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Editorial on the Research Topic

RNA-Seq Analysis: Methods, Applications and Challenges

1. INTRODUCTION

RNA-seq has revolutionized the research community approach to studying gene expression. In
fact, this technology has opened up the possibility of quantifying the expression level of all genes at
once, allowing an ex post (rather than ex ante) selection of candidates that could be interesting for a
certain study. The continuous drop in costs and the independence of library preparation protocols
from the model species, have convinced the stakeholders to invest in this technology, by creating
consortia able to produce large disease-specific datasets that, in turn, fostered transcriptomic
research at a population level. Among many others, a virtuous example in this sense is The Cancer
Genome Atlas. In a short time RNA-seq has moved from a technology to merely quantify the
expression of genes to a powerful tool to: discover new transcripts (via de novo transcriptome
assembly), characterize alternative splicing variants or new cell types (through single cell RNA
sequencing). Leveraging on RNA-seq for daily diagnostic activities is no longer a dream but a
consolidated reality.

Although established best practices exist, managing RNA-seq data is not easy. Before sequencing,
it is essential to carefully plan library preparation in order to minimize downstream analysis biases.
Budget optimization is another important factor. Sequencing multiple samples increases statistical
power and reduces undesired side effects due to noise and variability. However, more samples imply
higher costs. Multiplexing has proved to be an effective tool to limit the budget without sacrificing
the number of samples. DNA barcoding enables combining up to 96 samples into a single line,
trading a lower sequencing depth for a higher number of sequenced samples. The downside of
this technique is the increased burden of data analysis to achieve the same accuracy that would be
achieved with a richer input.

Downstream sequencing, fastq data must be validated and processed to distill raw reads into a
quantitative measure of gene expression. While validation is somehow a standard procedure, read
count depends on the type of RNA (microRNA, etc.) and on the target application. Usually reads
are: subjected to adapter removal, aligned against a reference genome, grouped by functional unit
(e.g., transcripts, genes, microRNA, etc.), normalized and counted. Subsequent analyses can vary
dramatically according to the application. In the simplest setting, the subset of genes responsible for
the differences on the phenotype between two populations should be discovered. In other cases, one
may want to build the co-expression (or reverse expression) network in order to find interacting
genes or a pathway related to a certain phenotype. Other applications involve the discovery of
unknown cell types, the organization of cell types in homogeneous families, the identification of
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new molecules (e.g., new microRNA, long non-coding RNA,
etc.), or the annotation of new variants or alternative splicing.

2. RESEARCH TOPIC ORGANIZATION

This Research Topic is divided into three main sections: five
articles cover the RNA-seq workflow, four papers discuss the
most recent frontier of single cell RNA sequencing, while the
last four contributions report on case studies, related to tumor
profiling and plant science.

In the first part, we attempted to analyze the RNA-seq
process (from experimental design to analysis and extraction of
new knowledge) by highlighting the key choices of the state-
of-the-art workflows. Although we have mainly focused on
computational aspects, we believe that this Research Topic can
catch the interest of those readers, specialized in the field of life
science, who intend to become independent and autonomous
in the analysis of their own data. Two papers of this section
describe new methods: for the identification of differentially
expressed genes and for the prediction of the circRNA
coding ability.

The second section introduces a recent branch of RNA-
seq data analysis: single cell sequencing (scRNA-seq).
Although conceptually similar to sequencing cells in bulk,
the single cell resolution of this technique introduces a lot
of noise, that requires ad hoc analysis methods. Much of
this section is dedicated to the introduction of basic single
cell RNA sequencing concepts, from laboratory protocols
to the most common analyses. In particular, the problems
of assessing the results of clustering cell types and the
reproducibility of differential expression experiments are
discussed. Finally, this section concludes with the description
of a new method to infer missing counts due to poor coverage
of sequencing.

The last part of the Research Topic was dedicated to four case
studies: three concerning tumors and one application in plant
science. The rationale behind this choice was that of showing
different types of analysis. In the conceptually simpler case, the
goal of the analysis was to create a panel of genes prognostic of
the onset of cancer. Next, an example of a co-expression network
is shown. Finally, an example of interaction among different types
of RNA (long non-coding, genes, microRNAs) has been reported,
showing the complexity of the pathways that regulate the life
of cells.

2.1. RNA-Seq Analysis
In Reed et al., the opportunity offered by Multiplexed RNA
Sequencing is discussed. The study provides a comparison of
several methods using real data from immortalized human lung
epithelial cells.

In Peri et al., RMTA, an user-friendly analysis workflow,
is proposed. RMTA was designed to provide standard pre-
processing tools (i.e., read quality analysis, filters for lowly
expressed transcripts, and read counting for differential
expression analysis) in a scalable and easy to deploy environment.

In Jimenez-Jacinto et al., an integrative differential expression
analysis web server (IDEAMEX) is described. The rationale

of IDEAMEX is that of freeing non-expert users from the
(sometimes frustrating) experience of interacting with the UNIX-
based environment for standard differential expression analyses.

In Gao et al., a new method for the identification of
differentially expressed genes is reported. The key observation
of this work is that the binomial distribution at the basis of the
majority of the algorithms for differential expression analysis
is unable to capture underdispersion characteristics of RNA-
seq data.

In Sun and Li, the problem of predicting whether a given
circular RNA can be translated or not is investigated. Circular
RNAs differ from other types of RNA in that they are arranged
as rings joining 3′ and 5′ endpoints. This characteristic makes
hard to decide about their translation potential. The manuscript
provides an algorithm to identify the coding ability of circRNAs
with high sensitivity.

2.2. Single Cell RNA Sequencing
In Chen et al., an overview of currently available single-
cell isolation protocols and scRNA-seq technologies is
provided. In addition, several methods for scRNA-seq data
analysis, from quality control to network reconstruction,
are discussed.

In Krzak et al., the use of clustering to study heterogeneity
of cells is dissected. In particular, this work aims at providing
new insights into the advantages and drawbacks of scRNAseq
clustering, highlighting open challenges.

In Mou et al., some issues connected to the reproducibility
of differential expression studies is debated. The complexity of
this type of analyses stands in the paucity of RNAs and in the
consequent lower signal to noise ratio. The article shows pros and
cons of standard and ad-hoc software for differential expression.

In Mongia et al., a method to impute dropouts in single cell
expression data is detailed. Experiments on real data show that
the proposed software is able to discriminate the real absence of
reads from dropout events.

2.3. Case Studies
In Yin et al., differential expression analysis is used to pinpoint
a small panel of genes potentially prognostic for the onset of
Glioblastoma. The focus of the article is that of improving
healthy/diseased classification regardless of the interaction
among genes.

In Zhu et al., co-expressed genes are identified in order to
build a network of interactions. Subsequently, the network is
analyzed to select hub genes associated with soft tissue sarcomas.

In Zheng et al., the dynamics of the interaction among
different molecules in lung adenocarcinoma is studied. The
article reports on how the dysregulation of a long non-coding
RNA triggers a sequence of dysregulations, causing the cell
cycle arrest.

In Tengkun et al., genomics and trascriptomics data are
integrated in order to identify the crucial genes that affect
anthocyanin biosynthesis transforming quantitative traits into
quality traits.
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Assessment of a Highly Multiplexed
RNA Sequencing Platform and
Comparison to Existing
High-Throughput Gene Expression
Profiling Techniques
Eric Reed1,2, Elizabeth Moses2, Xiaohui Xiao2, Gang Liu2, Joshua Campbell1,2,
Catalina Perdomo2 and Stefano Monti1,2*

1 Bioinformatics Program, Boston University, Boston, MA, United States, 2 Section of Computational Biomedicine, School
of Medicine, Boston University, Boston, MA, United States

The need to reduce per sample cost of RNA-seq profiling for scalable data generation
has led to the emergence of highly multiplexed RNA-seq. These technologies utilize
barcoding of cDNA sequences in order to combine multiple samples into a single
sequencing lane to be separated during data processing. In this study, we report
the performance of one such technique denoted as sparse full length sequencing
(SFL), a ribosomal RNA depletion-based RNA sequencing approach that allows for
the simultaneous sequencing of 96 samples and higher. We offer comparisons to well
established single-sample techniques, including: full coverage Poly-A capture RNA-seq,
microarrays, as well as another low-cost highly multiplexed technique known as 3′ digital
gene expression (3′DGE). Data was generated for a set of exposure experiments on
immortalized human lung epithelial (AALE) cells in a two-by-two study design, in which
samples received both genetic and chemical perturbations of known oncogenes/tumor
suppressors and lung carcinogens. SFL demonstrated improved performance over
3′DGE in terms of coverage, power to detect differential gene expression, and biological
recapitulation of patterns of differential gene expression from in vivo lung cancer
mutation signatures.

Keywords: RNA sequencing, gene expression, microarray, multiplexing, platform comparison

INTRODUCTION

Since its inception in 2008, RNA sequencing has become the gold-standard for
whole-transcriptome high-throughput data generation (Mortazavi et al., 2008). In addition
to RNA transcript expression quantification, RNA-seq allows for more advanced analyses
including de novo transcriptome assembly (Robertson et al., 2010) and characterization of
alternative splicing variants (Bryant et al., 2012). Furthermore, RNA-seq is species agnostic, such
that the same library preparation technique may be utilized for humans, mouse, rat, kidney bean,
etc. These represent clear advantages over hybridization-based microarray platforms in which
individual microarray platforms are designed to quantify specific transcripts for a specific species
(Wang et al., 2009). However, one persistent drawback of RNA-seq has been its relatively high cost.
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The use of classic RNA-seq techniques for experimental designs
that require profiling of many samples – especially when the
marginal information value of each sample is relatively low, such
as in medium- and high-throughput screening applications – can
thus present a disqualifying cost burden.

Large-scale projects based on transcriptional profiling of
chemical exposure experiments include the Toxicogenomics
Project-Genomics Assisted Toxicity Evaluation System
(Open TG-GATEs) (Igarashi et al., 2015), the DrugMatrix
database (Ganter et al., 2006), and the Connectivity Map
(CMap) (Subramanian et al., 2017), among others. Both the
TG-GATEs and the DrugMatrix projects used microarrays
for expression profiling, which was at the time significantly
less costly than full coverage RNA-sequencing, yet still
requiring multi-million budgets. Alternatively, the CMap
project utilizes the Luminex-1000 (L1000) profiling platform,
a bead-based analog expression assay which quantifies
1,058 human transcripts, which are used to impute the
expression of 11,350 additional transcripts (Subramanian
et al., 2017). This technique is among the least expensive
expression assays available, but it is restricted to human
screens and it directly profiles only a limited panel of genes.
Given the flexibility of RNA-sequencing platforms, highly
multiplexed techniques represent a viable alternative for
generating transcriptional data from exposure screens, as
well as from other experiments that require a large sample
size. Therefore, evaluation of the technical validity of specific
techniques serves to inform research strategies for a variety of
biological inquiries.

The need to reduce the per sample cost of RNA-seq has
led to the adoption of barcoding technologies, where cDNA
sequences from individual samples are tagged and their libraries
are combined and multiplex sequenced in a single lane (Wang
et al., 2011). More recently, these techniques have been optimized
to allow multiplex sequencing of 96 samples per lane or higher
(Hou et al., 2015; Shishkin et al., 2015). Here, we report the results
of our effort at optimizing and evaluating one such technique
denoted as sparse full length (SFL) sequencing (Shishkin et al.,
2015), a ribosomal RNA depletion-based RNA sequencing
approach that allows for the simultaneous sequencing of 96
samples and higher. We offer comparisons to well established
single-sample techniques, including: full coverage Poly-A capture
RNA-seq and microarray, as well as another low-cost highly
multiplexed technique known as 3′ digital gene expression
(3′DGE) (Asmann et al., 2009). Assessments include comparisons
of coverage between the three RNA-sequencing techniques,
as well as signal-to-noise and biological recapitulation of
gene-level differential signals between treatment groups for the
same samples profiled across SFL, microarray, and 3′DGE.
For this evaluation study, we generated a set of exposure
experiments on immortalized human lung epithelial (AALE)
cells (Lundberg et al., 2002) in a two-by-two study design, in
which samples received both genetic and chemical perturbations
of known oncogenes/tumor suppressors and lung carcinogens
(Figure 1). The goal of this report is not only to assess the
performance of our optimized highly multiplexed technique,
but to inform future research in terms of the strengths and

pitfalls of available cost-effective high throughput transcriptomic
profiling techniques.

MATERIALS AND METHODS

Samples
Exposure experiments were performed on immortalized
human bronchial epithelial cells (AALE). Cells were exposed
to both chemical and genotypic perturbations with three
replicates per perturbation combination. Cells were thawed
from liquid nitrogen and grown up in SAGM small airway
epithelial cell growth media (Lonza, Portsmouth NH). Cells
were subcultured using Clonetics ReagentPack subculture
reagents (Lonza, Portsmouth NH). In preparation for exposure,
cells were plated into 24-well plates and allowed to reach
confluency for 24 h. Cell culture media was then replaced,
and compounds added at a concentration of 24 µg/ml
CSC, 173 µM BaP, 490 µM NNK or DMSO. NNK and BaP
compounds were obtained from Sigma-Aldrich (St. Louis, MO,
United States) and CSC obtained from Murty Pharmaceuticals
(Lexington, KY, United States). Genotypic perturbations
included CRISPR knockouts of FAT1, and CDKN2A, as
well as overexpression of NRF2 (NFE2L2), FGFR1, NRG1,
and PIK3CA. Cells transfected with a pSpCas9-EGFP (GFP)
plasmid (PX458) in the absence of sgRNAs were used as
controls for the CRISPR perturbations while overexpression
of an empty vector containing the reporter HcRed served
as control for the overexpression experiments. The same
samples were profiled across SFL, microarray, and 3′DGE for a
subset of combinations of exposures, though all samples were
profiled by SFL. In addition, full coverage poly-A RNA-seq
was performed on a separate set of samples for a subset of
genotypic exposures, including CRISPR knockouts of FAT1,
as well as overexpression of NRF2, NRG1, and PIK3CA. These
samples did not receive any chemical exposures (Figure 1).
Note that in a few cases there was not enough material to
perform 3′DGE, as indicated by the sample numbers of certain
perturbation combinations.

Library Preparation
Library preparation for SFL sequencing was carried out based
on the published protocol (Shishkin et al., 2015). An edited
version of this protocol is available in the Supplementary
Material. RNA was isolated using a standard Qiazol and Qiacube
protocol from Qiagen (Valencia, CA, United States). RNA purity
was assessed using a NanoDrop spectrophotometer and no
samples were excluded from downstream analysis. The dual-
barcoded SFL libraries were pooled from 96 individual samples
and then sequenced on the Illumina R© NextSeq 550 to generate
more than 400 million single-end 75-bp reads. Poly-A RNA
Sequencing libraries were prepared from total RNA samples
using Illumina R© TruSeq R© RNA Sample Preparation Kit v2 and
then sequenced on the Illumina R© HiSeq 2500 to generate more
than 5 million single-end 50-bp reads per sample. Microarray
procedures were performed as described in GeneChipTM WT
PLUS Reagent Kit manual and GeneChipTM WT Terminal
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FIGURE 1 | Design of cross-platform experiments and high-throughput data processing. Schematic of the number of each pair of genotypic and chemical
perturbations, as well as a summary of preprocessing methods used to quantify gene-level expression for each platform. Note that “Unt.” is an abbreviation of
“untreated,” denoting that the RNA-seq samples used in this experiment did not receive chemical perturbations. Numbers in each box represent biological replicates
of each condition. The color scheme for each platform is consistent throughout this report.

Labeling and Controls Kit protocol (Thermo Fisher Scientific).
The labeled fragmented DNA was generated from 100 ng of
total RNA and was hybridized to the GeneChipTM Human
Gene 2.0 ST Array. Microarrays were scanned using Affymetrix
GeneArray Scanner 3000 7G Plus. 3’DGE library preparation was
performed by Broad Institute, Cambridge, MA, United States,
similar to (Soumillon et al., 2014). Final libraries were purified

using AMPure XP beads (Beckman Coulter) according to
the manufacturer’s recommended protocol and sequenced on
an Illumina NextSeq 500 using paired-end reads of 17 bp
(read1) + 46 bp (read2). Read1 contains the 6-base well barcode
along with the 10-base UMI. Across all platforms, the number
of samples that were successfully profiled per perturbation
combination is shown in Figure 1.
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Data Pre-processing
Affymetrix GeneChip Human Gene 2.0 ST Microarray CEL files
were annotated to unique Entrez gene IDs, using a custom
CDF file from BrainArray (hugene20st_Hs_ENTREZG_21.0.0)
and RMA-normalized. For SFL, adapter sequences were trimmed
from raw sequence files using Cutadapt v1.12. Quality assessment
of trimmed SFL sequence files as well as raw full coverage
RNA-seq sequencing files was performed with FastQC v0.11.5.
Both SFL and RNA-seq reads were aligned to human genome
(UCSC RefSeq hg19) with STAR v2.5.2b with the non-defulat
parameter, “–outSAMtype BAM SortedByCoordinate” (Dobin
et al., 2013). Expression quantification in RefSeq genes was
carried out with featureCounts (subread) v1.5.0 (Liao et al.,
2014). For 3’DGE, pre-quantified gene expression count
matrices were obtained from the Broad Institute, Cambridge,
MA, United States. These reads had been aligned to the
transcriptome (UCSC RefSeq hg19), using BWA aln v0.7.10
with the non-default parameter, “-l 24” (Li and Durbin, 2009).
Considering that there are 410 (∼1.05∗106) possible UMIs and
the 3’DGE library sizes are on the order of 106 reads, it is
highly unlikely for the same UMI to be added to multiple cDNA
fragments from the same gene. Therefore, using a custom python
program (Soumillon et al., 2014), reads with the same UMI and
sample barcode were only counted once per gene. All further data
processing and analysis were carried out in R.

Coverage Assessment
Read coverage across the 82 samples, shared between SFL
and 3′DGE, as well as all 18 full coverage RNA-seq samples
was assessed for library size as well as percentage of the
library size that was aligned, uniquely aligned (i.e., reads that
only align once in the genome), and counted in the 22,233
genes which were annotated across all three platforms, i.e., the
intersection of annotated genes. The full set of counted reads is
hereafter referred to as the counted library. Unlike SFL and full
coverage RNA-seq, 3′DGE reads are aligned directly to mRNA
sequences, such that the reported numbers of counted reads
and uniquely aligned reads are the same. To assess the relative
distribution of reads across the total set of shared genes, we
plotted the cumulative proportion of the sum of reads aligning
to individual genes per samples ranked by relative expression
across all three platforms. Saturation analysis of the estimated
minimum percentage of the counted library size to maximize
the number of genes quantified by each platform was performed
using a loess fit the gene discovery of 20 subsamplings of
the per sample counted libraries. All subsampling analysis was
performed using Subseq v1.8.0.

Finally, we assessed the relative induction of noise introduced
by subsampling progressively larger proportions of the original
counted library sizes in each platform, as measured by the
principal component error (Heimberg et al., 2016). In order
to compare the three platforms assuming equally sized starting
library, we repeated the assessment after first subsampling full
coverage RNA-seq libraries and 3′DGE libraries to sizes matching
that of SFL, the smallest library of the three platforms. This
analysis was performed on the 18 samples of like genotypic

perturbations, with no chemical treatment in the case of full
coverage RNA-seq samples and vehicle DMSO treatment in SFL
and 3′DGE samples. Reported values reflect means across 20
iterations of the subsampling and principal component error
calculation procedure.

Signal-to-Noise Assessment
Signal-to-noise was compared among SFL, 3′DGE and
microarrays based on four-group ANOVA analysis and
two-group differential analysis. In order to estimate
signal-to-noise as a means for assessing expected performance
when applying standard statistical methods to the data, rather
than differential gene expression analysis packages, classic
ANOVA was performed for each gene using normalized data
across all three platforms, using the glm function in R. In this
analysis, the signal-to-noise was assessed across like samples
undergoing exposure to CSC or DMSO vehicle, as well as
genotypic perturbations of NRF2 overexpression or HcRed
control. Thus, the analysis included four independent groups
of samples, receiving each combination of chemical (CSC
or DMSO) and genotypic (NRF2 or HcRed) perturbations,
with three replicates in each group. Only genes with mean
expression ≥ 1 across all 12 samples in both SFL and 3′DGE
were included in the analysis (9,813 total genes). Expression
levels across SFL and 3′DGE were normalized via trimmed
mean of M values (TMM) (Robinson and Oshlack, 2010) scaling
and log2 counts-per-million transformation. Additionally,
two-group differential gene expression analysis was performed
for each stratified chemical and genotypic perturbation, using
LIMMA v3.30.7. That is, differential expression of CSC- vs.
DMSO-treated samples, within either HcRed or NRF2 treatment,
as well as differential expression of NRF2- vs. HcRed-treated
samples, within either DMSO or CSC exposure, was performed.
The SFL and 3′DGE count data were transformed for linear
modeling based on voom (Ritchie et al., 2015). Following
modeling, results were restricted to the top 10,000 genes as
ranked by median-absolute-deviation (MAD). This heuristic
gene filtering procedure was adopted because quantification-
based filtering is not applicable to microarray data. This
approach follows recommendations detailed in the LIMMA
manual (Ritchie et al., 2015). All p-values reported from two-
group differential analysis are two-sided. In both ANOVA and
LIMMA analyses, nominal p-values for each gene were corrected
for multiple comparisons using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995).

Biological Signal Recapitulation
Two-group differential analysis signatures were compared by
pre-ranked gene set enrichment analysis (GSEA) to gene sets
derived from published signatures of smoking exposure in the
airway from healthy volunteers (Spira et al., 2004; Beane et al.,
2007), as well as to gene sets analytically derived from The
Cancer Genome Atlas (TCGA) for patients with lung squamous
cell carcinoma (LUSC) or lung adenocarcinoma (LUAD). The
two smoking gene sets consist of genes reported as either
up- or down-regulated in response to smoking in at least
one of the two publications, while TCGA gene sets were
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derived by probing differential expression of individual genes
between patients with or without point mutations or copy
number alterations (CNA) in genes of interest. These include
mutations for the same panel of genes profiled for genotypic
perturbations. In addition we include KEAP1 mutations, a
repressor of NRF2 (Kansanen et al., 2013, 1). Specifically,
point mutation signatures were derived from LUSC and LUAD,
independently, by performing differential analysis of subjects
with and without point mutations in genes of interest, matched
for age, sex, and cancer stage. For NRF2 and PIK3CA point
mutations were defined at specific mutation hotspots of along the
gene body (Supplementary Figure S2) (Campbell et al., 2016).
Likewise, CNA gene signatures were assessed for amplification
and deletions of genes of interest by differential analysis, using
subjects with zero, one, or two additional copies or deletions of
a gene of interest, respectively. All models for mutations and
CNA were adjusted for tumor purity, as reported (Campbell
et al., 2016). Differential signatures were derived using LIMMA.
Genes associated with specific mutations or CNA were defined
as those with significance and magnitude of the linear model’s
genetic alteration coefficient at FDR Q-value < 0.05 and | log2
fold-change| > log2(1.5), respectively.

Each of our genotypic perturbation signatures was compared
by GSEA to the corresponding TCGA-derived gene sets.
For example, the PIK3CA overexpression signatures were
compared to the gene sets derived from PIK3CA mutation
and CNA in the TCGA data. To assess the effect of read
counts on gene discovery and biological recapitulation of each
platform, we compared the differential analysis and GSEA
results to that derived from subsampled libraries across full
coverage RNA-seq, SFL, and 3′DGE. Similar to coverage
assessment, this analysis was performed starting with full libraries
across all three platforms, as well as initially subsampling
the full coverage RNA-seq and 3′DGE libraries to sizes
matching that of SFL. Reported values reflect means from 20

iterations of the subsampling followed by differential analysis
and GSEA procedures.

RESULTS

Coverage Assessment
Comparison of coverage of the three sequencing platforms, full
coverage poly-A RNA-seq, SFL, and 3′DGE, is summarized in
Table 1, Figure 2, and Supplementary Figure S1. Comparison
between SFL and 3’DGE included 82 samples each, while full
coverage poly-A RNA-seq included all 18 available samples. None
of the three platforms demonstrated differences in the library
size variability (total number of assigned reads) across samples,
although there was a notably high difference between the largest
and smallest library size for the SFL samples, with a fold change
of 4.3. Fold changes for full coverage RNA-seq and 3′DGE were
1.9 and 2.9, respectively (Table 1 and Figure 2A).

Unsurprisingly, full coverage poly-A RNA-seq generated the
largest library size, while the SFL and 3′DGE libraries were of
comparable size (Figure 2A). Furthermore, full coverage poly-A
RNA-seq yielded the highest percentage of reads aligned to the
genome, followed by SFL and 3′DGE (Table 1, Figure 2Ci,
and Supplementary Figure S1A). The lower mapping rate
of 3′DGE is most likely due to the lower read quality
scores of 3′DGE compared to full coverage RNA-seq and SFL
(Supplementary Figure S1B). The mean percentage of reads
with Phred quality scores greater than 20 (Q20) was only ∼88%
for 3′DGE, compared to ∼100% for both full coverage RNA-
seq and SFL. The relative 5′–3′ transcript coverage for each
sample across all three platforms is shown in Supplementary
Figure S1F. As expected, reads alignments were skewed toward
the 3′ end of transcripts for 3′DGE, while we did observe
relatively uniform coverage along the transcript for full coverage
RNA-seq and SFL.

TABLE 1 | Comparison of read assignment between full coverage poly-A RNA-seq, SFL, and 3′DGE.

Counts (million) Percent (value/library size)

Mean (SD) Median Minimum Maximum Mean (SD) Median Minimum Maximum

Poly-A RNA-seq (RNA-seq)

Library size (total reads) 13.0 (2.3) 12.6 9.3 17.6

Aligned reads 12.4 (2.2) 12.0 9.0 16.9 95.9 (1.3) 96.0 92.4 97.9

Uniquely aligned reads 10.8 (1.9) 10.3 7.8 14.8 82.9 (1.5) 83.0 79.5 85.3

Counted reads 8.4 (1.5) 8.1 6.4 10.9 65.2 (2.7) 64.6 60.5 70.3

Sparse full length sequencing (SFL)

Library size (total reads) 3.8 (1.1) 3.5 1.6 6.9

Aligned reads 3.3 (1.0) 3.1 1.4 5.9 88.5 (2.9) 88.8 73.0 92.5

Uniquely aligned reads 1.8 (0.6) 1.8 0.7 3.2 48.5 (8.0) 46.8 27.6 64.8

Counted reads 0.9 (0.3) 0.9 0.3 1.6 24.5 (4.0) 23.8 14.3 31.7

3′ digital gene expression (3′DGE)

Library size (total reads) 3.7 (0.7) 3.7 1.9 5.6

Aligned reads 3.0 (0.6) 3.0 1.5 4.5 80.6 (1.6) 81.0 73.5 82.2

Uniquely aligned reads

Counted reads 1.2 (0.2) 1.2 0.7 1.8 33.3 (1.4) 33.0 30.5 38.6
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FIGURE 2 | Comparison of coverage between poly-A RNA-seq, SFL, and 3′DGE. (A) Boxplots of distribution of library size for each platform. (B) Cumulative
distribution of reads assigned to individual genes per sample. The x-axis indicates the quantile for each gene in terms of ranking by relative expression. The y-axis
shows the cumulative proportion of total counted reads assigned to these genes, i.e., the running sum of reads divided by the total number of reads across all
genes. (C) The top 3 boxplots show the percentage of reads aligned (i), uniquely aligned (ii), and counted (iii) relative to the total library size for each platform. The
bottom boxplot (iv) shows the proportion of genes with counts > 1, for protein-coding genes annotated across all 3 platforms (18,488). For (ii), “Reads Uniquely
Aligned” is not shown for 3′DGE because “Reads Uniquely Aligned” and “Reads Counted” are the same values as a result of the data pre-processing protocol,
specific to 3′DGE (see section “Materials and Methods”). Counts values for these percentages are given in Supplementary Figure S1A. (D) Analysis of the principal
component error of subsampled counted library sizes for full coverage poly-A RNA-seq, SFL, and 3′DGE for principal component 1. Results for principal component
2–5 is shown in Supplementary Figure S1D. Initial subsamples of Poly-A RNA-seq and 3′DGE to the SFL library size are also given as dotted lines.

For SFL there was a clear drop-off when going from percentage
of aligned reads to percentage of uniquely aligned reads due
to ribosomal RNA (rRNA) contamination of the SFL samples
(Figure 2Cii). The majority of reads aligning to ribosomal regions
specifically align to RNA28S (Supplementary Figure S3). For
3′DGE, unique UMIs are aligned directly to transcript sequences
and not to the whole genome, such that the number of uniquely
aligned reads and reads counted in transcripts are the same
(Figures 2Cii,iii) (Morrissy et al., 2009). The percentage of
reads that are counted in transcripts is greatest for full coverage
poly-A RNA-seq (mean percentage of total library size: 65.2%),
followed by 3′DGE (33.3%), and SFL (24.5%). However, while
the counted read library size is greater for 3’DGE than for SFL,
more genes were quantified by SFL than by 3′DGE (Figure 2Civ)
(counts > 0 across all samples for 22,233 genes shared across

all three platforms,). A median of 60.9 and 50.5% genes were
quantified by SFL and 3′DGE, respectively. The number of genes
quantified was near the saturation point for each platform, such
that this discrepancy is not due to read depth of each platform
(Supplementary Figure S1C). The reason for the low gene
discovery of 3′DGE is further illustrated in Figure 2B, where
it is shown that the reads are more evenly distributed across
the 22,233 genes by SFL than by 3′DGE, with the cumulative
distribution of reads counted in individual genes nearly identical
in SFL and full coverage poly-A RNA-seq.

The principal component (PC) error was estimated for each
platform for different subsamples of the full counted library size.
The first PC is shown in Figure 2D, while the second through the
fifth PCs are shown in Supplementary Figure S1D. We observe
that as the counted library size increases, the PC error decreases
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at the fastest rate for full coverage RNA-seq, followed by SFL,
then 3′DGE. Although these differences are considerably more
prominent when comparing full coverage RNA-seq to either
SFL or 3′DGE, we do observe that when down-sampling from
10 to 100% of the counted library size, the PC error decreases
at a consistently faster rate for SFL than for 3′DGE. Initially
subsampling full coverage RNA-seq and 3′DGE to match the full
SFL counted library size does not change the results. The same
trend is also observed in the cumulative variance explained by
each successive PC across full coverage RNA-seq, SFL, and 3′DGE
(Supplementary Figure S1E).

In summary, despite lower overall counted library size due
to ribosomal RNA contamination, SFL demonstrates greater
coverage in low-to-medium expressed genes than 3′DGE,
comparable to full coverage poly-A RNA-seq. Consequently, the
transcriptional signal captured by the SFL libraries are more
robust to subsampling of the data compared to 3′DGE as
measured by the principal component error.

Signal-to-Noise Evaluation
Differential expression models comparing experimental groups
of matched samples was performed in SFL, microarray, and
3′DGE and the corresponding signal-to-noise scores were
compared pairwise between platforms (Figure 3). Samples shared
across the three platforms include three replicates for each of four
experimental groups, corresponding to NRF2 overexpression
or HcRed vehicle, as well as CSC chemical exposure or
DMSO vehicle (Figure 1). Signal-to-noise was assessed by a
four-group comparison with classic ANOVA (Figures 3A–D),
as well as by stratified two-group differential analyses using
LIMMA (Figures 3E,F).

We compared the log10 F-statistics between ANOVA models
across all three platforms (Figure 3A). Overall, the distribution
of F-statistics is most similar between SFL and microarrays,
with a Pearson correlation of 0.291. Though statistically
significant (p < 0.01), the corresponding mean difference
between log10 F-statistics is only 0.026. The mean differences
of the log10 F-statistics between SFL and 3′DGE, and between
3′DGE and microarray are 0.328 and 0.302, respectively, and
the corresponding Pearson correlations are 0.160 and 0.216,
respectively. These results are consistent with the discovery rates
estimated for different FDR Q-value thresholds (Figure 3B). For
example, at the FDR Q-value threshold of 0.05, the discovery
rates of SFL and microarray are almost identical, 0.214 (2083
genes), 0.209 (2038 genes), respectively, while the discovery rate
of 3′DGE is much smaller 0.032 (310 genes).

Loess regression of the log10 F-statistics as a function of
mean gene expression shows that the statistical signal increases
with mean normalized expression. This trend is consistently
positive for both SFL and 3′DGE, while leveling off at the most
highly expressed genes in microarrays (Figure 3C). Furthermore,
SFL signal is greater than 3′DGE signal at all levels of mean
expression (Figure 3C). In agreement with the results from
coverage comparison, the distribution of mean normalized
expressions in 3′DGE is smaller than that of SFL, while SFL
is comparable to that of microarray (Figure 3D). Adherence
to assumption of normality, assessed through a Shapiro–Wilk

test, is also associated with higher mean normalized expression
(Supplementary Figure S4).

The results of the comparisons of the two-group differential
analyses across all three platforms were generally congruous
with those of the four-group ANOVA analyses (Figures 3E,F
and Supplementary Figures S5, S6). In all four two-group
comparisons, the correlation of test statistics is closest between
microarray and SFL results, followed by 3′DGE versus microarray
results, and 3′DGE versus SFL. For example, in the DMSO-
stratified, NRF2 versus HcRed analysis, estimates of the Pearson
correlations of test statistics are 0.66, 0.45, and 0.43, respectively
(Figure 3E). The discovery rate of 3′DGE is the lowest across
all four differential analyses, while the discovery rate of SFL is
higher in three out of four of these analyses (Figure 3F and
Supplementary Figures S5, S6).

In summary SFL demonstrated greater statistical power than
3′DGE to detect differentially expressed genes, and its results
more closely matched those in microarrays.

Biological Signal Recapitulation
Evaluation
To evaluate the ability of each platform to recapitulate
biologically relevant results, we utilized previously published
signatures of smoking exposure in lung (Spira et al., 2004;
Beane et al., 2007), as well as differential signatures derived
from the TCGA LUSC and LUAD datasets associated with
mutations of the genes over-expressed in our experiments.
From each of these signatures two gene sets were extracted,
one of genes positively associated and one of genes negatively
associated to the variable of interest. These gene sets were
then tested via pre-ranked gene set enrichment analysis
against each of our differential analysis results (CSC vs.
DMSO, stratified by NRF2 or HcRed perturbation; NRF2
vs. HcRed, stratified by CSC or DMSO perturbation). The
enrichment results with respect to both the smoking exposure
signatures and the TCGA mutations are summarized in
Figure 4A, and further detailed in Supplementary Figure S7,
and confirm the highest sensitivity of microarrays, followed by
SFL and 3′DGE.

The set of genes up-regulated in “smokers vs. non-smokers”
was found to be significantly (FDRQ-value < 0.05) enriched in all
“CSC vs. DMSO” signatures, within both genotypic stratifications
for all three platforms. Conversely, the set of down-regulated
genes in “smokers vs. non-smokers” was only enriched in the
microarray signature of “NRF2 over-expressed; CSC vs. DMSO”
(Supplementary Figure S7).

The enrichment results of TCGA-derived gene sets with
respect to differential signatures of genotypic perturbations
were in agreement with the gene-level results, in that they
consistently demonstrated smaller discovery rates by 3′DGE
than by SFL or by microarrays (Figure 4A). For example, the
significantly enriched gene sets in “DMSO-treated; NRF2 vs.
HcRed” differential signatures across all three platforms are
highlighted in Supplementary Figure S7. The number of gene
sets enriched in microarray, SFL, and 3′DGE platforms are five,
three, and zero, respectively.
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FIGURE 3 | Signal-to-noise comparison between SFL, microarray, and 3′DGE. (A) Scatterplots comparing the log10(F-Statistics) from ANOVA models comparing
four n = 3 groups (HcRed:DMSO, HcRed:CSC, NRF2:DMSO, and NRF2:CSC). The gray line shows y = x. The platform with the higher mean log10(F-Statistic) is
plotted on the y-axis. Also, included are the p-value and difference in mean between each bi-platform comparison from paired t-testing, as well as the squared
correlation coefficient. P-values ∼ 0 are less than 0.01. Color of indicate genes discovered by individual platforms (green, orange, or blue), neither platform (gray),
and both platforms (red). (B) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform from four group ANOVA models. The x-axis is plotted
on a –log10 scale. The vertical line is indicative of a Q-value threshold of 0.05. (C) Loess fit of the log10(F-Statistic) versus median normalized expression from four
group ANOVA models. (D) Distribution of mean normalized expression across all three platforms. (E) Comparison of gene discovery (FDR Q-Value < 0.05) by
differential analysis with limma, comparing normalized gene expression between DMSO:NRF2 and DMSO:HcRed, including the raw discovery rates, discovered
gene overlap, and linear fits, comparing test statistics from each platform. Genes that are discovered by more than 1 platform are shown in red in the scatterplots.
Additional comparisons are shown in Supplementary Figure S5. (F) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform from two
group differential analyses. The x-axis is plotted on a –Log10 scale. The vertical line is indicative of a Q-value threshold of 0.05.
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FIGURE 4 | Comparison of gene-set enrichment of smoking and gene mutation signatures across SFL, 3′DGE and microarray. (A) Violin plots of the –Log10(FDR
Q-Value) from gene set enrichment analysis of TCGA-derived gene-sets with respect genotypic perturbations (left) and chemical perturbations (right) differential
signatures across like samples within SFL, Microarray, and 3′DGE. Each column corresponds to differential signatures comparing genotypic or chemical perturbation
groups, stratified by a single chemical or genotypic perturbation group, respectively, e.g., the left-most column shows the enrichment results with respect to the
“DMSO-treated; NRF2 vs. HcRed” signature within the samples (stratum) in SFL data. Specific results for TCGA-derived genes sets are shown in Supplementary
Figure S7. (B) Comparison of the gene set enrichment results between SFL, microarray and 3′DGE with respect to the “DMSO-treated; NRF2 vs. HcRed”
differential signature. Shown are the transformed FDR Q-values of the TCGA-derived gene sets corresponding to mutations of NRF2 and CNA of KEAP1. The |
–Log10(FDR Q-Values)| corresponding to the FDR < 0.05 significance thresholds are shown as vertical and horizontal gray lines for the y and x-axes, respectively.
Points of gene sets whose enrichment meets this threshold in either of the two platforms are filled in. Colors and shape of points denote direction and source of the
gene set, respectively. Additional results for chemical and genotypic perturbation signatures are shown if Supplementary Figure S8.

In addition to comparing which gene sets were significantly
enriched in individual differential signatures, we compared the
relative statistical signal of these enrichments. To this end, we
transformed the permutation-based FDR Q-values by taking
the negative Log10 and multiplying by the direction of the
enrichment score (ES), −Log10(FDR Q-values)∗sign(ES). For
each two-platform comparison, we fit a regression model through
the origin. Since consistent results across platforms would result
in a model fit close to the identity line, y = x, we tested

whether the slope coefficient equaled 1 (i.e., B1 = 1). Figure 4B
shows these results for each of the three comparisons of the
NRF2 and KEAP1 mutation-based gene sets enrichment against
the “DMSO-treated; NRF2 vs. HcRed” signatures. In all three
comparisons, microarrays have the highest measured enrichment
signal, followed by SFL and 3′DGE, however, the difference
between microarray and SFL results is not significant, B1 = 0.73;
p-value = 0.2. The coefficients for both of the comparisons
to 3′DGE, are highly skewed in favor of microarray and SFL,
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B1 = 0.18 and 0.14, respectively. Both of these comparisons
are highly significant with p-values < 0.01. Comparison of the
enrichment results for other differential signatures show similar
trends (Supplementary Figure S8).

Next, we compared enrichment results with respect to all
genotypic perturbation signatures between SFL and 3′DGE
(Figure 5A and Supplementary Figure S9A). Each comparison
(i.e., each point in the plot) denotes gene set enrichment results
with respect to genotypic perturbations within each of the four
chemical exposures, DMSO, CSC, BaP, and NNK. Gene sets were
tested for enrichment against concordant differential signatures,
e.g., the PIK3CA mutation-derived gene set was tested against the
“PIK3CA vs. HcRed” signatures. As in the previous analysis, the
permutation-based enrichment FDR Q-values were transformed
by –Log10(FDR Q-values)∗sign(ES). In the “DMSO-treated;
genotypic perturbation vs. control” signatures, we observe that
the gene set enrichment is generally more significant for SFL than
for 3′DGE (B1 = 0.63; p-value < 0.01; Figure 5A). The results
obtained in CSC- and NNK-treated signatures, demonstrate
concordance to these results (B1 = 0.65; p-value = 0.03 and
B1 = 0.60; p-value = 0.01, respectively). The BaP-treated results
are less comparable since only one genotypic perturbation
signature, “FAT1 vs. GFP,” is available for this stratification
(Supplementary Figure S9A).

Additionally, we compared our differential signatures
to available full coverage poly-A RNA-seq genotypic
perturbations (Supplementary Figure S9B), although these
results are considered less comparable because of differences
in experimental set-up. In particular, in the full coverage
poly-A RNA-seq experiments the genotypic perturbations
were performed on untreated rather than DMSO-treated cell
lines (Figure 1).

The effect on discovery rate by subsampling the data across
all three platforms is shown in Figure 5B. Generally, we did
not observe a plateauing of discovery rate, where the number
of detected genes plateaus near full counted library size. When
comparing the correlation between GSEA results on subsampled
data we observe similar trends across full coverage RNA-seq,
SFL, and 3′DGE (Figure 5C). Initial subsampling of full coverage
RNA-seq and 3′DGE to the SFL counted library size did not
change the analysis results.

In summary, differential analysis of molecular and genotypic
perturbations with SFL recapitulates biologically meaningful
signal of gene sets derived from high coverage in vivo data sets.
This performance is comparable to both 3′DGE and microarray.

DISCUSSION

The goal of this study was to evaluate the performance
of SFL sequencing, a low-cost method for performing
highly multiplexed RNA-seq, and to compare it to other
high-throughput gene expression profiling platforms. The
development of such methods would be instrumental to the
generation of large-scale perturbation screens based on in vitro
models. The reduction of the cost per profile would make
it feasible to significantly increase the number of replicates

and conditions to be profiled, including multiple time points,
concentrations, and biological models, and thus would support a
more in-depth investigation of the heterogeneity of the biological
response to different exposures. It would also support the
development of more accurate predictive models of the adverse
or therapeutic outcomes of various exposures. Finally, insights
gained from our study will also inform the design of protocols
for single cell RNA-sequencing (Eberwine et al., 2014), given
their reliance on highly multiplexed libraries.

In addition to SFL, the platforms included in this analysis were
3′DGE, an alternative highly multiplexed sequencing platform,
Affymetrix GeneChip Human Gene 2.0 ST Microarray, an
analog expression platform, and full coverage poly-A capture
RNA-seq. The cost per sample for SFL and 3′DGE was ∼$50,
a 10-fold decrease from that of full coverage RNA-seq, $500,
and a 7-fold decrease from that of the microarray, $350
USD. Throughout this analysis we demonstrate comparable
performances of SFL and 3′DGE to these more expensive
platforms. Furthermore, in this analysis we consistently find
evidence that SFL outperforms 3′DGE.

Performance was assessed in terms of coverage,
signal-to-noise, and recapitulation of expected biological
signal derived from independently generated, publicly available
data collected from human subjects. Coverage was assessed
by comparing the three digital expression platforms, while
signal-to-noise and biological recapitulation was assessed by
comparing SFL, 3′DGE, and microarrays. Microarray expression
quantification has been shown to be highly correlated with
qRT-PCR, especially when processed with updated probe set
annotations, utilized in this analysis (Sandberg and Larsson,
2007). Chemical and molecular perturbations were carried out
in the same samples, and concurrently profiled by SFL, 3′DGE,
and microarrays. We also leveraged previously generated full
coverage poly-A RNA-seq profiles from similar perturbations of
AALE cell lines.

For coverage assessment, performance was evaluated in terms
of the distribution of total reads, or library size, that were aligned
to the human genome, and further quantified in annotated
genes. The best performance was expected in full coverage
poly-A RNA-seq, given that this is the most well-established
technique and has by far the highest sequencing depth. This was
confirmed, as full coverage poly-A RNA-seq was measured to
have the highest per sample library size, percentage of aligned
reads, percentage of uniquely aligned reads, and percentage of
counted reads (Figure 2 and Supplementary Figure S1). The
coverage performance of SFL suffered as a result of rRNA
contamination, where as many as 53% of the total library size
per sample was assigned to ribosomal regions of the genome
(Supplementary Figure S3).

3′DGE is a poly-A capture technique, therefore ribosomal
depletion is not a possible pitfall. 3′DGE generates a short
nucleotide tags from transposon-based fragmentation, which
are enriched for 3′ adjacent sequences of a given transcript
(Soumillon et al., 2014). Since many transcripts of the same gene
generate identical sequence tags, unique molecular identifiers
(UMIs) are used to distinguish between unique reads and
duplicate reads generated from PCR amplification. Although

Frontiers in Genetics | www.frontiersin.org 10 March 2019 | Volume 10 | Article 15017

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00150 March 1, 2019 Time: 18:29 # 11

Reed et al. Highly Multiplexed RNA-Seq Platform Comparison

mRNA fragment duplication occurs with any RNA-seq protocol,
the impact of this artifact on downstream analyses is negligible for
techniques, such as SFL, which generate more complex sequence
libraries (Parekh et al., 2016).

3′DGE sequences were aligned directly to human mRNAs,
rather than the whole genome. Therefore, percentages of
reads aligned and reads counted (Figures 2Ci,iii) reflect the
percentages of these non-unique UMIs that align to at least one

FIGURE 5 | Comparison of gene-set enrichment of gene mutation signatures across SFL and 3′DGE. (A) Comparison of the gene set enrichment results between
SFL and 3′DGE with respect to the “DMSO-treated; genotypic perturbation vs. control” differential signatures. Points indicate gene set enrichment against
concordant signatures, e.g., PIK3CA mutation and CNA gene sets against the “PIK3CA vs. HcRed” differential signatures. Shown are the transformed FDR Q-values
from permutation-based testing by pre-ranked GSEA. | –Log10(FDR Q-Values)| corresponding to the FDR = 0.05 significance thresholds are shown as vertical and
horizontal gray lines for the y- and x-axes, respectively. The names of the gene sets whose enrichment meets this threshold in either of the two platforms are shown
and their points are filled in. Colors and shape of points denote direction and source of the gene set, respectively. Additional results for CSC, NNK, and BaP stratified
genotypic perturbation signatures, as well as comparisons between full coverage RNA-seq and either SFL and 3′DGE are shown in Supplementary Figure S9.
(B) Discovery rates for genotypic perturbations across full coverage poly-A RNA-seq, SFL, and 3′DGE, for chemically untreated (full coverage RNA-seq) and DMSO
treated (SFL and 3′DGE) samples. Results demonstrate full counted library size, as well as subsampled libraries. (C) Correlation between transformed FDR Q-values
from gene set enrichment at different subsamples of each platform and the results from the full counted library size. Shown are the results from genotypic
perturbations from untreated (full coverage RNA-seq)/DMSO treated (SFL and 3′DGE), CSC, and NNK chemically treated samples.
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gene and the number of unique UMIs that align to only one
gene, respectively. We observe that the percentage of counted
reads is greater for 3′DGE than SFL, which is explained by
a loss of reads to rRNA contamination in SFL. However, we
observe notably more genes quantified by SFL than by 3′DGE
(Figures 2B,Civ), which indicates that more reads are assigned to
fewer genes in 3′DGE compared to SFL, as well as to full coverage
RNA-seq (Figure 2C). Although rRNA contamination is a
potential drawback of any ribosomal depletion RNA-sequencing
technique, the extent of ribosomal contamination is variable, and
could be potentially improved by further optimization of the
library preparation protocol.

The difference in distribution of reads across shared genes
between SFL and 3′DGE likely explains the difference in
information retained by subsampling as measured by principal
component error. Although full coverage poly-A RNA-seq clearly
outperforms both SFL and 3′DGE for principal component
assessment, we consistently observe that, as the counted library
size increases, the rate of principal component error decreases
faster for SFL than 3′DGE (Figure 2D and Supplementary
Figure S1D). This is unsurprising considering that not only
are considerably fewer genes quantified by SFL compared to
3′DGE, but there is also no discernable difference between the
rate of genes counted as a function of counted library size
between the two platforms (Supplementary Figure S1C). As
we subsample the counted libraries, though we may lose the
same number of genes between SFL and 3′DGE, the percent
of genes lost, and consequently the information lost, will be
greater for 3′DGE than SFL. Furthermore, this more even
read distribution likely explains the improved performance
of SFL over 3′DGE in statistical signal. In particular, our
signal-to-noise evaluation shows consistently higher gene-level
statistical signal from SFL and microarray experiments than
from 3′DGE experiments (Figure 3). These differences appear
to be driven by the differences in the relative quantification of
genes, given that statistical signal is positively associated with
mean gene expression for each platform, and 3′DGE experiments
showed lower gene-level quantification than SFL and microarrays
(Figures 3C,D). We observe similar cross-platform relationships
in the two-group differential analyses (Figures 3E,F).

The gene set-based enrichment results are consistent with
those from signal-to-noise analyses. In every comparison
of enrichment scores between SFL and 3′DGE, we observe
generally higher gene set enrichment with respect to the
SFL-derived signatures (Figures 4, 5A and Supplementary
Figures S8, S9). The gene sets were selected to represent known
biological responses to the profiled perturbations, and thus
their enrichment with respect to the perturbation signatures are
expected to be true positives.

The enrichment results confirm this expectation. For example,
in the signatures ofNRF2 overexpression, we consistently observe
enrichment of the gene sets derived from NRF2 amplifications
and KEAP1 deletions, each of which should increase NRF2
activity (Supplementary Figure S7) (Kansanen et al., 2013).
Similarly, we observe significant concordant enrichment of
the gene sets derived from NRF2 and KEAP1-dysregulated
lung tumors in the signature of CSC exposure, suggesting

that the NRF2 pathway is activated by CSC exposure in vitro
(Supplementary Figure S7), which has been previously reported
(Adair-Kirk et al., 2008). Interestingly, these results demonstrate
that the activation of the NRF2 pathway in normal airway
epithelial cells in vitro (by ectopic expression of the gene
or by CSC treatment) is concordant with the activation
of NRF2 by somatic genome alterations in lung tumors,
a finding that, to the best of our knowledge, has not
been previously observed.

Possible sources of technical variability in this study are
the different sequencing platforms, service providers, and read
lengths. However, when subsampling the 3′DGE and SFL counted
libraries, we generally observe higher discovery rates at all
percentages of the full counted libraries, and even more so
when the 3′DGE counted libraries are initially subsampled to
full SFL counted library sizes (Figure 5B), demonstrating that
SFL shows improvements independent of the mapping rate.
This result confirms previous reports showing that increasing
read length above 50-bp does not improve read quantification
(Chhangawala et al., 2015). Furthermore, similar results have
been reported even when the same sequencing platform is used.
A recent study reported a greater number of genes detected, as
well as higher differential analysis discovery rates, in conventional
RNA-seq than in 3’DGE at identical counted library sizes, using
the Illumina HiSeq 2500 platform to generate both libraries
(Xiong et al., 2017).

In summary, in this study we observe higher performance
of SFL than 3′DGE, as measured by coverage, signal-to-
noise, and biological recapitulation of known signal, with the
performance of SFL often matching that of well-established
“gold standards” (full coverage RNA-seq or microarrays). On
the other hand, the fact that 3′DGE is shown to allocate a
large number of reads to relatively fewer, highly expressed genes,
makes this platform more suitable for problems where high
accuracy in the differential quantification of highly expressed
genes is needed. Furthermore, the ready availability of 3′DGE
as a core-provided option, which allows for the out-sourcing
of library preparation, sequence read pre-processing and gene
quantification, is an additional value-added of the platform.
Ultimately, the best-suited platform for a specific project will
depend on the study goals, design, and availability of different
resources. We believe our study presents useful results to make
a more informed choice.

The utility of highly multiplexed RNA-seq crucially depends
on the trade-off between cost and data quality, and on the
nature of the experiments for which the platform would
be ideally suitable. These will in general be experiments
where the marginal information content of a single profile is
relatively low, and thus justifies trading-off some data quality
for reduced cost.
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Next-generation RNA-sequencing is an incredibly powerful means of generating a snapshot
of the transcriptomic state within a cell, tissue, or whole organism. As the questions
addressed by RNA-sequencing (RNA-seq) become both more complex and greater in
number, there is a need to simplify RNA-seq processing workflows, make them more
efficient and interoperable, and capable of handling both large and small datasets. This is
especially important for researchers who need to process hundreds to tens of thousands of
RNA-seq datasets. To address these needs, we have developed a scalable, user-friendly,
and easily deployable analysis suite called RMTA (Read Mapping, Transcript Assembly).
RMTA can easily process thousands of RNA-seq datasets with features that include
automated read quality analysis, filters for lowly expressed transcripts, and read counting
for differential expression analysis. RMTA is containerized using Docker for easy deployment
within any compute environment [cloud, local, or high-performance computing (HPC)] and is
available as two apps in CyVerse's Discovery Environment, one for normal use and one
specifically designed for introducing undergraduates and high school to RNA-seq analysis.
For extremely large datasets (tens of thousands of FASTq files) we developed a high-
throughput, scalable, and parallelized version of RMTA optimized for launching on the Open
Science Grid (OSG) from within the Discovery Environment. OSG-RMTA allows users to
utilize the Discovery Environment for data management, parallelization, and submitting jobs
to OSG, and finally, employ the OSG for distributed, high throughput computing.
Alternatively, OSG-RMTA can be run directly on the OSG through the command line.
RMTA is designed to be useful for data scientists, of any skill level, interested in rapidly and
reproducibly analyzing their large RNA-seq data sets.
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INTRODUCTION

RNA-sequencing (RNA-seq) provides scientists with the ability
to monitor genome-wide transcription across numerous cells or
tissues and between experimental conditions in a rapid and
affordable manner. Data generated from RNA-sequencing are
incredibly powerful for differential gene expression analysis
(Mortazavi et al., 2008; Li et al., 2016; Schlackow et al., 2017),
novel gene discovery (Martin et al., 2013; Nelson et al., 2017),
transcriptome-wide structural analysis (Gosai et al., 2015;
Anderson et al., 2018), and even transcriptome-wide
association studies (Galpaz et al., 2018; Gusev et al., 2019). In
addition to generating and examining novel RNA-seq data,
scientists are re-examining the hundreds of thousands of
publicly available archived datasets to make novel discoveries
(Lachmann et al., 2018), an analytical feat that represents a
bottleneck for most researchers. The popularity of RNA-
sequencing is perhaps most apparent by examining the
dramatic increase in the number of RNA associated sequence
read archives (SRAs) deposited in National Center for
Biotechnology Information (NCBI's) SRA (Leinonen et al.,
2011; Figure 1) over the last 10 years.

Alignment-based processing of these massive volumes of
RNA-seq data typically involves two computationally intensive
steps: mapping reads against a reference genome and transcript
assembly. Reference genome based read mapping is performed
using splice-aware algorithms such as STAR (Dobin et al., 2013)
or HISAT2 (Pertea et al., 2016). The computational cost
associated with mapping reads is dependent on the size of the
genome and the number of reads to be mapped but typically
Frontiers in Genetics | www.frontiersin.org 223
takes hours to days on a standard lab server. The mapped reads
are then used to assemble transcripts using programs such as
StringTie or Cuffl inks. Transcript assembly is less
computationally intensive than read mapping but can still
require several hours to complete. In addition to the
computational requirements, both of these steps require
substantial data storage resources and technical skills in
transferring and manipulating large files, further increasing the
technological burden for the researcher.

Successful assembly of RNA-seq data is insufficient to achieve
the ultimate experimental goal: extraction of meaningful data.
Data extraction usually involves differential expression analyses,
isoform analysis, or novel gene identification. Each of these
analyses requires different input file types and the use of
different applications—each with their own intricacies
surrounding installation, use, and preference for a Linux
environment. In addition, preparing data files and then
organizing them into the appropriate file structure for these
next steps rapidly becomes tedious when performed on hundreds
to thousands of files. Thus, despite the wealth of computing
resources, extracting meaningful knowledge from RNA-seq data
is still a non-trivial task.

Cloud-computing cyber-infrastructure platforms such as
CyVerse (Merchant et al., 2016) and Galaxy (Afgan et al.,
2016) have lifted the computational and data management
burdens and made RNA-seq analysis more accessible to non-
traditional data scientists. In contrast to fee-based services such
as the Cancer Genomics Cloud (Lau et al., 2017) or FireCloud
(Chet et al., 2017 – doi 10.1101/209494), CyVerse and Galaxy are
free to users and provide long-term data storage solutions
integrated with limited on-demand cloud compute resources.
CyVerse and Galaxy also offer graphical user interface (GUI)
platforms which allow researchers with minimal programming
experience to easily deploy and handle large volumes of jobs in
parallel. A complement to single-source resources like CyVerse
and Galaxy is the Open Science Grid [OSG (Pordes et al., 2007)],
a distributed computing resource capable of handling hundreds
of thousands of jobs and transferring hundreds of petabytes of
data per day. Thus, these computational resources make large
dataset analysis and re-analysis feasible in a reasonable time-
frame and cost-effective way.

Here we introduce RMTA (Read Mapping, Transcript
Assembly), a high throughput RNA-seq read mapping and
transcript assembly workflow. RMTA is easy to use and
incorporates features that move beyond the standard RNA-seq
workflow, allowing data scientists to focus their time on
downstream analyses. For users with access and familiarity
with high-performance computing (HPC) command-line
operations, RMTA is packaged as a Docker container for one-
step installation (Table 1). In contrast to other containerized
RNA-seq analysis tools (Folarin et al., 2015; Jensen et al., 2018),
RMTA is also installed as an app in CyVerse's Discovery
Environment, which obviates computing and data storage
requirements while providing a GUI for users less familiar
with the command-line. Finally, for users querying extremely
large data sets, OSG-RMTAmarries the computational resources
FIGURE 1 | RNA-sequencing (RNA-seq) data deposited on National Center
for Biotechnology Information (NCBI's) sequence read archive (SRA). SRA run
information associated with transcriptomic analyses was downloaded and
sorted by year deposited. Tera base pairs (Tbp, 1E+12) of RNA-seq data
deposited is shown with the gray line and plotted on the left y-axis.
Thousands of experiments deposited, per year, is shown with the black line
on the right y-axis.
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of the OSG with the job scheduling, data storage and
management capabilities of CyVerse. Beyond read mapping
and assembly, RMTA has a number of additional features that
automate onerous data transformation and quality control steps,
thus producing outputs that can be directly used for differential
expression analysis or novel gene identification. In addition, the
output from RMTA may be rapidly integrated in downstream
transcriptomic data visualization platforms to help researchers
extract meaningful knowledge. RMTA is both straightforward to
install and use, and is meant to be used by both advanced and
novice data scientists in their examination of their RNA-seq data.
MATERIALS AND METHODS

In this section we provide an overview of RMTA, its different
features, and its deployment options.
Frontiers in Genetics | www.frontiersin.org 324
Overview of the Read Mapping and
Transcript Assembly Workflow
RMTA automates the three critical steps of RNA-seq analysis:
read mapping, transcript assembly, and read counting. For
genome-guided read mapping, RMTA utilizes either the splice-
aware algorithm HISAT2 or the splice-unaware algorithm
Bowtie 2 (Langmead and Salzberg, 2012) for mapping and
then StringTie (Pertea et al., 2016) for transcript assembly
(Figure 2). Minimum input requirements include a reference
genome (FASTA or pre-indexed), and RNA-seq reads as either
compressed or uncompressed FASTq, or as a list of one to
thousands of SRA IDs. A reference genome annotation file (in
GFF/GFF3/GTF) is optional and allows for downstream novel
gene identification. RMTA automatically builds a reference
genome index (if it is not provided) from the user supplied
reference genome, aligns reads to the genome, and then returns a
binary encoded version of a sorted sequence alignment map
(BAM) file for each input FASTq/SRA. This BAM file is then
automatically used as input for StringTie, where it, along with the
reference genome annotation, is used to assemble transcripts.
Following transcript assembly, each BAM file is processed by
featureCounts (Liao et al., 2014) to determine how many reads
map back to each gene/exon in the reference genome
annotation file.

As an alternative to genome-guided read mapping and
transcript assembly, RMTA also allows for read alignment
directly to a transcriptome using the quasi-aligner and
transcript abundance quantifier Salmon (Patro et al., 2017;
Srivastava et al., 2019). Minimum input for Salmon includes a
reference transcriptome (in FASTA format) and then RNA-seq
reads (as above). Salmon maps reads to the provided transcript
assembly and then counts the number of reads associated with
each transcript, generating an output file (quant.sf) that can
immediately be used for differential expression. The utilization of
TABLE 1 | Deployment options for read mapping and transcript assembly
(RMTA).

Platform App Name Size of Datasets
That Can Be
Handled

Data Storage
Available

Genome Services
Available

DE RMTA
v2.5.1.2

1–100 Yes Yes

DE OSG-RMTA
v2.5.1.2

100–1000s Yes Yes

DE RMTA-
Instructional

1–10 Yes Yes

Local RMTA in
Docker

Restricted to user
capacity

No No

OSG* OSG-RMTA 100–1000s No No
Platforms include the Discovery Environment, a local computer, or high performance
computing center, or the Open Science Grid. *Users wishing to utilize the Open Science
Grid (OSG) outside of the Discovery Environment will need their own OSG account.
FIGURE 2 | Read mapping and transcript assembly (RMTA) workflow with suggested downstream analyses. The standard RMTA workflow consists of read
mapping by either HISAT2 or Bowtie 2, transcript assembly by StringTie, assembly comparison to the reference annotation by Cuffcompareto identify novel
transcripts, and then read counting by featureCounts. Several optional features are included, such as the ability to perform quality control on RNA-sequencing (RNA-
seq) data with FastQC, filtering of lowly expressed transcripts, and removal of duplicate reads (Bowtie 2 only). Output is listed, and are ready for downstream
analyses such as those shown.
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Salmon is only appropriate when the user is wanting to rapidly
test for differential expression and cannot facilitate the
identification of novel genes or data visualization in a
genome browser.

OSG-RMTA utilizes a similar workflow to RMTA. The
primary difference is how the user plans on launching jobs and
providing the necessary input data to the OSG. When launched
directly from within the OSG through a user's personal account,
the user must provide access to all necessary data (e.g. genomes,
RNA-seq data, etc). Thus, we recommend users submit jobs to
the OSG through CyVerse's Discovery Environment. When jobs
are submitted via the Discovery Environment, it automatically
prepares the information needed to run the job and submits it to
the OSG viaHTCondor (Thain et al., 2005) and requires no OSG
account (Table 1). Once the job is launched OSG-RMTA uses
the information provided by the Discovery Environment to
retrieve input files, process the data, and upload the results
back to the Data Store, allowing the user to submit and
walk away.

RMTA is also available for implementation on a HPC, a
public cloud-based computing system (i.e., XSEDE or
Atmosphere), or a local compute system. For local or cloud-
based computing, a Dockerized version of RMTA identical to
that used in the Discovery Environment is available for use inside
a Docker command line environment. However, the user will
need to direct Docker to the location of the input files and assign
the required “flags” that are hidden when using RMTA in the
Discovery Environment. More information on how to run the
Docker version of RMTA on a Linux/personal computer (PC)/
Mac operating system (OS) and a list of all available flags are
available here (https://github.com/Evolinc/RMTA). Docker
requires root privileges and thus is not available for HPC
where users are denied super user do “sudo.” For HPC
systems, Docker can be used alongside Singularity (Kurtzer,
et al., 2017; instructions found here: https://sylabs.io/guides/3.
4/user-guide/).

Additional Read Mapping and Transcript
Assembly Features
Several additional features have been included in the RMTA
workflow to facilitate data discovery and quality control. For
users wishing to call single nucleotide polymorphisms from their
RNA-seq [or DNA-sequencing (DNA-seq)] data in a high
throughput manner, the read aligner Bowtie 2 (Langmead and
Salzberg, 2012) has been included as an optional aligner in the
RMTA workflow. When the Bowtie option is selected, HISAT2
and StringTie are both removed from the workflow, but the
additional option to remove duplicate reads (important for
population level analyses) becomes available.

Poor quality RNA-seq reads, particularly at the 5' or 3' ends as
a result of adaptor contamination or a drop in sequencing
quality, can lead to a significant population of unmapped
reads. To help the user identify issues resulting from poor read
mapping rates, the quality control tool FastQC (Andrews, 2010)
is available as an additional option in the RMTA workflow for
both genome or transcriptome-guided read mapping
approaches. FastQC provides the user with both an overview
Frontiers in Genetics | www.frontiersin.org 425
of potential issues with their data, as well as summary graphs
highlighting issues such as per base sequence quality and Kmer
content. Because FastQC works on read files in FASTq format,
and we envision many users running RMTA directly on SRAs,
FastQC has been placed downstream of read mapping (Figure
2). When the FastQC option has been selected, BAM files are
converted back into FASTq with mapped and unmapped reads,
along with their associated quality score, retained. This FASTq
file is then used as input for FastQC, and then deleted afterward
to reduce disk usage. If issues are detected at the 5' or 3' of
sequencing reads, RMTA includes additional options for
specifically trimming bases off of either end during the next
analysis. Sequencing reads of overall poor quality will simply not
be mapped and therefore do not need to be trimmed, but will still
be highlighted in the FastQC results.

RMTA is also designed to aid in the identification of novel
genes such as long non-coding RNAs from genome-guided
transcriptome assemblies. To help the user remove transcript
assembly artifacts that can arise from low expression, and
therefore improve their attempts at novel gene identification,
RMTA has two options for filtering lowly expressed transcripts.
The user can decide to filter based on low expression [denoted as
fragments per kilobase of transcript per million mapped read
(FPKM)], low/incomplete read coverage (read per base), or use
both filters in combination. We find that applying both filters
(e.g., setting them both to one) helps to remove a large
percentage of poorly assembled transcripts.

Output From RMTA
The RMTA workflow produces a number of files that are
designed to be immediately useful for downstream analyses
such as differential expression, novel gene identification, and
single-nucleotide polymorphism (SNP) discovery. Directly
within the RMTA_Output folder the user will find the sorted
BAM files and the filtered transcript assembly files (in GTF). The
naming convention of these files reflects the SRA or FASTq from
which they were derived (i.e., the input ID will be prepended to
the output files). The filtered transcript assembly file is prepared
for immediate use in the novel long non-coding RNA (lncRNA)
identification package, Evolinc (Nelson et al., 2017), whereas the
sorted BAM file is ready for import and visualization within a
genome browser such as EPIC-CoGe (Nelson et al., 2018) or
Integrative Genomics Viewer (IGV) (J. T. Robinson et al., 2011).
The user will also find a “mapped.txt” file in the RMTA_Output
folder, which contains information about alignment rates for
each input FASTq/SRA. Within the RMTA_output folder is a
subfolder labeled “Feature_counts” which contains a
featureCounts summary.txt file and a tab-delimited file
containing the number of reads assigned to each gene/exon for
each of the RNA-seq data sets analyzed. If using the
transcriptome-guided mapping approach (i.e., Salmon), a
single quant.sf file will be generated that will contain the
counts of all reads mapped to each transcript in each of the
RNA-seq datasets processed. If the user selected the FastQC
option, there will be a subfolder within the Output folder called
“FastQC_out.” This folder will contain a FastQC.html file for
each data set examined. Clicking on this file within the Discovery
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Environment will open up a new tab in the user's browser where
all of FastQC's output information will be displayed. If the user
chose Bowtie as the read aligner and “remove duplicate reads” as
an additional option, then the RMTA_Output folder will only
contain a sorted BAM file with duplicates removed for each SRA/
FASTq input file, as well as a mapped.txt file. No additional files
will be generated. A similar file/folder structure is generated no
matter how an RMTA job has been launched (DE/OSG/HPC).

Deployment Options
The different deployment options for RMTA and the benefits
associated with each are summarized in Table 1. RMTA is freely
available as an app (RMTA v2.6.3) within CyVerse's Discovery
Environment (https://wiki.cyverse.org/wiki/display/DEapps/
RMTA+v2.6.3). Running RMTA within the Discovery
Environment allows the user to take advantage of CyVerse's
simplified data management and storage options through the
Data Store. In addition, integrated in the Discovery Environment
are a number of virtual interactive computing environment
(VICE) apps, such as the DESeq2 RStudio app, that allow users
to examine their data start to finish completely in the cloud
(https://learning.cyverse.org/projects/vice/en/latest/). OSG-
RMTA (v2.6.3) is available as a separate app within the
Discovery Environment. Although the OSG-RMTA app
outwardly looks identical to RMTA, jobs are submitted to the
OSG by CyVerse on behalf of the user, while also automating
data management and transfer between the Data Store and OSG.
RMTA is available as a Docker image https://hub.docker.com/r/
evolinc/osg-rmta/ for easy installation in a command line
environment (e.g. XSEDE or PC) where Docker is already
installed or where the user has the necessary privileges to
install Docker. Additionally, Docker can run within Singularity
(Kurtzer et al., 2017), which enables launching RMTA within an
HPC environment. Having RMTA packaged within a Docker
container abrogates the need for installation of prerequisite
software. For users with an OSG account and for whom a
CyVerse account is unnecessary, OSG-RMTA is already
present on the OSG as a Docker image for immediate use. A
brief tutorial on how to use RMTA and OSG-RMTA in the
command line and OSG, respectively, can be found in the
README.md at (https://github.com/Evolinc/RMTA). Finally, a
stripped down version of RMTA (few visible options) aimed at
introducing undergraduates to the concepts of RNA-seq is also
available in the Discovery Environment (RMTA_Instructional)
with instructions at (https://wiki.cyverse.org/wiki/display/
DEapps/RMTA_Instructional).

Additional Discovery Environment-Specific
Features to Simplify Ribonucleic Acid
Sequencing Analysis
Although RMTA and OSG-RMTA are packaged as Docker
images for use outside of CyVerse's Discovery Environment
(e.g. OSG or an HPC), we highly recommend using the
Discovery Environment integrated RMTA apps to take
advantage of both the Discovery Environment's GUI and
CyVerse's integrated Data Store. The Data Store makes data
Frontiers in Genetics | www.frontiersin.org 526
management relatively easy [drag ‘n' drop as opposed to shipping
hard drives to Amazon Web Services (AWS) (Zhao et al., 2013)].
A number of up-to-date genomes are available in the community
Data Store and the Discovery Environment has an application
programming interface (API) that can acquire any of the 50,000
additional genomes from CoGe (Lyons et al., 2008) or public/
private databases if needed. A Discovery Environment app has
also been developed to retrieve GTF and BAM files from
subdirectories generated for each SRA (File_Select v1.0) and
place them into a single, user-specified folder, making data
management even easier.

Researchers running OSG-RMTA in the Discovery
Environment can take advantage of two features that facilitate a
“divide and conquer” approach to job submission to the OSG.
Long (> 1,000s) lists of SRAs can be divided up into smaller lists
using the File_Split v1.0 app. The Discovery Environment's HT
Analysis Path List file feature then uses these lists to parallelize
their job submissions to the OSG. (https://wiki.cyverse.org/wiki/
display/TUT/Parallel+execution,+DE+(Discovery+Environment)
+style). Thus, a thousand SRAs can be processed in roughly the
same time it would take to process 100. All of this happens with a
few clicks of a button.

Data and Software Availability
RMTA and OSG-RMTA are freely available to use as an app on
CyVerse's Discovery Environment or on the Open Science Grid
(https://hackmd.io/s/rJjrqyAAQ). Detailed instructions on how
to use RMTA in the Discovery Environment can be found at
(https://wiki.cyverse.org/wiki/display/DEapps/RMTA+v2.6.3).
Working within the Discovery Environment requires a modern
hypertext markup language 5 (HTML5) capable browser and a
free CyVerse user account (user.cyverse.org). Users wishing to
use OSG-RMTA on the OSG directly (not through the Discovery
Environment) will need an account (http://osgconnect.net/). The
source code of the workflow is available at https://github.com/
Evolinc/RMTA and https://github.com/Evolinc/OSG-RMTA
and the Docker images for users wishing to adapt RMTA to
novel environments are available at https://hub.docker.com/r/
evolinc/rmta and https://hub.docker.com/r/evolinc/osg-rmta/.
Test data for RMTA are present in the Discovery Environment
and on GitHub.

Data Visualization in EPIC-CoGe, Long
Non-Coding Ribonucleic Acid
Identification With Evolinc, and Analysis
of Gene Expression
Two sorted.bam files, SRR2240264 (flower) and SRR2240265
(root) from an RMTA run on 100 paired-end (PE) SRAs were
uploaded to EPIC-CoGe from CyVerse's Data Store using the
LoadExp+ tool (Grover et al., 2017) in CoGe. Expression data
were associated with the Arabidopsis thaliana (Col-0) genome
(v10.02, id 16911). These two datasets are publicly available in the
RMTA folder (id 2568) at www.genomevolution.org. To identify
lncRNAs, all 100 “filtered.gtf” files from the 100 PE RMTA
analyses were added to an HTPathlist file in the Discovery
Environment. This HTPathlist file was then used as the input
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for a single Evolinc analysis in the Discovery Environment
(Evolinc v1.7.5; Nelson et al., 2017). The updated annotation
file from each Evolinc job were merged using the Evolinc_merge
app (v1.0). FASTA sequence for all identified lncRNAs were
extracted using the gffread utility in the Cufflinks package. GC
content and length of all Arabidopsis protein-coding genes and
the newly identified lncRNAs were calculated using a custom Perl
script (File S1). Principal component analyses were generated in
R (code in File S2) using the read count data from RMTA.
RESULTS

To demonstrate the utility of RMTA, we used our workflow
(Figure 2) to process 1,000 A. thaliana SRAs (single-end reads)
and 100 SRAs (paired-end reads) directly from NCBI's data
repository, representing 1.27 terabases of RNA-seq data
(Table 2 and Table S1). SRA IDs were obtained from NCBI's
SRA by searching the term “Arabidopsis thaliana” and then
exporting all summary results to a tab-delimited file using
NCBI's “Send to” API. For downstream analysis of the PE data,
specific RNA-seq data from root (n = 68) and flower (n = 32)
tissue were chosen from these summary results (Table S1). PE and
single-end (SE) SRA IDs were copied into new list files in the
Discovery Environment, partitioned into lists of 10 and 100,
respectively, using File_Split-1.0. These 10 list files were then
added to an HT Analysis Path List that subsequently became
the input for the RMTA app. Two analyses were launched in the
Discovery Environment (one for PE and one for SE) whereupon
they were automatically divided up and submitted simultaneously
as 10 jobs each. Specific options selected for these analyses were:
HISAT2 for the aligner, a FPKM, and coverage cut-off threshold of
1, and Run FastQC selected. All other options were left as default.

Mapping rates and time to completion are shown in Table 2
and Table S1. While the mapping rates for most (76%) of the PE
SRAs were >90% (avg = 92.7%, Table 2), six SRAs displayed
rates <75%. FastQC results were interrogated to identify
potential reasons for why these mapping rates might be low
and if 5' or 3' trimming of reads might facilitate better mapping.
FastQC results revealed a significant enrichment of adaptor
sequence for these samples. A subsequent relaunching of
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RMTA with 15 nts trimmed from the 5' end (an option within
RMTA) resulted in improved mapping rates for all six samples.
This demonstrates the utility of being able to analyze hundreds of
SRAs at once with default settings, and then follow up with
adjusted parameters for problematic samples.

We then demonstrated three ways in which RMTA can
facilitate downstream analysis: 1) by visualizing the RMTA
generated BAM files in the EPIC-CoGe genome browser, 2) by
testing for variation between datasets using the RMTA
featureCounts output, and 3) identifying novel lncRNAs using
RMTA's filtered genome annotation output. Users often wish to
sanity check their RNA-seq data by viewing them in a genome
browser. A benefit of performing RMTA in CyVerse's Discovery
Environment is the ability to immediately import the large
mapped read (BAM) files from the Data Store into the EPIC-
CoGe genome browser (Nelson et al., 2018). Genomes for over
19,000 organisms are available on CoGe, meaning that the user
will not only be able to visualize their RNA-seq, but can also
import genomes from CoGe into the Discovery Environment to
supplement the genomes already available. Two of the
Arabidopsis PE-SRAs were imported into EPIC-CoGe (publicly
available in the CoGe folder “RMTA,” ID: 2568) for public
browsing (Figure 3A). For users performing RMTA locally
(i.e., in a Docker container), genome browsers such as IGV (J.
T. Robinson et al., 2011) are freely available and easy to use.

Sample variation within the 100 Arabidopsis PE-SRAs,
consisting of RNA-seq data from 68 root and 32 flower samples
(see Table S1 for IDs) was examined using the RMTA-produced
table of exon associated read counts (feature_counts.txt). While
these analyses can occur using Discovery Environment RStudio
VICE app deployments of DESeq2 (Love et al., 2014) or EdgeR
(M. D. Robinson et al., 2010); https://learning.cyverse.org/projects/
vice/en/latest/user_guide/quick-rstudio.html), as the output file
from featureCounts is small and manageable, it was downloaded
and manipulated in a local R environment (i.e., RStudio; RStudio
Team, 2015; R-code available in File S2). A principal component
analysis (PCA) demonstrated that, as expected, the largest amount
of variation between samples (PC1) could be explained by tissue
(Figure 3B). This analysis demonstrates the ease with which
researchers can validate their RNA-seq data and proceed to
differential expression analyses using the RMTA workflow.

The filtered genome annotation produced by RMTA is perfect
for novel gene identification without any additional data
transformation. To describe this, the RMTA output file
“filtered.gtf,” with transcripts with an FPKM or read/base <3
removed, was used as input in the long non-coding RNA
identification pipeline, Evolinc (v1.7.5; Nelson et al., 2017) in
the Discovery Environment. Like RMTA, Evolinc is also
packaged as a Docker image for local discovery. Evolinc was
used to identify putative lncRNAs expressed in the root and
flower RNA-seq data. The number of lncRNAs identified and
some basic characteristics, such as average length and GC
content relative to nuclear and organellar protein-coding
genes, are shown in Figures 3C, D, with the R code necessary
to recapitulate the images available in File S3. Reads mapped to
these lncRNAs, and other novel genes, can also be visualized in a
TABLE 2 | Mapping rates and time to completion for the example read mapping
and transcript assembly (RMTA) analyses.

Mapping rates
> 90% 90–

75%
75–
50%

<50% Gbp
mapped

Mbp/
minute

SE
samples

63% 16% 9% 12% 863 45

PE
samples

76% 15% 5% 4% 406 26
RMTA was used to process 100 paired-end (PE) and 1,000 single-end (SE) Arabidopsis
sequence read archives (SRAs). The percentage of these SRAs with mapping rates >90%,
90–75%, etc., are shown. Gbp = 1x109 base pairs mapped. Mbp/minute = million base
pairs mapped per minute.
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genome browser using the BAM files generated by RMTA
(Figure 3E). In sum, RMTA is not only a simple and intuitive
means of processing large amounts of RNA-seq data, but also
facilitates commonly performed downstream analyses.
DISCUSSION

As the technical and financial barriers to generating raw RNA-
seq data are reduced, the barrier to discovery will be shifted
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toward the computational steps required to analyze those data
and the integration with other software for extracting high-value
knowledge and novel scientific insights. RMTA was designed
with the goal of alleviating many of the tedious or time
consuming steps of RNA-seq processing and downstream data
analysis. This goal was primarily accomplished by incorporating
the three main steps of RNA-seq processing (read mapping,
assembly, and counting) into a very approachable, yet scalable
and interoperable tool, and ensure that the output files from
RMTA are easily ingested by other platforms and analysis tools.
FIGURE 3 | Examples of downstream analyses facilitated by the read mapping and transcript assembly (RMTA) workflow. The output generated by RMTA are
immediately useful for the usual analyses performed following an RNA-sequencing experiment. (A) EPIC-CoGe screenshot of Arabidopsis root and flower RNA-
sequencing (RNA-seq) data processed by RMTA highlighting a gene, AT1G01280, that is highly expressed in flower tissue but not roots. (B) Principal component
analysis (PCA) of 100 Arabidopsis sequence read archives (SRAs) generated in R using the read count output file from RMTA. (C) Comparison of the length of
Evolinc identified long non-coding RNA (lncRNAs) relative to other nuclear and organellar genes. PC, protein-coding gene; Mt, mitochondria; Cp, chloroplast. (D)
Comparison of GC content of Evolinc identified lncRNAs relative to other nuclear and organellar genes. (E) EPIC-CoGe visualization of the expression of a
locus identified by Evolinc as a lncRNA. The boundaries of the lncRNA and its orientation have been added to the EPIC-CoGe screenshot.
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The usefulness of RMTA is most apparent when utilized
within CyVerse's Discovery Environment. Access to public or
private genomes (through CoGe and the Data Store), automatic
data retrieval from NCBI's SRA, data management through
the Data Store, and job submission within the Discovery
Environment or direct to the Open Science Grid, means that
data scientists can perform all of their analyses in the cloud. In
addition, users can take advantage of parallelizable job
submission options that are available to divide and conquer
their large datasets. Once finished, RMTA produces output files
that are ready for immediate analysis (e.g., differential
expression), visualization (e.g., in a genome browser), or novel
gene identification (e.g., long non-coding RNAs), all of which
can also occur in the cloud. In sum, large-scale RNA-seq analysis
is no longer limited to data scientists with HPC access or a high-
end local computer.

RMTA was also designed for users who prefer to perform
analyses locally. By packaging RMTA in a Docker container we
have removed the tedious task of installing prerequisite software
and made RMTA capable of running on any operating system.
Thus, processing and analysis of RNA-seq data is no longer
restricted to a Linux machine but can now also be performed
on a machine utilizing Windows or Mac OS. In addition,
recognizing data storage limitations, RMTA removes
unnecessary files generated during the analysis that would
rapidly fill up most storage allotments.

Not all data scientists have the same needs in terms of available
features or in the amount of data to be processed. To this end we
developed variants of RMTA targeting undergraduate or high
school instructors (RMTA_instructional), users processing 1–
100s of data files (RMTA), and users processing 1,000s or more
data files (OSG-RMTA). RMTA_instructional is available as an
app in the Discovery Environment with minimal fields exposed,
with example input files added to the appropriate fields, and with
entry level descriptions of the purpose behind each field. RMTA
and OSG-RMTA are available as both Discovery Environment
apps and Docker images, with OSG-RMTA already available on
the OSG. RMTA and OSG-RMTA offer the same features,
differing only in where and how jobs are submitted.

In summary, RMTA opens up the task of RNA-seq processing
and data analysis to anyone with access to a web browser, thereby
democratizing data discovery. It also enables analysis of all
transcripts, not just the ones matching already annotated
genes, thus encouraging a more inclusive view of what
genomic regions are actually transcribed. Finally, RMTA serves
as a useful tool for savvy data scientists wishing to reduce the
time and effort necessary to process large data sets.
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The current DNA sequencing technologies and their high-throughput yield, allowed
the thrive of genomic and transcriptomic experiments but it also have generated
big data problem. Due to this exponential growth of sequencing data, also the
complexity of managing, processing and interpreting it in order to generate results,
has raised. Therefore, the demand of easy-to-use friendly software and websites to
run bioinformatic tools is imminent. In particular, RNA-Seq and differential expression
analysis have become a popular and useful method to evaluate the genetic expression
change in any organism. However, many scientists struggle with the data analysis since
most of the available tools are implemented in a UNIX-based environment. Therefore,
we have developed the web server IDEAMEX (Integrative Differential Expression Analysis
for Multiple EXperiments). The IDEAMEX pipeline needs a raw count table for as many
desired replicates and conditions, allowing the user to select which conditions will be
compared, instead of doing all-vs.-all comparisons. The whole process consists of
three main steps (1) Data Analysis: that allows a preliminary analysis for quality control
based on the data distribution per sample, using different types of graphs; (2) Differential
expression: performs the differential expression analysis with or without batch effect
error awareness, using the bioconductor packages, NOISeq, limma-Voom, DESeq2
and edgeR, and generate reports for each method; (3) Result integration: the obtained
results the integrated results are reported using different graphical outputs such as
correlograms, heatmaps, Venn diagrams and text lists. Our server allows an easy
and friendly visualization for results, providing an easy interaction during the analysis
process, as well as error tracking and debugging by providing output log files. The server
is currently available and can be accessed at http://www.uusmb.unam.mx/ideamex/
where the documentation and example input files are provided. We consider that
this web server can help other researchers with no previous bioinformatic knowledge,
to perform their analyses in a simple manner.
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INTRODUCTION

Transcriptomics experiments have been used widely to
measure the RNA levels expressed in tissues or cells from
practically any organism. This approach has been used
since the implementation of Northern blots hybridization
analysis and was scaled up by the development of microarray
technology. However, transcriptomics has been improved with
the aid of sequencing technologies which recently have been
replacing microarrays by using RNA sequencing (RNA-Seq)
experiments to evaluate gene expression at a genome-wide
scale. Therefore, either microarrays or RNA-Seq technologies
have generated a massive amount of data results that demands
ad hoc methods to fully analyze and compare gene expression
between different conditions, tissues or cell populations for
a given organism.

To quantify the transcription levels and identify differential
expressed genes under different conditions, using RNA-Seq
data from high-throughput sequencing technologies, a general
workflow can be described: (1) quality control of RNA-Seq reads
(Babraham Bioinformatics - FastQC A Quality Control tool
for High Throughput Sequence Data Babraham Bioinformatics
- FastQC A Quality Control tool for High Throughput
Sequence Data); (2) read trimming or filtering (Chen et al.,
2017; Roser et al., 2018); (3) mapping trimmed/filtered reads
to a reference (genome or transcriptome) (Li and Durbin,
2009; Langmead and Salzberg, 2012; Kim et al., 2013; Wu
et al., 2016); (4) obtaining the read count for each gene
(Quinlan and Hall, 2010; Li and Dewey, 2011; Roberts et al.,
2011) and (5) differential expression analysis (Anders and
Huber, 2010; Tarazona et al., 2011; McCarthy et al., 2012;
Love et al., 2014; Ritchie et al., 2015). Currently, due to
the size of datasets, steps 1 to 4 have to be performed by
the user and many tools for each step are available and
have been widely used and cited elsewhere. However, the
differential expression analysis is probably the most important
step that allows the user to interpret the biological information
regarding the expression profiles of a given organism under
different conditions.

The gene expression profile contains the information regard-
ing genes related to the organism response to a certain condition.
To retrieve such information, the differential expression analysis
has to be performed and it requires statistical methods to
differentiate between expression changes due to the tested
conditions and biological “noise” or variability. Currently,
several computational tools have been developed mainly in
the programming language R and packages are available at
the Bioconductor project repository (Huber et al., 2015).
However, R language and packages have to be used mainly
through a UNIX-based operating system and by command-
line instructions which requires a certain level of programming
skills. Therefore, non-bioinformatics researchers demand either
a Graphical User Interface (GUI) in order to use differential
expression tools or web-based applications. A GUI-based
solution still requires a local installation of all packages needed
for the differential expression analysis and this could remain
challenging. The web-based applications are now emerging

(de Jong et al., 2015; Monier et al., 2018; Zhang et al., 2018) as
friendlier option to perform the differential expression analysis
in a more friendly way and without installing software in
a local computer.

Here, we introduce the IDEAMEX web server (Integrative
Differential Expression Analysis for Multiple EXperiments)
that uses as input an RNA-Seq raw count table in text
format and generates results using bioconductor packages
NOISeq, limma-voom, DESeq2 and edgeR. These packages
have been constanlty benchmarked and presented the most
reliable results with different datasets and gold-standards
(Seyednasrollah et al., 2015; Costa-Silva et al., 2017). In this
work, we demonstrate the functionality of IDEAMEX, using
RNA-Seq data from a previous publication (Olvera et al., 2017)
where the differential expression analysis in tilapia liver was
performed, in addition to other datasets used as examples to
test the website.

Our server has been used in several projects and has been
visited from different world-wide locations as recorded in our
site tracker. IDEAMEX is available and can be accessed at http:
//www.uusmb.unam.mx/ideamex/ where the documentation and
example input files are provided. Our server offers a web
server-based analysis that can help researchers with no previous
bioinformatic knowledge, to perform their transcriptomic
analyses in a simple manner, in order to interpret the biological
data contained in their RNA-Seq experiments.

MATERIALS AND METHODS

Web Server Description
The web page is hosted by the “Unidad Universitaria de
Secuenciación Masiva y Bioinformática” core lab facility, at
the “Instituto de Biotecnología” of the “Universidad Nacional
Autónoma de México, Campus Morelos located in Cuernavaca,
Morelos, México.” A Linux box computer with Ubuntu 14.04
LTS with the following hardware main characteristics: Intel Core
i7 4770 processor; 32 Gbytes of DDR3 RAM and 1 Tbyte of
hard disk storage.

The deployment was implemented using the Apache
HTTP server version 2.4.7 with a PHP v5.5.9 front-end that
coordinates the writing of the input and output files to a SQL
database through a POSGRES Relational Data Base Manager
(RDBM) server (psql version 9.3.22. The installed R version is
3.5.2. The web server can be accessed at http://www.uusmb.
unam.mx/ideamex/.

The web server interface has been tested using different
web browsers and different operative systems. Using Microsoft
Windows 10: Microsoft EdgeHTML 17.17134; Google Chrome
version 72.0.3626.109 (Official Build) (64-bit); Mozilla Firefox
Quantum 63.0 (64-bit). Using MacOS Sierra 10.13.6: Safari 12.0.3;
Google Chrome 71.0.3578.98 (64-bit). Using Linux Ubuntu 16.04
LTS: Mozilla Firefox Quantum 65.0.

Additionally, the scripts and binaries used in the web server
can be found in the public repository https://github.com/
leticiaVega/IDEAMEX
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RNA-Seq Examples and Data From
Tilapia Liver Experiment
We used as example to test our website two datasets. The first
example contains data from the Pasilla Bioconductor library
(Brooks et al., 2010), taking in account only the gene level
counts. This dataset contains RNA-Seq count data for treated and
untreated cells from the S2-DRSC cell line. The second example
file which can be used to test the batch effect error awareness,
was taken from the NBPSeq CRAN package (Di et al., 2014). This
dataset contains the Arabidopsis thaliana RNA-Seq data (Cumbie
et al., 2011), comparing 1hrcC challenged and mock-inoculated
samples. In this case, the samples were collected in three batches.

We also obtained RNA-Seq publicly available data already
reported (Olvera et al., 2017) that was generated to determine the
effect of 3,5-di-iodothyronine (T2) and 3,5,3′-tri-iodothyronine
(T3) exogenous treatment on the transcriptome of tilapia
(Oreochromis niloticus) liver. For control and each hormone
treatment, two biological replicates were generated. The FASTQ
raw data can be found under the following SRA identi-
fiers: SRX2630485, SRX2630486, SRX2630487, SRX2630488,
SRX2630489, and SRX2630490.

Briefly, the quality control(QC) and filtering for the raw
data was performed using the FASTQC software (Babraham
Bioinformatics - FastQC A Quality Control tool for High
Throughput Sequence Data Babraham Bioinformatics - FastQC
A Quality Control tool for High Throughput Sequence Data)
and contamination and adapter removal was carried out using
in-house Perl scripts. QC’ed reads were mapped using the
Bowtie 1.1.234 aligner (Langmead et al., 2009) to the annotated
Oreochromis_niloticus (Orenil1.0.cds.all, 21,437 coding genes)
CDS dataset downloaded from Ensembl repository database
(Aken et al., 2016) using the BioMart utility. Quantification
and repetitiveness normalization were carried out using eXpress
software 1.535 (Roberts et al., 2011). Total effective counts for
each sample were merged; a matrix was generated using the
“abundance_estimates_to_matrix.pl” Perl script included in the
Trinity pipeline (Grabherr et al., 2011; Roberts et al., 2011). The
resulting matrix was used as input for the differential expression
analysis in the IDEAMEX web server. The select parameters were:
p-adj/FDR = 0.05; logFC = 2; CPM = 1.

Differential Expression Packages
Based on the parameters defined by the user, 4 different R
(version 3.5.2) packages for differential expression analysis are
run: edgeR version 3.24.3 (Anders and Huber, 2010), using
TMM normalization method (works with or without replicates);
limma-Voom version 3.38.3 (Ritchie et al., 2015), using log2-
counts per million normalization method (works with replicates
only); DESeq2 version 1.22.2 (Love et al., 2014), with DESeq2-
default normalization method (works with or without replicates)
and NOISeq version 2.26.1 (Tarazona et al., 2011), with TMM
normalization method (works with or without replicates). Other
packages used in the server are: VennDiagram 1.6.20; ggplot2
3.1.0; UpSetR 1.3.3; corrplot 0.84 and ComplexHeatmap 1.20.0.
The packages can change depending on the R programming
language version, but all changes are reported to the user in log

files that contain all details about the commands and parameters
used for the analysis.

RESULTS

The IDEAMEX Web Server
Implementation
The general workflow used in the IDEAMEX web server can be
observed in Figure 1. First, the user has to enter a valid email
address that will be used to report the follow up or the differential
expression analysis to the user. In a nutshell, the pipeline starts
with a raw count table for as many desired replicates and
conditions, allowing the user to select which conditions will be
compared, instead of doing all-vs.-all comparisons. After the web
server validates the input format, the user can edit the sample
names select one or more differential expression methods and the
parameters to filter results. Additionally, the user can indicate if
the samples belong to different batches so the selected differential
expression methods, can correct any possible batch effect Then,
the data analysis step is performed where a preliminary quality
control report is generated, based on the data distribution per
sample. Next, the differential expression analysis is performed
using one or more selected methods. Finally, the result from the
different selected methods are integrated and are reported using
Venn diagrams, a upset bar plot graph and text files for further
filtering and analysis. Several additional plots are generated
including correlograms to check the consistency between some
calculations and heatmaps. Further details and study cases for
dataset examples are described in the IDEAMEX User Manual
that can be downloaded from the website. To demonstrate the
functionality of our web server, we used a dataset generated
from an RNA-Seq experiment to compare the effect of thyroid
hormones in tilapia liver (see Materials and Methods).

Optionally, the user can perform a full registration at the
IDEAMEX homepage, in order to keep track of all projects
results. The sample name format should have a suffix_[0-9]
structure: nameCond1_1, nameCond1_2, . . . , nameCond1_n,
nameCond2_1, nameCond2_2, . . . , nameCond2_m. Once the
input file is validated, the server can infer the replicates from
the suffix before the underscore symbol and the replicate number
will be the digit after the underscore symbol. However, during
the input loading, the user can edit these names. In case of
samples being prepared in different batches, this information can
be specified in the same window the sample names are edited.
Indicating samples in different batches will turn on the batch
effect error correction of different methods. Importantly, use
this option only if you have knowledge of samples from a given
condition, being prepared in a different batch which can give the
experiment an extra variability. The user manual has a case of
study for samples with batch effect.

In this work, the samples were named liverC_1, liverC_2 for
replicates of control condition (no treatment) and liverT2_1,
liverT2_2, liverT3_1, liverT3_2 for replicates that correspond to
each of the 3,5-T2 and 3’,3,5-T3 (T2 and T3) thyroid hormones
treatments. A raw count table (Supplementary Material S1)
in tab-separated text format, was generated and fed to the
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FIGURE 1 | IDEAMEX workflow diagram. The web server workflow starts with the loading and validation of the raw count table as input. Then, the user selects one
or more methods for differential expression analysis, data analysis and results integration. An optional step to edit the sample names is available. The user designs
the comparison matrix by selecting which conditions will be compared. A link to the results is generated and after a few minutes, the results are presented in the
Analysis Results web page.
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TABLE 1 | Raw count table example.

LiverC_1 LiverC_2 LiverT2_1 LiverT2_2 LiverT3_1 LiverT3_2

ENSONIT00000002512 6.816486 5.866294 11.949044 7.285873 14.838847 7.979772

ENSONIT00000002995 0.000000 0.000000 0.001585 0.009734 0.000334 0.752950

ENSONIT00000006143 33.849657 109.674115 127.148250 141.191874 181.345619 132.397050

ENSONIT00000026691 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ENSONIT00000008087 74.458461 359.525580 149.166187 161.170914 235.990094 237.782394

ENSONIT00000021608 59.602367 101.722543 255.731580 259.076778 364.441300 329.630108

ENSONIT00000008926 0.000000 8.473091 33.032248 28.360464 21.724295 14.028806

ENSONIT00000011237 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

ENSONIT00000021761 59.306830 135.526032 162.356881 113.464849 238.652733 233.360459

The sample names denote the condition naming and replicate number. liverC_N, RNA-Seq counts for liver tissue with no treatment. liverT2_N, RNA-Seq counts for
liver tissue with T2 hormone treatment. liverT3_N, RNA-Seq counts for liver tissue with T3 hormone treatment. N, replicate number. Raw count table should be in
simple text format.

IDEAMEX web server. A snipped of the input raw count table
is shown in Table 1.

Input and Data Quality Control
The next step is to select the differential analysis method(s),
the data quality analysis and the result integration by clicking
on each box. It is recommended to click on the “select
all” box to perform a full analysis. Afterward, the cut-off
values for statistical confidence (p-adj and False Discovery
Rate [FDR]), normalization (CPM) and transcript abundance
difference (logFC) can be selected. Also, the comparison matrix
can be defined to establish which samples or conditions
will be compared.

A link to the Analysis Results web page will be generated,
where the user results can find a link to the “(1) Data Analysis”
section. A series of plots are displayed, allowing the user to
have a preliminary analysis for quality control based on the
data distribution per sample. All conditions defined in the raw
count table are depicted as boxplots, CPM bar plots, density
plots, principal components analysis (PCA) plots and multi-
dimensional scaling (MDS) plots. Inspection and evaluation
of these plots are essential steps for the interpretation of the
differential expression analysis.

CPM Plot Evaluation
In gene expression analysis, only a fraction of genes is expected
to show differential expression between experimental conditions.
The Count per million (CPM) plot shows the number of genes
within each sample, having no counts (CPM = 0) or more than
1, 2, 5, or 10 CPM. This plot could help the user to decide
the threshold to remove very low expressed genes in any of the
experimental conditions. The default CPM cut-off value of 1 can
be changed according to the user judgment, but it has to be done
by re-running the analysis.

As observed in Figure 2, there is an increase of genes with
CPM > 10 in the T2 and T3 samples, compared to the C
condition. Also, the group of genes with CPM = 2 were decreased
in T2 and T3 compared to the C condition. Approximately,∼70%
of the genes presented no counts. This plot is the first glance
to the expression profile for the compared conditions. For this

particular case, CPM = 1 is a convenient cut-off value which was
the default option.

Boxplot Evaluation
Figure 3 presents the boxplots which provide an easy way to
visualize the count distribution in each sample. If the count values
distribution is highly skewed, then data transformation can be
applied to roughly normalize the distribution. Figure 3A presents
the log2 normalized data (pseudo-counts) and Figure 3B depicts
the normalized data using the Trimmed Mean of M-values
(TMM) method which is used for the differential expression
analysis in edgeR and NOIseq packages. As observed, TMM
normalization adjust the data according to the sequencing yield
of each sample. The boxplot is an easy way to visualize the
data distribution since it shows statistical measures such as
median, quartiles, minimum and maximum values. Whiskers are
also drawn extending beyond each end of the box with points
beyond the whiskers typically indicating count outliers. In the
log2 boxplot, the sequencing yield difference per sample is very
evident. In this case, the control samples have fewer reads than
the other samples. However, TMM normalization can fix this
problem and this is why several differential expression methods
have implemented this normalization procedure.

It is important to mention that the user will find a pair of
boxplots, PCA and MDS graphs, since the data is plotted using
pseudo-counts and TMM values.

Density Plot Evaluation
The normalized count distributions can also be summarized
by means of a density plot. Density plot provide more detail
by enabling the detection of a dissimilarity in replicate count
distribution. Ideally, the density plot for each replicate for a given
condition, should greatly overlap indicating lower variability
between replicates. Figure 4 shows a density plot for the
samples where replicates for the C condition, indicating certain
dissimilarity in replicates for that condition.

PCA Plot Evaluation
This type of plot is useful for visualizing the overall effect of
experimental covariates and batch effects. In the context of
RNA-Seq analysis, PCA shows groups of samples that ideally
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FIGURE 2 | CPM plot. A bar plot for each sample is generated where Counts Per Million for each gene are represented.

will correspond to each condition. Clustering first by the most
significant group, then by progressively less significant groups.
Figure 5 depicts how the 3 conditions (C, T2, and T3) form
separate clusters, although some dispersion between replicates
can be observed. This suggest that the variability among
individuals was high, but due to the cluster separation it shouldn’t
affect the analysis. When a replicate is grouped with other
samples from different conditions, is recommended to removed
it from the analysis if there are enough replicates left (at least
two). Also, this plot could indicate if there is a batch effect
problem, where samples in a same condition are very disperse in
the plot. In that case, the user can rerun the analysis indicating
which samples could belong to a different batch. However,
we recommend to confirm this with records from the preparation
of the samples in the wet lab.

MDS Plot Evaluation
Multi-dimensional scaling (MDS) is a technique that is used
to create a visual representation of the pattern of proximities
(similarities, dissimilarities, or distances) among a set of objects.
In the context of RNA-Seq analysis, MDS plot shows variation

among RNA-Seq samples, the more is the distance between
sample, the higher is their dissimilarity. Therefore, samples
belonging to the same condition or treatment should be closer
to each other and distant to other conditions. However, if
different conditions are grouped together, this could mean that
those treatments or conditions have a very similar effect. Worst-
case scenario, the user can suspect of a sample mislabeling.
Conceptually, MDS and PCA plots can provide the same
information and as observed in Figure 6, samples belonging to C,
T2, and T3 form separate clusters with a certain dispersion among
replicates. Similarly, to the PCA plot, this plot could indicate if
there is a batch effect problem, where samples in a same condition
are very disperse in the plot. Again, we recommend to confirm
the preparation of the samples, by checking records from the
preparation of the samples in the wet lab.

Differential Expression Analysis
The “(2) Differential Expression Results” section has links with
the name of each selected method, where the user can display the
analysis output. A detailed description of each method output
can be found in the User Manual at the IDEAMEX web page.
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FIGURE 3 | Boxplot with normalized counts. The frequency distribution and some statistics like mean, median and outliers are represented in these plots. (A) log2
normalized counts. (B) TMM normalized counts.
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FIGURE 4 | Density plots. The count distribution between replicates and conditions.

However, here we describe the generated graphs for a better
interpretation. Table 2 shows the output plots generated by
each method, contributing with different representations of the
genes that were differentially expressed. Some of these plots were
already used in the “(1) Data Analysis” section (PCA and MDS
plots). If the user indicated that samples for a given condition
belonged to different batches, the batch error effect correction for
several methods will be applied.

Expression, MA, MD and Smear Plots
These plots depict all expressed genes but those with
differential expression are represented in other color than

black. Basically, in all of them we can see the distribution
of the gene expression according to a certain value. For
example, in the expression plot (Supplementary Figure S1)
the average expression values for each gene of the compared
conditions are plotted and those highlighted in red are
genes with a significant difference compared to the rest.
In simple terms, the differentially expressed genes are those with
outlier mean values.

In the MA-plot (Supplementary Figure S2), the log2 fold
change (logFC) expression and the normalized mean counts
of each gene in the compared conditions are plotted. Features
declared as differentially expressed are highlighted in different
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FIGURE 5 | PCA plots. Groups of samples can be analyzed using Principal Component Analysis (PCA) plots where replicates of a certain conditions are clustered
together. Clusters from different conditions are separated. (A) log2 normalized counts. (B) TMM normalized counts.
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FIGURE 6 | MDS plots. Groups of samples can be analyzed using Multi-dimensional scaling (MDS) plots where the distance between samples and conditions reflect
their similarity. (A) log2 normalized counts. (B) TMM normalized counts.
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TABLE 2 | Plots generated by each differential expression package.

Plot/Method edgeR limma NOISeq DESeq2

Expression X X Yes X

MA X X X Yes

MD X Yes Yes X

Smear Yes X X X

Volcano Yes X X X

colors according to the logFC threshold defined by the user and
the expression directionality (UP or DOWN).

The mean-difference (MD) plot (Supplementary Figure S3)
shows the average expression (mean: x-axis in limma or D for
NOISeq) against logFC (difference: y-axis in limma or M for
NOISeq). Again, values declared as differentially expressed are
highlighted in red.

The smear plot allows to visualize the results of the analysis
in a similar manner to the MA-plot, this plot shows the logFC
against log-CPM, where genes declared as differentially expressed
highlighted in red.

In summary, all these plots compare the expression rate or
difference between conditions and the normalized values. The
proportion of black and highlighted dots gives an idea of the
expression change magnitude between the treatment and the
control or untreated conditions.

Volcano Plot
Arguably, the volcano plot (Figure 7) is the most popular
and probably, the most informative graph since it summarizes
both the expression rate (logFC) and the statistical significance
(p-value). It is a scatter-plot of the negative log10-transformed
p-values from the gene-specific test (on the y-axis) against
the logFC (on the x-axis). The graph depicts datapoints with
low p-values (highly significant) appearing toward the top of
the plot. The logFC values are used to determine the change
direction (up and down) appearing equidistant from the center.
Features declared as differentially expressed are highlighted in
red, according to the selected cut-off values.

Results Integration
Finally, the “(3) Results Integration” section of the Analysis
Results in the IDEAMEX web page contains several text files
and graphs that integrates the results from all selected methods.
In Figure 8, we present the results from the C vs. T2 comparison,
using a Venn diagram (Figure 8A), upset bar (Figure 8B) and
correlograms (Supplementary Figure S5) plots. For the analyzed
data, the Venn diagram showed all method intersections and it is
observed that 852 genes were validated as differentially expressed
by all four methods, being NOIseq the main contributor as also
observed in the upset bar plot. It is interesting that limma-
Voom reported that 43 genes that no other method found as
differentially expressed but agreed with the other methods in

FIGURE 7 | Volcano plot. Red dots represent differentially expressed genes according to the p-adj and logFC cut-off values.
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FIGURE 8 | Result Integration summary. (A) Venn diagram representing the result intersection for each selected method. (B) Upset plot representing the contribution
of each selected method.
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TABLE 3 | Example of intersect results table.

edgeR limma NOISeq DESeq2 Regulation

ENSONIT00000000023 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000075 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000081 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000102 1 1 1 1 UP_liverC_DOWN_liverT2

ENSONIT00000000120 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000129 1 1 1 1 DOWN_liverC_UP_liverT2

ENSONIT00000000206 1 1 1 1 DOWN_liverC_UP_liverT2

Snippet of the liver CvsT2 treatment. Original table is in simple text format. The Regulation column indicates the directionality of the gene expression.

920 genes (5+ 51+ 852+ 12). This gives the option to the user to
work with either only the intersection or the union of all methods.
However, working with all methods can be overwhelming for the
user although using an enrichment analysis using the GO term or
metabolic annotation from KEGG could help.

As mentioned, other generated plots are heatmaps
(Supplementary Figure S4) and correlogram (Supplementary
Figure S5) plots. Since each method has different normalization
methods, fold change or statistical metrics (p-adj, FDR or
Probability) to determine if a gene is differentially expressed,
the correlograms can help the user to evaluate the correlation
of these values among the different used methods. Also,
heatmaps are created to observe samples clustered by their fold
change, allowing the user to spot groups of genes with a similar
expression change.

Among all the text file results that are explained in
detail in the User Manual (Supplementary Material S2),
the IntersectTopRegulation.txt file provides the list of all
differentially expressed genes with a 0| 1 matrix that can be
used select genes depending on how many and which methods
reported them as differentially expressed. In the last column
of the file, a description of the gene regulation can be found,
where is indicated how and in which condition the genes
was expressed. Table 3 has a snipped of the liverCvsliverT2_
IntersectTopRegulation.txt file where the Regulation structure
results is as follows: UP_conditionX_DOWN_conditionY or
DOWN_conditionX_UP_conditionY. Therefore, the user can
select which genes were up or down regulated in a certain
condition and be sure of the directionality of the expression
without checking the fold change directionality.

DISCUSSION

The IDEAMEX web server is a useful resource for transcriptome
experiments designed for differential expression analysis
involving several condition comparisons. The methods for
differential expression analysis in the workflow, were selected
based on their performance in several benchmark analyses
since the emergence of RNA-Seq data as a powerful alternative
to microarrays (Anders et al., 2013; Soneson and Delorenzi,
2013; Seyednasrollah et al., 2015; Costa-Silva et al., 2017).
In particular, our web server uses R packages that use different
algorithms and normalization methods giving a broader view of

the results with a higher confidence based on their agreement,
based on the idea that no statistical modeling can fully capture
biological phenomena. In the case of limma and NOIseq, they
use non-parametric methods that are statistical techniques for
which we do not have to make any assumption of the gene
expression; whereas DESeq2 and edgeR use parametric methods
assuming a binomial distribution for the data and that no genes
are differentially expressed.

Once the user had loaded the input data in the right format,
our server allows the user to design which comparisons will
be made and which cut-off values will be used, instead of
running an all-vs.-all comparison and default parameters for
each package. For parametric methods like edgeR and DESeq2,
the FDR and p-adj values are the statistical parameters that
define the probability of a gene to be differentially expressed
in a multiple comparison and are used to define if a gene was
differentially expressed or not from the statistical point of view.
However, other parameters such as the CPM or logFC can have
a biological meaning and also can be used a cut-off value. Is not
straightforward how to select which cut-off values will be the best
for a certain experiment but IDEAMEX allow users to try many
combinations of them by running the comparisons several times
and inspecting the different results.

Is very important that the user select which comparisons have
a sense in terms of their experimental design. For example, in this
work we used three conditions where one was used as a control
to study the effect of two thyroid hormones treatments in tilapia
liver (T2 and T3). The comparison between T2 and T3 has to be
performed by comparing the results from comparing each one to
the control or untreated condition. A direct comparison between
T2 and T3 could miss several results since even if we can observe
a gene with a certain expression change, the difference could not
be statistically significant. Let’s say that “gene A” has a differential
expression of 10 times in T2 vs. C comparison and of 12 times
in the T3 vs. C comparison. Roughly, the difference between T2
vs. T3 comparison for the same gene, will be 2 times which might
not be statistically significant. For this reason, is very important to
select the which comparisons make sense, instead of performing
all possible comparison.

The results in the “Data Analysis” section, are several plots
that allow the user to inspect the distribution of their data
based on different metrics. This quality control check point is
very important, since biological data tend to be very noisy. It is
expected that the data from biological replicates within a certain
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condition, will have the same distribution and a similar trend
than those in other conditions. In particular, PCA and MDS plots
allow the users to see if biological replicates of a certain condition
are grouped together and if each condition forms a separate
group. In this particular case, it was known that the samples
didn’t present any batch effect but as observed in Figure 6, there
is some dispersion between samples. It is not trivial to determine
if samples present a dispersion attributable to a batch effect.
Therefore, it is important to obtain the information regarding
the sample preparation to discriminate between high “biological”
variability and “noise” from batch effect.

The distance or dispersion of the replicates and groups
indicates how reproducible was the tested condition in different
individuals or how variable were individuals despite the
treatment. The more replicates available, the better statistical
significance is observed. Having very disperse groups or
samples from different conditions grouping together, should be
considered as noisy or highly variable results that can skew
the analysis and lead to misinterpretation of the experiments.
However, NOIseq could be a good option when no biological
replicates are available and as reported elsewhere, it delivers
reliable results that have been confirmed by using quantitative
PCR (qPCR) reactions.

The results from different methods are not mutually exclusive.
From the statistical point of view, one of them, neither or
all may be true. Therefore, working with the intersection or
the union of all results is a decision that the user has to
evaluate after exploring them based not only on the statistical
significance but on the biological meaning that will depend on
the gene annotation. The main problem with all statistics is
the “fakeness” and misrepresentation of the results. However,
if four different methods agreed with a certain result it
could be assumed that those genes are differentially expressed,
bearing in mind that an experimental orthogonal validation
using a different technology like qPCR, should be necessary to
confirm the result.

In the “Results Integration” section, there are several text
lists and graphs that can guide the users to make sense out
of the results from their experiments. As mentioned, the Venn
diagram (Figure 8A) shows the intersection and union of the
selected different methods. The user can choose one or more
methods by evaluating the agreement between them since one
method could generate either an overwhelming amount of
results or very few of them. In the former case, the user can
choose to work with the intersection of all methods or in the
latter case, the union will provide the maximum amount of
reported results.

In this work, we provide heatmaps and correlograms for
different values obtained from each method. For example,
heatmaps (Supplementary Figure S4) are useful to spot gene
clusters with the same fold change pattern, suggesting that
those genes could belong to a certain pathway of are regulated
by the same mechanism. However, users have to be very
careful when determining gene clusters since there is no
straightforward method to do so. Defining the cluster size is
not trivial and usually is a trial and error process. In terms
of novelty, the most interesting plot could be the statistical

parameter correlogram (Supplementary Figure S5), where the
threshold values such as p-adj (limma-Voom and DESeq2),
FDR (edgeR) and Prob (NOISeq) values are correlated. To our
knowledge, this correlation has not been reported in other
studies. Surprisingly, methods usually correlate very well since
the statistical threshold denotes the error probability of each
result. In our experience, we have observed that NOISeq is the
method with lower correlation regarding the error probability
since this is calculated using a very different approach (Tarazona
et al., 2011) compared to the rest of the methods. However, is
somehow refreshing that all methods present a good correlation,
suggesting that are consistent identifying differentially expres-
sed genes and those with no significant change, despite using
different statistics.

Finally, there are several other methods to continue the
differential expression analysis, that can help users to put
their results in a certain biological context. Probably the most
popular methods are those based on Gene Ontology (GO) terms
enrichment (Maere et al., 2005; Eden et al., 2009; Reimand et al.,
2016) which will require of a well curated gene annotation. Other
enrichment methods like Gene Set Enrichment Analysis (GSEA)
determine whether a defined set of genes shows statistically
significant based on molecular signatures (Subramanian et al.,
2007; Liberzon et al., 2011) or metabolic pathway enrichment
analysis (Luo et al., 2009; Liu et al., 2017; Ulgen et al., 2018) can
provide a better picture of the biological meaning of the observed
changes in gene expression for a given treatment or condition.
These enrichment methods along with the heatmaps, can help the
researcher to spot regulation networks or pathways which could
be subject to further studies.

CONCLUSION

We consider that the IDEAMEX web server can help other
researchers with no previous bioinformatic knowledge, to
perform their analyses in a simple manner. Also, more
experienced users with some bioinformatics skills can use the
results and perform a more detailed analysis and a different
integration of them, since all the results are provided in simple
text files which are very convenient to parse and handle using
regular expression searches.
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RNA sequencing (RNA-seq) has become a widely used technology for analyzing

global gene-expression changes during certain biological processes. It is generally

acknowledged that RNA-seq data displays equidispersion and overdispersion

characteristics; therefore, most RNA-seq analysis methods were developed based on

a negative binomial model capable of capturing both equidispersed and overdispersed

data. In this study, we reported that in addition to equidispersion and overdispersion,

RNA-seq data also displays underdispersion characteristics that cannot be adequately

captured by general RNA-seq analysis methods. Based on a double Poisson model

capable of capturing all data characteristics, we developed a new RNA-seq analysis

method (DREAMSeq). Comparison of DREAMSeq with five other frequently used

RNA-seq analysis methods using simulated datasets showed that its performance was

comparable to or exceeded that of other methods in terms of type I error rate, statistical

power, receiver operating characteristics (ROC) curve, area under the ROC curve,

precision-recall curve, and the ability to detect the number of differentially expressed

genes, especially in situations involving underdispersion. These results were validated

by quantitative real-time polymerase chain reaction using a real Foxtail dataset. Our

findings demonstrated DREAMSeq as a reliable, robust, and powerful new method for

RNA-seq data mining. The DREAMSeq R package is available at http://tanglab.hebtu.

edu.cn/tanglab/Home/DREAMSeq.

Keywords: RNA-seq, DREAMSeq, equidispersion, overdispersion, underdispersion, double Poisson model,

negative binomial model

INTRODUCTION

With the development of next-generation sequencing technology, RNA sequencing (RNA-seq)
has become a routine and powerful method for evaluating global dynamic changes in gene
expression during certain biological processes. Compared with microarray technologies, RNA-seq
technologies have several advantages, including a wider measurable range of expression levels,
higher throughput, less noise, more information for detecting allele-specific expression, and a
higher capability to detect novel promoters and alternative gene-splicing isoforms (Marioni et al.,
2008; Mortazavi et al., 2008; Sultan et al., 2008; Wang et al., 2009, 2010b; Oshlack et al., 2010).
Therefore, developing powerful, reliable, and unbiased RNA-seq data-mining methods would
facilitate the use of RNA-seq to explore basic biological questions in this era of big data.
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Typically, RNA-seq experimental procedures can be divided
into six steps: (1) sequencing the RNA samples to obtain raw
reads, (2) filtering out low-quality reads, (3) mapping the
high-quality reads to a reference genome or transcriptome,
(4) summarizing the read counts for each gene, (5) detecting
differentially expressed genes (DEGs), and (6) performing
systems biology analysis [e.g., cluster analysis, principal
components analysis (PCA), gene ontology (GO) analysis,
and pathway enrichment analysis] (Oshlack et al., 2010). Of
these steps, identifying DEGs across treatments/conditions
is the key task and often the primary goal of RNA-seq data
analysis. There are numerous statistical methods focusing
directly on read-count data for DEG identification, with these
classified into two categories: (1) parametric methods that
rely on assumptions about discrete probability models and
include methods based on a Poisson model, such as DEGseq
(Wang et al., 2010a) and TSPM (Auer and Doerge, 2011),
methods based on a negative binomial (NB) model, such as
edgeR (Robinson et al., 2010), DESeq (Anders and Huber,
2010), baySeq (Hardcastle and Kelly, 2010), NBPSeq (Di et al.,
2011), EBSeq (Leng et al., 2013), ShrinkSeq (Van De Wiel et al.,
2013), and DESeq2 (Love et al., 2014), methods based on a
beta-binomial model, such as BBSeq (Zhou et al., 2011), methods
based on a multivariate Poisson log-normal (LN) model, such as
PLNseq (Zhang et al., 2015), and methods based on a generalized
Poisson (GP) model, such as GPseq (Srivastava and Chen,
2010) and deGPS (Chu et al., 2015); and (2) non-parametric
methods, such as NOISeq (Tarazona et al., 2011) and SAMseq
(Li and Tibshirani, 2013), that do not assume any particular
model.

Among count-based RNA-seq data-analysis methods, non-
parametric methods were developed based on large-sample
asymptotic theory and exhibit statistical power sufficient to
detect DEGs only when the number of replicates per treatment
condition is ≥5 (Tarazona et al., 2011; Seyednasrollah et al.,
2013; Soneson and Delorenzi, 2013). However, due to the high
cost of RNA-seq, the general sample size in a typical RNA-
seq experiment is <5 replicates, which limits the application of
non-parametric methods in RNA-seq data mining. Therefore,
the most popular RNA-seq data-analysis methods are parametric
methods based on Poisson and NB models. In early RNA-
seq studies where only technical replicates were used, the
traditional Poisson model was highly capable of fitting read-
count data characterized by equidispersion (i.e., the variance
is equal to the mean) (Marioni et al., 2008; Bullard et al.,
2010). However, when biological replicates are available, read-
count data often exhibits more variability than the Poisson
model expects, which limits the use of a Poisson model for
analyzing RNA-seq data (Anders and Huber, 2010). Fortunately,
the NB model, as a Gamma-Poisson mixture, can address the
overdispersion issue (i.e., when the variance is larger than the
mean), as well as capture equidispersion (Anders and Huber,
2010). Additionally, recent studies reported that some RNA-
seq data demonstrates characteristics of underdispersion (i.e.,
the variance is smaller than the mean), which might be caused
by RNA-seq coverage, as well as zero-inflation, cluster, or
low expression level of the count data, and could lead to

underestimation of DEGs (Famoye, 1993; Srivastava and Chen,
2010; Rau et al., 2011; Mi et al., 2015; Choo-Wosoba et al.,
2016; Low et al., 2017). However, neither a traditional Poisson
model nor the NB model works well at mining underdispersed
data.

The GP model is a generalization of the Poisson model
with an additional parameter. This method can process data
characterized by underdispersion and non-underdispersion
(equidispersion and overdispersion) (LuValle, 1990), but can
only capture certain levels of dispersion, because the model
is truncated under certain conditions regarding its bounded
dispersion parameter (Famoye, 1993). For example, the program
deGPS employs the GPmodel to fit read-count data characterized
by non-underdispersion (Chu et al., 2015), whereas GPseq
uses this model to consider potential positional bias during
DEG analysis and handle position-level counts instead of gene-
level counts, which is different from other methods (Srivastava
and Chen, 2010). Therefore, these methods derived from
different discrete models can potentially perform poorly at fitting
underdispersed count data due to the restrictions associated with
the inherent properties in the models.

In this study, we described a mixed Poisson model called
double Poisson (DP), which offers the advantage of flexibility
in fitting a wide range of data exhibiting underdispersion
and non-underdispersion using only two parameters (Efron,
1986). Based on this model, we developed a novel differential
relative expression-analysis method for RNA-seq data mining
(DREAMSeq). Because the results of differential gene-expression
analysis are dependent upon the discrete model used to fit the
RNA-seq data (Consortium, 2010), we also added NB-model
functionality to the DREAMSeq pipeline in order to optimize
the performance of our method. Therefore, depending on the
model used in the pipeline, our method can be divided into
three approaches: DREAMSeq.DP (based on the DP model),
DREAMSeq.NB (based on the NB model), and DREAMSeq.Mix
(based on the mixture of the DP and NB models, with the
lower p-value between two p-values generated based on the DP
and NB models chosen as the final p-value) in order to fit
variable RNA-seq data. In order to evaluate the performance
of DREAMSeq, we generated three simulated datasets using
three real RNA-seq datasets. Because the DEGs can only be
effectively identified when the sample size is ≥3 (Conesa et al.,
2016; Lin et al., 2016), to assess DREAMSeq using the most
common RNA-seq scenario, we focused on detecting DEGs
under small sample sizes (three replicates per condition) and
between two groups. Our results indicated that the performance
of DREAMSeq at effectively detecting DEGs was comparable to
other popular RNA-seq data-analysis methods, including edgeR,
DESeq, DESeq2, NBPSeq, and TSPM, in non-underdispersion
situations, but outperformed most of the other methods in
underdispersion situations. This conclusion was validated by
quantitative real-time polymerase chain reaction (qRT-PCR)
using a real Foxtail dataset generated in our laboratory. Our
findings demonstrated DREAMSeq as a reliable and robust DEG-
detection method that provides an additional option in the RNA-
seq data-analysis toolbox, especially for underdispersed-data
mining.
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MATERIALS AND METHODS

Models and Normalization
In this study, let Y represent the observed count and X the
corresponding underlying gene expression (unknown) in an
RNA-seq experiment. Let Yijk and Xijk denote the read count and
the true gene expression of gene i from sample j in treatment
group k, where i= 1, . . . , I (the number of genes), j= 1, . . . , J (the
number of replicates; here, J = 3), and k = 1, . . . , K (the number
of groups; here, K= 2), respectively.

NB Model
We assume that Y follows an NB model with two parameters: the
mean, µ, and the dispersion, φ. The probability mass function
(PMF) of the NB model is given as:

P
(

Y = y|µ,φ
)

=

Ŵ
(

y+ φ−1
)

y!Ŵ
(

φ−1
)

(

1

1+ µφ

)φ−1

(
µφ

1+ µφ
)
y

. (1)

The expected value is estimated as:

E (Y) = µ. (2)

We parameterize the variance of the NB model according to a
previous study (Robinson and Smyth, 2007):

Var (Y) = σ 2
= µ + µ2φ, (3)

where φ ≥ 0 and determines the extra variability as compared
with the Poisson model. When φ > 0, σ 2 > µ; and when
φ = 0, σ 2

= µ; the NB model collapses to the Poisson model,
which can be viewed as a special NB model with zero dispersion
(Robinson and Smyth, 2007). Therefore, the NBmodel allows for
both overdispersion and equidispersion.

DP Model
We assume that Y follows a DP model with two parameters: the
mean, µ, and the dispersion, θ. The approximate PMF of the DP
model is given as:

P
(

Y = y
∣

∣µ, θ
)

= fµ,θ
(

y
)

= (θ
1
2 e−θµ)(

e−yyy

y!
)(
eµ

y
)
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. (4)

The exact DP density is:

P
(

Y = y
∣

∣µ, θ
)

= f̃µ,θ (y) = c(µ, θ)fµ,θ
(

y
)

, (5)

where the factor c(µ,θ) can be calculated as:

1

c(µ, θ)
=

∑∞

y=0
fµ,θ

(

y
)

≈ 1+
1− θ

12µθ
(1+

1

µθ
) (6)

with c(µ, θ) being the normalizing constant nearly equal to 1. The
constant c(µ, θ) ensures that the density integrates to unity. The
expected value and the variance of the DP model in reference to

the exact density f̃µ,θ (y) are estimated as follows:

E(Y) ≈ µ (7)

and

Var (Y) = σ 2
=

µ

θ
, (8)

respectively, where θ > 0 under RNA-seq data circumstances. The
Poissonmodel is nested in the DPmodel for θ= 1, indicating that
the DP model can fit equidispersed read-count data when θ = 1.
Additionally, the DP model allows for both overdispersion (0 <

θ < 1) and underdispersion (θ > 1) (Efron, 1986).

Normalization
Here, we assume that the expectation of Yijk, µijk, is the product
of Xijk and sjk:

µijk = Xijksjk, (9)

where sjk is the size factor corresponding to sample j in
treatment group k, which can be estimated using various
existing normalization methods, such as total counts, upper
quartile (Bullard et al., 2010), median (Dillies et al., 2012),
quantile (Bolstad et al., 2003; Irizarry et al., 2003), trimmed
mean of M-values (TMM) (Robinson and Oshlack, 2010),
DESeq normalization (DESeq) (Anders and Huber, 2010),
reads per kilobase per million (RPKM) (Mortazavi et al.,
2008), to remove unwanted variation (Risso et al., 2014).
Normalization is a process that makes unit-less data comparable
among measurements by adjusting for sequencing depth and
potentially other technical effects of different samples. Dillies
et al. (2012) and Lin et al. (2016) found that TMM and DESeq
normalization methods performed much better than the other
methods described here. Therefore, the most widely used TMM
method was chosen as the default data-normalization method
in DREAMSeq and similar to previous studies (Robinson et al.,
2010; Kadota et al., 2012; Soneson and Delorenzi, 2013; Sun et al.,
2013).

Dispersion Estimations
Estimating the dispersion parameter is a crucial step in
DEG detection. Various dispersion-parameter estimation
methods, including pseudo-likelihood (Smyth, 2003), quasi-
likelihood (Nelder, 2000; Lund et al., 2012), conditional
maximum likelihood (CML) (Smyth and Verbyla, 1996),
quantile-adjusted CML (Robinson and Smyth, 2008), and
shrinkage-estimation methods (Anders and Huber, 2010;
Robinson et al., 2010), have been discussed previously. In
particular, many Bayesian-based shrinkage-estimation methods,
including baySeq, ShrinkSeq, DSS (Wu et al., 2013), and
DESeq2, have been developed and are capable of obtaining
accurate and robust estimates by sharing information across
all genes when the sample size is small (Ji and Liu, 2010).
Therefore, we also utilized an empirical Bayesian framework to
shrink the dispersion parameter. Our strategy to estimate the
dispersion parameter was divided into five steps described as
follows.

Initial Dispersion Estimators
We first applied the method-of-moments (MoMs) described by
Love et al. (2014) to estimate the initial value of dispersion for
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each gene. According to previous studies (Anders and Huber,
2010; Robinson et al., 2010), we first use the normalized sample
mean, Xik, to estimate the expectation for the ith gene in group k:

µik =
1

J
Xik

∑

j
sjk. (10)

We assume that the dispersions between two groups are the
same under small sample sizes. Therefore, we denote n= KJ and
substitute equation (10) with the following equation:

µi =
1

n
Xi

∑

n
sjk, (11)

where µi and Xi are the expectation and sample mean,
respectively, of the ith gene. We then estimate the variance of the
ith gene, σ 2

i , by pooling count data from different groups using
approaches previously described by Anders and Huber (2010)
and Wu et al. (2013). For the NB model, the initial dispersion
for the ith gene can be estimated by:

φinit
i =

σ 2
i − µi

µ2
i

. (12)

Note that φinit
i is often artificially assigned with an extremely

low positive value (e.g., 1 × 10−8 in DESeq) when σ 2
i <

µi, because the NB model cannot fit underdispersed read-
count data. A similar conservative strategy was also utilized
for underdispersion in a previous study (Schissler et al., 2015).
Under this scenario, the initial dispersion can be overestimated,
which results in a conservative DEG test (Robinson and
Smyth, 2008). By contrast, instead of the NB model, the DP
model is capable of handling this kind of data. For the DP
model, the initial dispersion for the ith gene can be estimated
by:

θ initi =

µi

σ 2
i

. (13)

Gene-Wise Dispersion Estimators
In RNA-seq experiments, there are typically tens of thousands
of genes, but only a few replicates per treatment group,
which describes the “large p and small n” phenomenon. It
is quite difficult to estimate a reliable gene-specific dispersion
with the MoMs described in such a scenario. To address
this problem, we used maximum likelihood estimate (MLE)
methods based on the initial dispersion estimator, φinit

i (or

θ initi ), to estimate a gene-wise dispersion, φ
genewise
i (or θ

genewise
i ),

for gene, i. The MLE of the dispersion parameters in the
NB and DP models can be obtained by maximizing the log-
likelihood summed over all reads between conditions for the ith

gene:

φ
genewise
i = argmaxφ

(

∑

n
log

(

fNB(Yijk,µik,φ)
)

)

(14)

and

θ
genewise
i = argmaxθ

(

∑

n
log

(

fDP(Yijk,µik, θ)
)

)

, (15)

respectively, where φ = φinit
i , θ = θ initi , and fNB(·) and fDP(·) are

the PMF of the NB and DP models, respectively.

Common Dispersion Estimators
It is essential for reliable dispersion estimation that information is
shared between genes, especially when few replicates are available
(Robinson and Smyth, 2008). The simplest method of sharing
information is to assume that the dispersion parameters are
common for all genes and then to use the entire dataset to directly
calculate a precise common dispersion. However, it is generally
not true that each gene has the same dispersion in practice
(Robinson and Smyth, 2007). Consequently, we should seek
a more general common dispersion-estimation approach that
compromises between entirely individual gene-wise dispersions
and an entirely shared common dispersion. Here, we assumed
that the dispersions are common across all genes having similar
expression strengths, suggesting that if the means for some genes
are similar, the dispersions (or variances) for these genes are
also similar. We adopted a similar locally weighted regression as
that for voom (Law et al., 2014) in order to obtain the common
dispersion estimators (φcommon

i for the NB model or θ common
i

for the DP model) for the ith gene by regressing the gene-wise

dispersion estimators, φ
genewise
i (or θ

genewise
i ), onto the means,

µi, of the normalized read counts. This is similar to the data-
driven parameter estimation used by DESeq through the smooth
function by modeling the observed mean-variance (or mean-
dispersion) relationship for the genes in the read-count data
(Anders and Huber, 2010).

Shrinkage-Dispersion Estimators
Shrinkage estimation can effectively improve statistical tests for
differential gene expression in the case of a small number of
samples (Cui et al., 2005). As mentioned previously, in order to
obtain a more accurate and robust estimate, an empirical Bayes
(EB) approach has been used to shrink gene-wise dispersions
toward common dispersions, which could effectively allow the
borrowing of information between genes (Robinson and Smyth,
2007; Robinson et al., 2010). The DSS and DESeq2 methods use
an EB approach incorporating shrinkage with an NB model to
squeeze the gene-wise dispersion estimates toward an LN prior,
where the strength of shrinkage is dependent upon how reliably
the individual gene-wise dispersions can be estimated (Wu et al.,
2013; Love et al., 2014). Here, we assumed that the gene-wise
dispersions, α, followed an LN prior with two parameters: the
mean, m0, and the standard deviation (SD), τ . The PMF of the
LN model is given as:

P (α|m0, τ) =
1

α
√

2πτ 2
e
−

(log(α)−m0)
2

2τ2 , (16)

where α represents φ
genewise
i and θ

genewise
i for the NB and DP

models, respectively. The two parameters of the LN model are
estimated as follows:

m0 = median(log(β)) (17)
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and

τ = mad(log (α) − log(β)), (18)

respectively, where mad represents the median absolute
deviation, and β represents φcommon

i and θ common
i for the NB and

DP models, respectively.
We adopted the same strategy as the DSS and DESeq2

methods to estimate the shrinkage dispersions for the ith gene in
the NB and DP models:

φ
shrinkage
i = argmaxφ

(

∑

n
log

(

fNB(Yijk,µik,φ)
)

+ fLN(φ,m0, τ )
)

(19)
and

θ
shrinkage
i = argmaxθ

(

∑

n
log

(

fDP(Yijk,µik, θ)
)

+ fLN(θ ,m0, τ )
)

(20)

respectively, where φ = φ
genewise
i , θ = θ

genewise
i , and fNB(·),

fDP(·), and fLN(·) are the PMF of the NB, DP, and LN models,
respectively.

Final Dispersion Estimators
Bias in dispersion estimation has serious effects on the expected
false-positive rates (FPRs) in small-sample situations (Robinson
and Smyth, 2008). To avoid bias, DESeq by default chooses
the maximum value from the two dispersion estimators: the
individual dispersion and the fitted dispersion as a final
dispersion for the gene (Anders and Huber, 2010). However,
DESeq is often overly conservative due to overestimation of
the dispersion and results in conservation tests (Robinson and
Smyth, 2008; Soneson and Delorenzi, 2013). For this reason,
we proposed a compromise approach called “window scan” to
obtain the final dispersion estimators in five steps: (1) rank the
genes from smallest to largest according to the means of samples
across all conditions; (2) open a default 1-count window, where
the mean is smallest; (3) based on the relationship between
the shrinkage-dispersion estimator and the common-dispersion
estimator, all genes in this window are divided into I-type genes
(its shrinkage-dispersion estimator ≥ its common dispersion
estimator) and II-type gene (its shrinkage dispersion estimator
< its common dispersion estimator); (4) estimate the final
dispersion of each I-type gene (or II-type gene) by choosing the
larger value between its shrinkage-dispersion estimator and the
median of the shrinkage-dispersion estimators of all I-type genes
(or II-type genes) for theNBmodel (or choosing the smaller value
for the DP model); and (5) shift the window to the larger mean
and repeat steps (3,4) until all of the genes are scanned.

Test Statistic and Method Evaluation
Test Statistic
For DEGs detected between two treatment groups, we tested the
hypotheses of the form H0: µi,1 = µi,2 for the gene i, where µi,1

and µi,2 are the expectations for the ith gene in groups 1 and
2, respectively. The Wald test has been widely applied in many
previous studies because of its simplicity and flexibility (Ng and

Tang, 2005; Chen et al., 2011; Yu et al., 2017). Similar to DSS and
DESeq2, we constructed the Wald test statistic as:

W =

∣

∣µi,1 − µi,2

∣

∣

√

σ 2
i,1 + σ 2

i,2

, (21)

where σ 2
i,1 and σ 2

i,2 are the variances for the ith gene in groups
1 and 2, respectively, and can be estimated using the final
dispersion according to equation (3) in the NB model and
equation (8) in the DP model.

Method Evaluation
All methods analyzed will return nominal p-values. In order to
obtain a more reliable list of DEGs, the p-values were adjusted
by the Benjamini-Hochberg (BH) procedure (Benjamini and
Hochberg, 1995). We evaluated the type I error rates (i.e., FPRs)
and statistical powers (i.e., true-positive rates; TPRs) of different
methods with a significance level of 0.05. Additionally, we used
a receiver operating characteristic (ROC) curve, the area under
the ROC curve (AUC), and a precision-recall curve (PRC) to
compare the performances of eight methods in the simulated
datasets. It is common for biologists to be interested in detecting
genes with fold changes (FCs) estimated according to the ratios
of the mean normalized counts between two treatment groups.
Therefore, some methods use FC as an indicator of DE, such as
DEGseq and AMAP.Seq (Si and Liu, 2013). Here, we defined the
genes satisfying either FC < 0.67 or FC > 1.5, and an adjusted
p < 0.05 as DEGs according to previous studies (Peart et al.,
2005; Si and Liu, 2013). This quantitative filter combines the
significance level with the FC threshold and might be considered
more practical by biologists. Therefore, we also identified DEGs
using this filter.

The performances of different methods were further validated
by qRT-PCR analysis.

Datasets
Real Datasets
We chose three real datasets to represent different characteristics
of RNA-seq data. The Pickrell dataset and the Hammer
dataset were downloaded from the ReCount database (http://
bowtie-bio.sourceforge.net/recount) (Frazee et al., 2011). The
Pickrell dataset was obtained from lymphoblastoid cell lines
derived from 69 unrelated Nigerian individuals as part of the
International HapMap project (Pickrell et al., 2010) and contains
69 biological replicates. The Hammer dataset contains four
biological replicates in each of two treatment groups: rat L4
dorsal-root-ganglion-treated groups in the presence or absence
of induced chronic neuropathic pain (Hammer et al., 2010). The
third real dataset was the Arab dataset provided as “arab” in the
NBPSeq R package and that includes three biological replicates,
where Arabidopsis leaves were inoculated with either a defense-
eliciting 1hrcC mutant of Pseudomonas syringae pv. tomato
DC3000 or 10mMMgCl2 as a mock-treatment control (Di et al.,
2011).
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Simulated Datasets
Simulation studies represent necessary processes for investigating
the properties associated with certain statistical methods, given
that the “true” DEGs are known in simulated data. An ideal
simulation would generate data with similar characteristics to
those produced in real RNA-seq experiments. Therefore, similar
to Landau and Liu (2013), we generated three independent
simulated datasets using a DPmodel based on three real datasets,
respectively. The simulation processes were repeated 30 times
to ensure reasonable precision in parameter estimation. Each
simulated dataset contains 10,000 genes, including 2,000 DEGs
and 8,000 non-DEGs, two treatment groups, and three replicates
for each treatment group.

Foxtail Dataset
Foxtail millet (Setaria italica) is an important cereal crop in
northern China, and the whole-genome sequence of Foxtail
millet (Yugu-1 cultivar) was published in 2012 (Bennetzen et al.,
2012; Zhang et al., 2012). In this study, we used a Foxtail RNA-
seq dataset obtained by our own laboratory to compare the
performance of DREAMSeq with other methods. This Foxtail
dataset includes three biological replicates, in which roots from 1-
week-old Foxtail millet seedlings (Yugu-1 cultivar) were treated
with or without 1µM epi-Brassinolide (eBL) for 2 h, followed by
total RNA extraction using Trizol reagent (Invitrogen, Carlsbad,
CA, Unites States). Extracted total RNA (2 µg per sample)
was sequenced on an Illumina HiSeq X-ten platform, and the
remaining RNA was used for qRT-PCR validation. The paired-
end reads were aligned to the Foxtail millet reference genome
(JGIv2.0.34) (Bennetzen et al., 2012; Goodstein et al., 2012) using
TopHat (version 2.0.12) (Trapnell et al., 2009; Kim et al., 2013),
and gene read counts were obtained using the program htseq-
count from the python package HTSeq (version 0.61) (Anders
et al., 2015).

qRT-PCR
First-strand cDNA was synthesized from 1 µg total RNA
using Reverse Transcriptase M-MLV (Takara Bio, Otsu,
Japan) according to manufacturer instructions. qRT-PCR was
performed according to the standard protocol using a Bio-Rad
CFX Connect real-time PCR system (Bio-Rad Laboratories,
Hercules, CA, Untied States). Primers used are listed in Table S1.
The expression of target genes was normalized to Foxtail Actin,
and the relative expression between treatment and control
groups was averaged from three independent experiments, with
the p-value calculated using a one-sample t-test. We defined
genes satisfying relative expression >1.5 or <0.67 and p < 0.05
as “true” DEGs.

RESULTS

The Mean–Variance Relationship in Real
Datasets
When analyzing the Hammer, Arab, and Foxtail datasets,
we found strong relationships between the variances and the
means on the log-log scale for the read counts from different
real datasets (Figure S1). For convenience of notation and

calculation, we used the unit line to represent a Poisson
assumption-exhibited equidispersion. The data points on and
above that line exhibit non-underdispersion, whereas the data
points below that line exhibit underdispersion. Figure S1

shows that 2,606 of 18,635 genes (14.0%) in the Hammer
dataset, 2,015 of 26,222 genes (7.7%) in the Arab dataset,
and 4,412 of 35,158 genes (12.5%) in the Foxtail dataset
were estimated as underdispersed genes. Therefore, there are
a considerable proportion of underdispersed genes in the
RNA-seq data. Furthermore, we noted that the underdispersed
data points mostly distributed at low read-count regions
(Figure S1). These results suggested that in addition to non-
underdispersion, underdispersion also exists in RNA-seq data
and should be properly handled during the RNA-seq data-mining
process.

Most RNA-seq analysis methods were developed based on
an NB model, which is able to capture both equidispersed and
overdispersed data but not underdispersed data. In comparison, a
DP model can capture all RNA-seq data (Efron, 1986). Using real

Hammer, Arab, and Foxtail datasets, we found that both DP and
NB models were able to fit read-count data very well (Figure S2).

This suggested that the DP model can be used to mine RNA-seq
data.

Generation of Simulated Datasets
Wu et al. (2013) reported that using real data-driven simulations
provided a better estimate for gene-wise dispersions and
improved DEG detection, because the true DE status of
each gene is known by controlling the settings (Wu et al.,
2013). Therefore, we generated three simulated datasets with
mean and dispersion parameters estimated from three real
datasets based on a commonly used DP model and denoted
these as simPickrell, simHammer, and simArab, respectively.
The average number of underdispersed genes in simPickrell,
simHammer, and simArab was 1299 (13%), 1935 (19%),
and 1432 (14%), respectively. As shown in Figure S3, all
simulated datasets were very similar to the corresponding
real datasets in terms of distributions of the means and
dispersions and relationships between means and dispersions.
This indicated that our simulated data closely mimicked the real
data.

Type I Error Rate
Using the three simulated datasets, we first evaluated the type
I error rates (i.e., FPRs) of the three DREAMSeq methods
(DREAMSeq.DP, DREAMSeq.NB, and DREAMSeq.Mix) and
five other widely used RNA-seq data-analysis methods (edgeR,
DESeq, DESeq2, NBPSeq, and TSPM) under the null hypothesis.
We found that except for TSPM, all other methods were able to
control type I error rates well in both non-underdispersion and
underdispersion situations (Figure 1). In comparison, DESeq
was very conservative in term of type I error rate, whereas the
abilities of FPR control by both DREAMSeq.NB and NBPSeq
clearly varied between non-underdispersion and underdispersion
situations. In contrast, the median FPRs of DREAMSeq.DP,
DREAMSeq.Mix, edgeR, and DESeq2 were relatively stable and
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FIGURE 1 | Comparison of type I error rates between different methods. Boxplots show the type I error rates (i.e., FPRs) of different methods, which were calculated

over 30 simulations for the simPickrell, simHammer, and simArab datasets under the null hypothesis. The horizontal dotted lines indicate the nominal type I error rate

of 0.05 in non-underdispersion and underdispersion scenarios. nud, non-underdispersion; ud, underdispersion.

consistently lower than or very close to the nominal type I error
rate of 0.05 under all situations.

Statistical Power, ROC, AUC, PRC, and
Number of DEGs
We then evaluated the statistical powers (i.e., TPRs) of
different methods using the simulated datasets under the
alternative hypothesis (Figure 2). The results showed that in
underdispersion situations, the TPR of DREAMSeq.Mix was
slightly higher than that of DREAMSeq.DP, although that
of both methods was higher than those of DREAMSeq.NB,
edgeR, DESeq, DESeq2, and NBPSeq (Figure 2). In non-
underdispersion situations, the TPRs of DREAMSeq.Mix and
DREAMSeq.DP were comparable with the other methods.
Interestingly, TSPM consistently showed higher TPRs. Given that
TSPM also showed higher FPRs in similar situations, it is likely
that the TSPM method increased statistical power at the cost of
poor FPR control.

The ROC curve was constructed using the TPR to FPR
ratio for each method used for DE analysis. Theoretically, the
method with the stronger statistical power at identifying DEGs
should exhibit a ROC curve with a higher TPR relative to
other methods at the same FPR level. Figure S4 shows that
NBPSeq and TSPM had lower TPRs when the FPR threshold
was ∼0.05 in each scenario, whereas the ROC curves of the
other methods were very similar. Additionally, we found that

ROC curves associated with the simHammer dataset were steeper
than those for the simPickrell and simArab datasets, suggesting
that the performance of DEG identification by different methods
was strongly dependent upon innate data characteristics, such as
heterogeneity.

AUC is a relative measure of the quality of a DEG test, where a
higher AUC indicates relatively better performance. To quantify
the performances of different methods in detecting DEGs, AUCs
of different methods were calculated. The result showed that the
AUCs of DREAMSeq.DP and DREAMSeq.Mix were higher than
those of DREAMSeq.NB, edgeR, DESeq, DESeq2, and NBPSeq
in most of the situations, except slightly lower than DESeq2
when analyzing simHammer and simArab underdispersed data
(Figure 3). Together with the above FPR, TPR, and ROC results,
these findings clearly demonstrated that both DREAMSeq.DP
and DREAMSeq.Mix were able to control type I error rates
well while maintaining a relatively higher statistical power in
detecting DEGs.

PRC curve shows the precision for corresponding recall
(TPR). Similar to the ROC curve, the PRC curve is also an
important performance indicator used to evaluate different
methods at identifying DEGs. Figure S5 shows that all methods,
except TSPM, had higher precision over the entire range of recall
rates, regardless of dataset or dispersion. Additionally, we found
that all methods exhibited their best predictive performance
using the simHammer dataset, but did not predict very accurately
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FIGURE 2 | Statistical power comparison between different methods. Boxplots show the statistical powers (i.e., TPRs) of different methods and calculated over 30

simulations for the simPickrell, simHammer, and simArab datasets under the alternative hypothesis in non-underdispersion and underdispersion scenarios. nud,

non-underdispersion; ud, underdispersion.

using the simPickrell dataset in an underdispersion situation,
which might also be related to the dataset itself.

We also compared the identified DEG numbers of different
methods, with the results showing that both DREAMSeq.DP and
DREAMSeq.Mix generally detected a larger number of DEGs
(except in the case of simHammer non-underdispersed data)
than the other methods (except for TSPM, which displayed
poor FDR control) when analyzing non-underdispersed or
underdispersed data from three simulated datasets, respectively,
(Figure 4).

Analysis of the Foxtail Dataset
Our comprehensive evaluations showed that edgeR, DESeq,
DESeq2, and DREAMSeq.Mix generally performed better as
analyzing different simulated RNA-seq datasets; therefore, these
methods were chosen to test their abilities to detect DEGs,
especially underdispersed DEGs, using a real Foxtail dataset. A
total of 128 non-underdispersed and 17 underdispersed DEGs
were identified by at least one of the four methods (Figure 5
and Tables S2–S5). Overall, the number of DEGs identified
by DREAMSeq.Mix was much higher than that by DESeq but
lower than that by edgeR and DESeq2 (Figure 5A). However,
DREAMSeq.Mix identified 15 underdispersed DEGs, whereas
edgeR identified 12, and DESeq2 identified 9 underdispersed
DEGs. We defined DEGs detected only by one method as unique
DEGs. Notably, DREAMSeq.Mix detected the highest number

of unique DEGs in underdispersion scenarios, whereas DESeq
did not identify any unique DEGs in either non-underdispersion
or underdispersion scenarios (Figures 5B,C). Consistent with
previous reports (Seyednasrollah et al., 2013; Tang et al., 2015),
all of the DEGs found by DESeq were also found by edgeR
(Figures 5B,C), possibly because these twomethods use the same
statistical model (i.e., the NB model) and hypothesis testing
procedure (i.e., the Robinson and Smyth exact test) (Robinson
and Smyth, 2008; Anders and Huber, 2010; Robinson et al.,
2010). The presence of various unique DEGs also suggested the
advantage of using more than one method to analyze the same
RNA-seq data in order to allow maximum discovery of DEGs.

We then used qRT-PCR to validate whether the DEGs
identified from the Foxtail dataset were “true” DEGs. Because
DEGs identified by DESeq were also identified by edgeR,
the unique DEGs identified by either edgeR, DESeq2,
or DREAMSeq.Mix and the common DEGs identified
simultaneously by any two methods were chosen for qRT-
PCR analysis (Figure 6). The results showed that most of the
DEGs chosen for validation exhibited similar upregulation
or downregulation patterns as those shown from RNA-seq
data analysis. For non-underdispersed DEGs, qRT-PCR results
verified that 9 of 19 DEGs (47.4%) identified by DREAMSeq.Mix,
19 of 42 DEGs (45.2%) identified by edgeR, and 23 of 51 DEGs
(45.1%) identified by DESeq2 were significantly upregulated or
downregulated by eBL treatment by at least 1.5-fold. Notably,
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FIGURE 3 | Comparison of AUCs between different methods. Boxplots show the AUCs of different methods and calculated over 30 simulations for the simPickrell,

simHammer, and simArab datasets in non-underdispersion and underdispersion scenarios. nud, non-underdispersion; ud, underdispersion.

for underdispersed DEGs, 5 of 8 (62.5%) DEGs identified by
DREAMSeq.Mix were validated as “true” DEGs. By contrast,
only 2 of 5 (40.0%) DEGs identified by edgeR and no DEGs
identified by DESeq2 were validated as “true” DEGs. These qRT-
PCR results demonstrated that for non-underdispersed data, the
number of DEGs identified by DREAMSeq.Mix was lower than
those by edgeR and DESeq2, but the accuracy was slightly higher;
however, for underdispersed data, DREAMSeq.Mix exhibited
both a higher number of identified DEGs and better accuracy
than the other two methods, demonstrating DREAMSeq.Mix
as a powerful RNA-seq data-analysis method, especially for
situations involving underdispersed data.

DISCUSSION

RNA-seq is an increasingly popular method used to analyze
global changes in gene expression during certain biological
processes. Identifying DEGs is a key step in mining RNA-seq
data and important for downstream biological analyses, such
as cluster analysis, PCA analysis, GO analysis, and Kyoto
Encyclopedia of Genes and Genomes enrichment analysis.
When analyzing RNdA-seq data, most current methods focus
on non-underdispersed data, with less attention given to
underdispersed data. In this study, we observed that RNA-seq
data also includes underdispersion characteristics. Additionally,
Low et al. (2017) found that as the RNA-seq coverage increases,
underdispersion becomes increasingly obvious. With the

development of sequencing technology, the read length and
RNA-seq coverage have increased significantly. Therefore,
to take full advantage of RNA-seq data, it is important to
explore both non-underdispersed and underdispersed data.
However, most widely used DE-analysis methods, such
as DESeq and edgeR, are based on the NB model. Due
to the limitations of this model, underdispersed data are
often overestimated, leading to conservative results in the
determination of DEGs. In comparison, the DP model is
capable of capturing not only non-underdispersion but also
underdispersion. Considering the potential advantages of
these two models, we developed a novel RNA-seq data-mining
method (DREAMSeq.Mix) that combines the DP and NB
models.

Using simulated datasets generated from three real RNA-seq
experiments, we compared the performance of DREAMSeq.Mix
at detecting DEGs with five other commonly used RNA-seq data-
analysis methods. To provide a more comprehensive conclusion,
we also added DREAMSeq.DP and DREAMSeq.NB methods,
which were developed using only a DP model or an NB
model, respectively, into the comparison. We found that DESeq,
NBPSeq, and DREAMSeq.NB were often conservative, whereas
TSPM, edgeR, and DESeq2 were more liberal in detecting DEGs.
The poor performance of TSPM in our study might be due to the
limited number of replicates in the RNA-seq datasets used (Auer
and Doerge, 2011; Kvam et al., 2012; Soneson and Delorenzi,
2013). In comparison, DREAMSeq.DP and DREAMSeq.Mix
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FIGURE 4 | Comparison of the number of DEGs identified by different methods. Boxplots show the number of DEGs identified by different methods and calculated

over 30 simulations for the simPickrell, simHammer, and simArab datasets in non-underdispersion and underdispersion scenarios. nud, non-underdispersion; ud,

underdispersion.

FIGURE 5 | eBL-regulated Foxtail millet-root DEGs identified by different methods. (A) Bar plot showing the number of eBL-regulated DEGs identified by

DREAMSeq.Mix, edgeR, DESeq, and DESeq2. (B,C) Venn diagrams showing the overlap among the collections of eBL-regulated DEGs identified by DREAMSeq.Mix,

edgeR, DESeq, and DESeq2 in non-underdispersion (B) and underdispersion (C) scenarios. nud, non-underdispersion; ud, underdispersion.

often outperformed the other methods in terms of TPR, AUC,
and the number of DEGs detected (Figures 2–4). The following
reasons suggest that DREAMSeq.Mix provided unique and
important outcomes more advantageous than current RNA-seq
data-mining methods.

First, DREAMSeq incorporates a more flexible DP model to
fit highly complex and variable RNA-seq data. The dispersion
parameter of the DP model is not subject to the same restrictions
as the NB model when it is estimated in underdispersion
situations. As a result, logarithmic dispersion estimated using
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FIGURE 6 | qRT-PCR validation of the expression of eBL-regulated Foxtail DEGs detected by different methods. Bar plots show the relative expression of DEGs

detected only by DREAMSeq.Mix (A), edgeR (B), and DESeq2 (C) or identified by DREAMSeq.Mix and edgeR (D), DREAMSeq.Mix and DESeq2 (E), or edgeR and

DESeq2 (F), respectively, in eBL-treated Foxtail millet roots. The relative expression levels were normalized to the Foxtail millet Actin gene. Data represent the mean ±

SE of three independent experiments. P-values were calculated using a one-sample t-test. *P < 0.05; **P < 0.01. The horizontal dotted lines indicate relative

expression of 1.5 or 0.67. nud, non-underdispersion; ud, underdispersion.

the DP model (Figure S3) showed a better normality than
that acquired using the NB model (Figure 1 in Landau and
Liu, 2013). This demonstrated that the DP model was able
to accurately fit a widely range of read-count data without
artificial intervention in RNA-seq data analysis. Therefore,

DREAMSeq.DP and DREAMSeq.Mix often outperformed the
other methods, especially in underdispersion situations, in
simulation studies. Moreover, in terms of identifying the “true”
underdispersed DEGs, DREAMSeq.Mix outperformed edgeR,
DESeq, and DESeq2 according to qRT-PCR validation.
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Second, DREAMSeq incorporates strategies, such as MoMs,
MLE, and EB, which are used in the edgeR, DESeq, DSS,
and DESeq2 methods, to obtain reliable dispersion estimation.
Importantly, to avoid bias, DREAMSeq used a “window scan”
approach to estimate dispersion and enhance DREAMSeq’s
robustness in analyzing a wider range of RNA-seq data. This
enabled all DREAMSeq approaches maintain a higher AUC
across different simulated datasets in either non-underdispersion
or underdispersion scenarios.

Third, in multiple scenarios, DREAMSeq.Mix performed
slightly better than DREAMSeq.DP, although the difference
was small. This indicated that the efficiency and robustness of
DREAMSeq.Mix was improved by taking full potential of the
advantages of the DP and NB models to fit RNA-seq data.

Recently, single-cell RNA-seq (scRNA-seq) has rapidly
become a powerful tool for analyzing gene-expression
heterogeneity at the individual cell level and been widely
applied to diverse fields of biological research, including stem cell
differentiation, embryogenesis, and whole-tissue analysis (Saliba
et al., 2014). However, scRNA-seq data displays typical features
of bimodality (the NB model cannot capture bimodality) (Vu
et al., 2016), making such data less efficient for mining using
common RNA-seq data-analysis methods. Additionally, Choo-
Wosoba et al. (2016) reported that genomic next-generation
sequencing data also involves underdispersion. The increased
accuracy and robustness displayed in finding “true” DEGs
with higher confidence and its better performance at exploring
underdispersed data make DREAMSeq a potentially valuable
tool for mining sequencing data generated from many other
high-throughput platforms, such as scRNA-seq and genomic
sequencing.

During our analysis, we found that none of the eight tested
methods consistently outperformed other methods under all
situations, because different methods are capable of identifying
specific groups of DEGs. Although some DEGs can be identified
by all methods, the existence of unique DEGs suggested
that different methods exhibited specific preferences during
DEG detection. Additionally, our study showed that the same
method sometimes displayed a wide range of performance
variability when analyzing different datasets. It is likely that
the intrinsic characteristics of the RNA-seq data determine the
appropriateness of one method for data analysis over others.
Therefore, to ensure maximum coverage of DEG identification,
it is advantageous to use more than one method to analyze
the same RNA-seq data. Based on our comparison studies,
we recommend that using a combination of edgeR, DESeq2,
and DREAMSeq.Mix for RNA-seq data analysis to potentially
ensure the maximum retrieval of true DEGs in both non-
underdispersion and underdispersion situations.

CONCLUSIONS

Previous studies reported both equidispersion and
overdispersion as important characteristics of RNA-seq

data. In this study, we showed that underdispersion also exists
in RNA-seq data. The NB model widely used in RNA-seq
data-mining methods can only capture non-underdispersion
but not underdispersion. Here, we presented a DP model
capable of capturing not only non-underdispersion but also
underdispersion. Given the potential advantages of the two
models, we developed a novel RNA-seq data-mining method
(DREAMSeq) that combines both the DP and NB models to
ensure its flexibility and robustness for RNA-seq data mining.
Additionally, we used a “window scan” approach to estimate
dispersion and enhance the reliability of DREAMSeq across
a wider range of RNA-seq data. Using simulated datasets
generated from three real RNA-seq datasets and an in-house-
generated Foxtail dataset, we demonstrated the ability of
DREAMSeq to reach a better balance between conservative
and liberal tests as compared with other methods. Our findings
demonstrated DREAMSeq as a reliable and robust RNA-seq
data-analysis method that provides important improvements in
the DE analysis of RNA-seq data, especially in underdispersion
situations.
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Circular RNAs (circRNAs), which play vital roles in many regulatory pathways, are 
widespread in many species. Although many circRNAs have been discovered in plants 
and animals, the functions of these RNAs have not been fully investigated. In addition 
to the function of circRNAs as microRNA (miRNA) decoys, the translation potential of 
circRNAs is important for the study of their functions; yet, few tools are available to 
identify their translation potential. With the development of high-throughput sequencing 
technology and the emergence of ribosome profiling technology, it is possible to identify 
the coding ability of circRNAs with high sensitivity. To evaluate the coding ability of 
circRNAs, we first developed the CircCode tool and then used CircCode to investigate 
the translation potential of circRNAs from humans and Arabidopsis thaliana. Based on 
the ribosome profile databases downloaded from NCBI, we found 3,610 and 1,569 
translated circRNAs in humans and A. thaliana, respectively. Finally, we tested the 
performance of CircCode and found a low false discovery rate and high sensitivity for 
identifying circRNA coding ability. CircCode, a Python 3–based framework for identifying 
the coding ability of circRNAs, is also a simple and powerful command line-based tool. 
To investigate the translation potential of circRNAs, the user can simply fill in the given 
configuration file and run the Python 3 scripts. The tool is freely available at https://
github.com/PSSUN/CircCode.

Keywords: bioinformatics, circular RNAs, ribosome profiling data, translation, coding potential, classification

INTRODUCTION

Circular RNAs (circRNAs) are a special type of noncoding RNA molecule that has become a hot 
research topic in the field of RNA and is receiving a great deal of attention (Chen and Yang, 2015). 
Compared with traditional linear RNAs (containing 5′ and 3′ ends), circRNA molecules usually 
have a closed circular structure; rendering them more stable and less prone to degradation (Vicens 
and Westhof, 2014). Although the existence of circRNAs has been known for some time, these 
molecules were considered to be a by-product of RNA splicing. However, with the development 
of high-throughput sequencing and bioinformatics technologies, circRNAs have become widely 
recognized in animals and plants (Chen and Yang, 2015). Recent studies have also shown that a 
large number of circRNAs can be translated into small peptides in cells (Pamudurti et al., 2017) 
and have key roles despite their sometimes low level of expression (Hsu and Benfey, 2018; Yang 
et al., 2018). Although an increasing number of circRNAs are being identified, their functions in 
plants and animals generally remain to be studied. In addition to their functions as miRNA decoys, 
circRNAs have important translational potential, but no tools are available for specifically predicting 
the translational capabilities of these molecules (Jakobi and Dieterich, 2019).
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Several tools do exist for the prediction and identification of 
circRNAs, such as CIRI (Gao et al., 2015), CIRCexplorer (Dong 
et  al., 2019), CircPro (Meng et al., 2017), and circtools (Jakobi 
et al., 2018). Among them, CircPro can reveal translated circRNAs 
by calculating a translation potential score for circRNAs based on 
CPC (Kong et al., 2007), which is a tool for identifying the open 
reading frame (ORF) in a given sequence. However, because some 
circRNAs do not use the start codon during translation (Ingolia et 
al., 2011; Slavoff et al., 2013; Kearse and Wilusz, 2017; Spealman 
et al., 2018), employing CPC may filter out some truly translated 
circRNAs. In this study, we used BASiNET (Ito et al., 2018), which 
is an RNA classifier based on the machine learning methods 
(random forest and J48 model). It initially transforms the given 
coding RNAs (positive data) and noncoding RNAs (negative data) 
and represents them as complex networks; it then extracts the 
topological measures of these networks and constructs a feature 
vector to train the model that is used to classify the coding capacity 
of circRNAs. With this method, erroneous filtering of translated 
circRNAs that are not initiated by AUG is avoided. Additionally, 
Ribo-seq technology, which is based on high-throughput 
sequencing to monitor RPFs (ribosomal protected fragments) of 
transcripts (Guttman et al., 2013; Brar and Weissman, 2015), can 
be utilized to determine the locations of circRNAs that are being 
translated (Michel and Baranov, 2013). To identify the coding 
ability of circRNAs, we developed the tool CircCode, which 
involves a Python 3–based framework, and applied CircCode to 
investigate the translation potential of circRNAs from humans and 
Arabidopsis thaliana. Our work provides a rich resource for further 
study of the functions of circRNAs with coding capacity.

METHODS

CircCode was written in the Python 3 programming language; it 
uses Trimmomatic (Bolger et al., 2014), bowtie (Langmead and 
Salzberg, 2012), and STAR (Dobin et al., 2013) to filter raw Ribo-
seq reads and map these filtered reads to the genome. CircCode 
then identifies Ribo-seq read-mapped regions in circRNAs that 
contain junctions. After that, the candidate mapped sequences 
in the circRNAs are sorted based on classifiers (J48 model) into 
coding RNAs and noncoding RNAs by BASiNET. Finally, short 
peptides produced by translation are identified as potential 
coding regions of circRNAs. The entire process of CircCode 
consists of five steps (Figure 1).

Filtering of Ribosomal Profiling Data
First, low-quality fragments and adapters in the Ribo-Seq reads 
are removed by Trimmomatic with the default parameters 
to obtain clean Ribo-seq reads. Second, these clean Ribo-seq 
reads are mapped to an rRNA library to remove reads derived 
from rRNA using bowtie. Because the read lengths of Ribo-seq 
are relatively short (generally less than 50 bp), it is possible for 
one read to match multiple regions. In this case, it is difficult 
to determine which region a particular read corresponds to. To 
avoid this, the clean Ribo-seq reads are mapped to the genome of 
a species of interest, and the reads that are not perfectly aligned 
to the genome are regarded as the final unique Ribo-seq reads.

Assembling Virtual Genomes
CircRNAs usually appear as ring-shaped molecules in 
eukaryotes, and they can be identified based on their back-
splicing junctions. However, the sequences of circRNAs in the 
fasta file are often in linear form. In theory, the result indicates 
that the junction is between the 5′ terminal nucleotide and the 
3′ terminal nucleotide, although the junction and the sequence 
near the junction cannot be viewed directly, thus aligning 
Ribo-seq reads to circRNA sequences, including junctions, in a 
straightforward manner.

CircCode connects the sequence of each circRNA in tandem 
such that the junction for each is in the middle of the newly 
constructed sequence. We also separated each series unit by 
100 N nucleotides to avoid confusion at the sequence alignment 
step (the length of each RPF is less than 50 bp). Finally, we 
obtained a virtual genome consisting only of candidate circRNAs 
in tandem separated by 100 Ns. Because CircCode focuses only 
on alignment between Ribo-seq reads and circRNA sequences, 
we can investigate the coding potential of circRNAs by mapping 
the Ribo-seq reads to this virtual genome, which can save a large 
amount of computational time (the virtual genome is much 
smaller than the whole genome) and increase the accuracy 
(by avoiding interference between upstream and downstream 
sequence comparisons of the circRNAs).

Determination of the Ribo-seq Read-Mapped 
Region on a Junction (RMRJ) of circRNAs 
The final unique Ribo-seq reads are mapped to a previously 
created virtual genome using STAR. Because each tandem 
circRNA unit was separated by 100 N bases before producing 
the virtual genome, the largest intron length was set to not 
exceed 10 bases with the parameter “–alignIntronMax 10.” This 
parameter eliminates any interaction between different circRNAs 
in the sequence alignment. In the second step of virtual genome 
production, CircCode stores positional junction information 
for each circRNA in the virtual genome. If the Ribo-seq read-
mapped region in the virtual genome includes the junction of 
the circRNA, and the number of mapped Ribo-seq reads on 
junction (NMJ) is greater than 3, the Ribo-seq reads-mapped 
region on junction of the circRNAs can be regarded as an RMRJ, 
which reveals a roughly translated segment of circRNAs near the 
junction site.

Training of the Model and Classification  
of RMRJs
Although RMRJs can constitute powerful proof of translation, 
there are still some shortcomings in this method. Because 
the length of the reads of the ribosomal map is short, a read 
may be compared to the wrong position. Therefore, it is not 
convincing to simply consider the region covered by the Ribo-
seq reads as the translated region. To this end, the machine 
learning method is used to identify the coding ability of the 
RMRJ. First, CircCode extracts coding RNAs (positive data) 
and noncoding RNAs (negative data) from a species of interest 
and uses them for model training by means of the difference 
in feature vectors between coding and noncoding RNAs. 

62

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


CircCodeSun and Li

3 October 2019 | Volume 10 | Article 981Frontiers in Genetics | www.frontiersin.org

CircCode then uses the trained model to classify the RMRJs 
obtained in the previous step by BASiNET. If the RMRJ of a 
circRNA is recognized as coding RNA, then this circRNA can 
be identified as a translated circRNA.

Prediction of Translated Peptides 
by RMRJs
As expression of circRNAs in organisms is low, Ribo-seq data do 
not show the exact 3-nt periodicity clearly in the case of fewer 
RPFs. Therefore, it is difficult to determine the exact translation 
start site of a translated circRNA. Due to the presence of a stop 
codon in some RMRJs and because the start codon is difficult to 
determine, the method of finding an ORF based on a start codon 
and a stop codon is not feasible.

To determine the true translation regions of these circRNAs 
and generate the final translation product, FragGeneScan 
(Rho et al., 2010), which can predict protein-coding regions 

in fragmented genes and genes with frameshifts, is used to 
determine the translated peptides produced by circRNAs.

To avoid the cumbersome running process, all the models can 
be called by a shell script; the user can simply fill in the given 
configuration file and input it into script, and the entire process 
for predicting the translated circRNAs will then be run. In 
addition, CircCode can be run separately, step by step, such that 
the user can adjust the parameters in the middle of the procedure 
and view the results of each step as desired.

RESULTS AND DISCUSSION

After testing on multiple computers, CircCode was found to 
run successfully with the required dependencies installed. To 
test the performance of CircCode, we used data for humans and 
A. thaliana to predict circRNAs with translation potential. The 
results were compared with circRNAs that have been verified 

FIGURE 1 | The workflow of CircCode. The top layer represents the input file required for each step of CircCode. The middle layer is divided into three parts, and 
each part represents a different stage of operation. From left to right, the first part represents the filtering of the Ribo-seq data; the quality control is executed by 
Trimmomatic, and the rRNA reads are removed by bowtie. The second part represents the steps used to produce the virtual genome and align the filtered reads to 
the virtual genome with STAR. The last part represents the identification of translated circRNAs by machine learning. The bottom layer represents the last step used 
to predict the peptides translated from the circRNAs and the final output results, including information on translated circRNAs and their translation products. 
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experimentally as confirmation. Thereafter, we tested the false 
discovery rate (FDR) value of CircCode further. We used 
GenRGenS (Ponty et al., 2006) to generate a data set for testing 
based on known translated circRNAs and confirmed that the 
FDR value was within an acceptable range and at a low level. 
Finally, we evaluated the effect of different sequencing depths 
of Ribo-seq data on CircCode predictions and compared 
CircCode with other software.

Translated circRNAs in Humans  
and A. thaliana
To apply the CircCode tool to real data, we first downloaded the 
files including the human reference genome GRCh38, genome 
annotation, and human rRNA, from Ensembl. For A. thaliana, 
the reference genomes (TAIR10), genome annotation files, and 
corresponding rRNA sequences were all downloaded from 
Ensembl Plants. The Ribo-seq data for humans and A. thaliana 
were downloaded from RPFdb (accession numbers: GSE96643, 
GSE81295, GSE88794) (Hsu et al., 2016; Willems et al., 2017), 
and all the candidate circRNAs from human and A. thaliana 
were downloaded from CIRCPedia v2 (Dong et  al., 2018) 
and PlantcircBase, respectively (Chu et al., 2017). Ultimately, 
we identified 3,610 translated circRNAs from human and 
1,569 translated circRNAs from A. thaliana using CircCode 
(Supplementary Data 1).

Functional Enrichment of Human and A. 
thaliana circRNAs With Coding Potential
Using the CircCode results for human and A. thaliana, the online 
tool KOBAS 3.0 (Wu et al., 2006) was employed to annotate these 
translated circRNAs based on their parent genes. Furthermore, 
we performed GO (Gene Ontology) functional analysis and 
KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment 

analysis for these translated circRNAs using the R package 
clusterProfiler (Yu et al., 2012).

The KEGG results showed that the human circRNAs were 
enriched in protein processing in the endoplasmic reticulum 
pathway, carbon metabolism pathway, and RNA transport 
pathway. GO analysis indicated the participation of human 
translated circRNAs in the regulation of molecule binding, 
ATPase activity, and other RNA splicing-related biological 
processes. In addition, the translated circRNAs of A. thaliana are 
enriched in pathways related to stress resistance, suggesting that 
they play vital roles in this process (Supplementary Data 2).

Accuracy Test for CircCode
To investigate the accuracy of CircCode, test sequences generated 
by GenRGenS, which uses the hidden Markov model to produce 
sequences that have the same sequence characteristics (such as 
the frequencies of different nucleotides, different codons and 
different nucleotides at the start of the sequence), were used.

For this study, we used previously published human translated 
circRNAs (Yang et al., 2017) as the input for GenRGenS and 
generated 10,000 sequences to test CircCode. We repeated the 
test 10 times, and on average, 27 translated circRNAs were 
predicted each time. The FDR value was calculated to be 0.0027, 
which is much less than 0.05, indicating that the predicted results 
are credible.

In addition, we compared the translated circRNAs from 
humans as identified by CircCode with verified polysome-
associated circRNA data (Yang et al., 2017). Among 
them, 60% of the circRNAs were identified by CircCode 
(Supplementary Data 3).

Influence of the Ribo-seq Data 
Sequencing Depth
To investigate the impact of the sequencing depth of Ribo-seq data 
on the CircCode identification results, we first tested the effect of 

FIGURE 2 | (A) Effect of Ribo-seq data sequencing depth on the predicted number of translated circRNAs. (B) The effect of junction read number (JRN) on 
CircCode sensitivity at different sequencing depths.
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sequencing depth on the number of translated circRNAs (Figure 
2A). When the sequencing depth was low, the predicted number 
of translated circRNAs was low, and the number of translated 
circRNAs increased with increasing sequencing depth. The number 
of translated circRNAs became stable when the sequencing depth 
reached no less than 10× linear transcript coverage.

Second, the influence of NMJ on sensitivity at different 
sequencing depths was also assessed (Figure 2B). The results 
showed that NMJ had less impact on sensitivity as the sequencing 
depth increased. CircCode also had higher sensitivity when using 
Ribo-seq data with higher sequencing depth.

Comparison of CircCode With Other Tools
To compare CircCode with other tools, such as CircPro, the 
same set of Ribo-seq data (SRR3495999) from A. thaliana was 
used to identify translated circRNAs using six processors, with 
16 gigabytes of RAM. CircPro identified 44 translated circRNAs 
in 13 min, whereas CircCode identified 76 translated circRNAs 
in 20 min. Thus, CircCode is more sensitive than CircPro at the 
same computer hardware level, but it takes more time. CircPro is 
concise and less time consuming than CircCode, but CircCode 
can identify more circRNAs with coding ability than CircPro.

CONCLUSIONS

CircRNAs play an important role in biology, and it is crucial to 
accurately identify circRNAs with coding ability for subsequent 
research. Based on Python 3, we developed CircCode, an easy-
to-use command line tool that has high sensitivity for identifying 
translated circRNAs from Ribo-Seq reads with high accuracy. 
CircCode exhibits good performance in both plants and animals. 
Future work will add the downstream character analysis to 
CircCode by visualizing each step in the process and optimizing 
the accuracy of the prediction.

AVAILABILITY AND REQUIREMENTS

CircCode is available at https://github.com/PSSUN/CircCode; 
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STAR, Python 3 packages (Biopython, Pandas, rpy2), R-packages 
(BASiNET, Biostrings). The installation packages for all of the 
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page also provides detailed user manuals for reference. The tool is 
freely available. There are no restrictions on use by nonacademics.
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Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene
expression at single-cell resolution, which greatly revolutionizes transcriptomic studies.
A number of scRNA-seq protocols have been developed, and these methods possess
their unique features with distinct advantages and disadvantages. Due to technical
limitations and biological factors, scRNA-seq data are noisier and more complex
than bulk RNA-seq data. The high variability of scRNA-seq data raises computational
challenges in data analysis. Although an increasing number of bioinformatics methods
are proposed for analyzing and interpreting scRNA-seq data, novel algorithms are
required to ensure the accuracy and reproducibility of results. In this review, we
provide an overview of currently available single-cell isolation protocols and scRNA-seq
technologies, and discuss the methods for diverse scRNA-seq data analyses including
quality control, read mapping, gene expression quantification, batch effect correction,
normalization, imputation, dimensionality reduction, feature selection, cell clustering,
trajectory inference, differential expression calling, alternative splicing, allelic expression,
and gene regulatory network reconstruction. Further, we outline the prospective
development and applications of scRNA-seq technologies.

Keywords: single-cell RNA-seq, cell clustering, cell trajectory, alternative splicing, allelic expression

INTRODUCTION

Bulk RNA-seq technologies have been widely used to study gene expression patterns at population
level in the past decade. The advent of single-cell RNA sequencing (scRNA-seq) provides
unprecedented opportunities for exploring gene expression profile at the single-cell level. Currently,
scRNA-seq has become a favorable choice for studying the key biological questions of cell
heterogeneity and the development of early embryos (only include a few number of cells), since
bulk RNA-seq mainly reflects the averaged gene expression across thousands of cells. In recent
years, scRNA-seq has been applied to various species, especially to diverse human tissues (including
normal and cancer), and these studies revealed meaningful cell-to-cell gene expression variability
(Jaitin et al., 2014; Grun et al., 2015; Chen et al., 2016a; Cao et al., 2017; Rosenberg et al., 2018).
With the innovation of sequencing technologies, some different scRNA-seq protocols have been
proposed in the past few years, which largely facilitated the understanding of dynamic gene

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 31767

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00317
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00317
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00317&domain=pdf&date_stamp=2019-04-05
https://www.frontiersin.org/articles/10.3389/fgene.2019.00317/full
http://loop.frontiersin.org/people/652880/overview
http://loop.frontiersin.org/people/557812/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00317 April 4, 2019 Time: 18:3 # 2

Chen et al. Single-Cell RNA-Seq Data Analysis

expression at single-cell resolution (Kolodziejczyk et al., 2015;
Haque et al., 2017; Picelli, 2017; Chen et al., 2018). One of them
is the highly efficient strategy LCM-seq (Nichterwitz et al., 2016)
which combines laser capture microscopy (LCM) and Smart-seq2
(Picelli et al., 2013) for single-cell transcriptomics without tissue
dissociation. Currently available scRNA-seq protocols can be
mainly split into two categories based on the captured transcript
coverage: (i) full-length transcript sequencing approaches [such
as Smart-seq2 (Picelli et al., 2013), MATQ-seq (Sheng et al.,
2017) and SUPeR-seq (Fan X. et al., 2015)]; and (ii) 3′-end [e.g.,
Drop-seq (Macosko et al., 2015), Seq-Well (Gierahn et al., 2017),
Chromium (Zheng et al., 2017), and DroNC-seq (Habib et al.,
2017)] or 5′-end [such as STRT-seq (Islam et al., 2011, 2012)]
transcript sequencing technologies. Each scRNA-seq protocol has
its own benefits and drawbacks, resulting in that different scRNA-
seq approaches have distinct features and disparate performances
(Ziegenhain et al., 2017). In conducting single-cell transcriptomic
study, specific scRNA-seq technology may need to be employed
in consideration of the balance between research goal and
sequencing cost.

Owing to the low amount of starting material, scRNA-seq
has limitations of low capture efficiency and high dropouts
(Haque et al., 2017). Compared to bulk RNA-seq, scRNA-
seq produces nosier and more variable data. The technical
noise and biological variation (e.g., stochastic transcription)
raise substantial challenges for computational analysis of
scRNA-seq data. A variety of tools have been designed to
conducting diverse bulk RNA-seq data analyses, but many
of those methods cannot be directly applied to scRNA-
seq data (Stegle et al., 2015). Except short-read mapping,
almost all data analyses (such as differential expression, cell
clustering, and gene regulatory network inference) have certain
disparities in methods between scRNA-seq and bulk RNA-
seq. Due to the high technical noise, quality control (QC) is
crucial for identifying and removing the low-quality scRNA-
seq data to get robust and reproducible results. Furthermore,
some analyses including alternative splicing (AS) detection,
allelic expression exploration and RNA-editing identification
are not suitable for the 3′ or 5′-tag sequencing protocols
of scRNA-seq, but these analyses could be applicable to the
data generated by whole-transcript scRNA-seq. On the other
hand, an increasing number of tools are specially proposed for
analyzing scRNA-seq data, and each method has its own pros
and cons (Stegle et al., 2015; Bacher and Kendziorski, 2016).
Therefore, to effectively handle the high variability of scRNA-
seq data, attention should be paid to choosing appropriately
analytical approaches.

This Review aims to summarize and discuss currently available
scRNA-seq technologies and various data analysis methods.
We first introduce distinct single-cell isolation protocols and
various scRNA-seq technologies developed in recent years. Then
we focus on the analyses of scRNA-seq data and highlight
the analytical differences between bulk RNA-seq and scRNA-
seq data. Considering the high technical noise and complexity
of scRNA-seq data, we also provide recommendations on the
selection of suitable tools to analyze scRNA-seq data and ensure
the reproducibility of results.

ISOLATION OF SINGLE CELLS

The first step of scRNA-seq is isolation of individual cells
(Figure 1), although the capture efficiency is a big challenge
for scRNA-seq. Currently, several different approaches are
available for isolating single cells, including limiting dilution,
micromanipulation, flow-activated cell sorting (FACS), laser
capture microdissection (LCM), and microfluidics (Gross et al.,
2015; Kolodziejczyk et al., 2015; Hwang et al., 2018). Limiting
dilution technique uses pipettes to isolate cells by dilution, the
main limitation of this method is inefficient. Micromanipulation
is a classical approach used to retrieve cells from samples with
a small number of cells, such as early embryos or uncultivated
microorganisms, while this technique is time-consuming and
low throughput. FACS has been widely used for isolating single
cells, which requires large starting volumes (>10,000 cells) in
suspension. LCM is an advanced strategy used for isolating
individual cells from solid tissues by using a laser system aided
by computer. Microfluidics is increasingly popular due to its
property of low sample consumption, precise fluid control and
low analysis cost. These single-cell isolation protocols have their
own advantages and show distinct performances in terms of
capture efficiency and purity of the target cells (Gross et al., 2015;
Hu et al., 2016).

CURRENTLY AVAILABLE SCRNA-SEQ
TECHNOLOGIES

To date, a number of scRNA-seq technologies have been
proposed for single-cell transcriptomic studies (Table 1). The
first scRNA-seq method was published by Tang et al. (2009),
and then many other scRNA-seq approaches were subsequently
developed. Those scRNA-seq technologies differ in at least
one of the following aspects: (i) cell isolation; (ii) cell lysis;
(iii) reverse transcription; (iv) amplification; (v) transcript
coverage; (vi) strand specificity; and (vii) UMI (unique molecular
identifiers, molecular tags that can be applied to detect and
quantify the unique transcripts) availability. One conspicuous
difference among these scRNA-seq methods is that some of
them can produce full-length (or nearly full-length) transcript
sequencing data (e.g., Smart-seq2, SUPeR-seq, and MATQ-seq),
whereas others only capture and sequence the 3′-end [such
as Drop-seq, Seq-Well and DroNC-seq, SPLiT-seq (Rosenberg
et al., 2018)] or 5′-end (e.g., STRT-seq) of the transcripts
(Table 1). Distinct scRNA-seq protocols may possess disparate
strengths and weaknesses, and several published reviews have
compared a portion of them in detail (Kolodziejczyk et al.,
2015; Haque et al., 2017; Picelli, 2017; Ziegenhain et al., 2017).
A previous study demonstrated that Smart-seq2 can detect
a bigger number of expressed genes than other scRNA-seq
technologies including CEL-seq2 (Hashimshony et al., 2016),
MARS-seq (Jaitin et al., 2014), Smart-seq (Ramskold et al.,
2012), and Drop-seq protocols (Ziegenhain et al., 2017). Recently,
Sheng et al. (2017) showed that another full-length transcript
sequencing approach MATQ-seq could outperform Smart-seq2
in detecting low-abundance genes.
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FIGURE 1 | Overview of various analyses for scRNA-seq data.

Compared to 3′-end or 5′-end counting protocols, full-length
scRNA-seq methods have incomparable advantages in isoform
usage analysis, allelic expression detection, and RNA editing
identification owing to their superiority of transcript coverage.
Moreover, for detecting certain lowly expressed genes/transcripts,
full-length scRNA-seq approaches could be better than 3′
sequencing methods (Ziegenhain et al., 2017). Notably, droplet-
based technologies [e.g., Drop-seq (Macosko et al., 2015), InDrop
(Klein et al., 2015), and Chromium (Zheng et al., 2017)] can
generally provide a lager throughput of cells and a lower
sequencing cost per cell compared to whole-transcript scRNA-
seq. Thus, droplet-based protocols are suitable for generating
huge amounts of cells to identify the cell subpopulations of
complex tissues or tumor samples.

Strikingly, several scRNA-seq technologies can capture both
polyA+ and polyA− RNAs, such as SUPeR-seq (Fan X. et al.,
2015) and MATQ-seq (Sheng et al., 2017). These protocols
are extremely useful for sequencing long noncoding RNAs
(lncRNAs) and circular RNAs (circRNAs). Lots of studies
have demonstrated that lncRNAs and circRNAs play important
roles in diverse biological processes of cells and may serve
as crucial biomarkers for cancers (Barrett and Salzman, 2016;
Chen et al., 2016b; Quinn and Chang, 2016; Kristensen
et al., 2018); therefore, such scRNA-seq methods can provide
unprecedented opportunities to comprehensively explore the
expression dynamics of both protein-coding and noncoding
RNAs at the single-cell level.

Compared to traditional bulk RNA-seq technologies, scRNA-
seq protocols suffer higher technical variations. In order to
estimate the technical variances among different cells, spike-
ins [such as External RNA Control Consortium (ERCC)
controls (External, 2005)] and UMIs have been widely used
in corresponding scRNA-seq methods. The RNA spike-ins are
RNA transcripts (with known sequences and quantity) that are
applied to calibrate the measurements of RNA hybridization
assays, such as RNA-Seq, and UMIs can theoretically enable
the estimation of absolute molecular counts. It is worth noting
that ERCC and UMIs are not applicable to all scRNA-seq
technologies due to the inherent protocol differences. Spike-
ins are used in approaches like Smart-seq2 and SUPeR-seq but
are not compatible with droplet-based methods, whereas UMIs
are typically applied to 3′-end sequencing technologies [such as
Drop-seq (Macosko et al., 2015), InDrop (Klein et al., 2015),
and MARS-seq (Jaitin et al., 2014)]. Consequently, users can
select the suitable scRNA-seq method according to the technical
properties and advantages, number of cells to be sequenced and
cost considerations.

READ ALIGNMENT AND EXPRESSION
QUANTIFICATION OF SCRNA-SEQ DATA

The mapping ratio of reads is an important indicator of the
overall quality of scRNA-seq data. Since both scRNA-seq and
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TABLE 1 | Summary of widely used scRNA-seq technologies.

Methods Transcript
coverage

UMI
possibility

Strand
specific

References

Tang method Nearly
full-length

No No Tang et al., 2009

Quartz-Seq Full-length No No Sasagawa et al., 2013

SUPeR-seq Full-length No No Fan X. et al., 2015

Smart-seq Full-length No No Ramskold et al., 2012

Smart-seq2 Full-length No No Picelli et al., 2013

MATQ-seq Full-length Yes Yes Sheng et al., 2017

STRT-seq
and STRT/C1

5′-only Yes Yes Islam et al., 2011, 2012

CEL-seq 3′-only Yes Yes Hashimshony et al., 2012

CEL-seq2 3′-only Yes Yes Hashimshony et al., 2016

MARS-seq 3′-only Yes Yes Jaitin et al., 2014

CytoSeq 3′-only Yes Yes Fan H.C. et al., 2015

Drop-seq 3′-only Yes Yes Macosko et al., 2015

InDrop 3′-only Yes Yes Klein et al., 2015

Chromium 3′-only Yes Yes Zheng et al., 2017

SPLiT-seq 3′-only Yes Yes Rosenberg et al., 2018

sci-RNA-seq 3′-only Yes Yes Cao et al., 2017

Seq-Well 3′-only Yes Yes Gierahn et al., 2017

DroNC-seq 3′-only Yes Yes Habib et al., 2017

Quartz-Seq2 3′-only Yes Yes Sasagawa et al., 2018

bulk RNA-seq technologies generally sequence transcripts into
reads to generate the raw data in fastq format, no differences
exist between these two types of RNA-seq data in read alignment.
The mapping tools originally developed for bulk RNA-seq are
also applicable to scRNA-seq data. Numerous spliced alignment
programs have been designed for mapping RNA-seq data, which
was extensively discussed previously (Li and Homer, 2010;
Chen et al., 2011). Generally, the read mapping algorithms
mainly fall into two categories: spaced-seed indexing based
and Burrows-Wheeler transform (BWT) based (Li and Homer,
2010). Currently popular aligners like TopHat2 (Kim et al.,
2013), STAR (Dobin and Gingeras, 2015), and HISAT (Kim
et al., 2015) perform well in mapping speed and accuracy,
and they can efficiently map billions of reads to the reference
genome or transcriptome (Table 2). STAR is a suffix-array
based method and is faster than TopHat2, but it requires
a huge memory size (28 gigabytes for human genome) for
read mapping (Dobin and Gingeras, 2015). Engstrom et al.
systematically evaluated 26 read alignment protocols (did not
include HISAT) and found that different mapping tools exhibit
distinct strengths and weakness, where some programs are
with a faster mapping speed but a lower accuracy in splice
junction detection (Engstrom et al., 2013). HISAT is developed
based on BWT and Ferragina-Manzini (FM) methods. Kim
et al. (2015) showed that HISAT is currently the fastest
tool that can achieve equal or better accuracy than other
available aligners.

For gene/transcript expression quantification, distinct
approaches are needed, based on the range of transcript sequence
captured by scRNA-seq. The data generated by whole-transcript
scRNA-seq methods (such as Smart-seq2 and MATQ-seq) can

TABLE 2 | Tools for read mapping and expression quantification
of scRNA-seq data.

Tools Category URL References

TopHat2 Read mapping https://ccb.jhu.edu/
software/tophat/
index.shtml

Kim et al., 2013

STAR Read mapping https://github.com/
alexdobin/STAR

Dobin and Gingeras,
2015

HISAT2 Read mapping https://ccb.jhu.edu/
software/hisat2/
index.shtml

Kim et al., 2015

Cufflinks Expression
quantification

https:
//github.com/cole-
trapnell-lab/cufflinks

Trapnell et al., 2010

RSEM Expression
quantification

https://github.com/
deweylab/RSEM

Li and Dewey, 2011

StringTie Expression
quantification

https://github.com/
gpertea/stringtie

Pertea et al., 2015

be analyzed with the software developed for bulk RNA-seq to
quantify gene/transcript expression. Two main approaches are
available for transcriptome reconstruction: de novo assembly
(does not need a reference genome) and reference-based
or genome-guided assembly (Chen et al., 2017b). De novo
transcriptome assembly methods are primarily applied to the
organisms that lack a reference genome, and are generally
with a lower accuracy than that of genome-guided assembly
(Garber et al., 2011). The popular genome-guided assembly tools
including Cufflinks (Trapnell et al., 2010), RSEM (Li and Dewey,
2011), and Stringtie (Pertea et al., 2015) have been broadly
used in many scRNA-seq studies to get relative gene/transcript
expression estimation in reads or fragments per kilobase per
million mapped reads (RPKM or FPKM) or transcripts per
million mapped reads (TPM) (Table 2). Pertea et al. (2015) stated
that StringTie outperforms other genome-guided approaches in
gene/transcript reconstruction and expression quantification. On
the other hand, for the 3′-end scRNA-seq protocols (e.g., CEL-
seq2, MARS-seq, Drop-seq, and InDrop), specific algorithms
are required to calculate gene/transcript expression based on
UMIs. SAVER (single-cell analysis via expression recovery) is
an efficient UMI-based tool recently proposed for accurately
estimating gene expression of single cells (Huang et al., 2018). In
theory, UMI-based scRNA-seq can largely reduce the technical
noise, which remarkably benefits the estimation of absolute
transcript counts (Islam et al., 2014).

QUALITY CONTROL OF
SCRNA-SEQ DATA

The limitations in scRNA-seq including bias of transcript
coverage, low capture efficiency, and sequencing coverage result
in that scRNA-seq data are with a higher level of technical noise
than bulk RNA-seq data (Kolodziejczyk et al., 2015). Even for the
most sensitive scRNA-seq protocol, it is a frequent phenomenon
that some specific transcripts cannot be detected (termed dropout
events) (Haque et al., 2017). Generally, scRNA-seq experiments
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can generate a portion of low-quality data from the cells that are
broken or dead or mixed with multiple cells (Ilicic et al., 2016).
These low-quality cells will hinder the downstream analysis and
may lead to misinterpretation of the data. Accordingly, QC
of scRNA-seq data is crucial to identify and remove the low-
quality cells.

To exclude the low-quality cells from scRNA-seq, close
attention should be paid to avoid multi-cells or dead cells in
the cell capture step. After sequencing, a series of QC analyses
are required to eliminate the data from low-quality cells. Those
samples contain only a few number of reads should be discarded
first since insufficient sequencing depth may lead to the loss of
a large portion of lowly and moderately expressed genes. Then
tools initially developed for QC of bulk RNA-seq data, such
as FastQC1, can be employed to check the sequencing quality
of scRNA-seq data. Moreover, after read alignment, samples
with very low mapping ratio should be eliminated because they
contain massively unmappable reads that might be resulted from
RNA degradation. If extrinsic spike-ins (such ERCC) were used in
scRNA-seq, technical noise could be estimated. The cells with an
extremely high portion of reads mapped to the spike-ins indicate
that they were probably broken during cell capture process and
should be removed (Ilicic et al., 2016). Cytoplasmic RNAs are
usually lost but mitochondrial RNAs are retained for broken
cells, thus the ratio of reads mapped to mitochondrial genome
is also informative for identifying low-quality cells (Bacher
and Kendziorski, 2016). Additionally, the number of expressed
genes/transcripts can be detected in each cell is also suggestive. If
only a small number of genes can be detected in a cell, this cell
is probably damaged or dead or suffered from RNA degradation.
Considering the high noise of scRNA-seq data, a threshold of 1
FPKM/RPKM was usually applied to define the expressed genes.
Some QC methods for scRNA-seq have been proposed (Stegle
et al., 2015; Ilicic et al., 2016), including SinQC (Jiang et al., 2016)
and Scater (McCarthy et al., 2017), these tools are useful for QC
of scRNA-seq data.

BATCH EFFECT CORRECTION

Batch effect is a common source of technical variation in
high-throughput sequencing experiments. The innovation and
decreasing cost of scRNA-seq enable many studies to profile
the transcriptomes of a huge amount of cells. The large scale
scRNA-seq data sets might be separately generated with distinct
operators at different times, and could also be produced in
multiple laboratories using disparate cell dissociation protocols,
library preparation approaches and/or sequencing platforms.
These factors would introduce systematic error and confound
the technical and biological variability, leading to that the gene
expression profile in one batch systematically differs from that in
another (Leek et al., 2010; Hicks et al., 2018). Therefore, batch
effect is a major challenge in scRNA-seq data analysis, which may
mask the underlying biology and cause spurious results. To avoid
incorrect data integration and interpretation, batch effects must

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

be corrected before the downstream analysis. Because of the data
feature differences between scRNA-seq and bulk RNA-seq, batch-
correction approaches specially proposed for bulk RNA-seq [e.g.,
RUVseq (Risso et al., 2014) and svaseq (Leek, 2014)] may not
be suitable for scRNA-seq. Several methods have been recently
designed to mitigate the batch effects in scRNA-seq data, such
as MNN (mutual nearest neighbor) (Haghverdi et al., 2018) and
kBET (k-nearest neighbor batch effect test) (Buttner et al., 2019).
MNN corrects the batch effects using the data from the most
similar cells in different batches. KBET is a χ2-based method for
quantifying batch effects in scRNA-seq data. These specific batch-
correction approaches for scRNA-seq data can perform better
than the methods developed for bulk RNA-seq (Haghverdi et al.,
2018; Buttner et al., 2019).

NORMALIZATION OF SCRNA-SEQ DATA

To correctly interpret the results from scRNA-seq data,
normalization is an essential step to get the signal of
interest by adjusting unwanted biases resulted from capture
efficiency, sequencing depth, dropouts, and other technical
effects. Technical noise of scRNA-seq is an obvious problem
due to the low starting material and challenging experimental
protocols. Normalization of scRNA-seq data will benefit the
downstream analyses including cell subpopulation identification
and differential expression calling. In general, normalization can
be divided into two different types: within-sample normalization
and between-sample normalization (Vallejos et al., 2017). Within-
sample normalization aims to remove the gene-specific biases
(e.g., GC content and gene length), which makes gene expression
comparable within one sample (such as RPKM/FPKM and TPM).
In contrast, between-sample normalization is to adjust sample-
specific differences (e.g., sequencing depth and capture efficiency)
to enable the comparison of gene expression between samples.
Generally, those simple normalization strategies are based on
sequencing depth or upper quartile. If spike-ins or UMIs are used
in scRNA-seq protocol, normalization can be refined based on the
performance of spike-ins/UMIs (Bacher and Kendziorski, 2016).

A number of approaches have been developed for between-
sample normalization of bulk RNA-seq data, such as DESeq2
(Love et al., 2014) and trimmed mean of M values (TMM)
(Robinson and Oshlack, 2010). DEseq2 calculates scaling factor
based on the read counts across different samples, while
TMM removes the extreme log fold changes (Vallejos et al.,
2017). However, bulk-based normalization approaches may
be not suitable for the data of single-cell transcriptomics.
Because scRNA-seq generates abundant zero-expression values
and has a higher level of technical variation than bulk RNA-
seq, using bulk RNA-seq normalization approaches may cause
overcorrection in scRNA-seq for lowly expressed genes (Vallejos
et al., 2017). Several normalization methods have been proposed
for scRNA-seq data, such as SCnorm (Bacher et al., 2017),
SAMstrt (Katayama et al., 2013) and a recently introduced
deconvolution approach that uses the summed expression
values across pools of cells to conduct normalization (Lun
et al., 2016). SCnorm is based on quantile regression, while
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SAMstrt relies on spike-ins. Bacher et al. (2017) believed that
traditional normalization methods developed for bulk RNA-seq
may introduce artifacts for normalizing scRNA-seq data, while
SCnorm can effectively normalize scRNA-seq data and improve
principal component analysis (PCA) and the identification of
differentially expressed genes.

IMPUTATION OF SCRNA-SEQ DATA

Single-cell RNA sequencing data generally contain many missing
values or dropouts that were caused by failed amplification of the
original RNAs. The frequency of dropout events for scRNA-seq
is protocol-dependent, and is closely associated with the number
of sequencing reads generated for each cell (Svensson et al.,
2017). The dropout events increase the cell-to-cell variability,
leading to signal influence on every gene, and obscuration of
gene-gene relationship detection. Therefore, dropouts can largely
affect the downstream analyses since a significant portion of
truly expressed transcripts may not be detectable in scRNA-
seq. Imputation is a useful strategy to replace the missing data
(dropouts) with substituted values. Although some methods
have been proposed for imputation of bulk RNA-seq data,
they are not directly applicable to scRNA-seq data (Zhang and
Zhang, 2018). Several imputation methods have been recently
developed for scRNA-seq, including SAVER (Huang et al., 2018),
MAGIC (van Dijk et al., 2018), ScImpute (Li and Li, 2018),
DrImpute (Gong et al., 2018), and AutoImpute (Talwar et al.,
2018). SAVER is a Bayesian-based model designed for UMI-
based scRNA-seq data to recover the true expression level of all
genes. MAGIC imputes the gene expression by building Markov
affinity-based graph. The developers of ScImpute suggested
that SAVER and MAGIC may lead to expression changes of
the genes unaffected by dropouts, while ScImpute can impute
the dropout values without introducing new biases through
using the information from the same genes unlikely affected by
dropouts in other similar cells. DrImpute is a clustering-based
approach and can effectively separate the dropout zeros from
true zeros. AutoImpute is an autoencoder-based method that
learns the inherent distribution of scRNA-seq data to impute
the missing values. Recently, Zhang et al. evaluated different
imputation methods and found that the performances of these
approaches are correlated with their model hypothesis and
scalability (Zhang and Zhang, 2018).

DIMENSIONALITY REDUCTION AND
FEATURE SELECTION

Single-cell RNA sequencing data are with a high dimensionality,
which may involve thousands of genes and a large number
of cells. Dimensionality reduction and feature selection are
two main strategies for dealing with high dimensional data
(Andrews and Hemberg, 2018a). Dimensionality reduction
methods generally project the data into a lower dimensional space
by optimally preserving some key properties of the original data.
PCA is a linear dimensional reduction algorithm, which assumes

that the data is approximately normally distributed. T-distributed
stochastic neighbor embedding (t-SNE) is a non-linear approach
mainly designed for visualizing high dimensional data (van der
Maaten and Hinton, 2008). Both PCA and t-SNE have been
broadly used in diverse scRNA-seq studies to reduce the data
dimension and visualize the cells discriminated into distinct
subpopulations (Chen et al., 2016a; Rosenberg et al., 2018). It is
worth noting that PCA cannot effectively represent the complex
structure of scRNA-seq data and t-SNE has limitations of slow
computation time and different embeddings for processing the
same dataset multiple times. Recently, UMAP (uniform manifold
approximation and projection) (Becht et al., 2018), and scvis
(Ding et al., 2018) were specially developed for reducing the
dimensions of scRNA-seq data. Becht et al. showed that UMAP
provides the fastest run times, the highest reproducibility and
the most meaningful organization of cell clusters than other
dimensionality reduction approaches (Becht et al., 2018).

Feature selection removes the uninformative genes and
identifies the most relevant features to reduce the number of
dimensions used in downstream analysis. Reducing the number
of genes by performing feature selection can largely speed up
the calculations of large-scale scRNA-seq data (Andrews and
Hemberg, 2018b). Differential expression is a widely used method
for feature selection in bulk RNA-seq experiments, but it is
hard to apply to scRNA-seq data since the information of
predetermined and/or homogeneous subpopulations needed for
differential expression calling of scRNA-seq data [e.g., SCDE
(Kharchenko et al., 2014)] is often unavailable. Unsupervised
feature selection algorithms specially designed for scRNA-seq
data can be divided into the following groups: (i) highly
variable genes (HVG) based; (ii) spike-in based; and (iii)
dropout-based (Andrews and Hemberg, 2018a). HVG methods
rely on the assumption that the genes with highly variable
expression across cells are resulted from biological effects rather
than technical noise. The HVG approaches include algorithms
proposed by Brennecke et al. (2013), and FindVariableGenes
(FVG) implemented in Seurat (Satija et al., 2015). Spike-in
based approaches identify the genes showing significant higher
variance than those of spike-ins with similar expression levels
[e.g., scLVM (Buettner et al., 2015) and BASiCS (Vallejos et al.,
2015)], which shares similar idea of HVG. Dropout based
methods take advantage of the dropout distribution of scRNA-
seq data to perform feature selection, like M3Drop (Andrews
and Hemberg, 2018b). Andrews and Hemberg showed that
their M3Drop tool outperforms existing variance-based feature
selection approaches.

CELL SUBPOPULATION
IDENTIFICATION

A key goal of scRNA-seq data analysis is to identify cell
subpopulations (different populations are often distinct cell
types) within a certain condition or tissue to unravel the
heterogeneity of cells. Notably, cell subpopulation identification
should be carried out after QC and normalization of scRNA-
seq data, otherwise artifacts could be introduced. Approaches for
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clustering cells can be mainly grouped into two categories based
on whether prior information is used. If a set of known markers
was used in clustering, the methods are prior information based.
Alternatively, unsupervised clustering methods can be used for
de novo identification of cell populations with scRNA-seq data.
The algorithms for unsupervised clustering can be primarily
divided into the following types: (i) k-means; (ii) hierarchical
clustering; (iii) density-based clustering; and (iv) graph-based
clustering (Andrews and Hemberg, 2018a). K-means is a fast
approach that assigns cells to the nearest cluster center, and
it requires the predetermined number of clusters. Hierarchical
clustering can determine the relationships between clusters, but
it generally works slower than k-means. Density-based clustering
methods need a large number of samples to accurately calculate
densities and usually assume that all clusters have equal density.
Graph-based clustering can be considered as an extension of
density-based clustering, and it can be applied to millions of
cells. Some clustering methods have been specially designed for
scRNA-seq data, such as single-cell consensus clustering (SC3)
(Kiselev et al., 2017) and the clustering approach implemented in
Seurat (Satija et al., 2015), which can facilitate the identification of
cell subpopulations (Table 3). SC3 is an unsupervised approach
that combines multiple clustering approaches, which has a high
accuracy and robustness in single-cell clustering. Seurat identifies
the cell clusters mainly based on a shared nearest neighbor (SNN)
clustering algorithm. Once the subpopulations are determined,
the markers that can best discriminate distinct subpopulations
are usually identified through differential expression calling or
analysis of variance (ANOVA).

DIFFERENTIAL EXPRESSION ANALYSIS
OF SCRNA-SEQ DATA

Differential expression analysis is very useful to find the
significantly differentially expressed genes (DEGs) between
distinct subpopulations or groups of cells. The DEGs are crucial
for interpreting the biological difference between two compared

TABLE 3 | Subpopulation identification methods for scRNA-seq data.

Methods URL References

SC3 http://bioconductor.org/packages/SC3 Kiselev et al., 2017

ZIFA https://github.com/epierson9/ZIFA Pierson and Yau, 2015

Destiny https://github.com/theislab/destiny Angerer et al., 2016

SNN-Cliq http://bioinfo.uncc.edu/SNNCliq/ Xu and Su, 2015

RaceID https://github.com/dgrun/RaceID Grun et al., 2015

SCUBA https://github.com/gcyuan/SCUBA Marco et al., 2014

BackSPIN https:
//github.com/linnarsson-lab/BackSPIN

Zeisel et al., 2015

PAGODA http://hms-dbmi.github.io/scde/ Fan et al., 2016

CIDR https://github.com/VCCRI/CIDR Lin et al., 2017

pcaReduce https:
//github.com/JustinaZ/pcaReduce

Zurauskiene and Yau,
2016

Seurat https://github.com/satijalab/seurat Satija et al., 2015

TSCAN https://github.com/zji90/TSCAN Ji and Ji, 2016

conditions. The technical variability, high noise (e.g., dropouts)
and massive sample size of scRNA-seq data raise challenges in
differential expression calling (McDavid et al., 2013). Moreover,
multiple possible cell states can exist within a population of cells,
leading to the multimodality of gene expression in cells (Vallejos
et al., 2016). The tools originally developed for bulk RNA-seq
data have been used in many single-cell studies to identify the
DEGs, but the applicability of these methods for scRNA-seq data
is still unclear. In recent years, some specific methods have been
proposed for conducting differential expression calling based
on scRNA-seq data, such as MAST (Finak et al., 2015), SCDE
(Kharchenko et al., 2014), DEsingle (Miao et al., 2018), Census
(Qiu et al., 2017), and BCseq (Chen and Zheng, 2018) (Table 4).
MAST is based on linear model fitting and likelihood ratio
testing. SCDE is a Bayesian approach using a low-magnitude
Poisson process to account for dropouts. DEsingle employs Zero-
Inflated Negative Binomial model to estimate the dropouts and
real zeros. BCseq mitigates the technical noise in a data-adaptive
manner. Soneson and Robinson recently assessed 36 differential
expression methods (including the tools designed for scRNA-
seq and bulk RNA-seq data) and revealed significant differences
among these approaches in the characteristics and number of
DEGs (Soneson and Robinson, 2018). An increasing number of
tools for differential expression analysis of scRNA-seq data will be
developed, and users are encouraged to choose the tools specially

TABLE 4 | Differential expression analysis tools for RNA-seq data.

Methods Category URL Referenes

ROTS Single cell https:
//bioconductor.org/packages/
release/bioc/html/ROTS.html

Seyednasrollah
et al., 2016

MAST Single cell https:
//github.com/RGLab/MAST

Finak et al., 2015

BCseq Single cell https:
//bioconductor.org/packages/
devel/bioc/html/bcSeq.html

Chen and Zheng,
2018

SCDE Single cell http:
//hms-dbmi.github.io/scde/

Kharchenko et al.,
2014

DEsingle Single cell https://bioconductor.org/
packages/DEsingle

Miao et al., 2018

Cencus Single cell http://cole-trapnell-lab.github.
io/monocle-release/

Qiu et al., 2017

D3E Single cell https:
//github.com/hemberg-lab/D3E

Delmans and
Hemberg, 2016

BPSC Single cell https:
//github.com/nghiavtr/BPSC

Vu et al., 2016

DESeq2 Bulk https:
//bioconductor.org/packages/
release/bioc/html/DESeq2.html

Love et al., 2014

edgeR Bulk https:
//bioconductor.org/packages/
release/bioc/html/edgeR.html

Robinson et al.,
2010

Limma Bulk http:
//bioconductor.org/packages/
release/bioc/html/limma.html

Ritchie et al., 2015

Ballgown Bulk http://www.bioconductor.org/
packages/release/bioc/html/
ballgown.html

Frazee et al., 2015
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designed for scRNA-seq to identify DEGs in consideration of the
complex features of scRNA-seq data.

CELL LINEAGE AND PSEUDOTIME
RECONSTRUCTION

The cells in many biological systems exhibit a continuous
spectrum of states and involve transitions between different
cellular states. Such dynamic processes within a portion of
cells can be computationally modeled by reconstructing the
cell trajectory and pseudotime based on scRNA-seq data.
Pseudotime is an ordering of cells along the trajectory of a
continuously developmental process in a system, which allows
the identification of the cell types at the beginning, intermediate,
and end states of the trajectory (Griffiths et al., 2018). Besides
revealing the gene expression dynamics across cells, single-cell
trajectory inference can also benefit the identification of the
factors triggering state transitions. A number of tools have been
proposed for trajectory inference, e.g., Monocle (Trapnell et al.,
2014), Waterfall (Shin et al., 2015), Wishbone (Setty et al., 2016),
TSCAN (Ji and Ji, 2016), Monocle2 (Qiu et al., 2017), Slingshot
(Street et al., 2018), and CellRouter (Lummertz da Rocha et al.,
2018) (Table 5). The resulting trajectory topology can be linear,
bifurcating, or a tree/graph structure. Monocle builds a minimum
spanning tree (MST) for cells to search for the longest backbone
based on independent component analysis (ICA). Monocle2 uses
a distinct approach that incorporates unsupervised data-driven
methods with reversed graph embedding (RGE), which is more
robust and much faster than Monocle. Slingshot is a cluster-
based approach for identifying multiple trajectories with varying
levels of supervision. CellRouter utilizes flow networks to identify
cell-state transition trajectories. Recently, Saelens et al. (2018)
evaluated a number of single-cell trajectory inference approaches
(did not include CellRouter), and found that Slingshot, TSCAN
and Monocle2 outperform other methods.

ALTERNATIVE SPLICING AND
RNA EDITING ANALYSIS OF
SCRNA-SEQ DATA

Most of published single-cell studies mainly explored the
transcriptome variation between individual cells at gene level.
In eukaryotic genome, AS allows multi-exon genes to generate
different isoforms, which can largely increase the diversity
of both protein-coding and noncoding RNAs. Five basic
modes are generally recognized for AS, including exon-skipping
(cassette exon), mutually exclusive exons, alternative donor site,
alternative acceptor site, and intron retention. Lots of studies
have shown that AS is very common in mammalians and over
90% of human genes could undergo AS based on bulk RNA-
seq data (Wang et al., 2008; Chen et al., 2017a). Moreover,
AS play crucial roles in a variety of biological processes and
abnormal AS may be correlated with cancers (Sveen et al., 2016).
The findings revealed by bulk RNA-seq data can only reflect
the averaged AS patterns of numerous cells at population level.

TABLE 5 | Methods for single-cell trajectory inference.

Tools Dimensionality
reduction

URL References

Monocle ICA http://cole-trapnell-lab.
github.io/monocle-release/

Trapnell et al.,
2014

Waterfall PCA https:
//www.cell.com/cms/10.
1016/j.stem.2015.07.013/
attachment/3e966901-
034f-418a-a439-
996c50292a11/mmc9.zip

Shin et al., 2015

Wishbone Diffusion maps https://github.com/
ManuSetty/wishbone

Setty et al., 2016

GrandPrix Gaussian
Process Latent
Variable Model

https://github.com/
ManchesterBioinference/
GrandPrix

Ahmed et al., 2019

SCUBA t-SNE https://github.com/gcyuan/
SCUBA

Marco et al., 2014

DPT Diffusion maps https://media.nature.com/
original/nature-assets/
nmeth/journal/v13/n10/
extref/nmeth.3971-S3.zip

Haghverdi et al.,
2016

TSCAN PCA https:
//github.com/zji90/TSCAN

Ji and Ji, 2016

Monocle2 RGE http://cole-trapnell-lab.
github.io/monocle-release/

Qiu et al., 2017

Slingshot Any https://github.com/
kstreet13/slingshot

Street et al., 2018

CellRouter Any https://github.com/
edroaldo/cellrouter

Lummertz da
Rocha et al., 2018

Due to the high noise (e.g., dropouts and uneven transcript
coverage) and low sequencing coverage of scRNA-seq data, the
splicing quantification methods initially developed for bulk RNA-
seq data are not suitable for scRNA-seq data. Since expression
dynamics is a key aspect of cell populations, it is promising
to study AS at single-cell resolution to gain insights into cell-
level isoform usage. To date, only a few number of AS detection
approaches were devised for scRNA-seq data, such as SingleSplice
(Welch et al., 2016), Census (Qiu et al., 2017), BRIE (Huang
and Sanguinetti, 2017), and Expedition (Song et al., 2017)
(Table 6). SingleSplice uses a statistical model to detect the
genes with a significant isoform usage without estimating the
expression levels of full-length transcripts. Census models the
isoform counts of each gene with a linear model as a Dirichlet-
multinomial distribution. BRIE is a Bayesian hierarchical model
for differential isoform quantification. Expedition contains a suite
of algorithms for identifying AS, assigning splicing modalities
and visualize modality changes. The AS detection approaches
specially designed for scRNA-seq data are just emerging, thus
the innovation and improvement of such methods will largely
facilitate AS exploration at the single-cell level.

On the other hand, RNA-editing is an important post-
transcriptional processing event that leads to sequence changes
on RNA molecules (Gott and Emeson, 2000). Similarly, RNA-
editing is mainly studied using bulk RNA-seq technologies but
rarely explored at the single-cell level. Currently, the limitations
of scRNA-seq largely prevented the application of RNA-editing
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TABLE 6 | Alternative splicing detection tools for scRNA-seq data.

Tools URL References

SingleSplice https:
//github.com/jw156605/SingleSplice

Welch et al., 2016

Expedition https://github.com/YeoLab/Expedition Song et al., 2017

BRIE https://github.com/huangyh09/brie Huang and Sanguinetti,
2017

Census http://cole-trapnell-lab.github.io/
monocle-release/

Qiu et al., 2017

detection to individual cells. Accordingly, with the development
of both scRNA-seq technologies and single-cell editing detection
algorithms, exploration of RNA-editing dynamics among single
cells will be feasible. Notably, both AS and RNA-editing are
mainly suitable for the data generated by scRNA-seq protocols
that can sequence full-length transcripts such as Smart-seq2 and
MATQ-seq rather than 3′-end scRNA-seq approaches.

ALLELIC EXPRESSION EXPLORATION
WITH SCRNA-SEQ DATA

Diploid species contain two sets of chromosomes that are
separately obtained from their parents. Allelic expression analysis
can reveal whether genes are equally expressed between parental
and maternal genomes. For autosomes, the parental and
maternal expression are generally expressed equally, and aberrant
expression of parental or maternal genome may cause certain
diseases (McKean et al., 2016). Up to now, few methods were
developed to detect the genome-wide allelic expression profile
of genes based on scRNA-seq data. One main caution of allelic
expression calling is that the high dropouts of scRNA-seq data
may introduce many false positives. Deng et al. (2014) used a
series of stringent criteria to filter the potentially false allelic calls
resulted from the technical variability of scRNA-seq in studying
allelic expression profile of mouse preimplantation embryos.
The robustness of this strategy was further demonstrated in
analyzing the dynamics of X chromosome inactivation along
developmental progression using mouse embryonic stem cells
(Chen et al., 2016a). SCALE was recently proposed to classify
the gene expression into silent, monoallelic and biallelic, states
by adopting an empirical Bayes approach (Jiang et al., 2017).
We believe that allelic expression analysis at single-cell level can
largely facilitate the understanding of the underlying mechanisms
of dosage compensation and related diseases. It is worth noting
that allelic expression investigation at single-cell level also needs
the whole-transcript scRNA-seq and is mainly applicable to
the organism that has available paternal and maternal single
nucleotide polymorphism (SNP) information.

GENE REGULATORY NETWORK
RECONSTRUCTION

Gene regulatory network inference has been widely conducted
in numerous bulk RNA-seq studies, while scRNA-seq also

provides great potential for such analysis. For bulk RNA-seq
data, networks are usually constructed from a number of samples
using the tools like weighted gene co-expression network analysis
(WGCNA) (Langfelder and Horvath, 2008; Chen et al., 2017a).
A basic assumption is that the genes highly correlated in
expression could be co-regulated. Because such an analysis is
unable to determine the regulatory relationship, the resulting
networks are typically undirected. Theoretically, the cells of
scRNA-seq can be treated as the samples of bulk RNA-seq,
then similar approaches are applicable to scRNA-seq data for
constructing gene regulatory network.

Network inference of scRNA-seq data may reveal meaningful
gene correlations and provide biologically important insights
that could not be uncovered by population-level data of bulk
RNA-seq. However, due to the technical noise of scRNA-seq and
different subpopulations or sates of cells, attention should be paid
to network reconstruction. To reduce spurious results, network
inference should be carried out on each subpopulation or the
cells with the same stage. Recently, Aibar et al. (2017) developed
SCENIC method to reconstruct the gene regulatory network from
scRNA-seq data and they showed that SCENIC can robustly
predict the interactions between transcription factors and target
genes. PIDC is another software designed to infer gene regulatory
network from single-cell data using multivariate information
theory (Chan et al., 2017). Such network inference tools facilitate
the identification of expression regulatory network from single-
cell transcriptomic data and provide critically biological insights
into the regulatory relationships between genes.

CONCLUSION

In the past 10 years, a great advancement has been achieved
in scRNA-seq and a variety of scRNA-seq protocols have been
developed. The development and innovation of scRNA-seq
largely facilitated single-cell transcriptomic studies, leading to
insightful findings in cell expression variability and dynamics.
Moreover, the throughput of scRNA-seq has significantly
increased with the exciting progress in cellular barcoding
and microfluidics. Meanwhile, scRNA-seq methods that can
be used for fixation and frozen samples have also been
proposed recently, which will greatly benefit the study of highly
heterogeneous clinical samples. However, currently available
scRNA-seq approaches still have a high dropout problem,
in which weakly expressed genes would be missed. The
improvement of RNA capture efficiency and transcript coverage
will definitely reduce the technical noise of scRNA-seq. Moreover,
since most of current scRNA-seq methods mainly capture
polyA+ RNAs, the development of protocols that can capture
both polyA+ and polyA− RNAs (such as MATQ-seq) will enable
comprehensive investigation of both protein-coding and non-
coding gene expression dynamics at single-cell resolution.

Since the noise of scRNA-seq data is high, it is crucial
to use appropriate methods to overcome the problem in
analyzing scRNA-seq data. QC is necessary to exclude those low-
quality cells to avoid involving artifacts in data interpretation.
Furthermore, batch effect correction (if need), between sample
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normalization and imputation are also important and should be
conducted before cell subpopulation identification, differential
expression calling, and other downstream analyses. Additionally,
factors such as cell size and cell cycle state could play
important roles in cell variability for certain types of cells,
such biases are also need to be considered. Although an
increasing number of methods have been specially designed to
interpret scRNA-seq data, advances of novel methods that can
effectively handle the technical noise and expression variability
of cells are still required. Specifically, the approaches that
can accurately analyze AS and RNA-editing with scRNA-
seq data are highly useful to unravel post-transcriptional
mechanisms in individual cells. Overall, bioinformatics analysis
of scRNA-seq data is still challenging, special attention should
be paid in data interpretation, and more efficient tools
are in urgent need.

Collectively, scRNA-seq and its related computational
methods largely promote the development of single-cell

transcriptomics. The continuous innovation of scRNA-seq
technologies and concomitant advances in bioinformatics
approaches will greatly facilitate biological and clinical
researches, and provide deep insights into the gene expression
heterogeneity and dynamics of cells.
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Single-cell RNA-seq (scRNAseq) is a powerful tool to study heterogeneity of cells. 
Recently, several clustering based methods have been proposed to identify distinct cell 
populations. These methods are based on different statistical models and usually require 
to perform several additional steps, such as preprocessing or dimension reduction, 
before applying the clustering algorithm. Individual steps are often controlled by method-
specific parameters, permitting the method to be used in different modes on the same 
datasets, depending on the user choices. The large number of possibilities that these 
methods provide can intimidate non-expert users, since the available choices are not 
always clearly documented. In addition, to date, no large studies have invistigated the role 
and the impact that these choices can have in different experimental contexts. This work 
aims to provide new insights into the advantages and drawbacks of scRNAseq clustering 
methods and describe the ranges of possibilities that are offered to users. In particular, 
we provide an extensive evaluation of several methods with respect to different modes 
of usage and parameter settings by applying them to real and simulated datasets that 
vary in terms of dimensionality, number of cell populations or levels of noise. Remarkably, 
the results presented here show that great variability in the performance of the models 
is strongly attributed to the choice of the user-specific parameter settings. We describe 
several tendencies in the performance attributed to their modes of usage and different 
types of datasets, and identify which methods are strongly affected by data dimensionality 
in terms of computational time. Finally, we highlight some open challenges in scRNAseq 
data clustering, such as those related to the identification of the number of clusters.

Keywords: single-cell RNA-seq, clustering methods, benchmark, parameter sensitivity analysis, high-dimensional 
data analysis

INTRODUCTION
Single-cell RNA sequencing (scRNAseq) has emerged as an important technology that allows 
profiling gene expression at single-cell resolution, giving new insights into cellular development 
(Biase et al., 2014; Goolam et al., 2016), dynamics (Vuong et al., 2018; Farbehi et al., 2019), and 
cell composition (Darmanis et al., 2015; Zeisel et al., 2015; Segerstolpe et al., 2016). Although the 
scRNAseq analysis inherits many features from bulk RNA-seq approaches, the algorithms require 
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constant adaptation due to the several types of challenges 
present in scRNAseq data (Kiselev et al., 2019). For example, 
current droplet-based technologies allow measuring hundreds of 
thousands of cells which greatly exceeds the number of samples 
typically handled by bulk RNA-seq protocols. The low amount 
of measured RNA transcripts per cell and stochastic nature of 
the genes expression can also introduce missing information 
about gene profiles (dropouts). The scRNAseq data specific noise 
and the increasing number of scRNAseq protocols differing in 
accuracy and scalability (Svensson et al., 2017; Svensson et al., 
2018) make the systematic data analysis even more challenging.

Over the last few years, a number of computational algorithms 
have been proposed to analyze scRNAseq data, focusing on 
different aspects (Chen et al., 2019). In particular, a growing class of 
computational methods is being developed for identifying distinct 
cell populations (Andrews and Hemberg, 2018). These methods are 
based on various types of clustering techniques, which aim to divide 
cells into groups that share similar gene expression patterns. In this 
way, each group can be associated with a specific cell type or subtype 
on the basis of well-known markers, or novel cell subtypes can be 
identified. However, before applying the clustering algorithm, such 
methods often require to perform a series of mandatory or optional 
steps that include preprocessing, filtering or dimension reduction 
(Luecken and Theis, 2019). In several cases, such steps can be 
adapted by the user by choosing an appropriate set of parameters. 
Thus, methods turn to be very heterogeneous in the way they model 
data and perform the individual steps. Differences arise at each stage 
of the analysis and are not yet fully understood. For example, some 
algorithms work with raw count dataset (Zurauskiene and Yau, 
2016; Lin et al., 2017; Sun et al., 2018), others require normalized 
gene expression values (Macosko et al., 2015; Ji and Ji, 2016; 
Senabouth et al., 2019) or can handle both formats (Yip et al., 2017; 
Qiu et al., 2017; Kiselev et al., 2017; Wang et al., 2017). Some of the 
tools do incorporate an additional method-specific preprocessing 
step in terms of filtering or normalization (Senabouth et al., 2019; 
Yip et al., 2017), to remove noise present in the data, other require 
such step to be done externally before the execution of the method 
(Julia et al., 2015). In addition to preprocessing, many methods 
often utilize dimension reduction techniques, such as Principal 
Component Analysis (PCA) or t-Distributed Stochastic Neighbor 
Embedding (tSNE), in order to reduce the high-dimensional space 
(expression of tens of thousands of genes) prior to clustering (Julia 
et al., 2015; Herman and Grün, 2018; Ren et al., 2019).

Another great difference is given by the specific clustering 
techniques implemented in each method. Some of the methods 
use partitioning algorithms (Kiselev et al., 2017; Wang et al., 
2017) in order to infer distinct cell populations, others are based 
on hierarchical clustering (Senabouth et al., 2019; Lin et al., 2017), 
graph theory (Macosko et al., 2015) or density based-approach 
(Ester et al., 1996). There is also a growing class of model-based 
algorithms (Fraley and Raftery, 2002; Ji and Ji, 2016; Sun et al., 
2018) which utilize probabilistic properties of a given model to 
account for distinct challenges present in the data. Moreover, some 
methods require the number of cell populations to be known in 
advance (Zurauskiene and Yau, 2016; Sun et al., 2018), while 
others estimate the optimal value with an external procedure or as 
part of the clustering inference (Macosko et al., 2015; Senabouth 

et al., 2019; Ren et al., 2019). The available methods also vary in 
terms of the programming language they have been implemented 
in (i.e. R, Matlab, Python), computational cost and other system 
requirements.

All of the mentioned variations across clustering pipelines 
affect the performance of the methods. Currently, there is a 
limited amount of studies that infer clustering performance and 
robustness under various data-driven scenarios (Freytag et al., 
2018; Duò et al., 2018; Tian et al., 2019). The main purpose of 
existing studies is to investigate the performance of the methods 
limited to a selected parameter setting. Such limitation leads 
to a narrow view on the performance of the methods making 
it difficult to explore their full potential and identify the open 
challenges. For example, some algorithms provide multiple 
possibilities in the choice of parameters (Julia et al., 2015; Qiu 
et al., 2017; Herman and Grün, 2018; Ren et al., 2019) that can 
allow the user to adapt/modify the main method in each step. 
At the same time, the selection of parameter settings can be 
crucial in various data-driven conditions. The performance of 
the algorithms can also depend on the presence or absence of any 
preprocessing steps, either external or method-specific, carried 
out prior to clustering. Since both, parameter settings and data 
preprocessing can greatly affect the clustering result, we decided 
to investigate both aspects on the performance of the methods by 
carrying a comprehensive benchmark of the existing clustering 
methods and performing parameter sensitivity analysis.

For that purpose, we first described different modes of usage 
and parameter settings of 13 among the most widely used 
scRNAseq clustering methods implemented in R, then we applied 
them on a large set of real scRNAseq and simulated datasets. In 
order to fully understand the potential of each method, we tested 
them varying a wide range of available parameter settings which 
greatly expands the number of possible results. Through the 
analysis pipeline, we evaluated the performance of the methods 
with respect to several factors. First, we divided the real datasets 
into two groups, those that were expressed in the raw counts 
and those expressed on normalized fragments per kilobase 
of transcript per million mapped reads (FPKM) or reads per 
kilobase of transcript per million mapped reads (RPKM) counts. 
On the first group, we evaluated the performance of the methods 
on three data basic preprocessing types (not preprocessed counts, 
filtered counts, filtered and normalized counts). On the second 
group, we evaluated the performance of the methods depending 
on a various number of dimensions supplied to dimension 
reduction techniques prior to clustering. Synthetic datasets were 
used to prove the capacity of each method in handling varying 
dataset dimensions that can additionally be diverse in the number 
of simulated cell groups and the type of group balance. In the 
simulation, we also accessed the accuracy of the methods in 
recovering cell population structure in the presence of noise. The 
type of noise that we simulated were dropouts and overlapping 
cell populations which are key features of scRNAseq datasets. In 
all cases, we evaluated the performance of the methods in terms 
of i) Adjusted Rand Index (ARI) index, ii) accuracy of methods 
in estimating the correct number of clusters, iii) running time.

Overall, this work aims to provide new insights into the 
advantages and drawbacks of several scRNAseq clustering methods, 
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by describing the ranges of possibilities that are offered to users and 
the impact that these choices can have on the final results. We also 
tried to identify some open challenges for future research that still 
need to be faced when doing the population inference.

MATeRIAlS AND MeThODS

Real Datasets
In order to evaluate the performance of the clustering methods 
considered in this study we used 17 real scRNAseq datasets 
popular in the literature and listed in Table 1. To prepare the 

gene expression matrix for clusterization, we followed the main 
instructions for data import and processing from the online 
repository https://hemberg-lab.github.io/scRNA.seq.datasets/.

The selected scRNAseq datasets vary in terms of organisms, 
tissues under study and experimental protocols. As illustrated in 
Table 1, some datasets were profiled using 3′ or 5′ tag and droplet-
based approaches (such as inDrop), others using full-length 
plate-based approaches, such as Smart-Seq protocols. Moreover, 
depending on the used platform, each study investigates a different 
number of cells and data are subjected to a different proportion 
of dropouts. Depending on the protocol, count matrices were of 
different types (see Table 2) including Raw unique molecular 

TABle 2 | Brief description of the main features of each real dataset considered in this study. 

Single cell dataset Data type Nr cells Nr cell populations Publication

Baron2016_m Raw UMI counts 1886 13 Baron et al. (2016)
Klein2015 Raw UMI counts 2717 4 Klein et al. (2015)
Zeisel2015 Raw UMI counts 3005 9 Zeisel et al. (2015)
Darmanis2015 Raw read counts 466 9 Darmanis et al. (2015)
Deng2014_raw Raw read counts 268 6 Deng et al. (2014)
Goolam2016 Raw read counts 124 4 Goolam et al. (2016)
Kolodziejczyk2015 Raw read counts 704 3 Kolodziejczyk et al. (2015)
Li2017 Raw read counts 561 9 Li et al. (2017)
Romanov2016 Raw read counts 2881 7 Romanov et al. (2016)
Tasic2016_raw Raw read counts 1679 18 Tasic et al. (2016)
Deng2014_rpkm RPKM 268 6 Deng et al. (2014)
Segerstolpe2016 RPKM 3514 15 Segerstolpe et al. (2016)
Tasic2016_rpkm RPKM 1679 18 Tasic et al. (2016)
Xin2016 RPKM 1600 8 Xin et al. (2016)
Yan2013 RPKM 90 6 Yan et al. (2013)
Biase2014 FPKM 56 4 Biase et al. (2014)
Treutlein2014 FPKM 80 5 Treutlein et al. (2014)

Datasets can contain counts of 3 different types: Raw UMI counts, Raw read counts, and normalized FPKM/RPKM counts. Raw counts stands for the non-normalized counts that 
differ in terms of gene expression quantification method. FPKM/RPKM counts mean library size and gene length normalized counts. The number of reported cell populations is 
obtained from the annotation as described in the corresponding datasets publications.

TABle 1 | List of the real datasets used to perform the clustering evaluation. 

Single cell dataset Organism Cells under study Protocol Accession

Baron2016_m Mouse Pancreas inDrop GSE84133
Klein2015 Mouse Embryonic stem cells inDrop GSE65525
Zeisel2015 Mouse Cerebral cortex STRT/C1 UMI GSE60361
Darmanis2015 Human Brain SMARTer GSE67835
Deng2014_raw Mouse Preimplantation embryos Smart-Seq GSE45719
Goolam2016 Mouse Early embryos Smart-Seq2 E-MTAB-3321
Kolodziejczyk2015 Mouse Stem cells SMARTer E-MTAB-2600
Li2017 Human Colorectal tumors SMARTer GSE81861
Romanov2016 Mouse Hypothalamus Fluidigm C1 GSE74672
Tasic2016_raw Mouse Brain SMARTer GSE71585
Deng2014_rpkm Mouse Preimplantation embryos Smart-Seq GSE45719
Segerstolpe2016 Human Pancreas Smart-Seq2 E-MTAB-5061
Tasic2016_rpkm Mouse Brain SMARTer GSE71585
Xin2016 Human Pancreas SMARTer GSE81608
Yan2013 Human Preimplantation embryos Tang GSE36552
Biase2014 Mouse Embryos SMARTer GSE57249
Treutlein2014 Mouse Lung epithelial cells SMARTer GSE52583

Datasets (named by the author and date of publication) contain gene expression of cells from various organisms and tissues that have been processed by different experimental 
protocols. Protocols include 3’ or 5’ tag and droplet-based approaches (inDrop and STRT/C1 UMI), or full-length plate-based approaches, such as Smart-Seq, Smart-Seq2, 
SMARTer or Fluidigm C1. Tang protocol corresponds to mRNA-Seq assay described in (Tang et al., 2009). For more information about protocols see (Svensson et al., 2018).

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 125382

https://hemberg-lab.github.io/scRNA.seq.datasets/.
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Benchmark of scRNAseq Clustering MethodsKrzak et al.

4

identifier (UMI) counts (3 datasets), Raw read counts (7 datasets) 
and FPKM/RPKM counts (7 datasets). The raw counts (either 
UMI or read counts) consist of datasets with gene expression 
quantified in terms of the number of mapped reads (counts) and 
that have not been further processed, while FPKM or RPKM 
data are library size and gene length adjusted counts. Note that 
two datasets in Table 2, Deng2014 and Tasic2016, were of both 
types (raw read counts and FPKM/RPKM counts). Overall, the 
datasets cover various ranges of experimental complexity in 
terms of the number of sequenced cells (from tens to several 
thousands) and number of cell populations in the sample (with 
minimum of 3 and maximum of 18 number of cell populations). 
The cell populations (hidden groups to detect) can represent 
distinct cell types or cells at various time points of differentiation. 
Within this study, we will consider the cell population annotation 
(available from the corresponding datasets studies) as ground 
truth, although we are aware that there could be some errors 
in the annotations, since datasets could contain some rare cell 
subpopulations, that were not identified at the time of the study, 
or some misclassified cells.

Simulated Datasets
We evaluated methods performance also on synthetic datasets. 
The simulation study was performed using Splatter package 
(Zappia et al., 2017). Splatter allows simulating single-cell RNA 
sequencing count data with a varying number of cells and cell 
groups, with different degree of cluster separability and varying 
rate of dropouts. We designed three simulation setups that 

allowed us to investigate various aspects of the performance 
of the methods (see Figure 1). Each simulation setup has been 
repeated 5 times choosing 5 different values of the seed.

In the first simulation setup (Figure 1A), we focused on assessing 
both the scalability (the capacity of each method in handling datasets 
with an increasing number of cells) and the complexity of the 
dataset (the ability of each method when the number of true groups 
increases or when the balancing between each group is disrupted). 
For this purpose, we simulated counts using three different values 
for the number of cells: 500, 1000 and 5000; three values for the 
number of groups: 4, 8, 16 and two possibilities for the number of 
cells in each of the group: balanced and unbalanced group size. In 
each of the modes, we set the number of genes to 1000. Therefore, 
the resulting 18 simulated datasets represent different levels of data 
complexity and size for the clustering task.

In the second simulation setup (Figure 1B), we fixed dataset 
dimension (1000 cells, 1000 genes) as well as the cell groups 
(fixed to four groups balanced in sizes) and we investigated the 
performance of each method with respect to the group separability 
ranging from poorly to well-separated groups. In such setup, we 
varied the probability of a gene to be differentially expressed 
to 0.1, 0.5, and 0.9, to obtain 3 simulated datasets: expression 
probability close to 1 gives highly separable cell groups that 
should be less difficult to be detected by any clustering algorithm.

Finally, in the third simulation setup (Figure 1C), we 
investigated the performance of clustering methods in the 
presence of various rates of missing information. With the 
number of cells and genes the same as before (1000) and cell 
groups fixed to four, we varied the rate of zero counts by setting 

FIgURe 1 | Data simulation scheme. (A) Simulation of 18 datasets using Setup 1. Simulated datasets are of various dimensions (number of cells), number of cell 
groups and proportion of cells within each group (balance or unbalance group sizes). (B) Simulation of 3 datasets using Setup 2. Simulated datasets vary in terms of 
separability between the groups (from poorly to well separable). This feature has been controlled by setting the de.prob parameter of Splatter simulation function to 
three values: 0.1, 0.5 and 0.9. (C) Simulation of 4 datasets using Setup 3. In this simulation setup, we used one dataset to create 3 others by placing an increasing 
number of zeros (controlled by dropout.mid parameter) on the count matrix. We highlighted by red color three identical datasets across all simulated setups. Each 
simulation setup has been repeated with 5 different values of the seed.
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the midpoint parameter (drop.mid) for dropout logistic function 
to 0, 2, 4, and 6. In this way, we obtained 4 datasets with varying 
percentage of dropouts from 20% to 90%.

In each of the 5 runs of simulation, we have kept the synthetic 
datasets, highlighted in red in Figures 1A–C (i.e., those 
corresponding to 1000 cells, 1000 genes, 4 groups, size-balanced, 
de.prob = 0.5 and drop.mid = 0), identical across all three setups 
for easier direct comparison.

Analysis Pipeline
In order to analyze real and simulated data, we used the procedure 
illustrated in Figure 2. First, all 17 real datasets (Raw UMI/Raw 
read counts and FPKM/RPKM counts) underwent the same quality 
control by filtering not expressed genes and low-quality cells (see 
Figures 2A, B) to remove potential issues from further analysis.

For the raw datasets, we considered three types of 
basic preprocessing before applying the specific clustering 
methods (Figure 2A). After the basic preprocessing, the 
clustering methods were applied with specific combinations 
of the parameters. Note that only a subset of methods (and 
combination of parameters) can be considered for filtered and 
normalized counts.

The FPKM/RPKM counts underwent a different basic 
preprocessing step (see Figure 2B) and were then directly 
clustered. To investigate the influence of the choice in the number 
of retained dimensions on methods performance, we considered 
only those methods and those combinations of parameters that 
allowed us to set the number of reduced dimensions.

In contrast to real data, simulated counts were directly used for 
clustering (see Figure 2C) where all methods and combination of 
parameters have been considered in the evaluation.

FIgURe 2 | Clustering analysis pipeline. (A) (B) Real data analysis is divided into three steps: Quality control, basic preprocessing and clustering. (C) Clustering is 
directly applied to simulated datasets. Note that not all the parameter combinations have been applied to each dataset type. For filtered and normalized raw counts 
we excluded parameter combinations that use an additional method specific preprocessing. For FPKM/RPKM counts we used only those methods that do not 
allow for additional preprocessing (none) and provide option to set the number of reduced dimensions (TRUE).

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 125384

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Benchmark of scRNAseq Clustering MethodsKrzak et al.

6

More details about data quality control, basic preprocessing of 
Raw and FPKM/RPKM counts, methods and parameter settings 
are described in the next sections.

Quality Control of Real Datasets
All real datasets underwent an identical quality control step using 
the scater package (McCarthy et al., 2017). Firstly, we removed 
features with duplicated gene names and/or not expressed across 
all the cells as they do not include any useful information. Then, 
we performed quality control on the cells excluding those with 
the total number of expressed genes and the total sum of counts 
more than 3 median absolute deviations below the median across 
the genes [as suggested in scater documentation (McCarthy 
and Lun, 2019)]. Cells with the low amount of expressed genes 
and few counts are likely to be stressed or broken and thus 
should be removed from the analysis. The resulting dimensions 
of real datasets before and after quality control are given in 
Supplementary Tables 1 and 2.

Basic Preprocessing of Real Datasets
After quality control, we applied a basic preprocessing step 
that mimics some of the most commonly used procedures 
typically applied before clustering scRNAseq data (McCarthy 
et al., 2017). In the case of Raw UMIs and Raw read counts, 
we considered three independent types of basic preprocessing: 
no preprocessing, filtering, filtering and normalization (see 
Figure 2A). Clearly, in the first case, no further operations 
were performed on the raw counts. In the second case, we used 
scater to remove lowly expressed genes that are genes with 
average expression count (adjusted by library size) equal to 
0, where for the library size we mean total sum of the counts 
per cell. Note that this filtering step did not affect some of 
the datasets including Baron2016_m, Klein2015, Zeisel2015, 
and Romanov2016 (see Supplementary Table 1). In the third 
type, we first applied the filtering as described above, then we 
performed normalization. Both, Raw UMI counts and Raw read 
counts were normalized by scran package using deconvolution 
method. The deconvolution method normalizes data by cells-
pooled size factors that account for dropout biases. More 
details about raw dataset dimensions before and after filtering 
are given in Supplementary Table 1. For illustrative purpose, 
Supplementary Figure 1 reports one realization of the tSNE 
projections of the 10 raw datasets after quality control step that 
were colored by the corresponding cell group annotations. The 
inspection of the figure shows the heterogeneity of the datasets 
with respect to number of cells, number of cell groups and their 
separation.

In case of FPKM/RPKM counts, the basic preprocessing 
involved the same gene filtering as for the raw counts followed 
by high variable gene selection (HVG) (Figure 2B). To extract 
the most informative genes, we used Seurat package (Macosko 
et al., 2015) that defines most variable genes based on mean-
variance dispersion. The dimensions of datasets before and 
after basic preprocessing are given in Supplementary Table 
2. Supplementary Figure 2 shows one realization of the tSNE 
projections (colored by the corresponding cell group annotations) 

of the 7 FPKM/RPKM datasets after quality control and basic 
preprocessing step.

Compared Methods and Modes of Usage
In this study, we evaluated 13 different methods aimed to identify 
cell populations from scRNAseq data. Table 3 lists the methods 
that we have considered. For the sake of code compatibility 
and transparency, we restricted our choice to the methods 
implemented in the R programming language. Some of the 
methods have multiple releases and versions. In this evaluation, 
we only tested the releases with versions reported in Table 3. 
For the sake of completeness, we stress that recently some of the 
methods listed in the table underwent to a major update which 
could have partially improved their performance.

Most of the methods (i.e., all except DIMMSC and pcaReduce) 
considered in this study can be applied by setting different 
parameter combinations, thus providing potentially different 
results. Such combinations of parameters allow the user to tune 
different modes of usage, such as including or not an additional 
preprocessing step, including or not a dimension reduction 
procedure, using different criteria for choosing the suitable 
data dimension, applying different clustering algorithms within 
the same method, setting or estimating the number of clusters. 
Table 4 shows a detailed series of parameters that the user can 
choose with possible parameter choices. Each row defines valid 
parameter settings for the specific method. Within the same 
row, the total number of combinations is given by the product 
of each possibility (the last column of Table 4 summarizes the 
number of combinations). If the method has been reported more 
than once in the table (i.e., Linnorm and sscClust), it means that 
some of the parameters worked only with a subset of the settings 
(i.e., not in a full combinatorial way). By considering all possible 
combinations, we obtained 143 potential different modes of 
usage of the 13 tested methods.

As shown in Table 4, eight methods (corresponding to 43 
parameter combinations) might incorporate an additional 

TABle 3 | List of methods compared in the benchmark. 

Method Version Class of clustering 
technique

Publication

ascend v0.9.0 Hierarchical Senabouth et al. (2019)
CIDR v0.1.5 Hierarchical Lin et al. (2017)
DIMMSC v0.2.1 Model-based Sun et al. (2018)
Linnorm v2.6.1 Partitioning Yip et al. (2017)
monocle3 v2.99.2 Multiple choices Qiu et al. (2017)
pcaReduce v1.0 Hierarchical Zurauskiene and Yau (2016)
RaceID3 v0.1.3 Multiple choices Herman and Grün (2018)
SC3 v1.10.1 Partitioning Kiselev et al. (2017)
Seurat v2.3.4 Graph-based Macosko et al. (2015)
SIMLR v1.8.1 Partitioning Wang et al. (2017)
sincell v1.14.1 Multiple choices Julia et al. (2015)
sscClust v0.1.0 Multiple choices Ren et al. (2019)
TSCAN v1.20.0 Model-based Ji and Ji (2016)

Versions of the R packages (methods) compared in this study. Methods are based 
on various clustering techniques that can be categorized based on the cluster-
model. Multiple choices indicate that the method allows to cluster cells with more 
than one clustering technique.
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preprocessing step (herein, denoted method specific), five 
methods do not have any specific step (herein denoted none). 
Out of the 8 methods that include the additional preprocessing 
step, four methods allow the user to decide it to apply or not 
(both settings available). Methods differ also in the dimension 
reduction step either by providing only an internal procedure 
to reduce dimensions (six methods, herein denoted internal) 
or allowing for multiple choices for this purpose (five methods, 
herein denoted with the name of the specific procedures the 
user can choose, PCA, tSNE, ICA, etc). Note that two methods, 
DIMMSC and Linnorm have to or can, respectively, work directly 
in the high-dimensional space (setting herein denoted with none) 
and one method RaceID3 uses PCA dimension reduction which 
has been not considered as an internal technique (for more details 
see methods description in Supplementary Materials). Within 
all 12 methods that incorporate the dimension reduction step, 
an internal procedure can be used for selecting the number of 
reduced dimensions (herein denoted internal). Nine algorithms 
(63 combinations) also allows to manually set the number of 
dimensions (herein denoted with TRUE). Those with both options 
give to the user the possibility of either choosing the dimension 
or using the internal procedure. In this regard, the setting FALSE 
is related to methods that do not perform dimension reduction.

Methods can be also customized by the clustering techniques 
they apply. Some of them are based on a fixed clustering technique 
(herein denoted fixed), others propose multiple choices in this 
step (herein denoted with the name of the specific technique the 
user can choose, k-means, hclust, etc). The group of methods 
with multiple clustering options include: monocle3 that offers 
two types of clustering techniques, RaceID3 that utilizes two 

partitioning algorithms and a hierarchical clustering algorithm, 
sincell and sscClust which provide more clustering options. 
Depending on the clustering technique, methods either require 
to set the number of clusters by the user (36 combinations, 
herein denoted set) or provide an internal functionality to 
estimate it (107 combinations, herein denoted estimate). For 
more details about specifications, see methods descriptions in 
Supplementary Materials.

Finally, we stress that all 13 methods (with all 143 
combinations of parameters) can be applied to non-
preprocessed or filtered Raw counts as well as simulated 
datasets (see Figure  2). To avoid performing method-specific 
normalization on already normalized data, only methods for 
which the additional preprocessing step can be set to none were 
used on filtered and normalized Raw counts (i.e., 9 methods 
with 100 combinations of parameters) (Figure 2A) or FPKM/
RPKM counts. In addition, according to Figure 2, when using 
normalized FPKM/RPKM counts, we reduced the number of 
methods and parameter combinations to those which perform 
dimension reduction step before clustering, and allow setting 
number of reduced dimensions in that step. In this way, we used 
a subset of 6 methods and 44 combinations of parameters to be 
applied on FPKM/RPKM counts (Figure 2B).

evaluation Metrics
To quantify the agreement between the partition obtained from 
the considered method and the true partition, we used a well-
known and widely used measure, the Adjusted Rand Index (ARI), 
implemented in the R package mclust (Scrucca et al., 2016). The 

TABle 4 | Valid configurations in the parameter settings for each method. 

Method Additional preprocessing Dimension 
reduction

Setting number of 
dimensions

Clustering technique Number of 
clusters

Combinations

ascend method specific internal TRUE/internal fixed estimate 2
CIDR none internal TRUE/internal fixed set/estimate 4
DIMMSC none none FALSE fixed set 1
Linnorm none/method specific tSNE/PCA TRUE/internal fixed set/estimate 16
Linnorm none/method specific none FALSE hclust set 2
monocle3 none/method specific tSNE/UMAP TRUE/internal densityPeak/louvain estimate 16
pcaReduce none internal internal fixed set 1
RaceID3 method specific PCA TRUE/internal k-medioids/k-means/hclust set/estimate 12
SC3 none/method specific internal internal fixed set/estimate 4
Seurat method specific PCA/ICA TRUE/internal fixed estimate 4
SIMLR none/method specific internal TRUE/internal fixed set/estimate 8
sincell none PCA/ICA/tSNE/

classical-MDS/
nonmetric-MDS

TRUE/internal max.distance/percent/
knn/k-mediods/ward.D

estimate 50

sscClust none iCor internal k-means/ADPclust/hclust set/estimate 6
sscClust none iCor internal SNN estimate 1
sscClust none PCA TRUE/internal k-means/ADPclust/hclust set/estimate 12
sscClust none PCA TRUE/internal SNN estimate 2
TSCAN method specific internal internal fixed set/estimate 2

We reported a set of parameters that users can tune in the method such as the additional preprocessing, the dimension reduction strategy, the number of dimensions, the 
clusterring technique and the number of clusters to obtain. In particular, for the key additional processing: none – no additional preprocessing is applied, method specific – an 
additional preprocessing is applied prior clustering (filtering and/or normalization); for dimension reduction: internal – an internal dimension reduction is applied, none – the method 
works in the original domain, PCA, tSNE, ICA, iCor or others listed by names – the user can choose a specific method to reduce the dimensionality; for number of dimensions: 
TRUE or FALSE – method allows or doesn’t allow for setting number of reduced dimensions, internal – method use an internal value for the number of dimensions; for clustering 
technique: fixed –method uses only one clustering technique, otherwise the user can choose among few options that are listed by name; for number of clusters: set or estimate – 
method allows to set or estimate number of clusters.
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values of the ARI range can be negative if the agreement of the 
partitions is worse then the agreement expected by chance, or 
between 0 and 1 for clustering better than chance. The exact 
formulation of the ARI index can be found in (Lawrence and 
Phipps, 1985).

To evaluate the accuracy of methods in estimating the 
correct number of clusters, we used symmetric log-modulus 
transformation defined as follows:

 L x sign x x( ) ( ) (| | )= ∗ +log10 1  (1)

where x is the difference between the estimated number of 
clusters and the true number of cell populations in a given dataset. 
The positive values of log-modulus transformation mean that 
the number of estimated clusters was higher than the number 
of true cell populations. Negative values indicate that methods 
underestimate the number of clusters whereas zero values denote 
the equality between the number of estimated clusters and the 
number of true cell populations.

To identify significant differences in methods performance 
(ARI Index) when applied after different basic preprocessing 
types, we used hypothesis testing procedures implemented in 
stats R package (Hollander and Wolfe, 1973). The Kruskal-
Wallis rank sum test was used to assess the difference in 
methods performance as we vary the basic preprocessing 
(among QC, QC & FILT, QC & FILT & NORM). The Wilcoxon 
signed-rank test was used to infer the differences in accuracy 
with respect to two data basic preprocessing types (QC, QC & 
FILT). In each context, we computed the Benjamini-Hochberg 
adjusted p-values (Benjamini and Hochberg, 1995) to correct 
for multiple comparisons.

Finally, to measure the computational time required by each 
method to complete its task, we used Sys.time function from R 
that allows reporting time when the method starts and finishes 
the script. The difference between those time points constituted 
the computational time of the method in running dataset 
analysis. Note that computational times have been reported in 
the unit of minutes followed by log(t+1) transformation, where 
t is the running time in minutes, and include all the steps 
that the method needs to cluster a dataset (except data basic 
preprocessing) together with the loading of the required packages 
and package dependencies.

Implementation
This clustering benchmark study was implemented in the 
R programming language and scripts necessary for the 
reproducibility were deposited at the time of publication on 
the GitHub page: https://github.com/mkrzak/Benchmarking_
Clustering_Methods_scRNAseq. The repository stores codes for 
data import, processing, and analysis as well as the information 
about system requirements and packages to be installed. When 
performing the analysis, additional HTML reports are produced 
with a detailed description of data analysis steps. Note that 
apart from the required methods, the analysis scripts call for 
other R packages used in plotting and managing R objects. The 
scripts have been tested on R version 3.5.1 and machine with 

specifications—Intel Core i7, 4.00 GHz × 8 and 24 GB RAM 
which are the minimum system requirements for the analysis.

Moreover, for the sake of completeness and to ensure 
the reproducibility of our study, we deposited the real and 
simulated datasets on the following GitHub pages: https://
github.com/DataStorageForReproducibility/Real_data_for_
benchmark_reproducibility and https://github.com/
DataStorageForReproducibility/Simulated_data_for_benchmark_
reproducibility. Both directories include. RData files as 
SingleCellExperiment class objects that store the count matrices and 
the corresponding cell group annotations.

In the clustering benchmark, we set the seed for generating 
pseudo-random numbers globally and applied it to the execution 
of any method in order to assure the stability of the solutions and 
reproducibility of the results. Note that, since the scRNAseq R 
packages we evaluated are often under continuous development, 
other version of the methods (R packages) than those reported 
in Table 3, might output slightly different results.

ReSUlTS
Results are organized as follows. We first illustrate the 
performance of the evaluated methods on the 10 raw datasets, 
then on the 7 normalized FPKM/RPKM counts. Finally, we finish 
the summary of the main findings obtained on the simulated 
datasets in the 3 setups described in Figure 1.

Within this paper, methods/parameter combinations are 
referred as string obtained as a concatenation of keys separated 
by underscores. The concatenation takes the name of the method, 
the type of additional preprocessing, the dimension reduction 
technique, the setting of the number of dimensions, the clustering 
technique and the number of clusters. Each of these keys can take 
the values reported in Table 4.

Methods Performance on Raw UMI and 
Raw Read Counts
As mentioned, we independently applied all 13 methods 
(corresponding to 143 parameter combinations) to the 10 raw 
counts datasets after using two basic preprocessing types (QC, 
QC & FILT). Then, we applied only 9 methods (corresponding 
to a subset of 100 parameter combinations) to the same datasets 
after applying quality control, filtering and normalization 
(see the scheme illustrated in Figure 2). In the latter case, 
the 9 methods are those that allow the user to choose none as 
additional preprocessing to avoid renormalization of already 
normalized counts (see Table 4). To compare the methods across 
the basic preprocessing procedures, we first show the results 
corresponding to the combinations that were applied to all three 
basic preprocessing procedures, then the remaining methods/
combinations applied only to QC and QC & FILT data.

Note that some of the methods/parameters combinations 
failed to cluster some datasets (such cases are marked in grey 
in Supplementary Figures 3 and 4) due to the errors occurred 
during their execution. The most frequent error messages 
were reported in Supplementary Table 3, for Data type = 
“Raw counts”. In particular, SIMLR, DIMMSC and Linnorm 
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encountered failures in a limited number of cases, therefore we 
did not consider such datasets in the evaluation of the methods. 
By contrast, sincell (when ICA was chosen for dimension 
reduction) reported a significant number of failures, therefore 
we did not consider such combinations of parameters in the 
evaluation of sincell. Note that this will limit the overall number 
of parameter combinations from 143 to 133 (90 combinations 
applied after all three types of basic preprocessing, 43 applied to 
QC and QC & FILT data, only).

Overall Accuracy
Figure 3 shows the performance of the 9 methods (90 
parameter combinations out of 100) in terms of ARI evaluated 
across all 10 raw datasets and organized with respect to the 
type of basic preprocessing. Analogously, Figure 4 shows the 
same results corresponding to the remaining 8 methods (43 
parameters combinations) independently applied after two basic 

preprocessing types. To evaluate the overall accuracy, we first 
inspected the results regardless of the type of basic preprocessing.

From Figures 3 and 4, we can observe that, most of the 
methods/parameter combinations report a great variability in their 
performance across the different datasets which proves no all-time 
winner across the entire set of cases we have analyzed. Some of the 
methods still performed relatively well (i.e., with most of the results 

FIgURe 3 | Overall accuracy of methods applied to Raw counts. ARI 
accuracy for 9 methods with 90 parameter combinations out of 100, 
independently applied to the 10 raw datasets after the three basic 
preprocessing types (QC, QC & FILT, QC & FILT & NORM). Box colors 
distinguish the different methods, although applied with different parameter 
combinations. Superimposed as reference, a red dashed line at ARI = 0.5.

FIgURe 4 | Overall accuracy of methods applied to Raw counts. ARI 
accuracy for remaining 8 methods with 43 parameter combinations, 
independently applied to the 10 raw datasets after two basic preprocessing 
types (QC, QC & FILT). Box colors distinguish the different methods, although 
applied with different parameter combinations. Superimposed as reference, a 
red dashed line at ARI = 0.5.
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above ARI = 0.5) regardless the preprocessing type. This group 
includes CIDR, Linnorm (with some combinations of parameters), 
SC3 (when set is chosen in number of clusters), some combinations 
of sscClust (i.e., when iCor is used for dimension reduction) and 
TSCAN. On the other hand, few other methods were reporting very 
poor performance. For example, one of the poorest performance was 
observed in sincell (with many parameter combinations), ascend, 
DIMMSC, pcaReduce and Seurat (only when non-internal is chosen 
for the number of reduced dimensions). Although sincell performed 
generally poor, the method also showed good performance for 
few datasets (see, the results over individual datasets showed in 
Supplementary Figure 3).

The analysis of Figures 3 and 4 also shows that the performance 
of some methods strongly depends on the particular choice of the 
parameter settings, i.e. sscClust, Linnorm or Seurat being those 
whose performance strongly rely on that option. We found such result 
partially ignored in previous studies, therefore we will investigate it 
in more detail in Effect of Parameters Settings on Accuracy.

Accuracy in Estimating the Number of Clusters
In order to evaluate the accuracy of a method in estimating 
the correct number of populations, we used log-modulus 
transformation in Eq. 1, and we limited the analysis to the 107 
methods/parameter combinations that allow setting the option 
estimate for choosing the number of clusters (see Table 4).

Figures 5 and 6 show the results, respectively for the 69 
methods/parameters combinations applied after all three types 
of preprocessing procedures (i.e., we excluded 10 combination 
of sincell that reported frequent failtures), and for the remaining 
28 methods/parameter combinations applied after two basic 
preprocessing steps.

We observed that most of the methods/parameter combinations 
either under or overestimated the number of clusters often 
in a systematic way. In particular, boxes below and above the 
dashed lines represent parameter combinations which under or 
overestimated the number of clusters. There are also methods, such 
as CIDR, some combinations of Linnorm, RaceID3 and TSCAN, 
that often provide less biased estimates. We also observed that the 
estimates strongly depend on the specific clustering technique 
used, as for monocle3, sincell and RaceID3 method, or dimension 
reduction applied, as for Linnorm. The group of methods that 
underestimated number of clusters includes monocle3 (when 
densityPeak is used for clustering), SIMLR method, sincell 
(with k-medoids and ward.D chosen as clustering techniques), 
all combinations of sscClust except SNN and RaceID3 (when 
k-means was applied). A special case of overestimating the number 
of clusters method was observed with sincell where a large number 
of cluster was often returned. For example, sincell used with max.
distance technique always returned a number of clusters equal to 
the number of cells in the dataset whereas in combination with 
knn it also returned a very large number of clusters.

Effect of Data Basic Preprocessing on Accuracy
We found that most of the methods performed similarly when 
changing the preprocessing procedures (see Figures 3 and 4), 
although Supplementary Figures 3 and 4 showed that some 
of them (i.e., Linnorm, monocle3, sincell and sscClust) present 

slight variability in the performance when data underwent to 
different preprocessing. However, Kruskal-Wallis rank sum test 
did not identify any significant difference in the performance of 
the methods with respect to the three types of basic preprocessing 
(QC, QC & FILT, QC & FILT & NORM) and Wilcoxon signed-
rank test did not identify any significant difference associated to 
the two types of basic preprocessing (QC, QC & FILT).

Effect of Parameter Settings on Accuracy
As mentioned above, Figures 3 and 4 clearly shows that the 
performance of several methods depends much more on the 
choice of parameters than on the type of basic preprocessing.

To better investigate this, we computed the PCA of the ARI 
matrix obtained using the 133 methods/combination as variables 
and the 10 raw datasets as samples. Figure 7 shows the results 

FIgURe 5 | Estimation of the number of clusters for methods applied to Raw 
counts. Boxplots of L in Eq. 1 for the subset of methods (i.e., 69 parameter 
combinations) that allows to estimate the number of clusters (and with none 
preprocessing). Superimposed as a reference, a red dashed line at L = 0. 
Parameter combinations with difference below or above 0 resulted into under 
or overestimation of the number of clusters, respectively.
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when the clustering methods were applied to QC & FILT 
preprocessed data (the figures after the other preprocessing types 
are very similar, not shown for brevity). Each point depicted 
in the PCA space represents a particular methods/parameter 
combination. Therefore, points that are close in the PCA 
space have similar performance across the 10 datasets. From 
Supplementary Figure 5 we can see that the first component is 
strongly positively correlated with the performance, therefore 
methods located on the right side of the figure tends to have 
better performance than those located on the left side, while the 
second component is not significantly correlated with the ARI. 
Each panel of Figure 7 represents the same PCA projection 
colored by the methods and shaped by one of the parameters of 
interest. The effect of parameters changes in the performance of 

a given method is represented through the spread of the points 
in the same color. Note that DIMMSC and pcaReduce have only 
one valid parameter combination thus we do not discuss them in 
this section, although they are depicted in the figure.

Overall, Figure 7 confirms the poor performance of sincell 
and the good performance of SC3, CIDR, TSCAN, and some 
combinations of Linnorm, as well as the strong impact of 
parameters setting for many methods (i.e., sscClust, Linnorm, 
Seurat, SIMLR).

In particular, the analysis of Figure 7A shows that the 
performance strongly depends on whether the number of 
clusters is estimated or not. Not surprisingly, when using the true 
number of clusters (parameter set) the performance is better for 
most of the methods compared to when estimating it (parameter 
estimate). However, there are few methods that report good 
overall performance also when the number of clusters is 
estimated (see for example, CIDR, monocole3 and sscClust).

In the same spirit, Figure 7B illustrates the effect of an 
additional preprocessing (that can be either method specific or 
none) on the methods performance. The figure does not indicate 
any global difference, but still pointed-out some methods specific 
variability (i.e. SIMLR showed significantly improved accuracy 
after such step).

We also superimposed other features, such as dimension 
reduction or clustering techniques (not shown for brevity). Since 
such parameters can assume multiple values, the figures do not 
allow to identify any suggestion that works well for all methods. 
However, such analysis allowed us to recognize i.e., sscClust with 
iCor and Seurat with internal number of reduced dimensions, as 
one of the good performing combinations.

Computational Time
We compared run times of the methods across all 10 raw datasets 
in order to assess their scalability and identify potential issues 
related to a specific dataset.

Figure 8 reports execution time in minutes on a log plus 
one scale for the methods applied to QC & FILT preprocessed 
datasets. As a reference, we superimposed on the figure dashed 
lines at 1, 10, 60 min, and 10 hours. Overall, computational 
times varied from a few seconds to tens of minutes or till several 
hours (at least for some datasets). We distinguish methods 
that were consistently fast (showing good scalability), methods 
requiring longer but still reasonable run time with increased 
data size (showing limited scalability) and methods requiring 
significant execution time at least in some cases (showing 
either poor scalability or problems related to the analysis of a 
specific dataset). ascend, CIDR, monocle3, pcaReduce, RaceID3 
(with non-internal number of dimensions), Seurat (with PCA 
dimension reduction), sincell, sscClust and TSCAN were among 
the fastest and across the analyzed datasets. Therefore, they 
were assigned to the first group (with average run time below 2 
minutes and maximum time of about 10 minutes). Linnorm and 
SC3 were assigned to the second group (with average run time 
about 5 minutes and maximum time between 20 minutes and an 
hour). Other methods such as DIMMSC, SIMLR, RaceID3 (with 
internal number of dimensions), Seurat (with ICA dimension 
reduction) were among the longest, therefore assigned to the 

FIgURe 6 | Estimation of the number of clusters for methods applied to Raw 
counts. Boxplots of L in Eq. 1 for the subset of methods for the remaining 
methods (28 parameter combinations) with method specific preprocessing 
that allows to estimate number of clusters. Superimposed as reference, a 
red dashed line at L = 0. Parameter combinations with difference below or 
above 0 resulted into under or overestimation of the number of clusters, 
respectively.
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third group (with average run time between 10 minutes and 
about two hours and maximum time between an hour and more 
than 10 hours). In the worst case, RaceID3 took about 12 hours 
before completing the clustering task.

Methods Performance on FPKM/RPKM 
Counts
We used 7 FPKM/RPKM datasets to evaluate the performance 
of the methods/parameter combinations considered in this study 
with respect to the number of reduced dimensions when using 
different dimension reduction techniques. Since FPKM/RPKM 
datasets consist of already normalized counts we limited the 
study to those methods/parameter combinations that do not 
use “method specific” as additional preprocessing and that also 
allow setting the number of reduced dimensions. In total, we 
tested 44 methods/parameter combinations on each of the four 
dimensions: 3, 5, 10, and 15.

As in the previous case, we note that some of the methods/
parameters combinations failed to cluster some of the datasets 
(see grey boxes in Supplementary Figure 6) due to technical 
errors reported in Supplementary Table 3, for Data type = 
FPKM/RPKM counts. Note that three of the methods, Linnorm, 
monocle3 and sincell encountered a significant number of 
failures with the same error message when used with more than 3 
dimensions. We did not consider such cases in further evaluation 
limiting the overall number of combinations from 44 to 33.

Overall Accuracy
Supplementary Figure 7 shows the performance of all 33 
methods/parameter combinations applied to FPKM/RPKM 
datasets. Regardless of the number of dimensions, we can 
observe variability in the accuracy of the methods similar to what 
was reported for the raw counts. Most of the methods that were 
reporting good or poor accuracy on raw counts show similar 
good/poor performance also on the FPKM/RPKM datasets (as 
we could have predicted from the results obtained on the QC & 
FILT & NORM raw datasets). For example, CIDR and sscClust 

(with some of the parameter combinations) are among the 
better-performing methods, whereas sincell with most of the 
combinations reports poor accuracy (although not in all cases). 
Additionally, we can also confirm that the performance of some 
methods depends on the choice of parameter settings.

We also observed a general tendency of the methods to 
perform poorly on datasets with a high number of cells (more 
than 1600) (see Supplementary Figure 6). Although this 
relationship was not clearly visible on the raw counts, it could be 
expected as a consequence of a larger complexity in the data not 
fully explained by the number of selected features and not fully 
captured using low dimensional projections.

Finally, we did not observe any systematic differences in the 
accuracy with respect to the number of reduced dimensions 
(see Supplementary Figures 6 and 7). Some of the methods are 
either robust to the varying number of dimensions or they do 
not show any clear preference when using one or another setting. 
This suggests that data complexity cannot be easily explained by a 
certain parameter and the performance of the methods are often 
data specific.

Accuracy in Estimating Number of Clusters
Supplementary Figure 8 shows the estimated number of clusters 
compared with the true one (as computed using Eq. 1) for all 
methods/combinations that allow the users to estimate such 
value. We observed a similar tendency in the estimates reported 
for raw counts. For example, monocle3 (with densityPeak 
clustering), SIMLR, sincell (with k-medoids and ward.D 
techniques) or sscClust (all except SNN) tend to underestimate 
the number of clusters whereas the rest of the combinations of 
sincell clearly overestimate that value. Moreover, CIDR often 
provides a less bias estimates that result in a better accuracy 
(alike on the raw counts).

Computational Time
Supplementary Figure 9 reports the running time evaluated 
for all methods/parameter combinations (for dimension = 3). 
First, we observe that, since FPKM/RPKM counts underwent to 

FIgURe 7 | PCA plots of methods applied to QC & FILT Raw counts. Two identical PCA projections based on the performance measured in ARI of 13 methods with 
133 parameter combinations out of 143, applied to 10 quality controlled and filtered (QC & FILT) raw datasets. Parameter combinations were colored by the method 
and shaped by the parameter options: (A) way of selecting number of clusters (clust), (B) additional preprocesing (preproc).
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a feature selection step, that greatly reduced the data dimension 
in terms of the number of genes (see Supplementary Table 2), 
we have a consequent reduction of the running time for most 
of the methods. Indeed, we can see that most of the methods 
ran below a minute (CIDR, monocle3 and sscClust) or in few 
minutes (some cases of sincell). SIMLR was the longest method 
and took up to one hour. Our study also shows that the number 
of reduced dimensions (3, 5, 10, or 15) was not so relevant in 
terms of computational time (data not shown).

Finally, note that some of the combinations evaluated on the 
raw counts, such as RaceID3 or Seurat, were not considered in 
the FPKM/RPKM evaluation as they do not allow to set none in 
the additional preprocessing.

Methods Performance on Simulated 
Datasets
Synthetic datasets were used to test the performance of all 143 
methods/parameter combinations. We followed three simulation 
setups in order to simulate the counts (see Figure 1) and we 
repeated the simulation 5 times, each with a different selection of 
the random seed. Simulation setups mimic different characteristics 
of scRNAseq datasets i.e. in terms of dimensionality, group 
structure or levels of noise. In theory, all simulated datasets 
constitute a different level of complexity for the clustering task.

The methods/parameter combinations that failed across 
all runs can be seen in the Supplementary Figure 10 and the 
respective error messages have been reported the Supplementary 
Table 3.

In the next sections, we will describe the performance of the 
methods according to the three simulation setups. Note that the 
overall performance of the methods on the synthetic datasets 
is much higher than in the real data. This can be related to the 
fact that simulation models may not always reflect all types of 
noise present in the real case and thus the clustering task can 
be less challenging. Despite that, synthetic datasets allowed us to 
confirm some of the previously identified trends and to recognize 
the potential limits of the methods.

Performance on the Simulation Setup 1
Simulation Setup 1 has been used to access the performance of the 
methods depending on three factors: the number of cells present 
in the dataset, the number of cell groups and their balance in size. 
Figure 9 and Supplementary Figure 11 show the accuracy of the 
methods for balanced and unbalanced group design, respectively. 
Supplementary Figures 12–14 give more details about balanced 
group design and correspond to the performance on datasets 
with 4, 8, and 16 number of cell groups, respectively.

By looking across the Supplementary Figures 12–14 we can 
observe high variability of the methods/parameter combinations 
across different numbers of simulated cell groups. Less variability 
was attributed to the runs (see boxplots within Supplementary 
Figures 12–14). Balanced or unbalanced group design slightly 
affected the performance for most of the methods however with 
no clear direction (see Figure 9 and Supplementary Figure 11).

On the synthetic datasets, the well performing methods 
included CIDR, Linnorm, SC3 and some combinations of sscClust 
(see Figure 9 and Supplementary Figure 11), same as for the real 
datasets. Similarly, we could confirm the poor performance of 
methods such as Seurat with an imposed number of dimensions 
or sincell with tSNE dimension reduction. Additionally, on 
the synthetic data we observed high accuracy of the DIMMSC 
method, Seurat with internal number of dimensions and some 
combinations of monocle3, RaceID3 and SIMLR.

We did not observe a large loss in methods performance 
when the number of cells increased from 500 to 5000 (Figure 9 

FIgURe 8 | Computational time of methods applied to QC & FILT Raw 
counts. Log of run times in minutes of 13 methods with 133 parameter 
combinations applied to QC & FILT preprocessed raw datasets. We 
superimposed as reference red dashed lines at log of 1 min, 10 min, 1 h 
and 10 h.
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and Supplementary Figure 11). The only clear exception was 
SIMLR with several combinations that include cluster number 
estimation (denoted estimate) which failed on datasets with 5000 
number of cells (see the error messages in Supplementary Table 
3). We observed that many methods were affected by the growing 
number of simulated cell groups (from 4 to 16 cell groups). In 
particular, see the methods: CIDR, DIMMSC, Linnorm, SC3, 
SIMLR, sincell, sscClust, and TSCAN across Supplementary 
Figures 12–14. pcaReduce worked similarly across all three 
factors (number of cells, number of cell groups, group balance) 

(see Figure 9 and Supplementary Figure 11). Seurat accuracy, 
same for the real datasets, strongly dependent on the number of 
reduced dimensions (denoted as TRUE/internal).

Performance on the Simulation Setup 2
In the simulation Setup 2, we varied the separability between the 
cell groups from lowly to highly separable. Lowly separable groups 
mean that some of the simulated populations could overlap in space 
being the most challenging to detect. Separability was controlled 
by de.prob parameter in the Splatter simulation function.

Figure 10 shows that some of the methods as CIDR, 
DIMMSC, SC3, TSCAN, Seurat (with imposed number of 
dimensions), SIMLR (with estimated number of clusters) and 
many combinations of sincell behaved similarly and their 
performance was mostly affected on the datasets with the lowest 
separability between the cell groups. However, their accuracy 
was still high meaning in most of the cases ARI above 0.5. The 
methods that performed well across all the separability modes 
were some combinations of Linnorm or monocle3, Seurat with 
internal number of dimensions and SIMLR with set number of 
clusters. All those methods/parameter combinations provided 
high accuracy with ARI close to 1.

Performance on the Simulation Setup 3
The third simulation setup was used to access the accuracy of 
the methods with respect to an increasing number of zero counts 
placed in the dataset. We simulated percentage of dropouts 
varying from 20% to 90% by manipulating dropout.mid 
parameter in the Splatter simulation function.

Overall, we noticed that most of the methods had low 
accuracy on the datasets with highest magnitude of missing 
values (dropout.mid = 6) (see Figure 11). Although this is an 
expected result, some of the methods/parameter combinations 
still performed well in this case (see i.e. monocle3, SC3 and 
sscClust). Interestingly, monocle3 and sscClust method 
performed poorly only in particular parameter combinations 
on the highest dropout rate. For the monocle3 method the bad 
performing combinations included additional method specific 
preprocessing and for the sscClust—iCor dimension reduction. 
Beyond that, some of the methods appeared to be affected 
by the increasing percentage of zeros, as CIDR, DIMMSC, 
Linnorm, Seurat, SIMLR, and TSCAN. In particular, Linnorm 
experienced technical errors across all the simulated datasets 
with the highest two modes of dropouts (denoted as dropout.
mid = 4 and dropout.mid = 6). Many combinations of sincell 
performed poorly, notably those that use tSNE as dimensionality 
reduction. Seurat depended highly on the number of dimensions 
used (either TRUE or internal) and pcaReduce seemed to work 
moderate across all four ranges of dropouts.

Computational Time
Computational time for all parameter combinations applied to 
simulation Setup 1 datasets was reported in the Supplementary 
Figure 15. Some of the methods scaled in time all simulated 
datasets dimensions while others took longer on the largest 
datasets (with 5000 number of cells). Note that many of the 
trends observed here were previously mentioned in the real 

FIgURe 9 | Overall accuracy of the methods on simulated datasets 
from Setup1 with balanced group sizes. Performance of 143 parameter 
combinations on Setup 1 simulated data. Selected results are across all runs.
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datasets analysis. The fastest group of methods across all datasets 
dimensions include: ascend, monocle3, pcaReduce, Seurat, many 
combinations of sincell,sscClust when PCA dimension reduction 
was used and TSCAN. Other methods like CIDR, DIMMSC, 
Linnorm with set number of clusters and some combinations of 
RaceID3 and sincell were still relatively fast in time running for 
few minutes on datasets with the highest number of cells. SC3, 
Linnorm (with estimated number of clusters), sincell (when 
nonmetric-MDS was used as dimensionality reduction) and rest 
of the combinations of RaceID3 or sscClust took about one hour 
when applied to the largest simulated datasets whereas SIMLR 
computational time exceed few hours in that case being the 
longest method among all.

DISCUSSION
In this study, we evaluated the performance of several clustering 
methods on a wide range of real and simulated scRNAseq 
datasets. Such methods are distributed as open-source R packages 
and they constitute a significant part of the computational tools 
nowadays available for inferring the unknown composition of 
cell populations from scRNAseq data. Our comparison aimed to 
provide insight into the mode of usage for each of these packages 
depending on the structural assumptions we are willing to 
make. We compared the ability of the different packages to infer 
the unknown number of cell populations, the sensitivity of the 
methods across different datasets and their computational cost. 

FIgURe 10 | Overall accuracy of the methods on simulated datasets from Setup 2. Performance of 143 parameter combinations on simulated data. Selected 
results are across all runs.

FIgURe 11 | Overall accuracy of the methods on simulated datasets from Setup 3. Performance of 143 parameter combinations on simulated data. Selected 
results are across all runs.
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For each method we tested different parameter configurations, 
revealing the great impact of parameter setting on the performance 
of individual methods. In particular, we found that some of the 
methods performed relatively well across most of the datasets 
we have considered and with respect to the different choices of 
the parameter settings (i.e., CIDR, and several combinations of 
Linnorm, SC3 and sscClust), or often poorly, as, sincell (with 
many parameter settings) and ascend. Other methods, such as 
DIMMSC, monocole3, RaceID3, Seurat, SIMLR and TSCAN, 
can be placed in the middle in terms of overall performance 
across all datasets, despite the fact that on few datasets they 
could have reported good performance. However, we should 
consider that the field of clustering of scRNAseq data is rapidly 
evolving. Novel methods are continuously emerging and those 
that we have compared are undergoing to an extensive revision 
that might improve their performance. It is not easy to explain 
why certain methods work better than others, since they 
perform several steps before applying the clustering algorithm. 
However, one of the reasons is that some methods were originally 
developed to analyze scRNAseq data collected under specific 
protocols (i.e., consisting of datasets with a limited number of 
cells). Then, the novel challenges (in particular the increasing 
size and cell heterogeneity) provided by the rapidly evolving 
scRNAseq technology made them not any more competitive 
for the complex types of data that are emerging. Reasonably, 
methods have to be optimized with respect to a specific protocol 
or dataset size, rather than attempting to find methods that work 
well on a wide range of scRNAseq conditions. In fact, our study 
showed that no methods seem to emerge as performing better 
than others on all datasets. Additionally, our results also showed 
that there is still space for improving the overall performance of 
the available methods on large and complex datasets or providing 
novel and more accurate methods.

We have found that despite different basic preprocessing 
options, there is no global pre-processing strategy which 
improves significantly the performance of all methods 
(packages). Instead, we found that the performance of several 
methods strongly depends on their parameter settings: in Seurat 
when varying the number of input dimensions; in SIMLR 
when estimating the true number of cell groups; in sincell 
when varying the clustering techniques and in sscClust when 
changing the dimension reduction step. We believe that the 
impact of the choice of the method-specific parameters on its 
performance has been underestimated till now, while it turns out 
to be crucial when using these methods. Unfortunately, we did 
not identify a golden rule for choosing the parameters. However, 
depending on the methods used, we identified some better 
performing configurations: sscClust performed better with 
iCor as dimensionality reduction step; Seurat with the internal 
choice of the number of dimensions; Linnorm and SC3 with a set 
number of clusters (using the true number of cell populations). 
On the basis of our results, we suggest that users should be more 
aware of the different possibilities that several methods offer in 
terms of parameter choices and modes of usage. Moreover, we 
recommend them to always evaluate the robustness of their 
partition with respect to changes in the parameter settings. At 
the same time, method developers should give more attention in 

better documenting all the possibilities that their methods can 
offer also testing their robustness with respect to changes in the 
settings. To this purpose, the benchmark pipeline developed for 
this study can be easily modified to offer an environment where 
other/novel methods can be evaluated.

We also observed that the poor performance of several 
methods/parameter combinations is often associated with a poor 
estimate of the number of clusters (see for instance estimation 
accuracy of monocle3, SIMLR or sincell). Although a rigorous 
assessment of the number of cell populations on real data dataset 
could be debated, our results show that several methods tend to 
significantly underestimate or overestimate the number of clusters, 
when compared to the true (usually unknown) cell populations. 
Therefore, we can say that the estimation of the number of 
hidden cell populations remains challenging in the scRNAseq 
data analysis and we hope that novel approaches will provide less 
biased estimates. Moreover, by comparing the performance of 
each method when the true number of clusters was imputed with 
those when it has been estimated from the data, it is possible to 
quantify the impact that a more accurate estimate of the number 
of cell populations can have on the overall accuracy.

The dataset dimension and complexity turns out to be clearly 
influential with respect to the running time of the methods and 
to the overall performance that the methods can achieve. In 
particular, SIMLR run time increased together with the sample 
size and was often the longest among other methods by several 
orders of magnitude (requiring up to several hours to analyze 
a given dataset compared to few seconds/minutes for the other 
methods). Similarly, scalability issues were observed in SC3, 
although to a less extent. In contrast, other methods/parameter 
combinations showed a good scalability in their computational 
time, as ascend, CIDR, monocle3, pcaReduce, RaceID3 (with 
non-internal number of dimensions), Seurat (with PCA 
dimension reduction), sincell, TSCAN or sscClust, limiting the 
computational time to few seconds/minutes. We want to stress 
that computational issues are becoming particularly important 
since modern technologies are now allowing to simultaneously 
sequence thousands or even tens of thousands of cells, thus it 
is expected that researchers will have to analyze much larger 
datasets. Hence, it will be important to provide novel methods 
that have good scalability properties either in terms of running 
time and/or computational resources required for their 
execution. This can be achieved either by designing methods 
with efficient algorithms and by better exploiting the parallel and 
high-performance computing in their implementation. From a 
technical point of view, we also observed frequent failures of some 
methods under particular cases. For example, SIMLR method 
failed on most of the simulated datasets with 5000 number of 
cells. We suspect that the method required large amounts of 
memory on the high-sample datasets than that available in our 
system. Other failures, like in monocle3, Linnorm and sincell on 
FPKM/RPKM datasets were related to the choices on the number 
of reduced dimensions. In fact, all of them encountered technical 
errors when used with tSNE dimension reduction and more 
than 3 number of dimensions. Additionally, Linnorm failed on 
raw and simulated datasets with a high percentage of dropouts 
(above 70% of zeros in the dataset) suggesting the low capacity of 
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the method to handle high rates of missing data. Such points are 
probably less relevant and could be solved with future releases of 
the methods.

Finally, it is also worth to mention that some of the 
methods, such as ascend, monocle3, SIMLR, sscClust and 
some combinations of Linnorm and sincell, showed variability 
in the clusterization despite the global setting of the seed. The 
fluctuations can be spotted by looking at the accuracy of methods 
on the identical datasets across three simulation setups (see results 
across Supplementary Figure 12 and Figures 10 and 11) or by 
looking at the accuracy of the methods on datasets not affected 
by filtering (see Supplementary Figures 3 and 4). We notify that 
the results in such cases might not be easily reproducible. In the 
spirit of reproducible computational research, the user should be 
aware of such limits.

CONClUSIONS
Concurrently with technical improvements in single-cell RNA 
sequencing, there is a rapid growth in the development of 
new methods, in particular, those related to the identification 
of cellular populations. Newly developed methods differ 
considerably in their computational design, implemented 
algorithms and available steps giving the user a large number of 
options to select parameters and perform a cluster analysis on 
scRNAseq data. However, such possibilities are often hidden and 
not fully documented in the software code and their impact has 
to be better understood.

We are not aware of any comprehensive studies aiming to test 
various modes of usage of the available methods on large scale 
datasets that have different experimental complexity in terms of 
dimensionality, number of hidden cell populations or levels of 
noise. Our benchmark approach extends the previous comparative 
studies (Freytag et al., 2018; Duò et al., 2018; Tian et al., 2019) 
to a broader range evaluation of the algorithms which depends 
on the parametrization (user-specified parameter choices) and 
previously mentioned dataset differences. The results presented 
here showed that the performance of the methods strongly 
depends on different user-specified parameter settings and that 
the dataset dimensionality and composition often determines 
the overall accuracy of the methods. Overall, this means that 
most of the methods lack of robustness with respect to the 
tuning parameters or differences among the datasets. We found 
that both aspects were partially ignored in the previous studies, 
preventing the user to better understand the potentials and 
limitations of each method. Although, we did not find a “golden” 
rule for choosing optimal parameter configurations, our study 
identified some model-dependent choices which were found 
more robust than others. Despite that, our study also showed 
that the overall performance is still far from being optimal. 
Hence, there is a need for developing novel and more accurate 
methods, in particular for those datasets containing a very large 
and heterogeneous amount of cells. Evaluating and improving 
clustering approaches for scRNAseq data might be beneficial 
for several areas of biomedical science such as immunology, cell 
development and cancer see for example Haque et al. (2017).

The analysis of real and simulated datasets confirmed that the 
high sample size and the high number of cell populations have 
a great impact on scRNAseq clustering methods. In particular, 
we found that the estimation of the number of clusters remains 
challenging. We confirmed these issues in several analyzed 
cases where the methods either under or overestimated 
the true number of cell populations and the simulated cell 
groups. In real scRNAseq applications, overestimation of the 
number of clusters might be just due to methods identifying 
previously unknown biologically relevant sub-groups. However, 
underestimation of the clusters means that methods failed to 
distinguish accurately differences between populations of cells. 
Since in scRNAseq clustering we also aim to identify novel and/
or rare cell populations, we typically do not know the number 
of cell populations. The failure to identify the number of sub-
groups in a consistent manner is a considerable drawback when 
it comes to practical applications of such methods. In fact, such 
failure is usually paid with a lower ARI index. By comparing the 
performance of each method when the true number of clusters 
was imputed with those when it has been estimated from the 
data, one can quantify the impact that a more accurate estimate 
on the number of groups can have on the overall performance.

With the development of new high-throughput scRNAseq 
protocols, the data dimensionality grows and one has to consider 
not only methodological performance but also computational 
requirements of the different approaches. We have demonstrated 
that computational cost does not always trade for empirical 
accuracy and some configurations are just unpractical for specific 
protocols. Since, larger and more complex datasets are going to 
be produced by novel droplet-based protocols, the computational 
feasibility needs to be better faced and more attention should 
be given in designing methods with efficient algorithms and 
in better exploiting high-performance computing in their 
implementation.

Taken all together, our systematic evaluation of the methods 
confirmed some common sense assumptions or expected results, 
but also identified new potential issues in scRNAseq clustering. 
The summary of the methods presented here can guide the 
readers in a number of options that the methods provide also 
giving awareness about their possible limitations. Moreover, the 
benchmark pipeline developed for this study is freely available 
and can be easily modified to add novel methods.
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Detection of differentially expressed genes is a common task in single-cell RNA-seq
(scRNA-seq) studies. Various methods based on both bulk-cell and single-cell
approaches are in current use. Due to the unique distributional characteristics of single-
cell data, it is important to compare these methods with rigorous statistical assessments.
In this study, we assess the reproducibility of 9 tools for differential expression analysis in
scRNA-seq data. These tools include four methods originally designed for scRNA-seq
data, three popular methods originally developed for bulk-cell RNA-seq data but have
been applied in scRNA-seq analysis, and two general statistical tests. Instead of
comparing the performance across all genes, we compare the methods in terms of the
rediscovery rates (RDRs) of top-ranked genes, separately for highly and lowly expressed
genes. Three real and one simulated scRNA-seq data sets are used for the comparisons.
The results indicate that some widely used methods, such as edgeR and monocle, have
worse RDR performances compared to the other methods, especially for the top-ranked
genes. For highly expressed genes, many bulk-cell–based methods can perform similarly
to the methods designed for scRNA-seq data. But for the lowly expressed genes
performance varies substantially; edgeR and monocle are too liberal and have poor
control of false positives, while DESeq2 is too conservative and consequently loses
sensitivity compared to the other methods. BPSC, Limma, DEsingle, MAST, t-test and
Wilcoxon have similar performances in the real data sets. Overall, the scRNA-seq based
method BPSC performs well against the other methods, particularly when there is a
sufficient number of cells.

Keywords: single cell, RNA sequencing, differential expression, rediscovery rate, comparison
INTRODUCTION

Traditional gene expression profiling with high-throughput RNA-sequencing technology measures
the aggregated expression levels of genes from a collection of millions of cells. Such bulk-cell RNA-
sequencing cannot capture cellular heterogeneity since there is no cell-specific information (Miao
and Zhang, 2016; Jaakkola et al., 2017). Single-cell RNA sequencing (scRNA-seq) has developed
rapidly as a powerful technology for studying transcriptomics at the single-cell level (Sandberg,
2014). However, compared to bulk-cell data, scRNA-seq data has a higher level of noise due to both
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biological and technical reasons, for example, lower input
materials, cell-cycle phase, amplification biases, and the so-
called dropout and bursting events (Dal Molin et al., 2017;
Jaakkola et al., 2017; Soneson and Robinson, 2018). Such
events are caused by the stochastic nature of the gene
expression process at the single-cell level (Gong et al., 2018).
The dropout events generate zero expression, statistically leading
to zero inflation in the gene-expression distribution at a much
higher proportion than expected under the standard negative-
binomial model commonly assumed in bulk-cell data (Miao
et al., 2018). Aggregation of expression in bulk-cell data reduces
the effects of these single-cell events.

Differential expression (DE) analysis to discover quantitative
changes between different groups or conditions plays an
important role for understanding the molecular basis of
phenotypic var iat ion. However , due to the unique
characteristics of scRNA-seq data, it is not immediately obvious
that we can just use standard methods developed for bulk-cell
data. Aparticular challenge is dealingwith the large number of low
(or zero) read counts in the scRNA-seq data. A previous study
(Love et al., 2014) has shown the phenomenon that weakly
expressed genes tend to produce more differences than highly
expressed genes. For instance, to tackle this issue, several DE
methods have been developed for scRNA-seq data, for example,
BPSC (Vu et al., 2016), MAST (Finak et al., 2015), and monocle
(Qiu et al., 2017). In general, bulk-cell–based DE methods were
not originally designed to deal with a large fraction of lowly
expressed genes. Yet, in practice, many studies use the bulk-cell
−based DE methods for single-cell data, such as edgeR (Wang
et al., 2016) or limma (Ziegenhain et al., 2017). Furthermore,
various pipelines and workflows of RNA-seq analysis do not
consider scRNA-seq data specifically (Lun et al., 2016; Chen
et al., 2016; Law et al., 2016) and suggest users apply the bulk-
cell−based methods to scRNA-seq data (Zhu et al., 2017).

These bulk-cell−based methods are methodologically
sophisticated, and they have been used for scRNA-seq data,
but evaluation of their applicability to scRNA-seq data is still
uncommon and different studies have reported opposite results.
For example, authors in a recent study (Jaakkola et al., 2017)
compared five DE methods, including two single-cell–based
methods and three bulk-cell−based methods. They concluded
that the original DESeq (Anders and Huber, 2010) and limma
(Law et al., 2014) are not suitable for scRNA-seq data. In
contrast, another comparative study (Miao and Zhang, 2016)
declared that DESeq tends to outperform other methods on
scRNA-seq data. Most comparative studies (Miao and Zhang,
2016; Dal Molin et al., 2017; Jaakkola et al., 2017; Soneson and
Robinson, 2018) agree that bulk-cell–based methods are
applicable to scRNA-seq even though there is a lack of
agreement in finding DE genes by these DE methods (Wang
et al., 2019) and it is difficult to identify the best performing tool
for DE analysis of scRNA-seq data (Dal Molin et al., 2017).
Therefore, further evaluations of these DE methods, including
both bulk-cell– and single-cell–based methods in different
aspects, are warranted for better understanding of the
methodologies when applied to scRNA-seq studies.
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To compare the DE methods, previous studies have used
conventional statistics such as type-I error rate, false discovery
rate (FDR) and receiver operating characteristic (ROC) curve.
Notably, these metrics are applied to the full collection of genes.
Reproducibility is also an important metric, although it is
sometimes calculated differently in the different studies. For
example, a recent study (Miao and Zhang, 2016) assesses the
reproducibility of the methods by looking at the average of the
overlap of top 1,000 DE genes (ranked by p-value) across 20
replicates. In each replicate, a control group and a testing group
are sampled with a different random seed. Another measure of
reproducibility (Jaakkola et al., 2017) compares the precision and
recall of the detection of all DE genes between the full data set
and its subsets.

In this study, we compare the performance of nineDEmethods,
includingbothbulk-cell and single-cell–based approaches aswell as
general statistical tests not specifically designed for RNA-seq data.
We focus on the reproducibility of the methods in terms of
rediscovery rate (RDR) (Ganna et al., 2014) of top-ranking genes.
RDR is defined as the proportion of top-ranking findings detected
from a training sample that are replicated in a validation sample. In
high-throughput studies, the RDR is determined by both the false
positive rate (FPR) and power (Ganna et al., 2014), so it is a
convenient and easily understood metric for the comparison of
methods. Limiting the assessment to top-ranking genes turns out to
be important. Firstly, it follows the data analytic processweperform
in practice, where the top-ranked genes are usually considered the
most interesting ones for further biological analyses or
interpretation. Secondly, some methods perform differently for
the top-ranked genes and across all genes. Besides the RDR, type-
I error rate or FPR, and ROC are also used as extra metrics for
the comparisons.

To get realistic distributional characteristics and capture some
diversity in single-data data, we utilize three real scRNA-seq data
sets; in addition, we use simulated data from the beta-Poisson
model (BPSC), which has been suggested for scRNA-seq data in
a recent study (Vu et al., 2016). Because of their distinct
distributions, the groups of highly and lowly expressed genes
are also considered separately, as the latter is more affected by
single-cell specific events such as dropouts.
RESULTS

We compare nine methods for detecting differentially expressed
isoforms, including edgeR (Robinson et al., 2010), DESeq2 (Love
et al., 2014), DEsingle (Miao et al., 2018), monocle (Qiu et al.,
2017), BPSC (Vu et al., 2016), MAST (Finak et al., 2015), t-test
(Welch, 1947), Wilcoxon rank sum test (Hollander et al., 2013),
limmatrend (Law et al., 2014). Among those, edgeR, DESeq2 and
limmatrend are designed for bulk-cell RNA-seq analysis; and
DEsingle, monocle, BPSC, and MAST are developed based on
scRNA-seq data. T-test and Wilcoxon rank-sum test are general
comparison tests not specific to RNA-seq data. Table 1 compares
the methods in terms of (i) distribution assumption, (ii) original
data motivation (bulk-cell or single-cell data), (iii) test statistic,
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and (iv) run time for a typical data set used in the comparisons.
We also state the exact version of each software tool used in
the comparisons.

To get realistic distributional characteristics, the following
three real scRNA-seq data sets are used as the basis for
simulations. (Different papers and projects use isoform- and
gene-level expressions. For simplicity, we shall use the terms
“isoform” and “gene” interchangeably.)

• Breast-cancer cell line MDA-MB-231 data set (Athreya et al.,
2017) has two groups: control and metformin-treated, 80 cells
in each group. The expression estimates of 26,775 isoforms
from Cufflinks are used in the analysis.

• Mouse embryonic stem cells (mESCs) belong to two groups
fromdifferent culture conditions, 94cells ingroup1and174 cells
ingroup2; see theMaterials andMethods section fordetails. The
expression estimates of 112,593 isoforms are provided by the
Conquer project (Soneson and Robinson, 2018).

• Neuronal progenitor cells (NPCs) also form two groups, one
from the patient and the other from a healthy donor (Iacono
et al., 2018), 360 cells in each group. The expression estimates
of 41,020 genes are provided by the bigSCale project (Iacono
et al., 2018).

In addition, we also simulate single-cell data based on the
beta-Poisson model (Vu et al., 2016). The variation in sample
sizes of the three real data sets, from 160 to 720, allows us to
compare the performance of each method at different sample
sizes. More details of the methods and data sets are given in the
Materials and Methods section.

In each experiment, the comparison focuses on the DE analysis
of two predefined groups of cells. Briefly, an equal number of
samples is randomly selected from the two groups in the original
data set to generate the training set. For each sampledcell froma real
data set, all isoforms are taken together; this preserves the statistical
dependencies between the isoforms. For the validation set, a
different set of samples from both groups is selected. The
selection of training and validation sets is repeated 50 times to
average out the effect of random selection. Note that the training
and validation sets are always disjoint. The nine DE methods are
then applied to the training and validation sets separately.

Type-I Error Control
For each real data set, we generate a null data set by randomly
sampling from the two groups combined (i.e., ignoring the group
labels). Thus, the null data sets are expected to have no true DE
Frontiers in Genetics | www.frontiersin.org 3101
isoforms, and the p-value distribution of each method is
expected to be uniform. Theoretically, the p-values should
follow a uniform distribution if the null hypothesis is true
(Murdoch et al., 2008; Bland, 2013). The uniformity of p-value
distribution under the null hypothesis can be used to assess the
performance of methods. We calculate the type-I error rate by
recording the fraction of the detected DE isoforms that are
assigned a significant p-value (p < 0.05). This fraction is also
known as the FPR. To highlight the effects of the dropout events,
which tend to produce low expression and zero inflation, we split
the isoforms into two groups based on the expression level:
highly expressed isoforms and lowly expressed isoforms. The
former refers to the isoforms with an estimated expression above
1 transcripts-per-million (TPM) in more than 25% of the cells,
and the remaining isoforms are assigned to the latter. This
threshold was also suggested in a recent comparative study of
DE methods in scRNA-seq (Soneson and Robinson, 2018).

Results in Figure 1A show that for highly expressed isoforms,
most methods manage to control the FPR close to the target 0.05.
Two single-cell–based methods, monocle and DEsingle, are not
stable, as their FPRs fluctuate the most from the expected error
rate. As expected, the bulk-cell–based methods, edgeR, DESeq2,
and limmatrend, perform well on this group, and DESeq2 is the
most conservative.

For the lowly expressed isoforms, DESeq2 is also the most
conservative method, Figure 1B. It identifies fewer significant
isoforms, so the FPR is significantly lower than the expected level
(0.05) in all data sets. In contrast, edgeR has the highest FPR,
sometimes substantially above the target value. Similarly,
monocle also has a large number of false positive findings. The
FPR of DEsingle has a slight variation, as it is liberal for MDA-
MB-231 data set, conservative for NPCs data set, and performs
rather well in the other data sets. Thus, it seems the performance
of DEsingle is not stable and highly dependent on data sets. The
histograms of p-values (Figure S1 in the Supplementary report)
further illustrate that few methods returned uniformly
distributed p-values under the null hypothesis for the lowly
expressed isoforms, while most methods have a better
uniformity for the highly expressed isoforms.

The RDR
The RDR is the proportion of the top-ranking DE isoforms in the
training set that is found to be significant (p < 0.05) in the
validation set. The RDR is calculated based on the top 5%, 10%,
20% DE and all isoforms in the training set.
TABLE 1 | List of the differential expression analysis methods.

Method Distribution assumption Designed for Test statistic Run time Version [Ref.] Input

BPSC Beta-Poisson Single cell z-test Hours 0.99.2 (Vu et al., 2016) CPM
DEsingle Zero-Inflated Negative Binomial Single cell Likelihood ratio test Hours 1.2.1 (Miao et al., 2018) raw counts
MAST Normal (Generalized linear hurdle) Single cell Likelihood ratio test Minutes 1.8.2 (Finak et al., 2015) log2(CPM+1)
monocle Normal (Generalized additive model) Single cell Likelihood ratio test Minutes 2.10.1(Qiu et al., 2017) raw counts
DESeq2 Negative Binomial Bulk cell Wald test Minutes 1.22.2 (Love et al., 2014) raw counts
edgeR Negative Binomial Bulk cell Quasi-likelihood F-test Minutes 3.24.3 (Robinson et al., 2010) raw counts
limmatrend Normal (linear model) Bulk cell Empirical-Bayes Moderated t-statistics Seconds (Law et al., 2014) log2(CPM+1)
t-test Normal General t-test Seconds (Welch, 1947) log2(CPM+1)
Wilcoxon Nonparametric General Wilcoxon Minutes (Hollander et al., 2013) log2(CPM+1)
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RDR Analysis Under the Null Hypothesis
The RDR of the null data sets from the real data in Section 2.1 are
reported in Figure 2. Panels A and B present the results for the
groups of highly expressed isoforms and lowly expressed
isoforms, respectively. Under the null hypothesis of no group
effect, the expected RDR is 0.05. Similar to the results from the
type-I error control in Section 2.1, the RDRs of all methods are
generally better for highly expressed isoforms. Monocle and
DEsingle are the worst, as their RDRs are often far from 0.05.
However, the performances improve for the larger number top
DE isoforms. For example, the RDR of monocle for all isoforms
in the NPCs data set is very close to the expected value, but it is
much higher than 0.05 among the top 5% DE isoforms. Similarly,
for the mESCs data set, the RDR of edgeR for all isoforms is close
to 0.05, but it is consistently higher than this target value for the
smaller number of top DE isoforms. Thus, comparing the
performances based on all isoforms could be misleading.
Frontiers in Genetics | www.frontiersin.org 4102
These patterns are much more pronounced for lowly expressed
isoforms; see Figure 2B. In this case, edgeR performs worst in all
data sets; this result is consistent with other studies (Soneson and
Robinson, 2018). The performances of DESeq2 still tend to be
conservative in both groups of isoforms, while other methods
generally have RDR around the expected value.

We further evaluate RDR of the DE methods in the simulated
beta-Poisson data set. Results from 50 replicates of the null data
sets from the simulated data are reported in the rightmost plots
of Figures 2A, B. The similar patterns of RDR of DEmethods for
both isoform groups confirm the results from the real data sets.
In particular, monocle has poor performances in both groups,
and edgeR does not perform well with lowly expressed isoforms.

RDR Analysis Under the Alternative Hypothesis
Results of RDR analysis for the simulated beta-Poisson data
under the alternative hypothesis are presented in Figure 3. As
FIGURE 1 | Type-I error control for the groups of highly expressed isoforms (A) and lowly expressed isoforms (B) of the three real scRNA-seq data sets and the
simulated data set. The values in the y-axis are the fractions of isoforms with p < 0.05 under the null hypothesis. The horizontal line indicates the expected error rate
at 0.05. Box plots of the methods in the x-axis are the collection from 50 replicates. The methods are ordered by median false positive rate (FPR) across all
replicates. The number of highly expressed isoforms in MDA-MB-231, mESCs, NPCs and simulated data sets are 8,299, 31,895, 10,422, and 8077, respectively.
The corresponding number of lowly expressed isoforms are 18,476, 80,698, 30,378, and 1,923.
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FIGURE 2 | Rediscovery rate (RDR) of differential expression (DE) isoforms in the real and simulated scRNA-seq data sets under the null
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FIGURE 3 | Observed rediscovery rate (RDR) and true rediscovery rate (TrueRDR) of differential expression (DE) isoforms in the simulated beta-Poisson data set
under the alternative hypotheses calculated among the top 5%, 10%, 20% DE and all isoforms. (Panels A and B) present the rediscovery rate in the groups of highly
and lowly expressed isoforms, respectively. (Panels C and D) display the true rediscovery rate collected from highly and lowly expressed isoforms separately. (Panels
E) displays the true rediscovery rate collected from both highly and lowly expressed isoforms. (Panels F) presents the ratio between true RDR and observed RDR.
The number of highly expressed isoforms in the simulated data set is 8,077, and the number of lowly expressed isoforms is 1,923.
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described in more detail in the Materials and Methods section,
5% of the isoforms are randomly selected to be differentially
expressed between the two groups (hence true DE isoforms). For
highly expressed isoforms (Figure 3A), monocle and BPSC have
the highest RDRs across the top 5%, 10%, 20% and all DE
isoforms, while edgeR is comparable to the rest. DESeq2 is
conservative for the null data sets and the group of lowly
expressed isoforms, but its performance is comparable to other
methods. For lowly expressed isoforms, edgeR and monocle
produce the highest RDRs compared to other methods (Figure
3B). However, remember that from the previous subsection we
know these two methods have high false positive rates.

In the simulated data, we in fact know the true DE status, so
we can evaluate the true RDR, which is defined as the proportion
of the true positives in the validation set among the top DE
isoforms identified in the training set. In other words, the true
RDR is the intersection of rediscovered genes and true DE genes.
This is shown in Figures 3C, D. First, let us consider panel D.
While there are 5% true DE isoforms, the statistical power for the
lowly expressed isoforms is tiny, so very few of the true DE
isoforms appear among the top-ranking genes and these
isoforms do not produce significant p-values in the validation
set. Hence the rediscoveries are mostly false positives. This
means that there are reproducible features of the data, such as
zero inflation, that consistently create problems for monocle and
edgeR to the point of producing false positives in validation data.
These results highlight the challenge in finding true DE among
lowly expressed isoforms, or equivalently, the ease of producing
false positives.

From Figure 3C, the true RDRs of 3 methods including
BPSC, monocle and DESeq2 are better than the other methods.
The overall true RDRs are given in Figure 3E, which in this case
look similar to the result for highly expressed isoforms, but do
not reflect the results for lowly expressed ones. Figure 3F shows
the ratio of true RDR to observed (RDR). DESeq2 has the highest
ratio among the comparing methods, indicating a good
specificity in detecting DE isoforms. However, DEseq2
generally discovers fewer true DE isoforms, i.e., lower
sensitivity, compared to BPSC. Two methods of edgeR and
monocle have a lower ratio than the other methods since they
have more false discoveries. In the next section, the balance
between sensitivity and specificity of the methods are taken into
account via the ROC curve.

For the real data sets, there are no significant differences in
RDR performance for the top 5%, 10%, 20% DE isoforms
between nine DE methods in the group of highly expressed
isoforms (Figure S2A in the Supplementary report). However,
similar to the results of the simulated data set, RDRs of edgeR
and monocle are highly liberal, while DESeq2 tends to be too
conservative for the lowly expressed isoforms (Figure S2B). We
have performed other simulations and analyzed two other
datasets that confirmed this observation. This is given in the
Supplementary Material and described in the Discussion section.

ROC Performance
Performances of the DE methods on the simulated data with the
alternative hypothesis are also evaluated using the area under the
Frontiers in Genetics | www.frontiersin.org 7105
ROC curve (AUC). In Figure 4, the AUC and ROC curves of top
5% DE isoforms and all isoforms over 50 replicates are presented
in panels A and B, respectively. For edgeR and monocle, there are
obvious differences between their performances for top 5% DE
isoforms and for all isoforms. For the top 5% isoforms, these two
methods perform poorly compared to the other methods.
However, if all isoforms are considered, the two methods are
comparable with the other methods when more isoforms are
taken into account. Results for the top 10% and 20% DE isoforms
are given in Figure S3 in the Supplementary report. Among
these methods, BPSC and DESeq2 are consistently the top
performing methods with the highest AUC values for different
sizes of top DE isoform sets. Overall, these results are in
agreement with the results from RDR analyses.
MATERIALS AND METHODS

Experimental and Synthetic Data Sets
To capture the true distributional characteristics of real data, three
real scRNA-seq data sets are used for the evaluation of the nine DE
methods.Thefirst data set (MDA-MB-231) includes160 single cells
from a triple-negative breast cancer cell line, half of which are
treated with metformin. The cells are captured using the Fluidigm
C1 system and sequenced on Illumina HiSeq 2500 machines for 80
control and 80 treated cells separately. Then we use Cufflinks
(Trapnell et al., 2010) to estimate the isoform expression. This
data set contains a total of 26,775 isoforms across 160 single cells.
The average number of reads per cell is ∼649,000.

The second data set (mESCs) is collected from a public scRNA-
seq data (GSE60749-GPL13112) in the Conquer data set (Soneson
and Robinson, 2018), which provides expression estimates of
isoforms. The compared single cells are 94 individual v6.5 mouse
embryonic stem cells (mESCs) with culture conditions 2i+LIF
(group 1) vs. 174 v6.5 mESCs with culture conditions in serum
+LIF (group 2). The data are preparedwith theC1 Systemusing the
SMARTer Ultra Low RNA kit for Illumina Sequencing (Clontech)
and protocols provided by Fluidigm.More details of the data can be
found in the original paper (Kumar et al., 2014). Then the Conquer
pipeline estimates isoform abundances using Salmon (Patro et al.,
2017).Thisdata set contains 112,593 isoformsacross 174 single cells
in group 1 and 94 single cells in group 2. The average number of
reads per cell is ∼1.7M, the largest among the 3 data sets.

The third real data set (NPCs) is a subset of GSE102934 data
from the NCBI Gene Expression Omnibus (Iacono et al., 2018).
This data set has 720 NPCs derived from induced pluripotent
stem (iPS) cells, half of which are from a Williams-Beuren
patient and the other half are from a healthy donor. The data
are sequenced on Illumina HiSeq 2500 platform and then applied
massively parallel single-cell RNA sequencing (MARS-Seq) to
construct single-cell libraries. This data set contains a total of
41,020 isoforms from 720 single cell, and the average number of
reads per cell is 18,600. Thus, this data set has a relatively large
number of cells with low sequencing coverage.

The simulated data set for isoform expression of single cells is
generated by the beta-Poisson model (Vu et al., 2016). In
particular, we generate the counts for each isoform from a
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beta-Poisson distribution with four parameters estimated from
the mESCs data set. The four-parameter beta-Poisson model is as
follows:

BP4(xja , b , l1, l2) = l2Poison (xjl1Beta(a , b)) (1)

The mean and variance of the model can be written as

m = E(X) = l1l2f1
and

V  ar(X) =  ml2 + m2f2,

where f1 =
a

a + b and f2 =
b

a(a + b + 1)
. Crucially, we can

modify the parameter l1 to create mean differences between
groups. A more detailed description of the model can be referred
to in the original study (Vu et al., 2016).

Beta-Poisson models fitted on the real mESCs data set are
used as baseline distributions for simulation. For each isoform,
expression values across samples in the control and the treated
group are generated from the same beta-Poisson model. To
mimic the biological variation, 5% of isoforms are selected to
Frontiers in Genetics | www.frontiersin.org 8106
be differentially expressed between two groups (true DE
isoforms). Specifically, the parameter l1, which controls the
mean of the distribution, is fixed in the control group and
multiplied by log2 fold change of 1 unit in the treated group.
The effect direction is randomly determined for each DE
isoform, with equal probability of upregulation and
downregulation. In other words, the quantity change between
the two compared groups is either two- or half-fold change with
equal probability. The simulated data set consists of 80 samples
in each of control and treated groups and a total of 10,000
isoforms measured per sample. Library sizes of the single-cell
samples are randomly sampled from a range of 1–3 million. We
filter out isoforms with zero expression across all samples.

DE Analysis Methods
Nine DEmethods included in this study are categorized into four
groups based on different statistical models. These nine methods
are selected to cover most statistical models used in recent DE
analysis. Regarding other DE methods that are not included in
this study, they use similar approach comparing to the nine
selected methods. For instance, D3E (Delmans and Hemberg,
2016) utilizes beta-Poisson model which is similar to BPSC;
FIGURE 4 | Receiver operating characteristic (ROC) and AUC performances for top 5% DE isoforms (A) and all isoforms (B) from the simulated data. Left panels:
observed area under the ROC curve (AUC) for all methods; each method has 50 replicates. Right panels: the corresponding ROC curves averaged over 50 replicates.
January 2020 | Volume 10 | Article 1331

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Mou et al. Reproducibility of DE Methods for scRNA-seq Data
SCDE (Kharchenko et al., 2014) models the gene expression
values using a mixture of negative-binomial distribution for
amplification components and a Possion distribution for
dropout events, which is similar to DEsingle; Ballgown (Frazee
et al., 2015) is based on the linear modeling strategy which is
similar to limma. In this section, we give a brief summary of these
nine methods. For more details of the software packages and
statistical models, the reader is referred to original publications
and related software websites. When applying these tools, we
follow standard procedures and parameter settings suggested in
software manuals.

Negative-Binomial–Based Methods
The read counts of an isoform from the technical replicates
(repeated sequencing runs of the same sample) are usually
modeled to follow a Poisson law (Marioni et al., 2008).
However, those from the biological replicates are usually
assumed to follow a gamma distribution to accommodate the
overdispersion observed in empirical data (Chen et al., 2014).
Since the negative binomial (NB) model can be derived as a
gamma-Poisson mixture model, several DE methods based on
the NB distribution assumption have been developed to
accommodate the overdispersion among biological replicates.
Note, however, that these theoretical motivations come from
bulk-cell RNA-seq data. Two popular methods for this class are
edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014).
The setup is then to assume the expression read counts yij ~ NB
(μij,ji), where μij is the mean and ji is the dispersion parameter
for isoform i and sample j. Reliable estimation of the dispersion
parameter ji for each isoform is crucial for detecting DE
isoforms. Differences in the estimation of ji explain the main
differences between edgeR and DESeq2.

edgeR
A conditional maximum likelihood (CML) is used in edgeR
(Robinson et al., 2010) to estimate a common dispersion, which
is assumed to be the same for all isoforms. Then this procedure is
developed further to allow for the isoform-specific dispersion
estimates and an empirical Bayes procedure—approximated by a
weighted likelihood—is used to shrink the dispersions toward
the common dispersion. The amount of shrinkage is determined
by the neighbourhood set that is nearest to isoform i in average
log count-per-million (logCPM). For DE testing, edgeR allows
the user to select among different hypothesis tests including
quasi-likelihood F-test (edgeRQLF) for bulk-cell RNA-seq data
and likelihood ratio test (edgeRLFT) for scRNA-seq data as
suggested by the developer. However, a recent study (Soneson
and Robinson, 2018) shows that edgeRQLF performs
significantly better than edgeRLFT in scRNA-seq data.
Therefore, in this study, we report the results of edgeRQLF for
the evaluation of edgeR in DE analysis.

DESeq2
DESeq2 (Love et al., 2014) uses a similar negative-binomial
model as edgeR but facilitates more data-driven shrinkage
estimators for dispersion and fold change. DESeq2 assumes
the isoforms of similar average expression levels have similar
Frontiers in Genetics | www.frontiersin.org 9107
dispersion and shrinks the isoform-specific dispersion toward a
fitted smooth curve by an empirical Bayes approach. To
overcome the difficulty in the log fold-change (LFC)
estimation for the lowly expressed isoforms, DESeq2 shrinks
LFC estimates toward zero when the expression level is low. The
shrinkage procedure may result in underestimates of
dispersion, thereby producing conservative estimate statistics
for the DE test. This helps reduce the FPR at the expense of
lower sensitivity.

DEsingle
DEsingle (Miao et al., 2018) has another negative-binomial based
approach that employs the zero-inflated NB (ZINB) model to
discriminate the observed zero values into two parts—constant
zeros and zeros from the NB distribution. With the model,
DEsingle is designed to overcome the issues of the excessive
zero values observed in scRNA-seq data. To detect DE isoforms
between two groups, DEsingle first calculates the maximum
likelihood estimates (MLE) of two ZINB populations ’
parameters, then computes the constrained MLE of the two
models’ parameters under the null hypothesis (H0), and finally
uses the likelihood ratio test for testing H0.

Beta-Poisson–Based Methods
BPSC
BPSC (Vu et al., 2016) is an analytical procedure based on
the beta-Poisson mixture model, which is designed to capture
the property of scRNA-seq data. The model is integrated into the
generalized linear model (GLM) framework for DE analysis. The
sophisticated four-parameter beta-Poisson model is as shown in
Eq. (1). The iterative weighted least-squares (IWLS) algorithm is
used to estimate the model parameters.

Normal-Based Methods
Limma
Limma (Law et al., 2014) method is based on linear modelling
which was originally designed for gene expression microarray
data, but has recently been extended to RNA-seq data. In this
study, we use limmatrend (Law et al., 2014), a version of limma
where the empirical Bayes procedure is modified to incorporate a
mean-variance trend for DE analysis. In a recent study of DE
analysis of scRNA-seq data (Soneson and Robinson, 2018),
limmatrend has the best performances among other versions of
limma, such as voomlimma.

Monocle
Monocle (Qiu et al., 2017) is a tool originally designed for
scRNA-seq data for identifying DE genes that vary across
different cell types or across a so-called “pseudo-time.” The
mean expression level of each isoform is modeled by
generalized additive models (GAMs) which relate one or more
predictor variables to a response variable as

g(E(Y)) = b0 + f1(x1) + f2(x2) + � � � + fm(xm),

where Y is a response variable, and xi‘s are predictor variables.
The function g is a link function, typically the log function, and
fi‘s are nonparametric functions, such as cubic splines or other
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smoothing functions. Gene expression level across cells is
modeled by a Tobit model; with some approximations,
monocle’s GAM is thus

E(Y) = s(yt(bx , si)) + ϵ,

where yt(bx,si) is the assigned pseudo-time of a cell and s is a
cubic smoothing function with (by default) three effective
degrees of freedom. ϵ is the error term that is normally
distributed with a mean of zero. The DE test is performed with
a x2-approximation of the likelihood ratio test.

MAST
MAST (Finak et al., 2015) uses a hurdle model tailored to scRNA-
seq data. It is a two-part GLM that simultaneouslymodels the gene
expression rate (how many cells express the gene) by logistic
regression and the expression level by Gaussian distribution. The
DE testing is then done using the likelihood ratio test.

T-Test
T-test (Welch, 1947) is a general comparison method that is used
to compare the means of two groups. One of the most common
assumptions made when doing a t-test is the normality of data
distribution. Empirically, scRNA-seq data are highly skewed, but
the t-test is known to have a certain robustness against skewness,
so it is still worth comparing against other sophisticated methods.

Nonparametric Methods
Wilcoxon Rank Sum Test
Wilcoxon rank sum test (Hollander et al., 2013) (also known as
Mann-Whitney test) is a nonparametric test that is used to
determine whether the two independent samples come from
the same distribution. The main idea of the test is to compare the
sum of the ranks for the observations which come from
different samples.
DISCUSSION

We have performed a systematic comparison of nine different
statistical methods for DE analysis of scRNA-seq data. To get
realistic distributional characteristics, three real scRNA-seq data
sets are used as the basis for generating the data. A beta-Poisson
model–based simulated data set is also performed to assess the
performance of each method. The nine methods are evaluated by
the type-I error control, the ROC curve and the RDR under both
null and alternative hypotheses. Our results show that lowly
expressed isoforms are generally the source of strong differences
between methods. Most methods except monocle have good
RDR performances for highly expressed isoforms.

EdgeR and monocle tend to produce extremely small p-values
for lowly expressed isoforms, leading to many false positives.
Notably, these two methods perform very poorly compared to
the other methods for top DE isoforms. These results are
consistent with other recent studies(Dal Molin et al., 2017;
Soneson and Robinson, 2018). DESeq2, a bulk-cell–based
method with a shrinkage procedure, works rather well over all
Frontiers in Genetics | www.frontiersin.org 10108
isoforms on both the real scRNA-seq data and the simulated
data. However, DESeq2 is highly conservative for lowly
expressed isoforms, so its sensitivity is always lower than the
other methods for all three real data sets. The performances of
BPSC are comparable to DESeq2 in all analyses but less
conservative. Other methods including limmatrend, t-test,
Wilcoxon, MAST, and DEsingle perform reasonably in both
real and simulated data sets.

To validate our results, we analyzed two extra public real
scRNA-seq data sets including one data set with 164 single cells
from H7 human cell-line generated by the SMARTer C1 prototol
and another big data set contain 2,027 intestinal single cells of
mouse from the CEL-Seq protocol. The results in Figure S6-S8
show the consistency of the comparison analyses for different
types of scRNA-seq data for the new small data set. But for the
new big data set, monocle and DESeq2 show particularly low
sensitivity for lowly expressed isoforms in Figure S6D-S8D. The
details of these data and results are referred to the
Supplementary Material.

We also investigated further the performances of the DE
methods for the group of lowly expressed isoforms. We first
checked the relationship between the performance of the
Wilcoxon test, one of the most stable DE methods, and the
signal strength in different log fold-change (LFC) 1, 2, 3, and 4
using the simulated dataset. Results in the Figure S4 show that
the RDR of Wilcoxon is a function of signal strength where it
achieves a higher RDR for the data with a higher LFC. The low
signal in the simulated data in Figure 3D had made the
differences of true RDR for different methods inconspicuous.
So we generated another simulation data set using the same
procedure described in 3.1 but with a high signal strength
LFC = ± 4, then applied all 9 methods on the simulated lowly
expressed genes. The results (Figure S5) confirmed that for the
lowly expressed isoforms, DESeq2 is too conservative and
consequently loses sensitivity compared to the other methods.

The nine methods compared in this study are selected to
cover most statistical models used in recent DE analysis.
Although some DE methods are not included in this study,
they use similar approach to those we included. For instance,
D3E (Delmans and Hemberg, 2016) utilizes beta-Poisson model
which is similar to BPSC; SCDE (Kharchenko et al., 2014)
models the gene expression values using a mixture of NB
distribution for amplification components and a Possion
distribution for dropout events, which is similar to DEsingle;
Ballgown (Frazee et al., 2015) is based on the linear modeling
strategy which is similar to limma.

The main strengths of our comparison method include (i) the
use of three real scRNA-seq data sets in order to capture the true
distributional characteristics and the diversity of single-cell data;
(ii) the use of the RDR metric for top-rank genes. This is
consistent with the data analysis process of identifying the list
of interesting genes. In some cases we show that considering the
full collection of genes will lead to misleading comparisons; (iii)
Separate results of highly and lowly expressed genes, as these two
groups have distinct distributions and the methods vary more in
their performances for lowly expressed genes. In summary,
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performances of DE methods do vary, so we need to pay
attention in choosing the method to use, and, at least for
highly expressed genes, some methods designed for bulk-cell
RNA-seq analysis do not necessarily perform worse than those
specifically designed for scRNA-seq data. Finally, as shown the
figures, the number of lowly expressed genes is not trivial, so our
results also highlight the need for further development of
methods to deal with these genes.
CONCLUSION

There are large differences in the performance of methods for
detecting DE in single-cell RNA-seq data. This is driven partly by
the expression level of genes. For highly expressed genes, many
bulk-cell–based DE methods perform well against single-cell–
based methods. But, for lowly expressed genes, the performance
of the methods varies, so a careful check of the gene expression
level should be made before choosing a DE method in analyses.
This is to ensure that the chosen method is appropriate for your
data. We found edgeR and monocle to have poor control of false-
positives on lowly expressed genes, so we do not recommend
these two methods for such genes. DESeq2 tends to be too
conservative, so it sacrifices sensitivity for higher specificity.
According to the simulation results, BPSC performs well
against the other methods, particularly when there is a
sufficient number of cells. RDR for top-rank genes is a useful
metric for assessing performance of DE methods, sometimes
giving different results compared to analysis of the full set of
genes. We suggest to be considered in choosing DE methods to
use, performances of DE methods in scRNA-seq data strongly
depend on the expression level of genes.
Frontiers in Genetics | www.frontiersin.org 11109
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Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its

potential of zooming into complex biological systems. Genome-wide expression analysis

at single-cell resolution provides a window into dynamics of cellular phenotypes. This

facilitates the characterization of transcriptional heterogeneity in normal and diseased

tissues under various conditions. It also sheds light on the development or emergence of

specific cell populations and phenotypes. However, owing to the paucity of input RNA, a

typical single cell RNA sequencing data features a high number of dropout events where

transcripts fail to get amplified.

Results: We introduce mcImpute, a low-rank matrix completion based technique

to impute dropouts in single cell expression data. On a number of real datasets,

application of mcImpute yields significant improvements in the separation of true zeros

from dropouts, cell-clustering, differential expression analysis, cell type separability,

the performance of dimensionality reduction techniques for cell visualization, and gene

distribution.

Availability and Implementation: https://github.com/aanchalMongia/McImpute_scR

NAseq

Keywords: scRNA-seq, dropouts, imputation, matrix completion, Nuclear norm minization

1. BACKGROUND AND INTRODUCTION

In contrast to traditional bulk population-based expression studies, single-cell transcriptomics
provides more precise insights into the functioning of individual cells. Over the past few years,
this powerful tool has brought in transformative changes in the conduct of functional biology
(Wagner et al., 2016). With single-cell RNA sequencing (scRNA-seq) we are now able to discover
subtypes within seemingly similar cells. This is particularly advantageous for characterizing cancer
heterogeneity (Patel et al., 2014; Tirosh et al., 2016), identification of new rare cell type and
understanding the dynamics of transcriptional changes during development (Tang et al., 2010; Yan
et al., 2013; Biase et al., 2014).

Despite all the goodness, scRNA-seq technologies suffer from a number of sources of technical
noise. Most important of these is insufficient input RNA. Due to small quantities transcripts are
frequently missed during the reverse transcription step. As a direct consequence, these transcripts
are not detected during the sequencing step (Kharchenko et al., 2014). Often times the lowly
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expressed genes are the worst hit. Excluding these genes from the
analysis may not be the best solution as many of the transcription
factors and cell surface markers are sacrificed in this process (van
Dijk et al., 2017). Added to that, variability in dropout rate across
individual cells or cell types works as a confounding factor for a
number of downstream analyses (Sengupta et al., 2016; Li et al.,
2017). Hicks et al. (2015) showed, on a number of scRNA-seq
datasets, that the first principal components highly correlate with
the proportion of dropouts across individual transcriptomes. In
summary, there is a standing need for efficientmethods to impute
scRNA-seq datasets.

Very recently, efforts have been made to devise imputation
techniques for scRNA-seq data (Table S6). Most notable of
among these are MAGIC (van Dijk et al., 2017), scImpute (Li
and Li, 2018), and drImpute (Kwak et al., 2017). MAGIC uses
a neighborhood based heuristic to infer the missing values based
on the idea of heat diffusion, altering all gene expression levels
including the ones not affected by dropouts. On the other hand,
scImpute first estimates which values are affected by dropouts
based on Gamma-Normal mixture model and then fills the
dropout values in a cell by borrowing information of the same
gene in other similar cells, which are selected based on the genes
unlikely affected by dropout events. The overall performance of
scImpute has been shown to be superior to MAGIC. Parametric
modeling of single-cell expression is challenging due to our
lack of knowledge about possible sources of technical noise and
biases (Sengupta et al., 2016). Moreover, there is a clear lack of
consensus about the choice of the probability density function.
Another method, Drimpute, repeatedly identifies similar cells
based on clustering and performs imputation multiple times by
averaging the expression values from similar cells, followed by
averaging multiple estimations for final imputation. We propose
mcImpute (Figure 1), an imputation algorithm for scRNA-
seq data which models gene expression as a low-rank matrix
and sprouts in values in place of dropouts in the process of
recovering the full gene expression data from sparse single-cell
data. This is done by applying soft-thresholding iteratively on
singular values of scRNA-seq data. One of the salient features of
mcImpute is that it does not assume any distribution for gene
expression.

We first evaluate the performance of mcImpute in separating
“true zero" counts from dropouts on single-cell data of myoblasts
(Trapnell et al., 2014) (We call it Trapnell dataset). On
the same dataset, we assess the impact of imputation on
differential genes prediction. We further investigate mcImpute’s
ability to recover artificially planted missing values in a single
cell expression matrix of mouse neurons (Usoskin et al.,
2015).Accurate imputation should enhance cell type identity i.e.,
the transcriptomic similarity between cells of identical type. We,
therefore, quantify cell type separability as a metric and assess
its improvement. In addition to these, we also test the impact
of imputation on cell clustering. Four independent datasets
Zeisel (Zeisel et al., 2015), Jurkat-293T (Zheng et al., 2017),
Preimplantation (Yan et al., 2013) and Usoskin (Usoskin et al.,
2015), for which cell type annotations are available and another
dataset, Trapnell et al. (2014) for which bulk RNA-seq data
has been provided (required for validation of differential genes

prediction and separation of “true zeros" from dropouts), are
used for this purpose. McImpute clearly serves as a crucial
tool in the scRNA-seq pipeline by significantly improving all
the above-mentioned metrics and outperforming the state-of-
the-art imputation methods in the majority of experimental
conditions.

With the advent of droplet-based, high-throughput
technologies (Macosko et al., 2015; Zheng et al., 2017), library
depth is being compromised to curb the sequencing cost. As a
result, scRNA-seq datasets are being produced with an extremely
high number of dropouts. We believe that mcImpute’s great
performance, will provide an adequate solution for the dropouts
problem.

2. RESULTS

We performed computational experiments to evaluate the
efficacy of our proposed imputation technique comparing
mcImpute with a number of existing imputation methods for
single cell RNA data: scImpute, drImpute, and MAGIC.

2.1. Dropouts vs. True Zeros
The inflated number of zero counts in scRNA-seq data could
either be biologically driven or due to lack of measurement
sensitivity in sequencing. The transcript which is not detected
because of failing to get amplified in the sequencing step
essentially corresponds to a “false zero" in the finally observed
count data and needs to be imputed. A reasonable imputation
strategy which has this discriminating property should keep the
“true zero" counts (where the genes are truly expressed and have
no transcripts from the beginning) untouched, while at the same
time attempt to recover the dropouts.

The goodness of an imputation strategy can be formally
confirmed by observing two factors. First, whether the
imputation method is able to impute the true zero counts
in the expression data as is or not; Second, if it can fill-in
the dropouts with biologically meaningful expression counts
or not; showing an increasing difference between the zero
counts observed in unimputed data and the imputed one with
expression amplification.

We investigate the performance of mcImpute in
distinguishing “true zero" counts from dropouts on Trapnell
data (Trapnell et al., 2014), for which the bulk-counterpart was
available and hence, we could pull out low-to-medium expression
genes from the corresponding bulk data for validation. Of note,
to differentiate between the “true" and “false" zeros, we have used
the matched bulk-expression profiles; as it is a well-known fact
that bulk-RNA seq data has limited or no dropouts events as the
corresponding experiments involve millions of cells. The fraction
of zero counts was observed for genes with expression ranging
from zero to 500 for unimputed and imputed gene-expression
data. It should be noted that an imputed count value ranging
from 0 to 0.5 is taken as an imputed zero, rendering minor
flexibility to all imputation techniques.

Given the nature of this analysis, gene filtering in single cell
expressions has been skipped. DrImpute could not be taken into
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FIGURE 1 | Overview of mcImpute framework for imputing single-cell RNA sequencing data. Raw read counts were filtered for significantly expressed genes and then

normalized by Library size. Then, the expression data was Log2 transformed (after adding a pseudo-count of 1). This pre-processed expression matrix (Y) is treated as

the measurement/observation matrix (and fed as input to Nuclear-norm minimization algorithm) from which the gene expressions of the complete matrix (X) need to be

recovered by solving the non-convex optimization problem. The objective function minimizes the nuclear norm of expression matrix and satisfies the constraint

Y = A(X) with minimum error; where Y is the sampled version of the complete expression matrix X and A is the sub-sampling operator.

account since we could not programmatically mute the gene
filtering step in its pipeline.

We observe (Figure 2A, Table S1) that with low expression
genes, all imputation strategies successfully impute the “true
zeros” while, as the gene expression amplifies, un-imputedmatrix
still exhibits large fraction of zeros, which essentially correspond
to dropouts and only mcImpute and scImpute are able to curtail
the fraction of zeros, thus recovering the dropouts back. As
can be observed, MAGIC although successfully imputes the
“true zeros"; it fails to recover most of the dropouts in the
expression data.

2.2. Improvement in Clustering Accuracy
A correct interpretation of single-cell expression data is
contingent on the accurate delineation of cell types. Bewildering
level of dropouts in scRNA-seq data often introduces batch effect,
which inevitably traps the clustering algorithm. A reasonable
imputation strategy should fix these issues to a great extent. In
a controlled setting, we, therefore, examined if the proposed
method enhanced clustering outcomes. For this, we ran K-
means on first 2 principal component genes of log-transformed
expression profiles featured in each dataset (Figure S5). Since the
prediction from this clustering algorithm tends to change with
the choice of initial centroids, which are chosen at random, we
analyze the results on 100 runs of k-means to get reliable and
robust results. We set the number of annotated cell types as the

value of K for every data. Adjusted Rand Index (ARI) was used to
measure the correspondence between the clusters and the prior
annotations.

McImpute based re-estimation best separates the four groups
of mouse neural single cells from Usoskin dataset and brain cells
from Zeisel dataset, and clearly shows comparable improvement
on other datasets too (Figures 2B–E, Table S2). The striking
difference between Jurkat and 293T cells made them trivially
separable through clustering, leading to same ARI across all 100
runs. Still, mcImpute was able to better maintain the ARI in
comparison to other imputation methods.

2.3. Matrix Recovery
In this set of experiments, we study the choice of
matrix completion algorithm – matrix factorization
(MF) or nuclear norm minimization (NNM). Both the
algorithms have been explained in section Materials and
Methods.

The experiments are carried out on the processed Usoskin
dataset (Usoskin et al., 2015). We artificially removed some
counts at random (sub-sampling) in the data to mimic dropout
cases and used our algorithms (MF and NNM) to impute the
missing values. (Figures 3A–C) and Table S3 show the variation
of NormalizedMean Squared Error (NMSE), RootMean Squared
Error (RMSE) and Mean Absolute Error (MAE) to compare
our two methods for different sub-sampling ratios. This is the

Frontiers in Genetics | www.frontiersin.org 3 January 2019 | Volume 10 | Article 9113

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Mongia et al. McImpute

FIGURE 2 | McImpute shows remarkable improvement in separation of “true zeros" from dropouts and clustering of single cells (A) Separation of “true zeros" from

dropouts: plot showing fraction of zero counts (values between 0 and 0.5) in single cell expression matrix against the median bulk expression. The genes are divided

into 10 bins based on median bulk genes expression (first bin corresponds to zero expression genes) (B–E) Boxplots showing the distribution of ARI calculated on

100 runs of k-means clustering algorithm on first two principal components of single cell expression matrix for datasets (B) Jurkat-293T (C) Preimplantation (D)

Usoskin, and (E) Zeisel.

standard procedure to compare matrix completion algorithms
(Keshavan et al., 2010; Marjanovic and Solo, 2012).

We are showing the results for Usoskin dataset, but
we have carried out the same analysis for other datasets
and the conclusion remained the same. We find that the
nuclear norm minimization (NNM) method performs slightly
better than the matrix factorization (MF) technique; so
we have used NNM as the workhorse algorithm behind
mcImpute.

2.4. Improved Differential Genes Prediction
Optimal imputation of expression data should improve the
accuracy of differential expression (DE) analysis. It is a standard
practice to benchmark DE calls made on scRNA-Seq data against
calls made on their matching bulk counterparts (Kharchenko
et al., 2014). To this end, we used a dataset of myoblasts, for
which matching bulk RNA-Seq data were also available (Trapnell
et al., 2014). For simplicity, this dataset has been referred to as

the Trapnell dataset. DE and non-DE genes were identified using
edgeR (Zhou et al., 2014) package in R.

We used the standardWilcoxon Rank-Sum test for identifying
differentially expressed genes from matrices imputed by various
methods. Congruence between bulk and single cell-based DE
calls were summarized using the Area Under the Curve
(AUC) values yielded from the Receiver Operating Characteristic
(ROC) curves (Figure 3D). Among all the methods mcImpute
performed best with an AUC of 0.85.

For each method, the AUC value was computed on the
identical set of ground truth genes. We had to make an exception
only for drImpute as it applies the filter to prune genes in its
pipeline. Hence AUC value for drImpute was computed based on
a smaller set of ground truth genes.

2.5. Improvement in Cell Type Separability
Downstream analysis becomes much easier if expression
similarities between cells of identical type are considerably
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FIGURE 3 | McImpute recovers the original data from their masked version with low error, performs best in prediction of differentially expressed genes and

significantly improves CTS score. Variation of (A) NMSE, (B) RMSE, and (C) MAE with sampling ratio using MF (Matrix factorization) and NNM (Nuclear norm

minimization) on Usoskin dataset showing NNM performing better than MF algorithm. (D) ROC curve showing the agreement between DE genes predicted from

scRNA and matching bulk RNA-Seq data (Trapnell et al., 2014). DE calls were made on expression matrix imputed using edgeR. (E–H) 2D-Axis bar plot depicting

improvement in Cell type separabilities between (E) Jurkat and 293T cells from Jurkat-293T dataset; (F) 8cell and BXC cell types from Preimplantation dataset; (G) NP

and NF cells from Usoskin dataset; and (H) S1pyramidal and Ependymal from Zeisel dataset . Refer Table S4 for absolute values.

higher than that of cells coming from different subpopulations.
To this end, we define the cell-type separability score as
follows:

For any two cell groups, we first find the median of
Spearman correlation values computed for each possible pair
of cells within their respective groups. We call the average
of the median correlation values the intra-cell type scatter.
On the other hand, inter-cell type scatter is defined as the
median of Spearman correlation values computed for pairs
such that in each pair, cells belong to two different groups.
The difference between the intra-cell scatter and inter-cell type
scatter is termed as the cell-type separability (CTS) score. We
computed CTS scores for two sample cell-type pairs from each
dataset. In more than 80 % (13 out of 16) of test cases,
mcImpute yielded significantly better CS values (Figures 3E–H,
Table S4).

2.6. Cell Visualization
Representing scRNA-seq data visually would involve reducing
the gene-expression matrix to a lower dimensional space and

then plotting each cell transcriptome in that reduced two
or three-dimensional space. Two well-known techniques for
dimensionality reduction are PCA and t-SNE (Holland, 2008;
Maaten and Hinton, 2008). It has been shown that t-Distributed
Stochastic Neighbor Embedding (t-SNE) is particularly well
suited and effective for the visualization of high-dimensional
datasets (Liu et al., 2017). So, we use t-SNE (Figures 4, 5)
on Usoskin and Zeisel expression matrices to explore the
performance of dimensionality reduction, both without and
with imputation. The cells are visualized in 2-dimensional
space, coloring each subpopulation by its annotated group, both
before and after imputation. To quantify the groupings of cell
transcriptomes, we use an unsupervised clustering quality metric,
silhouette index. The average silhouette values for each method
have been shown in the plot titles (Figures 4, 5 and Figures S3,
S4).

T-SNE analysis depicts that mcImpute brings all four groups
of mouse neural cells from Usoskin dataset closest to each
other in comparison to other methods and performs fairly well,
competing with drImpute on Zeisel dataset too.
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FIGURE 4 | Plot showing t-SNE visualization and average silhouette values for Usoskin dataset before and after imputation. McImpute improves the visual

distinguishability the most for all groups of mouse neural single cells amongst all imputation strategies. The neuronal types were defined as neurofilament containing

(NF), non-peptidergic nociceptors (NP), peptidergic nociceptors (PEP), and tyrosine hydroxylase containing (TH).

FIGURE 5 | Plot showing t-SNE visualization and average silhouette values for Zeisel dataset before and after imputation. Both mcImpute and drImpute bring brain

cells closer, at the same time maintaining the structure of gene-expressions.
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2.7. Improvement in Distribution of Genes
It has been shown that for single-cell gene expression data, in the
ideal condition all genes should obey CV = mean−1/2 (Klein
et al., 2015) (CV: coefficient of variation), following a Poisson
distribution as depicted by the green diagonal line (Figures 6, 7).
This is because individual transcripts are sampled from a pool
of available transcripts for CEL-Seq. This accounts for technical
noise component which obeys Poissonian statistics (Grün et al.,
2014), and thus the CV is inversely proportional to the square
root of the mean. Since this result has only been shown for
single-cell data with transcript numbers, this experiment has not
been analyzed for Jurkat-293T and Zeisel datasets for which the
individual RNA molecules were counted using unique molecular
identifiers (UMIs).

We model CV as a function of mean expression for all
genes to analyze how various imputation methods affect the
relationship between them. The results (Figures 6, 7) show
that both mcImpute and drImpute succeed to restore the
relationship between CV and mean to a great extent (improving
the dependency of the CV on the mean expression level to be
more consistent with Poissonian sampling noise), while others
do not.

3. DISCUSSION

Single-cell RNA seq technologies have opened up numerous
possibilities for analysis at the single-cell resolution. But, low
amount of starting RNA is a major limitation of the technology
which results in frequent missing of transcripts in the reverse
transcription step (dropout events). This dropout problem in
single-cell RNA-seq data makes the expression matrix highly
sparse; which in turn hinders the downstream analysis.

To overcome the dropout problem in single-cell data, we take
motivation from various areas of applied sciences (including
computer vision Tomasi and Kanade, 1992, control Mesbahi and
Papavassilopoulos, 1997,machine learning Abernethy et al., 2006;
Amit et al., 2007; Argyriou et al., 2007, etc) where recovery of an
unknown low-rank matrix from very limited information is of
interest. The problem is akin to that of recommendation systems
(e.g. in Netflix movie recommendations and Amazon product
recommendations) (Bell and Koren, 2007; Bennett and Lanning,
2007; SIGKDD, 2007), where there is a database of ratings
given by users to movies/products. Since the users typically rate
only a small subset of items, not all the ratings are available;
which makes the user-movie rating matrix sparse. Also, the
matrix is assumed to be of low-rank because there are not too
many independent parameters on which the users generally rate
the movie. The objective is to estimate the ratings of all the
users on all the movies. If the new movie rating predictions
can be done accurately, recommendation accuracy increases.
There is a pretty straightforward link between both the Netflix
problem and dropout problems. Therefore, imputation to single-
cell expression matrix can be efficiently performed by Low-rank
approximation. (Koren et al., 2009; Majumdar and Ward, 2011).

One could argue about the low-rank origin of the gene
expression data. It should be noted that numerous studies have

suggested that genes do not work in isolation (Staiger et al.,
2013), but as part of a complex regulatory network (Silver et al.,
2013). This inter-dependency has been analyzed in the form of
associated network structures (Xiong et al., 2005; Gill et al., 2010)
and is best reflected by the gene-gene correlations (Weckwerth
et al., 2004; Klebanov and Yakovlev, 2007; Reynier et al., 2011;
Najafov and Najafov, 2018). It is so believed that such high
levels of correlation are caused by sharing of regulatory programs
among different genes (Ye et al., 2013). Also, it has previously
been shown that a small number of interdependent biophysical
functions trigger the functioning of transcription factors, which
in turns influence the expression levels of genes, resulting in a
highly correlated data matrix (Kapur et al., 2016). On the other
hand, cells coming from same tissue source also lie on differential
grades of the variability of a limited number of phenotypic
characteristics. Therefore, it is just to assume that the gene
expression values lie on a low-dimensional linear subspace and
the data matrix thus formed may well be thought as a low-rank
matrix.

We attempt to give another mathematical justification on the
Low-rank assumption of the gene-expression in Figure S2 by
showing that the maximum information of the expression-data
is held in its first few singular values; hence the rank of the
expression matrix (number of non-zero singular values) should
be low.

In specific, we used Nuclear Norm-based Matrix Completion
for imputing single-cell RNA seq data. The algorithm models
the single-cell gene expression as a low-rank matrix and recovers
the full gene expression from partial information by thresholding
the singular values of expression matrix iteratively. The recovery
process sprouts-in appropriate expressions in place of dropouts;
keeping the biologically silent expression values intact.

Apart from taking care of biologically silent genes, the
proposed algorithm performs competitively with the state-of-
the-art methods in improving the clustering accuracy of cells,
identifying differentially expressed genes, enhancing cell type
separability, improving the dimensionality reduction, etc.

Our method is particularly suitable for single-cell data since
it does not assume anything about the statistical property of the
expression or the dropouts and can be seamlessly incorporated
into the single-cell analysis pipeline. We have also demonstrated
that our method clearly distinguishes between biological and
technical silencing.

The algorithm has some scope of improvement when it comes
to handling scRNA– seq datasets with large sample sizes. As
can be seen in Table S5, the running time of our algorithm is
comparativelymore than that ofMAGIC and drImpute; although
much less than that of scImpute.

4. DATA AND METHODS

4.1. Dataset Description
We used five scRNA-seq datasets from four different studies for
performing various experiments (Table S7).

• Jurkat-293T: This dataset contains expression profiles of
Jurkat and 293T cells, mixed in vitro at equal proportions
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FIGURE 6 | Plot showing log10(CV) vs. log10(mean) relationship between genes for Preimplantation dataset before and after imputation.

FIGURE 7 | Plot showing log10(CV) vs log10(mean) relationship between genes for Usoskin dataset before and after imputation.
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(50:50). All ∼ 3,300 cells of this data are annotated based on
the expressions of cell-type specific markers (Zheng et al.,
2017). Cells expressing CD3D are assigned Jurkat, while
those expressing XIST are assigned 293T. This dataset is
also available at 10x Genomics website (https://support.
10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/
jurkat:293t_50:50).
• Preimplantation: This is an scRNA-seq data of mouse

preimplantation embryos. It contains expression profiles of ∼
300 cells from zygote, early 2-cell stage, middle 2-cell stage,
late 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage, early
blastocyst, middle blastocyst, and late blastocyst stages. The
first generation of mouse strain crosses was used for studying
monoallelic expression. We downloaded the count data from
Gene Expression Omnibus (GSE45719) (Yan et al., 2013).
• Zeisel: Quantitative single-cell RNAseq has been used to

classify cells in the mouse somatosensory cortex (S1)
and hippocampal CA1 region based on 3005 single cell
transcriptomes (Zeisel et al., 2015). Individual RNA molecules
were counted using unique molecular identifiers (UMIs)
and confirmed by single-molecule RNA fluorescence in situ
hybridization (FISH). A divisive biclustering method based
on sorting points into neighborhoods (SPIN) was used to
discover molecularly distinct, 9 major classes of cells. Raw data
is available under the accession number GSE60361.
• Usoskin:This data ofmouse neurons (Usoskin et al., 2015) was

obtained by performing RNA-Seq on 799 dissociated single
cells dissected from the mouse lumbar dorsal root ganglion
(DRG) distributed over a total of nine 96-well plates. After
Principal component analysis (PCA) of expressionmagnitudes
across all cells and genes, 622 cells were classified as neurons,
68 cells had an ambiguous assignment and 109 cells were non-
neuronal. We take into account the 622 neuronal clusters of
mouse lumbar DRG- neurofilament containing (NF), non-
peptidergic nociceptors (NP), peptidergic nociceptors (PEP),
and tyrosine hydroxylase containing (TH). RPM normalized
counts are available under the accession number GSE59739.
• Trapnell: This is an scRNA-seq data of primary human

myoblasts (Trapnell et al., 2014). Differentiating myoblasts
were cultured and cells were dissociated and individually
captured at 24-h intervals. 50–100 cells at each of the four
time points were captured following serum switch using the
FluidigmC1microfluidic system. This data is available at Gene
Expression Omnibus under the accession number GSE52529.
Of note, this dataset has been used for the experiments which
require the Bulk-counterpart of the gene-expression data i.e.,
“Dropout vs true-zeros” and “Differential genes prediction.”

4.2. Data Preprocessing
Steps involved in preprocessing of raw scRNA-seq data are
enumerated below.

• Data filtering: It is ensured that data has no bad cells and
if a gene was detected with ≥ 3 reads in at least 3 cells we
considered it expressed. We ignored the remaining genes.
• Library-size Normalization: Expression matrices were

normalized by first dividing each read count by the total

counts in each cell, and then by multiplying with the median
of the total read counts across cells.
• Log Normalization: A copy of the matrices were log2

transformed following the addition of 1 as pseudo-count.
• Imputation: Further, log transformed expression matrix was

used as input tomcImpute. The algorithm returns imputed log
transformedmatrix, normalized matrix (after applying reverse
of log operation on imputed log-transformed expressions),
and the count matrix after imputation.

A brief overview of the complete mcImpute pipeline has been
shown in Figure 1.

4.3. Low-Rank Matrix Completion:
Definition
Our problem is to complete a partially observed gene expression
matrix X where columns represent genes and rows, individual
cells. The complete matrix is constituted by the known and the
yet unknown values. We can assume that the single cell data
that we have acquired, Y is a sampled version of the complete
expression matrix X. Mathematically, this is expressed as,

Y = A(X) (1)

Here A is the sub-sampling operator. It is a binary mask that
has 0’s where the counts of complete expression data X have not
been observed and 1’s where they have been. The values of A are
element-wise multiplied to the complete expression matrix X so
that Y (the sub-sampled data) is a sparse representation of X and
has expression values only at positions where gene expression is
observed. Our problem is to recover X, given the observations Y ,
and the sub-sampling mask A. It is known that X is of low-rank.

It should be noted that matrix completion is a well studied
framework. In this work, we consider two algorithms for efficient
imputation of scRNA-seq expression data: Matrix factorization
(Koren et al., 2009) and Nuclear norm minimization?

4.4. Matrix Factorization
Matrix factorization is the most straightforward way to address
the low-rank matrix completion problem; it has previously been
used for finding lower dimensional decompositions of matrices
(Lee and Seung, 2001). SayX is of dimensionsm×n, but is known
to have a rank r (<m, n). In that case, one can express Xm×n as a
product of two matricesUm×r and Vr×n . Therefore the complete
problem (1) can be formulated as,

Y = A(X) = A(UV) (2)

Estimating U and V from (2) tantamount to recovering X. The
two matricesU and V can be solved by minimizing the Frobenius
norm of the following cost function.

min
U,V
||Y − A(UV)||2F (3)

Since this is a bi-linear problem, one cannot guarantee
global convergence. However, it usually works in practice. It
has been used for solving recommender systems problems
(Koren et al., 2009), where (3) was solved using stochastic
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gradient descent (SGD). SGD is not an efficient techniques
and requires tuning of several parameters. In this work, we
will solve (3) in a more elegant fashion using Majorization-
Minimization (MM) (Sun et al., 2017). The basic MM approach
and its geometrical interpretation has been diagrammatically
represented (Figure S1). It depicts the solution path for a simple
scalar problem but essentially captures the MM idea.

For our given problem, the cost function to be minimized is
given as J(X) = ||Y − A(X)||2F ; the majorization step basically
decouples the problem (from A), so that we can solve the
optimization problem by solving

min
U,V
||B− UV||2F (4)

where Bk+1 = Xk+
1
aA

T(Y−A(Xk)) at each iteration k. Here, Xk

is the matrix at iteration k and a is a scalar parameter in the MM
algorithm.

This (4) is solved by alternating least squares (Hastie et al.,
2015), i.e., while updating U, V is assumed to be constant and
while updating V , U is assumed to be constant.

Uk ← min
U
||B− Uk−1Vk−1||

2
F (5)

Vk ← min
V
||B− UkVk−1||

2
F (6)

Since the log-transformed input (with pseudo count added)
expressions would never be negative, we have imposed a non-
negativity constraint on the recovered matrix X, so that it does
not contain any negative values.

The matrix factorization algorithm has been summarized in
Algorithm 1. The initialization of factor V is done by keeping r
right singular vectors of X in V obtained by performing singular
value decomposition (SVD) of X, where r is the approximate rank
of the expression matrix to be recovered.

Algorithm 1Matrix completion using matrix factorization

1: procedureMATRIX-FACTORIZATION(Y ,A, r)
2: Initialize:X = random, a,V (SVD initialization), k and l.
3: For loop 1, iterate (k)
4: Bk = Xk−1 +

1
aA

T(Y − A ◦ Xk−1)
5: For loop 2, iterate (l)
6: Ul ← min

U
||Bk − Ul−1Vl−1||

2
F

7: Vl ← min
V
||Bk − UlVl−1||

2
F

8: End loop 2

9: Xk = UkVk

10: Xk ← X+
k

11: End loop 1

4.5. Nuclear Norm Minimization
The problem depicted in (3) is non-convex. Hence, there is no
guarantee for global convergence. Also one needs to know the
approximate rank of the matrix X in order to solve it, which

is unknown in this case. To combat this issues, researchers
in applied mathematics and signal processing proposed an
alternative solution. They would directly solve the original
problem (1) with a constraint that the solution is of low-rank.
This is mathematically expressed as,

min
X

rank(X) such that Y=A(X) (7)

However, this turns out to be NP hard problem with doubly
exponential complexity. Therefore, studies in matrix completion
(Candes and Recht, 2009; Candès and Tao, 2010) proposed
relaxing the NP hard rank minimization problem to its closest
convex surrogate: nuclear norm minimization.

min
X
||X||∗ such that Y=A(X) (8)

Here ||.||∗ is the nuclear norm and is defined as the sum of
singular values of data matrix X. It is the l1 norm of the vector
of singular values of X and is the tightest convex relaxation of the
rank of matrix, and therefore its ideal replacement.

This is a semi-definite programming (SDP) problem. Usually
its relaxed version (Quadratic Program) is solved (Candès and
Plan, 2010) with the unconstrained Lagrangian version.

min
X
||Y − A(X)||2F + λ||X||∗ (9)

Here, ||.||∗ is the nuclear norm and λ is called the Lagrange
multiplier. The problem (9) does not have a closed form solution
and needs to be solved iteratively.

To solve (9), we invoke MM once more. Here J(X) = ||Y −
A(X)||2F + λ||X||∗ , we can express (9) in the following fashion in
every iteration k

min
X
||B− X||2F + λ||X||∗ (10)

where Bk+1 = Xk +
1
aA

T(Y − A(Xk)).
Using the inequality ||Z1 − Z2||F ≥ ||s1 − s2||2 , where s1 and

s2 are singular values of the matrices Z1 and Z2 respective, we can
solve the following instead of solving the minimization problem
(10).

min
sx
||sB − sX||

2
2 + λ||sX||1 (11)

Here, sB and sX are the singular values of B and X, respectively
and ||sX||1 is the l1 norm or the sum of absolute values of sX . It has
been shown that problem (10) is minimized by soft thresholding
the singular values with threshold λ/2. The optimal update is
given by

sX =







sB + λ/2 when sB ≤ −λ/2
0 when |sB| ≤ λ/2
sB − λ/2 whensB ≥ λ/2

(12)

or more compactly by

sX = soft(sB, λ/2) = sign(sB)max(0, |sB| − λ/2) (13)
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Algorithm 2Matrix completion via nuclear norm minimization

1: procedureMATRIX-NNM(Y ,A)
2: Initialize: X = random, a
3: For loop , iterate (k)
4: Bk = Xk−1 +

1
aA

T(Y − A ◦ Xk−1)
5: Compute SVD (singular value decomposition) of

B :Bk = USVT

6: Soft threshold the singular values:
6 = soft(S, λ/2) ⊲ refer equation 13

7: Xk = U6VT

8: Xk ← X+
k

9: End loop 1

We found that the algorithm is robust to values of λ as long as
as it is reasonably small (< 0.01).

Here too, we have imposed the non-negativity constraint on X
since expressions cannot be smaller than zero. The Nuclear Norm
Minimization algorithm has been depicted in Algorithm 2.

5. CONCLUSION

As an inevitable consequence of a steep decline in single
cell library depth, dropout rates in scRNA-seq data have
skyrocketed. This works as a confounding factor (Hicks
et al., 2015), thereby hindering cell clustering and further
downstream analyses. A good imputation strategy would
handle the Dropouts problem gracefully and thereby has the
potential to facilitate the discovery of new rare cell subtypes
within seemingly similar cells. This, in turn, can be helpful
for characterizing cancer heterogeneity and understanding
the dynamics of transcriptional changes during development.
The proposed mcImpute algorithm, without making any
assumption about the expression data distribution, recovers
dropouts by simultaneously retaining the true zero counts
and shows comparable performance on a number of

measures including clustering accuracy, cell type separability,
differential gene prediction, cell visualization, gene distribution,
etc.

We believe that McImpute, by far is the most intuitive way
of catering the dropouts problem. It can seamlessly be integrated
and serve as a key component in single-cell RNA seq pipeline.

Currently, imputation and clustering are together a piecemeal
two-step process—imputation followed by clustering. In the
future, we would like to incorporate both clustering and
imputation as a joint optimization problem.

6. SOFTWARE

The source code of mcImpute is shared at https://github.com/
aanchalMongia/McImpute_scRNAseq.
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Glioblastoma multiforme (GBM) is the most aggressive primary central nervous system
malignant tumor. The median survival of GBM patients is 12–15 months, and the 5
years survival rate is less than 5%. More novel molecular biomarkers are still urgently
required to elucidate the mechanisms or improve the prognosis of GBM. This study
aimed to explore novel biomarkers for GBM prognosis prediction. The gene expression
profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
datasets of GBM were downloaded. A total of 2241 overlapping differentially expressed
genes (DEGs) were identified from TCGA and GSE7696 datasets. By univariate COX
regression survival analysis, 292 survival-related genes were found among these DEGs
(p < 0.05). Functional enrichment analysis was performed based on these survival-
related genes. A five-gene signature (PTPRN, RGS14, G6PC3, IGFBP2, and TIMP4)
was further selected by multivariable Cox regression analysis and a prognostic model
of this five-gene signature was constructed. Based on this risk score system, patients
in the high-risk group had significantly poorer survival results than those in the low-
risk group. Moreover, with the assistance of GEPIA http://gepia.cancer-pku.cn/, all five
genes were found to be differentially expressed in GBM tissues compared with normal
brain tissues. Furthermore, the co-expression network of the five genes was constructed
based on weighted gene co-expression network analysis (WGCNA). Finally, this five-
gene signature was further validated in other datasets. In conclusion, our study identified
five novel biomarkers that have potential in the prognosis prediction of GBM.

Keywords: glioblastoma, differentially expressed genes, gene signature, prognosis, TCGA, GEO

INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous
system malignant tumor with high morbidity and mortality. According to genomic abnormalities
and gene expression, GBM can be divided into four molecular subtypes: classical, mesenchymal,
neural, and proneural, which lay a foundation for understanding its inherent heterogeneity
(Verhaak et al., 2010; Ma et al., 2018). In the United States, the incidence of GBM is 2.96
cases/100,000 population/year (Jhanwar-Uniyal et al., 2015). Although there are several treatment
options, including surgery, radiotherapy and chemotherapy, the median survival of GBM
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patients remains 12–15 months, and the 5 years survival rate is
less than 5% (Wen and Kesari, 2008; Ostrom et al., 2013).

With the development of next-generation sequencing
technologies, many specific molecular signatures have been
identified to better understand the molecular pathogenesis
of GBM (Aldape et al., 2015). As a result, many potential
diagnostic and prognostic biomarkers have been discovered
that enable a more specific classification and a more precise
outcome prediction of GBM. Some molecular markers including
MGMT (O6-methylguanine DNA methyltransferase), IDH
(isocitrate dehydrogenase), EGFR (epidermal growth factor
receptor), and PTEN (phosphatase and tensin homolog) have
been routinely tested in GBM patients clinically (van den
Bent et al., 2017; Binabaj et al., 2018). More importantly,
these molecular signatures have contributed to personalized
therapeutic approaches and targeted anti-GBM therapies
(Huang et al., 2017; Szopa et al., 2017). However, considering
the poor prognosis of GBM, novel molecular biomarkers
and new therapeutic strategies are still urgently required
to elucidate the mechanisms of GBM or increase overall
patient survival.

Previous studies have shown that gene expression profile
analysis could detect gene signatures to predict the outcome for
malignancy tumors (Luo et al., 2018; Mao et al., 2018; Zeng
et al., 2018). Shergalis et al. (2018) discovered that 20 genes
were overexpressed and correlated with poor survival outcomes
in GBM patients by bioinformatics analysis using data from
The Cancer Genome Atlas (TCGA) project. Bao et al. (2014)
identified a nine-gene signature to predict the prognosis of
glioma patients based on mRNA expression profiling from the
Chinese Glioma Genome Atlas (CGGA) database. Therefore, it
is necessary to understand the development and progression of
GBM by identifying GBM-related genes and to investigate of their
potential clinical roles and molecular mechanisms.

In this study, RNA-Seq data from TCGA and microarray
data from the Gene Expression Omnibus (GEO) database of
GBM were downloaded. Based on the overlapping differentially
expressed genes (DEGs), the genes related to prognosis were
screened. By using Cox regression, we developed a five-gene
signature based risk score to demonstrate the association between
gene expression and the prognosis of GBM. Moreover, we
validated this signature in the GEO dataset and TCGA array
dataset. These results might be able to provide new reference for
the prognostic predication of GBM.

MATERIALS AND METHODS

Data Source
The GBM RNA sequencing (RNA-seq) dataset and
corresponding clinical follow-up information were downloaded
from TCGA database (March, 2018). Subtype data of GBM were
downloaded from UCSC Xena1. A total of 159 patients, including
154 samples of primary GBM patients and five samples of normal
brain tissue were extracted for subsequent analysis.

1http://xena.ucsc.edu/

Gene expression microarray data GSE7696 (Lambiv et al.,
2011), including 71 samples of primary GBM patients and four
samples of normal brain tissue, were downloaded from the
National Center of Biotechnology Information (NCBI) Gene
Expression Omnibus2. The dataset was based on the GPL570
platform of [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA, United States).

Differential Expression Analyses
Then, gene profiles were standard normalized within and among
samples, respectively. Because the numerical distribution of
RPKM (reads per kilo-base per million mapped reads) is too
wide, the final expression level of a gene was defined as the log2(x
+ 1) of the raw expression level. Next, the DEGs between the
tumor and normal samples were calculated by the limma package
(Padj < 0.05 and | log2FC| > 1). The Venn diagram was produced
by the VennDiagram R package (Chen and Boutros, 2011).

Identification and Selection of
Survival-Related Genes
Only the patients with detailed follow-up times were extracted for
subsequent survival analyses. Univariate Cox regression survival
analysis using the Survival package in R was performed to identify
survival-related genes (Yang et al., 2016). Genes were selected
with a p-value of less than 0.05.

Go and KEGG Annotation of
Survival-Related Genes
Gene Ontology (GO) enrichment and KEGG (Kyoto
Encyclopedia of Genes and Genomes) analysis were performed
on the survival-related genes (Ogata et al., 1999; Wanggou et al.,
2016; Li et al., 2018). DAVID (The Database for Annotation,
Visualization, and Integrated Discovery) (Dennis et al.,
2003) software and the clusterProfiler package (Yu et al.,
2012) in R were used to annotate and visualize GO terms
and KEGG pathways.

Gene Signature Identification and Risk
Score System Establishment
Based on the top 100 survival-related genes in TCGA dataset,
multivariable Cox proportional hazard regression analysis was
performed to establish a risk score formula (O’Quigley and
Moreau, 1986). As previously reported, a prognosis risk score
formula could be constructed on the basis of a linear combination
of the expression level (exp) multiplied by a regression coefficient
(β) derived from the multivariate cox regression model.

Risk Score (RS) = expPTPRN
∗βPTPRN + expRGS14

∗βRGS14

+expG6PC3
∗βG6PC3 + expIGFBP2

∗βIGFBP2 + expTIMP4
∗βTIMP4

Based on the formula, the risk score of each GBM patient
was calculated, and then GBM patients were divided into high-
risk score and low-risk score groups. The receiver operating
characteristic (ROC) curve analysis was conducted using the R

2http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Identification of DEGs among TCGA and GEO datasets of GBM. (A) Volcano plots of DEGs in TCGA dataset. (B) Volcano plots of DEGs in GSE7696
dataset. (C) The Venn diagram of overlapping DEGs among TCGA and GSE7696 datasets.

FIGURE 2 | The most significantly enriched GO annotations and KEGG pathways of genes related to survival. The length of the bars represents the number of
genes, and the color of the bars corresponds to the p-value according to legend. (A) Top 5 significantly enriched biological process. (B) Top 5 significantly enriched
cellular component. (C) Top 5 significantly enriched molecular function. (D) Top 5 significantly enriched KEGG pathways.

package “pROC.” After choosing an optimal cut-off point with
the maximal sensitivity and specificity, the survival differences
between the low-risk and high-risk groups were assessed by the
Kaplan–Meier analysis with log-rank test. Similarly, to evaluate
the predictive power of the five-gene signature in internal dataset,
we assessed the gene signature within each subtype (classical,
mesenchymal, neural, and proneural).

Analysis in GEPIA and Exploring
Co-expression by WGCNA
The expression levels of the five genes were acquired with the
assistance of GEPIA3, which is a newly developed interactive
web server for analyzing the RNA sequencing expression data
of 23 types of cancers and normal samples from TCGA

3http://gepia.cancer-pku.cn/

TABLE 1 | Information about the five genes screened to build the
risk score system.

Genes Coefficient HR 95% CI P-value

PTPRN 0.50894 1.66353 1.4010–1.9753 6.35e-09

RGS14 0.54671 1.72757 1.2026–2.4816 0.00309

G6PC3 1.20753 3.34520 1.9960–5.6063 4.57e-06

IGFBP2 0.25845 1.29492 1.1096–1.5112 0.00104

TIMP4 −0.20684 0.81315 0.6951–0.9513 0.00976

and the GTEx projects according to the standard processing
pipeline (Tang et al., 2017).

To explore the regulatory network of the five genes, all the
overlapped DEGs were analyzed by WGCNA (Ahn et al., 2016;
Chen et al., 2018). Finally, the co-expression network of the
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FIGURE 3 | Risk score analysis, expression distribution and survival analysis of the five-gene signature in TCGA dataset. (A) The five-gene signature risk score
distribution. (B) The heat-map of the five-gene expression profiles. Red indicates a higher expression and green indicates a lower expression. Blue bar: low-risk
group. Red bar: high-risk group. (C) Kaplan–Meier analysis using the median risk score cut-off which divided patients into low-risk and high-risk groups.
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FIGURE 4 | ROC and Kaplan–Meier analysis of the five-gene signature in TCGA dataset. (A) ROC analysis of the sensitivity and specificity of the survival time
according to the five-gene signature based on risk score. (B) Kaplan–Meier analysis of the five-gene signature based risk score. Patients were divided into low-risk
and high-risk groups based on the optimal cut-off point.

five genes was constructed based on WGCNA and visualized by
Cytoscape 3.6.1 (Shannon et al., 2003).

Validation of the Five-Gene Prognostic
Signature by the GEO Dataset and TCGA
Microarray Dataset
Dataset GSE13041 from the GEO and TCGA microarray dataset
were used to validate this five-gene prognostic signature (Lee
et al., 2008). The GSE13041 dataset including 188 samples of
GBM patients and the TCGA microarray dataset including 498
samples of GBM patients were both based on the Affymetrix
Human Genome U133A Array platform (GPL97). The ROC
curves and Kaplan–Meier analyses were used to validate the
prognostic value of the five-gene for GBM patients.

RESULTS

Differentially Expressed Genes (DEGs) in
TCGA and GSE7696
Altogether, 4473 DEGs in TCGA dataset (Figure 1A) and 5789
DEGs in the GSE7696 dataset (Figure 1B) were screened by the
limma package. The 2241 overlapping DEGs were screened for
further analysis (Figure 1C).

Survival-Related Genes in GBM
In TCGA dataset, every overlapped DEG was evaluated by
univariate Cox regression survival analysis. Altogether, 292
significantly changed genes were considered -survival-related

genes by the threshold of p < 0.05. The top 100 survival-related
genes are shown in Supplementary Table 1.

Go and KEGG Analysis of
Survival-Related Genes
For the “biological processes” (BP), negative regulation of
catalytic activity, regulation of cell shape, negative regulation
of monocyte chemotaxis, long-term synaptic potentiation and
insulin secretion involved in cellular response to glucose stimulus
were the commonly enriched categories (Figure 2A). For
the “cellular component” (CC), the enriched categories were
correlated with focal adhesion, extracellular space, synaptic
vesicle membrane, extracellular exosome, and endoplasmic
reticulum (Figure 2B). For the “molecular function” (MF),
those genes mainly showed enrichment in calcium ion binding,
phospholipase inhibitor activity, calcium-dependent protein
binding, calcium-dependent phospholipid binding, and signal
transducer activity (Figure 2C). KEGG pathway enrichment
analysis suggested that glycosaminoglycan degradation was the
most significant pathway. These genes also participated in
following pathways: proteoglycans in cancer, lysosome, and
regulation of the actin cytoskeleton (Figure 2D).

Risk Score System Based on Five-Gene
Signature
After multivariate Cox regression analysis was conducted for
these 100 genes, five genes (PTPRN, RGS14, G6PC3, IGFBP2,
and TIMP4) were selected as signature genes that can optimally
predict the overall survival of patients with GBM (Table 1). To
comprehensively investigate the association between these five
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FIGURE 5 | Kaplan–Meier analysis of the five-gene signature in different molecular subtypes of glioblastoma. Classical (A), mesenchymal (B), neural (C), and
proneural (D).

genes and the prognosis of GBM, a five-gene survival risk score
system was established based on their Cox coefficients.

Risk Score (RS) = 0.50894∗expPTPRN + 0.54671∗expRGS14

+1.20753∗expG6PC3 + 0.25845∗expIGFBP2 − 0.20684∗expTIMP4

Then, the risk score for each patient was calculated in TCGA
dataset and ranked according to the risk scores. Thus, patients
were divided into a high-risk group (n = 75) and a low-risk
group (n = 76). The survival time of GBM patients was adversely

associated with their risk scores (Figure 3A). A remarkably lower
expression was noted for TIMP4 in the high-risk groups, while a
higher expression was observed for the other genes in the high-
risk groups (Figure 3B). The Kaplan–Meier analysis and log-rank
test showed that patients in the low-risk group had a significantly
positive overall survival time compared to the high-risk group
(p = 7.055906e-11) (Figure 3C).

Moreover, ROC analysis was performed for this risk score
system. Figure 4A shows that the area under the ROC Curves
(AUC) was 0.704. The optimal cutoff point was selected as 8.421.
With this cutoff point, the patients were further divided into a
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FIGURE 6 | Comparisons of the expression of the five genes between GBM and non-GBM tissues in TCGA and GTEx based on GEPIA. The Y axis represents the
log2 (TPM + 1) for gene expression. The gray bar indicates the non-GBM tissues, and the red bar shows the GBM tissues. These figures were derived from GEPIA.
TPM: transcripts per kilobase million. ∗p < 0.05.

high-risk group and a low-risk group. The Kaplan–Meier analysis
and log-rank test further indicated a significant difference in
overall survival between the two groups (p = 1.075619e-11)

(Figure 4B). Similarly, with different cutoff points, the patients
in each subtype were divided into a high-risk group and a low-
risk group. The Kaplan–Meier analysis and log-rank test also
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FIGURE 7 | The co-expression network of the five-gene signature. Red diamonds showed the key genes and green nodes are genes which co-expressed with the
key genes.

indicated a significant difference between the two groups in each
subtype (Figures 5A–D).

Analysis in GEPIA and Exploring
Co-expression by WGCNA
Based on the results derived from GEPIA, the expression of
G6PC3, IGFBP2, and TIMP4 were significantly up-regulated
in GBM, while the expression of PTPRN and RGS14 were
significantly down-regulated (Figure 6). By using GEPIA, the
selected five genes were verified as DEGs in GBM with amplified
normal sample sizes.

The co-expressed genes of the five genes were determined by
WGCNA. Finally, 129 genes were discovered to be co-expressed
with PTPRN, 41 genes were co-expressed with IGFBP2, 10 genes
with RGS14 and 1 gene with TIMP4. However, no gene was co-
expressed with G6PC3. The co-expression network of the four
genes is visualized by WGCNA in Figure 7.

Validation of the Five-Gene Prognostic
Signature by GEO Dataset and TCGA
Microarray Dataset
The GSE13041 dataset including 188 GBM patients and the
TCGA microarray dataset including 498 GBM patients were used
for the validation of the five-gene signature separately. Similarly,
the risk score for each patient was calculated. ROC analyses
were used to identify the optimal cutoff points (Figures 8A,C).
Then, we divided the patients into a high-risk group and a low-
risk group using the selected optimal cut-off points, respectively.
The Kaplan–Meier analyses suggested a significantly prolonged
survival time in the low-risk patients compared to that in
the high-risk patients (p = 3.480445e-06 and p = 0.00011)
(Figures 8B,D).

DISCUSSION

GBM is the most aggressive brain tumor associated with
poor prognosis. By analyzing TCGA and GSE7696 datasets,
we identified 2241 significantly overlapping DEGs. A total of
292 survival-related DEGs were selected from the overlapping
DEGs. Functional analyses demonstrated that these genes are
mainly associated with following pathways: glycosaminoglycan
degradation, proteoglycans in cancer, lysosome, and regulation of
the actin cytoskeleton. More importantly, based on multivariate
Cox regression analysis of TCGA dataset, five genes which could
predict overall survival were screen out, namely PTPRN, RGS14,
G6PC3, IGFBP2, and TIMP4. According to their Cox coefficients
derived from cox regression, a risk score system based on the five
genes was established. Additionally, after identifying the optimal
cut-off point by ROC analysis, patients were classified into high-
risk and low-risk groups. This five-gene signature was further
successfully validated as a prognostic marker in each subtype of
GBM, another independent GEO dataset (GSE13041) and TCGA
microarray dataset. Furthermore, differential expression analysis
of the five genes in GEPIA validated that three genes (G6PC3,
IGFBP2, and TIMP4) were significantly up-regulated and two
genes (PTPRN and RGS14) were significantly down-regulated
in GBM. Co-expression network analysis revealed the regulation
network of the five genes. These results suggest that these genes
may play an important role in the molecular pathogenesis,
progression and prognosis of GBM.

Based on GO and KEGG enrichment analyses of the survival-
related DEGs among different studies, “negative regulation of
catalytic activity” was the most significant enrichment in BP.
This indicated that inhibiting the catalytic activity of some
genes may be critical for cancer progression. Coincidentally,
Zhao et al. (2009) found that IDH1 mutation could inhibit
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FIGURE 8 | ROC and Kaplan–Meier analyses of the five-gene signature in validation datasets. (A) ROC analysis of the GSE13041 dataset. (B) Kaplan–Meier analysis
of the GSE13041 dataset. (C) ROC analysis of the TCGA microarray dataset. (D) Kaplan–Meier analysis of the TCGA microarray dataset.

IDH1 catalytic activity and contribute to the tumorigenesis
of glioma. Other BPs such as regulation of cell shape and
negative regulation of monocyte chemotaxis were also enriched.
For the CC category, focal adhesion was the most significant
enrichment which has been shown to be as a major determinant
of cell migration and an essential process in tumor invasion
(Garzon-Muvdi et al., 2012). The following three kinds of CCs,
extracellular space, synaptic vesicle membrane and extracellular
exosome, may also play important roles in tumor development
and its micro-environmental manipulation (Wei et al., 2017).
Regarding the MF category, calcium ion binding was the most
affected MF. Ca2+-mediated cell connectivity and plasticity
are unique features of the central nervous system, and the
Ca2+/calmodulin-dependent process is able to regulate cell
cycle progression and inhibit proliferation of malignant glioma

(Cheng et al., 1995; Liu et al., 2011). For KEGG pathway
enrichment analysis, glycosaminoglycan degradation was the
most significant pathway. Extracellular proteoglycans play critical
roles in driving oncogenic pathways in tumor cells and
promoting critical tumor-microenvironment interactions (Wade
et al., 2013). The other KEGG pathways, proteoglycans in cancer,
lysosome, and regulation of actin cytoskeleton, were also closely
related to oncogenesis (Liu et al., 2012; Terakawa et al., 2013;
Wade et al., 2013).

The five-gene signature provides a wealth of potential
biological and therapeutic information about GBM. PTPRN
(protein tyrosine phosphatase, receptor type N), located on the
long arm of human chromosome 2 (2q35) (Lan et al., 1996),
is an integral transmembrane protein of dense core vesicles
and plays an important role in the secretion of hormones and
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neurotransmitters (Xu et al., 2016). PTPRN has been confirmed
to be negatively related to the survival of hepatocellular
carcinoma patients and closely related to liver tumorigenesis
(Zhangyuan et al., 2018). Moreover, the hypermethylation of
PTPRN is also associated with shorter survival in ovarian cancer
patients (Bauerschlag et al., 2011). A high expression of PTPRN
in small cell lung cancer is associated with tumor growth and
proliferation. Interestingly, Shergalis et al. also found that a high
PTPRN expression is strongly associated with a poor prognosis in
GBM patients, which was consistent with our finding (Shergalis
et al., 2018). RGS14 is a member of the regulator of the G-protein
signaling (RGS) protein family and is highly expressed in the
caudate nucleus of the brain, spleen and thymus (Cho et al.,
2005; Gerber et al., 2016). Previous study found that RGS14 is
important for centrosome function, transcriptional regulation
and stress-induced cellular responses (Cho et al., 2005). However,
little work has been done to elucidate the role of RGS14 in
cancer. Interestingly, PTPRN and RGS14 expressed at low levels
in GBM tissue, but their increased expression was associated
with poor prognosis. The reason may be that they have different
functions in normal and tumor tissues. More work is needed
elucidate their functions in GBM. G6PC3, namely, glucose-6–
phosphatase isoform β, is a catalysis subunit of- G6PC (Gao
et al., 2017). G6PC (glucose-6–phosphatase) is a key enzyme
that regulates glucose homeostasis and glycogenolysis, which
has been reported as a specific enzyme regulating proliferation
and invasiveness in several tumors, such as liver, kidney and
ovarian cancer (Gao et al., 2017). Furthermore, a previous study
revealed that G6PC is a key enzyme regulating glioblastoma
invasion (Abbadi et al., 2014). Our study demonstrated that
G6PC3 was significantly up-regulated in GBM samples compared
with normal brain tissue, and the high expression of G6PC3
was closely related to a poor prognosis in GBM patients.
IGFBP2 (Insulin-like growth factor binding protein 2), an
important member of the Insulin-like growth factor binding
protein family, modulates cell growth, differentiation, migration,
and invasion in neoplasms (Fukushima and Kataoka, 2007).
IGFBP2 is involved in immunosuppressive activities and is
a potential immunotherapeutic target for GBM (Cai et al.,
2018). Our study confirmed that IGFBP2 was significantly
up-regulated in GBM and predicted a worse outcome for
patients, which was consistent with the previous study (Cai
et al., 2018). TIMP4 is a member of tissue inhibitors of
matrix metalloproteinases (TIMPs), which are involved in several
processes of tumorigenesis including proliferation, migration,
and invasion (Boufraqech et al., 2016). A high-expression of
TIMP4 has been found in patients with breast, cervical, and
prostate cancers, whereas a low expression has been observed
in patients with pancreatic cancer (Boufraqech et al., 2016).

Interestingly, our study found that TIMP4 was high-expressed
in GBM patients, however, its high expression was associated
with a good prognosis in patients with GBM. More work is
also needed elucidate its functions in GBM. In summary, the
five-gene signature not only is robust for predicting the overall
survival for GBM, but also has promising practical value in the
treatment of GBM.

There are some limitations in our work. First of all, there were
only very limited normal samples included in our differential
expression analyses, which might neglect some potential
mRNAs. Moreover, the efficiency of the five-gene signature
should be confirmed in more GBM patients. Furthermore, the
molecular mechanisms how the five-gene signature affected the
prognosis of GBM patients should be further elucidated by a
series of experiments.

CONCLUSION

In conclusion, our study identified five novel biomarkers that
have potential for the prognosis prediction in GBM. Moreover,
our findings provide new insights into the pathogenesis and
prognosis of GBM.

AUTHOR CONTRIBUTIONS

WY and XJ conceived and designed the study. GT, QZ, YC, HL,
XF, and ZW performed the analysis procedures. GT, WY, and
XJ analyzed the results. WY and XJ wrote the manuscript. All
authors contributed to the editing of the manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 81472355).

ACKNOWLEDGMENTS

We sincerely acknowledge the public databases: TCGA, GEO,
and GEPIA.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00419/full#supplementary-material

REFERENCES
Abbadi, S., Rodarte, J. J., Abutaleb, A., Lavell, E., Smith, C. L., Ruff, W., et al.

(2014). Glucose-6-phosphatase is a key metabolic regulator of glioblastoma
invasion. Mol. Cancer Res. 12, 1547–1559. doi: 10.1158/1541-7786.MCR-14-
0106-T

Ahn, R., Gupta, R., Lai, K., Chopra, N., Arron, S. T., and Liao, W. (2016). Network
analysis of psoriasis reveals biological pathways and roles for coding and long
non-coding RNAs. BMC Genomics 17:841. doi: 10.1186/s12864-016-3188-y

Aldape, K., Zadeh, G., Mansouri, S., Reifenberger, G., and von Deimling, A.
(2015). Glioblastoma: pathology, molecular mechanisms and markers. Acta
Neuropathol. 129, 829–848. doi: 10.1007/s00401-015-1432-1

Frontiers in Genetics | www.frontiersin.org 10 May 2019 | Volume 10 | Article 419132

https://www.frontiersin.org/articles/10.3389/fgene.2019.00419/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00419/full#supplementary-material
https://doi.org/10.1158/1541-7786.MCR-14-0106-T
https://doi.org/10.1158/1541-7786.MCR-14-0106-T
https://doi.org/10.1186/s12864-016-3188-y
https://doi.org/10.1007/s00401-015-1432-1
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00419 May 2, 2019 Time: 17:44 # 11

Yin et al. Expression Profiles Analysis

Bao, Z. S., Li, M. Y., Wang, J. Y., Zhang, C. B., Wang, H. J., Yan, W., et al. (2014).
Prognostic value of a nine-gene signature in glioma patients based on mRNA
expression profiling. CNS Neurosci. Therapeut. 20, 112–118. doi: 10.1111/cns.
12171

Bauerschlag, D. O., Ammerpohl, O., Brautigam, K., Schem, C., Lin, Q., Weigel,
M. T., et al. (2011). Progression-free survival in ovarian cancer is reflected
in epigenetic DNA methylation profiles. Oncology 80, 12–20. doi: 10.1159/
000327746

Binabaj, M. M., Bahrami, A., ShahidSales, S., Joodi, M., Hassanian, S. M., Anvari,
K., et al. (2018). The prognostic value of MGMT promoter methylation in
glioblastoma: a meta-analysis of clinical trials. J. Cell. Physiol. 233, 378–386.
doi: 10.1002/jcp.25896

Boufraqech, M., Zhang, L., Nilubol, N., Sadowski, S. M., Kotian, S., Quezado, M.,
et al. (2016). Lysyl oxidase (LOX) transcriptionally regulates SNAI2 expression
and TIMP4 secretion in human cancers. Clin. Cancer Res. 22, 4491–4504. doi:
10.1158/1078-0432.CCR-15-2461

Cai, J., Chen, Q., Cui, Y., Dong, J., Chen, M., Wu, P., et al. (2018). Immune
heterogeneity and clinicopathologic characterization of IGFBP2 in 2447
glioma samples. Oncoimmunology 7:e1426516. doi: 10.1080/2162402X.2018.
1426516

Chen, H., and Boutros, P. C. (2011). VennDiagram: a package for the generation of
highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35.
doi: 10.1186/1471-2105-12-35

Chen, J., Wang, X., Hu, B., He, Y., Qian, X., and Wang, W. (2018). Candidate
genes in gastric cancer identified by constructing a weighted gene co-expression
network. PeerJ 6:e4692. doi: 10.7717/peerj.4692

Cheng, E. H., Gorelick, F. S., Czernik, A. J., Bagaglio, D. M., and Hait, W. N. (1995).
Calmodulin-dependent protein kinases in rat glioblastoma. Cell Growth Differ.
6, 615–621.

Cho, H., Kim, D. U., and Kehrl, J. H. (2005). RGS14 is a centrosomal and nuclear
cytoplasmic shuttling protein that traffics to promyelocytic leukemia nuclear
bodies following heat shock. J. Biol. Chemistry 280, 805–814. doi: 10.1074/jbc.
m408163200

Dennis, G. Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C.,
et al. (2003). DAVID: database for annotation, visualization, and integrated
discovery. Genome Biol. 4:3.

Fukushima, T., and Kataoka, H. (2007). Roles of insulin-like growth factor binding
protein-2 (IGFBP-2) in glioblastoma. Anticancer Res. 27, 3685–3692.

Gao, Y., Li, L., Xing, X., Lin, M., Zeng, Y., Liu, X., et al. (2017). Coronin 3 negatively
regulates G6PC3 in HepG2 cells, as identified by labelfree massspectrometry.
Mol. Med. Rep. 16, 3407–3414. doi: 10.3892/mmr.2017.7002

Garzon-Muvdi, T., Schiapparelli, P., Smith, C., Kim, D. H., Kone, L., Farber, H.,
et al. (2012). Regulation of brain tumor dispersal by NKCC1 through a novel
role in focal adhesion regulation. PLoS Biol. 10:e1001320. doi: 10.1371/journal.
pbio.1001320

Gerber, K. J., Squires, K. E., and Hepler, J. R. (2016). Roles for regulator of G
protein signaling proteins in synaptic signaling and plasticity. Mol. Pharmacol.
89, 273–286. doi: 10.1124/mol.115.102210

Huang, J., Liu, F., Liu, Z., Tang, H., Wu, H., Gong, Q., et al. (2017). Immune
checkpoint in glioblastoma: promising and challenging. Front. Pharmacol.
8:242. doi: 10.3389/fphar.2017.00242

Jhanwar-Uniyal, M., Labagnara, M., Friedman, M., Kwasnicki, A., and Murali, R.
(2015). Glioblastoma: molecular pathways, stem cells and therapeutic targets.
Cancers 7, 538–555. doi: 10.3390/cancers7020538

Lambiv, W. L., Vassallo, I., Delorenzi, M., Shay, T., Diserens, A. C., and Misra,
A. (2011). The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma
and has a tumor suppressing function potentially by induction of senescence.
Neurooncology 13, 736–747. doi: 10.1093/neuonc/nor036

Lan, M. S., Modi, W. S., Xie, H., and Notkins, A. L. (1996). Assignment of the IA-2
gene encoding an autoantigen in IDDM to chromosome 2q35. Diabetologia 39,
1001–1002. doi: 10.1007/s001250050545

Lee, Y., Scheck, A. C., Cloughesy, T. F., Lai, A., Dong, J., and Farooqi, H. K.
(2008). Gene expression analysis of glioblastomas identifies the major molecular
basis for the prognostic benefit of younger age. BMC Med. Genomics 1:52.
doi: 10.1186/1755-8794-1-52

Li, J., Lan, C. N., Kong, Y., Feng, S. S., and Huang, T. (2018). Identification and
analysis of blood gene expression signature for osteoarthritis with advanced

feature selection methods. Front. Genet. 9:246. doi: 10.3389/fgene.2018.
00246

Liu, S., Han, Y., Zhang, T., and Yang, Z. (2011). Protective effect of trifluoperazine
on hydrogen peroxide-induced apoptosis in PC12 cells. Brain Res. Bull. 84,
183–188. doi: 10.1016/j.brainresbull.2010.12.008

Liu, Y., Zhou, Y., and Zhu, K. (2012). Inhibition of glioma cell lysosome
exocytosis inhibits glioma invasion. PLoS One 7:e45910. doi: 10.1371/journal.
pone.0045910

Luo, D., Deng, B., Weng, M., Luo, Z., and Nie, X. (2018). A prognostic 4-lncRNA
expression signature for lung squamous cell carcinoma. Artif. Cells Nanomed.
Biotechnol. 46, 1207–1214. doi: 10.1080/21691401.2017.1366334

Ma, Q., Long, W., Xing, C., Chu, J., Luo, M., Wang, H. Y., et al. (2018). Cancer stem
cells and immunosuppressive microenvironment in Glioma. Front. Immunol.
9:2924. doi: 10.3389/fimmu.2018.02924

Mao, X., Qin, X., Li, L., Zhou, J., Zhou, M., Li, X., et al. (2018). A 15-long non-
coding RNA signature to improve prognosis prediction of cervical squamous
cell carcinoma. Gynecol. Oncol. 149, 181–187. doi: 10.1016/j.ygyno.2017.12.011

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999).
KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34.

O’Quigley, J., and Moreau, T. (1986). Cox’s regression model: computing a
goodness of fit statistic. Comput. Methods Programs Biomed. 22, 253–256. doi:
10.1016/0169-2607(86)90001-5

Ostrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky,
Y., et al. (2013). CBTRUS statistical report: primary brain and central
nervous system tumors diagnosed in the United States in 2006-
2010. Neurooncology 15(Suppl. 2), ii1–ii56. doi: 10.1093/neuonc/no
t151

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/
gr.1239303

Shergalis, A., Bankhead, A. III, Luesakul, U., Muangsin, N., and Neamati, N. (2018).
Current challenges and opportunities in treating glioblastoma. Pharmacol. Rev.
70, 412–445. doi: 10.1124/pr.117.014944

Szopa, W., Burley, T. A., Kramer-Marek, G., and Kaspera, W. (2017). Diagnostic
and therapeutic biomarkers in glioblastoma: current status and future
perspectives. BioMed Res. Int. 2017:8013575. doi: 10.1155/2017/8013575

Tang, Z., Li, C., Kang, B., Gao, G., Li, C., and Zhang, Z. (2017). GEPIA: a web
server for cancer and normal gene expression profiling and interactive analyses.
Nucleic Acids Res. 45, W98–W102. doi: 10.1093/nar/gkx247

Terakawa, Y., Agnihotri, S., Golbourn, B., Nadi, M., Sabha, N., and Smith, C. A.
(2013). The role of drebrin in glioma migration and invasion. Exp. Cell Res.
319, 517–528. doi: 10.1016/j.yexcr.2012.11.008

van den Bent, M. J., Weller, M., Wen, P. Y., Kros, J. M., Aldape, K., and Chang,
S. (2017). A clinical perspective on the 2016 WHO brain tumor classification
and routine molecular diagnostics. Neurooncology 19, 614–624. doi: 10.1093/
neuonc/now277

Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson,
M. D., et al. (2010). Integrated genomic analysis identifies clinically
relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,
IDH1, EGFR, and NF1. Cancer Cell 17, 98–110. doi: 10.1016/j.ccr.2009.
12.020

Wade, A., Robinson, A. E., Engler, J. R., Petritsch, C., James, C. D., and Phillips, J. J.
(2013). Proteoglycans and their roles in brain cancer. FEBS J. 280, 2399–2417.
doi: 10.1111/febs.12109

Wanggou, S., Feng, C., Xie, Y., Ye, L., Wang, F., and Li, X. (2016). Sample level
enrichment analysis of KEGG pathways identifies clinically relevant subtypes of
Glioblastoma. J. Cancer 7, 1701–1710. doi: 10.7150/jca.15486

Wei, Z., Batagov, A. O., Schinelli, S., Wang, J., Wang, Y., El Fatimy, R., et al.
(2017). Coding and noncoding landscape of extracellular RNA released by
human glioma stem cells. Nat. Commun. 8:1145. doi: 10.1038/s41467-017-
01196-x

Wen, P. Y., and Kesari, S. (2008). Malignant gliomas in adults. New Engl. J. Med.
359, 492–507. doi: 10.1056/nejmra0708126

Xu, H., Cai, T., Carmona, G. N., Abuhatzira, L., and Notkins, A. L. (2016). Small
cell lung cancer growth is inhibited by miR-342 through its effect of the target
gene IA-2. J. Transl. Med. 14:278.

Frontiers in Genetics | www.frontiersin.org 11 May 2019 | Volume 10 | Article 419133

https://doi.org/10.1111/cns.12171
https://doi.org/10.1111/cns.12171
https://doi.org/10.1159/000327746
https://doi.org/10.1159/000327746
https://doi.org/10.1002/jcp.25896
https://doi.org/10.1158/1078-0432.CCR-15-2461
https://doi.org/10.1158/1078-0432.CCR-15-2461
https://doi.org/10.1080/2162402X.2018.1426516
https://doi.org/10.1080/2162402X.2018.1426516
https://doi.org/10.1186/1471-2105-12-35
https://doi.org/10.7717/peerj.4692
https://doi.org/10.1074/jbc.m408163200
https://doi.org/10.1074/jbc.m408163200
https://doi.org/10.3892/mmr.2017.7002
https://doi.org/10.1371/journal.pbio.1001320
https://doi.org/10.1371/journal.pbio.1001320
https://doi.org/10.1124/mol.115.102210
https://doi.org/10.3389/fphar.2017.00242
https://doi.org/10.3390/cancers7020538
https://doi.org/10.1093/neuonc/nor036
https://doi.org/10.1007/s001250050545
https://doi.org/10.1186/1755-8794-1-52
https://doi.org/10.3389/fgene.2018.00246
https://doi.org/10.3389/fgene.2018.00246
https://doi.org/10.1016/j.brainresbull.2010.12.008
https://doi.org/10.1371/journal.pone.0045910
https://doi.org/10.1371/journal.pone.0045910
https://doi.org/10.1080/21691401.2017.1366334
https://doi.org/10.3389/fimmu.2018.02924
https://doi.org/10.1016/j.ygyno.2017.12.011
https://doi.org/10.1016/0169-2607(86)90001-5
https://doi.org/10.1016/0169-2607(86)90001-5
https://doi.org/10.1093/neuonc/not151
https://doi.org/10.1093/neuonc/not151
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1124/pr.117.014944
https://doi.org/10.1155/2017/8013575
https://doi.org/10.1093/nar/gkx247
https://doi.org/10.1016/j.yexcr.2012.11.008
https://doi.org/10.1093/neuonc/now277
https://doi.org/10.1093/neuonc/now277
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.1111/febs.12109
https://doi.org/10.7150/jca.15486
https://doi.org/10.1038/s41467-017-01196-x
https://doi.org/10.1038/s41467-017-01196-x
https://doi.org/10.1056/nejmra0708126
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00419 May 2, 2019 Time: 17:44 # 12

Yin et al. Expression Profiles Analysis

Yang, R., Xiong, J., Deng, D., Wang, Y., Liu, H., Jiang, G., et al. (2016). An integrated
model of clinical information and gene expression for prediction of survival in
ovarian cancer patients. Transl. Res. 172, 84.e11–95.e11.

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16, 284–287.
doi: 10.1089/omi.2011.0118

Zeng, W. J., Yang, Y. L., Liu, Z. Z., Wen, Z. P., Chen, Y. H., Hu,
X. L., et al. (2018). Integrative analysis of DNA methylation and gene
expression identify a three-gene signature for predicting prognosis in lower-
grade gliomas. Cell. Physiol. Biochem. 47, 428–439. doi: 10.1159/00048
9954

Zhangyuan, G., Yin, Y., Zhang, W., Yu, W., Jin, K., Wang, F., et al. (2018).
Prognostic value of phosphotyrosine phosphatases in hepatocellular carcinoma.
Cell. Physiol. Biochem. 46, 2335–2346. doi: 10.1159/000489625

Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., et al. (2009). Glioma-
derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and
induce HIF-1alpha. Science 324, 261–265. doi: 10.1126/science.1170944

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Yin, Tang, Zhou, Cao, Li, Fu, Wu and Jiang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 May 2019 | Volume 10 | Article 419134

https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1159/000489954
https://doi.org/10.1159/000489954
https://doi.org/10.1159/000489625
https://doi.org/10.1126/science.1170944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00037 January 31, 2019 Time: 18:41 # 1

ORIGINAL RESEARCH
published: 04 February 2019

doi: 10.3389/fgene.2019.00037

Edited by:
Monica Bianchini,

Università degli Studi di Siena, Italy

Reviewed by:
Haibo Liu,

Iowa State University, United States
Rahul Kumar,

Columbia University Irving Medical
Center, United States

*Correspondence:
Mei Zhang

zhangmei@jlu.edu.cn
Dahui Sun

sundahui1971@sina.com

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 07 August 2018
Accepted: 18 January 2019

Published: 04 February 2019

Citation:
Zhu Z, Jin Z, Deng Y, Wei L,

Yuan X, Zhang M and Sun D (2019)
Co-expression Network Analysis

Identifies Four Hub Genes Associated
With Prognosis in Soft Tissue

Sarcoma. Front. Genet. 10:37.
doi: 10.3389/fgene.2019.00037

Co-expression Network Analysis
Identifies Four Hub Genes
Associated With Prognosis in Soft
Tissue Sarcoma
Zhenhua Zhu1, Zheng Jin2, Yuyou Deng3, Lai Wei4, Xiaowei Yuan1, Mei Zhang5* and
Dahui Sun1*

1 Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China, 2 Department of Immunology,
College of Basic Medical Sciences, Jilin University, Changchun, China, 3 Department of Urology, The First Hospital of Jilin
University, Changchun, China, 4 College of Computer and Control Engineering, Nankai University, Tianjin, China, 5 College
of Chemistry, Jilin University, Changchun, China

Background: Soft tissue sarcomas (STS) are heterogeneous tumors derived from
mesenchymal cells that differentiate into soft tissues. The prognosis of patients who
present with an STS is influenced by the regulation of a complex gene network.

Methods: Weighted gene co-expression network analysis (WGCNA) was performed to
identify gene modules associated with STS (Samples = 156).

Results: Among the 11 modules identified, the black and blue modules were
highly correlated with STS. However, using preservation analysis, the black module
demonstrated low preservation, therefore the blue module was chosen as the module
of interest. Furthermore, a total of 20 network hub genes were identified in the blue
module, 12 of which were also hub nodes in the protein-protein interaction network
of the module genes. Following additional verification, 4 of 12 genes (RRM2, BUB1B,
CENPF, and KIF20A) demonstrated poorer overall survival and disease-free survival rate
in the test datasets. In addition, gene set enrichment analysis (GSEA) demonstrated that
samples with a high level of blue module eigengene (ME) were enriched in cell cycle and
metabolism associated signaling pathways.

Conclusion: In summary, co-expression network analysis identified four hub genes
associated with prognosis for STS, which may diminish the prognosis by influencing
cell cycle and metabolism associated signaling pathways.

Keywords: soft tissue sarcoma, weighted gene co-expression analysis, RRM2, BUB1B, CENPF, KIF20A

INTRODUCTION

Soft tissue sarcoma (STS) is a rare group of tumors that accounts for approximately 1% of adult
cancers. In 2009, it was estimated that 3,300 new cases were diagnosed in Britain and 10,000
in the United States (Linch et al., 2014). There are approximately 50 STS subtypes, which differ
significantly in their disease presentation, response to currently available treatments and risk of
tumor progression (Casali et al., 2018). Multiple factors have been reported to be related to the
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progression of STS, including capillary morphogenesis gene 2
(CMG2) (Greither et al., 2017), HIF-2α protein (Nakazawa et al.,
2016), epidermal growth factor receptor (EGFR) protein (Yang
et al., 2017) and microRNAs (Smolle et al., 2017). However,
no molecular biomarkers have been defined for predicting
the prognosis of the disease in clinical. Therefore, a better
understanding of the molecular pathogenesis is required.

To date, microarray-based expression data have been used
to identify genes related to tumor progression and prognosis.
Takahashi et al. (2014) identified 25 survival-associated genes
using a knowledge-based filtering and multiple testing approach.
Beck et al. (2010) has reviewed the manner in which gene
expression profiling has been used to understand sarcoma
pathobiology and identify clinically useful biomarkers. However,
most studies have focused on screening genes that have different
patterns of expression with explanations gained from gene
ontology (GO) analysis. Such approaches, however, have failed
to address the large number of interconnections between genes,
because genes with similar expression profiles are most likely to
function closely together. Therefore, weighted gene co-expression
network analysis (WGCNA) clusters genes co-expressed in a
network, based on similarities in expression profiles among
samples and in clinical traits, to define sub-network regions
(known as modules) (Langfelder and Horvath, 2008).

In this study, we utilized WGCNA to identify the most
relevant module in STS. Key genes in the module were identified
and validated using survival and protein-protein interaction
(PPI) analyses. These key genes may shed new light on the
biological mechanisms underlying STS progression and could
potentially be used as prognostic biomarkers or therapeutic
targets.

MATERIALS AND METHODS

Study Design and Data Collection
Study design, data preparation, preprocessing, analysis and
validation are described in a flowchart (Figure 1). Core codes
used to reproduce the results were provided in Supplementary
Table S1. Firstly, normalized RNAseq data and associated
clinical data were downloaded from the NCBI Gene Expression
Omnibus (GEO). Dataset GSE21122 (Barretina et al., 2010),
which was generated using an Affymetrix human genome U133A
microarray (HG-U133A), was used as a training set to construct
the co-expression network and identify key modules in this
study. This dataset included 149 STS samples and 9 normal fat
tissue samples. The STS samples contained 116 different types
of liposarcoma and 34 malignant fibrous histiocytomas (MFHs).
Most STSs (68.8%) were primary tumors at the time of sample
procurement from patients whose mean age was 56 years. In
addition, two test datasets were used to test the preservation of
identified modules and survival significance of hub genes. The
first one, which included RNA sequencing data and associated
clinical information of 265 STS samples, were downloaded from
The Cancer Genome Atlas (TCGA) database1. The other one,

1https://genome-cancer.ucsc.edu/

GSE21050 dataset (Chibon et al., 2010), which included RNA
sequencing data and associated clinical information of 310 STS
samples were downloaded from the NCBI GEO.

Data Preprocessing
Firstly, we extracted training expression data from the GSE21122
MINiML file. The expression data was background corrected
using the Robust Multi-array Average (RMA) algorithm and log
base 2 normalized. The data were then checked to ascertain
whether there was a batch effect. No apparent batch effect
was observed after analysis of expression clusters, box plots
and principal components analysis (PCA) (Supplementary
Figure S1). In order to detect outliers for WGCNA analysis,
sample network was calculated based on squared Euclidean
distance. The connectivity of each sample was defined as the
sum of the connectivity of that sample with all other samples.
Outliers were identified after normalization of the connectivity
of each sample, by use of the threshold z.k < 0.6. Generally, genes
whose expression varies greatly are more biologically relevant.
To reduce background noise, we selected genes that were varied
expressed across samples and removed those whose expression
was the same across samples. The median absolute deviation
(MAD) was calculated for each gene as a robust measure of
variability. Then, genes were sorted based on the MAD value
and the top 3,000 ranked genes were used for the subsequent
WGCNA analysis.

Co-expression Network Construction
and Module Preservation Analysis
The WGCNA package (Langfelder and Horvath, 2008) was used
to construct the co-expression network. The concordance of
genes in the expression dataset was measured with Pearson
correlation, then the Pearson correlation matrix was transformed
to weighted network with the power adjacency function. The
first step in this process was selection of an appropriate soft
power, in which strong connections between genes are promoted
and weak connections penalized, so as to transform the network
into one meeting the requirements of a scale-free network.
Modules were identified using the dynamic tree-cutting function
with a deepSplit argument value of 2 and a minimum size
cutoff of 30. To test whether the identified modules were
stable in the test TCGA dataset, the downloaded fragments
per million (FPKM) expression data of 265 samples were
transformed to the transcripts per million (TPM). A total of
2704 common genes in the training and TCGA datasets were
used for preservation analysis. The module Preservation function
(nPermutations = 200) of the WGCNA package (Langfelder et al.,
2011) was utilized, in which the preservation statistic Zsummary
was used to quantify the preservation of gene modules between
datasets.

Finding Modules of Interest and
Functional Annotation
Because the module eigengene (ME) provides the most
appropriate synopsis of gene expression profiles of any given
module, we correlated MEs with clinical traits. In this study,
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FIGURE 1 | Flow diagram of strategy for data preparation, preprocessing and analysis used in this study.

clinical traits refer to whether the sample was a STS or normal fat
tissue. Correlations were then calculated using linear regression
model. The modules for which the eigengenes showed high
correlation were chosen as the modules of interest. In an attempt
to ascertain possible mechanisms of genes within a module

FIGURE 2 | Determination of soft-thresholding power in the weighted gene
co-expression network analysis (WGCNA). (A) Analysis of scale-free fit index
for various soft-thresholding powers (β). (B) Analysis of mean connectivity for
various soft-thresholding powers. (C) Linear model fitting of R2 index showed
good quality of fit. (D) Frequency distribution of connectivity.

affecting STS progression, functional enrichment analyses using
the KEGG and GO databases of the hub module was performed
with the “clusterProfile” package in R (Yu et al., 2012).

Identification of Hub Genes and
Correlation Analysis
Hub genes are those that have a high degree of intra-module
connectivity. In this study, hub genes were defined as the 20
module genes with highest connectivity in the interested module.
A PPI network was constructed in order to identify hub nodes
by uploading all genes in the hub module to the Search Tool for
the Retrieval of Interacting Gene (STRING) database2. The PPI
network was then imported into the Cytoscape software platform
and a comprehensive analysis of the relationship between nodes
was performed using the Maximal Clique Centrality (MCC)
function, reported to be the most effective method of finding hub
nodes in a co-expression network (Chin et al., 2014), within the
“cytoHubba” application. In this way, the most cohesive genes
were marked as “first stage nodes.” In the PPI network of blue
module genes, the 30 most highly ranked nodes were identified
as “first stage nodes.” Genes that were defined as both hub genes
in the module and “first stage nodes” in the PPI network were
chosen as primary hub genes.

Survival Analysis and Efficacy Evaluation
The internet tool, Gene Expression Profiling Interactive Analysis
(GEPIA)3, was used to perform overall survival and disease-
free survival analyses for all hub genes. The platform utilizes
all expression data and survival information of the TCGA
database. Users are able to accomplish survival analysis by
simply submitting a gene name and selecting a tumor type.
Patients were divided into two groups (high vs. low) based

2http://www.string-db.org
3http://gepia.cancer-pku.cn
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FIGURE 3 | Color coding of co-expression network modules for mRNAs.

on the hub gene expression level in comparison to the
mean expression level of that hub gene. Furthermore, dataset
GSE21050, which includes 310 STS samples in which metastasis
status and survival time were provided, was used to test the
significance of hub genes for metastasis survival. A Kaplan-
Meier survival plot was constructed using the “survival” package
in R (Li, 2003). Differential expression between STS and
normal tissue in the training set was plotted as a box plot
graph.

Gene Set Enrichment Analysis (GSEA)
In the training data set, 156 samples were dichotomized into two
groups (High vs. Low) based on the ME value of blue module
in comparison to the mean ME level of blue module of all

samples. GSEA was then performed between the two groups. The
3,000 most variable genes from the WGCNA were imported for
enrichment. In this way, GSEA was used to validate the results of
GO and KEGG analysis of the blue module. The cut-off criterion
for GSEA was FDR < 0.05.

RESULTS

Co-expression Network Construction
and Module Preservation Analysis
After discarding two outlier samples (GSM528297 and
GSM528333), WGCNA was performed on the 3,000 most
variable genes of 156 samples. Soft threshold power was set to 6,
in which R2 was 0.916, ensured a scale-free network (Figure 2).
Following this, 11 co-expression modules were identified,
ranging in size from 43 to 669 genes (with each module assigned
a color) (Figure 3).

By comparing the training dataset GSE21122 with the TCGA
test dataset, we were able to establish whether the co-expression
modules produced in the training dataset could be reproduced
in the test dataset through summary preservation statistics.
Three modules (black, brown, and magenta) demonstrated
poor preservation with each Zsummary statistic < 10. The
remaining modules, including the blue module were stable
enough, suggesting they were preserved between the training data
set and the test data set (Figure 4).

Finding Modules of Interest and
Functional Annotation
It is important to identify the most significant modules related
to STS. Both black and blue modules showed a significantly high

FIGURE 4 | medianRank and Zsummary statistics of the most variant gene modules in module preservation. In the preservation medianRank graph (left), a
medianRank value close to zero indicates a high degree of module preservation. In the preservation Zsummary graph (right), the dashed black lines indicate the
thresholds Z = 2, 10. These horizontal lines indicate Zsummary thresholds for strong evidence of conservation (above 10) and for low to moderate evidence of
conservation (above 2).
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FIGURE 5 | Heat map of correlation between eigengene modules and STS.

correlation with sarcomas (Figures 5, 6). However, due to the
lack of stability of the statistical data (Zsummary < 10), the black
module was not further analyzed. Therefore, the blue module
was defined as an important module of clinical significance and
extracted for further analysis.

For the sake of exploration of the biological relevance of the
blue module, GO functional and KEGG pathway enrichment
analyses were performed on 414 genes in the blue module. The
biological processes of the genes in the blue module were found
to associate with the cell cycle, such as mitotic nuclear division,
chromosome segregation and sister chromatid segregation. In the
KEGG pathway analysis, cell cycle associated signaling pathways
such as DNA replication, cell cycle, p53 signaling pathway, oocyte
meiosis, mismatch repair and metabolism associated pathways
such as pyrimidine metabolism and purine metabolism were
enriched (Figure 7).

Identification of Sarcoma Hub Genes in
the Blue Module
Highly connected hub genes within a module perform important
roles in tumor biological processes. Therefore, the 20 genes with
greatest module relevance in the blue module were selected as
candidate hub genes for STS (Supplementary Data Sheet S1).
In addition, a PPI network in the blue module was constructed
in accordance with the STRING database (Figure 8). Twelve of

FIGURE 6 | Scatter plot of eigengene modules in the blue and black modules.

FIGURE 7 | Bioinformatic analysis of genes in the blue module. GO analysis: (A) Biological process. (B) Cellular component. (C) Molecular function. KEGG
analysis:(D) Pathway analysis.
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FIGURE 8 | Protein-protein interaction network of the top 30 genes in the
blue module (Node color: deeper colors indicates higher scores in the MCC
analysis).

the 20 candidate genes in the co-expression network were also
identified as hub nodes of the PPI network. Finally, these 12 genes
were considered “primary” hub genes associated with STS and
therefore selected for additional analyses.

Survival Analysis and Efficacy Evaluation
While testing the TCGA dataset, four out of 12 hub genes
demonstrated significant connectivity with overall and disease-
free survival (Figure 9). When testing the GSE21050 dataset,
these four hub genes showed significant correlation with

metastasis free survival (Figure 10). Furthermore, they were
significantly highly expressed in STS tissue compared to normal
fat tissue (Figure 11).

Gene Set Enrichment Analysis
In order to find out the potential function of both blue
module and hub genes, GSEA was performed to identify KEGG
pathways enriched in samples with higher level of ME of
blue module. In GSEA analysis, five signaling pathways were
significantly enriched, including ubiquitin mediated proteolysis
(FDR = 0.01), pyrimidine metabolism (FDR = 0.03), oocyte
meiosis (FDR = 0.02), cell cycle (FDR = 0.04) and DNA
replication (FDR = 0.04) (Figure 12). Moreover, the last four
pathways were consistent with the results of KEGG pathway
analysis (Figure 7D).

DISCUSSION

Soft tissue sarcomas remain among the most challenging
diseases for medical oncologists to treat. STSs are mesenchymal
neoplasms that can arise from any site within the body, including
extremities, the trunk, retroperitoneum, head, and neck. These
are biologically heterogeneous diseases of which greater than
50 subtypes exist, varying by molecular, histological and clinical
characteristics.

In this study, WGCNA was utilized to construct a co-
expression network for identification of gene co-expression
modules associated with STS. The blue module was positively
identified and 20 hub genes selected from this module. In
addition, as a result of the PPI network, 12 genes were
identified as hub nodes of the co-expression module and
PPI network, indicating that these 12 hub genes were closely

FIGURE 9 | Survival analysis of association between RRM2, BUB1B, CENPF, and KIF20A expression levels and survival rates in STS based on TCGA microarray
data. (A) Overall survival analysis. (B) Disease free survival.
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FIGURE 10 | Survival analysis of association between RRM2, BUB1B, CENPF, and KIF20A expression levels and metastasis-free survival rates in STS based on
GSE21050 microarray data.

FIGURE 11 | RRM2, BUB1B, CENPF, and KIF20A were strongly upregulated in STS tissues compared to normal fat tissue, based on GSE21122 microarray data.
∗∗p < 0.01.

Frontiers in Genetics | www.frontiersin.org 7 February 2019 | Volume 10 | Article 37141

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00037 January 31, 2019 Time: 18:41 # 8

Zhu et al. Hub Genes of STS

FIGURE 12 | Gene set enrichment analysis (GSEA). Cell cycle and metabolism associated pathways were enriched.

related to STS and had important biological significance.
Subsequent survival analysis established that four of the 12 hub
genes (RRM2, BUB1B, CENPF, and KIF20A) were significantly
associated with survival. We, therefore, focused on these four
genes.

The ribonucleotide reductase regulatory subunit M2 (RRM2)
is one of two subunits that constitute ribonucleotide reductase,
the enzyme responsible for catalyzing the conversion of
ribonucleotides into deoxyribonucleotides, and thus performing
an important role in DNA synthesis. RRM2 is important in
controlling cellular function in a number of human malignant
tumors, including DNA repair, cell proliferation and senescence.
Importantly, RRM2 functions as a driver in a variety of tumors,
with in vivo and in vitro experiments confirming that knocking
down expression using siRNA significantly inhibits tumor cell
proliferation (Fang et al., 2016).

The BUB1 mitotic checkpoint serine/threonine kinase B
(BUB1B) is a member of the spindle assembly checkpoint protein
family, crucial for ensuring correct chromosome separation
during cell division (Fu et al., 2016). BUB1B perfoms a role
in the inhibition of APC expression, established as a tumor
suppressor gene in most colorectal cancers. Accordingly, many
reports have shown that upregulation of BUB1B is related to the
recurrence and progression of bladder cancer (Yamamoto et al.,
2007), gastric cancer (Ando et al., 2010), esophageal squamous
cell carcinoma (Tanaka et al., 2008), breast cancer (Yuan et al.,
2006), hepatocellular carcinoma (Liu et al., 2009) and others.

Centromere protein F (CENPF) is another important
protein involved in chromosome segregation during mitosis.

Upregulation of CENPF protein expression, especially
through a gene amplification effect, suggests that high levels
of CENPF protein may affect the occurrence of tumors,
especially in the early stages of tumor development (Varis
et al., 2006). Clinical research has demonstrated that high
expression levels of CENPF results in poor prognosis in
nasopharyngeal carcinoma (Cao et al., 2010), colorectal
gastrointestinal stromal tumors (Chen et al., 2011), esophageal
squamous cell carcinoma (Mi et al., 2013) and prostate
cancer (Zhuo et al., 2015). It has also been shown to play an
important role in driving hepatocellular carcinoma (Dai et al.,
2013).

Kinesin family member 20A (KIF20A, also known as
RAB6KIFL) belongs to the kinesin superfamily-6, located in
the Golgi apparatus and contributes to intracellular organelle
transport and cell division (Echard et al., 1998). Recently, it
has been reported that KIF20A is associated with mitosis,
cell adhesion, migration and proliferation. Furthermore, recent
studies have demonstrated that KIF20A is involved in tumor
progression and angiogenesis. High expression of KIF20A results
poor prognosis in glioma patients (Duan et al., 2016; Saito et al.,
2017), nasopharyngeal cancer (Liu et al., 2017), hepatocellular
carcinoma (Shi et al., 2016), melanoma (Yamashita et al., 2012)
and early-stage cervical squamous cell carcinoma (Zhang et al.,
2016).

Regarding GSEA, it was found that cell cycle and metabolism
associated pathways were significant enriched in samples with
higher level of ME of blue module. This is consistent with
the initial GO and KEGG analysis results of the blue module
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and are related to the physiological function of these four hub
genes.

In summary, through WGCNA and other related analysis
methods, we identified four genes (RRM2, BUB1B, CENPF, and
KIF20A) related to the progression and prognosis of STS. These
genes may play a role by regulating the cell cycle and metabolism
associated signaling pathways.
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Molecular dysregulation is believed to participate in the onset and progression of lung
adenocarcinoma (LUAD). This study aimed to identify and evaluate the potential key long
noncoding RNAs (lncRNAs) involved in the significant dysfunctional process of LUAD. We
found that lncRNA retinoic acid early transcript 1K (RAET1K) was upregulated in tumor
tissues and were correlated with a poor prognosis of patients with LUAD; further, for the
first time, we detected the biological roles of RAET1K. Weighted gene correlation network
and gene set enrichment analysis revealed that high RAET1K expression is related to cell
cycle dysfunction through upregulated cyclin E1 (CCNE1) by targeting miR-135. The dual-
luciferase reporter gene assay was performed to clarify the binding relationship between
RAET1K and miR-135a-5p in transgenic A549 and H1299 cells. Real-time PCR and
Western blot analyses showed that RAET1K overexpression and miR-135a-5p inhibition
exerted a strong synergistic effect on CCNE1 expression, and cell cycle flow cytometry
analysis was used to confirm the arrest of A549 and H1299 cells at the G1/S phase. The
lncRNA RAET1K/miR-135a-5p axis might participate in the regulation of LUAD
progression by influencing CCNE1 expression and the accumulation of cells arrested at
the G1/S phase boundary.

Keywords: RAET1K, cell cycle, lung adenocarcinoma, long noncoding RNA, gene regulatory networks
INTRODUCTION

The latest report released by the International Agency for Research on Cancer has stated that lung
cancer (LC) remains the most common and deadly form of malignancy (Siegel et al., 2017; Bray
et al., 2018). In general, surgery is the best option for treating patients with early stage disease
because the five-year survival rate of pathological stage I non-small cell LC (NSCLC) after
lobectomy is 45%–65% (Ettinger et al., 2015). However, approximately 70% of patients are
diagnosed in the late stage of the disease; therefore, the five-year survival rate of these patients is
only 16.38% (Ettinger et al., 2015). Lung adenocarcinoma (LUAD) is the most common type of
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NSCLC, accounting for approximately 40% of cases (Ferlay et al.,
2010). Therefore, the focus of the present study was limited to the
complex molecular mechanisms leading to the onset and poor
prognosis of LUAD.

Dysregulation of the cell cycle result in increased cell
proliferation, and the abnormal expression of cell cycle
regulators can lead to tumor formation (Otto and Sicinski,
2017). Various chemotherapeutic agents have been developed
to target the cell cycle (Ingham and Schwartz, 2017). For
example, cisplatin is one of the most successful anticancer
drugs used to nonspecifically block the cell cycle (Besse and Le
Chevalier, 2012). By focusing on the complex gene networks that
cause dysregulation of cell cycle regulators, a potential strategy
for the treatment of LC could be developed.

Previous studies have reported that noncoding RNAs, such as
long noncoding RNAs (lncRNAs) and microRNAs (miRNAs)
are involved in cell cycle processes (Djebali et al., 2012).
Furthermore, it has been widely reported that lncRNAs
functioning as the competing endogenous RNAs (ceRNAs)
could regulate cancer by sponging miRNAs (Salmena et al.,
2011; Dong et al., 2018; Dong et al., 2019). Despite the rapid
evolution of genomic technologies and analytical tools, the
identification of novel lncRNA-related ceRNA networks
affecting the cell cycle and ultimately influencing LUAD
remains challenging. Therefore, the present study aimed to
investigate lncRNA expression profiles of The Cancer Genome
Atlas (TCGA) database via complex bioinformatics analysis to
identify novel lncRNAs and related biological functions, which
initially identified that lncRNA retinoic acid early transcript 1K
(RAET1K) was significantly upregulated. Furthermore, we
revealed that the upregulated expression of lncRNA RAET1K
was correlated with poor prognosis in LUAD patients and
facilitated cell cycle arrest at the G1 phase by functioning as a
ceRNA to upregulate cyclin E1 (CCNE1).
MATERIAL AND METHODS

Data Sets and Preprocess
The RNA and miRNA sequence data of LUAD and
corresponding clinical information were downloaded from the
TCGA database (https://cancergenome.nih.gov). The study
cohort consisted of 564 LUAD patients with level 3 Illumina
HiSeq RNA sequencing (RNA-seq) data and 505 patients with
level 3 miRNA sequencing (miRNA-seq) data. On the basis of
the clinical traits of the patients, the samples were classified into
two groups: early stage (stages I and II) and advanced stage
(stages III and IV). The gene symbol and type were converted
from transcript IDs of RNA-seq data with the use of Genome
Reference Consortium Human Build 38 patch release 12
(GRCh38.p12) of the Ensembl genome browser (http://asia.
ensembl.org/biomart). The DESeq2 package (Love et al., 2014)
was used to normalize raw data sets and identify differentially
expressed genes (DIFF-genes). The cutoff values were an absolute
value of log2 fold change of ≥2 and an adjusted probability (P)
value of ≤ 0.01.
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Construction of Co-Expression Networks
The R package for weighted correlation network analysis
(WGCNA) was used to build co-expression networks
(Langfelder and Horvath, 2008). Significant DIFF-genes were
selected to generate co-expression networks for both the early
and advanced stages of NSCLC. Briefly, a connection-weighted
adjacency matrix of pair-wise genes was initially built according
to unsupervised classifications. In accordance with the scale-
independent topological criterion, the acceptable soft threshold
value was set to 5 on the basis of a correlation coefficient
threshold of 0.85 (Zhang and Horvath, 2005). Thereafter, a
topological overlap matrix (TOM) was initially built on the
adjacency matrix. The dynamic tree cutting method was
performed to cluster DIFF-genes into modules with 30 as the
minimummodule sizes of the genes and 0.25 as the cluster merge
height, respectively. Each module contained genes with similar
expression patterns. The gray module consisted of a cluster of
unclassified genes. After defining the modules, the module
eigengene (ME) values were calculated for all genes in each
module. The correlations between the ME values and the LUAD
patient clinical traits were calculated (Langfelder and Horvath,
2007). Several significantly associated gene sets were chosen for
functional enrichment analysis.

Prognostic Analysis
Survival analysis was performed with SPSS Statistics for Windows,
version 17.0. (SPSS, Inc., Chicago, IL, USA). On the basis of the
gene expression value of the lower or upper quartile, samples were
categorized into two groups: low-exp and high-exp. The hazard
ratio (HR) and estimated 95% confidence interval (CI) were
calculated using the Cox proportional hazard regression model.
Kaplan-Meier curves were plotted to estimate the overall survival
(OS), and the log rank test was used for univariate comparisons. A
P value < 0.05 was considered statistically significant. Furthermore,
a nomogram was generated using a multivariate Cox regression
model to evaluate the potential prognostic signature of lncRNA
RAET1K for OS of LUAD patients.

Function Annotation and Gene Set
Enrichment Analysis (GSEA)
Gene ontology (GO) enrichment analysis was performed to
identify the biological processes (BPs) of the module. Relevant
genes in the Database for Annotation, Visualization, and
Integration Discovery (DAVID) were visualized using bubble
plots. The DIFF-genes in specific modules were clustered into
various Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway ontologies using the ClueGO plug-in for the
visualization of nonredundant biological terms for large
clusters of genes in a functionally grouped network (Bindea
et al., 2009). According to the gene expression level, GSEA was
performed to identify the BPs and biological functions of hub
genes clustered into the modules (Subramanian et al., 2005). For
miRNAs, the miRcode (Jeggari et al., 2012) database was used to
identify target genes and binding sites based on seed
complementarity and evolutionary conservation of the seed
region of the miRNAs.
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Cell Lines and Culture Conditions
Human LUAD A549 and H1299 cell lines were routinely
cultured in a Roswell Park Memorial Institute 1640 medium
(Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum and 100 U/ml of penicillin/streptomycin (Beijing Solarbio
Science & Technology Co., Ltd., Beijing, China) in an incubator
(Thermo Fisher Scientific, Waltham, MA, USA) at 37°C under
an atmosphere of 5% CO2/95% air, as previously described
(Zheng et al., 2018).

Cell Transfection
Cells were inoculated into the wells of a six-well plate before
transfection. The RAET1K overexpression lentivirus and a
negative control (NC) lentivirus were purchased from
GenePharma Co., Ltd. (Shanghai, China). The cells in each
well were transfected with 106 lentiviruses. Four days later, the
transfection efficiency was evaluated by determining the
proportion of green fluorescent protein-positive cells. A
medium supplemented with 2 mg/ml of puromycin was used to
screen out the A549 and H1299 cells that were unsuccessfully
transfected with the RAET1K and NC lentiviruses.

Cells were transiently transfected with a group of miR-135a-
5p mimics and inhibitors (GenePharma Co., Ltd.) by using
jetPRIME® transfection reagent (Polyplus-transfection S.A.,
Illkirch-Graffenstaden, France), as previously described (Zheng
et al., 2018). The cells were harvested at 24 h after transfection for
further use.

RNA Isolation and Real-Time Polymerase
Chain Reaction (RT-PCR) Analysis
Total RNA was extracted using the NucleoSpin RNA Plus kit
(TaKaRa Biotechnology [Dalian] Co., Ltd., Dalian, China) in
accordance with the manufacturer's protocol. RNA was reverse-
transcribed to complementary DNA (cDNA) using the
PrimeScript RT Reagent Kit (TaKaRa Biotechnology [Dalian]
Co., Ltd.). RT-PCR analysis was performed using SYBR Green
Master Mixture reagent (Takara Bio, Inc., Kusatsu, Shiga, Japan)
and an ABI 7500-Fast Real-Time PCR system (Applied
Biosystems, Carlsbad, CA, USA). The cycling conditions for
cDNA amplification are described elsewhere (Zheng et al., 2018).
The fold change in relative gene expression was calculated using
the 2−ΔΔCt method with glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as an internal reference. The primers
used for RT-PCR are listed in Supplementary Table S1.

Western Blot Analysis
Total protein isolated from cells was sonicated in ice-cold radio
immunoprecipitation assay lysis buffer (Pierce Biotechnology,
Waltham, MA, USA). Denatured proteins were separated by
sodium dodecyl sulfate polyacrylamide gel electrophoresis and
then transferred to a polyvinylidene fluoride membrane (EMD
Millipore Corporation, Billerica, MA, USA), which was blocked
with Tris-buffered saline and 5% skim milk for 2 h. Samples were
incubated with primary antibodies against the cyclin E1
(CCNE1) gene (catalog no. 20808; dilution, 1:1000; Cell
Signaling Technology, Inc., Danvers, MA, USA) at 4°C
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overnight. After rinsing, the membrane was incubated with
horseradish peroxidase-conjugated anti-rabbit secondary
antibody (#7074; dilution, 1:1000; Cell Signaling Technology,
Inc.). The protein bands were visualized using an enhanced
chemiluminescence kit (Wanleibio Co., Ltd., Shenyang, China)
and the ChemiDoc™ Touch Imaging System (Bio-Rad
Laboratories, Hercules, CA, USA). The degree of gray intensity
was determined using ImageJ software (https://imagej.nih.gov/ij/)
and normalized to that of GAPDH (#2118; dilution, 1:5000; Cell
Signaling Technology, Inc.).

Flow Cytometry Analysis
The cells were fixed with ice-cold 70% ethanol overnight and then
resuspended in staining solution included with the cell cycle
detection kit (Nanjing KeyGen Biotech. Co. Ltd., Nanjing,
China). After incubation for 1 h at 37°C in the dark, the stained
cells were subsequently analyzed by flow cytometer fluorescence-
activated cell sorting (FACS) using the BD FACSCalibur™ Cell
Analyzer system (BD Biosciences, San Jose, CA, USA).

Dual-Luciferase Reporter Assay
A fragment of the wild-type (WT) RAET1K 3'-untranslated
region (RAET1K-3'UTR-wt) contained a binding site
downstream of the luciferase reporter gene, whereas the
mutant-type RAET1K (RAET1K-3'UTR-mut) contained
mutated biding sites (GenePharma Co., Ltd.). A549 and H1299
cells were transfected in the wells of 24-well plates, cultured until
attachment, and co-transfected with miR-135a-5p mimics, miR-
135a-5p inhibitors or the miR-NC encoded by the luciferase
plasmids (RAET1K-3'UTR-wt or RAET1K-3'UTR-mut).
Luciferase gene expression was monitored using the Dual-
Luciferase® Reporter Assay System (Promega Corporation,
Madison, WI, USA), as described previously (Zheng et al.,
2018). The results of experiments performed in triplicate were
normalized to Renilla luciferase activity values.

Statistical Analysis
Data are presented as the mean ± standard deviation. All
statistical analyses were performed using Prism 8.0 software
(GraphPad Software, Inc., La Jolla, CA, USA). Student's t-test
and one-way analysis of variance were used to analyze two
groups and more than two groups, respectively. The Pearson's
correlation coefficient was used to identify correlations. Analysis
of each sample was performed in triplicate. P < 0.05 was
considered statistically significant.
RESULTS

Significant Genes and Clusters With
Functions Related to LUAD
DIFF-Genes in Early and Advanced Stages of LUAD
The LUAD database included 24,989 genes from 564 tissue
samples, which included 59 adjacent noncancerous tissues, 395
early stage LUAD tissues (274 stage I and 121 stage II), and 110
advanced stage LUAD tissues (84 stage III and 26 stage IV). In
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total, 1,069 and 425 DIFF-genes were upregulated and
downregulated in early stage LUAD (Figure 1A), respectively,
whereas 888 and 516 were upregulated and downregulated in
advanced stage LUAD, respectively (Figure 1B). In total, 991
DIFF-genes in both early and advanced stages were used to
construct the weighted correlation network.

Construction of the Gene Co-Expression Network
in LUAD
WGCNAwas performed for 991 DIFF-genes. First, potential hub
genes in each module were investigated to identify correlations
with the clinical features of LUAD patients. The generalized
TOM defined the relationships of each pair of DIFF-genes from
the adjacency matrix. The hierarchical clustering tree method
detected that four modules contained DIFF-genes that highly
correlated with LUAD, as depicted in turquoise, brown, blue and
green color (Figure 1C). In the middle of the TOM network, a
heatmap of the independent genes in different modules was
constructed. The genes clustered into the blue and turquoise
modules were significantly co-expressed with each other.

The DIFF-genes in each module were spontaneously
clustered according to the following clinical features: early
stage, advanced stage, tumor size (T), lymph node involvement
(N), and presence of metastasis (M). Module trait relationships
were calculated by correlating the ME values with the clinical
features (Figure 1D). There were no significantly positive
modules related to early stage disease or other clinical traits.
However, the genes in the blue and brown modules were
significantly and positively correlated with advanced stage
disease, whereas the genes in the blue module showed strong
associations (correlation rate = 0.8, Figure 1E) and were chosen
for subsequent analyses.

Functional Enrichment Analysis of Selected Modules
To describe the BPs and mechanisms of hub genes, the GO
functional enrichment analysis of 203 DIFF-genes in the blue
module were performed using DAVID as a reference. The top 10
BPs were visualized using a bubble plot (Figure 1F), which
showed that most of the DIFF-genes were involved in the cell
cycle (Supplementary Table S2). Furthermore, ClueGO was
performed to enrich the KEGG pathways of the DIFF-genes in
the blue module (Figure 1G). In total, 168 protein-coding RNAs
in the blue module were grouped into six significant KEGG
pathways (P ≤ 0.05). The red nodes contained 23 genes enriched
in the cell cycle pathway (Supplementary Table S3).

Function of RAET1K as a Key Gene
in LUAD
Detection of Significant Genes in the Blue Module
According to GRCh38.p12, 12 lncRNAs and 191 mRNAs were
assigned to the blue module. To further validate the hub genes
and identify potential biomarkers for LUAD, Cox proportional
hazard and Kaplan-Meier analyses of the genes in the blue
module were performed. In total, 141 highly expressed hub
genes were significantly associated with poor prognosis.
Because there was only one lncRNA out of 141 significant
Frontiers in Genetics | www.frontiersin.org 4148
genes in the blue module, and then we focused on this lncRNA
RAET1K for further biological study.

RAET1K Is Highly Expressed in LUAD and Positively
Correlated With the Prognosis of LUAD
RAET1K (HR = 1.428; 95% CI = 1.052–1.939; P = 0.022, Figure
2A) was the only lncRNA among the 141 hub genes that was
significantly upregulated in tumor tissue compared with normal
tissue (Figure 2H). Furthermore, a nomogram was constructed
to predict 1- and 3-year survival rates in patients with LUAD by
showing the risk score of clinical stage, age, sex, and RAET1K
expression level (Figure 2B). The concordance index, which was
evaluated using the calibration plot of this nomogram model,
further supported the predictive prognostic signature of lncRNA
RAET1K in LUAD OS (Figure 2C).

RAET1K May Regulate the Cell Cycle Phase in LUAD
To further explore the biological functions of RAET1K, GO
enrichment for GSEA was performed. The LUAD samples with
higher expression levels of RAET1K were enriched in genes
correlated with cell cycle biological behavior. The GSEA results
also indicated that among the genes in the blue module, lncRNA
RAET1K expression was enriched in the cell cycle (Figure 2D).

The RAET1K/miR-135a-5p Axis May Influence the
Cell Cycle via CCNE1 in LUAD Patients
lncRNAs can regulate mRNA expression via miRNA-mediated
ceRNAs (Salmena et al., 2011). The expression of ceRNA
transcripts that harbor the same miRNA binding sites should
be parallel based on the ceRNA hypothesis. The interaction of
the ceRNA network and RAET1K is described in Figure 2I,
which was combined with the expressional correlation and target
sites. Among the genes influencing OS, according to the
Pearson's correlation coefficient, mRNAs that were positively
correlated with RAET1K (r > 0.3 and P < 0.05, Figure 2E) and
miRNAs that were negatively correlated with RAET1K and
mRNAs (r < -0.3 and P < 0.05, Figures 2F, G) were selected,
and then combined with the miRcode database, which was used
to predict miRNA-interacting targets. As shown in Figure 2I,
RAET1K may function as a sponge to absorb miR-135a-5p to
modulate CCNE1 expression.

The RAET1K/miR-135a-5p Axis Arrested
LUAD Cells in the G1 Phase by
Upregulating CCNE1
RAET1K Regulated CCNE1 by Sponging miR-135a-5p
Subsequently, to investigate the validity and potential biological
mechanisms of the effects of the RAET1K/miR-135a-5p axis on
CCNE1 expression, in vitro experiments with A549 and H1299
cells were performed. The efficiency of RAET1K overexpression
lentivirus interference was confirmed by RT–PCR (Figure 3A).
To further investigate the synergistic effect of the RAET1K/miR-
135a-5p axis on CCNE1 expression, A549 and H1299 cells were
transfected with lentiviral vectors stably overexpressing RAET1K
and an empty control (hereafter referred to as A549RAET1K,
A549Con, H1299RAET1K, and H1299Con cells, respectively).
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FIGURE 1 | Detection of significant genes and their function related to lung adenocarcinoma (LUAD). Volcano plots showed fold change (FC) and P-values of
differentially expressed genes in early (A) and advance (B) stage LUAD versus normal samples. Blue nodes present significantly down-regulated, and red nodes are
up-regulated expressed genes. Grey nodes are not differentially expressed. RAET1K and CCNE1 expression are annotated. (C) In middle topological overlap matrix
(TOM) heatmap, every row and column present one gene, light color presents low, while darker red presents higher weighted correlation. The dynamic tree cluster
dendrogram of DIFF-genes are showed in the left and top, gray square indicates genes that are involved in any known module. (D) LUAD module-clinical feature
relationships. The row matches a clinical trait (early stage, advance stage, T for tumor size, N for lymph node and M for metastasis) and the column matches a genes
module. Correlation of module and clinical trait is showed in each cell. The darker the color is, the higher the degree of correlation is. Red presents positive, while
blue presents negative correlation. (E) Scatterplot of gene significance and module membership in the blue module. Correlation coefficients and P-values are at the
top. (F) Bubble plots showed top 10 terms of gene ontology (GO) enrichment analysis in biological process for blue module. The Y-axis correspond to the GO terms.
The gene counts and -log (enrichment P-value) in every GO term were proportional to the area and color of the bubble, respectively. (G) Genes Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis in blue module. The small size nodes in the network represent the genes enriched in the specific pathway, the
big size nodes represent pathway term. The node colors correspond to the ClueGO-determined KEGG pathway clusters.
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FIGURE 2 | Identification of lncRNA RAET1K function and biological mechanism. (A) The Kaplan‐Meier curve of the risk score for the overall survival of RAET1K in
lung adenocarcinoma (LUAD). The blue line presents the lower expression level group of RAET1K, and the red presents the higher ones. Gene enrichment plots
showed gene set enrichment analysis (GSEA) between high- and low-expressed RAET1K. (B) The nomogram of clinical features and RAET1K expression level for
predicting the 1- and 3-year survival with risk score. (C) calibration plot indicated this nomogram model had a predictive power for overall survival. (D) The upper
enrichment plots contain value of the genes' enrichment scores and the corresponding barcode plot shows the genes position. In the bottom heatmap red
represents Spearman correlations with higher expression level of RAET1K, blue represents Spearman correlations with lower expression level of RAET1K. Expression
of RAET1K and CCNE1 expression level were positive related with each other (E), while RAET1K (F) and CCNE1 (G) were negatively correlated with miR-135a. (H)
RAET1K and CCNE1 expression were upregulated in both early and advance stage of LUAD, while miR-135a was downregulated, ***P < 0.001. (I) Construction of
ceRNA network of lncRNA-miRNA-mRNA in blue module. The green node in diamond was lncRNA RAET1K, the blue circle nodes were mRNAs, and the pink circle
nodes were miRNA. The line between nodes present their relation and the red lines shown RAET1K targeted miR-135a-5p and CCNE1.
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FIGURE 3 | Overexpression RAET1K upregulated CCNE1 by sponging miR-135a-5p. (A) The interference efficiency of RAET1K overexpression lentivirus was
detected by real-time PCR in A549 and H1299. Relative CCNE1 mRNA expression level after co-transfected with miR-135a-5p (or inhibitor) and RAET1K in A549
(B) and H1299 (C) cell lines, while the cyclin E1 protein levels was measured by Western blot in A549 (D and F) and H1299 (E and G). Bands were quantitatively
compared with relative negative control groups. Data are represented as means ± S.D. from three independent experiments, *P < 0.05, **P < 0.01, ***P < 0.001.
Con., control; inh NC, miRNA-135a-5p inhibitor negative control; inh, inhibitor; NC, negative control; mi, mimics.
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Thereafter, A549RAET1K, A549Con, H1299RAET1K, and H1299Con

cells were transfected with miR-135a-5p mimics, an inhibitor, an
NC, or an NC inhibitor.

RT-PCR analyses of A549Con and H1299Con cells showed that
miR-135a-5p inhibition resulted in a 1.5- and 2.2-fold increase,
respectively, in CCNE1 mRNA expression relative to the NCs
(Figures 3B, C, left panel). We observed that overexpression of
RAET1K increased miR-135a-5p inhibition, as compared with
NC (2.4- and 2.9-fold increases in A549RAET1K and
H1299RAET1K, respectively, Figures 3B, C, right panel).

Western blot analysis showed that cyclin E1 protein levels
were similar (Figures 3D–G). We observed that A549Con and
A549RAET1K cells transfected with miR-135a-5p mimics reduced
cyclin E1 protein expression levels, whereas miR-135a-5p
inhibitors had an opposite effect (Figure 3D). Consistently,
cyclin E1 protein expression showed similar tendencies
with higher fold changes in H1299Con and H1299RAET1K cells
co-transfected with miR-135a-5p inhibitor compared with
those with NC inhibitor (Figure 3E). Additionally, although
miR-135a-5p mimics significantly decreased cyclin E1
protein expression, this change was salvaged by RAET1K
overexpression, thereby indicating that the change in cyclin E1
protein expression in response to RAET1K and miR-135a-5p
was due to posttranscriptional modulation in both A549 and
H1299 cells. Considering these results, lncRNA RAET1K
inhibited CCNE1 mRNA expression probably via the
downregulation of miR-135a-5p expression.

RAET1K as a Target of miR-135a-5p
The expression levels of miR-135a-5p and RAET1K were
inversely correlated in LUAD tissues and cell lines.
Bioinformatics analysis predicted that RAET1K was a potential
target of miR-135a-5p. Figure 4A describes a putative
interaction of RAET1K-3'UTR and modified RAET1K-3'UTR-
mut with the miR-135a-5p binding sequence. The luciferase
reporter assay was performed to validate the interactions
between miR-135a-5p and RAET1K in A549 and H1299 cells.
Relative luciferase activity was inhibited by co-transfection with
the miR-135a-5p mimics and the luciferase reporters containing
RAET1K-3'UTR. However, inhibition was relatively weak in the
RAET1K-3'UTR-mut group (Figures 4B, C). Luciferase activity
was enhanced with the use of the miR-135a-5p inhibitor
(Figures 4B, C).

The RAET1K/miR-135a-5p Axis Arrested LUAD Cells
in the G1 Phase
To determine whether the RAET1K/miR-135a-5p axis exerted
synergistic effects on cell cycle progression, cell cycle
distributions were investigated following the co-transfection of
RAET1K and miR-135a-5p mimics or an inhibitor in A549 and
H1299 cells. Although the proportions of A549Con cells in the
various cell cycle phases were not significantly altered by miR-
135a-5p expression levels, a tendency for such alterations was
observed (Figure 4D). In comparison with the NC group,
transfection with the miR-135a-5p inhibitor decreased the
Frontiers in Genetics | www.frontiersin.org 8152
number of A549RAET1K cells in the G1 phase, whereas a larger
proportion were observed in the S phase (Figure 4D).

Similar, yet significant, tendencies were observed in H1299
cells. As compared with the NC inhibitor group, the use of the
miR-135a-5p inhibitor resulted in fewer H1299Con and
H1299RAET1K cells arrested in the G1 phase than in the S
phase (Figure 4E ) . In addit ion , lncRNA RAET1K
overexpression enhanced the inhibition of cells arrested in the
G1 phase. As compared with the NC group, transfection of
H1299Con cells with the miR-135a-5p mimics increased the
number of cells accumulated in the G1 phase; however,
RAET1K overexpression rescued this accumulation (Figure
4E). Moreover, histograms of the cell cycle were created
(Figures 4F, G). The results showed that RAET1K
overexpress ion with decreased miR-135a-5p could
synergistically arrest the A549 and H1299 cells in the G1 phase
and hinder cell cycle transformation from the G1 to S phase.
DISCUSSION

To identify significant lncRNAs in LUAD, comprehensive
computational analysis of transgenic cells was performed. The
results showed that lncRNA RAET1K regulated the expression of
CCNE1 in LUAD and served as ceRNA to sponge miR-135a,
whereas CCNE1 was targeted in cells arrested at the G1-S phase
boundary. It is important to understand the pathological cell
cycle process that is associated with the dysregulation of cell
proliferation leading to cancer (Bertoli et al., 2013). The dynamic
progression of the cell cycle consists of four sequential phases: S
(chromosome replication), M (chromosome segregation), and
G1 and G2 (gap), which are regulated by cyclin/cyclin-dependent
kinases (Dai et al., 2018). In particular, cyclin E/Cdk2 interacts
and forms complexes that promote G1 progression and G1/S
transition (Sonntag et al., 2018). The amplification of cyclin E,
which functions in cell cycle progression, inhibition of apoptosis,
transcription, and replication, and DNA repair, has been
observed in various types of cancer (Kanska et al., 2016;
Vijayaraghavan et al., 2017). Furthermore, cyclin E1 can be
modulated by multiple regulators, such as the transcription
factors c-Myc, retinoblastoma, and E2F (Thurlings and de
Bruin, 2016), as well as by miRNA-mediated inhibitors miR-
15/16 (Yuan et al., 2019) and miR-424-5p(Jiang et al., 2019) at
the transcriptional, posttranscriptional, and translational levels.

The rapid evolution of genomic technologies and analytical
tools has improved the understanding of traditional simple gene
mutations in cancer genomics. Furthermore elucidation of the
complex networks of genomic alterations in LC has provided a
basic understanding of the biological consequences and
alterations of signal transduction pathways (Chin et al., 2011).
A range of evidence suggests that diversity and complex
molecular functions of lncRNAs may regulate epigenetic
processes, particularly by acting as ceRNAs to sponge miRNAs.
To identify novel LUAD-specific lncRNAs, differential analysis
was performed during the early and advanced stages using
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normal tissues in the TCGA LUAD cohort. Different genes in
both subsets were selected to facilitate the next step. The co-
expression gene network was detected by WGCNA, which is a
systematic biological method to identify synergistically altered
gene clusters, candidate biomarkers, and therapeutic targets.
According to the WGCNA results, DIFF-genes in the blue
module were related to the LUAD clinical stage and were
enriched in cell cycle-related functions. Cell cycle dysfunction
in LUAD was consistent with our results. A recent study
demonstrated that cell cycle-related genes, such as E2F1 (Chen
et al., 2019), were enriched during the regulation of the cell cycle
progression(Li et al., 2018; Qi et al., 2019). In the present study,
we found that lncRNA RAET1K could promote cell cycle
dysfunction, providing insight into the crosstalk regulatory
mechanism between lncRNAs and coding genes. Interestingly,
Frontiers in Genetics | www.frontiersin.org 9153
GSEA results also showed that some cell cyclin proteins and
CDK family members were classified by the median of RAET1K
expression level including PBK, KIF14, NEK2, CCNE1, CDC45,
and DENPF, among others. In addition to the survival prediction
of RAET1K, a Kaplan-Meier curve and a nomogram of
integrating clinical traits were constructed. Indeed, RAET1K
attracted our attention. Liang et al. (Sui et al., 2019) reported
that RAET1K was predictive of the prognosis of LUAD patients
in a TCGA cohort, which is consistent with our results; however,
this was not further verified at the molecular level. To the best of
our knowledge, no study has investigated the underlying
molecular mechanism of RAET1K in patients with LUAD.

lncRNA RAET1K is a conversely processed transcript at
6q25.1 composed of four exons and is 1,883 bp in length. The
key mechanism of lncRNA RAET1K as a ceRNA is to
FIGURE 4 | Upregulated RAET1K arrested G1 phase by targeted miR-135a-5p in lung adenocarcinoma (LUAD) cells. (A) Schematic representation of the putative
binding target and modified sequence site of RAET1K for miR-135a-5p. Luciferase activity between RAET1K-3'UTR-wt/mut and miR-135a-5p detected by dual
luciferase reporter assays in A549 (B) and H1299 (C). The percentage of cell at different cell cycle phases were in the lower histograms in A549 (D) and H1299 (E),
while flow cytometry assay results showed cell cycle distribution by PI staining were presented in A549 (F) and H1299 (G). Bands were quantitatively compared with
relative negative control groups. Data are represented as means ± S.D. from three independent experiments, *P < 0.05, **P < 0.01. wt, wild type; mut, mutant type;
inh NC, miRNA-135a-5p inhibitor negative control; inh, inhibitor; NC, negative control; mi, mimics; PI, propidium iodide.
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competitively combine the same miRNA with cross-regulated
genes by sharing the miRNA response elements in the 3'-UTR of
the target genes. We hypnotized that RAET1K functions as a
ceRNA that influences CCNE1 expression and the cell cycle
process via miR-135a-5p. The role of RAET1K in A549, H1299,
and PC-9 cells was investigated to determine why PC-9 cells did
not survive puromycin-selection of cells transfected with a
lentivirus overexpressing RAET1K. As a possible explanation,
the epidermal growth factor receptor gene might be mutated in
PC-9 cells, whereas A549 and H1299 cell lines carried the WT
phenotype. Therefore, the effects of miR-135a-5p and co-
transfection of RAET1K/miR-135a-5p in A549 and H1299 cells
were investigated. The results of the PC-9 cells transfected with
miR-135a-5p are provided in the Supplementary Figure S1. In
the A549 and H1299 cell lines, CCNE1 expression was silenced
by increased miR-135a-5p, which also affected the cell cycle
process. In contrast, the miR-135a-5p inhibitor had opposite
effects. The results revealed that overexpression of RAET1K
partially absorbed miR-135a-5p and enhanced the miR-135a-
5p-mediated biological effects. The tumor suppressive function
of miR-135a in LUAD has been consistently demonstrated in
previous studies. For instance, miR-135a-5p promoted the
progression of head and neck squamous cell carcinoma by
targeting HOXA10 (Guo et al., 2018), the progression of
thyroid carcinoma by VCAN (Zhao et al., 2017), and the
progression of gastric cancer by KIFC1 (Zhang et al., 2016).
Conversely, miR-135a was found to target SIAH1 to promote cell
transformation in cervical cancer via the b-catenin pathway
(Leung et al., 2014). Furthermore, Zhang et al. (2019) reported
that miR-135a-5p promoted LC progression via modulating
LOXL4 and blockage of LC cells arrested at the G1 phase. The
reasons for these findings could be the differences in the samples
used for in vivo (LC tissue) vs. in vitro (LC cell lines) studies.
However, the results above were in agreement regarding the
influence of the G1 phase of the cell cycle.

Furthermore, the results of this study indicated that co-
transfection of A549RAET1K and H1299RAET1K cells with the
miR-135a-5p inhibitor could act synergistically to reduce the
expression level of CCNE1 and accumulate the proportion of
cells arrested at the G1-S phase boundary, thereby suggesting the
possible existence of an oncogenic RAET1K/miR-135a-5p axis.
As predicted and verified by the bioinformatics algorithms and
luciferase reporter assay, RAET1K and CCNE1 are potential
targets of miR-135a-5p at the 7-mer-m8 site. The lncRNA
RAET1K/miR-135a-5p axis might have a stronger synergistic
effect on the regulation of cell cycle phase-dependent CCNE1
and transformation from the G1 to S phase. Here, the role of
Frontiers in Genetics | www.frontiersin.org 10154
RAET1K as a putative oncogene in LUAD was revealed,
suggesting that targeting the cyclin E1-CDK signaling provides
a novel targeted therapeutic option for the treatment of LUAD.
However, further investigations are required to verify the crucial
molecules and signaling pathways involved in lncRNA RAET1K-
mediated LUAD tumorigenesis.
CONCLUSION

The major finding of this study was that RAET1K acted as a
ceRNA and increased the expression of CCNE1 by directly
competing with miRNA-135a-5p, which influenced the
function of the cyclin E1 protein. Furthermore, the RAET1K/
miR-135a-5p axis, which drives cell cycle progression, was
arrested at the G1 phase in LUAD onset and progression.
These findings are expected to be useful for the development
of a novel biomarkers and pathways regulating the the cell cycle
in LUAD.
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The accumulation of secondary metabolites, such as anthocyanins, in cells plays an
important role in colored plants. The synthesis and accumulation of anthocyanins
are regulated by multiple genes, of which the R2R3-MYB transcription factor gene
family plays an important role. Based on the genomic data in the Potato Genome
Sequencing Consortium database (PGSC) and the transcriptome data in the SRA, this
study used potato as a model plant to comprehensively analyze the plant anthocyanin
accumulation process. The results indicated that the most critical step in the synthesis
of potato anthocyanins was the formation of p-coumaroyl-CoA to enter the flavonoid
biosynthetic pathway. The up-regulated expression of the CHS gene and the down-
regulated expression of HCT significantly promoted this process. At the same time,
the anthocyanins in the potato were gradually synthesized during the process from leaf
transport to tubers. New transcripts of stAN1 and PAL were cloned and named stAN1-
like and PAL-like, respectively, but the functions of these two new transcripts still need
further study. In addition, the sequence characteristics of amino acids in the R2-MYB
and R3-MYB domains of potato were preliminarily identified. The aims of this study are to
identify the crucial major genes that affect anthocyanin biosynthesis through multi-omics
joint analysis and to transform quantitative traits into quality traits, which provides a basis
and reference for the regulation of plant anthocyanin biosynthesis. Simultaneously, this
study provides the basis for improving the anthocyanin content in potato tubers and the
cultivation of new potato varieties with high anthocyanin content.

Keywords: anthocyanin, potato, multi-omics analysis, stAN1, PAL, R2R3-MYB

INTRODUCTION

It is well known that some plants are colorful, and there are many reasons why plants display
multiple colors. For example, the pH of plant cytoplasmic substrates, the accumulation of secondary
metabolites, such as anthocyanins, and environmental factors, such as light, all have an effect
on plant color formation (Asen et al., 1972; Dai and Mumper, 2010; Xu X. et al., 2015). The
accumulation of anthocyanins and other flavonoids in cells results in plants displaying colors
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other than green (Tanaka et al., 2008). Biosynthesis and metabolic
pathways of anthocyanins in plants have been studied in depth,
and many key genes have been cloned.

Among the many phenylalanine metabolic pathways, the
pathway based on the biosynthesis process of phenylpropanoids
is an important source of flavonoids in plants (Salvatierra et al.,
2010). Phenylalanine is deaminated by phenylalanine ammonia
lyase (PAL) to form trans-cinnamic acid; trans-cinnamic
acid produces cinnamoyl-CoA under 4-coumarate-CoA
ligase (4CL); then cinnamoyl-CoA is catalyzed by trans-
cinnamate 4-monooxygenase (C4H) to form p-coumaroyl-CoA;
finally p-coumaroyl-CoA is involved in the biosynthesis of
flavonoids (Vogt, 2010). p-coumaroyl-CoA, through chalcone
synthase (CHS), shikimate O-hydroxycinnamoyltransferase
(HCT), chalcone isomerase (CHI), flavonoid 3′, 5′-
hydroxylase (F3′5′H), flavonoid 3′-monooxygenase (F3′H),
naringenin 3-dioxygenase (F3H), dihydroflavonol 4-reductase
(DFR), anthocyanidin synthase (ANS) and other enzymes,
catalyzes the final formation of pelargonidin, cyanidin and
delphinidin, involved in anthocyanin biosynthesis (Martens
et al., 2010; Tanaka et al., 2010). Anthocyanin mainly
accumulates in plant cell vacuoles in the form of glycosides
(Pietrini et al., 2002).

The MYB-bHLH-WD40 transcription factor complex (MBW)
is a regulator that has been thoroughly studied and has an
important regulatory effect on the synthesis of flavonoids such
as anthocyanins (Jaakola, 2013). The main transcription factor
involved in the regulation of anthocyanin synthesis in the MYB
gene family is the R2R3-MYB transcription factor (Stracke et al.,
2007). A study of the Arabidopsis MBW complex TT2-TT8-
TTG1 showed that the target gene of the complex might be
mainly determined by a R2R3-MYB transcription factor-encoded
protein (Xu W. et al., 2015). The bHLH proteins involved
in the MBW complex have some common features and most
belong to the IIIF subfamily (Zimmermann et al., 2004). The
Arabidopsis thaliana TT8 gene belongs to the bHLH gene family,
which can regulate the synthesis of flavonoids by feedback
regulation (Baudry et al., 2006). Studies have indicated that
the WD40 protein does not participate in the recognition of
gene promoters or regulate the expression of target genes; its
effect is to link the two other protein subunits in the MBW
complex (Hichri et al., 2011). In the synthesis of flavonoids,
for some specific genes, MYB transcription factors can activate
the corresponding gene transcription directly without binding to
bHLH transcription factors (Jaakola, 2013). Thus, it is important
that the R2R3-MYB transcription factor plays a role in the
synthesis of flavonoids.

Anthocyanin is an important component of polyphenolic
antioxidant active substances, and such compounds are easily
absorbed and utilized by the human digestive system (Fernandes
et al., 2014). Anthocyanins have a special chemical structure,
which allows them to exert a variety of physiological and
biochemical functions in mammals such as humans (Stintzing
and Carle, 2004). On the one hand, anthocyanins have the
effect of scavenging free radicals in living organisms and
improving the antioxidant capacity of organisms themselves
(Miguel, 2011); on the other hand, anthocyanins have many

important pharmacological effects, for example, anthocyanins
have significant effects in preventing many major human-
related diseases, such as cardiovascular and cerebrovascular
diseases, diabetes and its complications, cancer, and so on
(Scalbert et al., 2005). Because of the above characteristics,
anthocyanins are gradually being valued by chemists and
pharmacologists. Potato is an important plant food for humans
to obtain antioxidant active substances such as ascorbic
acid and polyphenols (Lobo et al., 2010). Nutrients such as
anthocyanins accumulate in colored potato tubers. In addition,
it is considered that the anthocyanin content of potato with
red or purple tubers is significantly higher than that of
common potato with white or yellow tubers (Brown et al., 2005;
Lachman and Hamouz, 2005). Since anthocyanins have favorable
biological functions for humans, the key genes controlling the
synthesis and accumulation of potato anthocyanins can be
studied, and then the accumulation of anthocyanins in potato
tubers can be regulated. This study attempted to control the
content of anthocyanins in potato tubers, making it easier
for humans to take antioxidant active substances such as
anthocyanins, thereby preventing a variety of diseases and
making humans healthier.

Potato is a good model plant for studying the formation
of plant color by studying the process of anthocyanin
biosynthesis. Firstly, potato plants reproduce mainly through
asexual reproduction, and the genetic composition is stable.
Secondly, different potato varieties have different colors, and
for a single potato, the whole plant is consistent in color.
In addition, mature potato plants have a large biomass,
which is convenient for the determination of various
secondary metabolites. Numerous key genes regulating
anthocyanin synthesis have been cloned, but it is unclear
which of these key genes is the most important. At the same
time, whether there are other gene regulatory pathways
controlling anthocyanin accumulation in plants is also worthy
of further study.

In this experiment, we analyzed the R2R3-MYB transcription
factor gene family, which plays a major role in the anthocyanin
synthesis process, based on the genomic data of existing
diploid potato (Solanum phureja DM1-3). Then, potato
transcriptomics data from the NCBI Sequence Read Archive
(SRA) database were used to determine which key genes were
enriched in anthocyanin synthesis. Finally, based on the above
analysis results, we aimed to identify the most critical genes
involved in the regulation of anthocyanin biosynthesis and to
explore new genes that may be involved in the regulation of
anthocyanin synthesis.

MATERIALS AND METHODS

Identification of the R2R3-MYB
Subfamily Genes in Potato
Proteome Data
We downloaded proteomic data PGSC_DM_v3.4_pep.fasta
(Amino acid sequences corresponding to all gene coding
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sequences) from the potato group database PGSC1. The
identification of R2R3-MYB subfamily genes used stAN2 as a
reference sequence (Jung et al., 2009); local Blast analysis was
performed using blast-2.6.0+ software, and the e-value was set
to e-5. After removal of short sequences of amino acids with
a length less than 100 and repeated sequences, the SMART2

database was submitted for retrieval. MEME 4.11.43 was used
to determine the conserved domain boundaries of the MYB-R2
and MYB-R3 domains in potato. Only the amino acid sequences
having both the MYB-R2 and MYB-R3 domains were retained for
subsequent analysis.

Construction of the Phylogenetic Tree of
the Potato R2R3-MYB Gene and
Collinear Analysis
Using MEGA74 software, an unrooted tree was constructed using
the minimal evolution method, and the phylogenetic tree was
tested using Bootstrap = 1000. The potato genome collinearity
analysis was performed based on the PGSC_DM_v3.4_cds.fasta
application MCScanX5, and circos-0.696 was used to visualize the
results of the potato genome collinearity analysis.

Transcriptional Data of Potato Color
Changes Were Analyzed
The potato transcriptome data were downloaded from the
SRA database7 the downloaded data format was transformed
by the SRA-Toolkit8, and then the downloaded data were
regrouped. According to the color of the potato stem and
tuber used in sequencing, they were reclassified into a colored
group and colorless group. The regrouped colored group
contained 21 biological replicates; the regrouped colorless group
contained 36 biological replicates. The colorless group was the
control group, and the data and grouping information are
shown in Supplementary Table S5 (Hannapel et al., 2013;
Liu et al., 2015; Gálvez et al., 2016; Pham et al., 2017). In
this experiment, the NGSQC Toolkit (Patel and Jain, 2012)
was used to filter the reads; Trimmomatic9 was used to
remove the linkers used for sequencing; and the PCR repeats
generated during the sequencing process were eliminated by
FastUniq10. Using the doubled monoploid S. tuberosum Group
Phureja clone DM1-3 (DM) as the reference genome (Xu
et al., 2011), TopHat and Cufflinks were used to splice the
transcriptome data and obtain differentially expressed genes
(Trapnell et al., 2012). Finally, InterProScan-5.29-68.011 and

1http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml
2http://smart.embl-heidelberg.de/
3http://meme-suite.org/index.html
4http://megasoftware.net/
5http://chibba.pgml.uga.edu/mcscan2/
6http://circos.ca/software/download/circos/
7https://www.ncbi.nlm.nih.gov/sra
8https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
9http://www.usadellab.org/cms/index.php?page=trimmomatic
10https://sourceforge.net/projects/fastuniq/files/
11http://www.ebi.ac.uk/interpro/download.html

KOBAS 3.012 were used for preliminary annotations of the
differentially expressed genes.

GO Annotation and KEGG Enrichment
Analysis Based on Genomic and
Transcriptome Analysis Results
Comprehensive genomic and transcriptome analysis results
were analyzed by GO annotation and KEGG enrichment using
AnnotationDbi13, AnnotationHub14 and clusterProfiler15. Only
GO annotations and KEGG enrichment analysis results with
p-value < 0.05 were retained. The GOplot16 was applied to
visualize the results of GO annotation. The KEGG analysis results
were confirmed by the KEGG online database17.

Semi-Quantitative RT-PCR to Detect
Gene Expression
Semi-quantitative RT-PCR was used to verify the expression
of the key genes obtained from the above studies. We applied
the potato variety Shepody and the colored potato material,
Yellow Meigui 1, Red Meigui 3, Purple Meigui 2, which were
bred in our laboratory. The color performance of each potato
material is shown in Figure 5C. In this experiment, total RNA of
roots, stems, leaves, and tubers of potato seedlings was extracted
by TRNzol. After reverse transcription, semi-quantitative RT-
PCR was carried out with EF-1α as the reference gene. The
semi-quantitative RT-PCR experiment of each plant tissue was
performed with 5 biological replicates. The primers used in
the above experiments are shown in Supplementary Table S6.
Finally, ImageJ18 was used to measure the agarose gel gray value
and perform statistical analysis.

Application of Tobacco Leaves for
Subcellular Localization
The stAN1-like-GFP vector and the PAL-like-GFP vector were
constructed and transformed into Agrobacterium strain LBA4404
by the freeze-thaw method. The transformed Agrobacterium was
cultured at 28◦C with shaking until the OD600 = 0.6 – 0.8, and the
cells were centrifuged. We used a suspension (MES = 10 mmol/L;
MgCl2 = 10 mmol/L; acetosyringone = 0.3 mmol/L; pH = 5.8)
to resuspend the cells. The resuspended cells were allowed
to stand at room temperature for 2 h, and the resuspended
bacteria were injected into the tobacco leaves using a disposable
syringe. Under the condition of maintaining the humidity,
green fluorescence was observed by laser scanning confocal
microscopy (LSCM) after 48 h of tobacco leaf injection.
The injected tobacco leaves were treated with a 0.25 g/ml
sucrose solution, and the plasmolysis was observed by LSCM
(Supplementary Figure S1). The GFP excitation wavelength

12http://kobas.cbi.pku.edu.cn/
13http://www.bioconductor.org/packages/devel/bioc/html/AnnotationDbi.html
14http://www.bioconductor.org/packages/release/bioc/html/AnnotationHub.html
15http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
16http://wencke.github.io/
17https://www.genome.jp/kegg/pathway.html
18https://imagej.nih.gov/ij/
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FIGURE 1 | Genes with the R2R3-MYB domain are identified in potato. (A) Characteristics of the R2 domain in the potato MYB gene family. (B) Amino acids are
contained in the R3 domain of the potato MYB gene family. (C) Homology analysis of protein sequences are translated by genes with the R2R3-MYB domain
in potato.

was 488 nm, and the chloroplast autofluorescence excitation
wavelength was 633 nm.

RESULTS

Identification of Genes Containing Only
the R2 and R3 Domains in the Potato
MYB Family
In the potato genome data, a total of 101 genes with the R2R3-
MYB domain were found by a literature search and sequence
alignment (Jung et al., 2009; Zhao et al., 2013; Liu et al.,
2016). By comparing the protein sequences found using the

above genes, the common features of the functional structure of
the potato R2R3-MYB gene family were obtained. The results
of the alignment of the R2 domain, which contains a total
of 35 amino acids, are shown in Figure 1A. Analysis of the
R3 domain revealed a total of 47 amino acids in its domain
(Figure 1B). In the R2 and R3 domains, the conserved amino
acids in order from the N-Terminal to the C-Terminal are
glycine (G), tryptophan (W), glutamic acid (E), glycine (G),
and tryptophan (W). Therefore, the G-W-E-G-W structure may
have an important function in the process of binding the MYB
transcription factor to the target promoter.

A phylogenetic tree was constructed using the amino acid
sequence corresponding to the gene with the R2R3-MYB domain
found in potato. As shown in Figure 1C, the population
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of genes could be initially divided into 16 subpopulations
based on the amino acid homology alignment. Amino acid
homology analysis provided a reference for finding genes with
the R2R3-MYB domain in the potato genome associated with
anthocyanin accumulation.

Collinearity Analysis of Potato
R2R3-MYB Genes
The whole genome of potato was analyzed by collinearity
analysis. The results showed that the potato genes were divided
into five types: no repeat genes (singleton); modes other
than segmental, tandem and proximal (dispersed duplication);
nearby chromosomal region but not adjacent (proximal);
consecutive repeat (tandem); and collinear genes in collinear
blocks (WGD/segmental). Among them, the proximal type had
a minimum of 1441 genes; the WGD/segmental type had a
maximum of 21372 genes. The remaining types were 4797
genes for the singleton type, 7408 genes for the dispersed
duplication type, and 4011 genes for the tandem type gene
(Figures 2A–E). There were 25,383 collinear genes and tandem
replication genes in the potato genome, accounting for 65.04%
of the total number of potato genes. It could be seen that
most genes had multiple copies in the potato genome, and
there was a high number of genes with similar sequence
characteristics or functions.

R2R3-MYB genes were present on each chromosome of
potato. The R2R3-MYB genes were most abundantly distributed
on the ch05 chromosome, with a total of 14 R2R3-MYB genes
on this chromosome. Furthermore, the R2R3-MYB genes were
also extensively distributed on the ch01, ch02, ch03, ch06,
ch07, and ch10 chromosomes (Figure 2G). The distributions
of the collinear genes and the tandem genes in the potato
genome were relatively uniform on each chromosome, but
there were fewer in the 41–46 Mb region of ch00 and the
1–10 Mb region of ch02. The lines in Figure 2 indicated
the collinear relationship between R2R3-MYB genes in the
potato genome and between the R2R3-MYB genes and other
genes in potato. Based on the above results, a total of 31
other genes were found in the potato genome, which were
collinear with the members of the R2R3-MYB gene family
identified above (Supplementary Table S1). Genes that were
collinear with the R2R3-MYB gene family members could also
be used as key candidate genes for the regulation of potato
anthocyanin synthesis.

Transcriptome Analysis Results
Based on the re-grouping transcriptome sequencing data, a
total of 12,913 genes with different expression levels were
found, of which 420 (p ≤ 0.05) were significantly different
in terms of expression (Supplementary Table S2). There were
11030 genes with different expression levels |log2FC| ≥ 1; the
colored group up-regulated genes accounted for 58.52%, and
the colored group down-regulated genes accounted for 41.48%
(Figure 2H). Compared with the colorless group, the number
of up-regulated genes in the colored group was significantly
higher. This indicated that the change in plant color and the

accumulation of anthocyanins were achieved by the simultaneous
up-regulation of multiple genes.

GO Enrichment and KEGG Path Analysis
GO enrichment analysis was performed on transcriptome
data using interproscan and clusterProfiler software (Yu et al.,
2012; Jones et al., 2014). A total of 23 valid GO annotation
terms (p-value < 0.05) were enriched, of which there were 7
annotation results with p-value < 0.01 (Figure 3A). The content
of anthocyanins or polyphenols in plants has a close positive
correlation with the antioxidant activity of plants (Velioglu et al.,
1998). Among the 23 GO analysis results, 10 were significantly
associated with plant color changes or plant antioxidant activity.
Among them, the GO:0015035, GO:0004601, GO:0016684,
GO:0046906, GO:0016747, GO:0010333, and GO:0016829
pathways were enhanced in the colored potato group, whereas
the GO:0004866, GO:0030414, and GO:0004857 pathway were
weakened in the colored potato group (Figures 3B,D).

It could be seen that the antioxidant activity of potato
in the colored group was stronger than that in the colorless
group, and the acyltransferase activity of potato in the colored
group was also higher than that in the colorless group. This
indicated that the high expression of some antioxidant genes
and acyltransferase genes contributes to the accumulation of
substances such as anthocyanins in plants. At the same time, it
also showed that colored potato had higher antioxidant activity,
and the antioxidant activity was improved by the simultaneous
up-regulation of multiple key genes. A total of 104 differentially
expressed genes were enriched in 10 significantly GO pathways,
and these gene expressions may play an important role in the
accumulation of potato anthocyanins (Figure 3C). Therefore,
the above genes can be used as key candidate genes for further
study of the synthesis of plant flavonoids and changes in plant
antioxidant activity.

The transcriptome data were enriched by KEGG analysis to
obtain 23 metabolic pathways (p-value < 0.05), including
two pathways closely related to anthocyanin synthesis
and accumulation (Figure 4A). These two pathways were
sot00940 (phenylpropanoid biosynthesis) and sot00941
(flavonoid biosynthesis). The biological processes related to
the accumulation of anthocyanins were sorted, and the up- and
down-regulated expression changes of the potato genes in the
colored group are shown in Figure 4B. The role of PAL (4.3.1.24)
in phenylpropanoid biosynthesis is very important, but this study
found that its up-regulated expression in colored potatoes was
not obvious. However, the enhancement of the enzyme activity of
caffeoyl-CoA O-methyltransferase (2.1.1.104), cinnamyl-alcohol
dehydrogenase (1.1.1.195), and peroxidase (1.11.1.7) in the
colored group promoted the formation of various phenolic
substances, represented by lignin, and also promoted the
transformation of cinnamoyl-CoA into p-coumaroyl-CoA.

P-cinnamoyl-CoA is a key precursor of synthetic
anthocyanins, and its increased content contributes to the
accumulation of potato anthocyanins (Besseau et al., 2007).
The up-regulated expression of PGSC0003DMT400022254
and PGSC0003DMT400022255 genes increased the content of
the CHS (2.3.1.74) enzyme and promoted the accumulation
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FIGURE 2 | Collinearity analysis of the R2R3-MYB domain genes in the potato genome, and gene expression differences based on transcriptome analysis. The lines
indicate the collinearity of R2R3-MYB genes in the potato genome, and the line color is the same as the chromosome color corresponding to R2R3-MYB genes.
(A) The distribution of the singleton-type genes in the potato genome. (B) Distribution of dispersed duplication type genes in the potato genome. (C) Distribution of
the proximal type genes. (D) Distribution of the tandem type genes. (E) Distribution of WGD/segmental type genes in potato. (F) The length of each chromosome of
the potato is expressed in units of Mb, where in the ch00 chromosome, are unanchored sequences based on the sequencing result of the potato DM genome.
(G) The distribution of genes with the R2R3-MYB domain on each chromosome of potato. (H) The difference in the expression of each gene obtained by
transcriptome analysis showed that the data were differential genes of |log2FC| ≥ 1. The red color indicates that the genes were up-regulated in the colored group;
the blue color indicates that the genes were down-regulated in the colored group.

of downstream products, which is of great significance in the
whole process of anthocyanin accumulation. During the whole
process of anthocyanin synthesis, the expression level of the
PGSC0003DMT400018861 gene was significantly decreased,
resulting in a decrease in the HCT (2.3.1.133) content. This could
effectively reduce the loss of p-coumaroyl-CoA to caffeic acid

metabolism and promote p-coumaroyl-CoA in the flavonoid
synthesis pathway, which also had a positive significance
for the accumulation of anthocyanins. In addition, the up-
regulation of F3′5′H (1.14.14.81) could effectively counteract
the effect of HCT (2.3.1.133) down-regulated expression on the
anthocyanin composition type. This resulted in the contents of
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FIGURE 3 | GO enrichment analysis of transcriptome sequencing results. (A) All GO enrichment results with p-value < 0.05, and the results noted in the figure are
GO enrichment results with p-value < 0.01. (B) GO annotation pathways associated with anthocyanin biosynthesis based on GO enrichment results with
p-value < 0.05. (C) Differentially expressed potato genes based on the results of the GO pathway associated with anthocyanin biosynthesis in the above analysis.
The higher the logFC, the higher the expression of genes in the potato colored group, and vice versa. (D) Detailed description of key GO enrichment pathways.

the delphinidin, pelargonidin, and cyanidin classes remaining
relatively balanced.

Semi-Quantitative RT-PCR to Verify the
Expression of Related Genes
The members of the potato R2R3-MYB gene family were
preliminarily identified by sequence alignment and construction
of a phylogenetic tree, and the characteristics of R2 and R3
domains in potato were determined. Based on the collinearity
analysis of the R2R3-MYB gene family, the R2R3-MYB gene
family members were further enriched. A total of 104 potato

R2R3-MYB gene family members were identified by combining
phylogenetic analysis and collinearity analysis. Combined with
the results of transcriptome analysis, the differentially expressed
genes were searched for among the 104 R2R3-MYB members,
and the most differentially expressed genes may be related to the
synthesis of anthocyanins and changes in potato color.

Based on a comprehensive comparison of genomic and
transcriptome analysis results (Supplementary Tables S3, S4),
a total of 9 genes were further confirmed. The results of
transcriptome analysis were verified by semi-quantitative
RT-PCR using colored potatoes as material (Figure 5C). The
expression of 7 genes was the same as that of transcriptome
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FIGURE 4 | KEGG pathway analysis was performed on transcriptome sequencing data. (A) Overview of KEGG analysis results (p-value < 0.05). (B) Genes with
obvious changes in the expression of phenylpropanoid and flavonoid biosynthesis pathways in the colored potato group (|logFC| > 1).

analysis, and the expression of PGSC0003DMT400062326 and
PGSC0003DMT400062403 was opposite to that of transcriptome
analysis (Figures 5A,B). PGSC0003DMT400040774,
PGSC0003DMT400055148, and PGSC0003DMT400009404
were mainly expressed in the potato stem. The expression level of
PGSC0003DMT400064555 in various tissues of colored potatoes
was generally lower than that of the control Shepody, but
higher in the root of Red Meigui 3. PGSC0003DMT400055488
(PAL-like) was expressed in leaves and tubers of colored potatoes,
but the expression did not increase with the deepening of
potato color. The expression levels of PGSC0003DMT400036281
(stAN1-like) and PGSC0003DMT400055489 (PAL) increased
as the color of the potato deepened. Solanum tuberosum
anthocyanin 1 like (stAN1-like) was mainly expressed in the
roots, stems and tubers of potato; its expression in Red Meigui
3 and Purple Meigui 2 potato tubers was significantly increased.
The expression of phenylalanine ammonia-lyase (PAL) was
mainly concentrated in the leaves of colored potatoes, but the
expression level in the leaves of the control variety Shepody was
significantly reduced.

Subcellular Localization of stAN1-Like
and PAL-Like
The total RNA of leaves was extracted from the Red Meigui
3 potato, and the new transcripts stAN1-like and PAL-like of
stAN1 and PAL genes were cloned by RT-PCR. The length of the
CDS sequence of stAN1-like is 798 bp, which indicates that the
resulting protein peptide chain contains 265 amino acids. The
length of the CDS sequence of PAL-like is 2169 bp, and 722 amino
acids are included in the protein peptide chain. The subcellular
localization results of stAN1-like (PGSC0003DMT400036281)
and PAL-like (PGSC0003DMT400055488) genes are shown in

Figure 6. It could be seen that the proteins produced by the
stAN1-like guide were mainly concentrated in the nucleus. This
suggested that stAN1-like might have the function of initiating
downstream gene expression. The protein translated by PAL-
like was concentrated on the cell membrane (Supplementary
Figure S1), which is consistent with its function as a
functional protein to promote the conversion of phenylalanine
to anthocyanin-producing precursor phenylpropanoids. Some of
the phenylpropanoids are further metabolized to form lignins
involved in cell wall synthesis (Zhou et al., 2009).

DISCUSSION

Distribution of Potato R2R3-MYB
Transcription Factor on Chromosomes
The R2R3-MYB transcription factor genes have important
functions in the process of anthocyanin biosynthesis (Feller
et al., 2011). Their primary function in the MBW transcriptional
complex is binding to a gene (Xu W. et al., 2015). In this
study, 101 R2R3-MYB family genes were found in the potato
genome, which were distributed on all of the chromosomes of
potato. This indicates that R2R3-MYB transcription factor genes
have important biological functions in potato. R2R3-MYB family
genes not only participate in the synthesis and regulation of
flavonoids, such as anthocyanins, but also participate in many
physiological and biochemical processes, such as floral induction,
photoperiod response, and plant drought resistance, and so on
(Albert et al., 2011; Yang et al., 2012; Zhang et al., 2012; Liu et al.,
2013). In addition, in other crops, such as Arabidopsis and Oryza
sativa, the R2R3-MYB transcription factors were also found to
be distributed on all of the chromosomes (Katiyar et al., 2012).
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FIGURE 5 | Verification of key gene expression. (A) Relative expression levels of key genes obtained by semi-quantitative RT-PCR. The semi-quantitative RT-PCR
experiment of each plant tissue was performed on 5 biological replicates. (B) The results of agarose gel electrophoresis corresponding to semi quantitative RT-PCR
tests. (C) Potato materials used in this experiment. Y1, Yellow Meigui 1; R3, Red Meigui 3; P2, Purple Meigui 2. ∗Significant difference (p-value < 0.05); ∗∗highly
significant difference (p-value < 0.01).

This further demonstrates that the functions of the R2R3-MYB
transcription factors are important for plants.

The Function of New Transcripts of
stAN1 and PAL
The new transcripts of stAN1 and PAL in this experimental clone
were from our own laboratory material Red Meigui 3. The new
transcripts were named stAN1-like and PAL-like, respectively.
The cloned stAN1-like amino acid sequence differs from stAN1

(Supplementary Figure S2), which has been reported to regulate
potato color (Zhang et al., 2009; Liu et al., 2016). The stAN1-
like transcript has 21 bases more than the 5′ end of the stAN1
reference transcript. By comparing the stAN1-like transcript with
the stAN1 reference gene sequence, it was found that the 21 bases
were completely identical to the stAN1 reference gene sequence.
It can be clarified that the production of stAN1-like transcripts is
caused by the changes of transcription initiation sites or splicing
sites of the pre-mRNA. Therefore, it is necessary to further
study the role of stAN1-like in potato anthocyanins synthesis
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FIGURE 6 | Subcellular localization of stAN1-like and PAL-like using tobacco leaves.

and plant color change. The PAL gene also plays an important
role in the accumulation of potato anthocyanins (Zhang and
Liu, 2015), but PAL-like is different from the typical PAL gene
(Supplementary Figure S3). Therefore, it is impossible to rule
out the possibility that proteins produced by PAL-like guidance
have other functions. The function of PAL-like needs further
research through molecular biological methods.

Biosynthesis and Accumulation Process
of Anthocyanins
The R2R3-MYB transcription factor mainly regulates the
transcription of downstream genes controlling anthocyanin
synthesis, such as DFR (Nesi et al., 2001). The results of
comprehensive transcriptome analysis showed that the
upstream genes controlling the synthesis of anthocyanin
precursors represented by PAL (PGSC0003DMT400055489)
were mainly expressed in leaves. However, the R2R3-
MYB transcription factor genes represented by stAN1-like
(PGSC0003DMT400036281) were mainly concentrated in
stems and tubers. This indicates that there is a transport
process during the synthesis and accumulation of anthocyanins
throughout the potato. Anthocyanin precursors such as
phenylalanine and tyrosine accumulate in leaves; then the
intermediate products are gradually catalyzed to form the
final product (anthocyanins) in the process of transport to
the tubers; the final end product accumulates in the tuber in
the form of anthocyanins. The whole process is synthesized
while transporting, rather than directly accumulating the final
product of anthocyanin biosynthesis in the leaves and then
transferring to the tubers.

Analysis of transcriptomic data revealed that the role of
PAL gene in the overall anthocyanin biosynthesis process
is not critical. In anthocyanin biosynthesis, the metabolic
step that really plays a pivotal role should be the following
process: The anthocyanin synthesis precursor p-cinnamoyl-
CoA is transformed into naringenin chalcone as much as
possible, thereby entering the subsequent synthesis process of

anthocyanins, so that p-cinnamoyl-CoA enters the synthesis
pathway of lignin as little as possible. In colored potatoes,
the expression of CHS was up-regulated, and the down-
regulated expression of HCT effectively realized this process.
Therefore, the up-regulation of CHS and the down-regulation
of HCT should be the most critical link to promote plant
anthocyanin synthesis and increase the plant anthocyanin
content. In addition, the high expression of the F3′5′H gene
effectively offsets the effect of the down-regulated expression
of HCT on the anthocyanin composition type, so that
the composition of each type of anthocyanin can remain
relatively balanced.

Application of Multi-Omics Joint Analysis
in Experiments
With the development of bioinformatics and the accumulation
of experimental data in the field of plant life sciences, it
has become possible for multi-omics to jointly analyze a
certain life phenomenon (Zhang et al., 2010; Lakshmanan
et al., 2015). The transcriptomics data used in this paper were
different from the traditional RNA-seq data. This experiment
combined multiple RNA-seq results for comprehensive analysis.
Potato could be used as a good model plant to study the
process of anthocyanin synthesis and accumulation. However,
due to the lack of research on potato gene function, it is
difficult to perform transcriptome analysis and annotation,
especially for transcription factor-related genes. At the same
time, potato proteomics and metabolomics experimental data are
still insufficient, and the analytical methods are limited, which
make the relevant life phenomena unable to be fully analyzed.
Future scientific research needs to further complement data on
potato-related proteomics, metabolomics, and phenomics. With
the advancement of life sciences, the above problems will surely
be gradually solved.

The anthocyanin metabolism and synthesis process is a
typical quantitative trait, and the synthesis process is controlled
by multiple genes. In this experiment, the genomic and
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transcriptome analysis indicated that the most important step in
the anthocyanin synthesis process was to transfer p-cinnamoyl-
CoA into the flavonoid biosynthesis process instead of further
metabolism-producing lignin species. Up-regulation of CHS and
down-regulation of HCT played a central role in anthocyanin
biosynthesis. Through this analysis, we strived to find the major
genes that regulate quantitative traits and convert quantitative
traits into quality traits. At the same time, it was preliminarily
found that anthocyanins synthesized precursor substances in
leaves that were then gradually transformed during transport,
and finally, end products (anthocyanins) accumulated in potato
tubers. After a comprehensive analysis, two new transcripts with
research potential were found, namely, stAN1-like and PAL-
like, and their functions were preliminarily studied. However,
the specific functions of these two transcripts still require
the construction of transgenic plants for further research and
validation. This study provides a reference for the comprehensive
analysis and application of multiple transcriptomics data in the
context of big data. At the same time, it also provides a reference
for the application of R programming language in GO and KEGG
analysis of non-model plants. Finally, the results of this study
provide a solid theoretical basis for increasing the anthocyanin
content in potato tubers, cultivating new potato varieties with
high anthocyanin content and regulating plant color.
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