morton et al.,
2012). Although, we acknowledge the high degree of uncertainty
in present and previous chromospheric Alfvén speed estimates.

The error in the inversions due to the input parameters comes
mainly from the density ratios. In Allcock and Erdélyi (2018),
we determined that the relative errors in the density ratios are
reduced by a factor of two when propagated into the errors in the
inverted Alfvén speed. However, this was calculated by using an
analytical inversion procedure, which involved taking a further
approximation of the model. In the present work, we have used a
numerical inversion procedure to avoid having to make such an
approximation. To determine how the density errors propagate
through the numerical inversion implemented here, we ran the
inversion for a range of density parameters. We found that the
relative error in each density ratio is approximately halved after
propagating through the numerical inversion. As an example, for
fibril 1, an input density ratio of ρ2/ρ0 = 0.4 rather than 0.2, i.e., a
100% difference, leads to an Alfvén speed estimate of 44.8 km s−1,
approximately 50% greater than the 30.5 km s−1 estimated using
ρ2/ρ0 = 0.2.

4.2. High-Beta Asymmetric Slab
Eigenmodes
The dispersion relations of each slab configuration provide us
with a wide variety of normal solutions. Since a completely
general analytical description of all these waves does not seem
possible, it is a worthwhile endeavor to further study the
various solutions and uncover certain fundamental analytical
relationships between the relevant parameters, next to, of course,
applying the above-mentioned numerical inversion schemes.

One possible avenue is to examine how the ratios of plasma
and magnetic pressures in all the domains influence the existence
and properties of the different types of normal modes. This ratio
is described by the plasma-β parameter, defined as βj = pj/pj,m
for a domain j, where pj is the plasma pressure and pj,m is the
magnetic pressure in the given domain.

As the solar atmosphere shows a range of complex and fine
magnetic structures, we have chosen the externally magnetic
asymmetric slab model to provide an example of the theoretical
side of the investigation. Furthermore, since we have primarily
focused on lower solar atmospheric applications, we will limit this
section to the discussion of high-β asymmetric slab systems.

For the case when 32 is of the same order as 30, it is possible
to derive an approximate decoupled dispersion relation, which is
given by

(k2v2A1 − ω2)

[
ρ1

ρ0

m0

(k2v2A0 − ω2)
+ ρ1

ρ2

m2

(k2v2A2 − ω2)

]

+2m1

(
tanh

coth

)
{m1x1} = 0. (4.4)

Unlike the full dispersion relation (Equation 3.7), this relation,
applicable to the special case of weak asymmetry, decouples
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TABLE 2 | A table of measured parameters, identified mode, and estimated local Alfvén speed of five chromospheric fibrils.

Fibril Width Frequency Phase speed Amplitude ratio Asymmetric eigenmode Estimated alfvén speed

km s−1 km s−1 km s−1

1 463 0.0285 63 (and −63) 1.29 Quasi-kink 30.5

2 997 0.0328 63 −0.407 Quasi-sausage 91.7

3 1120 0.0800 63 −3.42 Quasi-sausage 75.5

4 530 0.0198 31 −3.13 Quasi-sausage 49.4

5 551 0.0511 129 2.04 Quasi-kink 63.1

into a separate equation for quasi-sausage (tanh version) and
quasi-kink (coth version) eigenmodes, which is analogous to the
decoupling of the symmetric case detailed in Edwin and Roberts
(1982). In the infinite-β limit, magnetic forces are negligible
compared to the pressure gradient force, i.e., cj/vAj ≫ 1, for
j = 0, 1, 2. In this scenario, only essentially purely acoustic body
waves occur. If we take into account that the total pressure must
balance across the boundaries, and that the pressure in this case
is purely the kinetic pressure, the dispersion relation (Equation
4.4) can be reduced to

(
tan

− cot

)
{n1zx1} =

1

2

(
m0z

n1z

c20
c21

+ m2z

n1z

c22
c21

)
, (4.5)

where

mjz =
(
k2c2j − ω2

c2j

)1/2

, for j = 0, 1, 2, (4.6)

and n21z = −m2
1z is a modified wavenumber coefficient

introduced in the description of body waves (see e.g., Edwin and
Roberts, 1982). For trapped body waves to exist, the conditions
n1z , m0z and m2z > 0 must be fulfilled. This necessitates that
the angular frequency of the waves should satisfy k2c21 < ω2 <

min (k2c20, k
2c22). The band of fast body waves therefore exists

in the phase speed interval between the internal sound speed
and the lower of the two external ones. Due to the periodicity
of the tangent and cotangent functions, an infinite number of
harmonics exist in the direction of structuring. Introducing the
notation cm = min (c0, c2), the waves are expected to behave as
ω2 = k2c2m[ρm/ρ1]

[
1+ ν/(kx1)

2
]
. By using the general method

of describing body waves irrespective of plasma-β value (see e.g.,
Roberts, 1981a; Allcock and Erdélyi, 2017), the coefficients νj can
be determined. This leads to the following expression for the
quasi-sausage mode solutions:

ω2 = k2c2m
ρm

ρ1

[
1+

π2
(
j− 1

2

)2

k2x21

]
. (4.7)

The approximation for quasi-kink modes becomes

ω2 = k2c2m
ρm

ρ1

[
1+ π2j2

k2x21

]
. (4.8)

A basic diagnostic purpose may be fulfilled by making these
approximations. Namely, Equations (4.7) and (4.8) showcase a

simple connection between the lower external sound speed, and
the ratio of the same side’s external density to the internal one
for any given value of the wavenumber and angular frequency
of a given order body mode. Thus, knowledge of one of these
parameters can provide an estimate of the other.

In accordance with our analytical expectations, seeking
numerical solutions in a few interesting high-β configurations
reveals that, while a few types of eigenmodes will not occur in
high-β slab systems, we can still hope to detect several types
of waves in lower solar atmospheric conditions. For example,
Figure 8A illustrates the results of the numerical examination in a
typical high-β equilibrium configuration. There is a band of fast
body modes confined between the sound speeds and a band of
slow body modes between the internal Alfvén and cusp speeds.
Here, slow surface waves are present as well, which would not
occur in the low-β limit (corresponding more closely to higher
atmospheric conditions).

Since the magnetic pressure is negligible compared to the
plasma pressure in the high-β limit, the possible eigenmodes
would not change qualitatively if the relative magnitudes of
the external and internal Alfvén speeds were interchanged. On
the contrary, if the internal sound speed were greater than the
external ones (c1 > c0, c2), no fast waves (neither body, nor
surface) could be expected in the system, only slow surface and
body waves.

Additionally, Figure 8B illustrates an exciting characteristic
not just of high-β systems, but of asymmetric slab systems in
general. In this diagnostic diagram, we find slow body modes
(cT1 < vph < vA1) and slow surface modes (vA1 < vph < c1) in
the region of lower phase speeds. Interestingly, the slow surface
quasi-kink mode starts out in the band of fast body modes for
thin slabs (small kx1), while the slow surface quasi-sausage mode
begins as a slow body mode. Both of them change character as
they progress toward wider slabs (kx1 increases). Additionally,
the region of trapped fast body modes is split into three narrower
bands (c1 < vph < cT0, vA0 < vph < cT2, and vA2 <

vph < c0). This is due to the fact that the asymmetry introduces
new cut-off frequencies for the dispersion curves, potentially
excluding significant phase speed intervals from the regime of
trapped oscillations.

5. ASYMMETRIC NON-STATIONARY
WAVEGUIDES

So far, we have considered one-slab and multi-slab systems
filled with static plasma. However, the study of waveguides
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FIGURE 8 | Solutions to the dispersion relation for high-β cases. (A) Slow and fast mode body waves, as well as slow surface waves are present when vA1 = 0.7c1,

vA0 = 0.2c1, vA2 = 0.1c1, c0 = 1.6683c1, c2 = 1.8742c1, ρ0/ρ1 = 0.5, ρ2/ρ1 = 0.4. (B) Three bands of fast body modes, one band of slow body modes, and a

pair of slow surface modes exist when vA1 = 0.2vA2, vA0 = 0.7vA2, c1 = 0.5vA2, c0 = 1.1vA2, c2 = 1.8vA2, ρ0/ρ1 = 0.2008, ρ2/ρ1 = 0.1163. In each panel, only

a couple of examples in each band of body modes are displayed. Blue (red) curves illustrate quasi-sausage (quasi-kink) modes. No trapped oscillations exist in the

hatched regions.

incorporating steady flows has also been an important aspect
of solar atmospheric research (see e.g., Nakariakov and Roberts,
1995; Terra-Homem et al., 2003). The inclusion of flows in
our models modifies the phase speeds and cut-off speeds of
the observable modes, and it opens up the possibility for the
Kelvin-Helmholtz instability (KHI) to appear in the system. In
order to showcase some of these meaningful physical additions
to the behavior of perturbations in our MHD waveguides, in this
section we will analyse MHD wave propagation in a few non-
stationary slab systems that characterize solar waveguides with
bulk flows present.

5.1. General Non-stationary Slab
The complex and dynamic solar atmosphere is observed
to contain plasma flows and instances of Kelvin-
Helmholtz Instability (KHI) throughout (e.g., Ryutova
et al., 2010; Ofman and Thompson, 2011; Zhelyazkov,
2015). In the light of these detections, we can further
extend the applicability of our slab models if we lift the
restriction of static plasma, and allow for the presence of
background bulk flow motions in one or several domains in
the equilibrium.

Let us therefore consider a new one-slab model that
incorporates asymmetric plasma with magnetic fields and steady
flows. The slab is bounded by two interfaces at ±x1. Both the
slab and the semi-infinite domains that enclose it are filled with
uniform, compressible, inviscid plasma of different density, ρ,
pressure, p, and temperature, T. Each part of the system is
permeated by vertical magnetic fields, B̂ = Bẑ, of different
strength, and is subject to steady flows in the vertical direction,

FIGURE 9 | The equilibrium configuration for a steady and magnetized slab

embedded in a steady, magnetized, and asymmeric semi-infinite plasma. The

notation is the same as in the previous figures, with the addition of the thick

red arrows representing the vertical plasma flow, U(x)̂z.

Û = Uẑ, of different speeds:

F(x) =





F0 x < −x1,

F1 −x1 < x < x1,

F2 x1 < x,

(5.1)

where Fj denotes any of the five physical scalar parameters listed
above, namely Fj = constant , for j = 0, 1, 2 (Figure 9).

We assume, as before, that perturbations within the system
are governed by the ideal MHD equations (Equations 2.1).
This time, we linearize these in the presence of Uj equilibrium
steady flows, and thenwe perform Fourier-analysis, seeking plane
wave solutions that propagate along the slab. Thus, a governing
equation is obtained for each domain, which is formally similar
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to the case of the stationary slab systems:

v̂′′x −M2
j v̂x = 0, (5.2)

where

M2
j =

(
k2v2Aj − �2

j

) (
k2c2j − �2

j

)

(
v2Aj + c2j

) (
k2c2Tj − �2

j

) , for j = 0, 1, 2. (5.3)

Due to the presence of a steady background flow, however,
instead of the angular frequency, ω, it is the Doppler-shifted
frequency, defined as

�j = ω − kUj, for j = 0, 1, 2, (5.4)

that appears in all the coefficients.
Physically realistic trapped wave solutions still have to be

evanescent far away from the slab (as x → ±∞), and uphold the
continuity of the total pressure perturbation and the Lagrangian
displacement across the slab boundaries. In order to find a non-
trivial solution for the system of equations formulated by these
boundary conditions, we have to solve

det




C0−S0
�0

−C1
�1

S1
�1

0

0 C1
�1

S1
�1

−C2−S2
�2

30(C0 − S0) 31S1 −31C1 0
0 31S1 31C1 −32(S2 − C2)


 = 0, (5.5)

where

3j = −
iρj

�jMj
(k2v2Aj − �2

j ), Cj = coshMjx1, Sj = sinhMjx1.

(5.6)

Written in terms of the characteristic speeds, the dispersion
relation, Equation (5.5), of the general steady asymmetric slab
system, takes the following form:

M2
1

ρ2
1 (k

2v2A1 − �2
1)

2
+ M0M2

ρ0ρ2(k2v
2
A0 − �2

0)(k
2v2A2 − �2

2)

+ M1

(k2v2A1 − �2
1)

(
M0

ρ2
0 (k

2v2A0 − �2
0)

+ M2

ρ2
2 (k

2v2A2 − �2
2)

)

coth 2M1x1 = 0. (5.7)

This relation is formally analogous to Equation (3.7) governing

the static asymmetric slab system in a magnetic environment.
Here, however, flows are present in all the domains, therefore,
the Doppler-shifted frequencies take the place of the “ordinary”
angular frequency in every expression.

Furthermore, just like in the case of the static asymmetric slab

system, an approximate, decoupled dispersion relation can be

obtained if conditions are different, but closely similar on the two

sides of the slab:

(k2v2A1 − �2
1)

[
ρ1

ρ0

M0

(k2v2A0 − �2
0)

+ ρ1

ρ2

M2

(k2v2A2 − �2
2)

]

+2M1

(
tanh

coth

)
{M1x1} = 0. (5.8)

For any unspecified measure of asymmetry, though, we have to
note that (similarly to the stationary case) the dispersion relation
of the asymmetric slab system does not decouple into separate
equations for traditional (i.e., symmetric) sausage and kink
modes, but instead, remains as one expression describing both
quasi-sausage and quasi-kink modes. We can therefore say that
in the most general description of a uniform, asymmetric one-
slab system, the eigenmodes will reflect the differences between
the external parameters on either side of the slab and possess
mixed characteristics of the traditional (symmetric) sausage and
kink mode oscillations.

5.2. Steady Slab in an Asymmetric
Non-magnetic Environment
A special case of the general steady one-slab model has been
studied by Barbulescu and Erdélyi (2018), whose results are
summarized and adapted to our notation in the following
subsection. They analyzed the propagation of magnetoacoustic
waves and the threshold for the KHI in a magnetic slab under the
effect of a steady flow, which was enclosed in an asymmetric, non-
magnetic environment filled with stationary plasma (Figure 10).
They derived the full dispersion relation of this configuration,
which, in our notation, becomes

M2
1ω

4 + ρ1

ρ0
m0

ρ1

ρ2
m2

(
k2v2A1 − �2

1

)2 −M1ω
2
(
k2v2A1 − �2

1

)

(
ρ1

ρ0
m0 +

ρ1

ρ2
m2

)
coth 2M1x1 = 0,

(5.9)

where

m2
j =

(
k2v2Aj − ω2

) (
k2c2j − ω2

)

(
v2Aj + c2j

) (
k2c2Tj − ω2

) , for j = 0, 2,

M2
1 =

(
k2v2A1 − �2

1

) (
k2c21 − �2

1

)
(
v2A1 + c21

) (
k2c2T1 − �2

1

) , �1 = ω − kU1.(5.10)

Equation (5.9) can be obtained as a special case of Equation (5.7)
by setting the external magnetic fields and flows to B0 = B2 =
U0 = U2 = 0.

In the presence of internal or external flows, it is worthwhile to
extend the investigation of eigenmodes to negative phase speeds
as well, since the symmetry between forward- and backward-
propagating modes that characterizes stationary slabs, becomes
broken in the presence of a steady state. Barbulescu and Erdélyi
(2018) demonstrated that a strong enough internal flow is able
to shift backward propagating modes into forward propagating
ones. The presence of external asymmetry does not influence
this phenomenon; instead, it manifests through the introduction
of new, additional cut-off frequencies for trapped oscillations.
Furthermore, any deviation from symmetry of the parameters in
the external plasma regions leads to a greater range of slab widths
(kx1) for which the system is KH unstable.

An exciting application of this model can be found, e.g.,
in the form of KHI detected at the flank of a coronal mass
ejection (CME). Based on observations of Foullon et al. (2011),
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FIGURE 10 | The equilibrium configuration for a steady and magnetized slab

in an asymmetric non-magnetic environment.

made using the Atmospheric Imaging Assembly on board the
Solar Dynamics Observatory on November 3, 2010, Barbulescu
and Erdélyi (2018) modeled the structure made up of the CME
core, the CME flank, and the lower-density solar corona as a
non-stationary slab enclosed between two static regions. They
interpreted the observations as a slow kink mode and, by finding
numerical solutions to the dispersion relation that agreed with
the observed values, provided an estimate for the density of the
CME ejecta.

The authors noted, however, that a limitation on the validity
of this result stems from the inability of the model to explain
why the KHI was not observed between the CME core and
flank regions. A further approximation they made was that they
considered the CME core to be static, since on the timescale
of the KHI, the flow in that region is much slower than on
the flank (Barbulescu and Erdélyi, 2018). Considering these
simplifications, it might be advantageous to use a more complex
model that includes external magnetic fields everywhere, as well
as flows in the external domains, such that will be described in
the following section.

5.3. Steady Slab in an Asymmetric
Magnetic Environment With Bulk Flows
An interesting generalization of the steady slab problem,
which offers some analytical simplification and reduces the
number of parameters needed for a possible inversion from
observational data, but still keeps the broad applicability of
the model, is a configuration in which different magnetic
fields permeate all parts of the asymmetric slab system,
while only the internal plasma is stationary (Figure 11).
For such a model, the dispersion relation (Equation 5.7)
reduces to

m2
1

(k2v2A1 − ω2)2
+ ρ1

ρ0

ρ1

ρ2

M0M2

(k2v2A0 − �2
0)(k

2v2A2 − �2
2)

+ m1

(k2v2A1 − ω2)

(
ρ1

ρ0

M0

(k2v2A0 − �2
0)

+ ρ1

ρ2

M2

(k2v2A2 − �2
2)

)

coth 2m1x1 = 0, (5.11)

FIGURE 11 | The equilibrium configuration for a slab with two external flows.

with

m2
1 =

(
k2v2A1 − ω2

) (
k2c21 − ω2

)
(
v2A1 + c21

) (
k2c2T1 − ω2

) ,

M2
j =

(
k2v2Aj − �2

j

) (
k2c2j − �2

j

)

(
v2Aj + c2j

) (
k2c2Tj − �2

j

) , for j = 0, 2. (5.12)

The decoupled dispersion relation also takes a
simpler form:

(k2v2A1 − ω2)

[
ρ1

ρ0

M0

(k2v2A0 − �2
0)

+ ρ1

ρ2

M2

(k2v2A2 − �2)

]

+2m1

(
tanh

coth

)
{m1x1} = 0. (5.13)

Of particular interest is once again the case when the system is
filled with high-β plasma in each region, which is representative
of the conditions in the lower atmospheric layers of our Sun.
In order to better demonstrate the effect that the bulk flows
have on the permitted modes, we can convert the previous two-
flow system into a configuration containing one internal and
one external flow by changing the frame of reference. Now
U2,new = 0, U1,new = −U2,old, and U0,new = U0,old − U2,old. In
the analytically tractable approximation of infinite-β , to describe
fast body modes, Equation (5.13) in the new frame of reference
simply becomes

1

2

(
c0

c1

M0

N1

�2
1

�2
0

+ c2

c1

m2

N1

�2
1

ω2

)
=
(

tan

− cot

)
{N1x1}, (5.14)

where N2
1 = −M2

1 . The analytical description of the expected
backward- and forward-propagating fast body waves, in this
case, becomes

ω = k


U1,new ± c1

[
1+

{
j− 1

2

}2
π2

{
kx1
}2

]1/2
 , for j = 1, 2, 3...,

(5.15)
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FIGURE 12 | An elongated magnetic bright point visualized as a

non-stationary slab. The sketch is based on Figure 12 of Liu et al. (2018),

showing TiO 7058 Å observations taken by the New Vacuum Solar Telescope,

and a further development on the model featured in Zsámberger et al. (2018).

Blue arrows represent the magnetic field lines, and red arrows represent

flowing plasma.

for quasi-sausage modes, and

ω = k


U1,new ± c1

[
1+ j2π2

{
kx1
}2

]1/2
 , for j = 1, 2, 3...,

(5.16)

for quasi-kink modes. The equilibrium bulk flow directly affects
the phase speed of the guided waves, as it can be seen. Further
numerical evaluations reveal that both the internal and external
flow speeds can significantly change the angular frequency of
the supported modes and influence the magnitudes of cut-
off frequencies.

Although it is possible to convert such a configuration
into an analytically more advantageous one, due to the
initial asymmetry between the steady and static regions, new,
unique variations arise in this configuration, which cannot
be made symmetric or fully externally stationary simply by
a change in the frame of reference, like it was possible
in the case of a symmetric plasma environment described
by Nakariakov and Roberts (1995).

A prime candidate for applying the high-beta two-flow slab
model can be found in magnetic bright points in the solar
photosphere. These small concentrations of intense magnetic
field are wedged into the dark inter-granular lanes. Often, MBPs
display an elongated shape (Liu et al., 2018), which makes it
possible to treat them as asymmetric magnetic slabs (for the
details and limitations of this approach, see Zsámberger et al.,
2018). Let us now consider an isolated MBP enclosed in-between
two segments of an inter-granular lane, which will serve as the
asymmetric environment, as illustrated by Figure 12. Since the
sound speed in the photosphere is around 7 km/s (Hurlburt et al.,
2002), we will assume c0 = 7 km s−1 and c2 = 8 km s−1 to
demonstrate our point. Following Keys et al. (2013), we set the
internal sound speed to c1 = 12 km s−1, and choose the internal
Alfvén speed as vA1 = 10 km s−1. Taking into consideration

that the magnetic field is significantly weaker outside a bright
point, we assume external Alfvén speeds of vA0 = 2.05 km s−1

and vA2 = 3 km s−1. We note that the actual values chosen are
estimates and serve to demonstrate how asymmetry is relevant
to wave propagation or to the formation of the KHI threshold.
To apply our model, we consider the equilibrium bulk flow speed
inside the slab to be negligible (U1 = 0 km s−1), and set the other
two to values that we could realistically expect in the downflows
of intergranular lanes (see Briand and Solanki 1998; Socas-
Navarro et al. 2004; Danilovic et al. 2010): U0 = −2 km s−1,
U1 = −8 km s−1 (where the negative signs correspond to
downflows, while positive values would quantify upflows). The
resulting wave solutions to the dispersion relation can be seen
in Figure 13.

For this particular parameter set, only slow mode solutions
exist. While in the static case, the characteristic speeds delineate
the cut-off frequencies, in a steady slab, these have to be modified
by the flow speeds, which makes the propagation of not only
slow surface modes (as in the static case for the same set of
characteristic speeds and densities), but also that of slow body
modes (−c0 + U0 < vph < −cT1) possible. In the presence
of such high flow speeds, the symmetry between backward-
and forward-propagating modes is strongly broken, as Figure 13
illustrates. This diagnostic diagram contains the real parts of
the solutions colored blue, and the imaginary parts (of the
surface modes) colored red, in order to let us discern stable
and unstable modes. Namely, only the latter possess a non-
zero imaginary component, which corresponds to an amplitude
growth factor (Barbulescu and Erdélyi, 2018). In the case of
the model MBP that we use here to demonstrate the permitted
solutions of the dispersion relation, the surface mode solutions
(having phase speeds in the range −cT1 < vph < cT0 +
U0) are subject to KHI easily (see the dashed part of the blue
curve in Figure 13) if the slab is thin. In a wide slab, on the
other hand, the wave perturbations can be stable (continuous
blue curves), but they do not exist as trapped oscillations for
every value of the dimensionless slab width (kx1): in the hatched
regions, only leaky modes are found. The solutions would not
become unstable for any value of kx1 if the slab was symmetric
and the flow speeds did not exceed the internal Alfvén speed.
Due to the introduction of the asymmetry, however, the KHI-
threshold is lowered, and the instability can set in in this
model MBP even though both of the external flow speeds
are sub-Alfvénic.

A further application of the asymmetric slab configuration
containing two (or even three) different flows can be found in
the alternating spine-intraspine pattern of the fibrillar structure
in the penumbrae of sunspots, which is closely connected to
the Evershed-flow (Tsiropoula, 2000; Borrero and Ichimoto,
2011). Besides the solar atmosphere, the triad of the Earth’s
magnetopause, magnetosheath, and bow shock region can also
be locally considered as a slab-like structure that incorporates
varying flows and magnetic fields (Turkakin et al., 2013). Since
the asymmetry in the system enables the KHI to develop for a
wide range of parameters (Barbulescu and Erdélyi, 2018), this
model can also offer a possible explanation of the observed
instability in both of these locations.
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FIGURE 13 | Solutions to the dispersion relation for a high-β MBP. The diagram on the left displays the full range of characteristic speeds, while for the one on the

right, the narrower band of interest is enlarged. While in the static case, the characteristic speeds delineate the cut-off frequencies, in a steady slab, these have to be

modified by the flow speeds.

6. CONCLUSIONS

The propagation of linear MHD waves in a multi-layered
magnetized plasma structure is studied in the Cartesian slab
geometry approximation. Each magnetic slab is uniform and
non-stratified (i.e., neither density nor magnetic stratification
is considered). A general dispersion relation is derived for a
mathematical model of this plasma structured by an arbitrary
number of interfaces and two special cases of a plasma
slab embedded in an asymmetric non-magnetic and magnetic
environment are considered. Unlike the symmetric case, the
obtained dispersion relation does not decouple into two
dispersion relations of independent wave mode solutions. This
coupling manifests as mixed properties of the eigenmodes, which
are referred to as quasi-kink and quasi-sausage wave solutions
to the governing linear magneto-acoustic equations. These newly
obtained eigenmodes are generalizations of the traditionally
known sausage and kink modes of symmetric linear MHD
waveguides (Table 1).

The asymmetry of waveguides, which is highly likely in many
solar structures due to the structural inhomogeneity of the
various observed MHD waveguides in the solar atmosphere,
is a proxy for background parameters of the waveguide.
Motivated by this idea, the Amplitude Ratio Method from
Allcock and Erdélyi (2018) is employed, as a proof of concept,
to estimate the local Alfvén speed in five chromospheric
fibrils using Hα data from the ROSA imager. We find that
many of the observed fibrils displayed asymmetric oscillatory
behavior, which we interpret here as quasi-kink and quasi-
sausage eigenmodes, depending on the phase relationship
between the boundary oscillations. The estimates of the
local Alfvén speed, obtained after inverting the observed

information, agree with highly uncertain expected values from
photospheric extrapolations.

Incorporating asymmetric external magnetic fields into the
slab model provides a further useful middle-ground between
the breadth of applications and analytical tractability. From
coronal hole boundaries, through prominences, to MBPs of the
photosphere, a variety of solar atmospheric fine structures can be
more closely described as a magnetized asymmetric slab system.
Next to numerical root-finding methods, making certain well-
known approximations, such as investigating the limit of a thin
or a wide slab, low or high values of the plasma-β , allows us to
concisely describe the various quasi-sausage, quasi-kink, surface,
or body modes that we expect, and to identify some of their
fundamental characteristics.

A further step in generalizing the newly developed asymmetric
slab models is to move away from stationary plasmas, and
incorporate equilibrium bulk flows (i.e., steady states) in one
or more regions. This generalization has the consequence
that the angular frequencies are replaced by their Doppler-
shifted counterparts in the dispersion relations, and the cut-off
frequencies for the different eigenmodes are influenced by the
magnitudes of the flows. An externally stationary asymmetric
slab system serves as a reasonable approximation of CME
flank regions. Including multiple external bulk flows widens
the scope of applicability to e.g., MBPs residing between
sections of different inter-granular flows, fibrils in the dynamic
sunspot penumbra, and the magnetosheath region of Earth’s
magnetosphere. Therefore, for all these features, such a slab
configuration can offer a reasonable initial model that explains
the observed KHI.

The one- or multi-slab approach to asymmetric waveguides
has wide applicability in different layers of the solar atmosphere.
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MHD waves have been observed in many structures of our Sun,
and to correctly interpret some of them, the asymmetry of their
environments should be taken into account.

A variety of waves have been observed in sunspot structures,
for example, in the penumbra, which itself shows a filamentary
structure. Neighboring filaments may be modeled by different
plasma andmagnetic parameters, and they have been observed to
support upward propagating slow-modemagneto-acoustic waves
in the form of running penumbral waves (Bloomfield et al.,
2007; Freij et al., 2014; Löhner-Böttcher and Bello González,
2015). The multi-slab model may be a good approximation
for high-frequency waves. Another sunspot element where
asymmetry of the plasma environment could heavily influence
wave propagation is the light bridge and corresponding light
wall reaching up into higher layers of the atmosphere, which are
trapped between two, sometimes vastly different umbral cores.
Oscillations recently detected in light walls have been interpreted
as signatures of propagating magneto-acoustic (shock) waves
(Yang et al., 2015; Zhang et al., 2017).

Small, bright magnetic flux concentrations are located in
the intergranular lanes wedged in-between two granular cells,
whose plasma and magnetic properties can potentially be
highly different. This asymmetry then naturally affects the
characteristics of any waves present in the above-mentioned
MBPs. These small-scale magnetic elements, which might
take on the appearance of a nearly circular flux tube or a
strongly elongated slab-like structure, have been put forward as
the photospheric anchor points of chromospheric waveguides
that show sausage-mode oscillations (Morton et al., 2012).
The existence of a wealth of magneto-acoustic oscillations
within MBPs themselves has also been concluded from high-
cadence observations performed at different altitudes (Jess
et al., 2012). Chromospheric manifestations of bright points
have been confirmed to sway around their photospheric
counterparts, signaling the presence of kink type oscillations
(Xiong et al., 2017).

In section 4, we have already addressed that chromospheric
fibrils exist in a complex, asymmetric environment, and whether
they are considered as flux tubes or as magnetic slabs, the
asymmetry can lead to the appearance of different-looking
modes, for which previously the only explanation was the
simultaneous presence of sausage and kink type waves (Morton
et al., 2012; Mooroogen et al., 2017). Higher up in the solar
atmosphere, MHDwaves are also found in prominences (Arregui
et al., 2018), which themselves lie between different layers of
the vertically stratified corona. Another coronal example of
applicability could be the studies of MHD wave propagation at
the boundary of coronal holes (see e.g., Banerjee et al., 2000;
Banerjee, 2012).

Additionally, Alfvén waves are also known to propagate in
the solar atmosphere. However, Alfvén waves are local waves
as opposed to the sausage and kink waves that have a global
character. Alfvén waves propagate along constant magnetic
surfaces. If there is a suitable driver, each magnetic surface
supports its own Alfvén wave, which will be characterized by
the properties of the individual flux sheets and will not be
strongly affected by the rest of the plasma environment. Because
of this, Alfvén waves are not very promising disturbances for the

application of our magneto-seismological technique described in
this paper.

As detailed above, recent high-resolution state-of-the-art
ground-based or space-borne observations clearly show that
there is strong structuring (inhomogeneity) and dynamics in the
observed solar (and magnetospheric) MHD waveguides. Solar
MHD wave theory is boosted by the development of solar
magneto-seismology; see the avalanche of Space Sci. Reviews
since 2010. SMS is an excellent tool to obtain sub-resolution
information about MHD waveguides present in the Sun. Here
we make a step forward by applying this tool to structured
MHD waveguides by demonstrating, as a proof-of-concept in
a limited number of test cases, how this newly developed tool
can be used for the much wanted solar plasma diagnostics. This
latter result has an additional importance, given that the field of
solar physics is at the brink of its greatest historic development:
the imminent commencing of our 4 m aperture ground-based
DKIST telescope.
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A. APPENDIX

A.1. Boundary Conditions in Matrix Form
We rewrite the boundary conditions (2.10) in the compact matrix
form (2.12) with [2n+ 2]× [2n+ 2] matrixM. The precise form
of the matrix with the first row corresponding to the continuity
of the velocity at x = x0, is

M[1, 1] = coshm0x0 + sinhm0x0, M[1, 2] = − coshm1x0,

M[1, 3] = − sinhm1x0. (A1)

The second row represents the continuity of the total pressure at
x = x0:

M[2, 1] = 30(coshm0x0 + sinhm0x0), M[2, 2] = −31 sinhm1x0,

M[2, 3] = −31 coshm1x0. (A2)

The last but one row corresponds to the continuity of the velocity
at x = xn:

M[2n+ 1, 2n] = coshmnxn, M[2n+ 1, 2n+ 1] = sinhmnxn,

M[2n+ 1, 2n+ 2] = sinhmn+1xn − coshmn+1xn.

(A3)

Finally, the last row represents the continuity of the total pressure
at x = xn and is

M[2n+ 2, 2n] = 3n sinhmnxn, M[2n+ 2, 2n+ 1] = 3n coshmnxn,

M[2n+ 2, 2n+ 2] = 3n+1(coshmn+1xn − sinhmn+1xn).

(A4)

For 1 ≤ j ≤ n− 1, general boundary condition takes the form

M[2j+ 1, 2j] = coshmjxj,

M[2j+ 1, 2j+ 1] = sinhmjxj,

M[2j+ 1, 2j+ 2] = − coshmj+1xj,

M[2j+ 1, 2j+ 3] = − sinhmj+1xj,

M[2j+ 2, 2j] = 3j sinhmjxj,

M[2j+ 2, 2j+ 1] = 3j coshmjxj,

M[2j+ 2, 2j+ 2] = −3j+1 sinhmj+1xj,

M[2j+ 2, 2j+ 3] = −3j+1 coshmj+1xj. (A5)

For the rest of the values i and j,M[i, j] = 0.
Introducing the notation

C
(i)
j = coshmixj, S

(i)
j = sinhmixj, (A6)

and using Equations (A1)–(A5), the matrix in explicit form can
be written as:
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The rapid damping of slow magnetoacoustic waves in the solar corona has been
extensively studied in previous years. Most studies suggest that thermal conduction
is a dominant contributor to this damping, albeit with a few exceptions. Employing
extreme-ultraviolet (EUV) imaging data from SDO/AIA, we measure the damping lengths
of propagating slow magnetoacoustic waves observed in several fan-like loop structures
using two independent methods. The dependence of the damping length on temperature
has been studied for the first time. The results do not indicate any apparent decrease
in damping length with temperature, which is in contrast to the existing viewpoint.
Comparing with the corresponding theoretical values calculated from damping due
to thermal conduction, it is inferred that thermal conduction is suppressed in hotter
loops. An alternative interpretation that suggests thermal conduction is not the dominant
damping mechanism, even for short period waves in warm active region loops,
is also presented.

Keywords: magnetohydrodynamics (MHD), methods: observational, sun: atmosphere, sun: corona, sun:

oscillations

1. INTRODUCTION

Propagating waves along fan-like active region loops have been a common observational feature
since their initial discovery in the solar corona (Ofman et al., 1997; Deforest and Gurman, 1998;
Berghmans and Clette, 1999; De Moortel et al., 2000). Recent multi-wavelength observations
have established the origin of these waves in the photosphere (Jess et al., 2012; Krishna Prasad
et al., 2015), from where they could be channeled by magnetic fields into the corona (De
Pontieu et al., 2005; Erdélyi, 2006; Khomenko et al., 2008). It is believed that these waves are
a manifestation of propagating slow magnetoacoustic oscillations that are generated via mode
conversion (Spruit, 1991; Cally et al., 1994) in the lower atmospheric layers. Their physical
properties found in a variety of coronal structures have been extensively studied both from
theoretical and observational vantage points (De Moortel, 2009; Wang, 2011; Krishna Prasad et al.,
2012b; Banerjee and Krishna Prasad, 2016). In the solar corona, the slow magnetoacoustic waves
undergo rapid damping and are consequently visible only over a small fraction of the loop length. A
number of physical mechanisms such as thermal conduction, compressive viscosity, optically thin
radiation, gravitational stratification, divergence of the magnetic field, etc., are known to affect the
amplitude of slow magnetoacoustic waves. Thermal conduction, however, has been put forward
as the dominant contributor for their damping (De Moortel and Hood, 2003, 2004). It must be
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noted that slow magnetoacoustic waves also exhibit frequency-
dependent damping, with stronger dissipation at higher
frequencies (Krishna Prasad et al., 2014, 2017) which, as well, is
shown to be consistent with generalized damping via thermal
conduction (Mandal et al., 2016).

Marsh et al. (2011) studied slow magnetoacoustic waves
propagating within a coronal loop using stereoscopic images
from STEREO/EUVI (Wuelser et al., 2004) and simultaneous
spectroscopic data from Hinode/EIS (Culhane et al., 2007).
It was found that thermal conduction was insufficient to
explain the observed damping, and instead magnetic field
divergence appeared to be the dominant factor. Marsh et al.
(2011) explained that the discrepancy was due to the relatively
longer oscillation periods (∼10 min) and colder temperatures
(∼0.84 MK) observed within the loop. Following a method
developed by Van Doorsselaere et al. (2011), Wang et al.
(2015) estimated the polytropic index from the temperature
and density perturbations corresponding to a standing slow
magnetoacoustic wave observed in a hot flare loop. Based upon
the value of the polytropic index (γ = 1.64 ± 0.08) they
obtained, Wang et al. (2015) inferred that thermal conduction is
suppressed and that the observed damping could be explained by
a slightly enhanced compressive viscosity term, which was later
validated through magnetohydrodynamic (MHD) simulations
(Wang et al., 2018). Krishna Prasad et al. (2018) investigated
propagating slow magnetoacoustic waves in a number of active
region fan-like loops and found a temperature dependency of the
polytropic indices, whereby hotter loops corresponded to larger
polytropic index values. However, the authors concluded that the
polytropic index could be, in fact, affected by a range of physical
processes, including an unknown heating mechanism, radiative
losses, plasma flows, turbulence, etc., suggesting that a direct
association between the polytropic index and thermal conduction
cannot be unequivocally deduced. Indeed, Zavershinskii et al.
(2019, private communication) found that an imbalance in the
embedded plasma heating and cooling processes can actually
cause temperature-dependent variations in the polytropic index.
Here, we study the damping of short period (∼3min) oscillations
in quiescent active region fan-like loop structures, which was
previously suggested to be the result of thermal conduction.
The temperature dependency of the damping length is also
investigated to find whether there are signatures of thermal
conduction being suppressed in hotter loops. Details on the
observational data used, the analysis methods employed, and
the results obtained are presented in the subsequent sections,
followed by a discussion of the obtained results and their
implications for future studies of the solar corona.

2. OBSERVATIONS

Extreme-ultraviolet (EUV) imaging observations of solar coronal
fan loops taken by the Atmospheric imaging assembly (AIA;
Lemen et al., 2012) on-board the Solar Dynamics Observatory
(SDO; Pesnell et al., 2012) are utilized for the present study.
AIA captures the entire Sun in 10 different wavelength channels,
fromwhich 6 aremainly dedicated to coronal observations. Using

online data browsing tools, such as Helioviewer1, we selected
30 different active regions (ARs) with fan-like loop structures,
where propagating oscillation signatures are clearly observed.
The observations of these ARs span from 2011 to 2016, although
amajority of themwere taken between 2012 and 2014 (i.e., during
the last solar maximum). For each active region, a 1-h-long
image sequence, comprising of a small subfield (≈180′′×180′′)
surrounding the desired loop structures, is extracted for all 6
dedicated SDO/AIA coronal channels (94Å, 131Å, 171Å, 193Å,
211Å, and 335Å). The spatial sampling and the cadence of the
data are 0.6′′ per pixel and 12 s, respectively. All of the data
were processed using the aia_prep routine, which is available
within the Solar SoftWare (SSW) environment, to perform the
roll angle and plate scale corrections required for subsequent
scientific analysis. To achieve accurate alignment between the
data frommultiple channels, and to successfully implement some
of the above processing steps, we employed the robust pipeline
developed by Rob Rutten2. This dataset was previously used
in the study by Krishna Prasad et al. (2018), where complete
observational details, including the locations, start times, active
region numbers, etc., of the individual image sequences are listed.

3. ANALYSIS AND RESULTS

The fan-like loop structures within a sample active region
(NOAA AR 12553) from the selected dataset are displayed in
Figure 1a. Compressive oscillations, with a periodicity of≈180 s,
are found propagating outwards along these loop structures.
In order to identify the oscillations and understand their
propagation behavior, a time-distance map (De Moortel et al.,
2000) is constructed from one of the loop segments bounded by
the two solid blue lines marked in Figure 1a. The specific details
of the method employed here are described in Krishna Prasad
et al. (2012a), but in general, the intensities corresponding to
the pixels across a selected loop segment are averaged to build
a one-dimensional intensity profile along the loop, with similar
profiles from successive images stacked together to generate
a time-distance map. The final map obtained is shown in
Figure 1b, with the x-axis displaying time in minutes and the
y-axis displaying distance along the loop in megameters (Mm).
Slanted ridges of alternating brightness, visible in this map, reveal
the propagating waves along the selected loop. Previous studies of
such oscillations, especially those propagating along similar fan-
like loop structures that are usually rooted in sunspots, confirm
their nature as propagating slow magnetoacoustic waves (e.g.,
Kiddie et al., 2012; Krishna Prasad et al., 2012b). To enhance the
visibility of the ridges, the time series at each spatial position was
filtered to allow only a narrow band of frequencies around the
dominant oscillation period to remain. The filtered time-distance
map is displayed in Figure 1c. It is clear that the amplitude
of the oscillations is not constant, but instead varies with time
and, in particular, decreases with distance along the loop from
the corresponding foot point. The temporal modulation of the
oscillation amplitude has been linked to the characteristics of

1https://helioviewer.org/
2http://www.staff.science.uu.nl/~rutte101/rridl/sdolib/
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FIGURE 1 | (a) A snapshot of the fan-like loop structures from NOAA AR 12553 captured in the SDO/AIA 171Å channel. The blue solid lines mark the boundaries of a
chosen loop segment. (b) Time-distance map depicting the evolution of the loop segment shown in (a). The alternating slanted bands of brightness apparent in this
map indicate the presence of propagating compressive oscillations due to slow magnetoacoustic waves. (c) Same as (b), but processed to enhance the visibility of
the brightness ridges by filtering the time series at each spatial position to allow only a narrow band of frequencies around the dominant oscillation period. The white
dashed line marks the temporal location chosen to study the spatial damping characteristics shown in Figure 2.

the wave driver, with closely-spaced frequencies causing a beat-
like phenomenon (e.g., Krishna Prasad et al., 2015), whereas
the spatial damping is mainly due to physical wave dissipation
and some geometrical factors. As discussed in section 1, thermal
conduction is believed to play a key role in the observed
spatial damping.

We identify a total of 35 loop structures from the 30 active
regions, where signatures of propagating slow magnetoacoustic
waves are prominent. The prominence of oscillations is
determined through a visual inspection of time-distance maps
constructed from multiple loop structures within each active
region. It may be noted that these loop structures are the
same as those studied by Krishna Prasad et al. (2018), where
the periodicity of the oscillations observed, the temperature
and density of the plasma within the loop structures, the
polytropic index, among other parameters, are discussed. The
temperature, in particular, was derived from the peak location in
the corresponding differential emission measure (DEM) curve,
which was extracted by employing a regularized inversion
method (Hannah and Kontar, 2012) on the near-simultaneously
observed intensities across all 6 SDO/AIA coronal channels.
However, the main focus in the present study is on the damping
characteristics of the oscillations. In order to study the damping
properties of slow magnetoacoustic waves across the different
loop structures selected, we estimate a characteristic damping
length employing two independent methods, namely, a phase
tracking method and an amplitude tracking method, as described
in the following sections.

3.1. Phase Tracking Method
A temporal location (marked by a white-dashed line in
Figure 1c), where the oscillation amplitude is relatively strong,
is initially chosen to investigate the spatial variation of the
oscillation phase. Note that the selection of this location is

purely based on the strength of the oscillations as may be seen
from Figure 1c. Same criterion is applied to all the other loop
structures studied. The filtered intensities from three consecutive
frames (i.e., ±12 s) around the selected temporal location are
averaged to improve the signal-to-noise, then normalized by
the corresponding background to construct a representative
spatial intensity profile such as that shown in Figure 2A.
The background is constructed from the intensities obtained
by smoothing the original observed values to remove any
oscillations with periodicities below 10 min. The spatial profile
clearly demonstrates a rapid decrease in the oscillation amplitude
with distance along the loop. The vertical bars indicate respective
uncertainties in the imaging intensities that are estimated from
noise contributions in the SDO/AIA 171Å channel (following
the methodology of Yuan and Nakariakov, 2012), which includes
noise from various sources besides the dominant photon and
readout components (Jess et al., 2019). An exponentially decaying
sine wave function of the form,

I(x) = A0 e

(
−x
Ld

)

sin

(
2πx

λ
+ φ

)
+ B0 + B1x , (1)

is fitted to the spatial profile. Here, I is the normalized pixel
intensity, x is the distance along the loop, B0 and B1 are
appropriate constants, and A0, Ld, λ, and φ are the amplitude,
damping length, wavelength and phase of the oscillation,
respectively. Applying the Levenberg-Marquardt least-squares
minimization technique (Markwardt, 2009), the best fitment to
the data is shown as a black solid curve in Figure 2A. The
damping length of the oscillation, as estimated from the fitted
curve, is 3.7±0.4Mm. The orange diamond symbols in Figure 2B
display the damping lengths obtained from all 35 selected loop
structures, plotted as a function of the corresponding localized
temperature on a log-log scale. The vertical bars denote the
respective uncertainties on damping length derived from the fit
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whereas the horizontal bars highlight the associated uncertainties
on temperature propagated from the respective errors given
by the regularized inversion method (Hannah and Kontar,
2012). Since the temperature is determined from a double-
Gaussian fit to the individual DEMs (Krishna Prasad et al.,
2018), the uncertainty on peak location is estimated by scaling
the corresponding error on the nearest point by a factor of
1/
√
N, where, N is the number of data points involved in the

fit. Subsequently, to get a representative temperature value for
each loop, a weighted mean across all spatio-temporal locations
near the foot point is considered. The associated uncertainty is
then estimated from the weighted standard deviation of values
across the same locations. It may be noted that the uncertainties
on loop temperature reported by Krishna Prasad et al. (2018) are
fairly small compared to those shown here (Figure 2B) which is
because the authors did not incorporate the temperature errors
given by the DEM inversionmethod but simply quoted the errors
obtained from the Gaussian fit alone. The actual temperature
values might also marginally differ because of the weighted
averages employed here. Another important aspect to note here
is that in about 5 cases, the damping lengths are measured from
pairs of loops from the same active region some of which exhibit
distinct values. The differences in values obtained in such cases
reflect the different physical conditions of the loop structures
despite belonging to the same active region.

3.2. Amplitude Tracking Method
Since the phase tracking method involves manually choosing a
specific temporal location from each of the time-distance maps,
it is possible that such human intervention naturally biases the
obtained results. Also, it is not trivial to apply this technique to
all temporal locations since the signal-to-noise at a large number
of locations is low due to aspects of amplitude modulation. To
circumvent this problem and verify the reliability of our results,
we estimate the damping lengths using the alternative technique
of amplitude tracking. In this method, the amplitude of the
oscillation, A, at each spatial position is directly measured in
relation to the standard deviation, σ , of the respective filtered
time series using A =

√
2σ . This formula assumes that the

observed oscillations can be represented by a pure sinusoidal
signal. The time-averaged intensities from the original time series
(i.e., collapsing the time domain in Figure 1b) are used as the
background for normalization to obtain relative amplitudes as
a function of distance along the loop. Since the amplitude at
each spatial position is derived from the full time series, the
median error on respective pixel intensities is used to estimate the
corresponding uncertainty. The diamond symbols in Figure 3A

show the spatial dependence of amplitude values thus obtained
for the fan-like loop structure highlighted in Figure 1a. The
vertical bars represent the associated uncertainties. These data
were then fit with a decaying exponential model satisfying the
functional form,

A(x) = A0 e

(
−x
Ld

)

+ C , (2)

where x is the distance along the loop, A0 and C are appropriate
constants, and Ld is the damping length.

The initial few locations where the wave amplitude is found
to increase are ignored in order to isolate the purely decaying
phase of the oscillation for fitment. The black solid line in
Figure 3A represents the best exponential fit obtained. The
corresponding damping length is 4.8 ± 1.5 Mm, which is
on the same order as that obtained using the phase tracking
method outlined in section 3.1. Following the same procedure,
the damping lengths for the oscillations observed in all 35
selected loop structures have been estimated. For a handful of
loop structures, it is found that the model does not converge
properly, producing damping lengths either far greater than
the loop length itself (> 1000 Mm) or far less than one
pixel (< 0.1 Mm). Upon inspection of the time-distance maps
corresponding to these individual cases, we found that there
are unusual brightenings, perhaps in the form of transient
events manifesting in the loop background, at certain spatio-
temporal locations, which naturally contaminate the amplitude
extraction process and thereby prevent a robust fitment of the
data. While this could be avoided by manually restricting the
time series for each particular case, the main strength of this
method was in the alleviation of human intervention. As such, we
chose to ignore specific loop structures where the model fitting
did not converge to commonly expected values. The orange
diamond symbols in Figure 3B represent the damping lengths
obtained from the remaining 31 cases, plotted as a function
of the loop temperature on a log-log scale. The vertical bars
highlight the corresponding uncertainties on damping length
whereas the horizontal bars denote the respective uncertainties
on temperature. The loop temperature and the associated
uncertainties are estimated in the same way as that described in
section 3.1.

3.3. Theoretical Calculations
Theoretical and numerical calculations in the past have suggested
that thermal conduction is the dominant physical mechanism
responsible for the damping of slow magnetoacoustic waves
in the solar corona (De Moortel and Hood, 2003; Klimchuk
et al., 2004). Considering one-dimensional linear wave theory
for slow magnetoacoustic waves with thermal conduction as
the damping mechanism (e.g., De Moortel and Hood, 2003;
Krishna Prasad et al., 2012b), the dispersion relation between
the wave number, k, and the angular frequency, ω, can be
shown to be,

dc4sk
4 + iωc2sk

2 − γ dω2c2sk
2 − iω3 = 0 . (3)

Here, cs is the sound speed, d = (γ−1)κ‖T0
γ c2s p0

is the thermal

conduction parameter, κ‖ = κ0T
5/2
0 is the parallel thermal

conduction, and p0 = 2n0kBT0 is the gas pressure, where
κ0 is the thermal conduction coefficient, T0 is the equilibrium
temperature, and n0 is the number density. For propagating
waves, the frequency, ω, is constant and in the limit of weak
thermal conduction (i.e., when dω ≪ 1), the solutions for wave
number, k, may be found as k = ω

cs
− i 1

Ld
, where Ld = 2cs

dω2(γ−1)
is

the damping length. The interested reader is referred to Mandal
et al. (2016) for a detailed derivation.
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FIGURE 2 | (A) Spatial variation of the relative intensity at the temporal location marked by the white dashed line in Figure 1c. The vertical bars denote the respective
uncertainties. The solid curve represents the best fit to the data for an exponentially decaying sine wave model following Equation (1). The obtained damping length
value from the fitted curve is listed in the upper-right corner of the plot. (B) Damping lengths extracted from all of the selected loop structures, plotted as a function of
the localized temperature on a log-log scale. The orange diamonds represent the values obtained following the phase tracking method shown in (A), whereas the
green circles represent the theoretical values estimated from damping due to thermal conduction. The open and filled circles, respectively, highlight the values
computed from a constant γ (= 5/3) and those computed using γ values extracted from observations (Krishna Prasad et al., 2018). The vertical and horizontal bars
on the observed values denote the corresponding propagated uncertainties.

FIGURE 3 | (A) Relative amplitudes of the oscillations as a function of distance along the loop segment marked by the solid blue lines in Figure 1a. The vertical bars
denote the respective uncertainties. The black solid line represents an exponential fit to the decaying phase of the data following Equation (2). The obtained damping
length value from the fitted curve is listed in the plot. (B) Damping lengths extracted from all the selected loop structures plotted as a function of the local temperature
on a log-log scale. The orange diamonds represent the observational values following the amplitude tracking method shown in (A), whereas the green circles
represent the theoretical values estimated from the damping due to thermal conduction. The open and filled circles, respectively, highlight the values computed from a
constant γ (= 5/3) and those computed using γ values extracted from observations (Krishna Prasad et al., 2018). The vertical and horizontal bars on the observed
values denote the corresponding uncertainties.

As described in section 3, Krishna Prasad et al. (2018) studied
the same set of loop structures that are presented here. They
applied a regularized inversion method (Hannah and Kontar,
2012) on observed intensities in 6 coronal channels of SDO/AIA
to compute corresponding DEM. Subsequently, by employing a
double-Gaussian fit to the DEM curve, the temperature and the
density of the plasma are calculated from the peak location and
the area under the curve, respectively. The density is estimated
by assuming the apparent width of the loop as equivalent to the

emission depth along the line of sight effectively ignoring any
background/foreground emission although a contribution to the
latter from hot plasma is carefully discarded from the double-
Gaussian fit. Using the theoretical relation between the relative
oscillation amplitudes in temperature and density associated with
a slow wave, the polytropic index of the plasma is determined
after eliminating the corresponding phase shifts. The periodicity
of the oscillations is also calculated through a simple Fourier
analysis on the intensity fluctuations. Utilizing the respective
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values of these parameters computed by Krishna Prasad et al.
(2018) for each loop, we estimate the expected damping lengths
from the above theory.

The filled green circle symbols shown in Figures 2B, 3B

represent the theoretically computed values. It may be noted that
the respective dω values were found to reside in the interval
0.01 − 0.16, so the assumption of weak thermal conduction (i.e.,
dω ≪ 1) is inherently valid across our range of coronal datasets.
The classical Spitzer values for thermal conduction, following

κ‖ = 7.8 × 10−7T
5/2
0 ergs cm−1 s−1 K−1, are employed in our

calculations. As can be seen from the figures, the damping lengths
are expected to be considerably shorter for hotter loops. Since
it is very common to assume the polytropic index, γ , is equal
to 5/3 in the solar corona, we additionally compute damping
lengths arising from a constant (5/3) value for γ . The open
green circles shown in Figures 2B, 3B represent these values
which suggest a similar but much shallower dependence on
temperature. Moreover, the damping lengths in this case are
shorter by up to an order of magnitude or more which clearly
divulges the effect of polytropic index on the damping length.
It is worth noting here that the scatter in the theoretically
computed damping lengths is mainly due to the different physical
conditions of the loop structures studied.

4. DISCUSSION AND CONCLUDING
REMARKS

The spatial damping characteristics of propagating slow
magnetoacoustic waves, observed in 35 fan-like loop structures
selected from 30 different active regions, have been studied.
The damping length, in particular, is measured using two
independent methods: a phase tracking method and an
amplitude tracking method. Employing the temperature
information acquired from DEM analysis, the temperature
dependence of the damping length has been investigated for
the first time (Figures 2B, 3B). These results do not indicate
any apparent decrease in damping length with temperature
as would be expected by the stronger thermal conduction
in that case. It may be noted that the results from previous
studies (e.g., Krishna Prasad et al., 2012b), who based their
conclusions on the measurement of damping lengths for a single
loop structure observed in multiple temperature channels, are
inconsistent with the current findings. However, those studies
are purely qualitative and the results are often based on just
two temperature channels. Furthermore, the sensitivities of the
measured damping lengths from the intensity perturbations to
the filter/instrument used (e.g., Klimchuk et al., 2004) are also
not taken into consideration in previous studies. In the present
case, we employ damping length measurements from multiple
loop structures observed in the same filter (SDO/AIA 171Å).
Hence, we naturally consider the current results more reliable
due to the conservation of instrument characteristics across all
independent measurements.

Utilizing the temperatures, densities, polytropic indices, and
oscillation periods that have previously been derived for the
same set of loop structures (Krishna Prasad et al., 2018),

we calculated the theoretical damping lengths expected from
the dissipation due to thermal conduction. In contrast to the
observations, the theoretical calculations show a steep decrease
in the damping length with temperature. Damping lengths were
also computed assuming a fixed value, 5/3, for the polytropic
index, in line with the previous studies. These values display
a similar but shallower dependence. The discrepancy between
the observational and theoretical dependences perhaps indicates
that thermal conduction is suppressed in hotter loop structures.
In fact, the increase in the polytropic indices of these loops
with temperature, as reported by Krishna Prasad et al. (2018),
also implies the suppression of thermal conduction in hotter
loops (e.g., in accordance with Wang et al., 2015), although
a direct conclusion could not be drawn from these results
alone since the polytropic index of the coronal plasma is
dependent on several other physical processes besides thermal
conduction. The current results, on the other hand, appear to
show direct evidence for the suppression of thermal conduction
with increasing temperature.

Alternatively, one could argue that thermal conduction
is perhaps not the dominant damping mechanism for slow
magnetoacoustic waves, as previously reported by Marsh et al.
(2011) and Wang et al. (2015). Indeed, as can be seen from
Figures 2B, 3B, the theoretical damping lengths are 2 − 3
orders of magnitude higher than those obtained from the
observations. One may also note that a simple visual inspection
of oscillation amplitudes, in Figures 1b,c for example, reveals
significant damping within 10 Mm scales whereas the expected
damping lengths due to thermal conduction are at least 100
Mm or more which clearly demonstrates the extent of mismatch
between the observations and the theory. The differences in the
temperature dependence would further add to this discrepancy.
We note, however, that the incongruity between the theory
and observations is less if we consider the calculations for
γ = 5/3. Also, the distances measured along the observed
loop structures are projected onto the image plane, meaning the
obtained damping lengths are only lower limits. Nevertheless,
the difference between the theoretical and the observed scales
is too large to ignore, and would not likely be accounted
for even if a fractional contribution from the other damping
mechanisms (e.g., compressive viscosity and optically thin
radiation) is included.

Lastly, we would like to bring out some of the major caveats
of our results. The temperature range of the loops investigated
is limited especially considering the large uncertainties on
temperature. While the magnitude of change in the expected
damping lengths over the same temperature range and the
extent of mismatch between the observed and theoretical
values still make our results valid, it is imperative to state
that a larger temperature range would make the results more
reliable. Additionally, it should be noted that different DEM
inversion methods can result in different peak temperatures
although the difference can be marginal depending on the
temperature range investigated. Also, it can be argued
whether the peak emission in a DEM sufficiently represents
the plasma within the loop. Keeping these limitations in
mind, we believe further investigations, both theoretical and
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observational, are necessary to understand the damping
of slow magnetoacoustic waves in the solar corona. In
particular, the impetus is on increasing the temperature
range studied to include hotter loop structures to examine
whether these traits are consistent across the full spectrum of
coronal magnetism.
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