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Editorial on the Research Topic

Interactions between Ozone Pollution and Forest Ecosystems

INTRODUCTION

Forests are a key element of landscape, carbon sink, biodiversity conservation, and human
well-being. The major air pollutant nowadays affecting forest health and biodiversity worldwide
is tropospheric ozone (O3) (Li et al., 2017; Feng et al., 2019; Agathokleous et al., 2020). Progress has
been achieved by controlling the emission of O3 precursors in some areas of the world (Sicard et al.,
2013; Paoletti et al., 2014). However, O3 levels still reach potentially phytotoxic thresholds in many
areas (Mills et al., 2018a; Sicard et al., 2020). Major gaps of knowledge in our understanding of O3

and forest interactions exist. In particular, risk assessment, multifactorial responses, detoxification
mechanisms, and the role of forest vegetation in cleaning urban air require further investigation
(Paoletti et al., 2020).

This Research Topic of Frontiers in Forests and Global Change, Interactions between Ozone
Pollution and Forest Ecosystems, presents eight original research articles that span the field of O3

research on forests and give new insights based on novel results, thus providing a basis for further
studies and potential reduction of the severity of O3 impacts on forests.

Hoshika et al. developed stomatal-flux and exposure-based critical levels for O3 risk assessment
of biomass losses in two larch species (Larix), a genus of high forest value. They found that the
critical levels for the larches were smaller than those for other forest tree species, suggesting a
relatively high susceptibility of these larches. This research also revealed that the use of stomatal
fluxes as the metric of dose resulted in no species-specific differences that were found using an
exposure-based metric. Protection of forest productivity from negative impacts of O3 requires
species-specific critical levels that may be based on either O3 concentrations or stomatal uptake
accumulation over the growing season (Moura et al., 2018). Even though O3 concentrations are
more easily available, stomatal uptake, more biologically meaningful, is recommended in spite of
the more complex calculation (Emberson et al., 2000; Paoletti and Manning, 2007). Stomatal-flux
risk assessment may be carried out at different scales, e.g., leaf (Shang et al., 2017), ecosystem (Fares
et al., 2013; Hoshika et al., 2017), regional (Anav et al., 2016; De Marco et al., 2020), or global (Mills
et al., 2018b). Savi et al. investigated the relationship between stomatal O3 fluxes and net ecosystem
productivity (NEP), measured directly at the ecosystem level in a network of forest experimental
sites with the eddy covariance technique, by the means of artificial neural networks. The analysis
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highlighted that O3 effects over NEP are highly non-linear
and site-specific. By isolating O3 effects from other covarying
environmental factors, negative effect on NEP were found in
the order of 1 percent. These low but significant effects were
correlated with meteorological variables showing that O3 damage
depends on weather conditions.

For a proper risk assessment, it is important to evaluate all
environmental factors that may affect the ecosystem responses
to O3, such as nutrient (Zhang et al., 2018) and water
availability (Hoshika et al., 2018). Hunová et al. evaluated O3

concentrations, ambient NOx concentrations andmeteorology in
Czech mountain forests over the period 1992–2018. They found
that both meteorology and air pollution are highly important
in affecting day-to-day variability in O3 concentrations in
Czech forests. They applied a generalized additive model
with semiparametric (penalized-spline-based) components to
properly capture the non-linear responses that are typical of
O3 studies (Agathokleous et al., 2019) and are not captured
by traditional linear regression approaches. Overall, there is an
urgent need of using sophisticated statistical approaches for
untangling the effects of O3 from those of the co-occurring
environmental factors. Multifactorial experiments will help to
clarify the contribution of each factor. Sugai et al. investigated
O3 responses of larch in combination with soil salinization, an
interaction that represents a potential concern for vegetation in
many coastal areas (Calzone et al., 2019), and found that the
responses were additive and did not exhibit significant interactive
effects. Such additive responses are common in experiments
where elevated O3 is combined with other factors (e.g., Carriero
et al., 2016; Yuan et al., 2017), and their identification and
understanding may help developing a conceptual model of plant
response to O3 in a multi-factorial world.

Integrating plant detoxification processes into O3 risk
assessment is still a major challenge for O3 research. Dusart et al.
reviewed the great diversity of antioxidative systems, scattered
in different cellular compartments, that are involved in foliar
responses to O3, in particular the Halliwell Asada Foyer cycle and
phenolic compounds in cell wall, vacuole and chloroplasts. They
pointed out that a better understanding of subcellular localization
and transport would allow a more precise identification of the
respective contribution of each compartment to the foliar defense
system, and recommended more detoxification modeling efforts,
similar to Tuzet et al. (2011).

The relevance of urban forests for humanwell-being and other
services is continuously rising, and the selection of plant species
that may improve air quality is thus of great interest (Samson
et al., 2019). Plants may uptake Volatile Organic Compounds
(VOC) emitted by anthropogenic activities. Araya et al. found

several anthropogenic VOCs (e.g., toluene, styrene, xylenes,
naphthalene, benzenes, and trichloroethene) in the leaves of two
tree species in Santiago city (Chile), and Liriodendron tulipifera
was more efficient than Platanus × acerifolia in the O3 uptake.
However, plants may also emit biogenic VOCs, e.g., isoprene
and monoterpenes, which affect air quality and may contribute
to O3 formation (Sicard et al., 2018). Fitzky et al. reviewed
the interplay of O3 and urban vegetation shedding light on
the complex photochemistry leading to O3 production. BVOCs
emitted by vegetation can be considered O3 precursors especially
in presence of anthropogenically emitted NOX. The authors
highlight differences along the rural-urban gradient affecting
tropospheric O3 concentrations. Grote et al. developed a new
modeling approach for estimating abiotic and biotic stress-
induced de novo emissions of BVOCs from plants. A function
is proposed that describes the production of all stress-induced
biogenic VOCs and scales with stress intensity. It is hypothesized
that the response delay and the form of the function are specific
for the production pathway and valid for stress induced by O3 as
well as wounding (herbivory). These results will help including
biogenic VOC responses to stressors into modeling.

These articles were presented at the 2nd International
Conference on “Ozone and Plant Ecosystems” that was held in
Florence (Italy) in 2018. The next conference of this series was
planned in 2020 but was postponed to May 2021 due to the
COVID-19 pandemic (https://cyprus2021.com/). Interestingly,
the lockdown following the pandemic resulted in a drastic
improvement of the air quality, especially nitrogen dioxide
(NO2) levels, in many world areas (Zhang et al., 2020), while
O3 levels tended to increase in the cities (Sicard et al., 2020).
Ozone is a unique air pollutant due to its high reactivity and
the fact that is formed by reactions of precursors, including
NO2. This is why controlling O3 pollution has resulted to
be a serious challenge and justify why more research is still
needed about the Interactions between Ozone Pollution and
Forest Ecosystems.
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The aim of our study was to identify the factors substantially affecting day-to-day

variability in O3 concentrations in Czech mountain forests and to describe their influence

in detailed, quantitative way. We examined the effects of meteorology and ambient

NOx recorded in regular long-term continuous monitoring at five mountain forest

sites representing different regions, covering both polluted and relatively unpolluted

areas over the time period of 1992–2018. To investigate the association between

ambient O3 concentrations on one hand, and precursor NOx concentrations, and

meteorology on the other hand, we used a generalized additive model, GAM, with

semiparametric (penalized-spline-based) components to capture properly the possible

departures from linearity that is not captured by traditional linear regression approaches.

Our results revealed that the O3 concentrations showed significant associations with

all selected explanatory variables, i.e., air temperature, global solar radiation (GLRD),

relative humidity, and NOx. Apparently, both meteorology and air pollution are highly

important for day-to-day O3 concentrations, and this finding is consistent for all five

rural sites, representing middle-elevated forested mountain areas in Central Europe.

In addition to individual variables, we were able to detect interactions between three

pairs of explanatory variables, namely temperature∗GLRD, temperature∗relative humidity,

and GLRD∗relative humidity. Moreover, we confirmed non-linear O3 behavior toward all

individual explanatory variables.

Keywords: ambient ozone, generalized additive model, NOx, meteorology, non-linear effects

INTRODUCTION

Ground-level ozone (O3), an important constituent of the atmosphere (Prinn, 2003; Singh and
Fabian, 2003; Monks et al., 2015), belongs among the major factors exerting negative impacts
on forests (Ferretti et al., 2015; EEA, 2016), and remains a challenging problem for current and
future timber production and the conservation of natural plant communities, including species
diversity (Krupa et al., 2001). A range of impacts due to elevated O3 exposures have been reported
by numerous authors, from changes in biochemical processes in living organisms to macroscopic
injuries (e.g., Roschina and Roschina, 2003; Cape, 2008; Paoletti et al., 2010, etc.), although the field
evidence for the impact of O3 on forests remains less clear (Manning, 2005; De Vries et al., 2014;
Cailleret et al., 2018).
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The chemistry of O3 is very complex (Finlayson-Pitts and
Pitts, 1997; Seinfeldt and Pandis, 1998). Ozone is a product
of the photochemical reactions of precursors, i.e., nitrogen
oxides (NOx), volatile organic compounds (VOC), methane
(CH4), and carbon monoxide (CO). Meteorology is strongly
involved in O3 formation, with atmospheric stability, high
atmospheric pressure, high solar radiation, and air temperature
as factors promoting O3 buildup (Kovač-Andrič et al., 2009;
Wang et al., 2017; Pyrgou et al., 2018). Many processes—physical,
chemical, and biological—affect the formation, transportation,
and destruction of O3 and thus the final O3 concentrations
(Colbeck and Mackenzie, 1994; Seinfeldt and Pandis, 1998;
Fowler et al., 2009). Ozone formation in the highly non-linear
O3-VOC-NOx system is not yet fully understood (Sillman, 1999;
Carillo-Torres et al., 2017).

Trends in O3 are difficult to detect due to its large interannual
variability (Jonson et al., 2006). The ambient O3 in Europe has
significantly decreased, though not as much as expected with
respect to sharp reduction in precursor emissions since the 1990s
(Sicard et al., 2013; Paoletti et al., 2014; Colette et al., 2017). It
appears that the negative O3 trend throughout Europe due to
European emission controls has been counteracted by tendencies
related to climate warming and the hemispheric transportation
of pollutants from the source regions, such as Southeast Asia
(Yan et al., 2018). Climate variability generally regulates the
interannual variability in European O3, whereas the changes in
anthropogenic precursor emissions predominantly influence O3

trends (Yan et al., 2018).
In order to better understand O3 behavior, it is of major

concern to identify the factors that account for most of the
day-to-day variability in O3 concentrations. Numerous studies
have been published tackling this issue from various perspectives,
using different approaches, examining diverse variables and their
measures (e.g., Duenas et al., 2002; Tarasova and Karpetchko,
2003; Abdul-Wahab et al., 2005; Özbay et al., 2011). Regression-
based approaches—with the most often used multiple linear
regression analysis—are commonly used for modeling O3

concentrations as a response variable, and with meteorological
characteristics and different ambient air pollutants as explaining
variables (e.g., Abdul-Wahab et al., 2005; Sousa et al., 2006;
Pavón-Domínguez et al., 2014).

Ambient ozone levels in Czech Republic are high (Hůnová
and Bäumelt, 2018). Exposures over Czech forests exhibit high
year-to year variability (Hůnová et al., 2019), nevertheless they
consistently exceed the critical level of 5 ppm h AOT40F
(UN/ECE, 2004) since 1994, with peak values reaching 38–
39 ppm h at some sites in different years. In some mountain
forests, such as in the Jizerske hory Mts., the O3 exposures
are similar as in highly polluted sites in South Europe and
higher altitudes (Hůnová et al., 2016). The critical level
of 5 ppm h AOT40F is usually exceeded early in the
growing season, generally in May (Hůnová and Schreiberová,
2012). The highest O3 exposures, indicated by AOT40F, are
permanently measured in south Czech Republic, the region
much less affected by clouds, and thus receiving higher global
radiation loads during growing seasons (Hůnová et al., 2019).
Existing studies on O3 biological effects on Czech forests are

FIGURE 1 | Measuring sites in map (the map was created in ArcGIS 10.3,

based on ZABAGED layers, i.e., the geographic base data of the Czech

Republic, belonging to information systems of the public service).

equivocal (Šrámek et al., 2007, 2012; Hůnová et al., 2010,
2011; Zapletal et al., 2012; Vlasáková-Matoušková and Hůnová,
2015), however, and despite the high O3 levels recorded,
no serious damage attributable to O3 has been reported
so far.

The aim of our study is to explore selected factors substantially
affecting the day-to-day variability of O3 concentrations in Czech
mountain forests. In the effort to decrease O3 levels, it is truly of
the utmost importance to know how meteorology and emission
precursors influence ozone in a quantitative way.

METHODS

Sites and Period Under Review
We analyzed the observed data, recorded in regular long-term
continuous monitoring at five mountain forest sites (Figure 1;
Table 1) operated by the Czech Hydrometeorological Institute
(CHMI). The sites under review are distributed unevenly across
the territory of the Czech Republic (CR), and are situated in
border mountains under different pollution loads: Krkonoše-
Rýchory (KRK) and Souš (SOU) are situated in the northern
CR; Rudolice v Horách (RUD) in the northwest CR, a region
with cumulative major emission sources; Bílý Kříž (BKR) in the
northeast CR in the highly polluted Silesia region; and Hojná
Voda (HOJ) in the relatively unpolluted southern CR. All five
measuring stations are situated in open areas. Nevertheless, in
close vicinity of all these sites are extensive forested areas, covered
predominantly by spruce forests (Picea abies). The KRK, BKR,
and HOJ sites are roughly estimated to represent some tens
to hundreds kilometers, whereas RUD and SOU sites represent
somewhat less extensive regions, about several tens kilometers.

We examine the period of 1992–2018 (excluding days with
missing ozone and/ or explanatory variables of our interest).
This interval covers both the time with high emissions in the
past (until 1998), and the “cleaner” period after profound socio-
economic changes in Central Europe, including the CR, after the
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TABLE 1 | Measuring sites - basic characteristics.

Site Code Mountain area Classification Altitude [m a. s. l.]

Krkonoše-Rýchory KRK Krkonoše B/R/N-REG 1,001

Bílý Kříž BKR Beskydy B/R/N-REG 890

Rudolice v Horách RUD Krušné hory B/R/N-REG 840

Hojná Voda HOJ Novohradské hory B/R/N-REG 818

Souš SOU Jizerské hory B/R/N-REG 771

introduction of novel, more effective legislation for ambient air
protection, and after the adoption of diverse countermeasures.
From this 27-years record numerous data aremissing, in different
periods for individual sites. The NOx ambient levels at four out of
our five sites are available only until 2012. As amatter of fact, NOx

was monitored at Czech mountain sites only until 2012 (due to
very low concentrations recorded in these areas previously), with
the exception of BKRwhere NOx monitoring continues.Table S1
presents an overview of the numbers of daily data at disposal for
our analysis.

Input Data: Ambient Air Quality and
Meteorology
The input data were retrieved from ISKO, the Czech nationwide
ambient air quality database (CHMI, 2018b). All data we used
were based on real-time, continuous measurements, from which
1 h averages were routinely calculated and stored—as the basic
primary data—in ISKO database. With regard to quality of the
dataset used: (1) the ambient O3 and NOx concentrations were
checked thoroughly for gross errors by a database procedure
based on mathematical and statistical methods (CHMI, 2018a),
whereas (2) meteorology data, considered as support data, were
checked only based on logic. The input data for all five sites run
by the CHMI were measured by well-established, standardized
methods as follows.

Ambient Ozone
We used the daily mean O3 concentrations calculated from 1 h
measurements, from the continuous, year-round, nationwide
ambient air quality network. The measurement method
was UV absorbance, the EC reference method (EC, 2008);
the O3 analyzers used were TEI-M49, manufactured by
Thermo Environmental Instruments Inc., based in Franklin,
Massachusetts, U.S. The sampling equipment was changed in
2015 to TAPI T-400, manufactured by Teledyne Advanced
Pollution Instrumentation, Inc., based in San Diego, California,
U.S. Standard QA/QC procedures in accordance with EU
legislation (EC, 2008) were applied.

Nitrogen Oxides
We used the daily mean NOx concentrations calculated from
1 h measurements, from the continuous, year-round, nationwide
ambient air quality network. The measurement method was
chemiluminescence, the EC reference method (EC, 2008);
the NOx analyzers used were TEI–M42, manufactured by
Thermo Environmental Instruments Inc., based in Franklin,
Massachusetts, U.S. The sampling equipment was changed in

2015 to TAPI T-200, manufactured by Teledyne Advanced
Pollution Instrumentation, Inc., based in San Diego, California,
U.S. Standard QA/QC procedures in accordance with EU
legislation (EC, 2008) were applied.

Meteorology
Meteorology monitored continuously with a 1 h time resolution
was used. Namely, we used the daily mean air temperature,
daily mean relative humidity, and daily global solar radiation
(GLRD). The temperature in this paper is given in Kelvines
[K]—this unit is used in our nation-wide database to avoid
negative numbers, as negative numbers are exclusively assigned
to error codes. Ambient air temperature in 2m above ground and
relative humidity were measured by Thies Clima HTT Compact,
manufactured by Adolf Thies GmbH & Co., based in Gottingen,
Germany. GLRD was measured by CMP sensors, manufactured
by Kipp & Zonen B.V., based in Delft, The Netherlands. The
meteorological variables were measured at the same sites and at
the same hourly intervals as the air pollution variables.

Statistical Analysis
We have investigated the association between ambient O3

concentrations on one hand, and precursor NOx concentrations
and meteorology on the other hand, using a generalized additive
model, GAM (Wood, 2006). We accounted for NOx as a proxy
for ambient air pollution and a key player in O3 chemistry.
Unfortunately, VOCs as another key precursor group for O3

formation could not be accounted for, as their concentrations are
not recorded at the sites under review.

O3 concentration was considered the dependent variable in
the GAMmodel, whereas global solar radiation, air temperature,
relative humidity, and NOx concentrations were considered
as explanatory variables. We worked with daily mean values
calculated from primary 1 h values stored in a nationwide air-
quality database. As the effects of some of these variables are
known not to be linear, we used flexible GAMmodel formulation
with semiparametric (penalized-spline-based) components to
capture departures from linearity instead of forcing the
relationship into the traditional but unrealistic linear (or log-
linear) framework (Crawley, 2005). On the other hand, the GAM-
retrieved relationships essentially reduce to linearity when the
data do not support a non-linear relationship.

In order to maintain the comparability of results, the
functional form of the GAM model is kept the same for all the
sites we consider. Fitting was done separately for different sites
(we stratified on site) so that we have site-specific parameters of
themodel with the same interpretation. For a given site, the GAM
model is as follows:

Yt = β0 + sT
(

Temperaturet
)

+ sG (GLRDt) + sH
(

Humidityt
)

+sNOX (NOXt) + sTG
(

Temperaturet ,GLRDt

)

+ sTH
(

Temperaturet ,Humidityt
)

+ sGH
(

GLRDt ,Humidityt
)

+εt

where:

• Yt is the daily mean ozone concentration for day t (time is
indexed by the number of days since the first day of the data),
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• β is an unknown constant (intercept) to be estimated from
the data

• Temperaturet is the mean temperature for day t,
• GLRDt is the mean GLRD for day t,
• Humidityt is the mean relative humidity for day t,
• NOXt is the mean NOx concentration for day t,
• εt is the random error term. We adopt a working assumption

of εt ∼N (0,σ 2)εt ∼ N
(

0, σ 2
)

, which is a normal, zero mean,
homoscedastic distribution of errors,

• ST is an unknown univariate function (of temperature as an
argument), of which the form is to be estimated from the data.
We estimate it as a penalized spline (regularizing wiggliness via
the penalization of the integral of the squared second derivative
with respect to temperature). By that, we allow for potentially
non-linear, smooth shapes of (marginal) dependence of O3

on temperature,
• SG is an unknown univariate function (of GLRD) to be

estimated from the data as a penalized spline,
• SH is an unknown univariate function (of Humidity) to be

estimated from the data as a penalized spline,
• SNOX is an unknown univariate function (of NOx) to be

estimated from the data as a penalized spline,
• STG is an unknown bivariate function (of Temperature and

GLRD) to be estimated from the data as a tensor product
penalized spline. This term allows us to investigate the possible
interaction of Temperature and GLRD in influencing ozone
concentration (i.e., departures from the simple additive effects
of Temperature and GLRD). In other words, this effect enables
us to investigate how the effect of Temperature is modified by
GLRD (or, equivalently, how the effect of GLRD is modified
by Temperature),

• STH is an unknown bivariate function (of Temperature
and Humidity) to be estimated from the data as a
tensor product penalized spline. This term corresponds
to the Temperature∗Humidity (parsimoniously formu-
lated) interaction,

• SGH is an unknown bivariate function (of GLRD and
Humidity) to be estimated from the data as a tensor product
penalized spline. This term corresponds to the GLRD∗Humidity
(parsimoniously formulated) interaction.

All unknown model components are estimated simultaneously

(the model is identified) by optimizing the penalized likelihood.

Unknown penalty coefficients are obtained via generalized
cross-validation. All modeling computations were done
in R core (2008). Results with p ≤ 0.05 are considered
statistically significant. In graphs, the estimated spline
functions are supplemented with 95% confidence intervals
(constructed in pointwise fashion, so that they do not claim
simultaneous coverage).

When estimating themodel, we use all days with available data

for a given station. From the model-fitting point of view, data

are available when O3 and all explanatory variables (temperature,

GLRD, humidity, NOx) are available. When at least one of these

variables is missing, the day effectively appears as missing (i.e., it

is not used in the fitting). Since different stations hadmissing days
at different time-points, the model was estimated on a somehow

TABLE 2 | Descriptive statistics for included variables at all five sites (calculated

from daily data).

Site Variable N 25th perc 50th perc 75th perc

KRK O3 [ppb] 7,737 28.61 36.98 46.26

NOx [ppb] 6,368 2.98 4.41 6.77

H [%] 6,764 72.17 84.15 92.20

Temp [K] 6,708 272.10 279.26 286.33

GLRD [W m−2] 6,277 39.70 107.74 201.42

BKR O3 [ppb] 8,705 27.46 35.08 44.61

NOx [ppb] 8,735 2.19 3.11 4.60

H [%] 7,037 77.13 91.00 98.00

Temp [K] 7,098 272.88 279.77 285.89

GLRD [W m−2] 6,188 31.08 95.44 182.90

RUD O3 [ppb] 8,115 25.98 33.74 42.39

NOx [ppb] 6,118 4.52 6.74 10.40

H [%] 7,435 78.08 90.21 98.42

Temp [K] 7,645 273.24 279.43 285.21

GLRD [W m−2] 7,187 50.27 119.50 213.00

HOJ O3 [ppb] 8,409 26.32 33.45 41.96

NOx [ppb] 6,405 2.43 3.34 4.94

H [%] 7,847 71.13 82.96 91.29

Temp [K] 8,079 273.69 280.20 286.21

GLRD [W m−2] 7,752 48.80 106.35 193.10

SOU O3 [ppb] 8,945 24.65 31.94 40.03

NOx [ppb] 7,030 3.29 4.79 7.14

H [%] 7,454 82.17 90.88 95.96

Temp [K] 7,673 273.64 280.13 286.89

GLRD [W m−2] 7,987 31.69 92.69 183.54

different set of times, assuming that the ozone-to-explanatory-
variables relationship is homogeneous in time.

RESULTS

Table 2 presents an overview of descriptive statistics calculated
from the mean daily values for all considered variables at all
five measuring sites. Figures 2, 3 present the dynamics in the
response variable (given as annual median values of respective
variable), i.e., ambient O3 concentrations, and explanatory
variables: air temperature, GLRD, relative humidity, and ambient
NOx concentrations at all five sites under review. Though we
used data over the 1992–2018 time period in our model, the
dynamics in the variables (Figures 2, 3) are shown only for 1996–
2016 due to the fact that at the beginning of measuring period,
many data are missing, which would misrepresent the annual
median in graphs. The GAM model, however, can cope with
the missing data automatically (assuming homogeneity of the O3

relationship to the explanatory variables in time and missing at
random, or the MAR mechanism (Little and Rubin, 2002). The
year-to-year variability in O3 is high; the median concentrations
at individual sites range between 28 and 45 ppb with clear peaks
at some sites in 2003 and 2006. In spite of a clear decrease in NOx

concentrations, the ambient O3 levels apparently do not decrease
accordingly. Annual median temperatures ranged between 277.5
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FIGURE 2 | Trend in annual median ambient O3 levels.

and 282K, GLRD between 74 and 200W m−2, and relative
humidity between 74 and 98%.

The day-to-day variability in ambient O3 concentrations is
well described by a model including the additive effects of
air temperature, GLRD, relative humidity, and ambient NOx

concentration, and the interactions of air temperature∗GLRD,
air temperature∗relative humidity, and GLRD∗relative humidity
(Figures 4–10). Though Figures 4–10 show the smooth terms
with 95% confidence intervals from GAM model only for
one site, namely BKR, the models for other four sites are
looking quite similar. The relationship between O3 expected
value and temperature (Figure 4) shows higher O3 values not
only with higher temperatures, but, surprisingly, also with lower
temperatures below 273.15K (i.e., 0◦C). Likely explanation for
this finding rests in the fact that, mountain stations the data
from which we analyze, are frequently above the inversion cloud
layer in winter time, and receive high solar radiation capable of
splitting the NO2, a precursor molecule to O3. Consequently, O3

is recorded also in conditions of simultaneous low temperatures
and high solar radiation, though O3 levels are not that high
as in summer when much higher temperatures promote O3

formation reactions. The expected ozone value increases with
increasing GLRD, though at some point the curve shows a
plateau or even a slight decline (the decline is not significant,
however, since it is outweighed by the increased variability) for
higher GLRD values (Figure 5). Ozone concentration increases
with decreasing relative humidity (Figure 6), right in line with
physically-based intuition. The expected ozone value reaches
its peak much more quickly than it decreases and shows a
local maximum at about ambient NOx concentration 3 ppb
(Figure 7). Apart from the significant relationship between
the response variable and individual explanatory variables, we
also detected significant interactions between the three pairs
of explanatory variables. Figure 8 shows the complex effect
of interactions of air temperature∗GLRD upon the expected
ambient O3 concentration. Ozone evidently increases not only
with increasing temperature and GLRD, which is a well-known

fact, but also, surprisingly, with increasing GLRD at low
temperatures. The dividing line is apparently around the ambient
air temperature 280K (i.e., 7◦C). The ambient O3 concentration
generally increases with increasing temperature and decreasing
humidity (Figure 9), whereas effect of interactions of relative
humidity∗GLRD upon expected ambient O3 concentration
appears less straightforward (Figure 10). We can see a sharp
increase of O3 concentrations with decreasing relative air
humidity at a GLRD around 250W m−2, whereas above that
GLRD value, O3 decreases.

The marginal effects of all selected explanatory variables are
significant, but they differ in the strength of their effects upon
ozone. All variables and their selected interactions are highly
significant (p < 0.001) for all five sites, with a minor exception
for the interaction of GLRD∗relative humidity for the KRK site,
which is not significant, and for the BKR site with the p-value
slightly less than the significance level of 0.05. The approximate
significance of smooth terms is summarized in Table 3. At
the KRK site, situated in the unpolluted top of the Krkonoše
Mountains, influenced only by the long-range transport of air
pollutants, all explanatory variables show similar strength, which
also applies for interactions, which show a similar though lesser
strength, as compared to the individual explanatory variables. A
very similar pattern, though with a somewhat higher strength
of relative humidity and lesser strength of air temperature,
is obvious for the HOJ site, situated in the Novohradské
hory Mountains, in the unpolluted (with regard to primary
emissions and anthropogenic precursors of ambient ozone) south
of the Czech Republic at the Austrian border. Ambient NOx

concentrations have a greater effect at sites representing more
polluted regions. This holds true for the RUD site, situated at the
Krusne hory mountain plateau and influenced by nearby large
emission sources down in the valley (Bridges et al., 2002); for
the SOU site, influenced by car exhaust from the nearby local
road; and for the BKR site, influenced by emission sources in the
polluted Silesian region (both on the Czech and the Polish sides
of the border). The deviance explained for the individual sites is
high, and ranges between 74.3% for the BKR and 63.4% for the
SOU sites.

DISCUSSION

Complex Atmospheric Chemistry of O3
Numerous studies examining O3 chemistry, meteorology, and
precursor emissions in Europe and North America, in different
field research programs conducted under diverse geographical
and climatic conditions, as well as studies of the combination of
ground-based ozone data and meteorological observations, have
resulted in enhancement of our knowledge of photochemical
processes under various tropospheric conditions (Solomon
et al., 2000; Monks et al., 2015). Nevertheless, it remains
a challenge to interpret ambient O3 behavior, levels, and
trends. Atmospheric chemistry resulting in O3 formation and
destruction is, as a matter of fact, extremely complex due to
numerous factors influencing these processes, and hence, O3

concentrations (Cape, 2008).
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FIGURE 3 | Trends in annual median air temperature, GLRD, relative humidity, and ambient NOx concentrations.

FIGURE 4 | Effect of air temperature upon expected ambient O3

concentration, BKR site.

Meteorology is extremely important for O3 formation. It
affects O3 concentrations not only directly (via horizontal
advection, vertical diffusion, and photolysis rates), but also
indirectly, by influencing the concentrations of its precursors
and chemistry of its formation and destruction (Oikonomakis
et al., 2018). O3 has a temperature-dependent chemistry
(Pusede et al., 2015), and temperature was used in some
studies as a surrogate to indicate O3 formation via the
O3-temperature association, both at individual measuring sites

FIGURE 5 | Effect of GLRD upon expected ambient O3 concentration,

BKR site.

and on a greater regional scale (Oikonomakis et al., 2018).
The O3-temperature relationship originates in: (1) temperature-
dependent biogenic VOC emissions, (2) thermal decomposition
of PAN to HOx and NOx, (3) increased likelihood of favorable
meteorological conditions for ozone formation (Abeleira and
Farmer, 2017). However, there are major uncertainties in the
mechanisms underlying the temperature-dependent changes in
O3 concentrations, their interactions, and relative contributions
in rural and remote regions (Romer et al., 2018). Ozone chemistry
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FIGURE 6 | Effect of relative humidity upon expected ambient O3

concentration, BKR site.

FIGURE 7 | Effect of ambient NOx concentrations upon expected ambient O3

concentration, BKR site.

regimes are shifting as precursor emissions are changing
(Abeleira and Farmer, 2017). Moreover, meteorology-dependent
O3 chemistry implicates the impact of ongoing climate change
on O3. Increasing temperature is expected to increase O3

concentrations (Abeleira and Farmer, 2017). Additionally, the
projected rise in global precursor emissions over the twenty-first
century is also assumed to have a strong effect on O3 throughout
the world (Vingarzan, 2004). In contrast to temperature, field
studies on GLRD influence on ground-level O3 concentrations
are scarce (Duenas et al., 2002). Though it is a well-known fact,
that ambient O3 is strongly dependent on GLRD (Finlayson-
Pitts and Pitts, 1997; Seinfeldt and Pandis, 1998), some authors
showed that solar radiation had a lower effect than expected
upon O3 concentrations as compared to more important effect
of temperature (Abdul-Wahab and Al-Alawi, 2002).

The association between meteorological factors, precursor
emissions, and O3 daily variability might differ in urban and
rural areas. Whereas the precursor emissions used to be much

FIGURE 8 | Effect of interactions of air temperature*GLRD upon expected

ambient O3 concentration, BKR site.

FIGURE 9 | Effect of interactions of air temperature*relative humidity upon

expected ambient O3 concentration, BKR site.

higher in urban areas, in rural regions the precursors are lower, in
particular with respect to NOx (Romer et al., 2018). Most papers
on this issue examine the O3 regime in urban areas (e.g., Duenas
et al., 2002; Tan et al., 2018), whereas the papers on rural regions
are less frequent (e.g., Pudasainee et al., 2006).

Strengths and Weaknesses of the GAM
Model Used
Various statistical approaches to model O3 dependence on
meteorology and ambient air pollutants have been employed
recently and have been reviewed by Thompson et al. (2001) and
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FIGURE 10 | Effect of interactions of GLRD*relative humidity upon expected

ambient O3 concentration, BKR site.

Schlink et al. (2003). The main objectives are O3 forecasting,
estimating O3 time trends, and investigating the underlying
processes based on observation data. The input data may vary
widely both in terms of the variables considered, and in terms
of observation scales in space and time (Thompson et al., 2001).
The multiple linear regression method is frequently used (e.g.,
Abdul-Wahab et al., 2005; Sousa et al., 2006; Pavón-Domínguez
et al., 2014), though it encounters serious difficulties when the
independent variables are correlated with each other, i.e., when
they exhibit multicollinearity (Al-Alawi et al., 2008). This is
exactly the case of O3, when e.g., the explanatory variables of
temperature and GLRD are correlated. One method used to
remove this multicollinearity is principal component analysis
(PCA), selecting variables with high loadings to be used as
predictors in a regression equation (e.g., Rajab et al., 2013).
In our data (and moderate number of explanatory variables),
collinearity is not a problem. The variance inflation factor,
VIF (Rawlings et al., 1998), is smaller than 2.5 at all five
sites. Even more importantly, O3 formation and destruction
are complex non-linear processes, and principal component
regression cannot adequately model the non-linear relationship
(Al-Alawi et al., 2008), and hence it cannot be used to
retrieve true functional relationships, only linear (often hard-
to-interpret) approximation. Neural networks and generalized
additive models are recommended to address this issue, as they
can handle non-linear associations and can be adapted easily
to site-specific conditions (Schlink et al., 2003), but since they
are used in a black-box style, they are much more useful for
prediction than for analysis purposes.

Since we used a rather flexible class of statistical models
(Generalized AdditiveModel with penalized spline components),
we allow for a smooth relationship between O3 and explanatory
variables (temperature, GLRD, humidity, and NOX). This class T
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would not be ideal for relationships showing very sharp bends,
sudden jumps at particular values of covariates, etc. From the
physical and chemical backgrounds of O3 behavior, however,
we do not expect this sort of behavior and take GAM as a
tool allowing for non-linearity in explanatory variables (unlike
standard multiple regression, which insists on linearity, i.e.,
on the gradient with respect to a given explanatory variable
being constant throughout its range). Since we use tensor
product splines, we can also assess possible interactions in
influences of certain pairs of explanatory variables (i.e., to assess
whether their influence is simply additive or more complicated).
Since we concentrate only on two-variable interactions, we can
assess not only their overall significance (via the p-values of
formalized hypothesis tests), but also display the interactions in
graphical form (as contour plots showing how the mean ozone
concentration depends on a pair of explanatory variables).

Volatile Organic Compounds Are Lacking
in Our Model
The weak point of our model is the fact that the VOCs, an
important O3 precursor group, are not included in our model.
This is due simply to the fact that the measured data are not
available. There are no significant anthropogenic sources of
VOCs near the five mountain sites under review; nevertheless,
the surrounding forests are undoubtedly a major source of
natural biogenic VOCs (further, BVOCs). BVOCs are a large
group of organic chemicals including isoprene, terpenes, fatty
acid derivates, benzenoids, phenylpropanoids, and amino acid
derived metabolites (Esposito et al., 2016). They are emitted into
the atmosphere by plants, and significantly affect its chemical
composition and physical properties (Laothawornkitkul et al.,
2009; Pinto et al., 2010), contributing substantially, among other
effects, to the oxidizing capacity of the atmosphere through
the recycling of hydroxyl radicals, OH (Lelieveld et al., 2008).
Interestingly, on a global scale, BVOC emissions exceed by far
those emitted due to anthropogenic activities (Seinfeldt and
Pandis, 1998), and are more reactive (Holzinger et al., 2005).
BVOCs belong among the key players in ambient O3 chemistry
in rural areas (Atkinson and Arey, 2003; Di Carlo et al., 2004).

We assume that natural BVOCs at the investigated sites are
very important, as all five sites under review are situated in the
close vicinity of vast forested areas, with a clear predominance
of Norway spruce (Picea abies). It has been widely accepted that
the vegetative emissions display large inter-species and inter-
individual variability (Aydin et al., 2014). As compared to some
other woody species, such as poplar or beech, spruce is a lower
BVOC emitter (Bortsoukidis et al., 2014); however, it is still
known to emit considerable amounts of reactive trace gases, and
is considered particularly as an emitter of monoterpenes, such as
α-pinene, β-pinene, limonene, and myrcene, whereas it is only
a low isoprene emitter (Esposito et al., 2016; Jurán et al., 2017).
Though some indicative information exists on BVOC emission
for the CR (Zemankova and Brechler, 2010; Jurán et al., 2017),
observation-based data in high time-resolution suitable for use
in our model are lacking at present. Nevertheless, it would be

very interesting in the future to include the data on BVOC
concentration to observe how they influence our model.

Relevance of Our Results to Forests
On a long-term basis, ambient O3 has been considered as
a stress factor contributing to impairment of forest health
status and its influence has been studied from different aspects.
In spite of clear evidence of O3 harmful effects observed in
laboratory experiments, fumigation chambers, or FO3X (Free air
O3 eXposure) experiments (Sandermann et al., 1997; Paoletti
et al., 2017; Franz et al., 2018; Hoshika et al., 2018), the field
evidence for impacts of O3 exposure on tree growth is not that
clear (De Vries et al., 2014; Cailleret et al., 2018). Moreover,
observations in real stand conditions from numerous regions
show that measured high O3 exposures or modeled high O3

stomatal flux do not correspond with unclear impacts on forest
ecosystems (e.g., Ferretti et al., 2007; Matyssek et al., 2007;
Waldner et al., 2007; Baumgarten et al., 2009).

European-wide assessment shows that, ambient O3 exposures
recorded at Czech background rural sites are medium in
European context, being lower than in Southern Europe
including Mediterranean, but higher than in Scandinavia, similar
as in Germany and Switzerland (e.g., Waldner et al., 2007;
Baumgarten et al., 2009; EEA, 2016). In our earlier work we
assessed long-term time trends and spatial variability in ambient
O3 concentrations throughout the Czech Republic (Hůnová and
Bäumelt, 2018), O3 exposure over Czech forested areas (Hůnová
and Schreiberová, 2012), compared different GIS methods to
create a reliable O3 and AOT40F map based on observed data
(Hůnová et al., 2012), studied O3 exposure, stomatal flux, and
ozone injury on native vegetation in mountain forests (Hůnová
et al., 2011; Vlasáková-Matoušková and Hůnová, 2015; Hůnová,
2017), and indicated the Czech forest regions which are stressed
by permanent high O3 exposures (Hůnová et al., 2019).

In present study we have investigated exclusively the O3

behavior with respect to its day-to-day response to selected
meteorology characteristics and NOx precursors. Our results
confirmed non-linear behavior of ambient O3 not only to
NOx precursors, which is a well-known fact (Finlayson-Pitts
and Pitts, 1997; Seinfeldt and Pandis, 1998), but also to
meteorology, including all variables considered. Our results
thus point out to certain deficiency of models investigating
the underlying processes of O3 formation based on measured
data not considering this non-linear behavior toward ambient
air temperature, GLRD, and relative humidity. This might
be beneficial, for example, in modeling future scenarios
for forested regions, accounting for changes in ambient O3

toward local ambient air temperature, GLRD and relative
humidity. Furthermore, our results indicated the necessity of
considering not only individual explaining variables but also their
interactions, such as the interactions of air temperature∗GLRD,
air temperature∗relative humidity, and GLRD∗relative humidity.
This might be of high relevance in particular in context of global
climate change (Bytnerowicz et al., 2007; Sicard et al., 2017).
In this respect Czech Republic heads toward hotter and drier
conditions (Hlásny et al., 2011; Trnka et al., 2015; Štěpánek et al.,
2016), which is likely to affect future ambient O3 concentrations.
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The associations indicated by our study might enhance the
models estimating potential future impacts of environmental/
climate changes on forests.

Ambient O3 is, alongside with nitrogen deposition,
considered on a long-term basis as an important factor
affecting negatively European forests (EEA, 2016). Nevertheless,
in recent years, this factor has been in Central Europe and
elsewhere overshadowed by two other major threats for forests,
namely unprecedented drought and unprecedented bark beetle
outbreaks (Allen et al., 2010). Forests with compromised
ecological stability, such as traditional forest monocultures in
particular, are especially prone to large scale damage (Hlásny and
Turčáni, 2013). This holds for most of the Czech forests, which
can be classified as managed low-diversity ecosystems (Vacek
et al., 2013), with decreased stand stability in respect to damages
caused by natural abiotic agents (wind, snow, glaze, drought),
biotic factors (insects including bark-beetle, pathogens), and also
by anthropogenic effects, such as ambient air pollution. This
adverse development is manifested by recent unprecedented
salvage felling in Czech forests (Pajtík et al., 2018; Zahradník
and Zahradníková, 2019). That present Czech forest decline is
a result of a complex interplay of multiple factors was stressed
by several recent observation-based studies (Kolár et al., 2015;
Cienciala et al., 2016; Altman et al., 2017).

Czech forests in history were substantially changing in terms
of area, species representation, and tree age. Presently, out of
26,664 km2 of forested area representing some 34% of the Czech
territory, Norway spruce (Picea abies), traditionally an important
timber tree, is still a dominant species covering ca. 51% of
the total forested area, following pine trees (Pinus spp.) cover
17%, beech (Fagus sylvatica) 8%, and oak (Quercus spp.) 7%
(Ministry of Agriculture, 2015). Spruce is a somewhat ambiguous
species with respect to O3 sensitivity—it is assumed not to be
especially sensitive in relation to visible injury but regarded as
O3-sensitive in relation to growth responses (UN/ECE, 2004).
Nevertheless, we have to keep on mind that ambient air pollution
is a factor affecting forests.We have already witnessed earlier that,
predisposition of Norway spruce by air pollution (namely by high
ambient SO2 concentrations in the 1970s and 1980s) to stress
from climatic events, such as drought and temperature changes,
resulted in forest decline in Czech Republic (Vacek et al., 2015).

CONCLUSIONS

The generalized additive model confirmed that selected
explanatory variables, i.e., air temperature, GLRD, relative
humidity, and NOx, significantly affect daily O3 concentrations
in Czech forests. Apparently, both meteorology and air pollution
are highly influential on day-to-day O3 concentrations, and
this finding is consistent for all five rural sites representing

middle-elevated forested mountain areas in Central Europe. We
believe it would be of the utmost importance to include BVOCs
in our analysis. Nevertheless, at present this is impossible,
as the relevant data for BVOCs for these sites do not exist.
Additionally, in contrast to a standard approach based on
multiple linear regression used for similar studies, we were
able to access non-linear relationships of various covariates to
ozone, and also to characterize the interactions of the three
pairs of explanatory variables, namely temperature∗GLRD,
temperature∗relative humidity, and GLRD∗relative humidity.
We extracted functional relationship of various explanatory
variables, demonstrating deficiencies of standardly used linear
approximations. Local extrema visible in some of the bivariate
relationships (O3 to temperature or to NOx) can, in addition
to saturation (upper asymptote) visible in the relationship of
O3 to GLRD, easily distort quantification of covariate effects,
e.g., to forests injury and/ or to smear out various climatic
scenario comparisons based on standard linear approach.
Non-linear relationships (qualitatively clear from the O3

atmospheric chemistry) should be taken seriously also in real,
observed data analysis. GAMmethodology offers a powerful tool
for this.
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impacts of climate change on forests: Czech Republic as a case study. J. For. Sci.

57, 422–431. doi: 10.17221/103/2010-JFS
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Monitoring of ozone effects on the vitality and increment of Norway spruce

and European beech in the Central European forests. J. Environ. Monitor. 14,

1696–1702. doi: 10.1039/c2em10964f
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The emission of biogenic volatile organic compounds (BVOCs) is usually thought to

depend on species-specific emission capacities that vary with seasonal and phenological

conditions. Actual—so called constitutive—emissions are then calculated from prevailing

temperature and radiation. However, various abiotic and biotic stressors such as ozone,

extreme radiation and temperature conditions, as well as wounding e.g., from insect

feeding, can lead to de-novo emissions of stress-induced BVOCs (sBVOCs) that may

excel constitutive emissions by more than an order of magnitude. These emissions

often have a considerable different compound composition and are short-lived but can

prolong under continuous stress for quite some time. Thus, they may easily have a

large impact on overall regional BVOC emissions. However, sBVOCs are generally not

considered in models since up to date no consistent mechanism has been proposed.

This manuscript suggests a new mechanism based on the finding that sBVOCs

originate from a handful of biosynthetic pathways which synthesize compounds in the

groups of monoterpenes, sesquiterpenes, and green leave volatiles, as well as methyl

salicylate, ethanol/acetaldehyde, methanol/formaldehyde, and acetone. Isoprene is also

considered but since it is often constitutively emitted, the specific role of stress induction

is difficult to determine for this compound. A function is proposed that describes the

production of all de-novo sBVOCs sufficiently well and scales with stress intensity. It

is hypothesized that the response delay and the form of the function is specific for

the production pathway and valid for ozone as well as wounding (herbivory) induced

stress. Model parameters are then derived from pooled literature data based on a meta-

analysis of suitable induction-response measurements of different plant species. The

overall emission amount derives from the intensity and frequency of the stress impulse.

We present a number of literature studies that are used to parameterize the newmodel as

well as a selection of evaluations for single- and multiple-stress inductions. Furthermore,

coupling and interaction with constitutive emission models as well as limitations and

possible further developments are discussed.

Keywords: ozone impact, herbivory, wounding, oxidative stress, induced emissions, BVOCs, modeling
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INTRODUCTION

Volatile organic compounds (VOCs) are important precursors
for the formation of tropospheric ozone and secondary aerosols
(Shallcross and Monks, 2000; Atkinson and Arey, 2003).
Excessively high ozone concentrations in the lower atmosphere
are representing a considerable threat to human health, causing
yield losses in agriculture and forestry, and reduce carbon
sequestration as well as other ecosystem services (Wilkinson
et al., 2012; Lombardozzi et al., 2015; Silva et al., 2017). Secondary
aerosols or fine and ultrafine particles are also causing pulmonary
diseases, directly affect the radiation regime of the atmosphere,
and are important cloud condensation nuclei (Riipinen et al.,
2012; Shrivastava et al., 2017). A considerable share of VOCs
originates from biogenic emissions (BVOCs) (Laothawornkitkul
et al., 2009). Therefore, in order to evaluate the most efficient
air pollution reduction strategies, it is important to know the
quantity and composition of BVOC emissions from different
plant sources and thus their spatial and temporal distribution.

BVOC emissions have been studied since the late 1980’s and
relationships between somemain compounds and environmental
conditions have been quantified for many plant species.
This led to the general distinction between constitutive and
induced emissions, assuming continuously developing boundary
conditions to drive the first, and oxidative and mechanical
stress to trigger the second (Litvak and Monson, 1998; Brilli
et al., 2009; Ali et al., 2011; Joo et al., 2011; Jiang et al., 2016;
Copolovici et al., 2017). Constitutive emissions are described
based on genetically determined emission potentials and the
ability to form compound-specific VOC storages in different
types of plant tissues and organs. Various environmental
conditions are responsible for the expression of this species-
specific potential, from which temperature and radiation are the
most important ones, both for short- and longer-term impacts.
Water availability affects BVOC emission directly and indirectly
and may act in different directions dependent on stress severity.
CO2 and nutrient availability do also change BVOC emission
intensity but possible connections to production pathways are
numerous and the exact mechanism is yet not fully elucidated
(Grote et al., 2013).

In contrast, BVOC emissions may also occur as responses
to specific stressors. Such stressors can be oxidative stress
originating from excessive light, temperature and air pollutants,
or mechanical stress such as biting, sucking, cutting, or wounding
including abrasion due to wind movement (Haase et al., 2011)
and membrane damages due to freeze/thaw cycles (Fall et al.,
2001). Although the drivers can be abiotic or biotic, the plant
internal signal cascades and thus the responses of plants are
often similar (Iriti and Faoro, 2009). One of the reasons for
this surprising fact is that the kind of provoked damages are
often the same, i.e., destroyed or impaired membrane functions
which causes changes in plasma trans-membrane potential
and cytosolic Ca2+concentration (Dicke and Baldwin, 2010).
Another reason may be that the same substances that are used
for repair of and protection against oxidative stress also serve
for signaling in order to repel parasites or attract enemies
of herbivores (Cape, 2008; Loreto and Schnitzler, 2010). In

fact, many of the volatile terpenes that serve as antioxidative
defenses, are also non-specific toxins active against a wide
range of organisms (bacteria, fungi, plants, and animals) (Meena
et al., 2017). Nevertheless, the large variety of the emitted
compounds and the species-specific as well as stress-specific
emission intensity results in a multitude of different possible
blends (Kravitz et al., 2016).

Numerous structurally quite different molecules can be
produced but oxygenated VOCs, and more specifically green
leaf volatiles (GLVs), constitute a general element in most
blends of induced emissions, in particular aldehydes, alcohols
and acetates (Blande et al., 2014). The emission is generally
proportional to the extent of wounding (Mithöfer et al., 2005;
Niinemets et al., 2013; Portillo-Estrada et al., 2015) and occurs
in attached or detached leaves. Other relevant sBVOCs are
the C11 homoterpene dimethyl-nonatriene (DMNT) and the
volatile benzoid methyl salicylate (MeSA). Emissions of DMNT
have often been found in response to herbivore attack (e.g.,
Vuorinen et al., 2004b; Ibrahim et al., 2008; Tholl et al., 2011;
Copolovici et al., 2014) but also as a response to ozone (Behnke
et al., 2009; Carriero et al., 2016). Similarly, MeSA is often
associated with ozone responses (e.g., Hartikainen et al., 2012;
Cardoso-Gustavson et al., 2014; Li et al., 2017; Bison et al., 2018)
but is similarly common in herbivore induced emission blends
(Vuorinen et al., 2007; Kigathi et al., 2009). Since isoprene and
terpenoids help to mitigate any kind of membrane damage, their
production may be induced or upregulated in response to abiotic
as well as biotic stress (Litvak et al., 1999; Prieme et al., 2000;
Brilli et al., 2011; Achotegui-Castells et al., 2013; Faiola et al.,
2015; Semiz et al., 2017; Kanagendran et al., 2018b; Visakorpi
et al., 2018) but may also been downregulated in favor of GLVs
(Brilli et al., 2009; Copolovici et al., 2017). The up-regulation
of terpenoids have been found to increase the emissions by
a factor of ∼10–20 in response to needle damages of feeding
insects (Ghimire et al., 2017) as well as to bark beetle infestations
(Amin et al., 2012, 2013).

Similar to constitutive emissions, induced compounds may be
de-novo produced or released from storages when the diffusive
resistance is decreased by wounding of any kind. In some plant
species, storages in specific tissues occur from which volatiles
can be released that reduce the attractiveness of tissues for
herbivores and protect wounds from getting infected bymicrobes
and fungi. As far as we know, not all stored compounds but
only monoterpenes are released from such storages (Litvak and
Monson, 1998; Clancy et al., 2016), possibly because of their
antibiotic properties (e.g., Michelozzi, 1999). Therefore, most
induced BVOCs are directly emitted after production but a
clear differentiation between emissions from storages and de-
novo production cannot be given, except if the emissions are
directly related to increased resin flow (Baier et al., 2002; Eller
et al., 2013). It should be noted that wounding includes cutting
which is a widespread management activity in grasslands and
forests. In fact, it is known that grasslands and pastures do
release high amounts of GLVs after cutting which origin from
de-novo production, in particular alcohols (Karl et al., 2001;
Warneke et al., 2002; Davison et al., 2008). Therefore, it has been
hypothesized that the large transient fluxes caused by cutting

Frontiers in Forests and Global Change | www.frontiersin.org 2 June 2019 | Volume 2 | Article 2621

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Grote et al. Modeling Stress-Induced BVOC Emissions

could be in the same order of magnitude as constitutive emissions
from undisturbed pasture. Considering induced emissions thus
would virtually double emission estimates from these ecosystems
(Kirstine et al., 1998). Forest harvests and thinning are by
definition much less frequent. Nevertheless, a thinning of half the
trees in a Scots pine forests has triggered a monoterpene release
from wounded tissue that was 40 times the constitutive emission
rate (Schade and Goldstein, 2003).

Induced emissions from abiotic as well as biotic disturbances
can thus be considered as extremely important as they can
increase short- and medium term BVOC fluxes by at least
one order of magnitude. They also have a different blend
than emissions in undisturbed conditions. Nevertheless, there is
currently no relationship implemented in emission models that
account for induced emissions in response to air pollution, insect
gradations, or mechanical disturbances although this issue has
been recognized as important (Arneth and Niinemets, 2010).
The only approach that we are aware of uses experimentally
determined relations between stress-induced and constitutive
emissions to quantify the impact of spruce aphids in the
field (Bergström et al., 2014). A general model that relates
induced emissions to stress severity and intensity is thus still
missing. We therefore suggest a globally applicable approach
that describes induced emission strength directly in dependence
on environment and can be parameterized for different species.
We hypothesize that all compounds synthesized by a specific
pathway have the same dynamics (delay time between stress and
emission and duration of emission after a single stress event)
and only stress sensitivity depends on species. This enables to
pool normalized data from various compounds and species for
parametrization. We thus use experimental data obtained from
a meta-analysis investigating ozone as well as herbivore-induced
BVOC emission pattern. The new algorithm is then applied on
three independent data sets that either use ozone or herbivores
as stressors over a defined time period so that simulated and
measured emissions could be compared for different compound
emissions over the course of several days.

MODEL DEVELOPMENT

AND PARAMETERIZATION

Due to a lack of clear indication of storage-related induced
emissions and in order to keep the approach simple, we
only consider compound releases that originate from de-novo
synthesis. De-novo synthesis in response to wounding generally
occurs within very short time periods after the induction event
independent of the kind of induction. For example, maximum
emission rates of acetaldehyde were reached within minutes after
the start of the treatment (Portillo-Estrada et al., 2015). This type
of behavior is well-represented with the so-called Fraser-Suzuki
function (Equation 1) which has first been used to describe band
shapes (Fraser and Suzuki, 1969) and is still popular for the
representation of chemical responses (Stankovic et al., 2018).

Ei = e

[

−
ln(2)

Fdeli
2

(

ln
(

Fdeli(t−t0)
Fbri

))2
]

(1a)

Ei
′
= Ei Fsc NSE (1b)

Ei being the emission rate for the compound “I”, Fdel and Fbr
are parameters that define the delay of the exponential increase
with time and the broadness of the function, respectively. Fsc
is a species- and compound-specific scaling parameter that
describes the maximum response per unit stress, and NSE
is the number of stress events during a time interval (t-t0).
This implies that the emission response scales linearly with the
experienced stress severity, which is an assumption that holds
some pitfalls. Regarding ozone, Carriero et al. (2016) indeed
describe a weak linear response of induced emissions. However,
the response should be related to ozone uptake (Li et al., 2017)
while there is not always a linear relation between uptake and
ozone exposure. Thus, responses to exposure might change
for example with stomatal acclimation or damage. Emission in
response to herbivore damage is linearly related to damaged
tissue (e.g., Niinemets et al., 2013) and an increasing number
of individuals should be related to NSE, while differences in
stress intensity—that might be related to the different kind of
damages (such as sucking and biting)—are difficult to determine
yet. The responsiveness of the function to changes of parameters
is demonstrated in Figure 1 (with Fsc set to 1 in all simulations).
It demonstrates that small Fbr values result in left-skewed
distributions that develop to into Gaussian distributions and
increase their width when increasing. Fdel shifts the whole
distribution to the right, accounting for response delays that
occur in particular when emitted compounds need to be de-
novo synthesized.

We assume that specific compounds are always produced in a
similar way, respectively by a specific synthesis pathway, which
enables representing the dynamics of this pathway generaly
and refrain from species-specific parameterization. Thereby
we differentiate between 12 compounds that are produced
from 7 pathways (Figure 2). The indications of pathways are
based on previous publications (Pare and Tumlinson, 1997;
Kesselmeier and Staudt, 1999; Laothawornkitkul et al., 2009;
Loreto and Schnitzler, 2010; Schnitzler et al., 2010; Tholl et al.,
2011; Dudareva et al., 2013; McCormick et al., 2014b). If this
assumption holds, the production of sBVOC emissions can be
described with compound-specific emission parameters and the

FIGURE 1 | Sensitivity of the Fraser-Suzuki function to changes in the

parameters. The unit of time is not specific but a reasonable order of

magnitude would be hours for the distributions shown.
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FIGURE 2 | Biosynthetic pathways of the major compounds that are emitted from induction (numbered 1–7). The potentially emitted compounds are indicated in bold

letters from which those that are investigated here are underlined. Pathways that comprise several intermediate products are shown in red. (abbreviations: PEP,

phenolenolpyruvate; GAP, glyceraldehyde 3-phosphate; MeSA, methyl salicylate; IPP, isopentenyl diphosphate; G(G)PP, geranylgeranyl pyrophosphate; DMAPP,

dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; DMNT, (E)-4,8-dimethyl-1,3,7-nonatriene; GLVs, green leaf volatiles; MeJA, methyl jasmonate). Despite

their common components, the methylerythritol phosphate (MEP) and the mevalonate pathway (MVP) are distinguished because they are occurring in the plastids and

in the cytosol, respectively.

intensity of the response is simply scaled with the parameter Fsc,
including the option to be set to 0 in case a specific compound
emission is below the detection threshold.

In order to parameterize the emission pattern of the different
compounds we have collected data from 11 studies that are
providing response patterns for 9 of the 12 compounds (MeSA,
monoterpenes, DMNT, sesquiterpenes, GLVs, acetaldehyde,
acetone, and methanol) from all of the seven pathways.
From these studies, five use ozone as the inducing abiotic
stress (Beauchamp et al., 2005; Behnke et al., 2009; Pazouki
et al., 2016; Li et al., 2017; Acton et al., 2018), six others
apply biotic stressors and one both (Kanagendran et al.,
2018b). From the abiotic stress experiments, two have exposed
experimental plants to real insects (Mengistu et al., 2014; Yli-
Pirilä et al., 2016), while four studies use mechanical wounding
(Brilli et al., 2011; Erb et al., 2015; Portillo-Estrada et al.,
2015; Kanagendran et al., 2018b) and two studies applied
methyl-jasmonate (Faiola et al., 2015; Jiang et al., 2017) to
mimic herbivory. Data are extracted from the literature either
directly using the Engauge digitizer 10.11 software or from
presented graphs by determining the turning points of emission
developments. These data have been normalized for stress
intensity (setting the largest obtained emission rate as 1)

and parameters of Equation 1 are defined for each of the
investigated 9 compounds (using the solver tool in Excel,
Microsoft Cooperation).

During the exploration of the data, we noticed that several
compounds typically exhibit a bimodal emission pattern to one
single stress event, i.e., monoterpenes, sesquiterpenes, GLVs, and
methanol. The pattern is characterized by a fast response that
peaks within the first 30min after stress induction and is quickly
fading thereafter. In parallel and without any further stress event,
a slower response builds up within 5–15 h which needs ∼1–2
days to fade out. However, the pattern has not been observed in
all investigations which might partly be related to methods that
are too coarse to detect such fast responses (Behnke et al., 2009;
Pazouki et al., 2016; Acton et al., 2018; Kanagendran et al., 2018a).
In these cases, normally only the second peak is described in the
publication. We considered the bimodal pattern by introducing a
second emission term into Equation 1b:

Ej
′
=

(

Efast_j Fscfast_j

+ Eslow_j Fscslow_jEAj
′
)

NSE (2a)

EAj
′
= EA + α − µEA (2b)
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Efast and Eslow are calculated according to equation 1a with
separately derived parameters for delay and broadness (Fdel, Fbr)
(see Table 1). The indicator “j” represents the six compounds for
which this differentiation is used (monoterpenes, sesquiterpenes,
GLVs, MeSA, methanol, and DMNT). It should be noted,
however, that only for monoterpenes, GLVs, and methanol
(only in ozone-induced emissions) this pattern has actually
observed simultaneously in one or more of the datasets. For
sesquiterpenes, fast and slow responses originate from different
datasets: for MeSA and DMNT only the slow response is
backed by experimental data, and regarding DMNT the data
are from one experimental source only (Behnke et al., 2009).
While no short-term response has been recorded, the similarity
of the response to that of methanol let us assume that a fast
response might have occurred but gone unnoticed since the first
measurements have been carried out after 3 h. Similarly, the
currently used data sets for MeSA emissions seem to indicate
that a fast induction response is minor or non-existent but other
studies report strongly increased emissions only 1 h after stress
exposure (Filella et al., 2006). Therefore, we decided to assume
a short term response for both of these compounds too. The
remaining three compounds show only fast responses derived
from one single observation each, although a slow response
cannot be excluded since the measurement might not have
been long enough. Simulated mono- and bimodal responses for
all investigated compound groups are presented in Figure 3,
distinguished into data from herbivory and ozone stressed plants.

While the fast emission term is assumed to rely on available
precursors, the slow emission term represents the intermediates
supply from biosynthesis pathways that requires enzymatic
reactions. Enzyme activity (EA) is regulated on biochemical level
by fast activation/deactivation and on a protein level requiring a
gene expression and respective protein biosynthesis. To represent
the development of EA we assume a protein synthesis rate (α)
that linearly increases enzyme activity during the period where
stress events occur and a constant protein decomposition rate
(µ). Both parameters are given per unit of time (e.g., 1 h). This
approach is similar to the one developed for the build-up of

TABLE 1 | Parameter values for Equations (1) and (2) as estimated for different

inducible compounds from published studies.

Fast

Fdel

Fbr Slow

Fdel

Fbr Td (h) α

(h−1)

µ

(h−1)

Acetaldehyde 0.7 0.02 – – – – –

Acetone 0.7 0.28 – – – – –

DMNT 1.0 0.7 0.4 4.0 6.0 0.3 0.3

GLVs 0.3 0.7 0.5 3.0 2.0 0.2 0.2

Isoprene 0.7 0.025 – – – – –

Methanol 0.7 0.8 0.55 5.0 nv nv nv

MeSA 0.8 0.8 0.5 3.0 7.0 0.2 0.4

Monoterpenes 1.4 1.0 0.7 3.0 6.0 0.5 0.25

Sesquiterpenes 1.0 0.7 0.45 3.5 8.0 0.2 0.2

nv, not validated and indicates that no data were available to define the dynamic properties

of the slow response of induced emissions.

isoprene synthase activity (Lehning et al., 2001) although widely
simplified since no temperature dependency is implemented so
far. Two further restrictions to the enzyme production term are
applied: First, enzyme formation only starts after a threshold time
period (Td) that accounts for a delay between stress application
and signal recognition and processing. Again, we assume that
this threshold period is compound specific and does not change
with species or stress type. Second, while protein degradation is
independent of the diurnal cycle, biosynthesis of the compounds
only occurs in themodel during the light phase, assuming that the
biochemical precursors need to be supplied from photosynthetic
intermediates and not from storages. The parameters Td, α, µ

for all compounds as derived from experiments where stress was
applied over a certain period of time (not as pulse) and which
prolonged over several days (see below), are given in Table 1.

EVALUATION RESULTS

In order to evaluate the derived and parameterized function,
we used three literature sources that provide emission responses
to 5 h of ozone fumigation (Heiden et al., 1999) or 1.5–2
days of herbivore exposure (Ghirardo et al., 2012; McCormick
et al., 2014a). Emissions of selective GLVs, monoterpenes, and
sesquiterpenes were calculated before, during and after the
respective induction signal that prolonged during a certain
period (from the green to the red arrows in Figures 4–6). Since
emissions from one signal are not faded out before the next signal
occurs, emissions at a particular point in timemay originate from
several induction events if these events occur in shorter time
intervals than complete fading is achieved. The overall emission
strength is scaled with the Fsc parameter that is linearly related
to a specific induction interval. The examples presented are
simulated for a time interval of 1 h, a time resolution frequently
used by mechanistic models. Since GLVs and monoterpene
emissions were also observed before stress induction, these
compounds are assumed to be emitted also constitutively. This
fraction has therefore been separately calculated using Equation
1 and has been added into the sum of total emission displayed
in Figures 4, 5. Parameters for control emissions are adjusted
to measurements and are: Fdel 1.5, Fbr 20, Fsc for GLV: 50, Fsc
for MONO: 30 (Figure 4), 2 (Figure 5). Note that the broadness
parameter is relatively large, leading to a function maximum
toward the end of the day. The driver (t-t0) is the daytime
since sunrise and the emission is set to 0 during dark hours,
reflecting the assumption that control emissions are directly
related to photosynthesis. It should also be noted that parameters
for enzyme kinetics (Td, α, µ) are not parameterized separately
for each evaluation data set but are set independent from the
plant species or the kind of stress.

DISCUSSION AND CONCLUSION

Despite a rather huge number of investigations regarding
induced BVOCs, still only few data are available providing
high resolution continuous measurements for the main emission
types and compounds. Thus, our meta-analysis sometimes only
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FIGURE 3 | Normalized temporal development of emissions in response to induced ozone (blue dots) and herbivory (green dots) stress as derived from 13

publications (5 for ozone, 7 for herbivory, and one for both). Lines are representing simulated transients of emissions. In case of bi-model developments, the single

representations for slow and fast responses are separately normalized as indicated with broken lines. Compounds are sorted according to response time. It should be

noted that the last row is given in a different temporal scale than the rows above. See text for literature sources.

yielded one or few datasets per compound group that not
always covered a period necessary to determine short- as
well as long-term responses. Nevertheless, it is interesting to
note that the general pattern of immediate responses that are
fueled by existing biochemical precursors in combination with
responses that develop and decompose on an hourly time scale
as proposed by Jiang et al. (2017) is persistent throughout the
investigated plant species. It also seems to apply for ozone as
well as herbivory-induced stress which supports the view that
plant stress which reduces primary production simultaneously
enhances secondary metabolic pathways (Iriti and Faoro, 2009)
and that responses may have developed due to adaptive co-
evolution (Vuorinen et al., 2004a). However, plant species might
still only display either immediate or slow responses and specific

volatile compounds within one compound group seem to show a
rather large variability regarding reaction speed and decay of the
emission rates. Accordingly, the data base for parameterization
and possible further differentiation of compound groups should
be elaborated when new data will become available. The precision
of modeling might also be increased if the intensity of the stress
events could be normalized, which particularly relates to methyl-
jasmonate treatments where the induction is supposed to start
at the time of spraying while the arrival time at sensitive sites
in the leaves and the actually effective dose is not defined (Jiang
et al., 2017). Similar, ozone treatments might differ in their
effectiveness depending whether the ozone dose induces an acute
or chronic response and on the physiological state of the plant, in
particular regarding uptake resistance of stomata and mesophyll.
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FIGURE 4 | Simulated and measured emissions of (from the top to the bottom) α-pinene, β-caryophyllene, DMNT, and the GLV hexenyl acetate which are typical

representatives for the indicated emission types. Data are taken from McCormick et al. (2014a) measured at young poplar trees (Populus nigra) exposed to gypsy

moth larvae (Lymantria dispar). Shaded areas denote dark periods without de-novo biosynthesis; green arrows show the start of the exposure to larvae and red

arrows the end of larvae feeding. Indicated scaling parameters are given for 1-h induction cycles; for other parameters see text and Table 1.
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FIGURE 5 | Simulated and measured emissions of (from the top to the bottom) pooled monoterpenes and sesquiterpenes, as well as of MeSA and DMNT for plants

that are susceptible (gray lines and open symbols) and tolerant (black lines and closed symbols) to caterpillar feeding. Data are taken from Ghirardo et al. (2012)

measured on young oak seedlings (Quercus robur) exposed to larvae of Tortrix viridana. Shaded areas denote dark periods without de-novo biosynthesis; green

arrows show the start of the larvae exposure and red arrows the end of larvae feeding. Indicated scaling parameters are given for 1-h induction cycles; for other

parameters see Table 1.
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FIGURE 6 | Simulated and measured emissions of the sesquiterpene valencene (top) and MeSA (bottom) for susceptible (gray lines and open symbols) and stress

tolerant variants (black lines and closed symbols). Data are taken from Heiden et al. (1999) measured at tobacco plants (Nicotiana tabacum) exposed to ozone.

Shaded areas denote dark periods without de-novo biosynthesis; green arrows show the start and red arrows the end of the fumigation. Indicated scaling parameters

are given for 1-h induction cycles; for other parameters see Table 1.

The latter point indicates a general link to ecosystem models
since uptake resistance certainly depends on drought stress—an
issue that often coincides with high ozone episodes as well as
herbivore abundance.

Simple assumptions about the kinetics of enzyme formation
and degradation with time only differentiating between night-
and day-time dynamics enabled scaling of emission responses
over several days. Simulations using the same parameters per
emission type were in good accordance with measurements,
independent from the kind of stress (caterpillar feeding or
ozone fumigation). Remaining differences indicate that enzyme
biosynthesis and hence the increase in biosynthetic capacity also
occurs during nighttime explaining the start of slow-response
emissions even before the light is switched on again (Heiden
et al., 1999; Ghirardo et al., 2012). Also, the applied 1-h time step
showed to lead to small oscillations of emissions originating from
fast responses, indicating that a higher temporal resolution would
be preferable. Nevertheless, the presented scaling procedure
provides a mechanistic basis for further emission estimations
at the stand- or ecosystem scale, considering total foliage area

and stress abundance. In case of herbivore damage, the situation
is more complicated since the leaf area is dynamically reduced
during feeding, an effect that has to be considered during
extended disturbance events. Also, the number of herbivores are
difficult to estimate and develop dynamically, requiring a separate
model approach (Pitt et al., 2007; Trnka et al., 2007; Pinkard et al.,
2010; Battaglia et al., 2011).

It should be noted that the assumption of a constant
effectiveness of induced emissions so that emission responses
scale with stress severity might not always hold. This is
because a continuous stress can trigger an adjustment of the
plant so that the sensitivity to the stress decreases with time
(Achotegui-Castells et al., 2015). The adjustment might include
increased uptake resistances for air pollution or the production of
compounds that are difficult to digest by herbivores. In addition,
also BVOCs, i.e., mono- and sesquiterpenes can reduce the
effectiveness of induced stressors as they can detoxify ozone
already within the leaf (Vickers et al., 2009) and might directly
repel herbivores or indirectly reduce their impact by attracting
predators (Meena et al., 2017; Turlings and Erb, 2018). In
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general, very strong or prolonged induction is also likely to
pose a feedback to stress-induced emissions since it decreases
the amount of emitting tissue (i.e., by herbivore feeding) and
damages the photosynthetic process (i.e., due to ozone) thus
leading to supply limitation (Visakorpi et al., 2018). Such
limitation may also be triggered by other stressors such as
drought as has been demonstrated in a field study by Scott et al.
(2019). In this case, specific site conditions and plant behavior
would need to be considered for whole-ecosystem estimations.

We also acknowledge that an explicit dependence on
temperature could serve the general applicability of the approach.
It is obvious that the speed of biosynthesis and thus in
particular the slow-response term should depend on this impact.
However, available data and the practice to keep temperatures
constant during experiments to concentrate on the exposure
effect didn’t allow to incorporate the temperature effect yet.
The suggested model for sBVOC emissions is based on simple
assumptions regarding the emission behavior of the most
common compounds but also accounts for species-specific
differences in stress sensitivity as well as stress severity and
duration. It can be applied in addition to simulating constitutive
emission without necessary interactions. Therefore in can easily
be combined with temperature and light dependent models
(Guenther, 1999; Niinemets et al., 1999; Monson et al., 2012;
Grote et al., 2014). Consistency could be assured simply by using
leaf area or biomass for scaling in both approaches. Coupled to
ecosystemmodels, the approach could contribute to an improved
ability to estimate climate change impacts on air chemistry by
considering the secondary effects that originate from increased
insect aggregations (Seidl et al., 2017) and ozone concentrations
(Sicard et al., 2017).

The proposed model describes emission responses to
oxidative and wounding stress by compound and stress severity.
In addition, the strength of emission response seems to be
species-specific although a comparison of experimental results
is hampered due to different stress intensities applied. If it is
assumed that the parameterization is independent of further
environmental conditions and that stress intensity could be
generally defined (e.g., as feeding intensity of one insect

per time period), it should be possible to scale modeled
emissions to the ecosystem level (e.g., based on estimates
of insect number and activity). Such an endeavor, however,
demands for future experiments with relevant plant species
and insect-plant combinations as well as for large-scale field
measurements for evaluation. For evaluation purposes, further
processes such as the dynamic development of stress needs
to be considered. This might be more easy for stress related
to air pollution than to insect abundance and development,
the latter requiring dynamic gradation models (Nedorezov and
Sadykova, 2015). In addition, likely physiological adaptations
or increased resource competition of herbivores might render
the assumption of a linear stress-response relation invalid,
which demands for further model refinements. Nevertheless,
we suppose that despite these challenges the model could
eventually contribute to the determination of full BVOC
emission inventories.
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Anthropogenic volatile organic compounds (AVOCs) represent the third largest

contribution in gaseous emissions in the urban and peri-urban region of Santiago, the

capital of Chile. Some of these compounds are toxic or mutagenic, cause serious

damage to human health, and decrease plant growth and development. There is

little international information related to atmospheric AVOCs in leaf content from trees

exposed to specific sources of pollution, and to our knowledge, there is no research on

this topic in Chile. The purpose of this work was to study the leaf content of AVOCs from

the Organic Range of Gasoline (ORG: range 6–10C) emitted by local traffic during the

austral summer and spring seasons in leaves of two exotic tree species (Liriodendron

tulipifera and Platanus × acerifolia). Leaf samples collected around 2 meters height

above the ground were pulverized with a cryogenic mill and eleven chemical components

were quantified (toluene, 1,2,4-trimethylbenzene (1,2,4-TMB), styrene, ethylbenzene,

ortho, meta and para-xylenes, naphthalene, 1,3,5-trimethylbenzene (1,3,5-TMB),

isopropylbenzene, and trichloroethene) using GC-MSD MSD. Benzene was detected

but not quantified, because it was always under the quantification limit of the technique.

Differences in concentrations were found for type of site exposure, season and tree

species. The differences found in leaf content of AVOCs in P. × acerifolia exposed to

vehicle traffic suggest that the concentration of these contaminants in leaves may be

due to AVOC capturing. Considering the content of AVOCs in leaves and not in the

whole individual tree, L. tulipifera presented a higher concentration of total AVOCs than

P.× acerifolia for both seasons. The Prop-Equiv and OFP of L. tulipifera were very high in

summer, being 13.6 and 14.8 times greater, respectively, than the corresponding values

for P. × acerifolia.
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INTRODUCTION

Anthropogenic volatile organic compounds (AVOCs) constitute
the main precursors of tropospheric ozone, in conjunction with
nitrogen oxide gaseous emissions from vehicles. Urban trees and
forests provide multiple ecosystem services, including mitigation
of air pollution by removing AVOCs. Fast-growing cities in
developing countries are characterized by a disorganized spatial
distribution, sprawling urban areas and increased vehicle traffic,
which leads to poor air quality (Henríquez and Romero, 2019).
Santiago, the capital of Chile, has a population of close to seven
million inhabitants, where the large majority lives in areas with
little vegetation, and only affluent neighborhoods in the northeast
areas of the city have a close to adequate green infrastructure.
Several factors contribute to high levels of air pollution in
Santiago, including its dry and temperate region, location
surrounded by mountains, a growing economy and densification
of the city. Despite all technological improvements and policies
developed since the 90’s to tackle air pollution (MMA, 2016), the
vehicle fleet and travel distances have progressively increased. On
average, Santiago more than doubles the mean concentrations
above the annual WHO recommendations (WHO, 2016), for
both PM10 and PM2.5, especially during the autumn–winter
period. Moreover, the Chilean normative for ozone (O3) is
exceeded several days in the eastern part of the city during the
spring-summer season (Préndez et al., 2019).

Motor vehicles are important emitters of ozone precursors,
including particulate matter and both organic and inorganic
gases, such as NOx. During the last years, Santiago has suffered
a strong increase of the vehicle fleet. The period between 2014
and 2015 showed a growth rate of 2.71%, while in 2016 the
city reached 4,960,946 vehicles, increasing 4% compared to 2015
(SINCA, 2017). Most vehicles (79.1%) corresponded to gasoline
vehicles, 20.6% to diesel vehicles and only 0.3% corresponded
to gas or electric vehicles (INE, 2018). Tropospheric O3 is an
important secondary urban air pollutant formed as a result of
atmospheric reactions of volatile organic compounds (VOCs),
anthropogenic and/or biogenic and nitrogen oxides (NOx = NO
+ NO2) (Atkinson, 2000; Kansal, 2009; Préndez et al., 2013a;
Guo et al., 2016). The Metropolitan Region vehicles emit around
23,000 tons of NOx per year (INE, 2018).

In urban areas, vehicle emissions (Shao et al., 2016; Li et al.,
2017) are the main contributors to AVOCs. Fumes from liquid

fuels containing aromatic compounds are emitted to the air;

most of these aromatic compounds are added to gasoline for
antiknock purposes, such as lead replacement (Karakitsios et al.,
2007; Kountouriotis et al., 2014; Cui et al., 2018). In industrialized
areas, high concentrations of AVOCs are mainly associated with
petroleum refineries, petrochemical companies, petrol stations,
commercial and industrial use of solvents, coal burning and even
biomass burning (Karakitsios et al., 2007; Wang et al., 2015; Li
et al., 2017).

Plants also emit VOCs; these biogenic VOCs (BVOCs)
are an important source of some highly reactive pollutants
derived from their eco-physiological functions (Kansal, 2009;
Préndez et al., 2013a; Shao et al., 2016) that contribute to
ozone formation. BVOCs include alkanes, alkenes, carbonyls,

alcohols, esters, ethers, and acids (Kesselmeier and Staudt,
1999). The most important BVOCs are terpenes, the basic
molecule of which is isoprene (2-methyl-1,3-butadiene, C5H8),
and some monoterpenes.

The latest inventory of air pollutants in Santiago (Gramsch,
2014) revealed that emissions from VOCs corresponded to
97,028 t/year. Only 15% of the total VOCs correspond
to BVOCs, which are mainly isoprene, monoterpenes and
sesquiterpenes. Other gases are 2,3,2-MBO, methanol, acetone
and CO. There is no specific information about benzene,
toluene and xylenes (BTXs) or other benzene derivatives
(Gramsch, 2014). To estimate the emissions from biogenic
sources, the MEGAN2.1 program was used, including the latest
improvements implemented in 2012 by the National Center for
Atmospheric Research (Guenther et al., 2012). Préndez et al.
(2019) experimentally quantified emissions of BVOCs from
different urban tree species in Santiago, which corresponded
mainly to terpenes (isoprene and monoterpenes).

Trees are an important part of the biomass of plants in
urban settings and play an essential role in the population’s
quality of life. Several researchers in different continents, climates
and socioeconomic conditions have reported the use of urban
forests in the provision of ecosystem services. These forests
cover the basic functions of the ecosystem, such as primary
productivity (Costanza et al., 2007) and services, including the
improvement of air quality (Escobedo et al., 2011), specially
the removal of particulate matter (Dzierzanowski et al., 2011;
Manes et al., 2016; Marando et al., 2016). Among these same
functions, the advantage/disadvantage of emissions of BVOCs
has been analyzed by Paoletti (2009), while Tallis et al. (2011)
have shown that tree leaves can remove gases and aerosols from
the atmosphere more efficiently than other surfaces. Therefore, a
selection of species and an adequate location of urban vegetation
can significantly improve air quality, not only by the direct
effect on gases and atmospheric particulate matter, but also by
generating local and regional ventilation (Hebbert and Webb,
2012). Therefore, the use of plants to improve air can be a
cheaper, aesthetically pleasing, environmentally friendly, and
sustainable process that can be used for a wide range of both
organic and inorganic contaminants.

Globally, there is limited research on the likelihood of
adsorption and/or absorption of atmospheric pollutants by
tree leaves exposed to sources of pollution, specifically for
AVOCs (Anyanwu and Kanu, 2006; Saphores and Li, 2012).
To our knowledge, this information is non-existent in Chile.
In the Metropolitan Region of Chile, where about one third of
the population lives (around 7.1 million, INE, 2018), AVOCs
represent the third source of gaseous emissions to the atmosphere
after CO2 and CO (Gramsch, 2014). In Santiago, green areas
tend to be concentrated in the more affluent areas of the city
(Romero, 2019).

Trees remove VOCs and AVOCs through processes defined
by the anatomical structure of their leaves and complex
physiological processes. As reported by Brilli et al. (2018), the
mechanisms of removal and retention of VOCs by leaves include
stomata absorption, where VOCs enter through the stomata and
metabolic degradation occurs, and a non-stomata adsorption,
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where adsorption of VOCs may depend on the composition of
the leaf cuticle (Wararat et al., 2014). Hydrophobic or lipophilic
substances can be absorbed directly by the cuticle or diffuse
into the leaf through the cuticle (Libbert, 1974; Niinemets
et al., 2014), while hydrophilic compounds, like gaseous and
liquid contaminants may be absorbed by the cuticle to some
extent (Agarwal et al., 2018). VOCs in the atmosphere enter
the intercellular space through the stomata, depending on
the physicochemical parameters of each VOC. Some VOCs
are metabolized (enzymatically or non-enzymatically) in the
cytoplasm of mesophyll cells, facilitating further partitioning of
VOCs into the cells, which appears as a process of “uptake” or
“absorption” of VOCs by plants. The uptake of VOCs leads to
changes in cell metabolism; for example, the accumulation of
glycosides or redox potential increase (Matsui, 2016).

In addition to the cuticle and stomata that constitute barriers
to gaseous diffusion, cell walls, membranes and mesophyll cells
cause another type of resistance to gaseous diffusion. Mesophyllic
resistance mostly depends on the solubility of gaseous pollutants,
gas-liquid diffusion, and leaf size geometry, and are influenced
by some environmental factors, such as wind speed (Khan and
Abbasi, 2000).

Both BVOCs and AVOCs are precursors of tropospheric
ozone. The theoretical contribution of ozone precursors can be
calculated based on the Ozone Formation Potential (OFP). This
OFP depends on the photochemical reactivity of the different
VOCs with atmospheric OH radicals and other reactive species.
A greater content of AVOCs in trees leaves is expected to remove
more precursors that generate ozone in the urban environments,
expressed in terms of propylene equivalents (Prop-equiv) and
OFP, thereby improving air quality.

The aim of this work was to quantify the content of AVOCs
emitted from motor vehicles in leaves from Platanus and
Liriodendrum trees and evaluate their performance in terms of
improving urban air quality, in relation to their proximity to
vehicle emissions. The studied species were selected in a field
context of the city of Santiago because they correspond to the
most common trees lining main avenues with heavy vehicle
traffic. Two locations with similar levels of vehicle emissions
were selected and the leaf content of VOCs in two common
exotic tree species was measured. In Santiago, Platanus orientalis,
P. occidentalis, and P. × acerifolia are found, and these plane
trees are common in the Vitacura commune. Liriodendrum
tulipifera is common along streets with vehicle traffic in the La
Florida commune.

MATERIALS AND METHODS

Sampling Sites
The Metropolitan Region (33.5◦S, 70.8◦W) is a closed basin
between the Andes to the east and the Coastal Range to the west,
the Chacabuco mountain range to the north, and the Cantillana
mountain range to the south. The mountains surrounding the
central valley reach altitudes between 1,000 and 6,000m asl and
the basin of the city has a gentle slope from west to east, from
∼450m asl to over 1,000m asl. During most of the year, the
climate of the region is affected by synoptic systems, where

the Southeast Pacific Subtropical Anticyclone is the dominant
one. This anticyclone generates a persistent subsidence thermal
inversion during the cold months, weak airflows, and semi-
arid climatic conditions. Hence, ventilation at the basin is poor
and mainly generated by local breeze systems. Wind intensity
and direction vary seasonally, with a southwest regime being
dominant throughout the year (Ulriksen, 1993). Four seasons are
clearly distinguished: summer (December 21–March 21), autumn
(March 21–June 21), winter (June 21–September 21), and spring
(September 21–December 21).

Three sites of sampling sites were selected: two with similar
high vehicle traffic and a third in an urban park, as explained
below and shown in Figure 1. At the first site, samples of well-
developed sunny leaves and directly exposed to high vehicle
traffic (operational speed of 26.5 km/h, UOCT, 2019) were taken
from twenty individuals of L. tulipifera (n = 20) along Vicuña
Mackenna avenue (VM Avenue) in the La Florida commune.
At the second site, and in similar conditions as the first site
(operational speed of 29.5 km/h, UOCT, 2019) samples were
taken from fourteen individuals of Platanus (n = 14) along
Vitacura avenue (V Avenue), in the Vitacura commune. At
both sites, the trees are in close proximity to a permanent
flow of vehicles and exposed to fumes at a distance of <2m.
At the third site, well-developed sunny leaves were collected
from twenty individuals of L. tulipifera (n = 20), located in an
urban park called Parque Bicentenario (B Park), without internal
motor vehicle traffic, located in the Vitacura commune. The
same individuals were sampled in two campaigns carried out in
the austral summer (February) and spring (November) of 2017.
Each sampling campaign at each site took ∼6 h. In all cases, the
selected leaves of each individual were collected in a height range
of 1.7 and 2.5 meters all along the perimeter for each individual,
until completing ∼30 g of foliar biomass, corresponding to
around 40 leaves. All leaf samples were immediately frozen in situ
in dry ice and stored at−20◦C until analysis. This range of height
corresponds to the criterion used for aerosol sampling for health
purposes by the international monitoring (USEPA, 1989). From
each sample of 30 g, a subset of 10 g leaf material was selected at
random for chemical analysis.

Chemical Analysis
Leaf samples were milled using a cryogenic mill (CryoMill
Retsch). Each sample of 2 g was placed in a 20ml glass vial
with PTFE/silicone septum. HS-SPME extraction was performed
using a GC CombiPAL 80 Agilent, containing a fiber assembly
with 65µmPolydimethylsiloxane/Divinylbenzene (PDMS/DVB)
coating (Supelco). Conditioning was performed according to the
manufacturer’s instructions, in the GC injection port at 250◦C for
30min prior to use. Extraction time of the analytes was 50min at
70◦C and temperature and desorption time was 5min at 250◦C
at the injection port. A blank fiber experiment was carried out to
ensure the absence of contaminants in the fiber.

Sample analysis was performed with an Agilent Technologies
7890A GC coupled with an Agilent technologies 5975C mass
spectrometer (MS) in the selective ion monitoring (SIM)
mode splitless injection onto a HP-5MS (30m × 0.25mm
i.d, 0.25µm film thickness); a capillary column was used
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FIGURE 1 | Sampling sites in Santiago, Chile. (A) B Park (L. tulipifera); (B) VM Avenue (L. tulipifera); and (C) V Avenue (Platanus sp). Red dots identify individuals

sampled at each site.

with a He flow 1 mL/min as carrier gas. The temperature
of the injection port was set at 250◦C and the temperature
of the column was programmed at 35◦C. The mass selective
detector (MS) was used for mass spectral identification
and quantification of the GC–HS-SPME components at
a MS ionizations voltage of 70 eV. Eleven AVOCs were
determined and quantified (styrene, 1,2,4-TMB, naphthalene,
trichloroethene, 1,3,5-TMB, isopropylbenzene, ethylbenzene,
toluene, and ortho, meta, para-xylenes) (standard provided
by Chem Service) in the organic range of gasoline (ORG). An
ααα-trifluorotoluene (standard provided by Supelco) internal
standard was used. Quantification was performed by means of
a calibration curve of nine concentration levels (in ng/g) of the
leaf matrix.

Ozone Formation Potential (OFP)
In this work, we used the propylene equivalent concentration
(Prop-Equiv) and the maximum incremental reactivity (MIR),
as reported by Cai et al. (2010), Wu et al. (2017) and Kumar
et al. (2018) to calculate OFP. The following equation was used
to calculate the equivalent propylene concentration for each
individual AVOC (Chameides et al., 1992):

Prop− Equiv(i) = conc(i)×KOH(i)/KOH(C3H6) (1)

where:
Prop-Equiv(i): Concentration of AVOC(i) on an OH-reactivity

based scale normalized to the reactivity of C3H6, expressed
in ppbC.

conc(i): Concentration of AVOC expressed in ppbC.
KOH(i): Rate constant for the reaction of compound i.∗

KOH(C3H6): Rate constant for the reaction of C3H6 (propylene)
with OH, respectively.

∗ As reported by Atkinson and Arey (2003).
The Ozone Formation Potential (OFP) for individual AVOC(i)

using the MIR method (Carter, 1994), was defined by the
following equation:

OFP(i) = conc(i)×MIRcoeff(i) (2)

where:
OFP(i): Ozone formation potential of individual AVOCi,

expressed in µg/m3.
conc(i): Concentration of AVOC expressed in ppbC.
MIRcoeff(i): Maximum incremental reactivity coefficient of

compoundi, expressed in g O3/g VOC.

Statistical Analysis
All analyses were performed using the Minitab 16 statistical
software. Variables were tested for normality and homogeneity
of variance, and transformations were made as necessary to meet
the underlying statistical assumptions of the models used. A two-
way analysis of variance (ANOVA) was used to test the main and
interactive effects of species and seasons on AVOC emissions.
The assertion of statistically significant differences between two
groups of data (same species exposed to different sources of
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FIGURE 2 | Total concentrations of AVOCs leaf content in L. tulipifera and

Platanus x acerifolia at the sampling sites VM Avenue, B Park, and V Avenue,

both in summer and in spring. Concentrations are expressed as ng of C. In the

boxes: X = arithmetic mean; horizontal line = median.

contamination and different species exposed to the same source)
was supported by Fisher tests and p-value.

RESULTS

Variability of Total Concentration of AVOCs

Leaf Content Due to the Pollution Source
The following AVOCs were quantified: toluene, 1,2,4-
trimethylbenzene (1,2,4-TMB), styrene, ethylbenzene, ortho,
meta, and para-xylenes, naphthalene, 1,3,5-trimethylbenzene
(1,3,5-TMB), isopropylbenzene, and trichloroethene. Benzene
was detected but not quantified, because it was always under
the quantification limit of the technique. There were statistically
significant differences between the total concentrations of
AVOCs leaf content in leaves from L. tulipifera individuals
exposed to high (VM Avenue) and low (B Park) emissions
of vehicles. The mean values of total concentrations of
AVOCs in summer were 267.9 ± 92.4 ng of C (153.6 ±

50.7 ng/g) and 184.7 ± 58.8 ng of C (102.5 ± 32.2 ng/g),
respectively (Fobs = 10.74; p-value = 0.002). In spring,
concentrations were 255.0 ± 127.9 ng of C (144.7 ± 70.1 ng/g)
and 172.4 ± 52.6 ng of C (99.3 ± 28.7 ng/g), respectively
(Fobs = 7.17; p-value = 0.011). Total concentrations of
AVOCs content in leaves of Platanus individuals (V Avenue)
exposed to high emissions of vehicles presented mean
concentrations of 103.0 ± 24.1 ng of C (56.6 ± 13.1 ng/g)
in summer and 186.7 ± 91.8 ng of C (103.0 ± 50.5 ng/g) in
spring (Figure 2).

Figure 3 shows the leaf content of chemical compounds
in individuals of L. tulipifera located along the high traffic
VM Avenue and the low exposure B Park. The highest
concentration was found for toluene in both seasons (summer
and spring). Trichloroethene and isopropylbenzene were below
detection limits at both sites and during both seasons, while
1,2,4-TMB levels were below detection limits in summer
at the B Park. In most cases, a greater concentration of

chemical species was observed in leaves sampled at the
VM Avenue than at the B Park. There were statistically
significant differences in toluene levels between VM avenue
and B Park in summer, but not in spring. 1,2,4-TMB, styrene,
xylenes and naphthalene show statistically significant differences
between VM Avenue and B Park in both seasons (Fobs
> Fcri, p < 0.05). 1,3,5-TMB shows statistically significant
differences between VM Avenue and B Park in spring, but not
in summer.

Seasonal Variability of Concentrations of

AVOCs
Table 1 shows the statistical results of AVOCs in foliar material
at the three sampling sites (VM Avenue, V Avenue and B
Park) during the two seasons. Ethylbenzene (VM Avenue and B
Park), toluene (VMAvenue), and trichloroethene (V Avenue) did
not show statistically significant differences in samples for both
seasons (Fobs < Fcri and p-value > 0.05).

Figure 2 shows no variation in terms of total concentrations of
AVOCs (ΣAVOCs), in each season for L. tulipifera from B Park
(Fobs = 2.80; Fcri = 4.10; p-value = 0.103). A different behavior
was observed for L. tulipifera from VM Avenue (Fobs = 12.53;
p-value = 0.001) and for Platanus sp from V Avenue samples
(Fobs = 11.08; p-value = 0.003), with greater total concentration
of AVOCs in spring than in summer, mainly due to the low
amount of ethylbenzene, toluene and xylene leaf content in
summer (Figure 2).

Figure 4 shows the relative concentrations, in percentages of
leaf content, of different AVOCs by leaves, when comparing
the profiles of L. tulipifera at both sites in spring and summer.
In summer, the main leaf content of chemical compounds
along VM Avenue were toluene, styrene and 1,2,4-TMB,
while at B park only toluene and styrene leaf content was
quantified; 1,2,4-TMB and naphthalene were not detected in
the foliar material.

There was a large heterogeneity of AVOCs in leaf content
among Platanus sp samples collected in spring (see Figure 4C),
which was not explained by the location of each individual
along V Avenue. In order to determine if all Platanus trees
sampled corresponded to the same species, a genetic analysis
was performed. Therefore, the species or presence of Platanus
hybrids was determined by analyzing the internal transcribed
spacer (ITS) subregion of the nuclear rDNA cistron.

DNA extraction yields ranged between 90 and 220 ng/L
and an amplicon of ∼650 bp was obtained for all samples.
A single nucleotide polymorphism at the relative position 120
allowed discriminating between P. orientalis and the hybrid P.
× acerifolia. This position is always “G” for P. orientalis, while a
double signal of T or G is present in the hybrid P. × acerifolia.
Analysis of 13 of the Platanus samples presented the “T” variant,
defining their assignment to P. × acerifolia. Sample V7 did not
amplify. Sample V14 presented five additional polymorphisms;
however, the overall genetic profile was compatible with
both P. orientalis and P. × acerifolia, and not indicative of
P. occidentalis (Figure 5).
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FIGURE 3 | Concentrations of individual AVOCs leaf content by the leaves of L. tulipifera and Platanus x acerifolia at the sampling sites VM Avenue, B Park, and V

Avenue in both summer and spring. Concentrations are expressed as ng of C. In the boxes: X = arithmetic mean; horizontal line = median.

Ozone Formation Potential (OFP)
Table 2 shows the concentration of Prop-Equiv and the OFP
calculated for AVOCs content in leaves from the studied sites
in summer and spring. L. tulipifera individuals located at VM
Avenue presented higher total and individual values, compared
to L. tulipifera individuals located at B Park and the individuals
of P. × acerifolia located at V Avenue (except for ethylbenzene
and styrene). Additionally, the concentrations of Prop-Equiv
and OFP for individuals sampled were higher in summer than
in spring.

DISCUSSION

Many VOCs, including benzene, toluene and xylene are emitted
by anthropogenic and biogenic sources. Annual global emissions
of biogenic VOCs reported by Wiedinmyer et al. (2004) are
mainly isoprene (250–750 TgC yr−1), followed by methanol,
various terpenes and very low concentrations of toluene (0.4–2
TgC yr−1), in contrast to high toluene concentrations indicative
of anthropogenic VOCs. Misztal et al. (2015) have reported
that benzenoids from plants contribute in a similar proportion
than AVOCs emitted by fossil fuels to atmospheric emissions in
native forests located at the north and northeast regions of the

United States. The proportion of BVOCs and AVOCs depends
on climate conditions, urban development, plant cover andmany
other factors. Measurements of trace gas emissions of the small
Mediterranean shrub Halimium halimifolium have revealed a
broad range of BVOCs under controlled laboratory conditions,
emitting terpenes, trimethylbenzene, ethylphenol, and toluene,
indicating de novo BVOC biosynthesis of these compounds
(Fasbender et al., 2018). Under field conditions, either in natural
or urban settings, benzenoid emissions may vary significantly.
In Santiago, Chile, a large city set in a temperate Mediterranean
climate, AVOCs correspond to 85% of all VOCs emitted and
only 15% are BVOCs (Gramsch, 2014). BVOCs are secondary
metabolites that play an important role in the defense response to
heat and drought, and complement other defense mechanisms,
such as antioxidant enzymes (Tattini et al., 2015). Platanus ×
acerifolia, a high isoprene-emitting species, is frequently used as
an ornamental plant in urban areas of the Mediterranean basin
(Tattini et al., 2015) and other temperate regions exposed to the
combined effect of high light, high temperature, and drought.
Liriodendrum tulipifera is native to the United States and has
been introduced in Chile because of its ornamental value and fast
growth. The absorption mechanism and further degradation and
metabolism of either AVOCs or BVOCs has not been studied in
these two exotic arboreal species under the climate and pollution
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TABLE 1 | Seasonal variability of selected AVOCs at the three sampling sites (VM Avenue, V Avenue, and B Park).

Liriodendron tulipifera Platanus × acerifolia

VM Avenue B Park V Avenue

Summer

(mean ± SD

in ng of C)

(n = 20)

Spring

(mean ± SD

in ng of C)

(n = 20)

S/Sp ratio Summer

(mean ± SD

in ng of C)

(n = 20)

Spring

(mean ± SD

in ng of C)

(n = 20)

S/Sp ratio Summer

(mean ± SD

in ng of C)

(n = 14)

Spring

(mean ± SD

in ng of C)

(n = 14)

S/Sp ratio

Ethylbenzene 3.3 ± 0.3 2.9 ± 0.8 1.1 2.5 ± 1.1 2.8 ± 0.6 0.9 12.4 ± 3.3 35.2 ± 15.7 0.4

Styrene 35.5 ± 6.5 23.5 ± 7.6 1.5 23.7 ± 2.5 13.5 ± 3.1 1.8 75.7 ± 20.8 22.8 ± 7.3 3.3

Toluene 161.1 ± 82 212.6 ± 123 0.8 156.4 ± 60 152.0 ± 40 1.0 6.9 ± 4.0 102.3 ± 59 0.1

1,3,5-TMB 1.5 ± 0.3 0.7 ± 0.3 2.1 1.3 ± 0.2 0.4 ± 0.1 3.7 0.9 ± 0.3 0.7 ± 0.4 1.4

1,2,4-TMB 68.7 ± 49 19.5 ± 14 3.5 <QL 10.7 ± 4.9 0.01 1.9 ± 0.3 0.5 ± 0.1 4.1

Xylenes 7.0 ± 4.2 4.1 ± 3.0 1.7 2.9 ± 1.8 1.8 ± 0.7 1.6 3.5 ± 1.5 23.5 ± 14.6 0.1

Naphthalene 2.6 ± 1.5 0.5 ± 0.4 5.3 0.5 ± 0.4 <QL 5.5 0.9 ± 0.2 <QL 9.5

Trichloroethene <QL <QL 1.0 <QL <QL 1.0 0.3 ± 0.1 0.3 ± 0.1 1.0

Isopropylbenzene <QL <QL 1.0 <QL <QL 1.0 1.4 ± 0.1 1.6 ± 0.1 0.9

Concentrations are expressed as ng of C.

n, number of samples; QL, quantification limit (0.10 ng of C).

conditions prevalent in Santiago, and was beyond the scope of
this analysis.

Platanus sp
The Platanus individuals located on V Avenue presented
greater content of ethylbenzene, toluene and xylenes in spring
than in summer (S/Sp <1). The heterogeneity observed in
concentrations of AVOC leaf content by the individual Platanus
specimens was unexpected.

In Santiago, plane trees P. orientalis, P. occidentalis, and
the hybrid P. × acerifolia are found. Due to the distinctly
variable AVOC concentrations in samples from trees 1, 2, and 3
compared to samples from specimens 4 to 14, we hypothesized
that the different trees might correspond to phenotypically
similar, but genetically distinct Platanus accessions. Therefore,
a genetic test that amplifies the nuclear ribosomal internal
transcribed spacer (ITS) region allowed discriminating between
the different Platanus species and the P.× acerifolia hybrid. This
region of high copy number sequences is frequently utilized for
phylogenetic analyses at the genus and species levels (Coleman,
2003), is inherited biparentally and useful to determine hybrid
speciation (Álvarez and Wendel, 2003), and therefore, valuable
in this study. The results of this analysis indicated that all
sampled trees correspond to the P. × acerifolia hybrid and
thus, the observed differences are not due to a differential
genetic background. More details in Supplementary Material.
At present, we lack an explanation for the observed differences
in AVOC leaf content, except that individuals 1, 2, and 3
corresponded to older and larger trees. It is known that the
emitted BVOCs vary according to development, as reported
for other arboreal species (Préndez et al., 2013b); however,
we did not expect to detect differences in AVOC leaf content
depending on the age of individual trees. In hindsight, it is not
unreasonable to speculate that age-related metabolic changes
do not only modulate emissions, but may also affect AVOC

content. Therefore, we cannot exclude active metabolic processes
involving AVOC capturing.

The most common Platanus trees in Santiago are P. ×

acerifolia, and the samples analyzed correspond to this widely
planted hybrid tree. Therefore, data obtained in this work is
probably representative of AVOC leaf content by the bulk of
Platanus trees in Santiago. Plane trees are one of the most
common exotic trees, with a relative abundance of 2.3% at the
city level (Hernández and Villaseñor, 2018), although all plane
trees are planted along main avenues and hence, are one of the
main urban species exposed to vehicle emissions.

Liriodendron tulipifera
We have not found reports on benzenoid emissions from or
captured by Liriodendron in the literature. Our data indicate
three concentration ranges in the leaf content of AVOCs of L.
tulipifera (Figure 3): (1) toluene, 1,2,4 TMB and styrene (10–
100 of ng of C); (2) ethylbenzene, xylenes, naphthalene and 1,3,5
trimethylbenzene (in the order of ng of C); (3) trichloroethane
and isopropylbenzene were not quantified because they were
below the detection limit of the technique used. All chemical
compounds reported are present in emissions from vehicle traffic;
however, vehicles are not the only source of these pollutants. For
example, naphthalene is present in the combustion of tobacco
and wood, manufacture of paints, varnishes and agents for
leather tanning. Styrene is present in cigarette smoke, released
by the use of photocopiers and the manufacturing industry at
concentrations of 0.06–4.6 ppb in air. Xylenes are used in paints,
varnishes, products that prevent corrosion, cleaning products
and as solvents; xylene concentrations of 1–30 ppb are reported
in air. Toluene is widely used in paint thinners, adhesives, paint
varnishes and gasoline, at concentrations of 1–35 ppbv in air
(ATSDR, 2019). For these reasons, the sampling was performed
with leaves directly exposed to vehicle traffic at the V. Mackenna
(VM Avenue) site.
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FIGURE 4 | Concentration profiles of AVOCs, in relative percentages, for each sampling site in summer and spring: (A) VM Avenue (L. tulipifera), (B) B Park (L.

tulipifera), and (C) V Avenue (Platanus sp).

The total concentration of AVOCs leaf content (Figure 2)
by L. tulipifera on VM Avenue was statistically higher in
summer and in spring than the corresponding concentrations
found in the Bicentennial Park (B Park, low exposure to
vehicle traffic), except that at B Park ethylbenzene and

1,2,4-TMB presented greater AVOC leaf content in spring
than in summer. Toluene remained unchanged. AVOCs leaf
content of L. tulipifera in B Park evidences a background
level of pollution characteristic of urban activities, according
to Kumar et al. (2018).
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FIGURE 5 | Comparison of the ITS nuclear rDNA region from the Platanus samples and published P. × acerifolia, P. orientalis, and P. occidentalis consensus

sequences. A red arrow at the relative position 120 shows the discriminating polymorphism. Small black arrows indicate other polymorphisms.

The standard deviations detected in spring were higher than
in summer. According to Brilli et al. (2018), who studied the use
of plants for improvement of indoor air quality, this could be due
to the leaf content of VOCs through two mechanisms: stomatal
absorption and cuticular adsorption, dependent on the process of
greater vegetative growth that occurs in spring.

Toluene, 1,2,4-TMB and styrene presented the highest
values for PFO and Prop-equiv (Table 2), which measure
the contribution of different precursors to the atmosphere.
The difference in benzenoid concentrations between
the VM Avenue and B Park sites is related to different
concentrations of ozone precursors present in leaves from
each site, and therefore could indicate an eventual decrease of
tropospheric ozone.

Interspecies Variability
A comparison of leaf content of the individual concentrations
of AVOCs in both tree species near the source of pollution
(Figure 3) showed a greater concentrations of ethylbenzene
and xylenes (spring), styrene (summer), trichloroethene and
isopropylbenzene (summer and spring) by P. × acerifolia, while
L. tulipifera presented higher concentrations of toluene (spring),
xylenes, naphthalene, 1,2,4-TMB, and 1,3,5-TMB (summer). No
statistically significant differences were observed for styrene and
1,3,5-TMB by leaves in spring by both species.

Clear differences were observed in the AVOC leaf content
profiles presented in Figures 4A,C: leaves collected in summer
yielded mainly toluene, 1,2,4-TMB and styrene by L. tulipifera,
and styrene and ethylbenzene by P. × acerifolia. In spring
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TABLE 2 | Prop-equiv(i) concentration (ppbC) and OFP(i) (ppbC) of AVOCs at VM Avenue, B Park and V Avenue sites, for austral summer season, and austral spring.

Prop-equiv(i), ppbC OFP(i), ppbC

L. tulipifera P. × acerifolia L. tulipifera P. × acerifolia

VM Avenue B Park V Avenue VM Avenue B Park V Avenue

AUSTRAL SUMMER SEASON

Ethylbenzene 0.9 0.7 4.1 10.6 7.8 47.0

Toluene 42.9 34.1 1.5 803.1 137.9 28.3

Xylenes 6.2 2.6 2.1 80.4 29.5 31.5

1,3,5-TMB 3.2 2.8 2.0 17.2 15.1 10.8

1,2,4-TMB 86.5 0.1 2.3 620.9 0.8 16.3

Styrene 84.1 58.8 169.9 66.1 46.2 133.5

Naphthalene 2.3 0.5 0.8 8.9 1.9 3.2

Trichloroethene 0.0 0.0 0.0 0.0 0.0 0.2

Isopropylbenzene 0.0 0.0 0.4 0.2 0.2 3.7

Total AVOCs 226.2 99.6 183.2 1607.6 739.5 274.4

AUSTRAL SPRING SEASON

Ethylbenzene 0.8 0.8 9.5 9.0 9.0 108.6

Toluene 46.4 34.8 22.3 867.1 650.5 416.8

Xylenes 3.2 1.7 16.6 43.2 23.6 207.1

1,3,5-TMB 1.6 0.8 1,6 8.6 4.3 8.6

1,2,4-TMB 24.7 13.4 0.7 177.2 95.9 4.9

Styrene 53.0 30.3 51.4 41.7 23.8 40.4

Naphthalene 0.5 0.1 0.1 1.9 0.3 0.3

Trichloroethene 0.0 0.0 0.4 0.0 0.0 0.2

Isopropylbenzene 0.0 0.0 0.4 0.2 0.2 3.7

Total AVOCs 130.1 81.7 102.5 1148.9 807.7 790.5

L. tulipifera leaves contained mainly toluene and styrene,
while P. × acerifolia AVOC leaf content consisted mainly of
toluene, ethylbenzene, xylenes and styrene. The differences in the
response associated with AVOCs in leaves of L. tulipifera and P.×
acerifoliamay be related to the cuticular composition of the leaves
of each species, affecting the adsorption of VOCs, as described by
Wararat et al. (2014).

In terms of total concentrations of AVOCs (Figure 2), in
summer L. tulipifera leaves contained 2.7 times more than P. ×
acerifolia leaves (Fobs = 42.1, p-value = 7.03 × 10−7) in terms
of ng of C under field conditions with similar vehicle traffic.
The same trend was observed in spring, when L. tulipifera leaves
presented 1.4 times more AVOCs than P. × acerifolia leaves
(Fobs = 7.17; p-value = 0.011), presenting statistically significant
differences in all cases. It is important to point out that these
results imply AVOC content at the level of leaf tissue, and that
these values cannot be extrapolated directly to the performance
of individual trees or species.

Prop-Equiv and OFP
We used the concentration values of Prop-Equiv and OFP to
associate that greater AVOC content by leaves means lower
generation of ozone in the urban environment.

Liriodendron tulipifera leaves presented a higher leaf content
of total AVOCs than Platanus × acerifolia leaves in summer
and spring. Even considering an eventual biogenic contribution
of benzenoids by the studied species, it is possible to introduce

the use of OFP and Prop-Equiv to estimate the decrease of
ozone formation precursors in the atmosphere. In general, L.
tulipifera showed a greater capacity to improve air quality than
P. × acerifolia, presenting higher values in terms of total Prop-
Equiv concentration (1.23 and 1.26 times for summer and spring,
respectively) and total OFP (5.9 times in summer and 1.5 times
in spring).

An important group of compounds for atmospheric chemistry
is BTXs (benzene, toluene, and xylenes). In this work,
benzene was not quantified because it was under the detection
limits of the technique. However, concentrations of the TX
compounds were high in the studied trees that were close
to the source of pollution. Of note, the Prop-Equiv and
OFP of L. tulipifera were very high in summer, being 13.6
and 14.8 times greater, respectively, than the corresponding
values for P. × acerifolia. Therefore, when measuring the
contribution of leaves, L. tulipifera contributes more to
improving air quality than P. × acerifolia, because it decreases
the amount of precursors that participate in the formation of
tropospheric ozone.

CONCLUSION

Understanding how AVOCs contribute to environmental
pollution is important in order to mitigate the effects of vehicle
traffic and create more sustainable cities for the growing urban
populations. The present study was performed under field

Frontiers in Forests and Global Change | www.frontiersin.org 10 August 2019 | Volume 2 | Article 4242

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Araya et al. Tree Leaves AVOC in Santiago

conditions in an urban setting with a Mediterranean climate.
The eastern part of Santiago showed high ozone concentrations
during the spring-summer months. As a secondary pollutant,
ozone reduction is closely linked to the decrease of its precursors:
VOCs and NOx. A natural way to reduce VOCs is to find
urban tree species that efficiently remove these precursors from
the atmosphere. To avoid the contribution of other chemical
compound sources (range of aromatic components of gasoline),
we studied the most common tree species directly exposed to
vehicle traffic.

In this case, the study considered two species that are
frequently planted along streets and avenues of the city: L.
tulipifera and P.× acerifolia. The leaf content of AVOCs in these
urban arboreal species was measured for the first time in Chile.
To our knowledge, the emission of benzenoids by L. tulipifera
has not been reported in the international literature. The large
difference found between concentrations in leaves exposed to the
high vehicle traffic of Av. Vicuña Mackenna (VM Avenue) and
the low exposure to vehicle traffic in the Bicentennial Park (B
Park), suggests that the values obtained for the B Park could
correspond either to AVOCs or to emission of these compounds
from the leaves.

The high values determined for Prop-equiv and OFP of 1,2,4
TMB, toluene, and styrene and their high content in leaves
of L. tulipifera, showed that this tree has a higher potential
than P. × acerifolia as a tool to cooperate with atmospheric
decontamination processes in urban environments, as a first
step to evaluate their decontamination potential. In order to
extend these observations to the level of individual trees, the
foliar surface of each tree has to be considered. Calculations of
the Leaf Area Index (LAI) of individual trees and urban tree
cover are in progress, in order to estimate the effective removal
of AVOCs from vehicle emissions by different tree species in
Santiago. Further steps will imply measurements of LAI in both
species in order to compare their relative efficiency in the removal
of AVOCs.

The two exotic species analyzed in this study are deciduous
trees. During the austral winter, the main pollutant in Santiago
corresponds to particulate matter, coincident with the season
when these species lack leaves and therefore, do not contribute
to the removal of this pollutant from urban air. However, during
the austral spring, ozone is the main pollutant in Santiago. Under
the studied field conditions, P. × acerifolia removes less AVOCs
than L. tulipifera, measured in terms of leaf mass. Finding the
most suitable arboreal species that are able to contribute to
the improvement of the air quality of Santiago with criteria of
sustainability will imply a long-term task.
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The correct integration of the detoxification processes in a risk assessment model

for ozone damage on plants remains challenging. In particular, the intracellular

compartmentation of antioxidant metabolites could play a role, since each compartment

presents its own sensitivity to ROS and metabolite set. For each compartment, we tried

to provide both qualitative and quantitative information on the metabolites present as well

as the putative transporters implied. When they are known, the modifications caused by

O3 or oxidative stress are presented. Clearly, under O3 exposure, integrative data which

would allow to improve predictive models for O3 risk assessment are missing.

Keywords: ozone, ROS, antioxidants, cellular compartmentation, risk assessment models

INTRODUCTION

Ozone (O3) is a phytotoxic air pollutant known to negatively impact crop and forest productivity
(Wittig et al., 2009; Jolivet et al., 2016; Li et al., 2017). In order to determine the critical
level above which O3 damage on plants occurs, the PODY (Phytotoxic Ozone Dose above a
threshold flux of Y nmol.m−2.s−1) was derived from flux-based methods to improve dose-response
relationships including the detoxifying capacity of leaf tissues (Musselman et al., 2006; Dizengremel
et al., 2009). Flux-based models use a range of cut-off thresholds (Y) indicative of varying
detoxification capacities. However, the considerable uncertainties to determine the contribution of
each metabolite to the cellular antioxidant potential make the estimation of the threshold difficult
to assess. This difficulty can be explained by the differences in concentrations and redox status
of these metabolites between compartments. Here, we resumed recent highlights on the spatial
distribution of the main defense metabolites to decipher their possible roles in response to O3 and
point out which importance the occurrence of this compartmentation might have in estimating the
detoxification threshold.

DEAL WITH A DIVERSITY OF ANTIOXIDANT METABOLITES

Different classes of molecules serve as antioxidants amongst which ascorbate (AsA), glutathione
(GSH), and phenolic compounds as flavonols are considered as the most ubiquitous according
to their presence in several cell compartments (Foyer and Noctor, 2011; Figure 1), including
vacuole and the extracellular space (Zhao and Dixon, 2009; Agati et al., 2012). Sugars such as

46
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FIGURE 1 | Compartmentation of plant oxidative system. This non-exhaustive figure summarizes current knowledge from plant subcellular localization of antioxidants

in non-stress conditions. In view of the multiplicity of all enzyme isoforms, the figure only mentions the presence of the HAF cycle in each compartment where the

dehydroascorbate reductase (DHAR) has been characterized. AsA, total ascorbate; GSH, total glutathione; GSSG, glutathione disulphide; GS-conj, glutathione

conjugates; HAF, Halliwell-Asada-Foyer; MRP, Multidrug Resistance associated Protein; CRT, Chloroquine Resistance Transporter; PHT, phosphate transporter; POX,

phenol peroxidases; ROS, reactive oxygen species. See the text for references.

sucrose, RFOs (raffinose family oligosaccharides) and fructans
are known to directly quench ROS in different organelles
and thus contribute to antioxidant defense (Keunen et al.,
2013). Another type are liphophilic antioxidants, such as
α-tocopherol or carotenoids located in organelle membranes
particularly in plastids (Das and Roychoudhury, 2014).
Subcellular compartments also possess various enzymes able
either to act as ROS scavengers or to support regeneration
of the reduced form of the antioxidants (Noctor et al., 2018).
The first group includes enzymes trapping the superoxide ion
(such as superoxide dismutase, SODs) and hydrogen peroxide
with catalases (specifically located in the peroxisome) or several
peroxidases (AsA, GSH, or thioredoxin dependent) whose cell
location has already been detailed in several reviews (Rouhier
and Jacquot, 2005; Dos Santos and Rey, 2006; Mhamdi et al.,
2010b; Rahantaniaina et al., 2013; Noctor et al., 2018). The
second group, responsible for the regeneration of antioxidants,
is ascribed to the close redox coupling of AsA and GSH pools
in vivo (HAF as Halliwell Asada Foyer cycle). The presence of
dehydroascorbate reductase (DHAR) seems to be sufficient to
consider the presence and the functioning of the HAF cycle
within a specific cell compartment (Figure 1; Rahantaniaina
et al., 2013). It is also important to consider that the HAF
cycle functioning needs to be linked with a correct enzyme
regeneration through NAD(P)H reducing power, e.g., under O3

stress (Dizengremel et al., 2008; Dghim et al., 2013), in cytosol
as well as in organelles. In fine, detoxification results from the
combined actions of all these mechanisms, which therefore
explains the difficulty to choose key parameter(s) in modeling
the detoxifying capacity of leaf tissues.

TOTAL POOL OF ANTIOXIDANTS: NOT SO
SATISFYING

One major issue when considering the total pool of antioxidants
is the difficulty to evaluate it as a whole, taking into account
the diversity of the metabolites it contains. Indeed, the methods
and kits used are disputable (Noctor et al., 2016). For example,
in order to take into account the total antioxidant capacity
in plants, some authors used the FRAP assay (ferric reducing
ability of plasma given in micromoles of Fe2+ per gram in
dry matter). However, the significance of the FRAP test is
questionable since it takes antioxidants into consideration that
do not necessarily react to the oxidative load generated by O3

(Severino et al., 2007). To solve this issue, researches focused on
specific metabolites considered as cue to explain differences in
O3 tolerance. AsA is one of the main examples of a potential
factor in O3 tolerance (Burkey et al., 2000; Conklin and Barth,
2004) at least for some species. To support this fact, studies with
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AsA deficient mutants and clones (Conklin et al., 1996, 2000;
Veljovic-Jovanovic et al., 2002) showed that low concentrations
of AsA in the plant tissue limit O3 tolerance. However, in
numerous examples and particularly in ligneous species (e.g.,
Populus genotypes or Quercus sp.), differences in AsA content
were not sufficient to explain the differences in O3 tolerance
(Dusart et al., 2019; Pellegrini et al., 2019). Other antioxidants
such as GSH and/or phenolic compounds could play a more
important role in some species or genotypes. In addition, changes
at the leaf scale could hide more subtle changes at the scale
of a cell compartment that is crucial for cell homeostasis. The
redox state of each metabolite also varies, as some compartments
differ from others with lower reduction states. Thus, the apoplast
and vacuole were endowed with a lower level of reduction for
AsA and GSH (Noctor and Foyer, 2016). In this respect, both
the antioxidant content and the ability of cell compartments to
regulate the redox levels of the molecules have to be considered.

COMPARTMENTATION OF ANTIOXIDANTS

The different cell compartments are not equal in terms of
antioxidant concentrations (Zechmann, 2017) and redox state
(Foyer and Noctor, 2016) and the main differences between
cell compartments are discussed in this section. We also
highlight some specific features related to the transport of
these metabolites through intracellular membranes, which also
contributes to the extent of antioxidant content and redox status
in each compartment.

Apoplast
The apoplast comprises the cell wall and the fluid in
the intercellular spaces as such constitutes the first barrier
encountered by O3 after entering the leaf through the stomata
(Laisk et al., 1989). AsA contained in the apoplastic fluid was
often considered as the first line of defense against O3 and,
consequently, its content may increase with the beginning of
the exposure (Riikonen et al., 2009). In this context, it has been
integrated in different models (Polle et al., 1995; Ranieri et al.,
1996; Plöchl et al., 2000; Burkey and Eason, 2002; Conklin and
Barth, 2004; Tuzet et al., 2011). In fact, in many species, the
importance of apoplastic AsA regarding O3 tolerance is still
unclear (D’Haese et al., 2005; Booker et al., 2012; Dai et al.,
2018). For example investigated poplar clones showed no relation
between apoplastic AsA content and O3 sensitivity of clones (Van
Hove et al., 2001; Di Baccio et al., 2008). Moreover, the efficiency
of apoplast detoxification by AsA depends on the export of
the oxidized form to the cytoplasm where it then has to be
regenerated (Luwe and Heber, 1995). Finally, despite an efficient
transmembrane exchange between apoplast and symplasm, the
AsA concentrations (around 0.2–1.5mM) in the apoplast are 10–
30 times lower than in the cytosol (Moldau et al., 1997; Plöchl
et al., 2000; Van Hove et al., 2001) with higher oxidation rates
(Booker et al., 2012). The transport proteins responsible for DHA
uptake and ascorbate efflux have not yet been identified, even
though the ascorbate efflux mechanism possibly occurs via an
anion channel (Smirnoff, 2018). It should also be considered that
the presence of ascorbate oxidase in the apoplast could maintain

the AsA pool in a more oxidized state than the intracellular pool
(Smirnoff, 2018).

There are furthermore other metabolites with antioxidant
activity being present in the apoplast. Considering GSH, its
content in the apoplast has been found to be very low (Zechmann,
2014), limiting its ability to scavenge ROS or contribute to ASA
regeneration. Apoplastic GSH is therefore expected to be rather
involved in signaling than in detoxification (Zechmann et al.,
2008). Phenolic compounds (Grace, 2007) may be widespread
in the apoplastic fluid of plants and in some cases were shown
to increase in response to O3 (Langebartels et al., 1991; Eckey-
Kaltenbach et al., 1993; Booker et al., 2012). However this
increase was considered to have little effectiveness in scavenging
O3 in Arabidopsis (Booker et al., 2012). Cell wall bound phenolics
may also scavenge ROS (Vreeburg and Fry, 2007) but their
contribution to O3 detoxification is yet unknown. In the cell
wall of foliar and stem cells, O3 exposure resulted in an increase
in lignin biosynthesis in a dose-dependent manner suggesting a
role in detoxification (Cabane et al., 2012). The contribution of
phenolics and more widely secondary metabolites in apoplastic
O3 detoxification has not been sufficiently studied so far and
should be further investigated especially because of their species-
specific diversity.

Cytosol
Cytosol is an important determinant in the antioxidant capacity
of the cell, acting as a hub for the production/transportation
to other cell compartments and between compartments
(Zechmann, 2017). Using labeling techniques (Zechmann, 2011),
showed that the highest concentration of AsA was found in
this compartment (Figure 1). Moreover, isoenzymes related to
HAF cycle localized in the cytosol seem to play an important
role in O3 tolerance (Yoshida et al., 2006; Di Baccio et al., 2008;
Mhamdi et al., 2010a; Rahantaniaina et al., 2017; Dusart et al.,
2019). A good example of the cytosol interface is the GSH
biosynthesis taking place both in cytosol and chloroplast (Rausch
et al., 2007). Interestingly, although chloroplasts synthesize GSH,
this metabolite is also readily taken up by intact chloroplasts
(Foyer et al., 2001). For the other compartments, unable to
carry out GSH biosynthesis, transport from cytosol must also be
efficient (Rausch et al., 2007). While these carriers are far from
being characterized, their regulation under oxidative stress is
fully unknown.

Vacuole
In vacuole, the AsA concentration is often considered not
to exceed 2mM, making it the lowest within the plant
cells (Figure 1; Zechmann, 2017). However, its level was 2-
and 4-times increased during drought and high light stress,
respectively, which represents the strongest increase among all
subcellular compartments (Rautenkranz et al., 1994; Zechmann,
2017). Changes in AsA concentration under O3 are not
known. This raises the question whether vacuolar AsA could
significantly contribute to cell defense against oxidative stress.
When facing stress conditions, a large amount of H2O2 is
transported and accumulated in the vacuole, which might
act as a sink for ROS (Michalak, 2006; Koffler et al., 2014).
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It is expected that the increase in vacuolar AsA contributes
to delocalize the detoxification of H2O2 and thus to avoid
cytosol redox imbalance. AsA seems to contribute to ROS
scavenging in the vacuole, either directly or by coupling
with phenolics and phenol oxidase. In fact, vacuoles are also
well-known to hold large amounts of polyphenols, especially
anthocyanins, flavan-3-ol monomers, proanthocyanidins, and
glycosylated flavonols. Vacuolar flavonols have been suggested
to contribute to H2O2 detoxification in this compartment, by
giving electrons to phenol peroxidases (POX) (Sakihama et al.,
2002). Furthermore, it has been shown that vacuolar AsA can
reduce phenoxy radicals produced by POX and then regenerate
phenolic compounds (Takahama and Oniki, 1997). Therefore,
an alternative AsA/phenolics/POX mechanism might efficiently
contribute to the cellular defense arsenal against ROS, jointly
to the “classic” HAF cycle. On this point, none or very little
free GSH (lower than 0.5mM) has ever been identified in
the vacuole, limiting the potential regeneration of ascorbate
by this way in this compartment (Zechmann et al., 2008;
Zechmann, 2014). In addition, DHAR was reported in the
vacuole (Zhang et al., 2015) but HAF cycle does not seem to
be functioning due to the lack of glutathione reductase isoform
in this compartment, therefore leading to glutathione disulphide
(GSSG) accumulation (Queval et al., 2011). In any case, oxidized
AsA (DHA and monodehydroascorbate) can cross the tonoplast
to be regenerated in the cytoplasm (Rautenkranz et al., 1994). In
case of oxidative stress, vacuoles also act as a sink for oxidized
GSH or GSH conjugates formed in the cytosol and transferred to
the vacuole via the action of one or more ABC transporters of the
MRP (Multidrug Resistance associated Protein) subclass (Queval
et al., 2011; Koffler et al., 2014). Despite extensive investigation of
tonoplast transporters, the role of MRPs in the transport of GSSG
to the vacuole is less clear (Bachhawat et al., 2013) as well as the
final fate of this oxidized form in the vacuole.

Chloroplast
Within the chloroplast, the electron transport chain is, in
addition to its role as major energy producer, one of the main
sites of endogenous ROS generation (Asada, 2006; Tripathy and
Oelmüller, 2012). Being triggered and increased by apoplastic
ROS, the chloroplastic ROS function as amplifiers of signals
from outer cell compartments to the nucleus where they modify
the nuclear gene expression (Shapiguzov et al., 2012; Foyer and
Noctor, 2016; Kleine and Leister, 2016). The presence of AsA
(10mM) and GSH (1mM) has been previously reported in
the chloroplast where they represent a significant part of the
cell antioxidant pool (Figure 1; Queval et al., 2011; Zechmann,
2011). Interestingly, abiotic stresses lead to a major increase
in AsA and GSH contents in the chloroplast (Heyneke et al.,
2013). Furthermore, although lacking under normal conditions,
both antioxidants also accumulated inside the thylakoid lumen
under stress, thus, demonstrating the particular dependence
of the chloroplast on these antioxidants when facing harmful
abiotic stress (Heyneke et al., 2013). Concerning AsA and GSH
transport, chloroplast and cytosol are tightly connected by the
presence of many transporters. AsA uptake by chloroplasts is
mediated by a member of a phosphate transporter family, named

PHT4;4 (Fernie and Tóth, 2015; Miyaji et al., 2015). An active
uptake of cytosolic GSH also occurred across the chloroplast
envelope (Noctor et al., 2002), even though themolecular identity
of the transporter(s) is still unknown (Bachhawat et al., 2013).
In addition, three proteins belonging to the CRT (Chloroquine
Resistance Transporter)-like transporter family were found to
be chloroplastic and responsible for glutathione efflux from the
chloroplast to the cytosol in Arabidopsis (Bachhawat et al., 2013).

At the same time, choroplasts contain large amounts of
flavonoid-like ROS defense agents, which they are able to
biosynthesize (Hernández et al., 2009; Pollastri and Tattini, 2011).
Under severe light, flavonoids complete the scavenging role
of the most abundant lipid-soluble antioxidants group(s), the
carotenoids (and tocopherols), in chloroplasts (DellaPenna and
Pogson, 2006). Due to their ability to remodel lipid membranes,
flavonoids might preserve the integrity of the chloroplast
envelope and therefore prevent oxidative stress-caused damage
(Agati et al., 2012).

Mitochondria
An endogenous production of ROS takes place in mitochondria
essentially at the level of the complexes I, II, and III of the
respiratory chain which must not be neglected even though
the contribution of this organelle to oxidative stress is rather
low (Apel and Hirt, 2004; Rhoads et al., 2006; Bettini et al.,
2008; Waszczak et al., 2018). Mitochondria are well-supplied
with antioxidants and the enzymes of the HAF cycle are present
(Jiménez et al., 1997; Foyer et al., 2001; Foyer and Noctor,
2011). Similar as chloroplast, a concentration of 10mM AsA was
determined in mitochondria (Zechmann, 2011; Zechmann et al.,
2011). Considering that the last step of ascorbate biosynthesis can
take place in the intermembrane space in contact with complex
1 (Millar et al., 2003), it is now seen that DHA is transported
in the matrix to subsequently be reduced by the HAF cycle
(Navrot et al., 2007). In this context, a high concentration of GSH
(between 7 and 15mM) has been determined in this organelle
(Zechmann et al., 2008; Queval et al., 2011; Zechmann, 2014),
despite it is considered to be devoid of GSH synthesis pathway.
This implies an uptake of GSH from the cytosol assumed by
different transporters (Chen and Lash, 1998). In addition, there
is no work mentioning the accumulation of phenols in the
mitochondria, these compounds been known as inhibitors of the
respiratory activity (Demos et al., 1975). Finally, in spite of a quite
large panel of antioxidants, the mitochondria have been pointed
out as being more sensitive to O3 than chloroplasts (Pellinen
et al., 1999). Nevertheless, there is no consensus to validate this
difference of sensitivity between organelles (Sutinen et al., 1990).

Peroxisome
Due to H2O2 production driven by photorespiration, the
peroxisome is also provided with antioxidant systems (Corpas
et al., 2019). To minimize H2O2 accumulation in this
compartment, a significant catalase activity has been observed. In
addition, the presence of DHAR isoform suggests a functioning
HAF cycle (Jiménez et al., 1997) in the peroxisome. A
high concentration of AsA (23mM) was determined in the
peroxisome (Zechmann, 2017) while GSH was also detected but
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at low level (4mM) (Zechmann et al., 2008). O3 increased catalase
activity and enhanced the number of peroxisome in tolerant
birch leaves (Oksanen et al., 2004). The increase of peroxisome
number could be a response to an enhanced requirement for
detoxification as photorespiration decreased (Booker et al., 1997;
Bagard et al., 2008).

CONCLUSION

This article points out the great diversity of antioxidative systems,
scattered in the different cellular compartments of leaves. The
data so far published suggest that this diversity must be taken
into account in O3 risk assessment. However, under O3, there
is a lack of information regarding changes in the concentrations
of the different antioxidants in each compartment under ozone
treatment. As mentioned in previous works, and considering
its occurrence in different cell compartments, it is obvious
that the HAF cycle has a prominent role in cell detoxification.
In addition, phenolic compounds in cell wall, vacuole and
chloroplasts might also play a protective role. Subcellular
immunocytochemical localization could allow a more precise

identification of the respective contribution of each compartment
to the global defense system. The next step would be to get an
integrative scheme allowing to improve the modeling for the
participation of detoxification to risk assessment. Recently, an
attempt to integrate the vacuole in an H2O2 metabolism under
oxidative constraint model appeared to be promising, especially
since transporters were considered (Tuzet et al., 2019). Indeed,
the transport of antioxidants between compartments during
oxidative stress should be also studied to better understand the
role of compartmentation.
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Tropospheric ozone (O3) is one of the most prominent air pollution problems in Europe

and other countries worldwide. Human health is affected by O3 via the respiratory as well

the cardiovascular systems. Even though trees are present in relatively low numbers in

urban areas, they can be a dominant factor in the regulation of urban O3 concentrations.

Trees affect the O3 concentration via emission of biogenic volatile organic compounds

(BVOC), which can act as a precursor of O3, and by O3 deposition on leaves. The role of

urban trees with regard to O3 will gain further importance as NOx concentrations continue

declining and climate warming is progressing—rendering especially the urban ozone

chemistry more sensitive to BVOC emissions. However, the role of urban vegetation on

the local regulation of tropospheric O3 concentrations is complex and largely influenced

by species-specific emission rates of BVOCs and O3 deposition rates, both highly

modified by tree physiological status. In this review, we shed light on processes related

to trees that affect tropospheric ozone concentrations in metropolitan areas from rural

settings to urban centers, and discuss their importance under present and future

conditions. After a brief overview on the mechanisms regulating O3 concentrations in

urban settings, we focus on effects of tree identity and tree physiological status, as

affected by multiple stressors, influencing both BVOC emission and O3 deposition rates.

In addition, we highlight differences along the rural-urban gradient affecting tropospheric

O3 concentrations and current knowledge gaps with the potential to improve future

models on tropospheric O3 formation in metropolitan areas.

Keywords: biogenic volatile organic compounds, ozone formation and deposition, roadside trees, rural-urban

gradient, stress, urban forest, urban trees
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INTRODUCTION

Ground-level ozone (O3, tropospheric ozone) is one of the most
prominent air pollution problems in Europe and other countries
worldwide. When taken-up by plants, O3 irreversibly damages
plant tissue-leading to reduced crop yields and forest growth
(Mills et al., 2011). Human health is temporarily or chronically
affected by O3 via the respiratory as well the cardiovascular
systems (WHO, 2006). The World Health Organization (WHO)
has repeatedly released updated recommendations regarding
ozone exposure limits. In order to avoid negative impacts on
human health, the alert threshold for 8-h average O3 exposure
was lowered in 2005 from 120 µg m−3 (60 ppb) to 100 µg
m−3 (50 ppb), and short-time concentrations should not exceed
160 µg m−3 (80 ppb, WHO, 2006). However, many (supra-)
national legislations incl. the European Unions’ (EU) Air Quality
Directive (EU, 2008) are allowing higher O3 exposures (e.g., EU
target value 120 µg m−3 not to be exceeded on >25 days year−1,
averaged over 3 years). The set thresholds are frequently reached
or exceeded in urban areas, especially during heat waves (Solberg
et al., 2008; Holman et al., 2015). Recent data indicates that 95–99
% of the EU urban population were exposed to O3 concentrations
aboveWHO air quality guidelines in the period 2006–2016 (EEA,
2018a,b). However, within metropolitan areas large temporal and
spatial heterogeneities of tropospheric O3 levels exist (Paoletti
et al., 2011; Calfapietra et al., 2016), which are influenced by a
distinct rural-urban gradient and a broad range of abiotic and
biotic factors (Sicard et al., 2013; Lahr et al., 2015; Hagenbjörk
et al., 2017).

The recent literature on urban forests and greening (“green
urban infrastructure”) largely advocates the environmental
services of trees such as air pollution mitigation (e.g., CO2

sequestration, dry deposition), storm water interception, and
heat mitigation (Escobedo et al., 2011; Connop et al., 2016;
Livesley et al., 2016). In general, the substantial scientific evidence
on many positive effects has led to a normative assertion by
stakeholders that any increase in urban forests is desirable
and will mitigate virtually all-kinds of environmental problems
(Escobedo et al., 2011). However, the role of urban vegetation
on the local regulation of tropospheric O3 concentrations is
complex. Among the different urban vegetation forms, trees
are key as they can both remove (Hardin and Jensen, 2007)
but also contribute significantly to O3 formation (Jenkin et al.,
2015). In addition, air chemistry reactions and thus O3 formation
are indirectly affected by the cooling and shading properties of
vegetation (Yli-Pelkonen et al., 2018). The net effect of a tree on
the O3 concentration depends on tree species, its physiological
status, environmental drivers of emission, as well as climate

and air chemistry such as concentrations of volatile organic

compounds (VOCs; see Box 1 for glossary) and nitrogen oxides

(NOx). The emission of biogenic VOC (BVOC) by trees as
source of tropospheric O3, will gain further importance as climate
change progresses (Peñuelas and Staudt, 2010; Trenberth et al.,
2014). It is also expected that future urban NOx concentrations
will continue to decline by substituting combustion-powered
vehicles, especially Diesel-powered models, with cleaner ones
(O’Driscoll et al., 2018). Consequently, urban ozone chemistry

BOX 1 | Glossary of volatile organic compound classes

.

VOC Volatile organic compounds encompass a broad range of

gaseous compounds of (hydro-)carbons emitted into the

atmosphere–containing alkanes, alkenes, aromatic

hydrocarbons, oxygen-containing VOCs (e.g., methane), and

nitrogen-containing VOCs. Sources of VOCs are e.g., plants,

animals, microbes, and fungi, combustion by traffic, industry,

biomass burning, and households.

NMVOC Non-methane volatile organic compounds are VOCs not

counting methane, which is mostly emitted by domestic

ruminants, natural wetlands, landfills, biomass burning, and

fossil-fuel emissions.

AVOC Anthropogenic VOCs such as paraffin, olefins, and aromatics

are predominantly emitted by combustion.

BVOC Biogenic VOCs are biologic-originated VOCs. The vegetation

emits isoprenoids as isoprene (C5), monoterpenes (C10), and

sesquiterpenes (C15), but also OVOCs and GLVs.

OVOC Oxygenated VOCs are a heterogeneous group comprising

various alcohols (e.g., methanol, ethanol), aldehydes

(acetaldehyde, formaldehyde), ketones and specialized

substances such as methyl jasmonates and dimethyl

nonatriene. OVOCs are i.a. emitted by (stressed) plants and

anthropogenic sources.

GLV Green leaf volatiles are a part of BVOCs combining C6

aldehydes and alcohols emitted by the vegetation during and

after biotic and abiotic stress.

might become more sensitive to BVOC emissions. While not
all BVOCs will be equally effective and in some cases may
actually contribute to a decomposition of O3 (Bonn et al., 2018;
Neirynck and Verstraeten, 2018), the combination of higher
urban temperatures and lower levels of NOx is generally thought
to increase the importance of BVOCs as precursors of ozone in
future urban environments (Chameides et al., 1988).

In this review, we summarize processes related to trees
that affect tropospheric ozone concentrations in metropolitan
areas from rural settings to urban centers, and discuss their
importance under present and future conditions. Urban
trees differ in their potential BVOC emission rates and are
often exposed to a multiple and high stress environment,
that is also particularly prone to climate change impacts;
thus, we especially focus on tree species-specific effects
and the physiological status as (potential) major factors
influencing ground-level O3 formation. In addition, the
review will highlight knowledge gaps, e.g., concerning
the spatial distribution of species and environmental
factors along rural-urban gradients, with the potential to
improve future models on tropospheric O3 formation in
metropolitan areas.

TROPOSPHERIC OZONE FORMATION
AND SINKS

The O3 forming process in the troposphere is generally catalyzed
by nitrogen oxides in the presence of radiation, and fueled by
methane, carbon monoxide and non-methane volatile organic
compounds (NMVOC). The general pathways to tropospheric
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O3 formation are well understood (Brasseur et al., 1999), but
the complexity of organic chemistry is still subject to intensive
research (Fittschen et al., 2017). Ozone formation is always
initiated by the photolysis of NO2. The recycling of NO to
NO2 occurs after CO, methane or NMVOC react with OH and
generate hydroxyl and peroxy radicals. These readily react with
NO, regenerating NO2. Thus, NOx is recycled in what is referred
to as the ROx-NOx cycle (Figure 1).

At low NOx concentrations, O3 formation becomes NOx

limited. At medium NOx concentrations, OH recycling via the
ROx-NOx cycle becomes efficient to sustain the oxidation of high
levels of NMVOCs, which finally leads to a regime, where O3

formation becomes VOC-limited (Carter, 1994). The O3 forming
potential also depends on the VOCs’ reactivity, which differs
among compounds. Isoprene, for example, is the most common
BVOC and has a reactivity which is 22 times higher than that
of the important anthropogenic VOC (AVOC) benzene (Carter,
1994; Wagner and Kuttler, 2014). The reaction rate constants of
CO and methane with respect to OH are about 410 and 14,000
times lower than that of isoprene, which can therefore compete
with their reactivity in many environments. For a more detailed
description of the chemical reactions involved in tropospheric
chemistry we refer to the specialized literature (Atkinson, 2000;
Kirchner et al., 2001; Jenkin et al., 2015; Wang et al., 2017).

Recent measurements of OH reactivity (Kim et al., 2011;
Kaiser et al., 2016; Nölscher et al., 2016; Williams et al.,
2016) have suggested missing emission sources of reactive
NMVOCs and missing secondary atmospheric reactions leading
to reactive NMVOCs. This uncertainty is largely attributed to
the complexity of organic chemistry and precursor emissions.
On global and regional scales, BVOCs play a central role in
tropospheric chemistry because of their reactivity with respect
to OH (Guenther et al., 2012). While plants can release more
than 30,000 different BVOCs (Trowbridge and Stoy, 2013),
only a few are emitted in relatively large quantities and are
highly reactive with atmospheric radicals (Atkinson and Arey,
2003). The most reactive classes of BVOC emitted by plants
are isoprene (30%), monoterpenes and higher terpenoids (25

%; e.g., sesquiterpenes) whereas oxygenated VOCs (OVOC) are
present in lower amounts and less reactive (Atkinson and Arey,
2003; Atkinson, 2007). Based on the maximum incremental
reactivity scale (MIR), e.g., isoprene (MIR 10.6) reacts faster with
ozone than monoterpenes (MIR 4.0) (Carter, 2000, 2010). Once
in the atmosphere, isoprene is undergoing complex chemical
cycling initiated by photochemistry, a fate all NMVOC have in
common and are leading to a vast network of chemical reactions.
Similar, higher molecular weight terpenes (>C15) can also play a
significant role in atmospheric chemistry due to their reactivity
(Atkinson and Arey, 2003).

Once being produced, O3 has several routes of removal. The
most important ones include dry deposition and chemical loss
(Monks et al., 2009; IPCC, 2014). On a global scale, the most
important chemical loss term is the photolysis of O3 in the
atmosphere and subsequent reaction with water vapor (H2O)
leading to the production of OH radicals (Brasseur et al., 1999).
Globally a gross chemical O3 loss of 4,260 ± 264 Tg year−1 and
a net chemical production of 633± 275 Tg year−1 was estimated
(Lamarque et al., 2013). Under high NOx emissions (e.g., in an
urban context) another chemical conversion of O3 is triggered
by the reaction with NO, leading to a temporary production of
excess NO2. The reactions between NO, NO2, and O3 are often
termed as the triad and represent a null cycle, where no net O3

is produced or removed (Figure 1, NOx cycle). Yet locally, O3 is
chemically converted to NO2 and it can be speculated that O3

deposition can also be facilitated via NO2 uptake by plants. The
second largest sink for O3 is deposition on surfaces. Estimates
of O3 dry deposition are in the order of 1,094 ± 309 Tg year−1

(Young et al., 2013). Further, another sink of O3 is the ozonolysis
of VOCs forming secondary organic aerosols (SOAs), initiated
by O3 degrading C-C double bonds in alkenes and leading to the
formation of energy-rich Criegee biradicals (Criegee, 1975; Pinto
et al., 2010).

Whether the O3 level increases or decreases by VOCs
is depending on the chemical species and the relative
concentrations of the involved compounds (Sillman and
He, 2002). To implement effective mitigation strategies, the

FIGURE 1 | Ozone formation via the interactions between the ROx- (blue) and NOx-cycles (black). Interfering with the ROx-NOx cycle are ozone degrading reactions

(green) via NMVOCs (non-methane volatile organic compounds) as well as terminating reactions (red); hν, light. Methane and carbon monoxide are not displayed

(modified after Wang et al., 2017 with permission).
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relationship between the different reaction partners as well as
their current absolute concentrations has to be considered.

IMPACT OF TREE SPECIES AND THEIR
PHYSIOLOGICAL CONDITION ON THE
OZONE DYNAMICS OF URBAN
ENVIRONMENTS

Quantity and quality of BVOC emissions and O3 removal by
urban trees depends on community composition, and short-
and long-term environmental conditions—affecting tree size and
physiological status. In the following, an overview is given on key
traits and stressors influencing O3 removal and BVOC emission
potential of urban tree vegetation—referring mainly to European
examples to keep a manageable length and scope.

Species-Specific Effects
Community Composition
The sensitivity of plants to specific environmental conditions
determines urban species composition, either by affecting
mortality of established trees or by suggesting selection
preferences to urban planners (Holmes et al., 2013). Three
main locations of urban vegetation can be distinguished: street
trees (“road-side” trees), parks and private gardens, and urban
woodlands. Street trees are exposed to relatively high stress
levels and the average lifespan of the trees is short, while trees
in parks and private gardens are commonly exposed to less
stress. Trees in urban woodland are subjected to relatively low
stress levels and may reach a lifespan and size comparable
to forests (Sæbø et al., 2005). The environmental conditions
and the frequency of these different vegetation types, and thus
species community composition, differs largely along rural-urban
gradients as discussed below (section The Rural-Urban Gradient
in Context of Tree-Ozone Interactions). However, despite an
overall high number of species available for planning, only
relatively few tree genera and species are highly abundant in
streets and parks of northern and central European cities (Grote
et al., 2016; Samson et al., 2017b). Common urban species in
central to northern Europe are in particular: Tilia sp., Platanus
sp., Aesculus sp., Fraxinus sp., Quercus sp., Acer sp., Picea abies,
and Pinus sp. Additionally, Fagus sylvatica occurs frequently in
parks, private gardens and urbanwoodlands. In southern Europe,
a broader species pool is utilized but likewise dominated by
a few tree genera and species: Platanus × acerifolia, Quercus
ilex, Robinia pseudoacacia, Celtis australis, Celtis occidentalis,
Sophora japonica, Morus sp., Populus sp., Ulmus sp., Pinus sp.,
and Prunus sp. (Pauleit et al., 2002; Grote et al., 2016). There
is a general trend to introduce more exotic tree species that
are supposed to withstand progressing “global warming” and
diseases in urbanized areas better than their autochthonous
counterparts (Youngsteadt et al., 2015). However, whether or not
replacing native species with exotic species is still under debate
as neophytes may disturb the ecological relationships between
co-evolved species (Cornelis andHermy, 2004; Kühn et al., 2004).

Under standard conditions, the contribution of an individual
tree to either O3 removal or BVOC emissions depends primarily

on species-specific traits [e.g., high or low BVOC emission rates,
(Samson et al., 2017a)], and gaseous exchange is proportional to
the size of its canopy, as measured by its leaf mass or surface area
(Harrison et al., 2013; Vos et al., 2013). Similar “size-symmetric”-
effects of larger tree individuals have been found with regard to
air pollution mitigation in particularly when the main removal
process is surface deposition rather than stomatal adsorption
(Grote et al., 2016). However, large and dense canopies, for
example, may allow emitted BVOCs to react on leaf surfaces
within the canopy before reacting with gases (Forkel et al., 1999);
vice versa ozone deposition on leaf surfaces within dense canopies
may be reduced due to a non-uniform distribution of ozone
sources (Zhu et al., 2009)—attenuating “size-symmetric”-effects.

It should be furthermore considered that canopy size, shape,
and density of street trees, despite being highly species/cultivar-
specific, can largely be modified by management measures
(Janhäll, 2015). Therefore, allometric relationships typically used
in the forestry sector (e.g., to determine biomass and crown size
from stem diameter and tree height) generally fail to predict tree
attributes in the urban context. Surprisingly, closed canopies of
trees may contribute to higher pollution in urban canyons by
decreasing dispersion (Gromke and Ruck, 2009; Vos et al., 2013).
However, this effect is beneficial for pedestrians and bikers when
the lanes are located just on the external side of the road (outside
the canyon).

Ozone Deposition Capacity
Vegetation plays a major role for the dry depositional sink of O3.
Dry deposition over lush vegetation is 40 times more efficient
than over urban land according to common parameterizations
in atmospheric models (Wesely, 1989). Deposition of O3 to
vegetation is modulated by a stomatal and a non-stomatal
component. In either case, the removal of O3 is ultimately driven
by a chemical loss. Stomatal O3 uptake triggers antioxidant
reactions in the intercellular space and is largely dependent
on stomatal conductance, which is driven by environmental
conditions and varies among tree species (as discussed below).
If the stomata are open, O3 diffuses into the intercellular
space from the atmosphere and is almost immediately deposited
by reactions in the apoplast with membrane lipids, moisture
and cell organelles; uptake increases with increasing outside
concentrations (Wesely and Hicks, 2000). Non-stomatal O3

deposition occurs on leaf surfaces by reactions with waxes,
moisture and salts (Barnes et al., 1988; Altimir et al., 2006)
and in the boundary layer with emitted BVOCs (see sections
Tropospheric Ozone Formation, and Sinks and BVOC Emission
Rates). Tree species featuring traits such as a large leaf area
index, hairy leaves, leaf waxes and moist surfaces, and keeping
their stomata longer open under stressed conditions (see below,
section Plant Water Status), are depositing O3 better than species
without these traits (Barnes et al., 1988; Altimir et al., 2006;
Cape et al., 2009). However, Calfapietra et al. (2016) showed
that under standardized conditions, most common tree species
in Rome, Italy had rather similar O3 deposition rates per m2 leaf
area; however, photosynthetically very active trees like Populus
× euramericana had higher and the gymnosperm Pinus pinea
had lower O3 deposition rates than the average. As similar plant
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traits are likely affecting fine particulate matter (PM2.5) and O3

deposition rates, available rankings addressing the effectiveness
of (deciduous) tree species for PM2.5 deposition (e.g., Yang
et al., 2015) can probably be used as a guideline for ozone
deposition capacity.

BVOC Emission Rates
The production and emission of BVOCs can serve as a protective
mechanism of plants against O3-induced tissue damage, for
increasing thermotolerance, communicating with neighboring
and interfering individuals and sometimes possibly just to get
rid of surplus energy by releasing byproducts of physiological
processes (Niinemets et al., 2013). The profiles of emitted BVOCs
vary considerably among tree species (Courtois et al., 2009;
Niinemets and Monson, 2013) and even genotypes (Blanch
et al., 2012). Figure 2 illustrates the available data on standard
emission potentials of isoprene, monoterpene, sesquiterpenes
and OVOCs of frequent tree species in European cities under
non-stress conditions. Isoprene is known as the major BVOC
emitted by trees globally (Figure 2) and also the one that has

the highest potential contributing to tropospheric O3 formation
(Kamens et al., 1982; Loreto and Velikova, 2001; Xie et al.,
2008). Among the most common city trees, Populus nigra, P.
tremula, Quercus robur and Q. pubescens were identified as
high isoprene emitters. Monoterpenes are emitted by conifers
and several broad-leaved trees including F. sylvatica, which is
dominant in forests of central Europe (Kramer et al., 2010), and
thus may be important pre-cursors for particles and O3 especially
in rural-suburban transition zones. Common urban trees such as
Acer platanoides and Ulmus minor are considered low emitters
(Singh et al., 2007; Karl et al., 2009) while some as for example
Fraxinus excelsior, and Tilia platyphyllos are generally assumed to
be non-monoterpene and -isoprene emitters. Sesquiterpenes are
mainly emitted in low quantities and have a similar O3 formation
potential than monoterpenes, although less than isoprene, and
have thus a minor influence on ozone formation (Holopainen
and Blande, 2013). Oxygenated VOCs (OVOCs) have different
but generally minor ozone forming potentials. They are typically
emitted as signaling compounds or as response to any kind of
stressful conditions (Seco et al., 2007). As plant ontogeny can

FIGURE 2 | Standard emission potentials (µg g DW−1 h−1; at 30◦C leaf temperature and 1,000 µmol m−2 s−1 PPFD) of isoprene (ISO), monoterpene (MT),

sesquiterpenes (SQT), and oxygenated VOC (OVOC) of frequent tree species in urban areas of northern/central (N/C) and southern (S) Europe. Potential emission

rates are grouped in no (white), low (green), medium (yellow), and high (red) emission classes. ISO: low < 10, high > 30.1; MT and OVOC: low < 2, high > 5.1; SQT:

low < 0.5, high > 1.1; with medium categories with values in-between. A color gradient indicates emission rates crossing the defined classes; gray indicates: “no data

available.” References: a (Aydin et al., 2014), b (Benjamin and Winer, 1998) *high ISO, c (EMEP/CORINAIR, 1999), d (Curtis et al., 2014), e (Geron et al., 1994), f

(Grote et al., 2016), g (Hakola et al., 1998), h (Hakola et al., 2001), j (Hakola et al., 2006), k (Heinrich, 2007), l (Karl et al., 2009), m (König et al., 1995), n (Lamb et al.,

1987), o (Meeningen et al., 2016) ◦ low ISO, p (Owen et al., 1997), q (Paoletti et al., 2011), r (Préndez et al., 2013), s (Singh et al., 2007), t (Steinbrecher et al., 2009), u

(Streiling and Matzarakis, 2003), v (Tarvainen et al., 2005), w (Tiwary et al., 2013), y (Veldt, 1989).

Frontiers in Forests and Global Change | www.frontiersin.org 5 September 2019 | Volume 2 | Article 5057

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Fitzky et al. Ozone and Urban Vegetation

influence i.a. foliar defense metabolites (Goodger et al., 2013), it
is likely that BVOC emission rates of tree species are changing
along ontogenetic trajectories.

Other compounds are also occasionally reported as
constitutive emissions from plants. Regarding trees in urban
area, alkanes, aldehydes, alkenes, aromatic compounds, esters,
and ketones have been determined to originate from Ginkgo
biloba (Li et al., 2011). Their impact on air chemistry is
generally assumed to be small since anthropogenic emissions
are dominating the concentration of these compounds in urban
areas by far (e.g., Costa and Baldasano, 1996; Cheng et al.,
2010). However, alkanes and alkenes have been found as major
emissions over many forests (Kourtchev et al., 2008; Halliday
et al., 2015; Rhew et al., 2017); thus, at least the more reactive
alkenes are assumed to play a significant role at larger to global
levels (Goldstein et al., 1996; Rhew et al., 2017).

Looking at the community level, some general patterns
in BVOC emissions can be identified among tree functional
types (Dani et al., 2014). For example, trees featuring a
high photosynthetic capacity are often also high monoterpene
emitters. Deciduous trees are in general higher isoprene emitters
and low monoterpene emitters whereas evergreen trees are low
isoprene emitters and can be both low and high emitters of
monoterpene (Dani et al., 2014). European forest biomes are
generally thought to emit higher levels of monoterpenes relative
to isoprene, compared to the continental US. For instance,
Quercus sp. in the Mediterranean area are often evergreen and
primarily monoterpene emitters in contrast to North-American
Quercus sp., with relevant changes concerning the interaction
of emitted isoprenoids with the atmosphere and air quality
(Fares et al., 2013). As under normalized conditions the BVOC
contribution of an individual plant is proportional to its BVOC
emission rate (Kesselmeier and Staudt, 1999; Niinemets and
Monson, 2013) and the size of its canopy (as discussed above),
abundant and/or large species with high emission rates tend to
dominate the BVOC emission inventory in a given landscape.
Furthermore, plant phenology and ontogeny influence emission
rates (Goodger et al., 2013; Jardine et al., 2016). However, as
“standard conditions” rarely occur in urban settings, ozone
removal capacities as well as BVOC emission rates are largely
modified by stress as outlined below.

Stressors Modifying Species-Specific
Effects via Tree Physiological Status
As urban plants are increasingly exposed to numerous stressors
(Calfapietra et al., 2015), the vitality of street trees declined
drastically over the last 3–4 decades (Bradshaw et al., 1995).
While stress levels can vary considerable between urban centers
and rural areas (see section The Rural-UrbanGradient in Context
of Tree-Ozone Interactions), knowledge of the environmental
physiology of trees in urban settings is key in order to understand
the responses of trees to different stresses including feedback
mechanisms on specific ecosystem services and/or disservices
(Calfapietra et al., 2015).

Meteorological Factors and Air Composition
Higher temperatures and light intensities are often accompanied
by increased formation of secondary air pollutants in the

atmosphere including ozone (Chameides et al., 1988).
Also, BVOC emissions are strongly positively correlated to
temperature (Guenther et al., 1991; Niinemets and Monson,
2013; Guidolotti et al., 2019) as plants can use, for example,
isoprene to stabilize the cell membrane during high temperatures
(Singsaas et al., 1997). Behnke et al. (2013) showed that Populus
× canescens leaves in which isoprene production was genetically
removed were less heat resistant. However, the temperature
sensitivity of BVOC emissions are highly species-specific, related
to the emission traits that distinguish trees in isoprene or
monoterpene emitters and, for the latter, in trees without and
with isoprenoids pools (Niinemets et al., 2010; Grote et al.,
2013). The direct effect of temperature on O3 deposition is
believed to be small; however, as high temperature increases
evapotranspiration, and thus potentially drought stress levels,
the indirect decrease in O3 deposition by stomatal closure may
be large (Morani et al., 2014). Another relevant but highly
variable meteorological factor is wind. Ventilation of canopies
increases evapotranspiration and cools down leaves (Drake
et al., 1970). Cooler leaf temperatures lead to lower isoprene
emissions in Populus sp. andQuercus sp. (Potosnak et al., 2014a).
Further, strong wind gusts can damage trees—leading to the
release of BVOCs (Loreto et al., 2006). For example, a burst
of monoterpene emission has been measured at high wind
speeds in Eucalypts, whose emissions are otherwise extremely
low (Guidolotti et al., 2019). In contrast, higher wind speeds
may render leaves within closed canopies more available for
ozone deposition.

Urban areas are often characterized by higher concentrations
of CO2 and air pollutants (O’Driscoll et al., 2018). Estimating
how these conditions will affect BVOC emissions from urban
trees is, however, not easy as a number of factors are interrelated,
including the chemical composition of the compound(s), the
exposure, the concentration and the plant species. However, there
is for example a consensus that an increase in CO2 concentration
will induce a reduction of isoprenoid emissions at least at leaf
level (Rosenstiel et al., 2003; Calfapietra et al., 2008). On the
other hand, an increase of O3 concentration can have opposite
effects depending on the length and level of exposure—with a
general stimulation in the cases of acute exposures and a general
inhibition under chronic exposures (Calfapietra et al., 2013). For
example, Carriero et al. (2016) states an increase of monoterpene
emissions under increased ozone concentrations by B. pendula
whereas Vuorinen et al. (2005) observed no emission changes.
Similar, OVOC emissions by B. pendula under elevated ozone
exposure were found to decrease (Hartikainen et al., 2012) or
increase (Carriero et al., 2016), and isoprene emissions under
O3 stress decreased in P. tremuloides (Calfapietra et al., 2008)
but did not change for P. tremula (Hartikainen et al., 2009)
and P. tremula × tremuloides (Blande et al., 2007). Despite the
uncertainties, however, there are numerous publications that
indicate a considerable induction of monoterpenes and various
OVOCs by O3 while the effect on isoprene is mostly negative—
either because the biosynthesis pathway is very sensitive to
ozone damages or more likely because precursors are directed
toward protecting agents (Grote, 2019). Ozone deposition is
normally negatively influenced by increased CO2 and O3 levels
as both decrease stomatal conductivity and thereby stomatal O3
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deposition (Medlyn et al., 2001; Wittig et al., 2007). Globally, the
increase of O3 since the industrialization is estimated to have
decreased stomatal conductance by 13% (Wittig et al., 2007)—
with likely higher values in urban areas.

Plant Water Status
Urban vegetation can experience exceptional stresses from water
scarcity to flooding, caused by extreme heat, drought, and rainfall
events (Wissmar et al., 2004; Collier, 2006; Livesley et al., 2016).

With increasing drought stress the stomata close and the
stomatal depletion of ozone decreases (Wissmar et al., 2004;
Livesley et al., 2016), increasing tropospheric ozone levels by up
to 10% (Anav et al., 2018). However, trees have evolved different
strategies to deal with low water availability. Isohydric species
maintain a constant midday leaf water potential by closing their
stomata earlier, while anisohydric species keep their stomata
open longer and allow the leaf water potential to drop (Sade et al.,
2012). By keeping the stomata open during moderate drought,
anisohydric tree species such as Quercus sp. and Fagus sp. can
maintain stomatal ozone deposition on hot summer days when
ozone levels may become high (Grote et al., 2016). In contrast,
isohydric tree species such as Acer sp. and Betula sp. are more
likely to survive severe droughts and remain thus available for
O3 deposition under post-stress conditions (Sade et al., 2012;
Klein, 2014). Thus, in selecting tree species for maximizing
urban ozone deposition there is a tradeoff between high stomatal
deposition during moderate drought and survival during severe
drought events.

BVOC emission rates under drought have been found
increasing (Funk et al., 2004; Potosnak et al., 2014b), decreasing
(Fortunati et al., 2008; Tiiva et al., 2009) or unaffected (Tingey
et al., 1981; Pegoraro et al., 2006). Closing the stomata
results in increasing leaf temperature as transpirational cooling
decreases; this induces isoprene production in the short-term
to increase the thermo-tolerance of tissue (Singsaas et al.,
1997). Furthermore, when stomata close the supply of CO2

decreases, whereas the photosynthetic electron transport rate
(ETR) remains high. The emission of at least isoprene seems
to be positively correlated to the ratio of ETR to net carbon
assimilation rate [NAR; (Dani et al., 2015)]. The carbon used
for isoprene production is believed to come from stored carbon
and isoprene production can thus be maintained even though
CO2 assimilation decreases (de Souza et al., 2018). In contrast,
closed stomata can lead also to decreased emissions of at least
some BVOCs, which can less easily diffuse into the atmosphere
(Saunier et al., 2017). The variable responses reported previously
emphasize that BVOC emissions under drought are highly
dependent on tree species (sensitivity) as well as the intensity
and temporal extend of the stress events (Dani et al., 2015).
Different effects are thus explained by species sensitivity as
well as drought intensity (Niinemets, 2010; Klein, 2014; Saunier
et al., 2018). For example, the same species can possess an
increase of isoprene emissions under mild drought while severe
drought decreases emissions (Brilli et al., 2007; Genard-Zielinski
et al., 2014; Dani et al., 2015). Similar behavior has been
observed for monoterpene emissions, with moderate stress
suppressing photosynthesis but not BVOC emissions (Funk

et al., 2004; Wu et al., 2015). Less is known on the effect of
drought on highly volatile BVOC emissions such as methanol,
formaldehyde or acetaldehyde (OVOC) or green leaf volatiles
[GLV; (Vitale et al., 2007; Saunier et al., 2017)]. On the long
term, drought stress is likely to decrease leaf biomass, which
has a negative effect on both ozone deposition as well as
BVOC emissions.

In snow-prone urban areas, de-icing salt (NaCl) ends up
highly concentrated in street tree pits. De-icing salt has been
found to have a negative effect on tree health (Czerniawska-
Kusza et al., 2004; Munck et al., 2010; Rose and Webber,
2011; Ordóñez-Barona et al., 2018), by inducing water stress
(“physiological drought”), with the effects describe above, but
also malnutrition and accumulation of excess ions to potentially
toxic levels (Ahmad et al., 2012). This is often decreasing leaf
biomass & vitality (Shannon et al., 1999) and thereby the ozone
deposition capacity. While emissions of isoprene and OVOC
were found rather unaffected by mild salt stress (Loreto and
Delfine, 2000; Teuber et al., 2008), it is currently unknown if the
same holds true for severe salt stress.

Finally, flooding can also reduce stomatal conductance (Liao
and Lin, 2001), and has consequently a negative effect on stomatal
ozone deposition as described above (Chaves et al., 2003).
Moreover, it has been observed that flooding can also increase
methanol as well as GLV, but decrease isoprene emissions
(Copolovici and Niinemets, 2010; Bourtsoukidis et al., 2013).

Nutrition Status
The urban ecosystem is highly heterogeneous in regard to
nutrient availability; for example, some street trees have access
only to the limited soil volume underneath the planting pit
whereas others access nearby gardens and sewer pipes (Kopinga
and Van den Burg, 1995; Day et al., 2010). Nutrients frequently
limiting the growth of urban trees are potassium (K) and nitrogen
(N), however, deficiencies of magnesium (Mg) and phosphorus
(P) as well as micronutrients are common (Kopinga and Van den
Burg, 1995; Sieghardt et al., 2005).

Deficient nutrition results in decreased growth and increased
sensitivity to pests—leading to relatively reduced leaf area,
affecting O3 deposition negatively (Carriero et al., 2016; Hu
et al., 2018). On a single leaf scale, N deficiency has been
shown to cause a decrease in BVOC production due to a
lower photosynthetic efficiency and thus less available carbon
for secondary metabolites (Lerdau et al., 1995; Ormeño et al.,
2008). Although direct studies are missing, it can be hypothesized
that K and Mg deficiency, key elements of the photosynthetic
system, cause similar effects (Lambers et al., 1998). P deficiency
could eventually also lead to a decrease in energy-demanding
BVOC production due to a shortage of P-rich ATP and
NADPH (Ormeño and Fernandez, 2012). In contrast, increased
BVOC emissions under warm temperatures, destabilizing the
cell membrane and releasing GLVs, may be spurred under P
deficiency (Siwko et al., 2007; Ormeño and Fernandez, 2012).
Only recently, nutrient deficiency has also found leading to
a shift of the emitted BVOC composition; for example, from
terpenoids toward GLV in nitrogen-limited Betula sp. trees
(Carriero et al., 2016). While it thus becomes increasingly clear
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that a shift in BVOC emissions via nutrient deficiency affects
the formation and degradation of O3 in the atmosphere, the
contradictory results, i.e., either a positive or negative feedback
of BVOC emissions due to malnutrition, may relate to reactions
triggered on different timescales. Therefore, phenology and long-
term allocation processes must be considered, combining the
morphoanatomy of leaves with cell biochemistry and physiology
(Lerdau et al., 1995, 1997; Ormeño and Fernandez, 2012).

Herbivores and Pathogens
Physical injuries by herbivores and pathogens frequently lead to
increased GLV and monoterpene emissions (Gatehouse, 2002;
Niinemets et al., 2013; Scala et al., 2013). These induced volatiles
are emitted rapidly after the stress occurred (Ameye et al.,
2018) and can account for 9 to 21-fold of the total emissions
of damaged tissue (Ghimire et al., 2017). Fungal and pathogen
infections of leaves also lead to increased emissions of GLV
and monoterpene but often a decrease in isoprene emissions
(Kesselmeier and Staudt, 1999; Steindel et al., 2005; Arimura
et al., 2008; Jansen et al., 2009). Thus, even though isoprene
decreases, the high monoterpene emission caused by herbivory
and pathogens can, under high NOx levels, contribute to ozone
formation (Holopainen and Blande, 2013). The decrease in
leaf biomass due to herbivory and pests decreases the ozone
deposition on the leaves causing increasing ozone concentrations
in the air (Kesselmeier and Staudt, 1999).

THE RURAL-URBAN GRADIENT IN
CONTEXT OF TREE-OZONE
INTERACTIONS

The commonly used terms “urban” and “rural” relate to a range
of environmental conditions such as temperature, pollutant and
CO2 levels, and land cover types including the extension of
sealed surfaces and housing densities, as well as changes in
species composition and abundance of vegetation. In general,
the availability of growing spaces tends to decrease along the
rural-urban gradient (Zipperer et al., 1997). The differences
between rural and urban are furthermore fueled by a gradient
of human activities, such as emissions from traffic and industries
but also vegetationmanagement, that all affect the ozone forming
potential and depletion, and thereby the (local) O3 concentration.

Less abundant vegetation does not necessarily mean a low
deposition capacity or BVOC emissions since both are strongly
related to species, physiological state and stress severity as
outlined above. It is therefore interesting that in many urban
areas trees are predominantly deciduous (Grote et al., 2016) and
in case of Quercus sp., Salix sp., and Populus sp. (and to some
lesser degree Platanus sp. and Robinia pseudoacacia) belong to
the topmost isoprene emitters. These high emitters contribute
between 13% [Lancaster, UK; (Wolyniak and Elmendorf, 2011)]
and 30% [Hamburg, Germany; (BUE, 2019)] of urban trees in
Europe, and seem to have even higher shares in Asia [e.g., 30%,
Beijing, China; (Ghirardo et al., 2016)] while US cities seem to
have a bit less high emitters [11.4% in Chicago; (Nowak et al.,
2010)]. In contrast, suburban and rural forests in northern and

temperate regions are commonly formed by evergreen forests
(Gallaun et al., 2010), which emit primarily monoterpenes that
are far less effective regarding O3 formation. Similar holds true
for Mediterranean rural areas that are dominated by Pinus sp.
and evergreen Quercus sp. (Sheffer, 2012).

Besides differences in species composition, trees’ physiological
status differs in urban compared to rural conditions because of
changes in environmental conditions. Most prominently, urban
centers are characterized by higher air temperatures as compared
to suburbs which is the so called urban heat island (UHI) effect
(Ajaaj et al., 2018; Saaroni et al., 2018). Higher temperatures in
urban centers trigger higher BVOC emissions leading to higher
ozone concentrations, an effect that is expected to increase with
global warming (IPCC, 2014; Li et al., 2015). In contrast, higher
CO2 concentrations in urban areas do not only encourage growth
but also tend to decrease BVOC emission capacity, particularly
regarding isoprene (Gratani and Varone, 2014). The third effect
on physiology that is not necessarily stress-related (if considering
stress as damage that is not immediately reversible) is related to
air humidity and soil moisture availability. Both are commonly
lower in urban centers compared to urban woodlands and rural
areas (Devakumar et al., 1999; Yang et al., 2017). Restricted
water supply will decrease stomatal conductance and thereby
stomatal ozone depletion and also modify BVOC emission
rates as discussed above. Finally, urban trees, especially road-
side trees, are more frequently stressed by drought (Clark and
Kjelgren, 1990; Fahey et al., 2013; Bialecki et al., 2018), salt
(Equiza et al., 2017), herbivores (Dale and Frank, 2014), and air
pollution (Samson et al., 2017a). Stress-induced emissions are
different from constitutively driven emissions in both intensity
and composition. They are tightly linked to the intensity and
duration of stress and thus depend for example on short-time
ozone peaks. They also might eventually decrease if plants are
substantially damaged although the necessary degree to reach this
point is difficult to define. Indeed, considerable amounts of stress-
related emission compounds have been found in metropolitan
regions (Ghirardo et al., 2016).

In general, large uncertainty exists as to the effects of
multiple factors, occurring in urban settings, on BVOC emissions
(Holopainen and Gershenzon, 2010). They depend on species
abundance and distribution, and furthermore interact with plant
ecophysiological responses, such as stomatal regulation, and
in particular stress responses, which are largely unknown for
many urban species/ecotypes (Sjöman and Busse Nielsen, 2010).
Studies show that the quota of ozone produced by BVOCs are up
to 12% on average of the daily maximum 1-h O3 concentration
in Berlin but up to 60% on very warm days (Churkina et al.,
2017), 50–75% during summer in Italy and Spain (Duane et al.,
2002), and by a factor of 50 in Las Vegas, NV (Papiez et al.,
2009). With increasing temperatures in the future, the heating
effect is likely to override the suggested suppressive effect of
higher CO2 concentrations (Tingey et al., 1991; Lahr et al., 2015)
and increase BVOC emissions in urban areas (Norton et al.,
2015). It is therefore reasonable to speculate that combined effects
will affect the emission by individual trees much more severely
in the highly anthropogenic environment of city centers and
suburbs than in rural areas. This assumption is supported by the
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fact that high temperatures and the occurrence of drought and
ozone stress commonly occur in combination, which not only
directly increases emissions but also decreases trees’ resistance
to pathogens and herbivores which then can lead to induction
of further emissions (Holopainen, 2004; Loreto and Schnitzler,
2010). Indeed, several studies show that higher temperatures in
urban areas in combination with drought stress increases insect
herbivory (Meineke et al., 2013; Dale and Frank, 2014, 2017).

To calculate the effect of the diverging BVOC emission
along the urban-rural gradient on the ozone concentration, it
has to be set in relation to the NOx concentration. In city
centers and suburbs, the emissions of NOx and AVOCs are
high compared to rural areas. Toward the rural areas, NOx

and AVOC emissions decrease while BVOC emissions might
increase due to an increasing leaf area or decrease depending
on conditions discussed above. The emissions of AVOCs in
Europe have dropped dramatically in the last 20 years (Stemmler
et al., 2005; Dollard et al., 2007). Thus, on warm summer
days the emission of BVOCs may be dominant relative to
the contribution of AVOCs to O3 formation (Wagner and
Kuttler, 2014). In many other urban areas of the world (e.g.,
China), however, AVOCs are still the major driver of O3

formation (Ran et al., 2011; Wang et al., 2017). With high
NOx concentrations within city boundaries, O3 formation is
usually small due to low VOC:NOx ratios (Atkinson, 2000).
With increasing distance from the urban center, however, NOx

concentrations decrease relative to BVOCs—resulting in an
increase of the VOC:NOx ratio and thereby a higher potential
of O3 formation in the suburbs and rural areas. An O3 isopleth
plot (Figure 3, dashed line) illustrates net O3 production P(O3)

as a function of BVOC and NO2 reactivity giving data from
Innsbruck, Austria as an example. A hypothetical trajectory
from NOx-rich urban conditions to BVOC-rich rural conditions
is depicted along the red arrows—as NOx is diluted, O3

production increases until a ridge after which it decreases
due to becoming NOx-limited. This non-linear relationship of
tropospheric O3 production has important ramifications for air
quality management across urban gradients, because strategies of
O3 mitigation will depend on the (local) interplay between NOx

and NMVOC (Sillman and He, 2002).
There is a strong societal demand on improving the air quality

and comfort in cities. The focus is put on reducing gaseous
and particulate pollution by reducing emissions from traffic,
particularly of NOx. In addition, mitigation strategies include
measures to increase deposition of pollutants, including NOx

and ozone, which is preferably done by increasing leaf area
(Taha et al., 2016; Tong et al., 2016). However, it should be
noted that achieving reduction of NOx by increasing deposition
on leaves but simultaneously increasing BVOC emissions by
selecting high emitting species can potentially increase the ozone
forming potential particularly in the highly populated urban
centers (Figure 4).

Considering future climate change scenarios with increasing
temperatures, we hypothesize that ozone formation would
expand toward the urban centers as with BVOC emissions
increase, due to increasing temperatures, being the major
driver. This effect would be enhanced if (exotic) species that
are more tolerant against heat and drought but also have
high BVOC emission potentials would be newly introduced
in urban areas (Valkama et al., 2007; Himanen et al., 2009;

FIGURE 3 | Ozone isopleth showing urban (black) and rural (green) conditions of the relationship of NMVOC, NOx, and O3. Calculations are based on a

model-measurement analysis for Innsbruck (Karl et al., 2017) based on the full chemistry MCM from Leeds (http://mcm.leeds.ac.uk/MCM/). Rural area conditions

characterized by high BVOC emissions represent a typical range observed in the Southeast USA (Kaser et al., 2015). The trajectory to the rural end point was

estimated based on a typical scenario (Ehlers et al., 2016). The MCM was implemented in Matlab (C) based on Wolfe and Thornton (2011). The red inset denotes a

hypothetical trajectory from NOx-rich urban conditions to BVOC-rich rural conditions in Innsbruck, Austria.
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FIGURE 4 | A schematic display of current NOx-VOC-O3 relations (approximated from literature values) (A), and a possible future scenario after decreasing NOx

pollution (black solid line) and increased non-methane hydrocarbons (NMVOCs, green solid line) in cities due to greening (B). A left shift of the ozone forming potential

curve (gray dotted line) indicates higher ozone pollution in suburbs, since the NMVOC:NOx ratio reaches optimal values to form ozone (blue box).

Youngsteadt et al., 2015). Reduced emissions due to higher
CO2 concentrations and more frequent drought stress are not
likely to reverse this trend, particularly since trees are often
irrigated in arid and semiarid regions or during heat wave
events in order to sustain their cooling function. However,
estimating the net effect of urban trees on ozone concentrations,
deposition would need to be taken into account as well,
which would be enhanced by more trees. Ozone concentrations
furthermore depend on temporal and spatial variations of
biogenic and anthropogenic emissions as well as wind speed,
and thus require elaborated air chemistry transport models.
Approaches have been made to couple physiological models
to such models of air chemistry, but the multitude of direct
and indirect effects described here have not been considered
(Baumgardner et al., 2012; Cabaraban et al., 2013).

OUTLOOK

Policies are strongly directed toward an improvement of air
quality and an increase of resilience against climate change
impacts in cities. Decisions need to be based on how these
goals can be reached most efficiently while maintaining transport
and other energy consuming functions. Obvious solutions are
a reduction of emissions by introducing clean energy and
transport concepts and providing green infrastructure for cooling
and shading. Since a technological reduction of anthropogenic
emissions will not immediately take place, an increase of green
infrastructure is also supposed to enhance deposition and thus

reduce air pollution. This is principally a valid and reasonable
approach. However, the efficiency of vegetated urban area to
fulfill these ecosystem services depends on various boundary
conditions, cannot easily be evaluated, and potential ecosystem
disservices, among which is the facilitation of ozone production
via BVOC emissions, have to be considered. A general vote
for a higher share of green infrastructure is thus difficult
to implement and can eventually deliver results that might
even be contradictory to expectations. It is thus of utmost
importance to consider species properties, stress sensitivity,
and physiological responses that can be expected under future
environmental conditions. Achieving the goal to abate or at least
not to increase ozone concentrations in cities, newly planted
tree species would need the following requirements: (i) emit
low or no BVOCs under current and future environmental
conditions, (ii) have a large resistance to drought and biotic
stresses, (iii) maximize biomass in terms of leaf area, and
(iv) have a high photosynthetic capacity and therefore high
stomatal conductance (and thus being high ozone sinks) (Nowak
et al., 2018). This task is, however, complicated by the fact
that the new plants will have a distinct effect on future urban
environmental conditions.

The necessary efforts to enable such analyses will be
substantial since our species-specific knowledge about stomatal
responses as well as BVOC emission under various stress
conditions is limited. The first requirement is therefore to
refine our understanding of urban vegetation responses to local
environmental conditions. A key knowledge gap is the response
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of BVOCs emissions to stressful conditions, which often lead
to large increases that can potentially affect air quality (Grote
et al., 2019). However, general responses to extreme heat and
dry conditions that may trigger the death of the plant should
also be evaluated in particular for urban tree species that might
get more important in the future. Secondly, urban air quality
needs to be investigated with integrated analyses considering
climate, anthropogenic emissions, city structure as well as
distribution and responses of vegetation, i.e., street and park
trees. Current approaches are still suffering on coarse resolutions
and missing climate-vegetation feedbacks but new developments
are encouraging (Maronga et al., 2019). Finally, it should be
considered that inventories of existing tree distributions are
essential to evaluate any spatially explicit modeling approach.
This also includes soil conditions and management that affects
canopy dimension and physiology (e.g., pruning and irrigation).
Only if this information is available, scenario analyses with
varying climate, pollutant emissions, as well as vegetation
abundance, composition and distribution can successfully be
carried out. Thus, integrating ecosystem services and disservices
into environmental quality strategies will therefore enable the
identification of green infrastructure types, suitable species
(combinations), as well as distribution and density of individuals
in order to increase people’s overall quality of life in a particular
city at reasonable costs.

AUTHOR CONTRIBUTIONS

AF, HS, and BR contributed conception and design of
the review. AF and TK composed the figures. AF, HS,
TK, AS, CC, SF, and BR wrote the first draft of the
manuscript. AF, HS, TK, SF, RG, and BR wrote sections
of the manuscript and added to the tables. All authors
contributed to manuscript revision, read, and approved the
submitted version.

FUNDING

AF was funded by the project Urban trees and air pollution:
Effect of drought and salt stress on the production of VOC
and absorption of ozone by different city trees (UOzone) by
the Vienna Science and Technology Fund (WWTF, project
number: ESR17-027).

ACKNOWLEDGMENTS

The authors wish to thank the participants and organizers of
the International Conference on Ozone and Plant Ecosystems,
Florence, Italy (May 21–25, 2018), for impulses and intensive
discussions. Two reviewers and the editor gave important inputs
to revise an earlier version.

REFERENCES

Ahmad, P., Azooz, M. M., and Prasad, M. N. V. (2012). Ecophysiology and

Responses of Plants Under Salt Stress. New York, NY: Springer.

Ajaaj, A. A., Mishra, A. K., and Khan, A. A. (2018). Urban and peri-

urban precipitation and air temperature trends in mega cities of the world

using multiple trend analysis methods. Theor. Appl. Climatol. 132, 403–418.

doi: 10.1007/s00704-017-2096-7

Altimir, N., Kolari, P., Tuovinen, J.-P., Vesala, T., Bäck, J., Suni, T., et al. (2006).

Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 2,

1739–1793. doi: 10.5194/bgd-2-1739-2005

Ameye, M., Allmann, S., Verwaeren, J., Smagghe, G., Haesaert, G., Schuurink, R.

C., et al. (2018). Green leaf volatile production by plants: a meta-analysis. New

Phytol. 220, 666–683. doi: 10.1111/nph.14671

Anav, A., Proietti, C., Menut, L., Carnicelli, S., Marco, A. D., and Paoletti,

E. (2018). Sensitivity of stomatal conductance to soil moisture:

implications for tropospheric ozone. Atmos. Chem. Phys. 18, 5747–5763.

doi: 10.5194/acp-18-5747-2018

Arimura, G., Köpke, S., Kunert, M., Volpe, V., David, A., Brand, P., et al. (2008).

Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and

nocturnal damage differentially initiate plant volatile emission. Plant Physiol.

146, 965–973. doi: 10.1104/pp.107.111088

Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx.

Atmos. Environ. 34, 2063–2101. doi: 10.1016/S1352-2310(99)0

0460-4

Atkinson, R. (2007). Gas-phase tropospheric chemistry of organic compounds:

a review. Atmos. Environ. 41, 200–240. doi: 10.1016/j.atmosenv.2007.

10.068

Atkinson, R., and Arey, J. (2003). Gas-phase tropospheric chemistry of

biogenic volatile organic compounds: a review. Atmos. Environ. 37, 197–219.

doi: 10.1016/S1352-2310(03)00391-1

Aydin, Y. M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altiok, H., et al. (2014).

Biogenic volatile organic compound (BVOC) emissions from forested areas in

Turkey: Determination of specific emission rates for thirty-one tree species. Sci.

Total Environ. 490, 239–253. doi: 10.1016/j.scitotenv.2014.04.132

Barnes, J., Davison, A., and Booth, T. (1988). Ozone accelerates structural

degradation of epicuticular wax on Norway spruce needles. New Phytol. 110,

309–318. doi: 10.1111/j.1469-8137.1988.tb00267.x

Baumgardner, D., Varela, S., Escobedo, F. J., Chacalo, A., and Ochoa, C. (2012).

The role of a peri-urban forest on air quality improvement in the Mexico City

megalopolis. Environ. Pollut. 163, 174–183. doi: 10.1016/j.envpol.2011.12.016

Behnke, K., Ghirardo, A., Janz, D., Kanawati, B., Esperschütz, J., Zimmer, I., et al.

(2013). Isoprene function in two contrasting poplars under salt and sunflecks.

Tree Physiol. 33, 562–578. doi: 10.1093/treephys/tpt018

Benjamin, M. T., and Winer, A. M. (1998). Estimating the ozone-forming

potential of urban trees and shrubs. Atmos. Environ. 32, 53–68.

doi: 10.1016/S1352-2310(97)00176-3

Bialecki, M. B., Fahey, R. T., and Scharenbroch, B. (2018). Variation in urban

forest productivity and response to extreme drought across a largemetropolitan

region. Urban Ecosyst. 21, 157–169. doi: 10.1007/s11252-017-0692-z

Blanch, J. S., Sampedro, L., Llusià, J., Moreira, X., Zas, R., and Peñuelas,

J. (2012). Effects of phosphorus availability and genetic variation of leaf

terpene content and emission rate in Pinus pinaster seedlings susceptible

and resistant to the pine weevil, Hylobius abietis. Plant Biol. 14, 66–72.

doi: 10.1111/j.1438-8677.2011.00492.x

Blande, J. D., Tiiva, P., Oksanen, E., and Holopainen, J. K. (2007). Emission of

herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula

× tremuloides) clones under ambient and elevated ozone concentrations in the

field. Glob. Change Biol. 13, 2538–2550. doi: 10.1111/j.1365-2486.2007.01453.x

Bonn, B., von Schneidemesser, E., Butler, T., Churkina, G., Ehlers, C., Grote, R.,

et al. (2018). Impact of vegetative emissions on urban ozone and biogenic

secondary organic aerosol: Boxmodel study for Berlin, Germany. J. Clean. Prod.

176, 827–841. doi: 10.1016/j.jclepro.2017.12.164

Bourtsoukidis, E., Kawaletz, H., Radacki, D., Schütz, S., Hakola, H., Hellén, H., et al.

(2013). Impact of Flooding and Drought Conditions on the Emission of Volatile

Organic Compounds of Quercus robur and Prunus serotina. Berlin: Springer.

Bradshaw, A., Hunt, B., and Walmsley, T. (1995). Trees in the Urban Landscape:

Principles and Practice. London; New York, NY: E & FN Spon.

Brasseur, G., Orlando, J. J., and Tyndall, G. S. (1999). Atmospheric Chemistry and

Global Change. Oxford: Oxford University Press.

Frontiers in Forests and Global Change | www.frontiersin.org 11 September 2019 | Volume 2 | Article 5063

https://doi.org/10.1007/s00704-017-2096-7
https://doi.org/10.5194/bgd-2-1739-2005
https://doi.org/10.1111/nph.14671
https://doi.org/10.5194/acp-18-5747-2018
https://doi.org/10.1104/pp.107.111088
https://doi.org/10.1016/S1352-2310(99)00460-4
https://doi.org/10.1016/j.atmosenv.2007.10.068
https://doi.org/10.1016/S1352-2310(03)00391-1
https://doi.org/10.1016/j.scitotenv.2014.04.132
https://doi.org/10.1111/j.1469-8137.1988.tb00267.x
https://doi.org/10.1016/j.envpol.2011.12.016
https://doi.org/10.1093/treephys/tpt018
https://doi.org/10.1016/S1352-2310(97)00176-3
https://doi.org/10.1007/s11252-017-0692-z
https://doi.org/10.1111/j.1438-8677.2011.00492.x
https://doi.org/10.1111/j.1365-2486.2007.01453.x
https://doi.org/10.1016/j.jclepro.2017.12.164
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Fitzky et al. Ozone and Urban Vegetation

Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., and Centritto,

M. (2007). Response of isoprene emission and carbon metabolism to

drought in white poplar (Populus alba) saplings. New Phytol. 175, 244–254.

doi: 10.1111/j.1469-8137.2007.02094.x

BUE (2019). “Straßenbaumkataster Hamburg,” in Metaver.de (Hamburg: Behörde

für Umwelt und Energie).

Cabaraban, M. T., Kroll, C. N., Hirabayashi, S., and Nowak, D. J. (2013).

Modeling of air pollutant removal by dry deposition to urban trees using

a WRF/CMAQ/i-Tree Eco coupled system. Environ. Pollut. 176, 123–133.

doi: 10.1016/j.envpol.2013.01.006

Calfapietra, C., Morani, A., Sgrigna, G., Di Giovanni, S., Muzzini, V., Pallozzi,

E., et al. (2016). Removal of ozone by urban and peri-urban forests: evidence

from laboratory, field, and modeling approaches. J. Environ. Qual. 45, 224–233.

doi: 10.2134/jeq2015.01.0061

Calfapietra, C., Mugnozza, G. S., Karnosky, D. F., Loreto, F., and Sharkey, T.

D. (2008). Isoprene emission rates under elevated CO2 and O3 in two field-

grown aspen clones differing in their sensitivity to O3. New Phytol. 179, 55–61.

doi: 10.1111/j.1469-8137.2008.02493.x

Calfapietra, C., Pallozzi, E., Lusini, I., and Velikova, V. (2013). “Modification

of BVOC emissions by changes in atmospheric [CO2] and air pollution,” in

Biology, Controls and Models of Tree Volatile Organic Compound Emissions.

(Dotrecht: Springer), 253–284.

Calfapietra, C., Peñuelas, J., and Niinemets, U. (2015). Urban plant physiology:

adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 20,

72–75. doi: 10.1016/j.tplants.2014.11.001

Cape, J. N., Hamilton, R., and Heal, M. R. (2009). Reactive uptake of ozone

at simulated leaf surfaces: Implications for ‘non-stomatal’ ozone flux. Atmos.

Environ. 43, 1116–1123. doi: 10.1016/j.atmosenv.2008.11.007

Carriero, G., Brunetti, C., Fares, S., Hayes, F., Hoshika, Y., Mills, G., et al. (2016).

BVOC responses to realistic nitrogen fertilization and ozone exposure in silver

birch. Environ. Pollut. 213, 988–995. doi: 10.1016/j.envpol.2015.12.047

Carter, W. P. L. (1994). Development of ozone reactivity scales for

volatile organic compounds. J. Air Waste Manage. 44, 881–899.

doi: 10.1080/1073161X.1994.10467290

Carter, W. P. L. (2000). Documentation of the SAPRC-99 Chemical Mechanism for

VOC Reactivity Assessment. Sacramento, CA: California Air Resources Board.

Carter, W. P. L. (2010). Updated Maximum Incremental Reactivity Scale and

Hydrocarbon Bin Reactivities for Regulatory Applications. Sacramento, CA:

California Air Resources Board.

Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S. (1988). The

role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case

study. Science 241, 1473–1475. doi: 10.1126/science.3420404

Chaves, M. M., Maroco, J. P., and Pereira, J. S. (2003). Understanding plant

responses to drought—from genes to the whole plant. Funct. Plant Biol. 30,

239–264. doi: 10.1071/FP02076

Cheng, H. R., Guo, H., Saunders, S. M., Lam, S. H. M., Jiang, F., Wang, X. M.,

et al. (2010). Assessing photochemical ozone formation in the Pearl River

Delta with a photochemical trajectory model. Atmos. Environ. 44, 4199–4208.

doi: 10.1016/j.atmosenv.2010.07.019

Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., et al. (2017).

Effect of VOC emissions from vegetation on air quality in Berlin during a

heatwave. Environ. Sci. Technol. 51, 6120–6130. doi: 10.1021/acs.est.6b06514

Clark, J. R., and Kjelgren, R. (1990). Water as a limiting factor in the development

of urban trees. J. Arboric. 16, 203–208.

Collier, C. G. (2006). The impact of urban areas on weather. Q. J. R. Meteor. Soc.

132, 1–25. doi: 10.1256/qj.05.199

Connop, S., Vandergert, P., Eisenberg, B., Collier, M. J., Nash, C., Clough, J.,

et al. (2016). Renaturing cities using a regionally-focused biodiversity-led

multifunctional benefits approach to urban green infrastructure. Environ. Sci.

Policy 62, 99–111. doi: 10.1016/j.envsci.2016.01.013

Copolovici, L., and Niinemets, U. (2010). Flooding induced emissions

of volatile signalling compounds in three tree species with

differing waterlogging tolerance. Plant Cell Environ. 33, 1582–1594.

doi: 10.1111/j.1365-3040.2010.02166.x

Cornelis, J., and Hermy, M. (2004). Biodiversity relationships in urban

and suburban parks in Flanders. Landsc. Urban Plan. 69, 385–401.

doi: 10.1016/j.landurbplan.2003.10.038

Costa, M., and Baldasano, J. M. (1996). Development of a source emission model

for atmospheric pollutants in the Barcelona area. Atmos. Environ. 30, 309–318.

doi: 10.1016/1352-2310(95)00221-J

Courtois, E. A., Paine, C. E., Blandinieres, P. A., Stien, D., Bessiere, J. M., Houel,

E., et al. (2009). Diversity of the volatile organic compounds emitted by 55

species of tropical trees: a survey in French Guiana. J. Chem. Ecol. 35:1349.

doi: 10.1007/s10886-009-9718-1

Criegee, R. (1975). Mechanism of ozonolysis. Angew. Chem. Int. Edit. 14, 745–752.

doi: 10.1002/anie.197507451

Curtis, A. J., Helmig, D., Baroch, C., Daly, R., and Davis, S. (2014).

Biogenic volatile organic compound emissions from nine tree species

used in an urban tree-planting program. Atmos. Environ. 95, 634–643.

doi: 10.1016/j.atmosenv.2014.06.035

Czerniawska-Kusza, I., Kusza, G., and Duzynski, M. (2004). Effect of deicing salts

on urban soils and health status of roadside trees in the Opole region. Environ.

Toxicol. 19, 296–301. doi: 10.1002/tox.20037

Dale, A. G., and Frank, S. D. (2014). The effects of urban warming on

herbivore abundance and street tree condition. PLoS ONE 9:e102996.

doi: 10.1371/journal.pone.0102996

Dale, A. G., and Frank, S. D. (2017). Warming and drought combine

to increase pest insect fitness on urban trees. PLoS ONE 12:e0173844.

doi: 10.1371/journal.pone.0173844

Dani, K. G., Jamie, I. M., Prentice, I. C., and Atwell, B. J. (2014). Evolution

of isoprene emission capacity in plants. Trends Plant Sci. 19, 439–446.

doi: 10.1016/j.tplants.2014.01.009

Dani, K. S., Jamie, I. M., Prentice, I. C., and Atwell, B. J. (2015). Species-specific

photorespiratory rate, drought tolerance and isoprene emission rate in plants.

Plant Signal. Behav. 10:e990830. doi: 10.4161/15592324.2014.990830

Day, S. D.,Wiseman, P. E., Dickinson, S. B., andHarris, J. R. (2010). Contemporary

concepts of root system architecture of urban trees. Arboric Urban For

36, 149–159. doi: 10.1016/j.atmosenv.2010.02.045

de Souza, V. F., Niinemets, Ü., Rasulov, B., Vickers, C. E., Júnior, S. D., Araújo, W.

L., et al. (2018). Alternative carbon sources for isoprene emission. Trends Plant

Sci. 23, 1081–1101. doi: 10.1016/j.tplants.2018.09.012

Devakumar, A., Prakash, P. G., Sathik, M., and Jacob, J. (1999). Drought alters the

canopy architecture and micro-climate of Hevea brasiliensis trees. Trees Struct.

Funct. 13, 161–167. doi: 10.1007/PL00009747

Dollard, G., Dumitrean, P., Telling, S., Dixon, J., and Derwent, R. (2007).

Observed trends in ambient concentrations of C2-C8 hydrocarbons in the

United Kingdom over the period from 1993 to 2004. Atmos. Environ. 41,

2559–2569. doi: 10.1016/j.atmosenv.2006.11.020

Drake, B. G., Raschke, K., and Salisbury, F. B. (1970). Temperature and

transpiration resistances of Xanthium leaves as affected by air temperature,

humidity, and wind speed. Plant Physiol. 46, 324–330. doi: 10.1104/pp.46.2.324

Duane, M., Poma, B., Rembges, D., Astorga, C., and Larsen, B. (2002). Isoprene

and its degradation products as strong ozone precursors in Insubria, Northern

Italy. Atmos. Environ. 36, 3867–3879. doi: 10.1016/S1352-2310(02)00359-X

EEA (2018a). Air Quality in Europe−2018 Report, EEA Report No 12/2018, EEA

Reports. European Environment Agency, Copenhagen.

EEA (2018b). Exceedance of Air Quality Standards in Urban Areas (CSI 004). 02

October 2018 ed. Copenhagen: European Environmental Agency.

Ehlers, C., Klemp, D., Rohrer, F., Mihelcic, D., Wegener, R., Kiendler-Scharr,

A., et al. (2016). Twenty years of ambient observations of nitrogen oxides

and specified hydrocarbons in air masses dominated by traffic emissions in

Germany. Faraday Dis. 189, 407–437. doi: 10.1039/C5FD00180C

EMEP/CORINAIR (1999). Atmospheric Emission Inventory Guidebook, 2nd

Edn. Copenhagen: European Environmental Agency.

Equiza, M., Calvo-Polanco, M., Cirelli, D., Senorans, J., Wartenbe, M., Saunders,

C., et al. (2017). Long-term impact of road salt (NaCl) on soil and

urban trees in Edmonton, Canada. Urban Forest. Urban Green. 21, 16–28.

doi: 10.1016/j.ufug.2016.11.003

Escobedo, F. J., Kroeger, T., and Wagner, J. E. (2011). Urban forests and pollution

mitigation: analyzing ecosystem services and disservices. Environ. Pollut. 159,

2078–2087. doi: 10.1016/j.envpol.2011.01.010

EU (2008). Directive 2008/50/EC of the European Parliament and of the Council

of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe (OJ L 152,

11.6.2008). (Brussels: European Union), 1–44.

Frontiers in Forests and Global Change | www.frontiersin.org 12 September 2019 | Volume 2 | Article 5064

https://doi.org/10.1111/j.1469-8137.2007.02094.x
https://doi.org/10.1016/j.envpol.2013.01.006
https://doi.org/10.2134/jeq2015.01.0061
https://doi.org/10.1111/j.1469-8137.2008.02493.x
https://doi.org/10.1016/j.tplants.2014.11.001
https://doi.org/10.1016/j.atmosenv.2008.11.007
https://doi.org/10.1016/j.envpol.2015.12.047
https://doi.org/10.1080/1073161X.1994.10467290
https://doi.org/10.1126/science.3420404
https://doi.org/10.1071/FP02076
https://doi.org/10.1016/j.atmosenv.2010.07.019
https://doi.org/10.1021/acs.est.6b06514
https://doi.org/10.1256/qj.05.199
https://doi.org/10.1016/j.envsci.2016.01.013
https://doi.org/10.1111/j.1365-3040.2010.02166.x
https://doi.org/10.1016/j.landurbplan.2003.10.038
https://doi.org/10.1016/1352-2310(95)00221-J
https://doi.org/10.1007/s10886-009-9718-1
https://doi.org/10.1002/anie.197507451
https://doi.org/10.1016/j.atmosenv.2014.06.035
https://doi.org/10.1002/tox.20037
https://doi.org/10.1371/journal.pone.0102996
https://doi.org/10.1371/journal.pone.0173844
https://doi.org/10.1016/j.tplants.2014.01.009
https://doi.org/10.4161/15592324.2014.990830
https://doi.org/10.1016/j.atmosenv.2010.02.045
https://doi.org/10.1016/j.tplants.2018.09.012
https://doi.org/10.1007/PL00009747
https://doi.org/10.1016/j.atmosenv.2006.11.020
https://doi.org/10.1104/pp.46.2.324
https://doi.org/10.1016/S1352-2310(02)00359-X
https://doi.org/10.1039/C5FD00180C
https://doi.org/10.1016/j.ufug.2016.11.003
https://doi.org/10.1016/j.envpol.2011.01.010
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Fitzky et al. Ozone and Urban Vegetation

Fahey, R. T., Bialecki, M. B., and Carter, D. R. (2013). Tree growth and resilience

to extreme drought across an urban land-use gradient. Arboric. Urban Forest.

39, 279–285. doi: 10.1007/s11104-012-1459-1

Fares, S., Schnitzhofer, R., Jiang, X., Guenther, A., Hansel, A., and Loreto,

F. (2013). Observations of diurnal to weekly variations of monoterpene-

dominated fluxes of volatile organic compounds from mediterranean forests:

implications for regional modeling. Environ. Sci. Technol. 47, 11073–11082.

doi: 10.1021/es4022156

Fittschen, C., Assaf, E., and Vereecken, L. (2017). Experimental and theoretical

investigation of the reaction NO + OH + O2 → HO2 + NO2. J. Phys. Chem.

A 121, 4652–4657. doi: 10.1021/acs.jpca.7b02499

Forkel, R., Stockwell, W. R., and Steinbrecher, R. (1999). Multilayer

canopy/chemistry model to simulate the effect of in-canopy processes on

the emission rates of biogenic VOCs.WIT Trans. Ecol. Environ. 28, 45–49.

Fortunati, A., Barta, C., Brilli, F., Centritto, M., Zimmer, I., Schnitzler, J. P.,

et al. (2008). Isoprene emission is not temperature-dependent during and after

severe drought-stress: a physiological and biochemical analysis. Plant J. 55,

687–697. doi: 10.1111/j.1365-313X.2008.03538.x

Funk, J., Mak, J., and Lerdau, M. (2004). Stress-induced changes in carbon sources

for isoprene production in Populus deltoides. Plant Cell Environ. 27, 747–755.

doi: 10.1111/j.1365-3040.2004.01177.x

Gallaun, H., Zanchi, G., Nabuurs, G.-J., Hengeveld, G., Schardt, M., and Verkerk,

P. J. (2010). EU-wide maps of growing stock and above-ground biomass in

forests based on remote sensing and field measurements. Forest Ecol. Manag.

260, 252–261. doi: 10.1016/j.foreco.2009.10.011

Gatehouse, J. A. (2002). Plant resistance towards insect herbivores: a dynamic

interaction. New Phytol. 156, 145–169. doi: 10.1046/j.1469-8137.2002.00519.x

Genard-Zielinski, A. C., Ormeno, E., Boissard, C., and Fernandez, C. (2014).

Isoprene emissions from downy oak under water limitation during an

entire growing season: what cost for growth? PLoS ONE 9:e112418.

doi: 10.1371/journal.pone.0112418

Geron, C. D., Guenther, A. B., and Pierce, T. E. (1994). An improved model for

estimating emissions of volatile organic compounds from forests in the eastern

United States. J. Geophys. Res. Atmos. 99, 12773–12791. doi: 10.1029/94JD00246

Ghimire, R. P., Kivimäenpää, M., Kasurinen, A., Häikiö, E., Holopainen,

T., and Holopainen, J. K. (2017). Herbivore-induced BVOC emissions

of Scots pine under warming, elevated ozone and increased nitrogen

availability in an open-field exposure. Agric. Forest Meteorol. 242, 21–32.

doi: 10.1016/j.agrformet.2017.04.008

Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., et al. (2016). Urban

stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing.

Atmos. Chem. Phys. 16, 2901–2920. doi: 10.5194/acp-16-2901-2016

Goldstein, A. H., Fan, S.M., Goulden,M. L.,Munger, J.W., andWofsy, S. C. (1996).

Emissions of ethene, propene and 1-butene by a midlatitude forest. J. Geophys.

Res. 101, 9149–9157. doi: 10.1029/96JD00334

Goodger, J. Q., Heskes, A. M., andWoodrow, I. E. (2013). Contrasting ontogenetic

trajectories for phenolic and terpenoid defences in Eucalyptus froggattii. Ann.

Bot. 112, 651–659. doi: 10.1093/aob/mct010

Gratani, L., and Varone, L. (2014). Atmospheric carbon dioxide concentration

variations in Rome: relationship with traffic level and urban park size. Urban

Ecosyst. 17, 501–511. doi: 10.1007/s11252-013-0340-1

Gromke, C., and Ruck, B. (2009). On the impact of trees on dispersion processes

of traffic emissions in street canyons. Bound Lay Meteorol. 131, 19–34.

doi: 10.1007/s10546-008-9301-2

Grote, R. (2019). Environmental Impacts on Biogenic Emissions

of Volatile Organic Compounds (VOCs), UBA-FB 002772/Eng.

Dessau-Rosslau: Umweltbundesamt.

Grote, R., Monson, R. K., and Niinemets, Ü. (2013). “Leaf-level models of

constitutive and stress-driven volatile organic compound emissions,” in Biology,

Controls and Models of Tree Volatile Organic Compound Emissions, eds Ü.

Niinemets and R. K. Monson (Dordrecht: Springer), 315–355.

Grote, R., Samson, R., Alonso, R., Amorim, J. H., Cariñanos, P., Churkina, G.,

et al. (2016). Functional traits of urban trees: air pollution mitigation potential.

Front. Ecol. Environ. 14, 543–550. doi: 10.1002/fee.1426

Grote, R., Sharma, M., Ghirardo, A., and Schnitzler, J. P. (2019). A new modelling

approach for estimating abiotic and biotic stress-induced de novo emissions of

biogenic volatile organic compounds from plants. Front. Forest. Glob. Change.

2:26. doi: 10.3389/ffgc.2019.00026

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,

Emmons, L. K., et al. (2012). The model of emissions of gases and

aerosols from nature version 2.1 (MEGAN2.1): an extended and updated

framework for modeling biogenic emissions. Geosci. Model. Dev. 5, 1471–1492.

doi: 10.5194/gmd-5-1471-2012

Guenther, A. B., Monson, R. K., and Fall, R. (1991). Isoprene and monoterpene

emission rate variability: observations with eucalyptus and emission

rate algorithm development. J. Geophys. Res. Atmos. 96, 10799–10808.

doi: 10.1029/91JD00960

Guidolotti, G., Pallozzi, E., Gavrichkova, O., Scartazza, A., Mattioni, M., Loreto,

F., et al. (2019). Emission of constitutive isoprene, induced monoterpenes and

other volatiles under high temperatures in Eucalyptus camaldulensis: a 13C

labelling study. Plant Cell Environ. 42, 1929–1938. doi: 10.1111/pce.13521

Hagenbjörk, A., Malmqvist, E., Mattisson, K., Sommar, N. J., and Modig, L.

(2017). The spatial variation of O3, NO, NO2 and NOx and the relation

between them in two Swedish cities. Environ. Monit. Assess. 189:161.

doi: 10.1007/s10661-017-5872-z

Hakola, H., Laurila, T., Lindfors, V., Hellén, H., Gaman, A., and Rinne, J. (2001).

Variation of the VOC emission rates of birch species during the growing season.

Boreal. Environ. Res. 6, 237–249.

Hakola, H., Rinne, J., and Laurila, T. (1998). The hydrocarbon emission

rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula)

and European aspen (Populus tremula). Atmos. Environ. 32, 1825–1833.

doi: 10.1016/S1352-2310(97)00482-2

Hakola, H., Tarvainen, V., Bäck, J., Ranta, H., Bonn, B., Rinne, J., et al. (2006).

Seasonal variation of mono-and sesquiterpene emission rates of Scots pine.

Biogeosciences 3, 93–101. doi: 10.5194/bg-3-93-2006

Halliday, H. S., Thompson, A. M., Kollonige, D. W., and Martins, D. K.

(2015). Reactivity and temporal variability of volatile organic compounds

in the Baltimore/DC region in July 2011. J. Atmos. Chem. 72, 197–213.

doi: 10.1007/s10874-015-9306-4

Hardin, P. J., and Jensen, R. R. (2007). The effect of urban leaf area on summertime

urban surface kinetic temperatures: a Terre Haute case study. Urban Forest.

Urban Green. 6, 63–72. doi: 10.1016/j.ufug.2007.01.005

Harrison, S. P., Morfopoulos, C., Dani, K. S., Prentice, I. C., Arneth, A., Atwell,

B. J., et al. (2013). Volatile isoprenoid emissions from plastid to planet. New

Phytol. 197, 49–57. doi: 10.1111/nph.12021

Hartikainen, K., Nerg, A.-M., Kivimäenpää, M., Kontunen-Soppela, S., Mäenpää,

M., Oksanen, E., et al. (2009). Emissions of volatile organic compounds

and leaf structural characteristics of European aspen (Populus tremula)

grown under elevated ozone and temperature. Tree Physiol. 29, 1163–1173.

doi: 10.1093/treephys/tpp033

Hartikainen, K., Riikonen, J., Nerg, A.-M., Kivimäenpää, M., Ahonen,

V., Tervahauta, A., et al. (2012). Impact of elevated temperature and

ozone on the emission of volatile organic compounds and gas exchange

of silver birch (Betula pendula Roth). Environ. Exp. Bot. 84, 33–43.

doi: 10.1016/j.envexpbot.2012.04.014

Heinrich, A. (2007). An estimate of biogenic emissions of volatile organic

compounds during summertime in China. Environ. Sci. Pollut. Res. Int. 14,

69–75. doi: 10.1065/espr2007.02.376

Himanen, S. J., Nerg, A. M., Nissinen, A., Pinto, D. M., Stewart, C. N.,

Poppy, G. M., et al. (2009). Effects of elevated carbon dioxide and

ozone on volatile terpenoid emissions and multitrophic communication of

transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181, 174–186.

doi: 10.1111/j.1469-8137.2008.02646.x

Holman, C., Harrison, R., and Querol, X. (2015). Review of the efficacy of low

emission zones to improve urban air quality in European cities.Atmos. Environ.

111, 161–169. doi: 10.1016/j.atmosenv.2015.04.009

Holmes, K. R., Nelson, T. A., Coops, N. C., and Wulder, M. A. (2013). Biodiversity

indicators show climate change will alter vegetation in parks and protected

areas. Diversity 5, 352–373. doi: 10.3390/d5020352

Holopainen, J. K. (2004). Multiple functions of inducible plant volatiles. Trends

Plant Sci. 9, 529–533. doi: 10.1016/j.tplants.2004.09.006

Holopainen, J. K., and Blande, J. D. (2013). Where do herbivore-induced plant

volatiles go? Front. Plant Sci. 4:185. doi: 10.3389/fpls.2013.00185

Holopainen, J. K., and Gershenzon, J. (2010). Multiple stress factors

and the emission of plant VOCs. Trends Plant Sci. 15, 176–184.

doi: 10.1016/j.tplants.2010.01.006

Frontiers in Forests and Global Change | www.frontiersin.org 13 September 2019 | Volume 2 | Article 5065

https://doi.org/10.1007/s11104-012-1459-1
https://doi.org/10.1021/es4022156
https://doi.org/10.1021/acs.jpca.7b02499
https://doi.org/10.1111/j.1365-313X.2008.03538.x
https://doi.org/10.1111/j.1365-3040.2004.01177.x
https://doi.org/10.1016/j.foreco.2009.10.011
https://doi.org/10.1046/j.1469-8137.2002.00519.x
https://doi.org/10.1371/journal.pone.0112418
https://doi.org/10.1029/94JD00246
https://doi.org/10.1016/j.agrformet.2017.04.008
https://doi.org/10.5194/acp-16-2901-2016
https://doi.org/10.1029/96JD00334
https://doi.org/10.1093/aob/mct010
https://doi.org/10.1007/s11252-013-0340-1
https://doi.org/10.1007/s10546-008-9301-2
https://doi.org/10.1002/fee.1426
https://doi.org/10.3389/ffgc.2019.00026
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.1029/91JD00960
https://doi.org/10.1111/pce.13521
https://doi.org/10.1007/s10661-017-5872-z
https://doi.org/10.1016/S1352-2310(97)00482-2
https://doi.org/10.5194/bg-3-93-2006
https://doi.org/10.1007/s10874-015-9306-4
https://doi.org/10.1016/j.ufug.2007.01.005
https://doi.org/10.1111/nph.12021
https://doi.org/10.1093/treephys/tpp033
https://doi.org/10.1016/j.envexpbot.2012.04.014
https://doi.org/10.1065/espr2007.02.376
https://doi.org/10.1111/j.1469-8137.2008.02646.x
https://doi.org/10.1016/j.atmosenv.2015.04.009
https://doi.org/10.3390/d5020352
https://doi.org/10.1016/j.tplants.2004.09.006
https://doi.org/10.3389/fpls.2013.00185
https://doi.org/10.1016/j.tplants.2010.01.006
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Fitzky et al. Ozone and Urban Vegetation

Hu, B., Jarosch, A.-M., Gauder, M., Graeff-Hönninger, S., Schnitzler, J.-P., Grote,

R., et al. (2018). VOC emissions and carbon balance of two bioenergy

plantations in response to nitrogen fertilization: a comparison of Miscanthus

and Salix. Environ. Pollut. 237, 205–217. doi: 10.1016/j.envpol.2018.02.034

IPCC (2014). “Climate change 2014: Impacts, adaptation, and vulnerability. Part

A: Global and sectoral aspects,” in Contribution of Working Group II to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change, eds C. B.

Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir,

et al. (Cambridge, UK; New York, NY: Cambridge University Press).

Janhäll, S. (2015). Review on urban vegetation and particle air

pollution–deposition and dispersion. Atmos. Environ. 105, 130–137.

doi: 10.1016/j.atmosenv.2015.01.052

Jansen, R. M., Miebach, M., Kleist, E., Van Henten, E. J., and Wildt, J. (2009).

Release of lipoxygenase products and monoterpenes by tomato plants as

an indicator of Botrytis cinerea-induced stress. Plant Biol. 11, 859–868.

doi: 10.1111/j.1438-8677.2008.00183.x

Jardine, K. J., Jardine, A. B., Souza, V. F., Carneiro, V., Ceron, J. V.,

Gimenez, B. O., et al. (2016). Methanol and isoprene emissions from

the fast growing tropical pioneer species Vismia guianensis (Aubl.) Pers.

(Hypericaceae) in the central Amazon forest. Atmos. Chem. Phys. 16,

6441–6452. doi: 10.5194/acp-16-6441-2016

Jenkin, M., Young, J., and Rickard, A. (2015). The MCM v3. 3.1

degradation scheme for isoprene. Atmos. Chem. Phys. 15, 11433–11459.

doi: 10.5194/acp-15-11433-2015

Kaiser, J., Skog, K. M., Baumann, K., Bertman, S. B., Brown, S. B., Brune,

W. H., et al. (2016). Speciation of OH reactivity above the canopy

of an isoprene-dominated forest. Atmos. Chem. Phys. 16, 9349–9359.

doi: 10.5194/acp-16-9349-2016

Kamens, R. M., Gery, M. W., Jeffries, H. E., Jackson, M., and Cole, E. I. (1982).

Ozone-isoprene reactions: Product formation and aerosol potential. Int. J.

Chem. Kinet. 14, 955–975.

Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G. (2009). A new

European plant-specific emission inventory of biogenic volatile organic

compounds for use in atmospheric transport models. Biogeosciences 6, 1059–

1087. doi: 10.5194/bg-6-1059-2009

Karl, T., Graus, M., Striednig, M., Lamprecht, C., Hammerle, A., Wohlfahrt,

G., et al. (2017). Urban eddy covariance measurements reveal significant

missing NOx emissions in Central Europe. Sci. Rep. UK 7:2536.

doi: 10.1038/s41598-017-02699-9

Kaser, L., Karl, T., Yuan, B., Mauldin, R. L. III., Cantrell, C., Guenther, A. B., et al.

(2015). Chemistry-turbulence interactions and mesoscale variability influence

the cleansing efficiency of the atmosphere. Geophys. Res. Lett. 42,894–810; 903.

doi: 10.1002/2015GL066641

Kesselmeier, J., and Staudt, M. (1999). Biogenic volatile organic compounds

(VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33,

23–88. doi: 10.1023/A:1006127516791

Kim, S., Guenther, A., Karl, T., and Greenberg, J. (2011). Contributions of

primary and secondary biogenic VOC tototal OH reactivity during the

CABINEX (Community Atmosphere-Biosphere INteractions Experiments)-09

field campaign. Atmos. Chem. Phys. 11, 8613–8623. doi: 10.5194/acp-11-8613-

2011

Kirchner, F., Jeanneret, F., Clappier, A., Krüger, B., van den Bergh, H., and Calpini,

B. (2001). Total VOC reactivity in the planetary boundary layer: 2. A new

indicator for determining the sensitivity of the ozone production to VOC and

NOx. J. Geophys. Res. Atmos. 106, 3095–3110. doi: 10.1029/2000JD900603

Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential

across tree species indicates a continuum between isohydric and anisohydric

behaviours. Funct. Ecol. 28, 1313–1320. doi: 10.1111/1365-2435.12289

König, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and

Rudolph, J. (1995). Relative contribution of oxygenated hydrocarbons

to the total biogenic VOC emissions of selected mid-European

agricultural and natural plant species. Atmos. Environ. 29, 861–874.

doi: 10.1016/1352-2310(95)00026-U

Kopinga, J., and Van den Burg, J. (1995). Using soil and foliar analysis to diagnose

the nutritional status of urban trees. J. Arboric. 21:17.

Kourtchev, I., Ruuskanen, T.M., Keronen, P., Sogacheva, L., DalMaso,M., Reissell,

A., et al. (2008). Determination of isoprene and alpha-/beta-pinene oxidation

products in boreal forest aerosols from Hyytiälä, Finland: diel variations

and possible link with particle formation events. Plant Biol. 10, 138–149.

doi: 10.1055/s-2007-964945

Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M.

T., et al. (2010). Modelling exploration of the future of European beech

(Fagus sylvatica L.) under climate change—range, abundance, genetic

diversity and adaptive response. Forest. Ecol. Manage. 259, 2213–2222.

doi: 10.1016/j.foreco.2009.12.023

Kühn, I., Brandl, R., and Klotz, S. (2004). The flora of German cities is naturally

species rich. Evol. Ecol. Res. 6, 749–764.

Lahr, E. C., Schade, G. W., Crossett, C. C., and Watson, M. R. (2015).

Photosynthesis and isoprene emission from trees along an urban-rural gradient

in Texas. Glob. Chang. Biol. 21, 4221–4236. doi: 10.1111/gcb.13010

Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P., Cionni, I., Eyring, V., et al.

(2013). The atmospheric chemistry and climate model intercomparison project

(ACCMIP): overview and description of models, simulations and climate

diagnostics. Geosci. Model. Dev. 6, 179–206. doi: 10.5194/gmd-6-179-2013

Lamb, B., Guenther, A., Gay, D., and Westberg, H. (1987). A national

inventory of biogenic hydrocarbon emissions. Atmos. Environ. 21, 1695–1705.

doi: 10.1016/0004-6981(87)90108-9

Lambers, H., Chapin, III F. S., and Pons, T. L. (1998). Plant Physiological Ecology.

New-York, NY: Springer.

Lerdau, M., Litvak, M., Palmer, P., and Monson, R. (1997). Controls over

monoterpene emissions from boreal forest conifers. Tree Physiol. 17, 563–569.

doi: 10.1093/treephys/17.8-9.563

Lerdau, M., Matson, P., Fall, R., and Monson, R. (1995). Ecological controls over

monoterpene emissions from Douglas-fir (Pseudotsuga menziesii). Ecology 76,

2640–2647. doi: 10.2307/2265834

Li, D., Sun, T., Liu, M., Yang, L., Wang, L., and Gao, Z. (2015). Contrasting

responses of urban and rural surface energy budgets to heat waves explain

synergies between urban heat islands and heat waves. Environ. Res. Lett.

10:054009. doi: 10.1088/1748-9326/10/5/054009

Li, D. W., Shi, Y., He, X. Y., and Chi, G. Y. (2011). Seasonal variations of BVOCs

emission from Ginkgo biloba linn in urban area. Appl. Mech. Mater. 71–78,

2891–2894. doi: 10.4028/www.scientific.net/AMM.71-78.2891

Liao, C.-T., and Lin, C.-H. (2001). Physiological adaptation of crop plants to

flooding stress. Proc. Natl. Sci. Counc. Repub. China B 25, 148–157.

Livesley, S. J., McPherson, G. M., and Calfapietra, C. (2016). The urban

forest and ecosystem services: impacts on urban water, heat, and pollution

cycles at the tree, street, and city scale. J. Environ. Qual. 45, 119–124.

doi: 10.2134/jeq2015.11.0567

Loreto, F., Barta, C., Brilli, F., and Nogues, I. (2006). On the induction of

volatile organic compound emissions by plants as consequence of wounding

or fluctuations of light and temperature. Plant Cell Environ. 29, 1820–1828.

doi: 10.1111/j.1365-3040.2006.01561.x

Loreto, F., and Delfine, S. (2000). Emission of isoprene from salt-

stressed Eucalyptus globulus leaves. Plant Physiol. 123, 1605–1610.

doi: 10.1104/pp.123.4.1605

Loreto, F., and Schnitzler, J.-P. (2010). Abiotic stresses and induced BVOCs.Trends

Plant Sci. 15, 154–166. doi: 10.1016/j.tplants.2009.12.006

Loreto, F., and Velikova, V. (2001). Isoprene produced by leaves protects the

photosynthetic apparatus against ozone damage, quenches ozone products,

and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127,

1781–1787. doi: 10.1104/pp.010497

Maronga, B., Gross, G., Raasch, S., Banzhaf, S., Forkel, R., Heldens,W., et al. (2019).

Development of a new urban climate model based on the model PALM–Project

overview, planned work, and first achievements. Meteorol. Z. 28, 105–119.

doi: 10.1127/metz/2019/0909

Medlyn, B. E., Barton, C. V.M., Broadmeadow,M. S. J., Ceulemans, R., De Angelis,

P., Forstreuter, M., et al. (2001). Stomatal conductance of forest species after

long-term exposure to elevated CO2 concentration: a synthesis. New Phytol.

149, 247–264. doi: 10.1046/j.1469-8137.2001.00028.x

Meeningen, Y. V., Schurgers, G., Rinnan, R., and Holst, T. (2016). BVOC

emissions from English oak (Quercus robur) and European beech (Fagus

sylvatica) along a latitudinal gradient. Biogeosciences 13, 6067–6080.

doi: 10.5194/bg-13-6067-2016

Meineke, E. K., Dunn, R. R., Sexton, J. O., and Frank, S. D. (2013). Urban

warming drives insect pest abundance on street trees. PLoS ONE 8:e59687.

doi: 10.1371/journal.pone.0059687

Frontiers in Forests and Global Change | www.frontiersin.org 14 September 2019 | Volume 2 | Article 5066

https://doi.org/10.1016/j.envpol.2018.02.034
https://doi.org/10.1016/j.atmosenv.2015.01.052
https://doi.org/10.1111/j.1438-8677.2008.00183.x
https://doi.org/10.5194/acp-16-6441-2016
https://doi.org/10.5194/acp-15-11433-2015
https://doi.org/10.5194/acp-16-9349-2016
https://doi.org/10.5194/bg-6-1059-2009
https://doi.org/10.1038/s41598-017-02699-9
https://doi.org/10.1002/2015GL066641
https://doi.org/10.1023/A:1006127516791
https://doi.org/10.5194/acp-11-8613-2011
https://doi.org/10.1029/2000JD900603
https://doi.org/10.1111/1365-2435.12289
https://doi.org/10.1016/1352-2310(95)00026-U
https://doi.org/10.1055/s-2007-964945
https://doi.org/10.1016/j.foreco.2009.12.023
https://doi.org/10.1111/gcb.13010
https://doi.org/10.5194/gmd-6-179-2013
https://doi.org/10.1016/0004-6981(87)90108-9
https://doi.org/10.1093/treephys/17.8-9.563
https://doi.org/10.2307/2265834
https://doi.org/10.1088/1748-9326/10/5/054009
https://doi.org/10.4028/www.scientific.net/AMM.71-78.2891
https://doi.org/10.2134/jeq2015.11.0567
https://doi.org/10.1111/j.1365-3040.2006.01561.x
https://doi.org/10.1104/pp.123.4.1605
https://doi.org/10.1016/j.tplants.2009.12.006
https://doi.org/10.1104/pp.010497
https://doi.org/10.1127/metz/2019/0909
https://doi.org/10.1046/j.1469-8137.2001.00028.x
https://doi.org/10.5194/bg-13-6067-2016
https://doi.org/10.1371/journal.pone.0059687
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Fitzky et al. Ozone and Urban Vegetation

Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., et al.

(2011). Evidence of widespread effects of ozone on crops and (semi-)natural

vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk

maps. Glob. Change Biol. 17, 592–613. doi: 10.1111/j.1365-2486.2010.02217.x

Monks, P., Granier, C., Fuzzi, S., Stohl, A., Williams, M., Akimoto, H., et al.

(2009). Atmospheric composition change–global and regional air quality.

Atmos. Environ. 43, 5268–5350. doi: 10.1016/j.atmosenv.2009.08.021

Morani, A., Nowak, D., Hirabayashi, S., Guidolotti, G., Medori, M., Muzzini,

V., et al. (2014). Comparing i-Tree modeled ozone deposition with field

measurements in a periurban Mediterranean forest. Environ. Pollut. 195,

202–209. doi: 10.1016/j.envpol.2014.08.031

Munck, I. A., Bennett, C. M., Camilli, K. S., and Nowak, R. S. (2010). Long-term

impact of de-icing salts on tree health in the Lake Tahoe Basin: environmental

influences and interactions with insects and diseases. Forest. Ecol. Manage. 260,

1218–1229. doi: 10.1016/j.foreco.2010.07.015

Neirynck, J., and Verstraeten, A. (2018). Variability of ozone deposition

velocity over a mixed suburban temperate forest. Front. Environ. Sci. 6:82.

doi: 10.3389/fenvs.2018.00082

Niinemets, Ü. (2010). Mild versus severe stress and BVOCs: thresholds,

priming and consequences. Trends Plant Sci. 15, 145–153.

doi: 10.1016/j.tplants.2009.11.008

Niinemets, Ü., Arneth, A., Kuhn, U., Monson, R., Peñuelas, J., and

Staudt, M. (2010). The emission factor of volatile isoprenoids: stress,

acclimation, and developmental responses. Biogeosciences 7, 2203–2223.

doi: 10.5194/bg-7-2203-2010

Niinemets, Ü., Kännaste, A., and Copolovici, L. (2013). Quantitative patterns

between plant volatile emissions induced by biotic stresses and the degree of

damage. Front. Plant Sci. 4:262. doi: 10.3389/fpls.2013.00262

Niinemets, Ü., and Monson, R. K. (2013). Biology, Controls and Models

of Tree Volatile Organic Compound Emissions. Dordrecht: Springer.

doi: 10.1007/978-94-007-6606-8

Nölscher, A. C., Yanez-Serrano, A. M., Wolff, S., De Araujo, A.
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The effect of elevated ozone (eO3) and soil salinization with alkaline salts in northeastern

(NE) China is a serious concern affecting the success of the national replanting project. As

planted areas exceed 4 million hectares in China, we must consider future afforestation

efforts after thinning and harvesting. Here, we investigated eO3 and salt stress on

Dahurian larch (Larix gmelinii var. japonica; DL) and Japanese larch (L. kaempferi; JL)

seedlings. The seedlings were exposed to eO3 (∼70 nmol mol−1) and ambient ozone

(aO3) (∼25∼40 nmol mol−1) for one growing season in an open top chamber (OTC)

system with simulated salinity in NE China (alkaline salt, NaHCO3:NaCl = 9:1, 20mM

Na+). The seedlings under salt-free treatment received tap water. Although the effects

of eO3 on DL were not significant, eO3 significantly increased total dry mass and total

leaf area index of JL. There was no significant reduction in total dry mass under salt

stress in both species. The relationship between needle Na and other mineral contents

indicated that both species maintained K contents even with excess Na contents in

needles. DL showed relatively lower reduction of other mineral contents, indicating higher

salt tolerance of needle element homeostasis than JL. Contrary to our hypothesis, there

were no interaction effects of eO3 and salt stress on both species. These results indicated

that DL seedlingsmay bemore suitable than JL seedlings as a future afforestation species

under eO3 levels of <70 nmol mol−1 at saline soil condition.

Keywords: combined effect, salt stress, larch, interspecific differences, homeostasis

INTRODUCTION

Ground-level ozone (O3) is the most harmful air pollutant to forest ecosystems on both local
and global scales (Paoletti et al., 2007, 2010; Matyssek et al., 2012; Sicard and Dalstein-Richier,
2015; Sicard et al., 2016). Ozone suppresses plant growth, accelerates leaf senescence, changes
carbon allocation to roots, and induces nutritional imbalances in leaves (Matyssek et al., 2012;
Agathokleous et al., 2015; Shi et al., 2017). Effects of elevated O3 (eO3) on forest ecosystems are
a concern in northeast (NE) Asia (Koike et al., 2013; Akimoto et al., 2015). In China, the annual
daily maximum O3 concentration in some regions often reaches 60 nmol mol−1 (Gaudel et al.,
2018). Recent studies have predicted that the annual mean change in surface O3 concentrations
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in Asia will rise to ∼8 nmol mol−1 by 2050 (Lee et al., 2015;
Turnock et al., 2018). The current eO3 level is high enough to
suppress tree growth and degrade ecosystem health (Chen et al.,
2015; Feng et al., 2015). Thus, the conservation of forests in China
is an issue of increasing interest in regions that face multiple
environmental stresses, such as eO3, nitrogen deposition, and
drought (Reilly et al., 2007; Fang et al., 2014; Hu et al., 2015; Yuan
et al., 2016).

Several regions of China have begun reforestation because
of the intensive thinning and harvesting that has persisted
since the Grain for Green Project began in 1999 (Zhang et al.,
2000; Feng et al., 2005; Xu, 2011). However, in NE China,
where forestry practices have been active, not all afforestation
is well established cause to the soil salinization that occurs
with low precipitation and high temperature (e.g., Feng et al.,
2005; Sakai, 2012). Saline soil occupies ∼99,000 km2 of China’s
land area (Zhang et al., 2010; Xu, 2011; Li et al., 2014). The
frequency of extreme high temperatures in summer has been
increasing in China over 60-fold since the 1950s (Sun et al.,
2014). The relative drought conditions may increase the potential
for salinization stresses (Polle and Chen, 2015). Especially in
NE China, soil salinization often occurs with low precipitation
and high temperature (Ma and Fu, 2006; Zhou et al., 2011;
Sakai, 2012). Excess salinity causes physiological and metabolic
imbalance in plants via ionic stresses (Marschner, 2012; Polle
and Chen, 2015; Wungrampha et al., 2018). The effects of
salinity on plants have been investigated with sodium chloride
(NaCl), which are known to cause ionic imbalance and inhibit
mineral ion uptake of potassium (K) and calcium (Ca) (Gerosa
et al., 2014; Guidi et al., 2016; Plesa et al., 2018). Since arid
and semi-arid lands contain chlorides and carbonates of several
minerals, including Na, Ca, and magnesium (Mg), the severe
effects of alkaline salt accumulation on plants and trees have
received increased attention (Yang et al., 2008; Liu and Shi,
2010; Wang et al., 2013). For example, in the Songnen plain of
Heilongjiang Province, 3.2 million ha are influenced by alkaline
salt accumulation, and continues to expand by 20,000 ha per year
(Wang et al., 2009). Thus, for forest conservation in NE China,
we should investigate the combined stresses of eO3 and salts on
forest growth and health.

The combined effects of eO3 and salt have largely been
described in Mediterranean areas. For example, metabolic
responses in pomegranate (Punica granatum L.) have indicated
eco-physiological adaptation up to 50mM NaCl stress, but
did not mitigate O3-induced oxidative stresses (Calzone et al.,
2019). Holm oaks (Quercus ilex L.) treated under 150mM NaCl
treatments did not show significant photosynthetic depression
by eO3 (Guidi et al., 2016). In addition, previous studies have
reported that salt stresses mitigated negative effects of eO3

via stomatal closure (Gerosa et al., 2014), and its effects were
exacerbated under salt stresses (Calzone et al., 2019), or no
interaction between eO3 and salt stresses (Guidi et al., 2016).
Thus, the views of the combined effects of eO3 and salt stresses
are still inconsistent.

Larch (Larix sp.) has a higher tolerance to harsh conditions
and is widely planted throughout northern hemisphere (Gower
and Richards, 1990; Zhang et al., 2000; Ryu et al., 2009; Mao et al.,

2010). For examples, Dahurian larch (Larix gmelinii) has a higher
expectation as an afforestation species in NE China (Zhang et al.,
2000; Shi et al., 2010). Japanese larch (L. kaempferi, JL) has been
planted in the Korean peninsula and northern Japan (Lee et al.,
2004; Ryu et al., 2009). The current larch forests occupy over 40
% of the total carbon growing stock in Eurasian boreal forests,
including NE China (Alexeyev et al., 2000; Wang et al., 2001).
Based on the Chinese policy of replantation since 1999, increased
afforestation has raised concerns regarding low species diversity
in forests and poor ecological functions, such as material cycling
and habitat provision (Xu and Wilkes, 2004; Zhang and Zhang,
2007). Thus, the effects of eO3 and salt should be investigated on
Larix sp. (Zhang et al., 2000; Chazdon, 2008; Ryu et al., 2009) as
well as exciting afforestation species, such as Populus sp.

The purpose of this study was to evaluate the effects of eO3

and alkaline salt on Dahurian larch (DL) and Japanese larch
(JL) seedlings. Koike et al. (2012) reported the O3 suppressed
photosynthesis rate of only DL but not of JL. While many studies
have reported that O3-induce inhibition can be determined by
absorbed O3 amount (Matyssek et al., 2004; Hu et al., 2015), there
were no significant differences in stomatal conductance between
DL and JL seedlings (Koike et al., 2012). These results indicate
that O3 sensitivity differences between these two larch species
can be caused by non-stomatal factors, which may be evaluated
through PSII photochemical systems (Gielen et al., 2006; Guidi
et al., 2016) and the leaf nutritional status (e.g., Barnes et al., 1995;
Shang et al., 2018).

We expected that the inhibitions of eO3 and salt could be
evaluated via nutrient imbalance status. It was reported that the
nutrient concentrations in plants, such as N and P, were increased
by eO3, which may be adaptive strategy against eO3 (Cao et al.,
2016; Shang et al., 2018). Besides, Larch may have specific salt
tolerance to the K homeostasis (Renault, 2005; Plesa et al., 2018).
It was reported that NaCl treatment did not inhibit K absorption
in larch saplings; rather, the saplings took up more K even with
NaCl treatment compared to the control condition (Renault,
2005; Plesa et al., 2018). K homeostasis is one of the salt tolerances
and it has been considered as secondary importance in many
published literatures (Tester and Davenport, 2003; Marschner,
2012). There are several other mechanisms to manage excess Na
contents such as the exclusion of Na and osmotic regulation by
compatible solutes (Flowers, 2004; Munns et al., 2006). However,
it has reported that the practical outcomes of these approaches
were not effective on improving salt tolerance of plants under
filed conditions (Shabala and Cuin, 2007; Wang et al., 2013;
Anschütz et al., 2014).

Increasing K contents could induce the homeostasis
of photosynthesis and metabolic activity, and the osmotic
adjustment (Volkov et al., 2003; Shabala and Cuin, 2007). In
fact, an optimal K status can be index for stress resistance when
plants are exposed to abiotic stresses (Marschner, 2012; Wang
et al., 2014). It was reported that a K fertilization compensated
the O3 effects on potted Norway spruce (Picea abies) seedlings
although there were genetic-specific responses (Keller and
Matyssek, 1990; Barnes et al., 1995), suggesting that the species
with relatively higher K content may show insights for the
O3 tolerance. Furthermore, several studies have investigated
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the mineral homeostasis under eO3 (Alcántara et al., 2006;
Agathokleous et al., 2018). These studies suggest that the
homeostatic adjustment in leaf element content can mitigate
physiological inhibitions of eO3 although they focused on the
homeostasis of other mineral element such as iron and P.

Here, we firstly expected that (i) O3 would suppress growth
of DL but not of JL as Koike et al. (2012) reported. However,
we hypothesized (ii) DL is more tolerant relative to JL since it
is more adapted to salty soils due to its ecological distribution
(Abaimov, 2010; Mao et al., 2010; Mamet et al., 2019), where
soil salinization often occurs (Shi et al., 2010; Zhou et al., 2011),
and thus salt treatment would not inhibit K absorption in DL.
This comparison of salt responses between the two larches may
provide novel insights on the eco-physiology to understand how
larch acquires the adaptive capacity to salt stress. Further, it has
reported that the reduction of K content in salt-tolerant wheat
was lower than in salt-sensitive wheat at combined effect of eO3

and salt treatment (Zheng et al., 2014). Hence, given that DL can
maintain higher K contents than JL under eO3 and salt treatment,
(iii) DL may show higher tolerance to the synergic effect than
JL. Based on our results, we assessed the possibility of future
candidate afforestation species in northeast Asian regions.

MATERIALS AND METHODS

Study Site and Materials
Experiments were conducted at the experimental nursery of the
Sapporo Experimental Forest, Hokkaido University in northern
Japan (43◦ 04’ N, 141◦ 20’ E 15m a. s. l.). Two-year-old Dahurian
larch (Larix gmelinii var. japonica; DL) and Japanese larch
(Larix kaempferi; JL) seedlings were cultivated from seeds in the
nursery of the Hokkaido Forestry Research Organization (HRO),
Forestry Research Institute in Bibai city near Sapporo. The
seedlings were transplanted into 1-L pots (Height: 114mm, top
diameter: 135mm, bottom diameter: 95mm) in early May 2017
before buds opened. The initial stem diameter means± standard
deviations were 1.13 ± 0.23mm for DL and 1.32 ± 0.31mm for
JL, and the height was 8.83± 1.35 cm for DL and 8.55± 1.73 cm
for JL, respectively. Soils underneath the seedlings were removed
just before transplantation, with well-weathered volcanic ash soil
(Kanuma and Akadama soil, 1:1, v/v) used as cultivation soil in
pots. To measure the original nutrient status of the soil, ∼10 g of
soil and 25ml ultrapure water were mixed and shaken for 1 h.
The samples were poured through filter paper (110mm mesh,
ADVANTEC, Tokyo, Japan) and the filtrate was centrifuged at
2,000G for 20min. The supernatant fluid was mixed with 61%
nitric acid and adjusted for the concentration of 2% nitric acid.
Mineral elements contents of K, Ca, Mg, and Na were measured
by ICP-MS (ELAN, DRC-e; Perkin Elmer, Waltham, MA, USA).
The Na adsorption rate of this soil medium was also measured.
The three levels of NaCl dissolved in demineralized water were
loaded on the pot soil, which contained approximately 1,200 g
of soil without seedlings, seven times during 3 weeks (110, 190,
and 240 mmol Na in total). There were no leaks from the pot
after each loading. After completing Na loading, the soil sample
was obtained from the well-mixed and dried soil. Na content of
the sample was measured by the same method described above.

Na adsorption rate was calculated as the difference between
total loaded Na and the water extracted Na amount. Results of
the original nutrient status and the Na adsorption rate were
summarized in Supplemental Data. Until treatments started,
irrigation was manually carried out in the morning once every
3 or 4 days to avoid soil drying. Balanced liquid fertilizer (200ml,
1/2,000, v/v, HYPONEX, Japan; 36.2mg N L−1, 142mg P L−1,
47.1mg K L−1) was applied once every week to ensure nutrient
balance (four times in total).

Experimental Design
Four treatments were totally established in this study: ambient
O3 and tap water irrigation as the control (aO3+CW), elevated
O3 and control water irrigation (eO3+CW), ambient O3 and
salt water irrigation (aO3+SW), and elevated O3 and salt
water irrigation (eO3+SW), respectively. All treatments were
conducted from June 27 to September 25, 2017 before the winter
season. The mean temperature was 19.6◦C and precipitation
was 127.38mm during the experimental period. The open top
chamber (OTC; 1.2 × 1.2 × 1.2m) system was adopted to
control the O3 concentration levels in each treatment. Seedlings
were grown in OTC surrounded by a polyvinyl chloride film
(Noh-bi Co. Ltd., Sapporo, Japan), such that approximately 88%
sunlight could be transmitted without UVB and UVC radiation.
The O3 concentration monitored is described in Table 1. More
detailed descriptions of the methodology of the O3 exposure
system in OTCs were provided in Sugai et al. (2019). Plants
in the salt treatment were watered with 200ml of saline water.
Control plants were maintained by watering with 200ml of tap
water. The applications were performed at 3- or 4-day intervals
for a total of 20 times. Mixed salt composed of alkaline salt
(NaHCO3) and neutral salt (NaCl) was used to imitate the
realistic extant salt-alkaline soil condition of NE China (Ge and
Li, 1990; Sakai, 2012). The two salts were mixed NaHCO3:NaCl
= 9:1 to make 20mMNa+ saline water. To prevent salt leaching,
rainfall was excluded by plastic shelters over the top of the OTC
only during rainy days. During the final experimental period
when the seedlings were harvested, 10 g of fresh soil samples
were taken from the surface and bottom soils in the pots of all
treatments to measure soil pH. The depth of soil sampling was
set at approximately 2 cm from both the surface and bottom.
The soil was shaken for 1 h, with 25ml ion-exchanged water as
soon as possible after sampling. The soil pH was measured by a
portable pH meter (M-12, Horiba, Japan). All treatments were
replicated four times with 16 OTCs, with a split-plot completely
randomized design with four seedlings in each OTC (totally
128 seedlings).

Growth, Leaf Mass Area, and Total Leaf
Area Index
Sixty four seedlings for each species were harvested and washed
with tap water. After washing, needles, branches, stems, and roots
were separated. Each sample was oven dried at 70◦C until a
constant weight was achieved, and then weighed.

Mature needle leaves were sampled at the same shoot position
near the crown in each seedling at the end of September 2017.
Part of the needle samples was used to measure the leaf mass area
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TABLE 1 | Summary of the mean concentration at ambient (aO3) and elevated

ozone (eO3) for daytime (06:00–18:00) and over 24 h in the OTC from June to

September 2017, and pH in the surface and bottom soil (∼2 cm layer) of Dahurian

larch (DL) and Japanese larch (JL) seedlings under all treatments: ambient O3 and

tap water irrigation (aO3+CW) as the control, elevated O3 and control water

irrigation (eO3+CW), ambient O3 and salt water irrigation (aO3+SW), and

elevated O3 and salt water irrigation (eO3+SW) in September 2017.

O3 concentration (nmol mol−1)

Daytime average 24h average

aO3 June 43.99 ± 0.79 39.28 ± 0.62

July 43.59 ± 0.82 36.99 ± 0.61

August 40.09 ± 1.48 32.24 ± 0.94

September 34.02 ± 1.00 27.11 ± 0.89

eO3 June 71.91 ± 1.29 50.28 ± 1.39

July 71.13 ± 1.12 47.38 ± 1.28

August 70.64 ± 1.44 46.60 ± 1.62

September 70.39 ± 1.19 46.17 ± 1.87

Soil pH

Surface soil Bottom soil

DL aO3+CW 6.37 ± 0.01 6.05 ± 0.03

eO3+CW 6.52 ± 0.04 6.08 ± 0.03

aO3+SW 7.96 ± 0.11 7.19 ± 0.01

eO3+SW 8.17 ± 0.13 6.93 ± 0.01

JL aO3+CW 6.37 ± 0.03 6.04 ± 0.04

eO3+CW 6.37 ± 0.02 6.11 ± 0.02

aO3+SW 7.92 ± 0.07 7.21 ± 0.07

eO3+SW 8.10 ± 0.02 7.29 ± 0.04

All values are means ± SE.

(LMA) and the other part was used to measure the contents of
several nutrient elements (see below). The projected area of fresh
needles was measured by an image scanner (LIDE 200, Canon,
Japan). After the projection measurement, the needle dry mass
was measured by the same method as above. LMA was calculated
as dry weight divided by the needle area projected.

As a species difference between two studied larches, the lower
needle proportion of DL than JL has been reported (Harayama
et al., 2013; Dong-Gyu et al., 2015). To evaluate these differences
under eO3 and salt stress, we calculated needle dry mass divided
by total dry mass as the needle ratio. While larch species have
both short and long needles (Gower and Richards, 1990), the
ratio of mature short needles dry mass is relatively lower than the
mature long needles at a seedling stage (Powell, 1988). Based on
this characteristic, we estimated the leaf area at the whole plant
level as a total leaf area index (TLA) by LMA of mature needle
leaves times needle dry mass per a seedling.

Maximal Photochemical Efficiency of
Photosystem II
Themaximal photochemical efficiency of photosystem II (Fv/Fm)
was measured with a portable fluorometer (PAM-2000, Walz,
Effeltrich, Germany) in September 2017. The measurement was

conducted after an overnight dark adaptation to evaluate the
chronic photoinhibition (Krause et al., 1995; Kitao et al., 2003).
Fv/Fm was calculated with the following parameters and formula:
F0 for the steady state yields, Fm for the maximum yields
measured under irradiance of approximately 5,000 µmol m−2

s−1 photon flux density for 1 s, and Fv/Fm = (Fm-F0)/Fm as
defined by Schreiber et al. (1986).

Nutrition and Chlorophyll Contents in
Needles
Approximately 15mg powder samples obtained from mature
needles sampled at the end of September 2017 were weighed
and used to measure nitrogen (N) content with a NC analyzer
(Elementar, Vario EL III, Japan). Approximately 50mg of powder
samples were weighed and digested with 2ml of 61% nitric
acid (Kanto Chemical, Tokyo, Japan) at 110◦C for ∼2 h. A
0.5ml solution of hydrogen peroxide was added and the sample
was heated continuously at 110◦C for 20min. After cooling to
room temperature, 10ml of 2% nitric acid were added. The
concentration of K, Ca, Mg, and Na in these samples was
measured by ICP-MS (ELan, DRC-e; PerkinElmer, Waltham,
MA, U.S.A.). Element contents were calculated as the dry weight
unit and converted as the leaf area unit by LMA.

Samples were stored at −75◦C after sampling and weighing.
Needles were immersed in 2ml dimethyl sulfoxide and incubated
at 65◦C in the dark to extract chlorophyll (Chl). Then, the extracts
were measured with a spectrophotometer (Gen spec III, Hitachi,
Tokyo, Japan) with two waves; 665 nm (A665) and 648 nm (A648).
Chl-a and Chl-b contents were calculated according to Barnes
et al. (1992) and Shinano et al. (1996). The total Chl (i.e., Chl
a+b) and Chl a/b were also calculated. We also obtained ratio of
total Chl/needle N content (Chl/N) as an index of allocation in
foliar nitrogen (Kitaoka and Koike, 2004).

Statistical Analyses
Statistical analyses were conducted using R (R Core Team, 2017).
All the data of response variables were set as the four mean
values per treatment, which were obtained from four seedlings
per species in each chamber (n = 4). The effects of eO3 and salt
stress were determined by analysis of variance in each species
(Two-way ANOVA). The relationships between needle Na and
mineral element contents at all treatments in both species were
analyzed using a generalized linear mix model (GLMM, n = 32).
The random effect was set as the experimental unit. When species
differences and their interactions were significant, correlation
analysis was performed in each species (n = 16). Relationships
between TLA and content of each element in needles were
analyzed by the same GLMM. In each model, explanatory
variables (= fixed effects) were set with each mineral element,
species, and its interaction, whereas the response variables were
the mean values at all treatments in both species. In all the
linear analyses, the coefficient of determination (R2), P-value,
and the Akaike’s information criterion were calculated (AIC,
Akaike, 1974). AIC is one of the most popular criterion for linear
model identification and the optimal model is selected when AIC
is minimized.
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FIGURE 1 | Biometric responses to salt treatment and elevated ozone (O3) in Dahurian larch [DL, Larix gmelinii, (A–E)] and Japanese larch [JL, Larix kaempferi, (F–J)].

White bar means ambient ozone (O3) and control tap water (aO3+CW), light gray bar means elevated O3 and control tap water (eO3+CW), dark gray bar means

ambient O3 and salt water (aO3+SW), and black bar means elevated O3 and salt water (eO3+SW). The explanatory variables were set as elevated O3 (O), salt

treatment (S), and its interaction (OxS). Results of Two-way ANOVA (n = 4) with statistical significant difference are shown as: ***P < 0.001, *P < 0.05, and n.s. P ≥

0.05. Fv/Fm, the maximal photochemical efficiency of photosystem II; LMA, leaf mass area; Needle ratio, needle dry mass to total dry mass; TLA, total leaf area index.
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RESULTS

Response to Elevated O3 and Salt Stress
No significant effects of elevated O3 (eO3) were observed on
the total dry mass of DL. We did not observe significant
inhibition of O3 on Fv/Fm between both larch species. However,
O3 significantly increased total dry mass and TLA of only JL
(P < 0.05, Figure 1). The mean value of total dry mass and
TLA at eO3 were ∼23 and 34% higher than at the ambient O3

condition, respectively. No significant effects of O3 were observed
in other biometric (i.e., needle ratio and LMA, Figure 1) and
biochemical parameters (i.e., element contents and chlorophyll
in needles, Table 2).

While salt stress had also no significant effects on all biometric
and physiological parameters of the two species, several element
contents in needles were significantly changed (Table 2). Needle
Na contents were significantly increased under salt stresses in
both larches. In the dry mass unit, needle Na content of DL
with salt treatment was approximately eight times greater than
in the salt-free condition (P < 0.05) whereas Na of JL with salt
treatment was at least 13 times greater (P < 0.001). Salt stress
increased Chl ratio only in DL, which showed an ∼14% increase
in average values (P < 0.01). In contrast, salt stress significantly
reduced K, Ca, andMg contents of JL. In the dry mass unit, the K,
Ca, andMg contents of DL decreased∼17% under salt treatment
(P < 0.05), 36% (P < 0.001), and 34% (P < 0.001), respectively.
In the needle area unit, however, the increment of N content was
observed in only JL (P < 0.05).

Relationship Between Needle Na and
Other Elements
The overall relationship between Na and K contents was
not significant in the larch seedlings (Figure 2). However, a
significant relationship between Na and K contents was observed
in JL (R2

= 0.2, P < 0.05, AIC = 48.6) but not in DL (R2
=

0.02, P= 0.33, AIC= 47.1). A significant relationship between Ca
and Mg were observed in both larch species, as was a significant
relationship between Na and Mg content (DL; R2

= 0.35, P <

0.01, AIC = −10.22, JL; R2
= 0.23, P < 0.05, AIC = −4.63).

On the contrary, there were species differences in the relationship
between Na and Ca content (P < 0.05, Figure 3). The coefficient
value of Na on Ca content was ∼1.8 times higher in JL than
DL (Table 3). All the relationships between Na and N contents
in both and each larch species were not significant (Figure 2,
Table 3).

Relationship Between TLA and Needle
Mineral Elements
Table 3 shows the summary of model formulas to explain TLA
by each element in needles. The best model to explain TLA of
both larches determined by AIC was constructed with N (R2

=

0.54, P < 0.001, AIC = 211). This significant relationship was
also observed within each species (DL; R2

= 0.35, P < 0.01, AIC
= 94, JL; R2

= 0.23, P < 0.05, AIC= 116) whereas the highest R2

in model of DL was performed by K (R2
= 0.36, P < 0.01, AIC

= 94) although AIC was the same value with N (Figure 3). The

TABLE 2 | Summary of the biochemical needle traits; mineral element contents, total chlorophyll (Chl) contents, Chl a, Chl b, the ratio of Chl a/b, and the ratio of total Chl/

needle N contents in Dahurian larch (DL) and Japanese larch (JL) seedlings at all the treatments.

Species Factor Treatments Two-way ANOVA

aO3+CW eO3+CW aO3+SW eO3+SW O3 Salt O3 × Salt

DL Na (mg g−1) 0.64 ± 0.27 0.29 ± 0.10 3.13 ± 0.62 4.50 ± 1.21 n.s. * n.s.

K (mg g−1) 4.10 ± 0.42 4.97 ± 0.54 4.09 ± 0.51 4.84 ± 0.28 n.s. n.s. n.s.

Ca (mg g−1) 2.61 ± 0.22 2.71 ± 0.18 2.16 ± 0.05 2.07 ± 0.16 n.s. n.s. n.s.

Mg (mg g−1) 1.45 ± 0.06 1.54 ± 0.13 1.24 ± 0.05 1.22 ± 0.10 n.s. n.s. n.s.

N (mg g−1) 13.8 ± 0.38 13.0 ± 0.58 15.7 ± 0.55 15.6 ± 1.19 n.s. n.s. n.s.

Total Chl (mg g FW−1) 8.75 ± 0.39 10.09 ± 1.10 9.24 ± 1.49 7.78 ± 0.97 n.s. n.s. n.s.

Chl-a (mg g FW−1) 6.87 ± 0.29 7.83 ± 0.76 7.58 ± 1.25 6.18 ± 0.82 n.s. n.s. n.s.

Chl-b (mg g FW−1) 1.88 ± 0.11 2.26 ± 0.36 1.67 ± 0.24 1.60 ± 0.15 n.s. n.s. n.s.

Chl a/b 3.62 ± 0.16 3.60 ± 0.25 4.46 ± 0.18 3.78 ± 0.14 n.s. ** n.s.

Chl/N (mg mg−1) 0.63 ± 0.02 0.79 ± 0.11 0.59 ± 0.11 0.50 ± 0.03 n.s. n.s. n.s.

JL Na (mg g−1) 0.28 ± 0.04 0.08 ± 0.02 3.82 ± 0.43 4.55 ± 0.49 n.s. *** n.s.

K (mg g−1) 5.05 ± 0.46 5.23 ± 0.51 3.95 ± 0.41 4.63 ± 0.66 n.s. * n.s.

Ca (mg g−1) 3.01 ± 0.12 2.97 ± 0.22 1.89 ± 0.09 1.95 ± 0.05 n.s. *** n.s.

Mg (mg g−1) 1.58 ± 0.02 1.60 ± 0.09 1.00 ± 0.06 1.12 ± 0.09 n.s. *** n.s.

N (mg g−1) 12.5 ± 1.08 12.5 ± 1.06 14.5 ± 0.45 13.8 ± 0.98 n.s. n.s. n.s.

Total Chl (mg g FW−1) 8.41 ± 0.68 9.21 ± 0.99 7.64 ± 0.99 8.04 ± 1.49 n.s. n.s. n.s.

Chl-a (mg g FW−1) 6.44 ± 0.53 7.11 ± 0.75 5.95 ± 0.77 6.32 ± 1.30 n.s. n.s. n.s.

Chl-b (mg g FW−1) 1.97 ± 0.16 2.10 ± 0.24 1.69 ± 0.25 1.72 ± 0.20 n.s. n.s. n.s.

Chl a/b 3.28 ± 0.16 3.38 ± 0.05 3.61 ± 0.25 3.55 ± 0.32 n.s. n.s. n.s.

Chl/N (mg mg−1) 0.68 ± 0.07 0.74 ± 0.02 0.52 ± 0.06 0.57 ± 0.06 n.s. n.s. n.s.

All the values are shown as the mean ± SE with the results of two-way ANOVA (n = 4). Statistical significant differences are shown as: ***P < 0.001, **P < 0.01, *P < 0.05, and n.s.,

P ≥ 0.05.
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FIGURE 2 | Relationship between the needle Na content and other element contents (K and Na: A, Ca and Na: B, Mg and Na: C, N and Na: D) of mass based unit

(mg g−1) in Dahurian larch (DL, white circle) and Japanese larch (JL, gray square) were analyzed by GLMM with statistical significant difference are shown as: ***P <

0.001, *P < 0.05, and n.s. P ≥ 0.05. The explanatory variables were set as needle Na content (Na), species (Sp), and its interaction (NaxSp). The relationships

between needle Na content and other element contents are shown as solid lines for both species, a fine dotted line for DL, and a heavy dotted line for JL.

second best model of both larches was constructed with K (R2

= 0.28, P < 0.01, AIC = 225) while the third models contained
almost equal R2 and AIC values (Ca; R2

= 0.20, P < 0.01, AIC
= 229, Mg; R2

= 0.20, P < 0.01, AIC = 229). However, no
significant relationships between TLA and K, Ca, andMg content
were observed in JL (Table 4). Although needle Na content was
significantly correlated with TLA in both larch species (P < 0.05),
the result of GLMM showed a species difference in TLA (P <

0.001). When the effects of Na contents on TLA were analyzed in
each species, the significant relationship was observed only in JL
(R2

= 0.20, P < 0.05, AIC = 116) but not in DL (R2
= 0.02, P =

0.28, AIC= 101).

DISCUSSION

We evaluated initial growth of Dahurian larch (DL) and Japanese
larch (JL) seedlings treated with the simulated eO3 and alkaline
salt stress. In contrast to our expectations, eO3 did not suppress
the total dry mass of both larch species. Moreover, eO3 did not
induce significant nutritional imbalance in needles even with salt
stress (Table 2). Elevated O3 significantly increased the dry mass
of JL while we did not observe any significant inhibitions of

biometric and physiological parameters, except for TLA. In fact,
the similar results indicated that JL can show hormetic responses
of photosynthesis rates and dry mass to mild O3 stress (Dong-
Gyu et al., 2015; Sugai et al., 2018). Since leaf quantity as well
as photosynthetic capacity are related to plant growth (Poorter,
1989), the dry mass increment might be related to the TLA
response (Figure 1).

The best factor explaining variables of TLA was needle N
contents. The results of negative correlation between TLA and
N contents suggests that DL originally may not produce TLA
regardless of any growth conditions as relatively higher N
contents per needle area, while JLmay be able to adjust producing
TLA as relatively lower N contents. This result suggests that the
N use efficiency in forming needles may vary between the two
larches, and DL may have adaptive abilities for harsh conditions,
such as low temperature and limited soil nutrient availability
more than JL (Gower and Richards, 1990). Koike et al. (2012)
reported that the photosynthetic N use efficiency of DL was
higher (over 20%) compared to JL. Instead of these higher
abilities in a needle scale, DL may be inferior to adjust TLA along
with abiotic environments (Abaimov, 2010; Polezhaeva et al.,
2010; Mamet et al., 2019).
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FIGURE 3 | Relationship between the total leaf area index (TLA, cm2 plant−1) and needle element contents (TLA and Na: A, TLA and K: B, TLA and Ca: C, TLA and

Mg: D, TLA and N: E) of leaf area-based unit (g m−2) in Dahurian larch (DL, white circle) and Japanese larch (JL, gray square) were analyzed by GLMM with statistical

significant difference are shown as: ***P < 0.001, **P < 0.01, *P < 0.05, and n.s. P ≥ 0.05. The explanatory variables were set as each needle element content,

species (Sp), and its interaction. The relationships between TLA and each element content are shown as solid lines for both species, a fine dotted line for DL, and a

heavy dotted line for JL.

In a previous study, 1-month-old saplings of European
larch (Larix decidua Mill) showed a 16% lower dry mass at
150mM NaCl compared to controls (Plesa et al., 2018). While
salt treatment showed no significant suppression in any initial
growth, we observed significant biochemical responses in needles
(i.e., several element contents, Table 2). As expected, DL showed

a relatively lower degree of needle Na content under salt
stress compared to JL. The increased degree based on mean
values was up to 3.5 times, indicating that the capacity to
accumulate Na into needles may be higher in JL. Furthermore,
DL showed no change in K contents under salt stress as compared
with JL. High Na concentration can have negative effects on
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TABLE 3 | Results of the generalized liner mixed models (GLMM) to describe the

relationship between needle Na and other element contents in Dahurian larch (DL)

and Japanese larch (JL).

Model formula R2 P-value AIC

Both larch species

K = −0.13 Na + 4.90 0.087 0.057 91.43

Ca = −0.18 Na + 2.81 0.586 <0.001 24.14

Mg = −0.09 Na + 1.54 0.577 <0.001 −17.68

N = 0.28 Na + 13.3 0.099 0.954 134.36

DL

K = −0.05 Na + 4.61 0.015 0.326 47.05

Ca = −0.13 Na + 2.66 0.467 <0.01 11.61

Mg = −0.07 Na + 1.52 0.521 <0.001 −10.22

N = 0.27 Na + 14.0 0.107 0.891 67.51

JL

K = −0.22 Na + 5.19 0.202 <0.05 48.63

Ca = −0.24 Na + 2.97 0.723 <0.001 13.59

Mg = −0.11 Na + 1.57 0.654 <0.001 −4.63

N = 0.30 Na + 12.7 0.118 0.904 68.89

All the values of element content were mass based unit (mg g−1). R2, the coefficient of

determination; AIC, Akaike’s information criterion.

physiological functions due to the inhibition of enzyme activities
and K uptakes (Marschner, 2012; Polle and Chen, 2015). K
has an outstanding role in plant-water relations, contributing
to the osmotic potential of cells and tissues (Marschner, 2012).
Reductions of K contents under salt stress in JL, therefore,
supported this competitive absorption with Na. However, the salt
effect on needle K content was not significant in DL. Previous
studies have also reported stable values of K of other Larix
species (e.g., Larix laricina Du Roi; Renault, 2005, L. decidua
Mill; Plesa et al., 2018). The K homeostasis can be accomplished
by cation selectivity in uptake systems from the cytoplasm into
vacuoles. Plesa et al. (2018) have pointed out that needle K
content of L. decidua increased under salt treatment. Since we did
not observe any increments of K contents across all treatments,
future investigations should compare the specific mechanism
differences of K homeostasis within the genus Larix.

We observed homeostasis of other mineral contents.
Regression analysis showed negative correlations between needle
Na and Ca, and between Na and Mg contents in both larches
and each larch seedlings (Figure 2), while significant salt effects
were only observed in JL (Table 2). In particular, we observed
significant species differences regarding the relationship between
needle Na and Ca contents, suggesting that the Na sensitivity
to needle Ca contents was higher in JL than DL. Ca plays an
important role in the cell membrane, cell wall stabilization,
signaling functions, and the mitigation of salinity (Köster et al.,
2019). These results supported our hypothesis that salt tolerance
would be greater in DL, and that mineral homeostasis was related
to other mineral elements apart from K. DL may obtain the
adaptive capacity to salt stress as the original distribution of the
species where the primary salinization is likely to occur cause to
drought condition (Polezhaeva et al., 2010; Mamet et al., 2019).
In contrast, JL is naturally distributed in central Japan. Species

TABLE 4 | Results of the generalized liner mixed models (GLMM) to describe the

relationship between total leaf area (TLA, cm2) and needle mineral element

contents in Dahurian larch (DL) and Japanese larch (JL).

Model formula R2 P-value AIC

Both larch species

TLA = −7.31 Na + 25.3 0.097 <0.05 232

TLA = −19.9K + 38.5 0.278 <0.01 225

TLA = −32.2 Ca + 36.0 0.196 <0.01 229

TLA = −56.5Mg + 35.8 0.204 <0.01 229

TLA = −9.57N + 45.8 0.535 <0.001 211

DL

TLA = −1.71 Na + 17.8 0.024 0.282 101

TLA = −12.5K + 28.7 0.355 <0.01 94

TLA = −13.5 Ca + 23.7 0.101 0.115 99

TLA = −15.5Mg + 21.4 0.041 0.227 100

TLA = −6.30N + 35.7 0.346 <0.01 94

JL

TLA = −12.5 Na + 32.1 0.198 <0.05 116

TLA = −2.50K + 29.8 0.002 0.435 120

TLA = 7.55 Ca + 25.6 0.005 0.600 120

TLA = 15.5Mg + 25.3 0.005 0.607 120

TLA = −11.5N + 49.8 0.232 <0.05 116

All the values of element content were area-based unit (g m−2).

differences in adaptive traits, including salt tolerance, may be
induced by the geographical isolation from other continental
Larix species in the interglacial period (Polezhaeva et al., 2010)

While we hypothesized that the increment of N content via
the synergy with K+ uptake would be either a species specific
responses or related to osmotic regulations, we did not observe
significant changes in needle N content, except for the area-
based value of JL (Table 2). However, we observed higher Chl
a/b under salt stress in DL, but not in JL. In tamarack saplings
(L. laricina Du Roi), 60mM NaCl reduced the total Chl and the
Chl a/b (Renault, 2005). However, in L. decidua, 150mM NaCl
reduced the total Chl, while the Chl a/b did not change (Plesa
et al., 2018). A high value of Chl a/b under salt treatment was
previously reported in herbaceous plants, including sunflower
(Helianthus annuus L., Liu and Shi, 2010) and wheat (Triticum
aestivum, Yang et al., 2008), while a lower Chl a/b was reported in
poplar (Populus alba x P. berolinensis, Wang et al., 2013). Given
the preferential reduction in Chl-b than Chl-a under salt stresses,
it may act to protect the reaction center core more than the
light harvesting capacity related to Chl-b. Future studies should
continue to investigate Nmetabolism, with the consideration that
this process may be related closely to Chl metabolic regulation
(e.g., Yang et al., 2008).

Irrespective of our hypothesis, we observed no clear combined
effect of eO3 and salt stress on physiological parameters in
larch seedlings (Table 2). Therefore, even if we employ these
larch species to manage soil salinization under eO3, their initial
growth may not be suppressed by eO3 and salinity stress. Non-
significant changes of needle element contents indicated that the
element variables were maintained even under the combined
effect. These results suggested that eO3 may not inhibit the
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element homeostasis of larch species, especially in DL. This
may be attributed to non-significant changes of the total dry
mass in DL treated with single O3 and the combined effect. It
was reported that the stable P and iron (Fe) contents in leaves
implied homeostatic readjustment, contributing to preventing
physiological inhibition of eO3 (Agathokleous et al., 2018). It is
possible that the combined effect, and even single O3 effect, were
not detected due to the physiological status of seedlings, which
were shown in Fv/Fm (Figure 1). In all treatments, Fv/Fm showed
almost the same value from 0.70 to 0.72, which were significantly
lower than the standard normal value of health condition ranged
between 0.81 and 0.83 (Schreiber et al., 1986).

We conclude that the effects of eO3 and alkaline salt stress did
not suppress the total dry mass of both larch species. Although
we did not find any specific factors explaining species difference
in O3 sensitivities between species, TLA may be involved. Stress
adaptive capacity to salt was higher in DL than JL, suggesting that
salt treatment did not reduce needle K content in DL, and DL
also maintained Ca and Mg contents in needles. Specifically, DL
may show the greater salt tolerance to the mineral homeostatic
capacity even under eO3. Further study should evaluate the
relationship between the stomatal responses and K homeostasis
under eO3 and salt stress, which may reveal how larch achieves
the optimal nutrient balance for these stress resistances. Our
results suggest that L. gmelinii seedlings may be future candidates
for afforestation, even under eO3 condition at saline soils.
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Tropospheric ozone (O3) is probably the air pollutant most damaging to vegetation.
Understanding how plants respond to O3 pollution under different climate conditions
is of central importance for predicting the interactions between climate change, ozone
impact and vegetation. This work analyses the effect of O3 fluxes on net ecosystem
productivity (NEP), measured directly at the ecosystem level with the eddy covariance
(EC) technique. The relationship was explored with artificial neural networks (ANNs),
which were used to model NEP using environmental and phenological variables as
inputs in addition to stomatal O3 uptake in Spring and Summer, when O3 pollution is
expected to be highest. A sensitivity analysis allowed us to isolate the effect of O3,
visualize the shape of the O3-NEP functional relationship and explore how climatic
variables affect NEP response to O3. This approach has been applied to eleven
ecosystems covering a range of climatic areas. The analysis highlighted that O3 effects
over NEP are highly non-linear and site-specific. A significant but small NEP reduction
was found during Spring in a Scottish shrubland (−0.67%), in two Italian forests (up
to −1.37%) and during Summer in a Californian orange orchard (−1.25%). Although
the overall seasonal effect of O3 on NEP was not found to be negative for the
other sites, with episodic O3 detrimental effect still identified. These episodes were
correlated with meteorological variables showing that O3 damage depends on weather
conditions. By identifying O3 damage under field conditions and the environmental
factors influencing to that damage, this work provides an insight into O3 pollution,
climate and weather conditions.

Keywords: net ecosystem exchange, european forest, stomatal deposition, tropospheric ozone, artificial neural
networks, climate change
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INTRODUCTION

Tropospheric ozone (O3) is a harmful air pollutant which affects
human health (Ainsworth et al., 2012), damages vegetation,
including natural ecosystems and crops (The Royal Society,
2008), and contributes to climate change, being a greenhouse
gas with a radiative forcing of 0.35–0.37 W m−2 (Shindell et al.,
2009). It is a secondary pollutant, mainly produced through
photochemical reactions of methane, carbon monoxide and
volatile organic compounds in the presence of nitrogen oxides
(Monks et al., 2015).

Although O3 is a natural component of the troposphere, its
concentration has been increasing since the pre-industrial era as
a result of anthropogenic emission of its precursors (Ainsworth
et al., 2012). Nowadays, the background O3 mixing ratio of
the northern hemisphere is 30 to 40 ppb (Parrish et al., 2012),
although large regional differences are recorded due to the strong
influence of weather, which promotes O3 formation in warm, dry
and sunny conditions (see Table 2 for mean O3 mixing ratio at
our study sites).

Following chemical destruction, the second most important
sink of tropospheric O3 is the dry deposition on land surfaces,
primarily controlled by vegetation, which contributes to O3
removal through stomatal uptake, deposition onto the surface,
and in-canopy chemistry (Stevenson et al., 2006). Major O3
uptake occurs at leaf level, controlled by stomatal absorption
(Cieslik, 2004; Fowler et al., 2009). Entering the leaves through
stomata, O3 sets off a chain of oxidative reactions within the
apoplast, damaging cell metabolism (Wohlgemuth et al., 2002).
The main detrimental effect is a reduction in carbon assimilation,
which represents the first evidence of O3 impact over vegetation,
before the occurrence of visible injuries.

Manipulation experiments have been widely used to assess
the impact of O3 over vegetation carbon assimilation capacity
(Karlsson et al., 2000; Manning, 2005; Gerosa et al., 2015).
While this approach has been useful in understanding vegetation
behavior in standard conditions and to derive dose-response
functions, it may be inadequate to provide the complete picture,
since plants are often exposed to unrealistic concentrations, the
approach is often limited to young plants, and the experimental
facilities alter the microclimate.

An ecosystem approach is thus of primary importance
for understanding how O3 pollution affects CO2 uptake by
vegetation and to assess the validity of extrapolating the effect
(Sitch et al., 2007). Eddy covariance (EC) towers, from which
the carbon flux is measured with a wide range of meteorological
variables at high temporal resolution, provide large datasets
which can be used to extrapolate information about ecosystem
responses to O3 pollution (Fares et al., 2018).

A useful tool for investigating functional relationships
between site characteristics and environmental factors such as
climate and other atmospheric conditions is Artificial Neural
Network (ANN) modeling (Aitkenhead and Coull, 2016).
ANNs are very powerful in analyzing and modeling non-linear
relationships owing to their capacity to learn from examples
and generalize, allowing them to explore relationships without
making assumptions about the shape of these relations (such as

are made by other approaches such as multiple linear regression)
(Olden and Jackson, 2002; Moffat et al., 2010). Although ANNs
are primarily used in the building of predictive models, methods
for quantifying the independent variable contributions within
networks have also been developed (Olden et al., 2004), allowing
researchers to use them to understand how climate variables drive
ecosystem responses (Moffat et al., 2010).

In this work, feed-forward ANNs were used to test the
hypothesis that current O3 concentration affect vegetation
photosynthetic CO2 assimilation under field condition by
isolating the effect of O3 on the net ecosystem productivity
(NEP) of eleven ecosystems, characterized by different climatic
condition and O3 concentration, taking into account the
influence of other NEP climatic drivers (solar radiation, air
temperature, vapor pressure deficit, soil water content) and
stomatal conductance. This approach is fully empirical and
avoids a priori assumption on the functional relationships
between the study variables, which are measured directly. The
analysis was conducted using daytime eddy covariance (EC) data
directly measured over: eight northern hemisphere open tree
canopies; one moorland; one grassland and one cropland. We had
the following aims: (1) to determine if current O3 concentrations
affect vegetation photosynthetic CO2 assimilation under field
condition; (2) to quantify potential CO2 assimilation decrease
due to O3; (3) to evaluate how O3 effects change according
to other environmental factors variations. Understanding how
O3 effect over NEP is linked to environmental factors variation
would help understanding vegetation behavior in the context of a
changing climate.

MATERIALS AND METHODS

Study Sites
Eleven sites from three eddy covariance flux measurement
networks were selected to test the effect of O3 pollution on
NEP different type of vegetation: four semi-natural forests,
three planted forests, one orange orchard, one moorland, one
grassland and one cropland. The study sites are spread across
five different Köppen climatic areas: Oceanic (Auchencorth
Moss, Grignon, Lochristi, Speulderbos), Semi-arid-Continental
(Bugac), Subartic (Hyytiälä), Humid-Subtropical (Bosco
Fontana, Ispra) and Mediterranean (Castelporziano, Blodgett,
Lindcove). Information about site location and ecosystem type
can be found in Table 1 and a map showing the ECLAIRE site
locations can be found in Fares et al. (2018).

Datasets
Data used in the development of the ANNs was recorded
continuously from EC towers, at half-hour intervals, from
January 2012 to December 2013 for all sites, except for:
(1) Blodgett where data was collected from January 2001 to
December 2007; (2) Lindcove which operated from 2009 to 2010;
(3) Castelporziano for which data were collected from 2013 to
2015 and (4) Grignon, where only the dataset with rapeseed was
used (31 August 2012 to 15 August 2013). Only relevant data
for detecting O3 effect over NEP were considered in the study.
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TABLE 1 | Brief description of location and ecosystem type for the study sites.

Acronym Site name Country Ecosystem type Main species Location Network References

Au Auchencorth
Moss

United Kingdom Moorland Sphagnum,
Deschampsia
flexuosa,
Eriophorum
vaginatum,
Juncus effusus

55◦47′33′ ′N,
3◦14′36′ ′W

ECLAIRE Flechard and
Fowler, 1998;
Helfter et al., 2015

Bu Bugac HU Grassland 46◦41′31′ ′N,
19◦36′06′ ′E

ECLAIRE Villányi et al., 2008

Gr Grignon FR Crop Brassica napus 48◦51′N, 1◦58′E ECLAIRE Loubet et al., 2011

Hy Hyytiälä FL Boreal Scots pine
forest

Pinus sylvestris 61◦51′N, 24◦17′E ECLAIRE Rannik et al., 2009

Sp Speulderbos NL Douglas fir
plantation

Pseudotsuga
menziesii

52◦15′4′ ′N,
5◦41′24′ ′E

ECLAIRE Erisman et al.,
1997; Copeland
et al., 2014

Lo Lochristi BG Poplar plantation Populus spp. 51◦06′44′′N, 3◦51′

02′′E
Zenone et al., 2016

BF Bosco Fontana IT Mixed forest Carpinus betulus,
Quercus robur,
Quercus cerris,
Quercus rubra

45◦11′51′′N,
10◦44′ 31′′E

ECLAIRE Acton et al., 2016

Is Ispra IT Mixed forest Quercus robur,
Alnus glutinosa,
Populus alba,
Carpinus betulus

45◦45′81′′N,
8◦63′40′′E

ECLAIRE Jensen et al., 2018

CPZ Castelporziano IT Holm oak forest Quercus ilex 41◦70′42′′N,
12◦35′72′′E

ECLAIRE Savi et al., 2016

BL Blodgett United States Pine plantation Pinus ponderosa 38◦53′42′′N,
120◦37′57′′W

AMERIFLUX Fares et al., 2013

Ci Lindcove United States Orange orchard Lindcove sinensis 36◦21′23′′N,
119◦5′32′′W

AMERIFLUX Fares et al., 2013

Last column indicates references where a detailed description of the sites is available.

Since damage occurs due to O3 stomatal absorption (Reich and
Amundson, 1985; Biswas et al., 2007; Broschè et al., 2010), we
reduced the dataset to daytime data (10:00 – 18:00 UTC time)
from the Spring and Summer seasons, when stomata are open
and O3 levels in the atmosphere are high. A summary of data used
in this study is given in Table 2.

Although data coverage was incomplete over the measured
period at each site, interpolation of large gaps was avoided in
order to make sure that the functional relationships captured by
ANNs were unbiased. Small gaps (less of 50% of missing data
over 10:00–18:00 period in a day) were replaced by the mean of
correspondent half-hour data of adjacent days (Falge et al., 2001).

Stomatal conductance to H2O (Gst , m s−1) was calculated as
the inverse of stomatal resistance (Rs), derived from measured
latent heat flux (E, kg m−2 s−1) using the evaporative/resistance
method (Monteith, 1981):

Rs =
cp ρ

(
qa − qs (z0)

)
γ λ E

(1)

where cp is the specific heat capacity of air (J kg−1 K−1), ρ is
the density of the dry air (kg m−3) qa is the vapor pressure at
measurement height (Pa), qs is the saturation mass fraction (Pa)
of H2O at air temperature and roughness length z0, γ is the

psychrometric constant (67 Pa K−1) and λ is the vaporization
heat for H2O (2.5× 106 J kg−1).

The use of E to calculate Rs is valid only if transpiration is
the only significant source of water vapor from the ecosystem
and thus only data recorded during dry-daylight conditions were
used. Data were discarded if they met any of the following criteria:
net solar radiation <20 W m−2, relative humidity > 80%, rainy
days (daily rainfall > 2 mm day−1) or the day after a rain
event. Discarded data are mainly located when Rs is also large,
hence little influence on overall dose is expected. Percentages
of data discarded by this procedure are as follow: 25% for
Auchencorth Moss (Au), 11% for Bugac (Bu), 24% for Grignon
(Gr), 18% for Hyytiälä (Hy), 19% for Speulderbos (Sp), 31% for
Lochristi (Lo), 15% for Bosco Fontana (BF), 18% for Ispra (Is),
15% for Castelporziano (CPZ), 6% for Blodgett (BL) and 11%
for Lindcove (Ci).

O3 stomatal uptake (FO3sto, nmol m−2 s−1) was calculated as:

FO3sto = Gst ∗ 0.61 ∗ [O3]canopy , (2)

where 0.61 is the ratio of diffusivity between O3 and
H2O (Marrero and Mason, 1972) and [O3]canopy is the O3
concentration at the canopy level. The latter was calculated
following the standard resistance analogy (Hicks et al., 1987).
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TABLE 2 | Mean ± standard deviation of the data recorded during daytime (10:00 – 18:00) of Spring and Summer seasons.

Site NEP St T vpd swc Gst FO3sto [O3]canopy

mmol m−2s−1 W m−2 ◦C kPa % m s−1 nmol m−2 s−1 ppb

Au SP 1.61 ± 1.22 345.62 ± 161.88 7.09 ± 3.51 0.39 ± 0.16 80.30 ± 0.27 0.32 ± 0.15 −6.72 ± 3.15 34.53 ± 6.38

S 4.60 ± 2.08 472.74 ± 193.24 16.25 ± 3.71 0.76 ± 0.35 77.46 ± 2.95 0.17 ± 0.09 −2.73 ± 1.29 27.46 ± 6.45

Bu SP 6.22 ± 4.29 463.2 ± 276.95 19.00 ± 8.00 1.34 ± 0.77 7.94 ± 2.93 0.20 ± 0.10 −4.71 ± 2.49 38.69 ± 10.03

S −0.25 ± 1.44 477.68 ± 271.36 27.35 ± 5.02 2.52 ± 1.12 4.68 ± 0.54 0.04 ± 0.03 −1.05 ± 0.73 48.16 ± 14.21

Gr SP 10.66 ± 8.03 421.20 ± 222.53 11.46 ± 5.16 0.62 ± 0.34 25.69 ± 3.65 0.29 ± 0.11 −5.77 ± 2.50 32.38 ± 8.46

S 4.55 ± 8.46 554.58 ± 218.16 21.18 ± 4.66 1.26 ± 0.64 26.37 ± 3.17 0.21 ± 0.15 −4.16 ± 2.94 35.25 ± 12.13

Hy SP 2.68 ± 3.26 393.11 ± 176.89 5.38 ± 7.53 0.55 ± 0.31 38.48 ± 4.00 0.13 ± 0.07 −3.10 ± 1.77 40.71 ± 5.11

S 10.68 ± 5.02 377.21 ± 183.58 16.42 ± 3.93 0.85 ± 0.43 32.01 ± 3.88 0.26 ± 0.11 −3.85 ± 1.82 25.98 ± 9.67

Sp SP 5.59 ± 4.86 378.06 ± 197.00 9.26 ± 5.52 0.54 ± 0.28 13.57 ± 0.94 0.14 ± 0.12 −2.41 ± 2.40 29.15 ± 9.64

S 13.00 ± 6.72 465.47 ± 200.74 19.18 ± 3.97 0.97 ± 0.44 11.38 ± 1.10 0.22 ± 0.12 −2.74 ± 1.88 22.34 ± 11.23

Lo SP 6.41 ± 5.76 489.82 ± 209.20 14.64 ± 3.70 0.76 ± 0.36 0.29 ± 0.03 0.20 ± 0.06 −3.94 ± 1.94 32.52 ± 11.32

S 12.51 ± 5.65 474.82 ± 202.04 20.33 ± 3.84 1.03 ± 0.49 0.21 ± 0.09 0.34 ± 0.15 −5.60 ± 3.41 27.70 ± 13.53

BF SP 3.59 ± 5.68 413.58 ± 185.12 17.32 ± 5.28 0.99 ± 0.51 29.46 ± 0.71 0.12 ± 0.08 −2.39 ± 1.41 36.20 ± 15.01

S 10.07 ± 5.83 522.51 ± 152.80 27.05 ± 3.70 1.89 ± 0.62 23.42 ± 3.53 0.17 ± 0.07 −4.44 ± 2.14 46.59 ± 18.08

Is SP 3.81 ± 7.08 511.90 ± 268.05 16.13 ± 5.44 1.06 ± 0.54 26.98 ± 4.62 0.11 ± 0.07 −1.97 ± 1.36 33.53 ± 15.99

S 16.18 ± 7.99 619.54 ± 218.26 24.74 ± 4.12 1.75 ± 0.62 22.70 ± 4.43 0.24 ± 0.11 −4.12 ± 2.46 30.73 ± 17.27

CPZ SP 8.78 ± 5.32 541.90 ± 248.77 17.98 ± 2.00 0.72 ± 0.28 12.27 ± 3.92 0.17 ± 0.08 −4.40 ± 2.06 44.82 ± 9.67

S 6.27 ± 5.15 576.44 ± 236.35 25.70 ± 3.03 1.14 ± 0.43 6.12 ± 1.79 0.12 ± 0.07 −3.69 ± 2.32 49.13 ± 11.57

BL SP 7.24 ± 4.47 558.01 ± 266.41 14.71 ± 5.26 1.04 ± 0.55 n.a. 0.18 ± 0.13 −3.94 ± 2.84 36.97 ± 9.95

S 7.26 ± 4.71 675.20 ± 236.97 22.82 ± 4.20 1.96 ± 0.68 n.a. 0.09 ± 0.06 −2.00 ± 1.23 39.64 ± 13.88

Ci SP 1.42 ± 3.53 616.90 ± 281.93 19.52 ± 4.20 1.44 ± 0.62 21.57 ± 2.43 0.16 ± 0.10 −3.29 ± 1.68 37.13 ± 10.59

S 1.89 ± 3.71 676.44 ± 268.21 27.47 ± 4.95 2.70 ± 1.02 22.64 ± 4.74 0.12 ± 0.07 −3.14 ± 1.50 50.81 ± 16.01

Net ecosystem productivity (NEP), used as output in ANN modeling and data used as inputs in ANN modeling: net solar radiation (St), air temperature (T), vapor pressure
deficit (vpd), soil water content (swc), stomatal conductance to H2O (Gst), stomatal O3 fluxes (FO3sto) and O3 mixing ratio at canopy level ([O3]canopy). Explanation of
acronyms of the site names can be found in Table 1.

A detailed explanation of the calculation can be found in
Supplementary Appendix 1.

Artificial Neural Network Modeling
Artificial neural networks (ANNs) were used to model the NEP.
An ANN can be defined as a large series of simultaneous
equations with each variable equivalent to a simple processing
element (node) connected to each other by connection weights.
Appropriate values within the connection weights provide the
network with the ability to store knowledge about some modeled
system. A supervised learning algorithm (i.e. with predefine input
and output values within the training data) adjusts the connection
weights, randomly assigned at the beginning, to approximate
relationships that are present in the data.

Three ANN model runs were conducted, trained using three
different groups of input variables. The three cases were used to
test the hypothesis that O3 influences NEP:

Case 1. ANNs were trained using solar radiation (St,
W m−2), air temperature (T,◦C), vapor pressure deficit
(vpd, kPa), soil water content measured between 10 and
30 cm depth (swc,%, not available for BL) and stomatal
conductance to H2O (Gst, m s−1).
Case 2. Included all Case 1 input variables plus O3
stomatal uptake (FO3sto, nmol m−2 s−1). The latter was
included in the analysis under the assumption that, if O3
has a detrimental effect on vegetation (and thus on NEP),

it would be caused by the O3 entering the leaves. If O3
absorbed through stomata affects NEP, the ANN model’s
ability to predict NEP would be improved.
Case 3. consisted of Case 1 input variables plus the
O3 dose absorbed through stomata integrated over 3 h
before the measure time (FO3cum, µmol s m−2). This
case was used to test if accumulated O3 entering the
stomata was a better predictor of NEP damage than
instantaneous O3 stomatal uptake, under the assumption
that antioxidants are consumed by O3 during the day
and a longer exposition to high O3 level reduces the
leaf capacity to detoxify O3 entering the stomata due to
fast scavenging of antioxidant defense in the intercellular
spaces. The 3-h interval was chosen because it was
the longest interval which permitted us to not include
the night-time data (i.e. at 10 am, FO3cum integrated
measurements between 7 am and 9 am).

In Case 1, O3 variables were not considered so that, if the
model performance was better using Case 1 rather than Case 2
or 3, O3 had no effect on NEP.

All input variables and NEP values within the dataset were
normalized by scaling between 0 and 1, to ensure that no variables
had an inherently greater effect than others. The dataset was
split into two subsets, Spring (from 21st of March to 20th of
June) and Summer (from 21st of June to 22nd of September),
and ANNs were trained separately for each subset, with the
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aim of highlighting the seasonal variability of the response of
NEP to O3. Feed forward ANNs with a sigmoid activation
function were used.

The feed-forward ANN was made of three layers: one
input layer, a single hidden layer and an output layer. In a
feed-forward ANN the information flows only in a forward
direction, from the input to the output through the hidden
layer. Layers are composed of nodes, with nodes in adjacent
layers fully interconnected by weights which are determined
by a supervised learning algorithm appropriate for non-linear
regression (backpropagation algorithm, Rumelhart, 1986). In this
work, the hidden layer consisted of 8 nodes. The number of nodes
of the hidden layer war chosen by comparing the performance
of different networks, with 1 to 10 hidden nodes, and choosing
the number that produced the best network performance (Gevrey
et al., 2003; Olden et al., 2004).

For each group, ANN training was repeated 100 times,
because different ANNs trained with the same dataset may
return different connection weights, depending on the training
procedure and initially randomized connection weights.
A common criticism of ANN modeling is “overfitting,” which
is the case that ANN memorizes the training data but may fail
to fit new data (Chan et al., 2006). Overfitting occurs when the
model is parameterized to give the best possible fit to the training
data, rather than to the “global dataset” possible from all possible
examples of the system being studied. While this is a risk of
all data mining or statistical regression approaches, the same
solution can be applied as here: datasets were split randomly
into three subsets: training (70% of dataset), test (15% of dataset)
and validation (15% of dataset). The training subset was used
to compute the weights of the network’s nodes and the test
subset for stopping the training process and checking the model
generalization ability. The validation subset was used to validate
the model and prove the ANN’s ability to generalize beyond the
training dataset.

Artificial neural network development and training was
carried out using Neural Network Toolbox (Matlab 2010, Natick,
MA, United States).

Performance of ANNs
One-way analysis of variance (ANOVA, confidence interval 95%)
was used to determine whether there were any statistically
significant differences between the means of the original
measured NEP and the 100 modeled NEP values derived from
ANN simulations of each case. If a statistical difference was
found, a post hoc test was performed to detect which specific
simulation differed from measured NEP, in order to discard
that simulation and train the ANN again. The coefficient of
determination (r2) was used as a measure of goodness of fit, and
as an indicator to evaluate if the inclusion of O3 parameters into
ANN models improved the model ability to simulate NEP, thus
suggesting an effect of O3 over NEP.

Artificial neural network model was compared with a linear
statistical approach, Multiple Linear Regression (MLR). MLR
model is used to explore the relationship between a dependent
variable and independent variables, under the assumption that
each independent variable has a linear relationship with the

dependent variable (Civelekoglu et al., 2008). In this work, MLR
was used to model the linear relationship between NEP and the
three groups of input variables (case 1, case 2 and case 3, see
above) which were the same input variables of ANN modeling.
The MLR r2 was calculated and compared with ANN r2, in order
to evaluate if the ANN approach better performed than the linear
approach in predicting NEP behavior.

Analysis Tools for Quantifying O3 Contributions as
NEP Driver in ANN Modeling
The integrated information gathered from ANNs can be
decomposed to disentangle the effects of different inputs on
the output values, to improve understanding of how each
input variable affects the predictions. Gevrey et al. (2003) and
Olden et al. (2004) provided a comparison of the different
existing methods for estimating variables importance in ANN
applications. In this work, the partial derivative method
(Dimopoulos et al., 1995) was used to isolate the effect of O3 over
NEP estimated by ANN modeling.

The partial derivative method produces a profile of the output
variations for unit change of selected input variable. The link
between the modification of the input, xj, and the variation of
the output, yj = f(xj), is the partial derivative of each activation
function with respect to its input (dj), with j = 1,. . .,N and N the
total number of observations.

Given an ANN with n inputs i (i = 1,. . .,n), one hidden
layer with mh nodes h (h = 1,. . .,mh) where the logistic sigmoid
function is used for activation, the partial derivative of yj with
respect to xi is dji (Dimopoulos et al., 1999; Gevrey et al., 2003):

dji = Sj ∗
mh∑
h=1

who ∗ Ihj
(
1− Ihj

)
∗ wih (3)

where Sj is the derivative of the output with respect to its input,
Ihj is the response of the h hidden node, who is the weight between
the output node and h, wih is the weight between h and the input
node (ni).

Partial derivatives were calculated for each of the ANN runs
and averaged to calculate the mean absolute change of NEP
associated with O3. To get information about positive and
negative change of NEP, positive and negative fraction of the
partial derivatives were averaged separately (Moffat et al., 2010).

The weather influence on O3 down-regulating effect was
tested using Spearman partial correlation. This is a non-
parametric measure of rank correlation that assesses monotonic
relationships of two variables whilst controlling for other,
potentially confounding variables. The negative fraction of
partial derivative associated with O3 (FO3st or FO3cum) was
correlated with environmental factors such as solar radiation,
air temperature, vapor pressure deficit, soil water content and
O3 concentration at canopy level. The latter was included in the
analysis with the aim of controlling the confounding effect it may
have on correlation coefficients, since O3 concentration strongly
depends on weather (Monks et al., 2015). All environmental
factors were transformed between 0 and 1 to avoid scale effects.
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TABLE 3 | Mean r2
± standard deviation of the 100 ANN simulations trained with Spring and Summer data.

Site r2 # of observation

Case 1 Case 2 Case 3

Spring Summer Spring Summer Spring Summer Spring Summer

Au 0.77 ± 0.00 0.76 ± 0.00 0.78 ± 0.00 0.76 ± 0.00 0.78 ± 0.00 0.76 ± 0.00 311 340

Bu 0.91 ± 0.00 0.48 ± 0.00 0.92 ± 0.00 0.51 ± 0.01 0.92 ± 0.00 0.52 ± 0.01 662 1197

Gr 0.94 ± 0.00 0.85 ± 0.00 0.94 ± 0.00 0.86 ± 0.00 0.94 ± 0.00 0.85 ± 0.00 1262 2274

Hy 0.93 ± 0.00 0.77 ± 0.00 0.93 ± 0.00 0.76 ± 0.00 0.93 ± 0.00 0.77 ± 0.00 368 705

Sp 0.64 ± 0.00 0.54 ± 0.00 0.63 ± 0.01 0.53 ± 0.00 0.66 ± 0.00 0.57 ± 0.00 359 950

Lo 0.87 ± 0.00 0.55 ± 0.00 0.87 ± 0.00 0.57 ± 0.00 0.84 ± 0.00 0.57 ± 0.00 342 736

BF 0.68 ± 0.00 0.36 ± 0.00 0.7 ± 0.00 0.37 ± 0.00 0.71 ± 0.00 0.4 ± 0.00 404 1265

Is 0.51 ± 0.00 0.5 ± 0.00 0.51 ± 0.00 0.5 ± 0.00 0.52 ± 0.00 0.5 ± 0.00 600 2315

CPZ 0.54 ± 0.00 0.49 ± 0.00 0.55 ± 0.00 0.5 ± 0.00 0.55 ± 0.00 0.5 ± 0.00 816 2545

BL 0.36 ± 0.00 0.52 ± 0.00 0.36 ± 0.00 0.52 ± 0.00 0.39 ± 0.00 0.52 ± 0.00 3341 10509

Ci 0.41 ± 0.00 0.52 ± 0.00 0.41 ± 0.00 0.53 ± 0.00 0.43 ± 0.00 0.53 ± 0.00 953 1581

Case 1: Artificial neural networks were trained using solar radiation (W m−2), air temperature (◦C), vapor pressure deficit (vpd, kPa), soil water content measured between
10 and 30 cm depth (swc,%, not available for BL) and stomatal conductance to H2O (Gst, m s−1). Case 2: Included all Case 1 input variables plus O3 stomatal uptake
(FO3sto, nmol m−2 s−1). Case 3: consisted of Case 1 input variables plus O3 dose absorbed through stomata during 3 h before the measurement time. Last column
reports the number of half-hour measurements available for the analysis at each site. Bold numbers indicate the case with the highest r2. Explanation of acronyms of the
site names can be found in Table 1.

RESULTS

Performance of ANNs
The ANOVA test highlighted that there are no statistically
significant differences between the means of the original
measured NEP and the 100 modeled NEP derived from ANN

TABLE 4 | r2 derived from MLR modeling of NEP calculated separately for Spring
and Summer from three combination of independent variables: Case 1: solar
radiation (W m−2), air temperature (◦C), vapor pressure deficit (vpd, kPa), soil
water content measured between 10 and 30 cm depth (swc,%, not available for
BL) and stomatal conductance to H2O (Gst, m s−1).

Site r2

Case 1 Case 2 Case 3

Spring Summer Spring Summer Spring Summer

Au 0.62 0.49 0.62 0.49 0.62 0.49

Bu 0.84 0.21 0.84 0.22 0.84 0.21

Gr 0.81 0.64 0.81 0.64 0.81 0.64

Hy 0.76 0.64 0.76 0.64 0.76 0.64

Sp 0.42 0.35 0.42 0.35 0.44 0.37

Lo 0.77 0.36 0.77 0.37 0.78 0.37

BF 0.54 0.20 0.54 0.21 0.53 0.22

Is 0.34 0.43 0.34 0.43 0.34 0.43

CPZ 0.36 0.36 0.36 0.37 0.36 0.36

BL 0.17 0.41 0.17 0.41 0.17 0.42

Ci 0.29 0.46 0.29 0.46 0.29 0.46

Case 2: Included all Case 1 input variables plus O3 stomatal uptake (FO3sto, nmol
m−2 s−1). Case 3: consisted of Case 1 input variables plus O3 dose absorbed
through stomata during 3 h before the measurement time. Half-hour measurements
available for the analysis at each site are the same as in Table 3. Explanation of
acronyms of the site names can be found in Table 1.

simulations (confidence interval 95%). The r2 values (Table 3)
attested the data mining capability of the ANNs: the best
performances were obtained for the northern sites, especially
Grignon and Hyytiälä (0.93 and 0.94, respectively), while the
lowest r2 values were from the Blodgett and Bosco Fontana sites
(0.39 and 0.40, respectively).

Multiple linear regression modeling produced poorer r2 values
(Table 4) in comparison to ANN modeling (Table 3) in every
single case. MLR modeling r2 are on average 0,16 ± 0,06 points
lower that ANN r2.

Do Current O3 Levels Affect NEP?
The inclusion of O3 stomatal uptake in the ANN simulation did
not change ANN performance (i.e. no impact of O3) in some
cases, and in others it improved the ANN performance (i.e. O3
had an impact). In particular, the results suggest that O3 damage
does not occur in most of the northern sites which are less
exposed to O3 pollution, while in the other ecosystems a limited
effect was observed.

Artificial neural networks trained with Spring data (Table 3)
showed no O3 effect on NEP for Hyytiälä, Grignon and Lochristi
sites, where the Case 1 model run returned the highest r2.
For the same period, we detected an effect of O3 on NEP for
Auchencorth Moss, Bugac and Castelporziano sites, where the
inclusion of O3 stomatal flux in the model (Case 2) resulted in
an r2 increase compared with the Case 1 model. For Speulderbos,
Bosco Fontana, Ispra, Blodgett and Lindcove the best ANN
performance was achieved for Case 3, (inclusion in the model
of 3-h O3 dose), indicating that the preceding O3 dose to which
vegetation is exposed is the best predictor of O3 effects over NEP
for these sites.

Different results were achieved by training the ANNs with
Summer data (Table 3). No O3 effect was found for Hyytiälä,
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FIGURE 1 | Positive and negative sensitivity of the NEP response to FO3st or FO3CUM (d NEP (O3), presented separately for Spring (SP) and Summer (S) seasons.
Bars represent standard deviations.

Auchencorth Moss, Ispra and Blodgett, while an O3 effect was
detected for Grignon, Lochristi, Castelporziano and Lindcove,
where the instantaneous stomatal O3 flux was the better predictor
for the O3 effect on NEP. For Bugac, Speulderbos and Bosco
Fontana, the cumulative O3 dose was the best predictor.

Since the 3-h O3 dose was calculated from cumulated
instantaneous O3 stomatal fluxes, r2 between the two parameters
was calculated at each site to verify the degree of independence
of the two variables. They were shown to be fully independent
(r2 = 0.00) for Lindcove, Blodgett, Castelporziano, Bosco
Fontana, Speulderbos and Hyytiälä. An r2 value of 0.00 was also
found for Auchencorth Moss and Ispra in Summer, while in
Spring r2 were 0.10 and 0.25, respectively. Higher r2 were found
for Grignon (0.45 and 0.73 for Spring and Summer, respectively),
Bugac (0.37 and 0.42 for Spring and Summer, respectively), and
Lochristi (0.25 and 0.48 for Spring and Summer, respectively).

Assessing the Sensitivity of NEP to
Current O3 Levels
Partial derivatives represent NEP rate of change with respect to
O3 (FO3st or FO3cum). If this rate is negative, then the NEP
will tend to decrease as FO3st or FO3cum increases while if the
rate is positive, NEP will tend to increase. Partial derivatives
were calculated for each half hour observation. Partial derivatives
calculated with respect to one predictor can be positive for some
half hours and negative for other half hours. This means that a
predictor has not always a positive or negative effect on NEP, and
that it depends on the combination of all ANN predictors values
occurring at that time.

Averaging separately positive and negative partial derivatives
helps to discern when O3 has a negative effect over NEP. Figure 1
shows that, although the O3 variables were significant factors for
predicting NEP in the ANN model runs, they did not always
lead to a reduction in NEP. Reduction of NEP related to O3 was
detected at Auchencorth Moss, Bugac, Grignon, Bosco Fontana,
Castelporziano, Blodgett and Lindcove in Spring, Grignon, Bosco

Fontana and Lindcove in Summer (Figure 1), with values ranging
from 0.15 to 2.64% average NEP loss due to O3 (Table 5).

In a few cases the response is only negative, indicating that
current O3 concentration level consistently reduces NEP during
Spring or Summer, for all combinations of the other predictors.
This is the case of Bosco Fontana in Spring and Lindcove in
Summer. In other cases, the ANN did not always determine O3
to be a damaging factor for NEP. To highlight how the rate
of change of NEP responds to different levels of O3 entering
the stomata, a profile of the NEP partial derivative versus O3
input (FO3st or FO3cum depending on the case) was plotted
(Figures 2, 3).

The relationships shown in Figures 2, 3 are highly non-linear
and present different behaviors at each site: at Auchencorth Moss
site (Figure 2A) a down-regulating effect was found in Spring for
FO3sto below the 40th percentile (−0.27 nmol m2 s−1), peaking
around 23rd percentile (−0.20 nmol m2 s−1). The same trend was
observed at the Castelporziano site (Figure 2C) during Spring,
where FO3sto below the 33rd percentile (−0.13 nmol m2 s−1)
negatively affected NEP. At the Bugac site (Figure 2B), the FO3sto
effect on NEP was almost linear, and the effect turned negative
above the 52nd percentile (−0.19 nmol m2 s−1). At the Blodgett
site, during Spring (Figure 2E), FO3cum negatively affected NEP
in a range between 29th (68.33 µmol m−2) and 49th (91.23 µmol
m−2 percentile, peaking at the 40th (80.67 µmol m−2) percentile.

At the Bosco Fontana site the ANN analysis predicted
a consistently negative effect of FO3cum flux for the Spring
data (Figure 2D), although the largest effect was recorded
for the smallest doses (below 20th percentile, 43.68 µmol
m−2). During Summer (Figure 3C), a depressing effect of
FO3cum over NEP was observed only below the 26th percentile
(70.72 µmol m−2). At the Lindcove site, during Spring
(Figure 2F), only low doses of FO3cum had a negative effect on
NEP (below 7th, 45.42 µmol m−2, and above 95th percentile,
151.02 µmol m−2), whilst during Summer (Figure 3A), all
FO3st values induced a decrease in NEP, peaking at 88th
percentile (0.19 nmol m−2 s−1). At the Grignon site, the
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TABLE 5 | Average NEP loss due to O3 in Spring and Summer seasons.
Explanation of acronyms of the site names can be found in Table 1.

Site Average NEP loss due to O3 (%)

Spring Summer

Au 0.97 ± 0.04 0

Bu 0.12 ± 0.09 0

Gr 0 0.1 ± 7.03

Hy 0 0

Sp 0 0

Lo 0 0

BF 1.37 ± 0.65 0.72 ± 0.49

Is 0 0

CPZ 1.02 ± 0.27 0

BL 2.64 ± 1.39 0

Ci 0.15 ± 0.16 1.25 ± 0.44

FO3st effect on NEP during Summer seemed to fluctuate,
peaking at 48th and 82st percentiles (nmol m−2 s−1 and nmol
m−2 s−1, respectively).

The negative fraction of dNEP(O3) was transformed between
0 and 1 (where 1 is the maximum negative effect of O3 over
NEP) and averaged as a function of time of day. This was
done with the aim of identifying diurnal dynamics in the NEP
decrease due to O3 (Figures 4, 5). During the Spring season,
the average dNEP(O3) followed a pronounced bell-shape curve
at the Lindcove site, where the maximum effect of O3 was
observed during the middle hours of the day, coinciding with
FO3cum peak (Figure 4F). The same pattern was found for
Bugac (Figure 4B) sites, although the bell-shape was slightly
accentuated. At Auchencorth (Figure 4A) and Castelporziano
(Figure 4C) larger effects of FO3st were recorded at the end of
the afternoon. The damaging effect of instantaneous O3 followed
an exponential decrease during the day at Bosco Fontana site
(Figure 4D), opposite to the shape of the response to FO3cum.
The damaging effect of O3 peaked at 10:00 h, when FO3cum was
still low. At Blodgett (Figure 4E) no significant variations were
found during the day.

For the Summer season, average dNEP(O3) showed a bell-
shape curve which follows the FO3st trend at Grignon and
Lindcove (Figures 5A,B, respectively), while at Bosco Fontana
(Figure 5C) the dNEP (FO3cum) presents the same pattern as
during the Spring season.

How O3 Reduces NEP According to
Other Environmental Factors
For the sites where a negative effect of O3 over NEP was found
(Au, Bu, Gr, BF, CPZ, Bl and Ci), the correlation between the
negative fraction of dNEP(FO3st) or dNEP(FO3cum) and the
other environmental variables was tested through Spearman
partial correlation (Table 6).

No correlation was found for Auchencorth Moss, where no
values were statistically significant. Solar radiation enhanced
O3 detrimental effect at Bugac, Bosco Fontana and Blodgett
during Spring and at Lindcove during Summer, while it had

the opposite effect at Castelporziano during Spring and at
Bosco Fontana during Summer. The correlation between air
temperature and dNEP(O3) was significant only at Blodgett,
where air temperature decreased O3 damage during Spring. The
increase of vpd depressed O3 damage at Bosco Fontana and
Castelporziano during Spring, and at Lindcove during Summer.
Increasing swc reduced O3 damage at Bugac and Bosco Fontana
during Spring, and increased O3 damage at Lindcove during
both Spring and Summer. The O3 concentration at canopy level
increased O3 damage at Bugac, Grignon, Blodgett and Lindcove
whilst it had an opposite effect on Castelporziano and Bosco
Fontana vegetation.

DISCUSSION

How O3 pollution alters vegetation carbon sequestration
capacity is considered an important component of global
change (Ashmore and Bell, 1991), but few studies have
quantified its impact over ecosystems. Some of them confirm
a detrimental effect of O3 over vegetation occurring in
sites where ambient O3 concentrations are typically high
(Zapletal et al., 2011; Fares et al., 2013), while others did
not find any effect of high levels of tropospheric ozone
concentrations (Zona et al., 2014; Verryckt et al., 2017).
Results of these studies are difficult to interpret in the context
of ozone/plant interactions because of the great variability
among site characteristics, vegetation type and methodological
approaches (Cailleret et al., 2018).

This work demonstrates that ANN modeling is a useful
tool to understand O3 – NEP correlation considering other
co-varying environmental factors. r2 values produced by ANN
were found higher than r2 values produced by MLR, indicating
that a non-linear statistical data modeling approach as ANN
is more appropriate in modeling complex relationships such
the dependence of NEP from co-varying environmental factors.
Our results are in line with other ecological studies in literature
which compared the two methods and found ANN models more
accurate than MLR (e.g. Lek et al., 1996; Paruelo and Tomasel,
1997; Brion et al., 2005). The strength of ANN lies in its fully
inductive approach, which allows multidimensional relationships
to be investigated without a priori knowledge of the shape of these
relations. Coupling ANN analysis with EC provided a picture of
the current status of O3 pollution effects over ecosystems.

Although overfitting was controlled in this work, high
r2 values calculated between simulations and measured
data (Table 3) indicates that the possibility of overfitting
from ANN exists.

We did not carry out an assessment of whether the model
accuracy was significantly better for the training or test subsets
than for the final validation subset in each case, and so cannot
provide an indication of whether or not the model was actually
overfitted to the training data. However, in this work, the power
and flexibility of ANN in fitting the data is an advantage and
not a limitation, indeed the aim was not to find a general model
for NEP, but to evaluate the influence of a variable (O3) in each
single study site.
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FIGURE 2 | Averaged partial derivative of NEP (dNEP) with respect to the corresponding input variable (FO3st or FO3CUM) ± standard deviation, calculated using
Spring data. (A) Auchencorth Moss (Au), (B) Bugac (Bu), (C) Castelporziano (CPZ), (D) Bosco Fontana (BF), (E) Blodgett (BL), (F) Lindcove (Ci).

FIGURE 3 | Average partial derivative of NEP (dNEP) with respect to the corresponding input variable (FO3st or FO3CUM) ± standard deviation, calculated using
Summer data. (A) Grignon (Gr), (B) Lindcove (Ci), (C) Bosco Fontana (BF).

Artificial neural network performance analysis found that
both FO3st and FO3cum are suitable indicators for predicting
NEP reduction, depending on season and type of vegetation.
Since FO3cum is obtained from cumulated values of FO3st, an
analysis of correlation between the two variables was performed
with the aims of verifying the degree of dependence of the
two variables. None or low correlation was found for most of
the study sites. That may suggest that the O3 dose entering
the stomata is discontinuous and that vegetation is subjected
to O3 pulses rather than a constant flux. However, we did not

find any relation between the degree of correlation between the
two variables and the selection of ANN model best predictor,
which means that the most suitable predictor was selected for
each site and season regardless of how discontinuous the O3
fluxes were, and it probably depends on vegetation type and
climate conditions.

Of the eleven sites tested, four ecosystems were free from
O3 damage. These sites were the Finnish Scots pine forest
(Hyytiälä), the Dutch Douglas fir plantation (Speulderbos),
the Belgian poplar plantation (Lochristi) and the Italian
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FIGURE 4 | Gray bars: negative fraction of partial derivative of NEP with respect to FO3st (A–C) or FO3CUM (D–F) averaged over hours of day, ± standard deviations.
Asterisks: FO3st (A–C) or FO3CUM (D–F) averaged over hours of day. All variables presented in this figure were transformed between 0 and 1.

FIGURE 5 | Gray bars: negative fraction of partial derivative of NEP with respect to FO3st (A,B) or FO3CUM (C) averaged over hours of day, ±standard deviations.
Asterisks: FO3st (A,B) or FO3CUM (C) averaged over hours of day. All variables presented in this figure were transformed between 0 and 1.

mixed forest (Ispra). These results are in line with Zona
et al. (2014), who did not find a negative relationship
between O3 and net ecosystem exchange at Lochristi. All
of these ecosystems are located in northern areas with
the exception of Ispra, where O3 concentrations are not
particularly high compared with typical high ozone-prone
Mediterranean sites (Table 2) and this may support the
hypothesis that low to moderate ozone concentrations
and therefore lower stomatal ozone fluxes may generate
cumulative exposure to ozone far below possible critical levels in
northern ecosystems.

Seven ecosystems showed a significant but limited NEP loss
due to O3 entering the stomata: the United Kingdom shrubland
(Auchencorth Moss), the Hungarian grassland (Bugac), the
Italian Holm oak forest (Castelporziano), the Californian pine
plantation (Blodgett) during the Spring season, the French
cropland (Grignon) during Summer, the Italian mixed forest
(Bosco Fontana) and the Californian Citrus orchard (Lindcove)
during both Spring and Summer seasons. Mean NEP loss was
estimated at between 0.15 and 2.64%.

These values are low compared with other studies:
for example Fares et al. (2013) adopted more traditional
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TABLE 6 | Spearman partial correlation coefficients of the negative partial
derivative of dNEP(O3) (FO3sto for Au, Bu, Gr, CPZ and Ci in Summer; FO3cum for
BF, Bl and Ci in Spring) with respect to solar radiation (rad), air temperature (t),
vapor pressure deficit (vpd), soil water content (swc) and O3 concentration at
canopy level([O3]).

Site Season rad t vpd swc [O3]

Au SP −0.01 0.04 −0.01 0.01 0.00

Bu SP −0.29 0.14 −0.02 0.29 −0.20

Gr S 0.01 0.09 −0.03 0.04 −0.14

BF SP −0.16 −0.09 0.12 0.49 0.38

S 0.25 0.02 0.06 0.09 0.34

CPZ SP 0.10 −0.04 0.18 0.06 0.19

BL SP −0.16 0.32 −0.02 n.a. −0.32

Ci SP 0.26 0.30 −0.24 −0.40 −0.08

S −0.58 −0.11 0.23 −0.27 −0.26

Bold numbers indicate statistically significant correlations (p < 0.05). Note that,
since dNEP is negative, positive coefficients indicate that the negative effect of O3
on NEP decreases when the other variable increases, while negative coefficients
indicate that the negative effect of O3 is further exacerbated by an increase in the
other variable. Explanation of acronyms of the site names can be found in Table 1.

statistical methods based on step-wise regression analysis
and multivariate analysis and found up to 12–19% of the
carbon assimilation reduction in Blodgett and Lindcove sites
explained by O3 entering the stomata. Such results suggest
that either our approach is extremely conservative and does
not appropriately attribute O3 effect, or statistical methods
adopted in earlier studies may have overestimated O3 effects
by including the effects of covariates in the predictive model
of NEP. It should be noted, however, that both approaches
focus on the quantification of the instantaneous or near-
instantaneous effect of O3 on NEP, and capture neither the
effect of this NEP reduction on biomass reduction which
may further reduce NEP in the future nor the long-term
effects of leaf injury.

Among the northern sites affected by O3, Auchencorth Moss
showed higher sensitivity to O3 damage. This was despite non-
stomatal deposition being the principal sink of O3 at this
site, representing 70% of the overall O3 flux (Fowler et al.,
2001), and where moorland mosses like Sphagnum are relatively
tolerant to elevated O3 concentrations (Rinnan et al., 2003).
The reason of the depression of NEP linked to O3 entering the
stomata can be attributed to the increase of the plant respiration
rate, as already observed by Niemi et al. (2002) for moorland
vegetation, as a result of the plants repairing O3 damaged tissues
(Williamson et al., 2015).

Partial derivative results indicate that the O3 effects on
NEP are highly non-linear and site-specific. In almost
all study sites, positive relationships between stomatal
O3 flux and NEP were found. Both are controlled by
stomatal conductance and thus, in the absence of O3
damage, stomatal O3 fluxes positively correlated with NEP,
as already observed by Proietti et al. (2016). This also
implies that a limited effect of ozone on stomatal closure
may still take place, as this matches with a moderate
reduction in NEP.

Episodes in which O3 detrimental effect occurred were
identified from the models using partial derivative analysis.
These episodes were correlated to climatic variables showing
that O3 damage dependence on weather varies with the climate.
O3 damage occurred primarily during Spring, especially for
those sites where stomatal conductance decreases in Summer as
affected by water availability (see Table 2). Partial correlation
analysis showed that swc decreases the O3 negative effect
for those sites where no drought stress occurred (Blodgett
and Bosco Fontana).

In Mediterranean regions, drought periods (which coincide
with high O3 levels) limit stomatal conductance, protecting
vegetation from O3 oxidative stress (Paoletti, 2006). At Lindcove,
a well irrigated Mediterranean citrus plantation as previously
reported by Fares et al. (2012), O3 detrimental effects were
observed both during Spring and Summer and positively
correlate with swc. In these warm periods, with O3 concentrations
often exceeding 80 ppb, the mean stomatal O3 fluxes were 3.29
and 3.19 nmol m−2s−1 during the central hours of the day
during Spring and Summer, respectively. swc was not a significant
predictor of O3 damage at Castelporziano, a Mediterranean
Holm oak forest, where the high water table (Bucci, 2006)
protected trees from water stress, although during Spring high
stomatal fluxes were associated with high levels of precipitations
(Savi and Fares, 2014).

The inclusion of O3 concentration at canopy level in the
partial correlation analysis showed that NEP damage does
not always occur at peak O3 concentrations, as the case
of the Italian sites of Bosco Fontana and Castelporziano.
It must be noted that being photochemically produced, O3
concentrations tend to peak when solar radiation is high and
that BVOC emitted by some tree species can contribute to
ozone formation (Monks et al., 2015). When radiation increases,
vpd also increases, causing stomatal closure and leading to a
protective effect against O3 entering the leaves (Mereu et al.,
2009; Fares et al., 2010b, 2014). For the same sites, partial
correlation analysis highlights that when solar radiation and
vpd increase, O3 impact on NEP decreases. We do not exclude
that to some minor extend high reactive terpenoid emissions
at Castelporziano and Bosco Fontana in the central hours of
the day [documented by Fares et al. (2013) and Acton et al.
(2016)] may be responsible for ozone scavenging in the gas
phase, thus reducing the amount of ozone entering stomata.
This phenomenon of mid-day exclusion of O3 damage does
not happen in the Mediterranean Ponderosa pine plantation at
Blodgett, this species being relatively insensitive to vpd when
drought is not a limiting factor (Panek and Goldstein, 2001). At
this site, air temperature was found to be a limiting factor for
O3 damage during Spring, when high temperature constrained
gas exchange (Panek and Goldstein, 2001) and helped reduce O3
oxidative stress.

At Auchencorth Moss, the relation of O3 damage to weather
remains unclear, although a significant negative effect of O3
on NEP was found. O3 damage estimates were averaged over
the course of the day, with the aim of highlighting hourly
patterns. For some sites (Lindcove, Bugac and Grignon), the
detrimental effect of O3 followed a bell-shaped curve, thus
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suggesting that most of damage to photosynthetic apparatus
occurred rapidly during hours of maximum O3 absorption.
Interestingly, for Auchencorth Moss and Castelporziano, major
damage was observed at the end of the afternoon, indicating
that: (1) high vpd reduces stomatal conductance, and therefore
O3 damage, during the central hours of the day; and (2) to
some extent plants may be able to detoxify O3 during hours
of maximum exposure to the pollutant, while at the end of the
day detoxification capacity of leaves decreases. While there is
evidence of a mid-day depression of stomatal conductance in
those sites (Fares et al., 2010a, 2014), the second hypothesis is
highly speculative and deserves further investigation. However,
the possibility of changes in reducing power during the day
has been previously described by Dizengremel et al. (2008)
who showed decreasing foliar level of antioxidants during the
afternoon hours in response to oxidative stress. Conversely, O3
damaging effect and O3 absorption were completely decoupled
at Bosco Fontana, where the O3 damaging effect peaks in
the morning, under low O3 concentrations, suggesting the
occurrence of species-specific acclimatization phenomena along
the day which we cannot explain in this study.

CONCLUSION

This work clearly suggests that long-term datasets are required
to identify O3 damage to vegetation under field conditions. We
found that O3 has a detrimental effect on NEP, although damage
can be sporadic and is driven by specific weather conditions and
in general, has lower magnitude compared with observations
carried out through manipulative experiments or in the field
using traditional statistical methods. Our results suggest that
vegetation response to O3 depends not only on pollution level
but also on how the ecosystems respond to climate variables.
Future climate changes may therefore either expose ecosystems
to further O3 damage by increasing temperatures or rather lead
to a reduction in ozone damage in drought-prone ecosystems.
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Ozone (O3) risk assessment for the protection of forests requires species-specific
critical levels (CLs), based on either O3 concentrations (AOT40) or stomatal uptake
(PODY) accumulation over the growing season. Larch (Larix sp.) is a genus with O3-
susceptible species, widely distributed in the northern hemisphere and with global
economic importance. We analyzed published and unpublished data of Japanese
larch (Larix kaempferi) and its hybrid F1 (Larix gmelinii var. japonica × L. kaempferi)
stomatal responses for developing a parameterization of stomatal conductance model
and estimating PODY-based CLs with two Y thresholds, that is, 0 and 1 nmol m−2 s−1

projected leaf area (PLA). In parallel, we estimated AOT40-based CLs. The results show
that the AOT40-based CLs for a 2% and 4% biomass loss in Japanese larch were 5.79
and 11.59 ppm h, that is, higher than those in hybrid larch F1 (2.18 and 4.36 ppm h
AOT40), suggesting a higher O3 susceptibility of the hybrid. However, the use of PODY
reconciled the species-specific differences, because the CLs were similar, that is, 9.40
and 12.00 mmol m−2 POD0 and 2.21 and 4.31 mmol m−2 POD1 in Japanese larch
versus 10.44 and 12.38 mmol m−2 POD0 and 2.45 and 4.19 mmol m−2 POD1 in the
hybrid, for 2% and 4% biomass loss, respectively. Overall, the CLs were lower than
those in other forest species, which suggests a relatively high susceptibility of these
larches. These results will inform environmental policy-makers and modelers about larch
susceptibility to O3.

Keywords: critical level, DO3SE model, forest, larch, parameterization, tropospheric ozone

INTRODUCTION

Tropospheric ozone (O3) is the most widespread phytotoxic air pollutant (Mills et al., 2018). In
the period 1995–2014, control measures were effective in North America and Europe, as indicated
by a decrease of O3 concentrations, while a significant increase in O3 concentrations occurred in
East Asia (Chang et al., 2017; Mills et al., 2018). Ozone has a strong oxidative capacity and may
cause severe injury to forests (Paoletti, 2007; Li et al., 2017). To assess O3 risk to forests, different
metrics have been developed (Lefohn et al., 2018). One of the most common metrics is AOT40,
that is, the accumulated exposure over an hourly threshold of 40 ppb during the growing season,
although there is a general consensus that the accumulated stomatal O3 flux – or phytotoxic ozone
dose (POD) – is more biologically meaningful as it estimates the amount of O3 actually entering
the plants through the stomata (Paoletti and Manning, 2007). A flux threshold Y below which
O3 uptake is not expected to be injurious to plants has been postulated. For all tree species, a
uniform threshold of Y = 1 nmol m−2 s−1 projected leaf area (PLA) was recommended by the
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Convention on Long-Range Transboundary Air Pollution
(CLRTAP, 2017) based on Büker et al. (2015). For easier
calculation, a Y threshold of 0 nmol m−2 s−1 PLA was also
recommended, if we assume that all O3 molecules induce a
physiological reaction after uptake (De Marco et al., 2015, 2016;
Anav et al., 2016), which is a plausible assumption in the light of
low-dose adaptive responses (Agathokleous et al., 2019).

For the protection of susceptible vegetation from O3, critical
levels (CLs) are recommended, defined as the “concentration,
cumulative exposure or cumulative stomatal flux of atmospheric
pollutants above which direct adverse effects on susceptible
vegetation may occur according to present knowledge” (CLRTAP,
2017). CLs are derived for either a 2% (Norway spruce) reduction
or a 4% (beech/birch, Mediterranean deciduous and evergreen
species) reduction in annual new growth (based on aboveground,
root, or whole-tree biomass) of young trees up to 10 years
old. AOT40-based CLs for tree biomass loss (5%) are available
for Fagus sylvatica and Betula pendula in a previous version
of the ICP Vegetation manual (CLRTAP, 2014; AOT40-based
CLs are not included in the latest version) and for some other
species in the literature (e.g., 18 Japanese species including
two larch species, Yamaguchi et al., 2011; Populus deltoides cv.
“55/56” × P. deltoides cv. “Imperial” and Populus euramericana
cv. “74/76,” Shang et al., 2017). Stomatal flux-based CLs are
available for F. sylvatica, B. pendula, Picea abies, Quercus faginea,
Quercus pyrenaica, Quercus robur, Quercus ilex, Ceratonia siliqua,
and Pinus halepensis in the ICP Vegetation manual (CLRTAP,
2017) and for few other species in the literature (Zelkova serrata,
Hoshika et al., 2012; Quercus pubescens, Hoshika et al., 2018b;
Pinus pinea, Hoshika et al., 2017; hybrid poplars, Zhang et al.,
2018; Feng et al., 2019b; Fagus crenata, Quercus serrata, Quercus
mongolica var. crispula, and Betula platyphylla var. japonica,
Yamaguchi et al., 2019). For estimating PODY (phytotoxic ozone
dose above a threshold Y nmol m−2 s−1)-based CLs, a species-
specific parameterization of the stomatal flux or DO3SE model
is required (Emberson et al., 2000; Büker et al., 2012). There is
a need of more species-specific CLs for biomass loss in forest
species, especially for forest species in Asia, where elevated O3
pollution levels are a serious risk for forests at present (Li et al.,
2017; Mills et al., 2018; Feng et al., 2019a).

Larch (Larix sp.) is a widely distributed genus (Pinaceae
family) with global economic importance, which includes some
of the few deciduous conifer species. Larch is among the
dominant tree species of northern hemisphere boreal forests.
Hence, its natural distribution range is very wide and spans
from Siberia to Canada, passing through Europe, mountainous
China, and Japan. Larches provide high-quality wood and are
commercially valuable (Bardak et al., 2019). As any pioneer
species, larches have a relatively high growth rate and stomatal
conductance (Streit et al., 2014; Agathokleous et al., 2017;
Hoshika et al., 2018c). Although their susceptibility to O3
has been investigated in several papers (Wieser and Havranek,
1996; Matsumura, 2001; Watanabe et al., 2006; Koike et al.,
2012; Agathokleous et al., 2017; Sugai et al., 2018, 2019), a
comprehensive risk assessment including parameterization of the
stomatal conductance model and definition of CLs for biomass
losses is missing. Previous studies focused on the biomass

responses to O3 of Japanese larch (Larix kaempferi) and its
hybrid F1 (Larix gmelinii var. japonica × L. kaempferi). Hybrid
F1 displays heterosis and is important for timber production
and afforestation due to more desirable characteristics compared
to its parents, with a significant superiority in terms of growth
rates (Ryu et al., 2009; Kita et al., 2009; Agathokleous et al.,
2017; Sugai et al., 2018). A question arises whether hybrid clones,
selected for fast-growing capacities, are representative of natural
forest responses to O3 when used in manipulative experiments
(e.g., Di Baccio et al., 2008; Hu et al., 2015; Dusart et al., 2019;
Podda et al., 2019).

Our aim was to collate published and unpublished data from
previous experiments for developing a parameterization of the
DO3SE model for Japanese larch and its hybrid F1 and estimating
the CLs not to be exceeded for the protection of these larch species
from O3. Based on published research documenting a higher O3
susceptibility of the faster-growing hybrid F1 than the slower-
growing Japanese larch (Agathokleous et al., 2017; Sugai et al.,
2018), we hypothesized that the CLs of hybrid F1 have a lower
susceptibility than that of the wild Japanese larch.

MATERIALS AND METHODS

A literature survey was conducted in Web of Science (9 December
2019), with the keywords “ozone” and “larch” or “larix” (search
method: Topic). All the identified papers (n = 33 and 36 for
each combination; most were duplicates) were reviewed for
relevance, including whether they reported O3 and biomass data.
Finally, data on O3 concentrations, exposure duration, and total
biomass were collected from six published experiments carried
out in open-top chambers (OTCs) (Table 1: Matsumura, 2001;
Watanabe et al., 2006; Koike et al., 2012; Wang et al., 2015; Sugai
et al., 2018, 2019) and used to calculate AOT40 and percentage
losses of biomass relative to controls in low-O3 air. Data from
combined experiments, such as O3 with either fertilization or
CO2, were not included. Data of Dahurian larch (L. gmelinii var.
japonica) from the same experiments were not included because
of scarcity, thus being insufficient for analysis.

Individual measurements of stomatal conductance across
a range of environmental conditions were obtained from
the authors Sugai et al. (2018, 2019) and Agathokleous
(unpublished). Measurements by Agathokleous (unpublished)
were carried out in field-grown 2-year-old larch seedlings at
the Sapporo experimental forest, Hokkaido University, in Japan
(Table 1). All measurements were carried out by means of Li-
Cor 6400 gas analyzers (Li-Cor Inc., Lincoln, NE, United States).
As soil water content measurements were missing, we used the
following simplified formula for the estimation of the stomatal
conductance gsto in the DO3SE model (CLRTAP, 2017):

gsto = gmax ∗ flight ∗max{fmin, (ftemp ∗ fVPD)} (1)

where gmax is the maximum stomatal conductance of either
Japanese larch or its hybrid F1, f min is the species-specific
minimum stomatal conductance, and f light, f temp, and f VPD
account for the effects of photosynthetic photon flux density
(PPFD), air temperature (T), and vapor pressure deficit (VPD),
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TABLE 1 | Details of experiments from which data were obtained for the analysis (PODY, AOT40, and Gs model).

References Species Experimental
setup

Duration Exposure level Other treatments Type of
assessment

Koike et al. (2012) Larix kaempferi OTC June–September 2010 CF, NF60 Elevated CO2 PODY/AOT40

Larix gmelinii var.
japonica

OTC June–September 2010 CF, NF60 Elevated CO2 PODY/AOT40

F1 (L. gmelinii var.
japonica× L. kaempferi)

OTC June–September 2010 CF, NF60 Elevated CO2 PODY/AOT40

Matsumura (2001) L. kaempferi OTC June 1993–September 1995 CF, NF n.a. AOT40

Sugai et al. (2018) L. kaempferi OTC June 2013–September 2014 CF, NF, NF40, NF60 n.a. PODY/AOT40/Gs
model

F1 (L. gmelinii var.
japonica× L. kaempferi)

OTC June 2013–September 2014 CF, NF, NF40, NF60 n.a. PODY/AOT40/Gs
model

Sugai et al. (2019) L. kaempferi OTC June 2015–August 2016 CF, NF60 Nitrogen addition PODY/AOT40/Gs
model

F1 (L. gmelinii var.
japonica× L. kaempferi)

OTC June 2015–August 2016 CF, NF60 Nitrogen addition PODY/AOT40/Gs
model

Wang et al. (2015) F1 (L. gmelinii var.
japonica× L. kaempferi)

OTC July 2011–September 2012 CF, NF60 n.a. PODY/AOT40

Watanabe et al. (2006) L. kaempferi OTC April 2004–September 2005 CF, AA, 1.5AA,
2.0AA

Nitrogen addition AOT40

Agathokleous
(unpublished)

L. kaempferi Field June–August 2015 n.a. n.a. Gs model

F1 (L. gmelinii var.
japonica× L. kaempferi)

Field August 2017 n.a. n.a. Gs model

OTC, open-top chamber; CF, charcoal-filtered air; NF, non-filtered air; NF40, 40 ppb O3; NF60, 60 ppb O3; AA, ambient O3 concentration; 1.5AA, 1.5 times ambient O3
concentration; 2.0AA, twice ambient O3 concentration; n.a., not available.

respectively, on stomata. Parameterization was carried out using
a boundary line analysis (Alonso et al., 2008; Braun et al., 2010;
Hoshika et al., 2012). First, the gsto data were divided into classes
with the following stepwise increases for each variable: 200 µmol
photons m−2 s−1 for PPFD (when the values were less than
200 µmol photons m−2 s−1, PPFD classes at 50 µmol photons
m−2 s−1 steps were adopted), 2◦C for T, and 0.2 kPa for VPD.
A function was fitted against each model variable based on 95th
percentile values per class of environmental factors. Values of
gmax and f min were calculated as the 95th percentile and 5th
percentile, respectively (Hoshika et al., 2012; Bičárová et al.,
2019). For details of f light, f temp, and f VPD, see CLRTAP (2017).

Stomatal O3 uptake (Fst; nmol m−2 s−1) was calculated as
follows:

Fst = [O3] · gsto ·
rc

rb + rc
(2)

where rc is the leaf surface resistance [= 1/(gsto + gext); s m−1]
and gext is the external leaf or cuticular conductance (= 0.0004 m
s−1, CLRTAP, 2017). The standard DO3SE model considers the
leaf boundary layer resistance (rb):

rb = 1.3 · 150 · (Ld/u)0.5 (3)

where the factor 1.3 accounts for the difference in diffusivity
between heat and O3, 150 is the empirical constant, Ld is the
cross-wind leaf dimension (0.008 m for conifers, CLRTAP, 2017),
and u is the wind speed. The wind speed data were not available
in collected literatures. However, in OTCs, since a constant
ventilation from the blowers is realized, rb is less important

compared with stomatal resistance (rsto) (Unsworth et al., 1984;
Uddling et al., 2004; Tuovinen et al., 2009). This is supported by
the fact that the rb/rc ratio was small in the present study when
assuming that rsto was rsto_min (= 1/gmax) and wind speed was
constant inside a chamber (rb/rc = 0.07 and 0.06 at 1 m s−1 and
0.05 and 0.04 at 2 m s−1 of wind speed in hybrid and Japanese
larch, respectively). Here, we assumed that rb was negligible for
the calculation of Fst.

PODY (mmol m−2) was estimated from hourly data as
follows:

PODY =
n∑

i=1

(Fst,i − Y) ·1t (4)

where Y is a species-specific threshold of stomatal O3 uptake
(nmol m−2 s−1) and 1t = 1 h is the averaging period. Fst,i
is the ith hourly stomatal O3 uptake (nmol m−2 s−1), and
n is the number of hours included in the calculation period.
Y is subtracted from each Fst,i when Fst,i > Y. PODY was
then estimated based on hourly data of air temperature, solar
photosynthetic active radiation, and VPD as registered locally
and accumulated over the duration of the experiments from the
six papers (Table 1). Data from Matsumura (2001) and Watanabe
et al. (2006) were excluded from this analysis because of missing
meteorological data.

To establish PODY-based dose–response relationships, two
representative values of Y (= 0 or 1 nmol m−2 s−1) were
tested. This is because CLRTAP (2017) suggested POD1 to be
suitable for biomass assessment in elevated O3 while several
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studies reported a better performance of POD0 rather than
POD1 for O3 risk assessment (e.g., Sicard et al., 2016).
CLs were estimated for a total biomass reduction of both
2% as suggested for deciduous species and 4% as suggested
for non-Mediterranean conifer species (CLRTAP, 2017). In
addition, since CLRTAP (2017) provided an AOT40-based CL
corresponding to a 5% biomass reduction for forests, the
CLs for the 5% biomass reduction were also shown. For
PODY, CLs were calculated, referring to a “REF10” PODY
calculated at a constant O3 concentration of 10 ppb referring
to a “pre-industrial” O3 concentration, as recommended
by CLRTAP (2017).

Simple linear regression analyses were used to assess the
relationships between O3 indices (AOT40, POD0, and POD1)
and relative biomass. In addition, to compare the gmax values
between the two larches, Student’s t-test was performed on values
within the top five percentile in gsto data. Results were considered
significant at p < 0.05. All the analyses were performed using R
3.5.1 (R Core Team, 2018).

RESULTS

The parameterization of the stomatal conductance model
(Figure 1) resulted in very similar values for Japanese larch and its

TABLE 2 | DO3SE model parameters for Japanese larch and hybrid F1, where
gmax is maximum stomatal conductance; fmin is minimum stomatal conductance;
f light_a is a parameter determining the shape of the hyperbolic relationship of
stomatal response to light; Tmax, Topt, and Tmin are the maximum, optimal, and
minimum temperatures, respectively, for calculating the function f temp that
expresses the variation of gsto with temperature; VPDmin and VPDmax are the
vapor pressure deficit for attaining minimum and maximum stomatal aperture,
respectively (fVPD).

Parameter Japanese larch Hybrid F1

gmax, mmol O3 m−2 PLA s−1 120 [95% CI: 103–188] 140 [95% CI: 110–225]

fmin, fraction 0.16 0.09

f light_a, µmol−1 m−2 s−1 0.0097 0.0096

Tmin, ◦C 5 5

Topt, ◦C 25 25

Tmax, ◦C 40 40

VPDmax, kPa 1.6 1.6

VPDmin, kPa 4.0 4.2

CI denotes confidence interval.

hybrid F1 (Table 2). The gmax in hybrid larch was slightly higher
than that in Japanese larch although gmax values in the two larches
were not statistically different (p = 0.48, Student’s t-test for the
values within the top five percentile in gsto, data not shown). On

FIGURE 1 | Parameterization of the stomatal conductance (gsto) model for Japanese larch (above) and its hybrid F1 (below), where f light, f temp, and fVPD are
functions of photosynthetically photon flux density (µmol photons m−2 s−1), air temperature (T, ◦C), and vapor pressure deficit (VPD, kPa), respectively. The results
of the boundary line analysis are shown in red.
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the other hand, f min was slightly higher in Japanese larch than in
hybrid larch F1.

All the dose–response relationships were significant. When
AOT40 was applied, in particular, a higher slope was found for
hybrid larch F1 than for Japanese larch (Figure 2).

The CLs calculated on the basis of these dose–response
relationships were 2.7 times higher in Japanese larch than in its
hybrid F1 when AOT40 was used, while PODY-based CLs were

similar between the two species when using either no Y threshold
or a Y threshold of 1 nmol m−2 s−1 PLA (Table 3).

DISCUSSION

The boreal area in the northern hemisphere where larches
are widely distributed is at risk of changes due to the

FIGURE 2 | Dose–response relationships for total biomass losses in two species of larch seedlings on the basis of AOT40, POD0, or POD1 in different experiments.
Black lines denote the regressions, and gray lines denote the 95% confidence intervals. Asterisks show the level of significance: ***p ≤ 0.001; *p ≤ 0.05.
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TABLE 3 | Critical levels for larch protection from ozone corresponding to a total
biomass loss of 2%, 4%, or 5% and based on the dose–response relationships in
Figure 2.

Japanese larch Hybrid larch F1

2% 4% 5% 2% 4% 5%

AOT40 based, ppm h 5.79 11.59 14.48 2.18 4.36 5.45

POD0 based, mmol m−2 9.40 12.00 13.29 10.44 12.38 13.35

POD1 based, mmol m−2 2.21 4.31 5.36 2.45 4.19 5.06

potential O3 impact on photosynthetic carbon assimilation
(Sicard et al., 2017), as estimated by several global atmospheric
chemistry transport models and representative concentration
pathways emission scenarios. For a realistic estimate of O3
risks to forests, CLs should be developed for the major forest
species or types. Even though natural areas and plantations for
larch trees are very wide and larch is a major genus of the
forest category defined as boreal deciduous species, PODY-based
CLs were not yet available for larch and are suggested here
for the first time.

Organismic “sensitivity” may be defined as “the response
of an organism (i.e., biological deviation) above or
below a homeostatic state (control) of a set of biological
traits, after sensing some environmental stress-inducing
agents” (Agathokleous and Saitanis, 2020). However, “the
organismal predisposition to be inhibited or adversely
affected by or die of a xenobiotic,” as expressed by
“negative (inhibitory or adverse) effects induced by diseases
or environmental challenges,” is termed susceptibility
(Agathokleous and Saitanis, 2020). Hence, organismic
susceptibility can be assessed by studying dose/exposure–
response relationships and, in particular, by comparing
CLs among organisms (Agathokleous and Saitanis, 2020).
Since the CLs are affected by the O3 metric used to
develop dose/exposure–response relationships, susceptibility
rankings can be different depending on the O3 metric used
(Agathokleous et al., 2019).

So far, CLs have been estimated for a total biomass
reduction in either deciduous broadleaf and Mediterranean
conifer species (recommended biomass loss: 2%) or non-
Mediterranean evergreen conifer species (recommended biomass
loss: 4%) (CLRTAP, 2017). As larch is both a deciduous
species and a non-Mediterranean conifer species, we decided
to calculate the CLs for both the loss thresholds of 2%
and 4%. We decided also to calculate the CLs for AOT40,
although this metric is known for not being able to assess how
much O3 enters the leaf through the stomata (Paoletti and
Manning, 2007). However, it is still the legislative standard in
Europe (Directive 2008/50), is used in many other continents
(e.g., Agathokleous et al., 2018; Pleijel et al., 2019) because
it is simple to calculate, and helps in the comparison
with other results in the literature. The AOT40-based CL
suggested so far for O3-susceptible deciduous broadleaves
(F. sylvatica and B. pendula, 5 ppm h for a 5% biomass loss;

CLRTAP, 2014, 2017) is similar to that of hybrid larch F1
(5.45 ppm h for 5% biomass loss), while Japanese larch showed
a markedly higher AOT40-based CL corresponding to 5%
loss (i.e., 14.48 ppm h). Based on a reanalysis of only two
of the papers investigated here (Matsumura, 2001; Watanabe
et al., 2006), Yamaguchi et al. (2011) had already suggested
high O3 susceptibility for Japanese larch. In fact, the AOT40-
based CLs that they recommended were consistent with those
found in our work (i.e., 8–15 ppm h). In addition, our
results would suggest a higher susceptibility to O3 of the
hybrid and confirm previous studies where ecophysiological
responses of the hybrid were more severely affected by O3
exposure than those of Japanese larch (Koike et al., 2012;
Sugai et al., 2019).

An accurate parameterization of stomatal conductance model
is essential for the flux-based O3 risk assessments (Emberson
et al., 2000). For larch, the information of leaf-level gsto
parameters was limited, although some studies tried to estimate
O3 uptake at stand level by sap-flow measurements (Nunn
et al., 2007) and at forest level by eddy covariance (Finco
et al., 2017). Wieser and Havranek (1995) previously reported
just stomatal VPD responses to estimate stomatal O3 uptake
in European larch (Larix decidua). Our study is the first one
to achieve a proper leaf-level parameterization (gmax, f min,
f light, f temp, and f VPD) in larch trees to develop a flux-
based approach. The maximum value of gsto in European
larch by Wieser and Havranek (1995) was 150 mmol O3
m−2 PLA s−1, which was comparable to the gmax values in
our findings. Interestingly, hybrid larch F1 showed a slightly
higher gmax (140 vs. 120 mmol O3 m−2 PLA s−1 in Japanese
larch). As gmax is known to play the most important role
in determining PODY (Tuovinen et al., 2007), the small
difference in gmax between the two species translated into
a higher stomatal uptake of O3 by the hybrid at similar
AOT40 levels; that is, the higher susceptibility of the hybrid
under similar O3 exposures was due to a higher stomatal
uptake. It is well known that fast-growing species with high
stomatal conductance are susceptible to O3 because of an
elevated stomatal uptake (Feng et al., 2018; Hoshika et al.,
2018a). When the CLs are calculated on a PODY basis,
in fact, the two species showed surprisingly similar CLs:
9.40 and 12.00 mmol m−2 POD0 and 2.21 and 4.31 mmol
m−2 POD1 in Japanese larch versus 10.44 and 12.38 mmol
m−2 POD0 and 2.45 and 4.19 mmol m−2 POD1 in the
hybrid, for 2% and 4% biomass loss, respectively. These
POD1-based values are below the CL recommended for
non-Mediterranean trees (5.7 mmol m−2; CLRTAP, 2017),
suggesting that these larches are more susceptible to O3
even when evaluated on the basis of stomatal flux. Different
susceptibilities to O3 injury in the two larch species may
be also due to different antioxidant capacities (Di Baccio
et al., 2008). Although monoterpene emissions from leaves
were preliminarily studied (Mochizuki et al., 2017), the role
of antioxidants, secondary metabolites, and other leaf defensive
molecules in the response of these two species to O3
remains elusive.
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CONCLUSION

Based on a reanalysis of literature results and new measurements,
we conclude that Japanese larch and its hybrid F1 should
be classified as species with considerable O3 susceptibility as
compared to the CLs available so far for other forest species. We
also found that AOT40 and PODY can give very different results
when assessing a species’ susceptibility to O3. While AOT40
suggested a higher susceptibility of hybrid F1, PODY did not
highlight marked differences between the two species. Future
research should clarify the O3 susceptibility of hybrid clones
versus their wild forest species and increase the number of forest
species with a species-specific parameterization and PODY-based
CLs, especially in the Asian continent. This kind of information
is needed for improving our modeling capacities, assessing O3
risks to local-to-global forests, and transferring this knowledge
to environmental policy-makers.
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