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Editorial on the Research Topic

Machine Learning and Data Mining in Materials Science

The development of new materials, incorporation of new functionalities, and even the
description of well-studied materials strongly depends on the capability of individuals to
deduce complex structure-property relationships. A significant challenge in this field remains
the “curse of dimensionality”. Even for the characterization of moderately complex materials,
often a considerable number of parameters is required to characterize their composition and
microstructure (or also processing conditions) uniquely. Modeling of materials is thus facing
the challenge of high-dimensional parameter spaces, where numerous parameter combinations
have to be sampled and studied thoroughly. Relying thereby on experiments is typically
prohibitively expensive, given the often high-dimensional parameter space of interest. Thus, the
combination of experimental and computational approaches is receiving increasing attention.
The complex interdependencies in the resulting data sets can be studied using machine-learning
approaches. Artificial neural networks and data-driven approaches can significantly help to
identify, approximate, and visualize structure-property relationships of interest. This way, they can
accelerate our understanding and effective utilization of complex hierarchical materials.

This Research Topic is a compilation of contributions on current ideas and novel concepts for
the advancement of machine learning, data mining, and data driven-approaches in the context of
the design of materials and materials processing. This includes general methods as well as their
application to decoding the complex relationships along the chain composition—processing—
structure—mechanical properties.

The review article by Bock et al. provides an overview on the state of art about machine learning
and statistical learning approaches in the field of continuum materials mechanics. Furthermore,
works on experiment- and simulation-based data mining in combination with machine leaning
tools are presented. The reviewed papers are categorized as descriptive, predictive, or prescriptive
depending on whether they aim at identification, prediction, or even optimization of essential
characteristics. The potential of utilizing machine learning in materials science to empower
significant acceleration of knowledge generation is highlighted. The other review article within
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this collection by Talapatra et al. discusses the need and
challenges of optimal experimental setups as a key factor for
accelerating the discovery of materials. The authors review the
most important challenges and opportunities connected with the
concept of optimal experiment design and present successful
examples that have led to materials discovery via this concept.

Advances of machine learning and data mining methods are
addressed in particular in three articles of this special issue.
Fritzen et al. developed a multi-fidelity surrogate model allowing
for an adaptive on-the-fly switching between different surrogate
models for a concurrent two-scale simulation. The first surrogate
model is based on reduced order modeling, where the second one
represents an artificial neural network (ANN). The methodology
provides a suitable basis for the generalization of the applied
machine learning techniques for different applications. Aydin
et al. show how the bottleneck of computational data generation
can be widened by an effective combination of simulations with
different accuracy and computational cost. A cheap low-fidelity
computational model is used to start the training of the ANN
and then gradually switches to higher-fidelity training data as the
training of the ANN progresses. This multi-fidelity strategy can
reduce the total computational cost by a half up to one order of
magnitude. González et al. emphasize how to enhance suitable
physical models by available experimental data. Rather than
substituting physical models by data, the authors are using the
data to correct and enhance the physical law/model of interest,
ensuring thermodynamic consistency. Rather than creating a
purely data-driven model, the proposed technique represents an
appealing alternative for machine learning of models from data.

Characteristics of the lower scales often significantly influence
or dominate the macroscopic behavior of materials, making an
appropriate characterization of the lower scales indispensable.
Unfortunately, common (crystal) structure identification
techniques can often not be applied to describe the structure
of individual atoms in grain boundaries (GBs) sufficiently. To
address this problem, Snow et al. used a form of Common
Neighbor Analysis for the identification and characterization
of arbitrary atomic structures found around GBs. The resulting
structure descriptors are used as input to machine learning
algorithms, here PCAwith linear regression, for the development
of atomic structure-property models for GBs. In the same spirit,
Homer et al. developed a new structural representation, called the
scattering transform, for characterization of GBs. This approach
uses wavelet-based convolutional neural networks to characterize
grain boundaries. The learning results are compared to a SOAP
(smooth overlap of atomic positions) based representation,
which reveals some benefits on the scattering transform,
e.g., learning well on larger datasets and providing physically
interpretable information. At the microscale, Steinberger et al.
used a machine learning based approach for classification
of coarse-grained dislocation microstructures. As potential
machine learning features, the dislocation microstructure
is described via different dislocation density field variables.
It is shown that the accuracy of machine learning models
varies with different sets of microstructure features and spatial
discretization. This can also be used as an indicator for testing
the ability of a coarse-grained model to capture the underlying
mechanisms accurately. At the macroscale, Furat et al. present

various applications for segmentation of tomographic imaging
data by combining machine learning methods and conventional
image processing techniques. They demonstrate the applicability
of their approach using the example of grain-wise segmentation
of time-resolved CT data obtained in between Ostwald ripening
steps of an AlCu specimen. Richert et al. investigated algorithms
used for the measurement of complex 3D microstructures with
respect to over- and underestimation of the thickness of curved
features, which can lead to a significant error in the prediction
of mechanical properties. Here, artificial neural networks are
applied for reconstruction of the true geometry from the image
processing data within voxel resolution.

In terms of materials modeling along the process-property-
structure-performance chain, Würger et al. successfully used a
combination of experiments, machine learning, data mining,
density functional theory, and molecular dynamic calculations
to determine property-structure relationships in magnesium
alloys with respect to corrosion. Corrosion inhibition properties
of still untested molecules are estimated and a relationship
between corrosion inhibition efficiency and corresponding
molecular structure of magnesium corrosion inhibitors is
established. Castillo and Kalidindi present a two-step Bayesian
framework for the estimation of the intrinsic single crystal
elastic stiffness parameters from the measurements of spherical
indentation stress-strain responses in multiple individual grains
of a polycrystalline sample, whose crystal lattice orientations
have been measured using electron back-scattered diffraction
technique. It is shown that the introduction of a Bayesian
framework can greatly reduce the number of simulations
necessary to establish this function. The novel framework is
presented and demonstrated for a cubic polycrystalline Fe-3%Si
sample and a hexagonal polycrystalline pure titanium sample.
In the approach by Reimann et al., the macroscopic material
behavior is described via a trained machine learning algorithm
based on micromechanical simulations, i.e., uniaxial loading of
representative volume elements of the microstructure of interest.
In this regard, the trained algorithm can be interpreted as a
macroscopic constitutive relation. The approach is illustrated for
damage modeling as well as microstructure design that lead to
targeted mechanical properties.

Menon et al. present a general hierarchical machine learning
(HML) model for predicting the stress-at-break, strain-at-break,
and Tan δ for thermoplastic and thermoset polyurethanes.
The algorithm was trained on a library of 18 polymers. HML
reduces data requirements through robust embedding of domain
knowledge and surrogate data in a middle layer that bridges
input variables (composition) and output responses (mechanical
properties). The HML predictions are shown to be more
accurate than those from a random forest model directly relating
composition and properties, suggesting that embedding domain
knowledge provides significant advantages in predicting the
properties of complex material systems based on small datasets.
Huber addresses a number of fundamental questions regarding
the topological description of materials characterized by a
highly porous three-dimensional structure. Via data mining, the
interdependencies of topological parameters and relationships
between topological parameters with mechanical properties are
discovered. The determination of the average coordination
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number turned out to be a difficult problem, which is solved
by artificial neural networks by reconstructing the information
on low-coordinated junctions that are not detectable from a
common structure analysis.

The reviews and original articles compiled in this Research
Topic give a taste of the potential of coupling approaches
from materials science, modeling, and simulation with data
mining and machine learning. This offers exciting perspectives
for solving challenging problems, such as decoding and
computational modeling of complex structure-process-property
relationships, replacement of computationally demanding
submodels in multiscale simulations, or classification and
interpretation of imaging data.
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Machine learning tools represent key enablers for empowering material scientists and

engineers to accelerate the development of novel materials, processes and techniques.

One of the aims of using such approaches in the field of materials science is to

achieve high-throughput identification and quantification of essential features along the

process-structure-property-performance chain. In this contribution, machine learning

and statistical learning approaches are reviewed in terms of their successful application

to specific problems in the field of continuum materials mechanics. They are categorized

with respect to their type of task designated to be either descriptive, predictive or

prescriptive; thus to ultimately achieve identification, prediction or even optimization

of essential characteristics. The respective choice of the most appropriate machine

learning approach highly depends on the specific use-case, type of material, kind of data

involved, spatial and temporal scales, formats, and desired knowledge gain as well as

affordable computational costs. Different examples are reviewed involving case-by-case

dependent application of different types of artificial neural networks and other data-driven

approaches such as support vector machines, decision trees and random forests as

well as Bayesian learning, and model order reduction procedures such as principal

component analysis, among others. These techniques are applied to accelerate the

identification of material parameters or salient features for materials characterization, to

support rapid design and optimization of novel materials or manufacturing methods, to

improve and correct complex measurement devices, or to better understand and predict

fatigue behavior, among other examples. Besides experimentally obtained datasets,

numerous studies draw required information from simulation-based data mining.

Altogether, it is shown that experiment- and simulation-based data mining in combination

with machine leaning tools provide exceptional opportunities to enable highly reliant

8

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2019.00110
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2019.00110&domain=pdf&date_stamp=2019-05-15
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:frederic.bock@hzg.de
https://doi.org/10.3389/fmats.2019.00110
https://www.frontiersin.org/articles/10.3389/fmats.2019.00110/full
http://loop.frontiersin.org/people/609583/overview
http://loop.frontiersin.org/people/682470/overview
http://loop.frontiersin.org/people/581676/overview
http://loop.frontiersin.org/people/558721/overview
http://loop.frontiersin.org/people/585767/overview
http://loop.frontiersin.org/people/579791/overview


Bock et al. Machine Learning in Materials Mechanics

identification of fundamental interrelations within materials for characterization and

optimization in a scale-bridging manner. Potentials of further utilizing applied machine

learning in materials science and empowering significant acceleration of knowledge

output are pointed out.

Keywords: machine learning, materials mechanics, data mining, process-structure-property-performance

relationship, knowledge discovery

INTRODUCTION

A key motivation of applying machine learning methods in
continuum materials mechanics is the prospect of enabling,
accelerating or even simplifying the discovery and development
of novel materials for future deployment. One of the main
challenges is to gain information on how to tailor material
characteristics in order to generate a successful combination
of (all) anticipated properties and performance attributes.
Therefore, identifying coupled physical phenomena at different
spatiotemporal scales, accounting for statistical uncertainties
and controlling the parameter space within the materials
structures are core interests in designing (new) materials for
specific applications. For scale-bridging, to couple the effects of
process parameters to microstructural features and to resulting
material properties and performance characteristics, it is also
important to consider the statistical variance of the process at
hand. Additionally, with respect to a more fundamental level,
data mining enables scientists to investigate and understand
complex nonlinear relationships. In these cases, data mining
and machine learning approaches often appear as intermediate
steps in approaching and penetrating a problem until a point
where the nature of the relationship of interest can be captured
by more general physics-based models replacing the trained
algorithms. More specifically, machine learning approaches
based on rigorous statistical approaches (e.g., Bayesian inference)
offer unique opportunities to calibrate objectively (based on
available data) unknown model forms and/or parameter values
in physics-based models.

Methodology wise, there are soft boundaries between the
disciplines of data mining and machine learning that are both
also related to the discipline of applied statistics, as they
compose toolsets in data science. These methods cannot be
seen separately, as they are strongly interrelated (Witten et al.,
2011). The process for data mining according to the cross-
industry standard (Chapman et al., 1999) consists typically of
(i) problem understanding; (ii) data understanding; (iii) data
preparation; (iv) data modeling and (v) data evaluation via
machine learning; as well as (vi) deploying the trained algorithm.
Hence, the application of machine learning and data mining
approaches usually involve an adequate pre-processing of the
relevant data as well as training, testing and validating the applied
algorithms. Subsequently, post-learning tasks such as feature
optimization and decision-making are frequently performed for
the prescriptive purpose of optimization.

For challenges within continuum materials mechanics,
different databased approaches were proposed in literature.

Due to the different spatial and temporal scales of various
data that are often involved, we are addressing the issues
along the process-structure-property-performance (p-s-p-p)
chain. Therefore, we are dividing our review of different
machine learning and data mining approaches into four
main sections depending on the main field of application:
process parameters, microstructure, mechanical properties and
performance. Furthermore, each field is divided into three
categories that refer to the type of machine learning or
data mining task and pursued objective: descriptive (e.g.,
identifying unknown patterns), predictive (e.g., approximations
based on available knowledge) and prescriptive (e.g., optimization
based on machine learning controlled decision-making). This
differentiation is according to Delen and Ram (2018) formulated
for business analytics. Similarly, Tan et al. (2009) divided
machine learning tasks into two major categories: predictive and
descriptive. However, in the context of materials mechanics and
process-structure-property-performance linkages, a prescriptive
machine learning task section appears suitable to account
for implemented optimizations. Consequently, we follow the
subsequent classification of the different approaches investigated
in this review:

A descriptive approach is of explanatory nature and means
that patterns within data can be recognized based on correlations,
trends or anomalies to answer questions on “why does
microstructure Y with properties Z occur for process parameter
X and how do they affect materials performances such as fatigue
and failure?”

A predictive approach is used to foresee specific consequences
induced by certain factors; thus, previously non-existing
results are generated through applying correlation, regression,
classification, or statistical inference techniques to process and
analyze existing data for answering questions such as “what kind
of microstructure Y will occur with particular properties Z if
process parameter X is changed?”

A prescriptive approach in this context means to provide
insight on “what should be done in terms of process parameters
X to obtain microstructure Y with properties Z?” to not only
identify and predict but also to implement optimized results
with respect to improved actions, e.g., in terms of a process-
microstructure-property relation.

A preliminary collection of descriptions about important
machine learning methods is provided, as they are used either
solely or diversely combined in the different studies discussed.
In this regard, Witten et al. (2011) states: “Experience shows
that no single machine learning scheme is appropriate to all data
mining problems. The universal learner is an idealistic fantasy.
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FIGURE 1 | Overview of different data analytics methods applicable within the

field of continuums materials mechanics, motivating to develop accurate and

comprehensive databases and to make them accessible. Three data sources

compose a common data structure: experiments, process models and

reduced order models. Experiments lead to empirical determination of

characteristics along the p-s-p-p chain. With process models, these

characteristics can be described and predicted. Via reduced order models,

data can be compressed and patterns recognized. Available data can be

analyzed via data mining and machine learning to generate new knowledge.

Own figure based on the idea of Smith et al. (2016).

As [. . . ] real datasets vary, and to obtain accurate models the
bias of the learning algorithm must match the structure of the
domain. Data mining is an experimental science.” The selection
of studies presented in this article is based on the applicability
of machine learning and data mining approaches to solve
challenges in continuum materials mechanics and by no means
exhaustive. An overview on linking process, structure, property
and performance characteristics for additive manufacturing of
metals via data analytics was provided by Smith et al. (2016). They
focused on computational and experimental methods. Machine
learningmethods are not allocated into a unique class of methods
but can be contained under subsections of the reduced-order
modeling section of different data sources relevant for data
analytics and data mining, as shown in Figure 1.

SHORT OVERVIEW AND DESCRIPTION OF
MACHINE LEARNING AND DATA MINING
METHODS

Machine learning as a scientific discipline is still emerging and
thus undergoing continuous change. While many of the methods
and algorithms employed have been known for decades, in
recent years, new approaches have matured to a degree that it
is valid to consider machine learning a new and still nascent
field, despite its already comprehensive development over a
considerable period of time. As such, what constitutes machine
learning exactly (as opposed to, e.g., descriptive statistics)
remains only fuzzily defined. With data-driven methodologies
being incorporated into domains such as materials science,
new variants and adapted machine learning methods have

been devised or are in the process of being fitted to the
challenges and data profiles unique to materials science. This
methodological domain-specificity should not be construed to
preclude the importance of “mainstay methods” of machine
learning such as artificial neural networks, which are in theory
all-purpose and adaptable to approximating (“learning”) any
function inherent in data [Universal Approximation Theorem
(Hornik, 1991)]. However, as approaches from data science
augment and merge with traditional research procedures of
materials science, the methods listed in this chapter cannot claim
to be an exhaustive enumeration of machine learning methods
viable for (continuum) materials mechanics, as constant changes
within the next few years are expected.

Within this context, the most commonly encountered class
of machine learning (to the extent that it is sometimes used
interchangeably with the term machine learning itself) is the
class of artificial neural networks (ANNs). Derived from a simple
precursor formulation dating back as far as 1958, the perceptron
(Rosenblatt, 1958), ANNs have gained in popularity as increasing
computing power and availability of data alleviate the two
bottlenecks which previously curtailed their use. The perceptron
itself was conceived a simple one-layer neural network and used
as a linear classifier.

In their simplest modern form, feedforward neural networks
(FFNNs) (Haykin, 1998; Russell et al., 2016) are multilayer
perceptrons, i.e., layers of vertices (neurons) in which each
neuron computes an output based on inputs from the
previous layer. The signal traverses through the network in a
unidirectional manner, gradually transforming the input signal
into an output signal as it percolates through the network,
hence named “feedforward.” Such networks are usually trained
using a back propagating gradient-descent error minimization
approach. The error is determined by comparing the current
network output to the correct output (which is available in
a supervised learning scenario). Individual neuron behavior is
then changed during the training/learning process by altering
the connection weights associated with each edge within the
network topology. Many different approaches exist to address
the various difficulties that are typically intrinsic to neural
networks, for instance, overfitting, local minima, determining
the optimal number of layers and neurons per layers, choice of
activation function, and human interpretability of the network,
among others.

Once enough layers of neurons are stacked, which can
be referred to as the depth of the underlying ANN, the
network behavior enters the regime of deep learning (DL).
With increased number of layers, new difficulties come into
focus, such as vanishing gradient problem (Hochreiter, 1998)
or computation time, among others, which are not absent with
the simpler architectures but are exacerbated in the case of DL.
DL architectures are, for the most part, agnostic concerning
the type of ANN, i.e., any kind of ANN can form the basis
for a DL architecture. Two subtypes of ANN architectures have
gained in popularity particularly over the last two decades, to
the degree that for complex problems, usually one of the two
is encountered at least as a component of the overall ANN
architecture, or as a pre-/post processing step of the learning
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pipeline. These are convolutional neural networks and long
short-term memory networks.

Convolutional neural networks (CNNs) are mostly
formulated as a variant of FFNNs and were pioneered in
1980 (Fukushima, 1980), and then reformulated in their
contemporary form in 1999 (LeCun et al., 1999). They are
suited particularly well for image recognition, i.e., recognizing
patterns in visual data (Schmidhuber, 2015; Russell et al., 2016).
Typically, a convolutional layer is shifted across the data akin
to a filter/detector in computer vision algorithms, requiring
only few parameters due to the convolving layer allowing for
effective weight replication as the “filter” is replicated across the
visual field. Pooling and normalization layers allow for stepwise
data simplification and for variable feature sizes, respectively.
While the suitability of CNNs for materials science may not be
immediately apparent, there are examples of direct applications
such as materials texture recognition (Cang and Ren, 2016;
Lubbers et al., 2017; Cecen et al., 2018), as well as indirect
application examples in which e.g., non-visual materials data
may be interpreted (Schwarzer et al., 2019).

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997; Russell et al., 2016) can compose ANNs
because they offer specialized memory neurons/units that chiefly
deal with the vanishing gradient problem (or inversely the
exploding gradient problem), which often lead to sub-optimal
local minima, especially as the number of neuronal layers
increases. As deep learning architectures are gaining increasingly
in popularity, LSTMs or variants thereof have gained in
popularity in lockstep with DL as a way of circumventing such
local entrapments. In short, “saving” important data points
over time from being drowned out and distributing their
error correction signal over longer periods allows for better
information storage concerning important events.

For dynamic problems in which a “data-point” is often
exposed to a temporal evolution of the materials state and
encompassing a series of actions, other approaches than for
the static case are often preferred. While many of these have
not migrated into materials science to a significant degree,
yet, it can be expected that customized methods suited for
dynamic problems will gain increasing importance, both as the
complexity of the target functions to be learned rises, and with
the incorporation of state dependencies (usually as a function
of time). Two of the major approaches to such problems are
reinforcement learning, which itself is comprised of different
methods such as Q-learning (Watkins and Dayan, 1992) and
recurrent neural networks (RNN) (Lipton, 2015; Russell et al.,
2016), that allow for directed circles within the ANN topology,
and thus for signals to oscillate and overlap with the computation
of subsequent samples. As a result, data is selectively passed
across sequence steps.

Worth mentioning are randomized neural networks, which
add random excitatory/inhibitory spikes to individual neurons
(Gallicchio et al., 2017) without stable internal states (Maass et al.,
2002) and radial basis neural networks (Orr, 1996), which are
typically shallow FFNNs using individual neuron-specific radial
basis functions to sum over neuron inputs and thus allow for
better individual neuron specialization.

One noteworthy alternative to neural networks are Support
Vector Machines (SVMs), introduced by Cortes and Vapnik
(1995). SVMs deviate from ANNs by not mapping to neither
continuous (regression problem) nor discrete (decision problem)
output, but rather by separating patterns through either
hyperplanes in the linearly separable case or a Kernel function
in the nonlinearly separable case. This Kernel-transformation
(“trick”) maps support vectors into a transformed feature space
in which separability is possible (using, e.g., a maximummargin).
Whereas, ANNs usually employ several layers, often composed of
simple neurons, SVMs can be interpreted as a specialized single
neural node.

Q-learning is a noteworthy reinforcement learning algorithm
concerned with learning policies, i.e., optimal choices for
sequential decision problems (Watkins and Dayan, 1992; Mnih
et al., 2013; van Hasselt et al., 2016), which is based on a reward
signal. In this particular variant, the reward signal is based on
a Q-function, which is a specific reward function that trades
off maximum rewards using a discount factor. Reward-based
learningmethods such as Q-learning are of particular importance
when the space of possible paths, i.e., the number of actions
to be taken in sequence, is high but in relation to the training
information available only sparsely populates that space.

Monte-Carlo methods (Andrieu et al., 2003) are usually a
way of inferring numerical approximations via random (i.i.d.)
sampling of a subset of the underlying data. In the context of
machine learning, they typically refer to methods to decrease
high-complexity environments and datasets and distill e.g., a
workable, smaller set of actions to be used by a reinforcement
learning algorithm such as Q-learning.

A random forest (Breiman, 2001) is an ensemble
learning method that combines multiple (typically weak
but computationally tractable) predictors, in this case decision
trees, into a composite “super predictor” which (depending on
the selection of the decision trees) is often not subject to the same
constraints as the individual, weaker predictors.

Bayesian learning (Russell et al., 2016) in the context of
machine learning is not a single class of methods but rather
an approach into which other machine learning methods can
be embedded. Utilizing Bayesian inferences, rooted in Bayes
theorem, leads to an optimal update on prior distributions
based on available observations. The approach is often used for
the parameter estimation of a given learning algorithm or to
compare the probabilistic fit between a model and the data to
be modeled; either to infer the desired model complexity, or to
decide between similarly complex models (Neal, 1996). Gaussian
process regression models offer a nonparametric approach to
building reduced-order models employing a special form of
Bayesian learning that might be ideally suited to continuum
materials mechanics problems because of their relatively small
sizes of datasets and lack of prior knowledge of model forms.

Fuzzy c-means (FCM) clustering (Bezdek et al., 1984), which
is related to k-means clustering, is usually used as a type of
unsupervised learning, often in the context of feature extraction
in data mining. The objective in such cases is to cluster data
points alongside salient features which are not pre-defined (Mai
et al., 2016). Fuzzy clustering denotes that feature-classification is
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not binary but rather given in terms of probability assignments
to multiple features. The algorithm randomly distributes cluster
centers among the data and iteratively changes the cluster
positions until an objective cost function is minimized.

Principal component analysis (PCA) (Abdi and Williams,
2009) is typically used as a simplifying preprocessing step and
not considered as a pure machine learning algorithm in itself.
In cases where data points consist of more parameters (i.e.,
higher dimensionality) than the learning model can handle, a
number of parameters may be merged until the data becomes
tractable for the desired learning model (“dimensionality
reduction”). PCA achieves this by projecting the data into a lower
dimensional space to retain the maximum amount of variance.
The projection leads to a reduced number of parameters, the
“principal components,” which capture the maximum amount of
information among their axes.

Multi-fidelity methods (Aydin et al., 2019) may grow to
be especially relevant for materials research, which often
involves computationally expensive simulations, in contrast to
other domains where training data is either already present
or inexpensive to generate. Multi-fidelity approaches use a
large number of cheap low-fidelity computational models for
generating the training data for the majority of the training
process, only switching to higher-fidelity simulations once the
learning contribution per computational cost spent surpasses
that of the lower-fidelitymodel. Themagnitude of saving depends
on the type of simulation, especially on the feasibility of defining
lower-fidelity versions of the computational model, and on the
degree to which the used machine learning algorithm relies on
gradient-descent-based methods.

In the context of materials science, all of the methods
mentioned in this section (with the exception of PCA) are mostly
used solitarily, i.e., as the only major component of the machine
learning approach. However, as the subfield matures and gains
further dissemination into materials science research, they are
expected to be used in tandemmore often in the future. They can
be either combined into (parallel) ensemble methods for which
each method contributes a prediction, or into a consecutive
serial learning pipeline, in which e.g., clustering is used for
feature determination in conjunction with a CNN for subsequent
feature learning.

Lastly, it may be worth noting that simple (and borderline
merely statistical) learning algorithms such as regression (Russell
et al., 2016) and decision trees (Quinlan, 1986) should not be
neglected, especially when only a low-sample regime is available
offering only a limited amount of extractable information
(as is often the case with time and resource expensive
experimental setups). Typical machine learning methodologies
may be inapplicable, in which case the aforementioned learning
algorithms may constitute the most suitable tool to “train”
a predictor.

PROCESS PARAMETERS

In this section, applications of machine learning approaches to
identify, approximate and optimize process parameters for a

variety of results are discussed. The choice of process parameters
is responsible for many features that arise in the ensuing
process-microstructure-property-performance chain. Examples
include identifying correlations between process parameters
and resulting microstructures (Popova et al., 2017), predicting
process-time requirements and part-geometry results (Xiong
et al., 2014) as well as correcting measurements, e.g., resulting
residual stress fields (Chupakhin et al., 2017). One set of features
arising from the process parameters relate to the material
microstructure itself. On the one hand, direct models can be used
to discover relevant relationships between causes (i.e., inputs)
and effects (i.e., outputs) (Xiong et al., 2014; Popova et al., 2017).
On the other hand, once such a forward model is validated,
they can be suitably interrogated for inverse relationships needed
in design, where the goal is to identify the specific process
parameters (and histories) that lead to a desired optimization of
the effects (Upadhyay et al., 2012).

Descriptive
Descriptive tasks such as pattern recognition and correlation
have been performed by Popova et al. (2017) for the
implementation of a data-driven workflow to identify
relationships between process parameters and resulting
microstructures in additive manufacturing. The proposed
workflow included data pre-processing, microstructure
quantification and dimensionality reduction to extract and
validate process-structure linkages (in the form of reduced
order models). The microstructures obtained via additive
manufacturing techniques are complex and highly depend on
specific process conditions. The generation of synthetic data
of these microstructures was accomplished via applying the
Monte-Carlo method. The dataset consisted of ∼1,600 unique
microstructures. The particular method applied in each step of
the workflow depends on the amount and type of data available.
For building a reduced-order model, three different approaches
were used: first, a so-called chord length distribution was
employed to quantify microstructural features such as grain sizes,
shape distributions and anisotropies. Second, a dimensionality
reduction and model reconstruction was achieved by PCA.
Third, a multivariate polynomial regression was used for
building a surrogate model to efficiently exploit the data. As a
result, a framework was created to substitute constitutive models
that are typically comprised of comprehensive multiscale and
multiphysical field equations by approaches such as advanced
statistics and machine learning that lead to highly efficient
identification of process-structure-property linkages.

Predictive
For the prediction of bead layer geometries during the additive
manufacturing process of robotic gas metal arc welding based
on the chosen process parameters, Xiong et al. (2014) used
two different prediction approaches: a feed forward artificial
neural network, see Figure 2, and a second-order regression
analysis. Important characteristics of the manufactured part,
such as thickness of the weld bead layer, surface quality and
dimensional accuracy affecting the geometry of the deposited
layers were included in the training of the ANN. The predictive
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FIGURE 2 | Illustration of a fully connected three-layered feedforward artificial neural network, with the ability to approximate non-linear processes, here, in particular,

linking process parameters of the additive manufacturing process of robotic gas metal arc welding as inputs to their resulting outputs: height and width of deposited

bead layer. Own figure based on the idea presented by Xiong et al. (2014).

equation of the second-order regression analysis consisted of a
quadratic polynomial considering four influential factors: wire
feed rate, welding speed, arc voltage and the distance between
nozzle and plate. When comparing the prediction results of both
methods to experimental findings, the bead width was marginally
underestimated and the bead height slightly overestimated. The
deviations were assumed to be based on influential effects
caused by heat accumulation that were not accounted for
by both approaches. Overall, both prediction approaches lead
to reasonable results; however, the error for the ANN was
consistently lower than the one of the second order regression
analysis. This is due to the superior capability of the ANN to
approximate nonlinear processes. Thus, a neural network might
be preferable to predict deposited layer width and height with
reasonable accuracy for future research (Xiong et al., 2014).

Prediction of the required cutting force during the turning
process of a titanium alloy was performed by Upadhyay et al.
(2012) with a neural network. In comparison to the experiments
that were conducted based on design of experiment (DOE) using
the response surface method, the neural network predictions
showed better performance on a small but statistically well-
distributed dataset. Sahu et al. (2018) also used neural networks
to predict the surface roughness in the turning process of a
titanium alloy while considering the three controllable process
parameters cutting speed, feed rate and cutting depth as input.
Additionally, they were able to link them to the measureable
outputs: cutting force, feed force and acceleration.

The prediction of higher-order microstructure statistics as
a function of the process parameters from both multiscale
experimental and simulation datasets was demonstrated in
recent studies (Brough et al., 2017a; Khosravani et al.,
2017; Yabansu et al., 2017; Popova et al., 2018). In these
preliminary explorations, reduced-order models were built using
a combination of dimensionality reduction (using PCA), feature

engineering (using Pearson correlations), and regression. Clearly,
there are many opportunities for the application of more
advanced machine learning approaches to this class of problems.

Prescriptive
The identification of process parameters to be applied for
obtaining anticipated results can be achieved by completing
a prescriptive task. Such a prescriptive task for measurement
correction on residual stress fields after laser shock peening
(LSP), obtained through the hole drilling method, was performed
by Chupakhin et al. (2017) via the use of an ANN. The process of
LSP allows to locally introduce deep compressive residual stresses
(Ding and Ye, 2006), which is of particular interest in applications
prone to fatigue failure. Hole drilling is the commonly used
technique to determine the depth dependent residual stress
field, but the method is limited to residual stresses below
60% of the yield stress. Chupakhin et al. (2017) developed an
ANN for correcting the measured residual stress profile. About
250 training patterns were computed from elastic-plastic FEM
simulations of a pre-stressed plate with increasing hole depth by
random combination of material properties and residual stress
profiles covering the typical range of alloys and LSP profile
shapes. The computed deformation field on the surface of the
plate was analyzed using the Integral method (Schajer, 1988),
which is also used in hole drilling experiments. This “measured”
residual stress profile served as input while the residual stress
profile applied to the plate served as desired output. The dataset
revealed that the error is still below 10% up to a residual stress of
80% of the yield strength. For larger values, the error of the hole
drillingmethod can rise up dramatically and requires a correction
using the ANN. Based on the corrected residual stress profiles,
the relationship between process parameters and residual stresses
could be determined via DOE. This allowed for designing the
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FIGURE 3 | Comparison of experimental and reconstructed micrographs of rolled aluminum alloy AA3002. (A) Shows a two-dimensional polarized light micrograph of

the alloy and (B) shows a representative three-dimensional reconstruction of the experimental micrograph in (A). Reprinted from Sundararaghavan and Zabaras

(2005), Copyright (2005), with permission from Elsevier.

LSP process to generate desired residual stresses in 2.0 mm-thick
AA2024T3 sheet material (Chupakhin et al., 2019).

MICROSTRUCTURE

Numerous research results have been published on
microstructural quantification (Altschuh et al., 2017; Voyles,
2017; Gobert et al., 2018), classification (DeCost and Holm, 2015;
Chowdhury et al., 2016; DeCost et al., 2017), evolution (Gomberg
et al., 2017) and reconstruction (Sundararaghavan and Zabaras,
2005; Bostanabad et al., 2016). Bridging length-scales around the
microstructure can be pursued via either bottom-up approaches,
e.g., through homogenization or via top-down approaches, e.g.,
through localization. Moreover, it can be achieved through
descriptive, predictive and prescriptive approaches. Based
on the descriptive identification of linkages between process
parameters, generated microstructures and resulting mechanical
properties (Deshpande et al., 2016; Cecen et al., 2018), as well as
the related fatigue performances and failure mechanisms (Spear
et al., 2018), it is possible to predict or even prescriptively tailor
and optimize microstructural features.

Descriptive
The descriptive characterization of the microstructure of random
heterogeneous materials remains an important challenge in
materials mechanics. To this end, descriptors such as n-point
spatial correlations (also called n-point statistics) are used.
Sundararaghavan and Zabaras (2005) showed that SVMs in
combination with PCA can help to classify microstructures and
reconstruct three-dimensional representative volume elements
(RVE) using such descriptors, as shown in Figure 3, with
nearly real-time efficiency. This idea was significantly extended
by Niezgoda et al. (2013) who suggested to represent the
microstructure by stochastic processes that allow for a largely
automated classification of microstructures. The framework also
naturally leads to delineation of a comprehensive space of

microstructures (Niezgoda et al., 2008), and the instantiations of
microstructures from statistics (Fullwood et al., 2008; Turner and
Kalidindi, 2016).

Fast and Kalidindi (2011) presented an efficient approach
for localization, i.e., calculating the strain field in the relevant
volume element for given loading conditions, based on the
materials knowledge systems (MKS) (Kalidindi et al., 2010;
Landi et al., 2010). Core of this approach is the description of
the material response (e.g., microscale strain field) via a series
of convolution integrals. Statistical continuum theory (Kröner,
1977) provides the basis for the approach, i.e., it inspires the
model form for the reduced-order model. Central to the MKS is
the calibration of the influence filters present in these linkages.
This calibration is accomplished using results from numerical
models, typically from finite element calculations of the responses
of microscale volume elements (MVE) or RVE, respectively.
Different model building approaches have been used in this
body of work. Fast and Kalidindi (2011) used linear regression,
removing redundancies by employing a reduced-row echelon
form. This work demonstrates the suitability of the kernel-
based series model form employed that systematically adds more
terms as higher levels of microscale interactions are needed to
be captured.

The MKS approach from Kalidindi et al. (2010) was also
utilized in a study on elastic localization kernels for single
phase polycrystalline microstructures (Yabansu et al., 2014) as
well as for a wide range of cubic polycrystals (Yabansu and
Kalidindi, 2015). The goal was also to efficiently achieve scale
bridging in modeling and simulation of materials involving
numerous scales. It is claimed that the most advanced material
structures possess a highly hierarchical internal structure with
different length scales. Therefore, the MKS framework is used to
capture high dimensional local state spaces of advanced material
systems for the prediction of elastic strain fields in a broad class
of cubic polycrystalline microstructures (Figure 4). Significant
reduction of required computational effort was achieved through
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FIGURE 4 | Comparison of strain field distributions within middle slices for a low elastic anisotropy cubic polycrystalline microstructure (21 × 21 × 21 pixels) obtained

from predictions performed with (A) materials knowledge system (MKS) and (B) finite element method (FEM). Reprinted from Yabansu and Kalidindi (2015), Copyright

(2015), with permission from Elsevier.

spectral representations of the influence functions that are
highly compact.

In the area of materials characterization and microscopy,
Voyles (2017) focused on improving the quality of data
obtained empirically from instruments (microscope, in this
case), optimally deriving information from that, to ultimately
develop generalizations and gain new knowledge. Besides
that, microstructure quantification and feature identification in
porous membranes was studied by Altschuh et al. (2017). Data
generation was conducted via a newly developed microstructure
generator, to generate a large ensemble of porous structures
that contain a large variety of different features, such as
pore shape, pore size, degree of porosity, and specific surface
area. Experimental data was obtained via high-resolution X-
ray tomography to measure the morphology of real porous
membranes. To be able to compare the two different datasets,
statistical representations for both simulated and real membrane
microstructures were calculated and compared based on a PCA of
two-point spatial correlations. This leads to an objective measure
of the difference between any two selected microstructures; thus,
to a quantification of the porous membrane structures. A PCA
on these two-point statistics was used to obtain low dimensional
representations of the microstructures and to classify them.
For the basic microstructure, the most dominant features are
porosity, pore size, stretching direction and stretching factor.
These features were identified as a basis in the low dimensional
space. A high variety of microstructure characteristics and its
influence on the low dimensional space lead to the identification
of linkages. As a result, the basis vector and the principal
component value were successfully used to estimate the features
of the real membranes.

Predictive
For the purpose of providing an efficient linkage for localization,
Liu et al. (2015b) compared the performance of different
approaches based on machine learning and data mining
concepts. One particular goal was to overcome limits in terms
of applicability of the previous linkage approach based on

the extension of statistical continuum theory to higher elastic
contrasts of the composition (Kalidindi et al., 2011). The
linkage is established based on setting up a predictive model,
consisting of the two aspects, feature extraction and regression.
Three test cases were analyzed to evaluate the influence of
different steps in generating the data-driven predictive model for
localization. First, the influence of additional information about
the neighboring voxels, called feature space, on predicting the
response of the currently influenced voxel is studied. However,
the computational performance is decreasing linearly due to
the increased training time with growing number of included
neighbors, meaning the feature dimensions, and the prediction
might be even deteriorated. Secondly, the influence of differently
defined features on the representation of considered voxels are
systematically analyzed and subsequently ranked. Based on this
ranking, a combination of different top-ranked features are
juxtaposed, showing the improved performance in contrast to
simply adding information of the neighboring grains. However,
there exists a feature threshold where the error increases with
increasing information. Thirdly, the performances of different
regression models are compared, showing that a random forest
regression model outperformed the considered support vector
regression model and M5 model tree in terms of accuracy by
only a moderately increased training time compared to the
M5 model tree. This approach was extended by Liu et al.
(2017) through considering context detection, i.e., “finding the
right high-level, low dimensional, knowledge representation in
order to create coherent learning environments” (Liu et al.,
2017). In this regard, a two-step approach is used. First,
identifying the context of the data and secondly constructing
the predictive model for each context, also called multi-agent
learning, lead to an increased efficiency and accuracy of the
predictive model. Key difference to the previous work of the
authors is the identification of microstructure similarities, called
macro-features, and assembling them to a subset using k-means
clustering algorithm. Subsequently, each subset is handled with
the approach as presented in their previous work (Liu et al.,
2015b) and discussed above, using the best 57 features, called

Frontiers in Materials | www.frontiersin.org 8 May 2019 | Volume 6 | Article 11015

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Bock et al. Machine Learning in Materials Mechanics

micro-features. Three strategies of identifying the microstructure
macro similarities are investigated and their performance
compared. These strategies include context detection based on
volume fractions alone, on “designed macroscale microstructure
descriptors” (Liu et al., 2017) and on pair correlation functions.
The results showed an improvement of 38% compared to the
best results presented by Liu et al. (2015b). The accuracy of
the different strategies for the macro feature extraction was
nearly identical.

Automatic microstructure recognition was implemented by
Chowdhury et al. (2016) in a case study on image-driven
machine learning methods. The dendritic morphologies were
of particular interest with the aim of performing classification
with a minimum of required pre-expert-knowledge. Thus, the
anticipated knowledge gain was claimed to be equivalent to
human performance, but not beyond. The first classification
task was to differentiate between dendritic and non-dendritic
microstructures. The second classification task aimed to
recognize longitudinal and transverse dendrite orientations via
a successional binary classification task performed on cross-
sectional views. Images with different magnitudes and from
different material-compositions served as initial data input.
Feature extraction and dimensionality reduction were used to
represent micrographs as feature vectors. These feature vectors
were then used for training, validating and testing various
classification models. They consist of a set of detected features
in an image; thus, images were represented by high-dimensional
feature vectors (Figure 5). Feature selection is performed to
increase computational efficiency by reducing the length of the
feature vector and still retain all relevant image information
(e.g., reducing sparsity of the vector). Various dimensionality
reduction methods were tested, and in conclusion, convolutional
neural networks were evaluated best for both classification tasks
with an accuracy of 92–98% as generalization can be performed
most sufficiently.

Microstructural images were used by Ling et al. (2017) to
set-up a data-driven model for microstructure classification,
using pre-trained convolutional neural networks within the
framework of Keras (Chollet et al., 2015) and Tensorflow
(Abadi et al., 2016). The specific model was trained, tested and
validated with the aim to process different datasets through
generalization, including the identification of the required
number of features and an evaluation of the interpretability of
results. First, the microstructural images were transformed by
using CNNs, followed by texture featurization and classification
through a random forest algorithm (Figure 6). The required
computational effort is proportional to the number of features.
Mean texture featurization showed good performance based on
the comparatively low number of features that requires less
memory space and enables efficient computation of the random
forest classifier. Overall, an appropriate method for featurizing
images obtained via Scanning Electron microscope (SEM) was
developed and applied. Generalization was achieved sufficiently
from the input based on different datasets as opposed to only one
single dataset and allowed for various prediction targets.

A descriptive and predictive approach is proposed by
Hu et al. (2018) for the efficient simulation of grain and

pore growth in aluminum alloys during solidification in a
casting process. A cellular automaton (CA) is combined with
backpropagation neural networks (BPNN), resulting in a so-
called CA-BPNN method to simulate the growth of pores and
grains. Computational effort is reduced since the continuous
governing equations with high-dimensionality to account for
porosity do not have to be solved. The neural network is used
on data obtained from a process simulation of the solidification
via CA to economically identify the relationship between porosity
and solidification parameters1, such as solidus velocity, initial
hydrogen content as well as spatial and temporal thermal
gradients. These relationships are considered in the transition
functions, which compose the rules for the cellular automaton
model and affect the simulated pore growth in addition to the
governing equations of the numerical simulation (Figure 7).

For metallurgical texture analysis, in particular classification
of zones of titanium alloy microstructures into either α and β or
α + β phases, respectively, Mesquita Sá Junior et al. (2018) used
a randomized neural network for identifying microstructural
features. In particular, linear discriminant analysis (Fukunaga,
1990) and SVMs reached good and similar precisions for both
types of microstructures. For example, this approach was applied
for classifying titanium alloys processed via friction stir welding,
as the existing phase type has a strong effect on the mechanical
material properties.

An example of performing a predictive task based on
the descriptive approach of defect pattern recognition was
performed by Gobert et al. (2018). For in-situ detection of
discontinuities, such as defects, during the process monitoring
of additively manufactured metals via powder bed fusion, a
supervised machine learning approach was implemented on
high-resolution images recorded via computer tomography
during the building of layers. For geometrically describing
discontinuities, adjacent voxels that exhibit anomalies were
clustered. The particular assignment of each anomaly voxel to
their correlating discontinuity was achieved through k-means
clustering, which is based on the minimum distance of a voxel to
the center of its cluster. The aimwas to detect discontinuities with
diameters between 20 and 200µm. Furthermore, visual features
in the form of high-dimensional feature vectors were extracted
and evaluated through binary classification via SVMs. Once the
ensemble classifier was trained, the accuracies amounted to 80%
and better for predictively detecting defects during the process,
validated with three dimensional computer tomography images
of the manufactured parts.

Prescriptive
A particular challenge is the identification and prediction
of optimized microstructure configurations to prescribe the
best material properties for specific applications. Liu et al.
(2015a) presented an approach for microstructure optimization,
enhanced by machine learning methods, as outlined in
Figure 8. Although, a number of methods for determining the
properties directly from a given representation are available,

1Consequently, this work simultaneously qualifies for the Predictive Section of this

article: prediction of process parameters.
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FIGURE 5 | Schematic illustration of a micrograph classification approach on different material compositions including feature extraction, feature selection and

classification methods used. The two classification tasks were to first differentiate between dendritic and non-dendritic microstructures and second to recognize

longitudinal and transverse dendrite orientations. Reprinted from Chowdhury et al. (2016), Copyright (2016), with permission from Elsevier.

FIGURE 6 | Schematic depiction of the workflow for microstructure feature

evaluation. For the image transformation, five stacks of convolutional neural

networks were used, each of them consisting of either two or three

convolutional layers, succeeded by a max pooling layer. Indices of

convolutional layers are referring to their stack position, e.g., first, seconds or

third position within the e.g., first, second, third, fourth of fifth stack. The

outputs were processed via featurization of the texture and the ultimate

classification of these features was achived by using a random forest.

Reprinted from Ling et al. (2017), Copyright (2017), with permission from

Elsevier.

the traditional structure-property optimization, representing the
inverse procedure, is complex. The optimization problem might
be of high dimension, multiple objectives have to be fulfilled
and the result is often non-unique; thus, deteriorate classical
optimization methods. In Liu et al. (2015a), a machine learning-
based structure-property optimization scheme, see Figure 8,
is introduced and applied to the design of magneto elastic

Fe-Ga alloy for five different design problems. At the core
of the new scheme are random data construction as well as
feature selection and classification algorithms to refine the
search path and to reduce the search region, respectively. The
latter two steps have the goal to reduce the search space
and by this, to decrease the computational costs to find the
optimal solution. The microstructure of the magneto elastic
Fe-Ga alloy was represented by an orientation distribution
function (ODF). In combination with a crystal plasticity model,
all relevant properties considered in this work were obtained
via homogenization. For the random microstructure data
generation, four randomization methods were used to ensure
the sufficient randomness and polarization: random intervals,
random k intervals, random every k and best-first assignment.
The search path refinement is based on supervised feature
ranking methods [χ² (Liu and Setiono, 1995), information
gain (Quinlan, 1986), f-score (Steinwart and Christmann, 2008)
and SVM-weight (Chang and Lin, 2008)] to identify the most
promising path, i.e., crystal orientations or ODF dimension.
For the search space reduction, a rule-based classification tree
(decision tree) is used, e.g., to identify promising orientation
regions. For the design problems published by Liu et al.
(2015a), the original region could be reduced by 80–99%.
A gradient-based line search is employed to perform the
mathematical optimization. The authors compare the outcome
and the performance of the machine learning-based scheme
to three other approaches, namely an exhaustive search, a
generalized pattern search and linear programming (LP) as
well as a genetic algorithm (GA), respectively. Overall, the
results by Liu et al. (2015a) illustrate that the machine learning-
based scheme outperforms all other approaches, considering
optimality, efficiency2 and completeness of the solution, in
particular dealing with nonlinear problems.

Brough et al. (2017b) set-up a prescriptive framework for
capturing and communicating critical information regarding
the material structure evolution in spatiotemporal multiscale
simulations to reduce the number of required experiments.

2LP was faster for linear problems. GA was reported to be faster for nonlinear

problems as well but the authors Liu et al. (2015a) reported that the algorithm

worked poorly for the considered problem.
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FIGURE 7 | Schematic illustration of the cellular automaton backpropagation neural network (CA-BPNN) method for simulation of the solidification process of

aluminum alloys during casting. The simulation is divided into two parts: grain growth and pore growth. For the simulation of grain growth, conventional numerical

methods are used; whereas for the pore growth simulation, a BPNN was used to efficiently provide complementary rules for the CA. Reprinted from Hu et al. (2018),

Copyright (2018), with permission from Elsevier.

FIGURE 8 | Illustration of two schemes for structure-property optimization as presented by Liu et al. (2015a). The top illustrates the traditional structure-property

optimization, usually based on a search-based optimization method. On the bottom, the machine learning-based structure-property optimization approach is

presented. It includes three additional steps. First, data is generated and subsequently used to refine and reduce the search space dimensions, leading to optimal

results, better performance and providing a better solution completeness compared to methods following the traditional optimization route. Figure “Framework of

material structure optimization” reprinted from Liu et al. (2015a), used under the Creative Commons Attribution 4.0 license.

http://creativecommons.org/licenses/by/4.0, Copyright (2015), font type and colors altered from original.

They aimed for establishing the desired process-structure-
property linkages by generalizing the MKS framework via
introducing different basis functions and exploring their
benefit. Using Cahn-Hilliard based phase field simulations to
predict microstructure evolution and using Green’s function
based influence kernels as a method to identify the underlying
embedded physics, lead to a calculation acceleration by
the factor of three compared to an optimized numerical
integration algorithm. It is important to distinguish the
direction of relationships. Consequently, the kernels in the
MKS localization approach are calibrated with results from
numerical tools such as FEM. Once the linkages are calibrated
and validated, the influence kernels can be used to predict

the local responses of new microstructures at minimum
computational costs. Thus, this approach is sufficient for
exploring a very large number of potential microstructures.
The extracted kernels were insensitive to details of the initial
microstructure, enabling the application of the kernel to any
initial microstructure within the material system selected
for that kernel and allowing for expanding the domain
size without significant alteration of the accuracy. The
overall achievement of this study was the rapid exploration
of the underlying physics via Green’s function based
influence kernels at exceptionally low computational costs,
opening up superior opportunities for spatiotemporal
multiscale bridging.
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MECHANICAL PROPERTIES

Mechanical material properties are characteristics to be precisely
predicted and controlled as they are strongly linked to and highly
affected by process parameters and resulting microstructures.
Mechanical behavior in simulations is often described by
means of constitutive equations. Already before the most
recent popularity rise of machine learning in the scientific
community, several approaches had been suggested to replace
constitutive equations by data-based methods such as artificial
neural networks (Hashash et al., 2004; Oeser and Freitag, 2009).
Such approaches are particularly promising for problems where
it remains poorly understood how to describe the material
behavior appropriately by means of constitutive equations,
for example, remodeling of biological bones as discussed by
Hambli et al. (2011). Other examples include the prediction of
compressive strength and elastic modulus of sandcrete materials
(Asteris et al., 2017) and approximation of yield strength while
respecting diverse physical constraints for the design of a nickel-
based superalloy (Conduit et al., 2017). In general, descriptive
tasks, such as pattern recognition, predictive tasks, such as
classification as well as prescriptive tasks, such as optimization,
are implemented to fulfill the material property requirements of
particular material applications.

Descriptive
Hambli et al. (2011) substituted constitutive equations by a data-
driven ANN. A combined model composed of a finite element
(FE) simulation and an ANN was developed for simulating
the remodeling process of bones and linking the mesoscopic
scale of the “trabecular network” level to the macroscopic scale
of the complete bone level, as shown in Figure 9. While the
FE simulation was implemented on the macroscopic scale, an
ANN was used to provide predictions at the mesoscopic scale.
The FE analysis was based on digital CT image voxels used to
build mesoscale RVEs, whereas the ANN was provided with
parameters of the bone materials as well as boundary conditions
and applied stresses. The anticipated outputs were the updated
bone properties.

In the data-driven approach presented by Kirchdoerfer and
Ortiz (2016), the need for empirical material modeling, which can
require extensive efforts, is circumvented by performing more
efficient calculations directly from a material dataset obtained
through experiments. Through the combination of experimental
data, relevant constraints and essential conservation laws,
the data-driven calculations were restricted to remain within
boundaries prescribed by principles of conservation and relevant
limits related to the specific problem. In particular, through the
data-driven model, the nearest possible state of a materials data-
point of interest to the experimental dataset is assigned to a
point in the computational material model that simultaneously
fulfills the boundary conditions. This nearest possible state
is determined via a distance-minimization function in the
phase space between the experimental data points and the
newly proposed data points from the data-driven computational
model. The approach was applied to a mechanical problem
of a non-linear three-dimensional truss system with linear

elastic properties. The developed data-driven solvers showed
good convergence, especially in comparison to a classical finite
element model analysis. An extension of this approach was the
investigation of its robustness with respect to noise induced
by outliers within experimental datasets, which was achieved
through a cluster analysis (Kirchdoerfer and Ortiz, 2017).
Furthermore, the data-driven computing approach is extended in
Kirchdoerfer and Ortiz (2018) to time-dependent problems such
as predicting annealing processes.

Ibañez et al. (2018a) proposed a data-driven computational
approach to compensate for the inability of existing constitutive
models to be extended or generalized for describing new
experimental results without significant adaptation efforts. To
describe the elastic material behavior, there was no need for
a constitutive model that could reflect linear and non-linear
elastic behavior or yield conditions. Proposed were two different
linearization strategies for utilizing an iteration solver to define
points in the material model that fulfill both constitutive and
equilibrium equations within large experimental datasets.

However, more recently, Ibáñez et al. (2018b) proposed an
approach on combining governing equations with constitutive
plasticity models and experimental data via machine learning.
Based on the benefit of contained constitutive equations,
the approach is claimed to be more accurate and efficient
than approaches without a model. The use of sparse proper
generalized decomposition (s-PGD) enabled to correct
constitutive plasticity models in order to minimize the error
between the results generated by the model and those obtained
via experiments. Through this approach, it was possible to
utilize substantial knowledge already contained in the model, as
opposed to training an algorithm from scratch.

Liu et al. (2018) proposed a so-called deep material network
that was implemented for modeling materials on multiple scales,
based on homogenization of two-dimensional RVE’s. With data
obtained from linear elastic RVE calculations, the deep generic
material network was trained via stochastic gradient descent
with backpropagation and enhanced via model compression by
removing redundancies3 in the network. As a result, learning and
convergence was achieved in less time. A number of connected
building blocks, as common for generic algorithms, are used
in combination with solutions from homogenization of two
dimensional elastic RVE’s to preserve important information
about the mechanical physics. The trained network was validated
with numerical simulations for cases of linear elasticity, nonlinear
plasticity and finite-strain hyperelasticity exposed to large
deformations; thus, it provides a description of mechanical
microstructure-property linkages, however, it can also be used for
prediction purposes during material development.

To derive relationships between process parameters,
microstructure and mechanical properties for additively
manufactured materials, Yan et al. (2018) proposed a
comprehensive, data-driven model, containing multiple
scales to respect numerous underlying physical phenomena.
To enable an efficient and accurate data-driven mechanical
simulation for material design, a reduced order modeling

3Removing redundancies refers to the deletion of nodes those function is f = 1.
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FIGURE 9 | Multiscale finite element neural network (FENN) approach for bone analysis: two-level analysis for predicting the remodeling process. Macroscale level:

whole bone computed using FE analysis. Mesoscale level: effective properties of trabecular bone structure computed using a trained neural network. Reprinted from

Hambli et al. (2011), Copyright (2010), with permission from Springer Nature.

technique was developed, the so-called self-consistent clustering
analysis (SCA), which is based on the works of Liu et al.
(2016a) and Liu et al. (2016b). The SCA was used on the
mesoscale to connect the microstructural model to macroscopic
properties. Processed data consisted of voxels from non-linear
materials with complex microstructural morphologies. Instead
of solving constitutive equations for each voxel, clusters
of voxels are formed, e.g., via the k-means method, and
constitutive equations were solved for each of those clusters.
As a result, SCA served as reduced order method that leads
to a valuable compromise between efficiency and accuracy of
the results.

Huber (2018) addressed a number of fundamental questions
regarding the topological description of materials characterized
by a highly porous three-dimensional structure with bending
as the major deformation mechanism. This is the dominant
deformation mechanism in nanoporous gold, foams, porous
membranes and some architecture materials. Highly efficient
finite-element beam models were used for generating data on
the mechanical behavior of structures with different topologies,
ranging from highly coordinated bcc to Gibson–Ashby structures

(Gibson and Ashby, 1997). Random cutting enabled a continuous
modification of average coordination numbers ranging from
the maximum connectivity to the percolation-cluster transition
of the 3D network. Via data mining, the interdependencies
of topological parameters as well as relationships between
topological parameters with mechanical properties were
discovered. It was found that the average coordination number
serves as a common key for determining the cut fraction,
the scaled genus density, and the macroscopic mechanical
properties. The dependencies of macroscopic Young’s modulus,
yield strength, and Poisson’s ratio on the cut fraction (or average
coordination number) could be represented as master curves,
covering a large range of structures from a coordination number
of 8 (bcc reference) to 1.5, close to the percolation-cluster
transition. As an interesting outcome, the data for macroscopic
Young’s modulus and yield strength are covered by a single
master curve. This lead to the important conclusion that the
relative loss of macroscopic strength due to pinching-off of
ligaments corresponds to that of macroscopic Young’s modulus.
In principle, the derived master curves can be used to design the
macroscopic stiffness, strength and Poisson’s ratio of open pore
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materials by adjusting the connectivity of the material, leading to
a prescriptive approach.

Predictive
Effective macroscopic mechanical properties of a material with
a given microstructure can be predicted via computational
homogenization and is another typically time-consuming
task in materials mechanics, for which recently machine
learning techniques such as ANNs have been proposed as
a viable and computationally efficient alternative (Le et al.,
2015). Predicting the mechanical properties of a material
depending on its processing can be a challenge and hard to
tackle even with computational methods because an accurate
physical model that could reliably link processing parameters
and materials properties is often lacking. In such cases,
artificial neural networks are often used to predict mechanical
properties based on mechanical models and experimental data
(Chopra et al., 2016).

The prediction of rising or falling material hardness, based on
residual stresses and contact pressure of spherical indentation
tests was investigated by several groups via experimental and
FEM simulations. Heerens et al. (2009) presented a model that
allows to compute the change in hardness for arbitrary in-plane
biaxial residual stress states including the special cases of uniaxial,
equibiaxial, and pure shear residual stress. Relevant for this
review is the way this model was found. Based on a 3D FEM
model, hardness training patters were generated for randomly
chosen elastic-plastic materials with nonlinear work hardening.
For each pattern, a pair of data with and without residual stresses
was computed. It turned out that an ANN could easily predict
the increase or decrease of the hardness relative to the material
without residual stress when the two in-plane residual stress
components σ1, σ3, and the average contact pressure σr are given
as inputs. When this happens, there is a high chance that the
underlying relationship 5(σ1, σ3, σr) can be represented by a
simple model. Motivated by this, the data was systematically
analyzed with respect to the interdependencies using an ANN. To
this end, physical knowledge was incorporated in the formulation
of the ANN inputs and output. The authors studied the ANN
prediction error by feeding the following information as inputs:
indentation depth to spherical indenter radius h/R, normalized
Mises stress σf /σr , and normalized hydrostatic pressure p/σr .
As not explicitly illustrated in the original contribution by the
authors, a sequential omission of single inputs reveals an error
pattern in the predicted output specific for each input, see
Figure 10. Therefore, as major outcome of the applied machine
learning approach, it can be concluded that both the normalized
von-Mises stress and hydrostatic pressure are equally important
to solve the problem. The model published by Heerens et al.
(2009) is based on this insight and would not exist without
the intermediate step of using the ANN. While the ANN was
descriptive and limited to the range of training data, the derived
model is general and predictive.

Ghosh et al. (2014) used amultilayer neural network to predict
the porosity, the yield strength, the ultimate tensile strength and
the elongation of aluminum alloys during solidification, based
on input parameters, such as solidus velocity, initial hydrogen

content as well as spatial and temporal thermal gradients. The
training error and number of cycles were reduced via numerical
optimization of the ANN training structure by using the
quasi-Newtonian Broyden-Fletcher-Goldfarb-Shanno algorithm
(Nocedal and Wright, 2006). Good agreement between ANN
predictions and empirically determined mechanical properties
was obtained.

The effective stiffness of high contrast elastic composites
is predicted by Yang et al. (2018), based on a deep learning
approach. They used a multi-layered CNN with a rectified
linear unit (ReLU) function for neuronal activation to model
linkages between microstructure and mechanical properties at
the macroscale. The architecture of a CNN, as shown in
Figure 11, usually consists of a convolutional layer for objective
extraction of important features from two or three-dimensional
images, followed by a pooling layer for reducing feature map
dimensions and a fully connected layer before concluding with
the output layer that consists of one node, yielding the anticipated
material property.

Enhancing the accuracy for predicting mechanical properties
of heterogeneous materials based on image data by using a CNN
in combination with a morphology-aware generative model was
achieved by Cang et al. (2018). The generative machine learning
model was used at low computational cost to generate artificial
but authentic material samples that are required when only a
limited set of original data typically from experiments, is available
for training. Morphology constraints lead to a morphology
distribution of the generated samples that is identical to the one
of the original data. Through a comparison, it could be shown
that this material property distribution matched the original
material property distribution better than that one generated
with a state-of-the-art Markov Random Field model (Li, 1995);
hence an improvement of a predictive structure-property model
was reached.

Prescriptive
The identification of material parameters for constitutive models
is commonly the key for optimization of processes and
for designing parts that undergo complex loading histories.
Irrespective of whether a deterministic or stochastic optimization
algorithm is used, they intend to lead to a set of parameters that
correspond to the best fit. However, it is mostly not clear, if the
result is unique. Huber and Tsakmakis (2001) developed a neural
network tool that allowed identifying the material parameters of
a finite deformation viscoplasticity model with static recovery.
This complex inverse problemwas solved in a very general way by
enriching the information fed to the machine learning approach
via a specifically designed loading history for cyclic loading
with different loading rates and inserted relaxation phases. The
identification process was split into a sequence of specialized
ANNs, which used the results from the previous steps. All inputs
and outputs are defined in dimensionless form. The outputs are
normalized by measurable quantities that incorporate a priori
knowledge, wherever possible, via a simple estimate of the desired
output. This improves the accuracy of the ANN considerably, due
to the reduction of the approximation task to the correction of
the estimate. In this way, the Young’s modulus was determined
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FIGURE 10 | Analysis of the interdependency in the nonlinear relationship of hardness ratio by variation of the input information. Top row left: using all inputs; top row

right: omitting indentation depth to spherical indenter radius h/R; bottom left: omitting mormalized Mises stress σf /σr ; bottom right: omitting normalized hydrostatic

pressure p/σr . Omitting an input is visible in a specific pattern of error in the predicted output.

FIGURE 11 | Schematic image of the three-dimensional convolutional neural network (CNN) architecture, containing a convolutional layer for feature extraction, a

pooling layer for dimensionality reduction of feature maps, as well as a fully connected layer and a single-noded output layer, yielding the desired material property.

Reprinted from Yang et al. (2018), Copyright (2018), with permission from Elsevier.

first, then the equilibrium behavior of the nonlinear isotropic
and kinematic hardening rules, and finally the parameters
responsible for viscosity and static recovery terms. Subsequently,
the nonlinear elastic-plastic deformation behavior of thin Al
films was identified by Huber et al. (2002) from nanoindentation
experiments. In contrast to the common rule of maximum
10% indentation depth, the required additional information
for a unique identification was provided by purposely deep
penetration of twice the film thickness. This concept allowed
to break the geometric similarity of the pyramidal indent and

to enrich the input data of the ANN by sufficient independent
information about the mechanical behavior of the film. To
minimize the computational costs for pattern generation, a
strategy was applied, where five patterns served for training and
another five patterns for validation. With each training cycle, the
previous validation patterns were added to the training dataset
and five new validation patterns were generated. Based on this
approach, 40 patterns turned out to be sufficient to achieve
a comparable training and validation error. The enrichment
of the input information by modifying the loading history
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was also key for a successful unique parameter identification
based on spherical indentation tests (Huber and Tyulyukovskiy,
2004; Klötzer et al., 2006; Tyulyukovskiy and Huber, 2006).
The developed identification approach was successfully applied
to determine the material parameters of EUROFER 97 steel.
The high quality of the identified material behavior and the
prescriptive capability for generating very different loading
histories was demonstrated by a comparison of the predicted
stress-strain behavior with cyclic tension-compression tests from
specimens made from the same material.

Conduit et al. (2017) utilized a neural network for the
design of a nickel-based polycrystalline superalloy. Specifically
defined physical criteria were fulfilled by the approach; therefore,
modeling, discovering and optimizing novel alloys with respect
to required design specifications was possible. Experimental
validation of parameters, such as the yield stress, showed that
the relevant properties for a particular application were improved
in comparison to commercially available materials through the
prescriptive discovery of a material composition that is most
suited for the particular use-case. Examples of the successful
application of this approach are the development of a new nickel-
based superalloy for high temperature application (Conduit
et al., 2014) as well as the predictive and prescriptive design
of a molybdenum-based alloy that fulfills desired requirements
such as yield stress and hardness properties for a die-forging
application (Conduit et al., 2018).

PERFORMANCE

When materials are exposed to loads that are significantly
dependent on the temporal scale, the performance of the
material, such as fatigue and failure, become highly relevant.
Specific material behavior that eventually leads to fatigue are
governed by phenomena such as crack initiation, growth, and
coalescence under static and cyclic loading, among others. Using
machine learning approaches for the identification of linkages to
fracture initiation (Jha et al., 2018), crack growth (Younis et al.,
2018) as well as fatigue life performance (Paulson et al., 2018)
is substantial for choosing and designing the best characteristics
along the process-structure-property-performance chain.

Descriptive
To uncover and quantify relevant microstructural factors
influencing the fatigue behavior, Jha et al. (2018) used a
data-analytics approach based on principal component analysis
(PCA) (Jolliffe, 1986) and fuzzy c-means (FCM) clustering
(Bezdek et al., 1984). Through crystal plasticity finite element
(CPFEM) calculations of RVEs, statistically representative for Ti-
6242S microstructures, 33 different metrics (slip and geometry)
for 25 grains, as well as for their neighborhood (8) were
determined. To predict early fatigue crack growth, the Fatemi–
Socie fatigue indicator parameter (FIP) (Fatemi and Socie, 1988)
was calculated from the CPFEM results as well. Jha et al. (2018)
showed that the consideration of single metrics/factors alone is
not sufficient to determine or to rate their influence on the fatigue
behavior. Thus, linear PCA was used to reveal the influence of
the different metrics onto the FIP. This is obtained by analyzing

the FIP value in dependence of the principal components
and identifying the critical regions of principal components
showing a high FIP value. Afterwards, the contribution of
each metric to the principal component (variable coefficients)
leading to the critical regions is obtained. By this analysis, the
authors could conclude that the “microstructural configuration
with high FIP roughly corresponds to a combination of α

particles oriented to produce high normal stress on the basal
plane and a neighborhood that imposes high shear strain”
(Jha et al., 2018). The authors showed that via the suggested
data analysis, contributions of several parameters could be
revealed which would be impossible by direct analysis as well
as by experimental characterization alone. To “reveal unique
microstructural configurations” (Jha et al., 2018) leading to high
FIP values and the occurrence rate of configurations, a clustering
analysis in principal component space was performed. For this
purpose, kernel based PCA in combination with FCM data
clustering is applied. The results of this analysis showed that
only certain configurations have a high FIP, appearing at low
occurrence rate, as expected from experimental observations.

Corrosion is another mechanism that is very complex and
strongly influenced but not only controlled by alloy composition
and microstructure, rather also by the environmental conditions
under which the alloy shall bear mechanical loads. Metallic
biomaterials made from Mg alloys have the potential to be
biodegradable. For implants in form of screws and plates, the
degradation rate needs to be designed such that the implant bears
the load until the bone sufficiently healed and takes over the
mechanical load. The challenge is the large number of parameters
in conjunction with the long duration for a corrosion test.
Based on a very limited number of 69 samples, Willumeit et al.
(2013) applied an ANN to first analyze the most important
parameters and then visualize and identify the dependencies
on all parameters under investigation. As the most important
outcome, it was found that in addition to the concentration of
NaCl, the concentration of CO2 are the two most important
factors that control the corrosion rate. While the first was well-
known, the second was revealed by this study. This finding is
particularly important because the CO2 concentration differs
significantly between in vitro and in vivo experiments. The
trained ANN allows to further design experiments in specific
areas of interest as well as to quantitatively predict the corrosion
rate for given environmental parameters.

Predictive
In general, health monitoring and lifetime prediction for
engineering structures has traditionally been a largely data-
driven area. Recent progress in Bayesian methods and machine
learning, in particular artificial neural networks, has motivated
a considerable number of publications introducing new data-
driven approaches for lifetime prediction (Freitag et al., 2009;
Silverio Freire Júnior et al., 2009; Figueira Pujol and Andrade
Pinto, 2011; Sikorska et al., 2011; Mosallam et al., 2016).

Machine learning has proven beneficial for lifetime
predictions in particular for systems where accurate physical
models for mechanical analysis are absent so far. A typical
example is lifetime prediction for interfaces (e.g., Jia and
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Davalos, 2006). To predict fatigue properties not only on
the microscopic material level but rather on the system
level including factors such as macroscopic geometry, Wang
et al. (2016) proposed a framework based on artificial neural
networks. For a review of machine learning approaches
specifically for crack growth prediction, the reader is referred to
Wang et al. (2017).

Vassilopoulos et al. (2007) used ANNs to predict the
fatigue life of composite materials based on experimental
data that measured only approximately half of the amount
usually required for the analysis. Thus, stress-cycle (S-
N) curves and constant life diagrams (CLDs), which are
helpful for structural designing, could be generated more
efficiently and with satisfying accuracy for 104-107 cycles.
The loading condition investigated, modeled and validated
were tension-tension, tension-compression and compression-
compression, respectively. The R-ratio refers to the different
loading amplitudes imposed onto the specimens (Schijve,
2001). The approach was validated for two different glass-fiber
reinforced polymers (GFRP) with dissimilar laminate sequences,
as shown in Figure 12.

For predicting the fatigue crack growth in aluminum alloys,
Zhi et al. (2016) utilized a recurrent neural network. The linkage
between applied stress load and the resulting crack growth within
the material was approximated via feedback loops at the output
layer. As a result, the fine crack growth evolution could be
accurately simulated, as validated by experiments.

Wang et al. (2017) compared three different machine learning
approaches for predicting fatigue crack growth within aluminum
alloys. Three-layered, fully connected feed forward neural
network (one hidden layer) is advantageous over both radial
basis function network (RBFN) and genetic algorithms optimized
back-propagation network (GABP) so that the optimization
and extrapolation results agreed best with the experimentally
obtained data.

To predict the fatigue strength of numerous steels based
on composition and process parameters, Agrawal et al.
(2014) applied successful machine learning techniques, such
as feature selection, regression and classification through
the use of artificial neural networks, decision trees, and
multivariate polynomial regression. For evaluating the capability
of predicting the fatigue strength of steels, the most promising
parameters were successfully ranked accordingly. Identifying
the salient linkages between composition, processing and
properties was realized through using the open access material
database MatNavi from the Japan National Institute for
Material Science (NIMS)4 (Ogata and Yamazaki, 2012). It
was shown that the most appropriate predictive modeling
technique can vary in dependence on the steel type.
“Hierarchical predictive modeling” was used for sequential
processing of the data at different scales starting with an
initial classification to determine the steel type and followed
by choosing and applying the most appropriate method
for the particular steel grade to predict the fatigue strength
(Agrawal et al., 2014).

4https://mits.nims.go.jp/index_en.html

Further development of successfully applied predictive
modeling techniques to fatigue strengths of steels was used to
build an open access online tool by Agrawal and Choudhary
(2018). The so called Steel-Fatigue-Strength-Predictor (Agrawal
and Choudhary, 2016) is based on data-driven ensemble data
mining based on composition and process characteristics of
steels to predict their fatigue strength5 Datasets on the fatigue
behavior of steel were again taken from the MatNavi materials
database and build into a forward process-structure-property-
performance model. The framework provides a selection of 40
different modeling techniques that are selected based on the
specific properties of the steel alloy(s) of interest. To identify
composition and processing parameters that have a significant
impact on the fatigue strength, feature selection techniques
were applied to determine a small sub-set of the corresponding
attributes. Thus, the model with the highest accuracy is tailored
to the data of specific material in the steel fatigue strength
predictor to provide insight to design preferences for optimal
fatigue strength of parts of various types of steel.

To identify and predict the impact of the microstructure on
the high-cycle fatigue performance, a data-driven mechanical
model of a matrix using crystal plasticity was built by Smith
et al. (2016) and Kafka et al. (2018) for the specific application
of manufacturing drawn tubes of nickel titanium for arterial
stents, as shown in Figure 13. The fatigue crack incubation life
is simulated according to a particular microstructure exposed
to high-cycle fatigue loads. Via a parametric study, the authors
showed that the width of included voids in the material had an
inverse proportional relationship to the fatigue life, whereas the
diameter of the voids showed a direct proportional relation to the
predicted fatigue performance, respectively.

For predicting the dynamic fracture growth and coalescence
in brittle materials and to foresee failure, Moore et al. (2018)
used random forests and decision trees, whereas Schwarzer et al.
(2019) utilized recurrent graph convolutional neural networks.
The overall aim of both studies was to bypass computationally
intensive simulations for predicting fracture evolution. By
applyingmachine learning approaches whose training is based on
high accuracy finite-discrete simulations, prediction of statistic
fracture growth was achieved in a few seconds. Even though
training with simulation results from amicroscale model requires
computational effort, the predictions of fracture growth statistics
and time to failure of thematerial via the trained random forest or
neural network was very efficient. Moore et al. (2018) disregarded
ANNs despite an increase in accuracy of about 10% compared to
random forests, because of the extensive amount of data required
to prevent over-fitting and accompanied computational effort.
Instead, they used random forests and decision trees to efficiently
perform an uncertainty quantification. Schwarzer et al. (2019)
circumvented the challenge of needing a large experimental
dataset that is statistically meaningful via using a significant
number of simulations; thus, the accuracy could be increased.
For that, a deep neural network was used; specifically, a graph
convolutional network for fracture feature recognition within the
material. Subsequently, a recurrent neural network was utilized

5http://info.eecs.northwestern.edu/SteelFatigueStrengthPredictor.
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FIGURE 12 | Constant life diagrams (CLD) obtained via experiments and predicted via an artificial neural network (ANN) for coupons loaded in on-axis direction for

104-107 load cycles for two glass-fiber reinforced polymers (GFRP) with laminate structure (A) [0/(±45)2/0]T and (B) [90/0/(±45)/0]S. Reprinted from Vassilopoulos

et al. (2007), Copyright (2007), with permission from Elsevier.

FIGURE 13 | Schematic overview of the implemented self-consistent clustering method based on an RVE of the material, sliced in the middle to show the matrix phase

and hide inclusion and void phases (except in the first step). The workflow from left to right: training stage (blue) considers (1) gray inclusions and red voids, (2) matrix

strain component (εxx ) of the linear elastic analysis; (3) strain clusters obtained through k-means clustering; and the prediction stage yields (4) plastic shear strain field

from crystal plasticity and (5) the anticipated Fatigue Indicator Parameter. Reprinted from Kafka et al. (2018), Copyright (2018), with permission from Springer Nature.

for modeling the corresponding feature evolution. Training was
achieved with a set of time series of graphs that represent the
results of a total number of 145 simulations. Based on their
initial state, evolution of multiple material properties can be
predicted simultaneously. The error for the averaged fracture
size prediction in comparison to the corresponding simulation
results was 2%, for the fracture size distribution, the error was
13%, and for the predicted time to failure, the absolute error
was 15%. Due to the relatively modest size of the initial dataset
used for training, further accuracy was achieved by training the
network on incorrect predictions that were previously produced
as output. As a result, the loss function could be further reduced;
thus, the network learned from its mistakes and the error of the
predictions could be gradually decreased.

Prescriptive
Performance properties of components that highly depend on
an ideal design of the part can also be optimized via an
improved non-dominated sorting generic algorithm (NSGA)-
II (Deb et al., 2002), as shown by Wang et al. (2011) for the
multi-objective optimization of wind turbine blades, specifically
with respect to ideal so-called maximum power coefficient
and minimum blade mass. Wang et al. (2011) modified the

NSGA-II via incorporating the controlled elitism and dynamic
crowding distance (DCD) methods. Ultimately, the design for
a 5 megawatts wind turbine blade was optimized by increasing
the performance and simultaneously decreasing its mass. Further
examples of prescriptive approaches that strongly touch the field
of control theory can be found (Padhye and Deb, 2011; Gao et al.,
2016; Klancnik et al., 2016) but a discussion of these is out of the
scope of the current paper.

SUMMARY AND OUTLOOK

In conclusion, it was shown that numerous machine learning
approaches are already applied successfully within the field
of continuum materials mechanics, either solely or in various
combinations for performing tasks that are descriptive, predictive
or prescriptive in nature. As a result, acceleration of the discovery
and development of novel materials can be enabled through
highly reliant descriptions, predictions or prescriptions of
anticipated characteristics along the process-structure-property-
performance chain, often in a scale-bridging manner.

Machine learning and data mining approaches need to be
established as standard tools for scientists and engineers that are
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experts in generating data through experiments and numerical
analyses and sit at the key position to their data sources with
the best and most comprehensive access to it (Agarwal and
Dhar, 2014). This can be achieved when materials scientists and
engineers collaborate closely with computer and data scientists,
statisticians, physicists and other experts across various fields to
further incorporate data science tools into established workflows
for solving problems in materials mechanics and engineering.
For example, combining data-driven machine learning and
statistical approaches and traditional constitutive model-based
simulation tools to perform data-driven simulations (Ibáñez
et al., 2018b). In particular, databased and physics-based
modeling can complement one another in the sense that a
combination of purely data-driven approaches with well-tested
physics-based models that are built on known constitutive
equations, leads to creating highly reliant and efficient hybrid
analytics and simulations.

Award-winning algorithms in other learning domains as
diverse as handwritten digit recognition [e.g., using the
standardized MNIST dataset as a benchmark (LeCun et al., 1999)
and AlphaGo for the Go board game (Silver et al., 2017)] are
often noteworthy not only for their performance, but moreover
for their simplicity and lack of complex architectures. It is
thus reasonable to predict that for materials science, learning
algorithms will diverge in both directions, with more composite
methods employing many of the algorithms expounded in
this review, and with simple learning architectures that will
have been proven adaptable and performant within the scope
of most materials research. In this regard, so-called capsules,
which are embedded in multiple layers within a neural network,
exhibit potential for future use, as they achieve improved results
on the MNIST handwritten digit database in terms of highly
overlapping digit recognition with state-of-the-art performance
in comparison to CNNs (Sabour et al., 2017). Thus, they will
also be useful in areas of materials mechanics. Reinforcement
learning is another example of a promising method for future
application within continuum materials mechanics. A successful
application on materials outside continuum material mechanics
was provided by Popova et al. (2018) on applying deep
reinforcement learning for the design of a chemical library,
in particular, to the de novo design of drug molecules with
specifically desired properties. Thus, in general, reinforcement
learning is a suitable approach where materials are involved and
decision-making is required.

As machine learning and data mining are fueled by data,
the availability of useful and comprehensive datasets to machine
learning experts within the field of continuum materials
mechanics needs to be increased through establishing common
data infrastructures and shared databases. One noteworthy
difference between materials mechanics and other, more
traditional machine learning domains is the comparative expense
of obtaining training data, either by experimental gathering or
via simulation. Such simulations can be prohibitively expensive,
which may require new methods of synergizing materials
simulations to machine learning, for example via multi-fidelity
models for generating data for machine learning (Aydin
et al., 2019), which have been shown to realize significant

computational savings. Because data collection and assimilation
may require significant costs, materials data management is
important for data-driven approaches. How to store, archive,
retrieve and share reliable data; including metadata, providing
information on context and content of the data, is essential for
increasing the usefulness of shared data, including information
onwhen, where, how and under what conditions data was created
and the type of data-processing already performed. Additionally,
online tools that are designed for collaborations in research
across various disciplines can help to integrate novel machine
learning and data mining tools into existing workflows. Besides
making decisions along the materials development progress
based on empirical knowledge and instincts, experts would
benefit extremely, in terms of cost and time reduction, by
incorporating data-driven approaches such as machine learning
into the development of materials and their processing. That
way, knowledge that is gained from investigations that were
either successful or failures can be recorded, stored, accessed and
transferred to other challenges; therefore be extremely valuable as
costs can be saved (Kalidindi and Graef, 2015).

Open source tools such as the highly abstracted neural
network library Keras6, which works within the framework
of other libraries such as Tensor flow7, empower scientists
and engineers to efficiently use machine learning and data
mining tools that are implemented with the programming
language Python—the de facto standard programming language
for machine learning. Due to the good readability of Python’s
syntax, the convenience and easy access for machine learning and
data mining newcomers is increased (Chollet, 2018). Another
example for a platform for shared computing and data resources
is UNICORE8, which is a maturely developed software interface
that provides access to a computing and data infrastructure
including high-performance computing, clusters and file systems
(Benedyczak et al., 2016).

Ultimately, proper usage of machine learning and data mining
approaches has to be practiced and made easily accessible
to materials researchers and engineers in order to enable
employment across the range from theoretical foundations to
practical applications. Furthermore, synergies between various
disciplines such as data science and materials science still hold
a substantial potential for applying machine learning tools
most efficiently to face particular challenges within the field of
materials mechanics.
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Over the last decade, there has been a paradigm shift away from labor-intensive

and time-consuming materials discovery methods, and materials exploration through

informatics approaches is gaining traction at present. Current approaches are typically

centered around the idea of achieving this exploration through high-throughput (HT)

experimentation/computation. Such approaches, however, do not account for the

practicalities of resource constraints which eventually result in bottlenecks at various

stage of the workflow. Regardless of how many bottlenecks are eliminated, the fact

that ultimately a human must make decisions about what to do with the acquired

information implies that HT frameworks face hard limits that will be extremely difficult to

overcome. Recently, this problem has been addressed by framing thematerials discovery

process as an optimal experiment design problem. In this article, we discuss the need

for optimal experiment design, the challenges in it’s implementation and finally discuss

some successful examples of materials discovery via experiment design.

Keywords: materials discovery, efficient experiment design, Bayesian Optimization, information fusion, materials

informatics, machine learning

1. INTRODUCTION

Historically, the beginning of materials research centered around learning how to use the elements
and minerals discovered in nature. The chief challenge at the time was the separation of the pure
metal from the mined ore which lead over time to the science of metallurgy—the foundation of
current day materials research. Humans then discovered that these pure metals could be combined
to form alloys, followed by the principles of heat treatments—advances that shaped history; since
the ability to invent new and exploit known techniques to use metals and alloys to forge weapons
for sustenance and defense was instrumental in the success, expansion and migration of early
civilizations. Additionally, there is evidence that the oft-quoted sequence of copper-tin bronze-
iron which lend their names to the “ages” of human progress, occurred in different parts of the
world, sometimes even simultaneously (Tylecote and Tylecote, 1992). Thus, the desire to harvest
materials from nature and use them to improve the quality of life is a uniquely human as well as
universal trait.
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With the acceleration of scientific advances over the last few
centuries, mankind has moved on from developing applications
based on available materials, to demanding materials to suit
desired applications. Science and technology are continuously
part of this contentious chicken and egg situation where it is
folly to prioritize either–scientific knowledge for its own sake
or the use of science as just a tool to fuel new applications.
Regardless, the majority of the scientific breakthroughs from
the materials perspective have resulted from an Edisonian
approach and been guided primarily by experience, intuition and
to some extent, serendipity. Further, bringing the possibilities
suggested by such discoveries to fruition takes decades and
considerable financial resources. Also, such approaches when
successful, enable the investigation of a very small fraction
of a given materials design space leaving vast possibilities
unexplored. No alchemic recipes exist, however desirable, which
given a target application and desired properties, enables
one to design the optimized material for that application.
However, to tread some distance on that alchemic road, recently,
extensive work has centered on the accelerated and cost-
effective discovery, manufacturing, and deployment of novel
and better materials as promoted by the Materials Genome
Initiative (Holdren, 2011).

1.1. Challenges in Accelerated Materials
Discovery Techniques
The chief hurdle when it comes to searching for new materials
with requisite or better properties is the scarcity of physical
knowledge about the class of materials that constitute the
design space. Data regarding the structure and resultant
properties may be available, but what is lacking is usually the
fundamental physics that delineate the processing-structure-
property-performance (PSPP) relationships in these materials.
Additionally, the interplay of structural, chemical and micro-
structural degrees of freedom introduces enormous complexity,
which exponentially increases the dimensionality of the problem
at hand, limiting the application of traditional design strategies.

To bypass this challenge, the current focus of the field is
on the use of data to knowledge approaches, the idea being
to implicitly extract the material physics embedded in the data
itself with the use of modern day tools–machine learning, design
optimization, manufacturing scale-up and automation, multi-
scale modeling, and uncertainty quantification with verification
and validation. Typical techniques include the utilization of
High-Throughput (HT) computational (Strasser et al., 2003;
Curtarolo et al., 2013; Kirklin et al., 2013) and experimental
frameworks (Strasser et al., 2003; Potyrailo et al., 2011; Suram
et al., 2015; Green et al., 2017), which are used to generate large
databases of materials feature / response sets, which then must
be analyzed (Curtarolo et al., 2003) to identify the materials
with the desired characteristics (Solomou et al., 2018). HT
methods, however, fail to account for constraints in experimental
/ computational) resources available, nor do they anticipate
the existence of bottle necks in the scientific workflow that
unfortunately render impossible the parallel execution of specific
experimental / computational tasks.

Recently, the concept of optimal experiment design, within
the overall framework of Bayesian Optimization (BO), has been
put forward as a design strategy to circumvent the limitations
of traditional (costly) exploration of the design space. This was
pioneered by Balachandran et al. (2016) who put forward a
framework that balanced the need to exploit available knowledge
of the design space with the need to explore it by using a metric
(Expected Improvement, EI) that selects the best next experiment
with the end-goal of accelerating the iterative design process. BO-
based approaches rely on the construction of a response surface
of the design space and are typically limited to the use of a single
model to carry out the queries. This is an important limitation,
as often times, at the beginning of a materials discovery problem,
there is not sufficient information to elucidate the feature set (i.e.,
model) that is the most related to the specific performance metric
to optimize.

Additionally, although these techniques have been
successfully demonstrated in a few materials science
problems (Seko et al., 2014, 2015; Frazier and Wang, 2016;
Ueno et al., 2016; Xue et al., 2016a,b; Dehghannasiri et al., 2017;
Ju et al., 2017; Gopakumar et al., 2018), the published work tends
to focus on the optimization of a single objective (Balachandran
et al., 2016), which is far from the complicatedmulti-dimensional
real-world materials design requirements.

In this manuscript, we discuss the materials discovery
challenge from the perspective of experiment design-i.e.,
goal-oriented materials discovery, wherein we efficiently
exploit available computational tools, in combination with
experiments, to accelerate the development of new materials
and materials systems. In the following sections, we discuss
the need for exploring the field of materials discovery via the
experiment design paradigm and then specifically discuss two
approaches that address the prevalent limitations discussed
above: i) a framework that is capable of adaptively selecting
competing models connecting materials features to performance
metrics through Bayesian Model Averaging (BMA), followed
by optimal experiment design, ii) a variant of the well-
established kriging technique specifically adapted for problems
where models with varying levels of fidelity related to the
property of interest are available and iii) a framework for
the fusion of information that exploits correlations among
sources/models and between the sources and ‘ground truth’
in conjunction with a multi-information source optimization
framework that identifies, given current knowledge, the
next best information source to query and where in the
input space to query it via a novel value-gradient policy
and examples of applications of these approaches in the
context of single-objective and multi-objective materials design
optimization problems and information fusion applied to
the design of dual-phase materials and CALPHAD-based
thermodynamic modeling.

2. EXPERIMENT DESIGN

The divergence of modern science from its roots in natural
philosophy was heralded by the emphasis on experimentation in
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the sixteenth and seventeenth centuries as a means to establish
causal relationships (Hacking, 1983) between the degrees of
freedom available to the experimenter and the phenomena
being investigated. Experiments involve the manipulation of
one or more independent variables followed by the systematic
observation of the effects of the manipulation on one or
more dependent variables. An experiment design then, is the
formulation of a detailed experimental plan in advance of doing
the experiment that when carried out will describe or explain
the variation of information under conditions hypothesized to
reflect the variation. An optimal experiment design maximizes
either the amount of ‘information’ that can be obtained for
a given amount of experimental effort or the accuracy with
which the results are obtained, depending on the purpose of
the experiment. A schematic of the experiment design process is
shown in Figure 1.

Taking into consideration the large number of measurements
often needed in materials research, design problems are
formulated as a multi-dimensional optimization problem, which
typically require training data in order to be solved. Prior
knowledge regarding parameters and features affecting the
desired properties of materials is of great importance. However,
often, prior knowledge is inadequate and the presence of large
uncertainty is detrimental to the experiment design. Hence,
additional measurements or experiments are necessary in order
to improve the predictability of the model with respect to
the design objective. Naturally, it is then essential to direct
experimental efforts such that the targeted material may be found
by minimizing the number of experiments. This may be achieved
via an experiment design strategy that is able to distinguish
between different experiments based upon the information they
can provide. Thus, the experiment design strategy results in the
choosing of the next best experiment, which is determined by
optimizing an acquisition function.

FIGURE 1 | A schematic of the recursive experiment design process.

2.1. Experiment Design Under Model
Uncertainty
In most materials design tasks, there are always multiple
information sources at the disposal of the material scientist.
For example, the relationships between the crystal structure and
properties/performance can in principle be developed through
experiments as well as (computational) models at different levels
of fidelity and resolution (-atomistic scale, molecular scale,
continuum scale). Traditional holistic design approaches such
as Integrated Computational Materials Engineering (ICME), on
the other hand, often proceed on the limited and (frankly)
unrealistic assumption that there is only one source available
to query the design space. For single information sources and
sequential querying, there are two traditional techniques for
choosing what to query next in this context (Lynch, 2007;
Scott et al., 2011). These are (i) efficient global optimization
(EGO) (Jones et al., 1998) and its extensions, such as sequential
Kriging optimization (SKO) (Huang et al., 2006) and value-
based global optimization (VGO) (Moore et al., 2014), and (ii)
the knowledge gradient (KG) (Gupta and Miescke, 1994, 1996;
Frazier et al., 2008). EGO uses a Gaussian process (Rasmussen,
2004) representation of available data, but does not account
for noise (Schonlau et al., 1996, 1998). SKO also uses Gaussian
processes, but includes a variable weighting factor to favor
decisions with higher uncertainty (Scott et al., 2011). KG differs
in that while it can also account for noise, it selects the next
solution on the basis of the expected value of the best material
after the experiment is carried out. In the case of multiple
uncertain sources of information (e.g., different models for the
same problem), it is imperative to integrate all the sources
to produce more reliable results (Dasey and Braun, 2007). In
practice, there are several approaches for fusing information
from multiple models. Bayesian Model Averaging (BMA), multi-
fidelity co-kriging (Kennedy and O’Hagan, 2000; Pilania et al.,
2017, and fusion under known correlation (Geisser, 1965;Morris,
1977; Winkler, 1981; Ghoreishi and Allaire, 2018) are three
such model fusion techniques that enable robust design. These
approaches shall be discussed in detail in the following sections.

2.1.1. Bayesian Model Averaging (BMA)
The goal of any materials discovery strategy is to identify
an action that results in a desired property, which is usually
optimizing an objective function of the action over the Materials
Design Space (MDS). In materials discovery, each action is
equivalent to an input or design parameter setup. If complete
knowledge of the objective function exists, then the materials
discovery challenge is met. In reality however, this objective
function is a black-box, of which little if anything is known
and the cost of querying such a function (through expensive
experiments/simulations) at arbitrary query points in the MDS
is very high. In these cases a parametric or non-parametric
surrogate model can be used to approximate the true objective
function. Bayesian Optimization (BO) (Shahriari et al., 2016)
corresponds to these cases, where the prior model is sequentially
updated after each experiment.

Irrespective of whether prior knowledge about the form of
the objective function exists and/or many observations of the
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objective values at different parts of the input space are available,
there is an inherent feature selection step, where different
potential feature sets might exist. Moreover, there might be a set
of possible parametric families as candidates for the surrogate
model itself. Even when employing non-parametric surrogate
models, several choices for the functional form connecting
degrees of freedom in the experimental space and the outcome(s)
of the experiment might be available. These translate into
different possible surrogate models for the objective function.
The common approach is to select a feature set and a single family
of models and fix this selection throughout the experiment design
loop; however, this is often not a reliable approach due to the
small initial sample size that is ubiquitous in materials science.

This problem was addressed by a subset of the present authors
by framing experiment design as Bayesian Optimization under
Model Uncertainty (BOMU), and incorporating Bayesian Model
Averaging (BMA) within Bayesian Optimization (Talapatra
et al., 2018). The acquisition function used is the Expected
Improvement (EI) which seeks to balance the need to exploit
available knowledge of the design space with the need to explore
it. Suppose that f ′ is the minimal value of the objective function
f observed so far. Expected improvement evaluates f at the point
that, in expectation, improves upon f ′ themost. This corresponds
to the following utility function:

I = max(f ′ − f (x), 0) (1)

If ŷ and s are the predicted value and its standard error at x,
respectively, then the expected improvement is given by:

E[I(x)] = (f ′ − ŷ)8(
f ′ − ŷ

s
)+ sφ(

f ′ − ŷ

s
) (2)

where: φ(.) and 8(.) are the standard normal density and
distribution functions (Jones et al., 1998). The Bayesian
Optimization under Model Uncertainty approach may then be
described as follows:

• There is a collection of potential models (e.g., models based on
different features sets)

• The models are averaged, based on the (posterior) model
probabilities given initial data set to form a BMA.

• Using the expected acquisition function under the BMA
model, an experiment is chosen that maximizes the expected
acquisition.

• The experiment is run, each model is updated and the
(posterior) model probabilities are updated.

• The expected acquisition under the updated BMA model is
computed and an experiment is chosen.

• This iteration is done until some stopping criteria are
satisfied (e.g., while objective not satisfied and budget not
exhausted), and the best observation so far is selected as the
final suggestion.

Incorporating BMA within Bayesian Optimization produces a
system capable of autonomously and adaptively learning not
only the most promising regions in the materials space but
also the models that most efficiently guide such exploration.

FIGURE 2 | Schematic of the proposed framework for an autonomous,

efficient materials discovery system as a realization of Bayesian Optimization

under Model Uncertainty (BOMU). Initial data and a set of candidate models

are used to construct a stochastic representation of an experiment/simulation.

Each model is evaluated in a Bayesian sense and its probability is determined.

Using the model probabilities, an effective acquisition function is computed,

which is then used to select the next point in the materials design space that

needs to be queried. The process is continued iteratively until target is reached

or budget is exhausted. Used with permission from Talapatra et al. (2018).

The framework is also capable of defining optimal experimental
sequences in cases where multiple objectives must be met-we
note that recent works have begun to address the issue of
multi-objective Bayesian Optimization in the context of materials
discovery (Mannodi-Kanakkithodi et al., 2016; Gopakumar et al.,
2018). Our approach, however, is different in that the multi-
objective optimization is carried out simultaneously with feature
selection. The overall framework for autonomous materials
discovery is shown in Figure 2.

2.1.2. Multi-Fidelity co-kriging
As discussed in Pilania et al. (2017), co-kriging regression is
an variant of the well-established kriging technique specifically
adapted for problems where models with varying levels of fidelity
(i.e., variations both in computational cost and accuracy) related
to the property of interest are available. This approach was put
forward by Kennedy and O’Hagan (2000) who presented a
cogent mathematical framework to fuse heterogeneous variable-
fidelity information sources paving the way for multi-fidelity
modeling. This framework was then adapted by Forrester et al.
(2007) who demonstrated its application in an optimization
setting via a two-level co-kriging scheme. The auto-regressive
co-kriging scheme may be applied to scenarios where l-levels
of variable-fidelity estimates are available, however, practical
limitations pertaining to computational efficiency emerge when
the number of levels l or number of data points grow large.
Recent work by Le Gratiet and Garnier ( Le Gratiet, 2013;
Le Gratiet and Garnier, 2014) showed that any co-kriging
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scheme with l-levels of variable-fidelity information sources can
be effectively decoupled, and equivalently reformulated in a
recursive fashion as an l-independent kriging problem, thereby
circumventing this limitation. This facilitates the construction of
predictive co-kriging schemes by solving a sequence of simpler
kriging problems of lesser complexity. In the context of materials
discovery, this approach was successfully implemented by Pilania
et al., who presented amulti-fidelity co-kriging statistical learning
framework that combines variable-fidelity quantum mechanical
calculations of bandgaps to generate a machine-learned model
that enables low-cost accurate predictions of the bandgaps at
the highest fidelity level ( Pilania et al., 2017). Similarly, Razi
et al. introduced a novel approach for enhancing the sampling
convergence for properties predicted by molecular dynamics
based upon the construction of a multi-fidelity surrogate
model using computational models with different levels of
accuracy (Razi et al., 2018).

2.1.3. Error Correlation-Based Model Fusion (CMF)

Approach
As mentioned earlier, model-based ICME-style frameworks tend
to focus on integrating tools at multiple scales under the
assumption that there is a single model/tool which is significant
at a specific scale of the problem. This ignores the use of multiple
models that may be more/less effective in different regions of
the performance space. Data-centric approaches, on the other
hand, tend to focus (with some exceptions) on the brute-force
exploration of the MDS, not taking into account the considerable
cost associated with such exploration.

In Ghoreishi et al. (2018), the authors presented a framework
that addresses the two outstanding issues listed above in the
context of the optimal micro-structural design of advanced
high strength steels. Specifically, they carried out the fusion
of multiple information sources that connect micro-structural
descriptors to mechanical performance metrics. This fusion is
done in a way that accounts for and exploits the correlations
between each individual information source-reduced order
model constructed under different simplifying assumptions
regarding the partitioning of (total) strain, stress or deformation
work among the phases constituting the micro-structure-
and between each information source and the ground truth-
represented in this case by a full-field micro-structure-
based finite element model. This finite element model is
computationally expensive, and is considered as a higher fidelity
model as part of amulti-fidelity framework, the intention being to
create a framework for predicting ground truth. Specifically, the
purpose of the work is not to match the highest fidelity model,
but to predict material properties when created at ground truth.
There is usually no common resource trade-off in this scenario, in
contrast to traditional computational multi-fidelity frameworks
that trade computational expense and accuracy.

In this framework, the impact of a new query to an
information source on the fused model is of value. The search
is performed over the input domain and the information source
options concurrently to determine which next query will lead
to the most improvement in the objective function. In addition,
the exploitation of correlations between the discrepancies of the

information sources in the fusion process is novel and enables the
identification of ground truth optimal points that are not shared
by any individual information sources in the analysis.

A fundamental hypothesis of this approach is that any
model can provide potentially useful information to a given
task. This technique thus takes into account all potential
information any given model may provide and fuses unique
information from the available models. The fusion goal then
is to identify dependencies, via estimated correlations, among
the model discrepancies. With these estimated correlations, the
models are fused following standard practice for the fusion of
normally distributed data. To estimate the correlations between
the model deviations when they are unknown, the reification
process (Allaire and Willcox, 2012; Thomison and Allaire, 2017)
is used, which refers to the process of treating each model, in
turn, as ground truth. The underlying assumption here is that the
data generated by the reifiedmodel represents the true quantity of
interest. These data are used to estimate the correlation between
the errors of the different models and the process is then repeated
for eachmodel. The detailed process of estimating the correlation
between the errors of two models can be found in Allaire and
Willcox (2012) and Thomison and Allaire (2017).

A flowchart of the approach is shown in Figure 3. The next
step then is to determine which information source should be
queried and where to query it, concurrently, so as to produce the
most value with the tacit resource constraint in mind. For this
decision, a utility, which is referred to as the value-gradient utility
is used, which accounts for both the immediate improvement
in one step and expected improvement in two steps. The goal
here is to produce rapid improvement, with the knowledge that
every resource expenditure could be the last, but at the same time,
to be optimally positioned for the next resource expenditure.
In this sense, there is equal weight accorded to next step value
with next step (knowledge) gradient information, hence the term
value-gradient. As mentioned in the previous section, in the
BMA approach, the Expected Improvement (EI) metric is used
to choose the next query point, while in this approach, the value
gradient is used.

The knowledge gradient, which is a measure of expected
improvement, is defined as:

νKG(x) = E[VN+1(HN+1(x))− VN(HN)|HN] (3)

where HN is the knowledge state, and the value of being at state
HN is defined as VN(HN) = maxx∈χ HN . The KG policy for
sequentially choosing the next query is then given as:

xKG = argmax
x∈χ

νKG(x) (4)

and the value-gradient utility is given by:

U = µ∗
fused +max

x∈χ
νKG(x) (5)

where µ∗
fused

is the maximum value of the mean function of

the current fused model and maxx∈χ νKG(x) is the maximum
expected improvement that can be obtained with another query
as measured by the knowledge gradient over the fused model.
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2.2. Application of Experiment Design
Framework: Examples
2.2.1. Multi-Objective Bayesian Optimization
A Multi-objective Optimal Experiment Design (OED)
framework (see Figure 4) based on the Bayesian optimization
techniques was reported by the authors in Solomou et al. (2018).
The material to be optimized was selected to be precipitation
strengthened NiTi Shape memory alloys (SMAs) since complex
thermodynamic and kinetic modeling is necessary to describe
the characteristics of these alloys. The specific objective of this
Bayesian Optimal Experimental Design (BOED) framework
in this study was to provide an Optimal Experiment Selection
(OES) policy to guide an efficient search of the precipitation
strengthened NiTi SMAs with selected target properties by
efficiently solving a multi-objective optimization problem.
The EHVI (Emmerich et al., 2011) acquisition function was
used to perform multi-objective optimization. EHVI balances
the trade-off between exploration and exploitation for multi-
objective BOED problems, similar to EI for single-objective
problems. EHVI is a scalar quantity that allows a rational agent
to select, sequentially, the next best experiment to carry out,
given current knowledge, regardless of the number of objectives,
or dimensionality, of the materials design problem. The optimal
solutions in an optimization problem are typically referred as
Pareto optimal solutions or Pareto front or Pareto front points.
The Pareto optimal solutions in a selected multi-objective space,
correspond to the points of the objective space that are not
dominated by any other points in the same space.

For the NiTi SMA, the considered input variables were
the initial homogeneous Ni concentration of the material

FIGURE 3 | Flowchart of the information fusion approach. Adapted

from Ghoreishi et al. (2018).

FIGURE 4 | Autonomous closed-loop, multi-objective Bayesian Optimal

Experimental Design framework. Adapted from Solomou et al. (2018).

before precipitation (c) and the volume fraction (vf ) of the
precipitates while the objective functions were functions of the
material properties of the corresponding homogenized SMA.
The framework was used to discover precipitated SMAs with
(objective 1) an austenitic finish temperature Af = 30◦C,
(objective 2) a specific thermal hysteresis that is defined as the
difference of austenitic finish temperature and martensitic start
temperature, Af −Ms = 40◦C. The problem was solved for two
case studies, where the selected continuous MDS is discretized
with a coarse and a dense mesh, respectively. The refined MDS
has nT = 21021 combinations of the considered variables c and
vf . The utility of the queried materials by the BOED framework
within a predefined experimental budget (OES) is compared
with the utility of the corresponding queried materials following
a Pure Random Experiment Selection (PRES) policy and a
Pure Exploitation Experiment Selection (PEES) policy within
a predefined experimental budget. An experimental budget is
assumed of nB = 20 material queries and for the case of the
OES and PEES policies the experimental budget is allocated to
nI = 1 randomly queried material and to nE = 19 for sequential
experiment design.

The results are shown in Figure 5A. It is seen that the OES
policy, even under the limited experimental budget, queries
materials that belong to the region of the objective space which
approaches the true Pareto front. This is clear by comparing the
Pareto front calculated based on the results of the OES (blue dash
line) with the true Pareto front found during the case study 1
(red dot line). The results also show that the materials queried by
the PRES policy are randomly dispersed in the objective space,
as expected, while the materials queried by the PEES policy
are clustered in a specific region of the objective space which
consists of materials with similar volume fraction values which
is anticipated courtesy the true exploitative nature of the policy.
Further analysis demonstrates, that the OES on average queries
materials with better utility in comparison to the other two
policies, while the PRES policy exhibits the worst performance.

Same trends of performance are maintained through the
equivalent comparisons conducted for various experimental
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FIGURE 5 | (A) Calculated objective space and Pareto front using the OES,

PRES and PEES policies under the nB = 20 experimental budget.

Reproduced with permission from Solomou et al. (2018), (B) Comparison of

the utility of the queried materials by the OES, PRES and PEES policies as

function of the experimental budget for the 2-objectives materials discovery

problem. Reproduced with permission from Solomou et al. (2018).

budgets as shown in Figure 5 which also indicates similar curves
for the coarse mesh. It is apparent that if the OES policy is
employed to query a material in a discrete MDS with defined
variables bounds, its relative performance in comparison to the
PRES policy becomes more definitive as the discretization of
the MDS is further refined, as the gap between PRES and OES
policies for the case of the dense discretized MDS (red lines)
is much bigger than that in the case of the coarse discretized
MDS (blue lines) optimally queried materials. The results of
the BOED framework thus demonstrate that the method could
efficiently approach the true Pareto front of the objective space of
the approached materials discovery problems successfully. Such
treatment was also carried out for a three-objective problem with
the additional objective of maximizing the maximum saturation
strain (Hsat) that thematerial can exhibit and similar conclusions
were drawn.

While exact algorithms for the computation of EHVI
have been developed recently (Hupkens et al., 2015; Yang
et al., 2017), such algorithms are difficult to be extended
to problems with more than 3 objectives. Recently, a subset
of the present authors (Zhao et al., 2018) developed a fast
exact framework for the computation of EHVI with arbitrary
number of objectives by integrating a closed-formulation
for computing the (hyper)volume of hyperrectangles with
existing approaches (While et al., 2012; Couckuyt et al., 2014)
to decompose hypervolumes. This framework is capable of
computing EHVIs for problems with arbitrary number of
objectives with saturating execution times, as shown in Figure 6.

2.2.2. Bayesian Model Averaging: Search for MAX

Phase With Maximum Bulk Modulus
As was mentioned above, the BMA framework has been
developed by the present authors to address the problem of
attempting a sequential optimal experimenta design over a
materials design space in which very little information about the
causal relationships between features and response of interest
is available. This framework was demonstrated by efficiently

FIGURE 6 | Comparison between traditional (grid-based) and fast approaches

(CCD13, WGF) for computing the EHVI with arbitrary number of objectives.

WFG corresponds to the updated framework developed in (Zhao et al., 2018).

exploring the MAX ternary carbide/nitride space (Barsoum,
2013) through Density Functional Theory (DFT) calculations
by the authors in Talapatra et al. (2018). Because of their rich
chemistry and the wide range of values of their properties (Aryal
et al., 2014), MAX phases constitute an adequate material system
to test simulation-driven-specifically DFT calculations- materials
discovery frameworks.

The problem was formulated with the goals of (i)
identifying the material/materials with the maximum bulk
modulus K and (ii) the maximum bulk modulus and
minimum shear modulus with a resource constraint of
permitting experiments totally querying 20% of the MDS.
The case of the maximum bulk modulus K is designed
as a single-objective optimization problem while the
second problem is designed as a multi-objective problem.
Features describing the relation between the material
and objective functions were obtained from literature and
domain knowledge.

In this work, a total of fifteen features were considered:
empirical constants which relate the elements comprising the
material to it’s bulk modulus; valence electron concentration;
electron to atom ratio; lattice parameters; atomic number;
interatomic distance ; the groups according to the periodic
table of the M, A & X elements, respectively; the order of
MAX phase (whether of order 1 corresponding to M2AX
or order 2 corresponding to M3AX2); the atomic packing
factor ; average atomic radius ; and the volume/atom
. In relevant cases, these features were composition-
weighted averages calculated from the elemental values
and were assumed to propagate as per the Hume-Rothery
rules. Feature correlations were used to finalize six
different feature sets which are denoted as F1, F2, F3, F4,
F5, and F6.
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Complete details may be found in Talapatra et al. (2018).
Some representative results are shown here. Calculations were
carried out for a different number of initial data instances N =
2, 5, 10, 15, 20. One thousand five hundred instances of each
initial set N were used to ensure a stable average response. The
budget for the optimal design was set at ≈ 20% of the MDS i.e.,
80 materials or calculations. In each iteration, two calculations
were done. The optimal policy used for the selection of the
compound(s) to query was based on the EI for the single objective
case and the EHVI for the multi-objective case. The performance

trends for all problems across different values of N are consistent.
The technique is found to not significantly depend on quantity of
initial data. Here, representative results for N = 5 are shown.

Figure 7A indicates the maximum bulk modulus found in
the experiment design iterations based on each model (feature
set) averaged over all initial data set instances for N = 5.
The dotted line in the figure indicates the maximum bulk
modulus = 300 GPa that can be found in the MDS. F2 is found
to be the best performing feature set on average, converging
fastest to the maximum bulk modulus. F6 and F5 on the

FIGURE 7 | Representative results for single objective optimization–maximization of bulk modulus for N = 5: (A) Average maximum bulk modulus discovered using all

described feature sets, (B) swarm plots indicating the distribution of the number of calculations required for convergence using all described feature sets, (C) average

maximum bulk modulus discovered using the best feature set F2, worst feature set F6, BMA1, and BMA2, (D) swarm plots indicating the distribution of the number of

calculations required for convergence using the best feature set F2, worst feature set F6, BMA1, and BMA2, (E) Average model probabilities for maximizing bulk

modulus using BMA1, (F) Average model probabilities for maximizing bulk modulus using BMA2.
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FIGURE 8 | The optimal solution obtained by our proposed approach and by

applying the knowledge gradient on a GP of only the true data (RVE) for

different number of samples queried from the true model. Image sourced from

Ghoreishi et al. (2018); use permitted under the Creative Commons Attribution

License CC-BY-NC-SA.

other hand, are uniformly the worst performing feature sets
on average, converging the slowest. It is evident that using
a regular optimization approach will work so long there is,
apriori, a good feature set. Figure 7B shows the swarm plots
indicating the number of calculations required to discover the
maximum bulk modulus in the MDS using experiment design
based on single models for the 1500 initial data instances with
N = 5. The width of the swarm plot at every vertical axis value
indicates the proportion of instances where the optimal design
parameters were found at that number of calculations. Bottom
heavy, wide bars, with the width decreasing with the number of
steps is desirable, since that would indicate that larger number of
instances needed fewer number of steps to converge. The dotted
line indicates the budget allotted, which was 80 calculations.
Instances that did not converge within the budget were allotted
a value of 100. Thus, the width of the plots at vertical value of
100, corresponds to the proportion of instances which did not
discover the maximum bulk modulus in the MDS within the
budget. From this figure, it is seen that for F1 , F2, and F4 in almost
100% of instances the maximum bulk modulus was identified
within the budget, while F5 is the poorest feature set and the
maximum was identified in very few instances.

Unfortunately, due to small sample size and large number of
potential predictive models, the feature selection step may not
result in the true best predictive model for efficient Bayesian
Optimization. Small sample sizes pose a great challenge in model
selection due to inherent risk of imprecision and, and no feature
selectionmethod performs well in all scenarios when sample sizes
are small. Thus, by selecting a single model as the predictive
model based on small observed sample data, one ignores the
model uncertainty.

To circumvent this problem the Bayesian Model Averaging
(BMA) method was used. Regression models based on
aforementioned six feature subsets, were adopted in the
BMA experiment design. The BMA coefficients were evaluated

in two ways: first-order (BMA1) and second-order (BMA2)
Laplace approximation. Figure 7C shows the comparison of the
average performance of both the first-order and second-order
BMA over all initial data set instances with the best performing
model (F2) and worst performing model (F6). It can be seen
that both the first-order and second-order BMA performance in
identifying the maximum bulk modulus is consistently close to
the best model (F2). BMA1 performs as well as if not better than
F2. Figure 7D shows the corresponding swarm plots indicating
the number of calculations required to discover the maximum
bulk modulus in the MDS for N = 5 using BMA1 and BMA2. It
can be seen that for a very high percentage of cases the maximum
bulk modulus can be found within the designated budget. In
Figures 7E,F, the average model coefficients (posterior model
probabilities) of themodels based on different feature sets over all
instances of initial data set are shown with the increasing number
of calculations for BMA1 and BMA2 respectively. Thus, we see
that, while prior knowledge about the fundamental features
linking the material to the desired material property is certainly
essential to build the Materials Design Space (MDS), the BMA
approach may be used to auto-select the best features/feature sets
in the MDS, thereby eliminating the requirement of knowing the
best feature set a priori. Also, this framework is not significantly
dependent on the size of the initial data, which enables its use in
materials discovery problems where initial data is scant.

2.2.3. Multi-Source Information Fusion: Application

to Dual-Phase Materials
In Ghoreishi et al. (2018), the authors demonstrated the Multi-
Source Information Fusion approach in the context of the
optimization of the ground truth strength normalized strain
hardening rate for dual-phase steels. They used three reduced-
order models (iso-strain, iso-stress, and iso-work) to determine
the impact of quantifiable micro-structural attributes on the
mechanical response of a composite dual-phase steel. The finite
element model of the dual-phase material is considered as the
ground truth with the objective being the maximization of
the (ground truth) normalized strain hardening rate at ǫpl =
1.5%. The design variable then is the percentage of the hard
phase, fhard, in the dual-phase material. A resource constraint
of five total queries to (any of) the information sources before
a recommendation for a ground truth experiment is made was
enforced. If ground truth results were found to be promising,
five additional queries were allocated to the information sources.
The initial intermediate Gaussian process surrogates were
constructed using one query from each information source and
one query from the ground truth.

The value-gradient policy discussed earlier was used to select
the next information source and the location of the query in
the input space for each iteration of the process. The KG policy
operating directly on the ground truth was also used to reveal
the gains that can be had by considering all available information
sources for comparison purposes. To facilitate this, a Gaussian
process representation was created and updated after each query
to ground truth. The convergence results of the fusion approach
using all information sources and the KG policy on the ground
truth are indicated in Figure 8. Here, the dashed line represents
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FIGURE 9 | The fused model and Gaussian processes of the isowork, isostrain, and isostress models in comparison with the true (RVE) model in iterations 1, 15, and

30. Image sourced from Ghoreishi et al. (2018); use permitted under the Creative Commons Attribution License CC-BY-NC-SA.

the optimal value of the ground truth quantity of interest. The
proposed approach clearly outperforms the knowledge gradient
applied directly to the ground truth, and also converged to
the optimal value much faster, thereby reducing the number of
needed ground truth experiments. This performance gain may
be attributed to the ability of the information fusion approach

to efficiently utilize the information available from the three
low fidelity information sources to better direct the querying
at ground truth. The original sample from ground truth used
for initialization was taken at fhard = 95%, which is far away
from the true optimal as can be observed in Figure 9 in the
left column. The proposed framework, was thus able to quickly
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FIGURE 10 | Number of samples queried from the true model (RVE) and the

information sources in each iteration. Image sourced from Ghoreishi et al.

(2018); use permitted under the Creative Commons Attribution License

CC-BY-NC-SA.

direct the ground truth experiment to a higher quality region
of the design space by leveraging the three inexpensive available
information sources.

Figure 9 shows the updates to each information source
Gaussian process surrogate model and the fused model
representing the total knowledge of ground truth for iterations 1,
15, and 30 of the information source querying process. Note that
an iteration occurs when an information source is queried. which
is distinct from any queries to ground truth. As is evident from
the left column, the first experiment from ground truth and the
first query from each information source gave scant information
about the location of the true objective. However, by iteration
15, the fused model, shown by the smooth red curve, still under-
predicts the ground truth at this point but has identified the best
region of the design space. At iteration 15, only three expensive
ground truth experiments have been conducted. By iteration 30,
six ground truth experiments have been conducted and the fused
model is very accurate in the region surrounding the optimal
design for ground truth. It is clear from Figure 9 that none of the
information sources share the ground truth optimum. It is worth
highlighting that the ability of the proposed framework to find this
optimum rested upon the use of correlation exploiting fusion, and
would not have been possible using traditional methods.

Figure 10 presents the history of the queries to each
information source and the ground truth. Note that the iteration
now counts queries to each information source as well as ground
truth experiments. From the figure, it is evident that all three
information sources are exploited to find the ground truth
optimal design, implying that, however imperfect, the optimal
use of all sources available to the designer is essential in order
to identify the optimal ground truth.

2.2.4. Bayesian Model Averaging and Information

Fusion: CALPHAD-Based Thermodynamic Modeling
Calculation of phase diagrams (CALPHAD) is one of the
fundamental tools in alloy design and an important component
of ICME. Uncertainty quantification of phase diagrams is the
first step required to provide confidence for decision making
in property- or performance-based design. In work that was
the first of its kind (Honarmandi et al., 2019), the authors
independently generated four CALPHAD models describing
Gibbs free energies for the Hf − Si system. The calculation of
the Hf − Si binary phase diagram and its uncertainties is of great
importance since adding Hafnium to Niobium silicide based
alloys (as promising turbine airfoil materials with high operating
temperature) increases their strength, fracture toughness, and
oxidation resistance significantly (Zhao et al., 2001). The Markov
Chain Monte Carlo (MCMC) Metropolis Hastings toolbox in
Matlab was then utilized for probabilistic calibration of the
parameters in the applied CALPHAD models. These results
are shown for each model in Figure 11 where it is seen that
there is a very good agreement between the results obtained
from model 2 and the data with a very small uncertainty
band and consequently a small Model Structure Uncertainty
(MSU) (Choi et al., 2008). Models 3 and 4 on the other hand
show large uncertainties for the phase diagrams which are mostly
attributed to MSU. In the context of BMA, the weight of the
applied models was calculated to be 0.1352, 0.5938, 0.1331, and
0.1379, respectively, indicating that Model 2 thus has three times
the weight of the other models, which otherwise have similar
Bayesian importance, consistent with the phase diagram results
in Figure 11. The phase diagram obtained using BMA is shown
in Figure 12. The posteriormodes of the probability distributions
in the BMA model exactly correspond to the posterior modes of
the probability distributions in model 2. Thus, the best model
results can be considered as the optimum results for the average
model, but with broader uncertainties, contributed by the inferior
models. In BMA, each model has some probability of being true
and the fused estimate is a weighted average of the models.
This method is extremely useful in the case of model-building
process based on a weighted average over the models’ responses,
and/or less risk (more confidence) in design based on broader
uncertainty bands provided by a weighted average over the
uncertainties of the models’ responses.

Error Correlation-based Model fusion was then used to fuse
the models together in two ways: (i) Fuse models 1, 3, 4 to
examine whether the resulting fused model maybe closer to
the data and reduce the uncertainties and (ii) Fuse models 1,
2, 3, and 4 together. Figure 13A shows that the approach can
provide a phase diagram in much better agreement with data and
with less uncertainty compared to phase diagrams obtained from
each one of the applied models individually. This result implies
that random CALPHAD models can be fused together to find
a reasonable estimation for phase diagram instead of trial-and-
error to find the best predicting model. It is also apparent that
better predictions can be achieved as shown in Figure 13B if
model 2 (the best model) is also involved in the model fusion.
The information fusion technique allowed the acquisition of
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FIGURE 11 | Optimum Hf-Si phase diagrams and their 95% Bayesian credible intervals (BCIs) obtained from models 1–4 (A–D) after uncertainty propagation of the

MCMC calibrated parameters in each case. Reproduced with permission from Honarmandi et al. (2019).

FIGURE 12 | Posterior modes and 95% Bayesian credible intervals (BCIs) at

different compositions/regions in Hf-Si phase diagram obtained after BMA.

Reproduced with permission from Honarmandi et al. (2019).

more precise estimations and lower uncertainties compared to
results obtained from each individual model. In summary, the
average model obtained from BMA shows larger 95% confidence
intervals compared to any one of the individual models, which
can provide more confidence for robust design but is likely
too conservative. On the other hand, the error correlation-
based technique can provide closer results to data with less

uncertainties than the individual models used for the fusion.
The uncertainty reductions through this fusion approach are also
verified through the comparison of the average entropies (as a
measure of uncertainty) obtained for the individual and fused
models. Therefore, random CALPHAD models can be fused
together to find reasonable predictions for phase diagrams with
no need to go through the cumbersome task of identifying the
best CALPHADmodels.

3. CONCLUSIONS AND
RECOMMENDATIONS

In this work, we have reviewed some of the most important
challenges and opportunities related to the concept of optimal
experiment design as an integral component for the development
of Materials Discovery frameworks, and have presented some
recent work by these authors that attempts to address them.

As our understanding of the vagaries implicit in different
design problems progresses, tailoring experiment design
strategies around the specific material classes under study
while further developing the experiment design frameworks
will become increasingly feasible and successful. As techniques
improve, we will be able to access and explore increasingly
complex materials design spaces, opening the door to precision
tailoring of materials to desired applications. Challenges
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FIGURE 13 | Error correlation-based model fusions of (A) three models (1, 3, and 4) and (B) all four models.Reproduced with permission from

Honarmandi et al. (2019).

in the form of the availability and generation of sufficient
and relevant data of high quality need to be continuously
addressed. The optimal way to accomplish this would
be the implementation of universal standards, centralized
databases and the development of an open access data-sharing
system in conjunction with academia, industry, government
research institutions and journal publishing agencies which is
already underway.
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A multi-fidelity surrogate model for highly nonlinear multiscale problems is proposed.

It is based on the introduction of two different surrogate models and an adaptive

on-the-fly switching. The two concurrent surrogates are built incrementally starting from

a moderate set of evaluations of the full order model. Therefore, a reduced order model

(ROM) is generated. Using a hybrid ROM-preconditioned FE solver additional effective

stress-strain data is simulated while the number of samples is kept to a moderate

level by using a dedicated and physics-guided sampling technique. Machine learning

(ML) is subsequently used to build the second surrogate by means of artificial neural

networks (ANN). Different ANN architectures are explored and the features used as

inputs of the ANN are fine tuned in order to improve the overall quality of the ML model.

Additional ML surrogates for the stress errors are generated. Therefore, conservative

design guidelines for error surrogates are presented by adapting the loss functions of the

ANN training in pure regression or pure classification settings. The error surrogates can be

used as quality indicators in order to adaptively select the appropriate—i.e., efficient yet

accurate—surrogate. Two strategies for the on-the-fly switching are investigated and a

practicable and robust algorithm is proposed that eliminates relevant technical difficulties

attributed to model switching. The provided algorithms and ANN design guidelines can

easily be adopted for different problem settings and, thereby, they enable generalization

of the used machine learning techniques for a wide range of applications. The resulting

hybrid surrogate is employed in challenging multilevel FE simulations for a three-phase

composite with pseudo-plastic micro-constituents. Numerical examples highlight the

performance of the proposed approach.

Keywords: reduced ordermodeling (ROM), machine learning, artificial neural networks (ANN), surrogatemodeling,

error control, on-the-fly model adaptivity, multiscale simulations

1. INTRODUCTION

In computer-assisted materials design and in the simulation of complex materials with rich
microstructure major challenges remain to be solved despite the outstanding advances made in
recent years. For example, the discretization of all microstructural features in a monolithic finite
element (FE) simulation is unfeasible due to the various length scales involved that range from

46

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2019.00075
http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2019.00075&domain=pdf&date_stamp=2019-05-03
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fritzen@mechbau.uni-stuttgart.de
https://doi.org/10.3389/fmats.2019.00075
https://www.frontiersin.org/articles/10.3389/fmats.2019.00075/full
http://loop.frontiersin.org/people/609275/overview
http://loop.frontiersin.org/people/606040/overview
http://loop.frontiersin.org/people/681807/overview


Fritzen et al. On-the-Fly Adaptive Twoscale Simulations

micrometers up to the meters. These would lead to a ludicrous
complexity of the resulting overall model. By accounting for a
separation of length scales, the FE2 ansatz (Feyel, 1999; Miehe,
2002) can lead to some savings over the monolithic approach
by replacing the heterogeneous material by microscopic FE
problems at the macroscopic integration points, leading to a
partial decoupling of microscopic and macroscopic degrees of
freedom. Still the number of overall unknowns is prohibitive and
calls for massively improved computational efficiency in terms
of CPU time, memory savings and information compression.
Novel strategies contributing to the vision of a fully connected
investigation of materials and aspiring the prediction process-
structure-property relationships across multiple length and time
scales are, thus, much sought-after, see, e.g., Schmitz and
Prahl (2016). Due to the rapid growth of available material
and simulation data, data-integrated approaches that exploit
information from different sources in order to complement
or substitute simulations and experiments are experiencing
increased attention, see, e.g., Kalidindi and De Graef (2015),
Kalidindi (2015), and Ramakrishna et al. (2018).

Due to novel improvements in machine learning and
computational resources, a zoo of data-driven methods
comprising, e.g., kernel methods, principal component analysis,
and artificial neural networks, have developed immense
momentum over the last years. The successful implementation
of these techniques in materials research is an active field. For
instance, in Chupakhin et al. (2017) artificial neural networks
and finite element computations have been combined in order
to predict the influence of plasticity on the residual stress field
measured by hole drilling. Principal component analysis of n-
point microstructure statistics have shown excellent performance
in order to examine microstructure-property relationships, see,
e.g., Çeçen et al. (2014), Gupta et al. (2015), and Altschuh et al.
(2017). In Bélisle et al. (2015), several machine learning methods
have been considered in the context of molecular dynamics.
Liu et al. (2015) show how data mining and machine learning
are combined in order to efficiently approximate the elastic
localization in voxelized microstructures. Another branch of
data-driven materials research exploring the use of convolutional
neural networks and deep learning in order to deliver accurate
structure-property linkages is currently in heavy development,
see, e.g., Çeçen et al. (2018) and Yang et al. (2018).

While data-driven approaches have their appeal, the structure
of the underlying physical problem can be accounted for
only in parts. For instance, established balanced laws and
thermodynamic principles are hard to be incorporated in
the aforementioned methods. Reduced order models for the
microscopic problem offer an advantageous compromise
between physics-informed modeling and computational
efficiency. Purely data-driven surrogates lack accuracy (i) if the
amount of training data is limited, (ii) if the validity domain is
left, or (iii) if the error of the surrogate in respect to the reference
solution is to be estimated. In these scenarios, reduced order
models following physical principles offer, in general, better
accuracy and robustness. For example, in Fritzen and Leuschner
(2013) a highly efficient potential based reduced order model has
been developed. This ansatz has a natural physical supporting

argument, since a reduced basis for the solution field is generated
based on snapshot data of FE computations. The approach has
been demonstrated to achieve substantial speed-ups andmemory
savings, see also Fritzen et al. (2014) and Fritzen and Hodapp
(2016). Other developments in this field comprise the NTFA (e.g.,
Michel and Suquet, 2003) and NTFA-TSO (Michel and Suquet,
2016) or hyper-reduced simulations and related schemes
(Ryckelynck, 2009; Soldner et al., 2017). In order to improve the
incorporation of surrogates obtained from reduced order models
a goal-oriented error estimation or quality indication is required.
The quantity of interest (QoI) is the effective stress and its
accuracy (up to a prescribed tolerance) is essential for reliability
of the overall predictions. In Lu et al. (2018), for example,
neural networks have been successfully trained to approximate
the microscopic nonlinear microscopic electric material law of
graphene/polymer nanocomposites, but without error control
or model adaptivity in macroscopic simulations. A macroscopic
goal-oriented approach combining reduced order modeling and
machine learning techniques has been demonstrated in Trehan
et al. (2017) for two-dimensional oil-water subsurface flow
systems and in Freno and Carlberg (2018) for three-dimensional
mechanical problems. The approach considers a reduced
order model and an a posteriori correction through machine
learning methods. The ansatz shows promising results, but it
requires the evaluation of the reduced order model. For twoscale
simulations with a macroscopic and a microscopic problem,
even the evaluation of a reduced order model for the microscopic
problem may not be always viable due to the large number of
needed evaluations in the macroscopic problem. It is, therefore,
necessary to seek efficient alternatives incorporating a hierarchy
of surrogate models of different computational complexity and
different accuracy in the QoI. Hereby, one may also take into
consideration physics-informed artificial neural networks, as
done in Raissi et al. (2018), in order to obtain the field solution
of the balance equations for the microscopic physical problem
at hand and then computing the QoI for the macroscopic scale.
Such approaches are highly attractive, but not suitable for the
objectives of twoscale computations, since the surrogate for the
microscopic model is only required to return the QoI for the
macroscale and additional calibration of the artificial neural
networks for the microscopic solution field would only increase
the computational costs without any benefits for the convergence
of the macroscopic problem.

The present work aims in mechanical multiscale FE
simulations at the adaptive combination of the physics-informed
reduced order model (ROM) of Fritzen and Kunc (2018), for
nonlinear hyperelastic problems (i.e., no history dependency),
with artificial neural networks (ANNs), for which feedforward
neural networks are considered. Hereby, the ANNs are trained
based on FE computation of the full three-dimensional
microstructure and material at hand for a set of loading strains
(input quantity). The QoI (output quantity) is the effective stress,
which the ANNs are trained for. The trained ANNs are then
used as a highly efficient constitutive relation surrogate for the
nonlinear material at hand. For macroscopic FE computations,
the ANN material law surrogate is to be used, if possible,
at every integration point for given effective strain. Based on
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quality indicators, as accuracy or range of validity, the ANN
constitutive relation surrogate may be inaccurate or insecure for
given strain. The present work, therefore, further considers the
errormodeling of trained ANNs and discusses guidelines in order
to induce conservative properties to the error models, which are
calibrated through ANNs in standard regression or classification
approaches. Additionally, strategies are proposed for an adaptive
ANN-ROM schemes, where the more accurate but expensive
ROM is only called at an integration point, if the quality indicator
demands it.

The manuscript is organized as follows: In section 2,
two concurrent surrogate models for the QoI obtained by
reduced order modeling and from purely data-driven ANNs
are described. The twoscale mechanical problem is introduced
and the challenges in the goal-oriented error estimation of
derived quantities of interest remaining in nonlinear reduced
order modeling are detailed. Then, the data generation for the
training of the ANNs is illustrated, followed by the guidelines
for the material law and error approximation. At the end of the
section, adaptive twoscale simulation strategies including on-the-
fly model switching are presented. Section 3 offers numerical
examples for a three-phase pseudo-plastic material: The ANN
is used for the direct surrogation of the QoI. This is adaptively
complemented by a more robust and reliable reduced order
model based on the concept of quality indicators. Multiscale
FE simulations comparing the different multiscale simulation
techniques are presented. Themanuscript ends with a concluding
summary of the results in section 4.

2. REDUCED ORDER MODELING AND
ARTIFICIAL NEURAL NETWORKS

2.1. Twoscale Framework
2.1.1. Problem Setting
The simulation of microstructured solids with a sufficient
separation of length scales is investigated. More precisely, a
macroscopic domain Ω ⊂ R

3 with characteristic length L and
an attached microstructure with characteristic length Lµ ≪ L are
considered. The microstructure is assumed to be ergodic and the
existence of a periodic Representative Volume Element (RVE) Ω

is assumed. In the following, macroscopic fields are overlined •.
The twoscale problem consists of the concurrent solution of the
macroscopic boundary value problem (BVP)

(P) : div
(

σ̄ (ε̄)
)

= 0 with ε = sym grad(u) + BC (1)

and, for each macroscopic point x ∈ Ω , of the solution of the
RVE problem

(P) : div
(

σ (ε)
)

= 0 with ε = sym grad(u)

and
1

|Ω|

∫

Ω

ε dV = ε̄. (2)

Here u, u denote displacements, ε, ε̄ are infinitesimal strain
tensors and σ , σ̄ denote the stress fields on the microscopic and
macroscopic domain, respectively. The solution of (P) defines the

FIGURE 1 | Twoscale mechanical problem in the context of FE2 for a material

with a microstructure composed of three material phases: at every integration

point of the macroscopic problem (P̄) the microscopic problem (P) is solved in

the FOM through a microscopic FE computation for prescribed ε̄, the resulting

effective stress σ̄ , and corresponding gradient C̄ = ∂ σ̄/∂ ε̄ are then computed

and returned to the macroscopic integration point.

missing constitutive relation for the macroscopic stress σ via the
volume average

σ̄ = 1

|Ω|

∫

Ω

σ dV . (3)

The two BVPs are strongly coupled since the solution u of (P)
defines the boundary condition for (P) via ε̄, while the solution of
(P) implicitly provides the missing constitutive equation via (3).

A straight-forward yet computationally costly approach to
solving the twoscale problem is given in terms of the FE2 method
(Feyel, 1999; Miehe, 2002): Here the microscopic problem is
solved at each macroscopic integration point and the effective
tangent operator is used in order to allow for Newton-Raphson
iterations of the nonlinear macroscopic BVP. In the following,
the solution of the microscopic BVP using Finite Elements is
considered as the reference solution, i.e., it denotes the Full Order
Model (FOM). In Figure 1 the macroscopic and microscopic
problems are illustrated in the context of FE2.

2.1.2. Reduced Order Model (ROM)
Given the massive computational demands of the FE2 technique
and the limited availability of computational resources, the
use of nowadays established reduced order models (ROM), in
order to replace the costly microscopic BVP evaluations, has
become an accepted alternative for dissipative and pseudo-plastic
hyperelastic materials (Radermacher and Reese, 2016; Fritzen
and Kunc, 2018). The reduced basis of dimension N obtained
from the snapshot Proper Orthogonal Decomposition (POD,
Sirovich, 1987) can be expressed in terms of a matrix U(x),
where each column represents a displacement field. The reduced
parameterization of the solution is then given in vector notation
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via (i = 1, . . . ,N)

u(x) = ε x+ U(x) ξ , ε(x) = ε + E(x) ξ ,
(

E(x)
)

•i
= vec

(

sym grad
((

U(x)
)

•i

))

, (4)

where (A)•i refers to the ith column of the corresponding matrix.
Here, the matrix and vector notation of the effective strain ε̄ are
used concurrently for convenience. In the following, attention
is limited to pseudo-plastic materials, i.e., to strongly nonlinear
hyperelastic solids for which the stress σ and the stiffness C

are defined as the gradients of a free energy function W(ε)
according to

σ ≡ σ = ∂W(ε)

∂ε
, C ≡ C = ∂2W(ε)

∂ε ∂ε
. (5)

Following Fritzen andKunc (2018) the reduced problem is to find
the coefficients ξ ∈ R

N solving

r(ε, ξ ) =
∫

Ω

ETσ dV
!= 0. (6)

While the effective stress is obtained from simple volume
averaging of σ , the effective tangent stiffness is computed via

C = 1

|Ω|





∫

Ω

C dV − KT J−1K



 with K =
∫

Ω

C E dV ,

J =
∫

Ω

ETC E dV , (7)

which follows from straight-forward linearization of (6). The
accuracy of the ROM depends on the quality and amount of
the snapshots and of the reduced dimension N. It shall be noted
that the Galerkin ROM inherits the properties of classical Finite
Elements, i.e., the solution is Galerkin orthogonal and, thus,
energy optimal. It follows the basic physical principle of energy
minimization. From a theoretical perspective this motivates the
robustness and accuracy of the ROM even beyond the considered
parameters used during the generation of the snapshot data, i.e.,
the ROM can be considered to generalize.

2.2. Goal-Oriented Error Estimation
For the microscopic BVP, using the ROM (or any other
approximation of the FOM) naturally introduces an error into
the solution of the problem, and into the quantity of interest
(QoI). In this work the latter is the effective stress. Hence, in
order to enable error control for the macroscopic boundary
value problem, it is crucial to estimate the error in the QoI,
see, e.g., Larsson and Runesson (2011). For this purpose, we
define the error in displacements on the microscale as e(x) =
uF(x) − uRN(x), where uF and uRN are the solutions to the
microscopic problem (2) using the FOM and N-dimensional
ROM, respectively. In view of the reduced kinematics (4), we can
parameterize the error in the ROM as

e(x) = UF(x)ξ
e
, (8)

where UF denotes the (finite element) shape functions pertinent
to the FOM and ξ

e
denotes the nodal values of the fully

resolved error. The FOM and N-dimensional ROM effective
stress functions are referred to for clarity as

σ̄ F(ε̄) = effective stress of FOM for given effective strain ε̄ ,
(9)

σ̄RN(ε̄) = effective stress of N-dimensional ROM for given

effective strain ε̄ ,
(10)

while the corresponding error is addressed as

eσ = σ F − σRN . (11)

Now, consider the corresponding FOM residual equation
analogous to (6) and the error in the QoI given in (11) in
terms of the error in the solution defined in (8). Through
linearization, we obtain the error equation and the linearization
of the macroscopic stress error

JFξ
e
≈ −rF, eσ ≈ KFξ

e
, (12)

respectively. Here rF, JF, and KF define the residual, Jacobian

and linearized stress error in (6) and (7), with E replaced by EF

defining the strains of the finite element shape functions. The,
nowadays, standard method of goal-oriented error estimation
can be carried out by solving the suitably formulated dual (or
adjoint) problem (see, e.g., Oden and Prudhomme, 2001)

(

JF
)T

ξ∗ =
(

KF
)T

. (13)

Finally, (12) and (13) can be combined to yield the result

eσ ≈ −[ξ∗]TrF. (14)

We note that the estimator (14) has, in particular, the following
properties: (i) It is restricted to estimating the linearized error
contribution, (ii) it requires the assembly of the entire FOM
residual and Jacobian, and (iii) it requires the solution of the dual
problem using the FOM to formally hold. Even if the linearization
error is negligible, the high computational cost involved in
assembling the full (FOM) Jacobian and residual of the problem
makes this technique unalluring for use in conjunction with
highly efficient ROM approximations. Possible approximations
of (13) pertain to hierarchical approximations. One could, for
instance, solve the dual problem using an enriched ROM,
rather than the FOM. However, designing a robust hierarchical
scheme requires means of guaranteeing that the enriched basis
is sufficient. In view of the discussion above, we shall henceforth
consider alternative methods to estimating (and controlling) the
error in macroscopic stress from each microscopic problem.
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2.3. Artificial Neural Networks (ANNs)
2.3.1. Generation of Data

2.3.1.1. Design of input data / loading directions
The present work is concerned with materials based on state
dependent models for, e.g., pseudo-plasticity. For such material
models, see, e.g., Kunc and Fritzen (2018), the transition zone
between elastic and plastic domain is found in the vecinity of
the origin in strain space. In this transition zone a pronounced
nonlinearity and change of slope not only from the elastic to
the plastic domain take place, but also depending on the load
direction in the plastic domain, followed by a saturation behavior
for increasing load amplitudes. This material behavior motivated
the Concentric Sampling (CS) approach proposed by Kunc and
Fritzen (2018) for pseudo-plastic materials, which is also used
in this work. Based on the CS approach, nd almost uniformly

distributed unit vectors / directions d(i) ∈ R
6 (i = 1, . . . , nd) are

generated. Samples along the generated directions are considered
with an exponentially growing step width from the origin. The
primal strain dataset D̂ε is addressed as

D̂ε = {ε̄ ∈ R
6
: ε̄ = r d, r ∈ Dr , d ∈ Dd} , Dr = {r1, . . . } ,

Dd = {d1, . . . } (15)

with the primal strain norm discretization Dr and set
of directions Dd. The definition (15) corresponds to a
tensor decomposition into direction and amplitude. For many
materials the volume changes are rather small compared to
isochoric deformations. This effect is particularly pronounced for
(pseudo-) plastic materials. In order to sample the strain space
in a problem specific manner, a rescaling of the strains defined
in (15) may be convenient. The present work solely rescales the
spherical part (sph) of each primal strain (i.e., the dilatation),
while the deviatoric part (dev) remains unchanged. The actual
strain dataset is described by

Dε =
{

ε̄ ∈ R
6
: ε̄ = T̂( ˆ̄ε) = 1

r̂
sph( ˆ̄ε)+ dev( ˆ̄ε), ˆ̄ε ∈ D̂ε

}

,

#(Dε) = #(Dd)#(Dr) , (16)

where r̂ specifies the rescaling of the spherical part. The number
of strain samples #(Dε) is given by the product of number
of the directions #(Dd) and the number of amplitudes per
direction #(Dr).

2.3.1.2. Generation of output data
For the training of the artificial neural networks (ANNs), training
(T), validation (V), and random (Monte Carlo - MC) datasets,
referred to as DT

ε , D
V
ε , and DMC

ε , respectively, are generated.
The latter are not obtained using CS, but using a uniformly
random set of directions in strain space. They are mainly used for
unbiased testing of the surrogate independent of the proximity
to the training and validation set. The output of interest in the
present work is, primarily, the effective stress, but also some error
measures for the derived surrogates, which will be defined in the
following sections.

Technically, the process of generating the data samples is
challenging. In order to obtain reliable data, the FOM and

the ROM must be evaluated thousands of times in order to
obtain the needed data. Each sample consists of an effective
strain ε̄ and the related effective stress σ̄ . In order to boost
the performance of the simulations, a ROM-preconditioned
solver for the FOM has been developed: First, an accurate (i.e.,
high-dimensional) ROM is solved for each load path. Then
the FEM is accelerated by taking the ROM solution as initial
guess for the nodal displacements during the first increment
and, during the subsequent load steps, by taking the ROM
displacement increment as initial guess for the FEMdisplacement
adjustment. This not only brings the initial guess close to the
final solution but it also leads to an accurate global stiffness
matrix that can be combined with Quasi-Newton techniques. The
ROM-accelerated FE showed a 20% reduction in the number of
Newton iterations, despite the use of a Quasi-Newton scheme.
This is remarkable in view of the less accurate stiffness matrix
of Quasi-Newton scheme and the faster convergence must be
attributed to the improved initial guess for the FE displacement
vector reconstructed from the ROM solution. Overall, this
approach provides significant computational improvements over
a naive FE based data generation. Further, it is noteworthy that
the high-dimensional ROM solution can be used to derive a
hierarchy of lower-dimensional ROM solutions needing virtually
no additional Newton-Raphson iterations via linearization. More
precisely the trailing entries of a ROM solution can be eliminated
by making use of the Schur complement which leads to an
adjustment of the remaining reduced coefficients. In our tests this
downscaling of high quality ROM solutions to N-dimensional
ROMs proved an efficient tool.

2.3.2. Surrogate Model for the Effective Stress

2.3.2.1. Feature design
For the successful training of ANNs the normalization of the
input and output data and the design of appropriate inputs
(usually referred to as features) through linear or nonlinear
transformations is essential. Compared to image data and
convolutional neural networks, which usually take advantage
of the intrinsic connection of image data and convolution,
the present input data (strain data) is low-dimensional and
necessarily requires sensible mechanical guidance during feature
design. From a pure data-driven perspective, general batch
normalization can greatly improve the prediction quality of a
network. But in the present problem setting the input and output
data have a clear physical nature. Therefore, based onmechanical
reasoning, the consideration of the dependency of the material
law on the spherical (ε̄◦) and deviatoric (ε̄′) degrees of freedom
of the strain offers a material theoretic starting point. This linear
transformation is addressed as

Tsd1(ε̄) =
[

ε̄◦

ε̄′

]

= [ε̄◦, ε̄′1, ε̄
′
2, ε̄

′
3, ε̄

′
4, ε̄

′
5]

T ∈ R
6 . (17)

Additionally, the deviatoric part of the strain can be split into its
norm and direction

Tsd2(ε̄) =





ε̄◦

|ε̄′|
ε̄′/|ε̄′|



 ∈ R
7 . (18)
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After either of these transformations, a corresponding
normalization is performed in order to prepare the strain
features for the subsequent evaluation through the ANN: For
Tsd1, each component of the vector Tsd1(ε̄) is shifted and then
divided by its corresponding mean and standard deviation over
the training dataset DT

ε , i.e., component-wise shifting and scaling

are applied. For Tsd2, the first component (i.e., the volumetric
strain) is scaled according to the standard procedure while the
deviatoric strain amplitude is divided by its peak value and the
deviatoric direction remains unchanged. In the following the
shifted and scaled inputs are referred to as x[0] ∈ R

D,D = 6, 7.

2.3.2.2. Architecture of the artificial neural network
In the present work, feedforward neural networks are used. This
choice within the plethora of available artificial neural networks
is driven by the fact that a function is to be calibrated that
depends exclusively on the current state ε̄: the effective stress of
the FOM σ̄ F(ε̄). It should be remarked that for problems with
history dependency, e.g., path-dependent plasticity or damage in
cyclic loading, feedforward neural networks could, in principle,
be considered, but recurrent neural networks offer much better
alternatives. They are specially designed for time series and
they feed back outputs of the model into the prediction of
the subsequent cycle. Generally, the training costs of recurrent
neural networks are immensely higher than that of feedforward
neural networks, since a large number of input paths is required,
instead of points in the input space. For the problem at hand
recurrent neural networks offer no advantages. Hence, we choose
feedforward neural networks for the rest of the present work.
Hereby, networks consisting of L > 1 layers are taken into
account. For each layer l = 1, . . . , L consisting of n[l] neurons

the inputs x[l−1] ∈ R
n[l−1]

and outputs x[l] ∈ R
n[l] are related

by weights W[l], biases b[l] and activation functions a[l] via the
recursion

x[l] = a[l](W[l]x[l−1] + b[l]) ∈ R
n[l] , W[l] ∈ R

n[l]×n[l−1]
,

b[l] ∈ R
n[l] , (19)

complemented by n[0] = D. The weights and biases of
the ANN are parameters, which need to be calibrated with
training data by solving an unconstrained optimization problem.
The choice of activation functions is an abstract parameter
that can heavily influence the quality of the surrogate. Its
selection depends on the intuition of the user, complemented
by thorough testing in terms of architecture sweeps. In the
present context, the differentiability of the stress surrogate is
aspired, as it allows for a computation of the tangent stiffness
at low computational expense through automatic differentiation.
This requirement naturally favors smooth activation functions.
Our ANN implementation is based on Python3 (v3.4.3) using
Google’s TensorFlow library (v1.12.0), which offers automatic
differentiation capabilities. For architecture tests the following
activation functions have been used:

• the identity function (Id) a(x) = x,
• the rectified linear unit (RELU) a(x) = max(x, 0),
• the softplus function (SP) a(x) = log(1+ exp(x))

• and the hyperbolic tangent (TANH) a(x) = tanh(x).

The identity function (Id) allows to pass unaltered input, such
that a linear combination of the activation functions of the
previous layer is returned. This is particularly desired in the last
layer, in order to obtained an optimized linear combination of
nonlinear functions as final output y = x[L] of the ANN. The

evaluation of a single input strain through the whole ANN is
addressed by the composition of all layers

ANN(ε̄) = y(ε̄) = a[L]
(

W[L]a[L−1](. . . )+ b[L]
)

. (20)

2.3.2.3. Loss function
The training of the ANN requires an objective function that
provides an error respecting the nature of the outputs. In the
context of ANNs, the objective function is referred to as loss
function. Similar to the inputs, the outputs, the effective stress
of the FOM σ̄ F defined in (9), should also be scaled using an
invertible transformation

p(ε̄) = Tσ (σ̄
F(ε̄)) ∈ R

dσ . (21)

Here, the same transformations Tsd1 and Tsd2 as for the inputs
are considered for Tσ during architecture testing. The evaluation
of the ANN is analogously abbreviated as

p̃(ε̄) = ANN(ε̄) ∈ R
dσ . (22)

In this work, the mean squared error (MSE) is chosen as the
loss function

MSE = 1

dσ

mean
DT

ε

(

‖p− p̃‖2
)

. (23)

The MSE (23) is then optimized with respect to the ANN
parameters, i.e., the weights and biases are identified starting
from a random initialization. The ANN output is then obtained
through an inverse transformation

σ̄ANN(ε̄) = T−1
σ (ANN(ε̄)) . (24)

It should be remarked that, from the perspective of physics-
informed artificial neural networks, one may also consider the
incorporation of the norm of the non-symmetric part of the
gradient ∂σ̄ANN/∂ε̄ in the loss function. This would help to
calibrate the network, such that its gradient is likely to be
close to symmetric. But since this can not be assured for
arbitrary input ε̄, number of layers, neurons and activation
functions, the present work prefers to solely consider (23) for
the loss function, calibrate σ̄ANN as good as possible and simply
symmetrize the resulting gradient ∂σ̄ANN/∂ε̄. Hereby, it should
be stressed that a symmetric gradient ∂σ̄ANN/∂ε̄ is essential
for the hyperelastic/pseudo-plastic material considered in this
work, since the assembled system matrix of the macroscopic
problems is symmetric by the corresponding material theory.
A non-symmetric system matrix in the macroscopic problem
would also increase the computational costs, due to the thereby
induced necessity for solvers for non-symmetric matrices.
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The quality of the ANN during training is checked, not with
respect to the training dataset, but with the validation dataset DV

ε

via the mean relative norm error (MRNE)

MRNE = mean
DV

ε

(

‖σ̄ F − σ̄ANN‖
‖σ̄ F‖

)

. (25)

In addition to that, the mean coefficient of determination R2σ of
the effective stress is evaluated

R2σ = 1

6

6
∑

i=1

R2i , R2i = 1−
mean
DV

ε

(

(

σ̄ F
i − σ̄ANN

i

)2
)

mean
DV

ε

(

(σ̄ F
i )

2
)

−
(

mean
DV

ε

(σ̄ F
i )

)2
.

(26)
The coefficient of determination is bounded by one which is
attained if and only if the surrogate coincides with the reference
for all queries.

2.3.3. Surrogate Model for the Error in the Quantity of

Interest

2.3.3.1. Error regression and classification
In this section, we are interested in the calibration of ANNs
taking strain data as input and delivering quantitative and
qualitative error estimates for the stress. On the one hand, for
a given strain, it might be of interest to predict the error of stress
surrogate against the FOM stress. On the other hand, it might
not be of particular interest to know the exact error value, but
rather to know if the error is acceptable, i.e., if it is smaller than a
prescribed tolerance. The quantitative error prediction leads to
a classical regression problem, whereas the binarized response
gives rise to an ordinary classification problem.

In the error regression problem, for a given model σ̄M ∈
{σ̄RN , σ̄ANN} of the effective stress, we are interested in the
absolute and relative norm errors

eMa (ε̄) = ‖σ̄ F(ε̄)− σ̄M(ε̄)‖ , eMr (ε̄) = ‖σ̄ F(ε̄)− σ̄M(ε̄)‖
‖σ̄ F(ε̄)‖

.

(27)
For the error classification problem, we consider the indicator

function

χM(ε̄) =
{

1 if eMa (ε̄) < τa or e
M
r (ε̄) < τr

0 else ,
(28)

with prescribed absolute and relatives tolerances τa and τr ,
respectively. The outcome of χM is particularly useful in order
to decide on the subsequent treatment: For χM = 1, the error
is considered acceptable and the surrogate can be used, while
χM = 0 should trigger an adaptive refinement. For instance,
the classifier χM can decide if the stress surrogate σ̄M at a
macroscopic integration point is acceptable or whether a more
dedicated surrogate is needed.

For error regression and classification, the fully connected
feed forward ANNs as described by (19) and the same
activation functions as in section 2.3.2.2 are used. For the binary

classification the final ANN layer is regarded as a log-probability
with a single neuron. This setup is usually referred to as logits
in binary classification.

2.3.3.2. Loss function
One of the desired properties, considering possible safety
requirements in the error regression and classification, is to
obtain if not accurate, then at least conservative results. In
order to achieve a conservative behavior, for the error regression
problem we consider the function

φα(x) = max(x, 0)+ αmax(−x, 0) , (29)

which changes the slope for negative input values to α. The
function φα can be used to penalize underestimation of the error
(for α > 1) when applied to the scalar argument of the MSE
for the true error eM (representing the absolute error eMa or the
relative error eMr of the model M ∈ {RN, ANN}) and its ANN
surrogate ẽM

MSEα = mean
DT

ε

(|φα(e
M(ε̄)− ẽM(ε̄))|2). (30)

The MSEα is considered as the loss function for error regression,
where α acts as a penalty parameter. The corresponding R2

value and the relative conservative amount (RCA) over the
validation dataset

R2e = 1−
mean
DV

ε

(

(eM − ẽM)2
)

mean
DV

ε

((eM)2)−
(

mean
DV

ε

(eM)

)2
,

RCAe =
#(DV

ε : eM(ε̄) ≤ ẽM(ε̄))

#(DV
ε )

(31)

are used to assess the quality of the prediction.
For the error classification of model M ∈ {RN, ANN}, due to

the binary nature of (28), the last layer of the ANN is defined as
the composition of a standard sigmoid function and a shifted step
function, i.e.,

χ̃M(ε̄) = s ◦ χ̃M
0 (ε̄), χ̃M

0 (ε̄) = 1

1+ exp(−ANN(ε̄))
,

s(x) =
{

1 x > 1/2,

0 else.
(32)

The loss function for classification chosen in this work is the
weighted binary cross entropy

ηw = −mean
DT

ε

(

w χM(ε̄) log
(

χ̃M
0 (ε̄)

)

+(1−χM(ε̄)) log
(

1− χ̃M
0 (ε̄)

) )

.

(33)
Herein, false positive predictions dominate the cross entropy
for w > 1, while 0 < w < 1 puts the focus on false negative
classification. We define the overall accuracy of the classifier
as the expectation of finding the same response in the true
indicator χM and in the surrogate χ̃M:

ACC = 1−mean
DV

ε

(

|χ̃M − χM|
)

. (34)
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Further, the accuracy within the bin b ∈ {0, 1} is defined as the
conditional probability

ACCb = 1− mean
{x∈DV

ε :χM(x)=b}

(

|χ̃M − χM|
)

. (35)

The reader should note, that ACC0 is more relevant when
seeking conservative estimates. Only if ACC0 and ACC1 are
close to unity, then the overall classification is robust, while
for seemingly good ACC (e.g., around 0.98) the critical ACC0

could be inappropriate. This effect is particularly important if the
surrogate has only few outliers requiring further processing.

2.4. Hybrid ANN/ROM Multi-Level Finite
Element Simulation
2.4.1. General Hybrid Approach
In order to build a twoscale simulation model relying on
the finite element method on the larger scale, the material
model must be replaced by the homogenized response of the
heterogeneous solid. In sections 2.1.2 and 2.3.2 the use of
ROM and ANN serving as surrogates for the effective stress
tensor and the effective tangent stiffness are described in detail.
Both surrogates can be combined by introducing an indicator
function χ(x) :Ω 7→ {0; 1} which adaptively selects between
the rapid and purely data-driven (but less physical) ANN if
χ = 1 and the physics-driven ROM for χ = 0. The indicator
function represents the binarized confidence in the accuracy of
the ANN surrogate.

First, a simple ansatz for χ is chosen by setting χ to one if the
current strain at the macroscopic position x ∈ Ω falls within the
region covered by samples during the training of the ANN. In the
present study this is equivalent to the kinematic indicator

χK(x) =
{

1 if ‖ ε(x)‖W ≤ ε0,
0 else.

(36)

Here, ε0 = max(Dr) is the peak amplitude used during
Concentric Sampling and ‖ · ‖W denotes a weighted norm
that transforms elements of Dε defined via (16) back into
normalized directions:

‖ε‖W =
√

r̂2 ‖sph(ε)‖22 + ‖dev(ε)‖22. (37)

The use of the ROM outside of the training domain is motivated
by its reluctance to energy minimization, i.e., by preserving
the key physical characteristics of the full order model while
restricted to a relevant subspace of the solution manifold.

A second indicator can be obtained by evaluating the accuracy
of the ANN. Therefore, a binary classifier χ̃ANN

: Sym(R3×3) 7→
{0, 1} is employed following the procedure outlined in
section 2.3.3. The indicator function is then replaced by
the classifier: χ(x) = χ̃ANN( ε(x)).

2.4.2. Technical Issues Related to on-the-fly Model

Switching
At first, the concept of the indicator function χ marking
the confidence region for the ANN and employing the
ROM elsewhere sounds straight-forward. However, this simple

FIGURE 2 | Macroscopic FE boundary value problem (P̄) with on-the-fly

model switching at integration points for the computation of the effective

microscopic stress σ̄ for prescribed microscopic effective strain ε̄ for the

microscopic problem (P): first, χK checks if ε̄ is in the training region of the

ANN surrogate for σ̄ ; if the quality of ANN is acceptable based on χ̃ANN, then

σ̄ANN is evaluated and passed to the macroscopic FE problem; but if either ε̄

is outside of the ANN training range or the ANN surrogate is not accurate

enough, then a previously selected accurate ROM of corresponding dimension

N is evaluated and then passed to the macroscopic problem.

approach does not work in practice as the two concurrent
surrogates do not provide continuous approximations of the
stresses. This can be illustrated by letting C ⊆ Sym(R3×3)
denote the confidence region of the ANN in strain space. It
should be noted, that C may contain several holes depending
on the chosen quality indicator determining a point or region
in strain space as admissible or not. On the boundary ∂C

of the confidence region there is a hard transition between
the two surrogates which induces a stress jump, leading to
a non-smooth material response. When switching between
ANN and ROM on-the-fly, i.e., when deciding for each query
adaptively which surrogate should be evaluated, convergence of
the macroscopic problem is disrupted, rendering the straight-
forward implementation of a quality indicator guided adaptive
procedure infeasible. One may try to solve this problem with
multi-fidelity approaches, see, e.g., Meng and Karniadakis (2019),
where multiple nested surrogates (e.g., artificial neural networks)
based on data groups of different accuracy/fidelity and amounts
are trained. Unfortunately, such multi-fidelity data approaches
are not applicable for the problem at hand. In order to
motivate this more clearly, consider again Figure 1 and the
strategy illustrated in Figure 2 for a macroscopic boundary value
problem solved with FE and calling for an on-the-fly model
switching at the integration points for the computation of σ̄ for
prescribed ε̄.

In the context of twoscale simulations, the problem is not
the accuracy/fidelity of the training data of the microscopic
problem, but (1) the usage of a surrogate outside of its training
range (based on χK for the ANN stress surrogate) and (2) the
point-wise quality of the surrogate with respect to prescribed
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tolerances (χ̃ANN for the ANN effective stress surrogate), which
define the boundary of the confidence region C and trigger the
model switching. Both events can occur in twoscale simulations,
since the input field at the macroscopic scale (i.e., ε̄(x̄)) is
not known for arbitrary macroscopic geometry and boundary
conditions, such that point-wise at the macroscopic scale the
ANN microscopic surrogate for the effective stress may be
evaluated far outside of its training range or may be inaccurate.
If the ANN effective stress surrogate is inaccurate, then, e.g, a
fixed ROM of sufficient accuracy can be initiated, as depicted
in Figure 2. Naturally, in order to lower the number of ROM
evaluations, one could simply enhance the existing networks
σ̄ANN and χ̃ANN during the online computation by re-training
using additional samples. However, there is no methodology
available that can a priori guaranty accuracy gains without the
need of extensive architecture sweeps and substantial sampling
of extended and/or refined regions in the input space. Therefore,
such an online re-training is not a viable option at the moment
and alternatives need to be investigated. Contrary to the inherent
properties of ANNs and the related training, (i) the ROM
solution is obtained in a physically guided procedure, (ii) the

errors of the ROMs drop with increasing dimension, and (iii)
the ROM has no intrinsic validity domain limitation in strain
space. This motivates the use of a ROM of sufficient dimension
outside of the validity domain of the ANN stress surrogate.
Approaches for the algorithmic realization of the dynamic
switching between concurrent surrogates are described in
the sequel.

2.4.2.1. Staggered hybrid ANN/ROM algorithm
The first approach consists of a staggered procedure, where
the ANN is used as the only stress surrogate in a first run
of the twoscale simulation (see Algorithm 1). Thereby, a first
overall response is gathered. This is followed by a second run,
in which the subset of all integration points having seen a
zero quality indicator during any of the load steps of the first
run are enforced to use the ROM surrogate. This set is then
kept constant, i.e., switching from ANN to ROM is one way.
This procedure enables the use of the ANN solution as an
initial guess for the subsequent hybrid run which leads to low
iteration counts and improved performance. During the second
run, the difference of the ANN and the ROM can be evaluated

Algorithm 1: Staggered hybrid ANN/ROM twoscale simulation algorithm.

Input : quality indicator q; ANN surrogate σANN; ROM surrogate σRN

1 for i = 1, . . . , ngp do qi = 1; // initialize quality indicator

2 for iinc = 1, . . . , ninc do

3 while increment not converged do

4 Newton-Raphson iteration using ANN surrogate only: σANN

5 for i = 1, . . . , n do qi = min(qi,χ( εi)) // update quality indicator (one way update)

6 end

7 converged nodal displacements→ u(1)(iinc) // level 1 solution

8 end

9 restart simulation (conserve quality indicators qi, i = 1, . . . , ngp) // second run

10 for iinc = 1, . . . , ninc do

11 initial guess using previous simulation run: 1u = u(1)(iinc)− u(1)(iinc − 1)

12 while increment not converged do

13 Newton-Raphson iteration using ANN (if qi = 1) or ROM (if qi = 0)

14 end

15 converged nodal displacements→ u(2)(iinc) // level 2 solution

16 end

Algorithm 2: Adaptive on-the-fly ANN/ROM twoscale simulation algorithm.

Input : quality indicator q; ANN surrogate σANN; ROM surrogate σRN ;

1 for iinc = 1, . . . , ninc do

2 for i = 1, . . . , ngp do qi = 1; // reset quality indicator

3 while increment not converged do

4 for i = 1, . . . , ngp do

5 evaluate strain ε̄i and update quality indicator qi = min(qi,χ(ε̄i)) // one way update

6 use σANN if qi = 1 and σRN if qi = 0

7 [optional] compute difference of the stress between σANN and σRN // post-processing

8 end

9 end

10 converged nodal displacements→ u(iinc)

11 end
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to provide valuable post-processing data in order to better
understand the quantitative impact of the model modifications,
see also examples in section 3.3.2. Two major disadvantages of
this approach are (i) the irreversibility of the ROM activation
which can lead to substantial computational costs and (ii) the
possible failure during the first run, if the ANN surrogate
becomes non-convergent. The latter can, e.g., occur if the local
magnitude of ε̄ on the macroscale falls way outside of range of
the training data.

2.4.2.2. Adaptive on-the-fly ANN/ROM algorithm
A second on-the-fly model selection procedure, solving both
of the aforementioned issues, is described in Algorithm 2: It
re-initializes the quality indicator in favor of the ANN at the
beginning of each load increment. During the subsequent non-
linear Newton-Raphson iterations of the same increment, the
indicator is updated in a monotonic way, i.e., switching from
ANN to ROM is allowed but not vice verse (see line 5 in
Algorithm 2). The computational efficiency can be improved
by substituting only part of the equilibrium iteration by
the ROM.

3. NUMERICAL EXAMPLES

3.1. Underlying Material Model
An artificial heterogeneous solid consisting of three phases is
investigated. It consists of a laminate structure of two pseudo-
plastic materials where the two layers share the same elastic
parameters (E1 = E2 = 75 GPa, ν1 = ν2 = 0.3) but have
different yield strength and hardening behavior: The first layer
has a yield stress of 100 MPa and a linear hardening slope of
2,000MPa, whereas the second layer has a yield stress of 115MPa
in the absence of hardening. The third phase is represented
by a spherical inclusion that is centered on the interface of
the two phases. The inclusion is assumed linear elastic with
properties mimicking a ceramic inclusion made of SiC (E =
400 GPa, ν = 0.2), see Figure 3. The volume fractions of the
two plastic layers are 46.73% each and the one of the inclusion
is 6.54%. The material was designed to induce a directional
dependency of the effective material behavior (see right plot in

Figure 3 for an example). This feature makes the identification
of the unknown homogenized response more challenging and,
thereby, a benchmark problem for the developed methodology
is designed.

3.2. Quantitative Comparison of ROM and
ANN Surrogate Models
3.2.1. Effective Stress Surrogate
The strain space is sampled as described in section 2.3.1
for an effective strain amplitude discretization Dr =
{0.0005, 0.002, 0.0035, 0.005, 0.0075, 0.01, 0.015, 0.025, 0.04}.
The spherical / volumetric part of the primal strain dataset
is rescaled with r̂ = 5. Then, 1152 training, 288 validation
and 512 Monte Carlo directions are generated, yielding 10368
training, 2592 validation and 4608 Monte Carlo effective strain
points in R

6.
An initial architecture testing phase is conducted.

The activation functions and transformations illustrated
in section 2.3.2 are considered, together with varying
number of layers and neurons. The architecture test with
L ∈ {3, . . . , 6} and number of neurons per hidden layer
n[l] ∈ {16, 32, 64, 128}, l ∈ {1, . . . , L − 1}, yields that none of
the activation functions (RELU, SP, TANH) show a remarkable
advantage over the other, even for as large number of epochs
as 10,000 with whole batch training for a learning rate of
0.001 using an ADAM optimizer. However, the feature design
of input (effective strain) and output data (effective stress of
the FOM) has a major influence. Hereby, the most successful
combination is identified to be the use of the spherical-deviatoric
transformation Tsd1 for the input as well as for the output. The
transformation Tsd2 did not show major advantages in the final
objective function values.

Based on the initial architecture testing, the softplus function
(SP) has been chosen to power further investigations, due
to its monotonic and differentiability properties in regard of
an expected monotonic stress behavior and need for tangent
operators for future FE multiscale computations. In Table 1,
different architectures are tabulated, showing the performance of
each ANN. Based on the MRNE and R2σ values for the validation
dataset (and the corresponding values MRNEMC and R2σMC

FIGURE 3 | (Left) Periodic representative volume element (RVE) of the triphasic material: layer 1 (blue; pseudo-plastic with hardening), layer 2 (green; pseudo-plastic,

no hardening), and inclusion (red; linear elastic); (Right) Directional dependency of the material response.
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TABLE 1 | ANNs for the effective stress surrogate with corresponding choice of input features, network architecture, intermediate transformation of stress data Tσ ,

measures MRNE and R2σ for the validation dataset, and MRNEMC and R2
σMC

for the MC dataset.

ANN ID Features Architecture Tσ MRNE R2
σ MRNEMC R2

σMC

σ̄ANN1 Tsd1 {5× 128(SP)− 6(Id)} Tsd1 0.0189 0.9995 0.0183 0.9995

σ̄ANN2 Tsd1 {5× 64(SP)− 6(Id)} Tsd1 0.0204 0.9995 0.0200 0.9994

σ̄ANN3 Tsd2 {5× 64(SP)− 6(Id)} Tsd1 0.0241 0.9995 0.0241 0.9995

σ̄ANN4 Tsd1 {5× 16(SP)− 6(Id)} Tsd1 0.1578 0.9768 0.1564 0.9751

FIGURE 4 | Von Mises effective stress vs. effective strain norm for ANN1 for the 3 loading directions of the training dataset (Left) and 3 loading directions of the

validation dataset (Right) tabulated in Table 2.

evaluating the MC dataset), the ANN1 comprised of six layers
with five softplus hidden layers and 128 neurons per hidden
layer is chosen for the final evaluation. In Figure 4 the prediction
of ANN1 for the von Mises effective stress σ̄vM is depicted
for the three in Table 2 tabulated directions of the training
(dirT12, dirT23, and dirTmixed) and validation datasets (dirV12,
dirV23, and dirVmixed), showing a good agreement with the
FOM data. It should be noted that the directions dirT/V12
have a (12) dominant component, meaning that the hardening
material shown in Figure 3 is activated, while dirT/V23 have
a (23) dominant component allowing for a localization of the
deformation in the non-hardening material, see Figure 4. The
effective strain directions dirT/Vmixed show some examples
for combined loading and corresponding material response,
see Figure 4. The reader should take into account, that the
ANNs have been trained with strain data up to a norm of
0.04 in the primal strain set D̂T

ε (corresponding to the last data
point for each loading direction in Figure 4). The behavior of
the ANN1 beyond this norm value was expected to tend to
keep increasing due to the properties of the softplus function.

TABLE 2 | Effective strain load directions ε̄/‖ε̄‖ for the inspection of the effective

von Mises stress σ̄vM in the evaluation of ANN1.

Direction ID Direction of (ε̄11, ε̄22, ε̄33,
√

2ε̄12,
√

2ε̄13,
√

2ε̄23) ∈ R
6

dirT12 (– 0.10 – 0.07 0.15 0.96 0.11 0.16)

dirT23 (– 0.03 – 0.10 – 0.05 0.00 0.08 0.99)

dirTmixed (– 0.12 0.03 – 0.03 0.48 – 0.16 0.85)

dirV12 (– 0.11 – 0.15 0.27 0.89 – 0.27 – 0.18)

dirV23 (– 0.11 0.02 – 0.07 – 0.12 – 0.08 0.98)

dirVmixed (0.02 – 0.31 0.24 0.04 – 0.12 0.91)

However, due to the tendency of the ANN to increasingly
overestimate the stresses and the artificial stiffening at load
amplitudes beyond the training data, ANN1 is not expected
to deliver accurate results beyond an effective strain norm of
approximately 0.04 in respect to the primal strain set D̂T

ε . Finally,
in addition to the a posteriori symmetrization of the gradient
∂σ̄ANN1/∂ε̄, numerical tests were carried out to verify that (i)
the gradient obtained via automatic differentiation is almost
symmetric (with an average error lower than 1%) and (ii) that
the difference of the symmetrized gradient to the algorithmic
tangent of the ROM with 96 modes was matched up to relative
errors around 1.5%. These two checks approved the chosen
approach. For a better transparency of these results, the authors
offer Supplemental Data, see section Supplementary Material,
containing the FOM data, the trained ANN1 and commands for
the reproduction of all corresponding results.

3.2.2. Error Surrogates
For the error regression and classification, it is first necessary
to gain an overview regarding the quality of the N-dimensional
ROMs and of the best of the trained ANN effective stress
surrogates σ̄ANN1 of the previous section.

In Figure 5 the cumulative distribution function of the
absolute norm error eMa (ANE) and of the relative norm error
eMr (RNE) for the validation set DV

ε are shown for ROMs of
different dimensionsN and for σ̄ANN1. It is clearly visible that for
increasing ROM dimension, the accuracy of the ROM improves
for both, the ANE and RNE. This is expected, since the higher
the ROM dimension, the richer the underlying function space,
i.e., the distance to the solution manifold of the full order model
decreases. It should be noted that the ANN effective stress model
σ̄ANN1 performs well against ROM16 and ROM24. The ROM32
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FIGURE 5 | Cumulative distribution function of the errors of ANN and ROMs of dimensions 16 to 96: distribution of ANE eMa (Left); distribution of RNE eMr (Right).

TABLE 3 | ANNs for error regression with corresponding choice of input feature, network architecture, penalty parameter α, corresponding quality indicators R2e and

RCAe for the validation dataset and R2
eMC

and RCAeMC for the MC dataset.

ANN ID Features Architecture α R2
e RCAe R2

eMC
RCAeMC

ẽ
R16|1
a Tsd1 {4× 64(SP)− 1(Id)} 3 0.9868 0.7924 0.9892 0.8082

ẽ
R16|2
a Tsd1 {4× 64(RELU)− 1(Id)} 1 0.9904 0.5116 0.9921 0.5371

ẽ
R24|1
a Tsd2 {4× 64(TANH)− 1(Id)} 3 0.9733 0.7948 0.9741 0.7995

ẽ
R24|2
a Tsd2 {4× 64(TANH)− 1(Id)} 1 0.9906 0.5305 0.9895 0.5206

ẽ
R16|1
r Tsd1 {5× 64(RELU)− 1(Id)} 3 0.8525 0.7323 0.8642 0.7227

ẽ
R16|2
r Tsd1 {5× 64(RELU)− 1(Id)} 1 0.9080 0.5104 0.9259 0.4957

ẽ
R24|1
r Tsd1 {5× 64(RELU)− 1(Id)} 3 0.7822 0.7562 0.8316 0.7574

ẽ
R24|2
r Tsd1 {5× 64(RELU)− 1(Id)} 1 0.8923 0.4884 0.9170 0.5002

FIGURE 6 | Correlation plots for the ROM16 ANE and corresponding error regression ANNs in the range [0,40] MPa: ẽ
R16|1
a with penalization of error underestimation

parameter α = 3 (Left) and ẽ
R16|2
a with α = 1 (Right).

yields a mean ANE of 1.019 MPa and a mean RNE of 0.007. It is
from now on assumed that the accuracy of the ROM32 suffices
for future multiscale FE simulations, i.e., an a priori quality
assessment is made.

We first demonstrate the error regression in terms solely
of the N-dimensional ROMs for the corresponding ANE and
RNE. These error measures could be used for an adaptive
selection of a ROM after having access to its estimated
errors. An architecture test for ANNs with number of
layers L ∈ {3, . . . , 6}, neurons per hidden layer n[l] ∈
{16, 32, 64}, up to 10,000 epochs and whole batch training is
performed. A selection of the trained ANNs is tabulated in
Table 3.

The ANNs ẽ
R16|1/2
a , tabulated in Table 3, are depicted in

Figure 6. The influence of the penalty parameter α, introduced
in (29), can be seen in Figure 6 (left plot), where it becomes
visible that the larger amount of points are found on the upper
side of the diagonal, i.e., the predicted error is larger than
the error in the validation set. This is reflected in the relative
conservative amount (RCA), see Table 3. The usual trade-off
is that increasing α yields conservative behavior (i.e., a higher
RCA), but reduces the accuracy in terms of R2e . Analog behavior
is observed for er , as tabulated in Table 3 (bottom half). Large
values of α yield reduced R2e values, due to the dilemma of
balancing a reduction of the loss function, while preserving
conservative behavior.
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TABLE 4 | ANNs for error classification for σ̄R16/24/32 and σ̄ANN1 of previous section with tolerances τa = 2MPa and τr = 0.02.

ANN ID w0 Features Architecture w ACC ACC0 ACC1

χ̃R16 2.9184 Tsd1 {5× 64(TANH)− 1(Id)} 1 0.9282 0.9401 0.8905

χ̃R24 1.6328 Tsd1 {5× 64(TANH)− 1(Id)} 1.4746 0.9047 0.9077 0.8999

χ̃R32 0.0047 Tsd2 {3× 64(RELU)− 1(Id)} 0.0047 0.9483 0.7778 0.9495

χ̃ANN1 0.1256 Tsd2 {5× 64(RELU)− 1(Id)} 0.3442 0.8611 0.6721 0.8831

The error classification is conducted for the absolute and
relative tolerances τa = 2MPa and τr = 0.02, respectively.
Architecture testing for L ∈ {3, . . . , 6} and n[l] ∈ {16, 32, 64} for
the hidden layers yield varying quality of results depending on
the weight w on the false positive. Depending on the number of
positive and negative outcomes, the weights should be adapted.
For the architecture testing of this work, the ratio

w0 =
#(DT

ε :χ(ε̄) = 0)

#(DT
ε :χ(ε̄) = 1)

(38)

is considered. If the number of negative outcomes in the
training data #(DT

ε :χ(ε̄) = 0) is higher than the positives,
then w0 > 1 holds. The consideration of w = w0 in the
binary cross entropy partly equilibrates the influence of the false
positive (i.e., classified accurate but violating the tolerance) and
false negative (i.e., classified inaccurate but within tolerance).
But it may also overly bias the cross entropy during training,
yielding poor accuracy in one bin. Therefore, w is sampled
between unity and w0 in four evenly spaced steps during
architecture testing. A selection of trained ANNs is tabulated
in Table 4.

Classification ANNs with acceptable accuracy with respect to
the validation dataset are obtained for the 16-, 24-, and even for
the 32-dimensional ROM. These ANNs, denoted as χ̃R16/24/32

in Table 4, offer, in principle, the opportunity for an adaptive
ROM scheme, in which for a given effective strain the lowest-
dimensional but still acceptable ROM can be automatically
identified for the chosen tolerances. In addition to the error
classification of different ROMs, an attempt to classify the quality
of the ANN labeled σ̄ANN1 in Table 1 is made for the same
tolerances with χ̃ANN1, see last row in Table 4. The surrogate
σ̄ANN1 has already intrinsic information of the training dataset,
due to its optimization in respect to this dataset. In order to avoid
an over-calibration, the training, validation and Monte Carlo
datasets have been concatenated, randomly reordered and split
into new training and validation datasets containing 90% and
10% of the data, respectively. The classifier χ̃ANN1 for σ̄ANN1

is trained on these new datasests. An extensive architecture
test is performed with the same parameters as for the ROMs.
The classifier for σ̄ANN1, denoted as χ̃ANN1 in Table 4, reaches
acceptable accuracy, but notably lower than the ones achieved
for the ROM classifiers. In retrospective, a justification for the
lower performance of the classifier χ̃ANN1 is found in the higher
regularity of the ROM solution that is matching the behavior of
the full order model. This is explained by the ROM inheriting
the mathematical structure and the physical principles of the

FOM. The classifiers of this section allow for an on-the-fly
model switching, as illustrated in Figure 2, to be exemplified
in the following section. Hereby, the ROM32 is considered for
Algorithm 1 and Algorithm 2 due to its sufficient accuracy,
see Figure 5.

3.3. Multiscale Simulation Based on
Adaptive ANN-ROM-Scheme
3.3.1. Twoscale Problem
The presented hybrid methods introduced in Algorithms 1 and
2 are used in actual three-dimensional twoscale simulations. The
results are compared to FE2R simulations (in the spirit of Fritzen
and Hodapp, 2016) in which the reduced order model is used as
a stress surrogate in all points of a macroscopic structure which is
considered as a reference based on the high accuracy of the ROM
with 32 modes (see Figure 5, section 3.2.2).

The macroscopic problem (P̄) depicted in Figure 1 is
borrowed from Fritzen and Hodapp (2016), while the
microstructure is described through the material of section 3.1.
Three different 3-dimensional mesh densities are considered
on the macroscopic level: M1 (1,734 elements/13,872 int.
points), M2 (6,318 elements/50,512 int. points) and M3 (53,790
elements/430,320 int. points). All threemodels consist of trilinear
hexahedral elements with selectively reduced integration (i.e.,
B-bar elements are used). The loading in terms of a 2% stretch
of the macroscopic specimen is applied in 10 equally spaced
increments up to 0.2% followed by nine increments of 0.2%
amplitude each in order to better cover the transition between
elastic and elasto-plastic behavior for Algorithm 2.

3.3.2. Staggered Adaptive Procedure cf. Algorithm 1
First the staggered procedure introduced in Algorithm 1 is
used. It is found that the first run that is relying on the ANN
surrogate only achieves excellent runtimes when evaluating the
ANN on graphics cards (here: one Nvidia GTX Titan Black),
leading to runtimes of approximately 15 s for one evaluation
of the surrogate at each of the 430,320 integration points of
the finest mesh M3. It shall be noted that this includes a major
execution overhead1.

A general dilemma of twoscale simulations that was observed
for the FE2R method by Fritzen andHodapp (2016) is also present
here: Local outliers of the strain field attain magnitudes that
quickly exceed the range of the inputs used during training of
the ANN stress surrogate. The number of outliers becomes more

1For simplicity each evaluation launches a new Python instance, reloads the model

from a file and returns the results to the FE code through another file.
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FIGURE 7 | (Left) Comparison of the force of the ANN-only run (lines) and of the subsequent hybrid ANN/ROM run (symbols) for M1 (1734 elements), M2 (6318

elements), and M3 (53790 elements); (Right) Absolute error in the stress at the end of the hybrid run ‖ σR32 − σANN‖2 for M1.

FIGURE 8 | (Left) Comparison of the macroscopic stretch-force relation for the on-the-fly adaptive algorithm for meshes M1–M3; (Right) Comparison for M1:

on-the-fly adaptive vs. staggered vs. FE2R with 32 modes.

relevant for the finer discretizations. This reveals a major short-
coming of Algorithm 1: While the simulation for mesh level M1
terminated cleanly in roughly 3 h wall-clock time with most of
the computing time being spent during the hybrid ANN/ROM
phase, M2 did not converge for loadings larger than 1.2% due to
locally excessive strains that lead to spurious stress response of
the ANN. The finer mesh M3 fails to converge beyond 0.8% of
overall stretch. Additionally, the ANN version failed to improve
the accuracy beyond a certain limit, i.e., it failed to achieve
quadratic convergence starting beyond a critical load amplitude.
In Figure 7 a comparison of the tension force of the ANN-
only run (lines) and of the subsequent hybrid run (symbols)
is shown. During the hybrid run the number of integration
points evaluating the ROM are determined from the quality
indicator at the end of the last load step of the first run. For M1
this amounts to 960 out of 13,872 integration points (6.92%)2.
These numbers illustrate that the ROM must be evaluated
approximately 42,000 times for M1 (44 Newton iterations were
needed in total) which leads to a substantial computational effort.

2The numbers for M2 and M3 are not representative as the final load was

not achieved.

Surprisingly, the ANN-only run and the hybrid run are hard
to distinguish from the overall force-stretch plots, i.e., the ANN
appears to yield good accuracy for this test. This is supported by
the rather small absolute errors in the effective stress tensor, see
Figure 7 (right) for the final load and mesh M1. In summary,
the staggered procedure can exclusively be used if the peak
strain in the macroscopic problem is sufficiently low due to the
aforementioned convergence issues. Then the solution can be
expected to give accurate predictions.

In view of the number of quadrature points marked for use
of the more reliable ROM, the adaptive scheme shows a steady
increase when using the kinematic indicator χK marking points
outside of the training range as not trustworthy for the ANN.

3.3.3. Single Pass on-the-Fly Adaptive Algorithm cf.

Algorithm 2
The crucial ingredient of the on-the-fly adaptive scheme,
described in Algorithm 2, is the irreversible update of the quality
indicator during each load increment. Thereby, alternating
model selection is prevented. All three macroscopic models,
M1, M2, and M3, converged without any issues. The resulting
macroscopic tension force of all three is compared in Figure 8,
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FIGURE 9 | (Left) Relative amount of integration points with active ROM during the adaptive twoscale simulation; (Right) Quality indicator χK at the end of the

adaptive twoscale simulation using mesh M3.

FIGURE 10 | Comparison of the final quality indicators at the end of the adaptive simulation for mesh M1: kinematic classifier only (Left) vs. hybrid classifier

accounting for the ANN accuracy cf. section 3.2.2 (Right).

where the hybrid curve from Figure 7 and the FE2R curve
for the ROM featuring 32 modes are also shown for M1.
It is observed from Figure 8 (right) that all algorithms yield
virtually identical results. Closer inspection reveals, however, that
the FE2R and adaptive algorithm have nearly indistinguishable
slopes (despite a negligible shift), whereas the ANN model is
slightly curved, i.e., it shows a qualitative difference toward the
reference solution which gets more pronounced at increasing
load amplitude.

The adaptive algorithm has the advantage that the number

of macroscopic integration points that require evaluation
of the ROM depends only on the current state. For the
considered proportional loading, and when using the kinematic
indicator χK, the relative amount of integration points grows
monotonically with increasing load, cf. Figure 9.

In order to investigate the practical usefulness of the ANN
classifier, a comparison of the on-the-fly adaptive simulation
using the kinematic quality indicator and the same simulation
supplemented by the ANN classifier discussed in section 3.2.2
is considered. As expected, the solid yet not overly satisfying
accuracy of the ANN classifier (see Table 4) induces a large
number of additional ROM evaluations, thereby increasing the
computation time considerably (approx. by a factor of 7), see
Figure 10. Notably, the ANN classifier adds a considerable
amount of points at the left and right constriction and close to
the holes. In order to assess the relevance of these additional
points, the macroscopic tensile force was investigated: It varies

less than 0.3%, except in the very first load step with a difference
around 0.6%.

4. CONCLUDING SUMMARY

A multi-fidelity approach for generating surrogate models of
the effective stress tensor for the use in twoscale simulations
is developed in section 2.1. At first, a ROM is derived from
data gathered during full field simulations. The estimation of the
error in the effective stress tensor (representing the QoI) of the
ROM is discussed from a theoretical perspective in section 2.2.
The mathematical structure of the error estimate reveals, that
the ROM error estimation produces computational cost that is
almost equivalent or even beyond that needed to solve a more
dedicated ROM, thereby making it hard to justify such estimates
when in the need for computational efficiency.

In our view this dilemma can only be resolved by finding
alternative surrogates with low computational complexity but
moderate to good accuracy complemented by adaptive strategies
for local model refinement that employ costly computational
methods only when needed. In this regard, ANNs are seen as
promising candidates for the calibration of surrogate models
for the effective stress and for classification that can trigger
adaptive refinement. In section 2.3, the layout and the theoretical
background of ANNs are discussed, together with different
feature designs for the inputs and outputs based on the
mechanical nature of the strain and stress. For the calibration
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of the stress surrogate, the mean squared error is used as loss
function, while the quality of the trained ANN is checked on the
validation dataset with the mean coefficient of determination and
the mean relative norm error. In the case of error regression,
a penalized mean squared error is proposed, which allows
the conservative calibration of trained ANNs. For the error
classification based on prescribed tolerances, the weighted cross
entropy is used in order to allow for a better focus on the
more important warning case, if the warning case density is
low. Based on the proposed models, the core contribution of
the present work constitutes two model-adaptive algorithms
which encompass convergence issues encountered in the naive
implementation of on-the-fly adaptive surrogate selection, see
section 2.4. The first staggered algorithm is based on a two
run approach, in which the first run is conducted solely with
the ANN effective stress surrogate and flags points evaluated
outside of the strain training region, such that only these points
are evaluated with the high-accuracy ROM in a second run.
The second algorithm offers a more flexible on-the-fly model-
adaptive approach by allowing the re-initialization of the ANN
at the beginning of each load increment.

Numerical examples of the illustrated approaches are
presented in section 3 for a three-phase pseudo-plastic material
with microstructure. First, ANNs are trained in order to
approximate the effective stress. The surrogate of choice,
σ̄ANN1, achieved a mean relative norm error of 0.0189 and
a mean coefficient of determination of 0.9995 and yields
an accurate tangent stiffness, due to its formulation on the
automatic differentiation capabilities of the TensorFlow library.
The accuracy of the ANN stress surrogate is found to range
between ROMs of dimension 24 and 32, respectively (see
section 3.2). The ansatz for error regression of ROMs of
different dimension is presented, showing the possibilities for a
calibration of a conservative ROM error estimator. In view of
subsequent twoscale simulations with adaptive model selection,
error classification is carried out for ROMs of different dimension
and for the trained ANN stress surrogate. The achieved accuracy
of the ROMs are higher than for the ANN stress surrogate, which
indicates that the physics-informed ROM still shows a clearer
pattern than the trainedANN stress surrogate, due to its inherited
mathematical structure and underlying physical principles.

The trained ANNs are then used in twoscale mechanical
FE simulations, based on the two developed algorithms of
section 2.4. The staggered algorithm produces sensible results but
has two limitations: First, the number of macroscopic quadrature
points marked for correction grows irreversibly. Second, the
ANN surrogate must be sufficiently robust and of—at least—
moderate accuracy in a prohibitive part of the strain space. This
requirement stems from the fact that local strain outliers lead
to queries that are way outside of the usual training range of
the ANN. This effect is found to be more pronounced when the
macroscopic mesh density is increased which further complicates
the robust surrogate construction using purely data-driven
methods in general, see section 3.3.2. The second algorithm offers
a true on-the-fly adaptivity in which the ANN surrogate can be
recovered, e.g., during unloading. It is observed in section 3.3.3
that this second algorithm offers the fastest convergence among

the considered twoscale simulations being approximately 3–10
times faster than the staggered algorithm and around 20 times in
comparison to the fully coupled FE2R algorithm using the ROM
with 32 modes for all stress predictions. The adaptive on-the-
fly model of the second algorithm offers, therefore, an attractive
approach which combines a low number of ROM evaluations
with good convergence.

The final test using the additional error classifier for the ANN
stress surrogate introduced a high number of additional negative
outcomes (i.e., ANN error greater than tolerances), considerably
increasing the number of integration points requiring the ROM.
This was expected due to the low accuracy achieved during
the training of the classifier, more specifically, due to the low
accuracy for the positive outcome ACC1 and corresponding
high amount of positive outcomes reflected by w0, see Table 4.
On the one hand, this last approach offers a conservative
twoscale scheme relying on the robust ROM. On the other hand,
the approach loses computational efficiency, which leaves the
error classification for rapid multiscale problems still an open
issue. Future improvements should, therefore, focus on further
theoretical or hybrid error estimators and an improved error
classification for the effective stress. The latter could benefit
from datasets spanning larger portions of the strain space. The
authors are convinced that the ambitious goal of reliable twoscale
simulations can only be achieved by fusing data-driven methods
together with dedicated theories. For example, the reader should
consider that at least two quality indicators are indeed necessary
for a reliable model-adaptive ansatz. One quality indicator should
address the trained ANN stress surrogate over the sampled
strain (input) space and one quality indicator should definitely
return a warning if the input leaves the training region. This
is quintessential, since the range of macroscopic strain is not
a priori known and the behavior of the purely data-driven
ANN outside the training region may endanger the convergence
and quality of the multiscale simulation. The results of the
present work support the usability of ANNs in computational
materials science, although further research ideally addressing
the combination of theory and data is urgently required.
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Training of artificial neural networks (ANNs) relies on the availability of training data.

If ANNs have to be trained to predict or control the behavior of complex physical

systems, often not enough real-word training data are available, for example, because

experiments or measurements are too expensive, time-consuming or dangerous. In

this case, generating training data by way of realistic computational simulations is a

viable and often the only promising alternative. Doing so can, however, be associated

with a significant and often even prohibitive computational cost, which forms a serious

bottleneck for the application of machine learning to complex physical systems. To

overcome this problem, we propose in this paper a both systematic and general

approach. It uses cheap low-fidelity computational models to start the training of the

ANN and gradually switches to higher-fidelity training data as the training of the ANN

progresses. We demonstrate the benefits of this strategy using examples from structural

and materials mechanics. We demonstrate that in these examples the multi-fidelity

strategy introduced herein can reduce the total computational cost–compared to simple

brute-force training of ANNs–by a half up to one order of magnitude. This multi-fidelity

strategy can thus be hoped to become a powerful and versatile tool for the future

combination of computational simulations and artificial intelligence, in particular in areas

such as structural and materials mechanics.

Keywords: artificial intelligence, homogenization, material science, machine learning, simulation

INTRODUCTION

Over the last years, we have witnessed several groundbreaking advances in artificial intelligence (AI)
that were based on a simple idea: a virtual training environment was created by setting up some
general rules. Subsequently, an AI, typically represented by an artificial neural network (ANN),
was placed in this training environment and allowed to practice until it reached a superhuman
level of mastery. The rules of the training environment were, for example, the rules of the board
game Go in the AlphaGo project (Silver et al., 2016). Even when the machine learning component
was not provided any prior knowledge about the game other than the ruleset itself it achieved
superhuman mastery simply by training in a virtual training space (Silver et al., 2017). Other
research projects rely on virtual environments as used in computer games in order to train AIs to
perform intelligent actions or solve certain problems (Vinyals et al., 2017). This research typically
uses training environments defined by rules whose complexity is far below that of real physics.
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Consequently, the generation of training data is feasible at such
a low computational cost that one can apply straightforwardly
a Big Data paradigm, in which the training of the ANN is
the bottleneck, not the availability of data. With physically
more realistic virtual training environments one could train AIs
to solve problems, for example, from mechanical engineering
or materials science that require so far intense human
interactions. Creating physically realistic models of systems
and processes in mechanical engineering and materials science
is the principal objective of computational mechanics. It is
thus natural to combine computational mechanics and machine
learning to create what one may refer to as “computational
mechanics intelligence,” that is, a kind of artificial/computational
intelligence that is endowed with an accurate understanding
of a certain mechanical problem and which is trained in a
virtual environment created by methods from computational
mechanics. This paradigm can actually be understood as a natural
extension of the fast growth body of research that seeks to apply
machine learning to various areas of mechanical engineering or
materials science such as fatigue (Mosallam et al., 2016; Wang
et al., 2017), homogenization (Yang et al., 2018), or process
design (Hu et al., 2018). The idea to couple computational
mechanics and artificial intelligence in an intimate way bears
great promise to open up new ways to endow AI with an
understanding of real physics. However, it faces the great
challenge that creating training data for an AI by means of
realistic models of complex physical systems and processes
can be computationally prohibitively expensive. This is a main
reason why the attempts to couple computational mechanics
and artificial intelligence–although started first already long ago
(cf. Waszczyszyn and Ziemianski, 2001)–have so far remained
very limited both in scope and number. The key to the
future success of computational mechanics intelligence is thus
developing smart strategies how computational models can
be used to train AIs at an acceptable overall computational
cost. If realistic computational models are used for training
AIs, the computational cost of the models typically by far
surpasses the computational cost of the AI training itself. It
is thus of paramount importance to find ways to reduce in
particular the computational cost associated with the generation
of training data by means of computational models. In the
area of computational quantum mechanics, recently a variable-
fidelity method for the calculation of bandgaps was proposed
(Pilania et al., 2017). Apparently, it is promising to combine
also for classical computational mechanics on the continuum
scale simulations with multiple different fidelity levels in order
to reduce computational cost for generating training data. In this
paper, we will introduce a systematic and general framework how
to use computational methods in a smart way in order to create
training data for AIs. This framework relies on a multi-fidelity
strategy which couples the learning progress of the AI with the
resolution of the computational models used to generate training
data. It trades unnecessary precision of the error gradient used
especially in the early stages of AI training for computational
efficiency. The main objective of our multi-fidelity strategy is to
significantly speed up the training of ANNs in domains in which
training data have to be generated by means of computational

models and where this process constitutes a significant portion
of the overall computational cost associated with endowing an
AI with physical intelligence. The outline of the paper is as
follows. In section “Problem setting,” we briefly describe the type
of problem on which this article focuses. In section “Methods,”
we delineate the architecture and general learning algorithms of
the ANNs used in this paper. Moreover, we introduce our novel
multi-fidelity framework for coupling computational models and
AI training. In section “Numerical Examples,” we demonstrate
the benefits of this multi-fidelity framework using examples
from both structural mechanics and materials mechanics.
Finally the section “Conclusions” summarizes and discusses
the broader implications of the multi-fidelity framework
introduced herein.

PROBLEM SETTING

Herein we consider the following general problem: an AI is
to be trained to perform some kind of action or make some
kind of prediction within or with respect to a physical system.
Experiments with and measurement within the physical system
in order to generate training data for the AI are assumed
to be expensive, time-consuming, or dangerous so that it is
preferable to generate training data rather bymeans of “simulated
experiments” or “simulated measurements” performed by means
of a realistic computational model of the physical system of
interest. The computational cost of these simulated experiments
is assumed to surpass by far the computational cost of AI training
on the basis of given training data itself. It is therefore the
bottleneck in coupling artificial intelligence and computational
models. The general problem delineated above mainly appears in
two settings. In the first one, the AI is used to make predictions
about the behavior of a physical system under variable input.
The motivation may be that using a comprehensive classical
computational model for making these predictions for each
different input case of interest may be much more expensive
than using an AI as a cheap surrogate model. In this setting,
the computational model is used to compute for a large number
of input values realistic approximations of the associated output
of the system. These input and computationally approximated
output values form together training samples which can be
used for training an AI to approximate the behavior of the
computational model. Typically, this is achieved by means
of a backpropagation training algorithm where the internal
parameters of the AI are adjusted until for a given input the
AI produces an output sufficiently similar to the one of the
computational model. This adjustment is based on the current
error of the AI, that is, the current deviation of the AI output
from the output of the computational model for a certain input
(cf. Figure 1, left).

In the second problem setting, the AI is to be trained to
take action in a specific physical environment. To this end,
the AI is connected, typically in a closed-loop setting, to a
computer simulation of this physical environment in which
actions and consequences can be evaluated much faster and
cheaper than in real-world experiments (cf. Figure 1, right).
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FIGURE 1 | Left: training an AI as a cheap surrogate model of a classical computational model in order to make predictions about input-output relations in a physical

system or process. The difference between AI output and model output is an error that can be used for AI training (e.g., using backpropagation algorithms). Right: AI

is used to take action in or control a physical environment or parts of it. The error controlling AI training has to be computed in some way from the AI-governed

evolution of the computational model (e.g., using some objective functions assessing the current or final state of the computational model).

This setting becomes relevant, for example, if an AI should
be used to control complex processes and systems such an
autonomously driving car or an autonomously flying drone or
robots in a manufacturing plant. The difference between this
setting and the first one is mainly that the input to the AI
cannot be arbitrarily chosen already before starting the training
but typically results–at least in parts–only in the course of the
training process as a consequence of closed-loop interactions
between AI and computational model. Moreover, AI training
can typically not be simply based on a difference between
AI output and model output but will rather more often rely
on some objective function evaluated on the current state of
the system.

Despite these differences, both the above problem settings
have in common that AI training requires the evaluation
of computationally expensive models. In the next section
we will delineate a multi-fidelity strategy that can heavily
alleviate the associated computational cost, which otherwise is
often prohibitively high for realistic computational models of
complex systems. While the general concept of this strategy
applicable to both the above delineated problem settings, we
will focus in this article on the first problem setting illustrated
in Figure 1, left.

METHODS

Architecture of Artificial Intelligence
ANNs are chosen as the most general-purpose, widely spread
type of learning algorithm. This choice is taken as to minimally
constrain the generalizability of the multi-fidelity approach
introduced in this research. The specific ANNs used herein
are feed forward neural networks (FFNs) based on several
densely connected hidden layers. Their learning process thus
falls into the realm of so-called deep learning. This choice is not
mandatory, and it is important to note that other choices of the
machine learning algorithm would be equally viable to exemplify
the comparative advantages of the multi-fidelity framework
developed herein.While the results of this research are not wholly
agnostic with respect to the choice of learning algorithm and
specific parameters (learning rate, activation functions, etc.), the
above choice has beenmade so as tomaximize the generalizability

of the results obtained herein and not make them merely an
artifact of a peculiarity of the highly specific learning method.

Learning Algorithm
There are various different ways how ANNs can be trained to
imitate a function, the most common of which is supervised
learning. Even though there is a host of different approaches
to supervised learning with differences ranging from small
details to entirely different architectures, all these approaches
share a couple of common elements. In general, supervised
learning algorithms compare the current output of an ANN
for a given input with the correct solution, and base the
correction of the internal parameters of the neural network (i.e.,
the “learning”) on an error which is the difference between
current and correct output. Although there are also derivative-
free methods, correcting the internal parameters of the network
in most approaches requires the computation of a gradient the
said error with respect to the parameters governing directly the
output of the ANN. In a so-called “backpropagation algorithm”
this gradient is propagated through the ANN and used to update
thresholds/weights for the individual neurons in the ANN.

To train the ANN, a large amount of training data is required.
Each training sample consists of one tuple of an input (to the
computational model or the ANN) and the corresponding output
which the ANN should learn to ideally yield in response to
the respective input values. In our setting the output which
the ANN should learn to reproduce is generated by means
of a computational model. Our objective is training the ANN
to reproduce the input-output behavior of the computational
model. To this end, the ANN is fed one training sample after
the other. In supervised learning (i.e., when the desired output
for specific input to the ANN can at least in principle be
computed from the beginning on), training samples are typically
not used individually for backpropagation training but rather
the error and error gradients used for backpropagation training
are computed across so-called batches of N samples and then
used. This reduces computational cost and perturbations of the
learning process due to specific numerical features of individual
samples. The error over a batch of N training samples is
computed in our framework as a root mean square error (RMSE)
(Russell and Norvig, 2016).
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FIGURE 2 | In our multi-fidelity framework we use computational models with

different fidelity (accuracy) of one and the same physical system or process.

Different fidelity levels can in the context of most computational schemes

easily be realized by variations of the discretization length. Finer discretization

typically yields more accurate but computationally also more expensive

models. Thus, it is favorable to use as many samples as possible at lower

fidelity levels in order to pre-train an ANN before a much smaller number of

accurate high-fidelity samples is used for fine-tuning the internal parameters of

the ANN.

eANN =

√

√
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√

1

N

N
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i= 1

(

ŷi − yi
)2

(1)

with ŷi the results predicted by the ANN for the input of sample
i within the training batch, and yi the corresponding output
provided by the computational model. The error gradient, which
is needed for backpropagation training, can be computed by
a simple finite-difference-like approximation of the derivatives
of (1).

Multi-Fidelity Training
General Idea
Typical algorithms for AI training such as gradient-based
backpropagation algorithms for ANNs are realized by way of a
process where the internal parameters of the ANN are adjusted
in a stepwise, iterative manner to improve its performance.
When ANN training starts, mainly a coarse adjustment of the
internal parameters of the ANN toward reasonable values takes
place because a tailor-made problem-specific initialization of
these parameters is typically not possible. This way, the AI is
endowed with a first coarse understanding of the basic properties
of the problem to which it is applied. Only later on the ANN
is fine-tuned. In this process, the initial adjustments of the
internal parameters of the ANN need not be accurate because
in subsequent training steps their precise values will still change
in a way that cannot directly be foreseen in the beginning.
Small perturbations of the initial steps can thus be expected to
remain without major impact on the overall result of the training
process. Thus, it is sufficient if during the initial training stage
the internal parameters of the ANN are altered in a way which
points roughly in the right direction. To this end, it is sufficient
to use in the initial stage of ANN training samples generated

by means of coarse low-fidelity computational models, which
may exhibit considerable numerical approximation errors but
which are computationally cheap. Only later on, as ANN training
progresses one has to gradually move toward samples generated
by means of more accurate and computationally more expensive
higher-fidelity models. Following this strategy one can use cheap
low-fidelity samples for a large part of the ANN training and
needs computationally expensive high-fidelity samples only in
the very end of the training process and thus only in a very
limited number. Exploiting such a multi-fidelity strategy, which
is illustrated in Figure 2, can substantially reduce the overall
computational cost (compared to a non-optimized brute-force
training of the ANN). It is worth emphasizing that the main
objective of this multi-fidelity strategy is indeed reduction of the
computational cost for training ANNs to a given level of accuracy
rather than training ANNs more accurately. Precisely, our multi-
fidelity framework is based on the following course of action.
We first define a number of different fidelity levels along with
associated computational models. We start generating training
data for the ANN using the computational model with lowest
fidelity. We continue using the low-fidelity model as long as the
overall performance of the ANN increases and we can expect
that using the a computational model at the current level of
fidelity can help to train the ANN in an efficient way. As soon
as this is no longer the case, we move on toward higher fidelity
training data. In practice, this is typically possible by simply
using computational models based on a finer discretization.More
details on this will be given below.

For simplicity we focus in the discussion herein and in
particular in the examples section on ANNs as a widely used
basis for AI and on computational models based on the finite
element method, which is widely used both in solid and fluid
mechanics as well as many other areas of continuum physics.
We stress, however, that we expect the multi-fidelity strategy
introduced herein to be generalizable also to cases where the
computational models used are not based on finite-element
discretizations or where more complex or specialized machine
learning architectures are used than ANNs. In fact, we expect the
multi-fidelity strategy introduced in this paper to be applicable
as long as the following three conditions are satisfied. First, there
must be a necessity to generate training data for the AI by means
of computational models. Second, the computational expense of
generating training data using these models should vastly exceed
the computational expense of training the AI itself. Third, it
must be possible to create for the physical system or process of
interest computational models with varying levels of accuracy,
lower levels of accuracy thereby being associated also with a lower
computational cost.

Criteria for Switching to Higher Fidelity Levels

During Training
In standard-problems of supervised learning, all training data are
available from the beginning on. In this case, the training data
can be divided into batches and the following course of action
is common: all batches are fed into the ANN, whereby, however,
from each batch only 90% of the samples are used for training
and 10% are retained for validation purposes. Once all batches
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have been fed into the ANN a so-called epoch is completed.
At this point the RMSE with respect to the samples retained
for validation is computed. Subsequently, the next epoch starts
where again all batches are fed into the ANN. This sequence is
interrupted, however, as soon as the RMSE computed for the
validation samples after an epoch has increased compared to the
previous epoch. The motivation for this strategy is the avoidance
of overfitting (Domingos, 2012; Russell and Norvig, 2016), which
is a tendency of learning algorithms not to learn the intended,
generalizable target function but rather features of the specific
training data unless the training process for a given set of data
is stopped in time. Once the RMSE for the validation samples–
which were not used for training and are unknown to the ANN–
starts to increase, even though the RMSE for the training data
themselves may still continue to decrease, overfitting can be
assumed to start.

In our setting, we have to pursue a slightly modified course
of action. The reason is that the complete set of training data
is not available from the beginning on but rather has to be
generated during learning because in the beginning it is not
even known how many training samples have to be generated
from computational simulations in order to achieve a reasonable
performance of the ANN. To overcome this problem, we start
our training with data generated by means of a computational
model at the lowest fidelity level. We generate one or several
batches of training data, depending on criteria discussed in
more detail below. In each batch, we retain 10% of the samples
for validation and use the remaining 90% for training. We
train the ANN looping in a batch-wise manner through all
the training samples. Looping one time through all available
training samples is called an epoch. We do so again and
again and complete this way more and more epochs until
either a certain predefined maximal number E of epochs has
been completed or until the RMSE based on the validation
samples increases (which is a sign of overfitting). Once this
point is reached, a so-called super-epoch is considered to be
completed. After each super-epoch, we evaluate the recent
training progress of the ANN. We do so on the basis of
two quantities. The first quantity is the current RMSE of
the ANN

emax
ANN =

√

√

√

√

1

N̄

N̄
∑

i=1

(

ŷi − ymax
i

)2
(2)

on the basis of N̄ output values
{

ymax
i

}

which are generated
in the very beginning of the whole training process using a
computational model at the highest fidelity level and which are
never used for training.

To obtain the second quantity required to evaluate the recent
training progress of the ANN at the current fidelity level i,
we compute an estimate of the approximation error of the
computational model at this fidelity level. To this end, we assume
that accuracy differences between the highest fidelity level at
which the computational model is available and the lowest one
with i = 1 are very large so that we can approximate the

approximation error of the computational model at the lowest
fidelity level with i = 1 as
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where
{

y1i
}

and
{

yexacti

}

are the output values which a
computational model with the lowest fidelity level and a fictitious
exact model of the physical system of interest yield when
provided the same input values that make the computational
model at the highest fidelity level yield the above introduced
{

ymax
i

}

.O
(

emax
CM

)

is a term on the order of magnitude of the RMSE
of the computational model at the highest fidelity level compared
to the fictitious exact model. We assume now that the modeling
error of the computational model at fidelity level i is governed
by the discretization lengths hi used in the computational model,
and that it converges monotonically to zero with the p-th power
of hi. Then the error of the computational model at the i-th
fidelity level can be estimated as

eiCM ≈
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The training progress after a super-epoch is always considered
unsatisfactory if the following criterion applies:

(T1) The RMSE emax
ANN according to (2) after the current super-

epoch is worse than the RMSE s super-epochs ago.

Criterion (T1) indicates that the ANN is no longer learning
general features of the problem but rather batch-specific
information. We average the RMSE over the last s super-epochs
when monitoring the training progress in order to reduce the
impact of random fluctuations during a single super-epoch.
Depending on the exact training strategy (cf. section “Different
Training Strategies” for more details) one may consider the
training progress after a super-epoch also unsatisfactory if the
following additional criterion applies:

(T2) The RMSE emax
ANN according to (2) after a super-epoch is

smaller or equal than q times the approximation error eiCM
of the computational model at the current fidelity level
estimated on the basis of (4).

Criterion (T2) indicates that the ANN has been trained to a level
of accuracy comparable to the one of the computational model
at the current fidelity level. Naturally, training beyond this level
is impossible and q can be understood as a safety factor which
ensure that training always stops earlier, taking into account that
(4) is just a rough estimate.

If the training progress after a super-epoch is found to be
satisfactory on the basis of criteria such as (T1) and possibly also
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(T2), we continue training at the same fidelity level. Otherwise,
we switch to the next higher fidelity level. If there is no higher
fidelity level, we terminate training.

Different Training Strategies
In this paper, we compare altogether three different training
strategies. The first one is a simple single-fidelity approach where
the whole training of the AI is based on samples generated at the
same (maximal) level of fidelity and thus also computational cost.
As viable alternatives to this simple brute-force approach, which
is most widely practiced so far, we propose and compare in the
following also two different multi-fidelity strategies.

Single-Fidelity Training
Training ANNs with data generated from computational models
is so far mostly performed in a single-fidelity paradigm where all
training data are generated with the same computational model
and thus with the same fidelity level. Therefore, we test this
approach also herein as a benchmark tomeasure the performance
gains that can be achieved by the multi-fidelity framework
introduced herein. To ensure comparability between single-and
multi-fidelity training, single-fidelity training is terminated as
soon as either criterion (T1) from section “Criteria for switching
to higher fidelity levels during training” is satisfied or the RMSE
of the ANN has decreased to a threshold RMSEmin which is
chosen to be equal to qeiCM from criterion (T2) in the multi-
fidelity training algorithm with which the single-fidelity training
algorithm is compared. The algorithm for single-fidelity training
is provided as pseudocode in Table 1.

TABLE 1 | Pseudocode for single-fidelity training.

REPEAT
GENERATE a new batch not yet filled with
samples
FOR each empty slot in the current batch

GENERATE a new training sample with
computational model
ADD new training sample to the
current batch

END FOR
TRAIN artificial neural network with the
current batch
TEST whether termination criterion (T1)
applies or RMSE ≤ RMSEmin

UNTIL termination criterion (T1) applies OR
RMSE ≤ RMSEmin OR computational budget spent

Unidirectional Multi-Fidelity Training
In the simplest “brute-force” multi-fidelity approach, we
unidirectionally loop through different fidelity levels. We start
at the lowest one and move on to the next higher fidelity level
as soon as one of the two termination criteria (T1) and (T2)
from section “Criteria for Switching to Higher Fidelity Levels
During Training” are satisfied. If this happens on the highest
fidelity level, we terminate training completely. Before starting
the training process, we have to define the number n of fidelity
levels as well as the computational models assigned to them.
When using finite element discretizations as we do herein, one
can create computational models at n different fidelity levels
simply by starting at the lowest fidelity level and refining then
from one fidelity level to the next one the discretization mesh by

a certain factor (e.g., a factor of two or four). The algorithm for
unidirectional multi-fidelity training is provided as pseudocode
in Table 2.

TABLE 2 | Pseudocode for unidirectional multi-fidelity training.

SET current fidelity level to the lowest one
REPEAT

GENERATE a new batch not yet filled with
samples
FOR each empty slot in the current batch

GENERATE a new training sample with
computational model at current
fidelity level
ADD new training sample to the
current batch

END FOR
TRAIN artificial neural network with the
current batch
TEST whether termination criterion (T1) or
(T2) are satisfied
IF termination criterion (T1) or (T2)
applies

CHANGE current level of fidelity to
next higher fidelity level

END IF
UNTIL fidelity level exceeds maximal fidelity level
OR computational budget spent

Bidirectional Multi-Fidelity Training
In the brute-force multi-fidelity approach switching to a higher
fidelity level is based on the criteria (T1) and (T2) from section
“Criteria for switching to higher fidelity levels during training”
and it is irreversible. Evaluation of criterion (T2) requires the
approximation (4). In certain cases, this approximation may
exhibit an unusually high error, for example, because the errors
of the computational models at the different fidelity levels are
not related by a simple power law. This happens in practice
in particular if the lowest fidelity levels are based on extremely
coarse discretizations because simple power laws governing
convergence mostly apply only in the limit of infinitesimal (or
practically at least relatively fine) discretization lengths. If (4)
exhibits a high error, application of (T2) may lead to a strongly
reduced computational efficiency. To overcome this problem,
one can skip in such cases termination criterion (T2) as a
whole and rather adopt the following bidirectional approach
for switching between different fidelity levels: at a given fidelity
level one first generates one batch at the next higher and one
batch at the next lower fidelity level (if these exist) as well as
several batches at the given fidelity level. The number of batches
at the given fidelity level is adjusted such that the computation
time spent on the generation of these batches surpasses the one
spent for the generation of the single batch at the next higher
fidelity level by a factor of m > 1. In the following we always
assume m = 4, noting that the exact choice of m has only
minor impact. Higher choices for m would reflect a lower rate
at which the learning efficiency per computational resource is
compared between fidelity levels. However, as additional batches
at the comparatively lower fidelity level only gradually diminish
their contribution to the learning process, our results were
insensitive to delayed comparisons (and thus delayed transitions
to a different fidelity level) as reflected by higher choices ofm.
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This procedure ensures that at each fidelity level one spends
by far most of the computation time on generating training
samples at this very fidelity level but that one also has available
one “trial” batch at the next higher and next lower fidelity level,
respectively. Now one uses the generated batches at these three
fidelity levels for training the ANN subsequently in three super-
epochs. For each fidelity level, we valuate the ratio between the
reduction of the RMSE during the associated super-epoch and the
computation time spent on generating the underlying training
samples. The fidelity level for which this ratio is maximal is
chosen as the new “current” fidelity level. Note that this rule
admits not only increasing the fidelity level but also decreasing
it in case that this is found to be computationally beneficial.
For the sake of clarity, the bidirectional multi-fidelity strategy is
described in detail as pseudocode in Table 3.

TABLE 3 | Pseudocode for bidirectional multi-fidelity training.

SET current fidelity level to the lowest one
REPEAT

IF current level of fidelity is the maximal
level of fidelity

STOP future batch generation for
all fidelity levels other than the
current one

END IF
FOR (if exists) next higher fidelity level
AND (if exists) next lower fidelity level

GENERATE a new batch not yet
filled with samples
FOR each empty slot in the current
batch

GENERATE a new training
sample with computational
model at respective
fidelity level
ADD simulation results to
the current batch

END FOR
TRAIN artificial neural network
with generated batches and compute
ratio of RMSE learning progress
and computational cost

END FOR
FOR current fidelity level

GENERATE multiple batches not yet
filled with samples such that total
computation time spent on current
fidelity level equals m times the
one spent on next higher fidelity
level
FOR each empty slot in each batch
at current fidelity level

GENERATE a new training
sample with computational
model at respective
fidelity level
ADD simulation results TO
the current batch

END FOR
TRAIN artificial neural network
with generated batches and compute
ratio of RMSE learning progress
and computational cost

END FOR
SET current fidelity level to the one with
highest ratio of RMSE learning progress per
computational cost
TEST whether termination criterion (T1)
applies to batches with current fidelity

level
IF termination criterion (T1) for batch
with current fidelity level applies

CHANGE current level of fidelity to

next higher fidelity level
END IF

UNTIL current fidelity exceeds maximal fidelity
level OR computational budget spent

The bidirectional multi-fidelity strategy completely bypasses
termination criterion (T2) and replaces it by a smart,
bidirectional switching strategy between different fidelity
levels which ensures that the vast majority of computational
time is always spent on samples at the fidelity level that currently
enables the computationally most efficient learning. It is worth
mentioning that bidirectional multi-fidelity training can be
particularly useful if the computational models used at the
different global fidelity levels exhibit an approximation error
that strongly depends on the input parameter regime so that
for certain choices of input parameters the fidelity (in terms of
an absolute model error) is much higher than for others. If one
generates in such cases samples with input values which are not
randomly distributed but which for example first probe one
parameter regime with a relatively high approximation error
of the computational model and subsequently another input
parameter regime with a relatively low approximation error of
the computational model, it will typically be efficient to reduce
the global fidelity level if one moves from the first to the second
input parameter regime because this would actually ensure that
the approximation error of the training samples remains rather
constant when switching from one to the other regime, which is
beneficial because this approximation error should be linked to
the smoothly changing approximation performance of the ANN.

NUMERICAL EXAMPLES

General
For the computational examples in this section we implemented
FNNs with three densely connected hidden layers in Python
3.6.5 using the Keras 2.2.0 library with TensorFlow (Abadi
et al., 2016) 1.8.0 as a backend. Learning is accomplished via
backpropagation, using Adam (Kingma and Ba, 2014) as an
optimizer for gradient descent. The activation functions are
rectified linear units. The number of layers and neurons per layer
are specified in Figure 3.

We generated all the training data used in the following
examples by means of the in-house finite element code
BACI (written in C++ and developed at the Institute for
Computational Mechanics of the Technical University of
Munich, Germany) and a 12-core Intel Xeon E5-2680v3
“Haswell.” In the following, we will skip units, assuming thereby
implicitly appropriately normalized quantities. For generating
computational models, linear finite element discretizations with
variable discretization lengths were used. The error convergence
power in (4) is thus assumed to be p = 2 for displacement-
based problems as in section “Two-Dimensional Problem: Elastic
Deformation of a ThinMembrane Under Loading” and p = 1 for
stress/strain-based problems as in section “Three-Dimensional
Problem: Elastic Modulus of RVE With Material Inclusion.” The
maximal number of epochs within a super-epoch is chosen as
E = 100. This number in fact rarely matters and is simply
used to ensure that no peculiar situation can arise where the
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FIGURE 3 | Architecture of the ANNs used in this paper in schematical (Left) and graphical (Right) representation.

ANN training process can get stuck. The number s of super-
epochs for evaluating whether the recent training progress of
the ANN has been satisfactory is chosen as s = 3. For the
combination of our learning architecture and problem settings,
averaging the error over at least the last 3 super-epochs was
found to be sufficient to preclude spurious deteriorations of
the RMSE from affecting transition points. The number of test
samples with maximal fidelity used in (2) and (4) is chosen
as N̄ = 100. While this choice is heuristic in nature, it
is legitimate because with respect to this number it is only
important to keep it high enough to ensure reasonably accurate
error estimates and low enough to limit the computational
cost for generation of the testing samples compared to the
training samples.

Two-Dimensional Problem: Elastic
Deformation of a Thin Membrane
Under Loading
Problem Description
We consider a square rubber membrane of edge length L = 10.
This membrane is modeled as a two-dimensional continuum
with pure in-plane extensional and shear stiffness governed by
the non-linear neo-Hookean strain energy function

ψ = µ

2
[tr (C)− 3] (5)

with the material parameter µ = 1 and the (two-dimensional,
in-plane) right Cauchy-Green tensor C and its trace tr (C). The
membrane forms in its stress-free initial configuration a plane
square of edge length L = 10. Before subjecting it to any other
loading, it is uniformly stretched in both in –plane directions by
a factor of 1.6 and then fixed at all the four edges (zero Dirichlet
boundary conditions). Subsequently, the membrane is loaded
with four out-of-plane loads. These loads are uniform surface

loads of magnitude f = 5 acting on circular domains of radius
R = 0.5, respectively. Note that the prestretch by a factor of 1.6 is
used here to endow the membrane with a non-zero out-of-plane
stiffness at any point in time, which is beneficial for numerically
stable computational modeling of the problem.

Our objective is training an ANN to predict the out-of-
plane displacement of the center of the membrane, given the (in
general variable) positions of the center points of the four surface
loads. To this end, we provide the ANN training data where
each sample consists of four randomly chosen load positions,
which form the input to the ANN, and the associated out-of-
plane displacement of the membrane center, which is computed
using finite element simulations. For these simulations, we use
computational models with n = 5 different levels of fidelity,
which correspond to uniform finite element discretizations with
N2d
el

∈
{

102, 202, 402, 802, 1602
}

4-noded rectangular linear
membrane elements. Per element the unusually high number
of 64 Gauss points were used to evaluate the surface loads on
the membrane with an acceptable approximation error even
when coarse spatial discretizations are applied. The membrane
problem and its discretization with N2d

el
= 100 elements are

illustrated in Figure 4. In Figure 5 the output of computational
models at different fidelity levels (corresponding to 100, 1,600,
and 25,400 finite elements) is illustrated for the same input (i.e.,
same out-of-plane loading).

Results
We trained an ANN with the architecture from Figure 3 with
the three different strategies from section “Different Training
Strategies” (single-fidelity, unidirectional multi-fidelity, and
bidirectional multi-fidelity) to predict for given positions of
the four membrane loads the out-of-plane displacement of
the center. Multi-fidelity training required a higher number
of samples but was consistently found to reduce the overall
computational cost of the training significantly due to the much
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FIGURE 4 | In a computational model with N2d
el

= 100 4-noded membrane finite elements, an initially stress-free elastic rubber membrane is first subjected to an

in-plane prestretch by a factor of 1.6 in both directions, then fixed at the boundaries and subjected to out-of-plane loading with circular surface loads (red circles with

crosses). Finally, the out-of-plane displacement of the membrane center is recorded in the loaded configuration as output of the computational model. This output

forms together with the positions of the four loads a training sample for the ANN with the specific fidelity level corresponding to a discretization with N2d
el

= 100

finite elements.

FIGURE 5 | Out-of-plane displacement of membrane subject to certain loading computed with computational models at three different fidelity levels corresponding to

(A) 100 elements, (B) 1,600 elements, and (C) 25,600 elements.

FIGURE 6 | (A) Learning progress across the different fidelity levels for the different training strategies. (B) Number of samples used per fidelity level for the different

training strategies.

lower average computational cost of the samples used. Figure 6
and Table 4 report samples numbers, computational cost and
learning progress across the different fidelity-levels in case of
both single- and multi-fidelity training. In single-fidelity training
only samples with highest fidelity (26,500 finite elements) were
used for training. It should be noted that the numbers reported
are the median over 100 training instances per strategy (reusing
generated samples) in order to eliminate the impact of random
that is inherent to a training concept were samples are created

on the basis of randomly chosen input values. As can be seen
in the last column of Table 4, multi-fidelity training enabled us
to train the ANN to the same level of accuracy as single-fidelity
training at a computational cost that was consistently between
a half and one order of magnitude lower. With unidirectional
multi-fidelity training computational savings depend on the
hyperparameter q in criterion (T2). For sufficiently small
choices of q, the criterion (T2) becomes unfulfillable and is
functionally removed. Conversely, sufficiently large choices of
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TABLE 4 | Computation times and sample numbers for different training strategies for the membrane problem from section “Two-dimensional problem: elastic

deformation of a thin membrane under loading.”

Fidelity level (number of

elements)

102 202 402 802 1602 Total Efficiency gain factor

compared to

single-fidelity

Average comp. time per

sample [s]

0.187 1.093 1.886 8.788 42.45

SINGLE-FIDELITY

Samples – – – – 16,864 16,864 1.00

Comp. time [s] – – – – 715,860 715,860

UNIDIRECTIONAL MULTI-FIDELITY

q ≤ 0.01 Samples 4,464 14,880 5,456 2,480 6,944 31,248 2.08

Comp. time [s] 835 16,264 10,290 21,794 294,773 343,956

q = 1 Samples 3,968 13,392 4,464 1,488 6,448 29,760 2.30

Comp. time [s] 742 14,637 8,419 13,077 273,718 310,593

q = 2 Samples 1,984 6,944 3,472 4,464 1,488 18,352 6.12

Comp. time [s] 371 7,590 6,548 39,230 63,164 116,903

q = 4 Samples 992 6,944 7,936 1,488 2,480 19,840 5.07

Comp. time [s] 186 7,590 14,967 13,077 105,274 141,094

q = 8 Samples 4,464 2,480 4,960 1,984 5,456 19,344 2.73

Comp. time [s] 835 2,711 9,355 17,435 231,602 261,938

q ≥ 160 Samples 496 496 496 496 14,880 16,864 1.12

Comp. time [s] 92 542 935 4,359 631,656 637,584

BIDIRECTIONAL MULTI-FIDELITY

Samples 5,952 1,984 4,960 4,960 1,984 19,840 5.10

Comp. time [s] 1,113 2,169 9,355 43,588 84,219 140,444

q lead to a permissive criterion (T2) which will be satisfied
whenever it is checked, resulting in fast transitions to the highest
fidelity level. In that case, the unidirectional multi-fidelity
strategy resembles the standard single-fidelity approach with a
minor prefix of a few batches of lower fidelity levels. The best
choice of q depends on how accurately equation (4) describes
the numerical approximation error, which cannot be easily
determined a priori for many problem settings. This heuristic
factor is completely eliminated in bidirectional multi-fidelity
training where switching between different fidelity levels is
performed automatically so as to ensure a computationally
efficient training progress. Interestingly, bidirectional multi-
fidelity trainings yields this way computational savings
that are, at least in this example, comparable to the ones
possible with unidirectional multi-fidelity training for favorable
choices of q.

Three-Dimensional Problem: Elastic
Modulus of RVE With Material Inclusion
Problem Description
The second example originates from the field of materials
mechanics and is related the broader area of computational
homogenization. A classical problem in this area is determining
the homogenized (macroscopic) mechanical properties of a
material whose microstructure is known in the form of a
representative volume element (RVE). The RVEs studied here are
cubes with edge length L = 10. They consist of a matrix material

into which an ellipsoidal inclusion in the center is embedded.
Size and shape of the inclusion are uniquely defined by the three
ellipsoidal semiaxes a, b, and c which can vary in a specific
prescribed range. Thereby, both the semiaxes and the edges of
the RVE are assumed to be aligned with the three coordinate
axes x, y, and z. The origin of the coordinate system coincides
with the center of the RVE (cf. Figure 7). Both the material of
the inclusion and of the surrounding matrix are assumed to be
isotropic with Poisson’s ratio ν = 0.3. Young’s modulus of
the matrix is Em = 1 and of the inclusion Ei = 100. We
are interested in computing Young’s modulus Ex in x-direction
of a material consisting of RVEs of the above described type,
depending on the exact geometry of the ellipsoidal inclusion. To
this end, one can subject RVEs of the above type to a mechanical
loading of the following type: at the face of the RVE oriented
in positive x-direction one imposes as a boundary condition a
uniform displacement ux (x = L/2) = 0.05 and at the oppositve
face oriented in negative x-direction a uniform displacement
ux (x = − L/2) = −0.05. This mimics an average strain εx =
0.01 of the RVE in x-direction. On other faces of the RVE,
displacement is constrained such that its component orthogonal
to the respective face is uniform across the whole face and that the
average outer normal traction vector on each face is zero. Under
these conditions, one can compute

Ex =
∣

∣fx
∣

∣

L2εx
(6)
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FIGURE 7 | Three-dimensional view (A) and projection onto xy-plane (B) of RVE with ellipsoidal inclusion discretized with N3d
el

= 262144 8-noded hexahedral finite

elements. The ellipsoidal inclusion (blue) is located in the center of the RVE and surrounded by a matrix (gray). To probe the stiffness of the RVE in x-direction, a

uniform displacement ux is imposed on the faces in positive and negative x-direction (arrows) while on all the other faces (red) a uniform displacement field

perpendicular to the faces with zero average traction in outer-normal direction is imposed.

(6) with the total reaction force fx in x-direction on the faces
of the RVE oriented in positive and negative x-direction. Our
objective is training an ANN to predict Ex, given the (in general
variable) lengths a, b, and c of the semiaxes of the ellipsoidal
inclusion as input parameters, assuming a, b, c ǫ [2; 4]. To this
end, we generate training samples consisting of a random input
tuples

(

a, b, c
)

and the associated Ex, respectively. The values of Ex
are computed bymeans of finite element simulations of the above
described problem. In these simulations, the RVEs are discretized
with a uniformmesh of 8-noded hexahedral linear finite elements
(Figure 7). We use simulations on four different fidelity levels,
corresponding to discretizations with N3d

el
=

{

43, 83, 163, 323
}

elements, respectively (Figure 8).

Results
The results for the three-dimensional RVE problem closely
resemble the results for the two-dimensional membrane problem
presented in the previous “Results” section. The general
observation that multi-fidelity strategies require the generation
of more samples but yet reduce the total computational cost
significantly because the average computation time per sample is
much lower is made in two and three dimensions alike. Figure 9
and Table 5 report samples numbers, computational cost, and
learning progress across the different fidelity-levels in case of both
single- and multi-fidelity training. In single-fidelity training only
samples with highest fidelity (262,144 finite elements) were used
for training. Again it is noted that the numbers reported here
are the median over 100 training instances per strategy for the
reasons discussed already in the previous “Results” section. As
can be seen in the last column of Table 4, multi-fidelity training
enables us to train the ANN to the same level of accuracy at a
computational cost that is consistently significantly below the one

of single-fidelity training. As one can see, unidirectional multi-
fidelity training yields the best results in this three-dimensional
example (unlike in the previous two-dimensional example) not
for 1 < q < 10 but rather for q < 1 which indicates that the error
estimates used for switching between the different fidelity levels
may exhibit a considerable inaccuracy. The interaction between
the choice of q and the unidirectional multi-fidelity results
follows the pattern described in the previous “Results” section.
Again one can see that bidirectional multi-fidelity training in
which the parameter q is not required and where switching
between fidelity levels is performed instead in a smart and
automatic way, probing dynamically the computational efficiency
of training at different levels of fidelity, is a robust and viable tool
to yield an efficiency gain of around half an order of magnitude
compared to brute-force single-fidelity training.

CONCLUSIONS

Machine learning and artificial intelligence have attracted rapidly
increasing interest in mechanical engineering and materials
science over the last years. One of the major challenges in
this area is training ANNs to predict or control the behavior
of complex physical systems for which not enough real-word
training data are available, for example, because experiments or
measurements are too expensive, time-consuming, or dangerous.
In this case, generating training data by way of realistic
computational simulations is a viable and often the only
promising alternative. Doing so can, however, be associated
with a significant computational cost, which forms a serious
bottleneck for the application of machine learning to complex
physical systems. To overcome this problem, we propose in
this paper a new systematic approach. It exploits the fact that
in the initial stage training an ANN mainly aims at endowing
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FIGURE 8 | (A) three-dimensional view of RVE with ellipsoidal inclusion, (B) two-dimensional projections of finite elements models of this RVE at four different fidelity

levels corresponding to discretizations with a resolution of 4, 8, 16, and 32 elements in each coordinate direction, respectively.

FIGURE 9 | (A) Learning progress across the different fidelity levels for the different training strategies. (B) Number of samples used per fidelity level for the different

training strategies.

the ANN with a coarse understanding of the general features
of a problem. Using training data from detailed and thus
computationally expensive models can thus be expected to
be a waste of computational resources in this stage because
coarse low-fidelity models often capture already the most salient
features of a physical systems but at much a lower computational
cost. Based on this observation, we introduced herein a general
and systematic multi-fidelity framework for training ANNs with
data generated by computational models with various different
fidelity levels. Such models can easily be generated in the
context of widely used computational methods such as the
finite element method by varying the discretization length. In
this framework, cheap low-fidelity computational models are
used to generate the training data for the early stages of ANN
training. As the training of the ANNs progresses, one gradually
switches to higher-fidelity training data generated by means
of more accurate and computationally more expensive models.
This strategy is very general in nature and can in principle be
applied to any problem where training ANNs computational
models are used whose accuracy can straightforwardly be
controlled, for example, by way of a discretization length. This
is true not only for the finite element method which we are
using herein but also for numerous other methods for solving
partial differential equations such as finite difference methods,

mesh-free discretization schemes such as the moving least
squares methods or particle-based methods such as smoothed
particle hydrodynamics (SPH). In this article, we focused on two
application areas, which are structural mechanics and materials
mechanics. In these areas computational models are already
widely used and coupling them with machine learning appears
the natural next step to address several key problems such
as efficient prediction of the behavior of complex mechanical
systems under variable (e.g., loading) conditions or efficient
homogenization of themechanical behavior of complexmaterials
with a heterogeneous microstructure depending on certain
features of this microstructure.

We developed in this article a general multi-fidelity
framework and discussed two slightly different versions of
it. The first one is based on an estimate of the error of the
computational models used at different fidelity levels. It implies
a heuristic correction factor q. While it may often be possible to
determine this correction factor based on simple rules of thumb,
in other cases this may be more difficult. This dependency
on q, which does not straightforwardly generalize to complex
hybrid models (e.g., finite elements on one level, molecular
dynamics on another level, other discretization schemes) is a
drawback of the unidirectional multi-fidelity variant, which
furthermore has the limitation of no clear method of a priori
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TABLE 5 | Computation times and sample numbers for different training strategies for the membrane problem from section “Two-dimensional problem: elastic

deformation of a thin membrane under loading.”

Fidelity level

(number of elements)

64 512 4,096 32,768 Total Efficiency gain factor

compared to

single-fidelity

Average comp. time per

sample [s]

0.066 4.27 85.3 962

SINGLE-FIDELITY

Samples – – – 9,920 9,920 1.00

Comp. time [s] – – – 9,543,040 9,543,040

UNIDIRECTIONAL MULTI-FIDELITY

q ≥ 2 Samples 496 496 496 8,432 9,920 1.17

Comp. time [s] 33 2,118 42,309 8,111,584 8,156,044

q = 1 Samples 496 496 1,488 7,936 10,416 1.23

Comp. time [s] 33 2,118 126,926 7,634,432 7,763,509

q = 0.4 Samples 5,952 3,968 1,488 1,488 12,896 6.06

Comp. time [s] 393 16,943 126,926 1,431,456 1,575,718

q ≤ 0.2 Samples 1,984 2,480 4,464 2,976 11,904 2.93

Comp. time [s] 131 10,590 380,779 2,862,912 3,254,412

BIDIRECTIONAL MULTI-FIDELITY

Samples 13,888 17,856 16,368 1,488 49,600 3.28

Comp. time [s] 917 76,245 1,396,190 1,431,456 2,904,808

calculating the most efficient transition points between levels of
fidelity. To eliminate this heuristic element and the problems
it entails, we proposed a second version of our multi-fidelity
framework where switching between different fidelity levels is
controlled in a smart and fully automated way. To this end,
our training algorithms probes at each fidelity level training
samples also from neighboring fidelity levels and dynamically
switches to the fidelity level where currently the largest training
progress per computational cost can be achieved. We would
consider this method a robust variant of the multi-fidelity
strategy, relying on fewer parameters than the unidirectional
approach. In summary, we found that our multi-fidelity training
strategy enables us to train ANNs to the same level of accuracy
as standard (single-fidelity) approaches but at a computational
cost that is by around a half to one order of magnitude lower.
This gives rise to the hope that the general multi-fidelity strategy
introduced herein can become a powerful and versatile tool
for the future combination of computational simulations and
artificial intelligence, in particular in the area of structural and
materials mechanics.

We conclude this paper by noting that the two specific
multi-fidelity training algorithms introduced in this paper, the

unidirectional and the bidirectional training algorithm, are but a
starting point. There are various ways how the underlying general
idea of systematic multi-fidelity training can be further developed
and optimized. For example, one could employ for ANN training
batches where samples with several different fidelity levels are
mixed. This would enable a seamless transition between different
fidelity levels during training, which might yield additional
computational savings.
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Unveiling physical laws from data is seen as the ultimate sign of human intelligence.

While there is a growing interest in this sense around the machine learning community,

some recent works have attempted to simply substitute physical laws by data. We

believe that getting rid of centuries of scientific knowledge is simply nonsense. There

are models whose validity and usefulness is out of any doubt, so try to substitute them

by data seems to be a waste of knowledge. While it is true that fitting well-known

physical laws to experimental data is sometimes a painful process, a good theory

continues to be practical and provide useful insights to interpret the phenomena taking

place. That is why we present here a method to construct, based on data, automatic

corrections to existing models. Emphasis is put in the correct thermodynamic character

of these corrections, so as to avoid violations of first principles such as the laws of

thermodynamics. These corrections are sought under the umbrella of the GENERIC

framework (Grmela and Oettinger, 1997), a generalization of Hamiltonian mechanics

to non-equilibrium thermodynamics. This framework ensures the satisfaction of the

first and second laws of thermodynamics, while providing a very appealing context for

the proposed automated correction of existing laws. In this work we focus on solid

mechanics, particularly large strain (visco-)hyperelasticity.

Keywords: data-driven computational mechanics, hyperelasticity, model correction, GENERIC, machine learning

1. INTRODUCTION

In a very recent paper about how construct machines that could eventually learn and think like
humans, Lake et al. (2017) state that “machines should build casualmodels of the world that support
explanations and understanding, rather thanmerely solving pattern recognition problems” and that
“model building is the hallmark of human-level learning, or explaining observed data through the
construction of causal models of the world”. Indeed, machine learning of physical laws could be
seen as the ultimate form of machine intelligence, and this should be done, of course, from data.

There is a very active field of research around this way of reasoning. For instance, in Brunton
et al. (2016) a method is presented that operates on a bag of terms like sines, cosines, exponentials,
etc., so as to find an expression that is sparse (i.e., it incorporates few of theses terms) while
still explaining the experimental data. Similar approaches include techniques to find reduced-
order operators from data (Peherstorfer and Willcox, 2015, 2016) or the possibility to construct
physics-informed machine learning (Raissi et al., 2017a,b; Swischuk et al., 2018).
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In the field of computational materials science, this approach
seems to begin by the works of Kirchdoerfer and Ortiz (2016,
2017a). In it, and the subsequent works, they present a method
in which the constitutive equation is substituted by experimental
data, that could be possibly noisy (Kirchdoerfer and Ortiz, 2017b;
Ayensa-Jiménez et al., 2018). In them, it is recognized that some
equations (notably, equilibrium, compatibility) are of a higher
epistemic nature, while constitutive equations—that are often
phenomenological and, therefore, of lower epistemic value—
could easily be replaced by data (Latorre and Montáns, 2014).
The criterion is to establish a distance measure that indicates
the closest experimental datum to be employed every time
the constitutive law is called at the finite element integration
point level.

In some of our previous works, this approach is further
generalized by defining the concept of constitutive manifold, a
low-dimensional embedding for the stress-strain pairs (see Lopez
et al., 2018). Thus, by alternating between stress-strain pairs
that satisfy either equilibrium or the constitutive equation, the
solution that satisfies the three families of equations is found,
regardless of the non-linearity of the behavior. Several methods
have been studied for the construction of this constitutive
manifold (Ibañez et al., 2017).

Another inherent difficulty in trying to machine learning
models is that of the adequate level of description. Every physical
phenomenon can be described at different levels of detail. In
the case of fluid mechanics, for instance, these levels range from
molecular dynamics to thermodynamics—in descending order
of detail—. In between, different theories have been developed
that take care of different descriptors of the phenomenon
taking place: from the Liouville description to the Fokker-Planck
equation, hydrodynamics, ... to name but a few of the different
possibilities (Español, 2004). Thus, there should be a compromise
between detail in the description and the resulting computational
tractability of the approach. This is something very difficult to
discern for an artificial intelligence.

The risk of employing an approach based upon pure
data regression is to violate—due to the inherent noise in
data, for instance—some basic principles such as the laws of
thermodynamics: conservation of energy, positive dissipation
of entropy. Trying to avoid these possible inconsistencies, in
González et al. (2018) we developed a data-driven method that
operates under the framework of the GENERIC formalism
(Grmela and Oettinger, 1997; Öttinger, 2005). The General
Equation for Non-Equilibrium Reversible-Irreversible
Coupling (GENERIC) constitutes a generalization of the
Hamiltonian mechanics. Therefore, under the GENERIC
umbrella, the equations satisfy basic thermodynamic principles
by construction.

Thus, the problem translates to finding—by means of data—
the right expression of the particular GENERIC formalism
for the system at hand (or its finite element approximation,
if we work in a purely numerical framework). The resulting
approximation is thermodynamically sound and very appealing
from the numerical point of view. The stability of the GENERIC
approach and its thermodynamic consistency—in particular,
the conservation of symmetries in the formulation—has been

thoroughly investigated in previous works, whose lecture is
greatly recommended (Romero, 2009, 2010).

However, even if the usual parameter fitting procedure from
experimental data is often painful and, notably, gives poor fitting
of the results in many occasions, we believe that well-known
constitutive equations should not be discarded, thus waiting
centuries of scientific discovery. Instead, we believe that it is
interesting to simply correct those models that sometimes do not
fit perfectly the results—sometimes locally, in a delimited region
of the phase space—. This is the approach followed in Ibañez
et al. (2018), where corrections are developed to yield criteria
so as to render them compliant (to a specified tolerance level)
with the available experimental results. A similar approach has
been pursued recently in Lam et al. (2017) for a study on the
interaction of aircraft wings. In these approaches, the chosen level
of description is defined by the (poor) model, so, in principle, no
further decision needs to be taken, as will be discussed later on.

The GENERIC formalism is valid for all levels of description,
and could also help in deriving corrections from data that
still maintain the thermodynamic properties of the resulting
model. Hyperelastic models fall withinHamiltonianmechanics—
i.e., they represent a purely conservative material—. However,
rubbers or foams usually present some degree of viscoelasticity,
for instance. In this framework, Hamiltonian mechanics will
no longer be the right formalism to develop their constitutive
equations. GENERIC should be preferred instead.

In this paper we study how to learn these corrections
from data. First, in Section 2 we review the basics of the
GENERIC formalism, with an emphasis on hyperelastic and
visco-hyperelastic materials. In Section 3 we explain how to
employ GENERIC to develop corrections to existing models
from data, while in Section 4 we introduce, by means of an
academic example in finite dimensions, the basic ingredients of
our approach. This will be further detailed for visco-hyperelastic
materials in Section 5. The paper ends with a discussion on
the just developed techniques and the future lineas of research
in Section 6.

2. A REVIEW OF THE GENERIC
FORMALISM

2.1. The Basics
The GENERIC formalism was introduced by Grmela and
Oettinger (1997) in a seminal paper in an attempt to give
a common structure for non-Newtonian fluid models. The
establishment of such a model in the GENERIC framework
starts by selecting appropriate state variables. This is not
straightforward in a general case in which we have no prior
information about the precise behavior of the system at hand.
However, for most systems—and specially when we start from
known models, as it is the case in this work—simple rules exist
for the selection of such variables (Öttinger, 2005). Selecting
mutually dependent variables does not constitute a problem,
in fact, as most of the literature on GENERIC demonstrates.
Let us call these variables zt = z(t) : I → S , z ∈ C

1(0,T],
and emphasize their obvious time dependency in the interval
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I = (0,T]. S represents the space in which these variables live,
which depends obviously on the particular system under scrutiny.
The final objective of the GENERIC model is to establish an
expression for the time evolution of these variables, ż(t).

The GENERIC equation takes, under these assumptions,
the form

żt = L(zt)∇E(zt)
︸ ︷︷ ︸

Hamiltonian

+M(zt)∇S(zt)
︸ ︷︷ ︸

Dissipative

, z(0) = z0. (1)

The first sum on the right-hand side term represent the
Hamiltonian, or conservative, part of the behavior of the system.
In it, the term L(zt) is the so-called Poisson matrix. The second
sum is responsible for the dissipative behavior of the system, with
M(zt) the so-called friction matrix. Here, E(zt) represents the
total energy of the system, while S(zt) represents its entropy.

For Equation (1) to give a valid description of any
physical system, it must be supplemented with the so-called
degeneracy conditions:

L(z) · ∇S(z) = 0, (2a)

M(z) · ∇E(z) = 0. (2b)

Enforcing these conditions leads to the necessity of L(z) to be
skew-symmetric and aM to be symmetric, positive semi-definite.
If these conditions are met, then, it holds,

Ė(z) = ∇E(z) · ż = ∇E(z) · L(z)∇E(z)+∇E(z) ·M(z)∇S(z) = 0,
(3)

which is, in fact, the equation of conservation of energy for the
system. Additionally, these conditions ensure the satisfaction of

Ṡ(z) = ∇S(z) · ż = ∇S(z) · L(z)∇E(z)+∇S(z) ·M(z)∇S(z) ≥ 0,
(4)

or, equivalently, the fulfillment of the second principle
of thermodynamics.

Noteworthy, Equation (1) constitutes the most general
framework to develop a valid constitutive equation in the light
of the principles of thermodynamics. A valid constitutive model
must satisfy the GENERIC equation, and any possible correction
to it should not deviate the result from this framework. For a
thorough description of a long list of models under the GENERIC
formalism, the interested reader can consult Öttinger (2012). To
exemplify the just introduced concepts, consider the simplest
case of a conservative mechanical system whose time evolution
can be expressed, in the Hamiltonian framework, by resorting to
a description of the type żt = {qt , pt}, where qt represents the
position and pt the momentum. In that situation, the system is
purely Hamiltonian and

L(z) =
[

0 1

−1 0

]

,

with no entropy evolution, i.e., M = 0. In this simple situation,
L(z) turns out to be the canonical symplectic matrix and
the GENERIC description of the system reduces to that of a
Hamiltonian system.

2.2. Hyperelasticity Under the Prism of
GENERIC
It is important to highlight the fact that, for hyperelastic
materials, the expression

żt = L(zt)∇E(zt)

represents the usual hyperelastic problem under the Hamiltonian
formalism (Romero, 2013). Indeed, if we choose z(x, t) =
[x(X, t), p(X, t)]⊤, where x = φ(X)—the deformed configuration
of the solid—and p represents the material momentum
density, then,

ż =
[

ẋ

ṗ

]

= L∇E = L

[

∂E
∂x
∂E
∂p

]

.

The total energy of an elastic body � can be decomposed as

E = W + K,

i.e., the sum of elastic and kinetic energies. Here, we assume a
strain energy density potential w of the form

W =
∫

�

w(C) d�,

where C represents the right Cauchy-Green deformation tensor.
While, in general, the strain energy density for an isotropic case
would be of the form w = w(X,C, S), in the context of isotropic
hyperelasticity—a purely Hamiltonian case—, this dependence is
often simply w = w(C). In turn, the kinetic energy will be

K =
∫

�

1

2ρ0
|p|2 d�.

In this framework, it is clear that

∂E

∂x
= ∂W

∂x
= ∇X · P = ∇X · [FS],

where P and S represent, respectively, the first and second
Piola-Kirchhoff stress tensors and F is the deformation gradient.
Given that

p = ρ0V = ρ0
∂x

∂t
,

with V the material velocity and ρ0 the density in the reference
configuration so that, finally,

ż =
[

ẋ

ṗ

]

= L∇E = L

[

∇X · P
p

ρ0

]

.

This implies that

L =
[

03×3 I3×3

−I3×3 03×3

]

, (5)

which is fully compliant with the GENERIC framework, see
Equation (1). This model is readily seen as equivalent to

ẋ = p

ρ0
,
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∇X · P = ṗ,

which correspond to the definition of the material momentum
density and the equilibrium equation, respectively.

Under this rationale, the possible viscous effects in the
material would be described by the second sum in Equation (1).

REMARK. We have stated that, under the GENERIC
formalism, an isotropic Hamiltonian or conservative hyperelastic
model can be written in the form w = w(C) and therefore will
not depend on S. This discussion is strongly related with that
of the adequate level of description of the model. In fact, many
hyperelastic models exist that depend on different parameters,
that can influence its viscous behavior, for instance, seeMihai and
Goriely (2017).

Indeed, by introducing a new potential (entropy) in the
formulation, what we are doing is to introduce ignorance on
these details, while still taking into account their influence on the
results. It is the same process we face if we are not interested
in tracking every molecule of a gas in a container but prefer
instead a description based on macro-scale magnitudes such
as pressure, volume, and temperature. The process of coarse-
graining the description in a non-equilibrium setting makes it
necessary to introduce a new potential that accounts for the
neglected information: entropy (Español, 2004; Pavelka et al.,
2018). Thus, in the correction procedure that we are about to
introduce, there will be no need to add new variables to the
model, but an adequate entropy potential to the formulation.

The problem of constructing a valid constitutive model under
the GENERIC point of view is therefore reduced to that of finding
the particular structure of the terms L(z), E(z), M(z), and S(z).
The classical approach is to do it analytically, as in Romero
(2009, 2010), for instance, or Vázquez-Quesada et al. (2009)
and Español (2004), to name but a few of the examples in the
literature. A different approach is to find the structure of these
terms numerically, from data. This will be done possibly with the
help of manifold learning techniques such as LLE (Roweis and
Saul, 2000) or isomap (Tenenbaum et al., 2000), among others.
It is the approach followed by the authors in González et al.
(2018) and, in some sense, it is also the approach followed by
Millán and Arroyo (2013) without even knowing the structure
of GENERIC. This approach is also somehow related to the use
of compositional rules to construct models (Grosse et al., 2012).
This last reference shares with the approach herein the need of
identifying the structure of several matrices that are then used
to develop models—in that case, of phenomena that do not even
obey the laws of physics, such as voting tendencies, for instance.

3. CORRECTING MODELS IN A GENERIC
FRAMEWORK

In this work we do not pursue to unveil models by means
of GENERIC and experimental data. As explained in the
introduction, we believe that is simply nonsense to discard
models that have demonstrated to be useful for decades. In
the case of hyperelasticity, these include, among a wide list
of references, the works of Treloar (1975), Ogden (1984) or

Holzapfel and Gasser (2000). These models, as analyzed before,
already had a GENERIC structure.

Purely hyperelastic materials are strictly conservative.
However, soft living matter, for instance, that is often modeled
under the hyperelastic theory, present some non-negligible
viscous effects (Peña et al., 2011; García et al., 2012). In that
case, in the light of the GENERIC formalism, it is necessary to
complement the model with a dissipative part, i.e., to determine
the precise form ofM(z) and S(z).

What we will do in this work, in fact, is to assume that an
inexact model exists, so that a correction is needed,

z
corr = z

exp − z
mod,

where “corr”, “exp” and “mod” stand, respectively, for correction,
experimental and model. We will develop a correction in the
GENERIC framework so as to guarantee that the correctedmodel
for the experimental results will also have a GENERIC structure.
To this end, we cast the correction in the form

ż
corr = L∇E(zcorr)+M∇S(zcorr).

We do not consider a correction for L nor M, since, in the light
of the previous remark, L is assumed to be identical to that
of the model (we consider the same state variables). Since the
correction of the model could have an important influence on the
form of M—recall again the remark in the previous section, we
attribute to S the possible presence of fine-grained state variables
that are not considered in the Hamiltonian part of the model—,
we discard any possible M coming from the inexact model and
instead re-compute it from scratch. With these assumptions, the
resulting model that fits with the experimental results will have
the form

ż
exp = ż

mod + ż
corr = L∇E(zcorr)+M∇S(zcorr)+ L∇E(zmod),

so that, finally,

ż
exp = L

(

∇E(zcorr)+∇E(zmod)
)

+M∇S(zcorr),

which proves that the corrected model for z
exp possesses a

GENERIC structure with a correction in the Hamiltonian term.
Consider that a set of nmeas experimental measurements Z =

{zexp0 , z
exp
1 , . . . , z

exp
nmeas} is available. The predictions of the inexact

model are then subtracted from the experimental results. The
final objective will be therefore to obtain a discrete approximation

z
corr
n+1 − z

corr
n

1t
= L DE(zcorrn+1)+ M(zcorrn+1)DS(zcorrn+1),

to the GENERIC structure of the discrepancy between data and
experiments, by identifying DE(z), and possibly also M(z) and
DS(z). DE and DS represent the discrete gradients (in a finite
element sense).

Therefore, the proposed algorithm will consist in solving the
following (possibly constrained by the degeneracy conditions)
minimization problem within a time interval J ⊆ I:

µ
∗ = {M,DE,DS} = argmin

µ

||z(µ)− z
meas||,
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with z
meas ⊆ Z, a subset of the total available experimental

results. See the discussion in González et al. (2018) about how
to determine the right size of the sample set, the possibility of
employing monolithic or staggered strategies, etc.

In the next Section this procedure is exemplified with the help
of an academic example in finite dimensions.

4. AN INTRODUCTORY EXAMPLE

We first consider an example analyzed in Romero (2009) and
then again in González et al. (2018). The system is a double
pendulum, which is connected by thermoelastic springs. It
comprises two masses m1 and m2 connected by springs of
internal energy e1 and e2. They oscillate around a fixed point,
see (Figure 1). We employ the classical notation of Hamiltonian
mechanics where qi, pi, i = 1, 2 represent position andmomenta,
respectively. For the springs, their respective entropies are sj, and
the longitudes at rest will be denoted by λ0j , j = a, b.

The set of state variables for this double pendulum will
be therefore

S = {z = (q1, q2, p1, p2, s1, s2)

∈ (R2 × R
2 × R

2 × R
2 × R × R), q1 6= 0, q2 6= q1}.

The GENERIC structure for this problem needs to consider
the internal energy of the system. Again, the internal energy is
composed by the kinetic energy of the masses and the potential
energy in the springs, i.e.,

E(z) = K1(z)+ K2(z)+ ea(λa, sa)+ eb(λb, sb),

with

λa =
√
q1 · q1, λb =

√

(q2 − q1) · (q2 − q1).

FIGURE 1 | Double thermal pendulum.

The temperature in the springs, θj, is assumed to be originated by
the Joule effect,

θj =
∂ej

∂sj
, j = a, b.

The conductivity in the springs will be denoted by κ . Under this
rationale, the resulting equations for the double pendulumwill be

q̇i =
pi

mi
,

ṗi = − ∂

∂qi
(ea + eb),

ṡj = κ

(

θk

θj
− 1

)

,

with i = 1, 2, j = a, b, k 6= j. Therefore, the gradients of the
GENERIC formalism will look

∇E(z) =
(

fana − fbnb, fbnb,
p1

m1
,
p2

m2
, θa, θb

)

, (6a)

∇S(z) = (0, 0, 0, 0, 1, 1), (6b)

with fj, nj, j = a, b, the forces in the springs and their respective
unit vector along their direction.

Poisson and friction matrices will result in this case,

L(z) =

















0 0 1 0 0 0

0 0 0 1 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

















, M(z) =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 κ
θb
θa

−κ

0 0 0 0 −κ κ θa
θb



















.

(7)
However, we will assume that this description of the system
is not available—will be used as a ground truth to determine
errors—and that the system is thought to be purely Hamiltonian.

In this scenario, the goal of our method will be that of
unveiling the dissipative part of the model so as to correct
the pure Hamiltonian behavior of the assumed model. In other
words, the system will be considered as modeled by

żt = L(zt)∇E(zt),

with L as in Equation (7) and ∇E as defined in Equation (6a).
Results of the ground truth, the assumed (purely Hamiltonian)
model and the found corrected model are shown in Figure 2.

The mean squared error of the assumed model with respect
to the pseudo-experimental data was initially 0.1732%. Note the
little influence of the Joule effect on the results. However, after a
correction is found and the dissipative character of the model is
taken into account, this error is decreased up to 0.0125%, i.e., one
order of magnitude.

5. CORRECTIONS TO HYPERELASTIC
MODELS

In order to show the full capabilities of the proposed method,
we consider now an example of a visco-hyperelastic material

Frontiers in Materials | www.frontiersin.org 5 February 2019 | Volume 6 | Article 1482

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


González et al. Learning Corrections for Hyperelastic Models From Data

FIGURE 2 | Results for the thermal pendulum problem. Results are shown (see the detail in the small window in the bottom figure) for the ground truth

(pseudo-experimental data), the uncorrected (purely Hamiltonian) assumed model and the corrected one.

whose precise constitutive model is to be corrected from
experimental data.

5.1. Ground Truth. Pseudo-Experimental
Data
The pseudo-experimental data is obtained by finite element
simulation of a visco-hyperelastic Mooney-Rivlin material
in which

W = C1(I1 − 3)+ C2(I2 − 3)+ D1(J − 1)2, (8)

with I1 = J−
2
3 I1 and I2 = J−

4
3 I2, and where the invariants of the

right Cauchy-Green tensorC are defined as I1 = λ21+λ22+λ23, and
I2 = λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1, respectively. J represents, as usual, the

determinant of the gradient of deformation tensor. In this case,
C1 = 27.56 MPa, C2 = 6.89 MPa and D1 = 0.0029 MPa.

To model the viscoelastic behavior of this rubberlike material,
it is assumed that the material’s shear modulus G and bulk

modulus K evolve in time. This evolution is modeled by means
of a Prony series in terms of the instantaneous moduli,

G(t)

G0
= 1−

2
∑

i=1

gPi

(

1− exp

(

− t

τi

))

,

K(t)

K0
= 1−

2
∑

i=1

k
P

i

(

1− exp

(

− t

τi

))

,

with gPi = [0.2, 0.1] and k
P

i = [0.5, 0.2]. The relaxation times
take the values τi = [0.1, 0.2] seconds, respectively. With these
values, the initial instantaneous Young’s modulus takes the value
E = 206.7 MPa, with Poisson’s ratio ν = 0.45.

Data was generated after a total of 557 different loading
processes to the same specimen. It was subjected to a load history
of different amplitudes. In every case, a first plane stress state
(σx, σy, τxy)—values are not correlated—is applied during a short
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impulse of 0.021 seconds, then maintained at constant value for
one more second, allowing the material to creep. This is followed
by a second loading process of 0.021 seconds at a different
(σx, σy, τxy) value, followed by a final plateau of one more second.
For each one of the 557 different experiments these two stress
states were different. These results are stored in the form of 557
different Z vectors, thus representing a trajectory in time.

5.2. Modeling the Results With a Purely
Hyperelastic Model
After the generation of the pseudo-experimental data, we tried
to reproduce these results with a deliberately wrong model:
the material was assumed to be modeled by a Mooney-Rivlin
model with no viscous response (and thus purely Hamiltonian
or conservative). The comparison of the experimental results and
the predictions given by this (poor) model are shown in Figure 3.

It seems obvious that a classical Mooney-Rivlin model can not
reproduce the viscous behavior of the reference material. In the
next section a correction to this model is developed based on the
available data and the procedure introduced in Section 3.

5.3. Correction of the Dissipative Part of
the Model
Knowing in advance that the pseudo-experimental results come
from a viscous modification to a Mooney-Rivlin model, a first
attempt is made of finding a correction by incorporating a
dissipative part in the GENERIC description of themodel. To this
end, for each one of the experimental results, a fitting procedure
of the dissipative GENERIC terms was accomplished.

In Figure 4 results are shown for one of the 557 essays.
Experimental results, Mooney-Rivlin prediction and the
subsequent GENERIC correction are shown. As can be noticed,
experimental results are captured to a high degree of accuracy.
In this case, for the particular test shown in Figure 5, the mean

squared error was 0.018%. All the tests showed similar levels
of error.

5.4. What if Some Terms Need no
Correction?
Of course, in general we will not know in advance that a particular
model is the best for the Hamiltonian part of the behavior.
In a general situation both parts of the model will need to be
corrected. To show the robustness of the presented method, we
demonstrate here that if we try to correct the Hamiltonian part of
the model, the method is able to detect that it is already correct
(Mooney-Rivlin) and that it needs no correction. The method
proceeds by correcting the dissipative part only, obtaining the
same levels of error as the preceding section.

5.5. Constructing the Good Model
The final goal of the method is not to reproduce each one
of the experimental results, but to be able to construct a true
model from data. To this end, we first unveil the underlying
manifold structure of the experimental data. The temporal series
of zexp(t) is grouped into a high dimensional vector, one for each
of the 557 experiments. These are then embedded, by means of
Locally Linear Embedding techniques (Roweis and Saul, 2000)
onto a low-dimensional manifold. This permits to unveil the true
neighborhood structure between experimental data and, notably,
to perform rigorous interpolation on the manifold structure—
and not on the Euclidean space—among data.

The first step when applying LLE techniques to a set of
high-dimensional data is to find the right dimensionality of the
embedding space. To do so, the eigenvalues of the projection
matrix are usually studied. These are depicted in Figure 5.

The first LLE eigenvalue is always close to zero withinmachine
precision, and is discarded. The next “isolated” eigenvalues
represent the true dimensionality of the embedding space (in
this case, three). The rest of the eigenvalues are usually much

FIGURE 3 | Loading process for one particular experiment. Pseudo-experimental response and prediction made by the standard (non-viscous) Mooney-Rivlin material.
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FIGURE 4 | Comparison of the Mooney-Rivlin model prediction and its subsequent GENERIC correction with the experimental results for one particular experiment.

FIGURE 5 | Evolution of the eigenvalues of the projection matrix in the embedding of experimental data. Only the first 17 eigenvalues are shown for clarity.

closer to each other and do not represent the right dimensionality
of the embedding space. Therefore, it seems that the right
dimensionality of the embedding space is three—even two.

Locally Linear Embedding techniques need some user
intervention to determine, by trial and error, the adequate
number of neighbors for each datum. In this case we assume
some 20 neighbors for each one. The key step in finding the good
low-dimensional embedding of the data is to find a vector of
weightsW that minimizes the functional

F(W) =
557
∑

m=1

∥

∥

∥

∥

∥

zm −
20

∑

i=1

Wmizi

∥

∥

∥

∥

∥

2

.

Once these weights are found, LLE assumes that they continue
to be valid in the low-dimensional embedding, and looks for the
new coordinates ξ in this space accordingly, by minimizing a
new functional

G(ξ 1, . . . , ξ 557) =
557
∑

m=1

∥

∥

∥

∥

∥

ξm −
20

∑

i=1

Wmiξ i

∥

∥

∥

∥

∥

2

.

This procedure allows us to find the constitutive manifold,
as defined in Ibañez et al. (2017). It is shown in Figure 6.
The objective of this validation procedure will be to try to
reproduce a control point in the manifold—a complete loading
history, in fact—by obtaining its GENERIC model from the
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neighboring experimental points. This control point is shown in
red in Figure 6.

In Figure 7 the result of the interpolatedmodel (in continuous
line) and the eight neighboring experimental results (dashed
lines) that served to construct the final GENERIC model for the
red point in Figure 6 are shown. The mean squared error with
respect to the control experimental history resulted be 0.174%.

5.6. Full Model Correction
In the preceding sections we assumed that the Hamiltonian part
of the model (basically, a Mooney-Rivlin model) was known and
that the model needed only some amendment in its dissipative

part. In this section we study the performance of the proposed
technique if every term in the assumed model is wrong.

To this end, we assume for the solid a Neo-Hookean model
with no viscous dissipation. The neo-Hookean model is basically
equal to Mooney-Rivlin, see Equation (8), with C2 = 0. To make
things even more difficult, we assume a bad calibration of the
instruments so that, for this “wrong”model,C1 = 68.9MPa (four
times the right value for the Mooney-Rivlin model—the actual
one—) and D1 = 0.0016.

Proceeding like in previous sections, we first computed
corrections for each one of the 557 different experimental
time series. For one of these essays, the prediction given by

FIGURE 6 | Obtained constitutive manifold by embedding the experimental results onto a three-dimensional space. Only a portion of the 557 experimental results are

shown for clarity. In red, control point employed to validate the approach. Note that it is surrounded by a user-defined number of neighbors, whose GENERIC model is

employed to obtain, by interpolation by means of the LLE weights, the sought model.

FIGURE 7 | Result (continuous line) of the interpolation on the constitutive manifold of the eight neighboring experimental results (in dashed line). These are the time

history of the eight neighboring points in Figure 6.
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the “wrong” (neo-Hookean) model, the experimental results
(coming from the Mooney-Rivlin model) and the corresponding
corrected model predictions are shown in Figure 8.

For this particular case (every experiment provided similar
results), the initial error for the prediction given by the “wrong”
neo-Hookean model was 13.05%. After correction, the relative
mean square error in the time history was 0.092%.

Once the whole 557 experiments have been corrected, the
constitutive manifold for this material can be constructed by LLE
methods, as detailed in Section 5.5.

With this constitutive manifold thus constructed we can
now evaluate the behavior of any new strain-stress state by
simply locating it in the manifold, determining its surrounding
neighbors, and employing the LLE weights to interpolate its
GENERIC terms. This was done for one of the experimental

results, that was removed from themanifold for control purposes,
and interpolated from its neighbors. The result of this process is
shown in Figure 9.

The mean squared error along the time history with respect to
the control experiment was 1.057%.

6. DISCUSSION

From the results just presented, it is clear that the proposed
technique presents an appealing alternative for the machine
learning ofmodels from data. Instead of constructing data-driven
models from scratch, constructing only corrections to existing,
well-known models has shown to provide very accurate results
that very much improve these models.

FIGURE 8 | Experimental results (circles), prediction made by the neo-Hookean model (dashed line) and corrected model (red line) for experiment number 85.

FIGURE 9 | Experimental results (circles) for a new experiment, prediction made by the neo-Hookean model (dashed line) and interpolated corrected model (red line).

The interpolation is made by employing the same weights provided by LEE techniques in constructing the constitutive manifold.
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One key ingredient in these developments is the concept of
constitutive manifold, that allows to interpolate experimental
results in the right manifold structure. Existing works
choose simply the nearest experimental neighbor, but,
notably, this neighborhood is found in an Euclidean space
(Kirchdoerfer and Ortiz, 2016) or in a Mahalanobis space
(Ayensa-Jiménez et al., 2018).

The presented method is robust even if some parts of the
model need no correction. The final method, as has been
presented, has the important property of being sound from
the thermodynamic point of view, guaranteeing, thanks to its
GENERIC structure, the conservation of energy and positive
production of entropy.

From the numerical point of view, the resulting, GENERIC-
based time integrator schemes have already demonstrated their
ability to conserve the right symmetries of the system (see, for
instance, Romero, 2009 or González et al., 2018). In sum, we
believe that the just presented technique, that should be extended
to other types of systems, presents a promising future.
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Machine Learning of Grain Boundary
Structure-Property Models
Brandon D. Snow, Dustin D. Doty and Oliver K. Johnson*

Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States

Grain boundaries (GBs) have a significant influence on the properties of crystalline

materials. Machine learning approaches present an attractive route to develop atomic

structure-property models for GBs because of the complexity of their structure. However,

the application of such techniques requires an appropriate descriptor of the atomic

structure. Unfortunately, common crystal structure identification techniques cannot be

applied to characterize the structure of the vast majority of GB atoms (50–98% are

classified as “other”). This suggests a critical need for atomic structure descriptors

capable of identifying arbitrary atomic environments. In this work we present a simple

procedure that facilitates the identification of arbitrary atomic structures present in

GBs. We apply this approach to characterize the atomic structure of the 388 GBs

from the Olmsted data set (Olmsted et al., 2009). We show how this approach

facilitates visualization of GB atomic structures in a way that reveals important structural

information. We test the recently proposed hypothesis that 63 GBs contain facets

of the GBs that form the corners of the corresponding GB plane fundamental zone.

Finally, we briefly demonstrate how the structure descriptors resulting from our approach

can be used as inputs to machine learning approaches for the development of atomic

structure-property models for GBs.

Keywords: grain boundary, machine learning, atomic structure identification, common neighbor analysis, faceting

1. INTRODUCTION

Grain boundaries (GBs) play an important role for many material properties, such as hydrogen
embrittlement (Bechtle et al., 2009), creep (Gertsman and Tangri, 1997; Watanabe et al., 2009),
corrosion resistance (Shimada et al., 2002; Tan et al., 2008), and conductivity (Zhang et al.,
2006). While the structure of GBs is most often characterized experimentally by their five
macroscopic crystallographic degrees of freedom (Ashby et al., 1978), it is the atomic structure that
fundamentally governs their properties (Katritzky and Fara, 2005). Atomistic simulation has been
used to investigate the atomic structure of GBs and how it correlates with their observed properties
(Zhang et al., 2009). However, the atomic structure of GBs is much more complicated than their
crystallographic structure and traditional crystal identification descriptors are not designed to
classify the structure of the vast majority of atoms present at GBs. As an example, we analyzed
the 388 GBs constructed by Olmsted et al. (2009) using common crystal structure identification
methods: bond-angle analysis (BAA) (Ackland and Jones, 2006), common neighbor analysis (CNA)
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(Faken and Jónsson, 1994), and polyhedral template matching
(PTM) (Larsen et al., 2016). Table 1 provides the percentage
of the GB atoms that were unclassified (i.e., classified as
“other”/unknown structures) by each technique across all 388
GBs and across the subset of 41 63 GBs. The fact that 50–98%
of the GB atoms remain unclassified, makes it difficult to identify
atomic structure-property relationships for GBs, and suggests a
critical need for new techniques that can describe the complex
atomic structure of GBs.

Due to the complex and high-dimensional nature of GB
atomic structures, machine learning and related statistical
approaches provide an attractive route for the development
of atomic structure-property models. However, the inability to
resolve atomic structure within GBs complicates such an effort
because the effect of distinct atomic environments cannot be
extracted if these environments cannot be distinguished. If it
were possible to fully characterize the atomic structure of GBs,
dimensionality reduction techniques such as feature selection
(e.g., decision trees) and feature transformation (e.g., principle
component analysis) could be applied to identify the atomic
environments that govern properties of interest. Labeled data
from simulations could then be provided to train supervised
machine learning algorithms, and predictive models could be
developed that would significantly expand our understanding of
atomic structure-property relations for GBs.

As demonstrated above, common crystal structure
identification techniques are insufficient for this task.
Consequently, several authors have developed methods
to identify arbitrary non-crystalline atomic structures for
applications such as developing interatomic potentials (Bartók
et al., 2013), analyzing colloidal crystallization (Reinhart et al.,
2017), and characterizing grain boundaries (Banadaki and
Patala, 2017; Rosenbrock et al., 2017; Priedeman et al., 2018). A
brief summary of their work is given in section 2. While these
methods are effective, they are also significantly more complex
than simple crystal structure identification techniques that are in
common use. The major contribution of the present work is to
bridge this gap.

By employing a simple version of common neighbor analysis
(CNA) and leveraging information that is already available—but
which is normally discarded—we develop an approach that (i)
can characterize arbitrary atomic environments, while also being
both (ii) simple to implement, and (iii) built upon a descriptor

TABLE 1 | Comparison of characterization methods applied to the Olmsted GB

data set (Olmsted et al., 2009).

CNA PTM BAA

% Unclassified Atoms: All 388 GBs 98% 89% 50%

% Unclassified Atoms: 63 GBs 95% 54% 40%

For all crystal structure identification methods, a large portion of the grain boundary atoms

remain unclassified. Note that the FCC atoms are excluded from this calculation. Because

the listed methods are restricted to finding a pre-defined set of reference structures, the

GB atoms are only classified if they are either HCP, BCC, ICO, or SC. This is useful in the

case of the coherent twin which is 100% HCP, but additional measures are needed to

characterize any other grain boundary.

that is already familiar to the atomistic modeling community.We
demonstrate that, in spite of its simplicity, it can be employed
for predictive purposes as part of a machine learning strategy to
develop GB structure-property models. We anticipate that the
simplicity and effectiveness of this approach will facilitate the
development of predictive structure-property models for GBs as
well as other applications that involve lower symmetry atomic
structures such as those present in metallic glasses.

2. BACKGROUND

There has been great interest in characterizing atomic structures
recently and over the last decade and several reviews are available
in the literature (Stukowski, 2012; Priedeman, 2018), so only a
brief description is given here.

2.1. Identification of Crystalline Atomic
Environments
Common methods used to identify crystalline structures include
the centrosymmetry parameter (Kelchner et al., 1998), common
neighbor analysis (CNA) (Faken and Jónsson, 1994), polyhedral
template matching (PTM) (Larsen et al., 2016), and Voronoi
cell analysis methods (Bernal, 1959; Rahman, 1966; Bernal and
Finney, 1967; Finney, 1970; Hsu and Rahman, 1979; Sheng et al.,
2006; Lazar et al., 2015).

The centrosymmetry parameter is a measure of the distance
to an atom’s n nearest neighbors to determine whether or not an
atom is within a bulk crystal or a defect. CNA, PTM, and Voronoi
analysis methods all classify the atomic structure of an atom
by comparison of its local environment to a library of known
structures, usually face-centered cubic (FCC), hexagonal close-
packed (HCP), body-centered cubic (BCC), icosahedral (ICO),
and, for some of these methods, simple cubic (SC).

These methods provide valuable tools for identifying the
location, and in some cases the types, of defects present in
an atomistic model. However, as with all tools (including
those that we present in this paper), each method has certain
drawbacks and limitations. The main disadvantages of the
centrosymmetry parameter are that the number of neighbors, n,
is a user-defined parameter, and the centrosymmetry parameter
doesn’t give any insight into what the local structure is if it
is part of a defect. While some of the limitations of CNA
have been reduced by the introduction of an adaptive cutoff
radius (Stukowski, 2012), the method is typically just used to
determine whether an atom belongs to one of a small set of
predetermined environments. PTM uses a more robust Voronoi
method to identify neighbors, but it too relies on comparison
with a small library of known environments. Voronoi analysis
generally characterizes local environments by the number of
faces with a particular number of edges, but this approach
fails to distinguish between some common environments (FCC
and HCP) (Bernal, 1959; Rahman, 1966; Bernal and Finney,
1967; Finney, 1970; Hsu and Rahman, 1979; Sheng et al., 2006).
The recently developed Voronoi Topology (VoroTop) technique
(Lazar et al., 2015) uses planar graph representations to address
this issue by including information about the arrangement of
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the faces, but requires a large database of nearly degenerate
variants of the known Voronoi cells to compare against,
since small atomic displacements can significantly affect the
Voronoi cell topology. As with the other crystal structure
identification methods, the VoroTop technique has primarily
employed a small library of known structures. Additional
environments can be added to these libraries, but this must be
done manually.

2.2. Identification of Non-crystalline
Atomic Environments
To adequately analyze the local atomic structure of defects,
such as GBs, a method is needed that can classify atoms
without a priori knowledge of the structures present (i.e., without
reliance on a small precomputed list of known structures).
Several recent publications have presented methods to identify
arbitrary local environments (Bartók et al., 2013; Banadaki and
Patala, 2017; Reinhart et al., 2017; Rosenbrock et al., 2017;
Priedeman et al., 2018), and a brief description of each is
given here.

Bartók et al. (2013) developed an atomic structure descriptor
based on the superposition of Gaussian kernels centered at
atomic positions, referred to as the SOAP kernel/descriptor.
SOAP is unique in that it is a continuous descriptor (making it
robust against small changes in atomic positions) unlike most
other descriptors that are discrete in nature. SOAP has recently
been applied to characterize GBs by Rosenbrock et al. (2017) and
Priedeman et al. (2018).

Banadaki and Patala (2017) presented the polyhedral unit
model, which compares the neighborhood around voids in
atomic structures (at which vertices in the Voronoi tessellation
are centered) against an exhaustive library of configurations of
close-packed spheres for up to 12 spheres. A benefit of the
polyhedral unit model is that an RMSD value can be calculated
to quantify how close of a match particular structures are to their
reference structures, but the resulting polyhedra are centered
on a void as opposed to an atom which is the more common
representation of an atomic environment.

Reinhart et al. (2017) developed an algorithm called
Neighborhood Graph Analysis (NGA), which implemented
CNA with an adaptive cutoff radius to produce CNA signatures
for arbitrary environments present in colloidal crystallization
simulations. The adaptive cutoff however, produces an
asymmetric neighborhood graph (i.e., atom B may be a
neighbor to atom A, but that does not imply atom A will be in
the neighborhood set of atom B) which can artificially increase
the number of unique environments (i.e., there is an over-
partitioning of the configuration space). This is compensated
for by employing a machine learning algorithm to determine
relationships between otherwise discrete signatures and
consolidate similar environments that have different signatures.
Reinhart et. al subsequently developed a modified version of
their original algorithm, which they call the “fast NGA” (fNGA)
algorithm (Reinhart and Panagiotopoulos, 2018), which defines
neighbors using a Delaunay triangulation (similar to PTM), and
which uses graphlets to dramatically reduce the computational

cost of the consolidation step. The present work can be seen as a
simplified version of Reinhart’s original approach.

While all of these methods are effective at classifying non-
crystalline atomic environments, they are complex and in some
cases computationally expensive. In this paper we present a
comparatively simple alternative based on CNA to identify
arbitrary local environments without the use of a predetermined
library of structures. Because of its simplicity and the fact that
it only requires some minor post-processing (code provided
in Supplementary Material) of traditional CNA data that is
already ubiquitously available in existing software packages,
our approach can be easily adopted. While our method, like
others, suffers from over-partitioning of the space of unique
atomic environments, we show that it is, nevertheless, possible to
gain insight into important structure-property relationships. We
demonstrate the usefulness of this technique by characterizing
the unique atomic environments (UAEs) present in the 388 GBs
of the Olmsted data set (Olmsted et al., 2009). We also test the
recent hypothesis (Banadaki and Patala, 2016) that the structures
of 63 GBs may decompose into facets of the GBs occupying
the corners of the corresponding GB plane fundamental zone
(FZ). Finally, we give a brief example of how the UAEs identified
using our approach might serve as inputs to machine learning
strategies for the development of atomic structure-property
models for GBs.

3. METHODS

3.1. Traditional Common Neighbor Analysis
In the traditional CNA method, a set of three indices

(

j, k, l
)

is
defined, which describes the topology of the graph formed by
the nearest neighbor atoms (see Figure 1). The three indices are
computed for each neighboring atom to define their relationship
to the central atom. The first index j enumerates the number
of shared nearest neighbors (e.g., in Figure 1 the four light
purple atoms are nearest neighbors of both the central atom
and the dark purple atom, so for the dark purple atom j = 4).
The index k enumerates the number of bonds between shared
nearest neighbors (e.g., in Figure 1 there are two dashed purple
lines indicating two distinct bonds between shared nearest
neighbors, so for the dark purple atom k = 2). Finally, the index
l enumerates the number of bonds in the longest bond-chain
formed by shared neighbors (e.g., in Figure 1 the dashed purple
lines do not share an atom, so the longest bond-chain between
shared nearest neighbors is 1, giving l = 1 for the dark purple
atom). CNA indices are calculated for each atom pair. The local
environment (i.e., “atomic structure”) of a particular atom is then
defined by the set of CNA indices of all of its nearest neighbors.
As has been done in prior literature (Stukowski, 2012; Reinhart
et al., 2017), we refer to this as an atom’s CNA signature to
distinguish it from the atom’s CNA indices. For example, the
CNA signature of an atom whose local structure corresponds
to an FCC lattice would be denoted {12× (4, 2, 1)}, indicating
that it possesses 12 nearest neighbors, each with CNA indices
of (4, 2, 1). An atom with a less symmetric local environment,
such as one belonging to a GB might have a CNA signature
of {2× (3, 1, 1) , 3× (4, 2, 1) , 2× (4, 2, 2) , 2× (4, 3, 3) , }
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FIGURE 1 | Illustration of the process for determining CNA indices and the CNA signature, concept inspired by Reinhart et al. (2017). In (A) an atom is shown (central

yellow atom, which has been reduced in size for visual clarity) together with its nearest neighbors. The corresponding graph representation is provided in (B). The light

colored symbols represent the nearest neighbors shared with the central atom (four for the purple neighbor and four for the green neighbor). Solid lines represent

bonds between neighbors of the central atom, while dashed lines represent bonds between shared neighbors (two for both the purple and green neighbors). For the

purple neighbor the shared bonds (dashed lines) are not connected, so k = 1, but for the green neighbor the shared bonds are connected so k = 2. Because of the

symmetry of this graph, there are six neighbors with the same indices (4, 2, 1) as the purple atom (represented by circles) and six with the same indices (4, 2, 2) as the

green (represented by squares). Consequently the CNA signature for the central atom is
{

6× (4, 2, 1), 6× (4, 2, 2)
}

, which represents an HCP atomic environment.

{1× (4, 4, 4) , 2× (5, 4, 4)}, indicating a total of twelve nearest
neighbors, but which have different CNA indices.

We note that neighbors can be identified using various
methods, the primary ones being a fixed cutoff radius or an
adaptive cutoff (Stukowski, 2012; Reinhart et al., 2017). In this
work we chose to use a fixed cutoff of 3.5Å (which falls between
the first and second nearest neighbors for the FCC lattice, see
Figure 3A). The fixed cutoff was chosen both because of its
simplicity and because it resulted in fewer unique signatures
than the adaptive methods (2205 vs. 3716) for the structures that
we analyzed.

Once the CNA signature of every atom has been computed,
atomic structures are identified by comparison with the CNA
signatures of a predefined library of known structures, typically
limited to FCC, HCP, BCC, and ICO. In standard usage, any
atom whose CNA signature does not match that of one of
the predefined structural templates remains unclassified and is
labeled as “other.” This is sufficient to identify the location of
defects because “other” atoms typically are found at defects.
However, it is generally insufficient to resolve the structure of
those defects. Because GBs consist of mostly “other” atoms,
their internal atomic structure cannot typically be resolved.
Furthermore, if two GBs both contain all “other” atoms, it is
difficult to distinguish between them.

3.2. Fully-Leveraged CNA
To address this issue, we note that the information necessary to
distinguish “other” atoms from one another is already available
and encoded in their respective CNA signatures, it is just
typically ignored in standard practice. To exploit this information
one must simply identify all of the unique CNA signatures;
these define distinct atomic structure classes; in some sense
this list constitutes an extended structure library. Atoms are
then classified using this extended structure library. However,
it is constructed at the time of analysis and is compatible with
arbitrary atomic structures (one does not need to know what

structures they are looking for a priori). Furthermore, the “other”
category is entirely eliminated as all atoms are classified and
belong to one of the UAEs that were identified.

To extract the complete CNA signatures for each atom in
the structures that we analyzed, there are built-in functions that
can be run as part of a pipeline in the Open Visualization Tool
(OVITO) (Stukowski, 2010), and an example python script is
available in the online OVITO documentation. We modified this
script for our particular application, and we provide ourmodified
version in the accompanying Supplementary Material. Once
extracted, the unique CNA signatures were then identified in
MATLAB and each was assigned a unique numerical class ID (we
also provide this code in the Supplementary Material), which
was subsequently imported into OVITO as a custom particle
property, allowing for color-coding and visualization.

4. RESULTS AND DISCUSSION

4.1. Classifying “Other” Atoms in GBs
We applied the fully-leveraged CNA approach to characterize all
of the atoms in the 388 GBs from the Olmsted data set (Olmsted
et al., 2009), which contains atomic structures for a total of 388
GBs in Al with variation across all five crystallographic degrees
of freedom, including 41 63 GBs. Here we present the results
of that analysis. The vast majority of the atoms belong to the
grain interiors and are FCC, and could be easily characterized
by existing methods. We, therefore, focus on the GB atoms,
which are generally classified as “other”/unidentified structures
by reference structure based techniques. We define an atom as
belonging to the GB if at least one of the nearest neighbors is
not FCC. This results in all of the non-FCC atoms, as well as
many FCC atoms inside or adjacent to the GB being identified
with it (for some tilt GBs, if the dislocation spacing is sufficiently
large there will be FCC atoms in the GB plane, that are entirely
surrounded by other FCC atoms, which would not be counted
as GB atoms by this definition.). Using this definition, there are
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a total of 462,955 GB atoms, out of a total of 11,922,451 atoms
contained in the Olmsted data set (the non-GB atoms belong
to the bulk crystal and are all FCC). While some GBs properly
contain FCC atoms in their interior (e.g., low-angle GBs have
FCC atoms between dislocations), the focus of this work is on
characterizing non-FCC atoms. Consequently, we will present
our results in two ways: (i) relative to all 462,955 GB atoms (FCC
and non-FCC), and (ii) relative to only the non-FCC GB atoms
(of which there are 227,401).

Figure 2A shows the distribution of GB atomic environments
across all 388 GBs for the fully-leveraged CNA approach. This
shows that out of the nearly 500,000 GB atoms (across all 388
GBs), there are 2205 unique CNA signatures. However, noting
the log-scale in the y-axis, only 448 signatures are needed to
account for approximately 90% of the non-FCC GB atoms (see
Figure 2B), and only 167 are needed if the GB atoms with
FCC structure are included1. While this still represents a non-
negligible number of unique environments, it is a considerable
reduction in dimensionality for a general set of grain boundaries,
which would otherwise require a total of at least 682, 203
parameters to describe the atomic configurations (3 parameters
for each atom Rosenbrock et al., 2017).

We note that, using an alternative spatially continuous
descriptor, smooth overlap of atomic positions (SOAP) (Bartók
et al., 2013), Rosenbrock et al. initially found 800,000 UAEs for
the same 388 GBs in Ni, using a neighborhood cutoff distance
of 5Å (Rosenbrock et al., 2017). In the SOAP method, as well as
other methods such as PTM, a similarity measure is employed,
enabling two structures that differ by only a small perturbation
to still be classified as the same environment, which is one way
to correct for the overpartitioning phenomenon. After using
a similarity metric within a machine learning framework the
original 800,000 UAEs were consolidated to only 145 distinct
UAEs. We note that, as with any similarity based consolidation
approach, the resulting number of unique environments depends
on the user specified similarity threshold.

The simple approach to UAE identification embodied in the
fully-leveraged CNA does not employ a similarity threshold,
so it is expected that the UAE space will be over-partitioned.
This manifests itself in the relatively long-tailed distribution of
UAEs in Figure 2, which are produced by small deviations in
atomic position that cause a single environment to produce
multiple CNA signatures (i.e., UAEs that are not frequently
observed are most likely slightly distorted versions of other
UAEs). The underlying cause of this phenomenon is the difficulty
in unambiguously defining atomic neighbors in non-crystalline
regions. To illustrate this, compare the radial distribution
function (RDF) for bulk FCC with that of a grain boundary, as
shown in Figure 3. The clear separation of the first and second
peaks—corresponding to the first and second nearest neighbors,
respectively—in the RDF of the FCC lattice (Figure 3A)
facilitates the selection of an appropriate neighbor cutoff radius.
However, as expected, the RDF for the grain boundary atoms

1Including the GB atoms that have FCC structure only adds one UAE, but because

GB atoms that possess FCC structure make up a significant percentage of the total

GB atoms, fewer UAEs are required to represent 90% of the total GB atoms.

(Figure 3B) does not show a clear separation between first and
second neighbors, making CNA sensitive to small perturbations
of atomic position and changes in the cutoff radius. This also
means that the number of UAEs identified by the fully-leveraged
CNA approach of the present work depends on the user chosen
cutoff radius. This challenge exists for any method that attempts
to characterize GB atoms, because there is no clear choice as to
which atoms should be included in the neighborhood, and the
resulting structures are likely to over-partition the UAE space.

As mentioned earlier, work has been done by Reinhart et al.
(2017) to establish a machine learning approach to identify
environments that have similar structure but different CNA
signatures and combine them into a single environment (i.e.,
clustering in the UAE space). This effectively implements a
similarity metric for CNA, and was successful in its application
to surfaces of colloidal crystals. However, this process is
computationally expensive and does not result in a single
universal partitioning of the UAE space, so the repartitioning
would need to be recalculated (or at least updated) for every new
data set to be characterized. In spite of the overpartitioning that
results from the simple fully-leveraged CNA approach, and in
the absence of environment consolidation, we find that useful
analysis can still be performed to evaluate GB structure-property
models as will be described in section 4.3.

For the subset of 63 GBs, the number of UAEs is
reduced considerably. Figure 4 shows the distribution of atomic
environments found in the subset of 41 63 GBs, for which
there were only 117 unique CNA signatures. Moreover, the
vast majority of the GB atoms (roughly 90%) correspond to
one of just 44 UAEs (or only 29 UAEs if GB atoms with FCC
structure are included). This kind of dimensionality reduction for
descriptions of GB atomic structure may make inference of GB
atomic structure-property models significantly more tractable.
Furthermore, this information can be used to compare the
structural similarity of different GBs as will be discussed in
section 4.3.

4.2. Visualization
Without resorting to the more advanced machinery of SOAP or
Reinhart’s machine learning approach, most analysis of atomic
structures relies on the simpler reference structure based crystal
structure identification techniques. Because they were designed
to identify crystalline regions, and not GBs, 50%−98% of the GB
atoms in the Olmsted data set are, unsurprisingly, classified as
“other” by the reference structure based techniques, making the
atomic structure of these GBs largely opaque to classical analysis.
As revealed by our fully-leveraged CNA technique, the fact that
only 44 UAEs dominate the 63 GBs studied here suggests the
possibility of discovering new GB structural information for
very little computational effort, and within the familiar CNA
framework. We illustrate this through visualization, by coloring
GB atoms according to their UAE identifier. As an example,
Figures 5A,B provides a rendering of a 63 [5̄12̄] GB with atoms
colored according to standard practice (using the traditional
CNA approach). The FCC atoms (in green) are identified, but
all of the atoms at the GB are classified as “other”/unidentified
environments. In contrast, Figure 5C shows the same GB atoms
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FIGURE 2 | (A) Histogram of UAEs found in the 388 Omlsted GBs. Note that this is on a log scale and there are approximately 5× 105 GB atoms. (B) Cumulative

sum of the proportion of atoms that can be described using a given number of UAEs. Approximately 90% of the non-FCC GB atoms can be described by one of the

448 most prevalent UAEs (only 167 UAEs are required if the GB atoms with FCC structure are included).

FIGURE 3 | (A) The radial distribution function (RDF) for an FCC lattice calculated in OVITO and (B) the RDF for the grain boundary atoms (a 663 [51̄3̄] GB was used

as a representative example).The distinct peaks in the bulk FCC make it easy to choose an appropriate cutoff distance for neighbor identification, however the more

continuous nature of the GB RDF causes CNA to be more sensitive to small perturbations in atomic position and changes in the cutoff.

colored using the atomic environment classes identified by our
fully-leveraged CNA technique. It is evident that this GB contains
a structured arrangement of atomic environments and is quasi-
two dimensional. This new approach reveals structure that was
previously unresolvable using the common crystal structure
identification techniques, and for far less computational effort
than the more advanced techniques.

In addition to the ability to easily obtain important structural
information for a single GB, coloring each atom according
to its local environment facilitates identification of structural
similarity among different GBs. In the case of 63 GBs, it has
been hypothesized that GBs may form facets whose structure
corresponds to that of the GBs that occupy the corners of the
relevant boundary plane fundamental zone (FZ) (Banadaki and
Patala, 2016). However, a test of this hypothesis would require

comparison of the atomic structures of various GBs, which would
be difficult using reference structure based descriptors that leave
nearly all of those atoms unclassified. For example, the top row
of Figure 6 shows three different 63 GBs that are near each
other in the FZ. While terrace-like features are apparent, it is
unclear whether these represent facets of the same structure.
Using the fully-leveraged CNA procedure, the bottom row of
Figure 6 makes it clear that each of these GBs do in fact contain
very similar environments, giving some evidence in support of
the faceting hypothesis. A more complete analysis of faceting
in 63 GBs, enabled by the fully-leveraged CNA technique, is
provided in section 4.3.

Visualizing a grain boundary in this manner also highlights
higher-order defects, or defects inside of other defects (note the
dark purple environments that decorate the ledges in Figure 6).
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FIGURE 4 | (A) Histogram of UAEs found in 63 GBs. The large spike at environment 1 corresponds to the FCC structural type and is due to the inclusion of the first

layer of FCC atoms as part of the GB. (B) Cumulative sum of the proportion of 63 GB atoms that can be described using a given number of UAEs. Approximately

90% of the 63 atoms correspond to one of the 44 most prevalent UAEs.

FIGURE 5 | (A) OVITO rendering of a 63 [521̄] GB, with atoms colored by

traditional CNA. Green atoms are FCC, white are “other”. Notice that all of the

GB atoms remain unidentified. (B) All FCC atoms removed. (C) Atoms colored

by the UAE IDs obtained from our fully-leveraged CNA procedure.

4.3. Application
Here we apply the fully-leveraged CNA technique to investigate
the relationship between atomic structure and GB properties. As
mentioned previously, it was recently hypothesized by Banadaki
and Patala (2016) that 63 GBs may be composed of facets whose
structure corresponds to that of the 3 GBs that define the corners
of the 63 GB plane FZ. Based on this hypothesis, Banadaki
and Patala developed a structure-property model to predict the
GB energy of an arbitrary 63 GB as a weighted average of
the GB energies of the FZ corners. This model showed good
agreement with GB energies calculated by MD for many cases.
However, the GB structures were never analyzed to test whether
the hypothesized structural faceting actually occurred. The fully-
leveraged CNA approach presented here provides an opportunity
to test this hypothesis.

The total number of UAEs found in each of the GBs that define
the corners of the 63 GB plane FZ are provided in Table 2. It is

FIGURE 6 | Visualization of three 63 GBs (boundary plane is indicated in

brackets), (above) with atoms colored using traditional CNA available in

OVITO, and (below) colored by the UAEs found during the fully-leverage CNA

procedure.

notable that the UAEs appearing in each of the corner GBs form
disjoint sets. This implies that they are in some sense orthogonal
structures, which might at first appear to support the possibility
of faceting. However, the total number of environments (117)
found across all of the 4163 GBs is greater than the total number
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TABLE 2 | Summary of UAEs found in the 63 fundamental zone.

GB Plane # of UAEs

[111] 1

[21̄1̄] 6

[101̄] 5

TOTAL 12

These environments are present in many of the non-corner GBs, but other environments

are also present, increasing the overall GB energy.

of environments found in the FZ corners (12), and, as shown in
Figure 7, these additional environments are not concentrated at
ledges between facets, but constitute significant portions of the
non-corner GBs.

Several key observations can be derived from Figure 7. First,
there are in fact some regions of the FZ where the GBs are
made of facets of the corner GBs. In particular, GBs near the
[111] coherent twin (θ = φ = 0) show obvious facets whose
structure is that of the coherent twin. Also, GBs along the right
boundary of the FZ (θ = 90◦) show some evidence of faceting
(this behavior near the [21̄1̄] corner was also noted by Banadaki
and Patala, 2017), though for many of these GBs the structure
of these facets does not correspond to any of the FZ corners. As
for the rest of the FZ, there is no clear evidence of faceting for
the Olmsted Al GBs. It is important to note, however, that the
ability of a GB to facet in an atomistic model may depend on
the size of the simulation cell that was employed to construct
it (see Race et al., 2014; Humberson and Holm, 2017, for a
discussion of the impact of simulation cell size), so that it is
possible that if larger simulation cells were used, faceting might
be observed more generally. Moreover, it has been shown that
there can be many metastable atomic structures for the same
GB (Han et al., 2017), some of which have nearly degenerate
energies. Thus, it is also possible that there are distinct iso-
energetic configurations, or that the atomic structures in this data
set may not be the lowest energy configurations, which might
otherwise exhibit the hypothesized faceting structure. Indeed,
Banadaki and Patala found atomic structures for the 63 GBs
with considerably lower energies in many cases (Banadaki and
Patala, 2016), which may have exhibited faceting more generally,
and this may be one explanation for the better fit of the faceting
model’s energy predictions to their data than to the Olmsted data
(see Figure 9). Regardless of whether or not the atomic structures
in the Olmsted data set are ground state structures or (at least
in some cases) metastable structures, the fully-leveraged CNA
approach can be applied to characterize the atomic structure that
is present, whatever it happens to be. Furthermore, if ground
state structures were available, our fully-leveraged CNA approach
would easily identify more general faceting if it were to occur in
those structures.

Although structural faceting does not occur generally for
the Olmsted atomic structures, relatively smooth trends in the
composition of UAEs are observed across the FZ. Figure 8 shows
the fraction of atoms in each GB whose atomic environments
match those of each of the FZ corners. For all three corners,
smooth trends in atomic environment composition are observed

along θ = 90◦ from [21̄1̄] to [101̄] (for the [21̄1̄] corner it
is smooth, but not monotonic, see Figure 8B). Smooth trends
also occur along φ = 0 from [111] to [21̄1̄] and near the
coherent twin. Furthermore, as the crystallographic distance
to one of the corner GBs increases, the proportion of atomic
environments belonging to that corner decreases. This suggests
that in the absence of faceting (which represents a sort of
structural segregation behavior) there may be a sort of mixing
behavior of atomic environments from each of the FZ corners for
these GB structures.

Because we do not observe structural faceting generally,
it is not surprising that the faceting model does not predict
the energies of the Olmsted data set well. However, for some
regions of the FZ there are also deviations between the faceting
model’s predictions and the calculated GB energies for the
lower energy atomic structures obtained by Banadaki and Patala.
It is notable that where these deviations do occur, they are
almost exclusively underpredictions. Our observations here may
partially explain this behavior. The faceting model predicts GB
energy as a weighted average of the energies of the GBs at
the FZ corners, which ignores the energetic contribution of
the line defects that will likely exist at the junction of distinct
facets, and underpredictions are therefore consistent with this
omission. These line defects are likely to be composed of atomic
environments that are not present in the FZ corners, and which
may have higher cohesive energies. In fact, we find that the non-
corner atomic environments have an average cohesive energy2

that is 3.5 × 10−21 J (0.022 eV) higher than the average for the
atomic environments that belong to the FZ corners. This may
seem like a small difference, but because many GBs contain a
large portion of non-corner environments (a median of 49%
of the GB atoms) the cumulative effect can be significant. A
rough estimate is illustrative: if 50% of a GB’s atoms (e.g., 500
of 1000) are non-corner environments and possess the average
non-corner environment cohesive energy (−5.30 × 10−19 J

or −3.31 eV) then with a GB area of 1800 Å
2
(the average

cross-section for an Olmsted simulation cell) the non-corner
environments would contribute approximately 0.097 J/m2 to
the GB energy, which is similar to the magnitude of the
underpredictions shown in Figure 9.

4.4. Simple UAE Model
This suggests that a model based on atomic environments, might
provide improved predictions for GB energy. We note that
important work in this area has already been performed by
Rosenbrock et. al within the SOAP framework (Rosenbrock et al.,
2017). The rigorous development of such a model is beyond the
scope of the present work, whose primary objective has been to
present a simple atomic structure characterization technique (the
fully-leveraged CNA approach) that enables characterization of
GB atomic structure that was unresolvable using crystal structure
identification approaches. Nevertheless, we provide a simple and

2We computed the cohesive energies in LAMMPS (Plimpton, 1995) using the same

potential that Olmsted et. al used to produce these Al structures (the Ercolessi &

Adams potential for aluminum Liu et al., 2004).
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FIGURE 7 | Rendering of the 41 63 GBs from the Olmsted data set, with atoms colored by their UAE ID. Position in the FZ is relative and approximate (exact

placement would cause some images to overlap). Colors were selected manually for the most frequently occurring UAEs in an effort to maximize visual differences

between atoms of different UAE ID that are near each other; however, some less frequently observed UAEs do share the same color.

FIGURE 8 | (A–C) Fraction of GB atoms whose local environment belongs to the set of UAEs present in each of the respective corners of the fundamental zone and

(D) fraction of environments not present in any of the FZ corners.

brief example of how the resulting UAEs might be incorporated
into machine learning or other model development approaches.

We treat the fraction of eachUAE as a predictor (independent)
variable and the energy of the GB as the response (dependent)
variable. This implies a 2205 dimensional space (corresponding
to the 2205 UAEs observed across all 388 GBs). We employ

PCA to perform feature transformation and selection and find
that only 84 principle components (linear combinations of the
original variables) are required to explain 95% of the variance
in the data. Thus, we have reduced the dimensionality of the
problem from 2205 to 84 dimensions. Using these 84 transformed
variables, we employ 5-fold cross-validation to train a simple
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FIGURE 9 | Comparison of calculated GB energies for GBs that lie along the edges of the 63 fundamental zone with the predictions of Banadaki and Patala’s

faceting model (Banadaki and Patala, 2016). Two data sets of calculated GB energies are included: (open squares) those from Olmsted et al. (2009) and

(semi-transparent filled circles) those from Banadaki and Patala (2016). The predictions of the UAE model are also included (filled squares), for comparison with the

Olmsted simulations (open squares).

linear regression model. Comparison of the resulting model
to the calculated GB energies for all 388 GBs is provided in
Figure 10, with the subset of 63 GBs highlighted. Comparison
of the model predictions to the Olmsted simulations for the
subset of 63 GBs as a function of boundary plane orientation
is also provided in Figure 9 (compare filled vs. open squares).
The resulting model predictions agree well with the calculated
values, and the model predicts the correct GB energy with less
than 10% error for 89.69% of the 388 GBs (and 92.68% of the
63 GBs). We note, in particular, the improved predictions of the
UAE model across the θ = 90◦ arc of the FZ from [21̄1̄] to [101̄]
(the green filled squares agree well with the green open squares
in the right panel of Figure 9) as compared to the faceting model
(solid green line).

5. CONCLUSION

In this work, we have presented an atomic structure
characterization technique (the fully-leveraged CNA approach)
that (i) can characterize arbitrary atomic environments, while
also being both (ii) simple to implement, and (iii) built upon
a descriptor that is already familiar to the atomistic modeling
community. This enables characterization of GB atomic
structure that was previously unresolvable using crystal structure
identification techniques, and for lower computational effort
than more advanced techniques. We show that it is possible to
describe GB atomic structure in terms of the proportion of the
unique atomic environments (UAEs) resulting from the use of
our method.

We find that a relatively small number of UAEs account for
a large proportion of the GB atoms, suggesting the possibility of
a significant dimensionality reduction in the description of GB

FIGURE 10 | Comparison of the predictions of the model—trained using the

UAE fractions as variables—with the true calculated GB energies from the

Olmsted data set (Olmsted et al., 2009).

atomic structure. Specifically, we found that to describe 90% of
the non-FCC GB atoms present in the 388 GBs of the Olmsted
data set, only 448 UAEs (CNA signatures) are required, and
for the subset of 41 63 GBs only 44 UAEs are necessary. This
dimensionality reduction suggests that these UAEs can act as
atomic structure descriptors that might be incorporated into
machine learning approaches to develop improved GB structure-
property models.
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We demonstrated how visualization of the UAEs reveals
important GB structural information. As an example, we
investigated the possible description of 63 GBs as being
composed of facets of the GBs occupying the corners of the
corresponding boundary plane fundamental zone (FZ). We
found that for the Olmsted data set such faceting does occur in
certain regions of the FZ, but not generally. Instead, an apparent
mixing of atomic environments from the GBs defining the FZ
corners was observed, together with the appearance of numerous
environments not present in the FZ corners. These observations
are consistent with the good agreement of the facetingmodel with
calculated GB energies for some regions of the FZ, as well as the
observed underprediction in other regions.

Finally, we provided a brief example to illustrate how the
UAE fractions can be used as GB atomic structure descriptors
that can serve as input to machine learning approaches for the
development of GB atomic structure-property models.
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The atomic structure of grain boundaries plays a defining but poorly understood role in the

properties they exhibit. Due to the complex nature of these structures, machine learning is

a natural tool for extracting meaningful relationships and new physical insight. We apply a

new structural representation, called the scattering transform, that uses wavelet-based

convolutional neural networks to characterize the complete three-dimensional atomic

structure of a grain boundary. The machine learning to predict GB energy, mobility, and

shear coupling using the scattering transform representation is compared and contrasted

with learning using a smooth overlap of atomic positions (SOAP) based representation.

While predictions using the scattering transform are not as good as those of SOAP,

other factors suggest that the scattering transform may yet play an important role in

GB structure learning. These factors include the ability of the scattering transform to

learn well on larger datasets, in a process similar to deep learning, as well as their ability

to provide physically interpretable information about what aspects of the GB structure

contribute to the learning through an inverse scattering transform.

Keywords: machine learning, grain boundaries, atomic structure, characterization, SOAP, scattering transform

1. INTRODUCTION

Grain boundaries (GBs) in crystalline materials are complex structures that can have a significant
influence on material properties. The structural complexity derives from the fact that when any
two crystals are joined, there are macroscopic and microscopic degrees of freedom that influence
their behavior. With a proper understanding of how material properties are influenced by these
degrees of freedom, materials engineers could develop materials with enhanced properties. This
has been accomplished in a handful of cases using GB engineering (Watanabe et al., 2009; Randle,
2010). Unfortunately, the majority of materials used in society have not benefited from these efforts
as GB engineering primarily focuses on one special type of GB, the twin boundary. Continued
efforts in tailoring material properties as a result of GB engineering will require a more complete
understanding of GB structure-property relationships.

At the macroscopic level, the structural degrees of freedom are well known and defined by the
crystallography of the joined crystals (Frank, 1988; Patala et al., 2012; Patala and Schuh, 2013). At
the microscopic level, the structural degrees of freedom are defined by the configuration of the
atoms and the macroscopic degrees of freedom can be viewed as constraints (Tadmor and Miller,
2011; Han et al., 2016).
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Since material properties are derived from the atom
configurations, or microscopic degrees of freedom, more
attention must be given to characterization of atom
configurations at GBs. A full description of the microscopic
structure is given by the position of all the atoms, leading to 3N
positional degrees of freedom for N atoms. Due to the challenge
of fully defining GB structures through their 3N degrees of
freedom a variety of other structural metrics have been defined.

Among the commonly used structural descriptors of GBs
are the structural unit model (Frost et al., 1982; Sutton and
Vitek, 1983; Balluffi and Bristowe, 1984; Rittner and Seidman,
1996; Tschopp and McDowell, 2007; Spearot, 2008; Han et al.,
2017), dislocation arrays (Read and Shockley, 1950; Bishop
and Chalmers, 1968; Wolf, 1989; Medlin et al., 2001), and
common neighbor analysis (Honeycutt and Andersen, 1987).
These have unique capabilities and provide intuition primarily
in characterizing quasi-2-dimensional GB structures but have
limitations in characterizing fully 3-dimensional GB structures.
More recently a number of other models have emerged
to overcome limitations in the common techniques; these
include polyhedral template matching (Larsen et al., 2016),
Voronoi cell topology (Lazar, 2018), and polyhedral unit model
(Banadaki and Patala, 2017).

As modern machine learning techniques push the limits
of scientific discovery, there are several important lessons to
learn from the deep learning community. The first is the
remarkable discovery that the accuracy of a model can continue
increasing, instead of asymptoting, as more data is added.
That discovery required a universally applicable, generalized
approach to extracting descriptors (i.e., features) from data
using convolutional networks. These lessons should inform our
approach to machine learning in materials. Specifically, given
the availability of algorithms and limited data in GB science, the
important gap to fill is in the creation of universal descriptors that
fully characterize the 3-dimensional GB structure.

Rosenbrock et al. (2017) recently introduced the use of
two new descriptors that help address this gap. The first is
the application of the Smooth Overlap of Atomic Positions
(SOAP) formalism to GBs. Typical applications of SOAP include
accurately modeling potential energy surfaces (Szlachta et al.,
2014; John and Csányi, 2017; Mocanu et al., 2018) and reactivity
(Caro et al., 2018) of molecules (Cisneros et al., 2016) and
solids (De et al., 2016; Sosso et al., 2018), pressure, temperature,
and composition phase diagrams of materials (Baldock et al.,
2016), defects (Dragoni et al., 2018), and dislocations (Maresca
et al., 2018). SOAP is also convenient for characterization of
GBs because it possesses the following desirable properties: (i)
enables comparison between GBs, (ii) is invariant with respect
to structural symmetries, rotations, and permutations, (iii) is
smoothly varying while accommodating structural perturbations,
(iv) is applicable to general, three-dimensional GB structures,
and (v) is amenable to automated characterization and discovery
of structures. Rosenbrock et al. (2017) also introduced a new
descriptor called the local environment representation. This
representation finds unique sets of local environments that are
repeated throughout a set of GBs. In recent work, Priedeman et al.
(2018) used the local environment representation and found that

among 494,495 GB atoms, there were only 55 unique local atomic
environments that were repeated in different combinations and
arrangements to construct all the GBs.

Using these descriptors and their ability to compare
environments, Rosenbrock et al. (2017) appliedmachine learning
to predict both static and dynamic GB properties based on the
static GB structure. The predictions for the static property of GB
energy was the most accurate, which is reasonable considering
that it is a property that is influenced by each atom’s contribution
to the whole energy. For the dynamic properties of mobility
trend and shear coupling, however, the predictions were not as
good, and it was reasoned that longer range information about
atomic structures was likely required to make better predictions.
Since SOAP is a local-environment descriptor, we propose that
an alternative descriptor is necessary to characterize the structure
at multiple scales. Importantly, the characterization metric must
still be automated and satisfy invariance requirements.

We present the scattering transform (ST, Bownik, 1997;
Benedetto and Pfander, 1998; Pfander and Benedetto, 2002;
Benítez et al., 2010; Goh and Lee, 2010; Goh et al., 2011; Lanusse
et al., 2012; Mallat, 2012) as a second, universal descriptor for
GB systems that includes multi-scale features. We present its
ability as a representation to learn energy, mobility, and shear
coupling from GB structures, and compare the results with the
published SOAP methodology. We also compare the results with
a combined representation by SOAP and ST. While the results
indicate that there is room for improvement, we demonstrate
how additional data can improve learning by ST. Finally, we
demonstrate how an inverse ST, using relevance propagation, can
identify key features of the GB structure that are useful for the
machine learned predictions.

2. MATERIALS AND METHODS

2.1. SOAP
To generate the first representation, the averaged SOAP
representation, we create a SOAP descriptor (Bartók et al., 2010;
Bartók et al., 2013) for each atom in the GB. Briefly, the process
of calculating the SOAP descriptor starts by placing a Gaussian
on each local neighbor of a specified atom i.

ρi(Er) =
∑

j

e−(Erij−Er)2/2σ 2atom fcut(|Erij|) (1)

where fcut is a smooth cutoff function that ensures compact
support at radius rcut, and Erij is the vector from atom Eri to Erj.
We define these Gaussians as the species independent neighbor
density of i. To simplify the representation of this neighbor
density it is expanded in an orthonormal basis,

ρi(Er) =
∑

nlm

ci,nlm gn(r)Ylm(r̂), (2)

where gn are an orthonormal radial basis, Ylm are spherical
harmonics, and ci,nlm are the expansion coefficients.

The overlap of two different site environments is defined to be:

S(ρi, ρk) =
∫

ρi(Er)ρk(Er)d3r, (3)
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and is permutationally invariant (because of the sum over the j
neighbors in ρi of Equation 1). Rotational invariance is achieved
by integrating over all rotations of one of its arguments,

K̃(ρi, ρk) =
∫

dR̂ |S(ρi, R̂ρk)|p, (4)

where R̂ is a 3D rotation operator (element of SO(3)), and p
is a small integer, e.g., 2. The value for p loosely defines the
“multi-bodyness” of the expansion, similar to how the power of a
binomial relates to the number of cross-terms in its expansion.
For example, (a + b)2 = a2 + 2ab + b2, where the ab
cross-term shows interaction between a and b. Thus, p =
2 roughly corresponds to 2-body interactions and a value of
p = 4 roughly corresponds to 5-body interactions. A more
complete description for creating SOAP descriptors from local
environments is documented in detail elsewhere (Bartók et al.,
2013; Rosenbrock et al., 2017).

This process has already been efficiently implemented and can
be found in the Python-based pycsoap code1 (Nguyen and
Rosenbrock, to be submitted). Rosenbrock et al. (2018) discusses
selecting atoms to include in the GB and considerations for
tuning parameters.

The difficulty with applying local-environment descriptors
directly is that the method produces an M × N matrix for each
GB, where M is the number of atoms in the GB, and N is the
length of each SOAP vector. Machine learning requires a single
vector describing each data point in the dataset, which motivates
an averaging of this SOAP matrix over the M atoms to produce
the averaged SOAP representation, as defined by Rosenbrock
et al. (2017) and De et al. (2016). While this representation was
referred to as the ASR (for Averaged SOAP Representation) in
previous works (Rosenbrock et al., 2017), we simply refer to it
here as SOAP. In other words, this SOAP vector represents the
average local atomic environment of all the atoms in the GB.
Collecting all these averaged SOAP vectors for a collection of GBs
produces the feature matrix for machine learning.

2.2. Scattering Transform
The ST is similar to a multi-layer, convolutional neural network.
However, instead of using the discrete convolutions typical in
deep learning approaches, based on integer kernel matrices, the
ST uses continuous convolution with wavelet functions. For
a time series signal, the Fourier transform gives information
about the frequency content of the signal. Wavelets, by analogy,
are localized in both time and frequency by defining a scaling
parameter for the wavelet function that limits its extent in time.
The wavelet transform is then executed as a convolution between
the scaled, time-frequency wavelet function and the signal.

The analysis functions for this wavelet transform are
defined as:

ψa,b(t) =
1√
a
ψ

(

t − b

a

)

(5)

1This is available from the Python Package Index using pip install
pycsoap.

where a represents the scale (i.e., large values of a correspond
to “long" basis functions that will identify long-term trends in
the signal to be analyzed) and b represents a shift. The unscaled
wavelet functionψ(t) is usually a bandpass filter. High-frequency
basis functions are obtained by going to small scales; therefore,
scale is loosely related to the inverse frequency. One can choose
shifts and scales to obtain a constant relative bandwidth analysis
known as the wavelet transform. To accomplish this, we use a real
bandpass filter with zero mean.

Then we can define a continuous wavelet transform for an
arbitrary function f (t) as:

f ∗ ψa,b =
∫

R
ψ∗
a,b(t)f (t)dt, (6)

where ψ∗
a,b
(t) represents the complex conjugate of ψa,b(t) and

R is the domain of the signal. This is similar to the Short Time
Fourier Transform but with a variable window. Once again, we
are measuring the similarity between a function, f (t), and of an
elementary function (which is shifted and scaled).

For a multi-dimensional signal, a multi-dimensional wavelet
can be constructed as the Cartesian product between wavelets
defined in each dimension. In other words, the domain for the
function of interest f (t) changes to f (x, y, z), and the convolution
integral is still defined over the domain of f .

Applied to GBs, the 3D ST is computed as a sequence of multi-
dimensional, multi-scale wavelet transforms, interleaved with
non-linear transforms that take the absolute value of their input
signal (i.e., modulus nonlinearities). The process of introducing
these nonlinearities is described below.

The general formulation of the ST used here is depicted
in Figure 1 where a series of layered convolutions are used to
obtain the feature representation. In the first step, and similar
to the SOAP formalism, a Gaussian density is applied to the
atom positions to obtain the density f . When implemented
numerically, some discretization of f is inevitable, the continuous
signals are sampled at a specified resolution (tunable parameter).

In the first layer (0), a Gaussian filter φJ0 (f ) at scale J0 blurs the
density f . The coefficients of the blurred density are subsampled,
averaged, and stored as part of the ST representation. During
subsampling, a discretized vector is sampled at a coarser
resolution to form a smaller vector for the final representation.

To obtain the second layer (1), various wavelet transforms
are applied to f ; the convolutions f ∗ ψj1 ,0 are computed at
various length scales j1 before calculating the modulus (absolute
value) of each of these averaged coefficients as another part of
the ST representation. This modulus operation introduces the
nonlinearities mentioned earlier. After computing the modulus,
we again blur using a Gaussian filter φJ1 (f ) and subsample, this
time at scale J1 and store the resulting coefficients as part of the
scattering representation.

To obtain the third layer (2) another wavelet transform is
applied, yielding

∣

∣f ∗ ψj1 ,0

∣

∣ ∗ ψj2 ,0 for each length scale j2. Each
of these again has the modulus operator applied, is blurred, and
is subsampled to produce coefficients as done in previous layers.
Similar to other convolutional neural networks, this process
could continue for many more layers. Of course, the ability to
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FIGURE 1 | Schematic illustrating the scattering transform. The different layers are formed by systematic applications of the wavelet transform, modulus operator,

Gaussian blur, and subsampling and scaling. Each of these different processes is represented by different colored arrows. The data is collected into a feature vector

for the scattering transform machine learning.

capture the relevant features will depend upon the relative scales
of the atomic structures and the wavelets employed. Once the
scales of the wavelets have been set, these features will not be
affected by including more copies of a periodic structure, like
those often present in GBs. In this respect, the scattering features
are not dependent on increased system size.

The ST produces a 1 × N vector for each GB, where N
is determined by the ST parameters (i.e., chiefly the number
of convolutional layers, the number and scale of the wavelet
functions, and the severity of the subsampling). In contrast to
SOAP, the ST produces a single vector per GB and thus requires

no additional statistical post-processing to produce the feature
vector for the GB.

Given the availability of discrete convolutional neural network
software that is optimized for both CPU andGPU architectures, it
is worth noting why continuous convolutions are worth the extra
implementation effort compared to using discrete convolutions.
Convolutional neural networks in deep learning were developed
to handle image learning tasks, which are inherently discrete due
to pixels in images. Physical systems, like the atomistic view of
GBs, have smooth transitions that are represented more naturally
by spherical harmonics and continuous wavelet functions. While
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it is true that neural network architectures can approximate
curved decision boundaries2, continuous wavelets are a more
natural choice because they lead to a sparser representation (Hirn
et al., 2015, 2017; Eickenberg et al., 2017).

2.3. Grain Boundary Structures and
Properties
The SOAP and the ST are both representations that provide a
feature matrix that is convenient for machine learning of GB
structures. In the present work, we learn on the Olmsted GB
database, which is a collection of 388 computed Ni GBs created
by Olmsted et al. (2009a) using the Foiles-Hoyt embedded atom
method (EAM) potential (Foiles and Hoyt, 2006).

The GB structures were created following standard methods
where a fairly comprehensive list of initial atomic configurations
are each minimized to determine which of all the configurations
represents the minimum energy structure of the GB (Olmsted
et al., 2009a). Using these GB structures, a variety of properties
can be measured or calculated from simulations; for this work,
our interest is in energy, temperature-dependent mobility, and
shear coupling of the 388 GBs.

The GB energy is defined as the excess energy relative to the
bulk as a result of the irregular structure of the atoms in the
GB (Tadmor and Miller, 2011). It is important to note that GB
energy is normally defined as a static property of the system
measured at T = 0K, and all atomistic structures examined in
the machine learning are the T = 0K structures associated with
this calculation. TheGB energies for theOlmsted GB database are
available in the supplemental materials of Olmsted et al. (2009a).
Since the energies for this dataset were calculated using an EAM
potential, learning energies serves merely as a benchmark to
demonstrate whether a given descriptor captures any physically
relevant information useful for machine learning.

Temperature-dependent mobility and shear coupled GB
migration are two dynamic properties related to the behavior
of a migrating GB. The mobility of a GB is defined as the
proportionality factor relating how fast a GB will migrate when
subjected to a given driving force (Gottstein and Shvindlerman,
2010). The temperature-dependent mobility has to do with how
the mobility changes with temperature. In most cases, mobility is
a thermally activated process, where the mobility increases with
increasing temperature. However, in analyzing the temperature-
dependent mobility of the GBs in the Olmsted database (Olmsted
et al., 2009b) and Homer et al. (2014) noticed four broad
categories of temperature-dependent mobility: (i) thermally
activated, (ii) non-thermally activated, (iii) mixed modes, and
(iv) immobile/unclassifiable. These categories correspond with
whether the mobility follows an Arrhenius relationships with
temperature (thermally activated), does not follow an Arrhenius
relationship with temperature (non-thermally activated), shows
some mixed mode combination of thermally activated and non-
thermally activated, or is immobile or simply unclassifiable.

In addition, when GBsmigrate, they can also exhibit a coupled
shear motion, in which the motion of a GB normal to its surface

2The interactive 2D playground at https://playground.tensorflow.org

demonstrates this nicely.

couples with lateral motion of one of the two crystals (Cahn
et al., 2006; Homer et al., 2013). GBs are then classified as either
exhibiting shear coupling or not.

2.4. Machine Learning
The SOAP and ST structure characterizations of the 388 GBs
in the Olmsted database are calculated using the methods
described above. Parameters for these calculations are defined
for the SOAP as the radial basis cutoff (nmax), angular basis
(spherical harmonic) cutoff (lmax), and the radial cutoff (rcut)
which are set to 18, 18 and 5.0 respectively in the present
work. For the ST the parameters are defined as the size of
the density discretization grid (density=0.25), the number
of convolutional layers as seen in Figure 1 (Layers=2, which
also includes Layer 0), a parameter that defines a singular
spherical harmonic angular function (SPH_L=4), the number of
wavelets at different scales used at each layer (n_trans=16),
and the number of angular augmentations in the azimuthal
and polar angles (n_angle1=16, n_angle2=16). An angular
augmentation is when the density function is duplicated and
rotated to form a new density function, which is also fed through
the scattering network. The vectors produced from the rotated
density function are then concatenated to form the final ST
vector. For example, with n_angle1 = 16 and n_angle2 =
16, we end up with 256 copies of the density function, each of
which produces a scattering vector. These are then concatenated
together to produce the final ST vector. This provides a level of
rotational invariance since it is not explicit in the ST.

With both the SOAP and ST providing feature matrices, we
are now able to apply a machine learning approach on the SOAP,
ST, and combined SOAP+ST characterizations of the GBs. The
combined SOAP+ST characterization feature vector is created
by simply concatenating the SOAP and ST vectors together.
Gradient boosted decision trees [as implemented in xgboost
(Chen and Guestrin, 2016)] are used to analyze and predict the
GB energy, temperature-dependent mobility, and shear coupling.

For the machine learning of the properties, it is important to
note that GB energy is a continuous quantity, while temperature
dependent mobility trend and shear coupling are classification
properties. The mobility and shear coupling properties present
an imbalanced class problem, where one class contains many
more samples than the other classes. Consequently, the machine
learning models favor this larger class to minimize error, but
this degrades the ability of the model to generalize to new data.
For example, imagine a binary classification problem where the
training data has 99% in one class and only 1% of the other.
The machine learning model will perform best by just predicting
100% of the first class. Thus to address this issue, we used
the Synthetic Minority Over-sampling Technique (SMOTE),
which is a standard approach used in imbalanced class machine
learning problems (Han et al., 2005), as implemented in the
imblearn package to oversample the minority classes. We can
conceptualize SMOTE by imagining a line segment connecting
each instance of the minority class to every other instance of that
minority class. The algorithm then synthetically creates instances
of the minority class randomly along these line segments and
adds them to the data set, thus oversampling and balancing the
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TABLE 1 | Machine learning % accuracy of different properties by different techniques.

Property SOAP ST SOAP+ST Multi-scale SOAP Random

GB Energy 95 86 93 95 70

Temperature-dependent mobility (3 Class Split) 77 60 69 76 49

Temperature-dependent mobility (4 Class Split) 63 50 61 62 39

Shear coupling 53 53 53 50 52

number of samples in each class. This approach could present
issues if any classes are not separable (e.g., the classes overlap),
but even in these cases SMOTE is expected to improve learning
over simply using the imbalanced classes.

In addition to using SMOTE to address the class imbalance, we
also consider two different splits of the temperature-dependent
mobility. In a 4 class split, we use the four categories as defined
above (Homer et al., 2014). In a 3 class split, we essentially
combined the non-thermally activated and mixed modes into
a single class, such that the three classes are essentially, (i)
thermally activated, (ii) mobile but not thermally activated,
and (iii) immobile/unclassifiable. The original machine learning
on this data by Rosenbrock et al. (2017) used this same
3 class split.

We trained each model with a 50–50 train-test split. While
decision trees have many different tunable hyperparameters, only
the number of estimators (the number of trees) was tuned, using
a process called Early Stopping (Zhang et al., 2005) with 5-
fold cross validation. An ensemble of decision trees is trained
by adding trees in multiple fitting rounds, with each new tree’s
parameters optimized using a loss function. By limiting the
number of fitting rounds, the model will only grow until the
accuracy never improves for the specified number of rounds.
Thus, the optimal number of estimators can be found to
minimize the chance of over-fitting.

3. RESULTS AND DISCUSSION

A summary of the machine learning results of GB energy,
temperature-dependent mobility, and shear coupling by the
SOAP, ST, and Combined SOAP+STmethods is found inTable 1.
To provide a reference against which to judge the machine
learning results, we define a baseline “Random” quantity, as
implemented in the original SOAP formulation (Rosenbrock
et al., 2017). For this “Random” column, energies are drawn
from a normal distribution with the same mean and standard
deviation as the training data and then compared to the actual
values in the validation data. For the mobility and shear coupling
classification, random selection of classes from the training data
are picked and compared against the validation data.

The ST results for energy and temperature-dependent
mobility are statistically better than random and demonstrate
that this new, universal representation is capable of learning
certain GB structure-property relationships. However, it does
not perform as well as the SOAP, and does not improve
predictions even when it is combined with SOAP (SOAP+ST).

Valid predictions are being made, but on different features of the
GB atomic structure.

It is worth noting that the predictions of temperature-
dependent mobility is worse for the 4 class split than the 3 class
split. We attribute this to the reduced number of GBs in each
class on which to learn and then make predictions, and which
aggravates the imbalanced class problem. If our attribution is
correct, this suggests how even a minor increase in data for
each class (e.g., from 4 to 3 classes of the 388 GBs) can have a
significant impact on the learning and prediction ability.

On its own, the ability to predict GB properties using machine
learning has only limited benefits. For example, predicting the
energy of the GBs here is merely an exercise. Computing
energies from structures is not difficult, but predicting the
mobility and shear coupling of a GB is and these properties
have implications for material processing and deformation. Thus,
we desire to use machine learning models to highlight new
physical processes governing these properties. ST was introduced
here because it targets different features of the GB atomic
structure than SOAP. It follows then that each may highlight
different physical processes that contribute to the same structure-
property relationship, an assertion that would be born out by
improvements to the machine learning accuracies.

A comparison of the learning rates is provided in Figure 2. In
this figure it can be seen that the SOAP has better training and test
accuracies than ST. Furthermore, according to the current slopes
of the learning rates, there is no indication, at this point, that ST
will perform better than SOAP. For now, one must conclude that
ST learns different information about the GB structures, and this
information is less helpful for accurate property prediction than
the information provided by SOAP.

Interestingly, the SOAP+ST has the lowest training error,
while having slightly worse test error than SOAP alone. This
is indicative that the information provided by ST is useful in
improving the training accuracy of the model. Unfortunately, the
increase in error from SOAP alone to SOAP+ST indicates that
the additional information provided by ST does not generalize to
accurate property predictions on other GB structures. This would
indicate that the SOAP+ST is suffering from over-fitting.

To understand and interpret these results, it is helpful to
examine the characteristics of the SOAP and ST descriptors.
While SOAP is formally complete in its rotational invariance
(see Equation 4), the ST is formally complete in its translational
invariance due to its convolution integral in Equation (6).
In practice, the rotational invariance for ST is introduced by
augmenting the representation with several discretely rotated
copies of the data. Thus rotational invariance is only approximate
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FIGURE 2 | Learning rates for training and testing of GB energy for the averaged SOAP representation (SOAP), Scattering Transform (ST), and combined SOAP+ST

descriptor. Mean absolute value for the energy across the GB database is about 1.09 J/m2.

for ST, whereas it is formally exact for SOAP. On the
other hand, because ST uses multiple wavelets at different
scales, it formally handles multi-scale translational invariance.
Translational invariance for the SOAP representation originates
in the use of local environments defined relative to a central
atom, though the length-scale is limited by the cutoff radius of
the SOAP descriptor.

The SOAP representation uses spherical harmonics to capture
the angular information in the local environment density
function. For this implementation of ST, we used periodic
spherical harmonic wavelets to capture the periodicity of the
GB structure in the dimensions of the boundary plane. It is
likely that this choice of basis introduced some similarity in the
features extracted by both SOAP and ST, but SOAP remains a
local approach while ST operates at multiple scales.

One could also characterize multiple scales using SOAP by
concatenating multiple SOAP vectors with varying cutoff and
σatom parameters, as has been done in other works (Bartók
et al., 2017; Willatt et al., 2018). At larger radial cutoffs, the
surface area of the sphere for the local environment grows as
r2
cutoff

, which introduces larger distances between atoms at the
surface of the sphere. If the width of the Gaussian density (σatom)
placed at each atom remains small, the angular resolution of the
SOAP expansion cannot distinguish atom densities well. Thus,
increasing the width of the Gaussian at each atom in proportion
to the radial cutoff compensates for this geometrical effect so
that more distant atoms are still resolved well. However, larger
Gaussians placed at neighboring atoms close to the central atom
cause structural information to be washed out. This necessitates
including multiple SOAP vectors at different cutoffs and σatom
values. To demonstrate the effectiveness of this approach, we
compare the accuracy of this method with the others listed in
Table 1. Here it can be seen that the multi-scale SOAP performs

almost equal to standard SOAP, with values slightly worse for
several properties. This also means that it performs better than
ST and SOAP+ST.

While one could conclude from these results that ST does not
provide sufficient improvement to the learning to justify its use,
we believe there are some reasons to withhold judgment. There
are three attributes to the ST that should be considered further.
These are (i) data availability, (ii) interpretability, and (iii) overall
utility as a structural descriptor.

First, concerning data availability, the ST uses layered
convolutional neural networks, which generally provide high
accuracy predictions in machine learning. It is worth noting that
convolutional neural networks are frequently trained with tens of
thousands or more datapoints. It is possible that more data may
simply be required for the convolutional neural network used by
ST to accurately learn GB properties.

One can increase the size of the GB dataset by constructing
additional GB structures, which is time consuming and non-
trivial. Or, one can increase the dataset by simulating existing
GB structures at finite temperatures, where thermal fluctuations
will lead to a large number of similar atomic configurations. We
employ the latter approach in simulations of a 65 (0 1̄ 3)/(0 1̄ 3̄),
〈100〉 symmetric tilt GB at 100 K over 10 ns and generate
1000 configurations, or snapshots, for that GB. If the ST
is used to train a model on some configurations and test
the model on the remaining, ST predicts with low mean
absolute error. For example, with a single GB trained on 250
configurations and tested on the other 750 configurations, a
mean absolute error of 0.002 J/m2 is obtained. On the other
hand SOAP trained on that same data results in a mean absolute
error of 0.0015 J/m2. Thus, with significantly more data ST
improves significantly, though still not better than SOAP in
this case.
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FIGURE 3 | (A) Inverse scattering transform of the 65 (0 1̄ 3)/(0 1̄ 3̄) GB. The

model was trained using only half of the 388 GBs. (B) Inverse scattering

transform of the same GB except that this model was trained using 500

configurations of the same GB. To obtain the configurations, a 10 nanosecond

molecular dynamics simulation was performed at 100 K. Configurations were

extracted every 10 picoseconds. Both models look down the [100] tilt axis of

the crystals. The units for the inverse scattering transform are arbitrary.

The expandedMDdataset demonstrates that ST performs well
with additional data. However, such datasets are moving toward
the realm of “big data.” For example, if one desires to predict
properties for any conceivable GB structure, significantly more
data will be needed to train a general ST model.

The second attribute of ST that is worth discussing is
the interpretability of the results and the ability to learn
the underlying physics surrounding the machine learning
predictions. By using the ST to provide the feature matrix, one
can also perform an inverse scattering transform using relevance
propagation to understand what aspects of the structure are
influencing the learning. Specific details on the application
of relevance propagation to ST is forthcoming (Nguyen, to
be submitted). However, Figure 3 shows heatmaps generated
using relevance propagation for the energy learning task. In
Figure 3Awe show a relevance propagation heatmap for learning
of GB energy using a 50/50 split of the Olmsted database
(i.e., the learning task reported in Table 1). Contrast that with
the relevance propagation heatmap in Figure 3B where energy
was learned from 500/500 split of the MD configurations
noted above. In comparing the two images it is clear that
Figure 3A highlights a seemingly random selection of atoms
that are not consistent with the symmetry of the periodic
structure of the GB. In Figure 3B, the well-known kite structure
from the structural unit model is highlighted, despite the fact
that the model had no knowledge of this structure a priori.
Thus, the inverse ST relevance propagation heatmaps may
allow one to identify the relevant features of the GB structure

that correlate with the property of interest. The heatmaps in
Figure 3 would be different for each property even though the
structure of the GB might be the same. This could be crucial
to the identification of the relevant features of the GB structure
controlling different properties.

Furthermore, while Rosenbrock et al. (2017) demonstrated
that a derived form of SOAP, called the local environment
representation, provides a way to interpret relevant GB
structures, SOAP itself can be difficult to interpret. The
multi-scale SOAP, which can provide longer range structural
information, would be more difficult than SOAP by itself. Thus,
while ST may not lead to the highest prediction values, its
interpretability through the relevance propagation may render it
a useful tool.

The overall utility as a structural descriptor is the third
attribute of ST that is worth considering. To consider this
we compare ST to a range of structural descriptors and
their properties.

In Table 2 we summarize descriptors introduced for
characterizing GBs, and from which machine learning models
could be built. In addition to the metrics described in this work
we also compare attributes against the structural unit model
(SUM), dislocation arrays (DA), common neighbor analysis
(CNA), polyhedral template matching (PTM), Voronoi cell
topology (VCT), and the polyhedral unit model (PUM), all of
which were mentioned in the introduction.

We judge each descriptor based on its usefulness across
several metrics. The properties of interest are: Easily Visualized -
one can convey the structures through visual means, Easily
Interpreted–one can easily identify the relevant characteristics
and differences between structures, Comparison - one can
quantitatively compare the structures to one another, Invariance–
the characterization is invariant to rotations, permutations,
and/or translations, Perturbations–perturbations in the structure
are captured as small changes in the metric, Smoothly Varying–
the metric is continuous and varies smoothly for larger changes
in structure, 3D GB Structures–the characterization works
for quasi-2D and complex 3D GB structures, Automation–
the characterization process can be automated, Connectivity–
the technique characterizes how all the atoms in the GB are
connected, Multi-scale–the technique characterizes both short-
and long-range structural information, Subunit Discovery–the
technique does not require a preset list of structures, it can
discover them on its own.

While there are notable things about each descriptor and some
of the entries in Table 2 are subjective, we will focus on a few
properties of interest. In particular, we’ll focus on a few of the
properties not present in SOAP.

First, the ability to automate the description is an essential
requirement to move GB science into the big data age. This
property is shared by many. Second, is the ability to provide

multi-scale characterization. Many techniques possess this ability
if the researcher knows what they are doing, but ST is the only

technique that possesses this inherently. Third and fourth are

easily visualized and interpreted, which are two properties that
are more subjective. Neither of these properties is a strength of
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TABLE 2 | Comparison of structural descriptors and their properties.

Property SUM DA CNA PTM VCT PUM SOAP LER ST

Easily visualized X X X X X X X X

Easily interpreted X X X X X X R X

Comparison X X X X X X X X

Invariance R X X X X X X X

Perturbations R X X X X X X

Smoothly varying X X X

3D GB structures X X X X X X X

Automation X X X X X X X

Connectivity R R R

Multi-scale R R R X

Subunit discovery R R X

The structural unit model is abbreviated as SUM, dislocation arrays as DA, common neighbor analysis as CNA, polyhedral template matching as PTM, Voronoi cell topology as VCT,

polyhedral unit model as PUM, averaged SOAP representation as SOAP, local environment representation as LER, and scattering transform as ST. A check mark (X) indicates that the

descriptor exhibits a particular property. ‘R’ indicates that the researcher using the tool is largely responsible for whether or not the atomic structure description has a particular property

or not (since that property is extracted manually).

SOAP3, but both could be a strengths of ST as evidenced by the
heatmaps in Figure 3. Sixth is connectivity. ST does not possess
this outright as one might consider in the structural unit model
or in a graph description. However, it should be noted that while
Figure 3 colors each of the atoms by their relevance in predicting
energy, the continuous nature of ST and the inverse ST means
that relevance scores are available continuously throughout the
space; one could produce high resolution heatmaps. Having a
detailed 3D “importance density” for a grain boundary would
allow connectivity values between a graph of nearest-neighbor
atoms to be quantified (for example by integrating the density
along the path connecting the atoms). These edge weights in
the connectivity graph could be thresholded to provide alternate
views of connectivity. This definition of connectivity is somewhat
different from the traditional definition. The heatmaps also
change based on the property of interest rather than being
static. That in turn, may be more useful for discovering the
physical underpinnings on structure-property relationships. This
approach might also allow one to fulfill the final property of
subunit discovery. Again, this isn’t currently present in ST, but
one could imagine how the inverse ST heatmaps might enable
this property.

Considering these three attributes of ST, there is reason to
believe that the ST, or something very similar, might become
an important descriptor for GB data science. However, given
the evidence presented here, one must proceed with caution,
and consider other ways to achieve the same goals of encoding
the most useful information about GB structures for property
prediction and discovery of the underlying physics.

3SOAP can lends itself to interpretation by either (i) optimizing a reference

structure by minimizing the kernel metric distance, much like the local

environment representation, or (ii) applying relevance propagation to the SOAP

vector. However, the first approach provides only a local analog and the second

approach suffers information loss due to the angular integral. Thus, while certainly

useful, the inverse SOAP operations do not have the same global resolution as an

inverse scattering transform.

4. CONCLUSION

The success of machine learning in GB data science will largely
be guided by the development of tools that capture the physical
essence of GB structure-property relationships. These tools must
be automated and universally applicable to large and complex GB
structures. Since the machine learning is merely a stepping stone
to discovery of the underlying physics, these tools should also
satisfy certain mathematical constraints related to invariances
and smoothness.

We introduced a new descriptor, the Scattering Transform
(ST) (Bownik, 1997; Benedetto and Pfander, 1998; Pfander
and Benedetto, 2002; Benítez et al., 2010; Goh and Lee, 2010;
Goh et al., 2011; Lanusse et al., 2012; Mallat, 2012), based
on continuous, multi-scale wavelet transforms interleaved with
modulus nonlinearities. We showed that this descriptor can
effectively learn GB structure-property relationships for energy
and does reasonably well for temperature-dependent mobility. It
should be noted that the SOAP descriptor surpassed the ST in
prediction accuracy and remains the optimal descriptor for the
properties and structures compared here.

However, we also demonstrated that despite its inability
to achieve the same accuracy predictions as SOAP, ST has
complimentary features that may make it a useful descriptor of
GB structure. First off, the ST information content is different
than and complementary to that of the SOAP descriptor. The
ST has the ability to encode multi-scale structural information
and be visualized using an inverse ST that generates a heatmap.
Importantly, the inverse ST provides evidence of the prevailing
wisdom that multi-level convolutional networks require large
amounts of data in order to truly learn the physics underlying
structure-property relationships. This helps contextualize the
performance of ST relative to the averaged SOAP representation
and other SOAP-based representations. It also motivates the
building of much larger GB databases.

The ST has the potential to be a powerful tool in
understanding GB structure-property relationships. As we
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continue to push the limits of our understanding in GB structure-
property relationships it will be most valuable to (i) focus on
building larger databases of GB structure-property mappings,
which currently represents the greatest limitation, and (ii)
continue to introduce new descriptors that satisfy as many of the
desirable characteristics as possible.
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Dislocations—the carrier of plastic deformation—are responsible for a wide range of

mechanical properties of metals or semiconductors. Those line-like objects tend to

form complex networks that are very difficult to characterize or to link to macroscopic

properties on the specimen scale. In this work a machine learning based approach

for classification of coarse-grained dislocation microstructures in terms of different

dislocation density field variables is used. The performance of the model combined

with domain knowledge from the underlying physics helps to shed light on the interplay

between coarse-graining voxel size and the set of suitable or even required density

variables for a faithful microstructure characterization.

Keywords: machine learning, dislocation, classification, plasticity, microstructure

1. INTRODUCTION

One of the primary mechanisms of plastic deformation in crystalline material is the movement
of dislocations. Dislocations are one-dimensional lattice defects that cause a distortion of the
crystallographic lattice. The distortion results in a stress state through which dislocations interact.
Once subjected to a sufficiently large stress they may start to move within a crystallographic plane,
the slip plane. In addition to the interaction through their stress fields, dislocations may also form
junctions or even may climb, i.e., move perpendicular to their slip plane. Thus, understanding the
complex relation between dislocation microstructures and the emerging mechanical behavior is
important from a fundamental point of view but is also required for designing new materials with
tailored material properties. To this end, both experimental as well as numerical approaches can
give important input to such developments.

In recent years, experimental methods reached the point where a three-dimensional imaging of
dislocations is possible (Chen et al., 2013; Yamasaki et al., 2015). On the other side of the spectrum,
due to improvements in algorithms and increasing computational power, numerical methods are
able to simulate the evolution of dislocation microstructure in large specimens of up to several
tens of µm (Rao et al., 2019). The drastic increase in the amount of available data sets as well as
the degree of complexity of such dislocation microstructure results in a growing need for suitable
algorithms and concepts for their analysis. The recent resurgence of machine learning algorithms
offers a novel way for exploring this data in great detail.

Machine learning algorithms have been successfully applied in a variety of fields within
materials science so far, e.g., prediction of stable compounds (Saal et al., 2013), prediction of the
crystal structure (Ghiringhelli et al., 2015), band gap prediction (Dey et al., 2014), microstructure
characterization (Chowdhury et al., 2016; Bostanabad et al., 2018), or material structure-property
linkages (Cecen et al., 2018). The challenge of machine learning in the context of dislocation
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microstructures is the extraction and selection of features
that are able to accurately capture the properties of both
single dislocations, as well as dislocation networks. Features
characterizing dislocation microstructures should capture as
much of their geometrical character with as few parameters
as possible. In typical dislocation dynamics simulations the
microstructure is represented as a network of lines each of
which requires many geometrical parameters for its definition.
This makes it problematic to directly operate with these
objects. We will therefore take a new approach: Based on
the discrete-to-continuous (D2C) framework (Sandfeld and
Po, 2015; Steinberger et al., 2016), which “borrows” the field
variables of a continuum theory of dislocation dynamics. This
method was already successfully used to study the emergent
microstructural features of molecular dynamics simulations of
plastic deformation via scratching (Gunkelmann et al., 2017) and
during shock loading (Kositski et al., 2018).

In the following, we will start by introducing the main
steps for converting mathematical lines into continuum field
variables along with the most important simulation methods—
the “discrete dislocation dynamics”—which provides the data for
all subsequent analysis. We will then apply the briefly introduced
machine learning algorithms to an example problem, which
will allow us to study the information content of each of these
field quantities. This will help to understand whether different
sets of field variables suffice as features for machine learning
dislocation microstructures.

2. METHODS

In the following, the D2C framework is outlined as a means of
converting discrete dislocation microstructures into continuous
fields while retaining a variable amount of information. Then,
the generation of dislocation microstructures within samples via
discrete dislocation dynamics is summarized. Lastly, the machine
learning algorithms used to classify the sample size based on their
dislocation microstructure is given in detail.

2.1. D2C—Discrete-to-Continuous
The D2C framework (Sandfeld and Po, 2015; Steinberger et al.,
2016) is based on treating dislocations as directed curves with
additional physical properties, i.e., the slip plane normal, and the
Burgers vector. Dislocations represent the boundary of an area
over which slip displacement between two adjacent lattice planes
has occurred. Dislocations can not end at arbitrary sites within
the crystal, but only at free surfaces, grain boundaries, other
dislocations, or other defects. A dislocation is characterized by

1. its curve parametrization, i.e., where it is in space,
2. its Burgers vector, b, which gives the magnitude and direction

of the slip displacement,
3. the unit normal vector of the slip plane, n, over which the slip

occurred, and
4. an orientation, represented locally by the unit line vector l, the

tangent of the dislocation line.

Locally, the character of a dislocation depends on its orientation
with respect to the Burgers vector. If l ‖ b, the character is of

“screw” type, if l ⊥ b, the character is of “edge” type, in all other
cases it is of “mixed” type.

The so-called Kröner–Nye tensor (Nye, 1953; Kröner, 1958) is
defined via

α =
∑

S

̺SbS ⊗ lS =
∑

b

2π
∫

0

2π
∫

0

̺b(θ ,ϕ)b⊗ l(θ ,ϕ)dϕdθ , (1)

where S denotes a possible set of dislocations within a volume
sharing a Burgers vector and line tangent. The integral over the
spherical angles θ and ϕ denotes an integration over all possible
orientations in three-dimensional space. It was the first attempt
to describe dislocations along with structural information as
continuous fields. As opposed to simplistic measures as, e.g.,
the total dislocation density ρt, which is defined as the line
length per averaging volume, the Kröner–Nye tensor captures
the local dislocation character in terms of the relative orientation
of the line directions of the dislocations with respect to the
Burgers vector. However, contributions of dislocations with
opposite character cancel each other out: e.g., consider two
straight line segments with the same Burgers vector but opposite
line directions l

+ and l
− = −l

+: their average contribution
is b ⊗ l

+ + b ⊗ l
− = 0. Thus, only information about so-

called “geometrically necessary” dislocations, i.e., dislocations
that contribute to plastic distortion within the averaging volume,
is taken into account. A number of continuum theories for
predicting the evolution of dislocations are based on the Kröner-
Nye tensor (Acharya and Roy, 2006; Roy et al., 2006; Xia and
El-Azab, 2015).

Another theory for evolving continuous dislocation fields is
the so-called higher-dimensional continuum dislocation dynamics
theory developed by Hochrainer and co-workers (Hochrainer
et al., 2007; Sandfeld et al., 2010). Within this theory, dislocations
are represented by density and “curvature density” fields, both
of which are not only a function of the spatial position r, but
also of the orientations θ and ϕ of the dislocations. While this
concept contains many important information, the extra degrees
of freedom also add a high degree of complexity. This can be
remedied by expanding the density and curvature fields using a
Fourier series. The resulting infinite hierarchy of field equations,
however, can then be truncated. For the density field of n-th order
it is (Hochrainer et al., 2014; Hochrainer, 2015)

ρ
(n)(r) =

2π
∫

0

2π
∫

0

ρ(r, θ ,ϕ)l(θ ,ϕ)⊗ndϕdθ , (2)

with l(r)⊗n denoting the n-times outer product of l(r). The
zeroth-order term of the series,

ρ(0)(r) =
2π
∫

0

2π
∫

0

ρ(r, θ ,ϕ)dϕdθ , (3)

Frontiers in Materials | www.frontiersin.org 2 June 2019 | Volume 6 | Article 141114

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Steinberger et al. ML-Based Classification of Dislocation Microstructures

TABLE 1 | Features extracted from the dislocation microstructures following

Equation (6).

Microstructure feature Symbol fc(u)

Line density ρ(0) 1

Line excess density ρ
(1)

l(u)

Line direction density ρ
(2)

l(u)⊗ l(u)

Kröner–Nye tensor α bc ⊗ l(u)

The symbols refer to the ones used by their respective continuous field theory, l(u) denotes

the line vector of the dislocation, and bc its Burgers vector.

recovers the total dislocation density at position r. The
first-order term,

ρ
(1)(r) =

2π
∫

0

2π
∫

0

ρ(r, θ ,ϕ)l(r)dϕdθ , (4)

represents the “line excess density”. If computed separately for
each slip system, it is the “geometrically necessary” dislocation
density for this slip system. The second-order term,

ρ
(2)(r) =

2π
∫

0

2π
∫

0

ρ(r, θ ,ϕ)l(θ ,ϕ)⊗ l(θ ,ϕ)dϕdθ , (5)

denotes the “line direction density”. If computed separately for
each slip system in a coordinate system that is based on the
Burgers vector of that slip system, it can be interpreted as the
density of edge- and screw-type dislocation character. The theory
based on these fields and an additional field—the curvature
density of the dislocations—is able to represent the kinematics of
dislocation motion for simplified single slip situations, which was
shown by Sandfeld and Po (2015) by comparison with discrete
dislocation dynamics simulations.

Numerically, the computation of the fields based on discrete
dislocation data is carried out in the following way. The
subvolume of interest within a specimen is discretized into voxels
�i. Microstructure features may then be extracted for each voxel
by treating each dislocation as a parameterized curve c(u) via

1

V�i

∑

c∈�i

∫

Lc
�i

fc(u)du, (6)

where u is the arc length, and V�i is the volume of the voxel �i.
fc(u) denotes a field specific term that relies on the geometrical
and physical properties of the dislocation curve c. An overview
of the continuous fields used as features and their corresponding
term for fc(u) is compiled in Table 1.

2.2. The Discrete Dislocation Dynamics
Method
The discrete dislocation dynamics methods represent dislocation
as polygonal chains, i.e., an ordered sequence of segments.
Forces acting on those segments, or their vertices, due to

other dislocations, external load, and/or image forces due to
surfaces are computed, and subsequently used to move the
dislocations according to a velocity law. Additionally, local rules
are implemented to take dislocation reactions like cross-slip
or junction formation into account. A velocity law combined
with the local rules can then be time-integrated to update the
dislocation positions.

2.3. Data Generation and Simulation Set Up
The generation and evolution of dislocation microstructures
were performed using theMODEL discrete dislocation dynamics
code (Po et al., 2012; Po and Ghoniem, 2014). Cube-shaped
copper samples with edge lengths of 30, 60, and 90 nm were
filled with dipolar edge loops that were randomly placed on all
slip systems up to a total dislocation density of ≈ 5× 1016m−2.
Throughout the simulations, the effect of open boundaries
on the dislocations was taken into account and dislocations
were allowed to exit the samples. Subsequently, these random
structures were relaxed without application of an external stress.

Due to the open boundaries image forces act on the
dislocations that attract them to the free surfaces where parts of
them leave the specimen. The attraction is stronger the closer the
dislocation is to the surface. Therefore, we expect the dislocation
density ρ(0) to be smaller at the boundaries of the specimen.
Furthermore, if unhindered, the remaining part of the dislocation
should be oriented perpendicular to the surface. This preference
of dislocation line direction should show in the line direction
density ρ

(2). Thus, the region close to the surfaces should exhibit
dislocation microstructure features that are different from that of
the center of the sample. For simplicity, formation of junctions
was not considered in the present study, which resulted in a large
simulation speedup allowing to generate more samples.

Overall, 306 realizations of the 30 nm specimen, 238 of
the 60 nm specimen, and 207 of the 90 nm specimen were
generated. Due to the relatively small number of samples that
can be investigated in this study, slip system specific dislocation
densities would be prone to overfitting. Instead, only the line
directions of each dislocation within the subvolume are taken
into account regardless of the slip system. The local deformation
character of the dislocation ensemble is therefore only considered
by the Kröner–Nye tensor due to it taking the Burgers vector
into account.

Due to the different size of the samples, the dislocation
arrangement close to the surface can be expected to differ
between the sample sizes. Therefore, we ask the following
question: Can a machine learning model be trained to classify
the sample size based on the dislocation microstructure within
a subvolume at the surface of the specimen?

A 30 × 30 × 30 nm subvolume at the center of the
side oriented toward the negative x-direction was chosen, see
Figure 1. For the 30 nm sample, the whole volume is thus taken
into account, including all the surfaces. In the larger specimen,
the subvolume only contained one free surface. Assuming that
the microstructure features are able to capture the characteristics
of the microstructure, the classification of the 30 nm sample
should be easier than the classification of the 60 nm, and 90
nm samples.
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FIGURE 1 | Sample geometries considered in this work. The subvolumes used for the classification of the specimen size are shown in red. Their size is 30 nm for all

specimen sizes. (A) 30 nm specimen/subvolume. (B) 60 nm specimen with the 30 nm subvolume. (C) 90 nm specimen with the 30 nm subvolume.

2.4. Machine Learning of Dislocation
Microstructures
Machine learning algorithms rely on the description of
samples by common features, that are then typically used
for classification, regression, and/or clustering. A feature is a
measurable property of a sample that provides information
about a sample and puts it into relation with other samples.
Classification describes the procedure of trying to infer a
label for one or several samples based on the features of
other samples with a known label. In this work, a Gaussian
naive Bayes classifier is used, which is briefly explained in the
following. For more details, see Domingos and Pazzani (1997),
and Hand and Yu (2001).

Bayes’ theorem states that the probability P of a sample with
features X̂ belonging to class yi is given by

P(y = yi | X = X̂) = P(X = X̂ | y = yi)P(y = yi)

P(X = X̂)
. (7)

Here, P(A | B) denotes the conditional probability of A under the
condition B. The predicted class then is the class for which this
probability is the highest considering the given feature vector.
Thus, the denominator of Equation (7) becomes irrelevant, as it
does not depend on the class. Both, P(y = yi)—the probability
that the class is yi—and P(X = X̂ | y = yi)—the probability
that the features are X̂ given that the class is yi—are results of
the supervised learning procedure. The former is computed via
the number of times class yi was observed within all training
data with respect to all training data. The latter is assumed
to be modeled by a gaussian distribution for each occurring
class individually, with the mean and standard deviation being
computed from the features of specimen belonging to that class
within the training dataset.

A simple example of the Gaussian naive Bayes classification
can be seen in Figure 2. The samples shown as dots were used to
train a Gaussian naive Bayes classifier. Subsequently, the feature
space was sampled for its classification areas and they are shown
accordingly. Interfaces between these areas are called decision
boundaries and represent ambiguous feature combinations.

FIGURE 2 | Graphical representation of a classification algorithm using two

features to classify samples into three distinct classes, represented by their

color. A Gaussian naive Bayes classifier was trained using the samples seen as

dots and subsequently the areas, whose feature combination would lead to a

specific classification, was colored accordingly. It can be seen that not all

samples would be classified correctly even though they have been part of the

training data.

In this work features used for machine learning are the
microstructure features in the subvolumes of each sample. This is
done to make them comparable w.r.t the voxel size and position
of the features. If, instead, we used the whole specimen size, the
data would not be comparable.

The performance of classification models is then measured
by cross-validation and the accuracy score, i.e., the number of
correctly labeled samples divided by the total number of samples
that were labeled. Additionally, so-called confusion matrices may
be computed. They reveal details of the mislabeling by keeping
track of the true label and the one predicted by the machine
learning model.

To measure the influence of the spatial resolution and its
interplay with the different features on the classification score,
different combinations of spatial discretizations and density
features are applied. Each subvolume was subdivided into up to
8 segments along each direction, resulting in up to 512 voxels �i.
Subsequently, the features were computed within each of those
voxels using the D2C framework.

For each combination of spatial discretization and features,
30 shuffled stratified 5-fold cross-validations were performed to
determine the average accuracy scores and confusion matrices of
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FIGURE 3 | Examples of discrete microstructures found within the inspected subvolumes of the different specimen sizes can be seen in the top row. Note that the

size of the subvolumes is the same, but the specimen they were taken from are different (see Figure 1). The open surface common to all subvolumes irrespective of

the specimen size is in negative x-direction, in this case, to the right. Average total dislocation density ρ(0) for each studied specimen size and two or four voxels per

direction as discretization are shown in the bottom rows.

the models. Throughout this work, the Python packages NumPy
(Oliphant, 2015) version 1.16.0, and scikit-learn (Pedregosa et al.,
2011) version 0.20.2 were used.

3. RESULTS

Dislocation structures in specimens of three different sizes are
created using the open source discrete dislocation dynamics
code MODEL according to the relaxation procedure outlined in
the previous section. Examples for such dislocation structures
within a subvolume are shown in the top row of Figure 3.
All subvolumes exhibit a depletion of dislocations close
to the surface. This behavior is most pronounced for the
30 nm specimens. Applying the D2C coarse-graining to the

discrete dislocation structure we obtain continuous dislocation
dynamics (CDD) field data. To be able to directly compare the
microstructures of different specimen sizes, we cut samples of
equal sizes from each specimen size (compare Figure 1). Typical
density distributions for different specimen sizes and with two
different discretizations are illustrated in Figure 3.

The overall total dislocation density of the 30 nm specimens
is smaller than that of the 60 nm and 90 nm specimens.
Furthermore, the smallest sample also shows a highly symmetric
densitymorphology, while the average total dislocation density in
the larger samples exhibit a gradient, i.e., an increase in direction
of the negative x-direction, with smaller density at the free surface
at the right. Along the other two directions no gradient can be
observed. This is a result of the way how we cut samples out
of the specimens of different sizes: only the smallest sample has
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FIGURE 4 | Average accuracy score of the microstructure features in combinations that are used within their respective theories over the number of voxels along each

axis used for the spatial discretization.

FIGURE 5 | Average accuracy score on the test data set for different features and their combinations. In the right plot the lines for {ρ(0), ρ(2)} and {ρ(1), ρ(2)} coincide
for a larger number of voxels for each direction.

free surfaces everywhere, while the samples from the 60 nm and
90 nm specimens have only one free surface, i.e., the one with
outwards normal pointing into positive x-direction.

Having presented general observations of the microstructure,
the results of the machine learning model are presented in
the following.

Figure 4 shows the average accuracy scores computed from
the machine learning model. They were obtained for different
combinations of microstructure features and for different
coarse-graining voxel sizes. These particular combinations are
commonly used in continuous dislocation simulations models.
It can be seen that in particular for large voxel sizes (≤ 3 ×
3 × 3 voxel) the accuracy score of the Kröner–Nye tensor is
low compared to those obtained for the CDD field variables. For
higher resolutions, the Kröner–Nye tensor α scores higher than

the total dislocation density ρ(0) but is still performing not as
good as usingmore than one CDD feature at the same time. Using
(combinations of) the CDD field variables from Hochrainer’s
CDD theory, the general trend is that a larger number of involved
fields leads to a better or at least comparable score. Using the
direction line density ρ

(2) in addition to the excess line density
ρ
(1) and the total density ρ(0) leads to a significant improvement

in the accuracy score (green curve in Figure 4).
To study inmore detail what the influence of different features

is we investigate the accuracy score for only using a single feature
and for combinations of two features in Figure 5, on the left
and on the right, respectively. If only one voxel is considered
for the spatial discretization, the total line density {ρ(0)} is the
best predictor of the sample size, followed by the direction line
density {ρ(2)}. The latter starts to perform better for resolutions
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FIGURE 6 | Average confusion matrices for different resolutions taking only the total dislocation density {ρ(0)} as feature into account.

of more than one voxel for each direction. The excess line density
{ρ(1)} performs better with higher resolution, performing better
than the total dislocation density {ρ(0)} for more than four voxels
per axis, and better than the direction line density {ρ(2)} for
more than seven voxels per axis. Field combinations involving
ρ
(2) perform better than those without it, the exception being the

highest resolution of eight voxels per axis. For low resolutions the
combination {ρ(0), ρ(2)} is more accurate than the combination
{ρ(1), ρ(2)}. For more than two voxels per direction the accuracy
of the two becomes comparable.

Confusionmatrices for only using the total dislocation density
as feature are shown for different resolutions in Figure 6. There,
the vertical axis shows the real specimen size and the horizontal
axis is the size inferred by the classification algorithm. One
observes that the 30 nm samples are always labeled correctly:
each matrix has a “1” in the top left. Larger samples are
mislabeled more often, with a stronger tendency of mislabeling
the specimen as a too small specimen, i.e., the 90 nm sample
is more often classified as 60 nm than the other way around.
This effect is less pronounced for higher resolutions. At the
same time the accuracy of correctly labeling the 60 nm samples
slightly decreases.

The confusion matrix of the best performing combination of
features and resolutions, {ρ(0), ρ(1), ρ(2)}, for one voxel, is shown
in Figure 7 on the right. The predicted size of 30 nm samples
perfectly matches the actual size. Sixty and ninety nanometer
samples are predicted correctly with an accuracy of above 0.8.
Specimens that could not be predicted correctly were never
labeled as 30 nm, and the degree of false labelings of the two larger
samples (i.e., identifying a 60 nm specimen as a 90 nm and vica
versa) is balanced.

The combination of the Kröner–Nye tensor and a resolution
of two voxel per direction performedworst out of the investigated
combinations. Its confusion matrix is shown in Figure 7 on the
left. While specimens of size 30 nm are not predicted perfectly,
they still remain those that are most accurately predicted. False
predictions are not limited to just the next smaller or larger sizes,
as roughly 5% of 30 nm samples are classified as 90 nm, and
roughly 11% the other way around. Slightly more than half of
the 60 and 90 nm samples are classified as 60 nm.

These two extreme cases also summarize all other
combinations of continuous fields and resolution: The 30 nm
specimens are much more reliably classified than the larger
specimens. If larger specimens are mislabeled, the tendency is
that the 90 nm specimen is classified as being 60 nm more often
than vice-versa.

4. DISCUSSION

4.1. Accuracy of Classifying 30nm vs.
60nm, and 90nm
The confusion matrices show that there is a striking difference
in the accuracy with which subvolumes of 30 nm specimen are
classified compared to the larger specimen. The reason for this is
that the subvolumes of 30 nm specimens have six free boundaries,
whereas the subvolumes of larger specimen only have one. As
seen in Figure 3, this leads to distinct density features for the
30 nm specimens/subvolumes. On the one hand, the overall
dislocation density is lower compared to the larger specimens. As
dislocations are attracted to free surfaces through which they can
leave the specimen, more free surfaces closer to the subvolume
result in a lower density. On the other hand, there is no gradient
of the dislocation density like in the larger specimen. While the
dislocations close to the free surfaces in the larger specimen are
able to leave the samples, dislocations closer to the center of
the specimen can not. On average, this leads to a large density
gradient in the subvolumes of larger samples. These are the
features likely learned by the model and lead to a high accuracy in
distinguishing the 30 nm subvolumes from larger ones, regardless
of the resolution.

Classification of subvolumes of the larger specimen is less
accurate as their basic features are the same: both have one
free surface, while their other surfaces are inside the specimen.
However, the distance of the “inner” subvolume surfaces to
the specimen surfaces is different for the 60 nm and the 90 nm
samples. This likely leads to more subtle differences in the
dislocation microstructure that have to be represented as features
for the machine learning algorithm to recognize them. For this,
two options seem to be available:
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FIGURE 7 | Average confusion matrix on the test data set of the features {α}, {ρ(0), ρ(1)}, {ρ(0), ρ(1), ρ(2)} for low resolutions per axis. The first combination performed

worst, the last best out of all investigated combinations.

FIGURE 8 | Accuracy scores for all feature combinations and resolutions. The features are ordered by their maximum accuracy score, with the best performing

features on top. The dashed line indicates the point after which an increase in resolution results in worse performance.

• Increasing the resolution while keeping the microstructure
features the same. This way, lower order features are not
“averaged out” over large volumes. Figure 4 together with the
confusion matrices seen in Figure 6 show that this is one way
to increase the accuracy of the model.

• Using higher order microstructure features while keeping
the resolution the same. This way, more details of the
microstructure are captured in the same averaging volumes.
Figure 4 and the confusion matrices seen in Figure 7 confirm
that this is also viable for increasing the accuracy.

Both ways also alleviate the asymmetry in mislabeling
subvolumes of the larger specimen. If one looks at the “feature
efficiency,” i.e., how many features are used to get the best
accuracy, including more information via higher order terms of
Hochrainer’s CDD theory is the better solution.

4.2. Resolution and Features
Is it possible to identify a simple or generic recipe that helps to

choose the “right” resolution or “correct” number of features?
To answer this question the accuracy scores for all feature

combinations and numbers of voxels for each direction are
summarized in Figure 8.

When only using one microstructure feature set, the total
dislocation density ρ(0) performs best for low resolutions. While
the performance of ρ(0) remains rather unchanged for higher

resolutions, other single microstructure features perform better

at different resolutions. This can be explained by the length scales
of the features compared to the spatial resolution. If there is only a
single voxel, then the details that are captured by ρ

(2) are averaged
out. The performance increases as the resolution gets higher up
to a point of about two average dislocation spacings. At this point
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the length scale of the details represented by ρ
(2) likely coincides

with the resolution and leads to good performance.
The poor performance for the line excess density ρ

(1) and
the Kröner–Nye tensor α at resolutions below one average
dislocation spacing can furthermore be explained by the
chosen dislocation configuration. Both measures are only able
to describe dislocation configurations that show an excess
of a particular dislocation type that ultimately leads to a
plastic distortion of the lattice. In our example, the average
dislocation character is balanced, i.e., on average there is no
plastic distortion in the specimen. Thus, the local formation of
substructures of different “character excess” is averaged out if
the resolution is chosen too low. As the resolution is increased
and approaches a comparable scale, the performance of these
measures increases and, in some cases, even surpasses that of the
total dislocation density.

Why is it not possible to simply increase the resolution
together with using four or more CDD field variables? As the
resolution increases, so does the number of features and the
likelihood of overfitting. This can be seen within the performance
of the combination of the fields {ρ(0), ρ(1), ρ(2)} in Figure 5.
The performance advantage of {ρ(0), ρ(1), ρ(2)} over {ρ(0)} at
lower resolutions can be attributed to the addition of ρ

(2) alone,
as evident by comparing the performance of {ρ(0), ρ(1), ρ(2)},
and {ρ(0), ρ(2)}. As the resolution is increased, the performance
slightly decreases and reaches another maximum for the
resolution of four voxels per axis. This coincides with an increase
of all field combinations that are containing ρ

(1). Up until this
point the likelihood of having overfitted is small. The subsequent
continuing drop in accuracymay then be attributed to overfitting.

Overfitting, however, may not be the only culprit of a decrease
in performance for higher resolutions. As dislocations are one-
dimensional objects embedded into three-dimensional space, the
size of the voxels, i.e., the size of the domain for statistical
averaging, can be too small. In extreme cases, no correlation may
be found for characteristic dislocation arrangements that due to
a too fine resolution are, e.g., contained in different voxel. The
link to the underlying physics is given by the mean dislocation
spacing, x̄ = 1/

√
ρ0. If the voxel size is smaller than x̄ the

likelihood of finding two dislocations inside the same averaging
volume becomes small. Thus, a single voxel is rather a probe of
properties of a single line segment but will not be able to represent
any non-local structural details of more complex dislocation
networks. In Figure 4 the voxel size as a multiple of the initial
mean dislocation spacing x̄ is indicated on top of the diagrams.
In both plots one can observe that for voxel smaller than ≈ x̄
the accuracy is strongly reduced. Therefore, one can conclude
that the mean dislocation spacing might be a useful quantity
to estimate a reasonable lower limit for the voxel size. This
highlights the fact that including domain knowledge is beneficial.

4.3. Implications of Simplifications of the
Simulations
Clearly, the DDD setup that was used in this work is not entirely
realistic since junction formation was not allowed. However, the
main point still remains valid: continuous fields are sufficient
as features for machine learning of dislocation microstructures.
Junction formation would not hinder us in extracting the line

directions, but actually give us access to more features by, e.g.,
differentiating between lines of “pristine” type and “junction”
type. The number of available features further increases if
junction features such as the resulting Burgers vector or the angle
between junction line and the original dislocation lines were
taken into account. This, of course, also means that more samples
would be required to avoid overfitting.

5. CONCLUSION

A variety of continuous fields “borrowed” from a continuous
dislocation dynamics theory was introduced as potential
machine learning features that are able to describe dislocation
microstructures. Using discrete dislocation dynamics, relaxed
dislocation configurations of samples of different size were
created. Through the D2C framework, the microstructure
features of the discrete data provided by the discrete dislocation
dynamics code were extracted. The performance of these
features was investigated by predicting the size of a specimen
based on samples of dislocation microstructure. It was shown
that the accuracy of machine learning models trained with
these features varies with different sets of microstructure
features and spatial discretizations. Finding the key characteristic
microstructural features in these systems and linking them
to the underlying physics seems to be a very promising
way, not just for “learning dislocation dynamics” but also
for guiding the development of coarse-grained continuum
theories of dislocations, such as, e.g., based on atomistics
(Xiong et al., 2011) or using the phase field method (Rodney
et al., 2003). If a machine learning model were trained
to distinguish between the detailed and the coarse-grained
simulations based on the proposed microstructure features, but
it turned out that the performance is poor it could imply that
the coarse-grained model is able to capture the underlying
mechanisms accurately.

Last but not least, the present work might also be a
first step toward guiding the development of new, possibly
specialized continuum theories of dislocation dynamics since
the classification performance of certain field variables can be
an indicator for its importance. Understanding the interplay
between voxel size and accuracy might be able to guide, e.g., finite
element based simulation frameworks toward an “information-
based” mesh refinement.
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In this paper, various kinds of applications are presented, in which tomographic image

data depicting microstructures of materials are semantically segmented by combining

machine learning methods and conventional image processing steps. The main focus of

this paper is the grain-wise segmentation of time-resolved CT data of an AlCu specimen

which was obtained in between several Ostwald ripening steps. The poorly visible grain

boundaries in 3D CT data were enhanced using convolutional neural networks (CNNs).

The CNN architectures considered in this paper are a 2D U-Net, a multichannel 2D

U-Net and a 3D U-Net where the latter was trained at a lower resolution due to memory

limitations. For training the CNNs, ground truth information was derived from 3D X-ray

diffraction (3DXRD) measurements. The grain boundary images enhanced by the CNNs

were then segmented using a marker-based watershed algorithm with an additional

postprocessing step for reducing oversegmentation. The segmentation results obtained

by this procedure were quantitatively compared to ground truth information derived by

the 3DXRD measurements. A quantitative comparison between segmentation results

indicates that the 3D U-Net performs best among the considered U-Net architectures.

Additionally, a scenario, in which “ground truth” data is only available in one time step, is

considered. Therefore, a CNN was trained only with CT and 3DXRD data from the last

measured time step. The trained network and the image processing steps were then

applied to the entire series of CT scans. The resulting segmentations exhibited a similar

quality compared to those obtained by the network which was trained with the entire

series of CT scans.

Keywords: machine learning, segmentation, X-ray microtomography, polycrystalline microstructure, Ostwald

ripening, statistical image analysis

1. INTRODUCTION

In materials science, supervised machine learning techniques are used to describe relationships
between the microstructure of materials and their physical properties (Stenzel et al., 2017;
Xue et al., 2017). Roughly speaking, these techniques provide high-parametric regression or
classification models. However, to analyze the microstructure and to determine quantitative
descriptors for its morphology or texture, one often requires image acquisition techniques like
X-ray microtomography or electron backscatter diffraction (EBSD). Therefore, image processing
is necessary for analysis, which generally entails some sort of semantic segmentation of image
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data. The non-trivial task of segmentation can range from
determining the material phases that are present in image data
to the detection and extraction of single particles, grains or
fibers. The quality of the segmentation has a significant influence
on the subsequent analysis of the material’s microstructure and
macroscopic physical properties.

Thus, in the present paper, we focus on machine learning
techniques that provide assistance in the segmentation of image
data. In recent years, numerous approaches for various fields
have been considered that deal with this issue, where specifically
convolutional neural networks (CNNs, Goodfellow et al., 2016)
enjoy an increased popularity. In the field of object detection
in 2D images the Region-CNN (R-CNN, Girshick et al., 2014)
was successfully used for determining bounding boxes around
objects of interest. In recent years this architecture was enhanced,
resulting in the Fast R-CNN (Girshick, 2015) and Faster R-
CNN (Ren et al., 2017). However, in many applications it
does not suffice to obtain a bounding box around objects
of interest—a much finer segmentation was achieved by He
et al. (2017) who extended the Faster R-CNN architecture to
assign image pixels to object instances detected in 2D image
data. Recently, another CNN architecture, namely the U-Net
(Ronneberger et al., 2015) was used for the segmentation of
biomedical 2D image data. In later works, variations of the U-
Net were introduced which are able to process and segment
volumetric image data, see Çiçek et al. (2016) and Falk et al.
(2019). Furthermore, conventional segmentation techniques,
like the watershed transform (Beucher and Lantuéjoul, 1979),
have been utilized in combination with methods from machine
learning in segmentation tasks, see Naylor et al. (2017) and
Nunez-Iglesias et al. (2013).

In the present paper, we give a short overview of several
applications in the field of materials science in which we
successfully combined methods of statistical learning—
including random forests, feedforward and convolutional neural
networks—with conventional image processing techniques
for segmentation, classification and object detection tasks, see
e.g., Furat et al. (2018), Neumann et al. (2019), and Petrich
et al. (2017). This shows the flexibility of the approach of
combining conventional image processing with machine
learning techniques, where the latter can be used either for
preprocessing image data to increase the performance of
conventional image processing algorithms or for postprocessing
segmentations obtained by conventional means in order to
improve segmentation qualities.

Based on our experience from previous studies, we apply
similar techniques to the segmentation of time-resolved
tomographic image data of polycrystalline materials. More
precisely, the focus of the present paper is on data of an
AlCu alloy that was repeatedly imaged by X-ray computed
tomography (CT) following periods of Ostwald ripening. In
order to investigate the relationship between grain geometry and
functional properties, the study of grain boundary movement—
caused by the growth of grains during the ripening process—is of
particular interest (Werz et al., 2014). Therefore, it is necessary
to segment the CT image data into single grains. Due to the poor
visibility of grain boundaries at high volume fractions in CT

data (Werz et al., 2014), this task is demanding, especially when
targeted using conventional image processing approaches.

Consequently, we will utilize convolutional neural networks,
in particular architectures based on the U-Net (Ronneberger
et al., 2015), for enhancing and predicting grain boundaries from
CT data obtained after several ripening steps. More precisely,
we use single- and multichannel U-Nets which receive 2D input
and can be applied slice-by-slice to image stacks. Additionally,
we trained a 3D U-Net which can evaluate volumetric data at
a lower resolution, due to higher memory consumption. For
training the neural networks we use “ground truth” information
derived from 3D X-ray diffraction (3DXRD) microscopy, which
allows grains and their boundaries to be extracted from the
technique’s measurement of local crystallographic orientation.
The trained networks can then recover grain boundaries of
poor visibility in CT data reasonably well, without drawing on
additional 3DXRD information.

The rest of this paper is organized as follows. In section 2, we
give a short overview of some applications that combine machine
learning methods with conventional techniques of image
processing for the semantic segmentation and classification
of image data. Section 2.1 deals with the trinarization
of the microstructure of Ibuprofen tablets using random
forests and the watershed algorithm (Neumann et al., 2019).
Then, in section 2.2, particulate systems of minerals are
considered that are of interest in the mining industry. Here,
a feedforward neural network is used to refine particle-wise
segmentations obtained from the watershed algorithm (Furat
et al., 2018). The watershed algorithm and feedforward neural
networks are also combined in section 2.3. However, in
the latter case, the focus lies on the detection of particle
cracks in the 3D microstructure of lithium-ion batteries
(Petrich et al., 2017).

The main results of the present paper are given in section 3.
To begin with, in section 3.1, we describe the problem at hand
when considering CT image data of AlCu alloys. In section 3.2,
we utilize 3DXRDmicroscopy data to train three neural networks
to extract grain boundaries from CT image data: a 2D U-Net
for slice-by-slice evaluation, a multichannel 2D U-Net which
can process consecutive slices and a 3D U-Net which uses
full 3D information at a lower resolution. The grain boundary
predictions of these networks are then segmented into single
grains with conventional image processing tools (Spettl et al.,
2015). In section 3.3, we quantitatively compare the presented
methods by matching segmented grains to the “ground truth”
obtained by 3DXRD measurement. Then, in section 3.4 we
discuss how similar approaches can be utilized in other fields
in which “ground truth” measurements are not easily feasible.
Finally, section 4 concludes.

2. OVERVIEW OF PREVIOUS RESULTS

In this section, we give a short overview of different applications
in the field of materials science in which we successfully
combined methods of statistical learning, including random
forests, feedforward and convolutional neural networks with
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conventional image processing techniques for segmentation,
classification and object detection tasks.

2.1. Segmentation of Ibuprofen Tablets
In Neumann et al. (2019), a hybrid algorithm combining
machine learning techniques with conventional tools of image
analysis has been used to trinarize tomographic image data
representing the microstructure of Ibuprofen tablets, i.e., to
classify each voxel of the grayscale image as one of the three
phases the tablet consists of. These phases are microcrystalline
cellulose (MCC), Ibuprofen (API) and pores. In the following, we
describe the challenges of this particular trinarization problem
and briefly summarize the developed hybrid trinarization
algorithm. Moreover, we discuss to which extent it improves
the algorithms which are based either on machine learning
techniques or on conventional image analysis. For details, we
refer to Neumann et al. (2019).

A 2D slice of the 3D image data, which is obtained by
synchrotron tomography and represents the microstructure of
Ibuprofen tablets, is visualized in Figure 1. The image data
consists of cubic voxels with a side length of 0.438 µm, while
the resolution limit is at about 2 µm. Although there is a
good contrast between the three constituents of the tablets, it is
challenging to perform an algorithmic tinarization, mainly due
to the following two aspects. First, the grayscale values of some
voxels within MCC are in the same range as the grayscale values
of those voxels which belong clearly to API. Second, long thin
pores occur at the boundary of MCC particles, the corresponding
grayscale values of which are similar to the ones of API. These
two aspects suggest that in this application it is not reasonable to
rely only on thresholding of grayscale values in order to obtain a
physically coherent trinarization.

To deal with these challenges by means of machine learning,
a random forest algorithm is used, i.e., a classification algorithm
is considered which is based on a large number of randomized
decision trees (James et al., 2013). To train the random forest
algorithm, N voxels of a 2D slice of the image are manually
classified by visual inspection. On the same 2D slice, M different
filters are applied. Doing so, we obtain for each of the N
manually classified voxels, an (M+1)-dimensional feature vector.
It contains the original grayscale value of the voxel as well as
the M grayscale values after application of the M filters. The
random forest is trained to classify the voxels, i.e., to trinarize
the image, by means of these feature vectors. For this purpose,
Ilastik (Sommer et al., 2011) is used in combination with the
parallelized random forest implemented in the computer vision
library VIGRA. The results of the random forest algorithm
are visualized in Figure 1B. One can observe that it leads
to a satisfactorily well trinarization. Regarding the challenges
mentioned above, the random forest algorithm leads to a good
classification of MCC particles, even if an occurrence of API
inside them is suggested by small grayscale values. Moreover,
the long and thin pores at the boundary of MCC particles are
reflected well in the trinarized image, since the algorithm is
trained to detect such thin pores. However, this leads to wrongly
detected pore voxels at the boundary between MCC and API
when there is no indication for pores, neither by grayscale

values nor by physical reasons. This effect can be removed by
combining the random forest algorithm with a trinarization
which is based on conventional image analysis and using the
watershed algorithm.

The main idea of the watershed-based trinarization is as
follows. At first, the pore space is determined via global
thresholding. Here the threshold value is manually chosen by
visual inspection. In the second step, regions, in which the
deviation of grayscale values is relatively small, are determined by
the watershed algorithm (Beucher and Lantuéjoul, 1979; Meyer,
1994; Beare and Lehmann, 2006). Then, each of these regions
is either classified as API or MCC according to their average
grayscale values. The results of the watershed-based trinarization,
visualized in Figure 1, shows that this approach leads to an
appropriate trinarization, when only the grayscale values are
considered without any additional physical information about
the material. But, the random forest trinarization is significantly
better with respect to the detection of MCC particles and
long, thin pores. Nevertheless, the watershed-based trinarization
does not detect unrealistic pores at the boundary between API
and MCC. Thus, the information obtained by the watershed-
based trinarization can be used to further improve the random
forest trinarization.

In particular, each pore voxel v of the random forest
trinarization is relabeled as API voxel if the closest pore voxel
in the watershed-based trinarization has a distance of more than
8.76 µm and the closest voxel classified as API in the random
forest trinarization has a distance of at most 8.76 µm. The
latter condition is necessary since pores within MCC, which are
not detected by the watershed-based trinarization should not
be removed. The value of 8.76 µm is manually chosen and is
justified by visual inspection of the obtained result. A 2D slice of
the final trinarization is shown in Figure 1D. The combination
of the random forest trinarization with the watershed-based
trinarizationmeets the required challenges of classifying the three
constituents of Ibuprofen tablets. Based on the trinarized image, a
characterization of the 3D microstructure of Ibuprofen tablets is
performed bymeans of spatial statistics in Neumann et al. (2019).

2.2. Segmentation of Mineral Particle
Systems
In the previous section, we discussed how to combine tools of
conventional image processing withmachine learning techniques
to determine the material’s phases in tomographic image data.
However, in many applications a much finer segmentation is
required, e.g., for tomographic images of particle or grain systems
the segmentation has to correctly separate these objects from
the background and from each other. For such segmentation
problems, modified versions of the watershed algorithm, which
entail some sort of pre- or postprocessing of image data, often
yield good results (Roerdink and Meijster, 2000; Rowenhorst
et al., 2006b; Spettl et al., 2015; Kuchler et al., 2018). The
preprocessing steps are necessary to determine unique markers
for each particle or grain, from which the watershed algorithm
grows regions which lead to a segmentation of the image.
A carefully adjusted marker detection is required: If multiple
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FIGURE 1 | 2D slice of a cutout of the grayscale image (A) and the

corresponding results of the three different trinarization algorithms, namely the

trinarization by statistical learning (B), by the aid of a watershed algorithm (C),

and by a hybrid approach (D). In the trinarized images (B–D), black, dark gray

and bright gray indicate the pore space, API and MCC, respectively.

markers are determined in a single particle, the watershed
splits the particle into multiple fragments, see Figure 2B. This
issue is referred to as oversegmentation. On the other hand,
too few markers lead to a segmentation, in which multiple
particles are assigned to a single region. The marker detection is
especially difficult if the particles depicted in the image data have
irregular, for example elongated or plate-like, shapes. Therefore,
a postprocessing step is required to correct the mentioned issues,
e.g., by merging regions to overcome oversegmentation.

In Furat et al. (2018) X-ray microtomography (XMT) image
data of a mixture of particles was considered. These particles
comprise of ores and other minerals and have a size of about
100 µm, see Figure 2A. In order to analyze particle properties
from such image data, for example, the distributions of volume
or some shape characteristics, one needs to extract single particles
from image data via segmentation. However, the watershed
algorithm often fails for the considered data, since, for example,
elongated particles are segmented into multiple fragments.
In Furat et al. (2018) a postprocessing step was described
which utilizes machine learning techniques, more precisely a
feedforward neural network, to eliminate oversegmentation.

Therefore, an oversegmented image Iover of a tomographic
grayscale image I of the sample under consideration, was
represented by an undirected graph G = (V ,E), where each
vertex v ∈ V represents a region of the oversegmented image
Iover. Furthermore, the set E contains an edge e = (v1, v2)

between two vertices v1, v2 ∈ V if the corresponding regions are
adjacent in the oversegmented image Iover. The goal of the neural
network was the elimination of edges between adjacent regions
which belong to different particles, while preserving those which
lie in the same one. This lead to a reduced set of edges Ẽ ⊂ E.
A remaining edge (v1, v2) ∈ Ẽ indicated that the corresponding
adjacent regions should be merged in the oversegmented image.
For the neural network to decide whether to remove an edge
e ∈ E, it required input, in form of feature vectors xe ∈ R

p,
obtained from the original grayscale image I.

Among the components of the input vectors xe, local contrast
information was stored. More precisely, the absolute gradient
image of I was computed using Sobel operators, see Soille (2013).
For an edge e = (v1, v2) the voxels in the vicinity of the interface
between the two regions surrounding the vertices v1 and v2 were
considered for the computation of the first four moments of
the absolute gradient values in this local neighborhood. These
values were stored in the feature vector xe. Furthermore, xe was
appended with the relative frequencies of the histogram of the
local absolute gradient values. Analogously, local information of
the first four moments and relative frequencies of the histogram
of local grayscale values of the original image I were stored
in xe. Note that the previously described features of the vector
xe contain only local contrast information. Therefore, some
local geometry features were included in a similar manner.
By computing local curvatures, the first four moments and
histogram frequencies of curvatures were obtained in the vicinity
of the interface between v1 and v2. Another geometrical feature
which was considered, characterizes the shape of the interface
itself. More precisely, a principle component analysis (PCA) of
the voxels (Hastie et al., 2009), which form the interface between
the adjacent regions, was performed. The eigenvalues obtained
by the PCA were stored in the feature vector xe.

Then the classification problem was formulated as

f (xe) =
{

1, if v1, v2 belong to the same particle,
0, else,

(1)

for each edge e = (v1, v2) ∈ E. As a model for the classifier
f a feedforward network was chosen and the target values for
feature vectors xe were determined by manually segmenting a
small cut-out of the image data. The trained network f was then
used to classify which edges e should be removed, i.e., edges with
f (xe) = 0. Figure 2B depicts the initial graph, in which edges are
set between adjacent regions. After the edge reduction with the
neural network, regions connected by an edge ewith f (xe) = 1 get
merged, thus leading to a less oversegmented system of particles,
see Figure 2C.

2.3. Crack Detection in Lithium-Ion Cells
In sections 2.1 and 2.2, machine learning is applied to image
segmentation problems. In this section we present an approach
that goes one step further and employs similar techniques,
but instead of identifying individual particles, the relationship
between two particles is investigated, which allows to localize
regions of interest in electrodes of lithium-ion batteries.

Lithium-ion batteries are among the most commonly used
types of batteries since they combine several beneficial properties,
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FIGURE 2 | (A) 2D cut-out of tomographic image data of ore particles. (B) Oversegmented image obtained by the watershed transformation. Red lines are set

between adjacent regions. Note that some regions are adjacent in 3D but not in the visualized planar section. (C) Segmentation after a postprocessing step using a

neural network.

FIGURE 3 | Overview of the model development for the crack detection in lithium-ion batteries. Reprinted from Petrich et al. (2017), Figure 1, with permission from

Elsevier.

such as high energy density and low self-discharge. However, one
of their biggest disadvantages is their vulnerability to thermal
runaway caused, e.g., by overheating or overcharging, which can
lead to disastrous incidents like fires or even explosions. An active
research field deals with the design of lithium-ion batteries with
minimal risk of failure. It is known that during thermal runaway
the particles in the electrode material break (Finegan et al., 2016),
and the resulting increase in surface area intensifies the heat
generation (Jiang and Dahn, 2004; Geder et al., 2014). However,
many questions are still unanswered and an in-depth analysis
on how the microstructure of the electrodes affects the safety of
the battery requires information on the locations of the broken
particles in post-mortem cells.

For this purpose, in Petrich et al. (2017) a method is
presented that allows an automatic detection of particle cracks
in tomographic image data of lithium-ion batteries and thus
reduces the amount of manual labeling, which is tedious at

best or outright infeasible for large datasets. More precisely, a
commercial LiCoO2 cell was overcharged, which led to a thermal

runaway. The post-mortem sample was imaged in a lab-based

X-ray nano-CT system and to prepare the data for further

analysis it was denoised, binarized, and individual particles were

segmented. In Petrich et al. (2017), pairs of adjacent particles are

considered and categorized in one of the following classes.

• The particle pair belonged to the same particle in the real
microstructure, but it broke apart during the thermal runaway.
(BROKEN)

• The particle pair is actually a single particle in the tomographic
image, but it was split during the image preprocessing.
(PREPROCESSSEP)

• The particle pair consists of unrelated, separate particles,
i.e., a pair which is neither BROKEN nor PREPROCESSSEP.
(PARTICLESEP)
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The goal is to automatically classify pairs of particles with
methods from machine learning, which require hand-labeling
only for a small subset of the data. In the presented case, an
expert labeled 294 particle pairs. An important part of many
machine learning applications is to translate the problem at
hand to quantitative features. In order to facilitate this feature
engineering step, synthetic data was used, for which it is possible
to generate arbitrarily many particle pairs and their true class
labels. This means that the quality of several features on a
bigger artificial dataset (3693 instances) was investigated by
training many different classification models and evaluating their
performance. The best features were selected and a new model
was trained and tested on the hand-labeled dataset, which was
used for validation. An overview of the approach is visualized
in Figure 3.

For the simulated dataset, first, a system of individual pristine
particles was generated based on the stochastic microstructure
model introduced in Feinauer et al. (2015a) and Feinauer et al.
(2015b), then a certain percentage of particles were broken in
two parts as described in Petrich et al. (2017). The individual
particles were discretized in a single 3D image and the same
image preprocessing was performed as on the tomographic image
data. Because in each step—the particle creation, the breakage,
and the image preprocessing—the relationships of the particles
to their neighbors were tracked, it is possible to generate a list of
particle pairs and their true class label. This list was subsampled
such that there were the same number of instances for each class.

Based on this simulated dataset numerical features were
designed. For these, not only the individual particles were
considered, but also a combination of the two, which here means
the morphological closing (Soille, 2013) of the two particles.
Some features are straight forward, like the fraction of the
volume of the smaller particle to the volume of the larger one
or the volume of the combined particles divided by the sum
of the individual volumes. The same ratios were calculated for
the surface area. The next quantity is more complicated, but
also showed more predictive power. Here, for each voxel on
the boundary of the particles the distance to the other particle
is computed and the histogram of these values forms another
(multidimensional) feature.

As in section 2.2 for the classification a multilayer perceptron
(MLP), i.e., a feed-forward neural network with one hidden
layer, was chosen. For an introduction to MLPs and machine
learning in general, see Bishop (2006) and Hastie et al. (2009).
The input for the classifier was the standardization of the feature
vector described above. The sigmoid function is used for the
non-linear activation functions in the input and hidden layer,
and the softmax function for the output layer. The network
was trained with the quasi-Newton method L-BFGS (Nocedal
and Wright, 2006), which minimizes the cross-entropy loss with
L2 regularization. The hyperparameters (i.e., number of hidden
neurons and weight of the L2 regularization term) were tuned
with a 5-fold stratified cross-validation maximizing the accuracy.

With this setup two classifiers were built, one for the simulated
and one for the hand-labeled dataset. In each set 75% of the
instances were used to train the classifier and the rest to evaluate
its performance. The results for the simulated dataset (2769

samples for training, 924 for testing) are shown in Table 1.
The overall accuracy is 82.1%. The evaluation results for the
hand-labeled data (220 samples for training, 74 for testing) are
presented in Table 2. Here, the classifier achieved an accuracy
of 73.0%.

All in all, a good prediction performance is observed. It is not
surprising that the hand-labeled data is harder to classify than the
simulated dataset since especially the breakage algorithm gives
only an approximation to the real degraded microstructure of
the electrode of a lithium-ion battery. However, the similarity of
the results shows that it is a valid strategy to perform the feature
engineering on the simulated dataset. As it can be seen in Table 2,
the classifier mostly struggles with separating PREPROCESSSEP
and BROKEN classes, but this is hard, even for humans, as can
be seen in Figures 4B,C. Further examples of particle pairs with
their true and predicted classes are depicted in Figure 4.

3. SEGMENTATION OF TIME-RESOLVED
TOMOGRAPHIC IMAGE DATA

3.1. Description of the Problem
Tomographic image data of materials provides extensive
information regarding microstructure, from which the latter’s
influence on a given sample’s functional properties can be
assessed. However, in most applications, this type of analysis
becomes possible only after successful segmentation of the image
data. Moreover, for some materials it can be difficult to obtain
adequate CT data for analysis—for example, when the material is
comprised of phases covering a broad spectrum ofmass densities,
which can lead to beam-hardening artifacts. Other issues can
occur when a given specimen is homogeneous in density or
X-ray attenuation, which causes low contrast in the resulting
image data. The latter is a challenge in the case of polycrystalline
materials, for which the grain microstructure manifests itself

TABLE 1 | Performance metrics for the classifier based on the simulated test data.

Precision Recall F1 Support

BROKEN 0.859 0.893 0.876 308

PREPROCESSSEP 0.749 0.727 0.738 308

PARTICLESEP 0.852 0.844 0.848 308

Average/total 0.820 0.821 0.821 924

Reprinted from Petrich et al. (2017), Table 1, with permission from Elsevier.

TABLE 2 | Performance metrics for the classifier based on the hand-labeled test

data.

Precision Recall F1 Support

BROKEN 0.630 0.680 0.654 25

PREPROCESSSEP 0.600 0.625 0.612 24

PARTICLESEP 1.000 0.880 0.936 25

Average/total 0.745 0.730 0.736 74

Reprinted from Petrich et al. (2017), Table 2, with permission from Elsevier.
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FIGURE 4 | 2D slices of three misclassified (A–C) and three correctly classified (D–F) examples of particle pairs from the hand-labeled dataset with their true and

predicted class label. Reprinted from Petrich et al. (2017), Figure 11, with permission from Elsevier.

through heterogeneities in crystallographic orientation. The
interfaces between neighboring grains, which are called grain
boundaries, give rise to such small changes in X-ray attenuation
that the boundaries are invisible to standard (i.e., absorption-
contrast) CT measurements. Consequently, techniques
that exploit other grain-to-grain contrast mechanisms—
such as 3D electron backscatter diffraction (3DEBSD) or
3DXRD microscopy—must be utilized to image single-phase
polycrystalline materials (Rowenhorst et al., 2006a; Bhandari
et al., 2007; Schmidt et al., 2008; Poulsen, 2012).

Alternatively, if a particular material has a two-phase region
in which one phase decorates the grain boundaries of the other
phase, then it may be possible to map out the network of
grain boundaries directly using only CT. For example, in Werz
et al. (2014), tomographic measurements were performed on
an Al-5 wt.% Cu alloy at various stages of Ostwald ripening,
during which a liquid layer of a minority phase was present
between the grains of the solid majority phase. X-ray absorption
contrast arose from the higher concentration of Cu in the liquid
than in the solid phase; this contrast was easily visible in CT
reconstructions of the characterized volume, see Figure 5A. The
subsequent image analysis is described in Spettl et al. (2015),
in which modified conventional image processing techniques
were employed to perform a grain-wise segmentation of the
considered image data.

Although the liquid phase is responsible for making the
polycrystalline microstructure visible to X-ray tomography, the
liquid itself can interact strongly with the network of grain
boundaries, thereby exerting a non-negligible influence on
the equilibrium shape of grains or on the migration kinetics
of boundaries during Ostwald ripening. For this reason, we

FIGURE 5 | (A) Two-dimensional cross-section of a CT reconstruction of

Al-5 wt.% Cu with 7% (by volume) of liquid phase; the lighter gray pixels

correspond to liquid regions located mainly at the boundaries between solid

grains (darker gray pixels). (B) The corresponding output of a U-Net which was

trained with 2D cross sectional images.

consider the analysis of CT image data for an Al-5 wt.% Cu
alloy containing only 2% (by volume) of the liquid phase.
This sample was imaged a total of seven times by CT;
between each measurement the specimen experienced 10 min of
Ostwald ripening.

From here on, we refer to the resulting 3D images as
C0, . . . ,C6, see Figure 8 (left column). Note that the grain
boundaries become less distinct during the Ostwald ripening
process, which exacerbates the difficulty of segmenting individual
grains by standard image processing algorithms. Therefore, we
turn our attention to machine learning techniques, namely
convolutional neural networks (CNNs) (Goodfellow et al., 2016),
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FIGURE 6 | (A) Cross-section of C2 depicting the sample after 20 min of Ostwald ripening. These images will be used as training input for the CNN. The blue square

indicates the size of an 80× 80 cutout with respect to the original resolution of the CT data. After downsampling the data to the resolution of 240× 240× 420 voxels

an 80× 80 cutout has the relative size indicated by the red square. (B) Segmentation of the corresponding section obtained via 3DXRD microscopy. (C) Cross-section

of the extracted grain boundary image L2 from the 3DXRD data. The grain boundary images Lt will be used as target images for the input images Ct during training of

the CNN.

FIGURE 7 | Adapted 3D U-Net architecture (Ronneberger et al., 2015): Feature maps are represented by boxes, where the number of channels is indicated by the

number above the box. Blue arrows indicate convolutional layers with kernel size of 3× 3× 3 and ReLu activation functions. Red arrows describe max-pooling layers

of size 2× 2× 2. Up-convolutional layers of size are 2× 2× 2 indicated by green arrows. Merge layers are visualized by gray arrows. The layer (black arrow)

generating the output is a convolutional layer with kernel size 1× 1× 1 and a sigmoid activation function. The sizes of input, feature and output images during training

is given in the boxes. After training the network can receive arbitrarily sized images as input, provided their size in each direction is a multiple of 24 = 16.

to extract grain boundaries from the tomographic images
Ct . In contrast to the method described in section 2.2, in
which a neural network was used as a postprocessing step to
refine a segmentation, CNNs are employed in the present section
as a preprocessing step to enhance and predict grain boundaries.
Another key difference between the methods described here

and in sections 2.2 and 2.3 is that the present CNNs do not
require user-defined image features for their decision making,
but are able to determine their own features. More precisely, the
trainable parameters of a CNN are discrete kernels that can detect
(depending on the kernel size) local features via convolution
with input images. The aggregation of such local features allows
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FIGURE 8 | Cross-sections (slice 350) of the 3D CT input images (Left column). Corresponding sections of the output of the trained 3D U-Net (Middle column). Note

that the white circle surrounding the specimen was added in a separate image-processing step. Ground truth obtained by 3DXRD microscopy (Right column). First

row: Initial state of the sample (t = 0). Second row: Sample after three time steps. Third row: Sample after six time steps.

the detection of larger-scale features. Thus, CNNs are capable
of learning and incorporating multi-scale features into their
decision-making process.

3.2. Materials and Methods
Like every supervised machine learning technique, CNNs require
training data in form of pairs of input and desired target
images. In the context of the present paper, this means that
for each 3D image obtained by CT we require a corresponding
3D image in which the grain boundaries have already been
extracted. Such grain boundary images were obtained by an
additional image acquisition technique: at each imaging step t =
0, . . . , 6, in addition to CT measurements (Ct) the same sample
volume was characterized by 3DXRD microscopy. This paired

information will be used to train CNNs such that they are able to
predict grain boundaries from CT image data without additional
3DXRD imaging. Now, we provide additional details regarding
the nature of the data, the chosen CNN architectures and the
training procedure.

Both CT and 3DXRD measurements were carried out on Al-
5 wt. % Cu at beamline BL20XU of the synchrotron radiation
facility SPring-8. The sample had a cylindrical shape with a
diameter of 1.4 mm. Mounted on a rotating stage, it was
illuminated by a monochromatic X-ray beam with an energy
of 32-keV. We recorded both far-field and near-field diffraction
patterns on 2D detectors. Followed the reconstruction routine
described in Schmidt et al. (2008) and Schmidt (2014), the grain
morphology together with the crystallographic orientation of
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FIGURE 9 | First row: Output of the trained 2D U-Net for three different consecutive CT slices (from left to right). Second row: Output of the trained multichannel

U-Net for predicting the grain boundaries of the consecutive slices considered in the first row.

individual grains was mapped. Heat treatment of the sample
took place at 575◦C, at which temperature the microstructure
consisted of a mixture of solid and liquid phases according
to the Al-Cu phase diagram (Massalski, 1996). Under these
conditions, the sample undergoes slow but steady Ostwald
ripening. After an annealing time of 10 min, the sample was
cooled to room temperature and characterized by both CT and
3DXRD microscopy. In total, the specimen was held for 60 min
at 575◦C and mapped seven times. Due to small misalignments
that occurred each time the sample was removed from the X-ray
beamline for annealing, it was necessary to register sequential CT
and 3DXRDmeasurements according to the method described in
Dake et al. (2016).

Reconstruction and processing of the 3DXRD data yielded
the local crystallographic orientation, from which segmented
3D images of grains and thus grain boundary images Lt were
obtained (Schmidt, 2014), see Figures 6B,C. Since the state
of the specimen did not change between CT and 3DXRD
measurements, the images Lt derived from the latter depict the
true grain boundary systems of the corresponding reconstructed
CT images Ct , for each t = 0, · · · , 6. The CT images Ct had
a size of 960 × 960 × 1678 voxels, with cubic voxels of size
0.75µm.

Due to the registration step of CT and 3DXRDmeasurements

the grain boundaries visible in Ct are aligned with those of Lt
for each t = 0, · · · , 6. A cross-section of such a matching pair is
visualized in Figures 6A,C. As a consequence, we can formulate

the issue of detecting grain boundaries from CT images as a
regression problem. More precisely, we seek a function f with

f (Ct) ≈ Lt , (2)

for each 3D CT image Ct with values in the interval [0, 1] and
the corresponding binary grain boundary image Lt with values in
{0, 1}, with 1 indicating grain boundaries and 0 grain interiors.

As regressionmodels for the function f we use CNNs based on
the U-Net architecture. In recent years, this architecture has been
used successfully in several segmentation tasks, see Çiçek et al.
(2016) and Ronneberger et al. (2015). The U-Net uses several
max-pooling layers, which downsample the image data. Then,
even small kernels applied to downsampled data can detect large-
scale features—see Figure 7 for the architecture of the considered
U-Net with volumetric input. In order to inspect the capabilities
of the U-Net architecture, we used CT measurements of an Al-
5 wt% Cu sample having a liquid content of 7% (thus grain
boundaries with a good visibility) to train such a neural network
to handle two-dimensional input images. Figure 5 indicates that
this U-Net can predict the location of grain boundaries, even
when they are not visible in CT data. This visual inspection of
the results obtained for 2D input images motivates the use of a
U-Net for three-dimensional CT images of such materials with
the low liquid content of 2%, see Figure 8 (left column).

Now, we describe the architecture of the chosen 3D U-Net for
detecting grain boundaries in 3D data. A size of 3 × 3 × 3 for
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FIGURE 10 | (A) 2D slice through the 3D image L̂t obtained by preprocessing with the 3D U-Net. (B) Binarization of L̂t after applying a global threshold, followed by

morphological closing. (C) Initial grain-wise segmentation obtained by a marker-based watershed segmentation. (D) Final segmentation after postprocessing. (E)

Grain boundaries extracted from the segmentation in (D). (F) Grain boundaries obtained by 3DXRD microscopy.

FIGURE 11 | Boxplots visualizing the quartiles of errors of volumes (A) and barycenters (B) for the considered segmentation techniques.

the trainable kernels of the 3D U-Net depicted in Figure 7 was
chosen. The activation functions of the 3D U-Net’s hidden layers
are rectified linear unit (ReLU) functions (Glorot et al., 2011),
and for the output layer a sigmoid function was chosen, such
that the voxel values of output images are normalized to values
in the interval (0, 1). Due to memory limitations the training
could only be performed on cutouts from the images Ct and Lt

with a size of 80 × 80 × 80 voxels. Since these cutouts cover
relatively small volumes, see Figure 6A, they do not provide the
necessary size for learning large scale features with the 3D U-Net.
In order to remedy this, the CT image data was downsampled
from 960 × 960 × 1678 voxels to 240 × 240 × 420 voxels,
with some manageable loss of information. Analogously, we
upsampled the corresponding grain boundary images Lt , which
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FIGURE 12 | Quantitative analysis of the segmentation procedure based on the 3D U-Net: (A) Kernel density estimation (blue) of relative errors in grain volume. The

red curve is the density of relative errors in volume under the condition that the grain is completely visible in the cylindrical sampling window. (B) Kernel density

estimation (blue) of normalized errors in grain barycenter location. The red curve is the density of the normalized error in barycenter location under the condition that

the grain is completely visible in the cylindrical sampling window. (C) Kernel density estimation of relative errors in grain volume obtained by the segmentation

procedure for each measurement step t = 0, . . . , 6. (D) Kernel density estimation of normalized errors in grain barycenter location obtained by the segmentation

procedure for each measurement step t = 0, . . . , 6.

initially had a voxel size of 5 µm, to obtain the same voxel
and image size. For simplicity, we denote the resampled CT
and grain boundary images by Ct and Lt , respectively. Then,
training was performed on cutouts with 80 × 80 × 80 voxels,
which can represent larger grain boundary structures at this
scale after downsampling, see Figure 6A. The cutouts were taken
randomly from the images Ct and the corresponding sections
of the grain boundary images Lt . Note that, in contrast to the
U-Net architecture proposed in Ronneberger et al. (2015), we
padded the convoluted images of the CNN such that input and
output images have the same size. Thus, the network’s input is
not restricted to images with a size of 80 × 80 × 80 voxels, i.e.,
it can be applied to the entire scaled CT image stack (240 ×
240 × 420 voxels) after training. The only limitation is that the
number of voxels in each direction of the input images must
be a multiple of 24 = 16, which can be achieved by padding
the image stack. This constraint arises from the four 2 × 2 × 2
max-pooling layers—which downsample images—followed by
the four up-convolutional layers, see Figure 7. The number of
max-pooling layers, which we call the depth of the U-Net in
the following, can be increased such that the network can learn
features of a larger scale. Note that in this case, the numbers of

convolutional, up-convolutional and merge layers are adjusted
accordingly. Furthermore, we point out that the cutouts used
for training were taken from image data among all seven time
steps, but only from the first 200 slices of each image stack;
thus, the remaining 220 slices could be used for validation and
testing. In order to increase the efficiency of the available training
data, we utilized data augmentation (Goodfellow et al., 2016)—
i.e., during training, pairs of chosen input and corresponding
target cutouts were transformed randomly, yet pairwise in the
same manner, via rotations/reflections. In this way we increased
the number of available input-target pairs, and, additionally,
the predictions of the neural network became more stable with
respect to rotated images.

As cost function for the training procedure, we chose the
binary cross-entropy (negative log-likelihood) function, see
Goodfellow et al. (2016). The U-Net’s initial kernel weights were
drawn from a truncated normal distribution. Then, training of
the kernel parameters was performed with the Adam stochastic
gradient descent method (Kingma and Ba, 2015), using 50 epochs
with 300 steps per epoch and a batch size of 1. These training
hyperparameters were manually tuned, while the batch size of
1 was chosen due to memory limitations. The network was
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implemented using the Keras package in Python, see Chollet
(2015) and training was performed on a NVidia GeForce GTX
1080 graphics processing unit (GPU).

After the training procedure, we applied the CNN, denoted by
f , to each of the seven available CT images Ct on an Intel Core
i5-7600K CPU; that is, we computed predictions for the grain
boundary network, L̂t , from

L̂t = f (Ct), for each t = 0, . . . , 6. (3)

Figure 8 (middle column) visualizes the outputs L̂t of the
network in a cross-section (slice 350) that was not used for
training. Initial inspection indicates that the predictions of the
neural network become less reliable with increasing time or,
equivalently, with decreasing visibility of grain boundaries in the
CT data. Nevertheless, the predictions are, even for the final time
step, reasonably good.

Since the training and application of the 3D U-Net is coupled
with high memory usage, we reduced, as already mentioned, the
initial resolution of the CT data. Furthermore, Figure 5 indicates
that a 2D U-Net, which can be used at higher resolutions due

FIGURE 13 | (A) 2D cross-section of a CT image containing reconstruction

artifacts and (B) the corresponding prediction of the 3D U-Net.

to fewer memory requirements, is capable of detecting grain
boundaries from 2D slices—at least for grain boundaries with a
good visibility. Therefore, we trained a 2D U-Net using slices,
instead of volumetric cutouts. Since the 2D architecture requires
less memory than the 3D U-Net, for training we used patches
of size 256 × 256 × 1 voxels which were taken from the CT
images being downsampled to the resolution of 480 × 480 ×
839 voxels instead of 240 × 240 × 420 voxels. In order to
allow the 2D U-Net to learn features at a comparable scale as
the 3D U-Net, we increased the depth (as defined above) of
the 2D U-Net from 4 to 5. After training, the 2D U-Net has
been applied slice-by-slice to the seven image stacks, resulting
in volumetric grain boundary predictions. Because the 2D U-
Net evaluates consecutive slices independently, the network’s
output can lead to discontinuous grain boundary predictions,
see Figure 9. To overcome this, we used a 2D U-Net, which
was trained with 2D multichannel images with a size of 256 ×
256 × 11 voxels. More precisely, it was trained with sets of 11
consecutive CT slices and a ground truth slice corresponding to
the 6th input slice. This way, when predicting grain boundaries
in consecutive CT slices, the network receives overlapping and
correlated information which reduces the discontinuities in the
network’s output. In order to give the multichannel U-Net
additional information for its grain boundary predictions we
did not limit it to slice-by-slice predictions in one single axial
direction, namely top-to-bottom, of the image stacks. Thus, to
obtain the final grain boundary predictions of the multichannel
U-Net, the slice-by-slice predictions are computed in three
directions (top-to-bottom, left-to-right, front-to-back). For each
CT image stack, this results in three grain boundary predictions,
which are than averaged resulting in the final volumetric grain
boundary predictions.

As of now the procedures described above do not provide a
grain-wise segmentation. More precisely, the outputs of the U-
Net architectures are 3D images with voxel values in the interval
(0, 1). Therefore, the network predictions must be binarized
in order to localize the grain boundaries, which, however, do
not necessarily enclose grains completely. Therefore, additional

FIGURE 14 | Segmentation results obtained by a 3D U-Net that was trained only with CT/3DXRD data from time step t = 6. (A) Kernel density estimation (blue) of

relative errors in grain volume. The red curve is the density of relative errors in volume under the condition that the grain is completely visible in the cylindrical sampling

window. (B) Kernel density estimation of relative errors in grain volume obtained by the segmentation procedure for each time step t = 0, . . . , 6.
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image processing steps must be carried out in order to obtain a
full segmentation of individual grains.

To that end, we binarize the grain boundary predictions
(Figure 10A) of the networks L̂t with a manually determined
global threshold followed by morphological closing
(Figure 10B). The binarization is followed by a marker-based
watershed transformation (Figure 10C), which is performed
on the (inverted) Euclidean distance transform of the binary
images. In order to reduce oversegmentation in the image
obtained by the watershed transformation, a final postprocessing
step is carried out in which adjacent regions are merged if the
overlap between one region and the convex hull of the neighbor
is too large (Figure 10D). For more details on the marker
selection procedure for the watershed transformation or the
postprocessing step we refer the reader to Spettl et al. (2015).

In order to quantitatively compare segmentations of the
CT images C0, . . . ,C6 obtained by the 3D U-Net, 2D U-Net
and multichannel U-Net followed by the postprocessing steps
described above with segmentations derived from the 3DXRD
measurements, we first match grains among these segmentations.
More precisely, each grain GXRD ⊂ R

3 observed in a
segmentation obtained by 3DXRD microscopy is assigned to a
grain Gseg ⊂ R

3 in the corresponding segmentation of the CT
image data. We formulated this as a linear assignment problem
(Burkard et al., 2012), which minimizes the sum of the volumes
of the symmetric differences of matched grains

ν3(GXRD 1Gseg) = ν3(GXRD \ Gseg)+ ν3(Gseg \ GXRD), (4)

where ν3(·) denotes the volume and GXRD 1Gseg is the
symmetric difference given by

GXRD 1Gseg =
(

GXRD \ Gseg

)

∪
(

Gseg \ GXRD

)

. (5)

Thus, we will be able to quantitatively compare pairs of matched
grains (GXRD,Gseg) which, in turn, allows a comparison of the
presented methods.

3.3. Results
Even though the CNNs described in section 3.2 do not
provide grain-wise segmentation of CT data, they can
significantly enhance CT images such that conventional
image-processing techniques can be readily used to obtain a
grain-wise segmentation. By following the approach described in
Spettl et al. (2015), we obtained grain-wise segmentations of the
considered data set, despite its rather indistinct grain boundaries.
A visual comparison between grain boundaries extracted from
the segmentation utilizing a 3D U-Net and the true grain
boundaries obtained by 3DXRD microscopy indicates that the
segmentation is reasonably good, with some oversegmented
grains remaining, see Figures 10E,F. A more quantitative
comparison becomes available by the grain matching procedure
described in section 3.2, i.e., we will compute quantities to
measure how much grains segmented from CT deviate from
matched grains observed in the ground truth data. More

precisely, we determine for pairs of matched grains the relative
errors rV in grain volume given by

rV =
|ν3(GXRD)− ν3(Gseg)|

ν3(GXRD)
. (6)

Also, we computed errors rc in grain barycenter location
normalized by the volume-equivalent diameter of the grain
GXRD. These values are given by

rc =
‖c(GXRD)− c(Gseg)‖

3

√

6
π
ν3(GXRD)

, (7)

where ‖ · ‖ denotes the Euclidean norm and c(GXRD), c(Gseg)
are the barycenters of the grains GXRD and Gseg, respectively.
Figure 11 visualizes the quartiles of these relative errors in
grain characteristics for the segmentation procedures based
on the trained 3D U-Net, 2D U-Net and multichannel U-
Net. For reference, we also included results obtained by the
conventional segmentation procedure without applying neural
networks, which was conceptualized for grain boundaries with
good visibility and is described in Spettl et al. (2015). These
results indicate that the segmentation procedures based on
the U-Net architecture perform better then the conventional
method. Among the machine learning approaches, the slice-
by-slice approach with the 2D U-Net performs worst with a
median value for rV of 0.37. This could be explained by the
discontinuities of grain boundary predictions for consecutive
slices, see Figure 9. By enhancing the slice-by-slice approach with
the multichannel U-Net, we achieve a significant drop of this
error down to 0.21. The segmentation approach based on the 3D
U-Net performs best with a median error of 0.14, because it is
able to learn 3D features for characterizing the grain boundary
network embedded in the volumetric data.

Kernel density estimations (Botev et al., 2010) of the relative
errors for the 3DU-Net approach are visualized in Figures 12A,B
(blue curves). Furthermore, Figures 12C,D depict these densities
for each of the seven observed time steps t = 0, . . . , 6. Note that,
as expected, the errors show a tendency to grow with increasing
time step. In order to analyze possible edge effects, i.e., a reduced
segmentation quality for grains located at the boundary of the
cylindrical sampling window, we computed error densities only
for grains located in the interior of the sampling window, see
Figures 12A,B. The plots (red curves) indicate that, indeed, the
segmentation procedure based on the 3D U-Net works better for
interior grains. This effect can be explained by the information
that is missing for grains that are cut off by the boundary of the
sampling window.

3.4. Discussion
Although our procedures based on preprocessing with CNNs
followed by conventional image processing do not lead to
perfect grain segmentations, see Figure 12, especially the method
utilizing the 3D U-Net delivers relatively good results when
considering the nature of the available CT data. Furthermore,
the neural network is able to reduce local artifacts, like liquid
inclusions in the grain interiors, which cause small areas of high
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contrast far from grain boundaries, see Figure 8 (first row). Yet,
we warn that the predictions of the trained U-Net are prone
to error when there are large-scale image artifacts in the input
images, as illustrated in Figure 13. One possible way to reduce
the effect of such artifacts is to consider a modified architecture
of the 3D U-Net, with larger kernels or more pooling layers, such
that even larger features can be considered.

Nevertheless, without the machine learning approach, i.e.,
the preprocessing provided by the 3D U-Net, the segmentation
of CT data for later measurement time steps with poorly
visible grain boundaries is a complex and time-consuming
image processing problem. Still, in the presented procedure,
conventional image processing, i.e., binarization and the
watershed transform, was necessary to obtain a grainwise
segmentation of the considered data. Thus, the segmentation
techniques considered in sections 2 and 3 show the flexibility
of combining the watershed transform with machine learning
techniques either for pre- or postprocessing image data
for the purpose of segmenting tomographic image data of
functional materials.

Note that, in the 3D U-Net approach, there are some machine
learning techniques that could have been adopted to further
reduce the need for some of the subsequent image processing
steps. For example, the binarization step could be incorporated
into the network by using the Heaviside step function as
an activation function in the output layer. Morphological
operations, like the closing operation utilized in the procedure
above, could be implemented by additional convolutional layers
with non-trainable kernels followed by thresholding. In this way,
the necessary postprocessing steps will be considered during the
training procedure of the 3D U-Net. Alternatively, by describing
a segmentation with an affinity graph on the voxel grid, it is
possible to obtain segmented images as the final output of CNNs,
see Turaga et al. (2010). Note that such approaches require
cost functions which allow a quantitative comparison between
segmentations, see e.g., Briggman et al. (2009) and Liebscher
et al. (2015). Furthermore, we point out that there are techniques
for obtaining a grain-wise segmentation by fitting mathematical
tessellation models to tomographic image data using Bayesian
statistics and a Markov chain Monte Carlo approach, see Chiu
et al. (2013). In our case, such techniques could be applied
directly to tomographic or even to enhanced grain boundary
images obtained by the 3D U-Net.

Moreover, we note still another possible application of
machine learning methods for the analysis of CT image data. In
many applications, “ground truth”measurements are destructive,
which means that they can be carried out only for the final time
step of a sequence of measurements. This limits the available
training data for machine learning techniques.

We simulated such a scenario with our data by using
solely the CT image C6 and the 3DXRD data L6 of the
last measured time step to train an additional 3D U-Net.
Analogously to the procedure described in section 3.2, this
network was applied to the entire series of CT measurements.
The resulting grain boundary predictions were then segmented
using the same image processing steps as described in section 3.2.
Figure 14 indicates that the relative errors of grain volumes

are comparable to the errors made when considering every
time step during training, see Figure 12. This result suggests
that a “ground truth” measurement of only the final time
step would suffice for training in our scenario. Similarly,
machine learning approaches might be interesting for the
segmentation and analysis of time-resolved CT data in various
applications in which “ground truth” measurements cannot be
made during experiments, but only afterwards, in a destructive or
time-consuming manner.

4. CONCLUSIONS

We gave a short overview of some applications in the field of
materials science in which we successfully combined methods
of statistical learning, including random forests, feedforward
and convolutional neural networks with conventional image
processing techniques for segmentation, classification and object
detection tasks. More precisely, the methods of sections 2 and 3
utilize machine learning as either a pre- or postprocessing step
for the watershed transform to achieve phase-, particle- or grain-
wise segmentations of tomographic image data from various
functional materials—showing how flexible the approach of
combining the watershed transform with methods frommachine
learning is. In particular, we presented such an approach for
segmenting CT image data of an Al-5 wt.% Cu alloy with
very low volume fraction of liquid between grains. In total,
we considered seven CT measurements of the sample, between
which were interspersed Ostwald ripening steps. Especially
at later times, the aggregation of liquid leads to a decrease
in contrast of the image data, i.e., grain boundaries become
less distinct in the image data, which makes segmentation by
conventional image processing techniques quite difficult and
unreliable. Therefore, we employed matching grain boundary
images—which had been extracted from the same sample by
means of 3DXRD microscopy—as “ground truth” information
for training various CNNs: a 2D U-Net which can be applied
slice-by-slice to entire image stacks, a multichannel 2D U-Net
which considers multiple slices at once for grain boundary
prediction in a planar section of the image stack and, finally, a
3D U-Net which was trained with volumetric cutouts at a lower
resolution. After the training procedure, the U-Nets were able
to enhance the contrast at grain boundaries in the CT data.
Especially, the 3D U-Net successfully predicted the locations of
many grain boundaries that were either missing from the image
data or poorly visible. This shows that machine learning methods
can facilitate difficult image processing tasks, provided that
“ground truth” data is available, e.g., data obtained via additional
measurements or manual image labeling. Since the images output
by the convolutional neural networks were not themselves grain-
wise segmentations, we applied conventional image processing
algorithms to the outputs to obtain full segmentations at each
considered time step and for each presented method. These
were compared quantitatively with “ground truth” segmentations
extracted from 3DXRD measurements. The resulting relative
errors in grain volume and locations of grain centers of
mass indicated that the machine learning-based segmentation
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procedures worked reasonably well, particularly for grains that
were not cut off by the boundary of the observation window.
Finally, we trained an additional 3D U-Net only with CT and
3DXRD data obtained during the final time step. This simulated
the common scenario in which a “ground truth” measurement
can be performed only at the very end of an experiment. The
3D U-Net trained in this manner was applied as before to the
entire CT data set, followed by conventional image processing
steps, yielding grain segmentations. Quantitative comparison
of the latter to segmentations derived from 3DXRD data
indicated that the approach produced good results. Even though
a trained neural network does not make 3DXRD measurements
obsolete, the procedure presented here can potentially reduce
the amount of 3DXRD beam time that is needed for accurate
segmentation and microstructural analysis. Likewise, we believe
that a similar approach might be particularly beneficial whenever
nondestructive CT measurements can be carried out in situ, but
“ground truth” information can be acquired only by a destructive
measurement technique.
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Identifying local thickness information of fibrous or highly porous structures is challenging.

The analysis of tomography data calls for computationally fast, robust, and accurate

algorithms. This work systematically investigates systematic errors in the thickness

computation and the impact of observed deviations on the predicted mechanical

properties using a set of 16 model structures with varying ligament shape and solid

fraction. Strongly concave, cylindrical, and convex shaped ligaments organized in a

diamond structure are analyzed. The predicted macroscopic mechanical properties

represent a highly sensitive measure for systematic errors in the computed geometry.

Therefore, the quality of proposed correction methods is assessed via FEM beammodels

that can be automatically generated from the measured data and allow an efficient

prediction of the mechanical properties. The results show that low voxel resolutions can

lead to an overprediction of up to 30% in the Young’s modulus. A model scanned with

a resolution of 200 voxels per unit cell edge (8M voxels) reaches an accuracy of a few

percent. Analyzing models of this resolution with the Euclidean distance transformation

showed an underprediction of up to 20% for highly concave shapes whereas cylindrical

and slightly convex shapes are determined at high accuracy. For the Thickness algorithm,

the Young’s modulus and yield strength are overpredicted by up to 100% for highly

concave ligament shapes. A proposed Smallest Ellipse approach corrects the Thickness

data and reduces this error to 20%. It can be used as input for a further robust

correction of the Thickness data using an artificial neural network. This approach is highly

accurate with remnant errors in the predictedmechanical properties of only a few percent.

Furthermore, the data from the FEM beam models are compared to results from FEM

solid models providing deeper insights toward further developments on nodal corrections

for FEM beam models. As expected, the FEM beam models show an increasing

overprediction of the compliance with increasing solid fraction. As an unexpected result,

the mechanical strength can however be underpredicted or overpredicted, depending

on the ligament shape. Therefore, a nodal correction is needed that solves contradicting

tasks in terms of stiffness and strength.

Keywords: tomography, skeletonization, thickness correction, artificial neural network, nanoporous gold,

trabecular bone, foams, FEM beam model
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INTRODUCTION

Lacking a detailed morphological and topological description
of the microstructure, the structure-property relationship of
open-pore materials, such as metal foams, elastomeric foams, or
Nanoporous gold (NPG) is commonly described by the Gibson-
Ashby scaling law, in which the solid fraction is the most
important parameter characterizing the materials morphology
(Gibson and Ashby, 1997; Ashby et al., 2000). During the last two
decades, the morphological characterization and prediction of
mechanical properties of open-pore materials gained increasing
attention, thanks to the improving resolution of X-ray, FIB,
and TEM micro-/nanotomography instruments, complemented
by advancing image processing algorithms and computational
modeling techniques. Tomography and FEM simulations on
metal and elastomeric foams date back to Nieh et al. (1998),
Nieh et al. (2000), and Kinney et al. (2001). A very detailed
analysis of cell volume and strut length distributions, number
of faces per cell, junctions coordination number and the shape
of the most representative cells was carried out by Dillard et al.
(2005) based on a 3D quantitative image analysis of open-cell
nickel foams under tension and compression loading using X-
ray microtomography.

First studies based on NPG were conducted by Rösner et al.
(2007) using TEM on dealloyed gold leafs. Hu et al. (2016),
Mangipudi et al. (2016), and (Ziehmer et al., 2016) analyzed
NPG samples of larger volumes, obtained from focused ion

beam (FIB) sectioning and scanning electron microscope (SEM)
imaging. By these thorough works, a systematic analysis of

the NPG morphology in terms of ligament size distribution
and connectivity density has become possible for the first
time. Because the ligaments are of nanoscale dimension, these
investigations are all based on high-resolution SEM images for
which techniques for an automated image processing are an asset.
Hu et al. (2016) and Mangipudi et al. (2016) use the 3D Biggest
Sphere Thickness algorithm byHildebrand and Rüegsegger (1997)
for the estimating the ligament size distribution of 3D volumes.

For the geometrical description of the ligaments in a NPG
network, Pia and Delogu (2015) proposed a parabolic shape with
a square cross-section connected in cubic nodes. The parameters

for the parabolic shape and their statistical distribution were

manually determined from 2D SEM images. Badwe et al.
(2017) analyzed 2D SEM images using digital image analysis
to obtain ligament size histograms that were fit to the Weibull
distribution. To obtain the ligament size distribution, they
apply the skeletonization and distance map transformation each
onto the original binary SEM image, using the open-source
software ImageJ. The multiplication of these two results yields
the skeleton ascribed with the according diameter at each
skeleton-point. Consistent with the results of Rösner et al. (2007)
and Hu et al. (2016), the mean ligament distributions were
reported to be nearly self-similar for the examined ligament
sizes. Stuckner et al. (2017) present a Python package AQUAMI,
which automatically analyzes microstructural features from
micrographs. The approach is similar to the approach by Badwe
et al. (2017), which was independently published, but has no
need for manual calculation in ImageJ. The average diameter

and diameter distribution of the morphologies in each phase
is calculated using a medial axis transform and a distance
transform. McCue et al. (2018) use AQUAMI to data-mine
NPG 2D images of 28 published manuscripts, regarding mean
ligament diameter, length, and solid phase fraction. They point
out the difficulty and resulting systematic discrepancies when
comparing results gained by different measuring approaches,
ranging from manually measuring the thinnest part of the
ligament, to computational estimations. Furthermore, as a
minimum criterion for meaningful image analysis, they propose
to use images with a minimum resolution of at least 10 pixels per
ligament diameter, due to the otherwise reported errors.

In summary, two algorithms are found to be dominantly
used in literature to estimate the ligament size distribution: The
Thickness algorithm, which is able to analyze 3D volumes and
the Euclidean distance transformation (EDT), which is applied
for analyzing 2D SEM images by Badwe et al. (2017), Stuckner
et al. (2017), and McCue et al. (2018). It calculates at each point
of the structure the distance to the nearest background point.
The Thickness algorithm by Hildebrand and Rüegsegger (1997)
is implemented in image analysis programs, such as the open-
software program Fiji by Schindelin et al. (2012). It calculates the
local thickness at a point as the dimeter of the largest sphere,
which is completely inside the structure and which contains
the evaluated point. The mean thickness is calculated as the
volume weighted average of the local thickness. The algorithm
is commonly used to estimate the mean trabecular thickness of
trabecular bone (Day et al., 2000; Almhdie-Imjabber et al., 2014),
or other bone structures (Witkowska et al., 2014), because it is
a powerful and fast volume-based algorithm. In the context of
NPG the Thickness algorithm has been applied for analyzing 3D
tomography data or voxel models by Hu et al. (2016), Mangipudi
et al. (2016), Richert and Huber (2018), and Soyarslan et al.
(2018a,b).

By the definition of Hildebrand and Rüegsegger (1997), the
biggest sphere at a skeleton point pskel does not need to be
centered at this point. Liu et al. (2014) show for an object formed
by two overlapping disks of different scales that the Thickness
algorithm shows a bias toward the larger disk. They furthermore
show that an equivalently working Smallest Sphere approach
results in the same artifact, but in the opposite direction. The
authors propose the definition of the thickness of a point p as the
diameter of the maximum inscribed sphere whose circumference
is farthest from p. Furthermore, for the skeleton, the property
must be satisfied that the thickness at a skeleton point pskel is the
diameter of the biggest sphere centered at pskel. They introduced
also a star-line-based algorithm, where the thickness at an axial
voxel is defined as the minimum-intercept of a straight line with
the boundary. The minimum-intercept length measure is highly
robust under small random shifts of axial voxels. One drawback
of this thickness computation method lies in the increased
computation time needed, because interpolated intensity values
at multiple sample points have to be computed on individual star-
lines for each axial voxel. For more details and other thickness
approaches see also the literature cited by Liu et al. (2014).
The tendency to overpredict the thickness of structures was
also reported by Maier et al. (2017) for cartilage thickness,
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in comparison to other thickness estimation approaches. Such
an overprediction is unproblematic when studying the self-
similarity of structures, or when comparing mean values
or distributions. However, for the prediction of mechanical
properties using FEM, the correct diameter distribution along
the ligament axis is crucial. Richert and Huber (2018) showed
that the Thickness algorithm reaches its limits when being applied
to typical shapes of NPG ligaments, due to the strongly varying
diameter along the ligament axis. The resulting overestimation in
ligament radius up to 30% has a strong impact on the predicted
mechanical stiffness, which can deviate by a factor of more than
two. In their conclusions, Richert and Huber (2018) mentioned
the need for a correction method for tracing back an identified
ligament shape to the corresponding true geometry, which could
be based on inverse methods, such as optimization or machine
learning. This important finding has been ignored by Soyarslan
et al. (2018b) who used the diameter information as determined
from the Thickness algorithm in their beam-FE model, without
any local validation of the detected diameters or discussion of
possible consequences for their mechanical prediction.

Further literature research revealed that there exists also a
plugin in the open-software program Fiji of the 3D Euclidean
distance transformation (EDT) by Ollion et al. (2013), among
others, which seems to be unnoticed by groups working on the
analysis of 3D data. As this algorithm computes the distance from
a given voxel of the structure to the nearest background voxel,
the extracted axis-to-surface distance will have the tendency
to underpredict the ligament diameter for highly convex or
concave ligament shapes. The reason for this is that the smallest
distance is determined by the normal from the surface contour
to an axis point, which is smaller compared to the diameter
measured normal to the ligament axis. It his however unclear,
how large the deviations are for the typical geometries found
in open pore materials and how big their impact is on the
mechanical properties in comparison to the results from the
Thickness algorithm.

Motivated by these findings, this paper aims to lay a solid
basis for error estimation and thickness correction for the
different algorithms. The availability of a method for an accurate
characterization represents a key element for producing data sets
of high quality, consisting of pairs of structure information and
related mechanical properties. As demonstrated by Huber (2018)
for the topology term of the structure-property relationship, a
larger number of such patterns is needed for deriving a fairly
general representation using data mining and machine learning
approaches. This is particularly an issue when pooling data from
different sources, which make use of different algorithms.

Following a detailed investigation of the sources of over- and
underestimation in the computed thickness data, approaches
for the correction of data from the Thickness algorithm are
proposed: A Smallest Ellipse algorithm, which resides in between
the Biggest Sphere approach and the Smallest Sphere approach,
and an artificial neural network approach. Similarly, an artificial
neural network approach is proposed for the correction of data
from the Euclidean distance transformation. The results clearly
show that the artificial neural network is able to correct the over-
and underpredicted thickness dependent on the position of the

ligament axis. The drawback is that it is limited to the range
of ligament shapes used during training. Recommendations
are given in terms of generalization to asymmetric ligaments
as a requirement for applications to larger structures of
higher complexity.

METHODOLOGY

Previous analysis by Richert and Huber (2018) on actual NPG
tomography data produced by Hu et al. (2016) revealed a
diameter overestimation of the NPG structure by the Biggest
Sphere Thickness algorithm by Hildebrand and Rüegsegger
(1997), implemented in the open-source program Fiji by
Schindelin et al. (2012), in the Thickness Plugin by Dougherty and
Kunzelmann (2007). Richert and Huber (2018) mathematically
calculated the influence on the overestimated ligament diameters
on the mechanical stiffness for single parabolic ligaments,
showing an overestimation by up to a factor of 8. These
results clearly show the significance of the error to be expected
as function of the ligament geometry, but it is unclear how
strong this effect is reflected in the macroscopic properties of
a Representative Volume Element (RVE). It can be argued that
the macroscopic response of an interconnected structure could
be less sensitive to local deviations in the ligament geometries.
Furthermore, the amount and effect of possible underestimations
by the distance transformation need to be investigated. An
impression of the discrepancy between the two algorithms is
obtained by analyzing the tomography data of Hu et al. (2016),
shown in Figure 1. The Thickness (Th) and Euclidean distance
transformation (EDT) information are consistently evaluated
along the skeleton voxels. It can be seen that the determined
averages of 400 nm (Th) and 308 nm (EDT) deviate significantly.
It is therefore important to investigate each algorithm with

FIGURE 1 | Ligament diameter distribution of NPG tomography with

Thickness (Th) and Euclidean distance transformation (EDT) algorithm. The

histograms are normalized to an area of one and fitted with the Gaussian

distribution. Shifted distributions with average ligament diameter of 400 nm

(Th) and 308 nm (EDT ) are observed.
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respect to ligament shape and to propose correction methods,
where needed.

It should be noted that working with tomography data, several
crucial image-processing steps are necessary beforehand, such
as image noise filtering, brightness and contrast adjustment,
registration and segmentation. For the latter, it is necessary to
set a threshold value that decides if a voxel is attributed to
the solid or to the pore space and the proper choice of this
parameter is absolutely critical for all following steps. Commonly,
this parameter is calibrated via the relative density of thematerial,
which is independently measured. While this ensures that the
tomography reflects the relative density of thematerial in average,
this does not guarantee that local features are precisely detected.
In case of the NPG-epoxy composite tomography data produced
by Hu et al. (2016), specific settings in the FIB-SEM process made
the ligaments easily distinguishable without interfering with the
ligament network structure underneath the cross-section. In
this case, the segmentation in Fiji using a single value gray-
scale threshold for the image stack was thus applicable. An
image processing error of ±2% in volume fraction was found by
manually changing the image contrast, brightness and threshold
value for the segmentation process for that data set (Hu, 2017).

This study focuses on analyzing the influence of the Thickness
and EDT algorithm on NPG-like RVEs, which are based on
known geometries. Emphasis is placed on providing data of
sufficiently complex but well-defined 3D structures, for which
the exact diameter information is known in each position
along the ligament axis. To this end, ligaments with a smooth
parabolic-spherical ligament shape as suggested by Richert and
Huber (2018) are organized in a diamond structure. This
topology is frequently used for mechanical modeling of 3D
open pore materials (Nachtrab et al., 2011; Huber et al., 2014;
Roschning and Huber, 2016; Jiao and Huber, 2017a,b; Huber,
2018). In contrast to the conventional FEM approaches, which
are computational expensive, FEM beam models allow for
fast computation even for large plastic deformation, which
is a requirement for larger parameter studies of larger and
more realistic RVEs. The drawback of this method is the
underprediction of stiffness and strength, which needs to be
compensated via a correction of the nodal mass (Huber et al.,
2014; Roschning and Huber, 2016; Jiao and Huber, 2017b). An
attractive alternative for the numerical simulation of foam-like
materials is the Finite Cell Method (Parvizian et al., 2007; Düster
et al., 2008, 2017). Recently, Gnegel et al. (2019) applied this
approach for predicting the elastic-plastic deformation behavior
of pure and polymer coated NPG based on the tomography
data of Hu et al. (2016). In combination with experimental
macroscopic compression data, it was possible to determine the
elastic-plastic properties of the gold phase and of the polypyrrole
coating of a few nanometer thickness. This requires reducing the
explicitly modeled 3D structure to a sub-sample of the available
tomography dataset such that the model could be computed
in a reasonable time. Therefore, FEM beam models remain an
attractive candidate for computing larger models.

For the sake of a systematic in-depth comparison of all
methods under investigation, the geometries in this work are
limited to symmetric shapes. Altogether, 16 idealized model

geometries plus three additional validation geometries are
generated covering the relevant range of ligament shapes from
concave to convex. For each model geometry, a high-resolution
voxel representation serves as basis for testing various approaches
of thickness detection and correction. In addition to the
assessment of the error in the determined geometry, the effect
on the mechanical properties is computed for each structure
and correction method using the FEM beam modeling approach
developed in a series of previous works (Huber et al., 2014; Jiao
and Huber, 2017a; Huber, 2018; Richert and Huber, 2018).

Motivated by the reported differences between the skeleton
FEM beam model and the FEM solid model (Richert and Huber,
2018), FEM solid models are created via PCL scripting in MSC
Patran, complementing the reference FEM beam models. The
results will provide further insights into the differences between
FEM beam and FEM solid models for various ligament shapes
in terms of elastic and plastic deformation behavior. The results
are also relevant for the further development of nodal corrections
for more general ligament shapes as an extension to the simple
ball-and-stick geometries investigated by Jiao andHuber (2017b).

Figure 2 gives an overview of the workflow applied in the
following sections. Details on the individual approaches are
provided at the beginning of each section. To mimic the FEM
skeleton beam model building process from tomography data
by Richert and Huber (2018), the RVE geometry information
is scanned by a Python script with a defined voxel resolution.
The output is a voxelized tiff stack, which is needed as input
for the Skeletonize, AnalyzeSkeleton, Thickness and 3D Distance
Map Plugin evaluations in Fiji (Lee et al., 1994; Dougherty
and Kunzelmann, 2007; Arganda-Carreras et al., 2010; Ollion
et al., 2013). The whole procedure of building the FEM skeleton
beam model from tomography data is described in detail in the
Appendix of Richert and Huber (2018). The simulation of the
original FEM beam model vs. the FEM skeleton beam model
created with the Thickness information will reveal the impact of
the flawed diameter estimation on the mechanical behavior of the
ligament network. This allows us also to individually analyze the
errors originating from the voxel resolution, the skeletonization,
and the ligament discretization on the macroscopic
elastic-plastic response.

After the analysis of the influencing parameters with regard to
their effect on the geometry computation, the question arises, to
what extend the error of each algorithm could be reduced in the
aftermath. Concerning the Thickness algorithm we focus in this
work on two different correction approaches. Geometrically it is
clear why the Thickness algorithm overestimates the diameters of
strongly varying ligament shapes as found in NPG. This is why a
direct reconstruction approach is developed, opting for an ellipse
as the final scanning volume. This so-called Smallest Ellipse
(SE) algorithm resides in between the Biggest Sphere approach
and the Smallest Sphere approach and is therefore a promising
technique for efficiently balancing the thickness data between
over and underprediction. A second correction approach is based
on an artificial neural network (ANN), which efficiently allows
for a global mapping from the measured overpredicted to the
corrected ligament shapes. The ANN approach is also applied for
correcting data from the EDT algorithm.
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FIGURE 2 | Workflow of the geometry computation and FEM model creation.

1st step: Reference FEM solid model, voxelized image stack, and reference

FEM beam model are built. 2nd step: Skeletonization, Thickness estimation,

and Euclidean distance transformation are done in Fiji. 3rd step: FEM skeleton

beam models are built via python scripting with Thickness (Th), Euclidean

distance transformation (EDT), and corrected diameters using the Smallest

Ellipse (SE). 4th step: additional artificial neural network (ANN)

correction approach.

REFERENCE FEM MODELS AND THEIR
PROPERTIES

Reference Geometry of the Unit Cell
To study the effect of the overestimation in the thickness and
the quality of approaches for correction, 16 diamond unit cells
are generated. By shifting the diamond structure proposed by
Huber et al. (2014) by a quarter of a unit cell length in all three
coordinate directions (Soyarslan et al., 2017), four ligaments with
complete nodes at both ends are positioned in the center of the
RVE. These core ligaments are later analyzed with respect to their
thickness distribution by different algorithms, as they remain
unaffected by cuts at the boundary of the RVE.

In what follows, the investigation of the mechanical behavior
is limited to macroscopic compression, which is commonly used

in experiments (Jin et al., 2009; Huber et al., 2014; Hu et al.,
2016; Liu and Jin, 2017). The resulting macroscopic properties
are only valid for this loading direction. Due to the inherent
anisotropy in the diamond structure, the mechanical response
can be different for compression, tension, and shear. The
elastic properties though can be considered isotropic in tension
and compression, because elastic properties per definition
reflect small deformations. Furthermore, because of the perfect
symmetry of the unit cell in x, y, and z-direction, isotropy in these
directions is naturally given as long as the loading is consistently
either tension or compression. Thus, the stress-strain curve will
show perfect agreement for small strains, whereas with increasing
strain, the stress-strain curves for tensile loading tends to rise
faster compared to the curves for compression loading. Under
tensile loading, the ligaments tend to align in loading direction
(see Sun et al., 2013) and are able to bear higher loads compared
to compression loading, where the ligaments deform like an s-
shape due to bending (Huber et al., 2014). Therefore, the yield
strength is slightly larger in tension than in compression and
the difference is more pronounced for thin ligaments, because
they align more easily in tensile direction like fibers. These
mechanisms are demonstrated for two example structures G11

and G14 in Supplementary Section 2.3. For the scope of this
work it is sufficient to concentrate on compression, because
errors in the ligament geometry will be reflected similarly in all
mechanical properties and loading scenarios. In what follows,
we will investigate the errors in the thickness determination
depending on the algorithm that is used and their correction.
To this end, we use diamond structure consisting of identical
ligaments with well-known geometry. Because of this replication,
the macroscopic behavior of the structure gives an indication
about the response of a single ligament that is part of a more
complex network.

Variable ligament shapes are incorporated in form of a
continuous parabolic-spherical shape introduced by Richert
and Huber (2018), see Figure 10 therein. To incorporate also
asymmetric ligament shapes observed by Richert and Huber
(2018), the ends are defined by two different radii rend,l and
rend,r for the left and right junction, respectively. The resulting
gradient along the ligament with length l is included in Equation
(1) through the parameter b. The locations xQ,l and xQ,r
at which the parabolic shape transitions into the spherical
parts of the ligament, are determined iteratively such that a
smooth ligament with a tangential transition is achieved (see
Richert and Huber, 2018).

r (x) =















√

r2
end,l

− (l/2+ x)2 − l/2 ≤ x < xQ,l

ax2 + bx+ c xQ,l ≤ x ≤ xQ,r
√

r2
end,r

− (l/2− x)2 xQ,r < x ≤ l/2

(1)

The axial coordinate x has its origin in the mid of the ligament,
such that the ligament mid radius is given by rmid = c. For the in-
depth study of the thickness determination and correction as well
as their effect on the mechanical properties, the ligament shape is
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kept symmetric by setting b = 0. In this case, rend = rend,l = rend,r
and xQ,l = − xQ,r .

In what follows, the unit cell size aUC is set to 1, i.e., all
absolute lengths are given as fraction of the unit cell size. The
16 geometries are chosen to cover ratios of ligament mid to end
radius rmid/rend from 0.5 to 1.25 in increments of 0.25. This
is the relevant range of ligament shapes as identified from a
3D tomography of a NPG sample (Richert and Huber, 2018).
As the second geometry parameter, the end radius was varied
from rend = 0.1 to 0.175 in increments of 0.025. Through
the combination of these two parameters a large range of solid
fractions is covered that exceeds the typical range of NPG
samples from very low (ϕmin ≈ 0.1) to very large values
(ϕmax ≈ 0.5). Based on the two chosen parameters rmid and rend,
the parameter c in Equation (1) can be determined following
Richert and Huber (2018).

Reference FEM Solid and Beam Models
Reference FEM beam and solid models are generated for
all geometries defined in Table 1. A detailed description
of how the reference FEM beam is created is given in
Supplementary Section 1. The solid unit cells are built using
PCL scripting in MSC Patran 2017 and, after Boolean operation
on all ligament and junction volumes, are meshed in a single
meshing operation with C3D10 three dimensional 10-node
quadratic tetrahedron elements for (Abaqus, 2014). The number
of elements range from 9,445 to 38,279 for structures with lowest
(G11) and highest solid fraction (G44), respectively, with average
element sizes of 0.05. The solid fractions given in Table 1 are
obtained from the FEM solid model in Abaqus via the history
output VOL. Examples for themost filigree structures with rend =
0.1 are shown in Figure 3. Due to the small ligament diameter,
these structures will show the highest sensitivity with respect to
effects of voxel resolution, discretization, and the accuracy of the
algorithms applied to these data.

In addition to the solid models that serve as common
reference for all mechanical properties, FEM beam models with
20 beam elements per ligament of type B31 [two-node shear
flexible Timoshenko beams in space; (Abaqus, 2014)] are built
using the code developed by Huber (2018). The code is modified
for assigning a variable ligament shape to the beam elements in
dependence of their position relative to the mid of the ligaments.

For the mechanical properties, a Young’s modulus of Es = 80
GPa, a Poisson’s ratio of ν = 0.42, a yield strength of σy,s =

500 MPa, and a work-hardening rate of ET = 1,000 MPa are
chosen. These parameters represent the mechanical behavior of
the ligaments in NPG reasonably well (Huber et al., 2014; Hu
et al., 2016; Roschning and Huber, 2016; Huber, 2018).

The translation of the ligament shape given in Equation
(1) for a single ligament into a physical meaningful radius
distribution for the interconnected structure is described in detail
in Supplementary Section 2. Through the intersection of three
convex ligaments, the actual size of the nodal mass increases
to the value R, which is defined by the triple point—the point
where the surfaces of three ligaments intersect. This surface
point is closest to the center of the nodal mass. Therefore, all
reference FEM beam models are based on the radius for the
biggest sphere R, that fits in the nodal area. The corresponding
radii are computed as distance from the center of the junction
to the surface in direction of the triple point, which is found
at an angle of 70.53◦ relative to the ligament axis. The value
R is assigned to all elements positioned between the ligament
end, which is the center of the nodal mass, to the axial position
of the triple point T. This approach avoids case sensitivity
and allows to compare the results from different models. All
geometric parameters for the structures defined in Table 1 are
provided in Supplementary Section 4, Supplementary Table 1.
Supplementary Figure 6A shows that there is only a moderate
effect in the macroscopic Young’s modulus. For most ligaments,
the stiffening is below 10%.However, for the yield strength shown
in Supplementary Figure 6B, the incorporation of R becomes
relevant for cylindrical and convex shaped ligaments, for which a
strength increase by up to 20% and 40%, respectively, is achieved.

Boundary Conditions
For a finite model size, the choice of the boundary conditions
can significantly influence the material response significantly.
Miehe and Koch (2002) showed for shearing of a composite
microstructure modeled with 2D solid elements that prescribed
displacement boundary conditions lead to a stiffer response
compared to periodic boundary conditions. Diebels and Steeb
(2002) showed that boundary layers of rotations form under
simple shear of a foam leading to a size effect. In this study,
we investigate the effect of errors in ligament geometry on
macroscopic properties and effects of boundary conditions
should be avoided. Therefore, the chosen boundary conditions
emulate an infinite periodic microstructure. Due to the perfect
symmetry of the diamond structure, all simulations can be based

TABLE 1 | Geometry parameters rmid and rend , describing the ligament shape, coding of the shapes from possible combinations and resulting solid fractions ϕ.

rmid/rend= 0.5 rmid/rend= 0.75 rmid/rend= 1.0 rmid/rend= 1.25

rend Geometry ϕ Geometry ϕ Geometry ϕ Geometry ϕ

0.100 G11 0.0816 G12 0.1252 G13 0.1784 G14 0.2421

0.125 G21 0.1232 G22 0.1825 G23 0.2635 G24 0.3661

0.150 G31 0.1736 G32 0.2524 G33 0.3574 G34 0.4871

0.175 G41 0.2342 G42 0.3202 G43 0.4565 G44 0.6131

Two digits numbering the row and column in this table are used for coding the geometry.
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FIGURE 3 | Plots of Equation (1) together with images of unit cells generated for the most filigree structures with rend= 0.1: (A) Geometry G11, rmid/rend= 0.5; (B)

Geometry G14, rmid/rend= 1.25.

on one unit cell with prescribed displacement and rotation
boundary conditions, for details see Supplementary Section 1.2.
For the FEM beammodel, this approach is equivalent to periodic
boundary conditions, while it significantly simplifies the meshing
of a 3D FEM solid model.

The displacement boundary conditions impose the known

deformation behavior of the structure on all surface nodes using
∗EQUATION in Abaqus. To this end, nodes on planes x = 0,
y = 0, and z = 0 are set to zero displacement normal to the
corresponding plane. Nodes in the planes at coordinate x = 1,
y = 1, and z = 1 are set to remain in a plane that is controlled by
a dummy node. All nodes on the mid planes are forced to move
half the displacement of the corresponding nodes in the plane at
coordinate 1. Finally, in the beammodels, all rotational degrees of
freedom are set to zero for all surface nodes. As no displacement
boundary conditions are applied to the five internal junction
nodes within the RVE, these nodes are allowed tomove and rotate
without any constraint. Nevertheless, they behave identically
to the nodes at the boundaries, which have their rotational
degrees of freedom fixed, and accomplish a full periodicity
of the stress and deformation field results. This indicated the
correctness of the chosen boundary conditions being equivalent
to periodic boundary conditions. More details are given in
Supplementary Section 1.2 (see Supplementary Figures 2, 3).

For elastic computations, a compression strain of 1% is
applied on the dummy node of plane z = 1; for predicting elastic-
plastic stress-strain behavior, the structure is compressed by 20%
strain using large deformation theory (NLGEOM) with a start
increment of 0.001. The Young’s modulus is always determined
from the first loading increment.

For geometries G11 and G14 (rend = 0.1, rmid/rend = 0.5
and rmid/rend = 1.25, respectively), a size study with RVEs of

increasing model size confirmed that the chosen displacement
boundary conditions yield results identical to periodic boundary
conditions, both being independent of the model size. The
results are presented in Supplementary Section 1.2. As shown
in Supplementary Figure 3, the computations with simple
symmetry conditions, as used e.g., by Huber et al. (2014),
asymptotically approach this value with increasing model size
(see also the size study in the Appendix of Huber, 2018). For
applying the displacement boundary conditions in the solid
model, a search tolerance of 1% of the unit cell allows collecting
enough FE nodes, which are sufficiently close to the position of
the corresponding surface nodes of the FEM beam model.

Figure 4 shows contour plots for the corresponding FEM
solid and beam models at a deformation in the elastic-plastic
transition. Elements exceeding the yield stress of 500 MPa are
colored in gray. They represent the distribution of the plastic
zones, which are in good agreement for the solid model and the
corresponding beam model for the convex ligament shape G14,
as can be seen from Figures 4C,D. However, for structure G11

with concave ligaments shown in Figure 4A, the plastic zones
are organized in the FEM solid model along the tension and
compression side in the thin regions of the ligaments and cross
the junction volume in the middle into the neighboring ligament.
Due to the kinematics implemented in the FE beam elements,
the FEM beam model in Figure 4B cannot capture this complex
deformation and localizes the plastic strains in elements in the
transition region from the ligament to the nodal mass.

Reference Macroscopic Mechanical
Properties
In the following section, the results obtained from the FEM
beam model and the FEM solid model are presented for
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FIGURE 4 | Localization of plastic yield (elements in gray color) during loading after entering the plastic regime for (A) solid model of structure G11; (B) beam model

structure G11; (C) solid model of structure G14; (D) beam model of structure G14.

the reference geometries defined in Table 1. This serves
two goals. The first goal is to precisely determine the
differences between the macroscopic properties of the FEM
beam model relative to the FEM solid model of the very
same geometry for all ligament geometries. For all further
investigations, the FEM beam models serve as reference for
the FEM skeleton beam models derived from the voxel
models. This allows to clearly separate potential effects from
different sources, such as the different behavior of FEM
beam and solid models, the thickness algorithms (section
FEM Skeleton Beam Models), and the quality assessment
of the developed correction methods (section Methods for
Thickness Correction).

The macroscopic properties Young’s modulus E and the
yield strength σy are derived from engineering stress and
strain measures (see Supplementary Section 1.2, subsection
Macroscopic Evaluation). Complete sets of the resulting
mechanical properties for the structures defined in Table 1 are
provided in form of absolute values in Supplementary Section 4,
Supplementary Tables 2–4. An overview of the macroscopic
mechanical properties predicted by the reference FEM beam

model (E(ref ), σ
(ref )
y ) normalized to the corresponding values of

the reference FEM solid model (E, σy) is given in Figure 5. The
shaded regions indicate solid fractions that are out of the range
of NPG (Liu and Jin, 2017; Soyarslan et al., 2018a). It should
be noted that a direct comparison with NPG samples via the
solid fraction is not possible, because a significant percentage of
solid fraction can exist in form of dangling ligaments, whereas
our diamond structure is fully connected. Therefore, the larger
range of solid fractions in this theoretical work can be useful for
covering the relevant ligament shapes determined by Richert and
Huber (2018).

Figure 5A confirms that the FEM beam model generally
underpredicts the macroscopic Young’s modulus relative to the
solid model, which is due to the well-known effect from increased
lever length (Huber et al., 2014; Roschning and Huber, 2016).
The FEM beam model is more compliant compared to the solid
model, because the full distance from the mid of the element to
the ligament end, i.e., the half ligament length l/2, is available for
bending deformation, independent of the ligament thickness. In
contrast to this, the nodal mass in the solid model reduces the
lever length available for bending of the ligament depending on
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FIGURE 5 | Overview for predicted macroscopic properties from reference FEM beam models normalized to the results from the referenced FEM solid models:

(A) Macroscopic Young’s modulus; (B) Macroscopic yield strength at 1% plastic strain.

the size of the nodal mass relative to the ligament radius. The
node is stiffened-up and deformation is moved into the transition
zone from the ligament to the nodal mass. For more details, we
refer to Huber et al. (2014) and Roschning andHuber (2016). Jiao
and Huber (2017b) carried out a study on the effect of the nodal
mass for a ball-and-stick model and suggested a nodal corrected
beam model to compensate for the softening in the beam model
by adjusting the radii and the Young’s modulus of the elements
in the nodal region.

There is a clear trend toward the stiffness of the solid model
for decreasing ratio rmid/rend, which goes along with a decreasing
solid fraction. This means that the more concave the ligament
is, the closer the macroscopic mechanical stiffness is to that of
the FEM solid model. Therefore, concave ligaments require less
nodal correction to raise the stiffness by about 30% (rmid/rend =
0.5) or 80% (rmid/rend = 0.75), while cylindrical and convex
ligaments require an additional stiffening by more than a factor
of 2. This disproves an application of a single “stiffness intensity
factor” as proposed by Soyarslan et al. (2018b) independent of the
local ligament shape and solid fraction ϕ.

In contrast to the elastic behavior, the effect in themacroscopic

strength, computed at 1% plastic strain, depends strongly on
the specific ligament shape (see Figure 5B). In average, the yield
strength predicted by the FEM beammodel is comparable to that
of the FEM solid model. However, for specific ligament shapes
the ratio of the yield strength ranges from 0.6 to 1.6. An example
is shown in Figures 4A,B. From the contour plots for both types
of models it can be deduced that for concave ligament shapes, the
plastic zone in the FEM solid model, Figure 4A, is distributed
over a larger volume extending from one ligament via the nodal
mass into the neighbor ligament. In contrast to this, for the
FEM beam model shown in Figure 4B, the plastic deformation
localizes in elements located in the transition zone from the
ligament to the nodal mass. Therefore, the levers and resulting

bending moments causing plastic deformation are longer in the
solidmodel, effectively reducing itsmechanical strength. This can
explain the unexpected high strength of the FEM beammodel for
specific geometries.

Based on the good agreement of the yield strength averaged
over all geometries, one could argue that a structure that
contains a large range of ligament shapes does not require a
nodal correction for the mechanical strength. This surprising
result has important consequences for the interpretation of
stress-strain curves predicted from FEM beam models derived
from skeletonized structural data, because the elastic and plastic
properties need to be treated differently.

FEM SKELETON BEAM MODELS

The FEM skeleton beam model building approach of Richert
and Huber (2018) is based on tomography data sets of real
NPG provided by Hu et al. (2016). The common problem for
this and similar works (Mangipudi et al., 2016; Soyarslan et al.,
2018b) is that the desired thickness information normal to the
ligament axis is not easily available. The 16 model geometries,
defined in section Reference Geometry of the Unit Cell, enable
us to systematically study the different sources of over- and
underprediction and to qualify proposed correction methods.
Furthermore, the sensitivity with respect to the voxel resolution,
the skeletonization, and the discretization of the ligaments
is studied.

RVE Size and Voxelization
To mimic the procedure according to the analysis of tomography
data, a Python script is used to scan the reference RVEs for given
ligament geometries. This scan produces a black (pore) and white
(gold) tiff-stack in the chosen voxel resolution. Details on the
tomography of the FEM beam models via parallel processing
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are provided in Supplementary Section 3. The tiff files of the 16
model geometries are available for download as the Data Sheet
2.zip folder of the Supplementary Material. Details of the files
are provided in Supplementary Section 5. The code is validated
using the open visualization tool Ovito by Stukowski (2010)
confirming that the solid fraction of the voxelized model is below
1% error. To avoid boundary issues during the skeletonization
and thickness analysis, as discussed by Richert and Huber (2018),
a larger RVE of size 3 × 3 × 3 unit cells is used, similar to
Soyarslan et al. (2018b). However, for the voxelization, the scan-
box edge length around the mid-point is limited to 1.5 times of
the unit cell size aUC, so that on all sides exactly one additional
ligament (0.25 of one unit cell) is connected to the center unit cell.
The skeletonization is carried out on the resulting RVE of size 1.5
in the open-source software Fiji (Schindelin et al., 2012) with the
BoneJ Plugin (Doube et al., 2010) Skeletonize 3D based on the
thinning algorithm by Lee et al. (1994). The diameter estimation
is carried out with the BoneJ Plugin Thickness (Dougherty and
Kunzelmann, 2007) based on the Biggest Sphere algorithm by
Hildebrand and Rüegsegger (1997) and the 3D Mathematical
Morphology (TANGO) Plugin operation 3D Distance Transform
by Ollion et al. (2013). The skeleton forms the beam element axis
and the thickness data is used to calculate the section radii of the
beam elements. For the FEM skeleton beammodel building, only
the data within the volume of the center unit cell is used. For
further details about the procedure (see the Appendix of Richert
and Huber, 2018).

The geometry G11 with the smallest diameter was chosen to

determine the accuracy as function of the voxel resolution. This
most filigree structure with rend = 0.1 and rmid/rend = 0.5 is
shown in Figure 6A. Due to the small ligament diameter, it has
the highest sensitivity with respect to effects of voxel resolution
and beam discretization. The structure was scanned with 60,
100, 200, and 300 voxels per unit cell edge length Nv/aUC
(see Figure 6), yielding volume fractions of 9.2, 9.4, 8.0, 7.9%,
showing a dependence on the voxel resolution. With the unit
cell edge length aUC = 1, one voxel has an edge length of 1/60
(0.0167), 1/100 (0.01), 1/200 (0.005), and 1/300 (0.0033) for
the different resolutions, respectively. The smallest radius of
the structure is 0.05 in the middle of the ligament. With the

lowest resolution of 60 voxels per unit cell edge length, this
results in only three voxels making up the ligament radius.
With the resolution of 100 voxels shown in Figure 6B, the
proposed minimum quality of 10 voxels per ligament diameter
proposed by McCue et al. (2018) is met. The unsatisfying quality
of the 60 voxels resolution leads to steps in the beam diameters
and an uneven replication of the ligament profile, as visible in
Figure 6A. As a consequence, local narrow neckings are averaged
out, which leads to a stiffening of the mechanical response. In
contrast, the 200 and 300 voxels resolutions show a satisfying
quality of the surface (see Figures 6C,D).

Skeletonization and Beam Discretization
When analyzing the effect of the different voxel resolutions on
the mechanical behavior of the FEM skeleton beam models, the
skeletonization, and originating from that, the discretization of
the beam elements are further sources of errors. The skeleton
of the structure is the one-voxel-wide centerline. It is achieved
by surface thinning, as implemented in Fiji. Richert and Huber
(2018) discuss different discretization approaches, where the
most accurate approach appears to be to construct the beam axis
as the connection between the centers of neighboring voxels (1
V/E). However, due to the discrete cubic size of a voxel, this can
lead to harsh direction changes of up to 90◦ between two beam
elements (zigzag). Especially for curved ligaments, as found in
actual NPG tomography data, this has a great effect. This zigzag
skeleton path results in a more compliant mechanical behavior,
as shown by Richert and Huber (2018). The other approach is
to average over a certain number of voxels. An approach of on
average five voxels was tested by Richert and Huber (2018). This
solves the issue with the skeleton zigzag on the one hand, but
results in a lower number of beam elements per ligament on the
other hand and, due to this, the ligament shape may be badly
represented. Neckings are averaged out and the macroscopic
stiffness and strength is probably overestimated. This is a similar
effect as if using a low voxel resolution.

A new approach is introduced in this paper, were the skeleton
voxels are fit by a Bezier function. This results in a smooth
line, with the start- and end-node being fixed in their position.
The Bezier fit is not forced to go exactly through the individual

FIGURE 6 | Zoom into center-junction region of most slender geometry G11 scanned with four different voxel resolutions of (A) 60 voxels; (B) 100 voxels; (C) 200

voxels; (D) 300 voxels per unit cell edge length Nv/aUC.
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FIGURE 7 | FEM beam models of concave ligament geometry G11: (A) reference FEM beam model; FEM skeleton beam models based on Thickness data with voxel

resolution and discretization of (B) 60V and 1 V/E; (C) 200V and 1 V/E, (D) 200V and Bezier representation of the skeleton line.

FIGURE 8 | Macroscopic mechanical behavior of the FEM skeleton beam

models build from different voxel resolution scans using two different beam

element discretization approaches: one skeleton voxel per beam element (1

V/E); Bezier fit of the skeleton points and diameters with 20 elements per

ligament (Bez 20 E/L). The values are fit to a simple hyperbolic function

E (Th)= k
(Nv/aUC )

+E (Th)
∞ . The parameter E

(Th)
∞ approximates the values for an infinite

number of voxels Nv/aUC, being 590 and 580 MPa for Bezier and 1 V/E

discretization, respectively. The percentage deviation from those values

is inscribed.

skeleton points of the ligament, so no overshoots arise, as is would
be the case for a spline fit. The Bezier approach has the additional
advantage that the desired number of equidistant beam elements
per ligament can be chosen in dependent of the length and
skeleton voxel number of the current ligament. For assuring
comparability with the reference FEM beam model, 20 two-node
shear flexible Timoshenko beam elements in space (B31) are used
(see section Reference FEM Solid and Beam Models). For the
boundary conditions (see section Boundary Conditions).

The models for the different discretization approaches based
on the Thickness data are shown in Figure 7. The diamond
structures analyzed in this paper have initially a straight ligament

axis (Figure 7A). By using the discretization of one voxel per
beam element (1 V/E) on a 60 voxels scanned structure, kinks
are clearly visible in Figure 7B as tilted elements. Also for the
200 voxels scan resolution, the 1 V/E discretization shows kinks
(see Figure 7C). This phenomenon is not avoidable due to the
discrete voxel size, shape and orientation of the ligaments in
space, even for the ideal geometries used in this work. This
problem is solved via the newly introduced Bezier fit, which
shows nicely aligned beam elements (see Figure 7D). Besides the
discretization issues, the diameter overestimation through the
Thickness algorithm is clearly visible in all three FEM skeleton
beam models (Figures 7B–D), when compared to the reference
geometry presented in Figure 7A.

The FEM skeleton beam model was built from the four
different voxel resolutions of the geometry G11 based on the
Thickness diameter estimation algorithms. Furthermore, the two
different discretization approaches with either each voxel being
represented by one beam element (1 V/E), or a Bezier fit (Bez
20 E/L) are applied to the skeleton and diameter data. The results
for the Young’s modulus are displayed in Figure 8. The values are

fit to a simple hyperbolic function E(Th) = k/(Nv/aUC) + E
(Th)
∞ ,

where the parameter E
(Th)
∞ approximates the Young’s modulus for

a model with infinite number of voxelsNv/aUC = ∞, as 590MPa
and 580 MPa for Bezier and 1 V/E discretization, respectively.
The percentage deviation from those values is inscribed. The
focus is here solely set on the effect of the voxel resolution and the

two different beam element discretizations. The deviations to the

reference beam model stemming from the diameter estimations

are addressed in sections Thickness Analysis and Effect on

Mechanical Properties.
Overall, the 1 VEmodels show slightly lower Young’s modulus

values than the Bezier models, and also lower deviations to
its asymptotic value of 580 MPa at Nv/aUC = ∞. As the
skeleton is straight in the reference geometry, the effect of
the increased compliance caused by the kinks in the ligament
axis with the 1 VE discretization is small. For the lowest
voxel resolution (60V) the stiffness is overpredicted by up to
43% while for higher resolution, the accuracy increases. The
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Young’s modulus of the models with a resolution of 200 voxels
shows around 10% remaining difference to the predicted value
at Nv/aUC = ∞. Further refinement slowly increases the
accuracy, but rapidly increases the computational time. Thus,
all further computations will use the voxel resolution of 200
voxels per unit cell edge length Nv/aUC with the Bezier fit to
ensure comparability to the reference structures created with
20 elements per ligament. The remaining uncertainty in the
prediction of the mechanical properties is up to 12% due

to the voxel resolution and beam element discretization. The

resulting voxel edge length of 1/200 (0.005) defines the achievable
accuracy limit for the geometrical characterization in the
following sections.

Thickness Analysis
This section discusses the geometry derived with the Thickness
algorithm (Th) and the Euclidean distance transformation (EDT)

from the voxel scan of the underlying reference geometries,

given in Table 1. Figure 9A shows the mean-radii
〈

r(.)
〉

obtained

from averaging over all 20 elements of a ligament normalized

by the mean-radius of the reference geometry
〈

r(ref )
〉

. It can

be seen that the deviation of
〈

r(.)
〉

/

〈

r(ref )
〉

increases with

increasing concavity, independent of the end radius rend and
algorithm used. For the Thickness algorithm, the largest value
of 1.2 is comparable to the results of Richert and Huber

(2018), where values up to 1.3 have been reported using the

mathematically exact ligament geometry as reference. It could

be argued that the deviation of 20% in the geometry is still

acceptable. However, as showed by Richert and Huber (2018),

this causes serious overpredictions in the mechanical stiffness

of the ligament by a factor of two. As expected, the data from

the EDT show an underprediction for increasing concavity, but

A B

C D

FIGURE 9 | Ratio of computed ligament radii: (A) Ratio of average radius
〈

r(.)
〉

/
〈

r(ref )
〉

; (B) Ratio of local radius r
(.)
end/r

(ref )
end ; (C) Ratio of local radius r

(.)
1/4l/r

(ref )
1/4l ; (D) Ratio of

local radius r
(.)
mid/r

(ref )
mid . The superscript (.) corresponds to Thickness (Th) or Euclidean distance transform (EDT ).
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the relative deviations are significantly smaller compared to
Thickness algorithm.

The advantage of the object-oriented-programming is that it
enables to locally analyze parameters of individual ligaments at
specific positions. Figures 9B–D show selected results for the
effect on the local thickness determined in the end, quarter, and
middle position of the ligament, respectively. From this series, the
strength and weaknesses of each algorithm can discussed. In the
overall comparison, the EDT algorithm is of superior accuracy.
At the mid and end position, where the tangent of the ligament
shape is flat, the diameter is determined with high accuracy.
Only in the transition from end to mid position, represented by
the quarter positions in Figure 9C, the expected underprediction
can be seen in the EDT data. In the worst case that represents
the largest diameter change, i.e., structure G41, the deviation
is−30%.

For the Thickness algorithm, the local overestimation of the
rmid value increasingly depends also on the absolute radius of the
ligament end, the more concave the ligament is. This is a result
of the following mechanism: The Thickness algorithm propagates
the sizes of the nodal region into the ligament region. Firstly,
all skeleton points inside the nodal sphere are assigned with this
value Rnode ≥ rend, forming a nodal plateau of constant radius.
Secondly, from there the ligament shape assumes a smooth
transition from Rnode to rmid. However, in the extreme case of
a very thick ligament, the two nodal spheres can even overlap in
the mid position of the ligament. This would lead to an extension
of the plateau over the whole ligament length. Due to this, the

determined radius in the mid-point r
(Th)
mid

can take all possible

values from r
(ref )

mid
to Rnode.

In the following, we will investigate the impact
of the determined geometries on the macroscopic
mechanical properties. The question will be addressed

in how far the averaged data or the local effects in the
geometrical characterization are relevant in terms of the
mechanical behavior.

Effect on Mechanical Properties
In section Thickness Analysis, the deviations for the average
and local thicknesses are determined for the 16 reference RVEs.
Because the diameter enters the moment of inertia by a power
of four in the stiffness calculation, the overestimation of the
Young’s modulus and yield strength is expected to be even
higher. To quantify this effect, 16 FEM skeleton beammodels are
built from the 200 voxel resolution scans (section RVE Size and
Voxelization), with a Bezier curve fit to the skeleton axis (section
Skeletonization and Beam Discretization). In Figures 10A,B,
the macroscopic Young’s modulus E and the yield strength σy,
respectively, obtained from the FEM skeleton beam model are
compared to the values from the corresponding reference FEM
beam model.

The factor of overestimation of the Young’s modulus for
the Thickness algorithm, presented in Figure 10A, is similar
for structures with same ratio rmid/rend, independent of the
absolute rend value. Strongly concave structures show the highest
deviations by up to a factor of 2. Tending toward cylindrical and
convex structures, the deviation decreases to a factor of 1.2. The
trend in the yield strength data in Figure 10B is similar, showing
highest overestimations at strongly concave ligaments. With
decreasing concavity, the decay is however more emphasized.
Furthermore, stronger variations for different rend values are
observed, especially for the concave ligaments. There, smaller
rend values show higher overestimation, ranging from 1.68 to
2.15. The higher sensitivity of the yield strength is caused by the
circumstance that the onset of plastic deformation results from
the combination of weakest cross-section and applied bending

A B

FIGURE 10 | Results of the macroscopic mechanical properties for the FEM skeleton beam models based on the Thickness (Th) algorithm or Euclidean distance

transform (EDT), normalized to the results from the reference FEM beam models: (A) Young’s modulus E and (B) yield strength σy . The superscript (.) corresponds to

(Th) or (EDT ).
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moment, which again depends on the lever acting on this cross-
section. In contrast to this, the elastic deformations spread over
the whole ligaments and into the junction volumes and are
therefore less sensitive to the local geometry (Huber et al., 2014).

It should be noted that cylindrical and convex ligaments
show overall the lowest overestimation, which is still about 20%
for both macroscopic properties. This is astonishing, as one
might imagine that a cylindrical ligament should be perfectly
reproduced by the Thickness algorithm. However, this is only
true for a cylindrical ligament of infinite length. For the
interconnected structure, which contains junction volumes that
are larger than the cylindrical ligaments, the overestimation in
mechanical properties is due to the mechanism discussed in
section Thickness Analysis.

In line with the findings from the geometric analysis presented
in Figure 9, the predicted deviations in the macroscopic
mechanical properties for the EDT data are much smaller
compared those obtained for the Thickness algorithm. The results
can be considered accurate for cylindrical and convex shapes
while for concave shapes the stiffness and strength are reduced
up to 20%. If this is acceptable, the EDT can be used without
further correction. It should be noted that stronger concavities
or asymmetries as well as non-circular cross-sections can further
increase these deviations also for the EDT.

METHODS FOR THICKNESS CORRECTION

Due to the impact on the mechanical response, we present in
the following sections possible correction approaches for both
thickness algorithms. The high sensitivity of the mechanical
properties on the geometric characterization justifies to use the
predicted Young’s modulus and yield strength throughout these
sections as the relevant measure for the assessment of the quality
of each approach.

Smallest Ellipse Approach
Coming from the Biggest Sphere Thickness approach by
Hildebrand and Rüegsegger (1997), the idea is to compensate its
systematic trend of overestimation by the opposing equivalent,
which is the Smallest Sphere approach, discussed by Liu et al.
(2014). Between these two extremes, a Smallest Ellipse (SE)
approach can be considered, as schematically presented in
Figure 11. As input data, the coordinates of the medial axis
and the respective Thickness values are used. Each point x
along the axis located in a smallest ellipse inscribed into the

Thickness data r(Th), is assigned with the value of the ellipse
major axis as the radius r(SE). The ellipse allows to incorporate
some flexibility in the range of radius assignment near the point
under investigation. To this end, the linear eccentricity e of the
ellipse was determined independently of the geometries defined
in Table 1. Approximately 800 ligament geometries were created,
reproducing the range of ligament geometries detected by Richert
and Huber (2018), including asymmetric ligament shapes. A
linear eccentricity of e = 0.75 produced the lowest errors.

The obvious drawback of the proposed Smallest Ellipse
approach is that the minimum diameter of a ligament is bound
to the minimum Biggest Sphere Thickness value. This can be

FIGURE 11 | Schematic of the Thickness Biggest Sphere (Th, right half) and

Smallest Ellipse (SE, left half) approach sketched in an exemplary ligament

section with r(x). Each point x located in a Smallest Ellipse fitted to the

Thickness data r(Th), is assigned with the value of the major axis as the radius

r(SE). The linear eccentricity of the ellipse is fixed to e =0.75.

seen in Figure 11, where in the center of the ligament a gap
between the minimum radius of the original reference geometry
and the reconstructed radius remains. In the nodal areas, the
Biggest Sphere Thickness value represents the upper limit, which
is correctly reproduced. The algorithm is robust since it does
not require any assumption on a model function, parameter
bounds, and parameter start values and works for symmetric and
asymmetric ligament shapes.

The correction of the geometries via the Smallest Ellipse
approach lead to an overall improvement in the predicted
macroscopic mechanical properties (see Figure 12). The
previously observed overestimation from 1.2 to 2.0 based on the
Thickness data (see Figure 10A) is now reduced to an almost
constant value between 1.1 and 1.25, i.e., the concave ligaments
are most improved. As discussed before, the yield strength
shows some stronger sensitivity to the different ligament shape
parameters, while the overall improvement is comparable to
that of the Young’s modulus. In summary, the reconstruction
of the ligament shape with the simple Smallest Ellipse approach
represents a substantial improvement in comparison to the
Thickness data, although some geometrical inaccuracies remain
in the thinner region.

Artificial Neural Network Correction
Approach
In contrast to the Smallest Ellipse approach, which does not
require an assumption with regard to the ligament geometry,
computational methods, such as optimization strategies or
artificial neural networks can be applied for reconstruction of
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A B

FIGURE 12 | Results of Smallest Ellipse (SE) corrected FEM skeleton beam models normalized to the results from the reference FEM beam models: (A) Macroscopic

Young’s modulus; (B) Macroscopic yield strength at 1% plastic strain.

the original ligament shape. In our case, the ligament shape
is limited to symmetric-parabolic shapes, which in principle
allows applying both strategies in a straightforward manner.
Apart from the drawback of restricting the generality to a
certain class of ligament shapes included in the assumed model
function, this has the advantage of dealing with the ligament
as a whole dataset. Optimization strategies require parameter
bounds, parameter start values of the model function. They are
furthermore computationally demanding, because the parameter
identificationmust be carried out individually and independently
for each ligament. Therefore, we focus on the development of an
artificial neural network (ANN).

For details on the ANNs, we refer to Huber (2018)
and the literature cited there. For the training of the
ANN, the 16 symmetric ligament geometries are used,
defined in Table 1. Pattern files are written in the
following style: The input vector X consists according
to Equation (2) of the radii computed for all elements
along the ligament skeleton, normalized by their average,

in the form r(.)(xi)/
〈

r(.)
〉

, where (.) can be set to any

of the three algorithms, namely (Th), (SE), or (EDT).
This set of data represents the shape of the ligament
from one end to the other end as measured by the
corresponding algorithm.

As one further input value, the normalized position 2xi/l
is given, for which the correction factor shall be determined.
The output vector Y consists according to Equation (3)
of just one value, which is the correct radius divided by
the radius determined from the algorithm r(ref )(xi)/r

(.)(xi) at
the position xi. Because an ANN represents a continuous
approximation of the presented data, it is very difficult to
predict the steps contained in r(ref ) as shown in Figure 4.
Therefore, the prediction of the output is limited to the
positions within the triple points. Per ligament, 14 patterns

are created, which are related to the 14 element radii for
which the correct radius needs to be computed. Each ANN
consists of four layers with 21 neurons at the input layer,
15 and 10 neurons in the two hidden layers, and 1 neuron
for the output layer and is trained for 10,000 epochs. The
resulting mean squared training and validation errors are
MSET(Th) = 2.37 · 10−5 and MSEV (Th) = 1.87 · 10−4;
MSET(SE) = 8.82 · 10−6 and MSEV (SE) = 8.44 · 10−5;
MSET(EDT) = 1.73 · 10−5 and MSEV (EDT) = 1.89 ·
10−4; respectively.

X =
{

r(.) (x1)
〈

r(.)
〉 ,

r(.) (x2)
〈

r(.)
〉 , . . . ,

r(.) (x20)
〈

r(.)
〉 ,

2xi

l

}

(2)

Y =
{

r(ref ) (xi)

r(.) (xi)

}

(3)

Indicated by the very low training and validation error,
the reconstruction of the correct ligament shape seems to
be a simple task for the ANN. The ANNs are able to
determine the original ligament radius within one voxel
accuracy, independent by which algorithm the input data
are provided.

To validate the generalization capability of the trained ANNs,
three new validation geometries are generated within the range of
the existing 16 geometries. They are defined with rend = 0.1375
and rmid/rend = [0.625, 0.875, 1.125]. The geometries of the
three validation examples are shown in Figure 13. The degree
of the remaining deviations is illustrated by 1 voxel- (±0.5 v)
and 2 voxel-wide (±1 v) bands. The radii determined along the
ligaments is within or very close to the 2-voxel wide band range
for all three validation geometries and three ANN types. This
corresponds to plus-minus one voxel, which is the limit for the
accuracy defined by the voxel resolution. Only for the corrected
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FIGURE 13 | Validation cases including the correct geometry r(ref ), the Thickness result r(Th), the Smallest Ellipse result r(SE), the EDT result r(EDT ), and the

ANN-reconstructed geometries r(ANN(Th)), r(ANN(SE)), r(ANN(EDT )) for rend = 0.1375. The degree of the deviations is illustrated by 1 voxel- (±0.5 v) and 2 voxel-wide (±1 v)

bands: (A) rmid/rend = 0.625; (B) rmid/rend = 0.875; (C) rmid/rend = 1.125.

Thickness data of strongly concave ligament in Figure 13A, the
determined values are far outside the 2-voxel wide band.

If the Thickness data are pre-processed with the Smallest
Ellipse algorithm, the accuracy improves significantly also for
this difficult case. The ANN is now able to achieve accuracies,
which are within the theoretical resolution limit of the voxel
discretization and comparable to the results of the EDT
(Figures 13A–C). This results from the capability of the ANN
to memorize the relationship between ligament shapes and their
corrections as whole and smoothly interpolate this relationship
for untrained geometries. Due to this, the ANN approach has
superior performance compared to the local Smallest Ellipse
approach, discussed in the previous section, which cannot fully
recover the information in the thinnest part of the ligament.
The drawback is however that this method is so far limited
to symmetric ligaments. For further evaluations of actual
tomography data in the parameter space of r∗sym and r∗asym, as
found by Richert and Huber (2018), the incorporation of a
linear gradient according to Equation (1) is required. With this,
asymmetric ligaments can be represented, as they occur with
high probability in real NPG. Motivated by the promising results
presented in this section, such an extension will be scope of
future work.

As for the resultingmechanical behavior, very small deviations
of maximum 10% are observed for the 16 trained geometries
for both Young’s modulus and yield strength. Also the three
additional validation examples are well-predicted by the ANN
with the very same accuracy, supposed the Thickness data
are improved by the Smallest Ellipse approach before feeding
the data to the ANN. It is remarkable that, despite some
remaining error in the geometry reconstruction, resulting errors
in the mechanical properties are negligible. The reason for
this is that the ANN in average determines the ligament
shape correctly with perhaps some small over- and under-
predictions in different regions of the ligament. In contrast
to that, the Thickness algorithm and the reconstruction via
the Smallest Ellipse approach systematically overestimate the
geometry and therefore the mechanical properties are biased to
higher values.

APPLICATION TO EXPERIMENTAL
TOMOGRAPHY DATA

To test the methods presented in section Methods for Thickness
Correction beyond the 16 idealized diamond structures, the
NPG tomography data set of Hu et al. (2016) is used, which
stems from a nanoporous gold sample with nominally 400 nm
average ligament diameter. Three FEM skeleton beammodels are
generated based on the Thickness, EDT and furthermore Smallest
Ellipse corrected data of the NPG tomography, as described
in section FEM Skeleton Beam Models. The ANN approach is
not applicable in its present form, as it requires an extension
toward more general shapes. The mesh of the reference Solid
model consisting of 10-node tetrahedral elements (C3D10) was
provided by Hu et al. (2016). For both types of models, symmetry
boundary conditions are used and a compressive loading in z-
direction is applied. In this way, the results give an additional
insight about the effect for a more commonly used boundary
condition and a realistic, aperiodic microstructure. The resulting
macroscopic stress-strain behaviors are plotted in Figure 14; the
inserts clearly show the differences in the resulting beam models
relative to the solid model, where the black line shows the traced
outline of the solid model.

The macroscopic Young’s moduli and yield strengths at 1%
plastic strain are computed as 432 and 10.0 MPa (Thickness);
310 and 7.5 MPa (Smallest Ellipse); 160 and 3.7 MPa (EDT),
respectively. For comparison, the Young’s modulus and yield
strength of the FEM solid model was computed as 370
and 5.5 MPa. Consistent with the trend observed for the
idealized diamond structures, the model based on Thickness
and EDT diameter information show the highest and lowest
values, respectively. From the idealized diamond structures,
we computed ratios (Thickness/EDT) in the average diameter
ranging from 1.05 (highest convexity) to 1.4 (highest concavity).
The corresponding ratios in the predicted mechanical properties
are ranging from 1.2 to 2.5 (Young’s modulus) and 1.2 to 2.7
(yield strength). For the NPG tomography, the ligament diameter
distribution resulting from the Thickness and EDT algorithms
showed a ratio in the average ligament diameter of 1.3 (see
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section Methodology and Figure 1). As shown in Figure 14, the
(Thickness/EDT) ratio computed for themacroscopic mechanical
properties are 2.7 (Young’s modulus) and 2.7 (yield strength).
Therefore, geometry and property ratios for the real material
are close to or above the upper limits found for the idealized
diamond structures. This is reasonable, because the diamond
structure exhibits straight skeleton lines and symmetric ligament
profiles while the skeleton paths in the NPG sample are more
randomized and ligament profiles are strongly asymmetric, as
reported by Richert and Huber (2018). Therefore, the ligaments
show additional gradients along their axis—such gradients are
found to be the source of error in both algorithms, Thickness
and EDT.

Furthermore, the resulting Young’s modulus of the EDT
beam model is only 43% of the solid model. This confirms the
expectation by Richert and Huber (2018) that the FEM Solid
model should be stiffer and stronger than the FEM skeleton beam
model, as in the latter, the stiffening and strengthening effect of
the nodal mass (Jiao and Huber, 2017b) is not yet accounted for.

CONCLUSIONS AND OUTLOOK

While the accurate determination of the thickness of geometrical
features from 2D images is straight forward, the situation
changes dramatically for 3D structures. Various algorithms exist,
but each has its specific drawbacks regarding implementation,
computational cost, or accuracy. The Thickness algorithm by
Hildebrand and Rüegsegger (1997) is the most commonly used
algorithm. This is usually done without an assessment of the
error, because information about the correct thickness of the
structures under investigation is not available. A study by

Richert and Huber (2018) of typical ligament shapes identified
from 3D FIB tomography data of NPG revealed that the error
in the measured geometry can reach values up to 30%. The
overestimated thickness data lead to an overestimation of the
mechanical stiffness by a factor of two and more. Although
an implementation of the 3D Euclidean distance transformation
(EDT) is for example available in the Plugin TANGO, this
algorithm has so far not been used in 3D analysis. In contrast
to the Thickness algorithm, it tends to underpredict the diameter
for curved shapes. A first comparison of both algorithms
with tomography data of NPG revealed a difference in the
computed average ligament diameter of 30%. This and the
detailed results obtained on the local radii for the different
algorithms highlight how important it is to understand the
individual algorithm used and what the produced data represent
in relation to the measure of interest. This is particularly an
issue when pooling data from various sources making use of
different algorithms.

To provide RVEs with well-defined geometries, this work
is based on idealized model structures consisting of ligaments
with circular cross-sections and smooth parabolic-spherical
shape, organized in a diamond structure. Sixteen high-resolution
voxel models and finite element models are provided, covering
the relevant shapes from concave to convex ligaments. These
models serve as reference for the error assessment for both,
the determined geometry and the elastic-plastic mechanical
properties along the thickness determination and correction
chain. Furthermore, the provided test structures can be used
for validation of any newly developed algorithm for the
determination or correction of thickness information from
voxel data.

FIGURE 14 | Stress strain curves of NPG tomography of Hu et al. (2016) modeled as FEM solid model and predictions from FEM skeleton beam models based on

Thickness, Smallest Ellipse, and EDT diameter information. Inserts show regions of interest for comparison of the determined geometries.
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To decouple this study from the known effect that FEM beam
models show a more compliant and less strong macroscopic
stress-strain behavior compared to FEM solid models, the
differences in both properties are computed for each geometry.
As expected, the FEM beam model is more compliant compared
to the FEM solid model. The data show an increasing deviation
for increasing mid to end radius ratio while the ligament size
has only a marginal effect. In contrast to this, the yield strength
distributes below and above those of the FEM solid model.
This surprising result leads to the conclusion that the stress-
strain curve computed by Richert and Huber (2018) must not
necessarily fall below the curve predicted by the FEM solidmodel,
after the geometry is corrected, because a newly developed nodal
correction for these ligament shapes may not necessarily increase
the strength.

An investigation of the sensitivity with regard to the voxel
resolution revealed that the predicted mechanical stiffness is
significantly overestimated with decreasing voxel number. For
the most filigree structures and a resolution of 60 voxels per
unit cell length, the error reaches up to 30% in comparison to
a resolution of 300 voxels. Increasing the resolution to 200 voxels
reduces the error to 3%.

Applying the Thickness algorithm to the data with 200
voxels resolution yielded largest overestimations of 20% in
the average radius and 70% in the radius in the middle of
the ligament. The impact on the Young’s modulus and yield
strength is up to 100% overestimation for concave shapes.
This is not as high as predicted in the single ligament study
by Richert and Huber (2018), but is still inacceptable. The
Euclidean distance transformation resulted in an underprediction
in the macroscopic mechanical properties of up to 20% for
concave ligaments.

In view of these results, two approaches for correction of the
computed thickness are proposed. A Smallest Ellipse correction
approach, which could be interpreted as counterpart of the
Biggest Sphere Thickness algorithm, allows reducing the error in
Young’s modulus to 20% and in yield strength to 30% for all
ligament shapes. Secondly, using patterns consisting of estimated
thickness information from Thickness, Smallest Ellipse, Euclidean
distance transformation algorithm, and original ligament shapes,
artificial neural networks were trained. It could be shown
that the accuracies achieved for most cases are within a few
voxels. The resulting deviations in the mechanical properties
are within few percent, even for untrained validation patterns.
This demonstrates the big potential of ANNs to accurately
approximate complex non-linear relationships as whole. Even a
correct reconstruction is possible for data for which the input
information is incomplete in terms of the original ligament
shape. However, relative to the ANN corrected Thickness data,
the accuracy can be significantly increased by presenting the
data from the Smallest Ellipse algorithm. This shows that it is
advisable to reduce the complexity of the problem as far as
possible by using existing algorithms or estimates, even if they are
of limited accuracy. Such strategies have been successfully applied
before and the outcome of this work emphasizes once more
the importance of incorporation of a priori knowledge in the

preparation of the ANN definition and pattern generation when
high accuracy is a requirement. This is particularly important for
solving highly non-linear and complex inverse problems (Huber
and Tsakmakis, 1999, 2001; Tyulyukovskiy and Huber, 2006).

An obvious drawback of the ANN approach is that it must
be trained for the parameter space of possible shapes to be
identified. This means that for the evaluation of tomography
data in the parameter space of r∗sym and r∗asym, as found by
Richert and Huber (2018), requires an expansion by a linear
gradient along the ligament axis or the incorporation of even
more general shapes. In addition, the results of the Thickness
and EDT algorithms should be critically evaluated with respect
to effects from non-circular cross-sections that might occur in
real samples.

Thus, future research should be directed toward approaches
that provide sufficient geometrical accuracy for a large range of
possible ligament geometries, where the accuracy should always
be evaluated in view of the predicted mechanical properties.

Finally, the Thickness, Smallest Ellipse, and EDT algorithms
are applied to the experimental NPG tomography data set of
Hu et al. (2016). The average diameters and predicted stress-
strain curves consistently showed Thickness to EDT ratios
at the upper limit of the range computed for the idealized
diamond structures. This is consistent with the finding that
gradients in the ligament diameter along the axis are responsible
for systematic over- and underestimation by the algorithms.
Obviously, this effect is enhanced by the random nature and
strong asymmetry of real ligaments. Furthermore, the stress-
strain curve of the solid model lies in between the Thickness and
EDT prediction. While the overprediction based on Thickness
data confirms the result reported by Richert and Huber (2018),
the EDT curve being significantly below the result of the FEM
solid model now opens the perspective for an implementation
of a physically meaningful nodal correction in the FEM
beam model.
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Magnesium exhibits a high potential for a variety of applications in areas such as

transport, energy and medicine. However, untreated magnesium alloys are prone to

corrosion, restricting their practical application. Therefore, it is necessary to develop

new approaches that can prevent or control corrosion and degradation processes

in order to adapt to the specific needs of the application. One potential solution is

using corrosion inhibitors which are capable of drastically reducing the degradation

rate as a result of interactions with the metal surface or components of the corrosive

medium. As the sheer number of potential dissolution modulators makes it impossible to

obtain a detailed atomistic understanding of the inhibition mechanisms for each additive,

other measures for inhibition prediction are required. For this purpose, a concept is

presented that combines corrosion experiments, machine learning, data mining, density

functional theory calculations and molecular dynamics to estimate corrosion inhibition

properties of still untested molecules. Concomitantly, this approach will provide a deeper

understanding of the fundamental mechanisms behind the prevention of corrosion

events in magnesium-based materials and enables more accurate continuum corrosion

simulations. The presented concept facilitates the search for molecules with a positive

or negative effect on the inhibition efficiency and could thus significantly contribute to the

better control of magnesium / electrolyte interface properties.

Keywords: machine learning, property-structure relationship, high-throughput screening, corrosion inhibition,

density functional theory, magnesium, dimensionality reduction

1. INTRODUCTION

Light-weight materials such as magnesium and its alloys are of high interest for the industrial
sector. Potential applications can be found in the automobile industry as structural component
(Kulekci, 2008), in batteries as anode material (Aurbach et al., 2000; Höche et al., 2018) and in
medical engineering as biocompatible, resolvable implant (Brar et al., 2009). However, dealing
with corrosion is a challenging task in various engineering disciplines. Durability and versatility
strongly depend on the corrosion properties of the applied material and for most applications
as structural component, corrosion activity has to be minimized. Yet, for other approaches the
corrosion properties have to be adapted to fit the desired application. As for example, introducing
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magnesium as battery or implant material requires the corrosion
or degradation to proceed with a certain rate. Consequently,
the development of reliable, predictive models and methods for
general dissolution control is crucial.

There are several concepts to protect magnesium from
corrosion, ranging from alloying to surface coatings (Gray
and Luan, 2002; Blawert et al., 2006; Jia et al., 2016). Recent
studies strongly suggest that the re-deposition of released noble
impurities (e.g., iron) results in higher corrosion rates as the size
of cathodically active sites at the magnesium surface increases
over time up to a state of equilibrium (Höche et al., 2016;
Li et al., 2016; Mercier et al., 2018; Michailidou et al., 2018).
Concerning the iron re-deposition mechanism, a promising
strategy to prevent or control corrosion in magnesium-based
materials is the introduction of chemical substances that either
form stable complexes with the released iron species or block
their access to the surface (Lamaka et al., 2016; Yang et al., 2018).

Novel methods for inhibition prediction of not yet tested
compounds based on modern data science techniques are in
high demand to predict whether a molecule is a potential
inhibitor or even further promotes dissolution of the used
material. Hence, the high experimental effort and costs of
testing multiple compounds for their corrosion inhibition
potential can be circumvented. The molecular structure of
potential corrosion inhibiting additives is easily obtained
nowadays and thus, represents a promising starting point
to identify property-structure relationships as well as to
predict the inhibition efficiencies of uninvestigated additives.
Following this strategy, Ceriotti et al. developed sophisticated
methods to vividly illustrate property-structure landscapes by
employing SOAP (Smooth Overlap of Atomic Positions) kernels
(Bartók et al., 2013) to create a high-dimensional similarity
measure and reducing it to a two-dimensional visualization
with the dimensionality reduction algorithm “sketch-map”
(Ceriotti et al., 2011, 2013). Moreover, this approach is
particularly suited for high-dimensionality data from atomistic
simulations as it was already successfully applied to molecular
crystals (Musil et al., 2018) and high-throughput structural
databases (De et al., 2016, 2017).

In this study, the capabilities of the SOAP kernel and
sketch-map are focused on a corrosion inhibition database for
multiple molecular compounds to improve the understanding
of the inhibition-structure relationship. Furthermore, obtained
results can be directly used to qualitatively predict the
inhibition properties of not yet tested compounds, thus
allowing for a data-driven design of anti-corrosion additives for
magnesium-based materials.

2. MATERIALS AND METHODS

2.1. Corrosion Experiments
The balance between magnesium dissolution and hydrogen
evolution dominates the aqueous magnesium corrosion process.
Due to the processing of magnesium with various methods
(Pekguleryuz et al., 2013), noble impurities, as for example iron,
are impossible to avoid. Thus, local galvanic cells are induced
into the material that locally promote the corrosion, resulting

in increased magnesium dissolution, hydrogen evolution and the
release of impurities, such as iron. Finding molecules that form
stable soluble or insoluble complexes with the released impurities
is a promising way to screen for dissolution modulators and
provides the basis for our workflow.

In a systematic screening for magnesium corrosion inhibitors
(Lamaka et al., 2017), the influence of various organic molecules
on the hydrogen evolution rate in magnesium corrosion was
investigated. Here, the compounds were either previously
reported as magnesium corrosion inhibitors or chosen based on
their ability to form stable soluble complexes with Fe2+/3+ in
order to prevent iron re-deposition (Höche et al., 2016; Lamaka
et al., 2016). Hydrogen evolution tests were performed for six
different alloys as well as three grades of pure magnesium. Based
on the resulting hydrogen evolution rate, the inhibitors were
ranked by their inhibition efficiencies, where positive values,
up to 99% correspond to suppressed Mg corrosion (referred
to as corrosion inhibitors) and negative values to promoted
dissolution of Mg (referred to as corrosion promoters) with
respect to a reference experiment in 0.5% NaCl electrolyte
without any additives. The potential inhibitors were dissolved in
0.5% NaCl to obtain concentrations of 0.05 M and the initial
pH was adjusted to the values in the range of 5.5 − 7.2. Further
experimental details can be found in the original publication
(Lamaka et al., 2017). In this study, only inhibition results for
commercial purity magnesium (CP-Mg) with 220 ppm iron
content are considered.

2.2. Molecular Similarity
SMILES (simplified molecular-input line-entry system) strings of
the experimentally investigated compounds are used to create
molecular structures using the small molecule topology generator
STaGE (Lundborg and Lindahl, 2015). As implemented in the
high-throughput workflow of STaGE, the structures are geometry
optimized with GAMESS/US (Schmidt et al., 1993; Gordon
and Schmidt, 2005) using the B3LYP functional (Becke, 1993;
Stephens et al., 1994) with 6-311++G(d,p) basis set and a
SCF convergence criterion of 106. As the inhibitor molecules
are experimentally tested in solution, the optimizations are
performed using a polarizable water model (c-PCM) (Barone
and Cossi, 1998; Cossi et al., 2002, 2003; Wang and Li, 2009).
Further information on the computational details is given in the
Supplementary Material.

We quantify the structural and chemical similarity between
inhibitor structures using the SOAP-REMatch kernel (Bartók
et al., 2013; De et al., 2016) to investigate the relation
between their structure and associated properties. The SOAP
kernel compares local atomic environments and the REMatch
(Regularized Entropy Match) kernel condenses the local
similarities between two structures into a global similarity
measure. A local environment is defined within a spherical region
of radius rc centered on an atom and is built by a superposition
of Gaussian functions with width ξ . The larger rc is chosen, the
more structural information surrounding the atom is included.
The SOAP kernel measures the rotationally and translationally
invariant overlap between two such local environments and can
be raised to a power ζ to discriminate more between large
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(∼ 0.9) and medium (< 0.6) similarities. The combination of
the local similarities can be tuned by the hyper parameter γ

of the REMatch kernel. For large values (γ ∼ 10) more equal
weights are assigned to the local similarities while for small values
(γ ∼ 0.01) only the best matching pairs of local environments are
selected to compute the global similarity (see De et al., 2016 for
more details).

To help the visualization of potential structure-property
relationship, we consider each structure to lie in a high-
dimensional space defined by the SOAP-REMatch kernel, which
is transformed into a distance (Berg et al., 1984), and we project
this information on a two-dimensional map using sketch-map
(Ceriotti et al., 2011). This dimensionality reduction technique
allows to focus the distortions of the space so that close/distant,
i.e., similar/dissimilar, structures in the high-dimensional space
keep this relationship in the low dimensional space. This behavior
is achieved by a sigmoid function that is applied to the distances
and is mainly influenced by the switching distance σ , as well as a
and b as tuning parameters (see Supplementary Material).

Thus, it is possible to create a two-dimensional similarity
landscape that allows assessing the molecular similarity by
analyzing relative positions and cluster formations. However, due
to the form of the sigmoid function, far apart points can be
arbitrarily far apart in the lower dimensional projection–making
a physical interpretation of distances between basins in the low
dimensional projection impossible.

2.3. The Inhibition Prediction Workflow
When combining the presented methods, it is possible to
visualize the relationship between the molecular structures
and the corresponding inhibition efficiencies in a property-
structure landscape where all experimentally tested structures
act as landmark points. Subsequently, the inhibition efficiencies
of uninvestigated compounds can be predicted following the
proposed workflow (Figure 1).

Experimental inhibition efficiencies obtained from a corrosion
inhibitor databank (Lamaka et al., 2017), as well as molecular
similarity measures determined with the SOAP-REMatch kernel
can be combined to create a two-dimensional property-structure
landscape for the tested inhibitor molecules. Here, clusters
can indicate correlations between the inhibition efficiency
and inhibitor structure, allowing to relate certain molecular
structures to potentially promoting or inhibiting corrosion
properties. For now, the small sample size favors an unsupervised
machine learning technique where the decision boundaries
are drawn by human, instead of a supervised learning
algorithm (Kotsiantis et al., 2007).

Consequently, to predict the inhibition properties of an
untested compound its structural relationship to the landmark
points has to be determined. This can be accomplished by
out-of-sample embedding, where the new structure is projected
into the generated sketch-map by reproducing the distances to
the previously defined landmark points (Ceriotti et al., 2011).
Once the structure is projected into the property-structure
landscape, its relative position to previously identified clusters
can help to assess the impact on corrosion events. Concurrently,
this approach indicates whether it is reasonable to examine

untested additives in further corrosion experiments, hence saving
a tremendous amount of time and resources compared to an
experimental high-throughput approach.

3. RESULTS

To create a sketch-map displaying the relationship between
corrosion inhibition efficiency and inhibitor structure, a total
of 80 compounds was chosen out of the 151 experimentally
tested structures provided in a corrosion inhibitor database
(Lamaka et al., 2017). All structures were chosen based on a
mutual inhibitor concentration of 0.05 M during the hydrogen
evolution experiment to avoid concentration dependencies.
Before conducting any analysis, the dataset has been further
subdivided into 74 plus 6 randomly selected training and test
structures – 74 structures for creating the sketch-map and six
structures for validating the inhibition workflow.

After geometry optimization, we measure the structural
and chemical similarity between these structures using the
SOAP-REMatch kernel (De et al., 2016). In order to improve
the understanding of the property-structure relationship, the
influence of the respective parameters is examined. Indeed, to
achieve a wide range of applicability, the SOAP-REMatch kernel
and sketch-map technique rely on a few hyper parameters that
need to be tuned accordingly (see De et al., 2017;Musil et al., 2018
for a more comprehensive discussion). Depending on the choice
of hyper parameters, structural data points are either divided into
clusters based on an observable similarity or appear completely
scattered. Hence, the parameters have a strong impact on the
identifiability of correlations between structure and investigated
property. After thorough investigation of the parameter behavior
(see Supplementary Material), a set of parameters is chosen
that allows the division of structural data points with similar
corrosion properties into clusters.

To put a higher focus on the local atomic structure for
the similarity determination using SOAP, a cutoff radius rc =
3.0 Å is chosen which includes all moieties of interest but neglects
the overall molecular structure for most of the investigated
dissolution modulators. For a good balance between strict
similarity requirements and a sufficient number of pairs of
local environments, the Gaussian width is set to ξ = 0.3.
By choosing ζ = 2.0 the discrimination between large and
medium similarities is increased, thus amplifying clustering
effects. Based on the parameter γ = 2.0, a broad selection of
well matching pairs of local environments—as determined by
the SOAP kernel—is taken into account to compute the global
similarity using the SOAP-REMatch kernel.

As the dimensionality reduction with sketch-map is based on
a sigmoid function, the corresponding parameters have to be
optimized for the given data. Again, optimizing the parameters
with respect to cluster formations of the structural data points,
choosing σ = 2 as well as the tuning parameters a = b =
3 results in the sketch-maps shown in Figures 2, 3. The data
points originating from the input structures are divided into two
elongated “islands,” a small island in the lower left and a larger
island in the upper right part of the sketch-map. It is noteworthy
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FIGURE 1 | The workflow diagram. Molecular structures from an inhibitor database (Lamaka et al., 2017) are used to generate a two-dimensional sketch-map.

Inhibition efficiencies determined in the hydrogen evolution experiments, as well as data generated in DFT computations are used to investigate the property-structure

relationship. Unknown structures can be projected into the sketch map to get a first indication on their potential inhibition efficiency. Potentially interesting structures

can be then tested again in corrosion experiments to extend the inhibitor database.

that aromatic compounds are solely found in the lower region
whereas aliphatic compounds are distributed in the upper island
of the sketch-map. This leads us to the conclusion, that the
chosen parameters are well suited to generate a sketch-map of
the investigated molecule database.

When coloring the structural data points according to their
corresponding inhibition efficiency (Figure 2A), the upper right
island is further divided into two clusters, where the left cluster
is populated by corrosion inhibitors (green) and the right cluster
mostly by corrosion promoters (purple) or moderately inhibiting
(light green) additives. The lower left island is dominantly
populated by corrosion inhibitors, except for three structures on
its outer edge. Cluster formations clearly indicate a property-
structure relationship, allowing to cautiously correlate inhibition
efficiency and molecular structure.

For the inhibition prediction it is desired to project not yet
tested compounds into the generated sketch-map and relate
their position to the three identified clusters. When a new
structure is projected into an area with dominantly corrosion
inhibitors or promoters, it is assumed to share similar inhibition
properties and can be further investigated experimentally if
desired. For purposes of validation, six structures of the
experimental database are randomly chosen and projected into
the sketch-map by determining their global similarity including
all structures. Subsequently, the distance of the new structures
is related to the 74 defined landmarks and used to compute
the required projections. As a guide for the eye, the three
previously identified clusters are outlined with dashed lines and
colored according to the median inhibition efficiency in the
respective region (Figure 2B).

As the new structures differ strongly in topology, it is natural
that the computed projections lead to differing positions in the
sketch-map. In relation to the landmarks, structures containing
unusually coordinated atoms, additional atom species or an
unusual number of functional groups are projected in regions
far away from the observed islands, indicating discrepancies
in similarity. However, except for one structure at the top of
the sketch-map, structural similarities to the defined landmarks
result in projections within or close to the generated sketch-map,
where the corresponding inhibition efficienciesmatch the relative
positioning to the inhibitor and promoter clusters fairly well.

The generated sketch-map can also be used to correlate
the dissolution modulator structure to other properties, as
for instance the HOMO-LUMO gap (HL gap). The energetic
difference between the highest occupied and lowest unoccupied
molecular orbital (HOMO and LUMO) is indicative for the
affinity of the investigated corrosion modulators to transition
metals (Griffith and Orgel, 1957), where formation of these
complexes is more likely with lower HL gaps as this allows
for a energetically more favorable overlap of the involved
orbitals. Moreover, the HL gap is a sound indicator for chemical
reactivity as the stability of a molecule increases with larger HL
gaps. Concomitantly, the reactivity of the dissolution modulator
decreases (Aihara, 2000). Consequently, aromatic ligands (e.g.,
pyridine derivatives) are more likely to form complexes with
transition metals (e.g., Fe, Ni) than aliphatic ligands that, in
general, exhibit larger HL gaps. Hence, the HL gap might be
an important parameter that has to be taken into account in
future studies to adequately predict the capability of an untested
compound to prevent the re-deposition of noble impurities like
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FIGURE 2 | Property-structure landscape based on the SOAP-REMatch kernel and sketch-map. (A) The structural data points are colored according to their

corresponding inhibition efficiency in the experiment by Lamaka et al. (2017) (green =̂ corrosion inhibition, purple =̂ corrosion promotion). Selected molecular

structures are shown to illustrate cluster origins. (B) Out-of-sample embedding to predict inhibition properties. New structures are projected into the generated

sketch-map from (A) and related to previously identified inhibitor clusters, marked by dashed lines. The clusters are colored according to their median inhibition

efficiency in the respective region. Landmarks are depicted as smaller circles; the new test structures as larger, black-rimmed circles along with illustrations of their

according molecular structure . Atom color code: red =̂oxygen, gray =̂ carbon, blue =̂ nitrogen, whitish =̂ hydrogen, cyan =̂phosphorus.

iron (Höche et al., 2016; Lamaka et al., 2016). The HL gaps
were calculated on the TPSSh/def2SVP level of density functional
theory using Turbomole 7.2 (TURBOMOLE, 2017) for each of
the 80 compounds (Figure 3). As computing the HL gaps using
the B3LYP/6-311++G** level of theory that was employed for
the STaGE calculations is computationally rather demanding,
TPSSh/def2SVP is chosen here as a fast and accurate alternative.
Comparing the optimized geometries for each functional, no
structural discrepancies could be observed.

Coloring the sketch-map according to the calculated HL
gaps, puts further emphasis on the expected separation between
aromatic and aliphatic compounds in the investigated dataset.
Aromatic structures in the lower left island are assigned with
rather low values of 3.2–5.3 eV whereas aliphatic compounds in
the top right island correspond to rather high energy gaps of
5.5–7.4 eV. Albeit this outcome corroborates our current working
hypothesis, further work is required to quantitatively correlate
the HL gap to the inhibition efficiency of potential inhibitor
molecules based on the employed sketch-map approach.

4. DISCUSSION

The acquired property-structure landscape in Figure 2A

uncovers a clear relationship between inhibitor structure
and inhibition efficiency, whereas only a few outliers in the
defined corrosion inhibitor and promoter clusters are observed.
Furthermore, almost all new molecules that are projected into
the sketch-map, matching the landmarks in similarity, are
correctly positioned within or close to the defined clusters

according to their corresponding inhibition efficiency. Hence we
are confident, that the presented concept is suitable to predict
the potential of uninvestigated corrosion inhibitors or promoters
based on their resemblance to a defined landmark structure.

However, similarity values obtained using the SOAP-REMatch
kernel depend strongly on the chemistry of the input structures.
The direct effect can be observed in Figure 2B. Molecules that
differ strongly in similarity—due to unusually coordinated
atoms, varying atom species or an unusual number of functional
groups—are positioned far away from the observed islands. The
origin for this behavior lies within the SOAP-REMatch kernel
where similarity measures are computed based on the overlap
of local atomic environments. Hence, comparing a relatively
large molecule to a high number of relatively small molecules
leads to low similarity values, and thus a large distance in high-
dimensional space, given that a large cutoff radius rc is provided.
Also, variations for the number and type of functional groups
are affected by this behavior. For the given case, a relatively small
cutoff radius rc = 3.0Å is chosen, leading to a higher focus on
local atomic bonds than on the overall molecular structure. Thus,
for a significant similarity between local atomic bond networks
of landmarks and projections, also large structures can be
assigned to clusters of smaller molecules within the sketch-map.
For similarity measures between structures containing different
elements, a separate density is built for each atomic species and
an overlap of differing local environments corresponds to zero
(De et al., 2016). Therefore, molecules containing atomic species
varying from the ones included in the landmark structures are
also more likely to be projected further away. However, here
the only investigated structure containing a different atom
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FIGURE 3 | Property-structure landscape based on the SOAP-REMatch kernel and sketch-map. The structural data points are colored according to their

corresponding HOMO-LUMO gap, as presented schematically. The color code clearly highlights the separation of aromatic compounds with low and aliphatic

compounds with high HOMO-LUMO gaps.

species (phosphorus in phenylphosphonic acid) is projected
directly into the cluster of aliphatic corrosion inhibitors, even
though it contains an aromatic ring. A possible reason for this
behavior is the low cutoff radius rc that gives greater weight to
the similarity of the oxygen arrangement within the phosphonic
acid functional group than to the phenyl ring. Since no other
structure containing phosphorus is provided, the structure thus
appears most similar to the aliphatic compounds. Following the
same reasoning, the projected structure at the top of the sketch-
map, as well as the landmark structure at the far left, are spaced
further away from the aliphatic cluster as their local structure
(arrangement of carbon and oxygen atoms) differs significantly.
With respect to the proposed inhibition prediction workflow,
the presented results already suggest important factors for future
hydrogen evolution experiments. Accordingly, using out-of-
sample embedding to find structures that match the already
defined clusters, potential corrosion inhibitors or promoters can
be identified. However, as the proposed inhibition prediction is
to be understood more as the formulation of a first clue with
respect to the inhibition properties, the predicted inhibition
efficiency still has to be validated experimentally. To improve the
prediction potential of the proposed concept, more data point
from hydrogen evolution experiments are required. With an
increasing number of tested compounds, the presented sketch-
map can be extended by newly tested structures, thus facilitating
the search for new inhibitor molecules with new properties even
further. Moreover, structures projected into unexplored regions
may indicate promising starting points for the discovery of novel
additives with interesting inhibition properties that would not
have been considered for testing otherwise.

Based on the structures of already investigated dissolution
modulators within the inhibitor clusters, yet unexplored
molecules can be identified that might yield promising
corrosion inhibition or promotion properties. In this manner,
a small number of unknown structures has been selected that
shall be tested in future hydrogen experiments–comprising
the sodium salt of 6-hydroxypyridine-3-carboxylic acid and
quercetin (based on the aromatic cluster) as well as the
sodium salt of hexanoic acid (based on the aliphatic cluster).
Using out-of-sample embedding to get a first indication
of the inhibition performance (see Figure S4), the sodium
salt of 6-hydroxypyridine-3-carboxylic acid and quercetin can
be identified as potential corrosion inhibitors, whereas the
sodium salt of hexanoic acid is expected to promote the
corrosion rate.

Even though the proposed workflow works well for the
considered data, there are still certain factors to be aware of.
On the one hand, the used input structures are all geometrically
optimized with an implicit solvent model which might not
represent the actual molecular geometry on the surface or in
coordination complexes at all. On the other hand, the large
number of tunable parameters when using the SOAP-REMatch
kernel and sketch-map makes it difficult to fully understand its
outcome, as the fine-tuning process contains a lot of trial and
error as well as visual inspection (see Supplementary Material).
For the given case, this strategy is still reasonable as the aim
of finding a property-structure relationship with respect to
the inhibition efficiency, as well as predicting the inhibition
performance of new compounds is accomplished. However,
a comprehensive understanding of the underlying physical
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concepts behind the occurring inhibition mechanisms still
requires further work.

Due to the data-hungry nature of most machine learning
applications, like sketch-map, more input structures are desired
to improve its validity and prediction abilities since the proposed
inhibition prediction workflow is highly dependent on the
provided experimental input data. Thus, possible outliers
within the inhibition efficiencies are to be expected without a
sufficient amount of data points. However, the generation of
new experimental data points is limited by costly and time-
consuming hydrogen evolution investigations. Experimental
conditions have to be accurately defined as small discrepancies
in the experimental environment of the chosen structures may
already have a severe impact on the predictive performance of
the generated property-structure landscape. Consequently, we
aim to employ high-throughput MD or DFT computations to
identify properties that correlate well with the experimentally
determined inhibition efficiencies. A promising starting point for
this in silico approach are the presented HL gaps (Figure 3). The
separation between lower and higher energy gaps for aromatic
and aliphatic compounds, respectively, matches the spatial
separation due to the SOAP-REMatch kernel and sketch-map.
Looking at the property-structure landscape more carefully,
small point clusters within the islands can be identified that
indicate some property-structure relationship. An example are
the four data points in the far right of the sketch-map, provided
with their corresponding molecular structures. The further
right the structure lies within the sketch-map, the higher the
HL gap of the respective compound becomes. Of course, the
property-structure landscape does not allow investigations of this
behavior in more detail. Nevertheless, it represents a potential
relation between the molecular structure and the energy gap of
the frontier orbitals, that can be further examined using other
measures. Hence, we are currently investigating if the calculated
HL gaps will help to detect a relationship between the HL gap
and the inhibition efficiency as well.

Since themolecular compounds are tested in solution, another
interesting parameter is the free energy of solvation. However, no
obvious relationship to the inhibition properties can be observed
so far (Figure S3A). Consequently, future works will focus on the
determination of the free energy of solvation for corrosive species
(e.g., Mg or Fe ions) in a solution containing the dissolution
modulators to yield more accurate—and correlatable—results
with respect to the occurring inhibition mechanisms. Here,
STaGE is a mighty tool to screen free energies of solvation for
high numbers of molecular compounds requiring very few
input parameters (Lundborg and Lindahl, 2015). Moreover, even
simpler properties as the number of certain functional moieties
within an inhibitor molecule can provide a deeper insight on a
potential correlation to the experimentally determined inhibition
efficiency. For instance, the property-structure landscape in
Figure S3B indicates that nitrogen plays an immediate role in
the corrosion inhibition mechanism of aliphatic compounds.

In subsequent steps, by providing material and system
parameters like the free energy of solvation or adsorption for
inhibitor molecules, by predicting HOMO-LUMO gaps or by
computing energy levels related to coordination complexes,

physico-chemical entities at nano- and microscale, relevant for
mathematically based system modeling, can be derived. For
example, the shift in the electrochemical potential due to changes
of the free energy of adsorption (Groß, 2018) or efficient (ion-)
transport parameters like diffusion coefficients can be calculated.
Furthermore, based on the molecule data, the cluster formation
and its interaction with the surface can be analyzed more
accurately bymolecular dynamic studies. As a consequence, more
precise calculations of elemental surface coverage, concentration
distributions of chemical species or averaged, system relevant
surface kinetic parameters are possible and more profound input
data applicable in upscaled continuum corrosionmodels (Höche,
2015). Typically, such kind of information is experimentally
difficult to access but of main interest for setting up advanced
non-empirical corrosion models which are required to enhance
computational corrosion and system engineering capabilities.
The developed data science based concept can be applied for
analyzing or even learning from corrosion simulation results by
correlating simulation predictions and molecular structures.

In conclusion, it was possible to create a property-structure
landscape based on the results of hydrogen evolution
measurements, that vividly demonstrates the relationship
between corrosion inhibition efficiency and corresponding
molecular structure of magnesium corrosion inhibitors. After
creating a high-dimensional similarity measure with the SOAP-
REMatch kernel between 74 tested compounds, the similarity
matrix is reduced to a two-dimensional visualization with sketch-
map, providing a reference to qualitatively predict the inhibition
behavior of yet to be tested molecules. Aside from the inhibition
efficiency, also other properties as the HL gap were correlated
with the inhibitor structure, matching impressively well the
spatial separation into aliphatic and aromatic compounds.
The predictive performance of the proposed workflow is still
limited by the relatively low amount of available experimental
input data. However, the discovered corrosion inhibitor and
promoter clusters provide a valuable reference for inhibition
prediction and identification of yet unexplored structures – thus
facilitating the search for potential corrosion inhibitors and
increasing the efficiency of corrosion inhibition experiments and
corrosion models.
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A Bayesian Framework for the
Estimation of the Single Crystal
Elastic Parameters From Spherical
Indentation Stress-Strain
Measurements
Andrew Castillo and Surya R. Kalidindi*

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States

This paper presents a two-step Bayesian framework for the estimation of the intrinsic

single crystal elastic stiffness parameters from the measurements of spherical indentation

stress-strain responses in multiple individual grains of a polycrystalline sample, whose

crystal lattice orientations have been measured using electron back-scattered diffraction

technique. The first step requires the establishment of the functional dependence of the

indentation elastic modulus given the lattice orientation and the intrinsic single crystal

elastic stiffness parameters. Previous efforts for this step required a large database

of computationally expensive finite element (FE) simulations in order to establish this

function with adequate accuracy. In this paper, it is shown that the introduction of a

Bayesian framework can greatly reduce the number of simulations necessary to establish

this function, while introducing practically useful measures of uncertainty which can

guide the selection of specific additional simulations that are expected to best improve

the predictive accuracy of the function. The second step involves a Markov Chain

Monte-Carlo (MCMC) sampling of the distribution of possible values for the single crystal

elastic stiffness parameters based on a given set of experimentally measured elastic

indentation moduli in individual grains of different lattice orientations. This second step is

accomplished by calibrating the available experimental data to the function established

in the first step. This novel framework is presented and demonstrated in this paper

for an as-cast cubic polycrystalline Fe-3% Si sample and a hexagonal polycrystalline

commercially pure (CP-Ti) titanium sample.

Keywords: bayeian inference, Monte - Carlo simulation, single crystal elastic constants, design of experiments

(DoE), parameter uncertainties, spherical nanoindentation

INTRODUCTION

Continued development and application of physics-based multiscale materials models is largely
hampered by the lack of protocols for reliably estimating the intrinsic material properties at the
microscale (e.g., the grain-scale properties in modeling of polycrystalline materials). In recent
years, instrumented indentation techniques have been demonstrated to be capable of providing
consistent and reliable measurements at the lower length scales (up to submicron length scales)
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(Vlassak and Nix, 1994; Uchic et al., 2004; Pathak and
Kalidindi, 2015; Weaver et al., 2016; Khosravani et al., 2018).
Although small-scale mechanical measurements are now quite
reliable, it has not been a straightforward process to extract
the intrinsic material properties from such measurements.
As specific examples, one would hope to estimate the
values of the single crystal elastic constants and the critical
resolved shear strengths from the instrumented nanoindentation
measurements. Reliable and robust protocols for addressing this
gap are emergent (Sánchez-Martín et al., 2014; Priddy, 2016;
Patel and Kalidindi, 2017).

Currently employed strategies for extracting intrinsic material
properties from indentation tests have generally involved the
calibration of physics-based finite element (FE) models of these
tests to the corresponding set of experimental measurements
(Bhattacharya and Nix, 1988; Zambaldi et al., 2012; Patel et al.,
2014; Priddy, 2016). In this regard, it has been pointed out in
recent work (Patel and Kalidindi, 2017) that these protocols
are much more robust when the calibration is attempted in
the form of the normalized indentation stress-strain curves as
opposed to directly matching the load-displacement curves. This
is mainly because the initial elastic response and the elastic-
plastic transition occur over a very short early portion of
the load-displacement curve that is not easily identified and
isolated, resulting in a very high sensitivity of the extracted
values of the intrinsic material properties to small changes in the
calibration procedures.

The calibration of the FE simulated indentation stress-strain
curves to the experimentally measured indentation stress-strain
curves for any selected material system essentially involves
solving an inverse problem. In other words, the guessed values
of the intrinsic material properties of interest become inputs to
the FE simulations. Typically, one has to search over a large
multidimensional space to find the best-fits between the FE
predictions and the measurements. The main challenge comes
from the high computational expense of FE simulations of the
indentation experiments. It should be noted that establishing
each data point on the FE predicted indentation stress-strain
curve needs the simulation of a suitable unloading segment (Patel
and Kalidindi, 2017), and this drives up the cost of the simulation
significantly. Given all of the complexity described, the only
logical path forward is to establish a reduced-order model for the
FE simulations of the indentation test, and to use the reduced-
order model in solving the inverse problem described above.
In recent work (Patel et al., 2014), we have formalized this
approach as a two-step process: (1) establishing a reduced-order
model calibrated to FE simulations of indentations that takes
the relevant intrinsic material properties as inputs and predicts
indentation properties (defined suitably on an indentation stress-
strain curve), and (2) the extraction of the intrinsic material
properties from the available measurements (typically performed
on grains of different orientations in a polycrystalline sample)
through calibration with the reduced-order model established
in step (1). The second step described above typically involves
the solution to an optimization problem (i.e., minimizing the
difference between the measurements and the predictions from
the reduced-order model). The viability of this two-step protocol

for extracting the values of the single crystal elastic constants
and the critical resolved shear strengths in Fe-3%-Si has been
demonstrated in recent work (Patel et al., 2014; Patel and
Kalidindi, 2017).

The main difficulty with the two-step protocol described
above lies in building the reduced-order model [i.e., step (1)].
Because of the need to cover a large space (for example for
extracting single crystal elastic constants, the input space of
interest is the product space spanning all combinations of the
single crystal elastic constants, C11,C12, C44, and all possible
grain orientations), one needs to generate a large amount of the
FE simulation data in order to establish a high-fidelity reduced-
order model. The difficulty of this task is amplified significantly
in dealing with hcp crystals, where the numbers of the intrinsic
properties is significantly larger (for example, modeling the
elastic deformation in hcp crystals requires specification of five
independent single crystal elastic constants). In prior work (Patel
et al., 2014), the reduced-order models were built using standard
regression approaches. Although these regression approaches
produced excellent results, they do not scale well to problems
with larger numbers of the intrinsic properties (because of the
need to generate a large amount of data spanning the entire
input domain).

The primary goal of this paper is to demonstrate the utility of
Bayesian strategies for (i) optimizing the reduced-order model
building effort involved in step (1), and (ii) providing estimates
of the desired intrinsic material parameters (single elastic
constants specifically) with uncertainty measures from available
experimental data (spherical indentation measurements).
Toward these goals, we will develop and present a Bayesian
inference framework for both steps of the two-step protocol
described above. Bayesian inference has been instrumental in
model-building tasks with limited amount of data (MacKay,
1998; Rasmussen, 1999; Huan and Marzouk, 2013; Gelman,
2014). The adoption of a Bayesian inference framework for the
extraction of the intrinsic material properties from indentation
measurements offers the following main advantages: (i) it is
expected to dramatically reduce the number of FE simulations
needed to produce the reduced-order model generated in step
(1), and (ii) it provides a much more rigorous quantification
of the uncertainty in the estimates of the intrinsic material
properties obtained in step (2), while accounting for the
uncertainty in the measurements as well as other sources. In
this paper, we first develop the framework, and subsequently
demonstrate its application to the extraction of single crystal
elastic properties in selected cubic and hexagonal metals.

NEW BAYESIAN INFERENCE
FRAMEWORK FOR THE ESTIMATION OF
INTRINSIC MATERIAL PROPERTIES FROM
INDENTATION MEASUREMENTS

Let c denote the set of intrinsic material properties to be
established. For cubic crystals, this represents the set of three
elastic constants, i.e., c={C11,C12,C44}. Let P denote an available
set of observations of the indentation properties corresponding
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to the set of crystal orientations G. This set of observations could
come from either FE simulations or the physical experiments.
We shall note the source of the data using subscripts sim and
exp on these variables. Furthermore, in the notation employed
in this paper, a set of values for a variable is denoted by an upper-
case symbol, while an individual element of the set is denoted
by its non-bold counterpart. As an example, a single value of
the indentation property will be denoted by P. Furthermore, a
collection of variables is also denoted by bold symbols. As an
example, a single crystal orientation would be denoted by g,
as it denotes a set of three Bunge-Euler angles (Bunge, 1993).
However, a collection of grain orientations would be represented
by G. Likewise, a single set of intrinsic material parameters
is denoted by c, whereas a collection of the sets of intrinsic
material parameters is denoted C. Employing this notation, the
central tasks in the two-step protocol developed in this work are
the following:

1. Establish a reduced-order model that takes given values of
c and g and predicts the indentation property of interest,
P = P̂(c,g), while employing Bayesian inference in building
the reduced-order model. In other words, given the previously
aggregated set of simulation data {Psim, Gsim}, determine the
new inputs for the FE simulation that would yield the best
improvements in the reliability of the reduced-order model
being built.

2. Given the reduced-order model built in step (1) and a set
of experimental observations

{

Pexp, Gexp

}

from a given
polycrystalline sample, establish the posterior distribution on
c for the sample. It is noted that the indentation properties
are measured by the spherical indentation protocols
mentioned earlier, while the orientations are measured
using electron back-scattered diffraction (EBSD) techniques
(Adams et al., 1993).

Prior experimental work (Pathak et al., 2009) in single-phase
polycrystalline metals has focused on exploring the dependence
of indentation modulus on the lattice orientation of the indented
grains (i.e., individual crystals). These findings were verified by
suitable FE simulations (Patel et al., 2014). Recently, a reduced-
order model which captures the dependence of indentation
modulus on both orientation and an arbitrary set of intrinsic
material parameters has been established from FE simulations.
The mathematical form of the reduced-order model for the
present application is adopted from this prior work (Patel et al.,
2014) as

P = P̂(c,g) ≈
L

∑

l=0

M(l)
∑

m=1

Q
∑

q

A
mq

l
Km
l

(

g
)

P̃q(c) (1)

cj =
2cj − cmin

j − cmax
j

cmax
j − cmin

j

(2)

where Km
l

(

g
)

denote the symmetrized Surface Spherical
Harmonics basis over the relevant orientation space of
interest, and P̃q( ) denote a multivariate Legendre polynomial
product basis. In other words, one can express P̃q (c) =

Pq1 (c1) P
q2 (c2) . . . PqR (cR), where q = (q1, q2 . . . qR) forms a

multi-index array, each element of which is a nonnegative integer
allowed to vary from 0 to the selected maximum degree, Q,
i.e., qj ∈ [0,Q]. The use of Legendre polynomials provides an
orthonormal basis over the range [−1, 1], for which each of
the elastic constants are rescaled in accordance to Equation (2),
where cmax

j and cmin
j are the maximum and minimum values of

the j-th elastic constant under consideration. In Equation (1),
m and l index the surface spherical harmonic basis where M(l)
enumerates the spherical harmonics that implicitly reflect the
crystal symmetries of interest (Bunge, 1993; Adams et al., 2012).
The integers Q and L denote the truncation levels adopted in the
use of Equation (1). It is emphasized here that the model form
used in Equation (1) denotes a Fourier representation using an
orthonormal basis that has been previously shown to produce
compact representations for mechanical responses of crystalline
solids (Proust and Kalidindi, 2006; Knezevic et al., 2008; Patel
et al., 2014; Yabansu et al., 2014; Yabansu and Kalidindi, 2015;
Patel and Kalidindi, 2017). One of the central features of a
Fourier representation is that the Fourier coefficients A

mq

l
are

completely independent of each other. The goal of the reduced-
order modeling task here is to estimate the values of A

mq

l
,

expressed in a vector notation as A, from the sparse amount
of available data, as it is being generated from the expensive
FE simulations. Even more importantly, our goal is to drive the
model building in an optimal way by identifying the specific set
of inputs for the next FE simulation such that it maximizes the
improvement to the reduced-order model being built.

Building the Reduced-Order Model
The reduced-order model [see Equation (1)] needs to be built
such that it makes good predictions for the indentation modulus
over a large domain of input parameters (c,g). Given the large
domain of the input parameters (e.g., covering the range of values
for the three independent parameters defining cubic elasticity
and the two independent parameters defining the indentation
direction in the crystal reference frame) and the high cost of
executing a FE simulation for generating each data point, it is
highly desirable to explore Bayesian regression approaches for
estimating the unknown Fourier coefficients in Equation (1). Let
the corresponding sets of intrinsic parameters, c, used as inputs
to simulations be denoted as Csim. The data generated from
FE simulations will be denoted {Psim, Csim,Gsim} following the
notation introduced earlier.

Bayesian approaches treat model parameters [e.g., Fourier
coefficients in Equation (1)] as stochastic variables exhibiting a
distribution of values. Most importantly, Bayes’ theorem allows
one to update the distributions for the model parameters given
new data (i.e., observations) and is commonly expressed as

P(A|D) = P(D|A)P(A)
P(D)

(3)

where P(A) denotes the prior belief (expressed as a distribution)
on the values of the unknown model parameters, P(D|A) denotes
the likelihood of sampling the observationsD for specified values
of the model parameters, and P(A|D) denotes the posterior
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(updated) belief on the values of the unknown model parameters
given the observations D. The denominator P(D) in Equation
(3) is generally referred as the probability of the evidence, and
is often difficult to establish. However, it mainly serves as a
normalization factor for the posterior distribution. Since the
distributions are often defined with known normalization factors,
it is often possible to skip the evaluation of P(D) in practical
implementations of the Bayes’ rule described in Equation (3)
(Box, 1973).

It is expedient to treat the distributions associated with all
the stochastic variables in Equation (3) as normal (i.e., Gaussian)
distributions. As a specific example, the ith observed value of
the indentation modulus is modeled as being generated from a
deterministic model, with added stochastic noise, as

Pi = P̂i
(

A,ci, g i
)

+ ǫi, ǫi ∼ N (0,β− 1) (4)

where N (0,β−1) denotes a normal distribution with a zero
mean and a variance of β−1. Note that the stochastic noise is
assumed to be independent of location in the parameter space,
i.e., homoscedastic. The likelihood for a set of N independently
observed indentation moduli can be established using the
product rule as

p (Psim|A,Csim,Gsim,β) =
N

∏

i

p(Pi|A,ci,g i,β) (5)

As noted earlier, the model parameters A are also treated as
stochastic variables. The prior belief on these variables is assumed
to be specified by a normal distribution with a zero mean and a
large variance of α−1 as

p(A|α) ∼ N (0,α−1
I) (6)

The application of Bayes’ rule [Equation (3)] to the problem at
hand results in

p (A|Psim,Csim,Gsim,α,β) = p (Psim|A,Csim,Gsim,β) p (A|α)

p (Psim|Csim,Gsim,α,β)

(7)

where p (A|Psim,Csim,Gsim,α,β) denotes the posterior (updated)
distribution on the model parameters. The denominator in
Equation (7) reflects the probability of the observed outcomes
irrespective of the model parameters A chosen, and can be
described by the marginalization of the likelihood with respect
to the model parameters as

p (Psim|Csim,Gsim,α,β) =
∫

A

p (Psim|A,Csim,Gsim,β) p(A|α)dA

(8)

In a fully Bayesian approach, the precision parameters, α,β , may
also be treated as stochastic variables (Gelman, 2004). This allows
for a separate application of Bayes’ theorem expressed as

p(α,β|Psim,Csim,Gsim) ∝ p (Psim|Csim,Gsim,α,β) p(α,β) (9)

Alternately, one can use point estimates from the maximization
of the likelihood in Equation (9), denoted as α̂, β̂ . This is
equivalently interpreted as the maximization of the evidence of
the observed data in Equation (8) (MacKay, 1992b). With this
approach, the posterior distributions of model coefficients in
Equation (7) can be solved analytically (while assuming normal
distributions for the various variables involved) (MacKay, 1992a,
1996; Christopher, 2006). The updated posterior distribution
computed using the approach described above is generally
expected to be sharper (i.e., lower variance) compared to the
prior belief.

Obviously, the available observations may not produce a
posterior distribution that is sharp enough (i.e., the uncertainty
associated with the posterior is still too high for a given
application). In such cases, one needs to examine carefully
where one should produce additional data points (i.e., new
observations) in order to maximize the sharpening of the
posterior distributions. The general approach to solving this
problem (i.e., identifying the new data points exhibiting the
maximum potential for improving the model accuracy and
reliability) involves making predictions for new inputs, and
identifying the specific inputs that exhibited the highest variance
(i.e., uncertainty) in their predictions as the locations where new
observations should be generated (MacKay, 1992a; Atkinson,
2007). This kind of a rational approach for deciding where to
generate new data points is critical for situations where data
generation is expensive (as is the case with the FE simulations
of the spherical indentation for the present case study). The
predictions for new inputs are obtained by the marginalization
over the posterior distribution of the model parameters as

p
(

P
∣

∣

∣
c,g,Psim,Csim,Gsim, α̂, β̂

)

=
∫

A

p
(

P
∣

∣

∣
A, c,g, β̂

)

p
(

A

∣

∣

∣
Psim,Csim,Gsim, α̂, β̂

)

dA

(10)

where (c,g) denote the new inputs. Therefore, the specific set
of inputs which exhibit the highest variance for the prediction
can be readily identified. Once the set of inputs are identified,
and corresponding FE simulation performed, the next step is
updating the distribution of model coefficients with the newly
acquired observation. The update step to the distribution of
the model coefficients is natural using a Bayesian framework
in the sense that any knowledge acquired previously can be
incorporated through the prior.

pN+1

(

A

∣

∣

∣
Psim,Csim,Gsim, α̂, β̂

)

∝ pN+1

(

Psim

∣

∣

∣
A,Csim,Gsim, β̂

)

pN

(

A

∣

∣

∣
Psim,Csim,Gsim, α̂, β̂

)

(11)

The posterior distribution of the parameters can continually be
updated as incoming data is sequentially added by setting the
prior as the previously inferred posterior distribution of model
coefficients as shown in Equation (11). Updates to the posterior
distribution of model coefficients are performed until sufficient
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model convergence and prediction performance is attained.
Model convergence is determined through the change in values
of the model coefficients and parameters as data is added. Model
performance is evaluated through various error metrics such
as the leave-one-out-cross-validation (LOOCV) error (MacKay,
1992a; Christopher, 2006). Building the reduced-order model
and critically evaluating its reliability and robustness completes
the first step of the two-step protocol. It should be noted that
this is intended to be performed only once for a given class
of materials.

Estimating Intrinsic Material Properties
From Indentation Measurements
For the second step of the protocol, our goal is to employ
the reduced-order model built in the first step together with
indentation measurements obtained from a given sample to
estimate its intrinsic material properties. Let

{

Pexp, Gexp

}

denote
such experimental measurements. The posterior distribution for
the intrinsic material properties can be sampled from yet another
application of the Bayes’ rule as

p(c|A,Pexp,Gexp,σ )∝p
(

Pexp

∣

∣A,c,Gexp, σ
)

p(c) (12)

where A denotes the parameters in the reduced-order model
built in the first step. Although point estimates can be obtained
by maximizing the likelihood in Equation (12), in the spirit
of building a robust framework capable of accounting for
various sources of uncertainty, we have decided to pursue
the computation of the posterior distribution on the intrinsic
material properties through sampling techniques. In order to
sample from the posterior distribution defined in Equation (12),
we need to establish the likelihood of the set of experimental
observations. A likelihood can be constructed by assuming that
the experimental observations (i.e., data points) are independent
and normally distributed, i.e., the experimental data points
are observations drawn from normal distributions with means
estimated by the reduced ordermodel and variances, σ , estimated
from the experimental data of themeasured indentation property
at M grain orientations (Fisher and Renken, 1964; Box, 1973;
Bates and Campbell, 2001; Ferraioli et al., 2012). This likelihood
is expressed as

p
(

Pexp

∣

∣A,c,Gexp, σ
)

=
M
∏

i

N (Piexp |P̂(A,c,g iexp ),σi) (13)

The evaluation of the likelihood described in Equation (13)
is performed using the reduced-order model, P̂(A,c,g), built
in the first step of the two-step protocol. In this work, the
sampling from the posterior distribution of intrinsic material
parameters [Equation (12)] is accomplished using a Monte
Carlo Markov Chain (MCMC). The goal of MCMC is to
generate a Markov Chain which indirectly samples from the
posterior distribution of interest as long as the number of
samples drawn is very large. The Markov Chain is generated by
the acceptance and rejection of a large number of transitions
through the space of intrinsic material parameters based on an
acceptance probability. In practice, a class of algorithms have

been developed in order to define these transitions and are
referred as Metropolis-Hastings algorithms (Gelman, 2004). In
this work, Single Component Metropolis Hastings (SCMH) is
applied, which considers component wise transitions (Haario
et al., 2005). In the algorithm below for a given step t, partial
updates are performed for the sample ct for each component j
until all components are updated.

The basic steps for the implementation of the SCMH
algorithm are as follows:

1. Initialize a starting point, c0, using the best
available information

2. Sample transition, c∗, from a proposal distribution qj(∗) for
an update of component j. If t is a new step, initialize ct= ct−1

where ct will be subjected to partial updates (one component
at a time). Mathematically, one can express this as

c∗ ∼ qj (c|ct)
where qj(∗) proposes c∗ differing from ct in component

j, sampled from a normal distribution with mean c
j
t and

variance v2j

cj
∗ ∼ N

(

cj|cjt , v2j
)

3. Calculate the acceptance probability of transition, α(∗)
α(c∗|ct) = min(1,

p(c∗|A,Pexp ,Gexp ,σ)qj(ct|c∗)
p(ct|A,Pexp,Gexp,σ)qj(c

∗|ct) )

= min(1,
p(Pexp|A,c∗ ,Gexp,σ)p(c∗)
p(Pexp|A,ct ,Gexp,σ)p(ct)

)

4. Update Chain (accept/reject proposed transition)

a. Draw a sample, r, from a standard uniform distribution
b. If α > r

ct = c∗

5. Repeat steps (2–4) until all components of ct are updated, then
proceed to a new step.

While the probability of a proposed transition is described
by the proposal distribution qj(

∗), the probability of accepting
the transition is given by α(∗). By assuming a flat prior for
p(c), the acceptance probability of a proposed transition is
completely specified by the posterior probability of the states
evaluated within a normalizing constant using Equation (13)
(Chib and Greenberg, 1995; Gelman, 2004). The variances of
the proposal distributions v2j are tuned during the “burn-in”

period in order to meet an acceptance rate around ∼0.23.
Ensuring the acceptance rate lies around 0.23 has been shown
to provide efficient convergence of the Markov chain for
gaussian posteriors (Roberts et al., 1997). All of the computations
described above were realized using functions readily available in
MATLAB (2016).

CASE STUDY: CUBIC POLYCRYSTALS

Problem Statement
For our first case study, we revisit the extraction of the single
crystal elastic constants {C11,C12,C44} of the bcc metal Fe 3%-
Si, which was previously attempted using standard regression
techniques. In the previous study (Huan and Marzouk, 2013), a
total of 2,286 simulations were needed to establish a high-fidelity
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reduced-order model in the first step of the two-step protocol.
The simulated database consisted of the indentation modulus
corresponding to 300 distinct sets of cubic stiffness constants
within the domain 50 GPa ≤ C11 ≤ 250 GPa, 40 GPa ≤ C12 ≤
150 GPa, and 15 GPa ≤ C44 ≤ 120 GPa across 9 orientations
selected within the fundamental zone of the relevant orientation
space (Patel et al., 2014). We note, these ranges encompass a
vast number of cubic metals (Simmons, 1971). It is anticipated
that the proposed Bayesian framework will need significantly less
number of FE simulations to adequately capture the FE predicted
indentationmodulus within the same parameter space in a robust
reduced-order model.

Model Building Process
The Bayesian model building process enables sequential design
strategies through the identification of high value simulations
which will best improve the predictive capability of the model.
Since a database of simulations is already available, simulations
are treated as “unseen” and are sampled based on the determined
utility of performing the simulation. Before beginning the
sequential design process, an initial set of simulations must be
performed to establish an initial model.

For the present study, a set of 123 FE simulations were
selected from the previously performed 2,286 simulations as
this initial set. This initial set was selected to correspond to the
boundaries of the intrinsic material parameter space. Following
initialization, the reduced-order model in Equation (1) was
considered with different truncation levels of L = 8, 10, 12
for the symmetrized Surface spherical harmonics (differently
shaped symbols in Figure 1) and Q = 1, 2, 3 for the maximal
degree of the respective Legendre Polynomials (Bunge, 1993)
(different colors of symbols in Figure 1). The truncation levels
of the reduced-order model can be treated as hyperparameters,
and must be selected so that we produce the most robust and
accurate reduced-order models. Leave-one-out-cross-validation
(LOOCV) was performed at various times during the update
process and plotted in Figure 1 for the different truncation
levels considered.

There is clear improvement in cross validation error up to
truncations levels Q = 2, L = 10, with little improvement for
higher truncation levels. The plots in this figure also provide
guidance on where to stop the model building effort (i.e., when
there is no appreciable improvement in the accuracy of the
reduced-order model being built). In addition to the LOOCV,
the norm of the vector of model coefficients at each update step
(see Figure 2B) and the angular difference of the vector of model
coefficients from the previous update step (see Figure 2A) were
taken into consideration in determining when to stop the model
building effort. Based on these considerations (see Figures 1,
2A,B) it was decided to stop the model building effort after using
300 training points (this includes the set of 123 training point
used for initialization). The predictive accuracy of the reduced-
order model for the remaining FE simulations (i.e., 2,286–300
= 1,986) is presented in Figure 3 as a parity plot. The resulting
mean absolute prediction error of the reduced-order model was
found to be 2.16 GPa (see Figure 3) while the LOOCV error
was found to be 2.22 GPa (see Figure 1). This is comparable

FIGURE 1 | Cross validation error of the reduced-order model built in the first

step of the two-step protocol for different truncation levels in Equation (1). The

dashed line indicates 300 training points.

to previous efforts based on standard regression techniques and
utilizing the full database of 2,286 FE simulations, where the
LOOCV error was reported to be in the range of 2–2.5 GPa
(Patel et al., 2014).

Extracting Intrinsic Material Parameters
At any point during the model building process, the Bayesian
framework presented in section Building the Reduced-Order
Model can be used to sample the posterior distribution on
the material parameters via the MCMC approach. In order to
accomplish this second step of the proposed framework, one
needs to evaluate the likelihood function [see Equation (13)];
this requires the use of the reduced-order model obtained in
step (1) as well as the relevant experimental indentation data.
The reduced-order model with truncations Q = 2, L = 10
obtained after using 300 training points (described in section
Model Building Process) was selected for this example case
study. Experimental data, including the mean and associated
variance of measured indentation moduli, were previously
reported for 11 different grains in a polycrystalline sample of
Fe 3%-Si (Pathak et al., 2009). Using the MCMC procedure
described in section Estimating Intrinsic Material Properties
from Indentation Measurements, 50,000 samples were drawn.
The resulting multivariate distribution is shown in Figure 4 as
three univariate distributions.

To recap, in Step (1) of the protocol used a minimal number
of finite element simulations to establish a high fidelity reduced-
order model. Using experimental data previously reported,
(Pathak et al., 2009) the established reduced-order model was
used to sample the distribution of elastic constants in Step (2) of
the protocol. The distributions for the parameters extracted here
are in very good agreement with the literature values. Estimates
of the elastic constants from the current study, typical values
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FIGURE 2 | (A) Variation in the angular change in the vector of model coefficients between model update steps. (B) Variation in the magnitude of the vector of model

coefficients during the model building process.

FIGURE 3 | Predictions for the 1986 FE simulated indentation moduli not used

in the training of the reduced-order model. A single standard deviation from

the predicted mean is also shown in the plot for each prediction.

reported from literature (Simmons, 1971), and estimates reported
from the previous study based on ordinary regression (on the
full set of 2,286 FE simulations) (Patel et al., 2014) are shown
in Table 1.

It is emphasized that the previous study did not attempt any
form of uncertainty quantification with respect to these estimates.
It is important to note that the highest relative uncertainty
in the present study was associated with the estimation of
C44, which deviated the most from the reported literature
values. Since the literature values seldom report the associated
uncertainty, it is very difficult to identify the source of the small
disagreement between the C44 values extracted here from the
indentation measurements and the literature values obtained
using completely different techniques. This small difference could
be attributed to the experimental measurement errors (in both
the indentation protocols employed here as well as the more
conventional measurement protocols employed in literature).
We further note that it should be possible to further refine
the methodology presented here [i.e., Step (2) of the protocol]
to identify specific additional grain orientations for indentation
measurements that might improve specifically the estimates of
C44 by reducing its variance. Such refinements will be pursued
in future work.
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FIGURE 4 | MCMC sampling of the multi-variate posterior distribution of the three intrinsic elastic constants for Fe 3% Si.

TABLE 1 | Comparison of reported estimates for single crystal elastic constants of

the bcc-metal, Fe-3%-Si. All units are in GPa.

C11 C12 C44

Literaturea 225 135 124

Previous studyb 216 132 122

Current study 223 132 114

aSimmons (1971), bPatel et al. (2014).

CASE STUDY:
HEXAGONAL POLYCRYSTALS

Problem Statement
In order to demonstrate the versatility of the proposed
framework, attention is now turned to the extraction of the
elastic constants, c = {C11,C12,C44,C33,C13}, for the hcp
metal CP-Ti (commercially pure titanium) (Simmons, 1971).
Unlike the previous case study, a database of previously
performed FE simulations was not readily available for this case
study. Therefore, FE simulations were designed and performed
specifically for this study as demanded by the Bayesian inference
framework in the Step (1) of the protocol.

The FE model used for this study is the previously validated
Finite Element model (Patel et al., 2014) developed using the
commercial software ABAQUS (ABAQUS, 2014). The sample
mesh consisted of 12,610 C3D8 continuum 3-D elements and
is shown in Figure 5. The simulated indents were performed
using an analytically defined rigid indenter with a tip radius
of 16µm, consistent with the size used in the experiments
on single crystal CP alpha-Ti grains reported in literature
(Weaver et al., 2016). The dimensions of the sample mesh were
taken as 9.6 × 9.6 × 4.8µm. The FE model was validated
by comparing simulated indentation moduli to the theoretical
values reported by Vlassak and Nix (1994) for zinc single crystals
c = {161.1, 34.2, 38.3, 61.1, 50.3} GPa as shown in Figure 5.
The comparisons confirm the linear relationship between the

indentation load (P) and the elastic indentation depth (h-e) raised
to a power of 3/2 for hcp single crystals, as predicted by Vlassak
and Nix (1994) (note that the original Hertz theory Hertz, 1896
is restricted to isotropic materials).

For building the reduced-order model (Step 1 of the protocol),
we need to identify the specific ranges of the intrinsic material
properties of interest. For this study, the bounds of the ranges
for the single crystal elastic constants were taken as 80 GPa ≤
C11 ≤ 240 GPa, 40 GPa ≤ C12 ≤ 120 GPa, 30 GPa ≤
C44 ≤ 90 GPa, 70 GPa ≤ C33 ≤ 210 GPa, and 40 GPa ≤
C13 ≤ 90 GPa; these were chosen to encompass a large number
of hcp metals of future interest to our research (Priddy, 2016).
The transverse elastic isotropy of the hcp symmetry implies
that the elastic indentation response is dependent solely on the
declination angle (8) between the indenter axis and c-axis of the
hcp crystal. Therefore, one only needs to explore the orientation
space defined by 0 ≤ 8 ≤ π

2 radians. Our goal will be to
employ the sequential design strategy once again to efficiently
explore the multi-dimensional parameter space identified above
in establishing a reliable and robust reduced-order model for
the FE indentation simulations over the entire parameter space
of interest.

Model Building Process
As with the previous case study, the truncation parameters (Q, L)
are important hyper-parameters in the model building process.
Since, these are not known a priori, we need to build reduced-
order models with different values of these hyper-parameters and
make suitable selections. The basic strategy employed here as
follows: (1) Reduced-order models with lower truncation levels
are initially established, (2) the truncation level is increased
systematically if the performance of the established reduced-
order model is deemed inadequate, and (3) the model building
process is stopped when either the accuracy of the reduced-order
model is deemed adequate or when the improvements in the
accuracy were deemed insignificant. The LOOCV errors obtained
from this process for the different truncations levels are depicted
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FIGURE 5 | (A) Mesh used for Finite Element simulations. (B) Finite element simulated plots of P vs. h-e3/2 for zinc single crystals. (C) Comparison of Theoretical and

FE simulated indentation moduli values reported for zinc single crystals.

FIGURE 6 | Cross validation error of the reduced-order models built in the first

step of the two-step protocol for different truncation levels of Equation (1) for

hcp crystals.

in Figure 6. A set of 760 simulations were used as the initial set
for all of thesemodel-building exercises. This number was chosen
to be slighter larger than the number of terms in the expansion of
Equation (1) for the case (Q = 2, L = 4), which results in a total
of 729 terms in the expansion. This initial set was identified using
a Latin hypercube design (LHD) (McKay et al., 2000) across the 6
dimensional parameter space { C11,C12,C44,C33,C13,8}.

Following the initialization, additional simulations were
chosen based on a screening of the highest uncertainty across
a denser LHD of 2,440 sets of inputs (total of 3,200 design
points including the initialization set). The LOOCV error for the
various truncation levels appears to decrease for all cases as data
is added with slight increase for the truncations (Q = 3, L = 4,
6) after 2,200 data points, which given the small changes (<0.3

GPa) is attributed to noise. It is apparent from Figure 6 that the
truncation level combination (Q = 2, L = 4) outperforms others
throughout the model building process. The good accuracy of the
reduced-order model built for this case study becomes apparent
after about 2,200 FE simulations, exhibiting a LOOCV error of
1.3 GPa as seen from Figures 6, 7.

In order to generate a validation set, the selection process was
continued to generate another set of 600 FE simulations. We
argue that this approach is likely one of the best strategies for
building validation sets, as the elements of the validation set are
selected based on the highest values of the prediction uncertainty.
The prediction errors for the validation set of 600 FE simulations
using the reduced-order model built with the training set of 2,200
FE simulations are shown in Figure 8. This comparison yields a
mean absolute error of 1.2 GPa.

It is important to recognize that the parameter space was
purposefully chosen to be applicable to many hcp metals
of future interest to our research (Priddy, 2016). Predictions
are very good over the chosen parameter space as shown
in Figure 8. Therefore, within the defined parameter space,
future extraction efforts would no longer necessitate the
generation of a new model. Furthermore, there is little
value in performing additional simulations within the defined
parameter space to attempt to significantly improve the
reduced-order model. The convergence of the associated model
parameters in Figure 7 provides evidence that the reduced-order
model is unlikely change drastically with the introduction of
new simulations.

It should be noted that the significantly larger training set
needed for this case study compared to the previous case study
can be attributed to the following reasons: (i) the present
case study involved a six-dimensional input space whereas the
previous one involved a five-dimensional input space, (ii) the
range of values for each input in this case study were selected
to be significantly larger than the previous one, and (iii) the
degree of elastic anisotropy and contrast captured in this case
study is significantly larger compared to the previous case study.
The degree of single crystal elastic anisotropy, can be quantified
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FIGURE 7 | (A) Variation in the angular change in the vector of model coefficients between model update steps. (B) Variation in the magnitude of the vector of model

coefficients during the model building process.

FIGURE 8 | Predictions for the validation set of 600 FE simulations generated

from sequential design process using reduced order model with truncations

Q = 2, L = 4.

by the universal elastic anisotropic index, A, (Ranganathan and
Ostoja-Starzewski, 2008; de Jong et al., 2015) defined as

A = 5
Gv

Gr
+ Kv

Kr
(14)

where K and G are the bulk and shear moduli provided by
Voigt and Reuss estimates (indicated by subscript v and r,
respectively) of a macroscopically homogenous polycrystalline
material with uniform texture (Hill, 1952). Amaximum universal
elastic anisotropic index of 7.2 was noted for the earlier cubic case
study discussed in this paper, compared to 66.2 encountered in
the current hcp case study. It is therefore quite reasonable that
the number of training data points needed is significantly higher.

Extracting Intrinsic Material Parameters
The focus is now turned to the sampling of the posterior
distribution of the elastic constants, c = {C11,C12,C44,C33,C13} ,
via MCMC. Similar to the previous case study, in order to
sample from the posterior distribution of the intrinsic material
parameters, the likelihood function in Equation (13) must
be computed using the available experimental data and the
reduced-order model established in Step (1) (corresponding
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FIGURE 9 | MCMC sampling of the posterior distribution for the intrinsic single crystal elastic constants of CP-Ti.

FIGURE 10 | (Left) Reduced-order model evaluations of the Markov Chain (MCMC) at selected points across the orientation space compared to available

experimental data. (Right) The resulting distributions of the evaluations using the reduced order model.

to truncation levels Q = 2, L = 4 using a training set of
2,200 FE simulation data points). The experimental data for
this case study was obtained from a prior openly shared
dataset (Weaver et al., 2016). This data set included indentation
moduli for 50 different crystal orientations on a CP-Ti
sample. Following the procedure described in section Estimating
Intrinsic Material Properties from Indentation Measurements,
50,000 samples were drawn using the MCMC approach. The
resulting posterior distributions are shown in Figure 9 for
each of the five intrinsic hcp elastic stiffness parameters. The
maximum-a-posteriori (MAP) estimates, the mean values, and
the standard deviations of the distribution are reported as a
table in the same figure. The reported mean values for elastic
constants were found to be {155, 89, 49, 174, 55} GPa for
{C11,C12,C44,C33,C13}, respectively. Typical literature values
reported are {162, 92, 47, 180, 69} GPa (Fisher and Renken,

1964). With the exception of C13, the extracted intrinsic stiffness
parameters show good agreement with values reported in
literature (mean values are within 5%). It is also interesting to
note that the extracted distribution for C13 exhibits the highest
relative uncertainty.

This indicates the relative low sensitivity of the indentation
modulus to changes in C13, when compared to the other
elastic stiffness constants. As noted in the previous case
study, it should be possible to extend the framework
presented here to focus exclusively on improving the
estimation of C13 (Huan and Marzouk, 2013). However,
such an effort could only be justified after the uncertainty
in the literature reported values is rigorously quantified.
The variance in the predictions of the surrogate model at
selected orientations is compared with the experimental data
in Figure 10.
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Evaluations of the reduced-order model at various
orientations using samples from the posterior distributions
of the elastic constants provides the possible mean indentation
moduli for the observed experimental indentation moduli, as
described in section Estimating Intrinsic Material Properties
from Indentation Measurements. Since the reduced-order model
coupled with a sampled set of elastic moduli from the posterior
distribution of elastic constants provides the respective mean
indentation modulus as a function of orientation, the predictions
should be more tightly packed in regions which there are more
observations, reflecting a higher certainty of the mean. The
prediction uncertainty from MCMC is in fact shown to be
highest at low declination angles, while uncertainty is lowest
at high declination angles where relatively much more data is
available. Furthermore, this observation suggests that there is
much more value in conducting additional tests at the lower
declination angles, specifically in the range of 0–0.2 radians,
compared to conducting them at the higher declination angles.
This could be highly valuable input to the experimentalists for
their future studies.

CONCLUSIONS

A statistical framework has been presented for the robust
extraction of the intrinsic material parameters from available
experimental observations from spherical indentation stress-
strain protocols. The two-step Bayesian inference framework
enables the specification of uncertainty in the measurement data,
which is then transferred to the uncertainty in the values of
the extracted intrinsic material properties. Most importantly, the
new framework presented in this paper demonstrates potential
for significantly speeding up the materials characterization
effort by focusing on experiments that are likely to deliver the
maximum value in establishing the desired properties. This is
accomplished by employing a numerical model of the experiment
itself (here accomplished using a finite element model). Although
the numerical model can be very expensive, it is only needed
for a one-time effort is establishing a reduced-order model (Step

(1) of the proposed two-step protocol). Once the reduced-order
model is established, the calibration of the available experimental
data to the theory (Step (2) of the proposed two-step protocol)
can be accomplished with minimal computational resources. The
versatility and the robustness of the proposed new framework
is demonstrated with two case studies: (i) extraction of three
elastic constants for Fe-3%-Si, and (ii) extraction of the five elastic
constants for CP-Ti. In both case studies, the ranges of intrinsic
material parameters considered covers a significant number of
polycrystalline hcp and cubic metals. This makes both models
highly applicable to new case studies within the material classes.
For material classes outside of the classes explored here, the
main challenge is indeed Step (1) of the protocol, requiring
the establishment of a high fidelity reduced-order model from
suitable FE simulations, while Step (2) remains the same. In
the event the extracted parameters in Step (2) fall outside of
the extents of the databases used to construct the reduced-order
model, additional simulations considering the new bounds would
become necessary. Finally the use of a Bayesian framework opens
new avenues for the development of autonomous (fully guided
by the computer) scientific explorations. It is anticipated that the
framework is extensible to a large number of other applications
in multiscale materials modeling (e.g., extraction of the values
of slip resistances from indentation measurements, extraction of
the values of parameters in phase-field models based on available
microstructure datasets).
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Micromechanical modeling of material behavior has become an accepted approach

to describe the macroscopic mechanical properties of polycrystalline materials in

a microstructure-sensitive way. The microstructure is modeled by a representative

volume element (RVE), and the anisotropic mechanical behavior of individual grains is

described by a crystal plasticity model. Such micromechanical models are subjected

to mechanical loads in a finite element (FE) simulation and their macroscopic behavior is

obtained from a homogenization procedure. However, suchmicromechanical simulations

with a discrete representation of the material microstructure are computationally very

expensive, in particular when conducted for 3D models, such that it is prohibitive to

apply them for process simulations of macroscopic components. In this work, we

suggest a new approach to develop microstructure-sensitive, yet flexible and numerically

efficient macroscopic material models by using micromechanical simulations for training

Machine Learning (ML) algorithms to capture the mechanical response of various

microstructures under different loads. In this way, the trained ML algorithms represent

a new macroscopic constitutive relation, which is demonstrated here for the case of

damage modeling. In a second application of the combination of ML algorithms and

micromechanical modeling, a proof of concept is presented for the application of trained

ML algorithms for microstructure design with respect to desired mechanical properties.

The input data consist of different stress-strain curves obtained from micromechanical

simulations of uniaxial testing of a wide range of microstructures. The trained ML

algorithm is then used to suggest grain size distributions, grain morphologies and

crystallographic textures, which yield the desired mechanical response for a given

application. For validation purposes, the resulting grain microstructure parameters are

used to generate RVEs, accordingly and the macroscopic stress-strain curves for

those microstructures are calculated and compared with the target quantities. The two

examples presented in this work, demonstrate clearly that ML methods can be trained

by micromechanical simulations, which capture material behavior and its relation to
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microstructural mechanisms in a physically sound way. Since the quality of the ML

algorithms is only as good as that of the micromechanical model, it is essential to validate

these models properly. Furthermore, this approach allows a hybridization of experimental

and numerical data.

Keywords: machine learning, micromechanical modeling, crystal plasticity, damage, homogenization,

microstructure design

1. INTRODUCTION

Most of the processes that happen in nature are too complex to
analyze, have too many independent parameters, and sometimes
even the interrelation between parameters is unknown. In
materials science, Machine Learning (ML) techniques such as
Support Vector regression (SVR) (Swaddiwudhipong et al., 2005;
Owolabi et al., 2014, 2015), linear regression models (Cheng
et al., 2017) and Neural Networks (Ihom and Offiong, 2015)
are becoming more and more important to describe complex
phenomena for which the governing principle is not known or
the proper implementation of which is too tedious and prone
to errors. Among others, ML techniques have also been used
in the field of material science to predict material properties
(Swaddiwudhipong et al., 2005; Lin et al., 2008; Versino et al.,
2017), characterize microstructure (Lubbers et al., 2017; Gola
et al., 2018) and even to design better and efficient materials (Liu
et al., 2015). A vast amount of applications of ML methods in
materials science lies in the area of microstructure classification.
However, it is beyond the scope of this article to provide a
comprehensive literature overview on this topic.

A number of strategies have been proposed in the literature for
the prediction of different material properties. Swaddiwudhipong
et al. used least square support vector machines (LS-SVMs) to
relate load displacement curves from indentation directly to the
elastic modulus and yield stress of materials obeying power law
hardening. They used data from a simulation of indentation
of different geometries in ABAQUS (Swaddiwudhipong et al.,
2005). They were able to validate their predicted material
parameters against the actual material values based on uniaxial
tests to a reasonably good accuracy. Lin et al. used Artificial
Neural Network (ANN) to predict the flow stress dependence
on temperature, strain and log strain rates of 42CrMo steel by
training on experimental data (Lin et al., 2008). They used a
feed-forward network with back propagation learning algorithm
which showed good agreement with the experimental values. ML
techniques are also gainingmore importance in the field of crystal
plasticity and microstructural modeling. Mangal and Holm
investigated the formation of stress hotspots in polycrystalline
materials (Mangal and Holm, 2018) under uniaxial tensile
deformation by integrating full field crystal plasticity based
deformation models and ML techniques. They used synthetic 3D
microstructures and a number of crystallographic and geometric
factors are defined to describe the relevant features. It has been
found that the Schmid factor, equivalent diameters of the grains,
distance from the inverse pole figure and average misorientations
are the top most influencing factors. They showed that Random
Forest models can predict stress hotspots with receiving an

operating characteristic curve (ROC-AUC) metric equal to
0.7403 in FCC material.

In the recent years, ML has gained significant interest in the
mechanics ofmaterials community. In this context, finite element
(FE) simulations provide a powerful tool for understanding
deformation and damage mechanisms, because they yield insight
into local stresses and strains within components under complex
loading states, where experiment can merely assess the global
component behavior. The combination with data-driven ML
techniques enables further applications of numerical modeling,
in particular the efficient use of inverse methods for model
parameter identification. In 2006, Tyulyukovskiy and Huber
used neural networks trained by FE simulations of spherical
indentation with a variety of material parameters to solve
the inverse problem of identifying material parameters from
experimental load-indentation measurements (Tyulyukovskiy
and Huber, 2006). Artificial neural networks were also used
by Abbassi et al. (2013) to calibrate parameter sets of
the Gurson-Tvergaard-Needleman model to describe ductile
damage behavior during sheet forming (Abbassi et al., 2013).
Furthermore, Collins et al. used neural networks to approximate
the yield and ultimate tensile strength as a function of
microstructural properties (such as phase volume fractions)
(Collins et al., 2012). The hole drilling method is widely used
to determine residual stresses in a component. However, the
method has its limitations because the evaluation methods are
typically based on the assumption of linear elastic material
behavior. To overcome this limitation, Chupakhin et al.
developed a method to correct the stress analysis for effects
of plastic deformation, and hence to increase the range of
applicability of the hole drilling method (Chupakhin et al., 2017).

Phenomenological models formulated in a mathematically
closed form as analytical functions are currently the state of the
art for computationally modeling of ductile damage behavior on
themacro- as well as on themicro-scale. To create an appropriate
estimation of specific material behavior, damage evolution
has to be described by appropriate constitutive relationships.
For bridging material behavior from the microscopic to the
macroscopic scale, a micromechanical modeling approach
explicitly considering microstructural features, becomes an
appealing solution. One benefit of this modeling technique is
the possibility to derive microstructure-property relationships
through microstructure-based simulations. However, using FE
simulations to describe a macroscopic process (such as deep
drawing or sheet bending) by explicitly considering the
microstructure, is computationally prohibitive. One common
multiscale approach is the FE2 method which combines the
micro- and the macroscale, and therefore enables one to include
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microstructural information into a macroscopic model (see
El Halabi et al., 2013 and Schröder, 2014). Another approach is
based on the response surfaces method which has been applied
in the literature for the numerical homogenisation of non-
linear porous materials (Beluch and Hatlas, 2019). At the same
time, adding microstructural information directly into current
analytical damage models seems to be overly complex. Hence,
different homogenization approaches to map damage from the
micro- to the macro-scale are required to bring microstructural
information into macroscopic simulations. To accomplish this, a
novel approach using an ML based framework is suggested here
and compared to the well-established analytical damage model
proposed by Chaboche (see Chaboche, 1988; Ambroziak, 2007).

With the emergence of ML in the materials research
during the last years, another application of ML has been
to design microstructures that meet targeted mechanical
properties. To fulfill this challenging goal, a set of
microstructure-property relationships must be used in terms
of training data. Therefore, another clear application of a
micromechanical modeling approach is to use results from
microstructure simulations as training data for ML models for
microstructure design.

In a second application (cf. section 5) microstructure-based
simulations are used to create training data for ML models that
are able to predict microstructural properties to a given flow
curve. The input of these trained ML models is the flow curve
and the output is the grain size of the microstructure. In this
part, microstructure models with various grain size distribution
parameters are simulated by using a nonlocal crystal plasticity
model, and they are homogenized to obtain the flow cures.
Simulation results are fed to selected ML models in terms of
training data.

This paper is structured as follows: First, the FE simulation
model and the crystal plasticity material model are explained
in section 2, which also includes the homogenization method
of the simulation data. In section 3, the ML algorithms (SVR
and Random Forest regression (RFR)) are described. Afterwards,
the two applications of the ML algorithm discussed in this
publication are given. In section 4, the approach to homogenize
damage from the micro- to the macroscale is given, and the
prediction of microstructural features from the flow curve
is presented in section 5. Finally, the conclusion is given
in section 6.

2. MATERIAL MODELING

In this section, the basic framework of micromechanical
modeling is detailed. The described model consists of a
geometrical description of the grain structure of a polycrystal
with equiaxed grains. This microstructure model is generated
with a so-called dynamic microstructure generator (DMG)
(Boeff, 2016) based on particle simulation to distribute the
centers for a subsequent radical Voronoi tessellation. The
constitutive modeling of plastic deformation in the individual
grains is carried out with a crystal plasticity method implemented
as user-defined material model (UMAT) for ABAQUS. The data

set consists of finite element (FE) simulations on the micro-scale
for the homogenization of damage as well as of plastic properties.

2.1. Representative Volume Element
For the investigation in both applications, quasi-2D
representative volume elements (RVEs) were generated using the
DMG, which couples a particle simulation method with a radical
Voronoi tessellation algorithm (Boeff, 2016). In the first step,
the target grain size distribution is determined via a log-normal
distribution. Hence, the average grain diameter as well as the
standard deviation are required. With respect to prescribed
distribution parameters, the number and size of spheres are
predefined, which mimic the targeted grain size distribution. In
the second step, spheres are randomly distributed into a finite
volume which is larger than the intended final RVE. This finite
volume is then compressed, allowing spheres to move freely
under a repulsive potential and to avoid their overlapping. In
the third step, updated sphere positions and diameters of each
sphere from selected time steps are then fed to a radical Voronoi
tessellation algorithm from the open-source software Voro++
(Rycroft, 2009) to construct RVEs. The resulting grain size
distribution of these RVEs is then compared to the targeted grain
size distribution, and the RVE with the minimum difference
is selected accordingly. It must be noted that the shape of the
RVE, generated using DMG, is rugged to leave the grain intact
and to improve the mesh quality. In the forth step, to create the
RVE for the microstructure simulations, the geometry of the
2D RVE is extruded for 1% of a side length of RVE and meshed
with eight-nodes-linear-brick elements (C3D8) by using CUBIT
(Sandia National Laboratories, 2016).

In the final step, periodic boundary conditions, following an
approach introduced by Smit et al. (1998), are applied to the RVE.
Further details on the implementation are described in Kulosa
et al. (2017). The basic idea of this approach is that opposite
nodes are coupled such that their displacements are the same.
The global boundary conditions and strain are imposed to the
reference vertex points V1, V2, V4, and H1, which are located at
the corners of the RVE. An example of an RVE generated by using
the introduced method is illustrated in Figure 1. Furthermore,
comparison of diameter distribution between defined seed
spheres and constructed RVEs with an average grain size µ of
6.0 µm and a standard deviation σ of 1.0 µm, and an average
grain size µ of 13.0 µm and a standard deviation σ of 1.0 µm are
illustrated in Figures 1C,D, respectively. From the comparison,
grain size distributions of both RVEs are in good agreement with
the targeted size distributions. In the next section, the crystal
plasticity-based material model is described.

2.2. Crystal Plasticity Model
The material behavior of the FE simulation is described by a
phenomenologically based crystal plasticity model. To resolve
the heterogeneous deformation resulting from abrupt changes in
mechanical behavior across grain boundaries of the considered
polycrystal and to consider size effects between small and
large grains, a nonlocal crystal plasticity model proposed by
Ma and Hartmaier (2014) is implemented. As the applied
nonlocal crystal plasticity model is already described in Ma and
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FIGURE 1 | (A) Quasi-2D RVE with vertex nodes (V1, V2, V4, H1) needed for the boundary conditions (see section 2.3.3); RVE with a mean grain size of 59µm and a

standard deviation of 10µm contains 51 grains between 40 and 90µm, has a side length of 348.8µm and a thickness of 1.7µm and is used as model for the damage

evolution (cf. section 4). (B) Loading cases applied to the RVE used for the prediction the damage evolution in section 4. Comparisons of diameter distribution

between defined spheres and constructed RVEs with (C) average grain size µ of 6.0 µm and standard deviation σ of 1.0 µm, and (D) average grain size µ of 13.0

µm and standard deviation σ of 1.0 µm.

Hartmaier (2014), only an overview of the formulation is given.
For further details on the non-local flow rule, the reader is
kindly referred to Ma and Hartmaier (2014). In the following,
quantities written in bold letters refer to vectors (small letters)
and matrices of second rank tensors (capital letters). From the
kinematics of deformation, the total deformation gradient F

can be multiplicatively decomposed into the elastic deformation
gradient Fe and the plastic deformation gradient Fp,

F = FeFp. (1)

The elastic deformation is calculated using the Hooke’s law.
The plastic deformation is characterized by the plastic velocity
gradient Lp, which is a function of the plastic deformation
gradient Fp and its rate as,

Lp = ḞpFp-1. (2)

For this study, a crystallographic slip of dislocations is defined as
the only mechanism for plastic deformation. Thus, Lp is taken as
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the sum of the shear rates of all slip systems,

Lp =
N
∑

α=1

γ̇αMα . (3)

Here, γ̇α is the plastic shear rate. Mα = dα ⊗ nα is the Schmid
tensor for slip system α, which is defined by the slip direction dα

and the slip plane normal nα . The symbol ⊗ denotes the dyadic
product of two vectors resulting in a second rank tensor. The total
number of slip systems is N.

With respect to the nonlocal crystal plasticity model proposed
byMa and Hartmaier (2014), the flow rule and the hardening law
can be expressed as:

γ̇α = γ̇0

∣

∣

∣

∣

∣

τα + τ̂GNDkα

τ̂α + τ̂GNDiα

∣

∣

∣

∣

∣

p1

sgn(τα + τ̂GNDkα ), (4)

and,

˙̂τα =
N
∑

β=1

h0χαβ

(

1− τ̂α

τ̂sat

)p2
∣

∣γ̇β

∣

∣ , (5)

where, γ̇0 is the reference shear rate, and p1 is the inverse value
of the strain rate sensitivity. Furthermore, h0 is the reference
hardening parameter, χαβ is the cross hardening matrix, which
is assigned as 1.0 for coplanar slip systems and 1.4 otherwise,τ̂sat
is the saturation slip resistance, and p2 is a fitting parameter. The
initial value of the slip resistance τ̂α is defined as τ̂0, and sgn() is
a mathematical function that extracts the sign of a real number.
The resolved shear stress τα for each slip system can be calculated
from the stress Sα in the intermediate configuration or the state
involving only the plastic deformation gradient Fp as,

τα = Sα :Mα . (6)

The flow rule in Equation (4) consists of two additional back
stresses τ̂GNDkα and τ̂GNDiα describing the hardening contributions
from geometrically necessary dislocations (GNDs) (Ma and
Hartmaier, 2014). The nonlocal constitutive model, in this
context, is derived from the concept of super GNDs densities
and incorporates the plastic strain gradient. Within a continuum
mechanical approach, it is not possible to define crystallographic
GND based on the Nye tensor in a unique way. To capture
the internal stresses resulting from GND, the concept of super
dislocations is followed, which allows us to define the dislocation
Burgers vectors and line directions uniquely (Ma and Hartmaier,
2014). This hardening from plastic strain gradients is split up into
an isotropic hardening part τ̂GNDiα and a kinematic hardening
part τ̂GNDkα .

The second rank dislocation density tensor G in the reference
configuration is computed from the curl of Fp as introduced by
Nye (1953),

Gij = −F
p
ik,l

1jk,l, (7)

where1jkl is the third rank permutation tensor and “l” represents
the derivative with respect to the cartesian coordinate “l”. It must

be noted that in Equation (7) the dislocation density tensor is
written in index notation (G = Gij). Since a reconstruction
of meaningful crystallographic dislocation populations in a
unique way is impossible, a unique definition of super GNDs is
obtained by projecting the dislocation density tensor to the global
Cartesian coordinates of the system. As a result, the stress fields of
the crystallographic GNDs can be described with a good accuracy
(Ma and Hartmaier, 2014), and the GND density tensor can be
segmented into nine independent parts ρ̄α by evaluating,

9
∑

α=1

ραdα ⊗ tα = 1

b
G, (8)

where dα and tα are permutations of the Cartesian unit vectors as
determined in Ma and Hartmaier (2014), and b is the magnitude
of the crystallographic Burgers vector. The super GND densities
for α = 1, 2, 3 represent screw-type superdislocations, while the
remaining 6 components represent edge-type superdislocations,
which are vital for determining the internal stress fields as a
consequence of the super GNDs.

The isotropic hardening for the dislocation slip contributed by
these super GNDs can be expressed using a Taylor-type equation,

τ̂GNDiα = c1µb

√

√

√

√

9
∑

β=1

χGND
αβ

∣

∣ρβ

∣

∣. (9)

Here, c1 is the Taylor hardening coefficient or a geometrical
factor [38], and µ is the shear modulus. χGND

αβ is the cross
hardening matrix between crystallographic mobile dislocations
and super GNDs.

The long-range internal stresses, caused by GNDs in
dislocation pile-ups, contribute to the kinematic hardening effect.
This part is calculated by evaluating the second order gradient of
Fp, which results in a super GND gradient ρα in the form,

ρα,l =
1

b
Gjk,ldαjtαk. (10)

By evaluating these gradients within a small volume of dimension
L3, the internal stresses˜SGND in the intermediate configuration
caused by dislocation pile-ups at grain boundaries can be
calculated as explained in Ma and Hartmaier (2014). Thus, the
kinematic hardening can be given by:

τ̂GNDkα = SGND :Mα . (11)

For the FCC crystal structure, the dislocation slip on the
common crystallographic 〈110〉{111} slip systems is considered.
On the other hand, we only take the dislocation slip on the
crystallographic 〈111〉{110} slip systems into account for the case
of BCC crystal structure.

2.2.1. Damage Model
For the first application of damage homogenization using
Machine Learning (ML), a formulation to compute the local
damage is also needed in addition. This applies for the prediction
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FIGURE 2 | Local damage model for the numerical computation with p1 and

p2 being the lower and upper limit defining the start and saturation of damage.

of the damage evolution (cf. section 4). The damage of a material
can be assessed by using the damage parameter D, which is
defined as the ratio of the damaged volume to the initial volume
(cf. Lemaître, 1985) and can, therefore take values between zero
and one. The increase of damaged volume leads to a reduction
of the stiffness of the material. In general, for an ideal isotropic
and uniaxial case, the damage parameter, Dstiff, can be described
in terms of the Young’s modulus as,

Dstiff = 1− Edamage

Einitial
, (12)

where Einitial is the initial Young’s modulus and the Edamage

is the E-modulus after the damage occurred. More generally,
both quantities can be interpreted as the material stiffness
along a given loading path. In our model, the damage is
calculated numerically using a ramp function, which depends
on the equivalent plastic strain p. The equivalent plastic strain
is computed as the Frobenius norm (Gentle, 2007) as,

p =
√

2

3

∥

∥Ep
∥

∥

F
, (13)

where the subscript F indicates the Frobenuis norm, and Ep is
the plastic Green-Lagrange, strain which is computed by using
the plastic deformation gradient Fp (Haupt, 2002). The plastic
deformation gradient is computed according to Equations (2)
and (3) in section 2.2 using the plastic velocity gradient Lp, which
depends on the shear rate γ̇α and the Schmidt tensorMα . After an
initial threshold value of the plastic strain is reached locally, the
damage increases linearly with the plastic strain. Once the upper
limit of the plastic strain occurs, the damage parameter reaches
its maximum value. Locally, the damage parameter is computed
as follows,

D = p− p1

p2 − p1
for p1 ≤ p ≤ p2 , (14)

p1 and p2 are the lower limit and the upper limit. In Figure 2,
the damage model is given graphically. For values smaller than
the lower limit of the plastic strain, the damage parameter equals

zero. Hence, the damage parameter reaches its maximum value
for plastic strains higher than the upper limit, which numerically
is realized by setting the parameter close to, but not equal to, one
(Dmax = 0.999). The damage evolution is the rate of the damage
parameter. Here, the limits were chosen so that the resulting
model reaches its uniaxial tensile strength at around 10% total
strain: p1 = 0.3 and p2 = 0.5. Note that the limits were not
chosen to describe a specific alloy.

2.3. Homogenization Methods
In the previous section, the material model for the microscopic
FE simulations was described. For the ML algorithms,
homogenized values (or global values) that describe the RVE
are used. In the following, the global homogenized parameters
have the superscript RVE. The homogenization procedure is
different for the two applications presented here (cf. sections 4
and 5). For the prediction of the damage evolution, the global
values are homogenized according to the Hill-Mandel condition
(Hill, 1963, 1972) in section 2.3.1 and with respect to the stiffness
reduction in section 2.3.2. It is necessary to use such volume
average technique, because the damage needs to be calculated
locally. For the prediction of microstructural features from the
flow curve, macroscopic stress and strain tensors are calculated
with respect to the approach of Nemat-Nasser (Nemat-Nasser,
1999). In this case, we only need to formulate a macroscopic
stress and strain tensor in order to calculate the flow curve.
Therefore, we use a much simpler and numerically more
effective efficient approach described in section 2.3.3. In this
section, methods to homogenize global values or macroscopic
properties from microstructure simulations are described.

2.3.1. Volume-Average Method
From the FE simulation, the value of each Gauss point is
extracted, i.e., eight values for each element (cf. section 2.1). The
bullets in brackets stand for the parameter that is homogenized,
i.e., the stresses and strains. The Gauss point values of each
element are averages, so one value for each element is obtained,

(•)e =
1

8

8
∑

Gauss=1

(•)Gauss . (15)

Here, the index Gauss refers to the current Gauss point, which
can take values from one to eight. To obtain global representative
values for each time step, the local values, which are the average
values of the eight Gauss points, are averaged by using the
element volume,

(•)RVE = 1

VRVE

Nel
∑

e=1

(•)e ·Ve, (16)

where the index e indicates the current element and Nel is the
total number of elements. The symbolV is the volume, andVRVE

is the total volume of the RVE. As Equation (16) shows, the
global (homogenized) value is the sum of the local element value
multiplied with the corresponding volume, which is then scaled
by the total volume of the RVE. This averaging procedure is well
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established for stresses and strains (see Jänicke, 2010, Nguyen
et al., 2012b) and is based on the Hill-Mandel condition (cf. Hill,
1963, 1972). Nevertheless, the application of Equation (16) is not
appropriate to define a suitable measure for the homogenized
damage state: consider a microstructure that is fully damaged,
i.e., a crack with distinct width runs through the entire ensemble
of grains. Then, the volume fraction of the damaged areas may
be less than few percent of the entire microstructural volume.
However, the microstructure is not able to sustain any load (in
the direction that caused the damage evolution). Consequently,
the usage of this small value for the volume-averaged damage
state would underestimate a comparable measure according to
Equation (17) for the effective damage state at the macroscale
to a large extent: the volume average for the damage does not
reflect the true physical properties of the microstructure. We
thus propose a different homogenization scheme for the damage
variable in the next subsection.

2.3.2. Homogenization of the Damage Variable
As indicated earlier, a homogenization of the damage variable via
volume averaging is not appropriate for defining a reasonable
measure for the effective damage state that can be used for
a description of the macroscopic behavior. In the available
literature some attempts have been made to solve this problem.
Nguyen et al. developed a multiscale cohesive damage model
to determine the macroscopic behavior of a quasi-brittle
material. They homogenized the response of a microscale
sample representing the heterogeneous microstructure inside
the adhesive crack (see Nguyen et al., 2012b, Nguyen et al.,
2012a). Fish and Yu derived a closed-form expression relating
microscopic, mesoscopic and overall strain and damage (Fish and
Yu, 2001) for brittle materials. These approaches are, however,
applicable to the small strain regime and to brittle/semi brittle
materials. Souza and Allen developed homogenization-based
multiscale frameworks for impact modeling of heterogeneous
viscoelastic material. The damage was modeled through a field
of evolving microcracks using XFEM method and cohesive law.
In the above mentioned approaches, the correlation between
damage evolution and large plastic strain ismissing. It was, hence,
necessary to develop an approach which is also valid for large
plastic strain regime (Souza and Allen, 2009). We, therefore,
define a homogenization approach that is in accordance with the
definition of the damage parameter (at the microscale):

DRVE
:= 1− CD

C0
, (17)

where CD and C0 define the effective structural stiffness of the
microstructure in the damage (subscript D) and the initial state
(subscript 0). Consequently, DRVE has an identical meaning to
the local definition of the damage variable according to (12). The
important difference is, however, that Equation (17) accounts
also for geometrical aspects. Thereby, DRVE depends on both
the damage (evolution) and the microstructural arrangement
provided by the specific microstructural composition, e.g., in
terms of grain sizes, grain orientation and grain boundaries.

The values for the stiffness CD and C0 can be extracted
from the equivalent stress σ eq for equivalent elastic strain ǫ

eq
e

(both scalar-valued quantities): The equivalent strain results
from volume averaging of the local elastic strain components,
following from local total strain and the local plastic parts as
function in time. In a comparable manner, the equivalent stress
results from the volume averaging of the stress distribution.
Then, the initial stiffness is defined by:

C0 :=
σ
eq
0

ǫ
eq
e,0

(18)

and for the damaged stiffness we define accordingly:

CD := σ
eq
D

ǫ
eq
e,D

. (19)

The initial stiffness represents the stiffness of the undamaged
state, indicating that the tuple (ǫ

eq
e,0, σ

eq
0 ) can be read off the

equivalent stress/equivalent strain curve at any load step before
damage sets in. For this case, the initial stiffness was computed
as the slope between the first stress/equivalent strain point and
the point corresponding to the maximum stress. The damaged
stiffness CD evolves in time as the fraction between σ

eq
D and ǫ

eq
e,D

is no longer constant (in contrast to C0): the crack evolution at
the microscale renders the volume-averaged equivalent stress σ

eq
D

being a monotonously decreasing function such that limCD =
0, whereas CD = C0 just before damage sets in. Accordingly,
DRVE ∈ [0, 1], where DRVE = 0 indicates a completely intact
and undamaged microstructure, whereas DRVE = 1 represents a
completely damaged microstructure. Consequently, this measure
can be used for future applications of our approach presented
here: the microstructural behavior is computed for reference
states on which the machine-learning algorithm is built. This
results in an effective material model for the simulation at the
macroscale while taking into account the microstructural effects
that are synthesized in the effective damage parameter DRVE. The
macroscopic damage evolution is computed as the change of the
homogenized damage parameter 〈D〉 with respect to the time, t,
according to,

ḊRVE
n =

DRVE
n − DRVE

n−1

tn − tn−1
, (20)

where, n indicates the current time step. Note that we apply this
homogenization approach only for monotonous loading paths in
this work.

2.3.3. Homogenization of Macroscopic Stress and

Strain Tensors From Periodic Boundary Conditions
With respect to periodic boundary conditions applied to the
RVE, the global deformation is imposed to the four reference
nodes, V1, V2, V4, and H1 as highlighted in Figure 1A. The RVE
boundary nodes are imposed on the kinetics of these reference
nodes. Therefore, macroscopic quantities can be homogenized
directly from nodal displacement, reaction force, and position
vector of these reference nodes as introduced in Kulosa et al.
(2017). For further details on the implemented homogenization
technique, the reader is kindly referred to Boeff (2016), Kulosa
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et al. (2017). The macroscopic strain tensor can be formulated
from the nodal displacement unodei and be mathematically
expressed as:

ǫRVE =
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(21)

1x, 1y, and 1z are dimensions of the periodic box in the global
Cartesian coordinate system. Similarly, the macroscopic stress
tensor can be formulated from the reaction force vectors Fnode at
the four reference nodes and the current nodal position vectors
xnode of the reference nodes which is given as:

σRVE = 1

VRVE
sym[(xV4 − xV1 )⊗FV4 + (xV2 − xV1 )⊗FV2 + (xH1 − xV1 )⊗FH1 ].

(22)

The symmetrization function is defined as sym=1/2[A+AT] for
tensor A and its transpose. With the formulated macroscopic
stress and strain tensor, the vonMises stress (σvM) and equivalent
plastic strain (p) can be calculated accordingly.

3. MACHINE LEARNING

This section gives a short description of the types of supervised
learning algorithms used in this work. In case of supervised
learning (as opposed to unsupervised learning), the actual output
is known and has to be approximated by the algorithm. In
general, the algorithm learns to predict the target output for
given features (input parameters) with a minimal error by
adjusting parameters. A function y(x) is created by the Machine
Learning (ML) algorithms, where y is the predicted output
depending on the input features x. In general, the input and
output are vectors, their length depending on the given problem.
Here, for both applications (predicting the damage evolution
in section 4 and predicting the grain size from the flow curve
in section 5), there are several input features, so that the input
is a vector. However, the output is a single scalar quantity.
Furthermore, the target values are real-valued and known, and
therefore supervised regression algorithms are used. For both
cases, Support Vector regression (SVR) and Random Forest
regression (RFR) algorithms are used. In this section, both
algorithms (sections 3.1 and 3.2) are explained briefly with
respect to regression.

3.1. Support Vector Regression
Following the work of Hastie et al. (2008), SVR is an extension
of linear regression and used for non-linear problems. In the
following, the theory of SVR is briefly described. A more detailed
description can be found in Appendix 7.3. The main idea is to
gain a function fitting the given data points so that all points lie
within a (small) distance of ǫ to the function (see Figure 3A). In

Figure 3A, a simple two-dimensional problem is shown, in which
all data points are supposed to be described by a linear function.
The green area is called the margin, and its width is equal to two
times ǫ. To obtain the best fit, the main task is to minimize the
margin, and for doing so to solve a convex optimization problem
(cf. Smola and Schölkopf, 2004; Hastie et al., 2008). Furthermore,
so-called slack variables ξ are introduced, for measuring the
relative distance by which the target distance of ǫ is violated
(cf. Figure 3A). The points far away from the margin are the
so-called support vectors. In addition, a regularization or cost
parameter C is specified. It balances the contradictory goals of
a good fit vs. a simple model by weighting the penalty for the
slack variables. Furthermore, outliers have more influence in
shaping the predicted output. To enable the algorithm to develop
complex non-linear functions, so-called Kernels are introduced
(Ng, 2016). Kernels are customizable to the needs of the target
domain, which gives the algorithm the advantage to be adaptable
to many problems. With the kernel function, it is possible to map
the input data into an enlarged feature space. Since this mapping
is in general non-linear, kernels enable SVRs to represent highly
non-linear functions. In this work the Gaussian radial basis
function kernel:

krbf (x1, x2) = exp
(

−γ ‖ x1 − x2 ‖2
)

. (23)

is used (Müller and Guido, 2017). The parameter γ controls
the width of the Gaussian kernel. The decision function is
then no longer linear, but rather a flexible weighted sum of
Gaussian kernels.

3.2. Random Forest Regression
RFRs are a combination of multiple Decision Trees (DTs) or,
more precisely in our case, regression trees. It is a prototypical
ensemble method, which builds a highly accurate predictive
model by combining many simple models (often referred to as
weak learners). Each DT predicts an output, and their results
are averaged. DTs are hierarchy-based models where the goal is
to find the right answer by “asking as few if/else questions” as
possible (Müller and Guido, 2017). For regression, nodes contain
the distinction whether a value is below or above a threshold
value. Themain idea is to split the feature space into regions using
recursive binary partitioning (cf. Hastie et al., 2008), so that every
new data point can be assigned to one region. A visual example of
a RFR is given in Figure 3B. Here, the single DT has a so-called
depth of two. The tree depth is equal to the longest number of
consecutive nodes in a tree. Every DT starts with a root (the top
node), which contains the first question, e.g., whether a chosen
feature of the data point is smaller or larger than a specific value.
The nodes of the last layer of the tree are called leaves. Each
leaf corresponds to one target value, i.e., a single value of the
output domain. Each data point is assigned to exactly one leaf by
following the decisions down the tree. If a leaf contains only data

points that correspond to the same target value, the leaf is called

pure. Using DTs with pure leaves results in a model that can fit
the training data perfectly, but can result in over-fitting. There

are four important algorithm parameters that are tuned for the

RFR in this work (cf. Müller and Guido, 2017). The number of

used DTs (estimators) influences the amount of over-fitting and
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FIGURE 3 | Illustration of the Machine Learning (ML) regression models. (A) SVR: example of a two-dimensional problem as described in section 3.1 with the margin

of two times ǫ and slack variables ξi (B) RFR: example of Decision Tree (Tree 1) with depth three (cf. section 3.2).

also the computation time. In addition, the maximum depth of

each tree can be chosen specifically, or the tree is built until each
leaf is pure or reaches a minimum number of samples inside the
node. Furthermore, a criterion to decide whether to split a node

needs to be defined, e.g., mean squared error. Another important
parameter is the maximum number of features used for splitting
a node. In general, a low value of this parameter means that
each tree is different and may not need to be deep enough to
be sufficiently accurate. A high maximum feature parameter or
setting the value equal to the total number of features, results in
DTs that are quite similar and thus defeating the purpose of an
ensemble in the first place. The training data are fitted well by
building deep trees and using the most distinctive features.

4. HOMOGENIZE DAMAGE EVOLUTION
FROM MICRO- TO MACROSCALE

As mentioned in section 1, a new method to map damage from
the micro- to the macroscale using Machine Learning (ML) is
proposed. Based on the described representative volume element
(RVE) (cf. section 2.1) and the local crystal plasticity model
(cf. section 2.2) with damage (cf. section 2.2.1), several finite
element (FE) simulations using Abaqus (version 6.12–3) are
conducted. Here, the local crystal plasticity model is used, hence
no influence of the geometrically necessary dislocations GNDs is
considered. The main aim of the damage evolution application
is to show that the global material response, gained from FE
simulations, can be generally approximated with ML algorithms.
For this application, we do not compare results obtained with
different meshes. The material parameters are given in Table 4
in the Appendix 7.1. First, the data set for the ML algorithms is
explained (cf. section 4.1), then the ML parameters are presented
(cf. section 4.2). Finally, the results are given in section 4.3. Note
that all parameters, such as stresses and strains, are the global,
hence homogenized (cf. section 2.3), parameters. For simplicity

reasons, the superscript RVE of the global parameters are skipped
throughout the current section 4.

4.1. Data Set
A variety of loading states are simulated to make the data base
valid for damage occurring under general monotonous loading
paths. Hence, nine displacement-controlled simulations with
different loading states are performed: uniaxial tension, biaxial
tension cases, and shearing as shown in Figure 1B. The nine
loading cases are uniaxial tension in x- (Tx) and y-direction (Ty),
biaxial tension Txy, T2xy, and Tx2y (see Figure 1B). In addition,
four shearing cases were applied: Shearing in x- (Sx, S2x) and y-
direction (Sy, S2y) according to Figure 1B. The RVE used for
the creation of the data set for ML is presented in Figure 1A

in section 2.1. It contains 51 grains with a mean grain size of
59µm and a standard deviation of 10µm, which results in a
grain size range between 40 and 90µm. The material model,
as well as the damage model and the homogenization methods,
are described in sections 2.2 and 2.3, respectively. First, the
local results are presented. Then the global material behavior is
presented. As an example, Figure 4 shows contour plots of the
von Mises stress and the damage parameter for uniaxial tension
in x-direction.

In both Figures 4A,B, a strain localization in form of a
band can be seen inside the RVE. Note that the damaged zone
is split up because of the periodic boundary conditions. It is
due to such a morphology of the damage band that a new
homogenization scheme is required to homogenize it from the
micro to the macro-scale (see section 2.3.2). At the flanks of
the localization band, the stress is close to zero and the damage
parameter has reached its maximum of 0.999. Furthermore,
it is noted that the damage band propagates through the
grains, i.e., in a transgranular manner, as one would expect
for a ductile material, where damage and fracture occurs by
void nucleation, coalescence and growth. From the simulations,
relevant parameters for the homogenization are extracted:
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FIGURE 4 | Contour plot of the (A) von Mises stress and (B) damage parameter for uniaxial tension in x-direction at about 14.3% total strain.

equivalent total, elastic and plastic strain, equivalent plastic strain
rate, von Mises and hydrostatic stress, as well as the element
volume. Locally, the parameters are computed as follows: The
equivalent plastic strain is computed as described in section 2.2.1
and its rate is computed equivalently to the rate of the damage
parameter according to Equation (20). The equivalent total and
elastic strains are computed in the same way as the equivalent
plastic strain using the Frobenius norm and the Green-Lagrange
strain (cf. Equation 13). The total deformation gradient F is
calculated as the gradient of the displacement, and the elastic
deformation tensor is computed as Fe = F Fp−1 (Haupt, 2002).
The von Mises and hydrostatic stress are computed according
to Gross et al. (2011). The extracted values are homogenized as
described in section 2.3.1 and 2.3.2: The global stress and strain
values are the volume average of the local (element) values, and
the global damage is calculated based on the stiffness reduction of
the entire RVE. This results in eight global parameters: equivalent
plastic strain (p) and its rate (ṗ), equivalent total (ǫ

eq
t ) and

equivalent elastic strain (ǫ
eq
e ), von Mises stress (σvM), hydrostatic

stress (σhyd), and the damage parameter (D) and its rate (Ḋ).
After the homogenization, a further pre-processing of the points
is applied (see Appendix 7.2), which spaces the data equally with
respect to the equivalent plastic strain. Each data point represents
one time step of the FE simulation. For each time step, there is a
set of parameters consisting of the global parameters previously
mentioned. Therefore, the complete data set has the size 9×(•)×
8, where (•) is the number of time increments for each of the
9 loading cases applied to the single RVE (cf. Figure 1A), and 8
is the number of global parameters (p, ṗ, σvM, σhyd, ǫ

eq
t , ǫ

eq
e , D,

Ḋ). In total, the time increments of all loading cases equal 3454.
For all data points used in this application, the reader is kindly
referred to Data Sheet 1_v1 in the Supplementary Material. The
global values are used as the data set for the training and testing
of the ML algorithms. The number of training and test data has
been verified to be sufficient by using so-called learning curves,
which are further described in section 4.2. The global material
response in terms of the von Mises stress and damage rate with
respect to the equivalent total strain can be seen in Figures 5A,B.
The global behavior is given in the following by showing five out
of the nine loading cases with the most significant difference in
the material response.

It can be seen in Figures 5A,B that different loading
conditions result in (quantitatively) different stress and damage
evolution, although the general curve shapes are (qualitatively)
similar. Each loading condition shows a distinct starting
point for the initiation of damage, which corresponds to
the maximum stress occurring at different global strains. In
addition to the given global plots, it is worth having a look
at the maximum global damage parameter. For the uniaxial
and biaxial tension, the value is quite similar: 35.77% of
maximum global damage for biaxial tension (Txy), and 35.78
and 37.7% for uniaxial tension in x-direction (Tx) and y-
direction (Ty), respectively. The two shearing cases Sx and S2y
have a lower maximum value for the global damage parameter.
For shearing in x-direction (Sx), the maximum global damage
occurring is 24.86%, and for S2y it is 27.18%. It should be
noted that even though the tension cases share a similar
maximum global damage value, the evolution of damage, with
respect to the total equivalent strain, is different as seen in
Figure 5B. In the following, the ML models and their parameters
are presented.

4.2. Machine Learning Models and
Parameters
For this application, Support Vector regression (SVR) and
Random Forest regression (RFR) are used to predict the damage
evolution Ḋ. The ML is conducted using python and scikit-
learn 0.19.1 (cf. Pedregosa et al., 2011). The data set is split
into training (75%) and testing (25%) data sets. For validation,
the training set with 75% of the data is used as the “complete”
data set, and therefore further split into a training set (for
validation purposes) with 56.25% of all data points, and a
validation set with 18.75% of the data. The testing and validation
data set is unseen data that is only used for evaluating the
final model, i.e., after the final ML parameters are set. The
validation set acts as a test set during the fitting of the ML
parameters. Before splitting the data into sets, the order of the
data was randomized in a way that can be reproduced (constant
random state of 666 Müller and Guido, 2017, Pedregosa et al.,
2011). To assess the accuracy of the learning algorithms, the
so-called R2 score is used (Müller and Guido, 2017), which
is computed as a fraction of the mean squared error and the
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FIGURE 5 | Global data plots for uniaxial tension in x- and y-direction (Tx, Ty), biaxial tension (Txy), and shearing in x- and y-direction (Sx, S2y): (A) von Mises stress

plotted against the total equivalent strain, (B) Damage rate as a function of the total equivalent strain.

variance (Pedregosa et al., 2011),

R2 = 1−
∑
(

ytrue − ypred
)2

∑
(

ytrue − ytrue,mean

)2
. (24)

Here, y represents the output vector, index true indicates the
reference output data, true, mean the mean value of the reference
output data, and index pred represents the output data predicted
by the ML algorithm. The total number of data points is assessed
to be sufficient by using learning curves (cf. Ng, 2016) and
cross-validation. Learning curves are a tool to check whether the
number of data points used for training and testing is sufficient
(Pedregosa et al., 2011). The training data is split several times
into different set sizes to see the development in training and
validation score with respect to the number of data used. Here,
RFR is used to train and validate the model since its training
process is very robust and shows only little sensitivity to the
training parameters. As mentioned in section 4.1, a total number
of 3454 data points are available. For the training and validation,
56.25 and 18.75% of the data is used, i.e., 2071 (training) and
519 (validation) data points, respectively. The training data is
split seven times, so that the following absolute training split
sizes result: 207, 517, 828, 1139, 1449, 1760, 2071. The validation
set is 20% of each split. The resulting training and validation
scores converge after using 1449 training data points to 97.3–
97.5% for training and 82.3–82.8% for validation. Selecting the
most predictive subset of features can help to avoid over-fitting.
Therefore, the features were chosen according to conducted
feature importance methods and to an ductile damage model
from the literature (cf. Equation 25), which is formulated in
a mathematically closed form as analytical function. Feature
importance is used to assess the influence of each feature with
respect to the result. The attribute importance can be understood
as a value of how informative each feature is and therefore
shapes the result. For the feature importance, RFR is used
(cf. section 3.2) with the only non-default parameter being

the number of Decision Tree (DT) (=500). Note that feature
importance gives a rank of all features with respect to their
impact on the results. Less important features are not necessarily
trivial, and neglecting them does not automatically improve
the results. Nevertheless, feature importance can provide an
understanding of the relationship between input and output
parameters with respect to the ML algorithms. As mentioned
above, the training data contain 56.25% of the data, and the
validation set accounts for 18.75% of all data points. The other
25% of the data is the test set, i.e., the unseen data that
is only used after the training process to assess the ability
of the ML algorithm to generalize. As mentioned in section
4.1, for the feature importance all extracted features are used
without additional polynomial features or interactions. The
results of the feature importance are presented in a bar plot
in Figure 6.

The conducted feature importance results in the damage
parameter being the most informative feature with a validation
score of 89.37%. This leaves the importance of all other features
to around 10% in total with 3.4% for the hydrostatic stress
being the second most relevant feature, and the plastic strain
rate the least important feature with 0.9%. Selecting half of
the most important features (D, σvM, σhyd, ǫ

eq
t ) produces a

validation score of about 94.58%. One can see that the damage
parameter and the stresses seem to be the most relevant, based
on feature importance. For the RFR, selecting only the most
relevant features (D, σvM, σhyd, ǫ

eq
t ) leads to better results than

other feature combinations. In contrast, these input parameters
induce a lower accuracy for the SVR. Choosing the same
features for SVR as chosen for RFR, results in a training
score of just about 77.6% and a test score of 82.2%. Both
score values are below acceptance. The SVR cannot extract
enough information from the given features to approximate the
damage rate sufficiently. Therefore, leaving out features causes
an under-fitting problem so that all features are used: D, p,
ṗ, σvM, σhyd, ǫ

eq
t , ǫ

eq
e . Taking a look at the analytical ductile

damage model,
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Ḋ =
(

σvM
2

2E S (1− D)2

[

2

3
(1+ ν)+ 3(1− 2 ν)

(

σhyd

σvM

)2
])s

· ṗ,

(25)

one can see a similarity in the input parameters compared to the
results of the feature importance (Chaboche, 1988; Ambroziak,
2007). In the above Equation (25), s and S are material damage
parameters. In addition, constant material parameters such as
the Young’s modulus [E = 228.96(GPa)] and Poisson’s ratio
[ν = 0.27(−)] are used, which can be calculated from uniaxial
stress and strain curves. The input parameters for the analytical
damage model are similar to the selected parameters by the
feature importance, damage parameter and stresses. Later, the
ML results are compared to the analytical damage model given in
Equation (25) to investigate whether ML algorithms can describe
the damage evolution at least as well as a well-established closed-
form damage model.

Furthermore, cross-validation is used to find the best ML
parameters. First, the most appropriate method to scale the data
is determined for the SVR (as RFR does not require a scaling
of the data). The input data are scaled according to a Gaussian
normal-distribution with zero mean value and a variance of
one (standard scaler Pedregosa et al., 2011). Moreover, cross-
validation is used to assess the most suitable kernel and whether
to use additional polynomial features. In this case, the Gaussian
kernel and no additional polynomial features result in the highest
accuracy. Furthermore, grid-search, i.e., finding a parameter set
that results in the highest accuracy, is used to find the best
parameter value of the regularization parameter C (cf. Equation

FIGURE 6 | Results of the feature importance presented in a bar plot showing

the importance of each feature in percent. Here, the x-axis is only properly

shown up to 4% for clarification because all features, except for the damage

parameter, show values < 4%.

25) and the Gaussian kernel coefficient γ (cf. Equation 32).
During grid-search, both parameters are fitted simultaneously.
Here, the epsilon-SVR model is used, which is named after
the parameter ǫ which can be found in Equation (28) of the
Appendix 7.3. This precision parameter defines the distance
between data point and target value, which is still considered
accurate, and has no negative influence on the overall accuracy
(Pedregosa et al., 2011). For the RFR, the cross-validation is used
to choose the best number of DTs, the maximum tree depth
and the split criterion of a node. A number of 500 DTs gives
the best results with respect to a reasonable compromise on the
computation time. Each DT is built until all leaves are pure,
i.e., each last node corresponds only to a single target value,
and the criterion to split a node is the mean absolute error.
In Table 1, the optimum parameters of both ML algorithms
are summarized. The other parameters, as defined in the scikit-
learn library (Pedregosa et al., 2011), are set to their default
values. RFR is rather robust with respect to the parameter values.
Generally, SVR is more sensitive to parameter tuning. Therefore,
its parameters were tuned within a smaller range. Within this
range, the SVR parameters are not as sensitive to tuning. For
example, changing the values for the parameters C and γ from
their optimized values (based on the Grid-Search method) by
10% changes the training score by about 0.02% and the test score
by around 0.04%. With the described data set and the fitted ML
parameters, the two algorithms are trained. The results of the
training processes are given in the next section 4.3.

4.3. Results and Discussion
For the homogenization of damage, two algorithms are used: SVR
and RFR. The same randomly partitioned data set for the training
and the testing process is used for both algorithms. The final
training processes are conducted by using the previously defined
parameters (cf. Table 1) and by using the features that lead to
the best results as described in section 4.2. For SVR the training
and testing processes both have a considerably high accuracy:
99.73% (training) and 98.25% (testing). One can see that the
high accuracy for training as well as testing indicates no over-
or under-fitting (high bias or high variance) problems. The same
applies for the RFR: the training score is 97.66%, and the test
score is 97.48%. The results of the algorithms are presented in
Figures 7A,B. In both cases, only the testing data set (25% of all
data) is displayed in the form of a predicted data against the target

TABLE 1 | ML parameters used for SVR and RFR (scikit-learn library, cf.

Pedregosa et al., 2011); Other parameters are default values.

Parameter Value/Choice

Support Vector regression

Precision ǫ 0.01

Regularization parameter C 200.0

Gaussian kernel coefficient γ 1.0

Random Forest regression

Number of trees 500

Maximum depth pure leaves

Split criterion mean absolute error

Maximum features (for split) all features
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damage rate plot. The red lines in both figures represent the 5%
mismatch area calculated based on the R2 score (see Equation
24). Here, the predicted data are the output of the ML algorithm,
and the real data are the reference damage rate gained from
the simulations.

From the data set, one can see that the majority of data points
have damage rate values below 1/s. Hence, the damage evolution
is predicted more accurately for such values. Even though, both
algorithms have a sufficiently high accuracy on the test set, the
SVR is able to approximate the damage rate more accurately
for higher damage rates. SVR lacks to approximate the damage
rate sufficiently for values near zero as one can see in Figure 7A,
where a reference damage rate of around 0.3/s is predicted for

one point. The RFR has a lower accuracy for larger damage rate
values but can approximate values near zeromore accurately than
the SVR. Some data points were predicted incorrectly with an
error of more than 5% for both algorithms, but the SVR shows
less scattering inside the ±5% mismatch area. Furthermore, the
SVR is able to predict high values for the damage rate more
precisely than the RFR.

In Figure 8A, the ML algorithm results are given in a damage
rate against equivalent total strain plot for five loading cases.
Both ML algorithms are able to capture the damage evolution
with increasing strain, even though not every value can be
predicted perfectly. Hence, the ML algorithms are capable of
predicting the damage evolution for different loading states

FIGURE 7 | ML results of the test set (25% of the data) with predicted values plotted against target values, a ±5% mismatch border (red line) of the R2 score and

points with a lower or equal R2 score of 95% (cyan color) (A) SVR with a score of R2 = 98.25% (B) RFR with a score of R2 = 97.48%.

FIGURE 8 | ML results with numerical data, SVR and RFR results plotted in a damage rate against total equivalent strain plot (A) for different loading states: uniaxial

tension in x- and y-direction: Tx and Ty, biaxial tension: Txy, shearing in x- and y-direction: Sx and S2y (Numerical data points before damage initiation are not plotted)

and (B) compared to the analytical damage model according to Equation (25) with the parameters s = 5.06(−) and S = 0.24(MPa) for the test data of the uniaxial

tension in x-direction.

Frontiers in Materials | www.frontiersin.org 13 August 2019 | Volume 6 | Article 181194

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Reimann et al. Application of Micromechanical Modeling on Machine Learning

precisely. In general, the ML algorithms can approximate the
material response with respect to damage behavior almost as
well as the full-field FE simulations as shown in Figures 7, 8.
The comparison of the trained ML algorithms to the analytical
damage model is given in Figure 8B for the test data points for
the uniaxial tension in x-direction. For the analytical damage
model, the two material parameters had to be adjusted: s =
5.06(−) and S = 0.24(MPa) (cf. Equation 25). Both, SVR
and RFR, are trained as described previously and shown in
Figure 7. The ML algorithms are able to describe the damage
evolution well as mentioned above. Nevertheless, SVR shows
a slight over-fitting problem as the damage rate marginally
decreases after the maximum of around 1.58(1/s) (cf. Figure 8B).
One can see a small roughness in the course, but no over-
fitting is visible for the RFR. Consequently, the RFR method is
more robust to describe the damage evolution for the presented
cases than the SVR method. Furthermore, the fitting of the
algorithm parameter is less demanding for RFR compared to
SVR. The analytical damage model is able to describe the general
damage evolution (see blue line in Figure 8B). Nonetheless,
some limitations for the analytical model are worth noting.
According to the analytical model, a damage evolution is

visible even before the actual damage initiation occurs (after
about 10% of total strain). The reason for this is that in the
numerical model we explicitly gave the limit of the strain
value as the initiation criteria, while the damage evolves in the
analytical model as soon as plasticity occurs; however, due to
the selection of parameters it stays small until some level of
plastic strain is reached. After the actual damage initiation, the
analytical damage model also shows a gradual increase, although,
some difference is observed between analytical model and the
numerical simulations regarding the point of sharp increase in
damage. Moreover, the analytical model is compared to only one
loading state, and its generalization to a variety of loading states
would require re-adjusting its material parameters. Furthermore,
the analytical model does not allow to take microstructural
quantities into account.

5. PROPERTY-BASED DESIGN OF
MICROSTRUCTURES

With the micromechanical modeling approach, the influence of
important microstructural features on the mechanical response

FIGURE 9 | Flow curves comparison between 2 RVEs with different grain size distribution parameter and corresponding flow curves plotted using fitted modified Voce

law parameters.
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can be investigated through numerical simulations, yielding
microstructure-property relationships. Thus, it is possible to use
synthetical microstructures in form of representative volume
elements (RVEs) together with their homogenized mechanical
response that result from micromechanical simulations
as training data for Machine Learning (ML) algorithms.
Consequently, the input parameters of ML models are the
required mechanical properties, and these trained models
shall recommend microstructures that posses such properties
accordingly, which represents one way of microstructure design.

5.1. Virtual Mechanical Testing of RVEs
In a first step, 74 RVEs consisting of 100 grains with various grain
size distribution parameters following a log-normal distribution
function were generated using the dynamic microstructure
generator (DMG) introduced in section 2.1. In this context,
the average grain size µ and the standard deviation σ are
varied between 6–13 and 0.1–1 µm respectively. To exclude
any influence of crystallographic orientation on the deformation
behavior of RVEs, 100 different sets of randomly chosen Euler

angles have been assigned to all RVEs. In this way, the remaining
factor influencing the strain hardening behavior must be the
grain size distribution parameters of the microstructure. In the
next step, the nonlocal crystal plasticity model described in
section 2.2 is implemented onto a user-defined material model
(UMAT) and applied in a finite element (FE) simulation with the
commercial software ABAQUS to assess the mechanical response
of RVEs. By using a nonlocal crystal plasticity model, size effects
including the influence of grain size are taken into account. For
this part of the study, a BCC crystal structure is assigned to all
grains in the RVEs; nonlocal crystal plasticity parameters are
summarized in Table 4 in the Appendix 7.1 (Vajragupta et al.,
2017).

5.2. Homogenization of Empirical
Hardening Law
In the next step, the mechanical response of RVEs is simulated
under a uniaxial tension loading condition, and macroscopic
flow curves are homogenized from reference nodes using
the method introduced in section 2.3.3. Examples of two

FIGURE 10 | Influence of the average grain size on fitted material parameters of the modified Voce law (A) Y0, (B) R0, (C) Rinf , and (D) β.
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TABLE 2 | Optimized ML parameters of SVR and RFR (scikit-learn library, cf. Pedregosa et al., 2011) for prediction of microstructural features from flow curve.

Parameter Value/Choice

SVR

Precision ǫ 0.001

Penalty parameter C 1.0

Tolerance 0.001

RFR

Number of trees 300

Maximum depth pure leaves

Split criterion Gini

The maximum number of features considered to make a split
√
number of features

The minimum number of samples required to split a node 2

The minimum number of samples required to be at a leaf node 2

RVEs with different grain size distribution parameters and the
corresponding homogenized flow curves are shown in Figure 9.
With a nonlocal crystal plasticity model, the influence of the grain
size on the strain hardening behavior can be observed. These
results prove the validity of implemented strain gradient crystal
plasticity model and demonstrate that grain size effects can be
incorporated properly in microstructure simulations. For the
sake of simplicity, these flow curves are fitted with an empirical
isotropic hardening law in order to reduce the dimensionality of
the training data. In this context, the modified Voce law (Kim
et al., 2013) is chosen and expressed as,

σS = Y0 + R0p+ Rinf (1− exp(−βp)). (26)

Y0, R0, Rinf , and β are material parameters to be determined,
and p is the equivalent plastic strain. To parameterize the
aforementioned hardening law from results of RVEs simulations,
the nonlinear least square fitting method is implemented (Bates
and Watts, 1988). As a result, two sets of calibrated modified
Voce isotropic hardening parameters from two selected RVEs
simulations are used to plot flow curves as illustrated in Figure 9.
From the comparison, both fitted flow curves are in a good
agreement with simulation results and can be used to represent
microstructure simulations. Furthermore, the evolution of these
fitted material parameters with respect to the average grain size is
plotted as shown in Figure 10.

From Figure 10, the influence of the average grain size on
fitted material parameters of the modified Voce law is observed.
According to Equation (26), Y0 is directly related to the yield
stress. Fitted Y0 as plotted in Figure 10A linearly decreases
with an increasing average grain size, and standard deviation
influences a scatter of Y0 at the same average grain size. From
Figures 10B,C, R0 and Rinf non-linearly decrease with larger
average grain size. These two parameters behave similarly to the
Hall-Petch relation. However, the standard deviation does not
contribute to a scatter of R0 and Rinf . β , which inversely governs
the slope of the hardening law and increases with an increasing
average grain size. With respect to the hardening law, smaller
average grain size results in a more pronounced strain hardening
behavior. In the next step, thesemicrostructure simulation results
are fed as training data for ML models.

5.3. Training of Machine Learning Models
For this application, Support Vector regression (SVR) and
Random Forest regression (RFR) are implemented to predict the
average grain size producing a given material behavior, which is
described by the parameters of the modified Voce hardening law.
SVR and RFR are performed using Python and scikit-learn 0.19.1
(Pedregosa et al., 2011). The data are split into training (80 %)
and testing (20 %) data sets. Similar to section 4, the R2 score is
used to evaluate the performance of ML models. To determine
hyperparameters of selected ML models yielding the highest
accuracy, Grid-Search with 3-fold cross validation is applied,
which manually considers all combinations of hyperparameters
in a search space.

In Table 2, the optimized parameters of both ML models are
summarized while other parameters as introduced in the scikit-
learn library (Pedregosa et al., 2011) are set to default values.

5.4. Results and Discussion
The training processes of both ML models for predicting the
grain size from the flow curve are performed by using the
defined parameters (cf. Table 2). For SVR, both, training and
testing processes, give a high accuracy of 99.39% (training) and
97.95% (testing), respectively. These results indicate no over- or
under-fitting issues. Similarly, trained RFR also results in a great
accuracy for both training (99.62%) and testing (97.86%). The
results of algorithms for the test data set (20% of all data) in the
form of predicted grain size vs. reference grain size are shown
in Figure 11. In this case, the predicted grain size data are the
output from ML models and the reference grain size data are
the grain sizes of RVEs used in microstructure simulations. From
Figure 11, most of the data points from both trained ML models
are within 5% error and there are only some data points, which
give more than 5% error. Therefore, it can be concluded that
there is no significant difference between both models in terms
of scatter from the 100% accuracy line.

Furthermore, trained ML models are tested with data that
are out of range of the training data. In this context, an
RVE consisting of 100 grains with average grain size of 15
µm and a standard deviation of 0.1 µm are generated using
DMG. Plastic behavior is again described with a nonlocal
crystal plasticity model, with parameters given in Table 4
in the Appendix 7.1, and uniaxial tension loading conditions
are simulated. This microstructure simulation is homogenized
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FIGURE 11 | ML results of the test data set (20% of the data) with predicted grain size vs. reference grain size and a ±3% mismatch border (red line): (A) SVR; and

(B) RFR.

to obtain macroscopic flow curves and modified Voce law
parameters are determined using the non-linear least square
fitting method accordingly. The fitted modified Voce law
parameters are summarized in Table 3. For the validation
process, these parameters are then used as input for both trained
ML models to determine the average grain size.

By comparing the average grain size of the RVE to produce
the flow curve with grain sizes predicted from ML models,
significant deviations are observed when out-of-range-data are
used, because predicted grain sizes are always within the range of
training data. Therefore, such results show that an application of
these trained ML models are only valid when the input data are
within a certain range. Furthermore, it must be verified that the
output data lie within the space covered by the training data. To
further improve accuracy and to extend applicability of trained
ML models, more training data covering a wider range of grain
sizes should be used. In any case, within the range of training
data, predicted grain sizes are still in a very good agreement with
the reference data.

6. CONCLUSION

In this work, two novel applications with respect to using
Machine Learning (ML) in material science were given
and discussed. Both included microstructurally informed
representative volume elements (RVEs) and crystal plasticity
material modeling and used finite element (FE) simulations to
study the mechanical response of different microstructures to
applied loads. The results of the FE simulations were used to
train and test the ML algorithms.

The first application was the approximation of damage
evolution in an RVE using Support Vector regression (SVR) and
Random Forest regression (RFR). Furthermore, their results were
compared to the analytical damage model, which was formulated
in a mathematically closed form as analytical function. The FE
simulations included several loading conditions to be generally

TABLE 3 | Summary of fitted modified Voce parameters from microstructure

model with the average grain size of µ=15.0 µm and σ=0.1 and predicted grain

size using trained ML model.

Fitted modified Voce parameters Predicted grain size [µm]

Y0 [MPa] R0 [MPa] Rinf [MPa] β [-] SVR RFR

165.66 2339.23 144.58 46.57 11.23 12.87

valid for monotonous load paths. The data gained from the
simulations were homogenized and pre-processed before being
used as training data for ML algorithms. Both regression schemes
succeeded to predict the damage evolution correctly, with an
accuracy (R2 score) higher than 97% on the test data set.
Additionally, both algorithms were able to predict the damage
rate for different loading conditions appropriately. Comparing
the results of ML to the analytical damage model, the limitations
of such an analytical model became visible. Both ML methods,
SVR and RFR, were able to describe the damage evolution of
a microstructure with very good precision. However, for the
prediction of damage evolution, SVR showed a lower ability
to generalize to unseen data than RFR and, furthermore, RFR
shows a lower over-fitting problem, and its parameters are
easier to calibrate.

It is observed that damage homogenization with ML
algorithms exhibits several interesting features that are also
observed in real experiments and macroscopic modeling, e.g.,
the shape of the damage evolution curve over the total
equivalent strain or the fact that once damage is initiated,
the increase in plastic strain leads to a sharp increase in the
damage rate. These investigations show the capabilities of this
method to predict macroscopic damage such that in future
macroscopic applications, like deep drawing or sheet bending, it
will become possible to include microstructure information into
the constitutive relations of the materials.

The second application of ML methods aimed at predicting
the necessary grain size in microstructure models to produce
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given flow curves with a desired work hardening behavior. This
was accomplished, again, by using SVR and RFR. In this context,
74 RVEs with various grain size distribution parameters were
generated, simulated for uniaxial tension and homogenized to
obtain macroscopic flow curves. These simulated flow curves
were fitted with amodified Voce law and the obtained parameters
together with grain size distribution parameters of RVEs were
used as input for the ML algorithms. For both ML models,
the grain size prediction gave a good accuracy with R2 scores
higher than 97.8% on the test data set. However, when out-
of-range data were applied to trained ML models, predicted
grain sizes strongly deviated from the reference quantities. It
is hence concluded that the trained ML models are restricted
to the space covered by training data. To further enhance
the prediction accuracy, training data should cover a wider
range of grain sizes. In any case, with a proper range of
training data, one can see the prospect of using ML models
to suggest microstructural parameters that produce desired
mechanical properties.
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Polyurethanes are a broad class of material that finds application in coatings, foams,

and solid elastomers. The urethane chemistry allows a diversity of monomers to be

used, and prediction of mechanical properties, which are determined by complex

interplay between monomer chemistry and chain architecture, is an unresolved

challenge. Urethanes are based on aromatic or cyclic isocyanates and linear or

branched polyols, and polymerization results in linear chains for bifunctional monomers

or branched chains for multifunctional monomers. Strong intermolecular interactions

between aromatic groups result in the formation of hard-segment domains that generate

physical crosslinks between disorganized rubbery domains and anchor the material

microstructure, contributing to resistance to deformation. Here, a general hierarchical

machine learning (HML) model for predicting the stress-at-break, strain-at-break, and

Tan δ for thermoplastic and thermoset polyurethanes is presented. The algorithm

was trained on a library of 18 polymers with different diisocyanates, bifunctional or

trifunctional polyols, and NCO:OH index. HML reduces data requirements through robust

embedding of domain knowledge and surrogate data in a middle layer that bridges

input variables (composition) and output responses (mechanical properties). In this work,

the middle layer included information on overall polymer composition, predictions of

chain architecture derived fromMonte Carlo simulations of polymerization, information on

interchain interactions from empirically derived molecular potentials and shifts in infrared

(IR) spectroscopy absorbances. The HML predictions are shown to be more accurate

than those from a random forest model directly relating composition and properties,

suggesting that embedding domain knowledge provides significant advantages in

predicting the properties of complex material systems based on small datasets.

Keywords: polyurethane, machine learning, structure-property relationship, property prediction, tunability

INTRODUCTION

Polyurethanes are ubiquitous materials found in coatings, foams, and solid elastomers
(Oertel, 1994; Engels et al., 2013). Prototypical polyurethanes are formed through step-growth
polymerization of an aromatic diisocyanate and an aliphatic diol, resulting in the formation
of a material having aggregated aromatic hard segments bridged by rubbery segments. This
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microstructure is the basis for the remarkable mechanical
properties of polyurethanes characterized by primarily elastic
behavior and large values of ultimate elongation. However,
modern polyurethanes are based on a highly diverse family of
monomers that provide control over the number of reactive
isocyanate or alcohol groups, which allow the preparation of
linear of branched materials, varying monomer chemistries,
which tune the interactions between hard segments and soft
segments, and control over the NCO:OH index, which controls
the degree of polymerization. Developing a model to predict
the mechanical properties of these materials based on all these
compositional variables is an unresolved challenge.

There are many analytical approaches to predicting properties
of polymers based on their linear or crosslinked structure.
Viscoelastic and rheological properties of linear polymers have
been predicted by tube models (Milner and McLeish, 1998;
Pattamaprom et al., 2000; van Ruymbeke et al., 2002, 2005)
where reptation theory has been extended with contour length
fluctuations and constraint release mechanisms, leading to
successful predictions especially with low molecular weight
polymers. For crosslinked polymers, mechanical properties
have been predicted using group interaction modeling (GIM)
(Foreman et al., 2008) where a mean-field potential is calculated
from cohesive energy and other molar constants derived using
a group-additivity approach based on each component in the
repeating unit. Another model for thermo-mechanical behavior
prediction uses a molecular-modeling approach (Shenogina
et al., 2012) whereas Eom et al show the effect of native
topology on mechanical strength of crosslinked polymer
chains (Eom et al., 2003).

With the advent of machine learning in many traditional
scientific disciplines and the Materials Genome Initiative,
there have also been many data-driven, ML-based approaches
for prediction of polymer properties (de Pablo et al., 2014;
Agrawal and Choudhary, 2016). Viscoelastic properties have
been modeled using a multi scale computational framework
on inverse Boltzmann method (Li et al., 2012) and specific
properties (mechanical, thermal, optical, and electrical) have
been trained on microscopic, mesoscopic, and macroscopic
structures from polymer databases available online using artificial
neural networks (Roy et al., 2006). Recently, Kim et al. (2018)
have developed a polymer informatics platform which trains
machine learning models of a dataset of high throughput DFT
calculations and experimental data from the polymer literature.

Since most of the ML based approaches rely on large
datasets, Hierarchical Machine Learning (HML) was developed
on small experimental datasets to predict properties of complex
material systems utilizing an intermediate layer between the
desired responses and system variables (Menon et al., 2017).
These intermediate variables are based on latent physicochemical
factors from domain knowledge pertaining to the material
system. This methodology was validated on a system of
dispersant dosed concentrated MgO suspension, which acted as
a non-setting model of cement. Building upon previous work,
HML was successfully utilized to designed a superplasticizer
tailored specifically for metakaolin-portland blend cement
blends (Menon et al., 2018).

In this work, HML was applied to a system of linear
and crosslinked polyurethanes modeling mechanical responses:
stress-at-break, strain-at-break, and Tan δ with system variables
which are polymer structure, molecular weights and densities
of the reactants (diisocyanates, polyols), chain length of
polyol and isocyanate: alcohol (NCO:OH) index. Intermediate
variables utilized for predicting mechanical responses were
chosen to simplistically represent intermolecular, interchain and
crosslinking behaviors in the system. The input dataset of 18
synthesized polymers was split into a training set of 14 and test
set of 4 data points. A model was developed on the training set
and validated against the test set. Finally, a comparison of the
HML algorithm was performed with a random forest (RF) model
(Breiman, 2001; Pedregosa et al., 2011) that directly predicted
mechanical properties based on composition using the same
training set.

TRAINING DATASET

Materials
The oligomers and monomers used to build the training
set, poly(tetramethylene ether) glycol(PTMEG) (Mn =
1,000), polycaprolactone triol (PCL) (Mn = 900), toluene-
2,4-diisocyanate (TDI), hexamethylene diisocyanate (HDI),
isophorone diisocyanate(IPDI), were purchased from Sigma-
Aldrich, as well as the catalyst used for the polymerization
reaction, dibutyltin dilaurate (DBDTL). Dichloromethane was
acquired from EMD Millipore. All of the materials were used
as received.

Polymer Synthesis
The training set consisted of 18 samples, all of which were
prepared by reacting a bifunctional diisocyanate with either a
bifunctional or trifunctional polyol at NCO:OH indices of 1.0,
1.2, or 1.5, as shown in Supplementary Table 1. The reactions
were carried out at room temperature in 8ml of dichloromethane
as a solvent under the presence of DBTDL as a catalyst. Films
were cast from the synthesized polymers and were left to dry at

FIGURE 1 | Schematic of sol, danglers, elastic links, and core gel

components modeled over 300 monomers using Monte Carlo simulations.
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FIGURE 2 | Schematic depicting the three layers in the Hierarchical Machine Learning approach.

room temperature for 24 h and then again dried in a vacuum oven
for 24 h at 60◦C to remove any residual solvent.

Measurements
Stress-at-break and strain-at-break were measured for all
polymers in a universal testing machine (Instron). Gage width,
parallel section width and thickness for each sample tested were
12mm, 4mm, and 2mm, respectively. Tan δ for all polymers
was measured via a frequency sweep in a Discovery HR-2
rheometer (TA instruments) and the value at 1Hz was used as
the characteristic system response in this study. FT-IR analysis
was performed on 2mm thick film specimens in a Frontier
Spectrometer (PerkinElmer) in the standard wavenumber range
(4000–700 cm−1).

Monte Carlo Modeling
Monte Carlo simulations of step growth polymerization were
performed in R (R Core Team, 2018). We focused on parameters
which would provide insight into the crosslinking tendency
of polymer chains due to polyfunctionality in either the
polyisocyanates or the polyol reactants. These parameters were
determined through a Monte Carlo simulation of a spatially
homogeneous chemical ensemble of monomers; for these
simulations we used 200,000monomers. The algorithm performs
an event-based stochastic process analogous to the approach
described by Mikes and Dusek (1982), then repeats the stochastic
process until all of the limiting reactive group are consumed,
which in our simulations was the OH group. For the recipes with
NCO:OH index of 1, the simulation is at this point complete.
For the recipes with index 1.2 and 1.5 we further simulate for
moisture cure. Moisture cure refers to the reaction of some of the
remaining unreacted—NCO react with ambientmoisture to form
to—NH2 with further reactions with—NCO to form urea bonds.
In these cases, once all the -OH is consumed, the appropriate
amount of water is added to the ensemble and the stochastic
process is continued until no more bonds can be formed. The
simulation provides parameters that describe the connectivity

for all monomers in the post-gel thermoset. For our analysis,
we identify and quantify three type of molecular configurations,
shown in Figure 1: Sol-which are the oligomers that are not part
of the infinite network formed during polymerization, Elastic
link—which are the effective links formed between the reactive
groups and form part of the crosslinked core gel component
and Dangler—which are the pendant groups that are attached to
the infinite network and are also known as tethered plasticizer
and ineffective links. The parameters which are relevant are the
effective crosslinks per kg of polymer (nEff) calculated using
Miller and Macosko’s recursive method (Miller and Macosko,
1976), the averagemolecular weight of the elastic links weighed as
a percent of total polymer weight (elastic_link_mtw), the average
molecular weight of the core gel component weighed as a percent
of total polymer weight (Mtw), the percentage of sol present in
the synthesized polymer (sol_pctWgt) and the percentage of core
gel component in the synthesized polymer (Core_pctWgt).

HML MODELING

HML modeling was performed in Python (Rossum, 1995)
using the Scikit learn library (Pedregosa et al., 2011) for
machine learning estimators. HML modeling has been used
with multiple systems now; in all of these systems, the top
layer will represent a complex system response that has to
be either predicted or optimized with respect to a bottom
layer which consists of simple experimentally tunable variables.
However, there is an intermediate middle layer which consists
of physical or chemical factors parameterized from the variables
in bottom layer through surrogate physical measurements and
existing physical/chemical relationships pertaining to the specific
material system. The algorithm can be better understood with the
scheme shown in Figure 2.

The bottom layer of input or experimental variables in the
model for PU consisted of the repeating unit in the synthesized
polymer split into chemical structural units per kg of polymer,
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FIGURE 3 | Chemical structures of reactants used in the training set (A) hexamethylene diisocyanate (B) isophorone diisocyanate (C) toluene diisocyanate (D)

PTMEG 1000 and (E) polycaprolactone 900.

molecular weights and densities of the diisocyanates and polyols,
the NCO:OH indices and the estimated chain length of polyols,
assuming a PDI of 1. The chemical structures of the diisocyanates
and polyols used in the training set are depicted in Figure 3.
Each of the 18 polymers synthesized from these reactants have
been categorized into a vector of structural units per kg of
polymer (c, ch, ch2, ch3, c6h6, co, nh, o, nh2) calculated from the

groups present in the reactants—the diisocyanates and polyols,
the NCO:OH index, chain length of polyols and the total weight
of the polymer synthesized.

The middle layer or the intermediate physical/chemical
variables have been grouped into three categories: the first
will probe into the intermolecular interactions and absorption
characteristics of the synthesized polymer molecule through
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FIGURE 4 | Mechanical responses measured for the training set of 18 polymers.

FIGURE 5 | Lattice plot depicting the relation between various mechanical properties.
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FT-IR spectroscopy (Siesler, 1980). The presence of spectral
features in specific regions of the spectrum is indicative of
certain functional groups which have vibrational modes with
large displacements and are minimally affected by the presence of
other functional groups or atoms (Griffiths and de Haseth, 2007).
For our study on polyurethanes, the wavenumbers exhibited by
CO and NH groups as well as the ratio of absorbance values of
NH to CO groups for each sample, are of particular importance
and will provide better correlation to mechanical responses. It
has been observed before that the CO stretching vibration and
NH stretching vibration show different wavenumbers depending
on the degree of H-bonding as well as crosslinking occurring
due to trifunctional hydroxyl group polyol which significantly
impact mechanical properties of such polyurethanes (Tsai et al.,
1998). It is expected that a particular amount or degree of
these factors, h-bonding and crosslinking, which results in the
optimal mechanical response suited to a particular end-user
application. The degree of H-bonding is also influenced through
the symmetry of chemical structure of the reactants and presence
of even/odd number of atoms (Caracciolo et al., 2009), making
these variables highly significant for model prediction. These
variables have been parameterized with respect to all the bottom-
layer variables using a Gaussian regression-based framework
using the scikit learn—ML library in Python (Williams and
Rasmussen, 1996; Pedregosa et al., 2011). The FT-IR variables
were then recalculated using the predict function from the
Gaussian process models to be used with the top-layer variables.

The second set of middle layer variables consists of
intermolecular chain interactions and properties pertaining to
polyurethane polymer system. Hard segment (HS%) and soft
segment (SS%) were easily calculated by mass of diisocyanate
and polyols with respect to the total mass of the polymer.
Similarly, % aromatic and % cyclic (non-aromatic) nature was
calculated based on mass of respective structural units with
respect to total mass of polymer. The solubility parameter
and cohesive energy density (CED) was calculated using molar
attraction constant, molar volume and cohesive energy of
the polymer repeating unit using a group additivity-based
approach on the structural units present in the bottom layer.

The values for group contributions to the molar attraction
constant, molar volume and cohesive energy are easily available
in literature and have been extensively used before, for other
polymer systems.

The third set of middle layer variables were the predictions of
chain architecture from Monte Carlo simulations as described
in the section above. Based on existing literature, these
three categories of variables sufficiently model the main
forces and interactions that govern the mechanical behavior
of polyurethanes—the microstructure consisting of soft
and hard domains which control permanent deformation,
high modulus and tensile strength, hydrogen bonding
between neighboring polymer chains control the elasticity
as well as strain deformation behavior whereas simulation of
chemical crosslinking addresses the mechanical behavior due to
network formation.

Finally, the top layer, which consists of system responses
(stress-at-break, strain-at-break, and Tan δ) have been modeled
with the middle-layer variables using a random forest regression-
based model from the scikit-ML library in Python. Random
forest regression is an ensemble learning technique based on
multiple decision trees learned from the provided variables.
One of the advantages of a random forest model is its use of
bagging or bootstrap aggregation where each decision tree is
modeled on a subset of the input set but by drawing samples
with replacement the subset has the same size as the original
input set. Then, averaging is performed on all the decision trees
to improve the prediction accuracy and to control overfitting.
The number of decision trees used in our training set is equal to
100 and the max depth of trees was unrestricted since modeling
was performed on a sparse dataset and are not concerned
about memory consumption or computational efficiency, thus
leading to better predictive power for the model. The estimator
used from scikit -ML library is a “RandomForestRegressor”
with the following attributes: bootstrap = True,
criterion = “mse,” max_depth = None, max_features = “auto,”
max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, min_samples_leaf = 1,
min_samples_split = 2, min_weight_fraction_leaf = 0.0,

TABLE 1 | Training and test scores for GP model between FTIR variables and bottom layer variables.

ML framework CO_W NH_W NH_A per CO_A

Train score Test score Train score Test score Train score Test score

Gaussian processes regression 0.89 0.63 0.99 0.92 0.97 0.96

TABLE 2 | Training and test scores for HML and Random Forest modeling of mechanical properties as a function of composition.

Strain at break Stress at break Tan δ

Train score Test score Train score Test score Train score Test score

HML 0.92 0.94 0.93 0.92 0.85 0.85

Random forest 0.87 0.50 0.85 0.58 0.80 0.24

HML provides significantly greater accuracy through embedding domain knowledge in the algorithm, allowing it to build predictive models from small datasets.
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FIGURE 6 | Feature importance plots from the trained Random Forest model for each of the mechanical responses measured.
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n_estimators = 100, n_jobs = 4, oob_score = False,
random_state = 0, verbose = 0, warm_start = False. Each
of these attributes are well described at the scikit learn website
for random forest regression:

https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestRegressor.html

and the code is available with Supplementary Files.

RESULTS AND DISCUSSION

Figure 4 shows the mechanical responses for the training set. In
general, Tan δ and strain-at-break are expected to decrease and

FIGURE 7 | Predicted vs. actual values for all mechanical responses from the

HML model.

stress-at-break is expected to increase with increasing NCO:OH
index associated with the transition from rubbery toward a glassy
state (Petrović et al., 2002; Levine et al., 2012) due to the presence
of increasing urea linkages in the polymer network frommoisture
cure of excess NCO content. Furthermore, similar trends are
expected with a general replacement of a bifunctional polyol with
a higher functionality polyol, owing to crosslinking and network
formation (Dušek and Dušková-Smrčková, 2000). Crosslinking
also occurs either physically through hydrogen bonding between
hard urethane segments or chemically through allophanate
linkages due to excess NCO content during the polymerization
reaction (Kontou et al., 1990). We see that even though some of
our samples show expected behavior, others behave differently in
either different response metrics or in all of them. In Figure 5, it
can be observed that there is poor correlation between the various
responses under a wide range of attained measurements. The
diagonal grid represents the one-dimensional spread of values
for single responses whereas the top right section represents the
scatter plot correlation between response pairs and the bottom
grid represents the two-dimensional spread as well as density of
values for the response pairs. This suggests that there are multiple
factors controlling these responses that may be competing.

In order to deconvolute the relationship between these
mechanical responses and the variables in the bottom layer
of the model, the middle layer variables of our algorithm
were parameterized in terms of the variables in bottom layer.
Here, CO wavenumber, NH wavenumber and the ratio of NH
absorbance per CO absorbance were modeled with a Gaussian
Process regression using a train/test split to ensure accuracy
and predictive capability. The train and test scores for the three
variables are shown in Table 1. The IR values were regenerated
from the learned GP model to be used further in the next
training step.

The solubility parameter and the cohesive energy density for
the polymers were calculated using group contribution methods
(Van Krevelen and Te Nijenhuis, 2009) using the equation (1) for
solubility parameter

δ =
∑

Fi/
∑

Vm,i (1)

where Fi is the molar attraction contribution and Vm,i is the
molar volume contribution for the ith structural unit in the
bottom layer and the equation (2) for cohesive energy density is

ecoh =
∑

Ecoh,i/
∑

Vm,i (2)

where Ecoh,i is the cohesive energy contribution for the
ith structural unit in the bottom layer. HS%, SS%, nEff,
elastic_link_mtw, Mtw, sol_pctWgt, and core_pctWgt were
calculated and simulated as mentioned in the previous section.

After generating the set of middle layer variables, a random
forest regression model was fitted between the latter and
the mechanical responses (stress-at-break, strain-at-break, and
Tan δ), and the train/test scores for all responses are shown in
Table 2. The feature importance values from the RF model are
shown in Figure 6, the predicted vs. test values are shown in
Figure 7 and the ensemble averaged trees are shown in Figure 8.
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FIGURE 8 | Ensemble averaged decision tree from Random Forest model trained to predict (A) strain-at-break (B) stress-at-break, and (C) Tan δ.

Interestingly, the most important features for prediction of
strain-at-break from the trained model were CO wavenumber,
NH absorbance per CO absorbance, cohesive energy density,
and NH wavenumber. This could be due to the vibrational

shift in the CO and NH bands, which relate to the chemical
environment obtained with different reactant combinations
(polyols and diisocyanates) whereas the ratio of carbonyl peak
absorbance to amide peak absorbance may indicate the effect
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FIGURE 9 | Predicted vs. actual values for all mechanical responses from the

Random Forest model, using a black-box approach.

of NCO:OH index. The shift in frequencies is an indication of
hydrogen bonding strength between polymer chains, primarily
due to interactions between CO andNHgroups. Strong hydrogen
bonding between the groups will make the bond within the
carbonyl and NH groups weaker, for e.g., HDI and PTMEG 1000
exhibit strong hydrogen bonding, thus higher strain at break
as the CO wavenumber is ∼1,683 cm−1 and NH wavenumber
is ∼3,318 cm−1. Similarly, between HDI and PCL 900, weaker
hydrogen bonding reduces strain at break where the CO

wavenumber is ∼1,732 cm−1 and NH wavenumber is ∼3,380
cm−1. Cohesive energy density is a proxy for intermolecular
forces within polymer chains, and as such strongly links to forces
required for mechanical deformation of a polymeric material.
CED is also notable as a property prediction tool for calculating
relative strain at failure for similarly networked chains i.e., under
presence of moderate chemical crosslinking, CED can improve
toughness of chains during large strain deformation (Safranski
and Gall, 2008). Other parameters in our model such as %
cyclic and Mtw (average molar weight of core gel component
as a percentage of total polymer weight) also have smaller yet
influencing behavior on strain.

Apart from the FTIR derived variables, the model for stress
shows a reliance on hard segment %, core_pctWgt (percentage
of core gel component) and % aromatic behavior. This makes
sense as the hard segment in a polyurethane is the load
bearing component under mechanical deformation and as a
result, induces most of the elastic response in the system. At
higherHS%, urethane—urethane hydrogen bonding in particular
is also increased. The core gel component represents the
crosslinked structure in a polyurethane which again corresponds
to mechanical strength and load bearing nature of the polymer.
It is interesting that the model identified % aromatic behavior
as an important feature: it impacts mechanical strength due to
much more efficient hydrogen bonding and pi-stacking between
aromatic groups in neighboring chains. Aromatic groups in
isocyanates account for stiffer chains and result in a higher
melting point polyurethane as well.

Tan δ represents the damping behavior in the mechanical
performance of a viscoelastic polymer, i.e., the ratio of plastic
behavior to elastic behavior. Thus, it was not surprising
to observe both hard segment % and soft segment %
as important features, however % cyclic behavior has an
interestingly significant impact on Tan δ. Even though cyclic
groups correspond to stiffness and rigidity, they contribute less
than aromatic groups due to the possibility of configurational
isomerism as well as non-planar structures. This might explain
the ability of these groups to absorb more energy while
mechanical stress is applied and provide a good balance between
elastic and plastic performance. Other crucial features which
were identified in the model were the CO wavenumber, cohesive
energy density, and mer solubility parameter.

Each random forest model shown in Figure 8 represents an
averaged decision tree from an ensemble of decision trees, for
each mechanical response. The random forest classifier from
Python scikit learn uses bootstrap aggregating in which multiple
decision trees are modeled on subsets of training data, chosen
randomly with replacement. Each predictor or feature is learned
and is split for values based on a mean squared error reduction
scheme, which is continued until all the data is split till the last
node. Bootstrap aggregation is an excellent stochastic method of
avoiding overfitting in the trained model and reduces variance in
result without increasing the bias of themodel. In random forests,
this allows for an out-of-bag (OOB) error estimate to measure
prediction error of a trained decision tree on the subset of data
not used in that tree, thus negating the need of an independent
validation dataset.
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In order to evaluate the prediction efficiency on the sparseness
of the training set, a standard big data approach was taken
where the same random forest framework was applied on a
training set containing the mechanical responses and our tunable
formulation variables namely, polyol choice, diisocyanate choice,
and NCO:OH index. As expected, the model converged with
significantly lower test scores as shown in Table 2 and the
predicted responses vs. test data can be seen in Figure 9.

If compared with other approaches, this methodology mainly
benefits from the planned surrogate physical and chemical
measurements, and existing scientific literature to embed domain
knowledge with statistical learning to strongly improve predictive
capability. In traditional material industries, high throughput
data for a single product family with specific end user application
is hard to collect; it requires huge investment in time, effort, and
cost. Thus, computational techniques relying on big data will
not be beneficial for shortening the research and development
cycle in such industries as shown earlier. Analytical approaches
are better in some respects as they have physical laws and
chemistry as underpinnings for property prediction however
most of the approaches are highly complex to practically
apply in an industry setting and highly sensitive to lack of
required data/measurements. Design of experiments offers an
accepted method for predicting structure-property relationships
for small datasets, yet it does not provide insight into how
the underlying forces interact with each other to achieve a
specific system response since it is purely statistical in nature
andmay not accurately predict synergies between variables. HML
aims to learn from the shortcomings as well as advantages of
the previous mentioned approaches by utilizing and building
upon the existing scientific domain expertise with much lesser
measurements, providing a tool for not only property prediction
but also to elucidate upon the nature of physical and chemical
interactions that shape a system response.

CONCLUSION

Using HML algorithm, mechanical responses of a training set
of polyurethanes were as a function of monomer chemistry,
index, and chain architecture. The accuracy was compared
against a random forest model and it was found that HML
produced significantly better predictions of the test data. This
was attributed to integration of an intermediate layer of variables
comprising domain knowledge based physicochemical factors
which significantly improved the model relating experimental
formulation variables and mechanical responses of the cured
elastomers. Some of the advantages of this approach are
(a) the possibility of modeling categorical and qualitative
responses of polyurethane products to formulation and
processing variables and (b) predicting the properties of novel
monomers, such as bio based materials. In future work, we
intend to model such responses and also test our model by
substituting polyols and diisocyanates to further investigate
the predictive nature and capability of the HML algorithm on
polymer systems.
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This work addresses a number of fundamental questions regarding the topological

description of materials characterized by a highly porous three-dimensional structure

with bending as the major deformation mechanism. Highly efficient finite-element beam

models were used for generating data on the mechanical behavior of structures with

different topologies, ranging from highly coordinated bcc to Gibson–Ashby structures.

Random cutting enabled a continuous modification of average coordination numbers

ranging from the maximum connectivity to the percolation-cluster transition of the 3D

network. The computed macroscopic mechanical properties–Young’s modulus, yield

strength, and Poisson’s ratio–combined with the cut fraction, average coordination

number, and statistical information on the local coordination numbers formed a database

consisting of more than 100 different structures. Via data mining, the interdependencies

of topological parameters, and relationships between topological parameters with

mechanical properties were discovered. A scaled genus density could be identified,

which assumes a linear dependency on the average coordination number. Feeding

statistical information about the local coordination numbers of detectable junctions

with coordination number of 3 and higher to an artificial neural network enables the

determination the average coordination number without any knowledge of the fully

connected structure. This parameter serves as a common key for determining the cut

fraction, the scaled genus density, and the macroscopic mechanical properties. The

dependencies of macroscopic Young’s modulus, yield strength, and Poisson’s ratio on

the cut fraction (or average coordination number) could be represented as master curves,

covering a large range of structures from a coordination number of 8 (bcc reference) to

1.5, close to the percolation-cluster transition. The suggested fit functions with a single

adjustable parameter agree with the numerical data within a few percent error. Artificial

neural networks allow a further reduction of the error by at least a factor of 2. All data for

macroscopic Young’s modulus and yield strength are covered by a single master curve.

This leads to the important conclusion that the relative loss of macroscopic strength

due to pinching-off of ligaments corresponds to that of macroscopic Young’s modulus.

Experimental data in literature support this unexpected finding.

Keywords: open-pore materials, topology, structure–property relationship, elastic-plastic deformation behavior,

machine learning, data mining
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Huber Topology and Mechanics of 3D Open-Pore Materials

INTRODUCTION

The mechanical properties of materials with interconnected
open-porous structures can be tuned by the choice of the
material, the pore fraction, and the connectivity of the solid
fraction. Such materials include open-pore foams (Gibson and
Ashby, 1997; Ashby et al., 2000), nanoporous metals (Biener
et al., 2006, 2007; Balk et al., 2009; Weissmüller et al., 2009),
and architectured meta-materials (Jang et al., 2013; Zheng et al.,
2014). Nanoporous Gold (NPG), with its fascinating mechanical
and functional properties, has recently received significant
attention due to the advances in materials development, allowing
the production of specimen of mm size containing billions of
nanoscaled ligaments. This material exhibits a bi-continuous
network of nanoscale pores and solid “ligaments”, which are
connected in nodes. Hence, it serves as an ideal model material
for the investigation of structure-property relationships of open-
porous materials in general.

Continuum micromechanics models including the Self
Consistent Method and the Mori-Tanaka Model allow for
an efficient prediction of the effective elastic properties of
composites for given phase moduli and volume fractions. For a
survey, see (Zaoui, 2002). To a certain extent, such models can
predict the effective properties when the inclusions are pores. For
example, Scheiner et al. (2016) extended this micromechanics
concept to predict the micro–macro relations in the double-
porous medium of hierarchically organized physiological bone
and validated the model for a porosity of 10%. Motivated by
the limitation to small pore fractions and homogeneity of the
microstructure, Gong et al. (2011) extended the Mori–Tanaka
model for porous materials of finite size. However, also such
extended micromechanics models predict non-zero effective
properties for porosities close to 100%. Furthermore, they assume
that the entire solid fraction is bearing load.

The solid fraction ϕ is used as the major parameter in several
theoretical models for predicting the macroscopic mechanical
behavior of the porous materials (Roberts and Garboczi, 2002;
Sun et al., 2013; Huber et al., 2014; Pia and Delogu, 2015;
Mangipudi et al., 2016). The Gibson–Ashby model (Gibson and
Ashby, 1997) is the commonly used basis for all these models.
In what follows, Es and σys denote the Young’s modulus and
yield stress of the solid phase. The scaling of the macroscopically
effective values of Young’s modulus E and yield stress σy is
dependent on the solid fraction ϕ in the form:

E

Es
= CEϕ

nE , (1)

σy

σys
= Cσ ϕnσ . (2)

As summarized by Ashby and Bréchet (2003), for bending-
dominated behavior, we have nE = 2 and nσ = 3

2 , while for
tension-dominated behavior, nE = nσ = 1. An extension of
the Gibson–Ashby scaling law for Young’smodulus was proposed
by Roberts and Garboczi (2002), who computed the density and
microstructure dependent on Young’s modulus and Poisson’s
ratio for four different isotropic randommodels. The data for the

low-coordination number node-bond model (0.03 ≤ ϕ ≤ 0.3)
were found to be well-described by the Gibson–Ashby scaling law
Equation (1), with nE = 2. For high densities, an equation with
three parameters is suggested

E

Es
= C

(

ϕ − ϕP

1− ϕP

)m

, (3)

where ϕ = ρ/ρs is the solid fraction of the material. The fitting
parameters ϕP = −0.0056 and m = 2.12, determined for the
simulation data, can be interpreted as the percolation threshold
and exponent.

Soyarslan et al. (2018) used Equation (3) to fit data
computed from 3D Representative Volume Elements (RVE)
of nanoporous microstructures. The RVEs are obtained using
Cahn’s method of generating a Gaussian random field by taking
a superposition of standing sinusoidal waves that have fixed
wavelength but are random in direction and phase. From the
data for the macroscopic elastic modulus of the RVE for varying
solid fraction, the percolation threshold for the random field
microstructures is computed to be ϕP = 0.159 with an exponent
of m = 2.56. Moreover, it was found that the scaled genus
per volume can be represented by an analytical expression that
depends on the solid phase fraction, with its maximum value at a
solid fraction of ϕ = 0.5 and reaching the percolation threshold
at a solid fraction of ϕ = 0.159.

An equation very similar to Equation (3) has been proposed
for modeling the macroscopic Young’s modulus of porous
microstructures produced by sintering (Phani and Niyogi, 1987):

E

E0
=

(

1− p

pc

)f

. (4)

In this equation, the variables p and pc represent the porosity and
the percolation threshold, respectively. E0 is the Young’s modulus
of the material free of pores E0 = E(p = 0). In context of 3D
percolation theory, the model assumes a value f = 3.75 for a
cluster dominated by bond-bending forces when the dimension
of the system tends to infinity for all dimensions (Sahimi, 1994, p.
185). Smaller samples and sample preparation can have a strong
influence on the value of f , leading to lower values close to f =
1.2. The percolation threshold from different sources varies from
0.06 to 60 Vol% (Kováčik, 1999). The interpretation of the value
of f in terms of pore geometry is discussed by Phani and Niyogi
(1987) with respect to the grain morphology and pore structure
of the material. They conclude that for larger values f ≈ 3, the
pores deviate from the spherical shape and are interconnected to
a certain extent. The lower is the value of f , the more isometric
and isolated is the pore phase and vice versa. Equations (3, 4) and
the exponentsm and f are equivalent due to the relation between
the solid fraction and the porosity

ϕ = 1− p. (5)

Experimental work, including macroscopic testing (Liu et al.,
2016; Liu and Jin, 2017) and 3D FIB tomography (Hu et al., 2016;
Ziehmer et al., 2016), give evidence that nanoporous metals,
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which can be interpreted as a network of nanosized ligaments,
contain a considerable fraction of so-called dangling ligaments.
They originate from pinch-off events during the coarsening
of the nanoporous metal, due to atomic diffusion during heat
treatment. Thus, using the solid fraction ϕ in Equations (1,
2) significantly overestimates the mass contributing to load
transfer within the ligament network (Mameka et al., 2015;
Hu et al., 2016; Liu et al., 2016; Liu and Jin, 2017). It is,
therefore, proposed to make use of the effective solid fraction
ϕeff , which considers only the load-bearing mass of ligaments
in the network. In this case, the effective solid fraction ϕeff

is determined indirectly via measurement of Young’s modulus
under compressive deformation, assuming Equation (1) to hold
for the effective solid fraction (Liu et al., 2016; Liu and Jin, 2017;
Jin et al., 2018).

For a spatial network structure with complex topological
and morphological characteristics, the coordination number
also plays an important role (Jinnai et al., 2001). The authors
investigated 3D images of morphologies arising in an ordered-
block copolymer at equilibrium and a polymer blend during
spinodal decomposition. They conclude that the coordination
number is particularly important with regard to the assignment
of bi-continuous morphologies, since it can be used to
differentiate between closely related morphologies such as
gyroid and diamond. Recent works investigate the skeletons of
NPG obtained from FIB tomography and artificially generated
structures and similarly report that mainly triple junctions and
a few percent of quadruple junctions exist (Hu et al., 2016;
Mangipudi et al., 2016). It can be speculated that the average
coordination number is slightly higher than 3, which would be
very close to the coordination number of the Gibson–Ashby unit
cell (Gibson and Ashby, 1997).

Several finite element models (FEMs) simplify the 3D open-
pore structure to cubic or diamond unit cells (Nachtrab, 2011; Liu
and Antoniou, 2013; Huber et al., 2014; Husser et al., 2017). Hu
et al. (2016) compare the simulation results from the 3D model
of their FIB tomography of NPG with that of a Gibson–Ashby
structure of same solid fraction. The first FEMmodels built from
3D FIB tomography data were presented independently by Hu
et al. (2016) and Mangipudi et al. (2016). The model of Hu et al.
(2016) has been further refined by Richert and Huber (2018),
who analyzed the detected ligament shapes and investigated the
predictive capability of the FEM beam model in comparison to
the 3D solidmodel of Hu et al. (2016). Soyarslan et al. (2018) used
complex artificially generated structures and FEM solid modeling
for validating an analytical solution that relates the solid fraction
to the scaled genus density. This helps to explain the divergence
of experimental and numerical data from the Gibson–Ashby
scaling law for Young’s modulus with decreasing solid fraction.

To investigate the effect of changing connectivity on the
macroscopic properties at a constant solid fraction in a more
general way, Nachtrab et al. modeled the behavior of metal foams
based on a diamond structure (Nachtrab, 2011; Nachtrab et al.,
2011, 2012). The reduction of the connectivity was included
by splitting of nodes with a coordination of 4 into two nodes,
each with a coordination of 2. This led to fibrous structures
with a percolation threshold pc close to 1. For the prediction of

the mechanical properties of selected additively manufactured
open-pore structures, a voxel-based FE scheme was used. This
scheme is, however, computationally demanding and therefore
significantly limited the number of investigated structures.

To get closer to realistic microstructures, we use RVEs that are
built following the idea proposed by Huber et al. (2014), where
NPG is modeled as a randomized diamond structure using beam
elements. The approach allows us to define a solid fraction ϕ by
the radius r and length l of the individual ligaments (Roschning
and Huber, 2016). It is also possible to vary the ligament
shape (Jiao and Huber, 2017a) and to integrate nodal masses
for predicting both elastic and plastic mechanical behavior
comparable to the RVE, which is built with solid elements,
while maintaining the computational efficiency (Jiao and Huber,
2017b). This technique enables quantitative prediction of the
macroscopic Young’s modulus, Poisson’s ratio, and yield strength
for a large number of structures.

By mechanically deactivating randomly selected ligaments
in a 3D network, pinched-off (or dangling) ligaments are
systematically studied in this work for the first time. The
remaining load-bearing ligaments form the mass that defines
the effective solid fraction ϕeff . In this way, we can shed new
light on the effect of dangling ligaments in open-pore materials
and expect to gain a more general and deeper understanding of
the interdependencies between the coordination number, scaled
genus density, effective solid fraction, percolation threshold, and
the scaling behavior of mechanical properties for 3D network
structures.

METHODS

If we use the notation of Equation (4), a fully connected structure
consisting of a given number of cylindrical ligaments has a
macroscopic Young’s modulus E0. This value, corresponding to
a cut fraction ζ =0, can be computed pointwise using FEM
simulations for a given solid fraction ϕ, defined by the ligament
radius-to-length ratio r/l, i.e., E0 = Ê0 (ϕ) = E0(r/l), following
the approach for the diamond structure (Huber et al., 2014;
Roschning and Huber, 2016; Jiao and Huber, 2017a,b).

As soon as the cut fraction ζ reaches the percolation to cluster
transition, the structure breaks and the mechanical stiffness
becomes zero. Consequently, we can set the porosity p in
Equation (4) to be equal to the cut fraction ζ and the percolation
threshold for cutting is defined by the parameter ζc. In a more
general form, Equation (4) suggests that the macroscopic Young’s
modulus can be written as a multiplicative decomposition

E = Ê0(ϕ)Êc(ζ ). (6)

While Ê0(ϕ) is well-investigated, we focus in this work onmining
the relationship between Young’s modulus and cut fraction Êc(ζ )
from numerical data.

Finite Element Simulations
For all FEM simulations in this work, ABAQUS (Abaqus, 2014)
was used, while the raw models were built based on the unit cells
as defined in Table 1 using Patran 2017 and then modified by
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TABLE 1 | Geometry parameters for structures with different coordination number z.

Structure Abbreviation Gibson–Ashby (GA) Diamond (dia) Cubic (cub) Bcc (bcc)

Unit cell

ϕ = 0.25

z 3 4 6 8

NL 30 16 3 8

NJ 20 8 1 2

l/a 1/3
√
3/4 1

√
3/2

r/a 0.0892 0.107 0.163 0.107

ϕP 0.5 0.388 0.247 0.178

ςC = 1 –ϕP 0.5 0.612 0.753 0.822

f 3.81 2.39 1.72 1.40

gv 10 8 2 6

g
′
V
(z) 9.36 3.53 0.42 0.96

g∗
V

0.5 1 2 3

Values are given for a unit cell of size a. Values for the percolation probability ϕP are taken from Sykes and Essam (1964) for z ≥ 4. The value of ϕP for z = 3 is computed using

Equation (7).

Python scripting. Images of the FEM models and further details
are provided in Data Sheet 1, Supplementary Sections 1, 2. As
a substantial extension of previous work on FEM beam models,
which concentrates exclusively on the diamond lattice with
coordination number of 4, the RVE beam-modeling technique
(Huber et al., 2014; Roschning and Huber, 2016) is generalized
in this work for structures with coordination numbers ranging
from 8 (bcc), 6 (simple cubic), 4 (diamond), to 3 (Gibson–Ashby).
For all structures, the bcc structure serves as reference, because
in terms of the coordination number, a lower coordination
can always be reached by cutting connections in a higher
coordinated structure. By orienting the <111>-direction of
the cubic structure along the loading direction, all investigated
structures deform by bending, which is the major deformation
mechanism of NPG (Huber et al., 2014; Griffiths et al., 2017; Jiao
and Huber, 2017a). In this way, it is ensured that the scaling laws
for the mechanical properties are based on the same deformation
mechanism.

The unit cells, as described in section Unit Cell Geometries,
serve as building blocks for the generation of the RVE,
which is described in section RVE Generation. Motivated by
the high flexibility in the model setup and computational
efficiency even for large 3D networks, all following unit cells
and RVEs are built using the FEM beam model approach
originally developed for the diamond structure (Huber et al.,
2014). This approach has been thoroughly investigated and
validated in subsequent works with respect to the solid fraction
and macroscopic mechanical properties for cylindrical and
parabolic ligaments (Roschning and Huber, 2016; Jiao and
Huber, 2017a,b). The randomization of the structure was
found as an important parameter to adjust the macroscopic
behavior of the structures to experimental results, particularly

for calibrating the elastic Poisson’s ratio (Huber et al., 2014;
Roschning and Huber, 2016; Lührs et al., 2017). So far,
only fully connected 3D networks have been investigated. It
is, thus, of obvious interest to quantitatively investigate the
effect of cutting of a fraction of connections in the ligament
network.

Unit Cell Geometries
The unit cell geometries for different coordination numbers z of
3 (Gibson–Ashby or GA), 4 (diamond or dia), 6 (simple cubic
or cub), and 8 (bcc) are depicted in Table 1. The number of
cuts until complete decohesion of the structure can be treated
as a general problem of topology. A characteristic parameter is
the percolation threshold ζc = 1 − ϕP at which the structure
loses its connectivity and the macroscopic mechanical properties
become zero. For most structures used in this work, the critical
percolation probabilities ϕP for the “bond problem” are known
(Domb and Sykes, 1961; Sykes and Essam, 1964), and the data
can be summed up with a simple rule of thumb, which is valid
with an accuracy of a few percent from z = 4 to z = 12 (Ziman,
1968):

1− ζc = ϕP ∼=
1.5

z
. (7)

The data for the critical percolation probabilities ϕPand
percolation thresholds ζc are included in Table 1. For the
Gibson–Ashby structure, which is located at the lower end of
connectivity, Equation (7) predicts a value of ζc = 0.5.

The unit cell defines the ligament length l dependent on
the unit cell size a, as seen in Table 1. The solid fraction of
the fully connected structure can be calibrated to any value via
the ligament radius r for each structure. For the generation of
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the data in section Macroscopic Mechanical Properties, a solid
fraction of ϕ = 0.25 was used, which is a typical value for
NPG (Weissmüller et al., 2009). For simplicity, the calculation
of the solid volume was estimated by the total of NL cylindrical
ligaments Vs = NLπr

2l, with the numbers given in Table 1. The
solid fraction is adjusted such that ϕ = Vs/a

3 = 0.25, ignoring
overlapping volumes or gaps in the cylindrical ligaments in the
nodal area.

RVE Generation
The generation of periodic RVEs from unit cells is
straightforward when the RVE boundaries are aligned with
the unit cell boundaries. Because the simple cubic structure
would normally deform under compression in its original
orientation, the periodic cubic structure was generated to be
large enough that after rotating the <111> direction into
z-direction, a cube of the size of the RVE is completely filled. All
ligaments penetrating the boundaries of the RVE were clipped at
the boundary plane and the structure was cut to the size of the
RVE.

For the fundamental investigation on the effect of cutting of
3D structures represented by the dependency Êc(ζ ) in Equation
(6), the problem can be simplified to the relevant information of
connectivity. A refined modeling, considering the randomization
of the structure (Huber et al., 2014; Roschning and Huber,
2016), incorporation of variable ligament shapes (Jiao andHuber,
2017a), or nodal mass using the so-called nodal-corrected beam
model (NCBM) (Jiao and Huber, 2017b) are related to the
dependency Ê0(ϕ) in Equation (6). This is set aside for generating
more realistic structures for validation in section Randomized
Diamond Structures With Nodal Correction. For details on the
generation of such RVEs, please refer to Data Sheet 1 in the
Supplementary Section 1.

In the diamond structure (Huber et al., 2014; Roschning and
Huber, 2016), the boundary conditions are chosen as symmetry
conditions applied to the nodes in the planes x = 0, y = 0, and
z = 0. The load is applied as a homogeneous displacement of
all nodes on the top side of the RVE, applying a compressive
strain of maximum 15%. To capture the boundary conditions of
a uniaxial compression experiment, all nodes on the remaining
faces are free to move. For the mechanical properties of the solid
fraction, Young’s modulus Es = 80 GPa, Poisson’s ratio ν = 0.42,
yield strength of σy,s =500 MPa, and work-hardening rate of
ET =1000 MPa were chosen. These parameters represent the
mechanical behavior of the ligaments in NPG reasonably well
(Huber et al., 2014; Hu et al., 2016; Roschning and Huber, 2016).

The cut fraction ζ defines the number of cut ligaments relative
to the total number of ligaments in the RVE. Cutting of ligaments
is realized by setting the Young’s modulus for a set of FE
elements, which form a randomly selected ligament, to a low
value of Ecut = 10−3Es. This ensures that otherwise free-floating
parts of the model remain connected, despite being mechanically
negligible. In this way, convergence can be achieved in the FE
simulations even for structures beyond the percolation threshold.
By the random removal of ligaments from a higher coordinated
structure, for example, a bcc structure, it is possible to provide an
initial structure that has an average coordination number equal

to lower coordinated structures. For example, by removing half
of the ligaments, the bcc structure is turned into a structure with
the same average coordination number as the diamond structure.
For more details on the data structure and data processing, please
refer toData Sheet 1 in the Supplementary Section 2.

In previous works, an RVE size of 4 × 4× 4 unit cells was
used for the fully connected diamond structure and effects of
structural randomization were averaged from 5 to 10 realizations
of RVEs of same size (Huber et al., 2014; Roschning and Huber,
2016; Jiao and Huber, 2017a,b). Preliminary studies on diamond
structures with random cutting of ligaments show that an RVE
size of 6× 6× 6 unit cells represents a good compromise between
accuracy and computational cost, as seen in Data Sheet 1 in the
Supplementary Section 3. At this size, the macroscopic Young’s
modulus is predicted with an accuracy of 5%, while elastic-
plastic compression up to 15% strain takes 2 CPUh for a single
realization. Furthermore, bcc and cubic structures serve to create
representative structures with reduced coordination numbers by
removing a given fraction of ligaments. For these two higher
coordinated structures, the RVE size was therefore increased to
12× 12× 12 unit cells.

Artificial Neural Networks
Feed-forward artificial neural networks (ANN) (Haykin, 1998)
are a machine-learning technique that enable the approximation
of arbitrary non-linear relationships between multiple input and
outputs (Yagawa and Okuda, 1996). An ANN canmathematically
be represented as an operator that maps an input vector x to an
output vector y

y = N (x,w). (8)

The synaptic weights w of the flexible function N are calibrated
by training the ANN with patterns, consisting of pairs of input
data x and desired outputs d. The training algorithm minimizes
the error for all outputs and all patterns presented to the ANN
during training through the iterative adjustment of the synaptic
weights w. In this context, the number of training increments
is called epoch. A percentage of the provided patterns (typically
10%) are kept for validation and are not used for training.

The error for a presented set of patterns is computed from the
squared error for all K outputs and P patterns by the following
equation:

E =
∑P

p=0

∑K

k=0
(y

(p)

k
− d

(p)

k
)2. (9)

Normalizing the squared error E by KP yields the mean squared
errorMSE, which allows the comparison of results from different
pattern sizes and neural network architectures. This is helpful
for comparing the prediction quality of training and validation
patterns, as denoted byMSET andMSEV , respectively.

Observing the development of the training and validation
error during training provides important insight into whether the
function N exists and if the information in the input data x is
sufficiently complete for obtaining the desired outputs d. A very
limited decay of the training error indicates that the problem at
hand cannot be (uniquely) solved. A decay of the training error
to low values along with a significant increase in validation error
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indicates overlearning, which leads to lack of generalization. In
this case, the ANN tends to classify and memorize each pattern
individually and is not able to interpolate between the patterns.
When the ANN reaches low training and validation error, it can
be used to predict the output for any input, provided that the data
are within the training range of the ANN. For details about the
ANN simulation software and its application to various problems
in mechanics and materials science please refer to Huber et al.
(2002), Tyulyukovskiy and Huber (2006), Tyulyukovskiy and
Huber (2007), Willumeit et al. (2013), and Chupakhin et al.
(2017).

MACROSCOPIC MECHANICAL
PROPERTIES

This section addresses the general question as to whether
a relationship exists between cut fraction and macroscopic
mechanical properties and if so, how this relationship can be
represented. This type of problem can be addressed by data
mining. In addition, there are a number of specific questions. The
literature suggests that the behavior of the mechanical properties
follows a power-law behavior, as given in Equation (4). It is
unclear whether the values for the percolation threshold from
literature collected in Table 1, which were computed for the
fundamental problems of ferromagnetic crystals and electron
transport, can be transferred to our solid mechanics context.

Sykes and Essam (1964) propose Equation (7) for computing
the percolation probability from the coordination numbers
ranging from 4 to 12 with only a few percent error. The open
question is how accurate this rule of thumb is for values below
4. If it still describes the overall dependency sufficiently well, we
could speculate that once the average coordination number of a
3D network reaches a value of 1.5, there is no further cut possible
without losing connectivity. This value appears to be surprisingly
low.

Study of Percolation Behavior
In this section, the behavior of the macroscopic Young’s modulus
and yield strength are studied for initially fully connected
structures, as listed in Table 1, by varying the cut fraction ζ

in 10% increments. The macroscopic Young’s modulus was
computed from the response of the RVE after the first loading
increment, which is fully elastic. To determine the yield strength,
the corresponding plastic strain was computed at each load
increment and the macroscopic stress-plastic strain curve was
interpolated to 0.2% of plastic strain. The results for the different
structures under investigation are shown in Figure 1, normalized
to the value of the corresponding fully connected structure. The
scatter of five realizations for each cut fraction is visible from the
symbols, representing the individual numerical results.

For the normalized macroscopic Young’s modulus, as shown
in Figure 1A, the behavior was fitted by adjusting the exponent
f in Equation (4), while the values for the percolation threshold
pc from Table 1 were inserted as a predefined parameter for the
respective structure. It can be seen that the exponent f increases
with decreasing coordination number. The fit results presented

FIGURE 1 | Decay of macroscopic properties dependent on the cut fraction ζ

for bcc, cubic <111> (cub), diamond (dia), and Gibson–Ashby (GA)

structures. All data are normalized to the value of the fully connected structure.

(A) Young’s modulus and (B) yield strength.

in Figure 1A confirm that the value of f cannot be understood
as an invariant number, as suggested in literature (Sahimi, 1994).
Instead, it strongly depends on the initial structure under study.
For high coordination numbers, the exponent tends toward
1, while for low coordination numbers it exceeds the value
of 3, confirming the findings summarized by Kováčik (1999).
However, in our work, this value is not related to the extension
of a pore morphology, which could be interpreted as a network
of cut ligaments within the RVE, but instead it is related to the
coordination number of the respective fully connected structure.

It is striking how well the very same behavior applies to the
yield strength shown in Figure 1B. The fit curves determined
from the Young’s modulus also show strong agreement with the
strength data for diamond, cubic, and bcc structures. Concerning
the Gibson–Ashby structure, it is not clear if this applies here
as well, because only few simulations reached sufficient plastic
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strains. Due to the missing statistics and the numerical issues,
the few remaining data points are arguable. Irrespective of this
uncertainty, the result strongly suggests that the Young’smodulus
and yield strength follow the very same behavior for partially cut
structures.

Scaling of Mechanical Properties
The numerical experiment carried out in section Study of
Percolation Behavior is based on the idea of random cutting
of ligaments of an initially fully connected structure. For each
type of structure, the degradation of the macroscopic mechanical
properties follows a non-linear behavior that is defined by
the coordination number of the corresponding fully connected
structure. Following this line of thinking leads to the speculation
that the behavior of a structure with a certain fraction of missing
connections might be defined by the original unit cell structure.

On the other hand, simple math suggests that cutting 25%
of the ligaments in a bcc structure with a coordination number
z = 8, for example, yields the coordination number of the
cubic structure (z = 6). The question at hand is whether the
topology of a structure with higher coordination number can
be effectively transformed into the topology of any structure
of lower coordination number. It follows that the macroscopic
properties for a given solid fraction is defined by the average
coordination number via the second part of Equation (6).
Ensuring a consistent scaling of mechanical properties, however,
requires that the structures under consideration deform through
the same mechanism. In this work, we therefore concentrate
on structures that show bending as the dominant deformation
mechanism (Huber et al., 2014).

Young’s Modulus
The hypothesis presented in the previous paragraph is tested
as follows: Starting from a fully connected bcc structure, a new
starting structure is generated, in which a defined percentage of
ligaments, ζini are removed. The steps were chosen such that the
connectivity is continuously reduced from 8 to 4 in steps of 1,
i.e., ζini ∈ {0, 0.125, 0.25, 0.375, 0.5}. Again, for each of these
structures, the macroscopic Young’s modulus was subsequently
calculated, depending on the cut fraction ζ increased by 10%
increments, with five random realizations for each increment.
The results, analyzed according to section Study of Percolation
Behavior in Data Sheet 1 (Supplementary Section 4), suggest
that it should be possible to combine the data from different
structures in a single curve.

To this end, the total cut fraction ζtot is calculated from ζtot =
1− (1−ζini)(1−ζ ), where ζ is defined as the cut fraction relative
to the remaining solid fraction of the pre-cut structure. All data
related to the macroscopic Young’s modulus E are normalized by
the value computed for the fully connected bcc structure, which
is denoted as E0,bcc. The results for the bcc structure are compiled
in Figure 2A as black crosses.

The curve constructed from the bcc data in Figure 2A clearly
shows that the power law function Equation (4) is not capable of
describing the behavior from the fully connected structure down
to the percolation to cluster transition. Therefore, we suggest a
function consisting of an initially linear descent for ζtot ≥ 0 with

FIGURE 2 | (A) Construction of the master curve derived from bcc data and

validation with data obtained independently from fully connected cubic,

diamond, and Gibson–Ashby (GA) structures. (B) Deviation between numerical

data and the proposed master curve.

a sigmoidal transition toward the percolation threshold ζc in the
following form:

E

E0,bcc
= Ẽ (ζtot) = 1− a0ζtot +

a1
[

1+ exp(−a2(ζtot − ζc))
] ,

0 ≤ ζtot ≤ ζc. (10)

The parameters in Equation (10) can be adjusted to satisfy the
conditions E/E0,bcc

∣

∣

ζc
= 0 and dE/dE0,bcc

∣

∣

ζc
= 0 by setting

a1 = 2(a0ζc − 1) and a2 = 4a0/a1. The percolation threshold
ζc = 0.822 is taken from Sykes and Essam (1964). Please also
see Table 1 for the bcc structure. By using the literature value
for infinite structure size, a treatment of the finite-size scaling
effect (Sahimi, 1994; Nachtrab, 2011) in the numerical data can
be avoided. This leads to a single adjustable parameter a0, which
is determined from the linear slope of the numerical data at low
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total cut fractions to a0 = 1.55. It follows that a1 = 0.55 and
a2 = 11.31.

For validation of the master curve, the data from section Study
of Percolation Behavior, computed for the cubic, diamond, and
Gibson–Ashby structure, are included in Figure 2A according to
the following procedure. As the coordination number of the bcc
structure zbcc = 8 is used as reference, the calculation of the total
cut fraction can be done in the following form

ζtot = 1− zx

zbcc
(1− ζini) (1− ζ ) , (11)

where the term zx/zbcc scales the current structure x with a
coordination number zx relative to that of the bcc reference
structure zbcc and defines the starting point for the total
cut fraction on the master curve. Alternatively, the average
coordination number z = zx (1− ζini) (1− ζ ) of an RVE
can be determined by averaging the coordination number over
all the internal nodes within the RVE. Incorporating nodes
at boundaries would add a bias toward lower coordination
numbers. The numerical data confirm the following linear
relationship:

z = zbcc(1− ζtot). (12)

This is confirmed with an accuracy of 5% for all structures
under investigation. The vertical adjustment of the starting
point of an initially fully connected structure x is defined by
normalizing the Young’s modulus data, such that the value
E0,x/E0,bcc calculated from Equation (10) for ζini = 0 and ζ =
0 is met. The corresponding values are given in Data Sheet 1,
Supplementary Table 1.

Furthermore, Figure 2A includes the data for the other
structures (cub, dia, GA) of Figure 1Amapped to E/E0,bcc vs. ζtot .
The overall agreement with the master curve appears to be very
good. The quantitative comparison, as presented in Figure 2B,
shows the deviation between the numerical data and the master
curve with an error of< 2% for all structures, except for the uncut
Gibson-Ashby structures showing a deviation of 5%. Although
this is a factor of two and is better compared to the power law
fit using Equation (4) of Figure 1A, it should be kept in mind
that this accuracy is relative to the macroscopic Young’s modulus
E0,bcc of a fully connected bcc structure with a relatively high
coordination number.

Remembering the strong agreement of the macroscopic yield
strength data with the fit curves for macroscopic Young’s
modulus presented in Figure 1B, it can be expected that the
same master curve as determined for Young’s modulus can be
applied to the macroscopic yield strength as well. This is shown
in Figure 3A for bcc structures with different degrees of initial
cutting. For low cut fractions (or high coordination numbers),
the yield strength data fall about 3% below the master curve.
However, with increasing cut fraction (or for lower coordination
numbers), the difference reduces. For ζtot ≥ 0.55 (z ≤ 3.6), the
two properties show a perfect match.

The validation carried out by using data from the structures
with originally different unit cell geometry and coordination
number is shown in Figure 3B. It can be seen that the scatter

FIGURE 3 | (A) Scaling behavior of the macroscopic yield strength as

obtained from different degrees of initial cutting of bcc structures plotted

together with the master curve Equation (10), using the parameters as

determined for macroscopic Young’s modulus. (B) Validation of the master

curve with data of fully connected simple cubic (cub), diamond (dia), and

Gibson–Ashby (GA) structures.

is larger, particularly for the cubic structure. The cubic structure
is also located a few percent above the values of the other
structures. It can be argued that the cubic structure is the only
one in which the unit cell does not agree with the coordinate
directions of the RVE boundary. Due to the rotation in <111>
direction, numerous ligaments are cut at the RVE boundary to
form a cube of size 12 × 12 × 12 unit cell size. The shorter
ligaments show a higher strength due to the reduced lever
available for bending (Huber et al., 2014). It can therefore be
concluded that σy/σy0,bcc = E/E0,bcc = Ẽ (ζtot) holds within the
numerical accuracy and Equation (10) can be identically applied
for predicting both the scaling behavior of the macroscopic
Young’s modulus and the yield strength.
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Poisson’s Ratio
The successful construction of a master curve for the
macroscopic Young’s modulus and yield strength from
numerical data motivates the search for a master curve for
Poisson’s ratio. Starting from the bcc structure with increasing
fraction of initial cuts leads to the behavior shown in Figure 4A.
In contrast to the behavior of the Young’s modulus and yield
strength, the initial slope for low total cut fractions ζtot & 0
is close to zero and then takes progressively negative values.
At ζtot & 0.7, the data show a minimum value. The scatter
strongly increases while the curve changes direction toward
larger values. As the structure rapidly loses connectivity with
ζtot → 0.822, the lateral expansion of the RVE is based on very
few connections within the 3D network, causing the large scatter
and the change in the overall trend. It could be speculated that

FIGURE 4 | (A) Construction of the master curve for Poisson’s ratio

depending on the cut fraction based on the bcc structure with different

degrees of initial cuts. (B) Validation of the master curve with data of

subsequent cutting starting from fully connected cubic <111> (cub), diamond

(dia), and Gibson–Ashby (GA) structures.

Poisson’s ratio should theoretically continue downwards toward
zero when approaching the percolation threshold. Based on
this assumption, a simple fit function with a single adjustable
parameter can be formulated that assumes an elliptic shape:

ν

ν0,bcc
= ν̃ (ζtot) =

(

1 −
(

ζtot

ζc

)n)1/n

, 0 ≤ ζtot ≤ ζc. (13)

The master curve for Poisson’s ratio, as plotted in Figure 4A as
a dashed curve, uses ζc = 0.822 as fixed percolation threshold
for the bcc structure, similar to Equation (10), and an exponent
n = 1.75.

In contrast to the macroscopic Young’s modulus and
strength, which are measured in loading direction, Poisson’s
ratio characterizes the lateral expansion normal to the loading
direction. It is, therefore, not obvious that the master curve can
also apply to structures built from very different unit cells, as their
deformation mechanisms could significantly differ. However,
both the simple cubic and the diamond structure agree equally
well with the master curve. Interestingly, the diamond structure,
which starts as fully connected structure at the low coordination
number of z = 4, shows a further continuation of the downwards
trend along the master curve and confirms the hypothesis that
Poisson’s ratio should actually continue toward zero as the
percolation threshold is approached. This hypothesis is further
supported through additional simulations conducted for the
low coordinated Gibson–Ashby structure, loaded in <111>
direction, which are incorporated in Figure 4B.

Relationship Between Scaled Genus
Density and Average Coordination Number
Throughout the previous analysis, the total cut fraction ζtot
was used as an independent variable for the characterization
of the connectivity. By this approach, common issues with
determining the percolation threshold pc and exponent could be
avoided. For measuring the total cut fraction of a real structure,
e.g., from a skeleton of a FIB tomography (Hu et al., 2016;
Ziehmer et al., 2016; Hu, 2017; Richert and Huber, 2018), the
related fully connected reference is required; however, this is
unknown. Alternatively, the average coordination number z of a
3D network could be measured, because it is connected with the
total cut fraction by the linear relationship, as given in Equation
(12). But even if the skeleton of a structure is available, the
determination of the average coordination number z, as defined
in this work, is difficult.

By averaging the coordination numbers of all junctions, Nz ,
the average coordination number z should be obtained. The
problem is that any junction with fewer than three connections
cannot be recognized. A junction that connects two branches is
invisible because the two branches form a single longer branch.
A node that has lost all connections physically reduces to a void
junction, which is undetectable in any case. Thus, one would
naturally obtain z = 3 as the lower limit, irrespective of how
many more cuts are introduced in a structure. This is consistent
with the results of Ioannidis and Chatzis (2000), where only pores
with z ≥ 3 are considered as valid nodes in topological context.
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Consequently, with ongoing removal of connections, the number
of detectable junctions starts to decrease at the same time.

A third parameter that is frequently used is the genus density
gV . The genus g is the maximum number of non-intersecting
closed curves along which the object can be cut without dividing
it into two parts (Richeson, 2008). As no internal pores are
present in our structures, the genus equals the connectivity. For
3D networks consisting of solid struts, as represented by a graph
G, the genus g is calculated from the Euler characteristic χ (G) =
1 − g, where χ (G) : = V − E, with V and E being the number
of graph vertices and the number of graph edges, respectively
(Nachtrab, 2011; Hu et al., 2016). Note that this calculation of
the genus assumes connected structures. As we do not account
for the formation of free floating clusters, this can lead to negative
values of g, because the formation of clusters and the cutting of all
load-bearing rings may happen before reaching the percolation
threshold.

Because the genus increases with increasing structure size, it
is commonly scaled to a characteristic volume, gV = g/Vc. To
compare the topology of different structures, the dimensionless
product gVS

−3
V is used. In the context of nanoporous metals,

1/SV is typically chosen as characteristic length, representing
the reciprocal of the interfacial area per volume of a given
system (Kwon et al., 2010). This definition can be applied
to 3D solid structures with an interface separating the solid
fraction and the pore space, for which all characteristic lengths
are linearly dependent due to the geometrical similarity of the
structure under investigation (Kwon et al., 2010; Hu et al., 2016;
Mangipudi et al., 2016; Hu, 2017). Therefore, the importance
of the characteristic length scale for the normalization and the
associated challenges in its experimental determination are still
under debate (Lilleodden and Voorhees, 2018).

The large data set for various structures sheds some light onto
this. The way in which the structures have been generated in this
work enables the setting of any arbitrarily chosen value for the
ligament radius, independent of the topology of the structure.
Consequently, the interfacial area is fully decoupled from the
genus, which is in contrast to the approach of generating artificial
nanoporous structures based on the Cahn–Hilliard equation
(Kwon et al., 2010; Sun et al., 2013; Mangipudi et al., 2016;
Soyarslan et al., 2018). Moreover, Soyarslan et al. (2018) could
show for this type of structures that the solid fraction controls
the scaled genus density and a closed form relationship exists that
uniquely relates the two quantities to each other.

By using the large set of data for structures covering a large
range of coordination numbers and cut fractions, we are able to
determine which characteristic length, more generally denoted
as lV , allows the transfer of results for the scaled genus density
among the different structures. For comparing RVEs of different
sizes, all results are normalized by the number of unit cells in
the model, i.e., gV = (1 − χ (RVE))/N3, where N = 12 for all
bcc- and cubic-based structures, and N = 6 for all diamond- and
Gibson–Ashby-based structures. The results for gV are plotted in
Figure 5A. All curves intersect at gV = 0, which indicates that
the genus is correctly calculated, as this particular point should
be common for all structures, independent of the scaling. The
data suggest that the intersection with gV = 0 corresponds to

FIGURE 5 | Calculated scaled genus density plotted vs. average coordination

number for different structures and cut fractions: (A) genus per unit cell volume

vs. average coordination number. (B) fingerprint of various definitions for the

characteristic length lV with the condition g′
V
l3
V
= const fulfilled only for the

characteristic length lV,J (green).

an average coordination number z . 2. Below this point, i.e., for
gV < 0, clusters form and the mechanical properties are zero. For
z > 2, the curves gV (z) separate because the different unit cells
have a different genus, as seen in Table 1.

We can now derive a fingerprint from the data in Figure 5A,
which supports the search for the characteristic length lV .
Following Kwon et al. (2010), the scaled genus density gV (z) is
defined as

g∗V (z) : = gV (z)l
3
V . (14)

As long as the structures under investigation are self-similar,
any characteristic length l3V can be chosen, such as 1/SV or
the ligament diameter 〈D〉 (Hu et al., 2016). However, when
the self-similarity is no longer conserved, we need to select a
characteristic length that works for all structures. Our data set
supports the search for lV to fulfil the condition g∗V (z) = const,
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independent of the structure. As can be seen in Figure 5A, gV
depends linearly on z in the upper right area of the plot. In
this region, the condition g∗V (z) = const can be replaced by

g∗V
′ = g

′
V l

3
V = const. The slopes g′V characterizing gV (z) >1 are

listed in Table 1.
A number of possible characteristic lengths lV can be obtained

from the geometrical parameters defining the structure of the
different unit cells, such as the coordination number z, the
ligament length l, the ligament radius r, the number of ligaments
per unit cell NL, and the number of junctions per unit cell NJ .
We can exclude the coordination number z as the independent
variable, as well as combinations with the ligament radius r for
the aforementioned reasons. As one example of this category of
characteristic lengths, the inverse of the ratio of surface area by
volume is tested. Normalizing the unit cell volume by the surface
area of the cylindrical ligaments in the unit cell, we can estimate
S−1
V by lV ,S := a3/(NL2πrl). The other characteristic lengths are
the ligament length lV ,l := l, the total ligament length in the
unit cell, lV ,ltot := NLl, and characteristic lengths calculated from
the volume per junction and from the volume per ligament, as
lV ,J := (a3/NJ)

1/3 and lV ,L := (a3/NL)
1/3, respectively.

The dependency of g′V l
3
V for the different definitions of lV

plotted in Figure 5B reveals that only the characteristic length lV ,J
satisfies the condition g′V l

3
V = const. If this is inserted in Equation

(14), we get

g∗V (z) : = g (z)

N3NJ
= g (z)

NJ,RVE
. (15)

Therefore, the definition of a scaled genus density, which
combines all structures in a single curve, requires a normalization
of the genus by the number of junctions of the original, fully
connected structure, NJ,RVE, given by the number of unit cells in
the RVE, N3, multiplied by the number of junctions per unit cell,
NJ . This finding is consistent with Ioannidis and Lang (1998) and
Ioannidis and Chatzis (2000), where the genus per node was used.

By knowing the characteristic length for scaling the genus
density, we can derive a closed form relationship for g∗V
depending on the RVE size N, which can be analyzed for any
unit cell, as seen in Data Sheet 1, Supplementary Section 5.
The results shown in Figure 6A reveal that structures with a
scaled genus density that is sufficiently insensitive to the surface
require an RVE size in the order of 100. Thus, the relationship
g∗V (z) that holds for large structures should be determined from
the analytical solution for the infinite RVE size. To confirm
this approach, the numerical and analytical data are plotted
in Figure 6B. The strong agreement for RVE sizes of 6 to 12
with corresponding curves for finite structure size validates the
analytical solution provided in Supplementary Equations (9–14)
inData Sheet 1.

For a periodic structure of infinite size, the scaled genus
density can be calculated analytically depending on the RVE size,
as seen in Data Sheet 1, Supplementary Figure 8, with values
given in Data Sheet 1, Supplementary Table 2. The numerical
data extend the relationship between the genus and the average
coordination number for infinite structure size and z ≥ 3 as given
by Ioannidis and Lang (1998) and Ioannidis and Chatzis (2000)

FIGURE 6 | (A) Scaled genus density vs. RVE size for different structures

calculated from the analytical solution in Data Sheet 1,

Supplementary Section 5. (B) Scaled genus density vs. average

coordination number calculated for the RVEs, compared to the analytical

solution dependent on the RVE size.

to lower values:

g∗V (z) = g (z)

NJ, RVE
= z/2− 1, z ≥ 2. (16)

Equation (16) does not predict the nonlinear runout, which
is clearly visible in Figure 5A for bcc and diamond and in
Figure 6B, where the data show a curvature deviating to the left
for z < 2, relative to the linear extrapolation of the analytical
solution for N = ∞. This behavior is a result of the formation of
clusters at the lowest average coordination numbers close to and
beyond the percolation to cluster transition.

It thereby follows that the scaled genus density is independent
of the structure if the genus g is normalized to the number
of nodes NJ,RVE in the fully connected structure. Other
characteristic lengths, such as the reciprocal of the interfacial
area per volume of a given system (Kwon et al., 2010) or the
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mean ligament diameter 〈D〉 (Hu et al., 2016) work for structures
that are self-similar, but they do not allow a comparison between
results from non-similar structures.

Another important result is the unique relationship between
the scaled genus density and the average coordination number,
which is linear as long as z ≥ 2. Whether the genus might
nevertheless provide additional linear-independent information
on the topology is an important question that is investigated in
the following section.

MACHINE LEARNING

From section Scaling of Mechanical Properties, we know the
percolation threshold ζc, at which all mechanical properties reach
the value of zero. Inserting this value in Equation (12) for
ζtot leads to the corresponding minimum average coordination
number zmin ≈ 1.5. It is shown in section Relationship Between
Scaled Genus Density and Average Coordination Number that
the genus reaches zero at z = 2. It remains an open question
how meaningful data are for values below z = 2. In any case,
the valid range from z = 2 to 3, which corresponds to a
positive genus, has not been touched upon so far in topology
for the reasons explained by Ioannidis and Chatzis (2000). As a
consequence, all structures approaching z = 3 are systematically
overestimated with respect to their coordination number. In the
following section, the difficult task of interpreting topological
data for lowest average coordination numbers is solved via
machine learning.

Determination of Average Coordination
Number
For an overview, a number of ANNs are trained and analyzed
for different choices of inputs x. Starting with a complete set,
more andmore inputs are removed, which are hard or impossible
to measure. The investigated cases are summarized in Table 2,
together with the architecture of the ANNs and the achievedMSE
values. The input is formed by the statistics of local connectivity.
For each structure, we count the number of branches for each
coordination number z starting from lowest value of z = 0 to
highest value z = 8, denoted byN0 toN8. They are normalized by
the total of detectable junctions, N(zmin) =

∑8
z=zmin

Nz . All data
for creation of the patterns are generated from the whole set of
structural models presented in section Macroscopic Mechanical
Properties, including all variants of initial cuts and subsequent
cutting. In total, 585 patterns are used, of which 10% are kept for
validation. Each ANN is trained for 20,000 epochs with no sign

of overlearning. As common output definition for all variants
ANN0 to ANN3, a single output neuron is used to predict the
average coordination number z, which is computed for each
pattern by

y := z =
∑

zNz/N
(0). (17)

The errors collected in Table 2 show that the mean squared error
increases, as expected, with reduction in inputs for junctions
with lower coordination numbers. For ANN3, the uncertainty
increases particularly for very low average coordination numbers,
as shown in Figure 7A. For obvious reasons, all data from
the Gibson–Ashby structure lead to a constant output value
(highlighted in purple). The distribution of the predicted values
for ANN1 (red symbols in Figure 7A) confirms that the missing
information about the number of void junctions can be largely
reconstructed from the remaining data derived from all other
structures and has almost no effect, even for lowest coordination
numbers.

For visualizing the performance of the ANN, an estimate of
the average coordination number z is calculated by averaging all
coordination numbers provided to the input for ANN3:

z̃ =
∑8

z=3
zNz/N

(3). (18)

It can be seen from Figure 7A that the machine-learning
approach has the capability of interpreting the presented data in
the context of the information of all structures provided during
training. Knowing the big picture obviously helps to reconstruct
missing information in the input data with reasonable accuracy.
This can be understood by visualizing the statistical distribution
of the local coordination numbers, which follow typical patterns
according to the probability of cutting, as seen in Data Sheet 1,
Supplementary Section 6.

Section Relationship Between Scaled Genus Density and
Average Coordination Number leaves us with the question of
whether the genus could provide additional linear independent
information on the average coordination number. To investigate
this, the input definition of the ANN can be enriched by
adding an estimated scaled genus density using the accessible
number of junctions in the structure, g/N(3). Using such data,
however, limits the generality of the approach to perfectly
ordered structures. As soon as structures are randomized or cut
in planes that do not meet planes of the unit cells, the genus
is biased to lower values due to the cutting of originally closed

TABLE 2 | ANN definitions and squared errors after training for varying degree of information about junctions with low coordination number.

Name Input vector x Neurons MSET MSEV

ANN0 xi : = Ni/N
(0), i = 0, . . . , 8 9-6-1 5.7 · 10−8 1.7 · 10−7

ANN1 xi : = Ni+1/N(1), i = 0, . . . , 7 8-6-1 4.2 · 10−6 9.8 · 10−6

ANN2 xi : = Ni+2/N(2), i = 0, . . . , 6 7-6-1 5.7 · 10−5 6.8 · 10−5

ANN3 xi : = Ni+3/N(3), i = 0, . . . , 5 6-6-1 7.2 · 10−5 1.6 · 10−4

ANN3gi xi : = Ni+3/N(3), i = 0, . . . , 5 7-6-1 1.7 · 10−5 1.9 · 10−5

x6 : = g(i)/N(3)
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FIGURE 7 | (A) Predicted ANN output vs. desired output for average

coordination number z for continuous reduction of inputs with low coordination

numbers from ANN0 (full information) to ANN3 (only junctions with

coordination of 3 and higher). (B) ANN3gi incorporating an estimated scaled

genus density of the inner structure as additional input. The performance of

ANN3gi is better by a factor of 3 compared to ANN2.

curves. Thus, the incorporation of the genus requires an input
definition that is insensitive to the boundary, similarly to the
computation of z from junctions located inside the RVE. To
this end, ligaments that touch the boundary are removed from
the structure before calculating the genus of the inner graph,
denoted as g(i). The normalization by the number of detectable
junctions inside the RVE boundaries, corrected to a structure
of infinite size via the factor gV ,∞/gV ,RVE (see Data Sheet 1,
Supplementary Table 3), leads to an additional input g(i)/N(3)

:=
g
(i)
RVE/N

(3) ·gV ,∞/gV ,RVE. This input definition works without any
knowledge about the fully connected structure.

After training, this neural network, denoted as ANN3gi,
performs better than ANN2 by a factor of 3, as can be seen from
the mean squared errors in Table 2 and the predicted output data
plotted in Figure 7B. This shows that the additional information
on the scaled genus density, despite being a rough estimate of the
mathematically correct value, particularly helps in reducing the
uncertainty for z ≤ 3.

Young’s Modulus and Yield Strength
The master curve Equation (10) developed in section Young’s
Modulus brings the data generated for different structures very
close to a single curve. For our data set, the accuracy compared
to the master curve can be improved without limiting the
generality of the approach. A second artificial neural network
is trained, which corrects the macroscopic Young’s modulus for
each pattern relative to the prediction of the master curve Ẽ(ζtot),
given by Equation (10). For reasons of consistency, we use the
same input definition as used for ANN3 (see Table 2) but apply
the following output definition:

y : = E/E0,bcc − Ẽ(ζtot). (19)

After this artificial neural network, denoted as ANN3E, is trained,
the mean squared training and validation error come toMSET =
1.21 · 10−3 and MSEV = 1.03 · 10−3 respectively. An accuracy
of ±0.01 for the output is reached, which is an improvement
by a factor of 2 compared to the master curve. Only a few data
points are located outside this limit. Trials including the estimate
of the scaled genus density in the input definition, as used for
ANN3gi, do not improve the result. This is possibly because
this additional information is only relevant close to and beyond
the percolation threshold, where the mechanical properties are
anyway approaching zero.

In the same way as for the macroscopic Young’s modulus, an
artificial neural network ANN3sy is trained for correcting the
macroscopic yield strength relative to the master curve, with the
inputs as defined for ANN3 and the output definition being

y := σy/σy0,bcc − σ̃y(ζtot), (20)

where σ̃y(ζtot) ≡ Ẽ(ζtot) is given by Equation (10). The yield
strength shows a larger scatter in the numerical data and also
larger deviations from the master curve, as seen in Figure 3. As
a neural network interprets only the general relationship hidden
in the data as whole, the scatter of the data is also reflected in
the overall training error, which is double that of the Young’s
modulus. The resulting mean squared training and validation
error are MSET = 5.22 · 10−4 and MSEV = 4.99 · 10−4,
respectively. The accuracy is improved by a factor of about 4
from the span of the training range from −0.03 to 0.06, with a
remaining uncertainty of ±0.01. This uncertainty results from
the sensitivity of the RVEs to local plastic yielding, which seems to
be influenced more strongly by the realization of random cutting
than the macroscopic Young’s modulus.

An overview of the workflow developed in sections
Macroscopic Mechanical Properties and 4 is given in
Data Sheet 1, Supplementary Section 7. The Supplementary
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data files (Data Sheet 2) for training and validation of the ANNs
are specified in Data Sheet 1, Supplementary Section 8; the
ANNs are provided in Data Sheet 3 as Supplementary Python
code including selected example problems as described in
Data Sheet 1, Supplementary Section 9.

VALIDATION AND APPLICATION

Randomized Diamond Structures With
Nodal Correction
Literature on NPG, studying the topological properties from
artificially generated 3D structures and 3D FIB tomography,
reports a large number of three-fold junctions and a smaller
number of quadruple junctions (Mangipudi et al., 2016). A
diamond structure, as suggested by Huber et al. (2014), can
be tuned using the cut fraction to meet any ratio of three-
fold and quadruple junctions. The randomization of the finite
element beam model by an additional parameter A as a
multiple of the unit cell size allows the prediction of realistic
macroscopic properties, including Poisson’s ratio (Huber et al.,
2014; Roschning and Huber, 2016). A nodal corrected beam
model can be applied, mimicking the effect of the nodal mass
on the deformation behavior similar to a solid model (Jiao and
Huber, 2017b).

To validate the approach developed in this work, we use
such an extended model, which describes the elastic-plastic
deformation behavior of NPG more realistically compared to the
perfect 3D periodic structures without nodal masses employed
in the previous section. To this end, additional structures with
randomization values ranging from A = 0.1 to A = 0.3 and cut
fractions ζ up to 0.4 are generated. Examples of RVEs of sizeN =
6 unit cells are given in Data Sheet 1, Supplementary Figure 3.

For all randomized structures, the chosen ligament radius
is r/a = 0.118. The geometry and property parameters for
the nodal corrected beam model are given in Data Sheet 1,
Supplementary Section 1. In addition to the randomization, the
major difference with perfectly ordered crystals is that distorted
ligaments are now cut at the RVE boundaries. With increasing
degree of randomization, the RVE also loses junctions that are
shifted outside the RVE boundaries. This allows the approach to
be tested for more general structures.

Topology
Figure 8A presents the results for the determined average
coordination number z vs. the correct values. The solid curve
indicates the exact solution. The ANN3 outputs (circles) agree
for all three randomizations and are very close to the exact
solution, with a slight trend for underestimation by −0.1. The
results for the highest cut fraction ζ = 0.4 show the highest
scatter toward low values by an average of −0.2 (on average
10% deviation) due to missing information on the statistics
for coordination numbers z < 3. The comparison with the
estimate z̃, on the other hand, shows that the ANN3 significantly
improves the determination of the average coordination number
for z < 3.5. The accuracy is further improved by including
additional input g(i)/N(3) (ANN3gi, cross symbols). The scatter
is reduced compared to ANN3 and the outputs are very close to

FIGURE 8 | (A) Determination of average coordination number z for

randomized diamond structures; outputs of ANN3 and ANN3gi and estimate z̃

for junctions with three or more branches; (B) scaled genus density and its

dependence on the randomization of the RVE. The insert on the lower right

exemplarily shows a structure for N = 4 and ζ = 0.3. For details, see

Data Sheet 1, Supplementary Sections 1–3.

the correct values. Only for the lowest values of z does a slight
underestimation along with some scatter occur.

Based on the value of z, the scaled genus density g∗V (z) =
g/NJ,RVE is calculated from Equation (16), as seen in Figure 8B.
After scaling the data for the perfectly ordered crystal
(A = 0.0, blue diamonds) to infinite structure size
by a factor of gV ,∞/gV ,RVE = 1.314 (see Data Sheet 1,
Supplementary Table 3), they fall nicely onto the master curve.
As expected, the genus falls immediately below the master curve
for the randomized structures, because about 50% of the distorted
ligaments are now cut by the RVE boundary. A similar effect
occurs in the analysis of tomographic data, where the boundary of
the inspected volume is introduced artificially and does not exist
as a real boundary in the larger sample. In this sense, the elevated
values from the master curve Equation (16), calculated with the
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identified average coordination number fromANN3gi, reflect the
scaled genus density of the infinite-size structure.

Macroscopic Young’s Modulus and Yield Strength
According to the workflow depicted in Data Sheet 1,
Supplementary Figure 10, the total cut fraction ζtot , calculated
from z serves as key input for the prediction of the mechanical
properties based on the master curves Equations (10, 13).
Equation (11) determines the relevant part of the master curves.
For zdia/zbcc = 0.5 and ζ = 0 to 0.5, we obtain the range for
ζtot = 0.5 to 0.75 and the initial value E0,dia/E0,bcc = 0.239,
as also seen in Data Sheet 1, Supplementary Table 1 for
ζini = 50%. The master curves are entered into Figure 9 as
solid curves. The related cut fraction ζ , which is 0 for the fully
connected diamond structure, is shown on the top axis of these
plots. All numerical results are entered as solid symbols with the
same color-coding as explained for Figure 9A for the different
degrees of randomization.

The plots for the Young’s modulus and yield strength, as
shown in Figures 9A,B, show no dependence on the degree of
randomization. This supports the hypothesis that the scaling
of mechanical properties, as formulated in Equation (6) for
Young’s modulus, holds. The values E/E0,bcc and σy/σy0,bcc,
as determined by the artificial neural networks ANN3E and
ANN3sy, respectively, are added as cross symbols. Both ANNs
are able to predict the displacement by about−0.02 relative to the
master curve, thus resembling the position of the numerical data
extremely well. Uncertainties in the determined total cut fraction
appear as a scatter of the determined values along the displaced
master curve. Only in the upper left corner of the plot are the
values of E/E0,bcc and σy/σy0,bcc displaced. It can be assumed
that these specific data points are treated rather as outliers by
the ANN during training, because fully connected diamond and
Gibson–Ashby structures appear outside the overall trend in
Figure 2B.

From Figure 9B, it can be seen that it is possible to predict the
yield strength for RVEs that cannot be numerically solved due to
convergence problems. This happens more often for increasing
randomization and cut fraction, made visible by the frequency of
green and red solid symbols with zero values. This nicely shows
that the presented approach allows the prediction of macroscopic
mechanical properties for structures that cannot be solved with
computer simulations.

Poisson’s Ratio
Figure 10A presents the results for the Poisson’s ratio, which
show different behavior for the three randomizations. While the
data for A = 0.1 (black solid symbols) follow the master curve
for all cut fractions, the data for A = 0.2 (green solid symbols)
show a minimum value at ζtot = 65%, while values increase for
higher cut fractions. This phenomenon, already observed for the
perfect crystals (see Figure 4), is expected. However, for the RVE
with maximum randomization of A = 0.3 (red solid symbols),
the minimum value moves up to the starting point at zero cut
fraction and all data show a very large scatter.

This deviation from the master curve motivates additional
simulations for the same randomizations but without nodal

correction. The results entered in Figure 10A as open symbols
(beam model, BM) do not show such strong deviations. Up to
A = 0.2, all data follow nicely on the master curve. However,
for A = 0.3, a similar behavior can be observed as for the
nodal-corrected RVE, with larger deviations for increasing cut
fraction.

This seemingly odd behavior can be understood if it is
considered that randomization has a strong effect on the elastic
Poisson’s ratio (Huber et al., 2014; Roschning and Huber, 2016;
Jiao and Huber, 2017a) which rapidly decreases with increasing
randomization. In addition, plotting the absolute values in
Figure 10B shows that the nodal correction, combined with
randomization, decreases the Poisson’s ratio even further. This
effect is not mentioned by (Jiao and Huber, 2017b), because in
their study, nodal correction is only discussed in relation to the
macroscopic stress-plastic strain response of the RVE.

FIGURE 9 | Simulation results and predicted macroscopic properties. Data

points predicted by ANNs are denoted according to P(x, y). (A) Young’s

modulus; (B) yield strength. Zero values indicate simulations that were

terminated before reaching a plastic strain of 0.2% due to bad convergence.
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FIGURE 10 | (A) Comparison of numerical results for elastic Poisson’s ratio to

the master curve for different degrees of randomization; (B) Absolute values of

Poisson’s ratio from FEM simulations plotted vs. total cut fraction. The range of

experimental data is taken from Roschning and Huber (2016).

Poisson’s ratio is a critical parameter for the calibration of
the randomization. Data from different sources display a range
for NPG from ν =0.165 to 0.2 (Roschning and Huber, 2016).
This range, highlighted in yellow in Figure 10B, can now be
analyzed with respect to the cut fraction as an additional degree
of freedom. This limits the choice of realistic combinations
of cut fraction and randomization, for which the deviation of
the numerical data from the master curve is negligible. The
sensitivity of Poisson’s ratio is much stronger with respect to
the randomization in comparison to the cut fraction. If the
randomization is around A = 0.2, the data with nodal correction
are even insensitive to the cut fraction. To calibrate the model by
the experimental data, we can determine possible combinations

(A, ζ ) by moving from zero to maximum cut fraction along
the yellow-shaded area. This again underlines the necessity
of determining the average coordination number through

a structural analysis. With the known average coordination
number, the position on the x-axis (total cut fraction) is defined
and Poisson’s ratio can be used for calibrating the randomization
parameter A.

Data From Macroscopic Compression
Experiments
The determination of the effective solid fraction, which
mechanically contributes to the ligament network of NPG, is
the scope of the studies by Liu et al. (2016) and Liu and Jin
(2017). The authors report a large range of samples with ligament
sizes from 5 to 500 nm. The degree of connectivity was changed
via the alloy composition prior to coarsening. Coarsening of
sets of samples after dealloying for four different initial solid
fractions gave a large set of samples, forming a valuable database.
The measured macroscopic Young’s modulus was used for
determining the effective solid fraction. The major assumption
is that only connected ligaments contribute to the mechanical
stiffness, which is given by the Gibson–Ashby scaling relation
Equation (1), rewritten as ϕeff = (E/Es)

1/2. The difference
between ϕ and ϕeff is attributed to dangling ligaments.

Determination of Cut Fraction
In this work, the mass of dangling ligaments corresponds to the
fraction of cut ligaments according to

α = ϕeff/ϕ = (1− ζ ). (21)

In Equation (21), α is the fraction of load-bearing ligaments,
as introduced by Liu et al. (2016) and Liu and Jin (2017).
Consequently, ζ represents the fraction of cut ligaments as
introduced in this work. For samples with lower solid fraction
ϕ ∼ 0.26, the macroscopic Young’s modulus takes very low
values. As no percolation threshold is considered by Liu et al.
(2016) and Liu and Jin (2017), the calculated effective solid
fraction reaches values close to 0 and the cut fraction tends to
1. From the results of Soyarslan et al. (2018), we know that the
network loses its connectivity at a solid fraction ϕP, which is why
Equation (3) with ϕP = 0.159 and m = 2.56 should be used
instead of Equation (1).

Combining the data from the studies by Liu et al. (2016) and
Liu and Jin (2017) with Equation (3), plotted as suggested by
Soyarslan et al. (2018), leads to Figure 11A. In this plot, symbols
and colors correspond to those in Figure 4 of the study by Liu and
Jin (2017). Soyarslan et al. (2018) selected the experimental data
to include only as-prepared samples, ignoring samples where the
ligament size was varied by annealing and using only the data
from specimen with maximum connectivity (Jin et al., 2018).
After including the data of the annealed specimen, a large scatter
appears for each data set of constant solid fraction. This cannot
be captured by Equation (3) as it uses the solid fraction ϕ as a
sole parameter for the characterization of the structure. However,
with the cut fraction as additional parameter, we have the degree
of freedom that is needed for analyzing the data of Liu et al.
(2016) and Liu and Jin (2017), depending on the fraction of
dangling ligaments.
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FIGURE 11 | (A) Literature data for macroscopic Young’s modulus E/Es

plotted vs. (ϕ − ϕP )/(1− ϕP ) taken from experiments (Liu et al., 2016; Liu and

Jin, 2017) and simulations (Soyarslan et al., 2018). (B) Cut fractions and

average coordination numbers determined from the master curve in Equation

(10), assuming diamond as reference structure.

From the statistical analysis of the skeletonized NPG
structures presented by (Mangipudi et al., 2016), most junctions
show a three-fold coordination, while a few percent with higher
coordination numbers can also be detected. Assuming a Gibson–
Ashby structure would limit the maximum coordination to
3, whereas a diamond structure can be adjusted to a similar
statistical distribution, including some four-fold coordinated
junctions, by cutting off ligaments.

Based on the assumption that a fully connected NPG material
is described with a diamond structure, we can now analyze the
data for macroscopic Young’s modulus taken from Liu et al.
(2016) and Liu and Jin (2017) and interpret the decay of the
modulus for a given solid fraction in terms of cut fraction ζ . The
values of ζ are determined by calibrating the modulus data to fit
onto the maser curve for Equation (10) (see also Figure 2A). For
the reference value, the average macroscopic Young’s modulus of
the data set with maximum solid fraction ϕ ∼ 0.46 is calibrated
to match E0,dia/E0,bcc = 0.239. On the x-axis, ςtot = 0.5
corresponds to z = 4 for diamond. It should be noted that the

starting point can be set to any non-integer value in general when
more precise information on the topology of the fully connected
structure is available.

Relative to the value of E0,dia/E0,bcc = 0.239, the experimental
data yield cut fractions, which are shown in Figure 11B for each
data set at constant solid fraction depending on the ligament
size, approaching the limits ζc = 0.822 and zmin ≈ 1.5 for the
lowestmodulus data. The determined cut fractions ζ qualitatively
agree very well with the results for 1 − α presented by Liu and
Jin (2017). However, we determine different fractions of load-
bearing ligaments. While Liu et al. report that < 10% of the
ligaments remain for bearing load for ϕ ∼ 0.25, we have &

40% load-bearing ligaments (< 60% cut fraction with respect to
diamond). This is due to the percolation threshold that represents
an upper limit for the cut fraction. On average, we determine
the following values for the average coordination number z ∼
2.5− 3.0 (ϕ ∼ 0.33− 0.35) and z . 2 (ϕ ∼ 0.26).

Determination of Yield Strength
Liu et al. inserted the effective solid fractions in the Gibson–
Ashby scaling law for the yield strength given in Equation (2)
to determine the yield strength of the solid fraction in each
sample from the macroscopic yield strength (Liu et al., 2016).
The findings of our work have two implications in this context:
(i) the effective solid fraction is higher due to the percolation
threshold, and (ii) the scaling of macroscopic Young’s modulus
and yield strength due to cutting of ligaments follow both the
same relationship given by Equation (10), instead of Eqs. (1) and
(2) with two different exponents 2 and 1.5, respectively. Whether
this has a significant impact on the determined yield strength of
the solid fraction can be investigated using the scaling laws, as
applied by Liu et al. (2016) and Liu and Jin (2017): σy/σyS =
0.3ϕ

3/2
eff

and E/ES = ϕ2
eff
. By solving E/ES with respect to ϕeff

and inserting the result in σy/σyS, the dependencies of the yield
strength on the macroscopic Young’s modulus are generated in
the form σy/σyS ∼ (E/ES )3/4.

According to section Young’s Modulus, we have in fact
σy/σyS ∼ (E/ES ) for a set of samples with constant solid
fraction. This clearly shows that the yield strength would decrease
faster with the exponent 1 instead of 0.75. A quantitative
comparison is given in Figure 12A, where ϕ = 0.48 is assumed
for the fully connected structure and ϕeff = αϕ with α = 0.74
(Liu and Jin, 2017). As expected, the data confirm that the results
do not depend on the chosen structure (diamond or Gibson–
Ashby). Also, the linear fits in the log-log diagram confirm the
exponents, as derived in the previous paragraph.

We can furthermore conclude from Figure 12A that both
curves converge for large values of macroscopic Young’s modulus
and yield strength (i.e., low cut fractions) while for lower values
(or for higher cut fractions), the yield strength is overpredicted
by Liu et al. (2016). By translating the quantitative behavior of
the two curves into the diagram presented in Figure 12B, we
obtain a very interesting result. The blue and the black curve
both correspond to the fits of the data as entered in Figure 8

of the study by Liu et al. (2016), representing the yield strength
as determined from NPG along with data collected by the

Frontiers in Materials | www.frontiersin.org 17 November 2018 | Volume 5 | Article 69229

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Huber Topology and Mechanics of 3D Open-Pore Materials

FIGURE 12 | (A) Translation of macroscopic Young’s modulus data to

macroscopic yield strength according to Liu et al. (2016) and Equation (10).

(B) Re-analysis of the data from Figure 8 of the study by Liu et al. (2016) with

the data from (A).

authors from literature on FIB-machined Au pillars, respectively.
It can be seen that an extrapolation of both curves for small
characteristic sizes tend toward the theoretical shear strength.
However, for larger characteristic size, the curves diverge.

The green curve results from translating the strength data
of Liu et al. with the help of the data presented in Figure 12A

to the correct scaling for increasing cut fraction, according
to Equation (10). This lowers the strength values for larger
characteristic sizes more than for small characteristic sizes and,
within the experimental scatter, this closes the gap between the
data from Au nanoligaments and FIB-machined Au pillars. The
better agreement of the experimental results for larger ligament
sizes is a strong support for the theoretical findings that (i)
the macroscopic properties can be modeled as multiplicative
decomposition of two terms, where one term depends only
on the solid fraction and the second term depends on the

cut fraction and (ii) the master curves for Young’s modulus
and yield strength show the same dependence on the cut
fraction. Despite this promising outcome, the experimental
validation presented here is only an indirect access whereas a
direct validation would be much more desirable. To this end,
artificial structures as generated in this work (for example see
Data Sheet 1, Supplementary Figure 3) could be translated into
specimen using additive manufacturing or 3D laser lithography
technology. Elastic-plastic compression testing of specimen with
varying initial structure and cut fraction would deliver the
unchallengeable proof for the findings presented in this work.

CONCLUSIONS

This work addresses a number of fundamental questions
regarding topological description and its incorporation in the
structure-properties relationships of materials characterized by
a highly porous three-dimensional structure. The findings
are relevant for nanoporous metals and open-pore foams,
morphologies of ordered block copolymers and polymer blends
during spinodal decomposition, and architectured mechanical
meta-materials consisting of struts or beams that undergo
bending deformation.

Generalizing the highly efficient finite element beam models
allows the generation of data for structures of different
topologies, ranging from a highly coordinated bcc structure
down to a Gibson–Ashby structure with a coordination number
of three. What is common for all these structures is that they
deform under bending of the ligaments. By random cutting of
a fraction of ligaments in the RVE, selected structures were
continuously modified with respect to their average coordination
number from the value of the fully connected structure to
the percolation-cluster transition. The macroscopic responses,
such as Young’s modulus, yield strength, and Poisson’s ratio,
were computed for each RVE. Together with the cut fraction,
average coordination number, and statistical information about
the local coordination within the structure, a database was
created consisting of more than 100 different structures.

It is shown that the macroscopic Young’s modulus, yield
strength, and Poisson’s ratio can be expressed in the form of
a multiplicative decomposition, where the first term depends
on the solid fraction and the second on the cut fraction.
The dependence on the cut fraction can be represented by a
master curve, covering a large range of structures beginning
from highest coordination number of 8 of the bcc reference
structure to 1.5, which is the average coordination number close
to the percolation-cluster transition. Any average coordination
number in between can be reached by the random cutting of a
corresponding fraction of ligaments, as the average coordination
number decreases linearly with increasing cut fraction.

As a striking result, all data for macroscopic Young’s modulus
and yield strength are covered by a single master curve,
irrespective of whether perfectly ordered structures or more
realistic randomized structures with nodal masses are considered.
This leads to the important conclusion that the loss of strength
due to pinching-off of ligaments is proportional to the decline
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in Young’s modulus. Experimental support for this unexpected
finding came from re-analyzing the data of Liu et al. (2016) and
Liu and Jin (2017). The analysis shows that the gap between
the strength data of Au nanoligaments and from FIB-machined
micropillars can be neatly closed by incorporating this scaling
behavior.

For the elastic Poisson’s ratio, a second master curve was
constructed that follows an elliptic-type shape with a maximum
value for the fully connected structure and very low values with
increasing cut fraction. In this case, the data show a divergence
from the master curve for high cut fractions, which is probably
caused by the beginning formation of clusters that do not follow
the deformation pattern of the more connected parts of the
structure. Beyond what is known for fully connected structures
(Huber et al., 2014; Roschning and Huber, 2016), it turns out that
the randomization needs to be calibrated for the correct value of
the cut fraction (or average coordination number), because both
structural parameters commonly define the elastic Poisson’s ratio.

Based on the fingerprints of the different topologies, a scaling
of the genus density could be identified that again combines
all data in a single master curve with the average coordination
number being the independent variable. The characteristic length
that fulfils this condition normalizes the genus to the number
of junctions of the fully connected structure. It is shown that
linear relationships exist between all topological parameters
under investigation, which are the total cut fraction, the average
coordination number, and the scaled genus density. For proper
measurement of each of these parameters, knowledge about
the fully connected structure is required. This important detail
significantly complicates the experimental measurement in each
case.

An access to the solution to this central problem was found in
machine learning. Feeding statistical information about the local
coordination numbers of detectable junctions and, optionally, the
estimated genus density, allows the determination of the average
coordination number without knowledge of the fully connected
structure. It could be shown that incorporating an estimate for
the scaled genus density improves the accuracy by a factor of
3.5. Having determined the average coordination number, this
parameter serves as a common key for the calculation of the cut
fraction, the scaled genus density, and the mechanical properties
with reference to a chosen fully connected structure.

Analyzing the data from the study by Liu and Jin (2017),
the cut fraction for NPG samples with different solid fraction
and degree of coarsening were determined, assuming a diamond
structure as a fully connected reference. It turns out that the
number of load-bearing ligaments with & 40% is much larger
compared to < 10% reported by Liu and Jin (2017), which is
due to the incorporation of the percolation threshold. At the

same time, the corresponding average coordination numbers falls
slightly below 2, which corresponds to a scaled genus density
of 0.
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