About this Research Topic
Recent emerging work has illuminated the requirement for spatial organization of receptor signaling along the endomembrane system. For example, clathrin structures at the plasma membrane serve as signaling hubs, in addition to endocytic portals. A subset of signaling specific clathrin structures is required for activation of PI3K-Akt signaling by the epidermal growth factor receptor (EGFR) and for MAPK activation by some GPCRs. Interestingly, the regulation of receptor signaling by membrane traffic extends well beyond receptor tyrosine kinases and G protein-coupled receptors, and also occurs for integrins that play a key role in anoikis avoidance. Moreover, some recent systematic analysis using proximity biotinylation of signal organization along the endomembrane system have revealed some important new insights into the spatial organization of signaling of GPCRs.
The reciprocal regulation of membrane traffic and signaling as an emerging paradigm is well appreciated. However, some recent advances in understanding the molecular mechanisms by which this regulation occurs, as well as systematic analysis of spatiotemporal signal organization are revealing key new insight into receptor signaling. This Research Topic hopes to bring together a wide range of leading experts in signaling by specific receptor and signaling complexes and highlights how the properties and outcomes of each signaling system is defined by spatial and temporal organization with respect to the endomembrane system. While the concept of regulation of receptor signaling by membrane traffic was first proposed nearly 25 years ago, this Research Topic is timely given the renewed interest in this phenomenon in recent literature, in particular with the identification of novel mechanisms by which signaling is spatially controlled, and the emergence of new modeling approaches to probe these hypotheses and recent systematic studies of protein interactions and cellular organization. This Research Topic will thus examine emerging mechanisms by which signaling is controlled by multiscale (nano- to micron-scale) spatiotemporal organization of signals along the endomembrane system, from the plasma membrane to a myriad of cellular locales.
Keywords: membrane organization, compartmentalized signaling, clathrin-coated pits, caveolae, endosomes
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.