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There has been increasing interests in exploring biomarkers from brain images, aiming 
to have a better understanding and a more effective diagnosis of brain disorders 
such as schizophrenia, bipolar disorder, schizoaffective disorder, autism spectrum 
disorder, attention-deficit/hyperactivity disorder, Alzheimer’s disease and so on. 
Therefore, it is important to identify disease-specific changes for distinguishing 
healthy controls and patients with brain disorders as well as for differentiating 
patients with different disorders showing similar clinical symptoms. Biomarkers can 
be identified from different types of brain Imaging techniques including functional 
magnetic resonance imaging (fMRI), structural MRI, positron emission tomography 
(PET), electroencephalography (EEG), and magnetoencephalography (MEG) by using 
statistical analysis methods. Furthermore, based on measures from brain imaging 
techniques, machine learning techniques can help to classify or predict disease for 
individual subjects. In fact, fusion of features from multiple modalities may benefit the 
understanding of disease mechanism and improve the classification performance.

This Research Topic further explores the functional or structural alterations in brain 
disorders.
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Editorial on the Research Topic

Identifying Neuroimaging-Based Markers for Distinguishing Brain Disorders

The current diagnosis of brain disorders heavily relies on clinical presentation. Neuroimaging
is gaining more importance with the potential to provide useful markers in revealing
biological substrates and benefit brain disorder diagnosis. Magnetic resonance imaging (MRI),
electroencephalography (EEG), positron emission tomography (PET), diffusion tensor image
(DTI), and magnetoencephalography (MEG) have been widely applied to measure the brain
structure, decode the brain function, and explore the disease mechanism from different aspects.
This Research Topic takes action by publishing 24 papers that proposed new methods for
identifying biomarkers from these modalities and utilized neuroimaging measures to differentiate
between patients with brain disorders or differentiate patients from healthy controls. Papers in the
topic involved different disorders such as schizophrenia (SZ), autism spectrum disorder (ASD),
Alzheimer’s disease (AD), attention-deficit/hyperactivity disorder (ADHD), and epilepsy.

Resting-state functionalMRI (fMRI) has been successful in estimating brain functional networks
and connectivity via data-driven methods (Calhoun et al., 2001; Beckmann et al., 2005; Du and
Fan, 2013), providing features for the classification between various brain disorders and the
prediction of disorder progression (Du et al., 2015, 2018b; Arbabshirani et al., 2017). There has
been evidence that brain functional connectivity is time-varying, and clustering (e.g., K-means)
and decomposition methods can be used to extract connectivity states from dynamic connectivity
patterns (Hutchison et al., 2013; Allen et al., 2014; Calhoun et al., 2014; Preti et al., 2017). Most
previous dynamic connectivity studies focused on the dynamics of the connectivity between
different brain regions or networks (Damaraju et al., 2014; Yu et al., 2015; Du et al., 2016, 2017,
2018a). A study by Bhinge et al. proposed a novel approach to measure both the voxelwise
spatial variability in functional networks and the dynamic functional network connectivity
(dFNC). Time-varying spatial networks were estimated by a constrained independent vector
analysis. Their method successfully captured distinct information between healthy controls and SZ
patients, resulting in relatively high classification accuracy by using dynamic spatial information.
Another shortcoming of previous dynamic analyses is that clustering was often performed to
all time-varying connectivity matrices without considering their temporal relationship. In the
topic, Espinoza et al. incorporated the temporal variation of functional network connectivity into
clustering, thus providingmore information than regular dFNCmethod in investigating differences

6
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between SZ patients and healthy controls. In another study,
Zhao et al. also focused on improving the clustering performance
in identifying reliable connectivity states from dynamic
connectivity. They used the node centrality of brain regions
rather than the original functional connectivity strengths as
features, showing that repeatable dynamic features can be found
between repeated scans. All these newmethods would benefit the
biomarker identification from dynamic functional connectivity.
On the other hand, potential neuroimaging biomarkers are most
meaningful when they can be replicable and used to predict new
subjects in clinical practice (Jiang et al., 2018). A previous study
(Sun et al., in press) proposed a connectome-based predictive
model that can be used to predict depressive rating changes and
remission status of major depressive disorder (MDD) patients.
In the topic, Zhu et al. identified abnormal brain connections
in the lateral habenula and thalamus, and found that they may
serve as connectome-based biomarkers to predict the precursor
to MDD. Luo et al. investigated the MDD in terms of the
functional connectivity between the brainstem regions and other
brain regions, providing a new insight for the neurobiology
of MDD. Cui et al. proposed a method to integrate local and
global properties of brain functional networks for improving
the classification performance between early mild cognitive
impairment (EMCI) and healthy control groups, based on
the minimum spanning tree and graph kernel techniques. A
work from Yang et al. obtained high classification accuracy
by fusing amplitude of low frequency fluctuation (ALFF)
and fractional ALFF features for distinguishing individuals
with subjective cognitive decline, patients with amnestic mild
cognitive impairment, patients with AD, and healthy controls.
Xu, Yang et al. investigated the altered resting-state whole
brain functional connectivity in premature ejaculation patients
compared to healthy controls via a classification method. Using
fMRI, network topological property is one of the most important
techniques to elucidate the brain function (Wang et al., 2010;
Bullmore and Sporns, 2012). One study by Liu et al. revealed
the alterations in diabetes mellitus patients using long-range
and short-range functional connectivity degree. Xu, Guo et al.
compared the topological properties between diabetes mellitus
patients and healthy controls using fMRI connectivity. Wang,
Tao et al. studied the topology of frontal parietal attention
network in children with ADHD using a graph theory analysis
method including the minimum spanning tree technique.

Besides fMRI, other modalities including structural MRI
(sMRI), EEG, PET, and MEG can be utilized to provide useful
indicators. Xu, Chen et al. reported the first study to show
structural and functional brain abnormalities in patients with
hemifacial spasm using both fMRI and sMRI. Long et al. found
that various brain parcellation schemes may result in different
classification performance by using voxel-based morphometry
measures summarized in brain regions as features in classifying
MCI patients and healthy controls. Yan et al. proposed a new
matrix regression method that showed a promise in predicting
cognitive data of AD using voxel-based morphometry. Zeng
et al. focused on the prediction of medication response in
herpes zoster patients by applying a searchlight algorithm and
support vector machine on the voxel-based brain morphometry
measures. A paper by Ma et al. showed the tissue-specific

changes in gray matter and white matter of the mouse model
of tauopathy based on the in vivo and ex vivo conditions,
emphasizing the importance of longitudinal analysis. Based on
DTI data, Qin et al. applied the graph theory and network-
based statistic methods to compare the impairments between
obsessive-compulsive disorder and SZ. Wang, Li et al. revealed
the abnormality in the hemispheric topological asymmetries in
bipolar disorder using DTI-based network analysis. Using both
DTI and fMRI networkmeasures, Park et al. reported the changes
of individuals with eating disorder and found the brain regions
associated with the behaviors. In another study, Hu et al. used
the partial least square technique to aid the minimum variance
beamforming approach for source imaging with MEG arrays,
and verified its effectiveness in simulated data and epilepsy data.
Using EEG activity, Simões et al. identified group differences
between patients with ASD and healthy controls under the
visual stimulation and mental imagery tasks, revealing a possible
biomarker of face emotional imagery network of ASD. Shah
et al. explored the possible mechanism of depression in human
immunodeficiency virus (HIV) by analyzing the longitudinal
PET images of an animal model of HIV.

Since different types of neuroimaging techniques reflect the
brain’s function and structure from different angles, it has been
largely acknowledged that through the fusion of complementary
information from different modalities, biomarkers of mental
illness may be identified more precisely (Sui et al., 2018).
Efficient methods that can draw valid conclusions from high
dimensional multimodal imaging, cognitive or genetic data are
urgently needed (Calhoun and Sui, 2016; Qi et al., 2019). In
the topic, Acar et al. applied an advanced coupled matrix
and tensor factorizations (CMTF) method to the data of EEG,
fMRI, and sMRI collected from patients with schizophrenia
and healthy controls to reveal linked biomarkers across
different modalities. Compared to joint ICA, they revealed
more meaningful and reproducible biomarkers. Besides the
neuroimaging studies on brain disorders, increasing work
has recognized the role of genetics in the etiology of many
complex disorders (e.g., schizophrenia; Lin et al., 2018; Chen
et al., 2019). Imaging genetics, a rising field to bridge genetics
and neuroimaging, aims to investigate the genetic risk of
various imaging endophenotypes in relation to diseases, and
identify biomarkers (genetic and imaging) to facilitate the
disease diagnosis (Lin et al., 2014). In the topic, Jiang et al.
reviewed the current imaging genetics studies on schizophrenia,
particularly in revealing the heterogeneity within schizophrenia,
and also discussed the potential of imaging genetics in refining
disease diagnosis.
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Convergent evidences have demonstrated a variety of regional abnormalities of
asymmetry in bipolar disorder (BD). However, little is known about the alterations in
hemispheric topological asymmetries. In this study, we used diffusion tensor imaging
to construct the hemispheric brain anatomical network of 49 patients with BD and
61 matched normal controls. Graph theory was then applied to quantify topological
properties of the hemispheric networks. Although small-world properties were preserved
in the hemispheric networks of BD, the degrees of the asymmetry in global efficiency,
characteristic path length, and small-world property were significantly decreased. More
changes in topological properties of the right hemisphere than those of left hemisphere
were found in patients compared with normal controls. Consistent with such changes,
the nodal efficiency in patients with BD also showed less rightward asymmetry mainly
in the frontal, occipital, parietal, and temporal lobes. In contrast to leftward asymmetry,
significant rightward asymmetry was found in supplementary motor area of BD, and
attributed to more deficits in nodal efficiency of the left hemisphere. Finally, these
asymmetry score of nodal efficiency in the inferior parietal lobule and rolandic operculum
were significantly associated with symptom severity of BD. Our results suggested that
abnormal hemispheric asymmetries in brain anatomical networks were associated with
aberrant neurodevelopment, and providing insights into the potential neural biomarkers
of BD by measuring the topological asymmetry in hemispheric brain anatomical
networks.

Keywords: bipolar disorder, diffusion tensor imaging, graph theory, hemispheric asymmetry, structural
connectivity

INTRODUCTION

The human brain is structurally and functionally asymmetrical or lateralized (Watkins et al.,
2001; Toga and Thompson, 2003). Even subtle perturbations to anatomical asymmetries between
two hemispheres, such as gray matter volume (Sigalovsky et al., 2006), cortical thickness (Rimol
et al., 2010), or white matter (WM) integrity (Park et al., 2004), can cause disturbances in
cognitive and emotion processes. Studies have shown that aberrant brain region asymmetries are
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highly correlated with disturbed functions such as executive
function (Yin et al., 2013), emotion (Schulte et al., 2012), and
language (O’Donoghue et al., 2017). Hence, abnormal anatomical
asymmetries have been observed in a variety of neurological
and psychiatric disorders, including schizophrenia (Highley
et al., 1999), depression (Kwon et al., 1996), attention-deficit
hyperactivity disorder (Miller et al., 2006), and Bipolar disorder
(BD) (Beyer et al., 2005; Bruno et al., 2008). As one of the most
distinct syndromes in psychiatry, BD is mainly characterized as
episodic elevations in emotion and disturbances in cognition
(Belmaker, 2004; Saunders and Goodwin, 2010). Convergent
studies on BD have showed abnormal asymmetries in WM
(Bruno et al., 2008; Kafantaris et al., 2009; Wessa et al., 2009;
Mahon et al., 2013), for example, less WM volume within the left
frontal lobes, the rightward WM in orbital frontal. These results
indicated that the alteration in WM asymmetries have been
proposed as a key factor in the manifestation of BD symptoms.

As an imaging method, diffusion tensor imaging (DTI) can
reconstruct the major WM tracts faithfully (Dae-Jin et al., 2013)
and has been proved to be a promising tool for assessing WM
abnormalities. Recently, using the DTI tractography and graph
theory, connectome studies demonstrated abnormal topological
properties in BD (Leow et al., 2013; Forde et al., 2015; Collin
et al., 2016, 2017; Spielberg et al., 2016; O’Donoghue et al., 2017).
The patients with BD showed decrease in global integration
(longer characteristic path length, smaller global efficiency),
increase in functional segregation (larger clustering coefficient
and local efficiency), and loss of small-world property (the
balance between local integration and functional segregation)
(Leow et al., 2013; Forde et al., 2015; Collin et al., 2016;
Spielberg et al., 2016; O’Donoghue et al., 2017). These studies
have mainly focused on the WM topological properties in
whole network rather than hemispheric network. Analyzing the
hemispheric anatomical networks and further determination of
the status of the anatomical network asymmetries might benefit
the understanding of the underlying nature of alteration in the
brain of BD, and potentially help to elucidate the etiology of the
disorder. However, the hemispheric asymmetries of anatomical
network in patients with BD were remained unclear.

In present study, we adopted the DTI deterministic
tractography method and graph theory to investigate the
abnormality of hemispheric asymmetries in brain anatomical
networks in BD. In particular, we focused on global graph
measures, including small-world property, global and local
efficiency, and regional parameters to evaluate (1) the abnormal
hemispheric asymmetries in brain anatomical networks in
patients with BD and (2) whether the abnormal hemispheric
asymmetries in network organization were related to clinical
features of BD.

MATERIALS AND METHODS

Subjects
Data were selected from the UCLA Consortium for
Neuropsychiatric Phenomics LA5c Study, and the study
was approved by the UCLA Institutional Review Board. The

data were obtained via a public database, openfMRI (Poldrack
and Gorgolewski, 2015). About 49 BD patients and 61 age-
and gender-matched normal subjects were selected for further
analyzing. All subjects were right-handed. There are more details
available in openfMRI1 (ds000030). The detailed demographics
and clinical features of the patients with BD and normal controls
are described in Table 1. Patient symptoms were evaluated
using the 17-item Hamilton Depression Rating Scale (HAMD)
(Hamilton, 1960) and the Young Mania Rating Scale (YMRS)
(Young et al., 1978).

Data Acquisition and Preprocessing
Structural MRI data were acquired on 3T Siemens Trio scanners
located at the Ahmanson-Lovelace Brain Mapping Center
(Siemens version syngo MRB15) and the Staglin Center for
Cognitive Neuroscience (Siemens version syngo MRB17) at
UCLA. A high-resolution 3D echoplanar imaging was acquired
with the following parameters: TR = 1.9 s, TE = 2.26 ms,
FOV = 250 mm, matrix = 256 × 256, sagittal plane, slice
thickness = 1 mm, 176 slices. Diffusion weighted imaging
(DWI) data were collected using an echo-planar sequence with
parameters: 64 directions, 2 mm slices, TR/TE = 9000/93 ms,
1 average, 96 × 96 matrix, 90◦ flip angle, axial slices,
b = 1000 s/mm2.

This study used the MATLAB toolbox named PANDA to
perform data preprocessing and the construction of the brain
network (Cui et al., 2013). Specifically, data preprocessing
approaches included correction for simple head movements and
eddy current distortions using affine transformation to the b0
image (Jenkinson et al., 2002). After data preprocessing, the seven
independent components of the diffusion tensor were estimated
and from which fractional anisotropy (FA, a DTI measurement)
was calculated. Subsequently, the deterministic fiber tracking
algorithms were used to reconstruct fiber paths (Mori et al.,
1999). The fiber tracking procedure started from the deep WM
regions and terminated if two consecutive moving directions had
a crossing angle above 35◦ or the FA was out of the threshold
range (0.1∼1).

Network Construction and Analysis
In this study, the method of constructing the WM network
was described in Gong et al. (Gong et al., 2009). Based on
the automated anatomical labeling (AAL) parcellation scheme
(Tzouriomazoyer et al., 2002), the brain was divided into 90
regions (45 in each hemisphere). Each region was defined as
one node in the anatomical network. A linear transformation
was applied locally within each subject’s DTI image correlated
with the T1-weighted image to coregister them to the b0
image with DTI space followed by applying a nonlinear
transformation to map to the ICBM152 T1 template [Montreal
Neurological Institute (MNI)]. Then, the subject-specific AAL
mask was weaved from the MNI space to the DTI native
space with the corresponding inverse transformation, such that
separate labeling values were maintained via nearest-neighbor
interpolation (Gong et al., 2009; Cui et al., 2013). The FA between

1https://www.openfmri.org/
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TABLE 1 | Demographic and clinical characteristicsa.

Characteristic Group (patients/controls = 49/61) Statistical test

Patients with BD Normal controls

Age (years) 22–50(32.3 ± 9.0) 21–49(33.1 ± 9.2) t108 = −1.218 P = 0.226b

Male/Female 28/21 32/29 χ2
1 = 0.909 P = 0.340c

Education (years) 11–19(14.6 ± 2.0) 12–19(15.2 ± 1.5) t108 = −2.080 P = 0.040b

Duration of illness (months) 0–24(2.1 ± 5.2) N/A

Medication dose (mg/day) 0–6210(784.8 ± 1035.3)

Handscored 0.75–1(0.93 ± 0.1) 0.80–1(0.93 ± 0.1)

YMRS_scoree 0–41(11.9 ± 11.0) N/A

HAMDe 0–32 (12.0 ± 8.4) N/A

aUnless otherwise indicated, data are expressed as a range of minimum–maximum (mean ± SD). bThe P-value was obtained using a two-sample two-tailed
t-test. cThe P-value was obtained using a two-tail Pearson’s χ2 test. dThe Handscore described the handedness of subjects. It was obtained using a formula
(Right − Left)/(Right ± Left). eThe score of Young Mania Rating Scale (YMRS_score) and the 17-item Hamilton Depression Rating Scale (HAMD) was used to assess the
symptom severity of patients with BD.

two regions was defined as the network edge (Shu et al., 2011; Bai
et al., 2012). Prior to constructing the network, the connection
between these two regions was adopted if the fiber number (FN)
between the two regions was larger than 3 (Shu et al., 2011).
It was helpful to reduce the influence of pseudo-connections
owing to possible noise effects on whole-brain tractography. For
each subject, we eliminated the inter-hemispheric connections
and then obtained two weighted 45 × 45 hemispheric brain
networks, one for the left hemisphere and the other for the right
hemisphere.

The network architecture was then investigated at both
global and regional levels for the constructed WM networks.
The small-world property suggests the architecture of networks
with higher local clustering and equivalent characteristic path
length compared with the random network (Watts and Strogatz,
1998). In this work, eight network properties were used to
analyze the topological organization of the WM networks. The
clustering coefficient (Cp) of a network is thus the average of
clustering coefficients across nodes and is a measure of functional
segregation. The characteristic path length (Lp) of a network
is the average shortest path length between all pairs of nodes
in the network and is the most commonly used measure of
global integration. The normalized clustering coefficients (γ),
γ = Cp/Crand and the normalized characteristic path length
(λ), λ = Lp/Lrand, Crand and Lrand represent indices derived
from matched random networks (100 matched random networks
were selected). The small-world property of a network can be
characterized by both γ and λ, indicating a balance between
integration and segregation. In a small-world network, the Cp is
significantly higher than that of random networks (γ greater than
1), while the Lp is comparable to random networks (λ close to
1). The global efficiency (Eg), reflecting the efficiency of whole
network information transmission (integration), is the inverse
relation of Lp. The local efficiency (Eloc), reflected the efficiency
of the network segregation. Regional properties were described
in terms of nodal efficiency, Enodal(i) (Achard and Bullmore,
2007). It measures the information transmission ability of node
i in the network. A node with high Enodal(i) indicates great
interconnectivity with other regions in the network. The detailed

descriptions of these graph theory parameters can be found in a
previous work (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010). The graph theory analysis was performed with GRETNA2

software.

Asymmetry Score
The degree of hemispheric network asymmetry was estimated
by the asymmetry score (Iturriamedina et al., 2011; Ratnarajah
et al., 2013) using the following formulation: AS (X) =
100 × [X (R) − X (L) ]/[ X (R) + X (L)], where X(R) and
X(L) represent the network properties of the right and left
hemisphere, respectively. The asymmetry score AS(X) helps us
look at the differences between the right and left hemisphere.
Notably, a positive value of AS(X) represents a rightward
asymmetry, while a negative value of AS(X) indicates a leftward
asymmetry.

Statistical Analysis
All statistical analyses were performed using SPSS 19 software
(SPSS, Inc., Chicago, IL, United States). To determine whether
there was any significant group difference in age and education,
this work performed the separate two-tailed t-tests to analyze
data. We used a χ2 test to analyze the gender data. To assess the
group differences in hemispheric network properties, we used a
general linear model (GLM) that was performed with hemisphere
as a within-subject factor, group as a between-subject factor,
and a group-by-hemisphere interaction. Studies have shown that
hemispheric asymmetries are related to age (Cabeza, 2002; Dolcos
et al., 2002) and gender (McGlone, 1980; Good et al., 2001).
Hence, we set the age, gender, and age-by-gender interaction
as covariates in the GLM. Further post hoc tests, including
two-sample t-test for group differences and paired t-test for
hemisphere differences, were used if any difference survived a
threshold of P < 0.05. To determine whether the AS of the
network properties within each group was significantly different
from zero, one-sample t-test was performed on the asymmetry
score. Meanwhile, a univariate analysis with covariance of age,

2http://www.nitrc.org/projects/gretna/
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gender, and age-by-gender interaction was performed on the
AS to assess group differences. The threshold of P < 0.05 was
considered to be significant for global properties. In particular, for
the regional properties, the Bonferroni-correction was performed
on that threshold (P < 0.05).

This work also studied the relationships between the
hemispheric asymmetry scores and symptom severity of patients
with BD. Considering age, gender, and age-by-gender as the
covariates, we used both Pearson and Spearman correlation
to analyze the relationship between network properties and
BD symptom severity. Pearson is used to measure the linear
relationship between two consecutive variables. Spearman does
not require the distribution of primitive variables and belongs to
a non-parametric statistical method. It was unnecessary to correct
multiple comparisons because the aforementioned analyses were
exploratory in nature. Hence, a significant relationship was
considered at an uncorrected P-value of 0.05.

RESULTS

Global Properties of Hemispheric
Networks
Group and Hemispheric Differences
As shown in Figure 1, all four hemispheric brain anatomical
networks (2 hemispheres × 2 groups) exhibited prominent
features of small-world property, as expressed by a larger γ

(γ > 1) and a smaller λ (λ ≈ 1). Statistical analysis results
showed significantly topological changes in the global properties
in both groups and hemispheres. Except for local efficiency Eloc
(F1,106 = 2.372, P = 0.127), the rest of the six network properties
exhibited significant group differences between normal controls
and patients with BD. There was a reduced global integration
(decreased global efficiency and increased characteristic path
length) and increased small-world property in patients with BD.
Furthermore, we observed a significant group-by-hemisphere
interaction on global efficiency Eg (F1,106 = 9.311, P = 0.003),
the characteristic path length Lp (F1,106 = 7.323, P = 0.008), the
normalized clustering coefficients γ (F1,106 = 30.107, P < 0.001)
and the small-world property σ (F1,106 = 32.163, P < 0.001).
Post hoc analysis indicated that this interaction resulted from
a significant rightward trend in global integration (P = 0.001)
and a significant leftward trend in the characteristic path length
(P = 0.003), the normalized clustering coefficients (P < 0.001),
and small-world architecture (P < 0.001) in normal controls and
a symmetrical trend in patients with BD.

Asymmetry Score
The asymmetry score was helpful for us to evaluate the differences
between the right and left hemisphere for the network properties.
Additionally, the group differences in asymmetry scores would
directly reflect the abnormal of hemispheric lateralization of
topological organization in BD, and supplemented the result of
the group-by-hemisphere interaction. Table 2 summarizes the
statistical analysis results of the asymmetry scores of the global
network properties for the two groups. Significant differences in
hemispheric asymmetry were only observed in normal controls

and disappeared in patients with BD. Normal controls showed
more globally efficient in the right hemisphere than the left
hemisphere [AS(Eg), t52 = 3.852, P < 0.001]. Additionally, the
characteristic path length [AS(Lp), t52 = −3.852, P < 0.001],
the normalized clustering coefficients [AS(γ), t52 = −6.447,
P < 0.001], and the small-world property [AS(σ), t52 = −6.578,
P < 0.001] showed leftward hemispheric asymmetries in normal
controls. When comparing the asymmetry scores between two
groups, we observed significant group differences in asymmetry
scores of Eg (F1,106 = 8.268, P = 0.005), Lp (F1,106 = 8.268,
P = 0.005), γ (F1,106 = 33.684, P < 0.001), and σ (F1,106 = 35.657,
P < 0.001), which agreed with the significant group-by-
hemisphere interaction on Eg, Lp, γ, and σ revealed by the
GLM model. This result indicated that the rightward asymmetries
of global integration and leftward asymmetries of small-world
feature were observed only in normal controls but disappeared
in patients with BD.

Regional Properties of the Hemispheric
Networks
Hemispheric and Group Differences
The statistical results of nodal efficiency differences are
summarized in Figure 2. Using Bonferroni-correction, we
observed five regions exhibited significant hemispheric
differences (P < 0.05) (Figure 2A). Among these five brain
regions, regions with significant leftward advantage in nodal
efficiency mainly included the anterior cingulate gyrus (ACG)
and the inferior parietal lobule (IPL), whereas regions with
significant rightward nodal efficiency were predominantly
located at the supramarginal gyrus (SMG), the angular gyrus
(ANG), and the rolandic operculum (ROL). Moreover, regions
with significant group differences (BD < CN, P < 0.05,
Bonferroni-corrected) in nodal efficiency included the amygdala
(AMYG), IPL, putamen (PUT), and temporal pole (middle)
(TPOmid) (Figure 2B). The PUT region could not be marked
in Figure 2B. Furthermore, we found significant group-by-
hemisphere interactions in the ROL (F1,106 = 12.930, P < 0.001),
the lingual gyrus (LING) (F1,106 = 19.011, P < 0.001), the
superior occipital gyrus (SOG) (F1,106 = 21.221, P < 0.001),
the IPL (F1,106 = 36.225, P < 0.001), the SMG (F1,106 = 21.617,
P < 0.001), the inferior temporal gyrus (ITG) (F1,106 = 15.900,
P < 0.001), and the ACG (F1,106 = 10.547, P = 0.002, Figure 2C).
Post hoc analysis indicated that these interaction effects resulted
from significantly reduced rightward hemispheric asymmetry
in nodal efficiency in patients with BD (Figure 3). Specially,
we revealed significant group-by-hemisphere interaction in the
supplementary motor area (SMA) (F1,106 = 34.907, P < 0.001).
Post hoc analysis showed that this interaction in SMA was
attributed to significantly rightward hemispheric asymmetry in
nodal efficiency in patients with BD (Figure 3).

Asymmetry Score
The asymmetry score of nodal efficiency indicated that the region
was leftward or rightward in each group subject. Consistent
with the prior GLM hemispheric results, both groups exhibited
significant hemispheric asymmetry (P < 0.05, Bonferroni-
corrected) in nodal efficiency. For the normal controls shown
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FIGURE 1 | Further statistical analysis of network properties. Bars represent mean ± SD. Each horizontal line and associated number represent the P-value of a
t-test (paired t-test for hemispheric difference at each group and two-sample t-test for group difference). Significant differences are marked with asterisk
(∗∗∗P < 0.001). BD, bipolar disorder; NC, normal control.

TABLE 2 | Group differences on the asymmetry scores of the network properties.

Properties Patients with BD t48 (P-value) NC subjects t60 (P-value) BD versus NC F1,106 (P-value)

AS(Eg) −0.201(0.842) 3.852( < 0.001) 8.268(0.005)

AS(Eloc) −0.756(0.453) 0.078(0.938) 0.048(0.827)

AS(Cp) −0.719(0.476) −0.591(0.557) 0.001(0.998)

AS(Lp) 1.118(0.269) −3.852( < 0.001) 8.268(0.005)

AS(γ) 0.916(0.061) −6.447( < 0.001) 33.684( < 0.001)

AS(λ) 0.693(0.491) −1.624(0.110) 1.649(0.202)

AS(σ) 1.899(0.064) −6.578( < 0.001) 35.657( < 0.001)

A one-sample two-tailed t-test was used to evaluate the statistical results within each group. The between-group differences were computed via a univariate ANCOVA,
and the effects of age, gender, and age by-gender interaction were controlled for all of these analyses. A negative t-value within each group shows a leftward asymmetry
and vice versa. The significant effect (P < 0.05) of network property was expressed in bold. BD, bipolar disorder; NC, normal control.

in Figure 4A, the nodal efficiency with rightward asymmetry
covered the inferior occipital gyrus (IOG), the orbitofrontal
gyrus, the middle part (ORBmid), Cuneus (CUN), and ANG,
SMG, SOG, and ROL. In contrast, the leftward asymmetric nodes
were mainly located at the superior frontal gyrus, medial part
(SFGmed), SMA, and Heschl (HES). For patients with BD shown
in Figure 4B, the regions with significant leftward asymmetries
in nodal efficiency involved the ITG, LING, SFGmed, ACG,
middle occipital gyrus (MOG), HES, and IPL regions. Regions
with significant rightward asymmetries in nodal efficiency

were located at the ANG, Pallidium (PAL), CAL, and SMA.
Additionally, the group differences in asymmetry score can
find the reasons resulted from group-by-hemisphere interaction.
When comparing the group differences in the asymmetry score,
significant differences (P < 0.05, Bonferroni-corrected) were
observed in the SMG, SOG, ROL, ITG, LING, IPL, ACG,
and SMA. Specifically, patient with BD showed significant
less rightward asymmetry in the ROL, SOG, and SMG, and
more leftward asymmetry in the IPL, ACG, ITG, and LING,
which were attributed to significantly more reductions nodal
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FIGURE 2 | Cortical regions with significant differences (A) hemispheric difference, (B) group difference, and (C) group-by-hemispheric interaction on the nodal
efficiency. The color bar denotes F-values. Significant difference was identified with a threshold value of P < 0.05 (Bonferroni-corrected). Significantly different
regions were overlaid on surface maps provided by BrainNet Viewer software (Xia et al., 2013).

efficiency in right hemispheric. Only nodal efficiency of SMA
in left hemisphere significantly reduced in patients with BD
when compared with normal controls, and resulting in reversed
hemispheric asymmetry.

Relationship Between Hemispheric
Asymmetry and BD Symptom Severity
Interestingly, we found the asymmetry scores of regional
properties were correlated with BD symptom severity no matter
using the Pearson or Spearman method. As shown in Figure 5,
the nodal efficiency in ROL showed a significant and positive
correlation with YMRS [AS(ROL), Pearson: r = 0.24, P = 0.05;
Spearman: r = 0.29, P = 0.02], and the nodal efficiency in
IPL showed a significant and negative correlation with YMRS

[AS(IPL), Pearson: r = −0.31, P = 0.02; Spearman: r = −0.25,
P = 0.04].

DISCUSSION

This current study employed DTI tractography and graph theory
to examine the hemispheric asymmetries in brain WM networks
in patients with BD. The hemispheric networks of patients
were observed to have abnormal small-world property and
reduced in global integration. Significant group-by-hemisphere
interaction was revealed in the global efficiency, characteristic
path length, and small-world property, which was attributed
to significantly reduced global integration and increased small-
word characteristic of right hemisphere in patients with BD
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FIGURE 3 | The nodal efficiency of normal controls and bipolar disorder in several regions including PUT, ROL, and SFGdor. Error bar indicates standard error.
∗∗∗P < 0.001, ∗∗P < 0.01.

compared with those in normal controls. Specifically, we
found atypical asymmetric nodal efficiency in several regions
mostly located at the parietal, temporal, and occipital areas.
Furthermore, we revealed that the network properties were
significantly correlated with symptom severity in BD. Our
findings might provide a potential neural biomarkers of that the
altered hemispheric asymmetries in brain anatomical networks
for clinical presentation of BD.

Hemisphere-Related Differences in
Small-World Properties
In present work, hemispheric anatomical networks were used
to evaluate the abnormal topological properties in patients with
BD. Consistent with previous studies on whole-brain anatomical
networks (Puetz et al., 2016; O’Donoghue et al., 2017), the
hemispheric networks of both normal controls and BD patients
preserved significant small-world property, that was significantly
more clustered than random networks and had approximately
the same characteristic path length as random networks (Watts
and Strogatz, 1998). Moreover, we observed significant group
differences in topological properties between normal controls
and patients with BD. The smaller global efficiency, longer
path length, and larger small-world property were shown in
patients with BD compared with normal controls, suggesting
a deficit in global integration (Munarini, 2013). Consistently,
previous studies on whole-brain networks (Collin et al., 2016;
Spielberg et al., 2016; Roberts et al., 2018) also showed smaller
global efficiency and longer characteristic path length in patients

with BD. Overall, these results suggested that the deficits in
global integration were common in brain networks in patients
with BD. Importantly, these abnormal global integrations
were hemisphere-independent, which might be mainly due to
the deficits of intra-hemispheric connections. Contemporary
theories suggest that the complex clinical presentation of BD can
be described as an aberration in the efficiency of information
exchange between separate neural networks in the human brain
(Vargas et al., 2013). Along this notion, our findings suggested the
hemisphere-independent anatomical network with significantly
smaller global efficiency and longer characteristic path length
provides evidence for the hemispheric anatomical networks in
patients with BD as a disconnection syndrome (Dae-Jin et al.,
2013; Collin et al., 2016), especially for the right hemisphere.

The currently observed rightward asymmetry in global
efficiency for normal controls suggests that the right hemisphere
is intra-connected in a better integrated way, allowing for more
efficient communication at the hemispheric level. Consistently,
rightward asymmetry in network efficiency has been reported
in healthy adults(Iturria-Medina et al., 2008; Sun et al., 2015).
Interestingly, such rightward advantage in global integration
in normal controls was absent in patients with BD. Instead,
a roughly symmetrical pattern of global integration at the
global level was found. The absence of rightward asymmetry
in global integration was mainly due to the decrease of global
integration in right hemisphere. According to lateralization of
brain cognation theories, such absence of rightward asymmetry
in global integration might underlie the BD dysfunctions in
attention, visuospatial abilities (Cullen et al., 2016), and emotion
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FIGURE 4 | The asymmetry scores of nodal efficiency for the hemispheric network with 45 nodes. Each bar indicates the mean asymmetry scores (AS). Error bars
represent standard error. For both groups of (A) normal controls and (B) patients with BD, regions with significant AS are marked with asterisk (∗∗∗P < 0.001,
Bonferroni-corrected). All the regions in each group were ascending sorted according to the statistical t-values. Similarly, the color bar indicated the statistical
t-values. The spatial distributions of cortical regions with significant AS in both groups were also presented with BrainNet Viewer software (Xia et al., 2013). Cortical
regions with significant group difference were presented with yellow background.

FIGURE 5 | Partial correlation coefficients between the nodal asymmetry scores and clinical features of patients with BD.

regulation (Schwartz et al., 1975), which are considered to be
dominantly processed in the right hemisphere. The decreased
global integration in the right hemisphere was supported by

the WM destruction in BD, specifically in the cingulum, corpus
callosum, and superior longitudinal fasciculus (Ho et al., 2017).
Our findings extend earlier work and provide network evidence
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that patients with BD have abnormal asymmetries in hemispheric
networks and deficits in global integration in the functional
networks of the right hemisphere.

Hemisphere-Related Differences in
Nodal Properties
Compared with normal controls, patients with BD exhibited
reduced nodal efficiency in several regions (including the AMYG,
the IPL, the PUT, and the TPOmid). Previous DTI studies (Rosso
et al., 2007; Passarotti et al., 2012) also reported that patients with
BD exhibited degenerated WM connectivity in these regions. For
example, the disturbed anatomical connectivity (decreased FA) in
the AMYG (Mcintosh et al., 2008) and TPOmid (Barnea-Goraly
et al., 2009) may represent the reduction of nodal efficiency
observed in this study. Haller et al. (2011) found that the gray
matter of the PUT in patients with BD was significantly smaller
than that in normal controls. The aberrations in nodal efficiency
provided regional evidence to underline the neurobiological basis
of BD.

In addition to the group differences in nodal efficiency,
significant group-by-hemisphere interactions were found in
ROL, SMG, ITG, SOG, and LING, attributing to significantly
reduced hemispheric asymmetry in patients with BD compared
with normal controls. The nodal efficiency of patients with
BD showed more decreased in right hemisphere than left
hemisphere relative to normal controls. Consistently, previous
studies on BD revealed disrupted connectivity in the right
hemisphere including ROL (Gernsbacher and Kaschak, 2003)
and SMG (Wang et al., 2016), ITG, SOG, and LING (Green,
2006; Bearden et al., 2015). The right ROL and SMG regions
were demonstrated involving emotional regulation (Silani et al.,
2013). Considering one of significant symptoms of patients
with BD was emotional regulation (Pavuluri et al., 2006,
2007), the reduction of nodal efficiency in these regions
were proposed to associate with the impaired in emotional
regulation in BD (Pavuluri et al., 2007). Moreover, it has been
demonstrated that the right SOG, ITG, and LING regions were
as associated with the visuospatial processing (Green, 2006;
Bearden et al., 2015). The reduction of nodal efficiency in these
occipital and temporal regions might be associated with the
deficits in visuospatial functions (Green, 2006; Bearden et al.,
2015).

Moreover, we also found that attention cognitive function
regions including the ACG and IPL exhibited significant group-
by-hemisphere interaction and group differences in asymmetry
score. Because the nodal efficiency of right hemisphere in
BD patients showed more reduction than those in left
hemisphere, the ACG and IPL exhibited significant leftward
hemispheric asymmetry. Consistently, previous studies have
reported decreased connectivity in these two regions in patients
with BD. For example, significantly decreased connectivity was
found in the right ACG (Anand et al., 2009; Wang et al.,
2009). Barnea-Goraly et al. (2009) reported that adolescents
with BD had lower FA values than normal controls in the
IPL region. Moreover, studies have showed that alterations
in two regions are closely to the brain function in patients

with BD. Patients with BD was demonstrated with decrease
activation in the right ACG relative to normal controls
during response inhibition task (Passarotti et al., 2010). The
gray matter volume in the right parietal cortical regions
correlated positively with the better inhibitory control in BD
patients (Haldane et al., 2008). We further proposed that the
abnormal asymmetries of nodal efficiency in patients with
BD were associated with abnormal attention or inhibition
function.

Interestingly, the patients with BD exhibited the significant
rightward hemispheric asymmetry only in the SMA region,
whereas a reversed asymmetry (leftward) in normal controls. The
SMA region was revealed significant difference between the BD
group and normal controls (Khadka et al., 2013). In addition,
convergent studies (Caligiuri et al., 2003, 2004) have reported
that patients with BD exhibited greater activities in right SMA
during motor performance than those in left SMA. These results
suggested that abnormalities in asymmetries of nodal efficiency in
SMA influenced processing of motor function in BD (Puri et al.,
2010; Rashid et al., 2014). These findings might provide potential
neural biomarkers of the altered asymmetries in nodal efficiency
for clinical presentation of BD.

Relationship Between Regional
Asymmetries and BD Symptom Severity
An interesting finding of the current study was that within
patients with BD, the topological properties in hemispheric
networks were related to BD symptom severity. We found
that nodal efficiency was associated with the YMRS, which
reflected the severity of the current manic episode; a higher
YMRS resulted in a more severe episode. A positive relationship
between the asymmetry score of nodal efficiency in the
ROL and the YMRS was revealed, indicating that the more
connectivity in the right ROL, the more severe symptoms of
BD. Recently, Gao et al. (2017) found that connectivity in the
right ROL was positively associated with the classification of
BD. Moreover, a negative relationship between the asymmetry
score of nodal efficiency in the IPL and YMRS was observed.
We suggested that the negative correlation might result from
significantly decreased connectivity in the right IPL. That is,
the larger YMRS score the less connected communication
in the right IPL region. Similarly, Barnea-Goraly et al.
(2009) reported that adolescents with BD had lower FA
values than normal subjects in inferior parietal region. Our
observation suggested that abnormal properties of hemispheric
asymmetries may underlie the dysfunctions existed in patients
with BD.

CONCLUSION

Using the DTI deterministic tractography method and graph
theory, the current work evaluated the hemispheric effects on
brain anatomical networks in patients with BD. The results
revealed abnormalities in hemispheric asymmetries in patients
with BD compared with those in normal controls. For the
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global network properties, the hemispheric asymmetry in global
efficiency was significantly decreased and small-world property
was significantly increased. Compared with normal controls, the
nodal efficiency of patients also showed decreased rightward
asymmetry mainly in the frontal, occipital, parietal, and temporal
lobes. Exceptionally, the SMA region in patients with BD showed
increased rightward asymmetries, attributing to a significantly
reduction of the efficiency in left SMA. The asymmetry score
of nodal efficiencies in the IPL and ROL exhibited correlations
with clinical features of BD. These observations highlight that the
altered hemispheric asymmetries in brain anatomical networks
and the potential of brain hemispheric network measures
as neural biomarkers for clinical presentation of BD. Our
findings suggested that abnormal asymmetries in properties of
hemispheric networks may underlie the dysfunctions in emotion
and attention in patients with BD.

The research of this paper still has some limitations. In this
study, the subjects was chosen from one site with small number
of BD patient, limiting the statistical results of hemispheric effects
and may bring about the type I error on brain network and
region alterations. In order to evaluate accurately alteration in
hemispheric asymmetry in patients with BD, the subjects with
large number or from multi-site will be considered in the future
work. Additionally, studies have reported that both gender and
age are potential factors linked to brain asymmetry. Hence, we
will further examine gender and age effects on hemispheric
asymmetries in brain anatomical networks in BD.
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Beamforming techniques have played a prominent role in source imaging in neuroimaging

and in locating epileptogenic zones. However, existing vector-beamformers are sensitive

to noise on localization of epileptogenic zones. In this study, partial least square (PLS)

was used to aid the minimum variance beamforming approach for source imaging with

magnetoencephalography (MEG) arrays, and verified its effectiveness in simulated data

and epilepsy data. First, PLS was employed to extract the components of the MEG

arrays by maximizing the covariance between a linear combination of the predictors

and the class variable. Noise was then removed by reconstructing the MEG arrays

based on those components. The minimum variance beamforming method was used

to estimate a source model. Simulations with a realistic head model and varying noise

levels indicated that the proposed approach can provide higher spatial accuracy than

other well-known beamforming methods. For real MEG recordings in 10 patients with

temporal lobe epilepsy, the ratios of the number of spikes localized in the surgical excised

region to the total number of spikes using the proposed method were higher than that

of the dipole fitting method. These localization results using the proposed method are

more consistent with the clinical evaluation. The proposed method may provide a new

imaging marker for localization of epileptogenic zones.

Keywords: Magnetoencephalography (MEG), beamforming, partial least squares, source imaging, epileptogenic

zone, imaging-based marker

INTRODUCTION

Accurate diagnosis of epileptogenic zones has long been a focus of neurology, as it determines
whether epilepsy patients can achieve seizure freedom by surgical excision. In recent years,
magnetoencephalography (MEG) has been increasingly trusted by clinical epileptologists for
preoperative examination (Wennberg and Cheyne, 2014; Nissen et al., 2016). This is because MEG
is a non-invasive neuroimaging technique that records brain activity with millisecond temporal
resolution and minor signal deterioration from the skull and scalp (Barnes and Hillebrand, 2003;
Zumer et al., 2007; Baillet, 2017). Postsynaptic current flow within the dendrites of active neurons

21

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00616
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00616&domain=pdf&date_stamp=2018-09-05
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jicongzhang@buaa.edu.cn
mailto:wangyuping@xwhosp.org
https://doi.org/10.3389/fnins.2018.00616
https://www.frontiersin.org/articles/10.3389/fnins.2018.00616/full
http://loop.frontiersin.org/people/479332/overview
http://loop.frontiersin.org/people/471763/overview
http://loop.frontiersin.org/people/431200/overview


Hu et al. PLS for MEG Source Imaging

produces a weak magnetic field that can be measured
by superconducting quantum interference devices (SQUIDS)
(Hämäläinen et al., 1993). Because the currents generated by
neurons determine the magnitude of the measured fields, these
measurements can give information about brain activity on a
millisecond time scale. However, the great challenge is to localize
the active neurons on the basis of the measured magnetic field.
Because the locations of epileptogenic zones estimated using
current localization methods are not always accurate, MEG
has not been completely accepted by all clinical epileptologists
(Englot et al., 2015). In general, the number of sensors is far less
than the number of possible current distributions. This inverse
problem is an example of what mathematicians call an ill-posed
problem (Hadamard and Morse, 1953). Finding the optimal
solution of such an underdetermined system of equations often
requires specific constraints. In other words, to accurately localize
the brain sources of magnetic signals, assumptions must be made
about the nature of the neuronal sources.

Many source imaging algorithms for MEG signals have been
proposed (Pascual-Marqui et al., 1994; Mattout et al., 2006;
Grech et al., 2008; Mäkelä et al., 2018), and each optimizing
the solution of the inverse problem under a specific set of
assumptions. One type of inverse solution approach is known
as “beamforming” (Van Veen et al., 1997; Groß et al., 2001;
Sekihara et al., 2002a; Oshino et al., 2007; Zhang and Liu, 2015).
Beamforming techniques play a key role in signal processing and
neuroimaging. These methods make use of spatial filtering, that
is, the MEG signals are decomposed into “beams” based on gain
vectors corresponding to specific source-grid points (Diwakar
et al., 2011). The most widely used beamforming method,
linearly constrained minimum variance (LCMV) beamforming
(also called vector beamforming), produces a reliable spatial
filter when the weights are chosen to minimize the filter
output power subject to a linear constraint. However, the
existing vector beamformers for MEG source imaging are
sensitive to noise, and poor at localizing sources. The main
reason for this problem is that the sensor array geometry
is used directly to estimate the covariance matrix. Recently,
an iterative spatiotemporal signal decomposition method has
been used to modify the vector beamforming technique, and
has been successfully applied to source localization for MEG
signals (Hu et al., 2017). Although the approach has achieved
high spatial accuracy, the correlations of signals from different
brain regions are ignored when the components of the MEG
arrays are extracted. An improvement would be to use partial
least squares (PLS) analysis to make better use of structural
information.

PLS analysis originated in the fields of econometrics and
chemometrics (Wold et al., 1984; Geladi and Kowalski, 1986).
It extracts components in a way that maximizes the covariance
between each component and a “class variable.” In recent
years, this approach has been successfully applied in many
fields, including multivariate statistics (Wold et al., 1984),
analytical chemistry (Wold et al., 2001), face recognition (Baek
and Kim, 2004; Sharma and Jacobs, 2011), and bioinformatics
(Boulesteix and Strimmer, 2006). In pattern recognition, the
PLS method can be used to extract the principle components

with maximum variability and to exploit the class information
(Baek and Kim, 2004; Sharma and Jacobs, 2011). PLS has
better performance in feature extraction and denoising compared
with typical methods, such as principal component analysis
(PCA) and linear discrimination analysis (LDA). The principal
components extracted by PLS are called “intrinsic components”
to indicate that PLS is more representative for biometric
signals. In fact, MEG signals are very similar to these
biometric signals, and are affected by various noises. If the
intrinsic components are found from those MEG signals, these
components should be usable to improve the spatial accuracy
of source imaging. Thus, in this study we used the PLS
method to extract the components of the MEG signals and
reconstruct the data matrix in this study. Although recent
literatures show that the PLS method has been used in functional
neuroimaging (McIntosh and Lobaugh, 2004; Krishnan et al.,
2011; Cheung et al., 2016), for purposes such as describing
the relationship between brain activity and behavior, these PLS
applications are not intended to improve the source imaging
method.

The aim of this study was to propose and investigate a
new source imaging algorithm with specific applicability to
focal epilepsy focus localization. We applied PLS analysis to
aid the vector beamforming technique for better performance
in source imaging with MEG arrays. First, the MEG arrays
were treated as an observation matrix X, combined with
a class matrix Y of dummy variables that code for brain
regions. Second, we employed PLS technique to extract the
components of the MEG arrays by maximizing the covariance
between a linear combination of the predictors and the class
variable. We then reconstructed the sensor arrays based on the
components and loadings, and used the vector beamforming
technique to estimate the source model. The newly proposed
source imaging approach for MEG recordings was first validated
on simulated data, and compared with three other well-
known beamforming methods, linearly constrained minimum
variance (LCMV) (Van Veen et al., 1997), dynamic imaging
of coherent sources (DICS) (Groß et al., 2001), and modified
LCMV with iterative matrix decomposition (mLCMV) (Hu
et al., 2017). Since these methods belong to the beamforming
family, the basic assumption in this study is the same as
assumption underlying the minimum variance beamforming.
We further verify the proposed method in a real dataset that
includes the MEG recordings of 10 patients with temporal lobe
epilepsy.

METHODS

Partial Least Squares Analysis
PLS analysis is a technique for extracting components and
loadings between a set of input variables {xi}

M
i=1 ∈ RN and a set of

response variables
{

yi
}M

i=1
∈ RL. As with principal components

analysis, PLS generates uncorrelated components that are linear
are linear combinations of the original input variables. The
difference is that PLS creates the components by modeling the
relationship between the input and response variables, while
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maintaining most of the information in the input variables. The
objective criterion is to find a weight vector wk such that

wk = arg max
‖w‖=1,‖υ‖=1

Cov2 (Xw, Yv) (1)

subject to the constraint wT
k Cwj = 0

where ‖•‖ denotes the two-norm operator, 1 ≤ j ≤ k, and
Cov (•, •)Cov (•, •) represents the covariance operator, T is the
transpose of a vector or matrix, and C=XTX. Here, X represents
an M × N matrix of input variables and Y is an M × L (M
× L) matrix made up of corresponding response variables. In
general, the column vectors of the data matrices X and Y are
normalized before optimization, that is, the mean value is zero
and the variance is one.

Next, a well-known iterative algorithm (Lewi, 1995; Rosipal
and Trejo, 2001; Hu et al., 2012) is used to optimize formula (1).
A description in pseudo-code is shown in Algorithm 1:

Algorithm 1: Pseudo-code for partial least squares analysis.

Inputs: Data matrices X ∈ RM×N , Y ∈ RM×L

Process:
1. Normalize the matrices X and Y

2. For i= 1, . . . , K
Randomly initialize the loading vector u
Normalize u to length 1: u = u

‖u‖ , û = 2u

while
∥

∥û− u
∥

∥ > epsilon
û = u

Calculate the weight vector w : w = XTu

Calculate the component vector t : t = Xw

Normalize t to length 1: t = t
‖t‖

Calculate a temporary vector v: v = YTt

Calculate a new loading vector u: u = Yv

Normalize u to length 1: u = u
‖u‖

end
Extract the i-th component ti and loading vector ui
Deflate the X, Y matrices:

X = X − tit
T
i X, Y = Y − tit

T
i Y

end
3. Obtain the component matrix T = [t1, . . . , tK] and

the loading matrix U = [u1, . . . , uK]
4. Reconstruct the data matrix X̂ = TUT

Outputs: the component matrix T, loading matrix U ,
reconstructed data matrix X̂

Note that the variable K in Algorithm 1 is determined by
the two-norm of the residual matrix of the data matrix X, that
is, as long as the norm value is greater than a threshold, the
program continues to cycle. In addition to being used for data
reconstruction, PLS analysis can also be used effectively for
dimensionality reduction, recognition, and regression (Rosipal
and Trejo, 2001; Baek and Kim, 2004; Hu et al., 2012).

In feature extraction and pattern classification, PLS is a
supervised learning method, and each row in the Y matrix is a
class label for each sample. PLS is then used to extract the intrinsic

components T and loadings U by using Algorithm 1, and the
data matrix X̂ is reconstructed using these intrinsic components
and loadings. The new data matrix X̂ is a relatively clean matrix
after denoising. This procedure can be considered to improve
the spatial accuracy of source imaging. The Y matrix is very
important and will be described in Section Source Imaging via
Partial Least Squares.

Minimum Variance Beamforming
Beamforming, also called spatial filtering, plays an important
role in localizing sources of brain activity from surface
recordings. The weights of the spatial filter are usually obtained
by minimizing the filter output power (i.e., minimizing the
variance). LCMV beamforming optimizes the objective function
subject to a linear constraint, and therefore is a type of
vector beamforming. The principle of using minimum variance
beamforming to solve inverse problems will now be illustrated
in detail. For an input variable set X =

[

x(1), x(2), . . . , x(N)
]

,
derived from the MEG sensors, the inverse solution model is
given as:

X = LD+ ε (2)

where x(i) represents an M × 1 vector of the MEG recordings
at the i-th time point (i = 1 · · ·N), M is the number of MEG
sensors, L is theM× J (lead-field) gain matrix, J is the number of
unknown dipole moment parameters, D denotes a J × N dipole
moment matrix for a given time series, N is the number of time
points, and ε represents the M × N noise matrix. We design a
spatial filterW (r0) for the narrowband volume element centered
on location r0, using the following formula:

y = WT (r0) x (3)

where W (r0) is an M × 3 matrix, x represents the input vector
of the filter, and y is the output vector. Generally, an ideal
narrowband spatial filter needs to satisfy

WT (r0) L (r) =

{

I, r = r0
0, r 6= r0

(4)

where r is the location of a grid point inside the brain, L(r) is
the M × 3 (lead-field) gain matrix, and I is the unit matrix. The
objective function to be optimized is then posed mathematically
as

min
W(r0)

tr
(

WT (r0)C (x)W (r0)
)

subject to WT (r0) L (r0) = I

(5)

where tr (•) denotes the trace of a matrix, and C (x) is the
covariance matrix of random variables based on the row vectors
of the data matrix X. A second-order statistic for the sample is
used to estimate the population covariance, as illustrated in the
study by (Van Veen et al., 1997). The effect of the constraint here
is to allow the activity at position r0 to be passed with unit gain,
while inhibiting contributions from all other sources.
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An algorithm that minimizes interference (MinInf) is used
to optimize the objective function, yielding the optimal solution
(Groß and Ioannides, 1999)

WT (r0) =
[

LT (r0)C
−1 (x) L (r0)

]−1
LT (r0)C

−1 (x) (6)

where (•)−1 denotes the inverse operator. The formula (6) is
substituted into the spatial filter, and the variance of the filter
output is estimated to be:

V̂ar (r0) = tr

{

[

LT (r0)C
−1 (x) L (r0)

]−1
}

(7)

The estimated variance is the value of the objective function (5)
at its minimum, or it can represent the strength of the activity at
grid point r0. Therefore, if the MEG data matrix X is known, we
can calculate the strength of the activity at all grid points in the
brain. The position corresponding to the maximum strength is
assumed to be the source location.

Source Imaging via Partial Least Squares
The source imaging process includes four parts: head model
construction, forward solution, inverse solution, and source
display. The aim of this paper is to improve the localization
accuracy by optimizing the inverse solution with minimum
variance beamforming and PLS analysis. With the selection of the
input variables X and the response variables Y , the PLS analysis
generates multiple variants in different application scenarios.
Recent studies (Sekihara et al., 2002b; Brookes et al., 2007;
Hu et al., 2017) ignore the correlations between different brain
regions when reconstructing the input matrix X in the MEG
source imaging. Since PLS is a supervised learning, the first step
in using this method is to divide all samples into multiple classes.
In the present study, each channel is considered as a sample
for the input matrix X. All MEG sensors are then classified to
integrate the PLS method into brain source imaging. Figure 1
shows the layout of all the MEG sensors, which are divided
into eight brain regions: frontal lobes (left and right), temporal
lobes (left and right), parietal lobes (left and right) and occipital
lobes (left and right). This classification of brain regions refers to
the standard brain regions provided by Elekta Neuromag MEG.
Thus, the full set of samples is divided into eight classes according
to the distribution of brain regions of the sensors. The Y matrix
is then generated according to these classes.

The MEG recordings were acquired inside a magnetically
shielded room, with 306 channels in total, using a helmet-shaped
whole-head system (VectorView, Elekta Neuromag Oy, Finland)
comprising 102 locations in triplets. The system included
one magnetometer and two orthogonal planar gradiometers.
To compute the forward solution, we used a realistically-
shaped single-shell approximation for constructing a volume
conduction model based on the implementation from Nolte
(2003). The anatomical MRI scans of the second patient in
Section Experimental Results in Epilepsy Data were used to
produce a realistic head shape in all simulated data.

Next, we consider a set of N-dimensional samples XM×N ,
where M represents the total number of MEG channels (306),
andN represents the width of the time series (600). The Y matrix

represents the labels for supervised learning. The Y matrix in
this study directly refers to the definition of the Y matrix in the
existing PLS methods that are used for dimensionality reduction
and feature extraction (Baek and Kim, 2004; Sharma and Jacobs,
2011). For the PLS analysis, according to the input matrix X, we
define anM × C class membership matrix Y to be

Y =











1n1 0n1 · · · 0n1
0n2 1n2 · · · 0n2
...

0nC

...
0nC

. . .

· · ·

...
1nC











(8)

where ni is the number of samples in the i-th class (i.e., the
number of sensors in the i-th brain region), C is the number of
classes (i.e., 8), 1ni denotes an ni×1 vector of all ones, 0ni denotes

an ni × 1 vector of all zeros, and M =
∑C

i=1 ni. A “1” in the Y
matrix means that the sensor belongs to the corresponding class,
while “0” means that the sensor does not belongs to this class.

In the inverse solution, under the condition that the MEG
sensor array X and the corresponding class matrix Y are known,
the component matrix T and the loading matrix U are extracted
using Algorithm 1, and the sensor array is reconstructed,
denoted as X̂. The reconstructed sensor array is applied to
estimate the covariance matrix in formula (5), and the optimal
solutions of formula (6) and (7) are obtained by optimizing
the objective function (5). Using formula (7), we calculate the
maximum strength and the location in the brain, which is the
sought-for source. Finally, the computed source can be displayed
in an individual MRI scan using an established individual head
model. To clearly convey the MEG source imaging procedure,
the steps are summarized in the algorithm flow chart shown in
Figure 2. In the following section, we verify the feasibility of the
algorithm using two different simulation sources. Three primary
toolboxes, Matlab R2014a (The MathWorks Inc., Natick, MA,
USA), SPM8 (Litvak et al., 2011), and FieldTrip (Oostenveld
et al., 2011), are used jointly for the MEG data analysis.
All source imaging algorithms are implemented based on the
ft_sourceanalysis function in the FieldTrip toolkit. All parameters
are optimized based on this toolkit, and the parameters of the
pLCMV andmLCMVmethods are the same as that of the LCMV
method.

RESULTS

Simulated Data Generation
In view of a simulation source with explicit ground truth, we
first performed experiments on simulated MEG data as follows.
Source imaging is often used to find the source of event-related
fields within the brain based on a task, and to locate epileptic
foci. The waveforms of event-related fields and epileptiform
waves are often very close to the sinc function, which is an
aperiodic attenuation signal. The mathematical expression of the
sinc function is described as:

S (t) =
sin (π (t + τ))

π (t + τ)
(9)

where τ is the translation width of the function. To show
that the proposed localization algorithm can also be applied
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FIGURE 1 | Layout of the sensor elements. The helmet-shaped sensor array is flattened into a plane, and the 306 sensor channels are divided into eight brain

regions: frontal lobes (left and right), temporal lobes (left and right), parietal lobes (left and right), and occipital lobes (left and right).

with contaminated signals, Gaussian noise was added to the
time-course of the real signal. The simulated data was then
generated by a sinc function plus the Gaussian noise. The noise
intensity was divided into 12 levels, from weak to strong, to
allow observation of the robustness of the proposed localization
method. The signal-to-noise ratio (SNR) was used to quantify
different noise levels, as defined in the following formula:

SNRdB = 10 log10

(

PA

PB

)

= 10 log10

(

‖A‖2F

‖B‖2F

)

(10)

where PA denotes the power of the synthetic sensor signals A, PB
is the power of the background noise, and ‖•‖F represents the
Frobenius norm of a matrix or vector. For each level of noise,
100 Gaussian noise samples were generated randomly. The mean
of these SNR values are shown in Figure 3. These SNR values
decrease from a maximum of 6.990 to a minimum of 0.043 with
the changes in the noise level.

In this study, the time duration of all the simulated MEG
data is 600ms, and the sampling rate is 1,000Hz. The planar
gradiometers were used to localize the sources. The source space
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FIGURE 2 | The flow chart of source imaging consists of four parts. Head model construction, forward solution, inverse solution, and source display, in which the

inverse solution is modified by PLS analysis and minimum variance beamforming.

FIGURE 3 | The mean signal-to-noise ratio of the simulation is given for 12

different noise levels. Fifty noise samples were generated at each level; the

x-axis represents the noise level and the y-axis represents the mean value.

was based on a subject’s realistic head shape, which was modeled
as a single shell based on a magnetic resonance imaging scan.
For a realistic head model, the brain space was partitioned into

a three-dimensional grid with millimeter resolution, including
3,704 points in total. Each point could be regarded as a source
location. The MEG sensor arrays were implemented through the
ft_dipolesimulation function in the Fieldtrip toolbox, based on
the previously described synthetic signals for the location.

Experimental Results in Simulated Data
In this section, we first verify the source imaging algorithm
through the experiments based on simulated data, generated by
a sinc function plus Gaussian noise. The proposed method is
compared with three well-known beamformingmethods: linearly
constrained minimum variance (LCMV) (Van Veen et al., 1997),
dynamic imaging of coherent sources (DICS) (Groß et al.,
2001), and modified LCMV with iterative matrix decomposition
(mLCMV) (Hu et al., 2017). Because the new method combines
PLS with beamforming, pLCMV is regarded as an acronym of
the new method. Spatial accuracy is used to evaluate the results
of source imaging, with the evaluation index defined as:

Location error =
√

∥

∥γ − γ̂
∥

∥

2
(11)

where ‖•‖2 represents the two-norm operator, γ is the spatial
location of the real source, and γ̂ is the spatial location of the
source estimated by the localization algorithm. A smaller location
error corresponds to a higher spatial accuracy.

We chose six sources to construct the simulations. The spatial
locations of the six sources were represented in the Neuromag
coordinate system as {(−29, 11, 38), (67, 11, 30), (59, 43, 70), (59,
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FIGURE 4 | For a simulated data generated by an aperiodic signal (sinc) plus the Gaussian noise, the spatial accuracy of the proposed approach (pLCMV) was

compared with that of the other three approaches (DICS, LCMV, mLCMV). The x-axis of each plot represents the noise level, and the y-axis represents the location

error. Each plot shows a comparison of the localization results of the four approaches based on simulated data generated for six different locations of the brain. The

six locations were the left mesial temporal lobe (A), right lateral temporal lobe (B), right frontal lobe (C), right occipital lobe (D), right parietal lobe (E), and right mesial

temporal lobe (F). Plots (A) and (F) represent deep sources; the rest represent shallow sources.

−53, 54), (67, −29, 86), (35, 11, 38)} mm. The six locations were
in the left mesial temporal lobe, right lateral temporal lobe, right
frontal lobe, right occipital lobe, right parietal lobe, and right
mesial temporal lobe. The first and last were deep sources, the rest
were shallow sources. Figure 4 shows that the localization results
using the proposed method (pLCMV) were obviously better than
those obtained from the other three methods (LCMV, DICS, and
mLCMV). The spatial accuracies on the localization results using
the four methods became lower as SNR value became smaller.
The spatial accuracies of the three alternative methods (LCMV,
mLCMV, DICS) were very similar with the increase of noise.
Thus, the proposed method had the highest spatial accuracy, and
that the spatial accuracy was affected little by the noise level.

Although the six locations covered the major regions of the
brain, these locations cannot represent all possible grid points in
the brain. To obtain more representative results, 309 locations
were selected from the 3,704 points of the grid, by starting
from the first point and using a step length of 12. As in the
previous set of experiments, the real signal (a sinc signal) and
Gaussian noise were used to generate 309 simulations for these

309 locations. For these simulations, the location errors of the
four localization methods (LCMV, DICS, mLCMV, pLCMV)
were calculated. Figure 5 shows the mean value and standard
deviation of the spatial accuracy of source localization for the 309
simulations generated using the sinc function. The localization
results for the mLCMV method were better than those for DCIS
and LCMV, and the difference in source localization between
LCMV and DICS was not obvious. Also, the spatial accuracies
on the localization results using the four methods became lower
as SNR value became smaller, and the proposed method had the
highest spatial accuracy.

Experimental Results in Epilepsy Data
By adding a Gaussian noise to the source signal, the experimental
results show that the proposed method was effective and had the
highest spatial accuracy in simulated MEG data. However, an
actual MEG signal is often disturbed by noise of many complex
origins, such as breathing, heart beats, eye movements, small
movements of the facial muscles and so on. In the following
experiments, we further verify the proposed method in a real
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FIGURE 5 | Comparison of the spatial accuracy of the four methods. The

x-axis of each plot represents the noise level, and the y-axis represents the

mean value ± standard deviation of the location error, based on 309

simulations. Each simulation was generated by a sinc function and Gaussian

noise.

MEG dataset with focal temporal lobe epilepsy (TLE). A total
of 10 patients with medically refractory TLE were obtained
retrospectively. All clinical characteristics of the patients are
described in Table 1. These patients were diagnosed as focal
unilateral TLE by a comprehensive preoperative assessment,
including seizure history and semiology, neurological
examination, 3-Tesla magnetic resonance imaging (MRI), scalp
electroencephalography, invasive electroencephalography. All
patients were from Xuanwu hospital in Beijing and underwent
anterior temporal lobectomy including hippocampus (Schaller
and Cabrilo, 2016). The results of at least 1 year follow-up
indicated that these patients achieved seizure free status (Engel
class IA). Written informed consent was obtained from each
participant. The study was performed under a protocol approved
by the medical ethics committee of Xuanwu Hospital of Capital
Medical University.

MRI indicates magnetic resonance imaging; M, male; F,
female; LT, left temporal; RT, right temporal; LHS, left
hippocampal sclerosis; RHS, right hippocampal sclerosis; HRH,
hyper T2 in right hippocampus; HLC, hyper T2 in left
temporal cortex; ARH, atrophy in right hippocampus; BHS,
bilateral hippocampal sclerosis; FCD, focal cortical dysplasia; HS,
hippocampal sclerosis.

The epileptic spikes were visually marked by two experienced
clinical epileptologists in the MEG signals. The MEG data with a
spike was localized using the proposed method and the dipole
fitting. The dipole fitting method here is performed using the
software provided by the MEG and is widely recognized in
clinical epilepsy localization. One spike in this study yields a
localization result. The localization results of all epilepsy patients

TABLE 1 | Clinical characteristics of the patients.

Patient

no.

Age

(years)

Seizure

duration

(years)

MRI Spike

number

Preoperative

assessment

Pathology

1 16–20 8 HLC 45 LT FCD

2 16–20 9 RHS 37 RT FCD, HS

3 20–25 17 LHS 23 LT FCD, HS

4 26–30 5 LHS 18 LT FCD, HS

5 26–30 14 Normal 42 RT FCD

6 20–25 14 HRH 38 RT FCD, HS

7 30–35 11 Normal 46 RT FCD

8 20–25 20 LHS 32 LT FCD, HS

9 30–35 17 ARH 27 RT FCD

10 36–40 16 Normal 25 RT FCD

were checked by the clinical epileptologists. We counted the
number of those spikes in the resection region for source
localization results. Figure 6 shows a comparison of localization
results obtained for patients with TLE using the proposedmethod
(pLCMV) with those obtained using the dipole fitting, LCMV,
DICS, and mLCMVmethods. The ratios of the number of spikes
counted in the resection region to the total number of spikes
in each patient are shown in Figure 6. The localization results
of most spikes should appear in the surgical resection region
based on preoperative assessments, pathological findings, and
postoperative follow-up results. Figure 6 shows that the dipole
fitting method is not always effective for finding epileptogenic
zones, especially in the 6th and 10th patients. The ratios of
the number of spikes localized in the surgical excised region
to the total number of spikes using the proposed method were
highest compared with those ratios of that using the other four
methods: dipole fitting, LCMV, DICS, and mLCMV. The analysis
of variance (ANOVA) was used to further compare the mean
difference of the five groups of localization results. Figure 7
shows significance test of mean difference of the five groups using
ANOVA. The localization results for the mLCMV method were
better than those for dipole fitting, DCIS, and LCMV, and the
difference in source localization between dipole fitting and DICS
was not obvious. The localization results using the proposed
method in these patients are more consistent with the clinical
evaluation. The proposed method may provide a new imaging
marker for localization of epileptogenic zones.

DISCUSSION AND CONCLUSIONS

MEG is a non-invasive type of preoperative examination and
therefore plays an indispensable role in the localization of
epileptogenic foci in epilepsy patients. Because the locations
of epileptogenic zones estimated using the current localization
methods are not always accurate, MEG examination results
are sometimes questioned by clinical epileptologists (Englot
et al., 2015). A number of source imaging algorithms for MEG
recordings have been proposed and successfully applied for
several purposes, such as localization of epileptic foci (Bast et al.,
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FIGURE 6 | Comparison of localization results obtained for patients with TLE using the proposed method (pLCMV) to those obtained using dipole fitting, LCMV, DICS,

and mLCMV methods. The x-axis represents the patient number, and the y-axes represent the ratios of the number of spikes localized in the surgical resected region

to the total number of spikes.

FIGURE 7 | Significance test of mean difference of the five groups of

localization results using analysis of variance (ANOVA). The x-axis represents

the five groups, and the y-axes represent the ratios of the number of spikes

localized in the surgical resected region to the total number of spikes.

2004; Sutherling et al., 2008; Englot et al., 2015). In this work,
PLS analysis was used in combination with minimum variance

beamforming to reconstruct sensor arrays and locate sources.

As is widely known, beamforming techniques play an important

role in source imaging. LCMV is a typical representative
of time domain beamforming, and DICS is a representative
of frequency domain beamforming. These two methods have
achieved effective localization results and have been successfully

applied inmany fields (Hoogenboom et al., 2006; Van Essen et al.,
2013). The most recent literature shows that a modified LCMV

(mLCMV) source imaging algorithm has been proposed, and

has achieved good spatial accuracy in deep source imaging (Hu
et al., 2017). Therefore, to test the effectiveness of the proposed
algorithm (pLCMV), we compared it to LCMV, DICS, and
mLCMV. The single-shell approximation technique was used

as a forward method to construct a volume conduction model

in this study. A proper head volume conductor in the forward
method is helpful to improve the spatial accuracy of source

imaging. Many improved forward models have been proposed
for accurate source analysis and connectivity measures (Vorwerk
et al., 2014; Neugebauer et al., 2017). Taking into account the
cerebrospinal fluid and distinguishing between gray and white

matter are effective in head volume conductor modeling. The
improved forwardmodels should be combined with the proposed
method in future study, andmay significantly improve the spatial
accuracy of source imaging.

In conclusion, we designed a new method that combines
partial least squares analysis of MEG arrays with minimum
variance beamforming to localize brain activity in simulated
data and epilepsy data. Compared to that obtained using DICS,
LCMV, and mLCMV, the spatial accuracy obtained using the
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proposed method (pLCMV) was highest, and the location error
fluctuated little with increases in noise. For simulations generated
using a sinc function plus Gaussian noise, the proposed method
had the highest spatial accuracy. The spatial accuracies on the
localization results using the four methods became lower as SNR
value became smaller. We further verified the proposed method
in a real dataset that includes the MEG recordings of 10 patients
with TLE. The localization results using the proposed method
are more consistent with the clinical evaluation. The proposed
method may provide a new imaging marker for localization of
epileptogenic zones.

We do not hypothesize that the sources should be localized in
only one brain area, because the proposed method is to search for
the epileptogenic zones or the sources from the whole brain. This
study focuses on the discussion of single source localization based
on simulated data and real dataset. The position corresponding
to the maximum strength is assumed to be the source location. If
we choose the top 5 or 10% maximum strength, we may be able
to solve the situation of multiple source spikes or activation. The
application background of this study is to solve the problem of
MEG localization of the epileptogenic zone in epilepsy surgery
candidates. Usually, a large proportion of those patients (epilepsy
surgery candidates) have single source (Englot et al., 2015; Nissen
et al., 2016). At present, most epileptic experts believe that only
one source is localized from a spike withMEG recordings (Englot
et al., 2015). In addition, multiple sources can also be localized
by single source localization for epileptic patients with multiple
lesions. Therefore, the proposed method does not highlight the
assumption of single source localization in this study. We will
continue to study the multiple sources localization in future
research.

Limitations
In order to implement the PLS method, the array of sensors was
divided into eight classes according to the standard brain regions

provided by Elekta Neuromag MEG in this study. The Y matrix
is then generated according to these classes. In fact, it is not
necessary to divide all sensors into 8 classes. It is possible that 4,
12, or even 16 classes could be used to localize the sources using
the PLS method. In future work, we can examine the effect of
different class numbers on the spatial accuracy of source imaging.
Since adjacent sensors may be divided into two different classes,
thismay be a challenge for PLSmethod to extract the components
of MEG data. In future work, the proposed method should be
verified in more types of epilepsy, such as frontal lobe epilepsy,
insular epilepsy, and occipital lobe epilepsy. We also hope that
the effective performance of the new method can be verified in
more realistic scenarios, such as locating brain tumor lesions and
locating functional areas.
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Abnormalities in the brain connectivity in patients with neurodegenerative diseases, such

as early mild cognitive impairment (EMCI), have been widely reported. Current research

shows that the combination of multiple features of the threshold connectivity network

can improve the classification accuracy of diseases. However, in the construction of

the threshold connectivity network, the selection of the threshold is very important,

and an unreasonable setting can seriously affect the final classification results. Recent

neuroscience research suggests that the minimum spanning tree (MST) brain functional

network is helpful, as it avoids the methodological biases while comparing networks. In

this paper, by employing the multikernel method, we propose a framework to integrate

the multiple properties of the MST brain functional network for improving the classification

performance. Initially, the Kruskal algorithm was used to construct an unbiased MST

brain functional network. Subsequently, the vector kernel and graph kernel were used

to quantify the two different complementary properties of the network, such as the

local connectivity property and the topological property. Finally, the multikernel support

vector machine (SVM) was adopted to combine the two different kernels for EMCI

classification. We tested the performance of our proposed method for Alzheimer’s

Disease Neuroimaging Initiative (ANDI) datasets. The results showed that our method

achieved a significant performance improvement, with the classification accuracy of 85%.

The abnormal brain regions included the right hippocampus, left parahippocampal gyrus,

left posterior cingulate gyrus, middle temporal gyrus, and other regions that are known

to be important in the EMCI. Our results suggested that, combining the multiple features

of the MST brain functional connectivity offered a better classification performance in the

EMCI.

Keywords: minimum spanning tree, local property, topological structure, the multikernel SVM, early mild cognitive

impairment, classification
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INTRODUCTION

Alzheimer’s disease (AD) is a common progressive
neurodegenerative disease that affects the nervous system.
In 2018, the number of AD patients in the United States will
reach 5.7 million and the cost of treatments will reach 277 billion,
causing great economic losses to the families and the society
(Alzheimer’s Association, 2018). Therefore, in the early stage,
such as early mild cognitive impairment (EMCI), it is important
to find the symptoms of the disease and develop strategies to
treat it. However, the subtle differences in the cognitive function
between the EMCI and normal control (NC) make it difficult to
diagnose the EMCI. Therefore, it is very important to propose a
framework to identify the individuals with EMCI from NC.

At present, the brain functional magnetic resonance imaging
(fMRI) data is represented as a brain network composed of nodes
and edges (Lópezsanz et al., 2017). Through the analysis and
study of the brain network, the brain functional network of
the mild cognitive impairment (MCI) patients exhibit abnormal
local properties and topological structures (Supekar et al., 2008;
Sanz-Arigita et al., 2010; Petrella et al., 2011; Liu et al., 2012;
Wang et al., 2017; Yan et al., 2018). Jie et al. (2014b) constructed
an undirected functional brain network of NC and MCI, and
extracted the topological features to classify the two groups
of subjects, where abnormal regions were found in the brain
network including those in the hippocampus, amygdala, and the
inferior temporal gyrus. Khazaee et al. (2016) also constructed an
undirected brain network of NC, MCI, and AD groups by using
264 putative functional areas. Network topology attributes were
extracted as classification features to be used in the classification
of three groups of subjects. The result showed that this method
was able to accurately classify three groups (i.e., NC, MCI, and
AD) with an accuracy of 88.4%, and it was found that the left
posterior central gyrus, the right inferior temporal gyrus, the
left lingual gyrus, the right middle frontal gyrus, and the right
thalamus were significantly different from the normal elderly.
Wee et al. (2016) designed a disease identification framework
based on the estimated temporal networks, and analyzed the
group differences in the level network property. Yu et al.
(2016) studied the directed functional connectivity using the
Granger causality analysis (GCA), and found that the posterior
cingulate cortex (PCC) in the Default Mode Network (DMN)
showed directional disorders in receiving and transmitting
information.

A common problem in the above studies was the use of a single
type of network property for theMCI, and NC classification, such
as the local connectivity or global topological properties. In order
to improve the accuracy in the MCI diagnosis, Jie et al. (2014a)
extracted local connectivity and global topological properties
from five different threshold brain networks and combined these
properties in the classification of MCI and NC. However, this
may affect the final classification performance to some extent,
since we need to set a threshold for the original weighted network
in the construction of the threshold brain network. In 2015,
Tewarie et al. proposed the minimum spanning tree (MST) as
an unbiased approach in the construction and the analysis of the
brain networks (Tewarie et al., 2015). MST method preserves the

core framework of the networks while voiding the influences of
the threshold. It does not only reduce the computational cost,
but also guarantees the network’s neurological interpretability.
In 2006, Lee et al. applied the MST to brain network for the
first time, and MST was widely applied in the research and
development of many kinds of neuropsychiatric disorders (Lee
et al., 2006; Boersma et al., 2012; Demuru et al., 2013; Stam et al.,
2014).

Accordingly, in this paper, based on an unbiased MST
brain network, a classification framework combining the local
properties and topological structures is proposed. Figure 1

illustrates the framework of our proposed method. Initially,
the MST brain functional network was constructed, then the
local property and topological structure property of the MST
brain functional network were extracted, and the two features
were combined to identify the EMCI from the NC. Experiments
showed that the classification framework not only realized the
complementation of local and topological structure properties,
but also improved the classification performance.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The data used in this study was from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database at website http://adni.
loni.usc.edu/. A total of 60 subjects were selected from ADNI-2
database, including 32 EMCI patients and 28 NC. Table 1 shows
the demographics of all participants. A 3.0 T scanner (Philips
Medical Systems) was used to acquire resting-state BOLD fMRI
scans of all subjects. The scanning parameters were set as follows:
repetition time (TR) = 3,000ms; echo time (TE) = 30ms; slice
thickness= 3.3mm; flip angle= 80◦; slice number= 48 and 140
time points. During scanning, all the subjects were instructed to
keep their eyes closed.

Many preprocessing steps of the fMRI images were performed
using Data Processing Assistant for Resting-State fMRI
(DPARSF; Yan and Zang, 2010), Statistical Parametric Mapping
(SPM12; http://www.fil.ion.ucl.ac.uk/spm), and the Resting-State
fMRI Data Analysis Toolkit (REST 1.8) packages (Song et al.,
2011). Specifically, the first 10 time points of each subject
were removed; slice-timing correction and image realignment
were carried out on the remaining 130-time points. Because
the brain size, shape, orientation, and gyral anatomy of each
subject is different, the fMRI data of each subject was usually
normalized into the Montreal Neurological Institute (MNI)
space (resampled into 3 × 3 × 3 mm3 voxels) by using a unified
segmentation on the T1 image. Then, the linear trends of the
time courses were removed, and the effect of nuisance covariates
was removed by signal regression using the global signal, the
six motion parameters, the cerebrospinal fluid (CSF) and white
matter (WM) signals. Temporal filtering (0.01Hz < f < 0.08Hz)
was applied. Lastly, since we used only gray matter (GM)
tissue to construct the functional connectivity network,
the gray matter mask was used to mask the corresponding
fMRI images to eliminate the possible effects from CSF
and WM.
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FIGURE 1 | Framework of proposed method. Firstly, data preprocessing of fMRI; Then the MST brain functional network is constructed, the local property and

topological structure property of the MST brain functional network are extracted, Finally, the two features are combined to classify by using Multi-kernel SVM.

Methods
The key technologies in this paper included: Kruskal algorithm
(Kruskal, 1956), graph-based Substructure pattern mining
(gSpan; Yan and Han, 2002), the local feature selection, the
discriminative subgraph algorithm selection and the multikernel

learning technique (Zhang D. et al., 2011). Firstly, the unbiased
brain functional network was constructed using the Kruskal
algorithm, and betweenness was extracted as the local property.
Then, frequent subgraphs were mined from the brain network
using the gSpan algorithm, and the discriminative subgraphs of
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TABLE 1 | The demographics of all participants.

Group EMCI NC

No. of subjects (M/F) 17/15 11/17

Age (mean ± SD) 72.1 ± 6.0 74.3 ± 6.2

MMSE (mean ± SD) 27.7 ± 1.9 28.9 ± 1.3

CDR (mean ± SD) 0.48 ± 0.1 0 ± 0

EMCI, Early Mild Cognitive Impairment; NC, Normal Control; MMSE, Mini-Mental State

Examination; CDR, Clinical Dementia Rating; M, Male; F, Female.

brain networks were extracted as the topological property. Lastly
the local property and topological property were combined to
classify the EMCI.

Construction of the Unbiased MST Brain Functional

Network
The brain network can be abstracted into a graph. The
construction of the brain network involved the determination of
the nodes and edges in the graph. In this study, construction steps
of MST brain functional network included:

(1) Definition of node: We parcellated the gray-matter masked
voxels into 90 regions of interest (ROIs) by the Automated
Anatomical Labeling (AAL) template (Tzourio-Mazoyer
et al., 2002). A ROI is a node of the brain network. Therefore,
the brain network consisted of 90 nodes.

(2) Definition of edge: The average value of the fMRI time series
of all voxels in each ROI is considered as the average time
series of the node, and the Pearson correlation coefficient
between the pair of nodes is taken as the weight of the
connected edges. So, a functional full connected network is
constructed for each subject. Moreover, in order to extract
the meaningful network measures, we removed all negative
correlations from the obtained connectivity networks.

(3) Construction of unbiased brain functional network: In order
to construct an unbiased brain network, we used the Kruskal
algorithm to construct the MST brain network. MST is a
weighted graph that connects the nodes together, without
any cycles, and with the minimum weight. Since we were
only interested in the strongest connections in the brain
network, the Kruskal algorithm was used to construct
a weighted graph that connects all the nodes together,
without any cycles and with the maximum weight. The
algorithm sorted initially, all the correlation coefficients into
descending order, and then connected the edges with the
largest correlation coefficients that were added successively
until all nodes were connected in an acyclic subnetwork. In
this process, if the addition of a link formed a loop, this link
was ignored.

Local Property of the MST Brain Functional Network

Local property
Betweenness is an important local property in the MST, and
it was also recognized as the most relevant feature in the
classification between the MCI and the NC (Ebadi et al., 2017).

So betweenness was extracted as a feature. Betweenness of node
was defined as the number of all the shortest paths through
this node.

The betweenness bci of the node i was defined as (Tewarie
et al., 2015):

bci =
1

(n− 1)(n− 2)

∑

h, j ∈ V
h 6= j, h 6= i

ρi
hj

ρhj
(1)

Where ρhj represents the number of the shortest paths between

the node h and j; ρi
hj
represents the number of the shortest paths

between the node h and j through the node i; V represents the set
of nodes; and n represents the number of nodes.

Discriminative brain regions selection
We calculated the betweenness of each node in the MST
functional network. To select the most discriminative brain
region, two sample t-test was used. The brain regions with
p < 0.05 were selected as the discriminative brain regions.

Linear kernel
The betweenness of the discriminative brain regions composed a
feature vector representing the local property of a brain network.
We measured the similarity of two functional connectivity
networks in term of local property by using linear kernel as
follows:

kv
(

x, y
)

= xTy (2)

Where x and y represent the feature vectors from two subjects,
respectively.

Topological Property of Brain Network

Frequent subgraph mining
In order to capture the differences in the topological structure of
the brain networks, this study uses the gSpan algorithm to extract
the frequent subgraphs from the brain network, and the most
discriminative subgraphs were selected.

Definition 1 (Undirected labeled network): For an undirected
labeled network G = (V, E, L), V represents the set of nodes;
E ⊆ V × V , the set of edges; L, the set of labels.

Definition 2 (Subnetwork): Given two undirected labeled
networks G = (V, E, L) and Gs = (Vs,Es, Ls), if Vs ⊆ V , Ls ⊆

L and Es ⊆ E , Gs is a subnetwork of G.
Definition 3 (Subnetwork frequency): For a given network

set G, G = {G1,G2, · · ·Gn}, n is the number of networks. The
frequency fq of a subnetwork gs is defined in Equation (3):

fq
(

gs|G
)

=
|gs is subgraph of G and G ∈ G|

|G|
(3)

where |G| presents the number of networks.
Definition 4 (Frequent subnetwork mining): For a given

undirected labeled network set G and frequency thresholding
value s where 0 ≤ s ≤ 1, the process of finding all subnetworks
ofG with the frequency of at least s is called frequent subnetwork
mining.
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Discriminative subgraphs selection
In fact, there exist a large number of frequent subgraphs in a
network, but only a small portion of the frequent subgraphs
have the discriminability. Therefore, the most discriminative
subgraphs were selected by using the further feature selection
method based on their respective frequency difference (Wang
et al., 2015).

The frequency difference D(gs) of subgraph gs is defined in
Equation (4):

D
(

gs
)

=
∣

∣fq
(

gs|Gp

)

− fq
(

gs|Gn

)
∣

∣ (4)

Where Gp denotes the set of frequent subgraphs for positive
samples, and Gn denotes the set of frequent subgraphs for
negative samples.

The greater the frequency difference, the stronger is the
discriminability. The frequency difference of frequent subgraphs
were calculated and then the frequency difference threshold T
was set. The subgraphs with a frequency differences greater than
T were considered to be the most discriminative subgraphs.

Then, the brain network was reconstructed using the most
discriminative subgraphs. Specifically, for a network, we only
needed to delete the edges that did not appear in any
discriminative subgraphs. In this way, the topology of the brain
network and the discriminative subgraphs was preserved.

Graph kernel
The brain network is a complex structural dataset. The traditional
feature extraction methods cannot deal with the complex
topological features of the brain network. Graph kernel can map
data from the original graph space to the feature space, and
the similarity between the two graphs is further measured by
comparing the topological structure of the graph. Therefore,
the graph kernel establishes a bridge between the graph data
and many kernel-based learning algorithms, and has been
successfully applied in the fields of computer vision (Camps-Valls
et al., 2010) and bioinformatics (Zhang Y. et al., 2011).

Recent research has shown that the Weisfeiler-Lehman (WL)
subtree kernel (Shervashidze et al., 2011) could be efficiently
computed in time O(|E|), and was a suitable option for brain
graph classification (Vega-Pons et al., 2014). In this paper, we
have used the WL subtree-based kernel method to measure the
topological similarity between the brain networks. For a pair of
brain networks G and H, the basic processes ofWL subtree-based
kernels were as follows:

1) Initially, every vertex of a graph was labeled with a degree of
that node.

2) At each iteration, the label of each node was augmented in
the graph by a sorted set of node labels of neighboring nodes,
and these augmented labels were compressed into a new short
label.

3) This process proceeded iteratively until the node label sets of
two graphs differed, or the number of iteration reached the
maximum h.

4) The WL subtree-based kernel on two graphs G and H is
defined in Equation (5):

kg(G,H) =< ϕ (G) ,ϕ (H) > (5)

Where

ϕ (G) = (σ0 (G, s01) , · · · , σ0
(

G, s0|L0|
)

, · · · ,

σh (G, sh1) , · · · , σh
(

G, sh|Lh|
)

)

ϕ (H) = (σ0 (H, s01) , · · · , σ0
(

H, s0|L0|
)

, · · · ,

σh (H, sh1) , · · · , σh
(

H, sh|Lh|
)

)

σi
(

G, si,j
)

and σi
(

H, si,j
)

is the numbers of occurrences of the
label si,j in G and H, respectively, si,j denotes the label of i-th node
in iteration j. |Li | is the number of labels in the iteration i, Li
denotes the label set of G, and H in iteration i, L0 represents the
initial labels set of G and H. K is the kernel matrix of n × n, n is
the number of brain networks.

The Multikernel SVM
Recent studies on multikernel SVM has proved that the
multikernel integration not only improves the accuracy of
classification, but also improves the interpretability of the
results (Lanckriet et al., 2002). Neuroimaging studies have also
shown that multikernel integration can systematically aggregate
different kernels into a single mode (Wee et al., 2012).

In this paper, we consider two types of kernels, i.e., the linear
kernel and the graph kernel. We assumed that these kernels could
provide the complementary information for EMCI identification.

Firstly, as this research uses two different types of kernel,
normalization was done individually. Then we used a multi-
kernel SVM technique to linearly combine the two kernels, as
shown in Equation (6):

K (G, H) = βkv
(

x, y
)

+ (1− β) kg (G,H) (6)

Where G and H are two MST functional networks, kg (G,H) is a
graph kernel of G and H, x and y are their local feature vectors
of G and H, kv

(

x, y
)

is a linear kernel, andβ is a nonnegative
weighting parameter.

Once β was determined, we used the traditional single-kernel
SVM (Chang and Lin, 2011) for the classification.

Methodology
On the basis of pre-processing, Kruskal algorithm was used to
construct an unbiased brain network. The betweenness of the
node was extracted and the feature was selected from the training
set by using two sample t-test. In addition, the linear kernel
was adopted as the vector kernel. Then using gSpan algorithm
(s is set to 0.7), the frequency subgraphs of brain network was
mined and the most discriminative subgraphs (the frequency
differences >0.13) were selected. Subsequently, we used the
WL subtree kernel (h and n are set as 2 and 1, respectively)
to extract the topological features of the reconstructed brain
network, and, the optimal weighting parameter β was obtained
from the training set via a grid search (the range from 0 to 1
at a step size of 0.1). Finally, the conventional SVM framework
was used to identify the EMCI from NCs. All experiments are
performed using 10-fold cross-validation. Specially, the subject
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TABLE 2 | The abnormal brain region of local property.

Brain region Statistical significance

(P-value)

L.Middle frontal gyrus 0.037

R.Rolandic operculum 0.004

L.Supplementary motor area 0.048

L.Anterior cingulate and paracingulate gyri 0.043

L.Median cingulate and paracingulate gyri 0.024

L.Posterior cingulate gyrus 0.035

R.Thalamus 0.018

L.Middle temporal gyrus 0.039

R.Middle temporal gyrus 0.007

R.Inferior temporal gyrus 0.020

dataset was randomly divided into 10 parts, one of which was left
as the testing set, while the remaining nine were used as training
sets. The feature selection was carried out on the training set,
and the selected discriminative features were used to build the
classification model, then this model was used to classify on the
testing set. Ten-fold cross-validation was preformed 50 times.
Finally, we computed the arithmetic mean of the 50 repetitions
as the final result.

RESULTS

Discriminative Brain Regions and
Subgraphs
Betweenness of 90 nodes was calculated from the training
sets and two sample t-test was performed to evaluate its
discriminative power for identifying the EMCI from NC.
Betweenness of 90 nodes and p-value of two sample t-
test are shown in Supplemental Text S1. Table 2 lists the 10
discriminative regions (p < 0.05) that were selected based on
the betweenness. These discriminative regions were found to be
consistent with the previous findings.

On the other hand, we also extracted the most discriminative
subgraphs based on the global topological property of the
training sets. The frequent subgraphs were mined using the
gSpan from the MST functional connectivity network of EMCI
and NC, with frequency thresholding value of s = 0.7. We
obtained 20 frequent subgraphs for EMCI and 22 frequent
subgraphs for NC. Then we computed the frequency difference
of these subgraphs (Details refer to Supplemental Text S2.),
and selected only those subgraphs that exhibited a
frequency difference more than 0.13. Thus, we obtained 6
discriminative subgraphs that consisted of 12 abnormal regions.
Figure 2 shows the most discriminative subgraphs. Table 3

shows the 12 abnormal brain regions from the subgraph
feature.

Classification Performance
In this experiment, the MST was constructed, and the local
property and topological property were combined to identify
the EMCI from NC. The classification performance was

FIGURE 2 | The discriminative subgraphs of EMCI. ROL.R, R Rolandic

operculum; INS.R, R Insula; HIP.R, R Hippocampus; PHG.L, L

Parahippocampal gyrus; CAL.R, R Calcarine fissure and surrounding cortex;

CUN.L, L Cuneus; LING.R, R Lingual gyrus; SOG.L, L Superior occipital gyrus;

MOG.R, R Middle occipital gyrus; IOG.R, R Inferior occipital gyrus; SPG.R, R

Superior parietal gyrus; IPL.R, R Inferior parietal, but supramarginal and

angular gyri.

TABLE 3 | The abnormal brain regions of subgraph feature.

Brain region

R. Rolandic operculum

R. Insula

R. Calcarine fissure and surrounding cortex

L. Cuneus

R.Middle occipital gyrus

R.Inferior occipital gyrus

R. Superior parietal gyrus

R. Inferior parietal, but supramarginal and angular gyri

R. Lingual gyrus

L. Superior occipital gyrus

R. Hippocampus

L. Parahippocampal gyrus

TABLE 4 | The classification performances for different methods.

Feature ACC (%) SEN (%) SPE (%) AUC

LP 81.6 86.6 77.5 0.86

TP 61.7 73.3 54.5 0.59

Our method 85 90 79.2 0.88

ACC, classification accuracy; SEN, sensitivity; SPE, specificity; AUC, the area under the

receiver operating characteristic curve; LP represents only use local property as feature

to classify; TP represents only use topological property as feature to classify.

evaluated based on the accuracy, sensitivity, specificity, and area
under receiver operating characteristic (ROC) curve (AUC),
respectively.
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FIGURE 3 | The ROC curve of different methods. The ROC curve of different methods on EMCI vs. NC classification. LP represents the local property is used as

classification feature; TP represents the topological property is used as classification feature.

We compared our proposed method using solely the single
network property. Specifically, (1) For the local property, denoted
as LP, we computed the vector kernel based on the local property.
(2) For the topological property, denoted as TP, graph kernel was
only computed from the rebuilt networks. All experiments were
performed using a 10-fold cross-validation. The classification
performances for different methods are summarized in Table 4.
Figure 3 shows the ROC curves for these methods.

DISCUSSION

Discriminative Brain Regions
Many studies have suggested that the brains of MCI differ from
brains of NC in connectivity patterns, such as local properties
(Guo et al., 2017), and the topological properties of brain network
(Vega-Pons et al., 2014).We used two types of kernels to quantify
these two different properties.

On the one hand, the betweenness of the node was calculated
to quantize the local property. Then, two sample t-test was
used to extract the relevant property for classification. From
Table 2, we found that (1) compared with NC, the abnormal
regions were mainly concentrated in the Default Mode Network
(DMN), such as, L. Middle frontal gyrus, L. Anterior cingulate
and paracingulate gyri, L. Posterior cingulate gyrus, Middle
temporal gyrus, and R. Inferior temporal gyrus. This conclusion
is consistent with the view accepted by most researchers that
DMN was damaged in the early stages of AD (Garcés et al.,

TABLE 5 | The classification performance and the number of subgraphs under

the different parameter T.

T The number of

subgraphs

ACC (%) SEN (%) SPE (%)

0.06 14 83.3 83 83.2

0.07 13 83.3 87.1 80.83

0.08 12 83.3 87.5 77.5

0.09 8 83.3 82.2 79.7

0.1/0.11/0.12 7 81.6 89.3 80.6

0.13 6 85 90 79

T represents the frequency differences threshold; ACC, classification accuracy; SEN,

sensitivity; SPE, specificity.

2014; Montembeault et al., 2014; Knh et al., 2017). Similarly,
the low-frequency amplitudes of the AD patients were studied
and the brain regions were found to be consistent with our
study (Yetkin et al., 2006). For example, Liu et al. (2014) found
that the low frequency amplitude of AD patients in the bilateral
posterior cingulate gyrus, middle temporal gyrus and superior
temporal gyrus decreased when compared with the NC. (2)
The right Rolandic operculum, the left supplementary motor
area and the right thalamus also showed differences, which was
consistent with the related literature. Wang et al. (2011) found
that the low-frequency amplitude between AD and NC located
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in the bilateral supplementary motor area and the left fusiform
gyrus was different. Yetkin et al. (2006) confirmed that AD
was more active in the right middle frontal gyrus, left inferior
temporal gyrus, left thalamus, and right lenticular putamen
nucleus than the NC. Fei et al. (2014) showed the difference
of topological structures between the MCI, and NC were
mainly in left rolandic operculum, insula, left supplementary
motor area, left hippocampus, left parahippocampal gyrus, right
parahippocampal gyrus, and so on.

On the other hand, a graph kernel was calculated to measure
the similarity of the topological property. Figure 2 shows that
the brain connectivity network changed during EMCI, mainly
in the right Rlandic operculum, the right Insula, the right
hippocampus, the left parahippocampal gyrus, the right lingual
gyrus, the left superior occipital gyrus, the right Calcarine fissure
and surrounding cortex, the left cuneus, the rightmiddle occipital
gyrus, the right inferior occipital gyrus, the right superior parietal
gyrus, and the right inferior parietal. This suggests that the
hippocampus, parahippocampal gyrus, and the insula are the
first to be damaged in the early stage of AD, which is associated
with a decline in memory (Bai et al., 2009), attention, speech,

TABLE 6 | The classification performance and the running time under different

parameter h.

h ACC (%) SEN (%) SPE (%) Runtime(s)

2 85 90 79.2 0.41

4 83.3 84.2 75.5 0.58

6 85 89.1 80 0.76

8 83.3 85.5 70.7 0.97

10 81.7 86.7 77.5 1.11

h, the number of iteration; ACC, classification accuracy; SEN, sensitivity; SPE, specificity;

Runtime, the running time (second) of WL- subtree kernel.

and behavior in early AD patients. Specifically, the hippocampus
plays an important role in the spatial memory and in the
consolidation of information from short-term memory to long-
term memory. The hippocampus demonstrated a significantly
negative correlation to episodic memory performance (Bai et al.,
2009). The Parahippocampal gyrus plays an important role in the
encoding and recognition of environmental scenes (Machulda
et al., 2008).

Finally, it can be seen from Table 2 and Figure 2 that the local
property and topological property complement each other and
provide biomarkers for early diagnosis of MCI from both the
local and global aspects.

Classification Performance
A large number of studies have proved that the different
features (the local property, the topological property or multi-
property) of the traditional threshold network have obtained
better classification results. For example, Jie et al. (2014b)
constructed multiple threshold connectivity networks of NC
and MCI, and extracted the topological features from the
multiple threshold connectivity networks. Finally, the multi-
kernel SVM was used to classify the two groups of subjects.
Fei et al. (2014) had constructed threshold connectivity
networks of NC and MCI, and extracted frequent subgraphs,
and subsequently selected a discriminative subgraph as a
feature. Finally, SVM was used for the classification. These
researches show that the subgraph features can better capture
the topological information of brain network. Jie et al.
(2014a) extracted the local connectivity and global topological
properties from five different threshold brain networks and
combined these properties by using multikernel SVM for
the classification of the MCI and NC. It is shown that the
local and topological properties of multi-threshold connected
networks were complementary to each other, thus improving the
classification performance.

FIGURE 4 | The classification performance of different parameter β. The ordinate indicates accuracy, specificity and sensibility of this method, and the abscissa

denotes different parameter β. As shown in the figure, when β = 0.8, better classification performance was obtained, including that accuracy is 85%, and specificity is

90%, and then sensibility is 79.2%.
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The traditional threshold network construction method is
influenced by the threshold, which makes the brain network to
exhibit some deviation. In order to avoid these deviations, the
MST method was used to construct an unbiased brain network,
and this method exhibited a less computational cost, and at
the same time, retained the neurological interpretability of the
network.

In order to accurately compare the classification performance
of different features, we used the same data set, constructed
the MST brain network, and calculated the classification
performance of the local property, topological property and
multi-property feature respectively. Table 4 and Figure 3 showed
that our method in combination with the local and topological
properties based on MST brain functional network performed
significantly better than the single network property. Specifically,
for the classification of EMCI and NC, the proposed method
achieved 85% accuracy, 90% sensitivity, 79.2% specificity, and
0.88 AUC in the classification. These results show that the
proposed classification framework constructed an unbiased
brain functional network, captured and combined the local
and topological properties, and achieved better classification
performance. Compared with the traditional threshold method,
our method offered two advantages by avoiding the need to select
an optimal threshold, and by making the full use of local and
topological properties.

Effect of the Frequency Difference
Threshold T
A large number of frequent subgraphs were obtained by using
the gSpan module. In order to select the most discriminative
subgraphs, we computed the frequency differences of each
of the frequent subgraphs. Then frequent subgraphs with a
frequency difference greater than T were considered to be
the most discriminative subgraphs. In order to test the effect
of the frequency difference threshold (T) on the classification
performance, T (the range from 0.06 to 0.13 at a step size of
0.01) was tested separately in the experiment, and the results
are shown in the Table 5. The results showed that when T is
0.13, the number of subgraphs was 6, and the classification
performance was best. On analyzing six subgraphs, we found
that two of them were frequent subgraphs of the EMCI group
and the other four were frequent subgraphs of the NC group.
Additionally, we also found that the discriminative subgraphs
obtained by T = 0. 5 and T = 0. 13 were the same, and
they could be the only frequent subgraphs of EMCI or NC.
Thus, when T = 0.5, we can obtain the most discriminative
subgraphs. In future research, 0.5 can be used as a reference
value for T.

Effect of Parameter h
When performing a graph kernel calculation, the number of
iterations (h) needs to be set. In the subtree, h represents the
height of a subtree. The height of a subtree is the maximum
distance between the root and any other node in the subtree.
Different h values result in different values of graph kernels.
In order to test the effect of parameter h on classification
performance, h (h ∈ {2, 4, 6, 8, 10}) was tested separately in the

experiment, and the results are shown in the Table 6. The results
showed that when h = 2 or h = 6, the classification performance
was the best. But from the point of view of running time, when
h= 2, the running time was shorter.

Effect of Parameter β
We needed to find an optimal weighting parameter β in the
MKL method. In order to test the effect of weighting parameter
β on classification performance, β (the range from 0.1 to 0.9 at
a step size of 0.1) was tested separately in the experiment, and
the results are shown in Figure 4. It can be seen from Figure 4

that when β is 0.8 the best classification performance is obtained,
with 85% accuracy, 90% sensitivity, and 79.2% specificity. The
results indicate that the local property (i.e., betweenness) is
more important than the topological property of the MST brain
functional network for the classification.

Limitations of the Study
This study is limited by the following factors. First, during the
network construction, defining of the nodes is a critical step.
Previous studies have demonstrated that network nodes can
be defined using different brain atlases and image voxels, and
the constructed network exhibited different network properties
(Hayasaka and Laurienti, 2010). The impact of different brain
parcellation atlases on the classification performance will be
explored in the future. A second limitation is due to the small
amount of data used in the experiment, the results of the
classification lack a generality. This method will be applied to
larger AD dataset in future work.

CONCLUSION

In this paper, we proposed a classification framework based on
the MST brain functional connectivity network to identify the
EMCI patients and NC. The proposed method mainly used the
MST, vector kernel, graph kernel and the multikernel SVM.
Specifically, MST was used to construct the brain functional
connectivity network; vector kernel was used to extract local
property, graph kernel was used to extract global topological
property, and the multikernel SVM was adopted to fuse
these heterogeneous kernels for classification. In experiments
with the ADNI dataset, our proposed method not only
significantly improved the classification performance in terms
of accuracy, sensitivity, specificity, and AUC value, but also
potentially detected the ROIs that are sensitive in the disease
pathology.
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Abdominal obesity is important for understanding obesity, which is a worldwide
medical problem. We explored structural and functional brain differences in people with
abdominal and non-abdominal obesity by using multimodal neuroimaging and up-to-
date analysis methods. A total of 274 overweight people, whose body mass index
exceeded 25, were enrolled in this study. Participants were divided into abdominal and
non-abdominal obesity groups using a waist–hip ratio threshold of 0.9 for males and
0.85 for females. Structural and functional brain differences were assessed with diffusion
tensor imaging and resting-state functional magnetic resonance imaging. Centrality
measures were computed from structural fiber tractography, and static and dynamic
functional connectivity matrices. Significant inter-group differences in structural and
functional connectivity were found using degree centrality (DC) values. The associations
between the DC values of the identified regions/networks and behaviors of eating
disorder scores were explored. The highest association was achieved by combining DC
values of the cerebral peduncle, anterior corona radiata, posterior corona radiata (from
structural connectivity), frontoparietal network (from static connectivity), and executive
control network (from dynamic connectivity) compared to the use of structural or
functional connectivity only. Our results demonstrated the effectiveness of multimodal
imaging data and found brain regions or networks that may be responsible for behaviors
of eating disorders in people with abdominal obesity.

Keywords: abdominal obesity, multimodal imaging analysis, probabilistic fiber tractography, static and dynamic
connectivity analysis, eating disorder behaviors

INTRODUCTION

Obesity is a worldwide medical problem that is responsible for inducing insulin resistance, type
2 diabetes, cardiovascular diseases, and some cancers (Raji et al., 2010; Malik et al., 2013; Val-
Laillet et al., 2015). However, medical complications are not always manifested in people with
obesity. A recent study showed that abdominal obesity was associated with increased risk for
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cardiovascular disease and mortality, while non-abdominal
obesity had fewer adverse effects overall, and in some instances
it even elicited protective effects (Zhang et al., 2008). In this
context, the concept of metabolically healthy obesity has been
extensively accepted (Stefan et al., 2013). In addition, previous
studies suggested that abdominal obesity differs from non-
abdominal obesity (Folsom et al., 1993, 2000; Bujalska et al.,
1997; Després and Lemieux, 2006; Després et al., 2008). People
with abdominal obesity have been shown to be at a higher risk
for the metabolic syndrome, which is linked to diabetes and
cardiovascular disease (Folsom et al., 2000; Després and Lemieux,
2006; Després et al., 2008). Folsom et al. (1993, 2000) found
that abdominal obesity was a better biomarker for predicting
mortality than non-abdominal obesity, and Bujalska et al. (1997)
demonstrated that the risk of diabetes was better quantified
with the waist–hip ratio (WHR), a measure of abdominal
obesity, than with the body mass index (BMI), a measure of
general obesity. These studies collectively provided a rationale for
distinguishing abdominal obesity from non-abdominal obesity.
Thus, identifying differences between abdominal and non-
abdominal obesity may provide additional information for the
better understanding of the diverse characteristics of obesity.

Obesity is a heterogeneous disease with a multifactorial
etiology, including the eating behavior, and genetic and
other environmental factors (Brownell and Wadden, 1991;
McLaughlin, 2012). Binge eating behavior is believed to be
genetically determined and is an important factor in obesity
(Bulik et al., 2003; Carnell et al., 2011). However, only few prior
studies have reported an association between dietary patterns and
abdominal obesity (Azadbakht and Esmaillzadeh, 2011; Zhang
et al., 2015). Correspondingly, the elucidation of the mechanisms
based on which adverse eating behaviors may differentially affect
the brain of the people with abdominal and non-abdominal
obesity is largely unknown, and thus constitutes one of the aims
of this study.

Recent studies reported that abdominal obesity is linked to
altered reward and cognitive systems (Hollmann et al., 2012;
Yates et al., 2012; Yau et al., 2012; Val-Laillet et al., 2015; Gaudio
et al., 2017; Olivo et al., 2017), which regulate the appetite
response (Hollmann et al., 2012; Val-Laillet et al., 2015). It has
been shown that the altered reward and cognitive processes are
highly associated with errant eating behaviors (Hollmann et al.,
2012; Yates et al., 2012; Yau et al., 2012; Val-Laillet et al., 2015).
In addition to brain function alterations, structural abnormalities
were identified in people with abdominal obesity, such as altered
fractional anisotropy and volume changes in white matter (Jagust
et al., 2005; Gaudio et al., 2017; Olivo et al., 2017). These studies
collectively suggest that abdominal obesity is possibly related to
both brain structure and function. They also motivated us to
consider multimodal neuroimaging to explore the differences
between people with abdominal and non-abdominal obesity.

Many neuroimaging studies have used connectivity analysis
to quantify brain structure and function (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). Connectivity analysis measures
the connectedness among brain regions or networks. In this
study, we performed connectivity analysis based on graph theory
that requires graph nodes (i.e., brain regions or networks)

and edges (i.e., neuronal fibers or correlation of time series
data between nodes) based on many approaches (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). Connectivity analysis
assesses the entire brain as a complex interconnected network,
and many studies have successfully used connectivity analysis
to explore Alzheimer’s disease, attention deficit/hyperactivity
disorders, and schizophrenia (Seo et al., 2013; Damaraju et al.,
2014; Park et al., 2016a).

Recently, neuroimaging methods, including magnetic
resonance imaging (MRI) and positron emission tomography,
have been used to non-invasively link obesity with brain
structure and function (Tataranni et al., 1999; Jagust et al., 2005;
Hollmann et al., 2012; Lips et al., 2014; Val-Laillet et al., 2015).
However, almost all of the neuroimaging studies compared
people with obesity to those with healthy weights (Jagust
et al., 2005; Hollmann et al., 2012; Val-Laillet et al., 2015).
Studies exploring the brain structure and function of people
with abdominal and non-abdominal obesity are lacking, even
though the two groups may have distinct brain structures and
functions. To fill this gap, we aimed to compare structural
and functional brain connectivity between abdominal and
non-abdominal obesity groups by applying network analysis
using diffusion tensor imaging (DTI) and resting-state functional
MRI (rs-fMRI). Motivated by the recent findings of functional
network changes and their associations with eating behaviors in
people with obesity (Park et al., 2016b), we aimed to associate
identified neuroimaging findings of abdominal obesity with
eating behaviors.

MATERIALS AND METHODS

Imaging Data and Participants
T1-weighted structural data, DTI, and rs-fMRI data were
obtained from the openly accessible Nathan Kline Institute-
Rockland Sample (NKI-RS) database (Nooner et al., 2012).
All imaging data were scanned with a 3T Siemens Magnetom
Trio Tim scanner. The scanning parameters for the T1-
weighted structural data acquisitions were as follows: repetition
time (TR) = 1,900 ms, echo time (TE) = 2.52 ms, flip
angle = 9◦, field-of-view (FOV) = 250 mm × 250 mm, 1 mm3

voxel resolution, and 176 slices. The DTI parameters were
as follows: TR = 2,400 ms, TE = 85 ms, flip angle = 90◦,
FOV = 212 mm × 180 mm, 2 mm3 voxel resolution, 64 slices,
b-value = 1,500 s/mm2, and gradient = 137. The rs-fMRI
parameters were as follows: TR = 645 ms, TE = 30 ms, flip
angle= 60◦, FOV= 222 mm× 222 mm, 3 mm3 voxel resolution,
40 slices, and 900 volumes. Of the 650 total participants,
participants with a BMI of 25 or greater and those with
full demographic information and eating disorder examination
questionnaire (EDE-Q) scores were considered in this study.
Participants with severe head motion were excluded (see the
Section “Preprocessing of Rs-fMRI Data”). The selected 274
participants were divided into abdominal and non-abdominal
obesity groups based on WHR. Participants with a WHR larger
than 0.9 for males and 0.85 for females were classified in the
abdominal obesity group, and the remaining participants were
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classified in the non-abdominal obesity group (World Health
Organization, 2008). Detailed demographics are reported in
Table 1. The Institutional Review Board (IRB) of Sungkyunkwan
University approved this retrospective study. Our study was
performed in full accordance with local IRB guidelines and
informed consent was obtained from all participants.

Tractography and Connectivity Analysis
of DTI Data
Probabilistic tractography of DTI data was performed using the
FSL software (Jenkinson et al., 2012). The original DTI data
were corrected for distortions due to eddy currents and head
motion. DTI data were reconstructed based on the corresponding
gradient table using the FDT toolbox. The diffusion parameters
were computed with the Bedpostx toolbox, and probabilistic
tractography was performed with the ProbtrackX toolbox in
FSL (Jenkinson et al., 2012). Specifically, fibers were repeatedly
sampled 5,000 times based on diffusion parameters that
originated from the seed region and a probabilistic distribution
of neuronal fibers was constructed. The probability of fibers
connecting two brain regions was computed based on a
probabilistic distribution of neuronal fibers, and the value was
entered into a matrix called the fiber probability matrix. The
nodes of the fiber probability matrix (i.e., brain regions) were
defined by the ICBM DTI-81 atlas. A weighted and directed
network model was applied to the fiber probability matrix and
degree centrality (DC) values were computed. DC values were
defined in a directed network model as the sum of in-degree
and out-degree values that, respectively, included the column
and row sums of the edge weights connected to the given
node in the matrix (Rubinov and Sporns, 2010). DC values
represent the importance of the node (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). DC values were used to identify
brain regions that differed significantly between people with
abdominal and non-abdominal obesity. The group differences in
DC values between people with abdominal and non-abdominal
obesity were assessed using permutation tests followed by false

TABLE 1 | Participant demographics.

Parameter Abdominal
obesity (n = 152)

Non-abdominal
obesity (n = 122)

P-value

Age 54.94 (17.23) 40.84 (19.09) <0.001

Sex (Male:Female) 69:83 47:75 0.2527∗

BMI 31.37 (5.01) 29.84 (4.40) 0.0086

WHR Male 0.98 (0.06) 0.84 (0.04) <0.001

Female 0.91 (0.05) 0.79 (0.05) <0.001

EDE-Q-R 1.44 (1.40) 1.67 (1.56) 0.2053

EDE-Q-E 0.35 (0.69) 0.46 (0.86) 0.2495

EDE-Q-S 1.85 (1.41) 1.87 (1.50) 0.8925

EDE-Q-W 1.54 (1.19) 1.58 (1.31) 0.7843

∗Chi-square test. BMI, body mass index; WHR, waist–hip ratio; EDE-Q-R, eating
disorder examination questionnaire restraint; EDE-Q-E, eating disorder examination
questionnaire eating concern; EDE-Q-S, eating disorder examination questionnaire
shape concern; EDE-Q-W, eating disorder examination questionnaire weight
concern.

discovery rate (FDR) procedure to avoid multiple comparisons
issues (Benjamini and Hochberg, 1995; Chen et al., 2013; Smith
et al., 2013). We randomly assigned participants to either the
abdominal or non-abdominal obesity group 5,000 times and
created a null distribution of differences in DC values. If the
differences in DC values of a region did not belong to the 95% of
the null distribution, the region was considered significant. The
p-values were further corrected using FDR (p < 0.05, corrected)
(Benjamini and Hochberg, 1995). The overall processing flow of
the DTI data is represented in the DTI part of Figure 1.

Preprocessing of Rs-fMRI Data
Rs-fMRI data were preprocessed using the AFNI and FSL
software (Cox, 1996; Jenkinson et al., 2012). The volumes of
the first 10 s were discarded to adjust for the hemodynamic
response delay. The frame-wise displacement (FD) between
fMRI time series volumes was calculated and the volumes
whose FDs exceeded 0.5 mm were eliminated (Power et al.,
2012). We excluded participants who had more than 10% of
the time series volumes removed. Volumes were adjusted for
head motion and slice timing. The skull was removed, and the
intensity was normalized with the mean value of 10,000 across
4D volumes. Rs-fMRI data were registered onto the T1-weighted
structural data, followed by a subsequent registration onto the
Montreal Neurological Institute (MNI) brain template. From
the registered rs-fMRI data, nuisance variables of cerebrospinal
fluid, white matter, head motion, cardiac, and large-vein-related
artifacts were removed using the FMRIB’s ICA-based X-noiseifier
(FIX) software (Salimi-Khorshidi et al., 2014). The first step of
ICA-FIX performed a single independent component analysis
(ICA) on an individual rs-fMRI data. From the decomposed
independent components (ICs), a large number of temporal and
spatial features were calculated. The calculated features were
then input into a multilevel classifier, and signal and noise ICs
were distinguished using the pretrained data by the Human
Connectome Project (Salimi-Khorshidi et al., 2014). The noise
ICs were regressed out from the rs-fMRI time series. A bandpass
filter with a frequency between 0.009 and 0.08 and spatial
smoothing with a full-width-at-half-maximum of 6 mm were
applied.

Group ICA
The rs-fMRI data from all participants were temporally
concatenated, and group ICA was performed using the FSL
MELODIC software (Beckmann et al., 2005; Jenkinson et al.,
2012). The ICA produces spatial ICs by using probabilistic
principal component analysis (Beckmann and Smith, 2004;
Beckmann et al., 2005; Minka, 2000; Smith et al., 2012). The
generated ICs were classified into signal or noise components
according to two criteria. First, the ICs were compared with
known resting state networks (RSNs) by using a cross-correlation,
and those lower than 0.2 were considered as noise (Smith et al.,
2009). Second, signal and noise components were classified
by visual inspection considering the spatial and temporal
characteristics (Kelly et al., 2010; Griffanti et al., 2017). Signal
components showed a large spatial overlap with gray matter and
a low overlap with white matter, cerebrospinal fluid, and blood
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FIGURE 1 | Flowchart of processing steps adopted in this analysis.

vessels. The time series of the signal components was a regular
wave without notable spikes, and had a power spectrum of at least
one low-frequency peak between 0.01 and 0.1 Hz (Kelly et al.,
2010; Griffanti et al., 2017).

Static and Dynamic Connectivity
Analyses of fMRI Data
The static and dynamic connectivity analyses with weighted
and undirected network models were performed to quantify the
functional characteristics of rs-fMRI. Graph nodes were defined
as functionally interpretable ICs, and graph edges were defined as
the Pearson correlation of time series between two nodes. For the
static connectivity analysis, a connectivity matrix was constructed
by computing the Pearson correlation of the entire time series
between nodes, which yielded one connectivity matrix for each
participant. A soft thresholding approach was adopted to avoid

binarizing edge weights with the use of Equation 1.

wij =

(
rij + 1

2

)β

(1)

where rij is the correlation coefficient between nodes i and
j (Mumford et al., 2010; Schwarz and McGonigle, 2011). β

was set to six to conform to an unsigned network (Mumford
et al., 2010). The elements of the soft thresholded matrix were
converted to z-values using the Fisher’s r-to-z transformation.
DC values were extracted from the z-transformed matrix by
summing the edge weights connected to the given node in
the column direction of the matrix and were then used to
compare groups. The differences in DC values between people
with abdominal and non-abdominal obesity were assessed based
on 5,000 permutations, and the p-values were corrected using
FDR (p < 0.05, corrected).
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The dynamic connectivity analysis used a sliding window
technique (Allen et al., 2012; Damaraju et al., 2014). A window
size of 172 TRs (111 s) and a stride of 1 TR (0.645 s) were used to
capture the lowest frequency (0.009 Hz) of the data (Hutchison
et al., 2013; Damaraju et al., 2014). A rectangular window was
convolved with a Gaussian kernel of size three. Finally, many
dynamic connectivity matrices (mean of 770.45 and a standard
deviation [SD] of 26.14) were constructed. L1 regularization
was applied to the matrices to avoid ill-posed problems due to
the limited information on the short time series segments. The
regularization parameter λ was optimized with a cross-validation
framework by maximizing the following log-likelihood function
(Equation 2).

log detθ− tr(Sθ)− λ ||θ||1 (2)

where θ is the precision matrix, S is the empirical covariance
matrix, tr is the trace, and | | .| |1 is the L1 norm (Friedman
et al., 2008; Allen et al., 2012; Damaraju et al., 2014).
Regularized dynamic connectivity matrices were concatenated
across participants and grouped into several clusters by a
K-means clustering algorithm to define brain states (Allen
et al., 2012; Damaraju et al., 2014). The number of clusters
was determined using the silhouette coefficient and elbow
method (Allen et al., 2012; Kodinariya and Makwana, 2013;
Damaraju et al., 2014). The most common number of clusters
was considered as the optimal number and was used for
group-level clustering of the concatenated dynamic connectivity
matrices. Using the determined number of clusters, participant-
level states were defined by applying the K-means clustering
algorithm for each participant. We started with the participant-
level cluster that explained the largest variance, and we matched
it with the group-level state that yielded the maximum Pearson’s
correlation (Park et al., 2018). We repeated the process for the
subsequent participant-level cluster with the largest variance
explained excluding the clusters that had already been processed.
This allowed us to map each participant-level state with
a corresponding group-level state. The dynamic connectivity
matrices of each state were averaged, and DC values were
extracted from the mean state matrices for each participant.
The brain networks with significant differences in DC values
between people with abdominal and non-abdominal obesity
were assessed based on the 5,000 permutations followed by
FDR at a significance level of 0.05. The overall rs-fMRI
processing steps are summarized in the rs-fMRI part of
Figure 1.

Representative Brain States
Group-level states were defined from the dynamic connectivity
analysis, and each state was associated with brain networks
by computing the hubness of nodes for each state. For
each group-level state, the betweenness centrality (BC) values
of all nodes were calculated and normalized by dividing
them with the mean value. Nodes with normalized BC
values higher than 1.5 were defined as hub nodes, and were
considered as a representative network for the state (Seo et al.,
2013).

Correlation Between DC Values and
Behaviors of Eating Disorder Scores
DC values of the brain regions or networks that yielded
significant group-wise differences in structural or functional
connectivity between abdominal and non-abdominal obesity
were correlated with behaviors of eating disorders assessed with
the EDE-Q (Fairburn and Beglin, 1994; Mond et al., 2004). The
EDE-Q assessment contained four subscales of restraint (EDE-
Q-R), eating concern (EDE-Q-E), shape concern (EDE-Q-S),
and weight concern (EDE-Q-W), which were based on the self-
reported questionnaire (Fairburn and Beglin, 1994; Mond et al.,
2004). A multiple linear regression model was constructed in
accordance to Equation 3.

EDE−Q = β · DC + age+ C (3)

where DC is the DC value of the brain region or network
identified in the structural or functional connectivity analysis,
β is the regression coefficient, and C is a constant. Age was
added as a covariate to adjust for the difference between people
with abdominal and non-abdominal obesity groups. A regression
model was also constructed with DC values of brain regions
and networks identified in both the structural and functional
connectivity analyses in accordance to Equation 4.

EDE−Q = β1 · DCs + β2 · DCf + age+ C (4)

where DCs denotes the DC values of the brain regions identified
in the structural connectivity analysis, and DCf indicates the
DC values of the brain networks identified in the functional
connectivity analysis. The correlation analysis is summarized in
the correlation analysis part of Figure 1.

Statistics
The structural and functional group differences in DC values
between people with abdominal and non-abdominal obesity were
assessed using permutation tests followed by FDR. Participants
were randomly assigned to the abdominal and non-abdominal
obesity groups 5,000 times, and a null distribution was created.
A brain region or network with DC values outside the
95% of the null distribution was considered to be associated
with significant differences between the abdominal and non-
abdominal obesity groups. The p-values were further corrected
using the FDR approach suggested by Benjamini and Hochberg
(p < 0.05, corrected) (Benjamini and Hochberg, 1995). The
representative networks of group-level states in the dynamic
connectivity analysis were defined using normalized BC values
that were higher than 1.5. Correlation between DC values
and EDE-Q scores were computed using a multiple linear
regression model. The quality of the correlation was quantified
using R2 and p-values. The DC values of the identified
brain regions or networks were correlated with four EDE-Q
scores. The correlation results were corrected for the identified
brain regions/networks, and for the four EDE-Q scores with
FDR (Benjamini and Hochberg, 1995). All statistical analyses
were performed in MATLAB (Mathworks Inc., Natick, MA,
United States).
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RESULTS

Nodes for Connectivity Analysis
The structural characteristics of the brain were quantified with a
fiber probability matrix. The nodes of the fiber probability matrix
were defined by the ICBM DTI-81 atlas (Figure 2A). Functional
characteristics of the brain were quantified with rs-fMRI. Group
ICA was performed to define brain networks. Twenty spatial
ICs that explained 94.1% of the variance were automatically
generated and four ICs were eliminated as noise components.
The 16 functionally interpretable ICs (mean correlation with
RSNs of r = 0.48, with an SD of 0.14) were considered to be
graph nodes (Figure 2A). ICs 1–3 constitute the visual network
(VN), ICs 4 and 5 constitute the default mode network (DMN),
ICs 6–8 constitute the executive control network (ECN), ICs 9
and 10 constitute the frontoparietal network (FPN), ICs 11 and
12 constitute the sensorimotor network (SMN), ICs 13 and 14
constitute the auditory network (AN), IC 15 denotes the basal
ganglia (BG) with part of the ECN, and IC 16 is the cerebellum.

Differences in Structural and Functional
Connectivity
We compared the structural brain differences between
people with abdominal and non-abdominal obesity using
the probabilistic fiber tractography approach derived from DTI.
DC values, which represent the importance of a given node, were
calculated from the fiber probability matrix. DC values were used
to identify significant differences between groups. The pontine
crossing tract, fornix, corticospinal tract, medial lemniscus,
inferior and superior cerebellar peduncles, cerebral peduncle,
internal capsule, anterior, superior, and posterior corona radiata,
thalamic radiation, sagittal stratum, superior longitudinal
fasciculus, and superior fronto-occipital fasciculus, showed
significant between group differences (p < 0.05, permutation
followed by FDR correction) (Supplementary Table S1).

The inter-group differences in the static and dynamic
connectivity analyses were performed by using the 16 ICs as
the graph nodes. One connectivity matrix was constructed for
each participant for the static connectivity analysis. DC values
were computed from the connectivity matrix and VN (ICs
#1–3), DMN (IC #5), ECN (IC #6), FPN (ICs #9 and 10),
and SMN (ICs #11 and 12), yielded significant differences in
DC values between people with abdominal and non-abdominal
obesity groups (Supplementary Table S2, p < 0.05, permutation
followed by FDR correction). For the dynamic connectivity
analysis, many connectivity matrices (mean of 770.45 and SD of
26.14) were constructed, and the matrices were grouped into nine
clusters (i.e., brain states) using a K-means clustering algorithm
(Figure 3). For each group-level state, the hubness of any node
was computed, and if the given node satisfied the hub node
criterion, it was considered as a representative network for the
state (Seo et al., 2013). The ECN (IC #8, normalized BC 1.51)
in state 3, ECN (IC #7, normalized BC 1.57), and FPN (IC
#10, normalized BC 1.56) in state 5, DMN (IC #5, normalized
BC 1.77), FPN (IC #9, normalized BC 1.63), and SMN (IC
#11, normalized BC 1.63) in state 6, two ECNs (ICs #6 and

8, normalized BCs 1.81 and 1.52, respectively), AN (IC #14,
normalized BC 1.79), and cerebellum (IC #16, normalized BC
1.51) in state 7, DMN (IC #4, normalized BC 1.52), ECN (IC #6,
normalized BC 1.57), SMN (IC #11, normalized BC 1.57), AN (IC
#13, normalized BC 1.63), and cerebellum (IC #16, normalized
BC 1.55) in state 8, and AN (IC #14, normalized BC 1.54) in state
9, were identified as the representative networks (Figure 4). The
connectivity matrices were clustered and averaged to yield a mean
state matrix for each brain state. DC values were extracted from
the mean state matrices, and the groups were then compared.
VN (IC #2), DMN (IC #5), ECN (IC #6), FPN (ICs #9 and
10), and SMN (ICs #11 and 12), showed significant (p < 0.05,
permutation followed by FDR correction) inter-group differences
in DC values, and the results for each state were reported in the
Supplementary Table S3.

Correlation Between DC Values and
Behaviors of Eating Disorder Scores
We calculated the correlation between the DC values of the
identified brain regions from structural connectivity analysis or
brain networks from the functional connectivity analysis and
EDE-Q scores. The correlation between neuroimaging findings
and the behaviors of eating disorders was explored as an eating
disorder that was reported to be associated with abdominal
obesity (Dallman et al., 2003; Gluck et al., 2004; Daubenmier
et al., 2011; Succurro et al., 2015).

When only the estimated DC values from the structural
connectivity analysis were used, the right cerebral peduncle, the
right anterior, and posterior corona radiata were significantly
correlated with EDE-Q scores (Figure 2B and Table 2, p < 0.05,
FDR corrected). In the case of the static connectivity analysis,
FPN (IC #9) yielded significant correlations with EDE-Q-S and
W scores (Figure 2B and Table 2, p< 0.05, FDR corrected). In the
case of the dynamic connectivity analysis, no networks showed
significant correlation with EDE-Q scores at the significance level
of 0.05. When we relaxed the significance level to 0.1, ECN (IC #8)
in state 5 was correlated with the EDE-Q-S score (Figure 2B and
Table 2, p < 0.1, FDR corrected).

We performed further correlation analysis that combined
the DC values identified from the single-modal results. We
considered various combinations of the following DC values:
the right cerebral peduncle and right anterior and posterior
corona radiata from structural connectivity analysis, FPN
(IC #9) from the static functional connectivity analysis, and
the ECN (IC #8) in state 5 from the dynamic functional
connectivity analysis (Table 3). Our results showed that EDE-
Q scores elicited the highest correlations with the DC values
that combined the identified brain regions and networks from
the structural connectivity, static functional connectivity, and
dynamic functional connectivity analyses, followed by the
structural connectivity and dynamic functional connectivity
analyses, the structural connectivity and static functional
connectivity analyses, structural connectivity analysis only,
static and dynamic functional connectivity analyses, static
functional connectivity analysis only, and the dynamic functional
connectivity analysis only.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2018 | Volume 12 | Article 74148

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00741 October 9, 2018 Time: 19:56 # 7

Park et al. Connectivity Changes in Abdominal Obesity

FIGURE 2 | (A) ROIs used in this study. (Left) ICBM DTI-81 atlas and (right) 16 functionally interpretable ICs. (B) Brain regions and networks that showed significant
associations with EDE-Q scores. VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor
network; AN, auditory network; BG, basal ganglia.

DISCUSSION

We explored the differences in structural and functional
connectivity in brain regions and networks related to the
behaviors of eating disorders between people with abdominal
and non-abdominal obesity with the use of DTI and rs-
fMRI. Probabilistic fiber tractography and static and dynamic
connectivity analyses were used to quantify the characteristics
of brain regions and networks. The DC values of several brain
regions and networks showed significant inter-group differences.
We further explored the relationship between structural and
functional connectivity and key behaviors of eating disorders, and
significant correlations were found. Our results indicated that
altered brain structure and function in people with abdominal
and non-abdominal obesity were associated with eating disorders
behaviors.

We found that the functional connectivity in FPN and ECN
showed significant inter-group differences between people with
abdominal and non-abdominal obesity. Furthermore, significant
associations with key behaviors of eating disorders were observed.
The FPN and ECN mainly contain the dorsolateral prefrontal
cortex which controls cognitive functions, such as planning,
working memory, and inhibition (Le et al., 2007; Stice et al.,
2008; Davids et al., 2010). Some considered obesity as a type of
psychological disease related to deranged eating behaviors, which
results from a dysfunctional fronto-striatal circuitry (Volkow
et al., 2009). Previous studies observed that the impaired
inhibitory control in people with obesity suggesting the lateral
prefrontal cortex is an important region of the fronto-striatal
circuit that controls the regulation of eating behaviors (DelParigi
et al., 2004; Wang et al., 2004; Le et al., 2006). One study showed
that altered activity in the dorsolateral prefrontal cortex broke
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FIGURE 3 | Nine group-level brain states. VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN,
sensorimotor network; AN, auditory network; BG, basal ganglia.

FIGURE 4 | Representative networks of each group-level states. Elements of the matrix represent the hubness of BC. Representative networks are marked with the
symbols “+.” VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor network; AN,
auditory network; BG, basal ganglia; ICs, independent components.

the balance between the reward and cognitive systems and led
to errant eating behaviors (Val-Laillet et al., 2015). In addition,
previous studies found an imbalance in the prefrontal and limbic
brain circuits that support aspects of cognition- and reward-
related eating behaviors (Carnell et al., 2011; Brooks et al., 2013;
Vainik et al., 2013). In summary, it is possible that lack of
regulatory influences from the dorsolateral prefrontal cortex in

people with obesity might cause a psychological dependence on
food and overeating (Wang et al., 2004).

One possible interpretation of our findings on differences
between people with abdominal and non-abdominal obesity
is that insulin levels may influence brain function during rest
in brain networks that control reward and food regulation.
Abdominal obesity is known to be strongly related to insulin
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TABLE 2 | Brain regions and networks that yielded significant correlations
between the DC values of the identified regions/networks and the EDE-Q scores.

Information Region/Network EDE-Q R2 P-value

DTI Right cerebral peduncle E 0.0377 0.0109

S 0.0324 0.0153

W 0.0530 0.0025

Right anterior corona radiata R 0.0323 0.0468

Right posterior corona radiata R 0.0288 0.0407

S 0.0283 0.0407

fMRI: Static FPN (IC #9) S 0.0270 0.0491

W 0.0363 0.0268

fMRI: Dynamic ECN (IC #8) in state 5 S 0.0285 0.0794

The significance of the dynamic connectivity analysis was 0.1. P-values were
corrected using FDR. DC, degree centrality; EDE-Q-R, eating disorder examination
questionnaire restraint; EDE-Q-E, eating disorder examination questionnaire eating
concern; EDE-Q-S, eating disorder examination questionnaire shape concern;
EDE-Q-W, eating disorder examination questionnaire weight concern; FPN,
frontoparietal network; ECN, executive control network.

resistance, and it has been recognized as a key determinant
of the metabolic syndrome (Carr et al., 2004; Després and
Lemieux, 2006). A previous study reported that individuals
who were resistant to insulin showed an increase of functional
connectivity in the reward network, but a reduction in
cognitive control networks (Kullmann et al., 2012). In addition,
altered brain activity in the frontoparietal executive system
was found in metabolic syndrome patients (Hoth et al.,
2011). Interestingly, a study that utilized intranasal insulin
administration reported altered brain activity in cognitive
brain regions and altered functional connectivity between
the hippocampal region and DMN (Kullmann et al., 2017).
The change of functional connectivity in the hippocampal
region was significantly correlated with visceral adipose
tissue and the change in subjective feeling of hunger after
intranasal insulin administration (Kullmann et al., 2017). These
studies collectively suggest that abdominal obesity may be
indirectly related to altered function in cognitive related brain
areas.

In addition to functional connectivity differences, the
inter-group structural connectivity differences were observed in
many brain regions (Supplementary Table S1). Among them, the
anterior and posterior corona radiata and the cerebral peduncle
yielded significant associations with behaviors of eating disorders.
The corona radiata is part of the limbic-thalamo-cortical circuitry
that is critical for reward and cognitive processes (Catani et al.,
2002; Kalivas and Volkow, 2005; Olivo et al., 2017). The corona
radiata is a key region that projects thalamic information onto the
prefrontal cortex, and the alteration in this region is shown to be
associated with cognitive dysfunction and central taste disorders
(Shott et al., 2015; Olivo et al., 2017). Previous studies found
that fractional anisotropy in corona radiata showed abnormalities
in people with anorexia nervosa (Gaudio et al., 2017), and it
was significantly related to the behaviors of eating disorders
(Olivo et al., 2017). They also reported that altered white matter
integrity in corona radiata was associated with dysfunctions
in reward and cognitive related processes, which led to eating
disorders (Olivo et al., 2017). Our results and these studies were
consistent in that altered structural connectivity in corona radiata
was related to the behaviors of eating disorders. In addition to
the corona radiata, we found significant inter-group structural
connectivity differences in the cerebral peduncle and associations
with the behaviors of eating disorders. The cerebral peduncle
is included in the corticospinal tracts that contain large fiber
tracts (Ramnani, 2006; Koyama et al., 2013). The fiber tracts
of the cerebral peduncle primarily originate from the prefrontal
cortex in the human (Ramnani, 2006). The prefrontal cortex
controls the process of reward, inhibitory control, and executive
decision making (Holland and Gallagher, 2004; Kringelbach
and Rolls, 2004; Petrovich et al., 2007). It is an important
region that modulates an individual’s eating behavior (van Vugt,
2009). Previous studies observed altered white matter integrity of
the cerebral peduncle, including the cortico-spinal and cortico-
bulbar tracts in people with obesity (Civardi et al., 2004;
Karlsson et al., 2013; Ryan and Walther, 2014; van Bloemendaal
et al., 2016; Papageorgiou et al., 2017). Taken together, the
structural connectivity in the cerebral peduncle, which is strongly

TABLE 3 | Correlation analysis between DC values of both the brain regions and networks that showed a good correlation in the first step and EDE-Q scores.

Information EDE-Q

R E S W

R2 P-value R2 P-value R2 P-value R2 P-value

Only DTI 0.0453 0.0139 0.0530 0.0054 0.0602 0.0022 0.0765 <0.001

Only fMRI: Static 0.0130 0.1691 0.0113 0.2132 0.0270 0.0245 0.0363 0.0067

Only fMRI: Dynamic 0.0072 0.3777 0.0118 0.2005 0.0285 0.0198 0.0174 0.0921

fMRI: Static and dynamic 0.0183 0.1725 0.0195 0.1490 0.0566 0.0013 0.0589 <0.001

DTI and fMRI: Static 0.0516 0.0139 0.0567 0.0077 0.0759 <0.001 0.1105 <0.001

DTI and fMRI: Dynamic 0.0497 0.0174 0.0609 0.0046 0.0868 <0.001 0.0953 <0.001

DTI and fMRI: Static and dynamic 0.0576 0.0140 0.0662 0.0053 0.1087 <0.001 0.1294 <0.001

P-values were corrected using FDR. Significant results (p < 0.05) are reported in bold italics. DC, degree centrality; EDE-Q-R, eating disorder examination questionnaire
restraint; EDE-Q-E, eating disorder examination questionnaire eating concern; EDE-Q-S, eating disorder examination questionnaire shape concern; EDE-Q-W, eating
disorder examination questionnaire weight concern.
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connected to the prefrontal cortex, may be indirectly related to
eating behaviors in people with obesity. However, the cerebral
peduncle contains fiber tracts that originate from the motor,
temporal, and parietal cortices, as well as the prefrontal cortex
(Ramnani, 2006). Thus, additional experiments are required to
elucidate the relationship between structural connectivity in the
cerebral peduncle and eating behaviors in more detail.

In the correlation analyses conducted herein, we found that
the DC values computed from multimodality imaging data
(i.e., both DTI and rs-fMRI) explained the behaviors of eating
disorders with higher R2 values compared to those from single-
modality imaging data (i.e., DTI or rs-fMRI alone) (Table 3). This
result may be attributed to the heterogeneity of obesity associated
with eating behaviors, genetic factors, or insulin resistance
(Brownell and Wadden, 1991; McLaughlin, 2012). Using only
structural or functional characteristics of the brain may not
provide sufficient information to quantify the diverse aspects
of obesity. The results indicate that multimodality imaging
data provides complementary information to understand the
links between the brain and behaviors of eating disorders. In
this study, both static and dynamic functional connectivity
analyses were considered, and the dynamic connectivity results
correlated better with behaviors of eating disorders. Unlike
the static connectivity analysis, many connectivity matrices
that reflect the temporal dynamics of the brain states were
constructed in the dynamic connectivity analysis. The additional
information may better link changes in the brain structure
and function to behaviors associated with eating disorders.
Our study suggested that using the structural and functional
information and using dynamic, rather than static, connectivity
analysis could best explain the elicited behaviors of eating
disorders.

Our study has a few limitations. Although we associated
brain states derived from dynamic connectivity analysis with
representative brain networks, we could not match the brain
states with specific cognitive conditions owing to validation
difficulties. In future studies, we will collect various clinical scores
to correlate cognitive conditions with brain states. In this study,
we used WHR instead of other direct measures of abdominal
obesity, such as visceral fat from abdominal MRI and body fat
measures from bioelectrical impedance analyses. The NKI-RS
database did not provide such measures, and we were thus limited
to the use of WHR.

In this study, we found significant brain structural and
functional differences between people with abdominal and

non-abdominal obesity and strong associations between the
connectivity values and EDE-Q scores in the cerebral peduncle,
anterior and posterior corona radiata, ECN, and FPN. When both
the structural and dynamic functional connectivity were used,
the relationships between brain connectivity and the behaviors
of the eating disorders were strengthened, thus indicating that
multimodal imaging data is more effective than single-modal
imaging data. Our reported results are expected to provide more
evidence on the mechanisms associated with abdominal obesity
and behaviors of eating disorders.
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Imagery of facial expressions in Autism Spectrum Disorder (ASD) is likely impaired
but has been very difficult to capture at a neurophysiological level. We developed an
approach that allowed to directly link observation of emotional expressions and imagery
in ASD, and to derive biomarkers that are able to classify abnormal imagery in ASD.
To provide a handle between perception and action imagery cycles it is important
to use visual stimuli exploring the dynamical nature of emotion representation. We
conducted a case-control study providing a link between both visualization and mental
imagery of dynamic facial expressions and investigated source responses to pure face-
expression contrasts. We were able to replicate the same highly group discriminative
neural signatures during action observation (dynamical face expressions) and imagery,
in the precuneus. Larger activation in regions involved in imagery for the ASD group
suggests that this effect is compensatory. We conducted a machine learning procedure
to automatically identify these group differences, based on the EEG activity during
mental imagery of facial expressions. We compared two classifiers and achieved an
accuracy of 81% using 15 features (both linear and non-linear) of the signal from
theta, high-beta and gamma bands extracted from right-parietal locations (matching the
precuneus region), further confirming the findings regarding standard statistical analysis.
This robust classification of signals resulting from imagery of dynamical expressions
in ASD is surprising because it far and significantly exceeds the good classification
already achieved with observation of neutral face expressions (74%). This novel neural
correlate of emotional imagery in autism could potentially serve as a clinical interventional
target for studies designed to improve facial expression recognition, or at least as an
intervention biomarker.

Keywords: emotional facial expression, mental imagery, EEG biomarker, machine learning, autism spectrum
disorder, dynamic expressions
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INTRODUCTION

Faces represent a critical source of visual information for social
perception, conveying relevant information about identity and
emotional states of others (Kanwisher and Yovel, 2006). Since
the first months of life, children are capable of understanding
and processing facial cues, like FEs (Field et al., 1982). The
ability to interpret these social signs represents an essential
skill in child development and, therefore, a basic condition for
the development of the ability to engage in successful social
interactions early in life (Bayless et al., 2011).

ASD is a neurodevelopmental disorder characterized by
deficits in the social domain which represent hallmark early
characteristics (Sperdin et al., 2018). Even for simple visualization
of FE, the literature is somewhat inconsistent: while some studies
show group differences both in behavioral performance and
neural responses, other studies show no identifiable deficits at all
(for a compreensive review, see Monteiro et al., 2017).

Importantly, no previous study has considered the role of MI
in the FE processing domain, possibly because of the challenges
in identifying imagery signatures that mimic neural responses
during simple observation. The perceptual strength and spatial
frequency of the FE stimuli seem to be relevant to yield ASD
group differences during simple visual presentation (Vlamings
et al., 2010; Luckhardt et al., 2017), but the large majority of visual
perception studies use static frame stimuli, lacking the dynamic
characteristics of naturalistic FE (Monteiro et al., 2017). Those
dynamics have been shown to play a crucial role on the perception
of the respective FE and its emotional valence (Krumhuber et al.,
2013) possibly because they allow to generate perception and
action imagery cycles.

Another limiting aspect is the notion that specific processing
experimental contrasts are needed to isolate effects of interest.
For example, the use of blank screen baselines, before the
presentation of faces, generates a non-specific contrast of
face with expression against a baseline without any stimulus.
Therefore, those responses comprise both the processing of low-
level core aspects of the face and the specific processing of the
FE. In this EEG study we used dynamic FE morphing in a virtual
avatar and used its neutral expression as baseline, to ensure a
FE specific contrast. This way, the neutral FE is already present
in the baseline. We believe this stringent contrast provides a
response specific to the processing of the FE aspects, isolating
it from the simple response to the face static itself. A systematic
review of EEG studies regarding FE processing in ASD conducted
by Monteiro et al. (2017) has already identified the need for
experimental paradigms targeting the dynamic characteristics of
FEs. All the studies identified by that review applied non-specific
experimental contrasts, using blank screens as baseline of their
experimental conditions. To the best of our knowledge, our study

Abbreviations: ASD, autism spectrum disorder; ERP, event-related potential; FE,
facial expression; fMRI, functional magnetic resonance imaging; IQ, intelligence
quotient; MI, mental imagery; sLORETA, standardized low resolution brain
electromagnetic tomography; SnPM, statistical non-parametric mapping; SVM,
support vector machine; TD, typically developed; VEP, visual evoked potential;
WiSARD, wilkes, stonham and aleksander recognition device; WNN, weightless
neural network

is the first one to combine a task-specific contrast for dynamic FE
stimuli.

MI is defined as the simulation or re-creation of perceptual
experience (Kosslyn et al., 2001; Pearson et al., 2013). Most
of these mental representations are extracted from memory
and allow one to mentally revisit the original stimuli or their
combination (Pearson et al., 2015). Disturbed MI has been
postulated to be present in several psychiatric disorders, from
post-traumatic stress disorder (Lanius et al., 2002) to socio-
emotional disorders like social phobia or depression (Hirsch
et al., 2006). In the specific case of ASD, MI is likely to
be impaired, since one of the key deficits included in the
ASD diagnosis, in the form of absence or impairment of
‘pretend play’ (Baron-Cohen et al., 2001; American Psychiatric
Association [APA], 2013), which requires preserved action-
perception imagery cycles. This deficit is particularly interesting
since it spans into the social, imitation and repetitive behavior
dimensions (Crespi et al., 2016). Therefore, the study of the
neural correlates of MI in ASD gains relevance since it might
lead to the understanding of the neural correlates of its
core neurodevelopmental limitation and further help into the
development of successful therapies.

Here, by providing a critical link between visual observation
and subsequent replay imagery, we bound MI to the FE of
an avatar, in a task where the participant mentally replays the
previously observed dynamic image of the avatar performing
a happy or a sad FE. We believe this link between visual
observation and MI of FE in others addresses both the deficits
of FE processing, emotion identification and theory of mind,
due to the lack of thinking from the perspective of the other
present in ASD. Therefore, the concept of visually imagining
others smiling recruits the faculties of expression processing and
pretend play, and our experimental design allowed to study such
imagery process in ASD, and to use two distinct classification
approaches, based on linear and non-linear features describing
brain signals, to differentiate between the disease state and
normal cognition. Non-linear features consist of quantitative
measures that represent in a relatively simple way complex
dynamic characteristics of the EEG signals, which the traditional
linear methods (amplitude and frequency, for example) are
not able to capture. They have been adopted more and more
frequently in EEG analysis in general and ASD biomarker
research in particular (Bosl et al., 2011, 2017).

MATERIALS AND METHODS

Participants
Seventeen male teenagers with the diagnosis of idiopathic ASD
were recruited from the Unit of Neurodevelopment and Autism
from the Pediatrics Unit from the University Hospital of Coimbra
and from Portuguese ASD patient associations (Coimbra and
Viseu). Since ASD is a disorder far more prevalent in male
individuals, with a ratio of four males to every female, and there
is accumulated evidence for sex differences in brain connectivity
(Alaerts et al., 2016; Irimia et al., 2017; Fu et al., 2018), only
male participants were included in the study. The diagnosis of
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ASD was performed based on the Autism Diagnostic Observation
Schedule, the Autism Diagnostic Interview – Revisited and the
Diagnostic and Statistical Manual of Mental Disorders – 5th
edition criteria, confirmed by an expert multidisciplinary team.
Seventeen healthy TD male controls were recruited from our
local database of volunteers. Participants from both groups
had their IQ assessed by the Wechsler Adult Intelligence
Scale for participants older than 16 years old, and by the
Wechsler Intelligence Scale for Children for younger participants.
Groups were matched by chronological age (ASD mean age and
standard error (SE): 16.4 ± 0.6 years; TD mean age and SE:
15.5 ± 0.6 years) and performance IQ (ASD mean score and SE:
99.8± 3.0; TD mean score and SE: 106.2± 4.2). Additional group
characterization can be found in Table 1.

Written informed consent was obtained from the parents
of the participants or, when appropriate, the participants
themselves. The study was approved by the ethics committee
from Faculty of Medicine from the University of Coimbra and
was conducted in accordance with the declaration of Helsinki.

Experimental Tasks
The experiment is divided in two tasks: one of visual stimulation
and one of MI requiring “mental replay” of previously observed
FE, with the goal to identify similar neural signatures. The
visual stimulation task and overall experiment were developed in
WorldViz Vizard 5 VR Toolkit (development edition) using the
male002 virtual avatar from the Complete Characters HD pack
and its FE poses. The total duration of the experiment is about
50 min, including 15 min for scalp cleaning and placement of the
EEG cap, 30 min for the experimental tasks and 5 min to clean up
at the end of the session.

Visual Stimulation Task
This task consists in observing a virtual avatar performing
either sad or happy FEs (see Figure 1A), which represent two
antagonistic expressions from the six core expressions (Ekman
and Friesen, 1971). The FEs were verified in accordance with the
action units defined in the Facial Action Coding System (FACS)
(Ekman and Friesen, 1978). The happy expression comprises
action units 6 (cheek raiser), 12 (lip corner puller) and 25 (lip
part), while the sad FE uses action units 1 (inner brow raiser), 2
(outer brow raiser), 4 (brow depressor), 15 (lip corner depressor),
and 17 (chin raiser).

Each trial is composed by a morphing period of 250 ms where
the expression of the avatar gradually changes from neutral to the

TABLE 1 | Group characterization: mean and standard error of the mean
(between brackets) of age, full scale IQ (FSIQ), verbal IQ (VIQ) and performance IQ
(PIQ) (∗p > 0.05).

ASD TD

N 17 17

Age 16.4 (0.6) 15.5 (0.6) ∗

FSIQ 92.2 (3.1) 109.2 (4.5)

VIQ 88.1 (4.2) 110.3 (4.2)

PIQ 99.8 (3.0) 106.2 (4.2) ∗

target expression, followed by a static period where the virtual
avatar is displaying the target FE for 1000 ms and a final period
where the avatar morphs back to the neutral expression, with the
duration of 250 ms (see Figure 1B). Thus, each stimulus has a
duration of 1.5 s and the inter-trial interval consisted in 1s plus
a jitter of 500 ms. The neutral face of the avatar is always present
during the baseline/inter-trial interval, which creates a stringent
contrast with the FE since the stimuli does not come from no
stimulus/blank screen, but from the neutral face, as naturally
happens in real life.

This part of the experiment is composed by two blocks of 120
randomized trials (60 of each FE), for a total of 240 trials. The
participants were asked to fixate the face of the avatar in the
middle of the eyes and observe the expressions. A rest period
was included between blocks to ensure focus and reduce fatigue
throughout the experiment. A total of 120 trials per condition
were recorded.

Mental Imagery Task
The second part of the experiment consists of a MI paradigm. In
this task, the participant is asked to mentally imagine the avatar
performing the same types of FEs used in the stimulation part
(used to facilitate mental replay). The computer screen shows
the neutral face of the avatar during the whole period, except
for the instruction, when it performs the FE the participant is
asked to imagine. Then, after a cue, the participant imagines the
avatar performing the FE, in a period of 4 s, returning to no
imagery after that period. The (c) section of Figure 1 details the
structure of the trials. This task is composed by two blocks of 40
randomized trials (20 for each expression), achieving a total of 80
trials for the task.

Experimental Setup and Data Recording
The experiment was conducted in a 22-inch LCD Monitor (frame
rate of 60 Hz, 1680× 1050 pixel resolution). The participants sat
about 60 cm away from the screen (distance measured from the
eyes to the center of the screen) and were asked to keep their eyes
open and fixed on the face of the avatar. EEG data were recorded
using a 64 channel actiCHamp system from Brain Products.

The scalp of the participants was first cleaned using abrasive
gel and then the 64 channel actiCAP cap was placed on their head.
Data were recorded from 64 Ag/AgCl active electrodes (Brain
Products), placed across the head according to the international
10–10 standard system. The ground electrode was placed at
AFz position and the reference electrode at the right ear. The
impedance of the electrodes was kept under 10 k� during the
recordings. The electrodes were connected directly to the Brain
Products actiCHamp amplifier and sampled at 1000 Hz. EEG
data were recorded using the Brain Products Recorder software.
For each paradigm, the individuals were informed about the
respective task. The total duration of the experimental procedure
(preparation+ 2 tasks) was around 50 min.

EEG Preprocessing
We used MathWorks Matlab, 2017b and the EEGLAB
toolbox v14.1.1 (Delorme and Makeig, 2004) for EEG signal
preprocessing and analysis. EEG data were filtered with a finite
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FIGURE 1 | Description of the tasks, both regarding structure, and stimuli used. (A) Base stimuli used for each expression at their expression endpoint, comprising
the neutral, happy, and sad facial expressions. (B) Structure of the visual stimulation paradigm: each expression lasted 1.5 s, divided by facial expression morphing
(250 ms), static facial expression (1 s) and facial expression unmorphing (250 ms). (C) Structure of the mental imagery paradigm: the instruction is composed by the
avatar performing the expression to be imagined, as presented in the visual stimulation task, and to facilitate mental replay. After that, an interval of 1.5 s is left for
preparation, and an auditory stimulus (beep) cues the start of the mental imagery process, for 4 s, whereas another beep indicates the end of the mental imagery of
the expression, and the start of the neutral period.

impulse response bandpass filter of frequencies 1 and 100 Hz and
notch filtered with an infinite impulse response filter between
47.5 and 52.5 Hz, as implemented in the EEGLAB toolbox. Bad
channels were removed and data were re-referenced for the
average reference. Epochs were created locked to the stimulus
onsets (please refer to the task-specific analysis for details about
the epoch lengths). Bad epochs were removed based on the
EEGLAB semi-automatic procedures for extreme values and
improbable signal segments. Independent Components Analysis
(ICA) was then run on the data using EEGLAB implementation
of infomax algorithm (Bell and Sejnowski, 1995). Components
were used in order to extract noisy components, such as
blinks, muscular activity or electrical interference. Components
presenting such artifacts were removed and the weights were
projected back to the data (Makeig et al., 2004). Bad channels
previously removed were then interpolated. Further analysis of
EEG data was conducted over these preprocessed signals.

Experimental Design and Statistical
Analysis
The analysis focused on identifying group differences for both
visualization and MI of the FEs. We specify the different analyses
performed for each task separately.

Visual Stimulation Task Analysis
The visual stimulation epochs comprise 1 s, starting 100 ms prior
to the stimuli onset (baseline) and go to 900 ms after the start of
the expression morphing (during the first 250 ms of the epoch,
the face of the avatar is continuously morphing the FE). ERPs
were computed by subtracting each epoch by the mean of its
baseline (from 100 ms pre-stimulus to 0) and then averaging all
epochs corresponding to the same stimulus condition.

Source analysis were conducted using the sLORETA toolbox
(Pascual-Marqui, 2002). The procedure included exporting
from EEGLAB the preprocessed single-trial epochs, importing
them into sLORETA software, averaging them (per subject
and expression) and converting to the source space. Each
participant electrode locations were co-registered with the
realistic anatomical MR model using landmarks and standard
electrode positions. The source space representation consists
of a current source density (CSD) map computed with the
sLORETA algorithm, a standardized discrete three-dimensional
(3D) distributed linear weighted minimum norm inverse
solution that takes several neurophysiologic and anatomical
constraints into account and has been shown to yield depth-
compensated zero localization error inverse solutions (Pascual-
Marqui, 1999; Pascual-Marqui et al., 2002). sLORETA employs
the current density estimate given by the minimum norm
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solution, and localization inference is based on standardized
values of the current density estimates (Pascual-Marqui, 2002)
and has been shown to outperform its competitor algorithms
in terms of localization error and ghost sources (Grech et al.,
2008).

For each expression and each group, we identified the peaks
of the first and second ERP component for each electrode,
and extracted the latencies for both peaks across the scalp. We
performed the source localization of the mean activity of around
those two ERP components (±125 ms, see Supplementary
Figure S1).

We conducted a voxel-by-voxel between-group comparison
of the mean current source density distribution in those time
windows around the ERP peaks, using the sLORETA software
implementation of SnPM, employing a log-F-ratio statistic for
independent groups (for a similar procedure see, for example,
Velikova et al., 2011). The SnPM method corrects for multiple
comparisons without requiring Gaussian assumptions (Nichols
and Holmes, 2001).

Mental Imagery Task Analysis
For the MI task, we also performed ERP analysis locked to the
sound trigger. For the longer imagery blocks, we performed
a spectral source analysis at more distant time windows
and investigated the statistical classification of putative neural
biomarkers.

Mental imagery ERP source analysis
For the imagery epochs, we investigated the ERP sources
originated by the happy and sad imagery triggers. The participant
receives the instruction beforehand of which expression to
imagine. We segmented the trials from 100 ms prior to the cue
beep and up to 900 ms after it, and subtracted them by the mean
of their baseline (−100 ms to 0).

Similarly to the visual stimulation ERPs, for the source analysis
we looked for the mean global field power in the window of
0–250 ms. The pipeline was analogous to the VEP, as well as the
statistical framework.

Mental imagery spectral source analysis
For the MI periods, we investigated frequency bands of the
signal during the time window of 500–3500 ms, avoiding the
contribution of the beep ERP and covering the main period
of MI, because MI processes are best captured using time-
frequency analysis (Horki et al., 2014). The frequency bands
of interest were θ, α, β, and δ, as defined in the sLORETA
toolbox. This analysis of frequency bands of induced activity
comprised the following steps: we export the single trials from
EEGLAB and imported them to the sLORETA toolbox. Then
we compute the cross-spectrum of each trial and average them
per subject and condition. The average cross-spectrum is used to
compute the source current density maps used in the second-level
analysis.

For both ERP and frequency analysis we conducted voxel-
by-voxel between-group comparisons of the current density
distribution for each expression, in a way analogous to the VEP
procedure.

Mental imagery biomarkers to classify groups
To explore the MI processes through the EEG data, we defined
several features from the time, frequency, and non-linear domain.
We then performed a ranking analysis and selected the best
features to train a classifier to discriminate participants between
groups. Features were extracted for each channel and trial by trial
and averaged across all imagery trials and electrode clusters.

Feature extraction. We follow the procedure of Simoes et al.
(2015) for extracting features representative of different EEG
characteristics.

Time/frequency domain. For the time and frequency domain,
we selected the signal envelope (env), Teager energy operator
(teag) and instantaneous power (pow) as features. A detailed
description of these features is present in Supplementary
Table S1.

Non-linear domain. To extract signal complexity measures, the
EEG signal was transformed to its phase-space. The phase-space
is a reconstruction of the chaotic dynamics of the system and,
as was proven by Takens (1981), it keeps some of the relevant
properties of the state space representation of the system, such
as the topographic properties, Lyaponov exponents and the
Kolmogorov-Sinai Entropy. Every possible state of the system can
be represented by a point in the multidimensional phase space
and time evolution of the system creates a trajectory in the phase
space (Kliková and Raidl, 2011). We used the time delay method
to reconstruct the phase-space of the signal. Given a time series of
a scalar variable it is possible to construct a vector X(ti), i=1, ..., N
in phase-space in time ti as follows:

X (ti) = [x (ti) , x (ti + τ) , . . . , x (ti + (m− 1) τ)] , (1)

i = 1, . . . , N − (m− 1) τ

where τ is time delay, m is the dimension of reconstructed space
and M=N−(m−1)τ is the number of points (states) in the phase
space.

We reconstructed a 2 and 3-dimensional phase-space
associated to the EEG data, and the time delay was considered
to be the mean of the first local minimum from the signal’s
autocorrelation (hereafter defined as lag).

From the non-linear domain we extracted the spatial filling
index (SFI), largest Lyapunov exponent (Lyap), correlation
dimension (CorrDim), approximate entropy (ApEn) and sample
entropy (SpEn) as features. We provide a detailed description of
these features in the Supplementary Table S2.

The features were extracted from 3 time windows in each trial:
baseline [−500 ms to 0 ms pre instruction], emotion imagery
[500–3500 ms after imagery trigger] and neutral [500–3500 ms
after neutral trigger]. For the emotion and neutral time windows,
we used the absolute value for the non-linear features and the
normalized values (subtracted by the same feature extracted from
the baseline) for the time/frequency domain.

Frequency bands. All features were extracted from signals
filtered at different frequency bands. Band-pass Infinite Impulse
Response (IIR) filters were used as implemented in EEGLAB
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toolbox, for the frequency bands: θ [4–8] Hz, α [8–12] Hz, low
β [12–21] Hz, high β [21–30] Hz and γ [30–40] Hz.

Feature selection. In order to reduce the dimensionality of the
feature set, we averaged the features extracted from each electrode
in spatial clusters, as defined in Supplementary Figure S2.
The clusters were defined by electrode spatial proximity in
a way that covers the full scalp, keeps symmetry and lobule
divisions (frontal, parietal – subdivided in central and posterior
region, occipital and temporal). We then used the a priori
information provided by the source localization and selected only
the clusters closer to the right precuneus region, namely C1, C2,
C4, and C5.

We ended up with 8 different features× 5 frequency bands× 4
clusters, for a total of 160 different features. We then computed
the statistical discriminative value of each feature between groups
with two sample t-tests, using only the samples from the training
set, and the features were ordered by absolute T value, from the
most important to the least.

Classification. We trained a SVM with a linear kernel, for being
one of the most used classifiers applied to EEG signals (Lotte
et al., 2007) and also a WNN. The WNNs are underused in the
literature but present characteristics that generalize well for noisy
domains, like the EEG (Simões et al., 2018a). We implemented a
variation of the WiSARD combined with a bleaching technique
(França et al., 2014) which has been shown to perform at the
same level as the SVM in distinct fields and presents fast learning
curves, achieving good results even with small datasets of data
(Cardoso et al., 2016).

We trained the classifiers to discriminate the group of the
participant, based on the feature vector extracted from his EEG
data. We divided the participants into train and test sets: 80% of
the cases were randomly chosen for training and the remaining
20% for testing. We repeated the procedure more than 30
times, to avoid overfitting, following the guidelines provided by
Varoquaux et al. (2017) regarding the use of machine learning on
brain imaging data. Feature selection was performed every time
using only training-set data.

To explore the relation between accuracy and the number
of features used, the procedure was conducted starting with
5 features and adding 5 more features up to the total of
features.

We repeated the full classification procedure using the EEG
signal from the neutral part of the MI task, in order to check
if the results were specifically improved during over emotion
expression imagery.

RESULTS

Visual Stimulation Task
This section presents the results of the analysis performed on
the ERP responses to the visual stimulation task (observation of
happy and sad FEs), which was used to identify neural signatures
relevant to validate the imagery task.

ERP Source Analysis Results
The ERPs obtained from the visual stimulation task present two
clear independent components, the first one peaking around
300 ms and the second around 600 ms (Figure 2). Since the
morphing occurs during the first 250 ms, we expect a delay
on the first component, as reported by Graewe et al. (2012).
The topography of the first component matches the well-
known topography of the N170 component, with a negativity
around the right and left parietal-occipital regions, but it appears
delayed in time, as expected by the morphing animation. The
second component has a strong parietal positivity, slightly right
lateralized, especially for the ASD group.

For the source analysis of the visual stimulation task ERPs
we defined time-windows of 250 ms around the two component
peaks of activity in the ERPs. We show the results for the first
and the second ERP component, separately. The mean peak
latencies used for each expression and each group is detailed in
Supplementary Table S3.

The mean current source density of activity in the intervals
around the component peaks showed group differences for
both expressions in the first component, using voxel-by-
voxel independent tests between groups, corrected for multiple
comparisons at the 5% level using the SnPM method (two-tailed).
Both expressions show the group differences right-lateralized
and located at the superior parietal region, in the precuneus
area (Figure 3). As for the second component, only the sad
expression presented statistically significant differences, exactly
in the same superior parietal region, which showed also enhanced
recruitment for the ASD group, in the right hemisphere.

Mental Imagery Task
This section presents the results for the MI task. We analyzed
the ERP for the initial imagery period and the longer MI blocks
through source analysis of the power spectrum and the analysis
of several characteristics of the signal using machine learning
techniques.

Mental Imagery ERP Source Analysis Results
After the sound trigger, an initial ERP can be found
corresponding to processing the beep and starting the imagery
procedure (Figure 4). We defined a time window to target at
the source level, between 0 and 250ms, in order to investigate
specific responses at the source level. The mean current source
density in that interval presented group differences for both
expressions with p < 0.01, using voxel-by-voxel independent
tests between groups, corrected for multiple comparisons using
the SnPM method. Importantly, the same region identified group
differences for both expressions. This was also the same region
that was identified during visual stimulation. Accordingly, the
ASD group presented higher activation in the superior parietal
region (precuneus area – Figure 5).

Mental Imagery Spectral Source Analysis Results
For the longer periods of imagery (500–3500 ms), we conducted
a source analysis of the defined frequency bands of the signal.
A statistical significant result was found for in the imagery of sad
expressions, for the theta band (Figure 6). The ASD group shows
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FIGURE 2 | ERPs for both groups and expressions, extracted from the P4 electrode. Topographic maps for each component are present near the ERP plots.
Orange marks represent the TD group and blue marks the ASD. Topographic maps show the scalp distribution of the ERP amplitudes extracted from 250 ms
windows, centered at the peaks of the components of each expression (refer to Supplementary Table S3 for detailed peak latencies).

again higher recruitment of the very same right precuneus area at
this frequency.

Statistical Classification of Mental Imagery Periods –
Evidence for a Potential Biomarker in ASD
We then tested whether the identified neural signatures of
imagery of FEs could be identified in a data driven manner
using statistical classifiers. The linear SVM and the WiSARD
classifier were able to achieve high test set accuracies (∼77% and
∼81% of accuracy, respectively), with the WiSARD yielding the
best accuracy of 81% with just 15 features (Figure 7). Test set
classification accuracy of the neutral face expression segments of
the signal were far worse, with ∼68% for the SVM and ∼74%
for the WiSARD, suggesting that important group differences
are captured by the features are emotion expression-dependent
(for statistical details see Figure 7). We present also a detailed
exploration of the performance metrics using the top 15 features.
We computed accuracy, specificity, sensitivity/recall, precision
and the F1 score for both classifiers using the MI segments and
the neutral segments.

We checked the correlation value between the extracted
features and the IQ measurements (full-scale, verbal and
performance IQ), and no feature was significantly correlated with
any of the covariates.

We then focused on the top 15 features that generated the
81% of accuracy. We investigated the most selected frequency
bands and clusters of these top features. Figure 8 shows the top
15 feature distribution by clusters and frequency bands, showing
the specific contribution of theta, high beta and gamma bands
for group discrimination. Detailed feature information (Table 2)
clarifies that the most discriminative features originate from the
time-frequency domain, at the high-beta/gamma bands, and that
the non-linear features are mainly from the theta-band.

DISCUSSION

Here we addressed for the first time FE imagery in ASD and
identified a common neural correlate of observation and MI
of dynamic FEs in this condition, in the precuneus. Robust
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FIGURE 3 | Source group differences for the first and second ERP components, for happy and sad expressions. We found higher activation for the ASD group in the
right precuneus using a two tailed alpha level of 5%, corrected with the SnPM method. Regarding the second component, this result was statistically significant
specifically for the sad expression.

statistical classification of brain activity patterns using linear and
non-linear features could also be achieved, and the identified
biomarker of abnormal imagery in ASD can potentially be used as
an outcome measure to evaluate clinical interventions addressing
cognitive and behavioral improvement in this condition.

We focused on MI of FEs in ASD as a major research target
in this study. This is a very important cognitive process in
the context of this disease, because mental rehearsal is very
important for action perception cycles, in particular in the
context emotional face recognition. MI is the process of creating
a mental representation and corresponding sensory experience of
an episode or stimulus without a direct external source (Pearson
et al., 2015). In the case of FEs, it also involves MI of motor
patterns (FEs) which requires the involvement of the mirror
neuron system. There are indeed several types of MI, namely
visual, auditory and motor (for a review, see Kosslyn et al., 2001).
Some studies showed the effect of MI on boosting performance
in detection tasks (Tartaglia et al., 2009) and on decision making
bias (Pearson et al., 2009). In our study, participants were asked
to perform visual MI of an avatar performing a FE (mentally
replaying previously observed patterns). This task combines MI,

perspective taking and theory of mind, since the participant is
asked to recreate an expression of another.

A critical aspect that renders the study of imagery difficult
in ASD is that it is important to ascertain that imagery really
reflects the expected visual content. We could achieve this
by showing that similar neural signatures (source localization)
can be found by both observation and imagery of FEs. The
ERP elicited by the imagery cue did indeed reveal that source
differences were very similar as compared to the ERP of the FE
stimuli, with the precuneus showing higher activation for the
ASD group. The right precuneus belongs to task-active networks
(Yang et al., 2015) that are also active during imagery [for a review
of the relation with the precuneus with visuo-spatial imagery
and visuomotor transformations, please refer to (Cavanna and
Trimble, 2006)].

One of the common aspects of visualization and MI of the
others FEs is the need to incorporate the perspective of the other.
Because we use a stringent contrast in the visual stimulation
task, we expected the core processing of the face to have less
weight than the perspective taking aspects task. The precuneus
is one of the core regions present in the perspective taking
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FIGURE 4 | ERP and topographic plots for the mental imagery task (PO4 channel). An initial ERP is visible peaking positively at 100 ms and negatively at 200 ms,
with the tonic spectral characteristics overtaking the remaining time period (from 0.5 s onward).

FIGURE 5 | Group differences for the source analysis of the ERPs of mental imagery. Statistical differences (two-tailed p < 0.01, SnPM corrected) were found in the
region of precuneus, with higher activation for the ASD group.

network, as showed by Healey and Grossman (2018). The authors
reviewed the literature and found the precuneus as a key region
in both cognitive and affective perspective taking networks (Abu-
Akel and Shamay-Tsoory, 2011). Those fMRI studies validate the
source we identified in our study.

The link between the precuneus and its role in FEs processing
has already been demonstrated by some studies (Saarimäki et al.,
2016; An et al., 2018), but our study is the first one, to the best
of our knowledge, to identify the over-recruitment of this region
in the ASD population in a social cognition task. Since visual
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FIGURE 6 | Source analysis for the mental imagery segments, in the theta band. Higher activation for the ASD group in the precuneus area (two tailed p < 0.05,
SnPM corrected).

perspective taking and theory of mind skills are impaired in ASD
(Hamilton et al., 2009; David et al., 2010), we believe that ASD
participants needed higher recruitment of the right precuneus as
a compensatory mechanism for the MI of the other’s FE.

Frequency band decomposition of the MI signals showed
that theta and high-beta/gamma bands explained the main
group differences. The source analysis of the theta band further
revealed again a higher activation of the right precuneus for
the ASD group (specifically for the sad FE). It was already
known that FEs elicited higher theta responses than neutral
expressions in healthy participants (for a review, please refer
to Güntekin and Başar, 2014). Although theta band activity
patterning has been linked to the medial frontal cortex and
its role in cognitive control (Cavanagh and Frank, 2014) its
source in our study seems to be different. In agreement with

our own source, Wang et al. (2016) demonstrated a relationship
between the theta band and activity patterns in the posterior
cingulate cortex/precuneus, in a simultaneous EEG-fMRI study.
Furthermore, the study from Knyazev et al. (2009) identified
the same right parietal source from theta responses to FEs.
Therefore, we believe the parietal theta band relation with
the precuneus to be a core neural correlate of emotional MI
processing. Despite using different types of signals (phasic or
tonic in relation to the type of mental process) to perform the
source localization (ERP and time-frequency decomposition),
due to the characteristics of the tasks, it is very interesting to
observe the same region involved in both visualization and MI
processes.

The precuneus is recruited in several types of imagery,
including motor imagery, mental navigation, memory-related
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FIGURE 7 | Accuracy of the classifiers SVM (left) and WiSARD (right) as function of the considered number of features. Mean accuracies are represented with the
lines and the error bars show the standard error of the mean. Classification results with the mental imagery part of the EEG signals are represented in blue and the
neutral signals in orange. Statistically different accuracies between Emotion and Neutral are marked by ∗ (one-sample t-tests with alpha level of 5% and false
discovery rate correction for multiple comparisons). At the bottom we present the performance metrics for both classifiers using the top 25 features. Each cell
presents the mean values followed by the standard error of the mean of the respective metric.

FIGURE 8 | Top 15 features distribution by frequency band (left) and clusters (right). The histogram on the left depicts the exploitability of theta and
high-beta/gamma frequency features. The histogram of the right shows the scalp distribution of features within the right parietal-occipital region, showing a
preference for the posterior clusters of the region.

imagery, episodic source memory retrieval and emotional state
attribution (Cavanna and Trimble, 2006). Specifically regarding
attributing emotions to others, several studies identified the role
of the precuneus in Theory of Mind scenarios (Vogeley et al.,
2001; Takahashi et al., 2015). Moreover, a connectivity analysis
study of resting state fMRI data showed decreased connectivity

of the precuneus region with the middle temporal gyrus and
the ventromedial frontal cortex in the ASD population, in both
hemispheres (Cheng et al., 2015). All these observations pinpoint
the precuneus as playing a pivotal role in FE MI. Furthermore,
the group difference in the right hemisphere, which is also
known to dominate in attention and imagery, suggests that the
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ASD group processes the FEs of the other in a more effortful,
attention-based mechanism than the TD group. This view has
been suggested by Harms et al. (2010). Our study is the first one,
to our knowledge, to show that the same neural pattern that is
observed during FE recognition is replicated for MI of the FEs, in
ASD.

Based on the observed group differences, we investigated
whether we could extract features that would function as
biomarkers (not necessarily as diagnostic, but as intervention
targets) of ASD, based on the MI process. The need for
diagnostic, prognostic and intervention biomarkers in ASD is
well recognized. While ASD biomarkers range from genetics
to clinical (for a review, please refer to Ruggeri et al., 2014),
the inter-subject variability observed in this disorder justifies
the use of machine learning techniques combining multiple
features to generate potential biomarkers (Huys et al., 2016).
Therefore, we developed two classifiers – a SVM and a WNN
to classify each subject (represented by a feature vector extracted
from his EEG data) into ASD or TD group. Our purpose is to
show that the features used by the classifiers provide exploitable
group differences, that can also be used to characterize neural
mechanisms underlying ASD (in this case, FE processing) and
therefore be used to monitor, for example, rehabilitation efficacy
(outcome measure) or aid at subgroup stratification in the
ASD population (Castelhano et al., 2018), albeit not for early
detection.

We verified that the WNN method achieved around 81%
of accuracy using 15 features. When compared to the same
classifiers trained with features extracted from EEG of the
neutral periods, the accuracy was significantly lower (around
73%).

TABLE 2 | List of the top 15 features used in the classifiers, showing their
frequency band, cluster, and statistical value.

FEATURE FREQ. BAND CLUSTER RANK T P

ENV [21–30] Hz 4 2.57 (0.41) 4.23 0.0002

TEAG [21–30] Hz 1 4.30 (0.53) 3.84 0.0005

POW [21–30] Hz 1 6.87 (0.77) 3.61 0.0010

ENV [30–40] Hz 4 7.67 (0.83) 3.67 0.0009

TEAG [21–30] Hz 4 8.73 (0.87) 3.56 0.0012

SPEN [4–8] Hz 4 8.80 (1.16) 3.43 0.0017

LYAP [4–8] Hz 4 9.83 (1.27) −3.36 0.0020

ENV [30–40] Hz 5 10.03 (0.99) 3.53 0.0013

POW [21–30] Hz 4 11.37 (1.11) 3.41 0.0018

ENV [21–30] Hz 1 12.03 (1.23) 3.22 0.0029

ENV [30–40] Hz 1 13.37 (1.65) 3.24 0.0028

SPI [4–8] Hz 4 13.43 (1.33) 3.25 0.0027

ENV [21–30] Hz 5 13.83 (1.30) 3.37 0.0020

APEN [4–8] Hz 4 14.37 (1.77) 3.15 0.0036

POW [30–40] Hz 1 14.97 (1.14) 3.08 0.0042

Non-linear features are presented with gray background and time/frequency
features with white background. Rank values correspond to the mean order of
the feature across training sets, with the respective standard error of the mean.
T and P values for each feature are presented, resulting from an independent t-test
between the groups. All the 15 features are statistically significant (corrected for
multiple comparisons using the false discovery rate algorithm).

We then performed a further analysis of the top 15
features selected for classification. The most representative
frequency band, when using non-linear features, was the
theta band, while the most discriminative features were
from the time/frequency domain and high-beta/gamma
frequency bands. Those bands and their relation with the
precuneus have been explored in the literature by Fomina
et al. (2016), which attempted to train the self-regulation of
gamma and theta bands in the precuneus in amyotrophic
lateral sclerosis patients. This is consistent with our results,
showing that the precuneus activity at the theta and high-
beta/gamma bands represent important MI information that
can be used for clinical purposes, for instance in BCI based
neurofeedback.

The overall use of dynamic FE morphing enabled a more
realistic and ecologic approach, because the stimuli featured more
realistically the daily life characteristics of social interactions than
the commonly used static stimuli. Moreover, we used a specific
face expression contrast (emotional expressions vs. neutral
expression). As stated by Krumhuber et al. (2013), the dynamic
characteristics of FEs are possibly also understudied which is a
limitation for the validity of neurocognitive approaches.

Our approach to morph the expression into a virtual avatar
makes a potential bridge between dynamic FEs and rehabilitation
possibilities using, for instance, virtual reality. Understanding
how the FEs are processed in virtual environments opens
the door for intervention solutions, where the environment is
completely controlled (Miller and Bugnariu, 2016; Simões et al.,
2018b). This is important because the neural markers identified
in this study could potentially be used as intervention target
measures.

A common characteristic of most studies in the literature
using EEG and observation of FEs is the use of a blank-
screen as baseline for the visual stimulus (Monteiro et al.,
2017), thus eliciting ERPs that mix the processing of the FE
with face and other non-specific visual features. We argue that
the use of a more specific contrast (expressionless/neutral face
as baseline) elicits an ERP specific to the dynamic expression
characteristics of the face, not the face itself. Moreover, Monteiro
et al. (2017) demonstrate disparate findings in the literature
when evaluating EEG responses to FEs in ASD. Several studies
found expression effects accompanied by group effects. Using
a very specific contrast, we were able to identify, even for
FE observation, group differences in the right precuneus, with
the ASD group showing higher activation in this region. The
functional role of precuneus in attentional deployment and
imagery is well recognized (Cavanna and Trimble, 2006), with
some studies also suggesting a relation to perspective taking
(Vogeley et al., 2001; Kircher et al., 2002; Schurz et al., 2015),
face familiarity (specifically for the left precuneus) (Lee et al.,
2013) and emotional state recognition and attribution (Ochsner
et al., 2004; Spies et al., 2017). Our right precuneus group effect
for both happy and sad expressions is consistent with several
studies using fMRI that reported the same effect for ASD in
the right precuneus (see the meta-analysis of Aoki et al., 2015,
which found hyperactivation of bilaterate thalamus, caudade and
right precuneus for the ASD group). Especially in tasks requiring
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taking the others perspective, the recruitment of the precuneus is
key in both cognitive and affective perspective taking networks
(Healey and Grossman, 2018). We hypothesize that the ASD
group performs a higher recruitment of the precuneus region
to compensate for emotional processing and perspective taking
behavioral deficits.

Our study focused only on male subjects to avoid an effect
of gender in the analysis. There is evidence for sex differences
in brain connectivity in ASD which might influence the EEG
analysis we conducted (Alaerts et al., 2016; Irimia et al., 2017;
Fu et al., 2018). The replicability of these results in female
ASD cohorts lacks further validation. Moreover, in spite of
the limitations of our sample size, it paves the way for future
replication studies in larger groups.

In conclusion, we found for the first time, a neural correlate
of emotion expression imagery in ASD, which was validated as a
replication of the neural signatures evoked by visual observation
of specific FEs. We developed an innovative approach to study
FE processing in ASD, combining visualization of dynamic FEs
(with a very selective contrast, isolating pure FEs from the mere
presence of a face) and MI of FEs in others. Our results emphasize
the important role of the precuneus in the ASD facial processing
circuit and suggest that its increased recruitment may serve as a
compensatory strategy to overcome the natural deficits in their
emotional processing. Furthermore, we extracted a set of features
and trained a classifier that was able to discriminate between
groups with high accuracy. The features were then observed to
match topographically and spectrally the group effects, and can
therefore be potentially used as intervention targets.
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Previous studies have shown that type 2 diabetes mellitus (T2DM) can accelerate the
rate of cognitive decline in patients. As an organ with high energy consumption, the
brain network balances between lower energy consumption and higher information
transmission efficiency. However, T2DM may modify the proportion of short- and long-
range connections to adapt to the inadequate energy supply and to respond to various
cognitive tasks under the energy pressure caused by homeostasis alterations in brain
glucose metabolism. On the basis of the above theories, this study determined the
abnormal functional connections of the brain in 32 T2DM patients compared with
32 healthy control (HC) subjects using long- and short-range functional connectivity
density (FCD) analyses with resting-state fMRI data. The cognitive function level in these
patients was also evaluated by neuropsychological tests. Moreover, the characteristics
of abnormal FCD and their relationships with cognitive impairment were investigated in
T2DM patients. Compared with the HC group, T2DM patients exhibited decreased long-
range FCD in the left calcarine and left lingual gyrus and increased short-range FCD in
the right angular gyrus and medial part of the left superior frontal gyrus (p < 0.05,
Gaussian random-field theory corrected). In T2DM patients, the FCD z scores of the
medial part of the left superior frontal gyrus were negatively correlated with the time
cost in part B of the Trail Making Test (ρ = −0.422, p = 0.018). In addition, the FCD z
scores of the right angular gyrus were negatively correlated with the long-term delayed
recall scores of the Auditory Verbal Learning Test (ρ = −0.356, p = 0.049) and the
forward scores of the Digital Span Test (ρ = −0.373, p = 0.039). T2DM patients exhibited
aberrant long-range and short-range FCD patterns, which may suggest brain network
reorganization at the expense of losing the integration of long-range FCD to adapt to the
deficiency in energy supply. These changes may be associated with cognitive decline in
T2DM patients.

Keywords: type 2 diabetes mellitus, cognitive impairment, resting-state functional MRI, functional connectivity
density, functional connectivity
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is characterized by disordered
glucose metabolism and the number of affected individuals
increased rapidly from 415 million in 2015 to 425 million in
2017 according to the 8th edition of Diabetes Atlas published
by the International Diabetes Federation. A growing number of
publications have demonstrated that T2DM accelerates the speed
of cognitive decline which could be up to twice as fast as normal
aging (Koekkoek et al., 2015). However, the brain dysfunction
and cognitive impairment associated with T2DM have not been
fully investigated. As the brain has high energy consumption, it is
vulnerable to the fluctuations in plasma glucose levels caused by
T2DM. Therefore, a better understanding of the characteristics
of brain dysfunction on the background of impaired energy
homeostasis may enable early diagnosis and treatment.

Type 2 diabetes mellitus is associated with reduced glucose
metabolism in the brain, which may result in putative
reorganization of long- and short-range functional connections.
The development of normal brain functional networks is
characterized by a “local to distant” organization (Fair et al.,
2009). Brain regions with short-range functional connections
are often specialized for modular information processing and
operate with lower time- and energy-cost. By contrast, long-range
functional connections allow integrative information processing
across distributed brain systems with higher time- and energy-
cost (Sepulcre et al., 2010). The balance of long- and short-
range functional connections is critical for the efficiency of
cortical information communication and energy-cost (Sepulcre
et al., 2010). However, T2DM patients are reported to have
reduced brain glucose metabolism which is correlated with
poor performance on executive and memory function tests
(Garcia-Casares et al., 2014). Thus, impaired glucose homeostasis
may disrupt the established balance of long- and short-range
functional connections for the economical trade-off between cost
and efficiency in T2DM patients (Bullmore and Sporns, 2012). As
the alterations in glucose metabolism are coupled with alterations
in blood-oxygen level-dependent signals, functional magnetic
resonance imaging (fMRI) is advantageous in mapping the
reorganization of long- and short-range functional connections
(Sepulcre et al., 2010; Magistretti and Allaman, 2015).

Resting-state fMRI has been widely used to determine the
aberrations in brain function in T2DM patients. On the one
hand, T2DM patients exhibited altered amplitude of low frequency
fluctuation in the middle temporal gyrus, lingual gyrus, postcentral
gyrus and occipital lobe in functional segregation studies (Xia
et al., 2013; Cui et al., 2014). On the other hand, T2DM patients
showed aberrant local synchronization in the lingual gyrus,
fusiform gyrus, and frontal lobe (Cui et al., 2014; Liu et al.,
2016) and disrupted functional connectivity anchoring in the
posterior cingulate cortex (Chen et al., 2014) or within the
default mode network, frontal parietal network and sensorimotor
network (Chen et al., 2015) in functional integration studies. As
an approach for functional integration, the analysis of long- and
short-range functional connections facilitates the investigation of
brain dysfunction in patients with schizophrenia (Guo et al., 2015),
minimal hepatic encephalopathy (Qi et al., 2015), non-alcoholic

cirrhosis after liver transplantation (Zhang et al., 2015a), end-
stage renal disease (Zhang et al., 2015b) and conduct disorder
(Lu et al., 2017). Previous studies have also suggested that T2DM
patients may suffer from cognition decline linked to alterations
in long- and short-range brain functional synchronization and
functional connectivity strength (Liu et al., 2016, 2017). In addition
to the aforementioned neuroimaging indicators, the functional
connectivity density (FCD), which quantifies the number of
functional connections between a given voxel and the remaining
voxels in the entire brain, is a graph theoretical indicator to analyze
the complex brain networks (Tomasi et al., 2016). However, a map
of the long- and short-range functional connections assessed using
FCD remains to be delineated in T2DM patients. Furthermore,
the similar definitions of FCD and degree of centrality suggest
that the brain regions with aberrant FCD may play pivotal roles in
global information communication (Zuo et al., 2012). Therefore,
they can be considered as seed regions to calculate their functional
connectivity with the whole brain as in a previous study (Cui et al.,
2016) and the pattern of the changed FCD can be characterized.

In the present study, we assume that the cognitive impairment
in T2DM patients may be associated with disruption of
the balance between long- and short-range FCD. We first
investigated the changed long- and short-range FCD pattern in
T2DM patients, and then calculated the functional connectivity
of the identified brain regions with the whole brain. Finally,
we examined the relationships between these neuroimaging
changes and cognition decline. This study may contribute to
understanding the reorganization of brain functional architecture
accompanying cognitive decline in T2DM patients.

MATERIALS AND METHODS

Subjects
This study recruited 32 T2DM patients from inpatients and
communities and 32 healthy controls (HC) from communities
during December 2013 and November 2016. The T2DM
group and HC group were matched for age, sex, education,
and body mass index (BMI). T2DM diagnosis conformed
to the criteria published by the World Health Organization
in 1999 (Alberti and Zimmet, 1998). Subjects in the two
groups were included according to the following criteria: (1)
45 years ≤ age ≤ 70 years; (2) education ≥6 years; (3) right-
handedness; (4) normal general cognitive level defined by a
Mini-Mental State Examination (MMSE) score ≥25; (5) T2DM
duration of patients at least 1 year. Key exclusion criteria for
both groups were as follows: (1) brain structural abnormalities
including trauma, stroke, tumor, or white matter changes with
a rating score ≥2 (Wahlund et al., 2001); (2) neurological
or psychiatric diseases including major depression, dementia,
schizophrenia and epilepsy; (3) pregnancy, extremity disability,
and the loss of audition or vision; (4) contraindications for
MRI examination. T2DM patients with diabetic foot, retinopathy,
nephropathy and other complications were also excluded. The
Medical Research Ethics Committee of the Southwest Hospital
(Chongqing, China) approved the study protocol in accordance
with the recommendations of the declaration of Helsinki for
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investigation of human participants. All participants provided
written informed consent after being informed of the study
details.

Clinical Evaluation
All subjects underwent clinical evaluation with a standardized
protocol. Demographic information included age, sex and
education. The physical data included handedness, height,
weight, and resting arm arterial blood pressure. BMI was
calculated according to height and weight [(weight in kg)/(height
in m)2]. Medical history and current medications were also
recorded. The dates of T2DM diagnoses were recorded to
compute the disease duration. After an overnight abrosia,
venous blood samples were collected by venipuncture for
the evaluation of biometric measurements, including glucose
parameters, lipid parameters, renal function parameters, thyroid
function parameters, and homocysteine (listed in Table 1).
Fasting insulin and plasma glucose were used to calculate the
updated homeostasis model assessment of insulin resistance
(HOMA2-IR) index with HOMA2 Calculator v2.2.3 software1.

Cognitive Assessment
Cognitive assessments were performed before MRI scanning.
A battery of neuropsychological tests in a fixed order was
used to assess the general cognitive level and major cognitive
domains. The general cognitive level was evaluated by the
MMSE and Montreal Cognitive Assessment (MoCA) tests. The
executive function and psychomotor speed were evaluated by
the Trail Making Test (TMT, including parts A and B) (Bowie
and Harvey, 2006). Mental flexibility was evaluated by the
Verbal Fluency Test (VFT) (Diamond, 2013). Working memory
was evaluated with the Digital Span Test (DST, including
forward and backward) (Diamond, 2013). Episodic memory
was evaluated by the Auditory Verbal Learning Test (AVLT,
including immediate recall, short-term delayed recall, long-
term delayed recall, long-term delayed recognition and total
score) (Zhao et al., 2015). In addition, depression was evaluated
with the Hamilton Depression Rating Scale-24 item (HAMD)
to exclude cases with major depression. The test battery was
administered by a trained neuropsychologist blinded to the
grouping situation. It took approximately 60 min/subject to
complete all the tests.

MRI Scan Protocol
MRI scanning was carried out with a 3.0-T MR scanner (Trio,
Siemens Medical, Erlangen, Germany) using a 12-channel head
coil on the same day as the clinical evaluation and cognitive
assessment. Subjects were awake with their eyes closed and
were relaxed during the scan. They were scanned in the
supine and head-first position, with earplugs to alleviate the
noise and cushions to restrict head motion. The T2-weighted
images and fluid attenuated inversion recovery (FLAIR)
images were acquired for radiological evaluation. The scan
parameters were as follows: T1-weighted structural images
were acquired using volumetric 3D magnetization prepared

1http://www.dtu.ox.ac.uk/homacalculator/

TABLE 1 | Demographic and clinical data of all included subjects.

T2DM HC p-value

Age (years) 58.09 ± 7.26 56.88 ± 5.01 0.437

Sex (male:female) 19:13 18:14 0.800a

Education (years) 9.00 (9.00, 12.00) 12.00 (9.00, 12.00) 0.122b

T2DM duration
(years)

10.00 (4.00, 12.50) – –

BMI (kg/m2) 24.40 ± 2.73 23.89 ± 4.40 0.585

Systolic blood
pressure (mmHg)

131.91 ± 17.23 133.72 ± 17.43 0.677

Diastolic blood
pressure (mmHg)

82.00 ± 8.99 79.66 ± 10.06 0.330

HbA1c (%) 8.30 ± 1.88 5.62 ± 0.39 <0.001

HbA1c (mmol/mol) 67.25 ± 20.59 38.00 ± 4.28 <0.001

Fasting plasma
glucose (mmol/L)

7.59 ± 2.82 5.25 ± 0.45 <0.001

Fasting insulin (mIU/L) 14.86 (9.66, 25.02) 12.85 (9.04, 17.35) 0.272b

Fasting C-peptide
(ng/ml)

1.89 ± 1.08 2.34 ± 1.04 0.106

HOMA2-IR 0.29 (0.20, 0.53) 0.25 (0.17, 0.33) 0.124b

Total cholesterol
(mmol/L)

5.01 ± 1.13 5.02 ± 0.98 0.955

Triglyceride (mmol/L) 1.64 (1.27, 3.00) 1.31 (0.89, 1.56) 0.018b

HDL cholesterol
(mmol/L)

1.04 ± 0.23 1.39 ± 0.33 <0.001

LDL cholesterol
(mmol/L)

3.21 ± 0.92 3.22 ± 0.75 0.944

Homocysteine
(µmol/L)

16.01 ± 10.85 10.80 ± 4.47 0.260

Blood urea nitrogen
(mmol/L)

6.08 ± 2.36 5.67 ± 1.23 0.392

Serum creatine
(µmol/L)

73.38 ± 28.57 78.31 ± 16.20 0.399

Cystatin C (mg/L) 0.71 (0.63, 0.88) 0.79 (0.69, 0.86) 0.151b

Uric acid (µmol/L) 302.38 ± 76.77 325.88 ± 73.25 0.215

Free triiodothyronine,
FT3 (pmol/L)

4.22 ± 0.86 5.05 ± 0.57 <0.001

Free thyroxine, FT4
(pmol/L)

15.09 ± 2.03 16.38 ± 2.02 0.014

Thyroid stimulating
hormone, TSH
(mIU/L)

1.96 ± 1.12 2.33 ± 1.42 0.251

p < 0.05 indicates statistically significant. aThe Chi-square test for dichotomous
data. bThe Mann-Whitney U-test for non-normally distributed data [median (QR)].
Two sample t-test for normally distributed continuous data (means ± SD).

by rapid-acquisition gradient-echo (MP-RAGE) sequence for
radiological evaluation and the anatomical segmentation and
spatial normalization in preprocessing. The scan parameters
were as follows: TR = 1900 ms, TE = 2.52 ms, FA = 9◦,
FOV = 256 × 256 mm2, slices = 176, thickness = 1 mm,
matrix = 256 × 256 and voxel size = 1 × 1 × 1 mm3,
sagittally scanned and lasted 4 min and 26 s. Resting-
state functional images were collected using an echo
planar imaging (EPI) sequence for functional processing:
TR = 2000 ms, TE = 30 ms, FA = 90◦, FOV = 192 × 192 mm2,
slices = 36, thickness = 3 mm, matrix = 64 × 64 and voxel
size = 3 × 3 × 3 mm3, 240 volumes, transversely scanned and
lasted 8 min and 8 s.
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MRI Data Processing
Two radiologists with at least 5-year work experience reviewed
the T1-weighted, T2-weighted and FLAIR images to identify
brain structural abnormalities and to rate white matter changes.
None of the subjects met the exclusion criteria. The structural
and functional images underwent preprocessing with a standard
protocol in Graph Theoretical Network Analysis Toolbox version
1.2.1 (GRETNA V1.2.1) (Wang et al., 2015) as follows: (1)
The DICOM data were transformed into NIfTI format. (2)
The first 10 volumes of individual functional images were then
removed for magnetization equilibrium. (3) Next, slice timing
was performed to correct the temporal offsets between slices.
(4) Realignment was performed to make each part of the brain
across volumes in the same position. (5) Spatial normalization
was performed to warp individual functional images to standard
Montreal Neurological Institute (MNI) space derived from T1
images segmentation. (6) Detrend was applied to reduce the
systematic drift in the signal. (7) The data were bandpass filtered
(0.01–0.08 Hz) to reduce the effects of low frequency drift
and physiological noises at high-frequency band. (8) Covariate
regression was applied to remove the confounding variables,
including head motion profiles, the cerebrospinal fluid signal, the
white matter signals and the global signal.

Voxel-based degree analysis was conducted within a gray
matter mask on the basis of preprocessed images. The
connectional threshold of FCD was set at 0.3 (Tomasi et al.,
2016). It has been proven that 75 mm approximately reflects
the true physical distance of connections between regions (He
et al., 2007). Therefore, the sum of functional connectivity
between a given voxel and other voxels beyond the sphere
radius of 75 mm were defined as long-range FCD, whereas
the sum of functional connectivity between a given voxel and
other voxels within the sphere radius of 75 mm were defined
as short-range FCD (Guo et al., 2015). Taking the sign into
consideration, the FCD can be classified into four categories:
long-range positive/negative FCD (lpFCD and lnFCD) and
short-range positive/negative FCD (spFCD and snFCD). Spatial
smoothing with 4 mm full-width half-maximum was used to
improve the signal-to-noise ratio of FCD maps (Tomasi and
Volkow, 2010). The brain regions with aberrant FCD obtained
from the subsequent two-sample t-test were saved as seeds for the
functional connectivity calculation. The functional connectivity
calculation was performed with Resting-State fMRI Data Analysis
Toolkit version 1.8 (REST V1.8) software on the basis of
preprocessed images. To facilitate the statistical analyses, Fisher
transformation (r-to-z transformation) was applied to normalize
the distribution of Pearson correlation coefficient values of
functional connectivity.

Statistical Analyses
Numeric data analysis was conducted with SPSS software
(version 20.0; IBM Corp., Armonk, NY, United States). Firstly,
the Kolmogorov-Smirnov test was applied to confirm normal
distribution of the data. According to the results, the two-sample
t-test was applied to normally distributed continuous data,
whereas the Mann-Whitney U-test was applied to non-normally

distributed data comparisons between the T2DM group and HC
group. The inter-group comparison of dichotomous data (sex)
was performed using the Chi-square test. Values of p < 0.05 were
considered statistically significant.

Functional connectivity density and functional connectivity
maps analyses were conducted with the Statistical Analysis
module of Data Processing & Analysis of Brain Imaging version
2.3 (DPABI V2.3). Firstly, the one-sample t-test was performed
to confirm the FCD and functional connectivity distribution
pattern with the base of “0” in each group. The two-sample
t-test was then performed to compare the differences in FCD
between the T2DM group and HC group, with age, sex,
education, BMI, Power framewise displacement for head motion
(Power et al., 2013) and the blood biometric measurements that
showed significant differences (with the exception of glycemic
measurements) entered as covariates. The resulting maps were
multiple comparisons corrected with the Gaussian random-
field theory (voxel p = 0.01, cluster p < 0.05). Z scores of
T2DM patients were extracted from significantly changed brain
regions according to the inter-group FCD comparison. Finally,
Pearson correlation analyses were conducted to investigate
the relationships among the changed FCD, neuropsychological
test scores and clinical data after adjustment for age, sex,
education, BMI and the blood biometric measurements that
showed significant differences (with the exception of glycemic
measurements) using SPSS software.

RESULTS

Demographic and Clinical Data
Comparisons
The T2DM patients were not significantly different to the HC
group in terms of age, sex, education, BMI, blood pressure,
fasting insulin, fasting C-peptide, HOMA2-IR, total cholesterol,
low-density lipoprotein (LDL) cholesterol, homocysteine, blood
urea nitrogen, serum creatine, cystatin C, uric acid, and thyroid
stimulating hormone (p > 0.05). As expected, the levels of
HbA1c and fasting plasma glucose were elevated in T2DM
patients. In addition, higher triglyceride and lower high-density
lipoprotein (HDL) cholesterol, free triiodothyronine (FT3) and
free thyroxine (FT4) levels were observed in T2DM patients
(p < 0.05, Table 1).

Neuropsychological Tests Comparisons
The T2DM patients scored lower in the MMSE, MoCA, DST
forward, and AVLT (including short-term delayed recall, long-
term delayed recall, long-term delayed recognition and total
score) tests, and took longer to finish the TMT-B test (p < 0.05).
There were no significant inter-group differences in the other
neuropsychological tests (Table 2).

FCD and Functional Connectivity
Analyses
The one-sample t-test suggested that both the HC and T2DM
groups exhibited higher long-range FCD than the mean brain
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TABLE 2 | Comparisons of neuropsychological test performance between the
T2DM group and HC group.

T2DM HC p-value

General cognition

MMSE 28.00 (27.00, 29.00) 29.00 (28.00, 29.75) 0.044a

MoCA 22.88 ± 2.64 24.78 ± 2.35 0.003

Executive function
and psychomotor
speed

TMT-A 76.31 ± 45.42 61.31 ± 35.33 0.145

TMT-B 173.53 ± 85.23 132.59 ± 61.58 0.033

Mental flexibility

VFT 39.75 ± 6.49 42.63 ± 6.30 0.077

Working memory

DST forward 8.84 ± 1.25 9.63 ± 1.66 0.038

DST backward 4.00 (3.00, 4.00) 4.00 (3.00, 4.00) 0.657a

Episodic memory

AVLT immediate recall 6.50 ± 1.51 7.18 ± 1.23 0.052

AVLT short-term
delayed recall

6.41 ± 3.20 8.13 ± 2.14 0.014

AVLT long-term
delayed recall

4.72 ± 3.59 7.00 ± 2.09 0.003

AVLT long-term
delayed recognition

10.13 ± 3.60 11.72 ± 2.22 0.038

AVLT total score 27.75 ± 9.56 34.03 ± 6.11 0.003

p < 0.05 indicates statistically significant. aThe Mann-Whitney U-test for non-
normally distributed data [median (QR)]. Two sample t-test for normally distributed
continuous data (means ± SD).

level primarily in the bilateral posterior cingulate gyri and
precuneus, and lower long-range FCD than the mean brain level
primarily in the bilateral temporal lobes and frontal lobes; higher
short-range FCD primarily in the bilateral calcarine, angular
gyri, and frontal lobes, and lower short-range FCD primarily
in the bilateral middle cingulate gyri and temporal lobes were
also observed (Figure 1). Taking the identified brain areas as
seed regions, they showed positive and negative correlations with
comprehensive areas of the rest of the brain. That is, the seed
regions exhibited functional connectivity throughout the brain
(Figure 2).

Compared with the HC group, T2DM patients showed
significantly decreased long-range FCD including lnFCD in the
left lingual gyrus and lpFCD in the left calcarine extending to
the left lingual gyrus after multiple comparisons correction. In
addition, T2DM patients showed increased short-range FCD
including snFCD in the medial part of the left superior frontal
gyrus and spFCD in the right angular gyrus after multiple
comparisons correction (Table 3 and Figure 3). T2DM patients
also showed aberrant functional connectivity anchoring in these
identified brain regions. However, these results did not survive
multiple comparisons correction.

Correlation Analyses
In T2DM patients, the z scores of FCD in the medial part of
the left superior frontal gyrus were negatively correlated with the
time cost of the TMT-B test (r = −0.422, p = 0.018; Figure 4A).
In addition, the z scores of FCD in the right angular gyrus were

negatively correlated with the scores of AVLT long-term delayed
recall (r = −0.356, p = 0.049; Figure 4B) and DST forward
(r = −0.373, p = 0.039; Figure 4C). No correlations were observed
among the aberrant neuroimaging indicators, blood biometric
measurements and other neuropsychological tests.

DISCUSSION

Previous research proposed that brain networks may negotiate a
trade-off between the energy-cost and information propagation
efficiency (Bullmore and Sporns, 2012). As the disturbance in
glucose metabolism may affect the brain energy homeostasis
in T2DM, the present study investigated the disruption in the
balance between the long- and short-range FCD. We found
that T2DM patients showed decreased long-range FCD in the
left calcarine and lingual gyrus and increased short-range FCD
in the left superior frontal gyrus and right angular gyrus.
These changes were significantly associated with performance on
neuropsychological tests in T2DM patients. Our findings may
update the insight into T2DM-related brain dysfunction.

The brain regions which exhibited aberrant FCD were
reported to be abnormal in previous studies, which suggest that
they are susceptible to T2DM. A meta-analysis demonstrated
that the superior frontal gyrus and lingual gyrus are robust
brain regions with altered resting-state brain activity (Xia et al.,
2017). The frontal lobe is involved in executive function and
attention that underlies advanced cognition (Xia et al., 2017).
Together with occipital regions, the lingual gyrus was considered
a brain region involved in vision-related information processing
and visual memory encoding (Cui et al., 2016). The lingual
gyrus was reported to have a reduced degree of centrality
in T2DM patients (Cui et al., 2016), which was similar to
that found in the present study. Our previous study also
demonstrated aberrant functional connectivity anchoring in
the angular gyrus that may serve as a neuroimaging marker
for T2DM-related cognitive decline (Liu et al., 2016). With
regard to the calcarine, decreased regional homogeneity and
amplitude of low frequency fluctuations were observed in T2DM
patients, which were associated with cognitive performance
(Cui et al., 2014; Peng et al., 2016). In addition to the
aforementioned studies, the present study also identified these
abnormal brain regions with high centrality due to the similar
definition of FCD and degree of centrality (Zuo et al., 2012).
According to the computational modeling of neural dynamics,
the cerebral cortex with a high degree of centrality plays a
pivotal role in global information integration and intermodular
communication, which are vulnerable to attack by disease
(Bullmore and Sporns, 2012).

The disruption in the balance between long- and short-range
FCD may suggest a shift from the costly metabolic connection
to an economic connection. Previous studies have reported
alterations in long- and short-range functional connectivity
strength (Liu et al., 2017), and local and remote brain activity
synchronization in T2DM patients (Liu et al., 2016). The present
study further suggests that T2DM patients have more short-
range connections and fewer long-range connections. There
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FIGURE 1 | The distribution of FCD in the T2DM group and HC group. Color scale denotes the t-value. L, left; R, right.

FIGURE 2 | The distribution of functional connectivity of each seed region in the T2DM group and HC group. Color scale denotes the t-value. L, left; R, right.

TABLE 3 | Brain regions with significant differences in FCD between the T2DM group and HC group.

Brodmann Peak MNI coordinates T-values Voxels Cluster size

Area X Y Z (mm3)

lpFCD Left Calcarine/Lingual gyrus 17/18 −3 −90 0 −4.0559 36 972

lnFCD Left Lingual gyrus 18 −9 −78 −6 −4.122 41 1107

spFCD Right Angular gyrus 39/40 54 −51 33 3.8163 44 1188

snFCD Left Superior frontal gyrus, medial 8 −3 30 51 4.4059 39 1053

MNI, Montreal Neurological Institute; Gaussian random-field theory corrected (voxel p = 0.01, cluster p < 0.05).

is evidence that the energy-cost of a node increases with the
number of connections, and that the energy-cost of a connection
increases with length (Sepulcre et al., 2010; Bullmore and Sporns,
2012). Moreover, it was proposed that brain regions with high
energy-cost such as hubs and long-distance connections may
be sensitive to metabolic distress, and they may reconfigure to
achieve variable cognitive demands via the negotiation between
connection cost and topological properties of the networks
(Kitzbichler et al., 2011; Bullmore and Sporns, 2012). This

process of negotiating continues across milliseconds to decades
(Bullmore and Sporns, 2012). As with the reduced proportion
of long connections in Alzheimer’s disease (Yao et al., 2010), the
decreased long-range FCD in T2DM patients may be associated
with diminished integrative capacity. We can therefore speculate
that the high-cost components in T2DM patients including
hubs with high-degree and long-distance connections may be
selectively attacked. Furthermore, according to recent findings,
the decreased long-range FCD may be prejudicial to the diversity
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FIGURE 3 | FCD maps of inter-group comparisons. (A) The distribution of brain regions with changed FCD in the T2DM group. (B) The comparison of FCD z scores
between the T2DM group and HC group. Gaussian random-field theory corrected (voxel p = 0.01, cluster p < 0.05). Color scale denotes the t-value. Error bars
define the standard error of the mean. L, left; R, right.

FIGURE 4 | The relationships between changed FCD and aberrant neuropsychological tests in the T2DM group. (A) Z scores of FCD in the medial part of the left
superior frontal gyrus vs. scores of the TMT-B test. (B) Z scores of FCD in the right angular gyrus vs. scores of the AVLT long-term delayed recall. (C) Z scores of
FCD in the right angular gyrus vs. scores of the DST forward.

of inputs and outputs in brain areas (Betzel and Bassett,
2018).

Our findings also suggest that the reconfiguration of long-
and short-range FCD was associated with the neurocognitive
outcomes in T2DM patients. On the one hand, T2DM patients
with higher z scores in the right angular gyrus scored lower
in the AVLT long-term delayed recall and DST forward tests.
This situation is partly similar to patients with autism spectrum
disorders whose short-range functional overconnectivity was
reported to be positively associated with symptom severity
(Keown et al., 2013). The brain regions with preferential short-
range connections may be characterized by low energy-cost and
high clustering coefficients, but a long path length which have
low information propagation efficiency through the network
(Sepulcre et al., 2010). On the other hand, the short-range
functional overconnectivity of the medial part of the left superior
frontal gyrus may play a compensatory role in the better
performance of T2DM patients in the TMT-B test. The brain
network of children was found to communicate more efficiently
due to more short–range interactions and the small world

property of the brain network was comparable to that of adults
(Fair et al., 2009). A possible explanation for this might be that
the reconfigured brain network shares the characteristics of those
in children to maintain normal cognitive function. However,
the discrepant neurocognitive outcomes of increased short-range
FCD require further clarification.

There are several notable limitations in this study. First, this
was a cross-sectional study; therefore, the progress of supposed
neural compensation cannot be captured and interpretation of
the findings should be taken with caution, especially in terms
of causality. Second, the functional connections were calculated
on the assumption that the time series of distinct brain regions
is constant over time. However, this is not ideal for reflecting
the dynamic nature of brain activity (Hutchison et al., 2013).
Third, the relatively small sample of subjects may restrict the
statistical power. Longitudinal studies with a larger sample size to
investigate the dynamic connectome may better characterize the
diabetic brain and update the neuroimaging evidence of cognitive
decline in T2DM patients. Moreover, we conducted global signal
regression in the present study to denoise the artifactual fMRI
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signal, however, it may result in spurious anticorrelations and
the global signal fluctuations could reflect true neural variance
(Power et al., 2017). Strategies of isolating and removing global
artifactual variance while preserving potential global variance
may end the controversy on global signal regression in the future.

CONCLUSION

In the present study, long- and short-range FCD were used to
determine distance information in the brain network of T2DM
patients. We found that T2DM patients exhibited increased
short-range FCD and decreased long-range FCD which may
suggest a trade-off between energy-cost and network efficiency
at the expense of losing cognitive function. These findings may
improve our understanding and provide potential neuroimaging
markers for T2DM brain dysfunction.
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An accurate and reliable brain partition atlas is vital to quantitatively investigate the
structural and functional abnormalities in mild cognitive impairment (MCI), generally
considered to be a prodromal phase of Alzheimer’s disease. In this paper, we
proposed an automated structural classification method to identify MCI from healthy
controls (HC) and investigated whether the classification performance was dependent
on the brain parcellation schemes, including Automated Anatomical Labeling (AAL-
90) atlas, Brainnetome (BN-246) atlas, and AAL-1024 atlas. In detail, structural
magnetic resonance imaging (sMRI) data of 69 MCI patients and 63 HC matched
well on gender, age, and education level were collected and analyzed with voxel-
based morphometry method first, then the volume features of every region of interest
(ROI) belonging to the above-mentioned three atlases were calculated and compared
between MCI and HC groups, respectively. At last, the abnormal volume features
were selected as the classification features for a proposed support vector machine
based identification method. After the leave-one-out cross-validation to estimate the
classification performance, our results reported accuracies of 83, 92, and 89% with
AAL-90, BN-246, and AAL-1024 atlas, respectively, suggesting that future studies
should pay more attention to the selection of brain partition schemes in the atlas-based
studies. Furthermore, the consistent atrophic brain regions among three atlases were
predominately located at bilateral hippocampus, bilateral parahippocampal, bilateral
amygdala, bilateral cingulate gyrus, left angular gyrus, right superior frontal gyrus, right
middle frontal gyrus, left inferior frontal gyrus, and left precentral gyrus.

Keywords: mild cognitive impairment, brain parcellation, automated anatomical labeling atlas, brainnetome atlas,
voxel-based morphometry

INTRODUCTION

Mild cognitive impairment (MCI), which represents the transition state between normal aging and
the early changes related to Alzheimer’s disease (AD) (Han et al., 2011; Wang et al., 2015; Khazaee
et al., 2016, 2017), is characterized by intellectual and cognitive deficits, memory complaints, and
behavioral disturbances (Zhang et al., 2012; Beheshti et al., 2017), and generally regarded as a
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prodromal phase of AD (Long et al., 2018). Overall, the
prevalence of MCI in the elderly is 19%, and nearly half of
them will evolve to AD within 3 to 5 years (Long et al.,
2016). Increasing attention from neurologists, neuroscientists,
and neuroradiologists has been paid to MCI due that early
intervention before irreversible brain tissue damage is crucial
for efficient AD treatments (Davatzikos et al., 2008a). Therefore,
accurate MCI identification methodologies that could serve as
non-invasive surrogates for these pathologic examinations are
desperately needed, which may provide additional insights into
the clinical diagnosis of MCI.

Structural magnetic resonance imaging (sMRI) has been
prevalently utilized to characterize differences in shape and
neuroanatomical configuration in MCI and AD because it could
provide visualization of the macroscopic tissue atrophy caused
by the cellular changes underlying MCI and AD (Desikan
et al., 2009). By analyzing the sMRI data with voxel-based
morphometry (VBM) method, which is utilized to assess the
structure of the whole brain with voxel-by-voxel comparisons
between groups in an anatomically unbiased way (Ashburner
and Friston, 2000), many prior studies found that the atrophic
brain regions mainly lay in the medial temporal lobe containing
hippocampus, parahippocampal, and amygdala in MCI and AD
(Baron et al., 2001; Hirata et al., 2005). In addition, some studies
employed sMRI data to identify MCI or AD from healthy controls
(HC) by extracting structural characteristics such as voxel-wise
volume (Fan et al., 2007; Davatzikos et al., 2008a,b; Klöppel
et al., 2008; Magnin et al., 2009; Beheshti and Demirel, 2016)
and vertex-based cortical thickness (Lerch et al., 2008; Eskildsen
et al., 2013; Dimitriadis et al., 2018), and the classifying accuracies
varied largely from 58% to 100%, which indicated that the
discriminative diagnoses of MCI and AD with sMRI data need
to be continued.

From the previous voxel-based MCI or AD discrimination
studies, these studies could be roughly classified into two
categories, data-driven adaptive characteristic extraction
methods (Misra et al., 2009; Davatzikos et al., 2011) and
atlas-based partition characteristic extraction methods with a
predefined brain atlas (Cuingnet et al., 2011; Cho et al., 2012;
Liu et al., 2015). The former method was not easy to interpret
anatomically because each region of interest (ROI) obtained
from the input data may involve in many anatomical regions
simultaneously. In contrast, the latter could better extract the
classification features with a good anatomical interpretability.
At present, the automated anatomical labeling (AAL-90) atlas
is the most popular atlas, which has been widely employed
to identify kinds of psychological disorders in recent years
(Dai et al., 2012; Wee et al., 2012; Zeng et al., 2012). Besides,
some other atlases were also proposed, such as AAL-1024 atlas
(Zhang et al., 2011; Wu et al., 2013) and the novel connectional
architecture based brainnetome (BN-246) atlas (Fan et al., 2016).
Different brain atlases lead to different partitions in terms of the
number of regions and the size and location of these regions in
the brain (Asim et al., 2018). Till now, few studies compared
the classification performance with different atlases (Mesrob
et al., 2009; Ota et al., 2014, 2015; Asim et al., 2018), and no
study has utilized the BN-246 atlas to identify MCI from HC

subjects with structural data. Moreover, it remains unknown
whether BN-246 atlas would perform better compared with the
two above-mentioned atlases in identifying MCI patients from
HC subjects. Also, it is intriguing whether better accuracy could
be acquired by using the shared features extracted from three
atlases.

In this paper, we proposed an automated classification method
to identify MCI from HC and aimed to investigate whether
the classification performance was dependent upon the brain
parcellation schemes. To accomplish this goal, we first analyzed
the sMRI data with VBM analysis, and then the volume
features of every ROI in the above-mentioned three atlases
were calculated and compared between MCI and HC groups,
respectively. At last, these volumes of abnormal ROIs and the
overlapping brain regions in three atlases were adopted as the
classification features for the proposed support vector machine
(SVM) based classification algorithm, respectively, and the leave-
one-out cross-validation (LOOCV) was used to estimate the
classification performance.

MATERIALS AND METHODS

Participants
Sixty-nine MCI patients and 63 HC participated in this study,
and all participants have not taken any medication that may
influence cognition function. All MCI patients were diagnosed
by two experienced neurologists, and the detailed inclusion
criteria for MCI patients included: (1) memory complaint,
confirmed by patient-self or family members; (2) objective
memory impairment, adjusted for education and age; (3) normal
or near normal activities of daily living; (4) normal or near-
normal performance on cognitive function; (5) clinical dementia
rating (CDR) score equals 0.5; (6) without dementia according to
DSM-IV (Diagnostic and Statistical Manual of Mental Disorders,
4th edition, revised). The 63 HC matched well with MCI patients
on gender, age, and education level, and the detailed inclusion
criteria for HC included: (1) no nervous system diseases that
could cause cognitive function impairment, such as Parkinson’s
disease, depression, encephalitis, and brain tumors; (2) no
history of psychosis or congenital mental growth retardation;
(3) no medication conditions that may interfere with cognitive
performance; (4) no visible vascular lesions on sMRI; (5) no
history of stroke or dependence on alcohol; (6) no other systemic
diseases that cause cognitive impairment, such as syphilis, severe
anemia, and HIV. All participants underwent a standardized
clinical assessment protocol including mini-mental state exam
(MMSE), CDR, and Auditory Verbal Learning Test. Written
informed consent forms were obtained from all participants, and
this study was approved by the medical research ethics committee
of Nanfang Hospital affiliated to Southern Medical University.
The detailed demographics and clinical characteristics of all
participants were presented in Table 1.

Data Acquisition
All participants were scanned on a 3.0-Tesla Siemens scanner
with 8-channel radio frequency coil at Nangfang hospital.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2018 | Volume 12 | Article 91681

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00916 December 4, 2018 Time: 8:44 # 3

Long et al. Atlas-Based MCI Identification With VBM

TABLE 1 | Participants’ demographic and clinical characteristics.

Characteristics MCI HC P-values

Gender (M/F) 69(30/39) 63(27/36) 0.94#

Age (years) 66.64 ± 7.70 64.22 ± 7.38 0.07∗

Education (years) 9.75 ± 4.37 9.35 ± 4.20 0.59∗

CDR 0.5 0 0∗

MMSE 23.03 ± 3.10 27.92 ± 1.58 < 0.001∗

AVLT-immediate recall 8.22 ± 2.54 13.48 ± 3.02 < 0.001∗

AVLT-delay recall 3.68 ± 3.16 10.27 ± 2.57 < 0.001∗

AVLT-recognition 6.49 ± 3.50 11.71 ± 2.32 < 0.001∗

Values are mean ± SD unless the SD was not calculated. M, male; F, female.
CDR, Clinical Dementia Rating scale; MMSE, Mini-Mental State Examination; AVLT,
Auditory Verbal Learning Test. #The P-value was obtained by Chi-square test. ∗The
P-values were obtained by two-sample two-tailed t-test.

Sagittal structural images for all participants were collected
using a magnetization prepared rapid gradient echo (MPRAGE)
three-dimensional T1-weighted sequence with the following
parameters: repetition time (TR) = 1900 ms, echo time
(TE) = 2.2 ms, flip angle (FA) = 9◦, inversion time (TI) = 900 ms,
matrix = 256 × 256, number of slices = 176, thickness = 1.0 mm,
and voxel size = 1× 1× 1 mm3.

Image Analysis
All sMRI data were performed with the VBM toolbox (VBM81)
implemented in SPM8 according to the following steps: First,
the T1-weighted images were checked by two experienced
neuroradiologists, and no obvious abnormalities or artifacts were
observed in all subjects. Then all images were segmented into gray
matter, white matter, and cerebrospinal fluid (CSF) by utilizing
the “New-segment” routine in SPM8. Next, all the segmented
images were normalized into the Montreal Neurological Institute
(MNI) space using the high-dimensional DARTEL normalization
algorithm, and the normalized images were modulated with
Jacobian matrices to preserve the actual amounts of a tissue class
within each voxel. At last, the modulated images were smoothed
with an 8-mm full width at half-maximum Gaussian kernel.

Feature Calculations and Selections
Under Three Atlases
The processed sMRI images were utilized to extract the volume
features for identifying MCI from HC with three different
brain parcellation atlases: AAL-90, BN-246, and AAL-1024 atlas
(Figure 1). The AAL-90 atlas, which was generated from 27 high
resolution T1-weighted images of a young male (Tzouriomazoyer
et al., 2002), partitions the whole cerebral cortex into 90 ROIs
(without cerebellum) (Dai et al., 2012; Khazaee et al., 2016).
The newly built BN-246 atlas, which was generated based on
anatomical connections, divides the whole cerebral cortex into
210 cortical and 36 subcortical subregions (Fan et al., 2016). The
AAL-1024 atlas, which is generated by subdividing each region
of the low resolution AAL-90 atlas into a set of subregions,
partitions the whole cerebral cortex into 1024 ROIs, and every

1http://dbm.neuro.uni-jena.de/vbm.html

FIGURE 1 | The three atlases including AAL-90 atlas, BN-246 atlas, and
AAL-1024 atlas.

ROI of AAL-1024 atlas has approximately identical size (Wu
et al., 2013).

According to the above-mentioned three different parcellation
schemes, the volume of each ROI was calculated for all subjects by
using the MATLAB program2, and the extracted volume features
of all subjects in three atlases were served as the candidate
features, respectively. Given some features were redundant and
irrelevant for classification; it is desirable to select out the
discriminative features to improve the classification performance.
Several previous studies have demonstrated that properly
reducing the number of features can not only improve the
performance of the classifier but also speed up the computation
(Dosenbach et al., 2010; Dai et al., 2012). Therefore, two-sample
two-tailed t-test was performed on the candidate features of
three atlases, respectively, to determine the significantly different
features (P < 0.01, uncorrected) as the classification features.
Besides, a Fisher score method was also used for feature selection
(Khazaee et al., 2016), and the selected features with this method
were consistent with two-sample two-tailed t-test. The Fisher
score criteria for each feature is defined as:

FS =
n1(m1 −m)2

+ n2(m2 −m)2

n1σ
2
1 + n2σ

2
1

(1)

Here n1 and n2 represent the number of samples on each group,
m1 and m2 represent the respective mean value of the feature,
m represents the mean value of the total features, and σ2

1 and σ2
1

represent the respective variances. At last, it is worth noting that
the feature selection process was only carried out on the training
set of each LOOCV fold, which can reduce the overfitting of the
classifier.

SVM-Based Classification Method
The SVM algorithm conceptually implements the idea that
the classification features are nonlinearly mapped into a high
dimensional feature space where a hyperplane with maximum
margin is created to separate the two-group data (Magnin
et al., 2009). The SVM algorithm has been widely utilized in
neuroimaging studies for its powerful classification performance
as well as the simplicity of its theory and implementation (Moradi
et al., 2015). In this paper, the LibSVM toolbox3 was used to
implement the classification.

The radial basis function (RBF) defined as (X, Xi)→
K(X, Xi) = eγ|X−Xi|

2
was adopted as the kernel function. Besides,

in order to improve the classification performance, a grid-search

2http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m
3http://www.csie.ntu.edu.tw/~cjlin/libsvm

Frontiers in Neuroscience | www.frontiersin.org 3 December 2018 | Volume 12 | Article 91682

http://dbm.neuro.uni-jena.de/vbm.html
http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00916 December 4, 2018 Time: 8:44 # 4

Long et al. Atlas-Based MCI Identification With VBM

FIGURE 2 | The flowchart of the proposed method for MCI discrimination.

method was utilized to optimize two parameters: γ, the width of
the RBF, and C, the penalty parameter of the error term, which
adjusts the importance of the separation error in the creation
of hyperplane. In this paper, the ranges of these two parameters
were γ = 2−8, 2−7.5, ..., 28 and C = 2−8, 2−7.5, ..., 28. In detail,
the optimal two parameters of γ and C were determined with an
internal LOOCV that was only performed on selected features
of the training data. The set of parameters obtained the best
performance in the internal LOOCV were utilized to train the
classification algorithm. In addition, by applying an external
LOOCV, the performance of classification method was estimated
with the accuracy, sensitivity and specificity, which represent
the correctly classified rate of all samples, MCI patients and
HC, respectively. It is worth noting that the feature selections
and parameter optimization process were only performed on the
training set, which could avoid the overfitting of the classifier.
In addition, the flowchart of the proposed method for MCI
discrimination was shown in Figure 2.

RESULTS

Between-Group Differences in Gray
Matter Volumes
Figure 3 showed the ROIs with reliable and discriminative
powers during classification process, namely, the features
retained more than 125 (132 × 95%, 132 is the total number
of cross validation) times in the whole LOOCV process were
displayed in the brain mappings. The overlapping abnormal brain
regions in three atlases were predominantly located at bilateral
hippocampus, bilateral parahippocampal, bilateral amygdala,
bilateral cingulate gyrus, left angular gyrus, right superior frontal
gyrus, right middle frontal gyrus, left inferior frontal gyrus, and
left precentral gyrus. Besides, the Fisher score values of the
abnormal ROIs in these atlases were shown in Figure 4.

Classification Performances Under
Three Atlases
When adopting the AAL-90 atlas, a correct classification rate of
83%, a sensitivity of 85%, and a specificity of 81% were obtained.
When adopting the BN-246 atlas, a correct classification rate of
92%, a sensitivity of 90%, and a specificity of 94% were obtained.
When adopting the AAL-1024 atlas, a correct classification rate
of 89%, a sensitivity of 91%, and a specificity of 87% were

FIGURE 3 | The atrophic brain regions in three atlases, respectively. (A) The
abnormal brain regions in AAL-90; (B) the abnormal brain regions in BN-246;
(C) the abnormal brain regions in AAL-1024; (D) the overlapping abnormal
regions among atlases.

obtained. When using the volume features of the overlapping
abnormal brain regions in three atlases, an accuracy rate was 86%,
and sensitivity of 81%, and a specificity of 90% were obtained.
The detailed results were summarized in Table 2. Besides, four
receiver operating characteristics (ROC) curves were obtained
(Figure 5), and the areas under ROC curves (AUCs) with AAL-
90, BN-246, AAL-1024 atlas and the overlapping brain regions
were 0.89, 0.95 and 0.92, and 0.90, respectively.

DISCUSSION

This study focused on comparing the classification performance
of identifying MCI patients from HC subjects with VBM
under three widely used brain atlases, and found that
the performance varied in different brain atlases. The best
recognition performance was obtained by BN-246 atlas with an
accuracy of 92%, indicating a powerful discriminative ability for
MCI patients.

In this paper, a RBF kernel function that could deal with
the nonlinear relationship between features and labels was
adopted to improve the classification performance (Hsu et al.,
2003). The grid search method, which has a high learning
accuracy and could be implemented with parallel processing,
was utilized to optimize the two parameters of SVM, and
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FIGURE 4 | The Fisher score values of the discriminative features in AAL-90, BN-246, and AAL-1024, respectively (The number of the discriminative features in
AAL-1024 atlas was 93, and only the prior 50 features were displayed).

it could also improve the classification performance. Besides,
considering the feature selections and parameters optimization
process were only constrained on the training set of each
LOOCV fold, which could reduce the overfitting of the classifier.
Thus, the improved accuracies we obtained may be unlikely
the inflated accuracies due to overfitting. In addition, the total
90, 246, and 1024 features with parameters optimization were
also tested for classification, respectively, and the accuracies
without feature selection were all less than 70%, which were
significantly lower than that with feature selection. Besides,
when using the proposed method to identify MCI patients by
extracting the volume features of the overlapping abnormal
brain regions in three atlases, the accuracy was 86%. To our
best knowledge, it is the first time to classify MCI patients
from HC subjects by using the overlapping brain regions in

TABLE 2 | The classification performance of the proposed method on three
atlases.

Three atlases Accuracy Sensitivity Specificity

AAL-90 83% 85% 81%

BN-246 92% 90% 94%

AAL-1024 89% 91% 87%

The overlapping regions 86% 81% 90%

three different atlases. Furthermore, the linear kernel based
SVM method and the logistic regression classifier were also
applied to the same data to identify MCI patients, and the
former classifier achieved accuracies of 80%, 91%, and 87%
with AAL-90, BN-246, and AAL-1024 atlas, respectively, and
the latter one acquired accuracies of 70, 84, and 76% with
AAL-90, BN-246, and AAL-1024 atlas, respectively, suggesting
that the RBF kernel based SVM method performed better than
these two classifiers and the BN-246 atlas could persistently
provide more effective information in identifying MCI patients.
Moreover, to validate whether the between-group differences and
the performance were stable, the re-sampling based permutation
test was performed, which was similar with some previous
studies to testify the stability of the between-group differences
and classification performance (Magnin et al., 2009; Awate
et al., 2016; Awate et al., 2017). In detail, 75% random
selected subjects of each group were used to determine the
abnormal features and then to train the proposed classification
method, then the remaining 25% participants were utilized
to estimate the classification accuracy. The above-mentioned
processes were repeated 1000 times, and the final accuracies
were estimated with the mean of the 1000 re-samplings. The
probability of each feature selected in permutation test was
defined as the selected times of the feature in the whole
process divided by the re-sampling times, and the probability
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FIGURE 5 | Three ROC curves of the proposed MCI identification method with AAL-90, BN-246, AAL-1024 atlas, and the overlapping abnormal regions,
respectively.

mappings of these selected features were shown in Figure 6.
We found that the frequently selected regions in the whole
permutation test were consistent with our proposed method.
Besides, the accuracies distributions of the permutation test
in three atlases were shown in Figure 7, and the final
mean accuracies were 82.58, 92.52, and 87.60% with AAL-
90, BN-246, and AAL-1024 atlas, respectively, which again
demonstrated that our results were stable. At last, the atrophic
brain regions in MCI detected by VBM procedure in our
study were consistent with many previous VBM studies (Hirata
et al., 2005; Hämäläinen et al., 2007; Matsuda, 2013), including
hippocampus and parahippocampal, etc. The correspondence
indicated the validity of the MRI data and the method of VBM
analysis.

In our previous study (Jing et al., 2017), the AAL-90
and AAL-1024 atlas were utilized to make a comparison
in identifying major depressive disorder from HC using the
functional characteristic, and the AAL-1024 obtained better
performance than the AAL-90 atlas. In addition, considering
the newly built BN-246 atlas contains both functional and

FIGURE 6 | The probability mappings of the selected abnormal features in
permutation test with three different atlases.

structural connectivity information, thus these three atlases were
simultaneously selected in this paper. Through comparing the
classification results among them, we found that the BN-246
atlas obtained the best recognition rate than AAL-90 and AAL-
1024 atlas. The main reasons for resulting in a considerable
disparity in the classification performance may be attributed to
the differences between atlases. The AAL-1024 atlas is generated
from AAL-90 atlas, and therefore a comparison between BN-246
atlas and AAL-90 atlas is essential for the interpretation of the
differences in classification performance.

Brain atlases could be classified into two categories: single-
subject topological atlases and population-based probabilistic
atlases (Cabezas et al., 2011; Arslan et al., 2017). The AAL-
90 atlas is a single-subject atlas generated from a young
male (Tzouriomazoyer et al., 2002), whereas the BN-246 is a
probabilistic atlas based on 40 MRI data of healthy adults (Fan
et al., 2016). This difference might be the major factor resulting
in the discrepant classification performance. Namely, no single
brain could represent the population due to the neuroanatomical
variability across individuals (Devlin and Poldrack, 2007).
In addition, the AAL-90 atlas has been found with some other
problems such as anatomical variation and methodological
limitation. Regarding to the anatomical variation, the AAL-
90 atlas displays an atypical rightward asymmetry of planum
temporale (PT) that is a triangular structure located on the
superior temporal gyrus, and the PT that is involved in mediating
sensorimotor control processing has extensive connections to
other brain regions (Zheng, 2009). A previous study found
microanatomical changes in cortical minicolumn organization
of the association cortex in the PT in MCI and AD (Chance
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FIGURE 7 | The classification accuracies distributions of the permutation test with three different atlases.

et al., 2011), and another previous VBM study also found
the early atrophic changes in superior temporal gyrus in AD
(Karas et al., 2004). In terms of methodological limitation, the
AAL-90 atlas was originally intended to provide a standard
reference of anatomical location for functional neuroimaging
studies with low spatial resolution (Tzouriomazoyer et al.,
2002). However, the partition pattern of AAL-90 does not
match the cytoarchitectonic borders well in most cases due
that the sulcal and gyral patterns are extremely variable
(Amunts et al., 2007). Therefore, the single-subject AAL-90
atlas could not well represent the partition pattern of human
brain. Regarding to BN-246 atlas, this atlas partitioned the
human brain into distinct subregions based on local structural
connectivity architecture, namely, the BN-246 atlas is created
by identifying subregions that are maximally homogeneous
internally and maximally different from each other in terms
of their structural connections (Fan et al., 2016). To some
extent, the BN-246 atlas not only confirmed some differentiation
from early cytoarchitectonic mappings but also revealed many
anatomical subdivisions which were not described previously
(Fan et al., 2016). In addition, it is worth noting that although
BN-246 atlas showed better classification performance than AAL-
90 and AAL-1024 atlas, the BN-246 atlas might not be the
best choice, and future neuroimaging studies should pay more
attention to the choice of brain parcellation atlases in atlas-based
studies.

Another factor that may affect the recognition performance
is the number of ROIs in three atlases. Different numbers of
ROIs resulted in distinct feature vectors, and the variation in
topological patterns of feature vectors corresponded to diverse
hyperplanes in feature space, which naturally brought about the
discrepancies in the classification performance. In this paper, the
performance of AAL-1024 was better than AAL-90 atlas, which
may be attributed to the reason that the AAL-1024 atlas could
detect more fine abnormalities due to a more subtle parcellation
scheme compared to AAL-90 atlas. At last, we found that the
Fisher Score value of the volume features with BN-246 was
significantly bigger than that of AAL-90 and AAL-1024, which
complementarily supported the fact that the BN-246 atlas would
obtain the best classification performance in the identification
of MCI.

Two issues need to be addressed in this paper. First,
some other brain atlases exist in the area of neuroimaging
study nowadays, and these atlases could also be utilized to

investigate the brain abnormalities affected by atrophy in MCI
patients. Second, all the selected atlases in this study did not
include cerebellum which may provide some contribution for
discriminating MCI patients from HC, and future identification
studies could adopt some cerebellum-included atlases to identify
MCI patients.
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Emerging evidence has documented the abnormalities of primary brain functions in
major depressive disorder (MDD). The brainstem has shown to play an important
role in regulating basic functions of the human brain, but little is known about its
role in MDD, especially the roles of its subregions. To uncover this, the present
study adopted resting-state functional magnetic resonance imaging with fine-grained
brainstem atlas in 23 medication-free MDD patients and 34 matched healthy controls
(HC). The analysis revealed significantly increased functional connectivity of the medulla,
one of the brainstem subregions, with the inferior parietal cortex (IPC) in MDD
patients. A positive correlation was further identified between the increased medulla-IPC
functional connectivity and Hamilton anxiety scores. Functional characterization of the
medulla and IPC using a meta-analysis revealed that both regions primarily participated
in action execution and inhibition. Our findings suggest that increased medulla-IPC
functional connectivity may be related to over-activity or abnormal control of negative
emotions in MDD, which provides a new insight for the neurobiology of MDD.

Keywords: major depressive disorder, resting-state functional connectivity, brainstem, subregions, medulla,
inferior parietal cortex

INTRODUCTION

Major depressive disorder (MDD) is mainly characterized with sustained negative affect and
diminished positive affect. Neuroimaging studies, especially those using resting-state functional
magnetic resonance imaging (rs-fMRI), have revealed that MDD is a disease with aberrant
interactions of brain networks (Buchanan et al., 2014; Mulders et al., 2015; Smith, 2015; Wu et al.,
2016; Kang et al., 2017; Sun et al., 2018; Wang C. et al., 2018). Using resting-state functional
connectivity (RSFC) analyses, abnormalities in cortical networks including the default mode
network (DMN), central executive network (CEN), and salience network (SN) have been well
delineated (Mulders et al., 2015; Wang J. et al., 2018). Moreover, recent studies have demonstrated
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that the functional connectivities in frontostriatal and limbic
circuits could be effective indicators to subdivide MDD into four
biotypes, which in turn also serve as good predictors of treatment
response in MDD (Drysdale et al., 2017; Wager and Woo, 2017).
Although the high-order functional network abnormalities have
been well studied, basic functions related brain areas including
the brainstem in MDD remain largely unknown.

The brainstem, together with limbic and cortical areas,
compose a vertical-integrative and interconnected hierarchical
system that is critical in emotion as well as kinds of cognition
(Geva and Feldman, 2008; Abe et al., 2010; Lee et al., 2015;
Nishijo et al., 2018). Brainstem lesions could have a crucial impact
on higher-level functions of cortical regions, such as attention,
executive function and self-regulation (Geva and Feldman, 2008;
Nishijo et al., 2018). The brainstem is called “the emotional
brainstem” due to its critical role in human emotions by
integrating its subregions into three major networks involving
in emotional sensory, motor and modulatory (Venkatraman
et al., 2017). Moreover, the brainstem is a primary source
of neurotransmitter innervations such as serotonergic and
dopaminergic ones that are critically associated with a wide range
of brain functions, and their dysregulations of fronto-limbic
circuits and the hypothalamic-pituitary-adrenal (HPA) axis in
MDD have been reported (Aihara et al., 2007; Song et al., 2014;
Han et al., 2017). These findings point to a key role of the
brainstem in the pathophysiology of MDD.

However, the brainstem anatomically includes three parts,
from top to bottom namely the midbrain, the pons, and
the medulla oblongata. Most previous studies emphasized the
critical role of upper brainstem including midbrain and pons
with its connection to cortical networks through serotonergic,
dopaminergic, and noradrenergic neurotransmission in the
pathophysiology of depression (Nye et al., 2013; Hahn et al.,
2014; Smith, 2015; Numasawa et al., 2017; Wagner et al.,
2017; Post and Warden, 2018). Unlike the midbrain and pons,
the medulla is a more primitive location controlling low-level
autonomic functions such as breathing, blood pressure and heart
rate (Smythies, 2011) and was one part of the human central
homeostatic network (CHN) (Edlow et al., 2016). Therefore, to
identify aberrant interconnections between brainstem subregions
and cortical networks at fine-grained level may contribute to a
better understanding of the mechanism of onset of MDD.

In the present study, we investigated the functional
connectivity pattern alterations of brainstem subregions
using rs-fMRI in a group of 23 medication-free MDD patients
and 34 gender-, age-, and education level-matched healthy
controls (HC). We first defined three subregions of brainstem,
namely the midbrain, pons and medulla separately using a
recently developed brainstem atlas (Iglesias et al., 2015). Then,
whole brain RSFC analyses were performed to identify the
changed functional connectivity patterns for each brainstem
subregion in MDD patients. According to previous findings
on disrupted functional connectivity of brainstem and its
subregions in depression (Smith, 2015; Wagner et al., 2017), we
hypothesized that there might be also dysfunctions within the
functional network based on the three subregions of brainstem
in medication-free MDD patients.

MATERIALS AND METHODS

Subjects
Twenty three medication-free, right-handed MDD patients and
34 age-, gender-, and educational level- matched healthy controls
(18–46 years) were recruited from the Affiliated Brain Hospital of
Guangzhou Medical University (Table 1). The diagnosis of MDD
used the Structured Clinical Interview based on DSM-IV criteria
(SCID) and the Chinese version of 24-item Hamilton Depression
Rating Scale (HDRS). Hamilton Anxiety scale (HAMA) was also
used to assess their anxiety level. Additionally, HCs were screened
with no Axis I Disorders based on the SCID non-patient edition.
All the HCs reported no history of psychiatric illness for all
biological relatives within three generations. Both MDD and
HC groups reported no lifetime history of head injury, seizures,
serious medical or surgical illness, as well as substance abuse, and
were free of MRI contraindications. This study was approved by
the local Ethics Committee of the Affiliated Brain Hospital of
Guangzhou Medical University with written informed consent
from all subjects and was carried out in accordance with their
recommendations. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

Resting-State fMRI Data Acquisition
Resting-state fMRI data were acquired on a 3 Tesla MR
imaging system (Philips Medical Systems, Best, Netherlands)
with an eight-channel SENSE head coil in the Affiliated Brain
Hospital of Guangzhou Medical University, Guangzhou, China,
using a gradient-echo echo-planar imaging (GRE-EPI) sequence
sensitive to blood oxygenation level-dependent (BOLD) contrast.
Before scanning, tight and comfortable foam paddings and
earplugs were used to reduce head moving and noise in the
scanner separately. During the scanning, subjects were instructed
to close their eyes but not to sleep. The acquisition parameters
were as follows: repetition time (TR) = 2000 ms, echo time
(TE) = 30 ms, flip angle (FA) = 90◦, matrix = 64 × 64, field of

TABLE 1 | Demographics and clinical characteristics of the subjects used in the
present study.

Subjects MDD HC p-value

Number of subjects 23 34

Gender (male: female) 9/14 15/19 0.7083

Age (mean ± SD) 30.48 ± 7.13 29.71 ± 7.09 0.6888

Years of education (mean ± SD) 13.35 ± 3.89 14.18 ± 2.17 0.3072

HDRS scores (mean ± SD) 34.30 ± 7.58

HAMA scores (mean ± SD) 24.36 ± 8.63

Age of onset (years) 27 ± 7.44

Duration of illness (months) 43.04 ± 58.18

Episodes (n, patients)

First 17

Recurrence 6

Family history of MDD (n, patients) 5

Pearson’s chi-squared test was used for gender comparison. Two-sample t-tests
were used for age and education comparisons. HDRS, hamilton depression rating
scale; HAMA, hamilton anxiety scale.
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view (FOV) = 220 × 220 mm2, 33 axial slices, slice thickness = 4
mm, inter-slice gap = 0.6 mm, 240 volumes.

Resting-State fMRI Data Preprocessing
The resting-state fMRI data were preprocessed using Statistical
Parametric Mapping (SPM81) software and DPARSF (version
2.32). It was started with discard of the first 10 volumes, slice
timing, realignment based on the first volume for head motion
correction, and followed by normalization based on MNI space
template with 3 mm cubic voxel resolution, smoothing with a
Gaussian kernel of 6 mm full-width at half maximum (FWHM),
as well as regression of six motion parameters, white matter,
and cerebrospinal fluid signals, and finally ended by filter with a
temporal band-path of 0.01–0.1 Hz. After realignment, data with
head-movement exceeded 1.5 mm of translation or 1.5 degrees of
rotation in any direction was discarded. Moreover, “scrubbing”
method was also used to eliminate the bad images based on the
pre-set criteria (frame displacement, FD < 0.5), but no frame
was deleted (FD < 0.3). Given the whole-brain signal regression
exaggerates anti-correlation and to ensure the reliability of the
obtained results, the global signal was not regressed (Wang et al.,
2017a,b).

Definition of Brainstem Subregions
The bilateral brainstem subregions were defined based on a
recent brainstem atlas which was constructed using Bayesian
segmentation approach in MRI (Iglesias et al., 2015). In this atlas,
brainstem was symmetrically segmented into 4 subregions in
each hemisphere, namely the midbrain, pons, medulla oblongata,
and superior cerebellar peduncle. Given the superior cerebellar
peduncle is too small and the smoothing effects of fMRI images,
we did not include the superior cerebellar peduncle in our current
study (Figure 1).

Functional Connectivity Analyses
To identify the changed functional connectivity patterns of the
brainstem subregions between MDD and HC, the whole brain

1http://www.fil.ion.ucl.ac.uk/spm
2www.restfmri.net/forum/DPARSF

FIGURE 1 | The definition of brainstem subregions based on a recent
brainstem atlas which was constructed using Bayesian segmentation
approach in MRI. Three subregions including midbrain, pons, and medulla
were used in the present study.

functional connectivity analysis of each brainstem subregion
was performed. We first extracted the mean time series of
the brainstem subregions. Next, the functional connectivity was
measured using Pearson’s correlations between the averaged time
series of the brainstem subregions and voxels in the rest of the
brain and Fisher’s z transformation was applied to normalize
the functional connectivity maps. Two-sample t-tests (gender,
age, and education as covariates) were performed to determine
areas with significantly different functional connectivity to the
brainstem subregions between MDD and the healthy controls.
The significance was determined by a cluster-level Monte Carlo
simulation (5000 times) using the updated Alphasim correction
with corrected threshold of p < 0.05 (cluster-forming threshold
at voxel-level p < 0.001), and minimum cluster size of 47
voxels.

Functional Characterization With
BrainMap Database
To determine the functional roles of the brain regions
showing changed functional connectivity, BrainMap database3

was used to characterize the behavior of these areas.
The behavioral domains were determined by examining
which types of tasks were significantly associated with
these areas. Functional characterization of these areas was
determined using forward inferences (Bzdok et al., 2013).
The significance was established using a binomial test with
p < 0.05 false discovery rate (FDR) corrected for multiple
comparisons.

Correlation Analyses
To determine the relationships between resting-state functional
connection and HDRS, HAMA scores, correlation analyses were
performed in MDD patients. The threshold of significance was
set at p < 0.05.

RESULTS

Demographics and Clinical
Characteristics
The demographics and clinical characteristics of the subjects were
shown in Table 1. No significant differences of gender (p = 0.81),
age (p = 0.92), or education level (p = 0.17) were observed
between MDD and HC groups.

Disrupted Functional Connectivity of
Brainstem Subregions
The whole brain functional connectivity analysis was performed
for each brainstem subregion, and only increased functional
connectivity between left medulla and right inferior parietal
cortex (IPC) was found in the MDD group compared with the
HC group (Figure 2).

3www.brainmap.org
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FIGURE 2 | Increased functional connectivity between left medulla and right
inferior parietal cortex (IPC) in MDD patients compared to healthy controls
using two-sample t-test.

Functional Characterization Using
Meta-Analysis
The meta-analysis on functional characterization of the left
medulla was significantly involved in action execution, while that
of right IPC was significantly associated with motor learning,
execution, inhibition, and cognition of time, space, as well as
reasoning. Moreover, functional characterization of IPC also
identified its association with working memory and attention
(Figure 3).

Correlations With Clinical
Characteristics
Given the normal distribution of both HDRS and HAMA scores
in patient group shown by Shapiro-Wilks test (both ps > 0.2),
Pearson correlations were used to determine the associations
between the functional connectivity and scales. The result showed
a significant association between the mean RSFC of left medulla –
right IPC and HAMA scores (r = 0.518, p = 0.014) (Figure 4), but
not with HDRS (r = 0.183, p = 0.403) in MDD patients.

DISCUSSION

In the present study, we investigated the functional connectivity
patterns of brainstem subregions in medication-free MDD
patients. Compared to healthy controls, we found increased
functional connectivity between the left medulla and right
inferior parietal cortex/lobule (IPC/IPL) in MDD. The changed
functional connectivity showed significantly positive correlation
with HAMA scores, suggesting higher functional connectivity
between the left medulla and right IPC associates higher anxiety.

The increased functional connectivity between left medulla to
cortical IPC/IPL in MDD patients was found. Previous studies
found the associations between medulla and depression whereas
they mostly focused on cardiovascular (Geraldes et al., 2016;
Tsai et al., 2016) or central respiratory depression (Kashiwagi

FIGURE 3 | Functional characterization identified a significant association of
the left medulla with action execution, and significant associations of right IPC
with motor learning, execution, inhibition, and cognition of time, space,
reasoning, working memory, as well as attention.

FIGURE 4 | Positive correlation between mean resting-state functional
connection of left medulla-right IPC and HAMA scores in MDD patients.

et al., 2011). However, increasing studies have indicated the
important role of the interconnection from the medulla to limbic
system including the amygdala, hippocampus, hypothalamus,
insula, etc., involved in higher-level functions, such as mood
control (Smythies, 2011), and conditioned fear expression
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(Vianna et al., 2008), response (Yoshida et al., 2014) as well
as extinction (Rosa et al., 2014). A recent review demonstrated
that almost all levels of the brainstem are involved in emotion,
including regions in the medulla such as nucleus of the
tractus solitaries in ascending emotional sensory network, rostral
ventrolateral medullary nuclei and dorsal motor nucleus of
the vagus nerve in descending emotional motor network, and
caudal raphe nuclei in both descending and modulatory network
(Venkatraman et al., 2017). Therefore, the medulla may also be
an indispensable part of depressive disorder based network.

We found the role of the left medulla in depression through
its connection to the right IPC/IPL. The IPL is a critical node
in an integrative multiple networks such as DMN (Wang et al.,
2012, 2016, 2017c; Guo et al., 2013; Mulders et al., 2015),
CEN (Ellard et al., 2018), and the cognitive control network
(CCN) (Crane et al., 2016; Stange et al., 2017), playing an
important role in emotion, cognition and behavior. For example,
previous studies showed a causal role of IPL with its transcranial
magnetic stimulation (TMS) in enhanced processing of fearful
body expressions (Engelen et al., 2015). IPL is also activated
during self-face processing, and the intensity increased with
subject age (Morita et al., 2018). Thus the dysfunction of IPL
was obviously and frequently reported in MDD, such as increased
fractional amplitude of low-frequency fluctuation (fALFF) values
(Yamamura et al., 2016) and lower ReHo values (Lai and Wu,
2016) of the IPL, and decreased functional connectivity between
the cerebellar and IPL, with the treatment-resistant depression
(TRD) group decreased more than the sensitive (Guo et al., 2013).
MDD also exhibited higher connectivity between the dorsal
agranular insula and IPL compared with HCs (Wang C. et al.,
2018). Even in the subclinical depression participants, positive
correlations were observed between left IPL activity and happy
attentional biases, suggesting an active coping attempt (Dedovic
et al., 2016). Moreover, antidepressant drug treatment would lead
to decreased activation in IPL, suggesting a restored deactivation
of the DMN (Delaveau et al., 2011). The right IPL was indicated
to be involved in interoception, execution, attention, action
inhibition, social and spatial cognition, etc., and more implicated
in visuospatial attention processing than the left one (Wang
et al., 2016). Therefore, the impaired connection between the left
medulla and right IPL may be associated with the neuropathology
of MDD.

Indeed, this is confirmed by the functional characterization
using meta-analysis, which showed medulla and IPC in motor
learning, execution, inhibition, and cognition. The increased
functional connectivity between both regions may indicate
the dysfunctions of these fields in MDD patients, especially
cognition such as working memory and attention. These deficits
have been frequently reported in previous studies in MDD
patients (Mulders et al., 2015; Wang J. et al., 2018). Our
functional characterization findings provide further evidence for
the important role of the connection between the medulla and
IPC in the pathology of MDD.

We also found significant positive associations between
HAMA scores and functional connectivity of left medulla and
right IPC, indicating that down-regulation of their functional
connectivity may decrease anxiety symptoms of MDD. Previous

studies found increased ALFF in the right IPL (Yuan et al., 2018)
and enhanced functional connectivity between periaqueductal
gray and IPL (Arnold Anteraper et al., 2014) in social anxiety
disorder (SAD) patients as compared to healthy controls. Also,
the activation of IPL may differentiate the comorbid MDD
and anxiety (MDD + Anx) patients to MDD patients to
some extent in cognitive tasks such as Go/No-Go task (Crane
et al., 2016). Research also demonstrated the important role
of cognitive behavioural therapy (CBT) in SAD mainly via the
brain activations of emotional response to and regulation of
social criticism which both include IPL activation (Goldin et al.,
2014). Even though the RSFC study found the biotypes for
depression, it also overlapped with generalized anxiety disorder
(GAD) at a very high proportion (Drysdale et al., 2017; Wager
and Woo, 2017). Therefore, the present correlation finding may
suggest anxiety-related symptoms in depression and provide a
potential neural marker of distinguishing the depression and
anxiety.

There are some limitations in the present study. First, only 23
MDD patients were used to investigate changes of the functional
connectivity patterns of brainstem subregions. Therefore, the
validity of the findings should be further tested in a larger
sample. Second, as shown by Table 1, there is a wide range of
the course of disease for MDD patients, which may have some
impact on the results of functional connectivity. Third, the exact
roles of the increased functional connectivity between medulla
and IPC playing in depression needs to be further examined by
task-related fMRI studies.

CONCLUSION

The present study examined the abnormality of functional
connectivity patterns of brainstem subregions and revealed
increased functional connection between left medulla and right
IPC in MDD patients compared to healthy controls. This
finding indicates the functional abnormality in the early primary
automatic functional system in MDD patients, which may
facilitate the future early diagnosis for MDD.

AUTHOR CONTRIBUTIONS

JW and HW designed and supervised the study. HW and FW
collected the data. LL, KW, YL, SG, XK, and FL analyzed the data.
LL, KW, YL, HW, and JW drafted the manuscript. All authors
discussed the results and commented on the manuscript.

FUNDING

This work was financially supported in part by grants
from the National Natural Science Foundation of China
(31800961; 31600880), Sichuan Science and Technology
Program (2018JY0361), China Postdoctoral Science
Foundation (2018M633336), the Shenzhen Basic Research
Project (JCYJ2017081802123707), Chinese Fundamental

Frontiers in Neuroscience | www.frontiersin.org 5 December 2018 | Volume 12 | Article 92693

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00926 December 6, 2018 Time: 15:5 # 6

Luo et al. Medulla and MDD

Research Funding for Central Universities (ZYGX2015002),
Interdisciplinary Development Project of University of Electronic
Science and Technology of China (Y03111023901014007),

Early Career Funding in Social Science (Y03001023601039010),
Science and Technology Program of Guangzhou
(201807010064).

REFERENCES
Abe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Inoue, H., et al. (2010). Voxel-

based analyses of gray/white matter volume and diffusion tensor data in major
depression. Psychiatry Res. 181, 64–70. doi: 10.1016/j.pscychresns.2009.07.007

Aihara, M., Ida, I., Yuuki, N., Oshima, A., Kumano, H., Takahashi, K., et al.
(2007). HPA axis dysfunction in unmedicated major depressive disorder and
its normalization by pharmacotherapy correlates with alteration of neural
activity in prefrontal cortex and limbic/paralimbic regions. Psychiatry Res. 155,
245–256. doi: 10.1016/j.pscychresns.2006.11.002

Arnold Anteraper, S., Triantafyllou, C., Sawyer, A. T., Hofmann, S. G., Gabrieli,
J. D., and Whitfield-Gabrieli, S. (2014). Hyper-connectivity of subcortical
resting-state networks in social anxiety disorder. Brain Connect. 4, 81–90. doi:
10.1089/brain.2013.0180

Buchanan, A., Wang, X., and Gollan, J. K. (2014). Resting-state functional
connectivity in women with major depressive disorder. J. Psychiatr. Res. 59,
38–44. doi: 10.1016/j.jpsychires.2014.09.002

Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T., and Eickhoff, S. B. (2013). An
investigation of the structural, connectional, and functional subspecialization
in the human amygdala. Hum. Brain Mapp. 34, 3247–3266. doi: 10.1002/hbm.
22138

Crane, N. A., Jenkins, L. M., Dion, C., Meyers, K. K., Weldon, A. L., Gabriel, L. B.,
et al. (2016). Comorbid anxiety increases cognitive control activation in major
depressive disorder. Depress. Anxiety 33, 967–977. doi: 10.1002/da.22541

Dedovic, K., Giebl, S., Duchesne, A., Lue, S. D., Andrews, J., Efanov, S., et al. (2016).
Psychological, endocrine, and neural correlates of attentional bias in subclinical
depression. Anxiety Stress Coping 29, 479–496. doi: 10.1080/10615806.2015.
1101457

Delaveau, P., Jabourian, M., Lemogne, C., Guionnet, S., Bergouignan, L., and
Fossati, P. (2011). Brain effects of antidepressants in major depression: a
meta-analysis of emotional processing studies. J. Affect. Disord. 130, 66–74.
doi: 10.1016/j.jad.2010.09.032

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F.,
Meng, Y., et al. (2017). Erratum: resting-state connectivity biomarkers define
neurophysiological subtypes of depression. Nat. Med. 23:264. doi: 10.1038/
nm0217-264d

Edlow, B. L., McNab, J. A., Witzel, T., and Kinney, H. C. (2016). The structural
connectome of the human central homeostatic network. Brain Connect. 6,
187–200. doi: 10.1089/brain.2015.0378

Ellard, K. K., Zimmerman, J. P., Kaur, N., Van Dijk, K. R. A., Roffman, J. L.,
Nierenberg, A. A., et al. (2018). Functional connectivity between anterior
insula and key nodes of frontoparietal executive control and salience networks
distinguish bipolar depression from unipolar depression and healthy control
subjects. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 473–484. doi: 10.
1016/j.bpsc.2018.01.013

Engelen, T., de Graaf, T. A., Sack, A. T., and de Gelder, B. (2015). A causal role
for inferior parietal lobule in emotion body perception. Cortex 73, 195–202.
doi: 10.1016/j.cortex.2015.08.013

Geraldes, V., Goncalves-Rosa, N., Tavares, C., Paton, J. F. R., and Rocha, I.
(2016). Reversing gene expression in cardiovascular target organs following
chronic depression of the paraventricular nucleus of hypothalamus and rostral
ventrolateral medulla in spontaneous hypertensive rats. Brain Res. 1646, 109–
115. doi: 10.1016/j.brainres.2016.05.041

Geva, R., and Feldman, R. (2008). A neurobiological model for the effects
of early brainstem functioning on the development of behavior and
emotion regulation in infants: implications for prenatal and perinatal risk.
J. Child Psychol. Psychiatry 49, 1031–1041. doi: 10.1111/j.1469-7610.2008.
01918.x

Goldin, P. R., Ziv, M., Jazaieri, H., Weeks, J., Heimberg, R. G., and Gross, J. J. (2014).
Impact of cognitive-behavioral therapy for social anxiety disorder on the neural
bases of emotional reactivity to and regulation of social evaluation. Behav. Res.
Ther. 62, 97–106. doi: 10.1016/j.brat.2014.08.005

Guo, W., Liu, F., Xue, Z., Gao, K., Liu, Z., Xiao, C., et al. (2013). Abnormal
resting-state cerebellar-cerebral functional connectivity in treatment-resistant
depression and treatment sensitive depression. Prog. Neuropsychopharmacol.
Biol. Psychiatry 44, 51–57. doi: 10.1016/j.pnpbp.2013.01.010

Hahn, A., Haeusler, D., Kraus, C., Hoflich, A. S., Kranz, G. S., Baldinger, P.,
et al. (2014). Attenuated serotonin transporter association between dorsal raphe
and ventral striatum in major depression. Hum. Brain Mapp. 35, 3857–3866.
doi: 10.1002/hbm.22442

Han, K. M., Kim, D., Sim, Y., Kang, J., Kim, A., Won, E., et al. (2017). Alterations
in the brainstem volume of patients with major depressive disorder and their
relationship with antidepressant treatment. J. Affect. Disord. 208, 68–75. doi:
10.1016/j.jad.2016.08.066

Iglesias, J. E., Van Leemput, K., Bhatt, P., Casillas, C., Dutt, S., Schuff, N., et al.
(2015). Bayesian segmentation of brainstem structures in MRI. Neuroimage 113,
184–195. doi: 10.1016/j.neuroimage.2015.02.065

Kang, S. G., Na, K. S., Choi, J. W., Kim, J. H., Son, Y. D., and Lee, Y. J. (2017).
Resting-state functional connectivity of the amygdala in suicide attempters with
major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 77,
222–227. doi: 10.1016/j.pnpbp.2017.04.029

Kashiwagi, M., Osaka, Y., Onimaru, H., and Takeda, J. (2011). Optical imaging
of propofol-induced central respiratory depression in medulla-spinal cord
preparations from newborn rats. Clin. Exp. Pharmacol. Physiol. 38, 186–191.
doi: 10.1111/j.1440-1681.2011.05480.x

Lai, C. H., and Wu, Y. T. (2016). The alterations in regional homogeneity of
parieto-cingulate and temporo-cerebellum regions of first-episode medication-
naive depression patients. Brain imaging Behav. 10, 187–194. doi: 10.1007/
s11682-015-9381-9

Lee, J. H., Ryan, J., Andreescu, C., Aizenstein, H., and Lim, H. K. (2015). Brainstem
morphological changes in Alzheimer’s disease. Neuroreport 26, 411–415. doi:
10.1097/WNR.0000000000000362

Morita, T., Saito, D. N., Ban, M., Shimada, K., Okamoto, Y., Kosaka, H., et al.
(2018). Self-Face recognition begins to share active region in right inferior
parietal lobule with proprioceptive Illusion during adolescence. Cereb. Cortex
28, 1532–1548. doi: 10.1093/cercor/bhy027

Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., and
Tendolkar, I. (2015). Resting-state functional connectivity in major depressive
disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344. doi: 10.1016/j.
neubiorev.2015.07.014

Nishijo, H., Rafal, R., and Tamietto, M. (2018). Editorial: limbic-brainstem roles
in perception. Cognition, Emotion, and Behavior. Front. Neurosci. 12:395.
doi: 10.3389/fnins.2018.00395

Numasawa, Y., Hattori, T., Ishiai, S., Kobayashi, Z., Kamata, T., Kotera, M., et al.
(2017). Depressive disorder may be associated with raphe nuclei lesions in
patients with brainstem infarction. J. Affect. Disord. 213, 191–198. doi: 10.1016/
j.jad.2017.02.005

Nye, J. A., Purselle, D., Plisson, C., Voll, R. J., Stehouwer, J. S., Votaw, J. R., et al.
(2013). Decreased brainstem and putamen SERT binding potential in depressed
suicide attempters using [11C]-ZIENT PET imaging. Depress. Anxiety 30,
902–907. doi: 10.1002/da.22049

Post, R. J., and Warden, M. R. (2018). Melancholy, anhedonia, apathy: the search
for separable behaviors and neural circuits in depression. Curr. Opin. Neurobiol.
49, 192–200. doi: 10.1016/j.conb.2018.02.018

Rosa, J., Myskiw, J. C., Furini, C. R., Sapiras, G. G., and Izquierdo, I. (2014).
Fear extinction can be made state-dependent on peripheral epinephrine: role
of norepinephrine in the nucleus tractus solitarius. Neurobiol. Learn. Mem. 113,
55–61. doi: 10.1016/j.nlm.2013.09.018

Smith, D. F. (2015). Systematic review of an emerging trend in china: resting-state
functional connectivity in major depressive disorder. J. Neuropsychiatry Clin.
Neurosci. 27, 104–111. doi: 10.1176/appi.neuropsych.13110343

Smythies, J. (2011). The neural control of mood: the possible role of the adrenergic
system in the medulla. Conscious. Cogn. 20, 489–493. doi: 10.1016/j.concog.
2010.10.014

Frontiers in Neuroscience | www.frontiersin.org 6 December 2018 | Volume 12 | Article 92694

https://doi.org/10.1016/j.pscychresns.2009.07.007
https://doi.org/10.1016/j.pscychresns.2006.11.002
https://doi.org/10.1089/brain.2013.0180
https://doi.org/10.1089/brain.2013.0180
https://doi.org/10.1016/j.jpsychires.2014.09.002
https://doi.org/10.1002/hbm.22138
https://doi.org/10.1002/hbm.22138
https://doi.org/10.1002/da.22541
https://doi.org/10.1080/10615806.2015.1101457
https://doi.org/10.1080/10615806.2015.1101457
https://doi.org/10.1016/j.jad.2010.09.032
https://doi.org/10.1038/nm0217-264d
https://doi.org/10.1038/nm0217-264d
https://doi.org/10.1089/brain.2015.0378
https://doi.org/10.1016/j.bpsc.2018.01.013
https://doi.org/10.1016/j.bpsc.2018.01.013
https://doi.org/10.1016/j.cortex.2015.08.013
https://doi.org/10.1016/j.brainres.2016.05.041
https://doi.org/10.1111/j.1469-7610.2008.01918.x
https://doi.org/10.1111/j.1469-7610.2008.01918.x
https://doi.org/10.1016/j.brat.2014.08.005
https://doi.org/10.1016/j.pnpbp.2013.01.010
https://doi.org/10.1002/hbm.22442
https://doi.org/10.1016/j.jad.2016.08.066
https://doi.org/10.1016/j.jad.2016.08.066
https://doi.org/10.1016/j.neuroimage.2015.02.065
https://doi.org/10.1016/j.pnpbp.2017.04.029
https://doi.org/10.1111/j.1440-1681.2011.05480.x
https://doi.org/10.1007/s11682-015-9381-9
https://doi.org/10.1007/s11682-015-9381-9
https://doi.org/10.1097/WNR.0000000000000362
https://doi.org/10.1097/WNR.0000000000000362
https://doi.org/10.1093/cercor/bhy027
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.1016/j.neubiorev.2015.07.014
https://doi.org/10.3389/fnins.2018.00395
https://doi.org/10.1016/j.jad.2017.02.005
https://doi.org/10.1016/j.jad.2017.02.005
https://doi.org/10.1002/da.22049
https://doi.org/10.1016/j.conb.2018.02.018
https://doi.org/10.1016/j.nlm.2013.09.018
https://doi.org/10.1176/appi.neuropsych.13110343
https://doi.org/10.1016/j.concog.2010.10.014
https://doi.org/10.1016/j.concog.2010.10.014
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00926 December 6, 2018 Time: 15:5 # 7

Luo et al. Medulla and MDD

Song, Y. J., Korgaonkar, M. S., Armstrong, L. V., Eagles, S., Williams, L. M.,
and Grieve, S. M. (2014). Tractography of the brainstem in major depressive
disorder using diffusion tensor imaging. PLoS One 9:e84825. doi: 10.1371/
journal.pone.0084825

Stange, J. P., Bessette, K. L., Jenkins, L. M., Peters, A. T., Feldhaus, C., Crane,
N. A., et al. (2017). Attenuated intrinsic connectivity within cognitive control
network among individuals with remitted depression: temporal stability and
association with negative cognitive styles. Hum. Brain Mapp. 38, 2939–2954.
doi: 10.1002/hbm.23564

Sun, H., Luo, L., Yuan, X., Zhang, L., He, Y., Yao, S., et al. (2018). Regional
homogeneity and functional connectivity patterns in major depressive disorder,
cognitive vulnerability to depression and healthy subjects. J. Affect. Disord. 235,
229–235. doi: 10.1016/j.jad.2018.04.061

Tsai, C. Y., Li, F. C., Wu, C. H., Chang, A. Y., and Chan, S. H. (2016). Sumoylation
of IkB attenuates NF-kB-induced nitrosative stress at rostral ventrolateral
medulla and cardiovascular depression in experimental brain death. J. Biomed.
Sci. 23:65.

Venkatraman, A., Edlow, B. L., and Immordino-Yang, M. H. (2017). The brainstem
in emotion: a review. Front. Neuroanat. 11:15. doi: 10.3389/fnana.2017.00015

Vianna, D. M., Allen, C., and Carrive, P. (2008). Cardiovascular and behavioral
responses to conditioned fear after medullary raphe neuronal blockade.
Neuroscience 153, 1344–1353. doi: 10.1016/j.neuroscience.2008.03.033

Wager, T. D., and Woo, C.-W. (2017). Imaging biomarkers and biotypes for
depression. Nat. Med. 23, 16–17. doi: 10.1038/nm.4264

Wagner, G., de la Cruz, F., Kohler, S., and Bar, K. J. (2017). Treatment associated
changes of functional connectivity of midbrain/brainstem nuclei in major
depressive disorder. Sci. Rep. 7:8675. doi: 10.1038/s41598-017-09077-5

Wang, C., Wu, H., Chen, F., Xu, J., Li, H., Li, H., et al. (2018). Disrupted functional
connectivity patterns of the insula subregions in drug-free major depressive
disorder. J. Affect. Disord. 234, 297–304. doi: 10.1016/j.jad.2017.12.033

Wang, J., Fan, L., Zhang, Y., Liu, Y., Jiang, D., Zhang, Y., et al. (2012).
Tractography-based parcellation of the human left inferior parietal lobule.
Neuroimage 63, 641–652. doi: 10.1016/j.neuroimage.2012.07.045

Wang, J., Wei, Q., Bai, T., Zhou, X., Sun, H., Becker, B., et al. (2017a).
Electroconvulsive therapy selectively enhanced feedforward connectivity from
fusiform face area to amygdala in major depressive disorder. Soc. Cogn. Affect.
Neurosci. 12, 1983–1992. doi: 10.1093/scan/nsx100

Wang, J., Wei, Q., Wang, L., Zhang, H., Bai, T., Cheng, L., et al. (2018). Functional
reorganization of intra- and internetwork connectivity in major depressive
disorder after electroconvulsive therapy. Hum. Brain Mapp. 39, 1403–1411.
doi: 10.1002/hbm.23928

Wang, J., Wei, Q., Yuan, X., Jiang, X., Xu, J., Zhou, X., et al. (2017b). Local
functional connectivity density is closely associated with the response of
electroconvulsive therapy in major depressive disorder. J. Affect. Disord. 225,
658–664. doi: 10.1016/j.jad.2017.09.001

Wang, J., Xie, S., Guo, X., Becker, B., Fox, P. T., Eickhoff, S. B., et al. (2017c).
Correspondent functional topography of the human left inferior parietal lobule
at rest and under task revealed using resting-state fMRI and coactivation based
parcellation. Hum. Brain Mapp. 38, 1659–1675. doi: 10.1002/hbm.23488

Wang, J., Zhang, J., Rong, M., Wei, X., Zheng, D., Fox, P. T., et al. (2016).
Functional topography of the right inferior parietal lobule structured by
anatomical connectivity profiles. Hum. Brain Mapp. 37, 4316–4332. doi: 10.
1002/hbm.23311

Wu, H., Sun, H., Xu, J., Wu, Y., Wang, C., Xiao, J., et al. (2016). Changed hub and
corresponding functional connectivity of subgenual anterior cingulate cortex in
major depressive disorder. Front. Neuroanat. 10:120. doi: 10.3389/fnana.2016.
00120

Yamamura, T., Okamoto, Y., Okada, G., Takaishi, Y., Takamura, M., Mantani, A.,
et al. (2016). Association of thalamic hyperactivity with treatment-resistant
depression and poor response in early treatment for major depression: a resting-
state fMRI study using fractional amplitude of low-frequency fluctuations.
Transl. Psychiatry 6:e754. doi: 10.1038/tp.2016.18

Yoshida, M., Takayanagi, Y., and Onaka, T. (2014). The medial amygdala-
medullary PrRP-synthesizing neuron pathway mediates neuroendocrine
responses to contextual conditioned fear in male rodents. Endocrinology 155,
2996–3004. doi: 10.1210/en.2013-1411

Yuan, C., Zhu, H., Ren, Z., Yuan, M., Gao, M., Zhang, Y., et al. (2018). Precuneus-
related regional and network functional deficits in social anxiety disorder: a
resting-state functional MRI study. Compr. Psychiatry 82, 22–29. doi: 10.1016/j.
comppsych.2017.12.002

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Luo, Wu, Lu, Gao, Kong, Lu, Wu, Wu and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 7 December 2018 | Volume 12 | Article 92695

https://doi.org/10.1371/journal.pone.0084825
https://doi.org/10.1371/journal.pone.0084825
https://doi.org/10.1002/hbm.23564
https://doi.org/10.1016/j.jad.2018.04.061
https://doi.org/10.3389/fnana.2017.00015
https://doi.org/10.1016/j.neuroscience.2008.03.033
https://doi.org/10.1038/nm.4264
https://doi.org/10.1038/s41598-017-09077-5
https://doi.org/10.1016/j.jad.2017.12.033
https://doi.org/10.1016/j.neuroimage.2012.07.045
https://doi.org/10.1093/scan/nsx100
https://doi.org/10.1002/hbm.23928
https://doi.org/10.1016/j.jad.2017.09.001
https://doi.org/10.1002/hbm.23488
https://doi.org/10.1002/hbm.23311
https://doi.org/10.1002/hbm.23311
https://doi.org/10.3389/fnana.2016.00120
https://doi.org/10.3389/fnana.2016.00120
https://doi.org/10.1038/tp.2016.18
https://doi.org/10.1210/en.2013-1411
https://doi.org/10.1016/j.comppsych.2017.12.002
https://doi.org/10.1016/j.comppsych.2017.12.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00975 December 19, 2018 Time: 16:7 # 1

ORIGINAL RESEARCH
published: 20 December 2018

doi: 10.3389/fnins.2018.00975

Edited by:
Jing Sui,

Institute of Automation (CAS), China

Reviewed by:
Rui Li,

Institute of Psychology (CAS), China
Zening Fu,

The Mind Research Network (MRN),
United States

*Correspondence:
Tianyi Yan

yantianyi@bit.edu.cn
Ying Han

hanying@xwh.ccmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 09 September 2018
Accepted: 05 December 2018
Published: 20 December 2018

Citation:
Yang L, Yan Y, Wang Y, Hu X,

Lu J, Chan P, Yan T and Han Y (2018)
Gradual Disturbances of the

Amplitude of Low-Frequency
Fluctuations (ALFF) and Fractional

ALFF in Alzheimer Spectrum.
Front. Neurosci. 12:975.

doi: 10.3389/fnins.2018.00975

Gradual Disturbances of the
Amplitude of Low-Frequency
Fluctuations (ALFF) and Fractional
ALFF in Alzheimer Spectrum
Liu Yang1†, Yan Yan2†, Yonghao Wang2, Xiaochen Hu3, Jie Lu4, Piu Chan1,5,6, Tianyi Yan2*
and Ying Han1,5,6,7*

1 Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, 2 School of Life Science, Beijing
Institute of Technology, Beijing, China, 3 Department of Psychiatry and Psychotherapy, Medical Faculty, University
of Cologne, Cologne, Germany, 4 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China,
5 Beijing Institute of Geriatrics, Beijing, China, 6 National Clinical Research Center for Geriatric Disorders, Beijing, China,
7 Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China

Background: Alzheimer’s disease (AD) is a common neurodegenerative disease in
which the brain undergoes alterations for decades before symptoms become obvious.
Subjective cognitive decline (SCD) have self-complain of persistent decline in cognitive
function especially in memory but perform normally on standard neuropsychological
tests. SCD with the presence of AD pathology is the transitional stage 2 of Alzheimer’s
continuum, earlier than the prodromal stage, mild cognitive impairment (MCI), which
seems to be the best target to research AD. In this study, we aimed to detect the
transformational patterns of the intrinsic brain activity as the disease burden got heavy.

Method: In this study, we enrolled 44 SCD, 55 amnestic MCI (aMCI), 47 AD dementia
(d-AD) patients and 57 normal controls (NC) in total. A machine learning classification
was utilized to detect identification accuracies between groups by using ALFF, fALFF,
and fusing ALFF with fALFF features. Then, we measured the amplitude of the low-
frequency fluctuation (ALFF) and fractional ALFF (fALFF) levels in three frequency
bands (classic: 0.01–0.1 Hz; slow-5: 0.01–0.027 Hz; and slow-4: 0.027–0.073 Hz) and
compared alterations in patients with NC.

Results: In the machine learning verification, the identification accuracy of SCD,
aMCI, d-AD from NC was higher when fused ALFF and fALFF features (76.44,
81.94, and 91.83%, respectively) than only using ALFF or fALFF features. Several
brain regions showed significant differences in ALFF/fALFF within these bands among
four groups: brain regions presented decreasing trend of values, including the
Cingulum_Mid_R (aal), bilateral inferior cerebellum lobe, bilateral precuneus, and the
Cingulum_Ant_R (aal); increasing trend of values were detected in the Hippocampus_L
(aal), Frontal_Mid_Orb_R (aal), Frontal_Sup_R (aal) and Paracentral_Lobule_R (aal)
as disease progressed. The normalized ALFF/fALFF values of these features were
significantly correlated with the neuropsychological test scores.
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Conclusion: This study revealed gradual disturbances in intrinsic brain activity as the
disease progressed: the normal objective performance in SCD may be dependent on
compensation; as disease advanced, the cognitive function gradually impaired and
decompensated in aMCI, severer in d-AD. Our results indicated that the ALFF and fALFF
may help detect the underlying pathological mechanism in AD continuum.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02353884 and
NCT02225964.

Keywords: Alzheimer’s disease, subjective cognitive decline, amnestic mild cognitive impairment, dementia,
resting-state functional MRI, ALFF, fALFF, classifier

INTRODUCTION

Alzheimer’s disease (AD) is the most common progressive
neurodegenerative disease of the elderly without a definite
pathogenesis or effective treatment being found to decelerate
the progression of this disorder, leading to poor outcomes and
severe burdens to both the family and society (Scheltens et al.,
2016). Explanations for the failure of drug clinical trials may be
summarized by interventions during a stage of disease that is
too late (McDade and Bateman, 2017). Thus, early detection of
AD seems to be advantageous for the application of preventive
means and may therefore help delay the progression. Clinical
studies suggest the occurrence of very subtle cognitive alterations
that are detectable years before meeting the criteria for MCI,
predicting the progression to d-AD (Sperling et al., 2011). SCD
refers to those elderly people who self-report a persistent decline
in cognition but perform normally on the standard assessment
with a higher conversion risk to MCI or d-AD, which is the
transitional stage 2 of Alzheimer’s continuum in the presence of
AD pathology and seems to be the best target to research the
underlying mechanism of AD (Sperling et al., 2011; Jessen et al.,
2014; Mitchell et al., 2014; Jack et al., 2018; Jessen and Rodriguez
Nee Then, 2018).

Neuroimaging techniques could help detect structural and
functional brain abnormalities at an early stage before objective
deficits are detectable. The rs-fMRI is a promising non-invasive
functional imaging technique to measure spontaneous brain
activities in vivo and helps detect the intrinsic brain functional
architecture under normal and pathological conditions such
as AD without performance confounders (Zhang and Raichle,
2010). It has been widely used to explore the neurophysiological
mechanism and neural process of human cognition and to

Abbreviations: AD, Alzheimer’s disease; ADL, Activity of Daily Living; ALFF,
amplitude of the low-frequency fluctuation; aMCI, amnestic MCI; ANCOVA,
analysis of covariance; AUC, the area under the receiver operating characteristic
curve; AVLT, auditory verbal learning test; AVLT-D, AVLT-delayed recall; AVLT-
I, AVLT-immediate recall; AVLT-R, AVLT-recognition recall; BOLD, blood
oxygenation level-dependent; CDR, Clinical Dementia Rating Scale; d-AD, AD
dementia; DMN, default-mode networks; fALFF, fractional ALFF; GM, gray
matter; HAMD, Hamilton depression rating scale; HIS, Hachinski Ischemic Scale;
LFOs, low-frequency oscillations; mALFF, normalized ALFF; MCI, mild cognitive
impairment; MMSE, Mini–Mental State Examination; MoCA, Montreal Cognitive
Assessment; MPFC, medial prefrontal cortex; NC, normal controls; PCC, posterior
cingulate cortex; ROC, receiver operating characteristic; ROIs, regions of interest;
rs-fMRI, resting-state functional magnetic resonance imaging; SCD, subjective
cognitive decline; SVM, support vector machines; WM, white matter.

identify the functional integrity of brain networks supporting
memory and other cognitive domains in AD (Sperling, 2011;
Binnewijzend et al., 2012). The ALFF was introduced as a
measure for the magnitude of LFOs of rs-fMRI. It is defined
as the total power within the frequency range between 0.01
and 0.1 Hz and considered as an effective approach to detect
the regional intensity of spontaneous fluctuations and to reflect
spontaneous brain activity of the brain in the BOLD signal
of the rs-fMRI (Fox and Raichle, 2007; Tomasi et al., 2013).
Studies have indicated that this index may be used as a
marker for disease states of the brain (Han et al., 2011; Chen
et al., 2015; Wang et al., 2016). However, it can be impaired
and influenced by non-neural physiological fluctuations such
as respiration, cardiac action, and motion. The fALFF is the
ALFF of a given frequency band as a fraction of the sum
amplitudes across the whole frequency range. It is a normalized
and modified index of ALFF that can improve the sensitivity
and specificity for the detection of spontaneous brain activities
by surpassing the physiological noise, especially in perivascular,
periventricular and periaqueductal regions (Zou et al., 2008).
However, it is less reliable than ALFF as a proportional measure
(Zuo et al., 2010). These two indexes reflect different aspects of
the LFOs amplitude: ALFF represents the strength of intensity
of LFOs, while fALFF indexes the relative contribution of a
specific LFOs to the entire frequency range (Zuo et al., 2010).
They are both useful to characterize the physiology of AD,
reveal intrinsic network disruption and are sensitive indexes
to detect AD-related neurodegeneration (Han et al., 2011,
2012).

Rs-fMRI signals in the cortical and cistern areas may have
different characteristics in the field of their power distribution in
different frequency ranges (Zou et al., 2008). The independent
frequency bands are generated by distinct oscillators with
particular properties and physiological functions, and the pattern
of intrinsic brain activity is sensitive to particular frequency
bands (Buzsaki and Draguhn, 2004). Several studies have
demonstrated that the pattern of disrupted LFOs in aMCI and
d-AD is frequency-dependent (Han et al., 2011; Wang et al., 2011;
Liu et al., 2014). ALFF/fALFF in the slow-5 band seem to be
more sensitive to changes in the DMN than the slow-4 band in
aMCI (Han et al., 2011). There seems to be different patterns of
disruption in the slow-5 band compared with the slow-4 band
(Liu et al., 2014). Therefore, it is necessary to differentiate the
frequency bands to further examine the specific alterations in
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distinct brain regions. In this study, we divided the frequency
bands into three signals (classic frequency band: 0.01–0.1 Hz;
slow-5: 0.01–0.027 Hz; and slow-4: 0.027–0.073 Hz) to detect
diverse and comprehensive oscillation properties of the brain
(Buzsaki and Draguhn, 2004; Zuo et al., 2010).

A gradual neurodegenerative processing seems to occur in
AD. From the perspective of structural transformation, the WM
degradation and GM atrophy in SCD was similar to aMCI and
d-AD with slight extents (Meiberth et al., 2015; Cantero et al.,
2016). With respect to functional alterations, previous studies
have detected several brain regions with higher ALFF in SCD
related to those exhibiting functional disruptions in MCI and
d-AD, which may indicate a possible compensation mechanism
in the early stage of AD (Sperling et al., 2009; Sun et al., 2016).
Studies in aMCI and d-AD have identified both regions with
decreased and increased ALFF/fALFF compared with the NC
(Wang et al., 2011; Liu et al., 2014; Cai et al., 2017; Lin et al.,
2017), suggesting an impairment and compensation concurrently
exist in aMCI and d-AD (Qi et al., 2010; Liu et al., 2014). Thus,
we wondered whether a special pattern of functional alterations
is present throughout the course of AD.

Amplitude of low-frequency fluctuations and fALFF both
have strengths and weaknesses, and they cannot substitute for
each other in the detection of intrinsic brain activity. In the
current study, we extracted mALFF and normalized fALFF
(mfALFF) values of rs-fMRI in three frequency bands, and
further utilized machine learning algorithms to construct a
classifier to detect the clinical classification efficacy of ALFF,
fALFF features, and the combination of them; explored regional
differences in intrinsic activities among NC, SCD, aMCI, and
d-AD groups; then detected brain regions with alterations,
attempting to generalize the alterations of intrinsic brain activity
patterns in the resting-state of the AD continuum and explain
their behavioral deficiency. We hypothesized that (1) the classifier
constructed by ALFF and fALFF features would get a high
identification accuracy; (2) the values of mALFF/mfALFF may
get changed in patient groups; (3) as the disease progressed, the
alterations in mALFF/mfALFF values turned to be obvious and
closely correlated with their cognitive levels.

MATERIALS AND METHODS

Participants
A total of 220 right-hand, Han Chinese subjects were enrolled
in this study from September 2009 to December 2015. Among
them, 61 NC were recruited from the local community by
advertisements. One hundred fifty-nine subjects with memory
complaints were enlisted from the memory clinic of the
Neurology Department of Xuanwu Hospital in Beijing, China,
including 46 SCD, 60 aMCI, and 53 d-AD patients. The
research was authorized by the Medical Research Ethics
Committee and Institutional Review Board of Xuanwu Hospital
(ClinicalTrials.gov identifier: NCT02353884 and NCT02225964).
Each participant was provided with a written informed consent
and signed it prior to any procedures. All subjects underwent
a set of standardized clinical evaluations, including a medical

history enquiry, neurological examination, and a suite of
neuropsychological tests, which included the Chinese version
of the MMSE, the Beijing version of MoCA (Lu et al., 2011),
the AVLT (Guo et al., 2007), CDR (Morris, 1993), ADL, HIS,
HAMD (Hamilton, 1960), and Center for Epidemiologic Studies
depression scale (Dozeman et al., 2011). The diagnosis was made
by experienced neurologists according to established guidelines.
The NC must meet the following conditions: (a) no memory
concerns; (b) MMSE (>19 for illiteracy, >22 for 1–6 educational
years, >26 for more than 6 educational years) (Zhang et al., 1999)
and MoCA scores (>13 for illiteracy, >19 for 1–6 educational
years, >24 for more than 6 educational years) (Lu et al., 2011);
and (c) CDR score of 0. SCD fulfilled the SCD research criteria
proposed by the Subjective Cognitive Decline Initiative (SCD-
I) (Jessen et al., 2014): (a) self-report persistent memory decline
within the last 5 years compared with the previous normal
status and confirmed by an informant; (b) normal range scores
of MMSE and MoCA; and (c) CDR score of 0. The aMCI
subjects were included based on the following items: (a) with or
without self-perceived memory complaint and with informant
complaints; (b) objectively impaired memory confirmed by
MMSE (≤19 for illiteracy, ≤22 for 1–6 educational years, ≤26
for more than 6 educational years) and MoCA scores (≤13 for
illiteracy, ≤19 for 1–6 educational years, ≤24 for more than 6
educational years); (c) clear-cut history of worsening cognition;
(d) failure to meet the criteria for dementia according to the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition, revised (DSM-IV-R); and (e) CDR score of 0.5. The
d-AD patients were diagnosed according to the National Institute
of Aging-Alzheimer’s (NIA-AA) criteria for clinically probable
AD (McKhann et al., 2011): (a) meeting criteria for dementia;
(b) insidious and gradual onset (not sudden) over more than
6 months; (c) clear-cut history of worsening cognition; (d) initial
and most prominent cognitive deficits evident in performance
of the amnestic presentation or non-amnestic presentations; (e)
hippocampal atrophy confirmed by structural MRI; and (f) CDR
score ≥1.

The exclusion criteria for all subjects included: (a) a history
of stroke (HIS score >4); (b) severe depression (HAMD score
>24 or center for Epidemiological Studies Depression Scale
score >21); (c) other central nervous system diseases that may
cause cognitive decline (e.g., epilepsy, brain tumors, Parkinson’s
disease, or encephalitis); (d) systemic diseases that could
induce cognitive impairment (e.g., anthracemia, syphilis, thyroid
dysfunction, or severe anemia, or HIV); (e) a history of psychosis
or congenital mental growth retardation; (f) sever hypoplasia or
dysacusis; (g) cognitive deficit caused by traumatic brain injury;
(h) severe end-stage diseases or severe diseases in acute stages;
or (i) those who could not complete neuropsychological tests or
were contraindicated for MRI.

Image Data Acquisition
All participants were imaged with a 3.0 Tesla MR imager
(Siemens Magnetom Trio Tim MRI system, Germany) using a
standard head coil. Cushions and earplugs were used to reduce
subject motion and scanner noise. Before imaging, subjects were
asked to keep their eyes closed and relaxed, but not to fall
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asleep and to move as little as possible during the imaging. The
echo plane imaging sequence was applied to collect functional
images. The scanning parameters were as follows: repetition
time (TR) = 2000 ms, echo time (TE) = 40 ms, flip angle
(FA) = 90◦, field of view (FOV) = 240 mm × 240 mm, number
of layers = 28, layer thickness = 4 mm, matrix = 64 × 64, voxel
size = 3.75 mm × 3.75 mm × 4 mm, layer interval = 1 mm,
bandwidth = 2232 Hz per pixel. The sequence lasted for 478 s,
so each scan of a subject included 239 phases. In addition, a
T1-weighted image was acquired as an anatomical reference.
T1-weighted MR images were obtained by a 3D magnetization-
prepared rapid gradient echo (MPRAGE) with the following
parameters: slices = 176, TR = 1900 ms, TE = 2 ms, inversion time
(TI) = 900 ms, FA = 9◦, FOV = 224 mm × 256 mm, acquisition
matrix = 448× 512, no gap, and thickness = 1.0 mm.

Image Data Preprocessing
Based on the MATLAB software platform, all images were
processed using the static MR data processing toolkit GRETNA
v2.0.01. The image pre-processing steps consisted of the
following. (1) The data for the first ten volumes were deleted
to reduce the effect of magnetic field in homogeneity during the
initial scan and to adapt subjects to the scanning environment. (2)
Time correction was used to correct the difference in acquisition
time between layers of a volume. (3) Head correction was
performed by removing subjects who had large head movements.
Each subject generated two types of figures: the translation
diagram shows the translation of the head in the three directions,
X, Y, and Z, and the rotation diagram shows the rotation angle
of the three axes around X, Y, and Z in the experiment. Six-
parameter motion regression estimates were used to calculate
the framewise displacement (FD). In this study, subjects were
deleted with maximum movements in translation > 3 mm or
a rotation angle > 3◦. (4) Space standardization: differences
exist among human brains, both in shapes and volumes. To
obtain the uniform coordinate system to describe the same
anatomical location, we used spatial standardization so that
the brains of different subjects were registered with the same
standard space, Montreal Institute of Neurology, Standard Head
Anatomical Template (MNI) space. In this study, structural
images (T1 images) were used to register functional images to
achieve spatial standardization of the subjects. A matrix was
generated after registration and segmentation. The data of the
matrix was applied to the functional images, which was used to
realize the registration from the functional space of subjects to
the standard space (MNI space). Finally, the functional images
were then registered with the segmented structure images, and
the resulting data were re-sampled to obtain functional data
of 3 mm × 3 mm × 3 mm voxels. (5) Smoothing with a 4-
mm full width at half maximum Gaussian kernel: smoothing
can reduce the incomplete effects of registration so that the
residuals are more consistent with the Gaussian distribution and
improve the image signal-to-noise ratio. (6) Remove linear drift.
(7) Regress out covariates including the global signal, WM signal,
cerebrospinal fluid signal and Friston-24 parameters.

1https://www.nitrc.org/frs/downloadlink.php/10441/?i_agree=1&release_id=3694

For normalization, the ALFF of each voxel is divided by the
average ALFF of all voxels in the whole brain to obtain the
mALFF for each voxel, and mALFF should have a value of
approximately 1 (Zang et al., 2007). In this study, ALFF and
fALFF analysis was performed under the slow-5 (0.01–0.027 Hz),
slow-4 (0.027–0.073 Hz) and classical frequency band (0.01–
0.1 Hz) according to Zuo (Zuo et al., 2010). Then mALFF maps
and mfALFF maps of each subject in the three bands were
calculated using REST V1.82 software based on the MATLAB
platform to prepare for the subsequent statistical analysis.

Classifiers
To assess the diagnostic efficacy of neuronal spontaneous
activity, average mALFF values and mfALFF values of 116 brain
regions divided based on AAL (Anatomical Automatic Labeling)
template under three frequency bands were extracted as the
whole brain features. A classifier analysis was performed to
investigate the accuracy of ALFF, fALFF and the multimodal
fusion of ALFF and fALFF with all features. We measured the
separate accuracy of each two groups (d-AD vs. NC, aMCI vs.
NC, SCD vs. NC, d-AD vs. aMCI, d-AD vs. SCD, aMCI vs. SCD)
with ALFF, fALFF and the multimodal fusion of ALFF and fALFF
features, respectively.

A cross-validation was applied to divide the sample data set
into two complementary subsets, one for training (classifiers) as a
training set, and the other for verifying the validity of the analysis
as a testing set. The classifier applied SVM with a linear kernel.
The SVM yielded a maximal-margin hyperplane in the feature
space, which separated the groups in a training data set. K-fold
cross-validation was performed to reduce the variability of the
cross-validation results. This cross-validation encompassed the
feature selection as well as the classifier. We performed feature
selection based on elastic net model (Huang et al., 2018). Elastic
net is a linear regression model using L1 and L2 as feature
selection parameters. Specially, a multimodal fusion based on
SVM was applied to evaluate the classification effect by using a
combination of ALFF and fALFF features. In each experiment,
we employed inner iterations to determine the feature selection
parameters, the model parameters and the modality weights β in
the multi-kernel SVM. To further avoid possible biases during
partitioning, we repeated the experiments 10 times.

A multimodal SVM adequately utilized the particular
characteristics of each modality’s data and provided more
possibilities to choose a suitable weighted combination. The
kernel function was defined as follows:

K(xi, xj) =
〈
8(xi), 8(xj)

〉
(1)

The kernel function is K; xi, xj are the input vectors; and 8 is a
map to transform the source data from the input space to feature
space. The final kernel function combined with the multimodal
data source with a weight coefficient has a form of

K(xi, xj) = β1K1(x1
i , x

1
j )+ β2K2(x2

i , x
2
j ) (2)

where {βn} is the weight coefficient, and Kn is the kernel function
of each modality’s data xn. M data samples and two modality

2http://www.restfmri.net/forum/REST_V1.8
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kernels are used in the learning. The decision function in the
classification with a best parameter set is defined as follows:

ŷ(x) =
M∑

m=1

αmymK(x, xm)+ b (3)

where {αm} is a weight series, ym is the label of the sample xm, K is
the final kernel defined previously, and b is a constant coefficient.
It can be noted that the K is different from that in equation (2)
because it was used for prediction. The SVM algorithm in our
study was based on the LIBSVM library toolbox3 (Chang and Lin,
2011) within the MATLAB environment.

The accuracy (percentage of participants detected correctly),
sensitivity (percentage of patients detected correctly), and
specificity (percentage of controls detected correctly) for
each classifier was calculated to quantify the classification
performance. The classification accuracy reflected the predictive
power of the algorithm and was of direct diagnostic relevance. In
addition, the area under the ROC curve (AUC) was also drawn
to evaluate the overall performance of the classification method.
The larger the AUC value, the better was the classification
performance of the classification method.

Statistical Analysis
Analysis of covariance (ANCOVA) was used to analyze
differences in mALFF/mfALFF throughout the brain based on
the voxel level among NC, SCD, aMCI, and d-AD groups.
Age, gender, education, mean GM volumes and mean FD were
taken as covariates. In the study, we used a GM mask to
exclude activities originating from white mater for analyzing
ALFF/fALFF differences. All the statistical maps were corrected
for multiple comparisons by GRF correction combining the voxel
P-value < 0.001 and cluster level < 0.05 in DPABI_V3.0_1712104

based on the Gaussian Random Field Theory.
The clusters showing significant differences were saved as

ROIs. We extracted mALFF values from the four groups of

3http://www.csie.ntu.edu.tw/~cjlin/libsvm
4http://rfmri.org/dpabi

subjects for these ROIs using the REST V1.8 toolkit. Post hoc
comparisons were then conducted within these ROIs with SPSS
23.0, and the two groups with significant differences (P < 0.05,
P < 0.01, P < 0.001) were marked. Correction for the post hoc
comparisons was performed using Bonferroni correction. The
fALFF analysis was performed similarly to the ALFF analysis.

Relationship With Neuropsychological
Tests
To test the clinical significance of these ROIs above, we correlated
mALFF or mfALFF in these ROIs with neuropsychological tests
across all participants including NC, SCD, aMCI, and d-AD.
Age, gender, education level, mean GM volumes, mean FD and
diagnosis were included as covariates. Bonferroni correction was
used to account for multiple comparisons in correlation analyses
(P < 0.05/5).

RESULTS

Demographics and Neuropsychological
Test Results
Fifty-seven NC, 44 SCD, 55 aMCI, and 47 d-AD subjects were
finally enrolled in this study after excluding subjects with poor
registration and restricting head motion to less than 3 mm or
3 degrees. Table 1 summarizes the demographic characteristics
and neuropsychological performance of the four groups. No
significant group differences were found in gender and mean FD
(P > 0.05). Age, education, mean GM volume and all cognitive
variables showed significant differences between at least two
groups (Table 1 and Supplementary Table S1). The d-AD and
aMCI performed significantly worse than NC and SCD in all
tests. The best memory performance was observed in NC, with
intermediate performance in SCD, worse performance in aMCI,
and the worst performance in d-AD.

Classifiers
The classifier model performance and ROC curves were depicted
in Table 2 and Figure 1. As shown in Table 2, cross-validation

TABLE 1 | Demographics and clinical characteristics of the participants.

Demographic data NC (n = 57) SCD (n = 44) aMCI (n = 55) d-AD (n = 47) P-value Post hocd

Gender (male/female) 22/35 19/25 27/28 15/32 0.345a

Age (years) 63.77 ± 8.09 65.13 ± 8.57 67.51 ± 9.62 70.99 ± 10.07 0.001b NC < d-AD, SCD < d-AD

Education (years) 11.05 ± 4.92 11.80 ± 4.65 10.13 ± 4.98 8.89 ± 5.75 0.039b SCD > d-AD

Mean GM volume (L) 0.60 ± 0.07 0.59 ± 0.07 0.56 ± 0.07 0.49 ± 0.05 0.000b NC > aMCI > d-AD,SCD > d-AD

AVLT-I 9.16 ± 1.91 8.27 ± 1.79 6.15 ± 1.71 3.59 ± 1.61 0.000c NC > SCD > aMCI > d-AD

AVLT-D 10.19 ± 2.78 8.50 ± 2.72 4.06 ± 2.88 1.00 ± 1.64 0.000c NC > SCD > aMCI > d-AD

AVLT-R 12.05 ± 2.55 10.96 ± 2.73 7.96 ± 3.74 3.73 ± 3.39 0.000c NC,SCD > aMCI > d-AD

MMSE 28.14 ± 2.13 27.93 ± 1.86 24.66 ± 4.20 16.55 ± 6.21 0.000c NC, SCD > aMCI > d-AD

MoCA 26.10 ± 3.12 25.17 ± 2.91 19.77 ± 4.30 12.55 ± 5.11 0.000c NC > SCD > aMCI > d-AD

Framewise displacement (FD) 0.25 ± 0.12 0.21 ± 0.12 0.25 ± 0.15 0.27 ± 0.13 0.216b

P < 0.05 means significance existed between the groups. aP-value for sex distribution obtained by the chi-square test; bP-values obtained by ANOVA. cAll clinical/cognitive
variables from ANCOVA with age, gender, education, mean GM volume, mean FD as covariates; dPost hoc testing of cognitive variables based on means adjusted for
age, gender, education, mean GM volume and mean FD.
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TABLE 2 | Accuracy of the ALFF and fALFF analyses.

Accuracy (AUC) ALFF fALFF ALFF_fALFF

d-AD vs. NC 80.2000(0.8142) 89.0909(0.9276) 91.8273(0.9261)

aMCI vs. NC 75.3561(0.7278) 70.1439(0.6981) 81.9394(0.7933)

SCD vs. NC 71.3818(0.6706) 63.8091(0.5890) 76.4364(0.6871)

d-AD vs. aMCI 66.6727(0.6363) 78.2727(0.7944) 83.8364(0.8182)

d-AD vs. SCD 72.1111(0.7221) 85.9444(0.8720) 87.0778(0.8724)

aMCI vs. SCD 77.4111(0.7561) 70.0333(0.6658) 81.4111(0.7737)

NC, normal controls; SCD, subjective cognitive decline; aMCI, amnestic mild
cognitive impairment; d-AD, dementia of Alzheimer’s disease; AUC, area under
the receiver operating characteristic curve.

of the classifier using ALFF features yielded an accuracy of
80.20% for d-AD vs. NC, followed by an accuracy of 75.36%
for aMCI vs. NC and 71.38% for SCD vs. NC. The classifier
using fALFF features achieved an accuracy of 89.09, 70.14, and
63.81% for d-AD, aMCI and SCD from NC, respectively. A higher
classification effect emerged after fusing ALFF and fALFF
features based on multimodal fusion. The separate classifying
accuracy of d-AD vs. NC, aMCI vs. NC, and SCD vs. NC was
91.83, 81.94, and 76.44%, respectively.

The AUC scores were 0.81, 0.73, and 0.67, respectively, for
the classification of d-AD vs. NC, aMCI vs. NC, and SCD vs.
NC with ALFF features. AUC scores were acquired for the
distinction of d-AD, aMCI, and SCD from NC (0.93, 0.70, and
0.59, respectively) by using fALFF features. When combined
ALFF and fALFF features via the multimodal fusion, better AUC

scores were achieved (AUC = 0.93, 0.79, and 0.69 for d-AD, aMCI
and SCD from NC, respectively).

To verify that the identified features are capable of separating
patients in different stages, we also constructed the classifier
between patient groups (d-AD vs. aMCI, d-AD vs. SCD, aMCI vs.
SCD). We found ALFF and fALFF showed different classification
results in each of these classifications. ALFF showed higher
accuracy in classifications between these groups including aMCI
vs. NC, SCD vs. NC, and aMCI vs. SCD, while fALFF showed
higher accuracy in other classifications (d-AD vs. NC, d-AD vs.
aMCI, and d-AD vs. SCD). However, the multimodal fusion of
ALFF and fALFF showed higher accuracy in all classifications
than just using ALFF or fALFF separately (Table 2 and Figure 1).
Thereby, ALFF and fALFF can’t replace each other, and we
investigated both of ALFF and fALFF index among the four
groups.

ALFF/fALFF Analyses Under Different
Frequency Bands
We selected clusters with significant differences and labeled their
corresponding anatomical location, MNI coordinates, intensity
of the significance, Brodmann and AAL partition (Table 3). These
clusters were divided into several brain regions according to
Andrews-Hanna et al. (2014). The results were shown in Figure 2.

During the analysis of ALFF, significant group differences
were identified including the Hippocampus_L (aal),
Frontal_Mid_Orb_R (aal), Precuneus_R (aal) extend to
Posterior Cingulate, and Cerebelum_8_R (aal) in the full

FIGURE 1 | Receiver operating characteristic (ROC) curve of ALFF, fALFF, and ALFF combined with fALFF. TPR, true positive rate; FPR, false positive rate; NC,
normal controls; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; d-AD, dementia of Alzheimer’s disease.
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TABLE 3 | ANCOVA results with age, gender, education, mean GM volume and mean FD as covariates across the four groups under three frequency bands.

Frequency bands Anatomical area BA AAL Peak MNI Cluster Size Peak intensity

ALFF Full Medial Temporal Lobe

Hippocampus_L (aal) 20 37 −36,−9,−21 16 7.697

Lateral frontal cortex

Frontal_Mid_Orb_R (aal) 11 10 24,66,−9 17 8.0164

Posterior cingulate cortex/precuneus

Precuneus_R (aal) extend to Posterior Cingulate 23 68 3,−57,24 11 7.6223

Cerebellum regions

Cerebelum_8_R (aal) 0 104 18,−51,−60 145 9.5659

Slow-4 Posterior cingulate cortex

Cingulum_Mid_R (aal) 23 34 3,−27,30 15 10.6692

Cerebellum regions

Cerebelum_8_L (aal) 0 103 −36,−63,−57 140 9.5891

Slow-5 Posterior cingulate cortex/precuneus

Precuneus_L (aal) extend to Posterior Cingulate 30 67 −3,−51,15 11 7.8118

Cerebellum regions

Cerebelum_8_L (aal) 0 103 −33,−69,−57 67 10.7576

fALFF Full Anterior cingulate cortex

Cingulum_Ant_R (aal) 24 32 6,27,30 8 8.9079

Lateral frontal cortex

Frontal_Sup_R (aal) 8 4 18,24,60 12 11.4105

Slow-4 Anterior cingulate cortex

Cingulum_Ant_R (aal) 24 32 6,27,30 12 10.2268

Medial frontal cortex

Paracentral_Lobule_R extend to Medial Frontal Gyrus 4 70 12,−30,60 9 11.2975

Slow-5 Precuneus

Precuneus_L (aal) 7 67 −9,−75,48 10 8.1812

Full frequency band (0.01–0.1 Hz); slow-4 band (0.027–0.073 Hz); slow-5 band (0.01–0.027 Hz); BA, Brodmann area; AAL, anatomical automatic labeling; MNI, Montreal
Institute of Neurology, Standard Head Anatomical Template; Hippocampus_L (aal): left hippocampus; Frontal_Mid_Orb_R (aal): right orbital part of middle frontal gyrus;
Precuneus_R (aal): right precuneus; Cerebelum_8_R (aal): a part of right posterior cerebellum; Cingulum_Mid_R (aal): right median cingulate and paracingulate gyri;
Cingulum_Ant_R (aal): right anterior cingulate and paracingulate gyri; Frontal_Sup_R (aal): right dorsolateral superior frontal gyrus; Paracentral_Lobule_R: right paracentral
lobule; L., left; R., right.

band (0.01–0.1 Hz). In the slow-4 band (0.027–0.073 Hz),
the Cingulum_Mid_R (aal) and Cerebelum_8_L (aal) were
identified. In the slow-5 band (0.01–0.027 Hz), significant group
differences were observed in the Precuneus_L (aal) extend to
Posterior Cingulate and the Cerebelum_8_L (aal) (Figures 3, 4).

In the fALFF analysis, significant group differences were
observed primarily in the Cingulum_Ant_R (aal) and
Frontal_Sup_R (aal) in the full band. In the slow-4 band,
the Cingulum_Ant_R (aal) and Paracentral_Lobule_R extend
to Medial Frontal Gyrus showed significant group differences.
In the slow-5 band, only the Precuneus_L (aal) manifested
significant differences after GRF correction (Figures 3, 4).

Several brain regions presented a decreasing trend of
mALFF/mfALFF values in the four groups, including the
Cingulum_Mid_R (aal), bilateral inferior Cerebellum lobe,
bilateral precuneus and the Cingulum_Ant_R (aal) as disease
progressed (Figure 3).

Compared with NC, SCD showed significantly decreased
ALFF levels in the Precuneus_R (aal) and Cerebelum_8_R
(aal) in the full band; the Cerebelum_8_L (aal) in the slow-
4 band; and decreased mALFF values in the Precuneus_L
(aal) and Cerebelum_8_L (aal) in the slow-5 band. SCD

also presented significantly decreasing mfALFF values in
the Precuneus_L (aal) in the slow-5 band compared to NC.
Compared to NC, aMCI performed similar to SCD in regions
with significantly decreased mALFF values, with additional
Cingulum_Mid_R (aal) in the slow-4 band. The aMCI also
presented significantly decreasing mfALFF values in the
Frontal_Sup_R (aal) in the full band; Cingulum_Ant_R (aal)
in the slow-4 band; and the Precuneus_L (aal) in the slow-5
band compared to NC. Compared to NC, d-AD performed
similarly to the aMCI in brain regions with significantly
decreasing mALFF values. The d-AD also presented significantly
decreasing mfALFF values in the Cingulum_Ant_R (aal) in
the full band; Cingulum_Ant_R (aal) in the slow-4 band; and
the Precuneus_L (aal) in the slow-5 band. Compared with
SCD, LFOs decreased significantly in aMCI in several ROIs
including the Frontal_Sup_R (aal) and Cingulum_Mid_R
(aal); in Cingulum_Mid_R (aal) and Cingulum_Ant_R (aal) in
d-AD. Compared with aMCI, d-AD was observed significantly
decreased mfALFF values in the Cingulum_Ant_R (aal)
(Figures 3, 4).

After post hoc comparisons, we found an increasing
trend of mALFF/mfALFF values in the Hippocampus_L
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FIGURE 2 | Significant differences of ALFF/fALFF among NC, SCD, aMCI, and d-AD under different frequency bands. The results were obtained by ANCOVA
analysis adjusted with mean age, gender, education, mean GM volume and mean FD (P < 0.001, cluster level < 0.05, GRF correction) by DPABI_V3.0_171210.

(aal), Frontal_Mid_Orb_R (aal), Frontal_Sup_R (aal)
and Paracentral_Lobule_R (aal) as disease progressed
(Figure 4).

Specifically, aMCI showed significantly higher LFOs in the
Frontal_Mid_Orb_R (aal) and the Paracentral_Lobule_R (aal)
than NC. The Hippocampus_L (aal) and Paracentral_Lobule_R
(aal) presented significantly higher LFOs in d-AD than NC.
Compared to SCD, aMCI and d-AD showed significantly
increased LFOs in the Hippocampus_L (aal), and the
Frontal_Mid_Orb_R (aal). The Hippocampus_L (aal),
Frontal_Sup_R (aal) and Paracentral_Lobule_R showed
significantly higher LFOs in d-AD, compared with aMCI
(Figure 4).

Correlation With Neuropsychological
Tests
We correlated mALFF/mfALFF values of ROIs in Table 2 with
behavioral scales controlling for age, gender, education, group,
mean GM volumes, mean FD and diagnosis as covariates, and
various correlations were detected (Supplementary Table S1).
Seven brain regions showed significances. Two regions of

fALFF features failed to undergo the Bonferroni correlation
analysis (Supplementary Table S1). Here, we tried to analyze
degenerative changes in AD by combining existing 5 features
(Bonferroni, P < 0.05/5) with severity degree and alterations of
LFOs.

The mALFF values of the Hippocampus_L (aal) and
Cerebelum_8_R (aal) in the full band were significantly
negative correlated with recognition of AVLT (AVLT-
R) scores (Bonferroni, P < 0.05/5). And mALFF values
of the Cingulum_Mid_R (aal) in the slow-4 band were
significantly positive correlated with delayed recall of AVLT
(AVLT-D) and MMSE scores (Bonferroni, P < 0.05/5). The
mALFF values of the Cerebelum_8_L (aal) were significantly
negative correlated with AVLT-R scores in slow-4 band; with
AVLT-D and AVLT-R scores in slow-5 band (Bonferroni,
P < 0.05/5).

In the Hippocampus_L (aal) in full band, aMCI showed
significantly higher mALFF values than SCD, and d-AD showed
significantly higher ALFF levels than NC, SCD, and aMCI.
In the Cerebelum_8_R (aal) in full band, SCD, aMCI and
d-AD all showed significantly decreased mALFF values than NC
(Figure 5).
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FIGURE 3 | Decreased ALFF and fALFF patterns tendency in patient groups. ∗ represents significant level P < 0.05, ∗∗ means significant level P < 0.01, and ∗∗∗

means significant level P < 0.001. L., left; R., right; R.PCUN, Precuneus_R (aal); R.Cere8, Cerebelum_8_R (aal); R.MCG, Cingulum_Mid_R (aal); L.PCUN,
Precuneus_L (aal); R.ACG, Cingulum_Ant_R (aal). ALFF analysis in full band (0.01–0.1 Hz); a4, ALFF analysis in slow-4 band (0.027–0.073 Hz); a5, ALFF analysis in
slow-5 band (0.01–0.027 Hz); f, fALFF analysis in full band; f4, fALFF analysis in slow-4 band; f5, fALFF analysis in slow-5 band.

FIGURE 4 | Increased ALFF and fALFF patterns tendency in patient groups. ∗ represents significant level P < 0.05, ∗∗ means significant level P < 0.01, and ∗∗∗

means significant level P < 0.001. L., left; R., right; L.HIP, Hippocampus_L (aal); R.ORBmid, Frontal_Mid_Orb_R (aal); R.FROsup, Frontal_Sup_R (aal); R.PCL,
Paracentral_Lobule_R. a, ALFF analysis in full band (0.01–0.1 Hz); a4, ALFF analysis in slow-4 band (0.027–0.073 Hz); a5, ALFF analysis in slow-5 band
(0.01–0.027 Hz); f, fALFF analysis in full band; f4, fALFF analysis in slow-4 band; f5, fALFF analysis in slow-5 band.

In the Cingulum_Mid_R (aal) in slow-4 band, both NC and
SCD showed significantly higher mALFF values compared with
aMCI and d-AD (Figure 6).

In the Cerebelum_8_L (aal) in slow-4 and slow-5 bands,
patient groups all presented significantly lower mALFF values
than NC (Figure 7).

DISCUSSION

In this study, the classifier model based on the fusion of ALFF
and fALFF features performed better in the distinction of patients
and NC, providing a higher classification accuracy and larger
AUC than only using the ALFF or fALFF indexes. Wecalculated
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FIGURE 5 | The correlation between mALFF values of the Hippocampus_L (aal) and Cerebelum_8_R (aal) in full band and recognition of AVLT scores. The column 1
showed corresponding anatomic location of the left hippocampus and Cerebelum_8_R (aal) in the brain. The column 2 displayed significant differences of mALFF
values of these two regions in full band among four groups obtained by post hoc test (Bonferroni correction, P < 0.05). ∗ represents significant level P < 0.05;
∗∗ means significant level P < 0.01; ∗∗∗ means significant level P < 0.001. The column 3 were scatter plots demonstrating the negative correlation between the
Hippocampus_L (aal) and Cerebelum_8_R (aal) and recognition of AVLT scores (Bonferroni correction, P < 0.05/5). Corresponding correlation coefficient “r” and
significant level “p” were marked. NC, normal controls; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; d-AD, dementia of Alzheimer’s
disease; mALFF, the normalized amplitude of the low-frequency fluctuation; AVLT, the auditory verbal learning test.

mALFF/mfALFF values in NC, SCD, aMCI, and d-AD at
three frequency bands, examined alterations in patient groups
compared with NC, and further conducted behavioral correlation
analysis with neuropsychological tests. There were widespread
differences of mALFF/mfALFF values among these bands in
several brain regions in patient groups compared with NC. Some
regions with changes of mALFF/mfALFF values presented a
similar pattern in patient groups as an increasing or decreasing
tendency. Furthermore, there seems to be a gradual pattern in AD
spectrum: as the disease progressed, the number of altered brain
regions with significantly increased/decreased mALFF/mfALFF
values was increasing, and the extent of disruption was enhanced.
Several regions with altered mALFF/mfALFF values were
significantly correlated with the neuropsychological tests.

Classifier
The high identification accuracies demonstrated that both ALFF
and fALFF could depict spontaneous functional alterations of
brain regions in AD spectrum. This procedure was efficient and
robust, enabling us to distinguish patients at various stages of
AD with high accuracy and AUC values, and indicating that
ALFF/fALFF could be a potential index to monitor disease
progression. The classification framework composed of the
integration of ALFF and fALFF achieved the best performance
than only choosing any one of them or simply combined them
in the AD staging. The ALFF directly reflect the intensity
of regional spontaneous neural activity and potentially more
sensitive for discerning differences between groups (Zang et al.,

2007). The fALFF was developed after the original ALFF index to
detect intrinsic spontaneous brain activity with higher sensitivity
and specificity. It can provide a more specific measure of low
oscillatory phenomena (Zou et al., 2008, 2010). Overall sensitivity
to discriminate brain alterations was stronger for fALFF than
ALFF; but the reliability to GM signals was lower for fALFF vs.
ALFF (Meda et al., 2015). These two different parameters showed
similarities in the main results and differences in the certain
brain regions, which may demonstrate an inherent differences
in specificity and sensitivity between these two indexes (Zhou
et al., 2017). So they were usually applied to the same sample
group simultaneously to maximize reliability across subjects
and provide sufficient specificity to capture inter-individual
differences (Zuo et al., 2010; Zhou et al., 2017). They captured
both unique and shared effects across four groups.

Decreased Tendency of mALFF/mfALFF
Values in Patient Groups
As disease progressed, mALFF/mfALFF values presented with
decreasing tendency in several brain regions, including the
right median cingulate and paracingulate gyri, bilateral inferior
cerebellum lobe (belongs to posterior cerebellum), bilateral
precuneus, and the right anterior cingulate and paracingulate
gyri (Figure 3). These changes may directly imply weakening
of the activities of neurons in these regions, potentially due to
neurophysiological processes and indicating the presence of a
functional deficiency or downregulation of excitability.
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FIGURE 6 | The correlation between mALFF values of the Cingulum_Mid_R (aal) in slow-4 band and delayed recall of AVLT/MMSE scores. The row 1, column 1
showed the corresponding anatomic location of the right median cingulate and paracingulate gyri in the brain. The row 1, column 2 displayed significant differences
of mALFF values of this region in slow-4 band among four groups obtained by post hoc test (Bonferroni correction, P < 0.05). ∗∗∗ means significant level P < 0.001.
The row 2 were scatter plots demonstrating the positive correlation between the right median cingulate and paracingulate gyri and delayed recall of AVLT/MMSE
scores (Bonferroni correction, P < 0.05/5). Corresponding correlation coefficient “r” and significant level “p” were marked. NC, normal controls; SCD, subjective
cognitive decline; aMCI, amnestic mild cognitive impairment; d-AD, dementia of Alzheimer’s disease; AVLT, the auditory verbal learning test; MMSE, the Mini–Mental
State Examination.

These regions all belong to the DMN, which is involved
in episodic memory processing, significantly correlated with
hippocampal formation and has been consistently associated with
the successful recollection of previously studied items (Buckner
et al., 2008; Raichle, 2015). Progressive deficits in the DMN
were observed in aMCI during a longitudinal follow-up (Bai
et al., 2011). Converging evidence indicates that the functional
connectivity within the DMN, especially the posterior part, is
disrupted in relation to memory impairment in MCI and d-AD
patients (Jacobs et al., 2013). Since the precuneus is the putative
pivotal region of the DMN and functions as a cortical hub
that is highly metabolically active and highly interconnected
in the network architecture, it has a particular susceptibility
to Alzheimer’s-type neurodegeneration (Drzezga et al., 2011;
Tomasi and Volkow, 2011). Previous studies have also detected
a specific regional decrease in LFOs of the precuneus in MCI,
early d-AD, and d-AD (Zhao et al., 2012; Liu et al., 2014; Huang
et al., 2015), and a decline in metabolism in the precuneus
at the pre-clinical stage of AD in PET studies (Minoshima
et al., 1997). The precuneus was significantly thinner in amyloid-
positive MCI than healthy amyloid-negative controls (Rane et al.,
2018). SCD has presented significantly decreased mALFF values
in the bilateral precuneus and descending mfALFF values in
the left precuneus compared with NC, which may represent
the existence of abnormity in SCD. Lower path length values

were detected in precuneus in SCD, which was associated with a
steeper decline in global cognition (Verfaillie et al., 2018). SCD
also displayed lower functional connectivity of the precuneus
compared with controls without memory complaints (Viviano
et al., 2018).

Increased Tendency of mALFF/mfALFF
Values in Patient Groups
In addition, mALFF/mfALFF values presented with incremental
tendency were also observed in patient groups in the following
brain regions, including the left hippocampus, right orbital part
of middle frontal gyrus, right dorsolateral superior frontal gyrus
and right paracentral lobule (Figure 4). It may be inferred that
with the development of disease, neural damage strengthened the
activity in an inverse manner.

The paradoxical increase in mALFF/mfALFF levels may be
the result of the amyloid-induced hyper-excitability of neurons
and impending neuronal network breakdown as a result of the
increasing local and global neurodegenerative pathology (Ewers
et al., 2011). The higher mALFF values may be caused by the
greater neural activity involved in transmitting information to
other regions and lead to greater connectivity among these
regions (Di et al., 2013). This phenomenon may represent the
most likely compensatory and neuroplasticity mechanism in
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FIGURE 7 | The correlation between mALFF values of the Cerebelum_8_L (aal) in slow-5 band and delayed recall/recognition of AVLT scores. The row 1, column 1
showed the corresponding anatomic location of Cerebelum_8_L (aal) in the brain. The row 1, column 2 described corresponding group comparison obtained by
post hoc test (Bonferroni correction, P < 0.05). ∗∗∗ means significant level P < 0.001. The row 2 showed negative correlation between this region and delayed
recall/recognition of AVLT scores (Bonferroni correction, P < 0.05/5). Corresponding correlation coefficient “r” and significant level “p” were marked. NC, normal
controls; SCD, subjective cognitive decline; aMCI, amnestic mild cognitive impairment; d-AD, dementia of Alzheimer’s disease; AVLT, the auditory verbal learning test.

response to the accumulation of amyloid plaques, in which
a greater number of resources is deployed to maintain the
normal performance as much as possible as a reaction to the
memory loss during the late course of AD (Huijbers et al.,
2015). As disease progresses, cognitive processes gradually rely
on an increased number of residual healthy synapses and
neurons, as well as alternative brain networks (Stern, 2002).
Brain areas with increasing activity are recruited as network
resources to maintain cognitive functions following the reduced
activity in some areas during the course of AD, which may
reflect an increase in episodic memory consolidation or retrieval.
The enhancement or inhibition of neuronal activities in these
brain regions helps to maintain the physiological homeostasis
of the whole brain. However, with further disease progression
toward d-AD and an augmented pathology, these brain regions
become more disturbed, with greater effects on the associated
cognitive functions. Thus, patients with increased activation
performed worse, reflecting the maladaptation and impairment.
This hyperactivity may also be a harbinger of the impending loss
of hippocampal function and subsequent rapid clinical decline,
which may be present in the early stage of AD (O’Brien et al.,
2010; Sperling et al., 2010).

Correlations Between
Neuropsychological Test Scores and
mALFF/mfALFF Values
In the correlation analysis, mALFF values of the left hippocampus
in full band were significantly negative correlated with AVLT-R

scores (Figure 5). The higher mALFF values were related to poor
performance in aMCI and d-AD groups, which may also indicate
their impairment and maladaptation in different ways (Shinoura
et al., 2011). The neuronal spontaneous activity in this region
was abnormally strengthened to maintain cognitive performance
along with the disease progression. However, it was unable to
maintain this function because the compensatory mechanism
collapsed, suggesting that the increased spontaneous activity in
this region might represent a decompensation related to the
increased negative cognitive bias in aMCI and d-AD patients
(Lau et al., 2016). The values were lower in SCD compared
with NC (without significance), which may be a compensation
strategy.

The mALFF values of the right posterior cerebellum lobe in
the full band, as well as the left posterior cerebellum lobe in the
slow-4 and slow-5 bands were significantly negative correlated
with the AVLT-R scores (Figures 5, 7). The mALFF values of
the bilateral posterior cerebellum lobe was lower in three patient
groups compared to NC and exhibited descending tendency
as disease burden got heavy, which indicated compensation
in SCD (normal performance) and gradual decompensation
in aMCI and d-AD (damaged performance). The cerebellum
is involved in cognitive associative learning (Timmann et al.,
2010; Buckner, 2013; Keren-Happuch et al., 2014). The posterior
cerebellum contributes to complex cognitive operations (Schoch
et al., 2006; Tavano et al., 2007; Stoodley and Schmahmann,
2009). The cerebellar alterations were hypothesized to correlate
with different forms of cognitive impairment including MCI
and d-AD (Thomann et al., 2008). Atrophy of the posterior
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cerebellum was related to impaired cognitive performance in
AD, demonstrating degenerative changes of the cerebellum in
AD (Castellazzi et al., 2014). Moreover, alterations of functional
connectivity were also reported in MCI and d-AD (Castellazzi
et al., 2014).

The mALFF values of the right median cingulate and
paracingulate gyri in the slow-4 band were significantly positive
correlated with test scores (Figure 6). As disease progressed,
the mALFF values tended to decrease. Lower the intrinsic
brain activities, lower were the test scores in aMCI and d-AD.
This phenomenon implied the disruptions in aMCI and d-AD.
Whereas, the ALFF value of this region was incremental in
SCD compared with NC (without significance), which may be a
compensation mechanism to maintain the normal performance
(Sun et al., 2016). The neural compensation were initiated to
maintain the impaired neural reserve and then alternate neural
networks were recruited to further improve cognitive function
(Steffener and Stern, 2012). The cingulum bundle is the main
median associative fasciculus, consisting of long associative
fibers that connect cortical brain areas and short associative
fibers that band cingulate areas. It is one of the principal WM
structures transferring anterior–posterior information, which
affects its microstructure in AD (Catheline et al., 2010).
A strong and specific correlation has been reported between
atrophy of the hippocampal formation and the cingulum bundle,
indicating that disruption of the cingulum bundle is related
to perturbation of the hippocampal formation (Villain et al.,
2008).

Three patient groups all exhibited different extents of altered
spontaneous activity. And these graded disruptions of the
intrinsic brain activity reflected by mALFF/mfALFF levels
were detected in SCD, aMCI, and d-AD. These alterations
indicate a gradual aggravating physiological pattern of
alterations during a limited period of AD-related pathology
along the normal aging-SCD-MCI-AD continuum. Mildly
altered spontaneous activities presented in SCD might
explain their self-perceived cognitive decline and associated
subjective complaints prior to noticeable cognitive deficits.
From the perspective of correlation analysis, we intended
to speculate about the dynamic alterations of spontaneous
activity occur in brain regions throughout the course
of AD.

Our results indicated that AD should be considered as
a disease in which large-scale distributed neural networks
are disturbed. This disruption does not focus on changes in
a single brain region but on large-scale network alterations
or changes in components of these networks (Jacobs et al.,
2013). The brain attempts to maintain normal performance via
spontaneous regulatory mechanisms, such as the recruitment
of additional neurons, as reflected by increasing ALFF/fALFF
levels, or a reduction of activity to acclimatize the metabolic
demand of other regions in the early stage before pathological
invasion get heavy. As the disease burden increases, some
regions are invaded by the pathology and fail to perceive the
normal intensity of fluctuations, and the increasing/decreasing
activation of additional regions can no longer induce a
sufficient intensity of brain activity. With advancing disease,

greater disturbances in the brain lead to a greater imbalance
between activation and performance. The specific change in
the pattern of intrinsic brain activity reflected by ALFF/fALFF
alterations provides insights into the biological mechanisms
of AD. Our results were consistent with the scenario in
which progressive changes arise as disease propagated and
supplied brain areas that are potentially involved in such
degenerative processes (Rasero et al., 2017). Liang et al has
found a general linear pattern of d-AD < late MCI < early
MCI < NC or d-AD > late MCI > early MCI > NC in
several brain regions with increased/decreased ALFF (Liang
et al., 2014). Other studies have also detected progressive
alterations in the AD continuum, as reflected by GM volume
and cortical thickness decline indicators, atrophy degree and
rate differences following the order of d-AD > MCI > NC (Ma
et al., 2016). Longitudinal research with follow-up information
concerning conversion to d-AD is needed to confirm this
hypothesis.

Limitations
Our study has limitations. First, the samples were obtained
using a cross-sectional design. Future longitudinal MRI data
will be acquired to validate the disruption patterns with disease
progression and further probe the classification accuracy of
invert and stable patients. The high identification accuracy of
patients groups does not mean the high conversion rate to d-AD.
Second, we only analyzed rs-fMRI data. In advanced studies,
the combination of multimodal neuroimaging and biological
information could yield a comprehensive understanding of
the progression patterns in AD. Finally, more extensive
neuropsychological tests will be utilized to examine more
cognitive aspects of patients to further explore the underlying
mechanism in the brain.

CONCLUSION

In the present study, we observed comprehensive ALFF and
fALFF alterations along with a deterioration of memory function
in the AD spectrum. Our results indicated that ALFF/fALFF
measurements of spontaneous or intrinsic brain activity may
be useful to characterize the early and gradient of physiological
alterations in AD. The nature and extent of large-scale
brain region alterations varies and is aggravated with disease
progression in AD. Our findings may help to better understand
the relationship between the deterioration in brain spontaneous
functional activity and the clinical characteristics of patients in
the AD continuum.
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Brain volume measurements extracted from structural MRI data sets are a widely
accepted neuroimaging biomarker to study mouse models of neurodegeneration.
Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the
phase of experimental designs, as well as data analysis. In this work, we extracted the
brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired
from the same animals using accurate automatic multi-atlas structural parcellation, and
compared the corresponding statistical and classification analysis. We found that most
gray matter structures volumes decrease from in vivo to ex vivo, while most white matter
structures volume increase. The level of structural volume change also varies between
different genetic strains and treatment. In addition, we showed superior statistical and
classification power of ex vivo data compared to the in vivo data, even after resampled
to the same level of resolution. We further demonstrated that the classification power
of the in vivo data can be improved by incorporating longitudinal information, which is
not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific
changes, as well as the difference in statistical and classification power, between the
volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results
emphasize the importance of longitudinal analysis for in vivo data analysis.

Keywords: in vivo, ex vivo, structural parcellation, longitudinal, disease progression, treatment effect, volumetric,
atlas-based segmentation
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INTRODUCTION

In neuroimaging studies, quantitative analysis of neuroanatomy,
such as volumetric analysis of brain structures extracted from
magnetic resonance imaging (MRI) data sets, plays a crucial
role in the diagnosis of diseases at the early stages of pathology
before the onset of clinical symptoms (McEvoy and Brewer,
2010). This has been facilitated by automated analysis techniques
such as atlas-based parcellation, which enable large data sets
to be analyzed in a time efficient and unbiased manner. The
application of MRI to study mouse models is increasingly being
utilized to understand disease mechanisms as well as potential
treatment effects, and a number of mouse brain MRI atlases
are currently in existence to facilitate structural analysis of these
models (Ma et al., 2005, 2008, 2014; Bai et al., 2012). However,
whether to acquire data in vivo or ex vivo is always a debatable
question during experimental design. For brains scanned ex vivo,
there are no motion artifacts, and the prolonged scanning time
enables (1) increased image resolution (leading to less partial
volume effects), (2) improved signal to noise ratio, and (3)
enhanced tissue contrast (Montie et al., 2010; Lerch et al., 2012;
Holmes et al., 2017). The quality of images acquired ex vivo
can be further enhanced using high concentrations of contrast-
enhancement agents such as Gadolinium (Cleary et al., 2011).
The enhancement of image quality in the ex vivo data can increase
the statistical power to detect subtle volume changes when
performing cross-sectional comparison between normal and
disease groups (Lerch et al., 2012). However, samples prepared
for ex vivo imaging suffer from morphological disruption to the
tissues during processes such as fixation and perfusion (Lavenex
et al., 2009). On the other hand, most of the intrinsic physiological
and pathological characteristics of the animal’s tissues can be
preserved if they are imaged in vivo (Schulz et al., 2011).
Furthermore, with in vivo imaging, it is possible to trace the
morphological changes of each individual animal longitudinally.
This is especially important for monitoring disease progression
(Zhang et al., 2010), as well as potential treatment effects over
time using transgenic mouse models (Santacruz et al., 2005;
Holmes et al., 2016). The trade-offs between longitudinal in vivo
and cross-sectional ex vivo imaging data are an important factor
to be consider during experimental design.

Our current understanding of volume changes from in vivo
to ex vivo is inconclusive. Studies show inconsistent results on
both clinical (Schulz et al., 2011; Kotrotsou et al., 2014) and
preclinical imaging data (Ma et al., 2005, 2008; Zhang et al.,
2010; Oguz et al., 2013). Lerch et al. (2012) measured the
theoretical statistical power to compare in vivo and ex vivo
imaging. Meanwhile, Holmes et al. (2017) investigated the effect
size and sample size required for data analysis using tensor-based
morphometry (TBM). In this study, we aim to further study and
compare the volumetric analysis of individual structures using
either longitudinal in vivo data or single-time-point ex vivo data
acquired on the same animals.

Accurate structural parcellation is crucial for volumetric
analysis. Conventional methods used to obtain volumetric
information for regions-of-interest (ROIs) routinely implement
manual delineation methods, which are both time-consuming

and prone to human error (Ma et al., 2005; Richards et al.,
2011). Comparatively, automatic structural parcellation has been
continually improved and increasingly adopted to overcome the
disadvantages of manual methods (Calmon and Roberts, 2000;
Sharief et al., 2008; Almhdie-Imjabber et al., 2010). Recently,
multi-atlas based techniques have been shown to provide highly
accurate structural volumes in both clinical and preclinical
studies (Rohlfing et al., 2004; Warfield et al., 2004; Aljabar et al.,
2007; Cardoso et al., 2013; Ma et al., 2018).

In this study, we compared structural volumetric information
extracted from both in vivo and ex vivo mouse brain data
sets using a fully automated multi-atlas structural parcellation
framework (Ma et al., 2014). We sought to explore how changes
in volumes between in vivo and ex vivo in the mouse brain are
distributed across different brain tissues and structures; whether
the difference varies across different strains and treatment; and
whether those variations within structures affect the statistical
and classification power when comparing volumetric differences
with expected pathology changes of brain atrophy with and
without drug treatment. We also investigated whether including
longitudinal information can improve the analysis of group
differences.

MATERIALS AND METHODS

Experimental Data
We used the rTg4510 transgenic mouse strain, which faithfully
recapitulates several key features of clinical Alzheimer’s disease
(AD) and frontal temporal dementia (FTD) including progressive
atrophy of the forebrain regions and the accumulation of
neurofibrillary tangles of tau (NFTs) (Santacruz et al., 2005).
The NFT overexpression level and accompanying volumetric
brain changes in the rTg4510 mouse can be attenuated using
doxycycline, (Holmes et al., 2016); thus, this mouse model offers
a unique paradigm to test the sensitivity of the analysis toward
the level of structural changes.

17 rTg4510 and 8 litter-matched wild-type controls were bred
on a mixed FVB/NCrl + 129S6/SvEvTa background for Eli Lilly
and Company by Taconic (Germantown, MD, United States) and
received on site 2 weeks before the initiation of the study. Only
female mice were included to control the effect of sex differences.
The rTg4510 mouse model exhibit early and fast progressing tau
pathology (Santacruz et al., 2005), with mature NFTs observable
between 3 and 5.5 months (Yue et al., 2011) and rapid progressing
neuronal loss in the CA1 region of hippocampus by 5.5 months
of age (Santacruz et al., 2005; Spires et al., 2006). Therefore, out
of the 17 rTg4510, 10 received no intervention (untreated group),
and the remaining 7 were administered with doxycycline from 3.5
months of age to coincide with early NFT formation, and enable
potential treatment effects to be studied in both the in vivo and
ex vivo data sets.

Longitudinal in vivo scans were performed at age of 4.5
months, 5.5 months, and 7.5 months to capture disease
progression and doxycycline treatment in the corresponding
groups. T2-weighted images were acquired using a 3D fast spin-
echo sequence with a 72 mm birdcage radiofrequency (RF) coil.
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The animals were sacrificed immediately after the 7.5 months
in vivo scan, to enable a direct comparison of structural brain
changes from the in vivo and ex vivo data sets. An active staining
technique was used to enhance the contrast for ex vivo imaging,
by perfuse-fixing the animals using buffered formalin saline
doped with 8 mM Magnevist, and soaking the decapitated brains
in-skull at 4◦C in this solution for 9 weeks prior to imaging
(Cleary et al., 2011). A 35 mm birdcage RF coil was used for
ex vivo imaging. The in vivo and ex vivo images were scanned
using different RF coils and imaging gradient sets. The gradient
scaling errors and non-linearity was calibrated to eliminate
scaling effects (O’Callaghan et al., 2014). The detailed in vivo and
ex vivo scanning protocols can be found in Holmes et al. (2017).
The resolution of the in vivo and ex vivo images was 150 µm
isotropic and 40 µm isotropic, respectively.

Automatic Structural Parcellation
Brain structures were extracted using the multi-atlas
segmentation propagation framework, which has been validated
on both in vivo and ex vivo mouse brain MRI data and
demonstrated accurate segmentation results (Ma et al., 2014;
Powell et al., 2016). We adopted a publicly available MRM
NeAt atlas database created by Ma et al. (2008) which includes
35 manual labeled anatomical structures for 10 in vivo and 10
ex vivo images (Ma et al., 2005) with structure labels created
using the same manual segmentation protocol. The left/right
hemispheres were automatically separated as described in Ma
et al. (2014) to make them more biologically plausible.

In the preprocessing step, the test images were first reoriented
to the same orientation of the atlas (PLS), and then corrected
for intensity inhomogeneities using the N4 algorithm (Tustison
et al., 2010). The images from the atlas were then registered to
the pre-processed test images, first globally with a symmetric
block-matching affine approach (Ourselin et al., 2000; Modat
et al., 2014), followed by a local non-rigid registration step with
asymmetric scheme based on a cubic B-Spline parametrization
of a stationary velocity field and similarity measurements based
on normalized mutual information (Rueckert et al., 1999; Modat
et al., 2014). A deformation map between each atlas image
and test image pair was generated from the image registration,
which was then applied to transform the corresponding manually
segmented brain structural labels of the atlas image to the test
image space. The normalized mutual information ensures that
the image similarity measurement is insensitive to the intensity
profile difference between the registered image pairs (Rueckert
et al., 1999). Gradient descent optimization was implemented
to maximizing the image similarity, and the global (affine) to
local (non-rigid) registration framework help to prevent the
optimization scheme from been caught in the local minimum
(Crum et al., 2004). The registered structural labels were ranked
and fused using local normalized cross-correlation similarity
measurements to obtain the best consensus structure label
(Cardoso et al., 2013).

Careful quality assurance (QA) was performed on each
automatically generated brain mask, which is the summation of
all the parcellated structural labels. Manual corrections of the
brain mask were applied on regions where voxels of external

CSF were sometimes misclassified as brain tissue at the edge of
the brain mask. The misclassified voxels happened mostly in the
data from the untreated transgenic groups (for both in vivo and
ex vivo), when the shrinkage of the brain tissues induced excessive
amounts of external CSF to accumulate in the subarachnoid
space. This phenomenon mostly appeared in the posterior part
of the brain. Post-QA, the volume of each brain structure was
extracted from the parcellation result with corrected brain mask.

The resolution of the ex vivo data is higher than the in vivo
data because of the longer image acquisition time, the T1-
shortening effects of the contrast agent, and the use of a smaller
imaging gradient set; in order to eliminate effects simply due
to the difference in image resolution, we also down-sampled
the ex vivo images from the original resolution (40 µm) to
the same resolution of the in vivo image (150 µm) with
spline interpolation, and applied the same multi-atlas structural
parcellation pipeline using the same atlas.

Gray-Matter/White-Matter
Contrast-to-Noise Analysis
We compared the gray-matter/white-matter (GM/WM)
contrast-to-noise ratio (CNR) between the in vivo and ex vivo
images, for each of the treated and untreated rTg4510 groups,
and the wild-type controls, using the following formula:
CNR =

(
SiginalGM − SignalWM

)
/Noise. We grouped the labels

for all the GM structures as well as for all the WM structures
and measured the mean intensity across the entire GM and WM
regions accordingly as their signal intensities. To measure the
background noise, we first affinely registered images of all the
subjects to a common groupwise space by randomly selecting one
subject as the reference. We took the average of all the affinely
registered images and manually defined a region of interest
(ROI) in the image background which doesn’t contain any tissue
signals and is ghost-free. We then propagated the ROI back
to all the subjects by taking the inverse transform of the affine
matrix generated from the groupwise registration. The noise
for each image was then measured as the standard deviation of
the propagated background ROI. Manual QA was performed
to ensure the propagated ROI was located in the background
for all subjects. The background noise for each image was then
defined as the standard deviation within the background ROI.
We compared the CNR with an unpaired one-tail Student t-test.
Multiple comparisons were corrected with a false discovery rate
(FDR) of 0.05 (Chumbley and Friston, 2009; Storey, 2010).

Structure Volume Comparison of
Between in vivo and ex vivo
Measurement
Subsequently, we used the Bland–Altman analysis to investigate
the proportional differences in structural volumes measured from
in vivo and ex vivo data at the same time-point (7.5 months)
in order to explore the local variation of volume changes across
structures using the automatically parcellated structural labels. To
control for partial volume effects due to the resolution difference,
we compared the in vivo structure volume to the down-sampled
ex vivo volume to ensure same resolution (150 µm).
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The Bland–Altman plot is often the method of choice in
medical research for measuring the agreement or difference
between two measurements (Altman and Bland, 1983; Martin
Bland and Altman, 1986; Myles and Cui, 2007). It is
recommended by Pollock et al. (1992) that, when the variability
of the measurement differences is related to the magnitude of
the measurements, one should plot the proportional difference to
the magnitude of the measurements on the y-axis of the Bland–
Altman plot instead of the absolute difference. In this study,
the difference in the measured volume should be represented
as the proportional of the underlying structural size. Therefore,
we plotted the percentage volume difference (PVD) between
structural volumes as a proportion of the mean structure size
(Eq. 1). For each structure:

PVD =
Vex − Vin

(Vex + Vin) /2
× 100% (1)

where V in and Vex are the individual structure volumes extracted
from in vivo and ex vivo brains, respectively.

We compared the in vivo and ex vivo measurements for each
structure across all subjects within all groups through paired
t-tests for all the parcellated structures to investigate whether
the observed volume differences were statistically significant.
Multiple comparisons were corrected with FDR = 0.05. We also
compared the mean in/ex vivo structural volume differences
among the three different groups using an analysis of variance
(ANOVA) followed by Bonferroni post hoc test to compensate
for multiple tests for each structure. Multiple comparisons across
different structures were further controlled with FDR set to 0.05.

Group Difference Analysis
Volumetric analysis is often used as a surrogate imaging
biomarker to distinguish subjects from different groups. In the
next step, we assessed and compared the statistical analysis
results measuring the group difference using the parcellated
structures from the in vivo data and that from the ex vivo data.
We included only the rTg4510 transgenic animals in this step,
in order to control for effects due to genetic differences. We
compared the brain structures between the untreated and the
doxycycline-treated rTg4510 groups. The structure volume is
normalized to the total brain volume (TBV) by modeling the
volume as a linear combination of the TBV and the residual
term (Eq. 2), then fitting the linear model to the data from the
untreated group (regarded as the reference group) and taking the
standardized residual (w-score) as the measured feature (Eq. 3).
The residual-based structure normalization method has been
proved to be more effective at removing the confounding effect
of TBV compared to the proportional method which achieves the
normalization through simply dividing the structure volume by
the TBV (Sanfilipo et al., 2004). The w-score is the recommended
method for evaluating the structure changes such as atrophy
(O’brien and Dyck, 1995; La Joie et al., 2012; Collij et al.,
2016; Ma et al., 2018). It is equivalent to the z-score of the
residual showing the difference of each volume measurements
when comparing to the reference group mean. Therefore, the
difference in w-score represent the difference in pathological
severity, effectively reflecting the treatment effect of doxycycline.

We performed unpaired two-tailed t-tests on the normalized
volumes of all the parcellated structures between the untreated
and doxycycline-treated rTg4510 groups, for both the in vivo and
ex vivo data. All tests were corrected for multiple comparisons
with a FDR of 0.05. Multiple comparisons were corrected with a
FDR of 0.05.

Vi = β0 + β1Ti + εi (2)

where V i is the raw structure volume for subject i, Ti is the
corresponding TBV, εi is the residual term. The normalized
volume V̂i (w-score wi) is calculated as:

V̂i = wi =
εi − µεUT

σεUT

(3)

where µεCN and σεUT are the mean and standard deviation of the
residual for the untreated (reference) group.

It has been shown that incorporating longitudinal data can
theoretically improve the classification power of the data (Lerch
et al., 2012; Kim and Kong, 2016). Therefore, we also estimated
the longitudinal structure volume change rate to evaluate whether
the longitudinal information obtained from the in vivo scans
provide complementary information over the single-timepoint
data sets. The longitudinal structure volume change rate is
estimated by fitting a linear model to the longitudinal volume
data from the three time-points (3.5, 4.5, and 7.5 months), as
shown in Eq. (4).

V ti
j = V t0

j + Rj × (ti − t0)+ ε (4)

Where V ti
j is the measured volume of structure j at time ti, the

slope parameter Rj represent the volume change rate of structure
j, and ε is the error term. Unpaired t-tests were performed
to compare the structural change rate between the treated and
untreated group.

Evaluation of the Classification Power
In the last step, we compared the classification power between the
in vivo and ex vivo volume measurements. Again, we included the
untreated and doxycycline-treated groups of mice, all from the
same genetic background (rTg4510). We used a support vector
machine (SVM) with a linear kernel as the classifier to classify
the treated and untreated groups. All parcellated structures were
regarded as features for classification, and all features were scaled
to the mean± 1 SD. Due to the small sample size, threefold cross-
validation was conducted. In each fold, we evaluated the ability of
the model to correctly classify the mice in the test set based on
the pre-classified training set. Feature dimensions were reduced
using principal component analysis (PCA), with the number of
principal components fed to the classifier chosen to represent
95% of the total variance of the training set. We evaluated the
classification performance using the mean area under the curve
(AUC) of the receiver operating characteristic (ROC), with a
larger mean AUC representing better classification power.

For in vivo data, our evaluations include: (a) only the third
timepoint data (7.5 months); (b) the longitudinal data (in the
form of absolute structural change rate); and (c) the combined
feature including both the third time-point normalized structure
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volume as well as the longitudinal absolute structural volume
change rate. For the ex vivo data, we evaluated the classification
power for both the original and the down-sampled data.

In order to study the effect of the sample size toward the
power to classify the treated and untreated group of the SVM
classifier for both in vivo and ex vivo data, we plotted the learning
curve which shows the changes of classification accuracy of both
training set and cross-validation test set with different sample size
(Figueroa et al., 2012; Beleites et al., 2013). We performed the
sample size analysis for all five sets of data: (a) the third timepoint
in vivo data (7.5 months); (b) the longitudinal in vivo data; (c)
the combined feature including both the single timepoint and
longitudinal in vivo data; (d) the raw ex vivo data; and (e) the
down-sampled ex vivo data.

Evaluation Longitudinal Individual
Variation
Furthermore, we also investigated the selection of timepoint
that reflects the longitudinal trend of pathology manifest and
the treatment effect based on the volumetric in vivo data.
We focused our analysis specifically on three structures –
hippocampus, cortex, and ventricle – given that cortical and
hippocampal atrophy, as well as ventricle expansion, are widely
accepted biomarkers for AD-related pathology (Thompson et al.,
2001, 2004; Holmes et al., 2016; Rathore et al., 2017). The
volume differences among three groups at each timepoints
were compared using ANOVA test followed with Bonferroni
post hoc test to test statistical difference between each group pairs.
Multiple comparisons were corrected with FDR = 0.05.

In addition, it is important to address the individual variation
in biomedical experiment, especially for longitudinal analysis
(Klingenberg, 1996; Roche et al., 2016). We used linear mixed-
effect model (LME) (Roche et al., 2016; Lee et al., 2018) to evaluate
the individual variation across the timepoints for all three groups
(Eq. 5). The individual variance is modeled in three different
ways:

(a) The longitudinal measurements for each individual subject
are modeled as fixed-term (Eq. 5.1), without explicitly
modeling of the individual variation;

(b) Individual volume variance was explicitly model by
introducing a random-effect term on the intercept (Eq. 5.2);

(c) Individual variance on the longitudinal volume change was
also modeled by including an additional random-effect
term on the slope of time (Eq. 5.3).

Vi = β0 + β1 (time)+ β2
(
group

)
+ β3

(
time× group

)
+ β4

(
subject

)
+ εi (5)

Vi = β0 + β1 (time)+ β2
(
group

)
+ β3

(
time× group

)
+b1,i + εi (6)

Vi = β0 + β1 (time)+ β2
(
group

)
+ β3

(
time× group

)
+b1,i + b2,i (time)+ εi (7)

where V i is the structure volume for subject i, β0 represent the
intercept term, β1 represent the fixed-effect of time (or animal
age), β2 represent the fixed-effect of the three experimental
groups, β3 represent the interaction of group with time, β4 in Eq.
(5.1) represent the modeled fixed-effect of individual subject as a
grouping term, b1i in Eqs. (5.2) and (5.3) represent the modeled
random-effect of individual variance on the intercept, b2i in Eq.
(5.3) represent the modeled random-effect of individual variance
on the longitudinal scale, and εi is the residual error in the model.

We use restricted maximized likelihood (REML) to fit each
model and use the Akaike information criterion (AIC) to
determine and compare the model performance. To demonstrate
the model improvement after considering the individual
variation as the random effect, we also fit each model to the
original data, and calculated the individual residual as the
difference between the model-predicted volume and the true
volume. We compared the relative residual, calculated as the
ratio between the fitted residual and the actual measured volume
among the three models, for the three selected structures in all
three groups across different timepoints.

FIGURE 1 | Representative axial slices of the Longitudinal in vivo and ex vivo images of the untreated transgenic mice, overlaid with the automatic parcellated
structural labels. (A–C) In vivo images acquired at 4.5, 5.5, and 7.5 months. (D) The ex vivo image down-sampled to the same resolution of in vivo image (150 µm).
(E) The ex vivo image with the original resolution (40 µm). Red Arrow: the longitudinal in vivo expansion and the ex vivo collapse of the ventricle is accurately
delineated by parcellated labels.
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FIGURE 2 | Bland–Altman plot showing the structure volume difference in the in vivo and ex vivo volume measurement (proportional to the mean volume of the two
measurements). Gray area: 95% limit of agreement between in vivo and ex vivo measurements. (A) FVB/NCrl wild-type mice. (B) rTg4510 mice without treatment.
(C) rTg4510 mice with doxycycline treatment. Arrows show examples of three distinctive structures, red arrow: ventricle; blue arrow: cerebellum; green arrow:
neocortex.

RESULTS

Automatic Structural Parcellation
Both the in vivo and ex vivo mouse brain images were
segmented accurately into 35 anatomical structures as defined
in the MRM NeAt mouse brain atlas, using the automated
structural parcellation framework described in the “Materials and
Methods” section. Figure 1 shows the representative images of
the untreated transgenic mouse, overlaid with the corresponding
automatic parcellated structures, including the longitudinal
in vivo images (Figures 1A–C) as well as the ex vivo images
with both the down-sampled (Figure 1D) and the original
resolution (Figure 1E). Visual inspection revealed that the
parcellated structures accurately align with the anatomy, showing
morphological differences between the in vivo and ex vivo images.
The longitudinal expansion of the ventricles (in vivo) and the
collapse of the ventricles (ex vivo; as shown in the red arrows), can
be readily visualized. Table 1 shows the comparison of GM/WM
CNR between the in vivo and ex vivo images. The ex vivo images
exhibit superior tissue CNR compared to the in vivo images for
animals in all groups.

In vivo to ex vivo Volumetric Difference
Firstly, we compared the pair of in vivo and ex vivo structure
volumes both acquired at 7.5 months. The ex vivo data were
down-sampled to the same resolution as the in vivo data
(150 um) to control the effect comes from the resolution

TABLE 1 | Comparison of GM/WM tissue contrast-to-noise-ratio (CNR) between
the in vivo and ex vivo images.

CNR all wildtype treated
transgenic

untreated
transgenic

In vivo 1.07 ± 0.22 1.32 ± 0.12 0.93 ± 0.10 1.00 ± 0.17

Ex vivo 2.46 ± 0.15 2.40 ± 0.13 2.50 ± 0.13 2.46 ± 0.18

p-value <0.001∗ <0.001∗ <0.001∗ <0.001∗

The ex vivo images showed significant higher CNR compared to the in vivo images
for animals in all groups. ∗Statistical significant was observed with p-value smaller
than 0.001.

difference. Figure 2 shows the results of the Bland–Altman
analysis for the (Figure 2A) wild-type controls, (Figure 2B)
the untreated rTg4510 group, and (Figure 2C) the doxycycline-
treated rTg4510 group. The >100% relative volume shrinkage
of the ventricles (Figure 2; red arrow) reflects the collapse of
the ventricles from in vivo to ex vivo. The Bland–Altman plot
shows variations in volume difference, indicating a non-linear
non-uniform distribution of the volume shrinkage from in vivo
to ex vivo.

We then plotted the percentage volume change as calculated
from Bland–Altman analysis of all structure for each individual
mouse in all three groups: the wild-type group, the untreated
rTg4510 group, and the doxycycline-treated rTg4510 group
(Figures 3A–C). The structures are listed in descending order
of size: the top 29 structures are gray matter structures (except
for the ventricles); the bottom 6 structures are white matter:
(internal capsule, fimbria, and anterior commissure). We also
performed paired t-test between the volume measured both
in vivo and ex vivo for each group. The number at the right
of each subplot represent the adjusted p-value of the paired
t-test between the in vivo and ex vivo measurement (multiple
comparisons were corrected with FDR = 0.05). Significant level of
in/ex vivo differences are observed in most structures for all three
groups, and the ventricular collapses are apparent for all groups
(shown as the dark blue band), reflecting widespread changes
induced by the preparation of the tissues for ex vivo scanning
(Figures 3A–C). The ex vivo volumes were significantly smaller
for the majority of the gray matter structures (e.g., neocortex,
cerebellum, thalamus, olfactory bulb, hippocampus, caudate
putamen, basal forebrain septum, hypothalamus, amygdala and
superior/inferior colliculi) except for the central gray (the
smallest labeled gray matter structure), which exhibited a
significantly larger ex vivo volume compared to in vivo volume.
On the other hand, most of the white structures demonstrated
significantly larger ex vivo volumes than in vivo volumes (i.e.,
internal capsule, and fimbria) except for the smallest white matter
structure, the anterior commissure, which was significantly
smaller ex vivo. For the structure labeled “rest of midbrain” where
there is a mix of white and gray matter, the volume change is not
significant.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2019 | Volume 13 | Article 11117

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00011 January 22, 2019 Time: 16:47 # 7

Ma et al. In vivo/ex vivo Mouse Brain Volumetric Analysis

FIGURE 3 | The percentage volume difference of each structure calculated from the Bland–Altman analysis for all the individual mouse across all three groups.
Structures were listed from large to small top down. (A–C) The value were thresholded to within the range of [–0.5, 0.5]. The number at the right of each subplot
represent the adjusted p-value of the paired t-test between the in vivo and ex vivo measurement (multiple comparisons were corrected with FDR = 0.05).
(A) Wild-type group (WT). (B) Transgenic group without doxycycline treatment (untreated, UT). (C) Transgenic group with doxycycline treatment (treated, TT). (D) The
adjusted p-value of the pairwise comparison among all three groups after ANOVA with Bonferroni post hoc test followed by multiple comparison corrections with
FDR = 0.05. Only the significant p-values were shown with color (ranging from [0, 0.05]).

Figure 3D shows the statistical results of the ANOVA analysis,
comparing the mean in/ex vivo volume difference among three
groups (with Bonferroni post hoc test followed by multiple
comparison corrections with FDR = 0.05). The majority of
volume differences were not significantly different between
groups; however, significant differences were detected for: the
hippocampus (left side only) when comparing the wild-type
controls to the treated rTg4510 group; the basal forebrain septum
when comparing wild-type group to the rTg4510 groups (both
the treated and untreated); the superior colliculi when comparing
both the treated and untreated rTg4510 groups, as well as
the wild-type to untreated rTg4510 group (left side only); and
the fimbria when comparing between wild-type to the treated
transgenic group (all shown in Figure 3D).

Group Difference Analysis
Next, we investigated whether the differences in in vivo
and ex vivo volume measurements affected the statistical
analysis when analyzing the treatment effect, by comparing

the parcellated volumes of rTg4510 mice with and without
doxycycline treatment. The structural volumes were normalized
to TBV using the standardized residual (w-score), as described
in the “Materials and Methods” section. Figure 4 shows the
w-score of the volume for each structure across subjects for both
rTg4510 groups (with untreated titled as UT, and treated group
titled as TT), with the untreated group as the reference group.
The w-score of each structure shows the difference between the
normalized structure volume of the subject to the reference group
mean, normalized by the reference group standard deviation.
The number at the right of each subplot represents the adjusted
p-value when comparing the untreated and treated group with
two-tailed unpaired t-test. We performed the group difference
analysis on both the single time-point data, as well as the
longitudinal data, which are described in detail below.

Single Time-Point Analysis
In order to make a direct comparison between structural changes
identified in vivo versus ex vivo, we first compared the statistical
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FIGURE 4 | The w-score of the TBV normalized volume for each structure across subjects for both untreated (UT) and Doxycycline treated (TT) groups, with the
untreated group as the reference group. The number at the right of each subplot represent the statistical results of unpaired two-tailed t-tests comparing the
normalized structural volume of the treated and untreated group on both in vivo and ex vivo data. (A–C) In vivo data at different time-points (3.5, 5.5, and 7.5
months). (D) The longitudinal volume change calculated from the in vivo data at three time-points. (E) Ex vivo data down-sampled to the same resolution of the in vivo
data (150 µm). (F) Original ex vivo data acquired at a resolution of 40 µm. All tests were corrected for multiple comparisons with a false discovery rate (FDR) of 0.05.

analysis between in vivo and ex vivo data acquired at the
same 7.5 months’ time-point. The in vivo results (Figure 4C)
revealed a significant reduction in ventricle size after doxycycline
treatment; however, this finding was not detected in the ex vivo
data (Figure 4F) due to the ventricular collapse during the
preparation of the post-mortem tissues. For the white matter
(Figure 4; bottom six rows of each subplot), no significant
volume differences were detected in any of the ex vivo white
matter regions (Figure 4F), but a significant volume decrease was
detected in the fimbria in the in vivo data (Figure 4C).

Within the gray matter, the in vivo data (Figure 4C)
showed significant volume increases in the neocortex and
hippocampus, right hypothalamus, left superior colliculi, and
significant volume decreases in the right thalamus, right basal
forebrain septum, left inferior colliculi and right globus pallidus.
The statistical analysis of the ex vivo volumetric data acquired
at the same time (Figure 4F) showed a similar pattern of
group differences. However, the ex vivo volume analysis revealed
additional significant volume decreases in the left thalamus, the
olfactory bulb, the left basal forebrain septum, hypothalamus,
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superior/inferior colliculi, central gray (for both the raw and
down-sampled data), and a significant volume increase in the left
amygdala, which was not shown in the in vivo volumetric data.
Interestingly for the hypothalamus, the in vivo results revealed
an increase in volume within the hypothalamus associated
with doxycycline treatment, while the ex vivo data showed a
volume decrease. These discrepancies highlight the potential
confounding effects of post-mortem tissue processing on ex vivo
structural volumes. In addition, both the in vivo (Figure 4C)
and ex vivo data showed significant cerebellar volume shrinkage
after the doxycycline treatment (the third and fourth row of each
subplot).

The down-sampled ex vivo data showed a similar level of
statistical significance compared to the high resolution data,
with a marginal reduction of statistical differences for most of
the structures (Figures 4E,F); however, the significance levels
of volume changes for a few structures (e.g., the olfactory bulb
and the anterior commissure) were altered in the down-sampled
data. For the olfactory bulb, the significant difference between
treated and untreated rTg4510 groups did not persist after
down-sampling, while for the anterior commissure, although
no significant difference was detected for both cases, the adjust
p-value became larger in the down-sampled data, indicating
a reduction of statistical power after down-sampling. The fact
that even the down-sampled data showed an improved level
of significance relative to the in vivo analysis indicates that,
the improved statistical power in the ex vivo data is not solely
dominated by the improved resolution (40 um ex vivo versus
150 um in vivo), but other factors, such as improved CNR.

Longitudinal Analysis
When comparing the data from different time points from the
in vivo data (Figures 4A–C), a pattern of increasing volumetric
changes can be observed. Figure 4D shows the w-score and the
statistical results of a two-tailed unpaired t-test (the adjusted
p-value shown at the right of the plot) for the longitudinal
unnormalized structural volume change rate, calculated from
the in vivo data, which showed complementary information
compared to the single timepoint volume difference (Figures 4A–
C). Again, the untreated group is used as the reference group
similar to the single-time-point analysis, so the higher values
in the treatment subgroup represent better volume preserving
effects comparing to the untreated subgroup, therefore reflecting
the treatment effect. Significant differences in volume change rate
were found in the neocortex, hippocampus, right olfactory bulb,
and hypothalamus between the treated and untreated groups.
In addition, the longitudinal data showed a higher level of
significance of group difference for caudate putamen than the
ex vivo data (and higher than the in vivo data for the right
caudate putamen). These differences indicate complementary
information over single timepoint in vivo and ex vivo volumetric
analysis.

Comparison of Multivariate
Classification Power
The results comparing the classification power of the in vivo
and ex vivo data to correctly classify the untreated and treated

group of mice using SVM with a linear kernel as the classifier are
presented in Figure 5. Threefold cross-validation was performed,
and the mean AUC of the ROC are presented as the classification
performance, with a larger mean AUC representing better
classification power. The in vivo data (Figure 5A) showed less
classification power when compared with the ex vivo data, at
either the original resolution (Figure 5B) or down-sampled to the
same resolution as in vivo data (Figure 5E). In both scenarios, the
ex vivo classification power showed all-correct prediction with
AUC = 1; this can be attributed to the distinctive morphological
differences between the two groups that was readily captured
ex vivo. We noted that the classification power of both the in vivo
single time-point volumetric analysis (Figure 5A) as well as the
in vivo longitudinal rate of volumetric change across the three
time-points (Figure 5C) demonstrated less classification power
relative to the ex vivo data; however, the in vivo classification
power showed marked improvements when these data (both
the single time-point and the longitudinal) were combined
(Figure 5D). This finding indicates that the two approaches for
analysing the in vivo data capture complementary information,
and the inclusion of both features can improve the classification
performance. It is worth mentioning that, although we observed
100% accuracy (mean AUC = 1) for both the combined in vivo
data (Figure 5D) as well as the two ex vivo analyses at original
and down-sampled resolution (Figures 5B,E, respectively), this
cannot be interpreted as the three set of data showing the same
level of classification power.

The learning curve (Figure 6) shows the change of
classification power to differentiate the doxycycline-treated and
untreated rTg4510 groups using the SVM classifier, with respect
to different sample size. The testing accuracies of both the in vivo
and ex vivo data remained at 0.60 when the sample sizes were
less than 10, and gradually improved with increasing sample sizes.
The testing accuracy of ex vivo reached 1.00 when the sample size
increased to 13 (Figure 6B), while the in vivo data with the same
sample size only reached a testing accuracy of 0.86 (Figure 6A).
For the down-sampled ex vivo data, the testing accuracy dropped
slightly to 0.95 with a sample size of 13 (Figure 6E). Conversely,
the testing accuracy of the longitudinal in vivo data increases
from 0.60 to 0.90 when the sample size increases from 10 to
13 (Figure 6C). Finally, when the in vivo single time-point
and longitudinal rate information were combined, the testing
accuracy improved to 0.95 when sample size increases to 13; this
is comparable to the down-sampled ex vivo data.

Evaluation of Individual Variation in the
Longitudinal Scale
The longitudinal volume change of three structures most affected
by AD: hippocampus, neocortex, and ventricle, were plotted in
Figure 7, for all three experimental groups: wildtype, rTg4510
mice without treatment, and rTg4510 mice with doxycycline
treatment. The longitudinal trend in the result clearly shows the
continuous progression of pathologies (wildtype vs. untreated
transgenic group), as well as the effect of doxycycline treatment
(untreated vs. treated transgenic group) in all three structures.
Statistical analysis indicated that the hippocampal/cortical
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FIGURE 5 | The receiver operating characteristics (ROC) of classification power for: (A) in vivo volume at timepoint 3 (7.5 months); (B) the corresponding ex vivo
data with original resolution at timepoint 3 (7.5 months); (C) longitudinal in vivo volume change rate, calculated from the parcellation result of the data acquired at
three timepoints (3.5, 5.5, and 7.5 months); (D) the in vivo feature combining both the single time point volume (at 7.5 months) and longitudinal volume change rate;
(E) the ex vivo volume with volume down-sampled to the same resolution of the in vivo data. SVM with linear kernel is used as classifier, and the classification power
is represented as the area under the curve (AUC) of the receiver operating characteristic (ROC) for threefold cross-validation.

TABLE 2 | Comparison of different linear mixed effect (LME) models in terms of AIC and significant difference in REML estimation.

Akaike information criterion (AIC) Significance

Structures 1. Fixed effect 2. Random intercept 3. Random intercept + slope Model 1 vs. 2 Model 2 vs. 3

Hippocampus 324.78 307.83 301.4 ∗∗ ∗∗

Neocortex 512.71 501.54 490.66 ∗∗ ∗∗

Ventricle 283.26 272.89 254.27 ∗∗ ∗∗

In each model, the individual variation in the longitudinal scale are modeled as: (1) fixed effect; (2) random intercept of time; (3) random intercept and slope of time. A
smaller value of AIC represent better model performance. ∗∗p-value < 0.001 when comparing two models.

atrophies start to manifest as early as 4.5 months, and the
ventricle expansion starts from 5.5 months (as indicated by the
significant volume difference between wildtype and untreated
transgenic group). In addition, the treatment effect appeared
as early as 4.5 months in the hippocampus, and is observable
in neocortex and ventricles at 7.5 months (as indicated by
the significant volume difference between the treated and
untreated transgenic group). These results align with the reported
longitudinal disease progression time windows in previously
published studies and validate the timepoints selected in this
study.

It can be observed from Figure 7 that, compared to
the hippocampus and neocortex, the ventricles showed larger

individual variation of disease pathology progression, especially
in the later timepoints (5.5 and 7.5 months), and exhibit less
significant group differences. Therefore, we further analyzed
the longitudinal individual variation in the in vivo data using
LME model. Table 2 shows the result comparing different LEM
model performance when evaluating the individual variations
in the in vivo data. Models performances were evaluated with
AIC, and the statistical difference between the corresponding
REML estimations. Comparing to the fixed-effect model, the
random intercept model performance improves for all three
AD-related structures, indicating significant individual variation
in the structural volume measurements. The random intercept
and slope model showed further performance improvement,
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FIGURE 6 | The learning curve of the SVM classifier with respect to different sample size, when classifying the treated and untreated group. Red lines represent the
training accuracy, and the green lines represent the test accuracy. The shade region represents the standard deviation. Each subplot shows the classification
accuracy for the: (A) in vivo data; (B) ex vivo data; (C) longitudinal in vivo data (in terms of volume change rate); (D) combination of the single timepoint
cross-sectional and longitudinal in vivo data; and (E) ex vivo data down-sampled to the same resolution of in vivo data.

FIGURE 7 | The longitudinal absolute structural volume change of (A) hippocampus, (B) neocortex, and (C) ventricle for all three experimental groups. Green:
wild-type mice, red: transgenic mice without treatment, blue: transgenic mice with doxycycline treatment. ∗(red): significant volume difference was detected between
untreated transgenic and wild-type mice; ∗(blue): significant volume difference was detected between treated and untreated transgenic mice. ANOVA with Bonferroni
post hoc test followed by multiple comparison corrections with FDR = 0.05. Unit of the y-axis: mm3.

demonstrating additional individual variation in the longitudinal
volume change rate.

Figure 8 shows the comparison of the individual percentage
residual of the volumes for all three structures across all three
group at different timepoints. The random intercept model
(Figure 8B) showed smaller relative residual compared to the
fixed-effect model (Figure 8A), while the random intercept and
slope model (Figure 8C) reduced the relative residual further,

which agree with the model comparison results shown in Table 2.
In the fixed-effect model (Figure 8A), the individual variation
in the neocortex (middle row) is the smallest among the three
structures across all three timepoints, indicating small individual
variation in the cortical region. In addition, with the fixed effect
model and the random intercept model (Figures 8A,B), the
ventricle (bottom row) exhibits larger relative residual compared
to hippocampus and neocortex for both the untreated and treated

Frontiers in Neuroscience | www.frontiersin.org 11 January 2019 | Volume 13 | Article 11122

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00011 January 22, 2019 Time: 16:47 # 12

Ma et al. In vivo/ex vivo Mouse Brain Volumetric Analysis

FIGURE 8 | The comparison of the model fitting between the three linear mixed-effect (LME) models. (A) Fixed-effect model, in which individual variation was not
modeled explicitly, and the longitudinal measurements for each individual subject are modeled as fixed-term; (B) random intercept model, in which individual variance
on the absolute volume was explicitly modeled by introducing a random-effect term on the intercept; (C) random intercept and slope model, in which the individual
variance on the longitudinal scale was also modeled by adding an additional random-effect term over the slope of time. The y-axis represent the relative residual
which is the ratio between the model residual and the actual measured volume (unit: percentage).

transgenic group (as shown in red and blue box), especially in
the later timepoints (5.5 and 7.5 months). This result confirms
the larger individual variation in the ventricles in the longitudinal
scale. The relative residual is greatly reduced after the individual
variance is controlled by including the random effects to the slope
of time in the model (Figure 8C, bottom row).

DISCUSSION

When designing experiments to study diseases using mouse
models, one must choose whether to scan animals in vivo or
ex vivo. It is sometimes a controversial choice as each of these
imaging paradigms has its own strengths and weaknesses. In
this study, we investigated both the progression of longitudinal
structural volume changes, as well as the in vivo to ex vivo
volumetric changes due to the preparation of post-mortem
tissues. We demonstrated how this choice of paradigm will
affect volumetric analysis using automated brain structural
parcellation, both in terms of group difference analysis, as well
as classification power.

In vivo to ex vivo Volumetric Change
Previous studies exploring volumetric changes from in vivo to
ex vivo have shown controversial conclusions. Early histology

studies have shown that both perfusion and fixation processes
cause tissue shrinkage (Palay et al., 1962; Cragg, 1980). With MRI
data, Schulz et al. (2011) investigated the effect of fixation on
the volume of the human brain for up to 70 days using image
registration, and found unevenly distributed brain shrinkage
after initial expansion. Conversely, a study by Kotrotsou et al.
(2014) found a linear correlation between ex vivo and in vivo
gray matter volumes, with no significant change during the
6 months’ fixation period. Studies on preclinical imaging data
also show inconsistent results. Zhang et al. (2010) used manual
segmentation and showed a decrease in ex vivo brain volume
(4.47% for wild-type mice, and 8% for Huntington’s disease
mice). Meanwhile, Ma et al. (2005, 2008) used semi-automatic
segmentation propagation and found a 10.6% shrinkage in ex vivo
brain volumes relative to in vivo brain volumes, and reported
that some parts of the gray matter shrunk from in vivo to
ex vivo whilst others expanded. However, the in vivo and ex vivo
imaging datasets in these studies were acquired from different
mice populations (of the same strain), and the ex vivo specimens
were scanned after physical skull removal, with brain tissue loss
notable from the images. On the other hand, Oguz et al. (2013)
performed single-atlas segmentation-propagation on rat brains
(male Wistar) but found no significant change between the in vivo
and ex vivo datasets for TBV, and structural volumes. Recent work
by Holmes et al. (2017) reported a reduction in the TBV of 10.3%
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between in vivo and ex vivo mouse brain MRI and non-uniform
morphological change using tensor based morphometry (TBM).
Such variance in these different volumetric studies could be
attributed to factors such as animal strain difference, pathological
model diversity and protocol variation of post-mortem tissue
processing. Consequently, these various factors might impact the
accuracy and reliability of quantitative measurements extracted
from ex vivo data.

Our result confirmed the uneven distribution of volumetric
changes across different brain structures, as published studies
have reported (Ma et al., 2005, 2008; Zhang et al., 2010; Schulz
et al., 2011; Holmes et al., 2017). Our study expanded upon
these previous findings by quantifying the volume change for
each individual structure, in both the gray and white matter.
We demonstrated that the post-mortem fixation and perfusion
processes introduce different morphological alterations that
affects different tissue types: after the ex vivo tissue processing,
the majority of gray matter structures shrink, while most white
matter structures expand. Furthermore, the collapse of almost
the entire ventricular space results in a dramatic reduction in
CSF volume ex vivo. These observed changes in gray and white
matter volumes were non-uniformly distributed within each
tissue types. Furthermore, our results showed differences in the
level of volumetric changes across the three groups of mice:
the doxycycline-treated rTg4510s, untreated rTg4510s and wild-
type controls. Such variation in volume changes among ex vivo
tissue types, tissue structures, and between groups, will obviously
complicate the interpretation of morphological analysis using
techniques such as voxel-based morphometry, which relies on the
estimation of proportional volume change between gray matter
and white matter. Therefore, although the ex vivo volumetric
analysis in this study demonstrated superior statistical and
classification power for group difference analysis compared to
the in vivo data acquired at the same time-point, it is, however,
difficult to differentiate the proportion of such improvements
which represent the true biological effect, and the changes that
manifest as a result of the post-mortem tissue processing. For
example, the level of in/ex vivo volume difference of the superior
colliculi is significantly higher in the doxycycline treated group
than the untreated group, as shown in Figure 3D. Therefore, the
increased ex vivo statistical power of the group difference detected
within the superior colliculi (as shown in Figures 4C,E) is, in fact,
a combination of actual biological morphological differences, and
effects originating from the ex vivo tissue processing.

Specifically, ventricular expansion is an important
neuroimaging biomarker for neurodegenerative diseases
such as AD (Nestor et al., 2008; Weiner, 2008). For the ex vivo
ventricular measurements, the ventricle collapse and the loss of
ventricular CSF in the post-mortem brain tissue preservation
process. Our study reported a large ventricles volumetric loss
from in vivo to ex vivo which aligns with previous studies: (Ma
et al., 2008; Zhang et al., 2010).

The white matter expansion is also interesting, which indicates
potential microstructural-level volume expansion of the white
matter tract. Compared to the GM, the WM contains significantly
less water (∼70% vs. ∼85%) and more lipid (16–22/100 g
vs. 5–6/100 g) (Davison and Wajda, 1962). The post-mortem

brain tissue fixation changes various MR indexes significantly,
such as T1, the magnetization transfer ratio (MTR), and the
macromolecular protons fraction, which also differs between GM
and WM (Schmierer et al., 2008, 2010). Such compositional
and signal difference will obviously affect the volume change
to different tissues types. Von Halbach und Bohlen et al.
(2014) proposed an alternative method to conduct post-mortem
ex vivo imaging directly after the animal has been sacrificed,
to prevent the potential volume changes associated with the
preparation of fixed tissues. However, such ex vivo imaging
procedure is inevitably contaminated by the fast post-mortem
tissue degradation (Sun et al., 2015). This becomes even more
significant given the long scanning time of the ex vivo imaging
which easily adds up to several hours. In addition, tissue samples
frequently undergo histological evaluation after ex vivo imaging
to corroborate structural changes with alterations occurring at
the cellular level. The advanced brain tissue decomposition after
long scans will also affect the quality of the histology evaluation
(Von Halbach und Bohlen et al., 2014).

It is worth noting that, the measurements for the ex vivo
images depend highly on the post-mortem tissue processing
protocol in MR microscopy, In the case of this study, the in-skull
brain tissue was soaked in contrast-enhanced agent for 9 weeks
before ex vivo imaging, which would theoretically aggravate the
tissue dehydration. The protocol diversity among various ex vivo
studies should account for a large portion of the difference in
the corresponding results. Therefore, the ex vivo brain structure
volume change reported in the current paper should be regarded
as specific to the active staining tissue processing protocol used
in this study. On the other hand, such variation in the results of
different ex vivo studies emphasize the importance and advantage
of protocol consistency for in vivo measurements.

Comparison Between in vivo and ex vivo
Morphological Analysis
Lerch et al. (2012) have compared the theoretical statistical power
between in vivo and ex vivo imaging, using a pre-determined
variance value with simulated deformation on the hippocampus.
Their result showed that ex vivo imaging provides better
precision and should be preferred if the volume is normalized
to TBV, as the normalization process regress out the effect of
gross brain volume difference between individual animals; while
in vivo measurements give better results on absolute volume
measurements and can provide more accuracy in longitudinal
studies than cross-sectional ex vivo measurements. In a recent
study, Holmes et al. (2017) have conducted power analysis
to determine the required sample size in order to detect a
specific amount of local morphological variation either in vivo
or ex vivo. Careful power analysis is important to determine
the appropriate sample size given effect size. Comparing with
voxel-wise statistical analysis such as TBM (Holmes et al., 2017),
the required sample size to detect volume difference is smaller
for structural-based analysis, as the effect toward all the voxels
in each structure are grouped together if the intra-structural
volume change is homogenous enough. Our findings extended
these theoretical analyses with application to longitudinal in vivo
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analysis on each individual structural volume. Although the
longitudinal analysis based on structure volume change rate
by itself is less powerful to statistically compare and classify
different groups, it indeed showed complementary information
over the single-time-point volume information. We showed that
by combining the both the longitudinal and cross-sectional
in vivo volumetric information, there is an improvement of the
classification power.

In this study, we modeled the longitudinal volume change as a
liner effect for each all structures. However, the change of ratio
might be in fact not linear, and the time that volume change
occurs can be different for different structures (either due to the
nature of the pathological process, or the treatment start to show
effect). Therefore, a model alternative to the linear regression
would potentially represent the actual volume change better and
further improved the in vivo analysis results. Furthermore, by
integrating the volume information with other in vivo assessment
to form multimodality analysis (such as CEST and CBF (Wells
et al., 2015; Holmes et al., 2017) could potentially further improve
the statistical and classification power for the in vivo data.

Specifically, it is interesting that both the in vivo and
ex vivo data of the transgenic mouse at 7.5 months showed
cerebellar shrinkage after doxycycline treatment. The cerebellum
is traditionally considered unaffected in AD, although recent
studies have shown increase evidence that it is also affected during
the AD disease progression (Larner, 1997; Jacobs et al., 2018),
which is also the case for rTg4510 (Xie et al., 2010). However,
further investigations are required to draw connection between
potential neuroprotective or neurotoxicity effect of doxycycline
to the cerebellum, such as the cerebellar plasticity (Ito, 2012), to
help us understand the observation reported in this study.

In this study, we used the w-score (Eq. 3, Figure 4) to visualize
the group difference rather than the raw volume. The advantage
of using w-score is that the volume measurements of each
individual structure are transformed to the reference group mean
and normalized by the reference group standard deviation. This
process standardizes the group difference for all the features to
the same scale, effectively improve the feature-based classification
(Fortin et al., 2017; Rozycki et al., 2017).

In experiments with biological tissues or subjects, the
variations of the individual measurements are often observed.
The presence of outliers may affect the power of statistical
analysis, especially in cases where the sample number is relatively
small This is a common issue that animal studies usually suffer
from, especially when the effect size of the group difference is
small. In this study, we presented a data visualization method
that is capable of pooling the entire dataset within a panorama
figure showing multiple measurements for each individual (as
shown in Figures 3, 4). Moreover, presenting the w-score
of the raw measurement ensures meaningful visualization of
the individual variation while preserving the statistical analysis
results, since all the data are shifted and scaled by the same
number (i.e., the mean and standard deviation of the reference
group). Such data visualization technique is an intuitive way to
demonstrate internal data inhomogeneity on very large databases
(Ma et al., 2018), and in this study, showed individual variations
in small dataset as well. In addition, comparison of different

LME models demonstrated region-specific, group-dependent,
and time-variate individual variations in the longitudinal in vivo
measurement of structure volume.

When classifying the treated and untreated group, the SVM
showed satisfactory results even with the relatively small sample
size (Figures 5, 6), thanks to the relatively large effect size between
the two groups. Never the less, the classification power analysis
result clearly demonstrated the improvement in testing accuracy
after combining cross-sectional and longitudinal in vivo data
when comparing with ex vivo data, although larger sample size is
required to reduce the testing error when the effect size between
the groups is small (Figueroa et al., 2012; Beleites et al., 2013).
Techniques such as bootstrap aggregating (a.k.a bagging) can be
used, along with increasing the number of data, to reduce the
variance in the training, improve the classification accuracy, and
avoid overfitting (Dietterich, 2000).

In the field of preclinical imaging research, we anticipate
that the widely regarded ‘gold standard’ for investigating mouse
models at the macroscopic level to shift from histology to ex vivo
imaging, and later to in vivo imaging. Such a shift in the imaging
paradigm will not only enable the longitudinal assessment of
neuroanatomical changes but will also help reduce the number of
animals dedicated to preclinical studies (Gunn et al., 2012; Home
Office, 2014).

Limitations of the Current Study
In the current study, we used TBV as a normalization term.
However, the TBV itself is a dependent variable toward the
treatment effect (Holmes et al., 2017). A better alternative to
normalized the data should be estimating the total intracranial
volume (TIV) employing tissue classification techniques, which
use expectation maximization to estimate the tissue probability
for each voxel, including gray matter, white matter, CSF, and non-
brain tissues, and estimate the TIV as the summation of all types
of brain tissues (Lemieux et al., 2003; Acer et al., 2007; Ridgway
et al., 2011). However, a tissue probability map is necessary
as prior information to initialize the expectation-maximization
procedure. One of the current limitations in mouse brain MRI
studies is the lack of such accurate tissue probability map. A tissue
classification framework with accurate tissue probability maps
(Sawiak et al., 2013; Powell et al., 2016; Hikishima et al., 2017)
would be beneficial for future preclinical studies.

In the section of classification power comparison, no feature
selection and hyperparameter tuning were performed, and the
selected models and hyperparameters do not necessarily reflect
the optimal choice or value for the group classification for the
current dataset. However, model optimization is not the focus
of this study, and the main purpose of this section of analysis is
to compare the classification performance using the same model
and parameter when applied from the dataset collected from
the same sample but with different measurement (in vivo versus
ex vivo).

Furthermore, in the current study, the in vivo and ex vivo
images were acquired using different imaging protocols with
different scanning sequences and coils, for comparing the best
quality of each. Consequently, the measured in/ex vivo volume
difference is a combination of the biological/pathological change

Frontiers in Neuroscience | www.frontiersin.org 14 January 2019 | Volume 13 | Article 11125

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00011 January 22, 2019 Time: 16:47 # 15

Ma et al. In vivo/ex vivo Mouse Brain Volumetric Analysis

and the measurement difference due to different image quality
(e.g., CNR) between the in vivo and ex vivo images. In an ideal
experiment setup, the same scanning protocol (i.e., the same coil
and scanning sequence) would be used to acquire both in vivo and
ex vivo images in order to have a bias-free comparison to assess
the volume change accurately. This will on one hand effectively
eliminate some confounding factors from the images, but on the
other hand, losing its representation of the best image quality
acquired in real practice. One effort to alleviate such bias in this
study is to down-sample the ex vivo data to the same resolution
of the in vivo data, which reduces the bias that comes directly
from the resolution difference. On the other hand, even with the
similar resolution, the higher GM/WM CNR in the ex vivo data,
as shown in Table 1, helps to improve the automatic structural
parcellation accuracy, and demonstrated higher statistical and
classification power.

In this study, only female mice are used to control the
effect of sex toward the variation of the data. However, sex-
specific differences have been reported in AD (Mielke et al., 2014;
Mazure and Swendsen, 2016; Laws et al., 2018), such as faster
cognitive decline and pathological progression in female than
male (Ferretti et al., 2018). Specifically, the rTg4510 mice model
also showed significantly higher levels of Tau-induced pathology
in female mice at 5.5 months (Yue et al., 2011). Therefore,
the result and conclusion presented in this study can only be
referred to females, and data from both sexes are required to draw
more generous conclusions about the disease specification and
potential treatment effect for precision medicine.

Finally, the variation comes from scanning gradient coil
difference can be alleviated through careful gradient calibration.
Gradient calibration is crucial for MRI to eliminate any
time-dependent gradient shift to ensure the acquired image
represented the tissue volumes accurately. This is especially
important for longitudinal studies across a long period of time,
as well as the comparison between images acquired with different
gradient coil, as in the case of our study. However, unlike clinical
systems, the frequency of gradient calibration for the preclinical
system is sometimes insufficient. By employing the gradient
calibration protocol we developed previously and employed in
this study (O’Callaghan et al., 2014), we detected that the 72 mm
birdcage radiofrequency (RF) coil we used for in vivo scan
comes with around 0.1% gradient shift per month, which will
cause significant system bias for both longitudinal analysis using
in vivo data, as well as analysis comparing in vivo and ex vivo
data acquired from different gradient coil. The effect of such
longitudinal imaging gradients shift has been alleviated through
proper gradient calibration, and the associated biases have been
removed prior to any longitudinal and cross-sectional analysis.

CONCLUSION

In conclusion, in this paper, we presented our study to
compare the volumetric analysis for longitudinal in vivo
imaging and cross-sectional ex vivo imaging using automated
mouse brain MRI structural parcellation. We showed non-
uniformly distributed structural volume changes from in vivo

to ex vivo measurements across different tissue types. We
also demonstrated the effect of mouse strains and drug
treatment toward the in vivo to ex vivo volume change.
Our result demonstrated higher statistical and classification
power using the ex vivo structure volume compared to
the in vivo counterpart, although the volume differences
in the ex vivo data represent a combination of both the
biological/physiological effect as well as the effect due to post-
mortem tissue processing. On the other hand, the in vivo
measurements identified ventricular shrinkage, while ex vivo
measurements were not sensitive to these changes due to the
ventricular collapse during the preparation of the post-mortem
tissues. In addition, we showed that the longitudinal in vivo
imaging provided complementary information other than single-
timepoint measurement. Incorporating the information obtained
from the longitudinal data as additional features significantly
improves the classification power.
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Background: Obsessive-compulsive disorder (OCD) and schizophrenia (SZ) as two

severe mental disorders share many clinical symptoms, and have a tight association on

the psychopathological level. However, the neurobiological substrates between these

two diseases remain unclear. To the best of our knowledge, no study has directly

compared OCD with SZ from the perspective of white matter (WM) networks.

Methods: Graph theory and network-based statistic methods were applied to diffusion

MRI to investigate and compare theWM topological characteristics among 29 drug-naive

OCDs, 29 drug-naive SZs, and 65 demographically-matched healthy controls (NC).

Results: Compared to NCs, OCDs showed the alterations of nodal efficiency and

strength in orbitofrontal (OFG) and middle frontal gyrus (MFG), while SZs exhibited

widely-distributed abnormalities involving the OFG, MFG, fusiform gyrus, heschl gyrus,

calcarine, lingual gyrus, putamen, and thalamus, and most of these regions also showed

a significant difference from OCDs. Moreover, SZs had significantly fewer connections

in striatum and visual/auditory cortices than OCDs. The right putamen consistently

showed significant differences between both disorders on nodal characteristics and

structural connectivity.

Conclusions: SZ and OCD present different level of anatomical impairment and some

distinct topological patterns, and the former has more serious and more widespread

disruptions. The significant differences between both disorders are observed in many

regions involving the frontal, temporal, occipital, and subcortical regions. Particularly,

putamen may serve as a potential imaging marker to distinguish these two disorders

and may be the key difference in their pathological changes.

Keywords: obsessive-compulsive disorder, schizophrenia, diffusion MRI, graphical measures, putamen, network

topology
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INTRODUCTION

Although schizophrenia (SZ) and obsessive-compulsive disorder
(OCD) are described as distinct disorders in contemporary
psychiatry, they actually have notable symptom overlap, and
a tight association on the psychopathological level (Meier
et al., 2014). Schizophrenia is characterized by hallucinations,
delusions, loss of initiative, and cognitive dysfunction (Kahn
et al., 2015), while OCD is featured by recurrent, persistent,
and intrusive thoughts typically causing distress or anxiety and
repetitive behaviors aimed at reducing anxiety (Pauls et al.,
2014). Over the past decades, the relationship between SZ
and OCD has been attracting an increasing attention since
these disorders apparently share some clinical characteristics
(Scotti-Muzzi and Saide, 2017). Both disorders affect male and
female equally, have prevalence rates of comparable magnitude,
a chronic course, and a similar distribution of age-at-onset
(Rabinowitz et al., 2006; Narayanaswamy et al., 2012). However,
the neurobiological substrates and the etiological relationship
between OCD and SZ remain unclear (Pauls et al., 2014;
Kahn et al., 2015). To address the issue, the study evidence
would be more convincing if neurobiological studies are to
demonstrate a distinct difference in neurobiology rather than just
the summation or superimposition of neurobiological alterations
observed in each disorder separately. Hence, it is necessary to
investigate the association between SZ and OCD under the same
methodology and research framework.

The development of promising neuroimaging techniques
(i.e., diffusion tensor image, DTI), with better spatial and
temporal resolutions, will allow more accurate measurements
of the neurological abnormalities in psychiatric disorders. Prior
neuroimaging studies summarized that SZ and OCD shared
common alterations of several crucial regions including caudate,
orbitofrontal cortex (OFC), and thalamus (Gross-Isseroff et al.,
2003). Moreover, a few studies directly comparing SZ with
OCD have reported that both have some pathophysiological
similarities such as deficit of the frontostriatal circuit, but more
structural abnormalities were involved in SZ (Kim et al., 2004).
In recent years, advances in the development and application of
DTI and graph theory methods allow for the investigation of
topological patterns of brain white matter (WM) networks in
vivo (Sporns, 2011; Bullmore and Sporns, 2012). Many studies
have used such a powerful framework to probe alterations of
mental disorders including SZ and OCD (Rubinov and Bassett,
2011; Fornito et al., 2012; Qin et al., 2014; Zhong et al., 2014).
Altered structural connectivity and brain network topology
have been described in SZ patients (Zalesky et al., 2011; Jiang
et al., 2013; Rubinov and Bullmore, 2013; Rubinov et al., 2013;
van den Heuvel and Fornito, 2014; Fornito and Bullmore,
2015), e.g., equivalent small-world organization and reduced
network efficiency were identified in SZ patients (van den Heuvel
and Fornito, 2014). In addition, structural connectome-wide
analyses also reported that disrupted sub-network within frontal-
posterior regions in SZ (Zalesky et al., 2010). The number
of structural network study on OCD is much less relative to
SZ. Specifically, Zhong et al. (2014) first constructed structural
networks based on the DTI data for OCD patients and found

a decrease of nodal efficiency in frontal, parietal regions, and
caudate in the patients. Reess et al. (2016) employed network-
based statistic (NBS) method in the WM networks for OCD
patients and revealed a single decreased structural sub-network
in the patients comprising OFC, striatal, insula, and temporo-
limbic regions. Notably, Crossley et al. (2014) reviewed the
alterations of brain structural networks among many psychiatric
disorders and proposed a “disorder specific” concept which
pointed that OCD showed less disrupted hubs compared with
other severe mental disorders (i.e., SZ).

To the best of our knowledge, so far, no study has directly
compared OCD with SZ from the perspective of anatomical
networks based on WM tracts under the same research
framework. Therefore, we are motivated to use DTI tractography
and graph theory approaches to investigate the topological
organization of the WM network in drug-naive patients with
OCD and SZ, aiming to discover the common and different
patterns of WM deficits between these two patient groups. We
hypothesized that WM network abnormalities will be present
in both SZ and OCD, with the SZ group demonstrating more
serious lesions on network topological organizations than the
OCD group, and both groups showing distinct deficit patterns.

MATERIALS AND METHODS

Participants
Participants including 29 SZs, 29 OCDs, and 65 normal controls
(NCs) were recruited from the inpatient and outpatient services
at The Affiliated Wuxi Mental Health Center of Nanjing
Medical University, China (detailed demographic and clinical
information, please seeTable 1). All patientsmet theDSM-IV-TR
criteria (Association, 2000) and they did not use anti-obsessive-
compulsive or anti-psychotic drugs before the MRI scanning of
this study. The severity of OCD symptoms, severity of depressive
and anxious symptoms were assessed by Yale-Brown Obsessive
Compulsive Scale (Y-BOCS) (Goodman et al., 1989), 24-item
Hamilton Rating Scale for Depression (24-HDRS) (Hamilton,
1967), and Hamilton Anxiety Rating Scale (HARS) (Hamilton,
1959), respectively. As for SZ, the evaluation of disorder severity
and psychopathology was assessed by experienced psychiatrists
using Positive and Negative Syndrome Scale (PANSS) (Kay
et al., 1987). For patients, the assessments of symptoms were
performed in the same day of their MRI scanning. The NCs
were recruited from the local community via advertisements
and free of the history or current diagnosis of any psychiatric
disorder. Moreover, the NCs with a family history of major
psychiatric or neurological illness in their first-degree relatives
were excluded. All recruited participants are right-handed Han
Chinese. Participants were excluded if any of the following
were present: (1) the existence of alcohol or substance abuse or
dependence or concomitant major medical disorder, (2) history
of intracranial pathology or brain injury or any neurological
disorder, and (3) any MRI contraindications. This study was
approved by the Research Ethics Review Board of Wuxi Mental
Health Center, and written informed consents were obtained
from all participants.
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TABLE 1 | Demographic information of the samples in this study.

Variables NC (n = 65) OCD (n = 29) SZ (n = 29) p-value

Age (years) 17–50 (32.35 ± 10.73) 16–43 (26.45 ± 8.12) 16–61 (32.76 ± 10.37) 0.021*

Education (years) 6–23 (13.97 ± 3.66) 6–19 (13.31 ± 2.90) 0–19 (10.93 ± 4.50) 0.002*

Gender (M/F) 41/24 23/6 17/12 0.217#

Handedness (R/L/A) 65/-/- 29/-/- 29/-/- >0.999

Disease duration (years) – 0.5–18 (4.55 ± 4.47) 0.5–20 (3.27 ± 4.37) 0.274

PANSS positive score – – 19–38 (27.62 ± 4.19) –

PANSS negative score – – 8–30 (20.45 ± 4.93) –

PANSS general score – – 22–56 (46.83 ± 6.73) –

PANSS total score – – 53–114 (94.90 ± 11.18) –

Y-BOCS score

Obsession score – 4–20 (12.38 ± 3.77) – –

Compulsive score – 5–15 (8.76 ± 3.00) – –

Total score 9–28 (22.20 ± 5.16)

HARS score – 4–42 (16.17 ± 7.26) –

24-HDRS score – 4–31 (16.93 ± 8.05) –

Data is described as the minimum-maximum (mean± SD). *p-values are obtained using one-way ANOVA tests, while #p-value for the gender distribution in the three groups was obtained

using a x2test. p < 0.05 is considered significant. NC is healthy controls, OCD indicates the patients with obsessive-compulsive disorder, and SZ is Schizophrenia patient. PANSS,

Positive and Negative Syndrome Scale. HARS, the Hamilton Anxiety Rating Scale; 24-HDRS, the 24-item Hamilton Rating Scale for Depression; Y-BOCS, the Yale Brown Obsessive

Compulsive Scale.

Imaging Acquisitions and Preprocessing
Images were acquired with a 3.0-Tesla Siemens Trio Tim with
a 12-channel phased array head coil at the Department of
Medical Imaging, Wuxi People’s Hospital, Nanjing Medical
University. All participants have obtained both DTI data and
high-resolution T1-weighted axial images. The DTI images
were obtained with the following parameters: diffusion was
measured along 64 non-collinear directions (b value = 1,000
s/mm2), and an additional image without diffusion weighting
(i.e., b = 0 s/mm2), TR/TE = 7,000 ms/92ms, flip angle = 90◦,
field of view (FOV) = 256 × 256 mm2, matrix = 128 × 128,
slice thickness/gap = 3/0mm, acquisition voxel size = 2 × 2
× 3 mm3. The high-resolution T1-weighted axial images were
obtained with the following parameters: repetition time/echo
time (TR/TE) = 2530/3.44ms, thickness/gap = 1.0/0mm,
flip angle = 7◦, inversion time = 400ms, matrix = 256
× 256, FOV = 256 × 256 mm2, acquisition voxel
size= 1× 1× 1 mm3.

Image preprocessing was performed using the diffusion
toolbox of functional magnetic resonance imaging of the
brain (FMRIB) software library (FSL, http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/). The preprocessing steps included eddy current
and motion artifact correction, diffusion tensor estimation, and
tractography. Corrections for eddy current distortions and head
motion were performed by applying a rigid-body transformation
of each diffusion-weighted image to the b0 image. Then, the b-
matrix of each sample was reoriented to provide a more accurate
estimate of tensor orientations. The diffusion tensor matrix was
calculated according to the Stejskal and Tanner equation. Three
eigenvalues and eigenvectors were obtained by diagonalization
of the tensor matrix, and then FA maps were computed.
Each b0 image was then registered to Montreal Neurological
Institute (MNI) space through the corresponding T1 image

by using Diffusionkit (Xie et al., 2016) (https://www.nitrc.org/
projects/diffusionkit). The image registration of Diffusionkit is
implemented by NiftyReg which is an open-source software for
efficient medical image registration and mainly developed by
the Centre for Medical Image Computing at University College
London. This transform information was saved for later use. The
diffusion images remained in native space.

Three-dimensional tract reconstruction was implemented
by diffusion toolkit (http://www.trackvis.org). Whole-brain
tractography was obtained using the Fiber Assignment by
Continuous Tracking (FACT) algorithm (Mori et al., 1999) and
the propagation was terminated if either a minimum angle
threshold at 50◦ was violated or a voxel was encountered with
FA below 0.2.

Structural Network Construction
The automated anatomical labeling (AAL) atlas (http://www.gin.
cnrs.fr/en/tools/aal-aal2/) (Tzourio-Mazoyer et al., 2002) with
116 regions (Supplementary Material, Table S1) was employed
as nodes. Using the inverse of the transform information, the
AAL atlas in MNI space was registered into each subject’s native
space. Edges were defined as inter-regional fibers between each
pair of nodes and satisfied the conditions: (1) at least two fibers
with two endpoints passed through pair-wise nodes, and (2)
the length of the passing fibers were >10mm. Here, FA value
was treated as a network connection’s weight. Specifically, each
edge’s FA weight was calculated by averaging the FA values of
all the fibers which constituted this edge, and each fiber’s FA
value was the mean of the FA values of all voxels in this fiber
track. A group threshold was applied to balance the influences
of false-positive and false-negative reconstructions of fibers (de
Reus and van den Heuvel, 2013). At first, edges that were
present in at least 40% of all group members were retained
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TABLE 2 | Specific nodes with significant between-group differences in the network metrics.

Metric Regions p-value (corrected) of ANOVA T-value (p-value) of post hoc test

OCD vs. NC SZ vs. NC OCD vs. SZ

Si MFG.R 0.045 * −2.54 (0.006) −3.43 (<0.001) NS

Si ORBmid.R 0.001 * −4.72 (<0.001) NS −4.17 (<0.001)

Si LING.L 0.019 * NS −4.16 (<0.001) 2.41 (0.010)

Si PUT.R 0.026 * NS −3.75 (<0.001) 2.33 (0.012)

Si Cere8.R 0.041 * NS −2.95 (0.002) 3.19 (0.001)

Ei MFG.R 0.034 * −2.0 (0.025) −3.70 (<0.001) NS

Ei ORBmid.R 0.061 −3.0 (0.002) NS NS

Ei ORBinf.R 0.028 * NS −4.01 (<0.001) 3.30 (<0.001)

Ei ORBsupmed.R 0.034 * NS −3.28 (<0.001) 3.2 (0.001)

Ei CAL.L 0.034 * NS −3.60 (<0.001) 2.18 (0.017)

Ei LING.L 0.034 * NS −3.97 (<0.001) 2.09 (0.021)

Ei FFG.R 0.034 * NS −3.55 (<0.001) 2.28 (0.013)

Ei PUT.R 0.034 * NS −3.26 (<0.001) 2.54 (0.007)

Ei THA.R 0.041 * NS −3.32 (0.003) 1.68 (0.049)

Ei HES.L 0.041 * NS −2.93 (0.002) 1.68 (0.049)

Si was nodal strength. Ei was nodal efficiency.

NS indicated no significant results.

*indicated that the p-value was survived after FDR correction.

OCD, Obsessive-Compulsive Disorder; SZ, Schizophrenia; NC, Normal Controls; L, left; R, right.

MFG, Middle Frontal Gyrus; ORBmid, orbital part of Middle Frontal Gyrus; LING, Lingual Gyrus; PUT, Putamen; Cere8, Cerebelum_8; ORBinf: orbital part of Inferior Frontal Gyrus;

ORBsupmed, medial orbital part of Superior Frontal Gyrus; CAL, Calcarine Fissure and Surrounding Cortex; FFG, Fusiform Gyrus; THA, Thalamus; HES, Heschl Gyrus.

while others were set to zeros in each group. Then, all edges
that were present in at least 40% of the entire samples were
retained. All subsequent analyses were conducted on this group
threshold network.

Network Measure Analysis
For global network characteristics, we employed network
strength and global efficiency. For local network measures, we
computed two popular network metrics including nodal strength
and nodal efficiency. Their formalmath definitions andmeanings
have been described in Rubinov and Sporns (2010), and we also
presented these descriptions in the Supplementary Materials.
These measures were calculated on WM network of each
subject by using the Brain Connectivity Toolbox (http://www.
nitrc.org/projects/bct/) (Rubinov and Sporns, 2010). Due to
the age differences among groups, the interaction between
age and network metrics within each group was regressed
out, respectively. All comparisons involving the network
metrics were analyzed using one-way ANOVAs, separately.
To address the problem of multiple comparisons in the
ANOVA tests, a false discovery rate (FDR) (Benjamini and
Hochberg, 1995) correction was implemented with the threshold
of q = 0.05. The post-hoc pair-wise comparisons were then
performed using independent t-tests. A value of p < 0.05 was
considered significant.

NBS Analysis
NBS was proposed by Zalesky et al. (2010), which was a
nonparametric method to eliminate the multiple comparison
problem encountered when conducting mass univariate

significance tests. Statistical significance was detected for specific
subsets of nodes that are connected in topological space. Due
to the comparisons among three groups, we first used NBS to
conduct a one-way ANCOVA analysis and age was as a covariate.
The general calculation procedures were as below. First, a
primary threshold (F-value= 2.2) was applied to an F-test, which
was calculated for each edge to construct a set of suprathreshold
connections. This identified all the possible mutually connected
components (or sub-networks) in a WM network at the primary
threshold level. Then, the size of the actual remaining sub-
network s was determined. To estimate the significance of
each sub-network, the null distribution of the sub-network size
was empirically derived using a nonparametric permutation
approach (5,000 permutations). For each permutation, all of
the samples were randomly shuffled among the groups, and
the F statistic was computed independently for each edge.
Afterwards, the same threshold was applied to retain edges above
this threshold and the maximal sub-network size was restored.
Lastly, corrected p-value was determined by calculating the
proportion of the 5,000 permutations for which the maximal
shuffled sub-network was greater than s. The post-hoc pair-
wise comparisons were then performed using independent
t-tests and also set age as covariate in NBS. The processing
steps of independent t-tests were similar to those of the above
one-way ANCOVA, except the steps of suprathreshold edges
establishment in which conducted a t-test for each edge rather
than F statistic. All the pair-wise group comparisons were
conducted 5,000 permutations and set p < 0.05 (uncorrected)
as thresholds. A value of p < 0.05 (corrected) was considered
significant results.
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Hub Distribution Analysis
Here, betweenness centrality was used to define a hub node and
its formal definition was presented in Supplementary Materials.
We applied the Euclidean distance to assess the dissimilarity
of hub distributions among the group of SZ, OCD, and NC.
Briefly, we first defined an 1 × N probability vector for each
diagnostic group (N = 116 was the total number of nodes).
For each diagnostic group, the entry f i of the probability vector
represented the probability of being hub for node i, normalized
by the number of samples in this group (hence f i values ranged
from 0 to 1). Next, we calculated the Euclidean distance based on
these probability values between any two groups.Mathematically,
the distance D of pair-wise groups was defined as:

D =

√

√

√

√

√

N
∑

i=1

(f G1i − f G2i )

2

, i = 1, . . . ,N (1)

where the superscripts G1 and G2 indicated different groups.

RESULTS

Difference in Network Measures
Significant group effects on network strength (F = 5.61,
p = 0.005) and global efficiency (F = 9.64, p < 0.001) were
observed in the analyses of the three groups. Post hoc analyses
revealed a significantly decreased network strength in the SZs
compared with NCs and OCDs (p = 0.001 for SZs VS. NCs,
p = 0.021 for SZs VS. OCDs). Global efficiency was significantly
decreased in the SZs compared with NCs and OCDs (p < 0.001
for SZs VS. NCs, p= 0.002 for SZs VS. OCDs).

Significant group effects on nodal strength and nodal
efficiency among the three groups were observed in the four
frontal regions [right middle frontal gyrus (MFG), right orbital
part of middle frontal gyrus (ORBmid), right orbital part of
inferior frontal gyrus (ORBinf), and left medial orbital part
of superior frontal gyrus (ORBsupmed)], two temporal regions
[right fusiform gyrus (FFG) and left heschl gyrus (HES)], and
two subcortical nucleis [right thalamus (THA) and right putamen
(PUT)] (Table 2 and Figure 2). Post hoc analyses found most
of these regions exhibited a reduced nodal strength and nodal
efficiency in SZs compared with OCDs and NCs. Specifically,
the SZs displayed significantly lower nodal efficiency in the right
ORBinf, right ORBsupmed, right FFG, left HES, right THA and
right PUT than OCDs, and NCs. Notably, the right PUT in
nodal strength was also reduced in SZs relative to OCDs and
NCs. Compared with NCs, the rightMFG andORBmid indicated
reduced nodal strength and nodal efficiency in OCDs. Only the
right MFG was disrupted in both OCDs and SZs, with a lower
nodal strength and nodal efficiency than NCs. All these network
metric results were also plotted in a bar figure as shown in
the Supplementary Figure S2. Moreover, we have computed the
small-worldness characteristics for the three groups (OCD, SZ,
and NC), and observed that all groups exist this characteristics,
but there was no significant pair-wise group differences among
the three groups (F = 1.45 and p = 0.238 for one-way

ANOVA analysis, as shown in the Supplementary Figure S3).
Additionally, we also calculated the correlations between network
metrics and the clinical scale scores (i.e., Y-BOCS scale and
PANSS scale) for OCD and SZ, respectively, and we only found
that the sum scores of Y-BOCS is significantly correlated with the
right ORBmid in nodal efficiency (r = 0.61, p = 0.0023), which
was shown in the Supplementary Figure S4.

Difference in Structural Connectivity
Patterns
NBS analysis of structural connectivity found significant
differences among the three groups (p < 0.001, corrected
for multiple comparisons). Post hoc comparisons revealed
the three significantly different sub-networks between the
groups (Table 3 and Figure 2). (1) Compared with NCs,
OCDs showed significantly fewer connections among frontal-
limbic areas (corrected p = 0.026) including the bilateral
dorsolateral part of Superior Frontal Gyrus (SFGdor) and the
right medial part of Superior Frontal Gyrus (SFGmed)], and
the left Anterior Cingulate and paracingulate Gyri (ACG).
Additionally, (2) SZs had significantly fewer connections in
the main cortices and subcortical nuclei than NCs (corrected
p < 0.001), which involved the occipital regions (i.e., the
bilateral CAL, right cuneus, right SOG, right LING, and right
inferior occipital gyrus), parietal regions (i.e., the right superior
parietal gyrus, inferior parietal gyrus, and postcentral gyrus),
temporal regions (i.e., the right FFG), limbic system (i.e.,
the right parahippocampal gyrus), and basal ganglia (i.e., the
right PUT and pallidum). Interestingly, (3) OCDs displayed
significantly more connections between the basal ganglia (i.e.,
PUT and pallidum) and visual/auditory cortices (i.e., cuneus and
postcentral gyrus) than SZs (corrected p < 0.001).

The Dissimilarity of Hub Distribution
A node was identified as hub if its probability of being hub
in a group was larger than 50%. Nineteen, 23 and 24 hubs
were determined for NC, OCD, and SZ group, respectively
(Figure 1). Euclidean distance was used to assess the dissimilarity
of hub distribution between the groups. The higher Euclidean
distance was, the more dissimilarity between groups had. As
a result, the Euclidean distance was 0.38 between OCDs and
NCs, 0.54 between SZs and NCs, and 0.58 between OCDs and
SZs, suggesting that OCDs and NCs had the most similar hub
distribution, while OCDs and SZs had more disparity.

DISCUSSION

This work is the first attempt to directly compare the topological
alterations of WM networks in drug-naive patients with SZ
and OCD as well as NC. Three primary findings were as
below: (1) for global network characteristics, as indicated by
reduced network characteristics, the organization of the WM
networks was significantly disrupted with a distinct abnormal
pattern in each disease, and more abnormalities were located
in SZs than OCDs. Moreover, as indicated by dissimilarity of
hub distribution, OCDs, and NCs had the most similar hub
distribution, while OCDs and SZs showed more disparity; (2)
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FIGURE 1 | Hub distribution of each group. It was shown the hub whose probability of being hub was >50%. OCD, Obsessive-Compulsive Disorder; SZ,

Schizophrenia; NC, Normal Controls. L, left; R, right. SFGdor, dorsolateral part of Superior Frontal Gyrus; TPOsup, Temporal Pole part of superior temporal gyrus; INS,

Insula; PUT, Putamen; HIP, Hippocampus; PoCG, Postcentral Gyrus; PCL, Paracentral Lobule; PCUN, Precuneus; SPG, Superior Parietal Gyrus; MOG, Middle

Occipital Gyrus; CAU, Caudate nucleus; DCG, Median cingulate and paracingulate gyri; STG, Superior Temporal Gyrus; ORBsup, orbital part of Superior Frontal Gyrus;

SFGmed, medial part of Superior Frontal Gyrus; ORBsupmed, medial orbital part of Superior Frontal Gyrus; PreCG, Precental Gyrus; SOG, Superior Occipital Gyrus.

the SZs displayed significantly lower nodal efficiency or nodal
strength in the PUT, THA, and OFC than OCDs; (3) the SZs
displayed significantly less connections between the basal ganglia
and visual/auditory cortices than OCDs. Figure 2 summarized
the nodal metrics and NBS results.

Disrupted Global Topological Organization
in WM Networks
Network strength and global efficiency significantly decreased
in the SZs compared with NCs and OCDs, but they were no
significant difference between OCDs and NCs. These findings are
largely consistent with previously observed network alterations
in patients with SZ (Zalesky et al., 2011; van den Heuvel and
Fornito, 2014; Fornito and Bullmore, 2015). Only very few studies
have examined alterations in structural networks in OCD using
graph theory methods. A clear and consistent result regarding
whether network-level measures exhibit significant differences
between OCD and NC is still lacking, as discrepancies have been
observed. Kim et al. (2013) focused on cortical thickness and
reported no clear distinction between OCD and NC in terms of
network-level efficiency measures (i.e., global efficiency). Zhong
et al. (2014) defining structural networks based on diffusion
data, reported decreased global efficiency in OCD. In contrast,
(Reess et al., 2016) only found OCD patients showed a trend
for a reduced global degree strength and total fiber count, which
did not reach a significant level. These differing effects may be
due to the limited statistical power of studies examining a small
sample and the differences in the characteristics of recruited
patients (i.e., disease severity level and cultural background) or
research strategies utilized (i.e., imaging protocols) across studies.
Moreover, previous studies also reported that SZ represented
a more severe biological disturbance with greater neurological
abnormalities than OCD (Kim et al., 2003; Ha et al., 2005;
Riffkin et al., 2005). Lower network strength was associated with
the sparse connectivity of networks, whereas decreasing global
efficiency reflects an altered global integration of WM networks

and is majorly related to long-range connections. This finding
implies a gradient in the extent of alterations such that SZ
> OCD, which suggests SZ has more serious damage to the
efficiency of global information interaction across the wholeWM
network, while OCD has a relatively intact network organization.

In addition, the hub distribution analyses revealed that OCD
and NC had the most similar hub distribution, while those
between OCD and SZ were more disparity. Hub architecture
serves as a foundational backbone supporting communication
among functionally specialized networks (van den Heuvel et al.,
2012). These dissimilarities of both disorders suggest they have
distinct hub distribution patterns, which implicates the different
information interaction processes in the pathological statuses.

Disorder-Related Distinctions of Regional
Characteristics in WM Networks
Findings from the regional characteristics identified a decrease of
nodal efficiency in SZs relative to both OCDs and NCs involving
a wide range of regions (i.e., the right PUT, THA, ORBinf,
ORBsupmed, FFG, and the left HES). In SZ, these regions have
exhibited abnormalities in a broad range of studies (Konrad and
Winterer, 2008; Zalesky et al., 2011; Wang et al., 2012; Zhang
et al., 2012). Moreover, OCD was mainly showed a reduction
of nodal efficiency in the frontal regions (i.e., right MFG and
ORBmid). Such abnormalities have been reported in prior OCD
studies (Zhong et al., 2014). The classical neurobiological models
of OCD suggest that the disturbance of cortico-striato-thalamo-
cortical (CSTC) circuits (i.e., OFC, ACG, and striatum) play a
crucial role in the pathophysiological mechanisms underlying
OCD (Menzies et al., 2008; Harrison et al., 2013; Piras et al.,
2013). Unlike OCD, it is hard for SZ to summarize its abnormities
into a circuit. Consistent studies reported widespread alterations
of regional morphology, volume, WM integrity, and network
properties in the thalamus, frontal, temporal, and parietal
cortices in SZ patients (van den Heuvel and Fornito, 2014;
Wheeler and Voineskos, 2014; Fornito and Bullmore, 2015).
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FIGURE 2 | Summarizing network characteristics and network-based statistic results. All nodes were assigned to different functional networks. ECN, Executive

Control Network; BGN, Basal Ganglia Network; SAN, Salient Network; VN, Visual Network; DAN, Dorsal Attention Network; AN, Auditory Network; DMN, Default

Mode Network; SMN, Sensorimotor Network. Si , Nodal strength; Ei , Nodal efficiency. MFG, Middle Frontal Gyrus; ORBmid, orbital part of Middle Frontal Gyrus; LING,

Lingual Gyrus; Cere8, Cerebelum_8; ORBinf, orbital part of Inferior Frontal Gyrus; CAL, Calcarine Fissure and Surrounding Cortex; FFG, Fusiform Gyrus; THA,

Thalamus; HES, Heschl Gyrus; CUN, Cuneus; PHG, Parahippocampal Gyrus; IOG, Inferior Occipital Gyrus; IPL, Inferior Parietal (but supramarginal and angular gyri);

ROL, Rolandic Operculum; PAL, Pallidum.

Our findings are in line with the prior studies. Nodal efficiency
quantifies the importance of a node for the communication
within a network (Rubinov and Sporns, 2010). An aberrant nodal
efficiency reflects abnormalities in inter-regional connectivity.
These alterations indicate that SZ is widely disrupted in inter-
regional connectivity and affects the efficiency of information
communication across the whole network, while OCD mainly
altered in the frontal regions. Additionally, most of these altered
regions have significant differences between these two disorders,
which may be a valuable marker for distinguishing them. Thus,
WM network analyses have sufficient sensitivity to identify the
distinctions between SZ and OCD.

This study also found a significant decrease in nodal strength
and efficiency common to both SZ and OCD groups in the right
MFG. The abnormal right MFG has been reported in prior WM
network studies of SZ (Wang et al., 2012) and OCD (Zhong et al.,
2014). The MFG plays a vital role in executive control, attention,
and working memory, which is involved in the pathogenesis of
SZ (Kikinis et al., 2010; Fornito et al., 2012; Quan et al., 2013)
and OCD (Muller and Roberts, 2005; Nakao et al., 2009; Snyder
et al., 2015). Nodal strength provides a simple measure of direct
interaction. Thus, a reduced nodal strength and efficiency of
the right MFG implies an abnormal information transfer of this
region in both disorders, which may contribute to the common
symptoms of these disorders to some extent.

Disorder-Related Distinctions of
Sub-networks in WM Networks
As depicted in Figure 2 and Table 3, it was shown different
abnormalities when comparing the two disorders with the NCs
individually. The number of impaired sub-network in OCD
was smaller than those of SZ. The abnormalities of OCD are
located within the frontal–limbic system, while SZ predominately
pertains to BGN, dorsal attention network (DAN), and visual
network (VN). These disrupted network connections are most

documented in many previous studies of SZ (Jiang et al., 2013;
Cordon et al., 2015; Tu et al., 2015; Jimenez et al., 2016) and
OCD (Piras et al., 2013; Goettlich et al., 2014; Reess et al., 2016).
In addition, the connections of BGN–visual/auditory cortices
were the major differences of both disorders. More wide-range
decrease in functional network connections involving sensory
and subcortical regions have been observed in patients with SZ
(Kaufmann et al., 2015; Skåtun et al., 2016). Altered sensory
processing provide inaccurate input to higher order regions (i.e.,
frontal regions), which may result in maladaptive activities and
adaptations in neural circuits. Then, these maladaptations may
feed back into sensory processing circuits and produce a loop
for persistent disturbances within the brain network, which may
lead to the clinical manifestations observed in SZs. This finding
suggests that the clinical symptoms of SZ and OCDmay underlie
different biological bases in the brains.

Notably, in this study, whatever using which analyses
methods, the right PUT consistently exhibited significant
decrease in nodal strength/efficiency and more sparse
connections in the SZs compared with OCDs. Moreover,
these decreases also displayed in SZs relative to NCs, but they do
not appear in OCDs. The PUT has a close association with the
pathological mechanism of SZ (Wang et al., 2012). In fact, when
investigating the involvement of putamen in SZ, the key findings
are to do with the dopamine system, the symptoms and the site
of antipsychotic drug action (Hall et al., 1994; Dazzan et al.,
2005; Farid and Mahadun, 2009). Moreover, the gray matter
volume of putamen showed a potential to be a transdiagnostic
marker of vulnerability to psychopathology including of SZ
and OCD (Gong et al., 2018). Our data implicates that the
WM abnormality of right PUT may aggravate the burden on
the information transform efficiency in SZ, but this region is
relatively intact in OCD. The way of information interaction
in the right PUT are different between SZs and OCDs, and
the former has a serious abnormality. Taken collectively,

Frontiers in Neuroscience | www.frontiersin.org 7 February 2019 | Volume 13 | Article 96136

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Qin et al. Distinctions Between OCD and SZ

TABLE 3 | Sub-network with significant between-group difference based on

post-hoc of NBS analysis.

Network edges Network t- and p-Value

OCD vs. NC

SFGdor.R–SFGdor.L ECN–ECN t = 2.29, p < 0.05

SFGdor.R–ACG.L ECN–Limbic t =2.22, p < 0.05

SFGmed.R - ACG.L ECN–Limbic t =1.95, p < 0.05

SZ vs. NC

CAL.L–CAL.R VN–VN t =3.22, p < 0.005

CAL.L–CUN.R VN -VN t =2.30, p < 0.025

CUN.R–SOG..L VN–VN t =2.41, p < 0.005

PHG.R–FFG.R Limbic–DAN t =2.99, p < 0.005

CAL.R–FFG.R VN–DAN t =2.20, p < 0.025

IOG.R–FFG.R VN–DAN t =2.82, p < 0.005

SPG.R–IPL.R DAN–ECN t =2.29, p < 0.025

ROL.R–PUT.R AN–BGN t =5.88, p < 0.005

CUN.R–PUT.R VN–BGN t =5.85, p < 0.005

LING.R–PUT.R DMN–BGN t =2.31, p < 0.025

SPG.R–PUT.R DAN–BGN t =3.06, p < 0.005

PoCG.R–PAL.R SMN–BGN t =2.50, p < 0.005

SPG.R–PAL.R DAN–BGN t =2.21, p < 0.025

OCD vs. SZ

ROL.R–PUT.R AN–BGN t =5.09, p < 0.005

CUN.R–PUT.R VN–BGN t =4.29, p < 0.005

PoCG.R–PUT.R SMN–BGN t =2.29, p < 0.025

PoCG.R–PAL.R SMN–BGN t =2.39, p < 0.025

SFGdor, dorsolateral part of Superior Frontal Gyrus; SFGmed, medial part of Superior

Frontal Gyrus; ACG, Anterior Cingulate and Paracingulate Gyri; SOG, Superior Occipital

Gyrus; TPOsup, Temporal Pole part of Superior temporal gyrus; CUN, Cuneus; PHG,

Parahippocampal Gyrus; IOG, Inferior Occipital Gyrus; SPG, Superior Parietal Gyrus; IPL,

Inferior Parietal (but supramarginal and angular gyri); ROL, Rolandic Operculum; PoCG,

Postcentral Gyrus; PAL, Pallidum.

these evidences highlight the importance of the PUT in the
understanding of pathophysiology of SZ and OCD.

Limitations and Conclusions
There may be potential heterogeneity in current patient cohort,
like symptom-based subgroup taxonomy for OCD (Calamari
et al., 2004). To identify potential subtypes of OCD, it requires
special research strategy and data for a large cohort of patients
in the future study. In case of SZ, use of traditional subtypes
is now uncommon in the scientific literature (Braff et al.,
2013). It is noteworthy that these patients are drug-naive
participants, who were unaffected by either psychotherapy or
psychopharmacotherapy. A prior study reported that the use of
antipsychotic drugs in SZ patients was related to the occurrence
of an obsessive-compulsive symptom (Schirmbeck and Zink,
2013). Hence, this confounding factor was excluded in this study.
We also note that the current study does not completely age-
matched between two patient groups although most of their age
range from 18 to 45 years. Therefore, we conducted an additional
age-matched analysis using subsets of patients (see validation
of age-matched samples in the Supplementary Materials) and
found that the main results have a good reproducibility,

suggesting that the findings are robust and reliable, and the age
has little effect on our main results. Finally, it certainly requires
more experimental evidence to support the clinical application of
our findings. And one of the first considerations is the reliability
of our used measurements. In clinical practice, the reliability of
any tool and measurement should reach at least larger than 0.8
(Xing and Zuo, 2018). However, we cannot directly assess the
reliability of our used network metrics because of the only one
time scanningDTI image of each volunteer. But the prior relevant
DTI network studies suggested that this kind of network and its
popular network metrics such as nodal strength had a substantial
reliability (Buchanan et al., 2014), especially Yuan et al. (2018)
reported that FA weights were more suited for DTI connectome
studies in adolescents. We will take into account to include the
reliability of employed measures in our future work.

In summary, this study investigates the association of SZ
and OCD in the perspective of the topological organization of
WM networks under the same research framework. It was found
that these two disorders have the different level of anatomical
impairment and some distinct topological patterns. As for the
impairment levels, SZ is more serious than OCD. Regarding the
deficit patterns, the alterations of OCD predominately pertain
to the frontal regions (i.e., OFC and MFG). But SZ exhibits a
wide range of abnormal patterns involving main cortices (i.e., the
frontal, parietal, occipital, and temporal region) and subcortical
nuclei (i.e., striatum and THA). Moreover, the nodal efficiency of
the frontal and temporal regions, as well as striatum can reflect
the differences in the two disorders, which may be a valuable
marker for distinguishing them, especially to the PUT which
may be closely related to these disorders. It is our aim that this
information will improve and add value to further research to
determine the nature of OCD and SZ.
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Background: Previous diabetes mellitus studies of cognitive impairments in the early
stages have focused on changes in brain structure and function, and more recently the
focus has shifted to the relationships between encephalic regions and diversification
of network topology. However, studies examining network topology in diabetic brain
function are still limited.

Methods: The study included 102 subjects; 55 type 2 diabetes mellitus (T2DM) patients
plus 47 healthy controls. All subjects were examined by resting-state functional magnetic
resonance imaging (rs-fMRI) scan. According to Automated Anatomical Labeling, the
brain was divided into 90 anatomical regions, and every region corresponds to a
brain network analysis node. The whole brain functional network was constructed
by thresholding the correlation matrices of the 90 brain regions, and the topological
properties of the network were computed based on graph theory. Then, the topological
properties of the network were compared between different groups by using a non-
parametric test. Finally, the associations between differences in topological properties
and the clinical indicators were analyzed.

Results: The brain functional networks of both T2DM patients and healthy controls
were found to possess small-world characteristics, i.e., normalized clustering coefficient
(γ) > 1, and normalized characteristic path length (λ) close to 1. No significant
differences were found in the small-world characteristics (σ). Second, the T2DM patient
group displayed significant differences in node properties in certain brain regions.
Correlative analytic results showed that the node degree of the right inferior temporal
gyrus (ITG) and the node efficiencies of the right ITG and superior temporal gyrus of
T2DM patients were positively correlated with body mass index.

Conclusion: The brain network of T2DM patients has the same small-world
characteristics as normal people, but the normalized clustering coefficient is higher
and the normalized characteristic path length is lower than that of the normal control
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group, indicating that the brain function network of the T2DM patients has changed.
The changes of node properties were mostly concentrated in frontal lobe, temporal lobe
and posterior cingulate gyrus. The abnormal changes in these indices in T2DM patients
might be explained as a compensatory behavior to reduce cognitive impairments, which
is achieved by mobilizing additional neural resources, such as the excessive activation
of the network and the efficient networking of multiple brain regions.

Keywords: type 2 diabetes mellitus, resting-state functional magnetic resonance imaging, graph theory,
functional network, small-world, topological properties

INTRODUCTION

Diabetes is a metabolic disease characterized by long-term
hyperglycemia, which may cause various complications such as
microvascular disease, retinopathy, kidney disease and peripheral
neuropathy. In severe cases, diabetes can be fatal. Statistics
produced by the International Diabetes Federation in 2015
indicated that the number of diabetes patients was about 415
million, and predicted that it would reach up to 642 million by
2040 (Ogurtsova et al., 2017). In China, the rate of diabetes cases
has approximately doubled in the last 10 years. The incidence of
diabetes in China is 11.6% and the number of diabetics is more
than 100 million, both of which are the highest in the world. Type
2 diabetes mellitus (T2DM) patients account for around 90% of
cases of diabetes mellitus (Holman et al., 2015), the morbidity of
which has been increasing over the years. Consequently, diabetes
has become one of the most critical health issues in China
(Ning, 2018).

Previous studies have shown that T2DM can result in various
cognitive deficits in the early stages of the disease, including
lapses in concentration, hypomnesis, visual impairment, and
declines in information processing speed and executive capacity
(McCrimmon et al., 2012). In extreme cases, these cognitive
deficits can develop into dementia. At present, the rapidly rising
incidence of diabetes and its associated cognitive impairments
has become a major issue. Although some progress has been
made with regard to determining the cognitive impairments
caused by T2DM, the underlying neuronal mechanisms of the
disorder are still not well understood.

Recently, resting-state functional magnetic resonance imaging
(rs-fMRI) has been used to study the underlying pathogenesis of
many kinds of central nervous system diseases, including those
which affect brain metabolism (Zhang L.J. et al., 2014; Zhou X.Q.
et al., 2014). As an emerging non-invasive diagnostic tool, rs-
fMRI can be applied to explore and distinguish impaired and
normal cognitive function in patients with diabetes mellitus.

The brain network analysis method based on graph theory
is mainly used to explore the potential mechanism of normal
human brain and various brain diseases, and it is found that
the brain function networks of normal people and brain diseases
patients have small-world characteristics (Supekar et al., 2009;
Zhang et al., 2011; Lei et al., 2015). He et al. (2007) successfully
built the first human brain structure network in 2007 and
found that it has small-world characteristics. They found that
the brain network topology of AD patients has changed (He

et al., 2008). They also confirmed the existence of stable small-
world characteristics by studying the brain structure network
of multiple sclerosis patients (He et al., 2009). Since then, this
method has been adopted in many researches (Zhang et al., 2011;
Suo et al., 2015; Xiao et al., 2015).

The graph theory-based network analysis has only been used
in patients with T2DM to investigate brain structure. Zhang
L.J. et al. (2014) discovered that the white matter network
topology (including the efficient of global properties and central
sulcus on right side cover) of T2DM patients is changed, and
this kind of abnormal network structure is associated with the
impairment of executive function observed in these patients. By
taking advantage of fiber tracer diffusion magnetic resonance
imaging and the method of graph theory, Reijmer et al. (2013)
and others found that both local and global network properties
of T2DM patients are changed. The abnormal network structure
was associated with the information processing speed of patients
and was independent of age, sex, education, white matter
hyperintensities, lacunar infarct and other factors. There have not
been any reports of the changes of brain gray matter functional
network topology properties in T2DM patients. Cui et al. (2015)
analyzed the differences in default mode network (DMN) of
T2DM patients, finding out that T2DM patients were associated
with impaired DMN function. With independent component
analysis (ICA) methods, Chen et al. (2015) found abnormal
functional connections between DMN, left frontal network and
sensorimotor network in T2DM patients, but found no abnormal
functional connections in other resting-state networks. With
the same methods, Xia et al. (2015) investigated whether the
attention network had changed in T2DM patients, and explored
the relationship between abnormal functional connection of
attention network and cognitive behavior.

The rs-fMRI brain network analysis method based on graph
theory has become one of the hotspots in the study of normal
human brain and neuropsychiatric diseases. It can explore the
functional connections between the whole brain and the local
brain regions, but it has not been widely used in the study of
diabetes. Understanding the abnormal patterns of the brain’s
functional network can help to find a new way to treat and
evaluate the diagnosis of diabetes.

In the present research, we compared the diversity of entire
brain functional network topology properties between T2DM
patients and healthy controls by adopting graph theory-based
brain network analysis together with rs-fMRI. We also explored
the relationship between the changes in brain functional network
topology properties and clinical variables and the neurocognitive
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scale, and discussed the influence of relative cognitive obstacles
and possible mechanism that it may have on patients. The results
of the present study will provide a theoretical basis for diabetic
pathophysiology and clinical presentation, and evidence for the
need for early treatment and prognostic evaluations.

MATERIALS AND METHODS

Subjects
The study subjects were selected from a total of 154 potential
participants: 91 patients with T2DM at Henan Provincial
People’s Hospital, and 63 healthy volunteers from the physical
examination center. Fifty two subjects were excluded from
the study, including 36 patients with T2DM (5 patients
with incomplete clinical data, 6 patients with excessive head
movement during fMRI scan and 25 patients who did not meet
the inclusion criteria), and 16 healthy controls (1 individual with
excessive head movement (translational movement > 1.5 mm
or rotation > 1.5) during fMRI scan and 15 subjects that failed
to meet the inclusion criteria). The remaining 102 subjects were
included in the study: 55 patients in the T2DM group and 47 in
the healthy control group. All subjects were right-handed, and
were informed of the specific content of the study and voluntarily
signed informed consent.

The inclusion criteria are as follows: (1) after oral glucose
tolerance test (OGTT) T2DM was diagnosed in accordance
with the diagnostic criteria published by the World Health
Organization in 1999 (American Diabetes Association, 2014); (2)
age 40–75, course of T2DM > 1 year. The exclusion criteria
were as follows: (1) functional insufficiency of heart, lung, liver
and kidney; (2) hyperthyroidism, hypothyroidism and other
systemic diseases; (3) infection, ketoacidosis, hyperosmolarity,
severe hypoglycemic coma or other urgent complication; (4)
anxiety, depression or other neuropsychiatric disease that affects
cognitive function; (5) cerebral hemorrhage, cerebral infarction,
cerebral trauma, vascular dementia or other disease or medical
history that incurs central nervous system injury; (6) recently
taken medication that is likely to affect cognitive function; (7)
drug taking or alcohol dependence; (8) failing to complete
required test items because of intolerance or other factors; (9)
MRI contraindication.

The inclusion criteria of healthy controls (Healthy Controls
Corresponding to Type 2 Diabetes Mellitus, T2HC) were
as follows: (1) age, gender, highest level of education and
handedness are matched to those of the T2DM patients; (2)
the OGTT result does not conform to the diagnostic criteria of
T2DM published by the World Health Organization in 1999; (3)
Montreal Cognitive Assessment Scale (MoCA) grade is normal.
The exclusion criteria are the same as described above.

Clinical and Cognitive Scale Test
Before fMRI scanning, the following clinical characteristics were
recorded: gender, age at diagnosis, diabetic course, MoCA, height,
weight, glycosylated hemoglobin (HbAlc), fasting blood glucose,
total cholesterol (TCHOL), glycerin trilaurate (TG), high density
lipoprotein (HDL), and low density lipoprotein (LDL). The

course of T2DM was defined as the time elapsed from when the
patient was diagnosed with T2DM to the time of fMRI scanning.
Height and weight were used to calculate body mass index (BMI)
of subjects: BMI = weight (kg)/height (m2). BMI< 18.5 is defined
as slim, BMI = 18.5–23.9 is normal, BMI ≥ 24 is overweight,
BMI = 24–26.9 is fat, BMI = 27–29.9 is corpulent, BMI ≥ 30 is
severely obese, BMI ≥ 40 is extremely obese.

The MoCA was used to evaluate the integral cognitive
function of all subjects, and the test was performed according
to standard procedures. The test was carried out in a quiet
environment. At the same time, subjects were expected to be
relaxed, conscious and non-contradictory. The test assessed 8
cognitive domains: visual space and executive function, attention,
memory, naming, abstract thinking, language, delayed recall
and orientation. The MoCA is commonly used to screen for
Mild Cognitive Impairment (MCI), for which it displays high
sensitivity (Hobson, 2015). The MoCA test result has a total score
of 30 points, with a final score ≥ 26 being considered normal.

Rs-fMRI Data Acquisition
Subjects were scanned under resting conditions using a 3.0T
superconducting magnetic resonance imaging system and a
Siemens 8-channel head coil. During scanning, subjects were
instructed to take the supine position, close their eyes but do not
sleep, and try to keep their body motionless. Head movement
was limited with a foam pad, and the subject’s hearing was
protected with foam earplugs or earphones. First, regular MRI
scanning was conducted to detect brain abnormalities, then echo
planar imaging (EPI) was used to collect resting-state brain
function. The scan parameters were as follows: TR = 2000 ms,
TE = 30 ms, seam thickness = 5 mm, FOV = 240 × 240 mm2,
matrix = 64 × 64, voxel size = 3.75 × 3.75 × 5 mm3, FA = 90◦,
acquisition 210 time points, the total scan time is 420 s. Subjects
were asked to close their eyes, relax and keep their head
motionless, and try to keep a clear head without much thinking
before the functional scanning. After the scan was complete, the
respondents were asked to cooperate, and those who did not
cooperate well were excluded from the study.

Data Preprocessing
Data preprocessing analysis was conducted in the MATLAB
2017a software environment by using the GRETNA graph-
based network analysis toolkit. First, data from the first 10
time points were removed to exclude the problem of magnetic
field uniformity, then time layer correction of rs-fMRI data
was performed, and moving 3 mm horizontally or rotating
in the direction of x, y, and z axis as standard strip head
dynamic data. The fMRI images were normalized after head-
movement correction by using the MNI-152 standard template
of brain anatomy of the Neurological Research Institute,
Montreal, Canada, by matching the structure and function
images of the subjects and resampling data (voxel size was
3 mm × 3 mm × 3 mm). Next, linear drift and low frequency
filter (frequency 0.01–0.08 Hz) were taken to correct the influence
of linear frequency drift and high-frequency physical noise;
doing Gaussian smoothing to normalized graph, it was treated
with 4 mm height and a half full width, smooth kernel size
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is 4 × 4 × 4. Finally, removal covariate included the impact
of 6 head parameters (3 translation parameters and 3 rotation
parameters), the whole mean signal, white matter, cerebrospinal
fluid signal, age and gender.

Network Construction
Node Definition
A network is composed of many nodes and the edges of the
connection between these nodes. In brain networks, nodes
represent brain regions and edges represent the degree of
statistical dependence of blood oxygenation level dependent
(BOLD) imaging between different brain regions. In the article,
brain is divided into 90 cortices and cortical interest areas.

Edge Definition
For every subject, we chose average time list of 90 brain regions,
then, calculated the correlation coefficient between the mean time
series value of the two brain regions (spread all brain regions,
such as the i-th brain area and the j-th brain area), which as the
functional connection metric between them. Last, obtained was a
90 × 90 correlation matrix, which is called a weighed functional
connection matrix. According to the predefined threshold (see
threshold selection below), we converted the weighed functional
connection matrix to a binary adjacency matrix. If the absolute
value of the correlation coefficient between any two brain regions
was less than the given threshold, it was recorded as 0, otherwise
it was recorded as 1.

Network Analysis
Threshold Selection
The number of sides of each brain network is different. To correct
for this difference, we applied the sparse threshold (S) range to
the relative matrix to ensure the brain network of every subject
contained the same number of sides. For every subject, S is
defined as the ratio between the actual number of edges and the
highest possible number of edges. Because there has not any exact
means to define the choice of single threshold at present, previous
brain network analysis study used the range of S to thresholding
every relative matrix repeatedly. The selection criteria should
meet the following two conditions: (1) the minimum of S should
meet average node degree in every thresholding network that
id 2log(N), and N is node number; (2) the maximum of node
should be satisfied with small-world characteristics scalar σ and
that is bigger than 1.1. After above process, it would produce
a range of S, that is pitch is 0.01 and S between 0.1 and
0.34. Network of this threshold range produced can guarantee
small-world characteristics estimation with sparse attribute and
minimal pseudo-side. The subsequent brain network analysis will
calculate the global network properties and node properties in the
order of each sparsity level.

Network Parameters
Global properties include: (1) small-world parameters, which
includes cluster coefficient, characteristic path length, normalized
cluster coefficient, normalized characteristic path length, and
small-world characteristics; (2) network efficiency, which
includes global efficiency, and component efficiency. Node

properties include: (1) node degree; (2) node efficiency; and (3)
the betweenness of node.

Statistical Analysis
Demographic and Clinical Data Statistical Analysis
Statistical analysis of the clinical data of the subjects included in
the study was performed by using the SPSS 22.0 software package.
The chi-squared test was used to compare the gender differences
between groups. The measurements of other variables (age,
BMI, course of disease, glycosylated hemoglobin, fasting blood
glucose, total cholesterol, triglyceride, high density lipoprotein,
low density lipoprotein and MoCA analog scale) were analyzed
by using two-sample t-tests. p < 0.05 was deemed to be
statistically significant.

Statistical Test of Network Properties Between
Groups
Because area under the curve (AUC) describes the topology
properties of brain network generally, and it can select single
threshold calculation independently, moreover, it is highly
sensitive about topology structure of brain disease abnormally. As
a result, AUC of every topology attribute was selected as statistical
sample (Suo et al., 2015). The AUC for a general metric Y can
be defined as the AUC for calculating the sparsity range from
S1 to Sn (the interval is ∆S) (Figure 1), and it’s formula can be
described as Lei et al. (2015):

YAUC
=

1
2

N−1∑
k=1

[
Y(Sk)+ Y(Sk−1)

]
•1S

To determine whether there are inter-group differences in
network properties, the non-parametric permutation test is used
to test the AUC of each network attribute in the two sets of
samples. It is divided into the following steps:

(1) Building the null hypothesis. It is assumed that there is no
difference between the means of the two statistical samples.

(2) Determining inspection level α, which is designated as 0.05.

FIGURE 1 | The calculation of area under the curve (AUC). S1 = 0.10,
Sn = 0.34, ∆S = 0.01.
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(3) Calculating test statistic of previous two groups’ samples.
(4) To determine whether the differences between groups

of network properties could occur accidentally, a sample
is selected at random without replacement from sample
observation (two samples get together) so as to regroup,
then replacement statistical tests of two samples, AUC after
stochastic grouping were computed.

(5) Setting the number of random packets, for example 10,000
times, repeat step 4 1,000 times, then get a empirical
exampling distribution of replacement statistical tests.

(6) Adopting 95% of every empirical exampling distribution as
critical value of null tail test of the null hypothesis. This kind
of mistakes is kept within 0.05, and calculating odds is p.

(7) With regard to the inspection level (significance level)
given by step 2, and according to the principle of small
probability, conclusion is drawn.

It is worthwhile to note that before taking statistical test, the
effects of age, sex and other parameters need to be removed
by multiple linear regression to ensure the differences between
groups of every network properties are caused by diseases. To
solve multiple comparative problems, use calibration methods
of false discovery rate (FDR) proposed by Benjamini-Hochberg,
which is to correct the p-value after difference between each
network attribute group.

Correlation Analysis Between Network Properties
and Clinical Parameters
After determining the differences in network properties between
the groups, we examined the relationship between these

TABLE 1 | Demographic data and clinical Features of type 2 diabetes mellitus
patients and the corresponding control group.

Characteristics Mean ± SD P-value

Type 2 diabetes
mellitus (n = 55)

Control group
(n = 47)

Gender
(male/female)

35/20 21/26 0.073

Age 53.31 ( ± 9.05) 53.34 ( ± 7.68) 0.919

Course of disease
(years)

8.87 ( ± 6.42) – 0.112

BMI 25.37 ( ± 2.85) 25.20 ( ± 2.80) 0.761

HbA1c 8.15 ( ± 1.78) – 0.001

GLU 9.59 ( ± 3.04) – 0.842

CHOL 4.42 ( ± 1.10) 4.81 ( ± 0.87) 0.054

TG 2.05 ( ± 2.41) 1.55 ( ± 0.82) 0.152

HDL 0.98 ( ± 0.24) 1.21 ( ± 0.33) 0.001

LDL 2.51 ( ± 0.90) 2.77 ( ± 0.64) 0.100

MoCA 25.36 ( ± 1.74) 27.79 ( ± 1.90) 0.001

All calculations were carried out in SPSS 22.0. Double-tailed chi-squared test
was used for gender variables. Other measurement variables were tested with
two-sample t-test. For all tests, p < 0.05 was considered statistically significant.
Values in bold indicate statistically significant differences. BMI, body mass index;
HbA1c, glycated hemoglobin; GLU, fasting blood glucose; CHOL, cholesterol; TG,
triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MoCA,
Montreal Cognitive Assessment score.

differences and the clinical parameters of T2DM, with the age and
gender as cointegration variables. Clinical parameters include
BMI, course of disease, glycated hemoglobin, fasting blood-
glucose, total cholesterol, triglyceride, high-density lipoprotein,
low-density lipoprotein, and MoCA score.

RESULTS

Demographic Data, Clinical Data, and
Cognitive Scale
The results of demographic data, clinical features and cognitive
scales of all subjects are shown in Table 1. The MoCA grade of
the T2DM group is greater than 26, which is seen as cognitive
dysfunction. There were no significant differences between the
T2DM and T2HC groups in gender, age, BMI, TCHOL, TG,
or LDL, but there were differences between the groups in HDL
and MoCA scores.

Small-World Brain Functional Network
In the given threshold range, compared with the random
network, the brain function networks of the two groups have
small-world characteristics, i.e., the normalized cluster coefficient
is >1, and the normalized feature path length is close to 1
(Figure 2). These results are consistent with previous studies of
small-world networks.

Comparison of Network Topology
Properties Between T2DM Patients
Group and Healthy Controls
There was at least one brain region with significant difference
in the comparison between record node properties groups
(after correlation of FDR, p < 0.05). Compared with T2HC,
T2DM patients displayed higher global properties (Eglob),
local attribute (Eloc) and cluster coefficient (Cp), and lower
characteristic path length Lp (Figure 3). There was no significant
difference between the groups in normalized cluster coefficient
(γ), normalized characteristic path length (λ) or small-world
characteristics (σ) (p> 0.05).

Compared with those of the T2HC control group, the
T2DM group displayed increased node degree in the following
brain regions: bilateral lenticular putamen and right inferior
temporal gyrus (ITG). The T2DM group displayed increased
node efficiency in the following brain regions: left central sulcus,
left insula, bilateral lenticular putamen and right ITG. The T2DM
group displayed increased betweenness of node in the following
brain region: right ITG (Table 2).

Correlation Analysis Between Abnormal
Network Topology Properties and
Clinical Parameters
The node degree, node efficiencies and the betweenness of node
of the right ITG of the T2DM group were positively correlated
with BMI (r = 0.3115, p = 0.0206; r = 0.3060, p = 0.0231;
r = 0.3175, p = 0.0182, Figure 4). There was no significant
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FIGURE 2 | Relationship between the small-world characteristics parameters of brain networks (normalized cluster coefficient and normalized characteristic path
length) and sparsity of the brain function network. (A) Normalized cluster coefficient (γ) is > 1, and (B) normalized characteristic path length is close to 1, which
shows that the brain functional networks in both groups have small-world characteristics. T2DM, type 2 diabetes mellitus patients; T2HC, matched healthy controls.

correlation between all global and other node properties and all
clinical indicators (p> 0.05).

DISCUSSION

This study examined the topological differences in brain function
networks of T2DM patients, based on graph theoretical analysis
of rs-fMRI data. The main results were as follows: (1) Global
properties: the brain function network of T2DM has small-
world characteristics as healthy controls. (2) Node properties:
compared with healthy controls, the T2DM group have notable
changes in insula, lenticular putamen, central sulcus, ITG and
other brain regions. (3) Related analysis: the node degree of
the right ITG, and the node efficiency of the right inferior and
superior temporal gyrus of the T2DM group are all positively
correlated with BMI. The excessive activation indices of the
T2DM group may be explained as a compensatory behavior,
which may reduce cognitive impairment by mobilizing additional
neural resources. These findings provide a new perspective of
how changes in brain functional topology properties may be
related to cognitive function.

Change of Global Properties
The human brain is a complex network in multiple space and
time scales with many important topology, which include small-
world characteristics, modular and highly connected networks of
the core brain areas (Sporns, 2011). Complex network usually
contains regular, small-world and stochastic networks, and these
networks are judged by cluster coefficient and characteristic
path length. The rule network has higher cluster coefficient and
longer characteristic path length, and the random network has
shorter characteristic path length and lower cluster coefficient.
However, the small-world lies between the rule and random
networks, which not only has rule network similar to highly
clustering coefficient, but also short feature path length similar

to a random network (Liang et al., 2010). The small-world
network is the best balance between global integration of brain
function activities and global specialization, which supports the
two most basic organizational principles of the human brain
(functional integration and separation of functions) (Rubinov
and Sporns, 2010). Small-world characteristics can keep the
network efficient, specific modular information and fast global
information transmission (He and Evans, 2010). Previous studies
showed that small-world characteristics exist in brain structures
and functional networks, and changes in topology properties
may lead to a variety of neuropsychiatric disorders, such as
Alzheimer’s disease (Supekar et al., 2008), depression (Zhang
et al., 2011), epilepsy (Liao et al., 2010), and post-traumatic stress
disorder (Lei et al., 2015). Although the topology properties of
these diseases display various changes, as a general rule, the more
the network topology properties deviate from small-world, the
more disordered the brain function is.

Cluster coefficient and characteristic path length can all
indicate that the process of transferring networks from small-
world networks to rule network or random networks. Zhang
found that the overall efficiency of the white matter network is
reduced in T2DM, and characteristic path length is increased, and
that the global properties and node efficiency of the central sulcus
are positively correlated with executive function (Zhang et al.,
2016); Reijmer found that global efficiency and cluster coefficient
are reduced, and characteristic path length is increased. The
abnormality of these structural networks is related to the slow
speed of information processing observed in patients (Reijmer
et al., 2013). These findings are essentially in agreement with the
results observed in the diabetic brain network by Wang et al.
(2016) by using the fMRI technique. In contrast to the results
of the aforementioned study, in the present study we found
that T2DM patients have higher normalized cluster coefficient
and lower characteristic path length, which are typical features
of a small-world network. Similar changes have been observed
in MCI. For example, Wang et al. (2014) found there was a
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FIGURE 3 | Topological differences in brain function networks between type 2 diabetes mellitus (T2DM) and matched healthy control (T2HC) groups. Compared with
the T2HC group, the global properties (Eglob), local attribute (Eloc), and cluster coefficient (Cp) of the T2DM group were higher, and the characteristic path length (Lp)
was lower. There were no significant differences between groups in normalized cluster coefficient (γ), normalized characteristic path length (λ), or small-world
characteristics (σ). The ordinate is the area under the curve (AUC) value for each attribute. Black asterisks indicate a significant difference between the two groups.

higher normalized cluster coefficient when sparsity threshold
was in the range 0.10–0.18, but normalized characteristic path
length was lower over the entire range of threshold. This means
that the cognitive impairments of the diabetics that participated
in the study were mild, and that they do not show the same
small-world characteristics as healthy controls. The increasing
of the cluster coefficient indicates that the local brain network
is enhanced in patients with diabetes mellitus. However, the
decrease of the characteristic pathway length indicates that the
ability for information transfer between remote regions of the
brain in patients with diabetes is enhanced. It is speculated that
the brain function of patients with diabetes mellitus may be
impaired in the early stages of cognitive impairment. Under
compensatory mechanisms, its ability for local information
and remote information processing is enhanced, showing the
information processing mechanism consistent with MCI; but

with the further development of diabetes (Wang et al., 2014).
The impairment in brain function is more severe than in T2DM
patients. Having lost the ability to compensate, its long-distance
information transmission ability drops.

This study also found that patients with diabetes mellitus
have higher global and local efficiency, which may mean that
the functional integration ability of the whole brain network
and the information processing ability of the local sub-networks
are enhanced, which is in accordance with the small-world
characteristics results. The changes of these network parameters
were much ascribe to metabolic disturbance of diabetics, needing
the whole brain network to compensation for the increase of the
overall integration efficiency. However, inconsistent results were
found in previous studies of diabetic brain network structure
(Reijmer et al., 2013; Zhang et al., 2016), and this difference may
stem from differences in subjects and modes. Although the trends
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TABLE 2 | Brain areas with significant differences in node centricity between the
Type 2 diabetes mellitus (T2DM) and matched healthy control (T2HC) groups.

Brain region P-value

Node
betweenness

Node degree Node
efficiency

T2HC < T2DM

Left rolandic
operculum

0.3123 0.0110 0.0026

Left insula 0.3203 0.0072 0.0022

Left putamen 0.4287 0.0014 0.0004

Right putamen 0.3673 0.0002 0.0002

Right inferior
temporal gyrus

0.0020 0.0016 0.0008

Values in bold indicate statistically significant differences (correlation of FDR,
expected threshold level α = 0.05). T2DM, type 2 diabetes mellitus; T2HC, matched
healthy controls.

of the changes in these network parameters are inconsistent, they
all illustrate the abnormality of the brain network efficiency in
patients with diabetes mellitus.

The changes in the global topological properties of these brain
networks indicate the abnormality of neural network structure
in diabetes mellitus. Given that the small-world characteristics
are not affected, the brain network is thus compensated with the
high efficiency by global integration and local separation after
cognitive function of diabetics is impaired, which makes this
characteristic more obvious than the normal person.

Change of Node Properties
Consistent with the increased network efficiency, we also found
the brain areas of the nodes in the patients with diabetes, the brain
regions involved in the patients included the superior frontal
gyrus, olfactory cortex, posterior cingulate gyrus, occipital gyrus
and superior temporal gyrus. In functional studies of diabetes, the
superior frontal gyrus was associated with cognitive impairment,
and T2DM patients showed worse executive and memory
skills in high working load memory tasks (Chen et al., 2014;

Zhang et al., 2015). In addition, a reduction in the brain surface
area of patients was also found in a previous study (Peng et al.,
2015). Findings in the temporal gyrus and ITG in patients with
diabetes mellitus are as follows: the cortex of cortical white matter
decreased and was related to memory defects (Yau et al., 2009);
the relationship between white matter damage and memory
loss is closely related (Zhang J. et al., 2014); the decrease of
functional activity is closely related to memory decline, and
occurs earlier than atrophy (Zhou X. et al., 2014); these findings
are consistent with the region of the advanced cognitive function.
The node properties of the right temporal gyrus and ITG were
positively correlated with BMI of T2DM patients, but obesity is a
crucial factor affecting many metabolic disorders in patients with
diabetes mellitus (Zhou and Xue, 2006). The results confirm that
the changes of brain network topology in patients with diabetes
have a relationship with obesity.

Previous studies have shown that the temporal and frontal
lobes are the main brain areas involved in the cognitive
impairment of diabetes. Evidence of structural and functional
abnormalities of the frontal-temporal brain region in patients
with diabetes mellitus is as follows: using diffusion tensor imaging
(DTI) technology, Yau et al. (2009, 2014) found that the gray
matter and white matter microscopic abnormalities of T2DM
patients were mainly located in the frontal and temporal lobes,
and participated in language memory disorders. Last et al. (2007)
used continuous arterial spin label imaging to reveal temporal
and frontal blood flow in T2DM patients. Using structural
MRI and PET techniques, García-Casares observed a reduction
in gray matter density and glucose metabolism in the fronto-
temporal brain regions in T2DM patients after controlling for
other vascular risk factors (Garcíacasares et al., 2014). Zhou
et al. used rs-fMRI technology to detect diffuse amplitude of
low frequency fluctuation (ALFF) changes in MCI patients
with diabetes, including in the temporal lobe and frontal lobe
(Zhou X. et al., 2014). These findings indicate that the fronto-
temporal brain region is associated with impairments in cognitive
functions such as information processing speed, memory and
emotion (Yau et al., 2009, 2014; Hsu et al., 2012). The posterior

FIGURE 4 | Scatter plots of brain region and clinical index node properties with statistically significant correlations. (A) Node degree of the right inferior temporal
gyrus of the type 2 diabetes mellitus (T2DM) group was positively correlated with body mass index (BMI); (B) Node efficiency of the right inferior temporal gyrus of
the T2DM group was positively correlated with BMI; (C) The betweenness of node of the right inferior temporal gyrus of the T2DM group was positively correlated
with BMI.
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cingulate gyrus, as the core node of the DMN, plays a key role
in the cognitive process, and it is used to predict the biological
markers of MCI converting to early Alzheimer’s disease. Recent
studies have shown a reduction in the value of the posterior
cingulate gyrus ALFF that is highly correlated to the MoCA
scale, besides, its dysfunction of the functional connection with
multiple brain is more indicative of the specific impairment of
memory function (Qin et al., 2016). Studies conducted by Cui
and others have also confirmed that the decrease of functional
connectivity in the posterior cingulate cortex in the DMN is
related to cognitive behavior (Cui et al., 2015). Therefore, it is
speculated that the node properties abnormality in the posterior
cingulate cortex is related to cognitive impairments in T2DM
patients, such as information processing speed, emotion, memory
and executive ability.

CONCLUSION

This study examined the brain network topology of T2DM
patients by using graph theory-based analysis of rs-fMRI, and
found that both global and node properties were changed.
Compared with healthy controls, the normalized cluster
coefficient and characteristic path length showed stronger small-
world characteristics, indicating that the impairment in cognitive
function is slight, and multiple brain regions make up an efficient
sub-network that compensates for the small-world characteristic
of the normal human brain. The changes of node properties
were most prominent in the temporal and frontal lobes, and
posterior cingulate gyrus, and the abnormality of node properties
in these brain areas is related to the changes of brain cognitive
function, which is a similar finding to those in previous studies.
Consequently, inferring the efficient integration of functional
networks of T2DM patients, sub-networks composed of multiple
brain regions compensate for their impairment of cognitive
function. Thus, the global properties and node properties
results are activated excessively. The main limitations of the
present study include: (1) This study used the AAL template
to divide the cerebrum into 90 brain regions (nodes), and
omits the epencephal. In previous brain network research,
there is no gold standard template for the division of brain
regions. (70 brain regions of automatic matching and non-
linear imaging anatomical marker mapping, 116 brain regions
including epencephal, 90 brain regions adopted by this study).
To avoid the influence of the varying node definitions of the
different brain atlas templates, future studies should establish and
use a unified standard template. (2) This study only examined
the MRI data of diabetic patients in the resting state, and did not
investigate the structural image data at the same time. The brain
is a complex network system with both anatomical and functional
connections. If a combination of brain function and structure of
patients can be analyzed, more powerful evidence for the changes

of the topological properties of the diabetic brain network will be
obtained. Future studies should combine multi-modal imaging
data to establish these relationships, and these will provide more
accurate interpretation of the neural mechanisms of patients
with diabetes mellitus. In short, the combination of fMRI and
graph theory for investigation of brain function in diabetes has
just begun. Future research will focus more on the complex
function and connection network properties of the patient’s brain
in the resting state, and will have potential significance for the
early treatment, control and management of the disease and
prevention of its complications. (3) Three diagnostic criteria
for T2DM patients were published by WHO in 1999. One of
them (OGTT) was used in this study, which may cause bias
in the research results. In future studies, the other two criteria
should be considered to improve the reliability of the results.
(4) In this study, age and gender were used as covariates when
performing correlation analysis between network properties and
clinical parameters, but the diagnosis was not used as covariates.
In future studies, clinical diagnostic parameters (such as BMI,
etc.) should be used as covariates, which may improve the
reliability of the results.
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Background and Purpose: Hemifacial spasm (HFS) is a rare neuromuscular disorder

characterized by unilateral, involuntary, and paroxysmal contractions of orofacial

muscles. To elucidate the central neural mechanisms of HFS, we investigated brain gray

matter and resting-state functional connectivity (rsFC) in HFS patients.

Methods: Thirty patients with HFS and 30 age- and sex-matched healthy participants

consented to the study. T1-weighted structural magnetic resonance imaging (MRI)

and resting-state BOLD images were collected in all participants. Cortical gray

matter thickness was assessed, and subcortical volumetric analysis was performed.

Seed-based rsFC analysis was performed on structurally abnormal regions in HFS

patients. Post hoc correlations with HFS severity and measures of mood (i.e., depression

and anxiety) were performed to characterize rsFC alterations.

Results: There were no significant differences in cortical thickness in HFS patients

compared to healthy controls. Patients with HFS presented smaller right amygdala

volume in contrast to healthy controls (q < 0.05, false-discovery rate corrected). We

found that the right amygdala had increased rsFC with bilateral medial prefrontal

cortex (mPFC), bilateral orbital frontal cortex (OFC), and left posterior insula (L postIns;

voxel-wise p < 0.05, family-wise error corrected). Moreover, the connections of

amygdala–postIns and amygdala–mPFC were positively related to HFS severity and

anxiety, respectively.

Conclusions: This is the first study to show structural and functional brain abnormalities

in HFS. The volumetric and rsFC amygdala abnormalities were potentially driven by HFS,

providing novel insights into HFS pathophysiology.

Keywords: hemifacial spasm, subcortical volumetric analysis, functional connectivity, facial spasm score,

affective disorders

INTRODUCTION

Hemifacial spasm (HFS) is a neuromuscular movement disorder characterized by unilateral,
involuntary, and paroxysmal contractions of the muscles innervated by the facial nerve (1, 2).
The spasm usually originates from the orbicularis oculi muscle of the eyelid, and as the disease
progresses, spasms spread to the orbicularis oris and buccinator muscles (1, 3). Even though HFS is
not a life-threatening condition, it inevitably causes various degrees of visual and verbal disabilities,
which can be distressing and lead to social phobia (4).

It is widely considered that HFS is caused by vascular contact to the facial nerve in the
cerebellopontine angle cistern (5, 6); however, to date, only two studies have evaluated gray
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matter abnormalities in HFS patients. The first study by Bao et al.
(7) found that patients with HFS showed reduced gray matter
volume (GMV) in the thalamus, putamen, pallidum, amygdala,
and parahippocampal gyrus compared to healthy volunteers. The
second study, however, found that HFS patients had decreased
GMV in the right inferior parietal lobule and increased GMV
in the cerebellar lobule compared to controls (8). It should be
noted that both studies employed voxel-based morphometry
(VBM) to investigate GMV abnormalities (9). Surface-based
analyses (SBAs) can detect thickness differences in the cortical
sheets between patients and healthy controls. This method
accounts for interindividual anatomical variability of the cortical
surface through gyral and sulcal geometry, which can directly
measure cortical thickness and areas with subvoxel precision
(10). This increases the sensitivity to gray matter abnormalities.
To the best of our knowledge, no study has applied SBA to
determine whether there are cortical thickness abnormalities in
HFS patients. However, SBA is limited to cortical regions, and
thus, subcortical structures must be evaluated through other
volumetric means.

Resting-state functional connectivity (rsFC) is a functional
magnetic resonance imaging (fMRI) method used to
probe temporal correlations in spontaneous, low-frequency
fluctuations across functionally related but structurally distinct
brain regions without designated tasks (11). Furthermore,
this technique is also suitable for revealing the functional
reorganization in intrinsic brain networks in various pathological
states (12, 13). To date, no studies have investigated rsFC in
HFS. The only study to detect functional abnormalities in HFS
investigated signal coherence [or regional homogeneity (ReHo)],
a measure of time series similarity in a voxel and its neighbors.
The authors found that patients with HFS showed decreased
ReHo values in the middle frontal gyrus (MFG) and middle
cingulate cortex (MCC), and increased ReHo in the precentral
gyrus and brainstem (14). Nevertheless, they were unable to
investigate the rsFC alterations in the brain associated with
structural abnormalities in the patient group. Besides, it remains
unknown whether alterations of gray matter or rsFC are related
to disease characteristics and mood disorders, such as anxiety
and depression in HFS. It is possible that the social phobia
experienced by patients may be linked to brain abnormalities.

Therefore, the objectives of this study are to (1) identify
cortical thickness and subcortical volume changes in
HFS patients and (2) determine whether these structural
abnormalities are related to rsFC abnormalities. Next, we will
test whether these abnormalities are associated with the severity
of disease and degree of mood disorders.

METHODS

Participants and Neuropsychological
Assessment
Thirty primary HFS patients were recruited from the department
of neurology at the First Affiliated Hospital of Xi’an Jiaotong
University. Inclusion criteria were as follows: disease duration>6
months and typical hemifacial muscle spasms with involuntary

and intermittent onset, as independently diagnosed by two
experienced physicians. Exclusion criteria included secondary
HFS caused by tumors and cysts, organic brain disorders,
significant premorbid psychiatric or neurological history, no
history of microvascular decompression surgery or botulinum
neurotoxin injection, and contraindication to MRI scans (e.g.,
claustrophobia). Thirty age- and sex-matched healthy volunteers
also enrolled in this study. Participants had no history of
psychiatric or neurological illness, and no history of alcohol or
drug abuse. Written informed consent was obtained from all
subjects prior to participation in accordance with the Declaration
of Helsinki.

All subjects underwent a structured clinical interview and
completed a brief psychological assessment, including the
Hamilton Depression Scale (HAM-D) and Hamilton Anxiety
Scale (HAM-A). In addition, patients withHFSwere also assessed
by the Cohen evaluation scale to quantify severity of facial
muscle spasms [0–4 scale: 0 = none; 1 = increased blinking
caused by external stimuli; 2 = mild, noticeable fluttering, not
incapacitating; 3 = moderate, very noticeable spasm, mildly
incapacitating; 4= severely incapacitating (unable to drive, read,
etc.)] (15).

Structural and Functional Magnetic
Resonance Imaging Data Acquisition
Neuroimaging data from patients with HFS and healthy controls
were acquired using the GE Signa HDxt 3.0-T MRI system
with an eight-channel head coil. Three-dimensional anatomical
images were acquired using a magnetization-prepared rapid
acquisition gradient echo (MPRAGE) sequence [time of
repetition (TR) = 10.7ms, time of echo (TE) = 4.9ms, flip angle
(FA) = 15◦, in-plane resolution = 1 × 1 × 1mm, matrix size =
256 × 256, field of view (FOV) = 256 × 256mm, scan duration
= 4min and 51 s]. Next, a resting-state fMRI scan was collected
for each subject using gradient echo–echo planar imaging (GRE-
EPI; 150 volumes per slice, TR = 2,000ms, TE = 35ms, FA =

90◦, in-plane resolution = 3.75 × 3.75 × 4mm, matrix size =

64 × 64, FOV = 240 × 240mm). Participants were asked to
keep their eyes closed and to remain awake during resting-state
fMRI. Finally, diffusion-tensor imaging was also collected after
the T1-weighted and resting-state fMRI, but was not discussed in
this study.

Measurements of Cortical Thickness and
Subcortical Volumes
Each T1-weighted MRI was processed using FreeSurfer (version
5.3.0, http://surfer.nmr.mgh.harvard.edu) with its standard
processing pipeline to generate cortical surface models and
measure cortical thickness and subcortical volumes. Briefly, for
each T1-weighted volume, gray and white matter tissues were
segmented, followed by a three-dimensional reconstruction of
the gray matter surface and the cortical mantle. The cortical
sheet is now represented by vertices, rather than voxels,
as it is represented by a surface. Then, cortical thickness
at every vertex was determined by computing the distance
between the boundary of white matter and the pial boundaries
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of the gray matter surface. Surface maps were generated
following registration of all individuals’ cortical reconstructions
to a common average template. Finally, surface maps were
smoothed with a 10-mm full width at half maximum (FWHM)
Gaussian kernel.

Whole-brain vertex-wise analysis of cortical thickness was
performed using the Qdec module implemented in FreeSurfer,
with a general linear model (GLM) examining group differences.
Maps showing significant group differences between patients and
healthy controls were generated by thresholding the images of
t statistics with false-discovery rate (FDR) correction of p <

0.05 at cluster level followed by a cluster-forming threshold of
p < 0.001, marking the cortical regions with significant changes.
In addition, a volumetric analysis of subcortical structures was
performed based on the FreeSurfer subcortical segmentation
pipeline. These volumes were compared using t tests and further
corrected for multiple comparisons using FDR control with a
q < 0.05.

Resting-State Functional Magnetic
Resonance Imaging Connectivity
The resting-state fMRI data were analyzed using FSL (Version
5.0) and included removal of the first five volumes, slice timing
and head motion correction, realignment, spatial normalization
(to MNI space), spatial smoothing using an 8-mm isotropic
Gaussian kernel, temporal band-pass filtering (0.01–0.1Hz),
and elimination of nuisance signals including head motion
parameters from MCFLIRT (part of FSL), white matter signal,
and cerebrospinal fluid signal by exacting their mean time series.

To examine rsFC changes related to the morphological
abnormalities in HFS patients, regions with significant between-
group differences of cortical thickness or subcortical volumes
were extracted as seed regions. The subcortical seed region was
defined by getting the 95% maximum intensity value of this
region of the Harvard–Oxford Subcortical Structural Atlas in
the standard MNI template space. Then, correlation coefficients
between the mean time series of each seed and time series of
every voxel throughout the rest of the brain were calculated as
rsFC map, which was further converted to z values using Fisher’s
z transformation to improve normality. A permutation-based
two-sample t test was run to generate group-level-difference
maps of rsFC for each seed region and then corrected for
multiple comparisons with a family-wise error (FWE) rate
of p < 0.05.

Quality Control of Structural and
Functional Magnetic Resonance Imaging
During the structural and functional MRI analysis, we inspected
any artifact that could affect processing, including segmentation,
normalization, etc. In addition, 7 subjects (5 patients and 2
controls) with head motion of any volume more than 1.5mm or
1.5◦ were excluded in further MRI data analysis, leaving a total
of 53 participants (25 patients and 28 controls, details seen in
Table 1) in this study.

TABLE 1 | Summary of demographic characteristics and psychiatric tests

between patients with HFS and healthy controls.

Characteristic HFS (n = 25) HC (n = 28) p-value

Age (years) 48.32 ± 11.59 48.96 ± 12.27 >0.05

Sex >0.05

Male 11 12 >0.05

Female 14 16

Disease duration (years) 3.61 ± 3.55 N.A.

Cohen scores 2.93 ± 0.77 N.A.

Psychiatric tests

HAM-A scores 5.21 ± 2.73 0.33 ± 0.91 0.000*

HAM-D scores 5.04 ± 2.85 0.28 ± 0.90 0.000*

HFS, hemifacial spasm; HC, healthy controls; Cohen scores, spasm severity rating via the

Cohen evaluation scale; HAM-A, Hamilton Anxiety; HAM-D, Hamilton Depression; N.A.,

not assigned. Values given as mean ± standard deviation.

*Significant difference between groups.

Association of Functional Connectivity to
Clinical Indices in Patients With Hemifacial
Spasm
Spearman correlation coefficients were calculated to evaluate the
relationship between clinical variables (Cohen evaluation scale,
HAMD score, and HAMA score) and functional connectivity
values from group-level-difference clusters of rsFC analysis using
SPSS software version 18.0. A p-value of <0.05 was considered
statistically significant after correction for multiple comparisons
with Bonferroni test.

RESULTS

Demographics and Neuropsychological
Assessment
Patients with HFS and healthy controls were matched well for
age (48.32 ± 11.59 years old for patients and 48.96 ± 12.27 years
old for controls, t51 = −0.195, p = 0.846) and sex (56.0% female
patients vs. 57.1% female controls, χ2

1 = 0.007, p = 0.933). In
addition, patients with HFS reported significant levels of anxiety
(t51 = 8.924, p < 0.001) and felt more depressed (t51 = 8.110, p
< 0.001) than healthy controls, which were measured by HAM-A
and HAM-D, respectively. Demographic and clinical data are all
presented in Table 1.

Abnormal Cortical Thickness and
Subcortical Volumes in Patients With
Hemifacial Spasm
The unbiased whole-brain vertex-wise comparison showed no
significant differences that survived multiple comparisons (FDR
correction of p < 0.05 at a cluster level followed by a
cluster-forming threshold of p < 0.001) in patients with HFS
compared with healthy controls. Furthermore, the volumetric
analysis of subcortical structures showed significantly reduced
subcortical volume merely in the right amygdala in patients
with HFS compared to healthy controls (q < 0.05, FDR
corrected; Figure 1).
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FIGURE 1 | Subcortical volumes in patients with HFS compared with healthy controls. Patients merely showed significantly reduced subcortical volume in the right

amygdala compared to the control group [q < 0.05, false-discovery rate (FDR) corrected for multiple comparisons]. L, left; R, right.

Abnormal Right Amygdala-Based
Functional Connectivity Following Patients
With Hemifacial Spasm
Increased right amygdala-anchored rsFC to the bilateral medial
prefrontal cortex (mPFC), bilateral orbital frontal cortex (OFC),
and left posterior insula (L postIns) was observed in patients with
HFS compared with healthy controls (p < 0.05, FWE corrected;
Figure 2, Table 2).

Association of Functional Connectivity to
Clinical Variables in Patients With
Hemifacial Spasm
Correlations of FC values from group-level-difference clusters of
rsFC were detected to the clinical indices of patients with HFS.
We found that the mean FC value of right amygdala to L postIns
positively correlated with spasm severity (ρ = 0.588, p = 0.002,
Figure 3A). In addition, the mean FC value of the right amygdala
to right mPFC also correlated with anxiety symptom (ρ = 0.479,
p= 0.015, Figure 3B). No other significant correlation was found
between FC values and other clinical parameters (i.e., disease
duration and HAM-D score).

DISCUSSION

This study investigated structural and functional reorganization
in the brain associated with HFS and how these changes are
relevant to the severity of muscle contraction and concomitant
affective disturbance. Patients with HFS had significantly reduced
volume in the right amygdala. Furthermore, compared with
healthy controls, the right amygdala displayed increased rsFC
to the bilateral mPFC, bilateral OFC, and L postIns in patients
with HFS. To date, there has been only one resting-state fMRI

study related to HFS, which focused on evaluating synchronous
brain activity of a given region to its nearest neighbors by
ReHo analysis (14) without capturing the functional relationships
to the distant brain areas. To our knowledge, this is the first
study to show structural and functional amygdala abnormalities
in HFS.

One of the major findings of this study presented as
decreased volume of right amygdala in patients with HFS
compared to healthy controls. The amygdala belongs to a
key region with afferent and efferent neural connections that
modulate complex stimuli such as pain, anxiety, fear, and
reward (16). Corresponding to its functional diversity, the
amygdaloid complex has been shown to consist of dozens of
distinct but closely interconnected nuclei in nonhuman primates
(17). In addition, cytoarchitectonic study of human postmortem
brains suggested that amygdala includes three major sets of
nuclei that are called laterobasal, centromedial, and superficial
groups (18). For one, the centromedial nuclei of amygdala can
produce hormones and induce autonomic responses according
to the anatomical and physiological knowledge (19–22), which
involves the process of unpleasant stimuli including anxious
and depressive information (23, 24), and the spasm-anchored
affective disorders in patients with HFS may partially contribute
to the amygdala atrophy. For another, the morphological and
functional alterations of amygdala may be linked to visual
attentional deficit triggered by the spasm in patients with HFS.
The lateral portion of amygdala was established to coordinate
visual information, which was supported by a tract-tracing
study (25) and single-cell recordings (26) in monkeys. Besides,
bidirectional communication between amygdala and fusiform
gyrus was further verified during facial information processing
by fMRI experiment (27). Given that those enrolled in this study
underwent chronic and severe facial spasm (mean Cohen score
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FIGURE 2 | Increased right amygdala-based functional connectivity following patients with hemifacial spasm (HFS) in contrast to healthy controls [ p < 0.05,

family-wise error (FWE) corrected]. postIns, posterior insula; mPFC, medial prefrontal cortex; OFC, orbital frontal cortex; L, left; R, right.

TABLE 2 | Clusters demonstrating differences in functional connectivity between HFS and HC participants.

ROI Brain region Hemisphere Size of cluster (voxels) Peak MNI coordinate Peak voxel t-value

x y z

HFS > HC

Right amygdala Medial prefrontal cortex L 137 −8 70 12 3.625

Medial prefrontal cortex R 370 12 56 2 3.434

Orbital frontal cortex L 52 −8 70 −2 3.298

Orbital frontal cortex R 62 14 68 −6 3.315

Posterior insula L 100 −36 −20 4 4.758

HFS < HC

No between-group differences

ROI, region of interest; MNI, Montreal Neurologic Institute; L, left; R, right.

FIGURE 3 | The right amygdala-based functional connectivity was positively correlated with spasm severity (A) and anxiety symptom (B) in patients with HFS,

respectively. Curved dashed lines indicate 95% confidence intervals. The spasm severity was measured by Cohen evaluation scale, and Hamilton Anxiety Scale was

performed to assess patients’ anxiety symptom. FC, functional connectivity; postIns, posterior insula; mPFC, medial prefrontal cortex; L, left; R, right.
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was near 3), patients with HFS were difficult to concentrate
on others’ face in a short period of time during social contact,
which probably lead to the structural alteration in the laterobasal
nuclei of amygdala. Since anatomical tracing studies revealed
that most of the nuclei in the amygdaloid complex had extensive
intranuclear and internuclear connections (22), our imaging data
on amygdala abnormality may be attributed to the interaction of
emotional and visual deficiency in patients with HFS.

Another finding in our study was altered right amygdala-
driven connections to several emotion-related brain areas, such
as bilateral mPFC and bilateral OFC in patients with HFS
compared to healthy controls, which was in accordance with
previous fMRI results (28). Previous animal and human studies
suggested a distinctive amygdala–frontal circuit on emotion
generation and regulation (29–31). Anatomical tracing studies
have detected reciprocal connections between the amygdala and
the anterior cingulate cortex (ACC), OFC, and dorsal medical
prefrontal cortex (DMPFC) (32, 33). Of note, the OFC was
usually segmented into medial and lateral divisions, which
initially derived from differential cognitive and affective deficits
of medial OFC (mOFC) vs. lateral OFC (lOFC) in primates (34),
and this parcellation was confirmed by differentiated connections
with tracing studies; that is, the mOFC received inputs from
limbic structures such as hippocampus, amygdala, and insular
cortex (35), while lOFC showed anatomic connections with
several visual processing regions including fusiform gyrus and
lateral occipital cortex (36). Moreover, in a meta-analysis
focusing on divergent patterns of rsFC between different OFC
subregions, the lOFC showed notable coactivations with the
amygdala and the fusiform gyrus, both of which are known to
participate in visual processing (37). Accordingly, we assume that
the strengthened rsFC of amygdala to lOFC may be helpful for
patients with HFS to compensate for the deficit of focusing on
objects for a long period of time.

Meanwhile, our study displayed increased right amygdala
rsFC to bilateral mPFC in patients with HFS. The mPFC
was involved in various categories of affective disorders
detected by fMRI and PET, such as schizophrenia, bipolar
disorder (38), major depression (39), and social anxiety (40).
Electron microscopy (41) and retrograde tracing techniques
(42, 43) confirmed that the mPFC directly received extensive
input from amygdala, which was important for emotion
regulation. Considering that the current findings demonstrated
positive correlation of amygdala–mPFC connection to the
degree of anxiety in patients with HFS, we proposed that
the rsFC abnormality of the two regions in the patient
group was caused in part by the spasm-induced negative
emotion. In addition, it is well known that mPFC is a
major hub of default mode network. Because mPFC activity
has linked to maintain vigilance toward the surrounding
environment (44), and the laterobasal nuclei group in
amygdala was established to coordinate high-level sensory
input including visual information preprocessing (17), the
increased connectivity between mPFC and amygdala could
also reflect exaggerated vigilance to the environment so as
to compensate for the deficit of visual attention in patients
with HFS.

Last but not the least, the patients with HFS exhibited
increased amygdala–postIns connection compared to controls. It
is well established that insula has structural and functional
connections with almost all of the amygdaloid nuclei.
Neurophysiological and histochemical experiments had
confirmed projections of anterior insula to the anterior and
medial amygdaloid area and projections of posterior insula to
the dorsolateral part of amygdala in the rhesus monkey (45),
where the corresponding nuclei are responsible for modulation
of autonomic activity and high-level sensory information,
respectively (17), and it was partially supported by a functional
imaging study with positron emission tomography (46). Because
the posterior insula and lateral part of amygdala share a
functional similarity on visual stimuli coordination, increased
rsFC of the two regions is likely to make up the visual defect
of HFS with frequent facial contraction, which provides a basis
for positive correlation of amygdala–insular connectivity to the
degree of facial spasm.

Several limitations of this study bear acknowledgment
here. First, the sample size of both groups is relatively
small. The reliability of the results would be improved
by recruiting more subjects. Second, the cross-sectional
experiment design was not useful to observe dynamic
changes in structural and functional dataset to assess the
characteristics of HFS over time. A longitudinal study should
be performed to monitor the volume and rsFC of right
amygdala along with alterations of the facial spasm and
emotional disturbance.

In summary, the current study revealed atrophic right
amygdala in patients with HFS together with increased rsFC
of this seed to bilateral OFC, bilateral mPFC, and left postIns.
Moreover, the altered amygdala–postIns and amygdala–mPFC
networks were correlated with spasm severity and anxiety
symptom, which provide distinct aspects of clues of HFS-
related disorders.
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Fusing complementary information from different modalities can lead to the discovery

of more accurate diagnostic biomarkers for psychiatric disorders. However, biomarker

discovery through data fusion is challenging since it requires extracting interpretable and

reproducible patterns from data sets, consisting of shared/unshared patterns and of

different orders. For example, multi-channel electroencephalography (EEG) signals from

multiple subjects can be represented as a third-order tensor with modes: subject, time,

and channel, while functional magnetic resonance imaging (fMRI) data may be in the

form of subject by voxel matrices. Traditional data fusion methods rearrange higher-order

tensors, such as EEG, as matrices to use matrix factorization-based approaches. In

contrast, fusion methods based on coupled matrix and tensor factorizations (CMTF)

exploit the potential multi-way structure of higher-order tensors. The CMTF approach

has been shown to capture underlying patterns more accurately without imposing strong

constraints on the latent neural patterns, i.e., biomarkers. In this paper, EEG, fMRI, and

structural MRI (sMRI) data collected during an auditory oddball task (AOD) from a group

of subjects consisting of patients with schizophrenia and healthy controls, are arranged

as matrices and higher-order tensors coupled along the subject mode, and jointly

analyzed using structure-revealing CMTF methods [also known as advanced CMTF

(ACMTF)] focusing on unique identification of underlying patterns in the presence of

shared/unshared patterns.We demonstrate that joint analysis of the EEG tensor and fMRI

matrix using ACMTF reveals significant and biologically meaningful components in terms

of differentiating between patients with schizophrenia and healthy controls while also

providing spatial patterns with high resolution and improving the clustering performance

compared to the analysis of only the EEG tensor. We also show that these patterns are

reproducible, and study reproducibility for different model parameters. In comparison to

the joint independent component analysis (jICA) data fusion approach, ACMTF provides

easier interpretation of EEG data by revealing a single summary map of the topography
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for each component. Furthermore, fusion of sMRI data with EEG and fMRI through an

ACMTF model provides structural patterns; however, we also show that when fusing

data sets from multiple modalities, hence of very different nature, preprocessing plays a

crucial role.

Keywords: EEG, fMRI, sMRI, schizophrenia, structural/functional biomarkers, coupled matrix/tensor

factorization, ICA

1. INTRODUCTION

Multiple neuroimaging techniques provide complementary
views of neural structure and function. For instance,
one of the most commonly used neuroimaging methods,
electroencephalography (EEG), measures the electrical activity
with high temporal but low spatial resolution, while functional
magnetic resonance imaging (fMRI) records the changes in the
blood flow with high spatial but low temporal resolution (Bunge
and Kahn, 2009; Uludag and Roebroeck, 2014). Therefore, joint
analysis of signals from multiple neuroimaging modalities is
of interest in order to better understand neural activity and to
discover reliable diagnostic biomarkers for psychiatric disorders,
such as schizophrenia (Daunizeau et al., 2009; Sui et al., 2012,
2018; Dahne et al., 2015; Liu et al., 2015).

With the advances in technology, vast amounts of
neuroimaging data has been generated; however, data mining or
signal processing methods so far have limited success in terms
of finding reliable diagnostic imaging biomarkers for many
psychiatric disorders (Sui et al., 2012; Takahashi and Suzuki,
2018). One of the reasons for this limited success has been the
fact that data fusion is a particularly challenging task when the
goal is to extract reproducible and interpretable patterns. Data
from different sources consists of both shared (or common) and
unshared (or distinct) underlying patterns (Alter et al., 2003;
Daunizeau et al., 2009; Lock et al., 2013; Uludag and Roebroeck,
2014), and even the definition of “sharedness” is a topic of current
research (Farias et al., 2016; Smilde et al., 2017). Furthermore,
data sets from different modalities may be of different orders,
such as multi-channel EEG signals from multiple subjects can
be represented in the form of a third-order tensor with modes:
subject, time, and channel, while fMRI data is often represented
as a subject by voxel matrix (Figure 1). Similar challenges have
been observed in other disciplines targeting biomarker discovery
as well, e.g., in joint analysis of omics data (Acar et al., 2015),
where the ultimate goal is to discover significant metabolites,
genes, etc. as potential biomarkers.

The common approaches for fusion of multi-modal
neuroimaging data are based on matrix factorizations, such
as joint independent component analysis (jICA) (Calhoun et al.,
2006b), parallel ICA (Calhoun et al., 2009) and independent
vector analysis (IVA)-based techniques (Adali et al., 2015a),
where signals from multiple modalities are represented as
matrices, e.g., fMRI data in the form of a subject by voxel matrix,
and EEG signals as a subject by time matrix (Adali et al., 2015a).
Matrix factorization-based fusion methods require additional
constraints to recover patterns uniquely (Alter et al., 2003;
Klami et al., 2013; Lock et al., 2013; Adali et al., 2015a) and a

FIGURE 1 | A third-order tensor representing multi-channel EEG signals is

coupled with fMRI and sMRI data in the form of matrices in the subject mode.

common practice in neuroscience is to assume that extracted
patterns (i.e., biomarkers, or spatial/temporal patterns) are
statistically independent. Drawbacks of the traditional methods
are 2-fold: (i) in the presence of multi-channel EEG signals,
which can naturally be represented as a third-order tensor, data
is either matricized in the form of a subject by time-channel
matrix (Swinnen et al., 2014) or only the signal from a single
channel is analyzed (Adali et al., 2015a), ignoring the potential
multilinear structure of multi-channel EEG signals, (ii) statistical
independence might be a too strong constraint to impose on the
patterns; therefore, methods may fail to capture the true patterns
(Acar et al., 2015).

In contrast, coupledmatrix and tensor factorizations (CMTF),
introduced more recently, have proven useful in terms of
addressing the drawbacks of matrix factorization-based fusion
methods by jointly analyzing data sets in the form of matrices
and higher-order tensors without imposing constraints on the
components when the higher-order tensors have a defined
multilinear structure (Acar et al., 2015). CMTF-based approaches
factorize higher-order tensors using a tensor factorization model
while simultaneously factorizing the data sets in the form of
matrices, and enable the exploration of the potential multilinear
structure inherent to, for instance, multi-channel EEG signals.
Previously, analyzing multi-channel EEG signals using tensor
factorizations has shown promising performance in terms of
capturing spatial, spectral and temporal signatures of epileptic
seizures (Acar et al., 2007; De Vos et al., 2007) as well as
providing better understanding of brain activity patterns (Möcks,
1988; Miwakeichi et al., 2004; Mørup et al., 2007), see also
(Cong et al., 2015) for a review. Another review (Hunyadi et al.,
2017) discusses the studies making use of tensor factorizations
to analyze EEG and fMRI signals, with a particular focus
on epilepsy. Therefore, recent studies analyzing neuroimaging
signals from multiple modalities have arranged neuroimaging
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data sets as higher-order tensors, and used CMTF-type methods
to jointly analyze, e.g., EEG and magnetoencephalography
(Becker et al., 2012; Naskovska et al., 2017) (both arranged as
higher-order tensors), EEG and electro-ocular artifacts (Rivet
et al., 2015) (both arranged as higher-order tensors), and EEG
and fMRI (Karahan et al., 2015; Hunyadi et al., 2016; Eyndhoven
et al., 2017) in the form of a matrix coupled with a third-order
tensor, or as coupled higher-order tensors as in Chatzichristos
et al. (2018), or arranged multiple diffusion tensor imaging
modalities as a third-order tensor and coupled that with gray
matter maps (Groves et al., 2011). However, when jointly
analyzing a matrix coupled with a higher-order tensor, CMTF-
based methods assuming that coupled data sets have only shared
components, may fail to capture the underlying patterns in the
presence of both shared and unshared components (Acar et al.,
2014; Lathauwer and Kofidis, 2017); therefore, they are not ideal
for biomarker discovery.

In this paper, we use a CMTF-based approach to jointly
analyze neuroimaging signals from multiple modalities, more
specifically, fMRI, sMRI and EEG data, collected during an
auditory oddball (AOD) task from a group of subjects consisting
of patients with schizophrenia and healthy controls with
the goal of unraveling potential diagnostic biomarkers for
schizophrenia. To the best of our knowledge, this is the first
comprehensive study of a CMTF-based method for biomarker
discovery for a psychiatric disorder discussing both strengths
and limitations of the proposed framework, building onto our
preliminary results in Acar et al. (2017a,b). Furthermore, due
to the reproducibility and uniqueness requirements of such an
application, we use a structure-revealing CMTF model, known
as the advanced CMTF (ACMTF) model (Acar et al., 2014),
to estimate weights of the components in each modality in
order to identify shared/unshared components and quantify
the contribution from each modality. Our preliminary studies
have shown the promise of the ACMTF model in terms of
capturing neural patterns that can differentiate between patients
with schizophrenia and healthy controls by jointly analyzing
EEG-fMRI signals (Acar et al., 2017b) and EEG-fMRI-sMRI
data (Acar et al., 2017a); however, those two studies used
only a subset of electrodes, making it difficult to evaluate
the added value of each modality in terms of biomarker
discovery. Also, in this paper, we include an additional metric
to study the additive value of each modality, and evaluate
the performance of the models in terms of clustering subjects
from different groups, whereas the previous studies only
used the interpretation and statistical significance of extracted
patterns in terms of differentiating between groups. Clustering
results complement univariate statistical significance tests and
show whether combinations of potential biomarkers provide
meaningful clusters. We show that EEG analysis using a CP
[also known as Canonical Decomposition (CANDECOMP) and
Parallel Factor Analysis (PARAFAC)] tensor model and joint
analysis of EEG, fMRI as well as EEG, fMRI and sMRI reveal
statistically significant and biologically meaningful components
in terms of differentiating between patients with schizophrenia
and healthy controls. In comparison to the results when only
the EEG data is analyzed, the incorporation of fMRI signals

results in clearer spatial maps and better clustering performance.
With the incorporation of sMRI, we obtain structural patterns in
addition to temporal and spatial patterns of functional activity
without degrading the clustering performance. ACMTF models
with different parameter settings have been compared, and based
on detailed experiments, we observe that ACMTF consistently
reveals similar significant patterns, which provide a concise
summary of the topography, while being sensitive to certain
parameters for uniqueness.

2. MATERIALS AND METHODS

2.1. Background
In this section, we briefly discuss the CP tensor model as well as
structure-revealing CMTF and jICA models. Let the third-order
tensorX ∈ R

I×J×K with modes subject, time, and electrode, and
matrices Y ∈ R

I×M (subject by voxel) and Z ∈ R
I×L (subject

by voxel), represent multi-channel EEG, fMRI, and sMRI data,
respectively (as in Figure 1).

2.1.1. CANDECOMP/PARAFAC (CP)
The CP model (Carroll and Chang, 1970; Harshman, 1970), also
referred to as the canonical polyadic decomposition (Hitchcock,
1927), is one of the most popular tensor factorization models.
It is considered as one of the extensions of the matrix singular
value decomposition (SVD) to higher-order tensors (N ≥ 3) and
represents the tensor as a sum of rank-one tensors, i.e., rank-
one components. For a third-order tensor X ∈ R

I×J×K , the
R-component CP model is defined as

X ≈ X̂ = Jλ;A,B,CK =

R
∑

r=1

λrar ◦ br ◦ cr ,

where ◦ indicates the vector outer product. The vectors from
the rank-one components are collected in the factor matrices
A ∈ R

I×R = [a1 ... aR],B ∈ R
J×R = [b1 ...bR] and C ∈ R

K×R =

[c1 ... cR]. In this definition, columns of all factor matrices are
assumed to be normalized to unit 2-norm and the norms
are absorbed in the vector λ ∈ R

R×1. For the third-order
tensor X consisting of the EEG data, the factor matrices
A,B and C correspond to the extracted factor vectors in the
subject, time and electrode modes, respectively. By modeling
X using a CP model, we assume that component r models a
brain activity with temporal and spatial patterns represented
by br and cr . Multi-channel EEG signals from each subject
are a linear mixture of these R brain activities mixed using
subject-specific weights. The CP model is also known as a
topographic components model (Möcks, 1988). Note that the
terms factor and component are used interchangeably throughout
the paper, and refer to the rank-one matrices and/or higher-order
rank-one tensors.

In contrast to matrix factorizations, the CP model of higher
order tensors is unique up to scaling and permutation under mild
conditions (Kruskal, 1977; Sidiropoulos and Bro, 2000), without
the need to impose additional constraints.
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FIGURE 2 | Modeling of tensor X coupled with matrices Y and Z in the

subject mode using a structure-revealing CMTF model.

2.1.2. Structure-Revealing Coupled Matrix and

Tensor Factorizations
Given the third-order tensorX coupled with matrices Y and Z in
the subject mode we can jointly factorize them using a structure-
revealing CMTF model (a.k.a. ACMTF) (Acar et al., 2014) that
fits a CP model to tensor X and factorizes matrices Y and Z in
such a way that the factor matrix extracted from the common
mode, i.e., subject, is the same in the factorizations of all data
sets. An R-component ACMTF model minimizes the following
objective function:

f (λ,6,Ŵ,A,B,C,D,E) =
∥

∥X− Jλ;A,B,CK
∥

∥

2
+ ‖Y− A6DT ‖2

+ ‖Z− AŴET ‖2 + β ‖ λ ‖1 + β ‖ σ ‖1 + β ‖ γ ‖1 ,

(1)
where the columns of factor matrices have unit norm, i.e.,
‖ ar ‖ = ‖ br ‖ = ‖ cr ‖ = ‖ dr ‖ = ‖ er ‖ = 1 for r = 1, . . . ,R.
λ, σ , γ ∈ R

R×1 are the weights of rank-one terms inX, Y, and Z,
respectively. 6,Ŵ ∈ R

R×R are diagonal matrices with entries of
σ and γ on the diagonal. D ∈ R

M×R and E ∈ R
L×R correspond

to factor matrices in the voxel mode in fMRI and sMRI. ‖ . ‖

denotes the Frobenius norm for matrices/higher-order tensors,
and the 2-norm for vectors. ‖ . ‖1 denotes the 1-norm of a vector,
i.e., ‖ x ‖1 =

∑R
r=1 |xr| and β > 0 is a penalty parameter.

Imposing penalties on the weights in Equation (1) sparsifies
the weights so that unshared components have weights close to
0 in some data sets. The model is illustrated in Figure 2. By
jointly analyzing neuroimaging data using an ACMTFmodel, we
assume that each component extracted from X models a brain
activity with certain temporal (br) and spatial (cr) signatures, and
the corresponding component in Y models related brain activity
with higher spatial resolution using dr while the component
in Z provides information about the tissue type at a very high

spatial resolution using er . Since the same factor matrix A is
extracted from the subject mode from all data sets, subject-
specific coefficients in all modalities are assumed to be the same.
The ACMTF model inherits uniqueness from CP (Sorensen and
De Lathauwer, 2015), as long as all factors are shared, and
provides reproducible and interpretable factors. Note that, in the
presence of both shared/unshared components, 1-norm penalties
on the weights help to obtain unique solutions, which has been so
far only shown experimentally (Acar et al., 2014).

2.1.3. Joint ICA
An alternative approach to jointly analyze X, Y and Z is to use a
matrix factorization-based fusion approach by matricizing X in
the subject mode as a subject by time–electrode matrix denoted
as X(1). Joint ICA (Calhoun et al., 2006b) concatenates matrices
representing the data from different modalities and models the
constructed matrix using an ICA model as follows:

[X(1) Y Z] = AS (2)

where, for an R-component ICA model, A ∈ R
I×R corresponds

to the mixing matrix, similar to the factor matrix in Equation
(1), and S ∈ R

R×(JK+M+L) represents the source signals. Note
that subject covariations across all data sets, i.e., modalities,
are assumed to be the same in jICA as in ACMTF, since the
same mixing matrix is shared across the data sets. However, in
this case the model does not include an adaptive estimation of
contributions from each modality as in ACMTF, and though
this can be captured to a degree within the weights from the
estimated components from each modality, it represents a more
constrained model. The rows of S corresponding to patterns of
brain activity are assumed to be statistically independent.

2.2. Experiments
We make use of EEG, fMRI, and sMRI data collected from
patients with schizophrenia and healthy controls to show the use
of ACMTF models to discover potential diagnostic biomarkers
for schizophrenia. Our experiments focus on joint analysis of
EEG and fMRI data, and discuss the effect of different modeling
choices, i.e., number of components (R), the penalty parameter
(β), preprocessing, and use of subsets of electrodes. We also
discuss the performance of ACMTF in comparison with jICA.
Furthermore, the analysis of only EEG signals and joint analysis
of EEG, fMRI, and sMRI have been studied to show the
information gain with each modality and potential issues due to
the use of additional modalities.

2.2.1. Data
The participants in this study were recruited through
advertisements, presentations at local universities, and word-
of-mouth. The 32 participants provided written and informed
IRB-approved consent at Hartford Hospital. The participants
were compensated for their participation. Patients met the
criteria for schizophrenia as defined in the DSM-IV on the
basis of a SCID diagnosis as well as a review of their case file
(First et al., 2002b). The healthy participants were screened
to ensure that they were free from DSM-IV Axis I or Axis II
psychopathology, as assessed using the SCID (First et al., 2002a)
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prior to their inclusion in the study. Exclusion criteria for the
healthy participants also included a history of psychosis in any
first-degree relatives. This was assessed through an interview.
The participants in both groups had self-reported normal
hearing and were able to perform the AOD task successfully in
the trial sessions prior to scanning.

The EEG, fMRI and sMRI data were separately collected from
21 healthy controls and 11 patients with schizophrenia during an
auditory oddball task (AOD), where subjects pressed a button
when they detected an infrequent target sound within a series
of auditory stimuli. The details of the AOD task used in this
work have been published previously (Kiehl et al., 2005). The task
consisted of two runs of 244 pseudo-randomly distributed stimuli
each, following an initial practice block of 10 trails to ensure that
the participants understood the instructions. The stimuli were
three different types of tones: a standard stimulus (1,000 Hz tone,
probability = 0.8), a target stimulus (1,500 Hz tone, probability
= 0.1), and novel stimuli (non-repeating random digital noises,
such as tone sweeps or whistles, probability = 0.1). Each auditory
stimulus was presented for 200 ms with an inter-stimulus
interval of 2,000 ms. The intervals between the non-standard
stimuli consisted of 3–5 standard stimuli (approximately 8–12
s) (Kiehl et al., 2005). Two scans were performed, each lasting
approximately 9 min. Thus, the total duration of the scan lasted
approximately 18 min.

2.2.2. Data Preprocessing
For the fMRI data, task-related spatial activity maps for each
subject were computed by the general linear model-based
regression approach using the statistical parametric mapping
toolbox (SPM2)1. The fMRI preprocessing pipeline used for
this data has been described previously (Calhoun et al., 2006a).
More precisely, for each subject, each image in the scan was
realigned using the INRIalign algorithm (Freire and Mangin,
2001). The aligned data was then normalized into Montreal
Neurological Institute (MNI) space and spatially smoothed
with a 10 × 10 × 12 mm3 full width at half maximum
(FWHM) Gaussian kernel. The normalized data was then
subsampled to 3 × 3 × 3 mm, thus resulting in brain volumes
of dimensions 53 × 63 × 46 voxels. The data for each
subject was then analyzed through a multivariate regression
where the regressors are formed from the auditory stimuli,
their temporal derivatives, and an intercept. The regressors for
the auditory stimuli are formed by modeling the stimuli as
delta functions convolved with the default SPM2 hemodynamic
response function. We use the regression coefficients (beta-
values) corresponding to the target tone as the feature for these
analyses (Calhoun et al., 2006a). By making use of these features
and removing voxels not corresponding to brain regions, we
constructed a matrix of 32 subjects by 60,186 voxels representing
the fMRI signals.

The details of the preprocessing pipeline used for the EEG data
have been previously published in Calhoun et al. (2006b). Briefly,
the EEG channels were amplified (20,000 gain) with a passband
between 0.01 and 100 Hz. The signals were digitized at a rate of

1https://www.fil.ion.ucl.ac.uk/spm/

500 samples per second. The EEG data was then preprocessed
using ICA to remove any ocular artifacts (Jung et al., 2000). The
data were then filtered with a 20 Hz low-pass filter in order
to reduce electromyographic activity. EEG epochs from -115 to
788 ms (451 time points) around stimulus onsets were used
for the event-related potentials (ERP). ERP were formed only
from those trials in which the subjects correctly identified the
target stimulus (Calhoun et al., 2006b). Out of 64 electrodes in
total, we used 62 electrodes by excluding the two corresponding
to vertical and horizontal electrooculography (EOG) electrodes.
Multi-channel EEG signals were then arranged as a third-order
tensor: 32 subjects by 451 time samples by 62 electrodes. In order
to assess the modeling assumptions, we also used a subset of
electrodes, i.e., AF3, AF4, Fz, T7, C3, Cz, C4, T8, Pz, PO3, PO, and
in that case, formed a third-order tensor with 11 electrodes as in
(Acar et al., 2017a,b). This subset of electrodes was determined
with the goal of selecting a small set of electrodes that would
record the relevant functional activity related to the AOD task.
The selected subset includes electrodes from the frontal, motor
and parietal areas that are expected to be involved in the motor
and auditory responses as well as the planning stage for the
given task.

For the sMRI data, we computed probabilistically segmented
gray matter images for each subject and by using these features
formed a matrix of 32 subjects by 306,640 voxels. The details
of the sMRI preprocessing pipeline have also been presented
previously in Calhoun et al. (2006a). The image files were
first normalized using a 12 parameter affine model to the 152
average T1 MNI template. The images were next segmented
into gray matter, white matter, and cerebrospinal fluid. Then the
segmentation was smoothed with an 8-mm FWHM Gaussian
kernel and the segments were then averaged to create the
gray matter, white matter, and cerebrospinal fluid templates.
Each subject’s segmented T1 images were then normalized to
the customized gray matter templates. Then, for each subject,
the warped T1 images were segmented into gray matter, white
matter, and cerebrospinal fluid maps using a model clustering
algorithm resulting in probabilistic segmentations of gray matter
(Ashburner and Friston, 2000). Finally, the resulting gray matter
images were smoothed with a 12-mm FWHM Gaussian kernel
(Good et al., 2001).

2.2.3. Experimental Setting
Before the analysis, we centered the third-order EEG tensor
across the time mode, and scaled within the subject mode by
dividing each horizontal slice by its standard deviation (see
Bro and Smilde, 2003 for further details on preprocessing
of higher-order tensors). The fMRI and sMRI data were
also preprocessed by centering each row (subject-wise) and
dividing each row by its standard deviation. When fitting the
ACMTF model, each data set was also divided by its Frobenius
norm to give equal importance to the approximation of each
data set.

In order to demonstrate the information gained by the
addition of each modality and sensitivity of the fusion approach
to various modeling choices, the following experiments are
carried out:
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• Individual analysis of the EEG tensor using a CP model,
• Joint analysis of the EEG tensor coupled with fMRI using

an ACMTF model (i) by leaving out signals from one
subject at a time, (ii) for 11-electrode vs. 62-electrode
case, (iii) in comparison with jICA, (iv) with different
number of components, R, (v) with different sparsity penalty
parameters, β , (vi) with/without additional centering across
the subject mode.

• Joint analysis of the EEG tensor coupled with fMRI and sMRI
using an ACMTF model.

The CP model is fit using CP-OPT (Acar et al., 2011) from
the Tensor Toolbox version 2.52 using the non-linear conjugate
gradient algorithm (NCG). For the ACMTF model, we use
ACMTF-OPT (Acar et al., 2014) from the CMTF Toolbox
version 1.13, also using NCG to fit the model. Multiple random
initializations are used to fit the models, and the solution
corresponding to the minimum function value is reported.
Furthermore, the ACMTF model is experimentally validated to
be unique by obtaining the same minimum function value4

a number of times and checking the uniqueness of model
parameters, i.e., factor matrices and weights of the components
(up to permutation)5. For jICA, we unfold the EEG tensor in the
subject mode forming a matrix of 32 subjects × 27,962 (time-
electrodes), and concatenate the resulting matrix with the fMRI
matrix. The concatenated matrix is decomposed using an ICA
algorithm based on entropy bound minimization (ICA-EBM)6

(Li and Adali, 2010), which makes use of a flexible density model
that is a better fit to data formed by concatenating signals from
different modalities (Adali et al., 2015a). We fit the model using
multiple random initializations and report the most stable run
determined by a minimum spanning tree-based approach (Du
et al., 2016).

2.3. Performance Evaluation
The performance is assessed both qualitatively and quantitatively.
The qualitative assessment relies on the interpretation of the
extracted temporal and spatial patterns as well as comparisons
with the previous findings in the literature on schizophrenia. For
the quantitative assessment, we perform the following:

• Two-sample t-test: Since the ultimate goal of any factorization
of this data is the discovery of latent factors that can
differentiate between patients with schizophrenia and healthy
controls, we can quantify the performance of a method based
on its ability to produce factors that can provide such a
differentiation. With the assumption of unequal variance for
the healthy control and patient groups, a two-sample t-test
is applied on each column of the factor matrix extracted
from the subject mode, which is of size 32 by R. Out of
R columns, those that have subject mode vectors that are
statistically significant, i.e., with p-values < 0.05, are identified

2http://www.sandia.gov/tgkolda/TensorToolbox/
3http://www.models.life.ku.dk/joda/CMTF_Toolbox
4Up to the sixth decimal place.
5Depending on the difficulty of the problem, 160-200 random initializations are

used to check for uniqueness.
6The ICA-EBM code is available at http://mlsp.umbc.edu/ica_ebm.html.

and corresponding temporal and spatial patterns are reported
as potential biomarkers.

• Clustering: Subjects are clustered into two groups based
on the factor matrix corresponding to the subject mode
using k-means clustering, where k-means is performed 100
times with different initializations and the most consistent
cluster assignments are used. Unlike the t-test based approach
that is performed on each column individually, clustering is
performed on all possible combinations of the columns of the
factor matrix and the performance of the best combination
is reported. Therefore, this approach provides a more global
view of the discriminatory power of the resulting factorization
than the t-test based approach. The clustering performance
is assessed in terms of accuracy and F1-score, where F1-

score = 2Precision×Recall
Precision+Recall

. Precision and Recall are defined

as Precision =
# of true positives

# of true positives+# of false positives
and Recall =

# of true positives
# of true positives+# of false negatives

, and a patient being clustered as

a patient is considered a true-positive.

When assessing different modeling choices, we also report the
model fit defined as:

Fit = 100×

(

1−
‖X−̂X ‖2

‖X ‖2

)

,

where X stands for the raw data (e.g., EEG tensor or fMRI/sMRI
matrix), and ̂X denotes the model. A fit of 100% means that the
data is fully explained by the model. The fit shows whether the
model explains the data well and indicates the unexplained part
left in the residuals. Also, the change in model fit for different
number of components shows whether there is a significant gain,
in terms of explaining the remaining part in the residuals, by
adding more components.

Finally, we compare the similarity of the significant
components extracted by differentmodels using a similarity score
called the factor match score (FMS). The FMS of component k
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where a
(i)
k
, b

(i)
k
, c

(i)
k
, d

(i)
k
correspond to the kth column of the factor

matrix corresponding to subject, time, electrode, and voxel mode
of the ith model, respectively, after finding the best matching
factors for the two models. When components are compared for
the models with mismatching dimensions, such as number of
subjects or number of electrodes, the mismatching dimension is
omitted in the product. An FMS close to one implies similarity
of the compared components, while very different components
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will have an FMS close to zero. FMS is used to quantify the
reproducibility of the extracted patterns in addition to qualitative
interpretations based on the plots.

For visualization of the extracted components, patterns from
fMRI and sMRI voxel modes are plotted as z-maps, thresholded
at |z| ≥ 2.7, where red indicates an increase in controls
over patients and blue indicates an increase in patients over
controls. This threshold value was selected after considering
several alternatives in order to aid in the visual interpretation of
the components. Patterns extracted from the electrode mode of
the EEG tensor are plotted using the topoplot function from the
EEGLAB v13.6.5b (Delorme and Makeig, 2004).

3. RESULTS

3.1. Individual Analysis of the EEG Tensor
Using a CP Model
As shown in Figure 3, the CP model of the EEG data in the
form of a subject by time by electrode tensor constructed using
62 electrodes has captured significant components in terms of
differentiating healthy controls and patients with schizophrenia.
The model is fit using R = 3 components, and reveals factor
matrices A ∈ R

32×3, B ∈ R
451×3, and C ∈ R

62×3 corresponding
to subject, time, and electrode modes, respectively. The fit of
the model is 62% indicating that using only three components a
major part of the data can be explained. The t-tests performed
on the columns of A indicate that all three components are
significant. The first component, whose factor vectors in time and
electrode modes are represented in Figure 3A, corresponds to
the third positive peak (P3) and is heavily weighted by central
electrodes. The second component with the factor vectors in
time and electrode modes represented in Figure 3B, refers to the
N1-P2 as well as the N2-P3 transitions and is heavily weighted
by central and parietal electrodes. The third component with
the factor vectors in time and electrode modes represented in
Figure 3C, refers to the N2 as well as a negative peak after P3
and is heavily weighted by frontal and central electrodes. CP
models with different number of components have been fitted
to the data as well but those either revealed fewer components
with less significance or are degenerate, i.e., a CP model with that
many components is not an appropriate model for the data (see
Kolda and Bader, 2009 for more on degeneracy). Table 1 shows
that subjects can be clustered into two groups with 81% accuracy
using the factor matrix A. Note that clustering performance is
similar to the one achieved using the CP model of a tensor
constructed using only a subset of electrodes indicating that the
assumption of same subject coefficients and temporal patterns
across all electrodes is not decreasing the performance. This also
may indicate that the additional electrodes are not providing
much added information beyond that which is contained by a
subset of the electrodes.

3.2. Joint Analysis of EEG and fMRI
Shown in Figure 4, the joint analysis of the EEG tensor and
fMRI matrix using an ACMTF model has revealed significant
components in terms of differentiating between healthy controls
and patients while also providing spatial patterns in much higher

resolution and improving the clustering performance compared
with the CP model of the EEG tensor. The 10-component
ACMTF model extracts factor matrices A ∈ R

32×10, B ∈

R
451×10, C ∈ R

62×10, and D ∈ R
60186×10 corresponding to

subject, time, electrode, and voxel modes, respectively, as well
as weights of the components in EEG (λ ∈ R

10×1) and fMRI
(σ ∈ R

10×1). The sparsity penalty parameter is set to β =

10−3. The fit is 79% and 65% for EEG and fMRI, respectively,
indicating that the extracted factors, which have high weights
in both data sets indicating shared factors, account for a large
part of both data sets. The t-test on the columns of A reveals
that out of ten components, only two, components 1 and 9, are
statistically significant. Figures 4A,B illustrate the factor vectors
of the two significant factors in time (br), electrode (cr) and
voxel (dr) modes. Figure 4C shows component weights in each
data set. From Figure 4, we see that though both significant
components have a contribution from both EEG and fMRI, the
contribution from EEG to each of these components is greater.
This means that the discriminatory information plays a larger
part in the EEG data than it does in fMRI (see Acar et al.,
2014 for further information on how to interpret the weights
of the components). Note that the statistical significance of the
components and weights of components are different concepts.
Statistical significance is determined based on a two-sample t-
test on the columns of the factor matrix in the subject mode
and indicates whether a component can be considered to be
significant in terms of separating patients and controls. On the
other hand, the weight of a component indicates how much that
component contributes to the model fit. Therefore, a component
with a high weight may not be statistically significant in terms of
distinguishing between patients and controls.

The first component, whose factor vectors in the time,
electrode, and voxel modes are shown in Figure 4A, is similar
to the component shown in Figure 3C, and refers to the P2-
N2 transition as well as the P3 peak and is heavily weighted by
the frontal and central electrodes. A similar activation pattern
is seen in the positive activations in the fMRI, though with
greater spatial resolution. The second component, with the factor
vectors in time, electrode, and voxel modes shown in Figure 4B,
shares some similarity with the component shown in Figure 3A,
since both are related to the P3 peak but this component is
more heavily weighted by the frontal electrodes. The fMRI
part in Figure 4B indicates a decrease in activation of controls
vs. patients in parts of the anterior sensorimotor cortex. We
should note that there are some similarities between the areas
highlighted in the topographic maps and the regions highlighted
in the fMRI. The areas of increased activation of controls over
patients in the fMRI, namely frontal and sensorimotor, generally
correspond to the greatest weights in the topographic maps.
Similar components have been found previously in other analyses
of similar data (Acar et al., 2017b), thus increasing our confidence
in the results. In comparison to the individual analysis of the
EEG tensor, the clustering performance is also much higher,
i.e., 88% accuracy and F1 score of 0.82, as shown in Table 1.
This indicates that the ACMTF reveals more discriminatory
factors through the inclusion of complementary information
from the fMRI.
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FIGURE 3 | Temporal and spatial patterns from the statistically significant components of the CP model. (A) Component 1 corresponds to the P3 peak mainly

represented by central electrodes, (B) Component 2 refers to the N1-P2 as well as N2-P3 transitions, with high contributions from central and parietal electrodes,

(C) Component 3 refers to the N2 as well as a negative peak after P3, heavily weighted by frontal and central electrodes. The corresponding p-values are 2.1× 10−3,

1.6× 10−2, 1.4× 10−4, respectively. Columns of the factor matrix in the time mode are in red while green plots show signals from individual electrodes averaged

across all subjects.

TABLE 1 | Performance in terms of clustering for different modeling values as well as the factor match scores in comparison to the 10-component ACMTF model (no

centering, 62 electrodes).

FMS

Clustering performance Component A Component B

R Centering Number of electrodes Accuracy (%) F1-score EEG fMRI EEG fMRI

EEG (CP) 3 No 11 78 0.76

3 No 62 81 0.79

EEG–fMRI

(ACMTF)

10 No 11 91 0.87 0.82 0.73 0.80 0.72

10 No 62 88 0.82 1.00 1.00 1.00 1.00

11 No 62 88 0.80 0.95 0.92 0.65 0.61

12 No 62 91 0.86 0.93 0.89 0.56 0.61

9 Yes 62 88 0.78 0.82 0.80 0.64 0.56

10 Yes 62 91 0.88 0.85 0.81 0.57 0.57

11 Yes 62 91 0.87 0.84 0.81 0.69 0.55

12 Yes 62 88 0.78 0.66 0.63 0.65 0.57

EEG–fMRI

(jICA)

10 No 62 84 0.74

15 No 62 82 0.70

20 No 62 91 0.84

EEG–fMRI–sMRI

(ACMTF)

10 No 62 84 0.71 0.93 0.86 0.87 0.84

10 Yes 62 91 0.87 0.78 0.73 0.68 0.60

15 Yes 62 91 0.86 – – 0.66 0.58

3.2.1. Sensitivity Analyses

3.2.1.1. Leave-one-out
The patterns captured in different modes using an ACMTF
model are reproducible in case of changes in data sets. In order to
evaluate the consistency of the results to changes in the original
data, we leave out one subject at a time and fit the ACMTF

model using the same parameters (i.e., R = 10,β = 10−3). In
other words, we construct 32 different EEG-fMRI data set pairs
(with 31 subjects) and compare the significant factors extracted
using the ACMTF model of each pair with the model derived
using 32 subjects.Table 2 shows that average FMS for component
1 (Figure 4A), which is the most significant factor, is 0.98 for
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FIGURE 4 | Temporal and spatial patterns from the statistically significant components of the ACMTF model of the EEG tensor with 62 electrodes and fMRI data, with

R = 10. (A) Component 1 refers to the P2-N2 transition as well as the P3 peak, heavily weighted by the frontal and central electrodes in the EEG, and the fMRI shows

increased activation of controls over patients in the sensorimotor cortex, (B) component 9 is related to the P3 peak, heavily weighted by the frontal electrodes in the

EEG and the fMRI indicates a decrease in activation of controls vs. patients in some regions of the sensorimotor cortex and parietal lobe, (C) weights of the

components in each data set. The corresponding p-values are 6.2× 10−3, 1.9× 10−2, respectively. Columns of the factor matrix in the time mode are in red while

green plots show signals from individual electrodes averaged across all subjects.

EEG and 0.95 for fMRI indicating close to exact recovery of the
same patterns. Average FMS for the less significant component,
i.e., component 9 (Figure 4B), is around 0.90 indicating similar
patterns. Furthermore, the average clustering performance is the
same as the performance of the original model estimated using
data from 32 subjects.

3.2.1.2. 11 electrodes vs. 62 electrodes
When jointly analyzing EEG and fMRI, ACMTF achieves a
slightly better performance using a subset of electrodes from
certain regions of interest during the construction of the EEG
tensor than the case where all 62 electrodes are used to construct
the tensor. In our preliminary studies (Acar et al., 2017b), we
observed similar components when comparing the 11-electrode
case with 62-electrode case while achieving higher statistical
significance and better interpretability using 11 electrodes. These
observations are also supported by our findings in this study
on a slightly different set of subjects (38 subjects in Acar et al.,
2017b vs. 32 subjects in this paper). Figure 5 illustrates the
factor vectors, in the time and voxel modes, of the two most
significant components, captured by a 10-component ACMTF
model of the EEG tensor with 11 electrodes and fMRI data7.
The fit is 80% and 65% for EEG and fMRI, respectively. As
previously observed, both components have higher significance
thus indicating that the additional electrodes are not contributing

7T-tests reveal, in total, four statistically significant components for this model.

However, the other two components, not illustrated in Figure 5, are less significant

and have lower FMS values.

much additional discriminatory information compared with the
original 11 electrodes. This may also be related to the fact that the
most contributing electrodes to the components in Figure 4 are
the electrodes that are part of the set of 11 electrodes. The first
component, shown in Figure 5A, is similar to the component
shown in Figure 4A and refers to P2-N2 transition as well as
the P3 peak though with more parietal activation in the fMRI.
The second component, with the factor vectors in time and voxel
modes shown in Figure 5B, is similar to the component shown
in Figure 4B and refers to the P3 peak though has more parietal
activation in the fMRI, similar to the default mode network.
When significant components from 11- and 62-electrode cases
are compared, FMS is 0.82 for EEG (excluding the electrode
mode) and 0.73 for fMRI for the component given in Figure 4A,
and 0.80 for EEG and 0.72 for fMRI for Figure 4B. These scores
indicate that components are similar to some extent but are not
identical.Table 1 indicates slightly higher clustering performance
for the 11-electrode case. To summarize, considering that there
is minimal difference in performance beyond a slight increase in
significance, and that the factors are similar, using all electrodes is
preferable to choosing a subset of electrodes, as the latter requires
prior knowledge about the functionally relevant electrodes to
select and may also introduce a bias by targeting specific regions.

3.2.1.3. ACMTF vs. JICA
The traditional fusion approach jICA can also capture
components that can differentiate between healthy controls
and patients; however, jICA provides less interpretable patterns.
For jICA, the EEG tensor unfolded in the subject mode is
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TABLE 2 | Leave-one-out sensitivity analysis: average values (standard deviation) of FMS, clustering performance and fit of the models built on data sets with 31 subjects.

FMS Clustering performance Fit (%)

Component A Component B Accuracy (%) F1-score EEG fMRI

EEG fMRI EEG fMRI

0.98 (0.05) 0.95 (0.09) 0.92 (0.16) 0.90 (0.16) 87.7 (2.4) 0.81 (0.04) 79.5 (0.4) 65.6 (0.3)

FIGURE 5 | Temporal and spatial patterns from the statistically significant components of the ACMTF model of the EEG tensor with 11 electrodes and fMRI data, with

R = 10. (A) Component 10 corresponds to the P2-N2 transition as well as the P3 peak in the EEG with an increase in sensorimotor and parietal activation of controls

over patients in the fMRI, (B) component 5 refers to the P3 peak with a decrease in default mode activity of controls vs. patients in the fMRI, (C) weights of the

components in each data set. The corresponding p-values are 4.3× 10−3, 8.0× 10−3, respectively. Columns of the factor matrix in the time mode are in red while

green plots show signals from individual electrodes averaged across all subjects.

concatenated with the fMRI data resulting in a 32 (subject)
by 88,148 (time × electrode–voxel) matrix. When this matrix
is modeled using jICA with R = 10, 15, 20 components, the
10-component model reveals a single component that may be
considered statistically significant but the p-value is 0.05. The
15-component model reveals a more significant component as
illustrated in Figure 6. JICA captures neither a single temporal
pattern for all electrodes nor a spatial pattern for all time points,
making the interpretation of the components more difficult. In
order to provide insight into the topology, spatial patterns as
in ACMTF can be computed post hoc from the analysis, e.g.,
by using peak value of each channel to construct a spatial map
for each component (Liu et al., 2009); however, that comes
with additional assumptions and does not reveal the underlying
patterns as naturally as a tensor factorization-based approach.
The component, whose source signals corresponding to the time

and voxel parts are shown in Figure 6, is related to the P2-N2
and N2-P3 transition and the fMRI map includes the expected
temporal lobe and default mode regions. We should note that
using a 20-component model, a component similar to the one in
Figure 6 is captured, indicating that jICA has some stability in
regards to the value of R. Table 1 shows that while the clustering
performance of jICA is lower compared with ACMTF models of
EEG and fMRI data sets for R = 10 and R = 15, it is similar for
R = 20, indicating that methods with different assumptions may
perform the best with different number of components.

3.2.1.4. Parameter selection
The ACMTF model is sensitive to two parameters, i.e., the
number of components, R, and the sparsity penalty parameter, β .
So far, R and β are set to R = 10 and β = 10−3. In order to probe
the effect of the model order, R, we have increased the number
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FIGURE 6 | The statistically significant component captured by the jICA model fitted to the concatenation of the unfolded EEG tensor (with 62 electrodes) and fMRI,

with R = 15. The corresponding p-value is 5.2× 10−3. Parts of sr , i.e., rth column of the source matrix S in Equation (2), corresponding to the time samples for each

electrode in EEG and voxels in fMRI are plotted. The EEG part is related to the P2-N2 and N2-P3 transitions. The fMRI indicates some increased activation in the

temporal lobe of controls vs. patients as well as some posterior cingulate representing the default mode network. In the EEG plot, green dashed plots show signals

from individual electrodes averaged across all subjects.

of components until the model fails to give a unique solution.
We find that as we increase the number of components, the
most significant component (i.e., Figure 4A) is still consistently
captured; however, with a decreasing level of similarity. With
both R = 11 and R = 12, the ACMTF model is still unique
and reveals significant components that can differentiate between
patients and healthy controls. The fit is 81% for EEG and 68% for
fMRI with R = 11 while 82% for EEG and 70% for fMRI with
R = 12, indicating that additional components do not explain
much additional information. Table 1 shows that a component
with a FMS score around 0.90 when compared with the most
significant component in a 10-componentmodel (Figure 4A) has
been revealed by both models. The less significant component
(Figure 4B), on the other hand, has limited similarity of
around FMS 0.60 with the captured components. The clustering
performance for both R = 11 and R = 12 is similar to that of R =

10. Figure S1 illustrates the factor vectors, in the time, electrode,
and voxel modes, of the significant components captured by the
ACMTF model with R = 12 components. When R is increased
any further, we cannot obtain a unique solution.

The sensitivity of an ACMTF model to different values of
β has been studied in Acar et al. (2014) using simulated data
sets, and it has been shown that in the presence of both shared
and unshared components, small values, such as β = 10−3

or β = 10−4 are effective in terms of uniquely recovering the
underlying patterns. For β = 0, which corresponds to a CMTF
model, the model fails to give a unique solution in the presence
of unshared components (Acar et al., 2014). For larger values,
such as β = 10−2, it is still possible to find the true solution but
the algorithm is very sensitive to the initialization. When EEG
and fMRI data sets are jointly analyzed using a 10-component
model, weights of the components shown in Figure 4C indicate
that all components are shared. However, even in the presence
of only shared components, β = 10−4 fails to give a unique
solution, which is due to the fact that without an effective
sparsity penalty term, the model can become degenerate. For

β = 10−2, it is not possible to reach to the same function values
even with many random initializations due to the sensitivity
to initialization.

3.2.1.5. Preprocessing
In addition to the preprocessing steps described in section 2,
in data fusion studies, further preprocessing may be needed, in
particular, when the average behavior across subjects accounts for
a large variation in one of the data sets vs. the other. SMRI is such
a data set and we perform additional centering when we include
sMRI in the analysis. Here, when we only consider the joint
analysis of EEG and fMRI, an additional centering step across the
subjects mode does not affect the clustering performance of the
ACMTF model and the significant component in Figure 4A has
also been captured with FMS between 0.80 and 0.85 (for different
number of components R = 9, 10, 11) as shown in Table 1. FMS
drops for R = 12. The less significant component (Figure 4B),
on the other hand, is also estimated, but with FMS within the
range 0.55–0.69. Figure S2 illustrates the significant components
captured by an ACMTF model with R = 12 components. It is
important to note that in this case, despite the low FMS values,
temporal and spatial patterns are similar to the ones observed
in Figure 4 and the interpretation of these two components
is the same.

3.3. Joint Analysis of EEG, fMRI, and sMRI
Inclusion of the sMRI data introduces several issues highlighting
challenges in data fusion, in particular, preprocessing. If a joint
analysis of EEG, fMRI, and sMRI data is carried out using an
ACMTF model after the preprocessing steps described in section
2.2.3, the model has two statistically significant components in
terms of differentiating healthy controls and patients. Figure 7
illustrates the temporal patterns as well as functional/structural
spatial patterns revealed by the significant components. Both
components are similar to the components shown in Figure 4

with FMS values between 0.84 and 0.93 as given in Table 1 as well
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FIGURE 7 | Temporal and spatial patterns from the statistically significant components of the ACMTF model of the EEG tensor with 62 electrodes, fMRI and sMRI

data, with R = 10. (A) Component 10 refers to the P2-N2 transition as well as the P3 peak, heavily weighted by the frontal and central electrodes in the EEG, an

increase in sensorimotor and parietal activation of controls over patients in the fMRI, and an increase in concentration of gray matter in controls over patients in

sections of the parietal lobe and cerebellum in the sMRI, (B) component 6 corresponds to the P3 peak heavily weighted the frontal electrodes in the EEG, the fMRI

indicates a decrease in activation of controls vs. patients in some regions of the sensorimotor cortex and parietal lobe, and increases in gray matter for controls over

patients in multiple portions of the frontal and parietal lobes in the sMRI. The corresponding p-values are 8.0× 10−3, 4.0× 10−3, respectively. Columns of the factor

matrix in the time mode are in red while green plots show signals from individual electrodes averaged across all subjects.

as components shown in Figure 3. However, now information
from the two functional modalities, EEG and fMRI, has been
combined with information from the structural modality, sMRI.
In Figure 7A, the sMRI portion of the component shows an
increase in concentration of gray matter in controls over patients
in sections of the parietal lobe and cerebellum. In Figure 7B,
the sMRI portion of the component shows increases in gray
matter for controls over patients in multiple portions of the
frontal and parietal lobes. Overall these components are similar
to components found previously in other analyses of data from
the same subjects but with 11 electrodes (Acar et al., 2017a).

Weights of the components, shown in Figure 8, indicate that
sMRI does not contribute much to the significant components.
In most components the weights of the components in the sMRI
are low, indicating potentially unshared factors. However, a closer
look at the model reveals that the model fit is 97% for sMRI,
while it is 79% for EEG and 64% for fMRI (see Figure S3 for
the singular value spectrum of each data set), and components
with high weights in sMRI are mainly modeling the average
structure across subjects with highly correlated components, i.e.,
the correlation of component vector in the voxel mode is 0.95
for components 1 and 5. Therefore, data sets must be centered
across the subject mode to incorporate information other than
the mean from sMRI into the analysis. Furthermore, as a result
of including components from sMRI, which do not differentiate
between the groups, we also observe a drop in the clustering

FIGURE 8 | Weights of the components in EEG, fMRI, and sMRI extracted by

the ACMTF model of the EEG tensor with 62 electrodes, fMRI and sMRI data,

with R = 10 and no additional centering across the subject mode.

performance in Table 1. Note that the clustering performance
is based on all possible combinations of the columns of the
factor matrix in the subject mode. However, we do note that the
significance of both components have increased, thus indicating
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that there is additional discriminatory information that the
sMRI is providing.

When all data sets are centered across the subject mode, the
ACMTF model has three statistically significant components,
which are illustrated in Figure S4. The two most significant
ones, with the factor vectors in time, electrode, fMRI voxel,
sMRI voxel modes shown in Figures S4A,B, are similar to the
components in Figure 4, also indicated by the FMS values in
Table 1. The factor vector of the third component in the time
mode represents the N2 peak as well as the P3 peak in the EEG.
The topographic map indicates activation in the parietal lobe,
while the fMRI part shows increased activation of controls over
patients in the sensorimotor cortex and a decrease in activation
of controls vs. patients in the occipital lobe. The sMRI portion
of the component indicates changes to gray matter concentration
throughout the frontal and parietal lobes. Note that the clustering
performance of the overall model has improved significantly by
modeling more relevant structure in sMRI compared to the case
where there is no centering. The model fit is 69, 47, and 70%
for EEG, fMRI, and sMRI, respectively. In order to increase
the model fits, in particular for fMRI, when we increase the
number of components to R = 15, a unique model can still be
obtained with model fits 78, 64, and 79% for EEG, fMRI, and
sMRI, respectively. In that case, however, only a single statistically
significant component (p-value=1.4 × 10−4) that is similar to
Figure 4B, is captured. The clustering performance of the 15-
component ACMTF model is similar to the 10-component case.
These observations indicate that the model is consistent to some
degree across models with different numbers of components, by
still revealing one of the significant components. The additional
components explain some of the remaining information in the
data sets but do not reveal any additional significant components
in terms of distinguishing between the groups. The results show
that they still help with increasing the significance of the relevant
component by modeling the structure not contributing to the
discrimination of patients and controls.

4. DISCUSSION

In this paper, we have jointly analyzed multi-modal
neuroimaging signals, namely, EEG, fMRI, and sMRI,
collected from patients with schizophrenia and healthy
controls, using a structure-revealing CMTF model. The model
captures temporal as well as functional/structural spatial
patterns that can differentiate between patients and healthy
controls. Compared to traditional fusion approaches, such
as jICA, the structure-revealing CMTF model enables us to
exploit the multilinear structure of multi-channel EEG signals
providing both interpretable patterns and improved uniqueness
properties without imposing additional constraints on the
extracted patterns. Through joint analysis of EEG, and fMRI,
the following temporal and spatial patterns are identified as
potential biomarkers:

• Pattern 1: The temporal part referring to the P2-N2 transition
as well as the P3 peak, and the functional spatial part

showing increased activation of controls over patients in the
sensorimotor cortex.

• Pattern 2: The temporal part referring to the P3 peak, and
the functional spatial part indicating a decrease in activation
of controls vs. patients in some regions of the sensorimotor
cortex and parietal lobe.

The biomarkers that are extracted using the ACMTF model
correspond to signals observed in previous investigations of the
structural and functional impacts of schizophrenia. The EEG
signals are similar to those observed in previous schizophrenia
research (Calhoun et al., 2010; Kayser et al., 2010). Additionally,
the regions in spatial patterns have also been shown to be
affected in patients with schizophrenia previously (Schroder
et al., 1999; Wolf et al., 2008; Minzenberg et al., 2009). Through
the incorporation of the sMRI data, these patterns have been
complemented with the following structural spatial parts: (i)
Pattern 1, the structural spatial part indicating an increase in
concentration of gray matter in controls over patients in sections
of the parietal lobe and cerebellum. (ii) Pattern 2, the structural
spatial part showing increases in gray matter for controls over
patients in multiple portions of the frontal and parietal lobes.
All three regions have been shown to be impacted in patients
with schizophrenia (Shenton et al., 2010; Olabi et al., 2011; Brent
et al., 2013; Lungu et al., 2013). These patterns are reproducible
and have been revealed even in the case of changes in data sets,
as we have illustrated by leaving out data from one subject at a
time and in our preliminary studies on a slightly different set
of subjects (Acar et al., 2017b) and using a subset of electrodes
(Acar et al., 2017a).

Any method targeting biomarker discovery must capture the
underlying patterns corresponding to the potential biomarkers
uniquely; therefore, in this paper, we have used the structure-
revealing CMTF model that focuses on unique identification
of underlying patterns when jointly analyzing multi-modal data
sets with shared and unshared factors, rather than other CMTF
methods that have proved useful in missing data estimation
applications (where uniqueness of underlying patterns is not
of interest) (Zheng et al., 2010; Ermis et al., 2015). In
addition to the patterns interpreted as potential biomarkers,
the structure-revealing CMTF model also reveals weights of
the patterns that can be used to identify shared/unshared
patterns in each data set and quantify the contribution
from each data set. In joint analysis of EEG and fMRI, all
components, including the statistically significant components
differentiating between patients and controls, correspond to
shared components. Similarly, in joint analysis of EEG,
fMRI, and sMRI, as long as necessary preprocessing steps,
such as centering are carried out as discussed in section
3.3, all components are shared among three modalities as
shown in Figure S5.

The structure-revealing CMTF model relies on the hard
coupling assumption, i.e., the factor vectors in the coupled (e.g.,
subject) mode are exactly the same in different modalities for the
shared factors. That is a strong assumption, whichmay be relaxed
using soft coupling approaches (Seichepine et al., 2013; Farias
et al., 2016), e.g., having different factor matrices in the coupled
mode and penalizing the distance between the factor matrices
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based on various norms, as in Rivet et al. (2015) when jointly
analyzing EEG and electro-ocular artifacts, or as in Chatzichristos
et al. (2018) when jointly analyzing EEG and raw fMRI signals.
However, a hard coupling-based approach may be preferable in
noisy cases (Adali et al., 2015b). Therefore, whether or not it is a
limitation is an open research question.

One potential drawback of the structure-revealing CMTF
model is sensitivity to its parameters, i.e., the number of
components, R, and the sparsity penalty parameter, β . Despite
the sensitivity, we have consistently observed similar statistically
significant patterns for different number of components, as
shown in Table 1 in terms of FMS values. Note that FMS takes
into account every entry in the factor vectors (i.e., many voxels
in the fMRI) and it is rather a strict measure. Therefore, we
have observed that even for lower FMS values, interpretations
of the captured patterns are the same visually (e.g., Figure 4 vs.
Figure S2). Another challenge as a result of sensitivity to model
parameters is that the model must be experimentally validated
to be unique. An important future research direction is to study
the landscape of the optimization problem and develop ways
to make the problem less sensitive to parameters as well as
the initialization. A theoretical understanding of the uniqueness
properties of the structure-revealing CMTF model would also
significantly mitigate this challenge. Recent work on uniqueness
(Lathauwer and Kofidis, 2017) of coupled matrix and tensor
factorizations provides a step in this direction studying the
indeterminacies in CMTF in the presence of unshared factors.
Furthermore, while we have used the same sparsity penalty
parameter for all data sets in this paper, in some applications,
this parameter may need to be data-specific depending on the
structure of each data set.

While data fusion methods are of interest in many disciplines,
preprocessing steps have not been well-studied within the
framework of data fusion. In this paper, we have shown that
while centering across the subject mode does not affect the
joint analysis of EEG and fMRI data, it has a dramatic effect
when the sMRI data is incorporated, and the interpretation
of the component weights changes significantly. In addition to
such preprocessing steps, there are further steps that should be
carefully incorporated to data fusion methods, such as outlier
removal, residual analysis, which may also enable better tools for
selecting the number of components.

This paper is a systematic study of the structure-revealing
CMTF model for biomarker discovery but with limited number
of subjects. In order to see the real promise of the method
as a biomarker discovery approach and assess the validity
of the potential biomarkers for schizophrenia, joint analysis
of EEG, fMRI, and sMRI signals must be carried out on a
larger set of subjects and also including patients with different
neurological disorders. There are increasingly more studies
exploiting the multilinear structure of different neuroimaging
signals (Andersen and Rayens, 2004; Davidson et al., 2013;
He et al., 2014; Ferdowsi et al., 2015; Madsen et al., 2017;
Chatzichristos et al., 2018, 2019; Williams et al., 2018), and
understanding the advantages and limitations of CMTF-based
approaches, that can exploit those multilinear structures, is
crucial as the fusion of multimodal neuroimaging data holds
promise to enhance biomarker discovery.
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Recent neuroimaging studies have indicated that abnormalities in brain structure and
function may play an important role in the etiology of lifelong premature ejaculation
(LPE). LPE patients have exhibited aberrant cortical structure, altered brain network
function and abnormal brain activation in response to erotic pictures. However, it
remains unclear whether resting-state whole brain functional connectivity (FC) is altered
in LPE patients. Machine learning analysis has the advantage of screening the best
classification features from high-throughput data (such as FC), which has the potential to
identify the pathophysiological targets of disease by establishing classification indicators
for patients and healthy controls (HCs). Therefore, the supported vector machine based
classification model using FC as features was used in the present study to confirm
the most specific FCs that distinguish LPE patients from healthy controls. After feature
selection, the remained features were used to build the classification model, with an
accuracy 0.85 ± 0.14, sensitivity of 0.92 ± 0.18, specificity of 0.72 ± 0.30, and recall
index of 0.85 ± 0.17 across 1000 testing groups (100 times 10-folds cross validation).
After that, two-sample t-tests with family-wise error correction were used to compare
these features that occur more than 500 times during training steps between LPE
patients and HCs. Four FCs, (1) between left medial part of orbital frontal cortex (mOFC)
and right mOFC, (2) between the left rectus and right postcentral gyrus, (3) between the
right insula and left pallidum, and (4) between the right middle part of temporal pole and
right inferior part of temporal gyrus showed significant group difference. These results
demonstrate that resting-state brain FC might be a discriminating feature to distinguish
LPE patients from HCs. These classification features, especially the FC between bilateral
mOFC, provide underlying abnormal central functional targets in LPE etiology, which
offers a novel alternative target for future intervention in LPE treatment.

Keywords: lifelong premature ejaculation, feature selection, functional magnetic resonance imaging, support
vector machine, functional connectivity
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INTRODUCTION

In recent years, more and more neuroimaging studies have found
that the etiology of sexual function dysfunction may be related
to brain abnormalities, including brain structure, and functional
aberrance (Zhao et al., 2015a,b; Chen et al., 2017; Jin et al.,
2017; Li et al., 2018). Lifelong premature ejaculation (LPE) is
one of the most common male sexual dysfunction diseases.
According to the International Society for Sexual Medicine,
LPE is defined as “a male sexual dysfunction characterized by
ejaculation which always or nearly always occurs prior to or
within about 1 min of vaginal penetration since the first sexual
experience; and inability to delay ejaculation on all or nearly all
vaginal penetrations; and negative personal consequences, such
as distress, bother, frustration and or the avoidance of sexual
intimacy (Althof et al., 2014).” Although selective serotonin
reuptake inhibitors have been found to produce a side effect
of delayed ejaculation in the treatment of depression and have
gradually become the first-line drug for clinical treatment of
premature ejaculation (PE) (Giuliano and Clement, 2012), the
pathophysiological mechanisms of LPE remain unclear. As early
as 10 years ago, neuroimaging studies demonstrated that the
brain is involved in ejaculation behavior (Holstege et al., 2003;
Georgiadis et al., 2007); however, evidence regarding to the role
of the brain in the etiology of LPE remains limited, especially at
the supraspinal level.

In Zhang et al. (2017), the first neuroimaging study of brain
changes in LPE patients was conducted. Subsequently, there have
been a few studies reporting brain structural and functional
abnormalities in LPE, including by our group. These studies
have shown that LPE patients have increased cortical thickness
and possible improved sensory ascending conduction efficiency
(Guo et al., 2017; Gao et al., 2018), and abnormal brain function
either in resting state or during erotic picture stimulation (Zhang
et al., 2017; Lu et al., 2018; Yang et al., 2018), which have
provided new evidence for the neurobiological etiology of LPE.
Recently, machine learning methods have also been used in
the analysis of high-throughput brain imaging data to obtain
more disease-specific imaging features. For example, classifiers
based on brain structure or brain function features have been
used to distinguish psychiatric patients from healthy people,
to distinguish different subtypes of patients, and to predict
remission and non-remission when evaluating therapeutic effects
(Fu et al., 2008; Grotegerd et al., 2014; Redlich et al., 2016; Du
et al., 2018). These classification features offer useful insight for
detecting the biological mechanisms of diseases. Interestingly,
a recent study investigating the brain mechanism of venous
erectile dysfunction used machine learning classification to
distinguish patients from healthy controls, and revealed more
various white matter-derived indices that might underlie imaging
targets related to the neurobiological etiology of venous erectile
dysfunction (Li et al., 2018).

Therefore, in the present study, we aimed to use a machine
learning method to classify LPE patients from healthy subjects
based on high-throughput resting brain functional connectivity
(FC) data, in effort to find the most specific discriminating
indicators between LPE patients and healthy controls. We believe

our results provide novel information for understanding the
neurobiological mechanism of LPE.

MATERIALS AND METHODS

Participants
Sixty male adults non-medicated PE patients and sixty male
non-drug-using healthy controls (HCs) were recruited in our
study. LPE was diagnosed according to the International Society
for Sexual Medicine’s guidelines for the diagnosis and treatment
of premature ejaculation (Althof et al., 2010). All participants
underwent history taking and physical examination. Each patient
had an intravaginal ejaculatory latency time (IELT) within 1 min.
The premature ejaculation diagnostic tool (PEDT) score of each
LPE patient was >11, but <5 for each control. The International
Index of Erectile Function score was no less than 21 for all subjects.
Participants were excluded if they met any of the following criteria:
(1) had a history of alcohol or drug abuse, (2) had a history of
psychiatric or neurologic diseases, (3) having a history of head
trauma, and (4) had any contra-indication to MRI scanning.

According to the selection standards above, 45 PE patients and
40 HCs were included in the current study. Written informed
consent was obtained from all study participants. Research
procedures were approved by the ethical committee of the
Northwest Women’s and Children’s Hospital in China, and were
conducted in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

Imaging Data Acquisition
All subjects underwent a series of image scanning using a 3T GE
MR750 scanner at the Department of Radiology, Xijing Hospital,
the Fourth Military Medical University, Xi’an, China. A standard
8-channel head coil was used together with a restraining foam pad
to minimize head motion and diminish scanner noise. Resting-
state functional images were acquired with a single-shot gradient
recalled echo planar imaging sequence. (TR/TE: 2000 ms/30 ms,
field of view: 240× 240 mm2, matrix size: 64× 64, flip angle: 90◦,
in-plane resolution: 3.75 × 3.75 mm2, slice thickness: 3.5 mm
with no gaps, 45 axial slices). For each subject, a total of 210
volumes were acquired. High resolution T1-weighted images
were collected with a volumetric three-dimensional spoiled
gradient recall sequence (TR/TE: 8.2 ms/3.18 ms, field of view:
256 × 256 mm2, matrix size: 512 × 512, flip angle = 9◦, in-plane
resolution: 0.5 × 0.5 mm2, slice thickness = 1 mm, 196 sagittal
slices). During the resting scanning, subjects were instructed to
keep their eyes open and to not think about anything.

Imaging Data Preprocessing
Functional image preprocessing was carried out using CONN
software1. Briefly, after excluding the first five images to
ensure the signal had reached equilibrium, functional images
were corrected for head motion and temporal differences.
A participant was excluded if any translation or rotation
parameters in subject’s data set exceeded ± 1 mm or ± 1◦,

1http://web.mit.edu/swg/software.htm
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respectively. After this step, 39 patients and 30 HCs remained.
After that, outlier detection was performed. Next, the corrected
functional images were coregistered to each subject’s T1 image
without reslicing the image. After that, T1 images were
normalized to the Montreal Neurological Institute (MNI) space,
which generated a transformed matrix from native space to MNI
space. Functional images were then transformed to the MNI
space using this matrix and resampled at 2 × 2 × 2 mm3.
Finally, all images were smoothed with a 6-mm full width at half
maximum Gaussian kernel.

To remove spurious sources of variance, time series of each
brain voxel were performed by the following steps: (1) linear
detrending; (2) regressing out the six head motion parameters
and their first-level derivative, the averaged cerebrospinal fluid
and white matter signals, and the scrubbing signal from the
time series generated by the functional outlier detection (ART-
based identification of scans for scrubbing) process in CONN; (3)
0.01–0.1 Hz band-pass filtering.

After data preprocessing, time series of each region of interest
(ROI) were extracted as the average time series across all voxels
in that ROI based on the Anatomical Automatic Labeling (AAL)
cortical and subcortical atlas (Tzourio-Mazoyer et al., 2002). In
this step, 90 ROI time series were extracted. Finally, the FC
coefficient (e.g., Pearson’s correlation coefficient) between each
pair of these 90 time series was calculated, which resulted in 4005
edges for each subject for subsequent analysis.

Features Selection and Classification
Model
Ten-folds cross validation (CV) was used to assess the reliability
of the classification model. Briefly, 69 subjects were randomly
separated into 10 groups. Each time, one group in turn was
used as a testing group and the other nine groups were used
as training group.

Firstly, two sample T-test was used as the first step to
preliminarily select features from the 4005 edges in training

group. The edges with a p-value less than P0 were selected as
initial features. After that, we used a 10-folds CV based Least
Absolute Shrinkage and Selection Operator (CV-LASSO) method
to further select features. Briefly, subjects in training group were
again randomly separated into 10 groups. Each time, one group
in turn was excluded from the dataset, and the LASSO (Sauerbrei
et al., 2007) method with mean of square error (MSE) as the cost
function was used on the remaining nine groups to narrow down
the initial features into the most important features according
to the MSE+1SE criteria (Sauerbrei et al., 2007). This step was
repeated 10 times, which resulted in 10 different groups of
selected features. Finally, the edges that were included in the
selected feature group at least N times (i.e., occurring N times)
were selected as LASSO features for further analysis. Next, the
linear supported vector machine (LSVM) method was used to
construct the classification model based on LASSO features in
training group, which was implemented using libsvm software2.
The accuracy, sensitivity, specificity and recall indices of the
constructed model were calculated using testing group.

All these steps above were repeated 10 times. As for the setting
of P0, N, and the cost parameter c in libsvm, we used grid-
search method to find them. These parameters were set at a group
of specific values when the accuracy index of the constructed
classification model achieved the maximum. The P0 was set from
0.025 to 0.2 with a step of 0.025 and including 0.001, 0.005, and
0.01. The N was set from 1 to 10 with a step of 1. The c was set
from 0.1 to 2 with a step of 0.1.

To avoid the random group effect, we repeated the 10-folds
CV 100 times. For each time, a new random group was split.
The mean ± standard deviation of each index across the 1000
testing groups (10× 100) was used to assess the performance and
stability of the constructed model. Finally, 1000 times permutation
test (group label permutation) was performed to check if our
results were significantly different from random label. Figure 1
illustrates the framework of our study.

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

FIGURE 1 | The framework of study procedure.
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RESULTS

Clinical and Demographic
Characteristics
Clinical and demographic characteristics of the subjects are
shown in Table 1. The PEDT scores of LPE patients were
significantly higher than those of HCs, and the IELT of LPE
patients was dramatically shorter than that of HCs.

Classification
The 100 times 10-fold CV results of the model were shown in
Table 2. The accuracy, sensitivity, specificity and recall indices of
the classification model were 0.8490 ± 0.1401, 0.9238 ± 0.1817,
0.7250 ± 0.3038, and 0.8506 ± 0.1740, respectively. Figure 2B
displays the receiver operating characteristic curve (ROC) of the
classification model, and the AUC was 0.8047. Figure 3 shows
the permutation test results of our constructed classification
model. Together, these results demonstrate the stability of our
classification model and the reliability of our method.

After counting the occurring time of each LASSO feature in
100 times 10-fold CV, 5 LASSO features with occurring time
larger than 500 were finally selected as the most important
features in classification, which involved brain regions in the
frontal, temporal and limbic lobes (Table 3), since we believed
that features which occurring time less than 500 were to a large
extent relied on the specific splitting group. Figure 2A gives the
spatial distribution of these 5 LASSO features.

DISCUSSION

By using a machine learning classification method to assess
resting-state brain function in LPE patients, the present study
screened 9.042 (average across every training step during 100
times 10-folds CV) out of 4005 FC features to construct the
optimal classifier, which could separate patients from healthy
people with an accuracy of 0.85. These FC features are mainly

TABLE 1 | Clinical and demographic characteristics.

HC (n = 30) LPE (n = 39) P-value

Age (years) 31.33 ± 2.77 30.52 ± 5.06 0.44

PEDT score 0.80 ± 1.40 17.50 ± 1.96 <0.0001

IIEF-5 score 24.5 ± 0.63 24.29 ± 0.47 0.17

IELT (min) 644.00 ± 366.47 37.02 ± 16.75 <0.0001

Data were presented as mean ± SD. HC, healthy control; IELT, intravaginal
ejaculatory latency time; IIEF-5, International Index of Erectile Function-5; LPE,
lifelong premature ejaculation; PEDT, Premature ejaculation diagnostic tool.

distributed in some areas in the frontal, temporal, and parietal
cortex, and limbic system. Compared with previous studies,
our results provide more novel FC-derived indicators through
a strategy of classification research to understand the potential
abnormalities of brain function in LPE patients.

The classification algorithm in machine learning is useful for
exploring the best classification features from high-throughput
information, in which multivariate decoding algorithms like
supported vector machine are trained on a portion of the data
by weighting all connections in order to separate the known
clinical status from HCs, rather than testing each connection
independently for group differences. The whole brain functional
connections belong to a high-throughput data set, in which there
are more than 4000 FCs in the whole brain when the human brain
is divided into 90 ROIs. In our present study, through CV-LASSO
dimension reduction method, we have obtained a classifier with
a relatively high accuracy to individually distinguish LPE patients
from HCs. This machine learning-based classification approach
based on resting-state FC has previously been used to distinguish
patients with brain disorders from HCs, and responders from
non-responders in clinical drug or invention trials (van Waarde
et al., 2015; Sarpal et al., 2016; Arbabshirani et al., 2017; Plaschke
et al., 2017). Therefore, the features based on the resting-state
FC in our present study may be biomarkers that allow the
classification of individual LPE patients.

Among the five selected features which occur more than
500 times in training step during 100 times 10-fold CV, the
connections between bilateral mOFC had the highest weight
according to our results. OFC has been implicated in ejaculation
control. A previous positron emission tomography study has
reported a remarkable decrease of regional cerebral blood flow
throughout the prefrontal cortex during ejaculation in male
volunteers (Holstege et al., 2003; Georgiadis et al., 2007). Our
previous study has also found abnormal prefrontal control
function in LPE patients by using classical inhibitory control
tasks, and reduced FC between the inferior frontal cortex and
the frontal pole was found in LPE patients (Yang et al., 2018).
Together with the present results that the synchronized activity
of the mirror symmetric OFC had absolute superiority in
discriminating LPE patients from the healthy controls, it further
indicates that the OFC is likely closely involved in the etiology
of LPE, and the OFC-related inhibitory control function may
be impaired in LPE patients, which might cause the loss of the
inhibitory tone on ejaculation in LPE patients.

Besides, most of the other FC related regions in the current
study were also reported to be related to male sexual physiology.
Zhang et al. (2017) have found that the insula and middle
part of temporal gyrus showed abnormal activation in response
to erotic stimulation, and also had aberrant regional activity

TABLE 2 | Performance information of classification model.

Accuracy Sensitivity Specificity Recall AUC

0.8490 ± 0.1401 0.9238 ± 0.1817 0.7250 ± 0.3038 0.8506 ± 0.1740 0.8047

Permutation < 0.001 – – – < 0.001

AUC, area under the curve; Permutation, 1000 Permutation test.
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FIGURE 2 | (A) The spatial distribution of five selected LASSO features and (B) the receiver operating characteristic (ROC) curve of the classification model. LASSO,
least absolute shrinkage and selection operator.

FIGURE 3 | The 1000 times permutation test results of (A) classification model accuracy index and (B) area under curve (AUC).

TABLE 3 | Detailed information of five selected LASSO features.

Edge Weight

HC>PE

Frontal_Med_Orb_L Frontal_Med_Orb_R 0.4874

Rectus_L Postcentral_R 0.0020

Insula_R Pallidum_L 0.1270

HC<PE

Frontal_Mid_L SupraMarginal_L 0.1370

Temporal_Pole_Mid_R Temporal_Inf_R 0.2466

Frontal_Med_Orb, medial part of orbital frontal cortex; Frontal_Mid, middle part
of frontal cortex; Temporal_Pole_Mid, middle part of temporal pole; Temporal_Inf,
inferior part of temporal gyrus; L for left and R for right; LASSO, absolute shrinkage
and selection operator.

and FC during resting state in LPE patients. By using cerebral
cortical thickness measurements, we once reported widespread
cortical thickening in the orbitofrontal, middle frontal, and
supramarginal gyrus in LPE patients (Guo et al., 2017). A recent
fMRI study detected the resting-state FC density in LPE patients,
which found that anterior cingulate cortex, insula, and precuneus
had increased long-range FC density in LPE patients compared
to healthy controls (Lu et al., 2018). Although the role of gyrus
rectus and postcentral gyrus in LPE has not been reported
yet, the gyrus rectus is located in the medial orbital gyrus and
plays an inhibition role in sexual arousal (Stoleru et al., 2012),
and sensory stimuli from penis could induce Rolandic opercula
area and postcentral gyrus activation (Stoleru et al., 2012).
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So, despite our results were derived from a data-driven method,
these classification features that are involved in ejaculation and
other sexual behaviors extend our knowledge of the central
pathophysiology in LPE patients.

There are several limitations in the current study. We only
included LPE patients without secondary PE patients. So, we do
not know if our classifier was specific to LPE or trans-disease
subtypes across all PE patients. Further research is necessary to
include more subtypes of PE patients for classification studies.
In addition, other than FC, brain gray matter and white matter
structure have often been used as classification indicators. Li
et al. (2018) have used white matter indicators to successfully
distinguish venous erectile dysfunction patients from HCs.
These measures were not included in the present study, but
multimodal brain imaging information should be used in future
classification studies of PE.

CONCLUSION

By using machine learning analysis, this study identified
potential neuroimaging markers based on resting-state whole
brain FC that could distinguish LPE patients from HCs.
These classification features provide novel information for
explaining the central mechanisms of LPE, and further
emphasize the potential functional abnormalities of the central
inhibitory control network and sexual-related regions in
LPE patients.
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Purpose: Although alterations in resting-state functional connectivity between brain 
regions have been reported in children with attention-deficit/hyperactivity disorder 
(ADHD), the spatial organization of these changes remains largely unknown. Here, we 
studied frontal–parietal attention network topology in children with ADHD, and related 
topology to a clinical measure of disease progression.

Methods: Resting-state fMRI scans were obtained from New York University Child Study 
Center, including 119 children with ADHD (male n = 89; female n = 30) and 69 typically 
developing controls (male n = 33; female n = 36). We characterized frontal–parietal 
functional networks using standard graph analysis (clustering coefficient and shortest 
path length) and the construction of a minimum spanning tree, a novel approach that 
allows a unique and unbiased characterization of brain networks.

Results: Clustering coefficient and path length in the frontal–parietal attention network 
were similar in children with ADHD and typically developing controls; however, diameter 
was greater and leaf number, tree hierarchy, and kappa were lower in children with ADHD, 
and were significantly correlated with ADHD symptom score. There were significant 
alterations in nodal eccentricity in children with ADHD, involving prefrontal and occipital 
cortex regions, which are compatible with the results of previous ADHD studies.

Conclusions: Our results indicate the tendency to deviate from a more centralized 
organization (star-like topology) towards a more decentralized organization (line-like 
topology) in the frontal–parietal attention network of children with ADHD. This represents 
a more random network that is associated with impaired global efficiency and network 
decentralization. These changes appear to reflect clinically relevant phenomena and hold 
promise as markers of disease progression.

Keywords: attention-deficit/hyperactivity disorder, frontal–parietal attention network, small world, minimum 
spanning tree, resting connectivity
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INTRODUCTION

Even when in the resting state and not performing any task 
processing, the brain is still working. The spontaneous brain 
activity present in the resting state is not random and usually 
shows high temporal coupling across different brain regions. This 
creates a set of brain networks that are densely interconnected 
and distinct from others. These resting-state networks are not 
a reaction to any task, but are intrinsically generated by the 
brain itself (1, 2). To date, at least seven brain networks have 
been identified by a variety of functional connectivity analysis 
approaches, and they show a high stability across individuals 
(1–6). The frontal–parietal attention network (FPAN) is involved 
cognitive process, especially attention in these networks (7–9). 
The FPAN not only has been studied in task-related activation 
studies involving sustained attention, but has also been confirmed 
by functional connectivity at rest that directly relates to attention 
performance (8, 10).

Graph theory has been used to study the architecture of brain 
networks (11, 12) and has revealed an economical and highly 
efficient organization of functional connectivity that combines 
global efficiency and local integration. This is called small-world 
(SW) topology and is characterized by limited long-distance 
and dense local connections (13, 14). Many brain diseases have 
been related to disrupted organization of brain networks. The 
study of brain networks has increased our understanding of 
the underlying pathophysiological mechanisms for many brain 
diseases such as epilepsy and schizophrenia (15–17). Attention-
deficit/hyperactivity disorder (ADHD) is one of the most 
common psychiatric disorders during childhood and persists 
into adolescence and adulthood (18). Several whole-brain studies 
using graph theory analysis have reported a shift from a SW 
topology towards a more regular organization in ADHD, which 
results in increased local integration and loss of global network 
efficiency (19, 20). In addition, a vulnerability of some hub regions 
has been reported (21). As a neurodevelopmental disorder, 
ADHD is characterized by developmentally inappropriate 
symptoms of excessive inattention, impulsivity, and hyperactivity. 
Many studies have found that ADHD is a developmental disorder 
and associated with developmental delay (22). Recently, graph 
analysis studies have confirmed a shift from more random to more 
regular SW topological structure during maturation (23–25). 
Smit and colleagues have confirmed connectivity alteration that 
reflected increased network randomness, or decreased order 
(26). These results suggest that the maturational delay in ADHD 
is reflected by more random brain connectivity, but not more 
regular (23–25).

It is difficult to compare networks reported in graph theory 
studies across different groups and conditions. A normalization 
step is required to allow comparison. Common approaches are 
thresholding and/or comparing the observed network with 
randomized networks generated from the observed network; 
however, these do not provide a unique or consistent solution 
(27). One potential solution is minimum spanning tree (MST), 
which is derived from a weighted network (28). MST is an 
acyclic subnetwork that connects the same number of nodes and 
connections, and therefore not only makes the comparison of 

network topology easier across conditions but also avoids potential 
deviations that may be introduced through normalization steps. 
Several studies have used the MST approach to investigate brain 
networks and have shown that this approach is sensitive to brain 
disease, such as Alzheimer’s disease (29), epilepsy (30), and 
maturation from childhood into adulthood (23).

The aim of the present study was to explore the alteration 
of the FPAN connectivity or topology in children with ADHD. 
Increasing evidence has demonstrated that ADHD was a 
developmental disorder and associated with developmental 
delay. Typical maturation during childhood involves a shift from 
a random towards more regular networks (31). We hypothesized 
that, in youth with ADHD, functional networks would shift 
towards being more random, evidenced by decreased local 
integration and global efficiency. Although some previous 
studies report a regular topology in ADHD, with increased 
local integration and decreased global efficiency, we believe that 
these studies have some shortcomings. First, they analyzed the 
whole brain network, but different brain networks mainly took 
on different cognitive task (32), which relied on coactivation of 
executive network (e.g., frontal–parietal control network) and 
reciprocal suppression of the nonexecutive network (e.g., default 
mode network, DMN). The whole brain network analysis may have 
confused the role of different brain networks. Fair and colleagues 
found reduced spontaneous activity within the DMN in ADHD 
(33), and a follow-up study found decreased connectivity in 
DMN and dorsal attention networks, and enhanced connectivity 
within reward-motivation regions in the resting-state in young 
adults with ADHD (34). These previous findings suggest the 
presence of altered functional brain networks associated with 
attention and cognitive processing in ADHD. However, the 
topological features of functional brain networks in FPAN have 
yet to be extensively investigated. The FPAN is a critical module 
in attention processing (8), and exploring its alteration in ADHD 
may be helpful for understanding the pathological mechanism 
of disease. Second, usually, they used a range of thresholds to 
construct the SW topology, and the difference between ADHD 
and typically developing controls (TDCs) mainly exists at some 
threshold, which was not robust and lost many low signals. In 
addition, they did not compare with the real random networks. 
We used the connectivity strength between each pair of brain 
regions as the edge to construct the SW topology and compared 
the observed network with randomized networks generated 
from the observed network to normalize. We also construct 
MST to explore the alteration of brain networks in ADHD. 
Conventional network measures may give inaccurate differences 
in connectivity strength, density, and graph size between 
subjects. MST overcomes these problems and provides an elegant 
solution, which, up to this point, has not received much attention 
in the neuroscience literature. MST is an unbiased approach, and 
the diameter and leaf number of MST were strongly related with 
the path length of SW topology (24). MST captured changes in 
FPAN topology, supporting results derived from conventional 
network analysis (24). In addition, MST successfully captured 
alterations in the properties of the whole-brain network during 
maturation in children (23) and supported the finding that 
the randomness of the topology reduced with age, as shown 
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by conventional network analysis (24). Finally, although many 
studies have reported group differences between children with 
ADHD and TDC, they have not associated these differences with 
clinical features. In the present study, we computed the Pearson’s 
correlation between the properties of SW topology and clinical 
features.

In the present study, we used concepts from graph theory 
to examine resting-state functional connectivity within the 
FPAN. We hypothesized that the functional networks in the 
FPAN would shift towards being more random in children with 
ADHD than in TDC. We used graph theory analysis to quantify 
publically available resting functional magnetic resonance 
imaging (MRI) data from 119 children with ADHD and 69 
TDC. We calculated several measures derived from the SW and 
MST to assess local integration, global efficiency, and relative 
node importance within the networks and hypothesized that 
brain networks of participants with ADHD would display lower 
global efficiency and local integration than brain networks of 
TDC, and that this would be accompanied by a loss of centrality 
of individual brain regions within the FPAN. An analysis was 
then conducted to determine correlations between SW and MST 
parameters and ADHD-related disability, as measured using 
the ADHD symptom score. We hypothesized that, in children 
with ADHD, SW and MST would be associated with ADHD 
symptom score.

MATERIALS AND METHODS

Participants and Data Acquisition
The data we used in this study are publicly available from the 
ADHD-200 Consortium (http://fcon_1000.projects.nitrc.org/
indi/adhd200/). We first selected 191 participants between 
the ages of 7 and 14 years from New York University Child 
Study Center and excluded 7 participants whose IQ (Wechsler 
Abbreviated Scale of Intelligence, WASI), gender, or diagnosis 
information were missing, resulting in the 188 participants for 
further analysis, including 119 children with ADHD (male n = 
89; female n = 30) and 69 TDC children (male n = 33; female 
n = 36), detailed in Table 1. All participants provided signed 
informed consent as approved by the IRBs of NYU and the NYU 
School of Medicine and were compensated, and the institutional 
review boards approved the research protocols.

ADHD Symptoms Measures
Dimensional ratings of ADHD symptoms (Inattention; 
Hyperactivity/Impulsivity) were assessed using Conners’ Parent 
Rating Scale-Revised, Long Version (CPRS-LV).

Magnetic Resonance Imaging Dataset 
and Processing
Magnetic Resonance Imaging Dataset
High-resolution T1-weighted 3D MPRAGE images covering the 
whole brain were acquired for each participant on a Siemens 3.0-
Tesla Allegra MRI scanner at the NYU Center for Brain Imaging 
[time repetition (TR) = 2,530 ms, echo time (TE) = 3.25 ms, T1 = 

1,100 ms; flip angle = 7°, voxel size = 1.3 × 1.0 × 1.3 mm, field of 
vision (FOV) = 256 mm]. Functional imaging was performed in 
a single run using a blood oxygenation level-dependent (BOLD) 
contrast sensitive gradient echo-planar sequence (TR = 2,000 ms, 
TE = 15 ms, flip angle = 90°, FOV = 240 mm, 33 slices per volume, 
176 volumes, acquisition voxel size = 3.0 × 3.0 × 4.0 mm). During 
this scan, participants were asked to relax with their eyes open.

Data Processing
Image preprocessing was performed using the DPARSF data 
processing assistant for resting functional MRI (rsfMRI) (35). 
Preprocessing comprised the following steps: 1) discarding the 
first 10 volumes; 2) slice timing to correct for temporal offsets; 
3) realignment of each volume for head movement; 4) spatial 
normalization to MNI space (New Segment + DARTEL) and then 
resampled to 3-mm isotropic voxels; 5) spatial smoothing with a 
4-mm 3D full width at half-maximum kernel; 6) detrending to 
remove linear trends due to scanner drift; 7) temporal band-pass 
filtering (0.01–0.1 Hz) to remove low-frequency drift and high-
frequency physiological noises; and 8) regressing whole brain 
and white matter signals out of the 24 motion parameters.

Graph and Functional Connectivity Analysis
Graph analysis was performed using Gretna software (36) for 
BOLD time series extraction (https://www.nitrc.org/projects/
gretna) and Brain connectivity toolbox (37) for SW and MST 
topology (https://www.nitrc.org/projects/bct/). The functional 
connectivity derived from 16 brain regions forming FPAN 
(detailed in Table 2), which come from previous literature and 
were transformed to The Montreal Neurological Institute (MNI) 
coordinates (7, 9). Regions of interesting (ROIs) were defined 
as 6-mm-radius spheres around these MNI coordinates (8). 
We extracted BOLD time series from each of the voxels in each 
ROI, and averaged all voxels in the respective ROI as the signal. 
The functional connectivity between each pair of ROIs was then 
computed by a Pearson’s correlation and formed a 16×16 matrix, 
which were z-standardized by Fisher’s r-to-z transformation to 
approximate a Gaussian distribution. Typical graph analyses 
of weighted networks ignored negative correlation (1), and we 
followed the traditional approach. We used the matrix to construct 
SW networks and to compute the network properties. Graph and 
functional connectivity analysis pipelines are shown in Figure 1.

TABLE 1 | Demographic and clinical characteristics of ADHD and TDC groups.

TDC (n = 69) ADHD (n = 119) ADHD vs. TDC

Mean SD Mean SD t values

Age (years) 10.252 1.935 10.192 1.799 0.217
Handedness 0.568 0.287 0.645 0.291 −1.745
Gender 0.478 0.503 0.748 0.436 −3.715***

VIQ 112.594 14.199 107.076 13.890 2.604**

PIQ 107.522 15.560 103.941 14.840 1.566
ADHD Index 45.522 5.229 72.261 8.909 −26.739***

Handedness, Edinburgh Handedness Inventory; VIQ, Verbal IQ; PIQ, Performance 
IQ; ADHD Index, ADHD Index Scale T-score. ADHD, attention-deficit/hyperactivity 
disorder; TDC, typically developing control. *P < 0.05, **P < 0.01, ***P < 0.001.
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Small-World Properties
In order to approximate a Gaussian distribution, the Pearson’s 
correlation coefficients in the resulting 16×16 matrix were 
transformed by Fisher’s r-to-z. This matrix represents the strength 
of the functional connectivity between all 16 regions in the whole 
brain and served as an adjacency matrix for graph analysis. SW 
parameters clustering coefficient (C) and path length (L) were 
calculated in terms of Watts and Strogat (1998). Briefly, characteristic 
path length is defined as the average shortest path connecting any 
two nodes in the graph. The path length is used to measure how 
well a network is connected; a small value indicates an average 
short distance between any two nodes. The cluster coefficient is 
defined as the number of actual edges connecting the neighbors of 
a node divided by the maximum number of edges possible between 
neighboring nodes. The cluster coefficient of a network is used 
to measure how many local clusters exist in the network. A high 
cluster coefficient indicates that the neighbors of a node are often 
also directly connected to each other, that is, they form a cluster.

To determine whether a network has SW properties, the values 
of L and C must be normalized by generated random networks 
(12). SW networks are characterized by path lengths that are 
similar to those of comparable random networks (Lrandom) but 
with increased cluster coefficients (Crandom):λ = L/Lrandom≈1 and 
γ = C/Crandom > 1 (38). Random clustering coefficient and path 
length derived from the mean of those values from 100 random 
networks. Each random network was generated by randomly 
reshuffling the edge weights in the original network (39), which 
ensures that the node degree and node distribution of the random 
network are similar to those of the original network.

Minimum Spanning Tree Reconstruction
The MST of an undirected weighted network is a unique acyclic 
subgraph that connects all the nodes with the minimum possible 
link weight. In our analysis, we used the maximum connection 
strength (correlation matrix) as the edge to construct an acyclic 
subnetwork, equivalent to a MST as obtained by using the 

Kruskal algorithm (40). Briefly, all connections are arranged in 
descending order, then starting from the strongest strength edge, 
consecutive high strength links were added until all nodes (n) 
were connected and formed an acyclic subnetwork consisted with 
n-1 edges (Figure 1). If adding a link resulted in the formation of 
a cycle, this link was skipped.

In terms of the information about the topological properties 
of the MST, we can compute several measures to characterize 
the topology of the tree, including the diameter, normalized leaf 
fraction, kappa (degree of divergence), betweenness centrality, 
and hierarchy. The diameter, which is the largest distance between 
any two nodes, is defined as the longest shortest path in the 
network. The normalized leaf number is defined as the number 
of nodes with a degree of 1, divided by the maximum number of 
leaves possible given the size of the tree, and is used to measure 
the integration in the network (41). A decreased value of the 
normalized leaf number indicates a decreased global efficiency. 
Previous studies have found leaf number to be an important 
network parameter during development, and it is sensitive to 
the changes in aging (25), autism (42), and Parkinson’s disease 
(28). Kappa, also called degree of divergence, is used to measure 
the broadness of the degree distribution. A decreased value of 
kappa indicates a decreased number of highly connected nodes 
or “hubs.” Betweenness centrality (BC) of a node is defined as 
the number of shortest paths between any two nodes passing it, 
divided by the total number of shortest paths in the network. If 
BC = 0, the node is a leaf node; if BC = 1, the node is a central 
node in a star-like network. The BC of a node ranges between 
0 and 1. Usually, we used BCmax, which is the BC of the node 
with the highest BC in the tree to measure the BC of the tree. 
A decreased value of BCmax in the tree indicates a decreased 
global efficiency and a decreased “hub” strength. Hierarchy is an 
indicator of the balance between efficient communication paths 
and overload of hub nodes, which is defined as

TH = L
mBC2 max

where L is the leaf number, m is the number of vertices −1, 
and BCmax is the maximum value of betweenness centrality. The 
value of hierarchy ranges between 0 and 1. If leaf number = 2, 
tree is a line-like topology, and hierarchy approaches 0. If leaf 
number  = m, tree is a star-like topology, and tree hierarchy 
approaches 0.5. When the number is between 2 and m, tree 
hierarchy can have higher values (28).

Statistical Analysis
Statistical differences in age, handedness, gender, verbal, and 
performance IQ were evaluated using T test (Table 1). Due to the 
difference only in verbal IQ and gender between TDC and ADHD 
children, all analyses were also conducted with verbal IQ and 
gender as covariates. Group differences in graph theory analysis 
and functional connectivity were examined using analysis of 
covariance (ANCOVA) in which the main effect of diagnosis 
was tested with verbal IQ and gender as covariates. Moreover, 

TABLE 2 | MNI coordinates of the 16 nodes in the FPAN.

Brain region x y z

Left IPS −23 −70 46
Right IPS 25 −62 53
Left iPL −42 −48 51
Right iPL 48 −41 54
Left vIPS −26 −84 24
Right vIPS 35 −85 27
Left FEF −24 −15 66
Right FEF 28 −10 58
IPCL −55 −2 38
SMA −2 −2 55
Left DLPFC −40 39 30
Right DLPFC 38 41 26
Left vOC −47 −71 −8
Right vOC 55 −64 −13
Left aIns −45 35 9
Right aIns 45 3 15

IPS, intraparietal sulcus; IPL, inferior parietal lobule; FEF, frontal eyefield; iPCS, inferior 
precentral sulcus; SMA, supplementary motor area; DLPFC, dorsolateral prefrontal 
cortex; vOC, ventral occipital lobe; alns, anterior insula.
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a partial correlation coefficient was used to assess the relation 
between network topology (in terms of SW and MST parameters) 
and ADHD symptom score. Statistical analysis was performed 
using SPSS 21 (IBM, Armonk, NY). Multiple comparisons were 
controlled using the false discovery rate (q < 0.05) (43).

RESULTS

Group Characteristics
Table 1 summarizes the characteristics of ADHD and TDC 
children. No significant group differences were observed in age 
(t = 0.217, p = 0.828), handedness (t = −1.745, p = 0.082), and 
performance IQ (t = 1.566, p = 0.119); gender (t = −3.715, p < 
0.001) and verbal (t = 2.604, p = 0.010) IQ showed differences 

between ADHD and TDC children. In the subsequent analysis, 
gender and verbal IQ were used as covariates.

Functional Connectivity
After controlling for gender and verbal IQ, no significant group 
differences were observed for the FPAN mean strength [ADHD: 
0.155 ± 0.034; TDC: 0.153 ± 0.035, F(1,184) = 0.472, p = 0.493], 
detailed in Table 3. No significant correlation (r = 0.023; p = 
0.754) was observed between the FPAN mean strength and the 
ADHD scores, detailed in Table 4.

Small-World Topology
No significant group differences were observed in SW topology 
clustering coefficient [ADHD: 1.254 ± 0.193; TDC: 1.221 ± 0.219, 

FIGURE 1 | Graph and functional connectivity analysis pipeline. Schematic overview of the formation of individual functional brain networks using two different 
methods, i.e., construction of weighted graphs and minimum spanning trees (MST). After MRI recording (A), data from the MRI (B) were projected onto a 
functional framework of 16 frontal–parietal attention network (FPAN regions) (C). Functional connectivity between each pair of brain regions was assessed by 
means of the Pearson’s correlation (Fisher’s r-to-z transformation) (D). For weighted network analysis, a weighted graph (E) was constructed from the Pearson’s 
correlation (z-standardized). For minimum spanning tree analysis, the minimum spanning tree matrix also was derived from the correlation (z-standardized) matrix 
by Kruskal’s algorithm (D’), with concurrent MST construction (E’). Finally, network measures were computed for both the weighted graph (F) and the minimum 
spanning tree (F’) (28).
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F(1,184) = 0.328, p = 0.568] or path length [ADHD: 1.118  ± 
0.066; TDC: 1.104 ± 0.072, F(1,184) = 1.209, p = 0.273], detailed 
in Table 3. No significant correlation was observed between SW 
topology clustering coefficient and ADHD symptom score (r = 
0.040, p = 0.590) or path length and ADHD symptom score (r = 
0.097, p = 0.186), detailed in Table 4.

Minimum Spanning Tree Topology
A significant group difference was observed for diameter 
[ADHD: 0.667 ± 0.089; TDC: 0.632 ± 0.099, F(1,184) = 7.387, p = 
0.007], leaf number [ADHD: 0.410 ± 0.071; TDC: 0.428 ± 0.084, 
F(1,184)  = 6.098, p = 0.014], tree hierarchy [ADHD: 0.021 ± 
0.004; TDC: 0.022 ± 0.004, F(1,184) = 5.505, p = 0.020], and kappa 
[ADHD: 2.264 ± 0.123; TDC: 2.308 ± 0.157, F(1,184) = 7.780,  
p = 0.006], detailed in Table 3. These variables were significantly 
related to ADHD symptom score (diameter: r = 0.175, p = 0.017; 
leaf number: r = −0.208, p = 0.004; tree hierarchy: r = −0.218, 
p = 0.003; kappa: r = −0.212, p = 0.004), detailed in Table 4. 
No significant group difference was observed for betweenness 
centrality [ADHD: 0.649 ± 0.058; TDC: 0.656 ± 0.060, F(1,184) = 
0.724, p = 0.396] or eccentricity [ADHD: 0.535 ± 0.028; TDC: 
2.308 ± 0.157, F(1,184) = 2.071, p = 0.152], detailed in Table 3, 

and these variables had no significant correlation with ADHD 
symptom score (betweenness centrality: r = −0.016; p = 0.829; 
eccentricity: r = 0.112; p = 0.129), detailed in Table 4.

To further examine the regionally nodal characteristics of 
brain networks, the group difference in nodal eccentricity was 
tested in the MST topology. Eccentricity was significantly greater 
in children with ADHD than in TDC in the left intraparietal 
sulcus [ADHD: 7.328 ± 1.595; TDC: 6.783 ± 1.617, F(1,184) = 
7.017, p = 0.009], bilateral ventral intraparietal [left—ADHD: 
8.059 ± 1.457; TDC: 7.406 ± 1.584, F(1,184) = 11.305, p = 0.001; 
right—ADHD: 7.79 ± 1.545; TDC: 7.304 ± 1.365, F(1,184) = 
9.206, p = 0.003], and left and right ventral occipital lobe [left—
ADHD: 7.731 ± 1.655; TDC: 7.087 ± 1.755, F(1,184) = 6.143, 
p = 0.014; right: ADHD: 7.462 ± 1.736; TDC: 6.768 ± 1.637, 
F(1,184) = 8.809, p = 0.003], which also correlated with ADHD 
scores (left IPS: r = 0.165, p = 0.025; left vIPS: r = 0.205, p = 0.005; 
right vIPS: r = 0.154, p = 0.036; left vOC: r = 0.195, p = 0.008; 
right vOC: r = 0.172, p = 0.019), detailed in Table 5.

DISCUSSION

To our knowledge, this is the first study to investigate SW and 
MST properties of FPAN topology in children with and without 
ADHD. We found that, although brain functional networks 
exhibited economical SW topology in both groups, children with 
ADHD had greater MST diameter and lower leaf number, tree 
hierarchy, and kappa than TDC, and these variables were also 
associated with ADHD symptom score.

Since Watts and Strogatz proposed and quantitatively 
described SW networks (12), it has been applied in brain 
structural and functional networks in many studies using 
various imaging techniques including electroencephalography, 
magnetoencephalography, and functional MRI (13, 44). Wang 
and colleagues first explored SW topology in the whole-brain 
functional network in ADHD and found SW topology in TDC and 
children with ADHD, but children with ADHD had a tendency 
towards more regular networks. Consistent with previous studies 
(21, 45), we found that the FPAN had economical SW properties, 
which suggests that SW brain networks are robust in the face of 
disease (21). This supports the view that brain networks may have 
developed to maximize the efficiency of information processing. 
However, we did not find significant alterations in FPAN in 
children with ADHD. It may be that children with ADHD had 
no deficit in FPAN topology, or that any difference was too small 
to be captured by clustering coefficient and path length. Previous 
studies have used one of two approaches for normalizing clustering 

TABLE 3 | Group differences in network parameters.

Group(N) Mean ± SD F-value 

Strength TDC 69 0.154 ± 0.034 0.472
ADHD 119 0.154 ± 0.033

SW C TDC 69 1.221 ± 0.219 .328
ADHD 119 1.254 ± 0.193

L TDC 69 1.104 ± 0.072 1.209
ADHD 119 1.118 ± 0.066

MST Dia TDC 69 0.632 ± 0.099 7.387*
ADHD 119 0.667 ± 0.089

Leaf TDC 69 0.428 ± 0.084 6.098*
ADHD 119 0.410 ± 0.071

BC TDC 69 0.656 ± 0.060 0.724
ADHD 119 0.649 ± 0.058

Th TDC 69 0.022 ± 0.004 5.505*
ADHD 119 0.021 ± 0.004

Ec TDC 69 7.224 ± 1.113 2.959
ADHD 119 7.410 ± 1.016

K TDC 69 2.308 ± 0.157 7.780*
ADHD 119 2.264 ± 0.123

Strength, functional connectivity strength; SW, small world; MST, minimum spanning 
tree; C, clustering coefficient; L, path length; Dia, diameter; BC, betweenness 
centrality; Th, tree hierarchy; Ec, eccentricity; K, kappa (degree divergence). 
*P < 0.05, false discovery rate (FDR) corrected.

TABLE 4 | Correlations between network parameters and disability score.

FC SW MST

C L Dia Leaf BC Th Ec K

ADHD Index 0.023 0.040 0.097 0.175* −0.208* −0.016 −0.218* 0.112 −0.212*

Strength, functional connectivity strength; SW, small world; MST, minimum spanning tree; C, clustering coefficient; L, path length; Dia, diameter; BC, betweenness centrality; Th, tree 
hierarchy; Ec, eccentricity; K, kappa (degree divergence). *P < 0.05, FDR corrected.
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coefficient and path length. However, thresholding the functional 
connectivity matrix cannot provide a unique or consistent solution 
(27, 46). We used the second approach to normalize, whereby the 
observed network parameters were divided by the randomized 
networks parameters, but this approach may include too many low 
noise and may not be sensitive to developmental disease. MST is 
an unbiased approach that overcomes the normalization problem, 
can provide a unique and consistent solution, and can discard the 
low signal.

In the present study, MST analysis showed that diameter, leaf 
number, tree hierarchy, and kappa were altered in ADHD. Children 
with ADHD had greater diameter and lower leaf number, tree 
hierarchy, and kappa, and these variables significantly correlated 
with ADHD symptom score, indicating their clinical relevance. 
Decreased leaf number and increased diameter indicate a decreased 
global efficiency (47), suggesting that the FPAN had lower global 
efficiency in children with ADHD than in TDC. This is consistent 
with whole-brain deficits (21). Together with the significant negative 
correlation between ADHD symptom score and leaf number, and 
positive correlation between ADHD symptom score and diameter, 
this indicates the tendency to deviate from a more centralized 
organization (star-like topology) towards a more decentralized 
organization (line-like topology) in ADHD. The negative correlation 
between ADHD symptom score and tree hierarchy suggests that 
there is a sub-optimal balance between hub overload and functional 
integration in the network. Tree hierarchy can range from 0 to 1, 
and an optimal tree configuration is thought to correspond to a 
hierarchy value of around 0.5 (a compromise between a line-like 
and star-like topology). A star-like topology corresponds to hub 
overload, and a line-like topology corresponds to weak integration 
(32). The lower tree hierarchy in children with ADHD represents 
a more line-like topology, which is indicative of weak integration. 
This is consistent with the finding of a study based on whole-brain 
analysis that reported a decreased clustering coefficient, which 
corresponds to a local integration, in children with ADHD (48), in 
which they found a decreased clustering coefficient (corresponds to 
a local integration). Using MST analysis, we confirmed the decreased 
integration in children with ADHD. In addition, kappa, a measure 
that captures the broadness of the degree distribution, was lower in 
children with ADHD than in TDC and was negatively associated 
with ADHD symptom score. The lower kappa in children with 
ADHD reflects a reduced ease of synchronization, that is, decreased 

spread of information across the tree (41). As hypothesized, these 
findings indicate that FPAN topology is different in children with 
ADHD and TDC, and tends towards greater randomness and lower 
global efficiency and local integration in children with ADHD. 
The correlation between MST parameters and ADHD symptom 
score suggests that the abnormal MST topology may be useful in 
monitoring progression of the disease.

A low kappa value corresponds to a low number of highly 
connected nodes or “hubs.” The number of hubs is associated 
with the resilience of the network against attack. To further 
explore the damaged “hub” regions in the FPAN in children with 
ADHD, we further computed the eccentricity of each region. 
The eccentricity of a node is measured by the longest distance 
between that node and any other node. The closer a node is to 
the center of the tree, the lower its eccentricity. Low eccentricity 
indicates high global efficiency and centrality. We found greater 
eccentricity, reflecting lower global efficiency and centrality, in 
the left IPS, bilateral vIPS, and bilateral vOC. In general, these 
brain regions were concerned in ADHD studies. Previous studies 
found that the centrality in the IPS and vIPS regions of the FPAN 
was associated with alertness and the efficiency of the executive 
control system (8, 49). Consistent with the results of these studies, 
the decreased centrality in the IPS and vIPS in children with 
ADHD may be related to altered alerting and executive function 
in attention processing. These findings are in accordance with 
those of several structural and functional imaging studies that 
have found cortical atrophy and reduced activity in these regions 
in participants with ADHD (49). In addition, vOC also shows 
lower eccentricity in ADHD participants, which were compatible 
with previous studies that found decreased nodal efficiency and 
reduced volume in this region (21, 50).

In summary, this is the first study to reveal the topological 
properties of the FPAN in children with ADHD using resting-state 
functional MRI. We performed MST analysis of brain networks. This 
addresses the threshold and normalization problems encountered 
with conventional approaches, and was sensitive to changes in 
brain topography in children with ADHD. Clustering coefficient 
and path length were not successful in identifying deficits in the 
FPAN, whereas the MST parameters of leaf number, diameter, tree 
hierarchy, and kappa captured the tendency of ADHD brains to 
deviate from a more centralized organization (star-like topology) 
towards a more decentralized organization (line-like topology). 
This corresponds to a decreased global efficiency and weak 
integration. There were also differences in nodal eccentricity of the 
IPS, vIPS, and vOC in children with ADHD, reflecting a decreased 
efficiency and decentralized topology that was associated with 
deficits in alertness and executive function in attention processing. 
In addition, MST parameters were associated with clinical features 
of ADHD. These findings enhance our understanding of the 
underlying pathophysiology of ADHD and may facilitate evaluation 
and monitoring of clinical status in ADHD.

Despite the advantages of this study, some limitations should 
be noted. First, when using MST, we only used the “core” 
connections. This means that some information may have been 
lost. For example, clustering coefficient is a measure that cannot 
be examined in MST. To address this, we derived this information 
from SW topology. Previous studies found that, among children 

TABLE 5 | Regions showing significant changes in each nodal eccentricity 
in ADHD.

Group(N) Mean ± SD F-value 

Left IPS TDC 69 6.783 ± 1.617 7.017*
ADHD 119 7.328 ± 1.595

Left vIPS TDC 69 7.406 ± 1.584 11.305*
ADHD 119 8.059 ± 1.457

Right vIPS TDC 69 7.304 ± 1.365 9.206*
ADHD 119 7.79 ± 1.545

Left vOC TDC 69 7.087 ± 1.755 6.143*
ADHD 119 7.731 ± 1.655

Right vOC TDC 69 6.768 ± 1.637 8.809*
ADHD 119 7.462 ± 1.736

IPS, intraparietal sulcus; vOC, ventral occipital lobe. *P < 0.05, FDR corrected.
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with ADHD, there are gender differences in brain structure 
(51); however, girls comprised only 35% of our participants. In 
addition, participants in the ADHD and TDC groups were not 
matched for gender or IQ. To address this limitation, we treated 
these variables as covariates; however, future studies should 
further explore differences in brain networks using participants 
matched for IQ and gender.
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Potential Mechanism for HIV-
Associated Depression: Upregulation 
of Serotonin Transporters in SIV-
Infected Macaques Detected by 
11C-DASB PET
Swati Shah 1, Sanhita Sinharay 1, Kenta Matsuda 2, William Schreiber-Stainthorp 1, 
Siva Muthusamy 1, Dianne Lee 1, Paul Wakim 3, Vanessa Hirsch 2, Avindra Nath 4, 
Michele Di Mascio 5 and Dima A. Hammoud 1*

1 Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences,Clinical Center, National Institutes of Health 
(NIH), Bethesda, MD, United States, 2 Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious 
Diseases (NIAID), NIH, Bethesda, MD, United States, 3 Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, 
Bethesda, MD, United States, 4 National Institute of Neurological Disorder and Stroke (NINDS), NIH, Bethesda, MD, United 
States, 5 AIDS Imaging Research Section, Division of Clinical Research, NIAID, NIH, Rockville, MD, United States

Purpose: Increased incidence of depression in HIV+ patients is associated with 
lower adherence to treatment and increased morbidity/mortality. One possible 
underlying pathophysiology is serotonergic dysfunction. In this study, we used an 
animal model of HIV, the SIV-infected macaque, to longitudinally image serotonin 
transporter (SERT) expression before and after inoculation, using 11C-DASB (SERT 
ligand) PET imaging.

Methods: We infected seven rhesus macaques with a neurovirulent SIV strain and imaged 
them at baseline and multiple time points after inoculation (group A). Pyrosequencing 
methylation analysis of the SERT promoter region was performed. We also measured 
SERT mRNA/protein in brain single-cell suspensions from another group (group B) of 
SIV-infected animals (n = 13).

Results: Despite some animals showing early fluctuations, 86% of our group A 
animals eventually showed a net increase in midbrain/thalamus binding potential 
(BPND) over the course of their disease (mean increased binding between last 
time point and baseline = 30.2% and 32.2%, respectively). Repeated-measures 
mixed-model analysis showed infection duration to be predictive of midbrain BPND 

(p = 0.039). Thalamic BPND was statistically significantly associated with multiple 
CSF cytokines (P  < 0.05). There was higher SERT protein levels in the second 
group (group B) of SIV-infected animals with SIV encephalitis (SIVE) compared to 
those without SIVE (p = 0.014). There were no longitudinal changes in SERT gene 
promoter region percentage methylation between baselines and last time points in 
group A animals.
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Conclusion: Upregulated SERT leading to lower synaptic levels of serotonin is a possible 
mechanism of depression in HIV+ patients, and extrapolating our conclusions from SIV to 
HIV should be sought using translational human studies.

Keywords: HIV, SIV, depression, serotonin transporter, PET

INTRODUCTION

Despite mounting evidence of higher depression rates in HIV-
positive (HIV+) individuals compared to seronegative controls 
and associated increased morbidity and mortality (1), there 
is limited literature targeting the underlying mechanisms of 
depressive disorders in HIV. In one paper, the levels of serotonin 
transporter (SERT) mRNA in the peripheral blood mononuclear 
cells (PBMCs) of SHIV-infected rhesus macaques were 
significantly reduced compared to control animals, suggesting 
that SERT expression might be affected in HIV (2). In another 
study, disruption of cytoskeletal genes and dysregulation of 
somatostatin were found to be part of the pathologic process 
of major depressive disorder (MDD) in the setting of HIV (3). 
Tryptophan metabolism dysregulation is also suspected to play 
a role (4, 5).

The only previous positron emission tomography (PET) study 
targeting SERT in the setting of HIV depression demonstrated 
generally lower 11C-DASB (radioactive ligand targeting SERT) 
binding in HIV+ patients compared to healthy controls. Depressed 
HIV+ patients, however, showed higher 11C-DASB binding than 
non-depressed patients, suggesting SERT upregulation in the 
depressed group and possible abnormal serotonergic transmission 
in HIV-associated depression (6). No other similar cross-sectional 
or longitudinal PET studies have been performed to date.

In the current study, we used PET and 11C-DASB to assess 
SERT binding in an HIV animal model, the SIV-infected 
macaque, at baseline and at different intervals after inoculation 
with a neurotropic SIV strain (SIVsm804E) to determine the 
natural history of serotonergic dysregulation in relation to serum 
and CSF markers of SIV infection. We correlated our findings 
with clinical and laboratory markers of SIV infection and 
performed a detailed analysis of the SERT gene promoter region 
methylation changes between baseline and the last time point to 
assess any potential epigenetic effects on gene expression. Based 
on previous literature describing in vitro and in vivo interactions 
between various cytokines (e.g., IL-1, IL-6, IL-10, TNFα, and 
IFNγ) and SERT expression (7–12), we specifically correlated 
11C-DASB binding with levels of various CSF cytokines.

METHODS AND MATERIALS

Subjects
All procedures were performed in accordance with the 
recommendations of the Guide for the Care and Use of Laboratory 
Animals. The study was approved by the Animal Care and Use 
Committee of the National Institutes of Allergy and Infectious 
Diseases (NIAID), National Institutes of Health (NIH).

Fifty Indian rhesus macaques (Macaca mulatta) were 
genotyped for Trim5α. Seven animals were found to have the 
Q/Q genotype (group A, Supplementary Table 1S) and thus 
were selected for this study, as they are known to have increased 
susceptibility to development of neurological disease (13–15). 
All animals were inoculated intravenously with 500 TCID50 
(50% tissue culture infective doses) of SIVsm804E (14). The 
selected animals included five females and two males (mean 
baseline age = 3.7 years). Five out of seven animals (SIV #1, 
2, 3, 4, and 7) progressed soon after inoculation (mean = 14.6 
weeks, “rapid progressors”) and were rescued with treatment 
(daily subcutaneous injections of tenofovir (PMPA; 20 mg/kg) 
and emtricitabine (FTC; 30 mg/kg) with raltegravir (20 mg/kg) 
mixed with food twice per day). Two of the rapid progressors 
succumbed to the disease despite treatment (SIV #4 and 7), while 
the others responded to treatment and survived. The two “slow 
progressors” (SIV #5 and 6) did not show symptoms until 87 
and 91 weeks after inoculation, respectively. On development of 
symptoms, one slow progressor (SIV #6) responded to treatment, 
while the other subject (SIV #5) developed a presumed 
opportunistic infection and had to be excluded.

Treatment was eventually discontinued, and the surviving 
animals (one slow and three rapid progressors) were allowed 
to progress to a chronic infectious stage prior to necropsy. The 
last imaging time point, however, did not always correspond 
to the survival of the animals, due to logistical considerations. 
Details of group A animals’ imaging and disease progression are 
included in Table 1S.

We also evaluated whole-brain cell suspensions obtained from 
a separate group of SIV-infected monkeys (group B, n = 13), of 
which only six animals showed neurological symptoms and were 
found to have neuropathology consistent with SIVE, as described 
earlier (16).

Magnetic Resonance Imaging
All subjects underwent magnetic resonance (MR) imaging 
using a 3T Achieva Philips scanner (Philips Healthcare, Best, 
Netherlands) and a three-dimensional (3-D) MPRAGE sequence 
with the following parameters: repetition time = 7.77 ms, echo 
time = 3.45 ms, echo train length = 128, flip angle = 9°, number 
of excitations = 1, field of view = 12 × 12 cm, matrix = 256 × 256, 
and slice thickness = 0.5 mm. Baseline and follow-up MR scanning 
was performed within a few days of every PET session to rule out 
structural abnormalities that could affect the PET results.

For both the MRI and PET studies, the animals were 
anesthetized using a combination of ketamine (~0.1 ml/kg) 
and propofol (0.2 mg/kg/min). The concentrations of various 
anesthetics as well as the timing of administration with respect 
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to imaging were kept constant across the studies. Over the 
entire imaging session, the animals were carefully monitored 
for changes in body temperature, spO2, and heart and 
respiratory rates.

PET Imaging
PET images were acquired on a CPS/CTI High Resolution 
Research Tomograph (HRRT), head-only camera (17). Prior to 
radiotracer injection, a 6-min transmission scan was obtained 
for calculation of attenuation correction maps. 11C-DASB was 
synthesized as previously described (18). Following intravenous 
bolus administration of 11C-DASB (mean injected dose = 5.67 ± 
0.61 mCi), a dynamic 120-min-long emission scan was acquired 
using a 50-frame protocol. PET scans were reconstructed 
using the ordered subsets expectation maximization (OSEM) 
algorithm, in a 31 × 31 cm field of view and 256 × 256 pixel matrix 
with pixel size of 1.2 × 1.2 mm. PET frames were corrected for 
radioactive decay. The image frames were then co-registered to 
each animal’s structural MRI image using Pmod 3.7 software 
(PMOD Technologies LLC, Zurich, Switzerland). There was a 
minimum gap of 5 weeks between consecutive PET scans in the 
same animals (range of 5–38 weeks).

PET Data Analysis
The reconstructed PET images were first co-registered to their 
respective MR images using rigid body transformation. Volumes 
of interest (VOIs) were selected based on a monkey brain 
template overlaid on the MR images and readjusted manually as 
necessary. One set of VOIs (for the midbrain, thalamus, caudate, 
and putamen) adjusted for the baseline study was reapplied on 
follow-up MRI scans to maintain consistency in measurements. 
One VOI was also selected in the cerebellar cortex, avoiding 
the cerebellar white matter and cerebellar vermis, to be used as 
a reference region (19). The outcome measure in our study was 
SERT binding potential normalized to non-displaceable tissue 
radioligand (BPND), measured using a simplified reference tissue 
model (SRTM) (20) with the cerebellar cortex as a reference 
region (19). Although VOIs were drawn in the midbrain, 
thalamus, caudate, and putamen, only thalamic and midbrain 
values were used for statistical analysis due to their relevance 
to disease pathophysiology. Mean voxel BPND values for each 
VOI were extracted from the scans and compared over time. 
Parametric maps were generated using the Pixel-wise modeling 
tool (PXMOD) in PMOD.

We performed a total of 27 PET scans on the 7 macaques, 
including 7 baseline and a total of 20 follow-up scans (Table 1S).

Specimen Collection
Cytokine/Chemokine Level Measurements 
in the CSF
Cytokine/chemokine levels in the CSF were obtained to assess 
the potential relationship between CSF neuroinflammatory 
markers and SERT expression levels as assessed by PET imaging. 
Concentrations of MCP-1, TNFα, IFNγ, IL-1ra, IL-2, IL-6, IL-8, 
IL-10, IL-18, GCSF, sCD40L, and VEGF were measured in the 

CSF of five infected animals within a few days of each PET scan, 
using a bead-based multiplex assay (EMD Millipore). The assay 
was performed according to the manufacturer’s instructions. The 
assay plates were read on the Bio-plex 200 System (Bio-Rad).

PBMC Collection
We collected blood specimens from our animals (group A) 
corresponding to their imaging sessions in order to assess 
viral load, cell counts (flow cytometry), and peripheral SERT 
mRNA and to evaluate for potential peripheral epigenetic 
changes corresponding to changes in SERT expression. Blood 
collected was used for PBMC isolation using Ficoll. The PBMCs 
were re-suspended in cell freezing medium at 10 million cells/
vial and stored in liquid nitrogen until needed. DNA/RNA was 
isolated from the cells using the ZR-Duet DNA/RNA Miniprep 
kit (Zymo Research) as per the manufacturer’s instructions for 
downstream applications.

Preparation of Whole-Brain Cell Suspensions
Due to our small sample number of imaged animals and since 
the brain tissues of those animals could not be used for detailed 
PCR and Western analysis of SERT expression, we decided to 
evaluate another group of animals that were similarly infected 
and assessed for development of SIV encephalitis in another 
study (16). Whole-brain single-cell suspensions had already been 
obtained from a separate group of SIV-infected monkeys (group 
B, n = 13). Following saline perfusion of the animals, fresh brain 
tissues were collected from the frontal, parietal, and temporal 
lobes, the cerebellum, and the midbrain during necropsy. Multiple 
pieces of brain tissue from each region were then homogenized 
and pooled to obtain a cell suspension representative of the 
whole brain (14). RNA was extracted from these samples using 
the RNeasy Lipid Tissue Mini Kit from Qiagen. Protein lysates 
were obtained by re-suspending the cells in cold RIPA buffer with 
protease inhibitors (Roche). The samples were then vortexed and 
centrifuged at 14,000 rpm for 30 min at 4°C to remove debris.

Specimen Analysis
Flow Cytometry
Absolute blood CD3, CD4, and CD8 T-cell counts as well as 
% Ki67 in CD4 and CD8 T-cells were measured as previously 
described (14).

qPCR
qPCR was performed to assess SERT mRNA levels in PBMCs 
derived from group A animals, in order to evaluate for potential 
peripheral changes of SERT transcription after inoculation. 
qPCR was also performed to assess SERT mRNA levels in whole-
brain single-cell suspensions from group B animals, in order 
to correlate with the incidence of SIV encephalitis. cDNA was 
synthesized using the RT2 First Strand (Qiagen). The qPCR assay 
was set up using RT² SYBR Green qPCR Mastermix (Qiagen) 
to measure SERT (Qiagen) and normalized to rpl13a (Qiagen). 
The plates were run on the CFX96 real-time qPCR system (Bio-
Rad). For data analysis, we calculated fold change using the 
comparative CT method as previously described (21).
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Western Blotting
Western blotting was performed to assess SERT protein levels 
in whole-brain single-cell suspensions from group B animals. 
Protein lysates from whole-brain cell suspensions (group B) 
were used for Western blotting as previously described (22). 
The primary antibodies used were SERT (Abcam) at 1:300 and 
GAPDH (CST) at 1:1,000 dilutions. The secondary antibody, 
goat anti-rabbit (Jackson), was used at 1:50,000. ImageJ was used 
to quantify the band intensities from scanned blots. Results are 
shown as fold change with respect to the average of animals with 
no SIVE.

Epigenetic (Methylation) Analysis
Pyrosequencing analysis was performed for the promoter region 
of the SLC6A4 gene by Qiagen (GmbH Hilden, Germany) on DNA 
from group A animals, sampled at baseline and multiple time points 
between inoculation and euthanasia. Briefly, DNA extracted from 
the PBMCs of macaques (n = 7) was used for bisulfite conversion 
using the Epitect Fast Bisulfite Conversion Kit (Qiagen). The 
promoter region of SLC6A4 was amplified from 20 ng of treated 
DNA using the primers (TAGAGTTAGGAGGGGAGGGAT) 
and (ACACCAACAAACCCCTAT). This was followed by 
sequencing using the primer (AGGAGGGGAGGGATT) with 
PyroMarkQ24 Advanced (Qiagen). A total of nine CpG islands 
were analyzed in the promoter region.

To assess global methylation changes, a Methylated CpG 
Island Recovery Assay (MIRA) was used as previously described 
(23). The assay enriches methylated CpG islands based on 
high-affinity interactions to methyl-binding protein complexes 
using the MethylCollector Ultra Kit (ActiveMotif). PBMC 
DNA of group A (n = 7) macaques (baseline and last time 
points) were used and sequenced using the Illumina Platform 
(NIH Intramural Sequencing Center). Data analysis was done 
by Acura Science (Iowa, USA). FASTQC was used for quality 
control of the sequencing data. Reads were aligned to the rhesus 
reference genome (Ensembl release 88). Methylation peaks were 
subsequently identified using MACS2. Differential methylation 
analysis was performed as before (24). Peak “summits”—i.e., the 
single points representing the center point of the peaks—located 
within 600 bp were grouped together and then merged (extended 
peaks) using a locally developed Perl script. Normalized counts for 
each extended peak were calculated as total count in this region 
divided by the length of the extended peak and then by the number 
of reads mapped in the sample. Differentially methylated regions 
(DMRs) were defined as extended peaks with large fold changes 
(>1.5) in normalized counts, and only DMRs covered by five or 
more reads in the samples being compared were considered. Each 
DMR was annotated into the following categories: exon, intron, 
transcription start site (TSS), promoter (−1 kb and +100 bp of a 
gene’s TSS), 5’ UTR, 3’ UTR, intergenic, and non-coding.

Statistical Analysis
Statistical analysis was performed using SAS, version 9.4 (SAS 
Institute, NC, USA), and Prism (GraphPad, version 7.01).

Longitudinal changes of midbrain and thalamus BPND values 
were plotted for every animal, and the percentages of differential 

binding between the last time point and baseline were calculated. 
Repeated-measures mixed models were used to predict 
11C-DASB BPND in the midbrain and thalamus of group A 
animals, based on CSF VL, plasma VL, the duration of infection, 
CD4, CD3, CD8 T-cell counts, and % Ki67 in CD4 and CD8 
T-cells. CSF concentrations of MCP-1, IL-1ra, IL-2, IL-6, IL-10, 
IL-18, GCSF, sCD40L, and VEGF were available for five animals 
and were included as potential predictors. Each measurement was 
first included individually in a statistical model as an explanatory 
variable, with BPND as the response variable. We then included all 
measurements in one model to assess combined relationship with 
BPND. A mixed model was fit to the data because of the repeated-
measures nature of the data. Several variance–covariance 
matrix structures were considered for each model, and the one 
with lowest Bayesian information criterion (BIC) was applied. 
Model-fit diagnostics were examined to check whether model 
assumptions were met. Because this is an exploratory study with a 
relatively small sample size, no multiple-comparisons adjustment 
was used (all reported p-values are unadjusted).

For group B animals, we compared the fold increase in SERT 
protein and mRNA of SIVE (n = 6) vs. non-SIVE animals (n = 7) 
using the Mann–Whitney test.

All data are represented as mean ± SD except for group B 
qPCR and Western results, which are displayed as median values ± 
interquartile range (IQR).

RESULTS

PET Imaging Analysis
Mean BPND values in the selected VOIs were highest in the 
midbrain, followed by the thalamus, caudate/putamen, and 
cerebellum, which is similar to reported postmortem SERT 
densities (25). Even though SIV involves the whole brain, including 
the cerebellum, the lack of specific uptake in the cerebellar cortex 
still warrants its use as a reference region (20, 26).

We concentrated on two high-binding regions, the midbrain 
and thalamus, due to their relevance to disease pathophysiology. 
Regional midbrain BPND values at 5–10 weeks after inoculation 
increased in four animals (16–38%) and decreased in two animals 
(22–26%). One animal did not show substantial change. Over the 
course of disease, six out of seven subjects showed a net increase in 
midbrain BPND values at the last time point compared to baseline 
(range: 7.1–72.4%), while one subject showed a minimal decrease 
(−2.6%) (Figure 1). The average change in all seven animals was an 
increase of 30.2% ± 25.8% over the course of disease.

Thalamic BPND values at 5–10 weeks after inoculation 
increased in five animals and decreased in two animals. Over the 
course of disease, all animals showed a net increase in BPND at 
the last time point (32.2% ± 21.1%), although in one animal, the 
increase was minimal (3.8%) (Figure 1).

A repeated-measures mixed-model analysis taking into 
account all the measured time points showed that among the 
selected variables, duration of infection correlated positively 
with 11C-DASB midbrain BPND (p = 0.039), with a positive trend 
also observed between duration of infection and thalamic BPND 
(p = 0.081). Neither treatment initiation nor interruption had a 
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consistent effect on BPND (Figure 2). There were no significant 
correlations between BPND and CD4, CD3, CD8 T-cell counts, or 
% Ki67 in CD4 or % Ki67 in CD8 T-cell counts.

Cytokine/Chemokine Measurements
CSF cytokine analysis showed an increase in MCP-1, TNFα, IFNγ, 
IL-1Ra, IL-2, IL-6, IL-8, IL-10, Il-12, and IL-18 concentrations 
after inoculation in all animals, which corresponded to a 
concomitant increase in CSF VL. In four treated animals, 
cytokine levels decreased after treatment and rebounded after 
interruption of treatment, as expected.

There were significant positive correlations between CSF 
levels of MCP-1, IL-1Ra, IL-6, IL-8, IL-10, and IL-18 and 
thalamic BPND (p = 0.002, 0.003, 0.035, 0.013, 0.023, and 0.014, 
respectively). No significant correlations between CSF cytokines 
and midbrain BPND were found.

Expression of SERT in the Periphery  
and the Brain
Group A Animals
The expression of SERT mRNA in PBMCs was very low across 
all samples and undetectable in one animal (SIV #3). It increased 
slightly in three out of six animals at the last time point compared 
to baseline (Figure 3B).

Group B Animals
SERT protein levels in whole-brain lysates of group B animals 
were compared between infected animals that showed 
neurological symptoms associated with the development of 
SIVE (n = 6) and a group that was infected but did not display 
neurological dysfunction (n = 7). The values were normalized 
to the average of animals with no SIVE. Expression of mRNA 
normalized to a housekeeping gene (rpl13A) was also compared 
between SIVE (n = 6) and non-SIVE animals (n = 7), with data 
represented as fold increase with respect to the average of non-
SIVE animals. There was no significant change in SERT mRNA 
expression (average increase = 1.24-fold, p = 0.55); however, there 
was a significant increase in SERT protein expression (average 
increase = 3.35-fold, p = 0.014) (Figure 4).

Epigenetic (Methylation) Analysis
To assess whether the observed increases in SERT expression 
were mediated by epigenetic regulation, our pyrosequencing 
analysis was focused on evaluating the percent methylation of 
9 CpG islands closest to the TSS of the SLC6A4 (SERT) gene, 
isolated from PBMC DNA of seven macaques taken at various 
time intervals starting with baseline and continuing until the 
terminal time point. In each case, the percent methylation was 
less than 5%, indicating there was hardly any methylation in the 
promoter region of SERT (Supplementary Table 1S). We did 

FIGURE 1 | Sagittal and axial brain MRI images (A) as well as parametric maps of 11C-DASB BPND at baseline (B) and last time point (C) of SIV #4. Increased 
BPND can be detected visually at the last time point compared to baseline. Changes in BPND over the course of disease in all seven animals in the midbrain (D) and 
thalamus (E).
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not find any appreciable change in percent methylation between 
baseline and multiple time points after inoculation.

The MIRA-seq analysis of the whole genome was done to 
identify potential epigenetic modifications to other upstream 
factors that could affect SERT expression and trafficking. 

Methylated CpG islands across the entire genome were assessed 
for differentially methylated regions (DMR). An average of 
91.4% of the reads were mapped back to the genome. Based on 
the differential methylation analysis obtained for the baseline 
and the last time point, fold change was calculated, and only 
genes that met the cutoff of >1.5 (hypermethylated) and <0.5 
(hypomethylated) were considered. In five out of the seven 
animals, the promoter region (−350 to −390 from TSS) of 
the transcription factor deformed epidermal autoregulatory 
factor-1 (DEAF1) was differentially methylated. DEAF1 was 
hypermethylated in three animals at the last time point compared 
to baseline, with a fold change (FC) range of 1.6–2.2. On the 
other hand, DEAF1 was slightly hypomethylated in one animal 
that succumbed to the disease very early on (FC = 0.4) and 
another animal that survived and was treated (FC = 0.7). There 
were no consistent methylation peaks captured for two animals 
in the DEAF1 promoter region, though we saw some peaks in the 
intragenic regions at the terminal time point.

DISCUSSION

Using 11C-DASB high-resolution PET imaging, we have 
documented longitudinal in vivo increases in SERT expression 

FIGURE 2 | Examples of changes of BPND values at different time points with respect to CSF and plasma VL changes in one fast progressor, SIV #2 (A), and one 
slow progressor, SIV #5 (B). The green shadow in (A) reflects the duration of antiretroviral treatment.

FIGURE 3 | Change in SERT mRNA levels in PBMCs of infected animals 
(group A) between baseline and last time point; 50% of the animals showed 
slight increase in SERT mRNA compared to baseline values.
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in 85% of SIV-infected macaques when we compared baseline 
BPND levels to multiple time points between inoculation and 
euthanasia. In a mixed-effect analysis model, midbrain BPND 
values for 11C-DASB correlated significantly with duration of 
infection, although we did not find significant correlations to CSF/
plasma VL or various T-cell counts. There were also significant 
positive correlations between thalamic BPND and CSF levels of 
MCP-1, IL-6, IL-8, and IL-18, cytokines with pro-inflammatory 
properties, as well as IL-1Ra and IL-10, both anti-inflammatory 
cytokines. Our imaging data were further supported by findings 
of increased SERT protein levels in another set of SIV-infected 
animals with symptoms of SIVE compared to asymptomatic 
infected animals.

Higher frequency of depression has been repeatedly 
documented in HIV+ compared to HIV-negative (HIV-) subjects: 
a 2001 meta-analysis found the frequency of MDD to be nearly 
two times higher in HIV+ subjects (27), with more recent work 
confirming that figure (1, 28, 29). Beyond the psychological toll of 

depression in HIV+ subjects, the ramifications extend to its impact 
on survival, mainly through its effect on treatment adherence (30) 
and secondary control of the infection: untreated depression was 
associated with significantly decreased odds of achieving >90% 
adherence to HAART and significantly lower odds of controlling 
HIV RNA levels to <500 copies/ml (31). In another study, somatic 
symptoms of depression were associated with shortened survival 
in HIV+ patients (32). More recently, depression was found to be 
associated with increased risk of missing appointments, increased 
risk of a detectable viral load, and a doubled mortality rate (1). 
Despite the magnitude of the problem, the mechanisms underlying 
higher depression rates in HIV remain poorly understood. 
Previous studies suggested disturbances of tryptophan metabolism 
and SERT expression both in vitro and in vivo (2, 4–6). The only 
previous imaging study assessing the serotonergic system in HIV 
showed higher 11C-DASB BPND in depressed compared to non-
depressed HIV+ patients (6).

Upregulation of SERT reflected by increased 11C-DASB BPND 
values has been described in subjects with MDD and bipolar 
disease (33), Parkinson’s patients with depression (34), and patients 
with highly negativistic dysfunctional attitudes (35), among 
others. A possible explanation for depressive symptomatology 
in the setting of upregulated SERT is exaggerated serotonin 
reuptake into the presynaptic neurons, which subsequently leads 
to decreased serotonin levels in the synapse.

Our current results are not consistent with previous work where 
we found generally decreased 11C-DASB binding in HIV+ patients 
compared to controls (6). Those subjects, however, had been infected 
with HIV for a much longer period of time than our animals, which 
could have resulted in neuronal loss. Interestingly, the depressed 
HIV+ patients in that study showed higher 11C-DASB binding 
than non-depressed subjects, pointing towards a connection 
between SERT expression and depressive symptomatology.

What could be the cause of increased SERT expression in SIV/
HIV? There is a large body of literature describing interactions 
between various cytokines (e.g., IL-1, IL-6, IL-10, TNFα, and 
IFNγ) and SERT expression, both in vitro and in vivo (7–12).  
For example, TNFα was found to enhance the transport capacity 
of SERT-specific serotonin uptake in primary astrocytes, consistent 
with prior observation of an increase in SERT mRNA levels (10). This 
seemed to be mediated through activation of the p38 mitogen-
activated protein kinase (MAPK) signaling pathway, since 
pre-treatment with a p38 MAPK inhibitor attenuated the TNFα-
mediated stimulation of serotonin transport (10). In support 
of this potential interaction, we have found significant positive 
correlations between thalamic BPND and CSF levels of multiple pro-
inflammatory and anti-inflammatory cytokines. Interestingly, the 
cytokine correlations with the midbrain BPND were not significant. 
The reason for this discrepancy is unclear, although similar 
findings have been previously reported by another group where 
only thalamic and not midbrain SERT availability was correlated 
with IL-10 in bipolar disorder (11). One possible explanation is 
that thalamic neurons are in closer contact with the CSF and thus 
could be more affected by CSF cytokines (36).

Another connection between HIV and SERT upregulation 
could be through the production of SIV/HIV viral proteins. 
In mice, a single exposure to Tat in the brain was enough to induce 

FIGURE 4 | Western blotting and qPCR results in group B animals (whole-
brain lysates). (A) Fold change in protein levels of SIVE compared to non-
SIVE animals. (B) Fold change in mRNA expression of SIVE compared to 
non-SIVE animals. Median and interquartile range values are shown  
(* = p < 0.05; n.s. = non-significant).
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brain cytokine signaling that resulted in depressive-like behavior 
(37). In a paper by Fu et al., Tat increased the expression of SERT 
in organotypic hippocampal slice cultures, an effect that was 
attenuated by pre-treatment with SB 202190, a p38 MAPK inhibitor 
(38). Prolonged exposure to viral proteins in our animals could 
therefore have contributed to increased SERT expression over time.

We hypothesized that the changes we observed in our SIV-
infected monkeys could also be a result of epigenetic modulation. 
Epigenetic modifications induced by HIV have been previously 
described, especially related to accelerated aging and viral latency 
(39–41). On the other hand, depression in general and changes in 
SERT expression specifically have been found to be associated with 
epigenetic modifications, especially changes in DNA methylation 
(42–45). In our evaluation of SERT gene methylation, however, we 
did not find significant changes in methylation of SERT promoter 
between the pre-infected and latest time point in our imaged 
animals. Looking for potential interactive epigenetic changes 
upstream from SERT throughout the whole genome, we found 
one gene, DEAF1, which seemed to be differentially methylated in 
five out of the seven animals. DEAF1 regulates the transcription 
of multiple genes and has been implicated in type 1 diabetes (46), 
cancer (47), and IFNβ production (48). It is interesting to note that, 
since increased IFNβ secretion can restrict HIV viral replication 
and spreading (49, 50), the silencing of DEAF1 can confer a 
significant advantage in maintaining the potency of infection. 
Additionally, a separate function of DEAF1 is to act as a repressor 
of serotonin receptor subtype 1A (5-HT1A) in non-neuronal 
and presynaptic raphe cells (51–53) and an enhancer of 5-HT1A 
in other neuronal cells (54). Therefore, hypermethylation of 
DEAF1 could potentially reduce its availability to repress 5-HT1A 
autoreceptor expression, which in turn is linked to depression (55, 
56). Multiple reports have shown that dysregulation of 5-HT1A 
function can have a secondary effect on SERT expression: Bose et 
al. showed that presynaptic 5-HT1A expression is related to SERT 
density in specific regions of the brain (57), while another study 
used autoradiography to demonstrate a concomitant decrease 
of SERT expression in the basal ganglia, thalamus, and cortical 
regions of 5-HT1A knockout mice (58). SIV-induced epigenetic 
alterations to DEAF1 expression could thus possibly play a role in 
the perceived changes in SERT expression. However, our current 
findings do not support a definite role, and further work is needed 
to better elucidate the interplay between DEAF1 signaling and 
SERT expression. Additionally, our results do not preclude the 
effect of other epigenetic and non-epigenetic mechanisms on 
SERT expression.

Our study is limited by a relatively small size number of SIV-
infected monkeys. As such, our results should be interpreted with 
caution, as this is an exploratory study. We also did not have fresh 
brain tissue from the imaged animals to systematically assess 
SERT mRNA and protein levels in correlation with 11C-DASB 
binding. Most importantly, we did not collect neuropsychological 
or behavioral measures of depression in the animals, mainly 
because there is no clear consensus on what constitutes depressive-
like behavior in animals compared to humans and because in our 
animals, the presence of a severe infectious process confounds the 
detection of subtle psychiatric manifestations. Even though we did 
not have control animals followed over the same period of time, we 

have used longitudinal imaging with each animal acting as its own 
control. We do not believe that scanning-related stress could have 
affected our results, since the scans were separated by a minimum 
gap of 5 weeks (range: 5–38 weeks). Finally, we have not looked 
for methylation changes in the brains of the infected animals, but 
rather, in the periphery, which allowed us to perform a longitudinal 
assessment. It has been previously shown, however, that there is a 
significant correlation between the methylation levels in the brain 
and peripheral blood (59).

In conclusion, we have identified increased expression of 
SERT in six out of seven SIV-infected monkeys using in vivo 
PET imaging, which correlated with duration of infection in 
the midbrain. The change in expression in the thalamus also 
correlated with pro- and anti-inflammatory cytokine activity in 
the CSF. Although we did not find direct methylation changes 
involving the SERT promoter gene to explain our results, scouring 
of the whole-genome methylation status resulted in a potential 
connection between a differentially methylated gene, DEAF1, 
and upregulated SERT expression. Whether this connection will 
prove to be widespread is unclear, and the possibility of other 
epigenetic factors affecting SERT expression in SIV cannot be 
ruled out. Extending our conclusions from SIV to HIV needs 
further confirmation with translational HIV human studies. 
More work is also needed to better understand the connection 
between SERT upregulation and depression symptomatology.
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Herpes zoster (HZ) can cause a blistering skin rash with severe neuropathic pain.
Pharmacotherapy is the most common treatment for HZ patients. However, most
patients are usually the elderly or those that are immunocompromised, and thus
often suffer from side effects or easily get intractable post-herpetic neuralgia (PHN)
if medication fails. It is challenging for clinicians to tailor treatment to patients, due
to the lack of prognosis information on the neurological pathogenesis that underlies
HZ. In the current study, we aimed at characterizing the brain structural pattern of HZ
before treatment with medication that could help predict medication responses. High-
resolution structural magnetic resonance imaging (MRI) scans of 14 right-handed HZ
patients (aged 61.0 ± 7.0, 8 males) with poor response and 15 (aged 62.6 ± 8.3,
5 males) age- (p = 0.58), gender-matched (p = 0.20) patients responding well, were
acquired and analyzed. Multivoxel pattern analysis (MVPA) with a searchlight algorithm
and support vector machine (SVM), was applied to identify the spatial pattern of the
gray matter (GM) volume, with high predicting accuracy. The predictive regions, with an
accuracy higher than 79%, were located within the cerebellum, posterior insular cortex
(pIC), middle and orbital frontal lobes (mFC and OFC), anterior and middle cingulum
(ACC and MCC), precuneus (PCu) and cuneus. Among these regions, mFC, pIC and
MCC displayed significant increases of GM volumes in patients with poor response,
compared to those with a good response. The combination of sMRI and MVPA might
be a useful tool to explore the neuroanatomical imaging biomarkers of HZ-related pain
associated with medication responses.

Keywords: herpes zoster, medication response, structural MRI, multivoxel pattern analysis, prediction

INTRODUCTION

Resulting from the reactivation of a latent varicella-zoster virus, herpes zoster (HZ) is characterized
by a unilateral, localized painful blistering skin rash with the complication of pain varying from
burning, tingling, allodynia to hyperalgesia (Johnson and Rice, 2014; Hadley et al., 2016). The
primary objectives of treating HZ are to accelerate the healing of skin lesions, and more importantly,
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to reduce the duration of zoster-associated pain, in order to
lower the risk of progression to post-herpetic neuralgia (PHN)
(Johnson and Rice, 2014). Medication treatment with central
nervous system drugs is commonly used to ease the pain of HZ
patients (Harden et al., 2013). Most HZ patients are middle-aged
or elderly people with severe pain due to their lower immunity
(Jung et al., 2004). They are more likely to suffer from multiple
side effects of medication and have poor treatment responses
(Jung et al., 2004). However, a great challenge remains for
clinicians to evaluate the medication responses, before planning
precise treatment protocols, which could further delay the proper
treatment exposing patients to the high risk of getting intractable
PHN (Hadley et al., 2016). In order to promote the efficiency
of medication treatment, as well as to ease the economic and
mental burden of HZ patients, it is necessary to explore the neural
biomarkers with prognostic value in medication treatment.

Over the last decade, functional MRI (fMRI) has been
increasingly applied in studying abnormal brain activity of
HZ and PHN patients (Geha et al., 2007, 2008; Liu et al.,
2013; Zhang et al., 2014; Jiang et al., 2016; Cao et al., 2017a,
2018; Yu and Yu, 2017; Hong et al., 2018). By contrast, few
structural changes of these patients, which potentially underlie
the functional abnormalities, have been explored. Recently, a
study applying the voxel-based morphometry (VBM) method in
structural magnetic resonance imaging (sMRI) (Cao et al., 2018),
reported that the development from HZ to PHN was associated
with decreased gray matter (GM) volumes in the hippocampus,
superior and medial frontal gyrus, thalamus, occipital lobe,
and the parietal lobe, as well as increased GM volumes in the
bilateral cerebellum, inferior and the middle temporal gyrus. We
supposed that the dynamic changes in brain structure not only
manifests in the development of HZ to PHN but also occurs at
the early initiation of HZ, which may mediate the responses of
patients to medication.

Voxel-based morphometry is the most widely used technique
to study regional cerebral volume or tissue concentration
difference in sMRI analysis (Ashburner and Friston, 2000; Good
et al., 2001). As a univariate method, it performs statistical
analysis at each voxel separately, either in a ROI-wise or
whole brain data-driven manner. There are drawbacks in both
methods of analysis. The ROI approach often requires a prior
hypothesis of potential pathophysiological brain regions, while
whole brain voxel-wise analysis with the restriction of multiple
comparisons would cause a loss of sensitivity (Hendler et al.,
2014). They are also subjected to a large sample size to attain
statistical power. Further, VBM overlooks the dependency of
the focal set of voxels in localizing informative regions relevant
to anatomical differences of brains (Haynes and Rees, 2006).
To overcome these shortcomings, multivoxel pattern analysis
(MVPA) has been proposed to take advantage of multiple voxels’
information in depicting the pattern of the human brain (Ecker
et al., 2010; Bendfeldt et al., 2012; Haxby, 2012). MVPA has
become increasingly popular in neuroimaging research, because
it has great benefits, including its efficiency in detecting subtle
anatomical differences (Ashburner, 2009; Uddin et al., 2011;
Liu et al., 2012; Zhang et al., 2018), and a greater sensitivity
and specificity than mass-univariate analyses, with generally

complementary results (Haynes and Rees, 2005; Kamitani and
Tong, 2005; Jimura and Poldrack, 2012).

Machine learning (ML) based MVPA has been used in
previous studies to classify patients from healthy controls
(Klöppel et al., 2015; Wolfers et al., 2015; Zhang et al., 2018), or to
predict which patients might have different medication responses
(Liu et al., 2012; Qin et al., 2015) with high sensitivity and
specificity. Of note, the high dimensionality of neuroimaging data
is a big challenge when applying ML methods, because voxel-wise
features greatly exceed the sample size. In order to achieve a fully
data-driven, whole-brain classification based on MVPA, we chose
to use the searchlight method combined with the commonly
used ML classifier, support vector machine (SVM), in the current
study. With each voxel as the center, a searchlight is defined with
a spherical set of voxels and then used to train and test SVM.
Accuracy of this classifier is assigned to the central voxel of the
sphere. Finally, a parametric accuracy map is created and used
to identify significant brain regions in classification (Kriegeskorte
et al., 2006). The searchlight method is appealing in the following
aspects: (a) minimizing the effect of curse of dimensionality
(each searchlight includes a few voxels); (b) takes advantage of
information from multiple adjacent voxels in pattern detection;
(c) produces a whole-brain result map that is superficially similar
in appearance to the whole-brain significance maps produced
by more familiar mass-univariate analyses (based on the general
linear model) (Etzel et al., 2013).

In the present study, we aimed to explore the relationship
between potential structural changes and medication responses in
HZ patients. We hypothesized that the combination of the sMRI
and MVPA technique could detect brain structural differences
between HZ patients with different medication responses.

MATERIALS AND METHODS

Subjects
This study was approved by the Ethics Committee of the
Shenzhen Sixth Hospital of Guangdong Medical University. In
total, 36 subjects were recruited from patients at their first
initiation of HZ in this hospital from 1 January 2017 to 30
August 2018. Diagnosis of central neuralgia was performed by
experienced clinicians in the Department of Pain Medicine of
the Shenzhen Sixth Hospital of Guangdong Medical University,
according to general practice guidelines (Jeon, 2015). Pain
severity in these patients was evaluated via a 10-point visual
analog scale (VAS) every day after hospitalization. Specifically,
pain intensity assessed right before MRI scanning and after
treatment were termed as pre-scanning VAS and post-treatment
VAS, respectively. Since the MRI scan could not be arranged
while the patients were hospitalized, MRI data were generally
acquired within 3 days after patients were hospitalized, at
which time they could already have been medicated or not. For
those who were already medicated, two experienced clinicians
measured VAS and made sure that effective changes in pain
intensity had not occurred before MRI acquisition, which meant
that pain intensity in these patients was approximately the same
as that before medication. Inclusion criteria were: age between
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55 and 79 years old; right-handed; no history of psychiatric or
neurological disorders; a primary symptom of HZ-related acute
pain (duration of less than 1 month); and a pre-scanning VAS
higher than five. Each patient provided written informed consent
according to the Declaration of Helsinki.

All patients were administrated according to the standardized
medication protocol by experienced physicians for a week.
This protocol was normally an individually calibrated with
prescriptions of the following systemic central acting agents: the
anticonvulsants gabapentin and pregabalin; and/or the tricyclic
antidepressants amitriptyline. After a one-week treatment, the
HZ patients with a reduction of VAS less than three were defined
as having medication-resistant pain (MRP), while others were
defined as having medication-sensitive pain (MSP).

Demographic and clinical data were compared between the
two groups using two-sample t-tests or a Chi-square test in
the Statistical Package for Social Science, version 19 (SPSS
Inc., United States). The threshold level of significance was
set at p < 0.05.

MRI Acquisition
Magnetic resonance imaging scanning was performed on a
Siemens Skyra 3.0T scanner with an 8-channel head coil in
the Shenzhen Sixth Hospital of Guangdong Medical University.
All subjects were instructed to remain still and awake
with their eyes closed during scanning. High-resolution T1-
weighted structural images were obtained using a Siemens 3D
MPRAGE sequence with the following parameters: 320 slices,
slice thickness = 0.6 mm, TR/TE = 1900/2.12 ms, field of
view = 256 × 256 mm2, data matrix = 448 × 448, spatial
resolution = 0.57 × 0.57 × 0.60 mm3, inversion time = 900 ms,
flipped angle = 9◦.

MRI Data Analysis
All sMRI images were visually inspected and those with
severe motion artifacts and/or visible anatomical deformation
were excluded. We calculated the GM maps using the VBM
toolbox1 in SPM8 (Version 6313, Wellcome Department of
Imaging Neuroscience, London, United Kingdom2) imbedded
in MATLAB R2013a. The VBM procedure is described briefly
as follows: (1) registration to Montreal Neurological Institute
(MNI) stereotactic space; (2) segmentation into three types of
tissues, namely GM, white matter and cerebrospinal fluid; (3)
creation of a study-specific template via the high-dimensional
Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL) algorithm; (4) non-linear registration
to the DARTEL existing template; (5) modulation to preserve
the total volume of each brain tissue; (6) smoothing using
a Gaussian kernel with full-width-half-maximum (FWHM) of
8 mm. Smoothing is a standard step in the VBM analysis
pipeline, to render the data more normally distributed and to
compensate for the inexact nature of the spatial normalization
(Mechelli et al., 2005).

1http://dbm.neuro.uni-jena.de/vbm8/
2http://www.fil.ion.ucl.ac.uk/spm

The MVPA technique implemented in this study a combined
searchlight algorithm and support vector machine (SVM) (Uddin
et al., 2011). Generally, a searchlight algorithm, which considers
the information of multiple voxels, can be more sensitive to
group differences over traditional univariate measures (Ecker
et al., 2010; Bendfeldt et al., 2012). In our study, MVPA was
performed on the smoothed GM maps obtained in the VBM
procedure. The flowchart of MVPA based classification is shown
in Figure 1 and the details of the MVPA procedure are as follows.
First, at each voxel (Vi), a sphere with 5-mm radius was defined
centering at Vi. Notice that previous studies defined the radius by
experience (Uddin et al., 2011; Liu et al., 2012; Zhang et al., 2018).
In our study, we tested different radii (e.g., 8, 10, and 12 mm)
and found no significant difference among the ultimate results
(Supplementary Figure S1). Besides, a large sphere radius would
result in the omission of some subtle spatial pattern information.
Thus, we chose a small radius (5 mm) to present the results. First,
a high-dimensional feature vector was acquired by extracting the
values of all 171 voxels in the sphere. Second, with such a feature
vector, a non-linear support vector machine (SVM) with radial
basis function (RBF) was applied to predict medication responses

FIGURE 1 | The flowchart for MVPA procedure. (A) For each voxel in GM as a
center, a 5-mm sphere was defined as a searchlight. (B) GM volumes of all
voxels in the same sphere were extracted from all subjects to construct a
feature matrix. (C) SVM classifier with LOOCV was built to produce an
accuracy value for the central voxel. (D) This procedure was repeated after
the whole brain accuracy map was created. (E) Binominal distribution, with a
null hypothesis that there were no differences between two groups, was
tested to convert the accuracy map into a p-value map. (F) With a threshold
of p < 0.0001 and cluster size >50 voxels, significant clusters to classify
different groups were identified finally.
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using the LIBSVM software3. The parameters were set to default
to construct the SVM model for each Vi. Then leave-one-out
cross-validation (LOOCV) was adopted to yield the classification
accuracy of Vi. We split all subjects into a training set (N-1
subjects, N denotes the number of all subjects) and a testing set
(the remaining subject). Then two feature matrices M(N1)∗v and
MN2∗v (N1, N2, and V denote the numbers of subjects in the
training and testing sets, and the number of voxels in the sphere)
representative of the spatial patterns of the two data sets were
obtained using the aforementioned high-dimensional feature
vectors. Input features of training data were normalized and
used to construct an SVM model. After repeating this procedure
for all voxels in gray matter, a three-dimensional accuracy map
was finally gained to represent the structural pattern of the
discriminating ability of classifying MRP from MSP.

To identify clusters with statistical significance, we first
converted the accuracy map into a p-value map, then conducted
a connected algorithm on the p-value map to find the clusters
that survived the threshold. To be specific, with a null hypothesis
that there is no difference between this two groups, we assumed
that the accuracy map followed a binomial distribution Bi(n,
p) (Pereira et al., 2009). Herein, n denoted the number of all
patients and the probability of p was equal to 0.5. When k
subjects were successfully classified out of n, we defined the
probability of a random variable m exceeding k as a p-value.
This procedure converts the accuracy map into a p-value map.
After that, a connected algorithm was applied to the p-value
map. Compared with previous studies (Uddin et al., 2011; Liu
et al., 2012), a stricter threshold for a significant cluster was
set as voxel-wise p < 0.0001 (corresponding to a voxel-wise
accuracy of 79%) with at least 50 adjacent voxels. Therefore, for
each voxel with p < 0.0001, its 18 neighboring voxels would be
examined if their p-values below 0.0001. Those satisfied with the
threshold would be labeled as a component belonging to the same
cluster as the center voxel. After all GM voxels finished labeling,
clusters with more than 50 contiguous voxels were extracted as
the MVPA clusters.

In order to further evaluate the statistical significance of the
detected clusters that survived our threshold, permutation testing
with 1000 iterations was implemented (Ojala and Garriga, 2010).
The labels (MRP or MSP) were randomly assigned to the input
data. LOOCV was used to generate accuracy values for each
permutation test. A total of 1000 values were acquired under
the null-hypothesis distribution, with which we could calculate
the proportion of accuracy values equal to or greater than the
real accuracy. When actual accuracy exceeded 95% (namely, one-
tailed p < 0.05) of resulting values from permutations, it was
considered statistically significant.

Post hoc Analyses
To further study the difference of GM volumes between MRP and
MSP, post hoc analyses in those clusters detected with MVPA were
performed. This analysis may also help interpret the potential
mechanism underlying drug actions and treatment outcomes.
With age and gender as covariates, voxel-wise two-sample t-test
was performed in these regions to determine the significant

3https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

differences between MRP patients and MSP patients. AlphaSim
correction was performed on the statistical map in the REST
software4 for multiple comparisons. Specifically, the AlphaSim
procedure generates an estimate of the overall significance level
achieved from various combinations of the probability threshold
and cluster size threshold. Herein, the threshold was estimated to
be p < 0.01 with a minimum cluster size of 40 contiguous voxels,
which was corresponding to p < 0.05 before correction.

Additionally, for each subject in the MSP group, the mean
GM volume of each identified cluster was calculated. Spearman’s
correlation was used to examine the relationship between the
mean GM volume and the change of pain intensity after
treatment, which was defined as 1VAS (pre-scanning VAS minus
post-treatment VAS).

RESULTS

Patient Demographics
Three patients were excluded, due to unsatisfactory image
quality, and four patients dropped out for alternative therapies.
Finally, 29 patients were included for the following data analyses,
including 14 MRP and 15 MSP. Demographic and clinical
characteristics of the included patients are shown in Table 1.
The MRP group (n = 14) was comprised of six females and
eight males (mean age ± std: 61.0 ± 7.0 years), while the
MSP group (n = 15) consisted of 10 females and five males
(mean age ± std: 62.6 ± 8.3 years). There was no significant
difference in age (p = 0.58), gender ratio (p = 0.20) and pain
duration (p = 0.07) between the two groups. The Pittsburgh
sleep quality index between MSP and MRP showed no significant
difference before treatment (Pre_PSQI) and was significantly
lower in MSP than in MRP after treatment (Post_PSQI).
Between-group comparison of pre-scanning VAS showed an
insignificant difference (p = 0.09), while post-treatment VAS
was significantly higher in MRP patients than in the MSP
group (p < 0.0001).

Spatial Patterns Characterized by MVPA
The accuracy map and p-value map at the intermediate
procedure of MVPA are displayed in Figures 2, 3, respectively.
And the spatial patterns of GM maps characterized by MVPA
without covariates regression before classifier training are
shown in Figure 4. For comparisons between significant
clusters detected by MVPA with and without covariates
regression, please see Supplementary Figure S2. The clusters
included in the spatial patterns have a voxel-wise accuracy
of at least 79% for the classification between MRP and MSP.
The peak accuracy values of these clusters are reported
in Table 2. The prominently discriminative cortical and
subcortical areas included bilateral posterior cerebellum,
bilateral superior temporal lobe mostly extending to the
posterior insular cortex (pIC), inferior orbital frontal cortex
(OFC, right), middle frontal cortex (mFC, right), inferior
frontal lobe (IFC, bilateral), anterior and middle cingulum
(ACC and MCC), inferior parietal lobe (IPL), precuneus

4http://sourceforge.net/projects/resting-fmri
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TABLE 1 | Demographic and clinical characteristics of the MRP group and the MSP group.

Measures MRP n = 14 MSP n = 15 P-value

Ages 61.0 (7.0) 62.6 (8.3) 0.58a

Males/Females 8/6 5/10 0.20b

Duration 14.3 (7.6) 9.0 (7.4) 0.07a

Pre-VAS 6.9 (1.1) 6.1 (1.4) 0.09a

Post-VAS 6.9 (1.5) 2.4 (0.6) <0.0001a

Pre-PSQI 8.9 (3.7) 8.4 (5.7) 0.76a

Post-PSQI 7.4 (3.9) 3.7 (1.6) 0.004a

Data are presented as mean (standard deviation). MRP, medication-resistant pain; MSP, medication-sensitive pain; VAS, visual analog scale; Pre-VAS, pre-scanning VAS;
Post-VAS, post-treatment VAS; Pre-PSQI, Pittsburgh sleep quality index before treatment; Post-PSQI, Pittsburgh sleep quality index after treatment. atwo-sample t-test;
bChi-square test.

FIGURE 2 | Accuracy map created by MVPA procedure. T, transverse direction; C, coronal direction; S, sagittal direction. The color-bar indicates the classification
accuracy values of the whole brain GM voxels. The image is displayed in the neurologic convention, with the left side corresponding to the left-brain hemisphere.

FIGURE 3 | P-value map converted from accuracy map. T, transverse direction; C, coronal direction; S, sagittal direction. The color-bar indicates the p-values of the
whole brain GM voxels. The image is displayed in the neurologic convention, with the left side corresponding to the left-brain hemisphere.
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FIGURE 4 | Brain regions with high classification accuracy identified by MVPA. The color bar indicates the classification accuracy of these brain regions. The image
is displayed in the neurologic convention, with the left side corresponding to the left-brain hemisphere.

TABLE 2 | Brain regions with high predictive accuracy identified by MVPA.

Brain regions (AAL) Cluster Size (voxels) Peak MNI coordinates Peak Acc (%) P-value

X Y Z

Cerebelum_8_R 90 35 −66 −51 83 0.003

Cerebelum_9_L 171 −11 −56 −50 90 0.003

Frontal_Inf_Orb_R 95 29 27 −23 83 0.001

Frontal_Inf_Orb_R 60 45 39 −20 90 0.003

Frontal_Inf_Tri_R 57 50 27 18 86 0.004

Frontal_Inf_Tri_L 144 −44 14 26 90 0.003

Temporal_Sup_L 194 −47 −14 −3 86 0.002

Temporal_Sup_R 181 42 −18 2 86 0.001

Insula_R 182 45 −9 −2 79 0.001

Frontal_Mid_R 352 33 56 0 86 0.004

Cuneus_L 128 −8 −98 15 86 0.001

Cingulum_Mid_R 303 3 −48 36 83 0.003

Cingulum_Ant_L 62 −8 26 24 79 0.004

Parietal_Inf_L 195 −47 −41 44 90 0.002

AAL, anatomical automatic labeling; MNI, montreal neurological institute; L, left hemisphere; R, right hemisphere; Acc, accuracy. The brain regions contain the voxels
with an accuracy of at least 79%. The maximum accuracy value among voxels in each cluster was obtained to be the peak accuracy for that cluster. The p-values were
obtained by permutation tests with 1000 iterations.

(PCu) and the cuneus. All clusters detected by MVPA
exhibited a statistical significance in the permutation test
(p < 0.05, Table 2).

Post hoc Analyses
Two-sample t-tests with an AlphaSim correction (p < 0.05,
cluster size >40) showed that five out of the 14 clusters

identified by MVPA, exhibited significant GM volume decreases
in MRP patients, compared to those with MSP (Table 3 and
Figure 5). These brain regions consisted of the frontal lobes
(mFC and OFC, right), superior temporal lobes (mainly pIC,
bilateral), and MCC (extending to PCu). No regions showed
significantly higher GM volumes in MRP patients compared to
the MSP patients.
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TABLE 3 | Brain regions with GM volume differences between MRP patients and MSP patients by post hoc VBM analysis.

Brain regions (AAL) Cluster size (voxels) Peak MNI coordinates Peak t-value

X Y Z

MRP<MSP

Frontal_Mid_R 273 27 54 11 −4.67

Temporal_Sup_L 100 −48 −9 0 −4.81

Temporal_Sup_R 49 45 −14 6 −4.21

Insula_R 98 39 −9 6 −3.87

Cingulum_Mid_R 268 5 −47 39 −3.42

AAL, anatomical automatic labeling; MNI, montreal neurological institute; L, left hemisphere; R, right hemisphere; MRP, medication-resistant pain; MSP, medication-
sensitive pain. The significance level was set at p < 0.05 and cluster size >40 voxels (AlphaSim corrected).

FIGURE 5 | Brain regions with significant GM volume differences between MRP patients and MSP patients by post hoc VBM analysis. The color bar shows the
corresponding peak t-values of the clusters and the negative values imply smaller GM volumes in patients with MRP than those with MSP. The image is displayed in
the neurologic convention, with the left side corresponding to the left-brain hemisphere.

In the MSP group, no significantly positive or negative
correlations were detected between GM volumes in MVPA-
identified regions and 1VAS.

DISCUSSION

In this study, we applied MVPA to characterize the potential
neurological biomarkers in sMRI to predict the medication
responses of HZ patients. The cerebellum, insula, frontal lobe,
ACC and PCu showed a pattern of high classification accuracy
using the MVPA method. These regions implied a deficiency in
both the sensory-discriminative and affective/cognitive aspects
of pain processing in HZ patients, as shown in previous studies
based on brain MRI (Yu and Yu, 2017; Cao et al., 2018;
Hong et al., 2018).

Antidepressants and anticonvulsants are uniformly
recommended as first-line medications for neuropathic pain
caused by herpetic infections (Gore et al., 2007). In the current
study, a combination of these two kinds of drugs were prescribed
to HZ patients for pain management. The pharmacological
mechanisms of anticonvulsants and antidepressants are different.
Anticonvulsants, such as gabapentin and pregabalin, bind to
the alpha-2-delta protein to reduce the release of excitatory
neurotransmitters like glutamine and noradrenaline (Gore
et al., 2007). And tricyclic antidepressants, amitriptyline,
inhibits the reuptake of serotonin and noradrenaline and
increases their concentration in intrasynaptic space (Coluzzi

and Mattia, 2005), which could modulate activity in endogenous
descending pain inhibitory pathways. Distinct actions of
antidepressants and anticonvulsants on the neurotransmitter
system could both produce antinociception, analgesic and
anxiolytic activity.

However, the central mechanisms of these drugs for pain relief
are largely unclear. Though limited, there are some studies based
on MRI techniques which reveals that activity or morphology
changes in frontal lobe, insular cortex, ACC and cerebellum of
neuropathic pain were affected by these central nervous system
drugs (Marchand, 2008). Structural/functional deficiency in these
regions was not only detected in our study, but also in other
previous studies on neuropathic pain, such as chronic lower back
pain (Buckalew et al., 2008), headache (Dettmers et al., 2001;
Naegel et al., 2014) and fibromyalgia (Shi et al., 2016). Therefore,
antidepressants and anticonvulsants may have potential effects on
these brain regions of HZ patients.

Posterior insular cortex receives nociceptive signals from the
thalamus-spinal ascending system (Davis and Moayedi, 2013)
because it has direct anatomical connections to spinothalamic
tracts. Gabapentin could reduce the activations in the bilateral
operculoinsular cortex to modulate nociceptive transmission
in humans (Iannetti et al., 2005). Additionally, for individuals
with evoked or clinical pain, the concentration of glutamine
in pIC changed after non-pharmacological treatment (Harris
et al., 2008). A study on fibromyalgia patients (Harris et al.,
2013) also found decreased glutamine in this region after
pregabalin treatment rather than a placebo, suggesting that the
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insular cortex could be a potential target for pregabalin. Our
findings showed significant decrease of GM in bilateral pIC of
MRP patients compared to MSP patients. Since inhibition of
neural activity and neurotransmitter (e.g., glutamine) release in
pIC are closely related to pain remission, structural deficiency
in this region may have a negative impact on its activity
modulated by drugs, thus resulting in the poor response
of MRP patients.

The cingulate cortex and prefrontal lobe are critical regions
for emotional and cognitive regulation of perceived pain.
Accumulating evidence from fMRI studies showed an abnormal
cingulum and frontal lobe response in HZ and PHN patients
compared to healthy controls (Peyron et al., 2000; Geha
et al., 2007, 2008; Liu et al., 2013; Dong et al., 2014,
2015; Jiang et al., 2016; Cao et al., 2017b; Hong et al.,
2018), suggesting that dysfunction in controlling emotion,
anticipation and evaluation could modify pain perception.
In line with these studies, in our study ACC and PFC
structural impairments were observed in HZ patients, supported
by a significantly increased GM volume of the cingulate
cortex in MRP rather than MSP. It may indicate that ACC
and PFC could be important regions that influence pain
regulation in patients with HZ-related pain or PHN. These
two regions could even be potential targets of neuropathic
pain drugs, since accumulating evidence has proven the
regulation of activity by antidepressants and anticonvulsants
in ACC and PFC. In mice with neuropathic pain induced by
partial sciatic nerve ligation (Wang et al., 2015), pregabalin
treatment decreased the expression of c-Fos, an indicator
of transient and rapid neuronal activity, in neurons of the
ACC. Another study (Lin et al., 2014) reported that synaptic
transmission of ACC in adult mice could be inhibited by
gabapentin. For healthy volunteers with capsaicin-induced
central sensitization (Iannetti et al., 2005), gabapentin also
suppressed stimulus evoked deactivation in PFC. When irritable
bowel syndrome patients were stressful (Morgan et al., 2005),
their pain related activation of ACC and left posterior
parietal cortex were reduced by amitriptyline compared with
baseline state. Altogether, we speculate that compared to
MSP, MRP patients with more negative anatomy changes in
the cingulate cortex and PFC, may respond insufficiently to
medication, which may result in lessened remission of pain
after treatment.

Patients with neuropathic pain are often characterized
by symptoms of mood disorders (Inoue et al., 2017). This
comorbidity supports that neuropathic pain and affective
disturbances may share some common pathogenetic mechanisms
(Aloisi et al., 2016). HZ patients in our study also manifested
psychological distress and loss of sleep due to severe pain,
supported by relative higher PSQI scores compared to healthy
people before treatment. After treatment with antidepressants
and anticonvulsants, MSP patients received a mood boost and
their sleep recovered. Medial PFC is one of the most common
brain regions involved with pain in affective disturbances
(Descalzi et al., 2017). Not surprisingly, we also found a PFC
morphologic difference between MSP and MRP patients, which
could predict pharmacological responses accurately. Experiments

from preclinical models demonstrated that neuroinflammation
in affective forebrain regions would be evoked by nerve injury,
and disrupts the normal physiological process which deals with
affective disturbances (Fiore and Austin, 2016). It turns out
that neurogenesis in adults can be modulated by psychoactive
agents, including antidepressants and anticonvulsants (Fiore
and Austin, 2016). Therefore, these drugs may help to
eliminate inflammation, promote neuronal growth in affective
brain regions, and result in an analgesic effect in HZ
patients. Since MRP patients suffered prolonged structural
changes in PFC compared to MSP patients, they may not
benefit from drugs for such a short duration of treatment,
which needs to be confirmed by a longitudinal follow-
up study.

PFC, IPL, and PCu are hub regions included in the default
mode network (DMN), which is often deactivated during painful
stimuli and other tasks (Iannetti et al., 2005). We found
that structural differences in these DMN components were
able to predict medication response in HZ patients. An fMRI
study demonstrated that gabapentin had an antihyperalgesic
effect by reducing the magnitude of deactivation in DMN
regions in central sensitization, but not in a normal state
(Iannetti et al., 2005). Evidence from an EEG study stated that
PCu activation was correlated with pain sensitivity (Goffaux
et al., 2014). It is possible that antidepressants could modulate
DMN activity of HZ patients to restore their function from
central sensitization, such as hyperalgesia and allodynia which
commonly occurs in neuropathic pain patients. Additionally,
genetic and environmental factors that contribute to pre-
existing structural differences in DMN regions, would be
partly related to the medication response of HZ patients. This
could be further supported by a sMRI study, which found
that the higher the pain sensitivity in healthy individuals,
the less GM volume was present in their PCu (Emerson
et al., 2014). This finding may suggest that a poor response
to medication for MRP patients, could possibly be due a
significantly lower GM volume in DMN regions compared to that
in MSP patients. Though investigations regarding the effects of
antidepressants and anticonvulsants on neural plasticity remains
lacking, such kind of structural deficiency might not be easily
changed by medication.

The posterior lobes of the cerebellum in our study also yielded
high classification accuracy. Recently, a multimodality MRI study
described GM volume increase in posterior cerebellum during
the transition from HZ to PHN (Cao et al., 2018). Thus, the
cerebellum may play an important role in the development
of chronic pain. So far, no studies have reported any direct
response of cerebellum to antidepressants or anticonvulsants
in neuropathic pain. But noradrenergic and serotoninergic
systems, originating in the brain stem and projecting to the
spinal cord dorsal horn, could be influenced by antidepressants,
leading to the modulation of pain perception (Valverderk
et al., 1994). Since the brain stem has a direct connection
to the cerebellum, it cannot be excluded that the activity of
the cerebellum would be indirectly affected by antidepressants
through the changes of neurotransmitter levels in the brain
stem. This indicates that a difference in the cerebellum between
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MSP and MRP patients, may potentially mediate the different
responses to medication.

Several brain regions including the OFC, ACC, PCu and
the cuneus showed a significant predictive power to classify
MRP from MSP patients. However, GM volumes of these
areas did not show significant differences between MSP and
MRP in our post hoc VBM analysis. This observation may
be mainly attributed to the methodological difference between
the two methods. Specifically, VBM applies voxel-wise two-
sample t-test between groups, while MVPA extracts values
of all voxels in the sphere as informative features and
takes full advantage of the machine learning algorithm to
eventually learn good feature representations for classification.
Therefore, MVPA would be more sensitive in detecting
subtle differences in the aforementioned brain regions between
the two groups, as compared to VBM. In this view, the
performance of MVPA may be better than the traditional
univariate VBM method.

Some limitations of the present study need to be considered.
First, the sample size is relatively small, even though it seems
moderate compared to previous studies that had sample sizes
varying from 11 to 22 to explore HZ- or PHN-related brain
abnormality (Geha et al., 2007, 2008; Liu et al., 2013; Zhang
et al., 2014, 2016; Jiang et al., 2016; Cao et al., 2017a,b,
2018). We performed a post hoc estimation of the sample size
required for detecting the difference of GM volumes in the
brain regions characterized by MVPA. Average GM volumes
of MVPA-detected clusters were used to calculate the possible
effect sizes, because GM volume was the variable required to
distinguish MSP from MRP. With such effect sizes we calculated
the sample size to be around 8∼25 patients per group. This may
partly justify that the sample size in the current study could
be appropriate in yielding a reliable result. It should, however,
be noted that future work, with a larger sample, especially
from a multicenter, would be necessary to further verify these
preliminary findings. Second, an Alphasim correction using the
Monte Carlo simulation was applied to control type I error in
post hoc VBM analysis, which was insufficient compared to the
standard FWE or FDR correction. We have conducted FWE
and FDR correction on VBM statistical maps but found no
surviving clusters. This is partly due to a small sample size in
our study. Previous studies have justified that a sample size
smaller than 40 in each group, would reduce the reproducibility
of results variously, no matter which multiple comparisons
strategy was adopted (Button et al., 2013; Chen et al., 2018).
Though less strict than FDR and FWE corrections, Alphasim
correction is commonly used in the neuroimaging field with a
reasonable underlying principle that “true regions of abnormality
will tend to occur over contiguous voxels, whereas noise has
much less of a tendency to form clusters of distinguish between
signal and noise” (Ward, 2000). As an exploratory study, the
present work adopted the Alphasim correction to provide some
illuminating results to deepen our understanding of potential
drug actions on the central system of HZ patients. Therefore,
further studies with a strict multiple comparisons approach are
needed to confirm these preliminary results. Third, when using
MVPA, it is still challenging to interpret the inherent nature

of the structural pattern that leads to an accurate prediction.
One possible scheme would be longitudinal studies, which could
assist in monitoring the dynamic changes of the brain structure.
Third, the treatment effect of HZ patients with polypharmacy
is often superior to that of monotherapy. However, medication
actions are far more complex in polypharmacy treatment. Thus,
findings from the current study may not be sufficient enough
to elucidate whether synergy or single actions of these drugs
mediate the response of brain regions of HZ patients. To explore a
specific drug effect on the central nervous system, monotherapy
studies are warranted in the future. Finally, a collective dataset
of different modalities, such as functional MRI and DTI, would
be helpful to depict explicit neural intersections of spatially
distributed brain areas.

CONCLUSION

In this study, MVPA was applied to a structural MRI to
characterize the spatial patterns in predicting the medication
responses of HZ patients. The anatomical deficiency in MRP
and MSP patients was mainly identified in the insula, ACC,
MCC, PFC, IPL, PCu, cuneus and the cerebellum, which are all
highly involved in the sensory, emotional and cognitive aspects
of pain. These findings may provide new insights into the neural
biomarkers that could serve as medication targets for HZ-related
pain. Such insights could also assist in providing precise clinical
interventions to expedite patient recovery and to prevent the
progression to intractable PHN.
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Subclinical depression (SD) has been considered as the precursor to major depressive 
disorder. Accurate prediction of SD and identification of its etiological origin are urgent. 
Bursts within the lateral habenula (LHb) drive depression in rats, but whether dysfunctional 
LHb is associated with SD in human is unknown. Here we develop connectome-based 
biomarkers which predict SD and identify dysfunctional brain regions and connections. 
T1 weighted images and resting-state functional MRI (fMRI) data were collected from 34 
subjects with SD and 40 healthy controls (HCs). After the brain is parcellated into 48 brain 
regions (246 subregions) using the human Brainnetome Atlas, the functional network of 
each participant is constructed by calculating the correlation coefficient for the time series 
of fMRI signals of each pair of subregions. Initial candidates of abnormal connections 
are identified by the two-sample t-test and input into Support Vector Machine models 
as features. A total of 24 anatomical-region-based models, 231 sliding-window-based 
models, and 100 random-selection-based models are built. The performance of these 
models is estimated through leave-one-out cross-validation and evaluated by measures 
of accuracy, sensitivity, confusion matrix, receiver operating characteristic curve, and 
the area under the curve (AUC). After confirming the region with the highest accuracy, 
subregions within the thalamus and connections associated with subregions of LHb are 
compared. It is found that five prediction models using connections of the thalamus, 
posterior superior temporal sulcus, cingulate gyrus, superior parietal lobule, and superior 
frontal gyrus achieve an accuracy >0.9 and an AUC >0.93. Among 90 abnormal 
connections associated with the thalamus, the subregion of the right posterior parietal 
thalamus where LHb is located has the most connections (n = 18), the left subregion 
only has 3 connections. In SD group, 10 subregions in the thalamus have significantly 
different node degrees with those in the HC group, while 8 subregions have lower 
degrees ( p < 0.01), including the one with LHb. These results implicate abnormal brain 
connections associated with the thalamus and LHb to be associated with SD. Integration 
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of these connections by machine learning can provide connectome-based biomarkers to 
accurately diagnose SD.

Keywords: resting state functional MRI, brain network, subclinical depression, brain biomarker, functional 
connection, node degree

INTRODUCTION

On the depression severity continuum, subclinical depression 
(SD) is a mild condition considered to be the precursor to 
major depressive disorder (MDD) (1, 2). Subjects with SD are 
very vulnerable to depression and are apt to generate suicide 
ideation (3, 4). The increasingly high incidence of SD among 
both college students and the elderly (estimated as high as 
15%) clearly demonstrates the need for intensive investigation 
(5–7). Unfortunately, knowledge of neural substrates of SD is 
incomplete, making it difficult to identify reliable diagnostic 
biomarkers and take preventative treatments (8).

Some dysfunctional brain regions and connections have been 
evaluated in order to identify new biomarkers for SD. Via resting 
state fMRI (rs-fMRI), we have previously demonstrated that 
the altered spontaneous neuronal activity by measurement of 
amplitude of low-frequency fluctuations (ALFF) and disrupted 
functional connectivity (FC) are implicated in SD (9–11). We 
also found that SD presents the increased interhemispheric FC 
and cortical degree centrality, as well as decreased subcortical 
degree centrality. These measures differentiate SD subjects from 
healthy controls (HCs) (10–12). SD is characterized by changed 
FCs between subregions of the anterior cingulate cortex (ACC), 
increased FC of Hb within default model network regions, and 
decreased FC within salience network regions (8, 13). Kaiser et al. 
(14) demonstrated that there exists a high correlation between 
the neural activity of dorsal anterior cingulate cortex (dACC) 
and posterior cingulate cortex (PCC) in SD subjects, indicating 
that SD subjects are confronted with greater difficulty of shifting 
out of internally directed and ruminative thinking. Dedovic et al. 
(15) and Petrican et al. (16) reported the weaker functional 
dominance in dorsal attention network (DAN) [low connectivity 
between the superior parietal lobule (SPL) and the frontoparietal 
control network].

Network neuroscience explores interactions of different 
neurobiological element from an integrative perspective and 
is capable of providing with better predictive biomarkers for 
brain disorders by machine learning (17, 18). Machine learning 
is suitable for individual-level prediction from a prospective 
viewpoint, and it is a potentially powerful tool for precision 
psychiatry (19). For example, Support Vector Machine (SVM), 
as a typical method of machine learning, has been widely 
used to identify imaging biomarkers in diseases such as 
schizophrenia, major depression, bipolar disorder, etc. (20). 
For more information on machine learning and its application 
in psychiatry, one can refer to the comprehensive reviews 
(21–24). Recently, machine learning has proved useful to build 
connectome-based biomarkers for autism spectrum disorder, 
bipolar disorder, subtypes of depression, and schizophrenia 

(25–28). However, not many connectome-based biomarkers 
have been developed for SD.

Compared with SD, MDD has received more attention and 
significant breakthroughs have been achieved. For example, 
concrete evidence has demonstrated that bursts within the 
lateral habenula (LHb) drive depression in rats (29). As an 
evolutionary conserved epithalamic structure, LHb is involved 
in negative motivational value and decision-making (30–33). 
LHb is also considered to be the pathophysiological basement 
of MDD (34, 35). For more details on LHb, one can refer to 
these recent reviews (36–38). The deep brain stimulation of 
LHb has been successfully used to treat patients with refractory 
MDD (39). These findings on MDD may provide useful clues 
regarding SD.

LHb has been investigated by multimodal MRI in depressive 
and healthy subjects, but not in subjects with SD. LHb volume 
measured by high-resolution T1-weighted images decreases 
in depression, but not in posttraumatic stress disorder or 
schizophrenia (40, 41). Using task-based functional MRI (fMRI), 
Salas et al. (42) have shown that LHb is activated in response 
to negative reward prediction. It is worth noting that the fMRI 
study on LHb has several limitations. First, the habenula volume 
approximately ranges from 29 to 36 mm3 in each hemisphere 
based on structural MRI and postmortem measurement, which 
can be smaller than the voxel size of standard fMRI (40, 41, 43). 
The smoothing kernels [5–12 mm full width at half maximum 
(FWHM)] are larger in size than LHb. Second, the habenular 
signal is likely contaminated by adjacent structures, such as 
the medial dorsal thalamus or the epithalamic paraventricular 
nucleus (43).

Herein, connectome-based biomarkers are developed to 
predict subclinical depression through a machine learning 
algorithm and identify dysfunctional brain regions and 
connections. The method of predictive modeling used in 
our study is different with the traditional method of brain 
mapping (13). Predictive modeling integrates all brain data 
or features into a single prediction of outcome, making 
multiple comparisons unnecessary and increasing statistical 
power (18). Specifically, we parcellate the whole brain 
into 48 regions and 246 subregions using the latest human 
Brainnetome Atlas (44) and build large-scale resting-state 
functional brain networks using fMRI data. A two-sample 
t-test is used to identify initial candidate connections, and 
the resultant regional connections are input into SVM models 
as features. The performance of the predictive models is 
estimated by leave-one-out cross-validation. The node degree 
of subregions within the thalamus is compared between SD 
and HC groups. Connections linked with subregions of LHb 
are further investigated.
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MATERIALS AND METHODS

Participants
All the participants were enlisted from volunteers who had 
undergone health screening at Guangzhou Medical University 
from 2012 to 2014. The Beck Depression Inventory II (BDI-II) 
scale is administered to evaluate the depression symptom 
severity. Thirty-four subjects (11 males, 23 females) with 
BDI-II score >13 are placed into the SD group (BDI score 
mean ± SD: 22.58 ± 6.92) and 40 healthy controls (21 males, 
19 females) are selected to match the SD group by age, sex, 
and education. According to the two-sample t-test, there is no 
significant difference for the age (years) between SD and HC 
groups (mean ± SD: 19.91 ± 1.64 vs. 19.70 ± 0.85, p = 0.50), 
neither for the education (years) (mean ± SD: 13.18 ± 0.58 
vs. 13.08 ± 0.62, p = 0.47). By the chi-square test, there is no 
significant difference for the gender (p = 0.07). None of the 
participants fulfilled the criteria for MDD based on Diagnostic 
and Statistical Manual of Mental Disorders IV (DSM-IV). 
Other inclusion criteria for all participants include age ranging 
from 19 to 25 years, right-handedness, no visualized lesion 
on any MRI scans, no neurological illness, and no alcohol 
or drug dependence. The study is approved by the Medical 
Ethics Committee of Guangzhou First People’s Hospital of 
Guangzhou Medical University and is in accordance with 
the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. All participants signed a 
written informed consent in accordance with the Declaration 
of Helsinki (2000).

MRI Imaging Data Acquisition
All MRI images were acquired using one 3-Tesla MRI scanner 
(Siemens, Erlangen, Germany) with an eight-channel phase-array 
brain coil. Foam pads and headphone were utilized to minimize 
the head motion and reduce noise, respectively. As in our previous 
studies (10–12), high-resolution T1-weighted images were 
obtained with a standard magnetization prepared rapid gradient 
echo (MP-RAGE) sequence [repetition time (TR)/echo time 
(TE) 2,530/2.34 ms, flip angle (FA) 7°, field of view (FOV) 256 × 
224 mm, slice thickness 1.0 mm]. The resting-state fMRI data were 
collected by one echo-planar imaging (EPI) sequence (TR/TE 
2,500/21 ms, FA 90°, FOV 200 × 200 mm, matrix 64 × 64, 42 slices 
without gap, voxel size 3.5 × 3.1 × 3.1 mm). The images of 200 time 
points were collected, and the total amount of fMRI acquisition 
time is 500 s. During the resting-state fMRI scan, the participants 
were asked to relax, to close their eyes, not to think of anything in 
particular, and not to fall asleep. Wakefulness of participants has 
been confirmed immediately after the fMRI scanning session.

Study Design and Main Procedures
The study design and procedures are schematically shown in 
Figure 1. There are six steps for this study (Figure1A). After the 
first step of image preprocessing, functional brain networks for 
HCs and SDs are constructed. Then two-sample t-tests are used to 
identify potential dysfunctional connections. Three methods are 
proposed to further select connections from previously identified 

candidates. These selected connections are used to train and 
test the predictive models of SD. After excluding confounders 
such as the number of connections and p-value, dysfunctional 
brain regions and connections are determined by examining 
the models with high predictive accuracy. Finally the emphasis 
is placed on the dysfunctional thalamus and LHb. Abnormal 
connections associated with the thalamus and its subregions, 
including LHb, as well as the node degree of these subregions 
are characterized. These six steps are described in details below.

Functional MRI Image Preprocessing
As shown in Figure 1B, the T1-weighted and rs-fMRI data is 
preprocessed using the DPARSF toolbox (http://www.restfmri.
net/forum/DPARSF) (45, 46) as follows. First, the initial 20 
time points of raw fMRI data are removed in order to eliminate 
unstable factors. Second, the time layer correction and head 
movement correction are carried out. Third, the brain of each 
subject is registered to a normative template through spatial 
standardization. Fourth, a band-pass filtering of 0.01–0.1 Hz and 
Gaussian smoothing with 6 mm FWHM are implemented.

Construction of Functional Brain Networks
The procedure for constructing functional brain networks 
is shown in Figure 1C. First, the newly developed human 
Brainnetome Atlas is used to parcellate the whole brain into 48 
brain regions (246 subregions). This atlas is four to five times 
as accurate as the traditional Brodmann map and has a more 
objective and accurate boundary (44). Each subregion represents 
a node in the constructed brain network. The time course of each 
subregion is calculated by averaging the time course of all voxels 
therein. The strength of functional connection or the connection 
weight (Wij), also identified as edge weight, is expressed as the 
Pearson correlation coefficient between the time courses of any 
two subregions (i, j). The correlation matrix is transformed into 
Z scores by applying Fisher’s r-to-Z transformation. For each 
individual, a weighted undirected network is obtained in the form 
of a 246 × 246 adjacency matrix (A). Given that it is controversial 
for interpreting negative correlation or functional connectivity 
(47, 48), the normalized absolute value of the matrix is used as 
done in previous studies (49, 50), such that 0 ≤ Wij ≤ 1 for all i and j.

Node degree and edge weight are used to determine whether 
a brain region (or subregion) is connected or dysfunctional in 
SD. The node degree (ki) refers to the number of connections 
that link this node to the rest of the network. For our weighted 
networks, the definition can be transformed as

 
k Wi ij

j N
=

∈∑  (1)

where Wij is the strength of the connection between node i 
and node j, and N is the set of nodes in the network. The edge 
weight (Wij) is an important measure for evaluating the alteration 
in the strength of a connection in SD.

Identification of Dysfunctional Connections
As shown in Figure 1D, two-sample t-tests are performed to 
examine significant differences between edge weight in SD and HC  
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groups (p < 0.05). For multiple comparisons, the false discovery rate 
(FDR) is controlled by the linear step-up procedure introduced by 
Benjamini and Hochberg (51). To avoid the information leakage, 
the two-sample t-test is carried out after leaving one out, not for 
all subjects. This step generated 74 different masks of abnormal 
connections. Based on each mask, the work in Connection 
Selection and Predictive Models is done. However, for the group 

study in Dysfunctional Thalamus and Lateral Habenula, the two-
sample t-test is done for all subjects.

Connection Selection and Predictive Models
The study uses the library for support vector machines (LIBSVM) 
toolkit developed by Professor Lin of Taiwan University (https://
www.csie.ntu.edu.tw/~cjlin/libsvm/), which integrates many 

FIGURE 1 | Study design and procedures. (A) Overview of the study procedures; (B) functional MRI (fMRI) image preprocessing; (C) construction of functional brain 
networks; (D) identification of dysfunctional connections; (E) connection selection and predictive models.
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functions such as kernel selection, parameter adjustment, and 
prediction. For the training of SVM classification model, the radial 
basis kernel function (RBF) is used. This kernel function provides a 
good classification for samples with nonlinear relationship between 
labels and features as expressed below.

 
K x x x xi j i j, ,( ) = − −





>exp γ γ
2

0  (2)

According to the recommendation from LIBSVM, the values 
of the optimal penalty coefficient C and the kernel function 
parameter γ are determined by the way of “grid-search” using 
cross-validation (52). After going through all the pairs of (C, γ) 
with C = 2−5, 2−3,…, 215 and γ = 2−15, 2−13,…, 23, the pair leading to 
the best cross-validation accuracy is found.

Three methods are proposed to select connections from identified 
candidates, and these selected connections are used to train and test 
the predictive SVM models of SD, as shown in Figure 1E. For the 
first method, the significantly altered connections associated with 
each brain region defined by the human Briannetome Atlas are 
used as input features. A total of 24 SVM models are built to predict 
SD, and they are named as anatomical-region-based models. The 
performance of these models is estimated through leave-one-out 
cross-validation using measures of accuracy, sensitivity, confusion 
matrix, receiver operating characteristic (ROC) curve, and the area 
under the curve (AUC). These models are ranked by accuracy. The 
brain regions leading to the models with an accuracy >0.90 are 
considered to be dysfunctional.

To determine whether models using connections associated with 
subregions not belonging to one specific anatomically well-defined 
brain region and with subregions that are anatomically nonadjacent 
can achieve comparable performance to the anatomical-region-
based models, two more independent experiments are conducted. 
First, the method of sliding window with 16 subregions is employed 
to generate different input features and models. The reason why the 
number of subregions was set as 16 is that the thalamus leading 
to the predictive model of the highest ACC owns 16 subregions. 
As shown in the middle column of Figure 1E, to slide the window 
row by row throughout the adjacency matrix (246 × 246) will 
generate 231 windows (246 – 16 + 1 = 231). The models using 
the connections within each individual window as input features 
are named as sliding-window-based models. Second, a model is 
constructed using the functional connections within 16 randomly 
selected subregions as input features. A total of 100 similar models 
are generated and identified as random-selection-based models. The 
accuracy values of these three categories of models are compared.

Exclusion of Confounders
To estimate whether the performances of the anatomical-region-
based models are dependent on the number of connections associated 
with the brain region and the p-value of these connections, their 
correlation coefficients are assessed. The distribution of connections 
in the model with the highest accuracy is investigated to explore 
whether these models with good performance are independent.

Dysfunctional Thalamus and Lateral Habenula
In order to further identify dysfunctional subregions and 
connections, the connections of brain regions achieving the 

highest predictive accuracy (thalamus) are examined. The 
number and p-value of connections associated with each of the 
16 subregions are identified. Finally, the node degree of each 
subregions is compared between SD and HC groups.

RESULTS

Anatomical-Region-Based Models
The 24 anatomical-region-based models ranked by the accuracy 
of predicting SD are presented in Figure 2A. The accuracy ranges 
from 0.65 to 0.92. The top five models used connections associated 
with the regions of thalamus, posterior superior temporal sulcus, 
cingulate gyrus, superior parietal lobule, and superior frontal 
gyrus. The accuracy of each of these five models is higher than 
0.90. The anatomical locations are shown in Figure 2B. The ROC 
curves and the AUC values are shown in Figure 2C. The cingulate 
model achieves the highest AUC of 0.957. The thalamus model 
yields the second highest AUC of 0.943. The confusion matrices 
of the top five anatomical-region-based models are listed in 
Table 1. For the thalamus model, 31 out of 34 subjects with SD 
(91.2%, also defined as sensitivity) and 37 out of 40 HCs (92.5%, 
also defined as specificity) are predicted accurately. The posterior 
superior temporal sulcus model yields the highest specificity of 
95.0%, and the posterior superior temporal sulcus model yields 
the highest sensitivity.

Other Subregion Selection Strategies
The accuracy of the models using other subregion selection 
strategies is compared with that of the anatomical-region-based 
models, as shown in Figure 2D. No significant difference in 
accuracy is observed between the 231 sliding-window-based 
models and the 24 anatomical-region-based models (0.81 ± 0.06 
vs. 0.80 ± 0.08). The accuracy of the 100 random-selection-based 
models is 0.45 ± 0.06, which is significantly lower than that of 
the anatomical-region-based models and the sliding-window-
based models (p < 0.001). The top five anatomical-region-
based models, and in particular the thalamus model, achieve 
extraordinarily higher accuracy, as compared with the other 
models. Two important features are worthy to be noted. First, 
the brain regions involved in the top five anatomical-region-
based models are potentially dysfunctional due to SD. Second, 
the arbitrary anatomically adjacent subregions (obtained by the 
sliding window method) can generate comparable prediction 
accuracy with anatomically well-defined subregions (obtained 
by the anatomical-region-based method), but the randomly 
selected subregions cannot reliably predict SD.

Effect of the Number of Connections 
and the p-value
The number of connections associated with the 24 brain regions 
used for the predictive models of SD ranges from 52 to 240, as 
shown in Figure 3A. The top five models, which correspond 
to the regions of thalamus, posterior superior temporal sulcus, 
cingulate gyrus, superior parietal lobule, and superior frontal 
gyrus, have connections with the average number of 85, 120, 83, 
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FIGURE 2 | The performances of predictive models of subclinical depression (SD) and their comparison. (A) The prediction accuracy of 24 anatomical-region-based 
models; (B) the brain regions leading to the top five accuracy models; (C) receiver operating characteristic (ROC) curves and area under the curve (AUC) of the top 
five models; (D) comparison of the accuracy of models using connections with thalamus, 24 anatomical-region-based models, 231 sliding-window-based models, 
and 100 random-selection-based models.
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222, and 131, respectively. Figure 3B shows the mean p-value of 
connections in individual brain regions, which ranges from 0.025 
to 0.031.

The dependence of the accuracy of the predictive models on the 
number of connections associated within individual brain regions 
and the mean p-value of connections are shown in Figure 3C. 
The accuracy of the predictive models is related to the number 
of connection associated with brain regions (r = 0.093), but there 
is no statistical significance (p = 0.665). When the number of 
connections associated with brain regions is randomly reduced 
to 90, as with the thalamus, the accuracy does not increase. For 
instance, after reducing the number of connections in middle 
frontal gyrus from 229 to 90, the accuracy decreases from 0.89 
to 0.70 (the mean of 100 times random samples). The accuracy 
of the predictive models is negatively related to the mean p-value 
of connections associated with brain regions without statistical 
significance (r = 0.169, p = 0.429). The high value of accuracy 
of the top five models is due to neither the large number of 
connections, nor the small p-value of the connections.

Dysfunctional Connections With the 
Thalamus
Given that the thalamus is seen as one possible dysfunctional 
brain region of SD, connections associated with the thalamus are 
investigated, as shown in Figure 4. The number of connections 
between the thalamus and precuneus, insular gyrus, paracentral 
gyrus, and amygdala is higher than that of the other regions (11, 
8, 8, and 8, respectively). However, the number of connections 
between the thalamus and itself, the posterior superior temporal 
sulcus, cingulate gyrus, superior parietal lobule, and superior 
frontal gyrus is only 6, 5, 3, 4, and 4, respectively. High accuracy 
values of the models using connections associated with the 
posterior superior temporal sulcus, cingulate gyrus, superior 
parietal lobule, and superior frontal gyrus are independent on 
the thalamus. These regions may also be impacted by SD.

Subregions Within the Thalamus 
and Lateral Habenula
The distribution of the 90 significantly different connections 
associated with the thalamus among 16 subregions is shown in Figure 
5A. There are 18 connections associated with the right posterior 
parietal thalamus (PPtha_r), much higher than those connected 
with the other regions. The significant asymmetry is observed, i.e., 
the right side has more connections than the left. Astonishingly, only 
two edges are connected to the left posterior parietal thalamus. The 
p-value of connections associated with PPtha_r is smaller than that 
of PPtha_l, as illustrated in the right part of Figure 5A. Based on 
Montreal Neurological Institute (MNI) coordinates, LHb is located 
in the posterior parietal thalamus (Figure 5B).

Node Degree of Subregions Within the 
Thalamus
The node degrees of 16 subregions within the thalamus are 
compared between SD and HC groups, as shown in Figure 6. 
Significant difference is found for 10 subregions. For eight 
subregions, the node degree of SD is significantly smaller than 
that of HC. The node degree of subregions on the right is higher 
than that of subregions on the left, for both SD and HC groups.

DISCUSSIONS

Sophisticated connectome-based brain biomarkers permit the 
association of brain measures with both subjective experiences 
and objective behaviors, leading to a reconceptualization of 
diagnoses of mental illness. Herein, we have built several reliable 
brain biomarkers (>0.9 accuracy) that predict SD using abnormal 
functional connections as input features and SVM as the machine 
learning algorithm. We have found dysfunctional brain regions, 
especially the thalamus and LHb, which may be the etiological 
origin of SD. We have observed a reduction of the node degree 
for the right LHb in SD, but not for the left. The significance of 
these findings and the related advantages of this methodology are 
interpreted and discussed in the following subsections.

Reliable Biomarkers for Subclinical 
Depression Prediction
In this study, we have identified reliable brain biomarkers for SD 
prediction through the large-scale brain networks driven from 
resting state fMRI and a machine learning algorithm. Previously 
we had constructed biomarkers using the degree of centrality of 
different brain regions. The highest AUC was 0.82 for the right 
posterior parietal lobule (12). Here, the biomarkers are more 
reliable, and the highest AUC of 0.957 is achieved while using 
connections with the cingulate gyrus. Moreover, the arbitrary 
anatomically adjacent subregions (obtained by the sliding window 
method) and the anatomically well-defined subregions (obtained 
by the anatomical-region-based method) produce models with 
similar performances. These models present significantly higher 
accuracy than those driven by the randomly selected subregions. 
These results suggest that anatomical adjacency is important in the 

TABLE 1 | The confusion matrices of the top five anatomical-region-based 
models.

Model and items Normal
(gold standard)

Patient
(gold standard)

Total

Thalamus model
Predict to normal 37 (92.5%) 3 (8.8%) 40
Predict to patient 3 (7.5%) 31 (91.2%) 34

Posterior superior 
temporal sulcus model
Predict to normal 36 (90.0%) 2 (5.9%) 38
Predict to patient 4 (10.0%) 32 (94.1%) 36
Cingulate gyrus model
Predict to normal 37 (94.4%) 4 (11.8%) 41
Predict to patient 3 (5.6%) 30 (88.2%) 33
Superior parietal lobule 
model
Predict to normal 36 (90.0%) 3 (11.1%) 39
Predict to patient 4 (10.0%) 31 (88.9%) 35
Superior frontal gyrus 
model
Predict to normal 38 (95.0%) 5 (14.7%) 43
Predict to patient 2 (5.0%) 29 (85.3%) 31
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FIGURE 3 | Exclusion of confounders (the number of connections and the mean p-value). (A) The number of connections with significant difference between healthy 
controls (HCs) and SDs for each of 24 brain regions; (B) the p-value for significant difference of connection weight between HCs and SDs for each of 24 regions; 
(C) the relationship between the accuracy of prediction and the number of connections with significant difference (left part), between the accuracy of prediction and 
the mean of p-value for significant difference of connection weight (right part).
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selection of feature (or connections) while building brain models 
or biomarkers. However, more sophisticated algorithms of feature 
selection, such as L1-regularized sparse canonical correlation 
analysis (L1-SCCA), may yield better biomarkers than anatomical 
adjacency (18, 25).

Dysfunctional Brain Regions in Subclinical 
Depression
Using the criterion of owing prediction accuracy greater than 
0.90, we identified the top five regions associated with dysfunction 
in SD from 24 cortical and subcortical regions, defined by the 
human Brainnetome Atlas (44). These regions include the 
thalamus, posterior superior temporal sulcus, cingulate gyrus, 
superior parietal lobule, and superior frontal gyrus. Most of these 
regions had been reported in previous studies of SD. The related 
findings for each dysfunctional region are described below.

Not unexpectedly, given that the thalamus has multiple 
functions of relaying information between different subcortical 
regions and the cerebral cortex, the dysfunctional thalamus 
is identified in SD. It had been reported that two subtypes of 
depression had hyperconnectivity between the thalamic and 
frontostriatal network, resulting in symptoms related to reward 
processing, adaptive motor control, and action initiation (27, 53). 
Of particular importance, LHb, a small epithalamic structure, 
is believed to control reward and aversion processing. The 
importance of these observations will be discussed in detail below.

Distinct connectivity patterns are observed in subregions of 
the posterior cingulate cortex for SD (8). The anterior cingulate 
cortex (ACC) is an important component of reward circuitry, 
with abnormalities resulting in anhedonia (loss of interest/
pleasure), a core symptom in MDD (54). Abnormal ACC is also 
linked to default model network (DMN, self-related thoughts), 
hyperconnectivity, and switching between the DMN and the 
central executive network (CEN, externally-focused cognition) 
(8, 14, 55, 56).

Previously we had reported that the superior parietal lobule 
(SPL, Brodmann area 7, BA 7) presented the decreased fractional 

ALFF (fALFF) (9). The SPL had been proposed to be the key 
component controlling the executive network and playing a 
critical role in working memory (57).

The superior frontal gyrus includes the dorsolateral prefrontal 
cortex (DLPFC) and the medial prefrontal cortex (MPFC). In 
depression, DLPFC is used for emotion adjustment, with the 
activity of DLPFC inhibited at rest but increased during symptom 
remission (58, 59). Our previous work had shown that the 
functional connectivity between SPL and DLPFC was reduced 
in SD (9). MPFC is an important component of DMN playing a 
crucial role in self-referential processing. A lack of DMN inhibition, 
i.e., self-focus, is a core issue of MDD (60). Most importantly, 
both regions of the superior frontal gyrus had been the targets for 
repetitive transcranial magnetic stimulation (rTMS) in depression 
treatment (61).

Dysfunctional Brain Regions Connected 
With the Thalamus
We have found that the dysfunctional thalamus in SD is mainly 
linked with the precuneus, insular gyrus, paracentral lobule, and 
amygdala. It is not surprising to observe the insula and amygdala 
because they are the neuroanatomical core of MDD pathology 
and closely related to anxiety (27). The precuneus is related to 
anhedonia, and the paracentral lobule (premotor) to anxiety. 
Positive connectivity between the LHb (an epithalamic structure) 
and the sensorimotor cortex had been reported by Ely et al. (13).

There is no overlap between the four regions with large 
number of abnormal connections associated with thalamus and 
the four regions (except thalamus) of the top five models ranked 
by accuracy. This is explained by the difference between machine 
learning and classical statistics which is discussed below.

Lateral Habenula—Beyond a Reasonable 
Doubt
Only one previous study had investigated the resting state 
functional connectivity of the LHb in SD (13). Herein, the SD 

FIGURE 4 | The number of connections that present significant difference and connect the thalamus and each of 24 brain regions.
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FIGURE 5 | Dysfunctional thalamus and lateral habenula. (A) The number of dysfunctional connections for16 subregions of thalamus (the left part) and the p-value of 
the dysfunctional connections with 16 subregions of thalamus (the right part); (B) the anatomical atlas of thalamus and LHb.
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group shows greater LHb connectivity with DMN and lower 
connectivity with the salience network, which is consistent with 
prior finding in MDD. Here we found a lateralized decrease of 
node degree in the subregion with LHb (at right) in SD. This 
finding is consistent with our previous finding of decreased 
subcortical degree centrality (12). We speculate that the 
decreased node degree of LHb corresponds to its hyperactivity 
and abnormal bursts. Given that LHb has an inhibitory effect on 
dopamine neurons, Hikosak (32) proposed that the hyperactivity 
of LHb results in hypoactivity of dopamine neurons, reducing 
motor activity in MDD. Hyperactivity of LHb could be the 
result of bursts. According to Yang et al. (29), LHb burst firing 
increases in depression and LHb bursts lead to depression in 
rats. Interestingly, Ely et al. (13) found that LHb connectivity 
increased in the left and decreased in the right. This may partly 
explain the decreased node degree of the right LHb.

Among many dysfunctional brain regions, which one is the 
most likely etiological origin of SD? Is it LHb, as in depression 
for rats (29)? Given the correlative nature of resting-state 
fMRI, it is difficult to establish a causal inference (58). 
Therefore, we do not know which brain region is the cause or 
consequence of SD. However, based on these evidences given 

in our study, we believe that LHb may be the origin of SD, 
beyond a reasonable doubt.

Machine Learning and Classical Statistics
In this study, we have used the classical statistical method, the 
two-sample t-test, to initially screen the candidate connections 
with significant difference between SD and HC groups. The 
selected connections are input into the SVM models as features. 
The two-sample t-test is actually used as a one feature selection 
algorithm. The method of using group tests has been proven to 
yield an inflated bias (62). Thus, we did not carry out strict multiple 
comparison corrections. More powerful feature selection or 
dimension reduction algorithms, such as L1-regularized sparse 
canonical correlation analysis, linear elastic-net, and minimum-
redundancy maximum relevancy, can be assessed in the future 
(25, 63).

Moreover, we found that connections with small p-values do 
not always lead to high prediction accuracy in machine-learning-
based models. This is consistent with previous studies, and 
originates from the essential difference between group difference 
and classification (62, 64, 65).

FIGURE 6 | Node degree of 16 subregions in the thalamus of HC and SD.
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CONCLUSION
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be the etiological origin of SD. The generated biomarkers can aid 
early diagnosis of SD. Furthermore, the identified dysfunctional 
brain connections and regions may help localize the etiological 
origin of SD and understand the pathogenesis of SD.
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Brain functional connectivity has been shown to change over time during resting state
fMRI experiments. Close examination of temporal changes have revealed a small set of
whole-brain connectivity patterns called dynamic states. Dynamic functional network
connectivity (dFNC) studies have demonstrated that it is possible to replicate the
dynamic states across several resting state experiments. However, estimation of states
and their temporal dynamicity still suffers from noisy and imperfect estimations. In
regular dFNC implementations, states are estimated by comparing connectivity patterns
through the data without considering time, in other words only zero order changes
are examined. In this work we propose a method that includes first order variations
of dFNC in the searching scheme of dynamic connectivity patterns. Our approach,
referred to as temporal variation of functional network connectivity (tvFNC), estimates
the derivative of dFNC, and then searches for reoccurring patterns of concurrent dFNC
states and their derivatives. The tvFNC method is first validated using a simulated
dataset and then applied to a resting-state fMRI sample including healthy controls (HC)
and schizophrenia (SZ) patients and compared to the standard dFNC approach. Our
dynamic approach reveals extra patterns in the connectivity derivatives complementing
the already reported state patterns. State derivatives consist of additional information
about increment and decrement of connectivity among brain networks not observed
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by the original dFNC method. The tvFNC shows more sensitivity than regular dFNC by
uncovering additional FNC differences between the HC and SZ groups in each state.
In summary, the tvFNC method provides a new and enhanced approach to examine
time-varying functional connectivity.

Keywords: functional network connectivity, group independent component analysis, windowed correlation,
derivatives, resting state fMRI

INTRODUCTION

Connectivity studies have uncovered a complex functional
organization of brain connectome thanks to the use of functional
magnetic resonance imaging (fMRI) (Fox et al., 2005; Power
et al., 2011). The existence of disease-related abnormalities
in the human connectome brings progress toward the use of
fMRI acquisition in the clinical setting (Fox et al., 2010). As
with any biological system, the brain connectome does not
function in a static manner. Researchers have recognized the
importance of developing techniques to characterize dynamic
features embedded in the connectome dynamics (Hutchison
et al., 2013; Saggar et al., 2018). Although one of the most
basic measures of dynamicity is the derivative, this feature is
underexplored in the context of functional connectivity. This
limitation is related to the fact that functional connectivity
is linked to the phase between neuronal activations (Yaesoubi
et al., 2015). Study of the phase dynamics is more difficult to
characterize than the dynamics of the actual activations. This
work fills the gap by focusing on the derivative as a measure of
the instantaneous variation of brain connectivity.

Functional connectivity measures the level of co-activation
of fMRI time-series from anatomically separated brain regions
(Friston et al., 1993). Previous connectivity studies considered
functional connectivity to remain constant during the scan
duration (Allen et al., 2011; Espinoza et al., 2018). Recent studies
applying the dynamic FNC method (dFNC) have demonstrated
that temporal functional network connectivity (FNC) analysis
(i.e., co-activation between covarying networks estimated via
independent component analysis) can uncover reoccurring
connectivity patterns at resting state or during task performances.
Their results also indicate that brain connectivity patterns iterate
through time and show smooth variations of connectivity (Allen
et al., 2014; Calhoun et al., 2014; Damaraju et al., 2014; Rashid
et al., 2014; Espinoza et al., 2019). The dFNC method provides
a way to explore temporally transient changes in the functional
connectivity among brain networks using sliding windows to
compute FNC across time (Sakoğlu et al., 2010; Allen et al.,
2014). Among the limitations of the dFNC method, is the lack of
justification for the reporting of very similar connectivity states
identified by k-means clustering algorithm. At glance, the similar
states can be combined into one state without taking into account
the states temporal behavior. In this work, we aim to improve
the ability of the dFNC method to characterize connectivity
dynamics by including derivatives of windowed FNC in the
identification of reoccurring states of connectivity.

Our approach referred to as temporal variation of functional
network connectivity (tvFNC) is validated with a simulated

data sample, and then applied to a resting-state fMRI sample
formed by healthy controls (HC) and schizophrenia (SZ)
patients that was previously analyzed with the original dFNC
method (Damaraju et al., 2014). Among our goals were: to
extend time-varying FNC states characterization by including
the first derivatives of the windowed FNC; to provide
complement states differentiation by including their derivatives
information; to expose group differences not captured by the
current dFNC method.

METHODS

Static Functional Network Connectivity
Static FNC (sFNC) analysis is based on the assumption that
functional connectivity, defined as statistical dependence among
N number of fMRI time-courses does not change during
scanning time. Currently available connectivity measures include
correlations (Rodgers and Nicewander, 1988), coherence (Chang
and Glover, 2010; Yaesoubi et al., 2015) and mutual information
(Gomez-Verdejo et al., 2012; Wang et al., 2015) among others. In
this study, functional connectivity is measured via the Pearson’s
pairwise correlation, which is the most widely used approach
to date (Allen et al., 2011; Espinoza et al., 2018). Correlations
between each pair of time-courses generates a FNC vector
with N∗(N−1)/2 unique FNC values. The FNC vector is then
represented by an NxN symmetric FNC matrix (Figure 1A).

Dynamic Functional Network
Connectivity
The dFNC analysis is an extension of sFNC, developed to
capture time-varying FNC. In this method each time-course
is discretized into a set of time domains using the sliding
windowed approach (Sakoğlu et al., 2010; Allen et al., 2014).
Then, in each time-windowed domain a FNC vector is calculated.
This procedure generates a discrete sequence of windowed
FNC (wFNC) vectors that are then represented by wFNC
matrices (Figure 1B) describing connectivity behavior across
time (Sakoğlu et al., 2010; Allen et al., 2014; Damaraju et al.,
2014; Rashid et al., 2014; Espinoza et al., 2019). Subjects’ dFNC
data is formed by all wFNC vectors, and is referred to as
the zero order derivatives of the sliding window correlations.
In summary, the dFNC method pipeline is as follows, for
all subjects compute sliding windowed correlations (wFNC);
form dFNC data by stacking time-wise all subjects’ dFNC data;
run clustering analysis on dFNC data to identify reoccurring
connectivity states.
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FIGURE 1 | Functional network connectivity (FNC) subject’s data, (A) Static FNC, (B) Dynamic FNC, and (C) Temporal variation of FNC.

Temporal Variation of Functional
Network Connectivity
The tvFNC analysis is an extension of dFNC, aiming to
improve state classification by including wFNC derivatives
in the clustering step. First order time derivatives of wFNC
vectors are computed using finite difference approximations.
For each subject, the discrete derivative of the first wFNC
was estimated using the forward difference formula,
Dw1FNC = w2FNC – w1FNC. The discrete derivatives of
the interior wFNC were estimated using central difference
formula, DwiFNC = (wi+1FNC – wi−1FNC)/2, for i = 2 to
W−1, where W is the number of windows. Lastly, the discrete
derivative of the last wFNC was estimated using the backward
difference formula, DwWFNC = wWFNC – wW−1FNC. Subjects’
DdFNC data is formed by all wFNC derivatives, and is referred to
as the first order derivatives of the sliding window correlations.

The tvFNC method pipeline is as follows, for all subjects
(1) compute dFNC data (sliding windowed correlations wFNC);

(2) estimate DdFNC data (derivatives of sliding windowed
correlations DwFNC); (3) concatenate row wise zero and first
order windowed correlations [wFNC and DwFNC] divided by
their corresponding standard deviations (Figure 1C). The tvFNC
data is formed by stacking time-wise all subjects [dFNC and
DdFNC] data, and is referred to as the zero and first order
derivatives of the sliding window correlations; (4) run clustering
analysis on all subjects’ tvFNC data to identify reoccurring
connectivity states and their derivatives patterns.

Clustering Analysis
In both methods dFNC and tvFNC, time-varying connectivity is
captured by performing k-means clustering analysis, assigning
all subjects’ temporal FNC data into a selected number of
clusters representing distinct functional connectivity states. The
clustering algorithm selection is based on previous connectivity
studies that successfully applied k-means algorithm to identify
reoccurring patterns of connectivity within and between subjects
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across time (Allen et al., 2014; Calhoun et al., 2014; Damaraju
et al., 2014; Rashid et al., 2014; Faghiri et al., 2018; Vergara et al.,
2018; Espinoza et al., 2019). We refer to Allen et al. (2014),
Damaraju et al. (2014), and Abrol et al. (2017) for details on
k-means clustering validation. The k-means clustering algorithm
is applied to the temporal FNC data with the number of clusters
ranging from 1 to K along with the Elbow criterion to identify
the optimal number of clusters referred to as states. The optimal
number of clusters is selected from the Elbow criterion cluster
index results. The cluster index is defined as the ratio between the
sums of the within-cluster sums of point-to-centroid distances to
the sums of all the distances from each point to every centroid
(Allen et al., 2014).

Simulated Data
The simulated data was designed to show the tvFNC method for a
given a number of subjects S, and their corresponding N number
of fMRI time-courses. For simplicity, we considered N = 12
and generated tvFNC data for S = 300 subjects. For simulation
purposes, the subjects were divided into five groups with the
same number of individuals in each group. For each subject, a
time-varying sequence of 136 wFNC vectors describing subjects’
dFNC behavior during scan duration was created. The number of
windows, W = 136 was chosen to match the one obtained in the
dFNC analysis of the selected fMRI data sample. Each simulated
FNC and wFNC vectors contains 66 [=N∗(N−1)/2)] unique FNC
pairs. Subjects’ dFNC data sets were created using three distinct
connectivity patterns referred to as FNC seeds plus perturbation
seeds created using random noise and white Gaussian noise
(σ = 0.003). The first FNC seed shows a pattern with positive
connectivity in the upper left block. The second FNC seed shows
a pattern with positive connectivity in the lower right block. The
third FNC seed shows a pattern with positive connectivity in the
upper right and lower left blocks. FNC seed patterns are shown
in Figure 2A. The perturbation seeds were chosen to be the
first derivatives of the FNC seeds. These derivatives were tailored
to have unique patterns simulating subject specific differences
existing in real data. FNC seed derivatives patterns are shown
in Figure 2B.

The simulation is initialized by setting the first window to
the seed pattern plus noise: w1FNC = FNC seed. Windowed
FNC vectors are then simulated by using the recursive equation:
wi+1FNC = wiFNC ± DFNC seed + N(0,σ), i = 1 to W−1.
The symbol ± indicates that DFNC seed was added in some
subjects, but subtracted in others. The recurrent equation was
applied only to generate dFNC data from seeds 1 and 2. Dynamic
FNC data generated from the third FNC seed did not include
the derivative term DFNC seed. This way we covered the
cases where states can have different derivative patterns across
time (derivatives could go in opposite directions) and where
there are no significant derivative changes. Next, first order
time DdFNC of simulated data were computed, and tvFNC
data was formed as previously explained. Then, the k-means
clustering algorithm was applied to each simulated temporal
FNC set ([dFNC] and [dFNC DdFNC]) with the number of
clusters ranging from 1 to 10 along with the Elbow criterion
to identify the optimal number of clusters. The simulations

were repeated one hundred times and mean values of cluster
index were computed.

Resting State fMRI Data
Data Sample
The resting state functional magnetic resonance imaging (fMRI)
data used in this study was taken from the Functional Imaging
Biomedical Informatics Research Network (FBIRN) Phase III
study. Participants (healthy controls and patients) were recruited
in seven sites across the United States. Participants’ information
and scan collection was approved by all seven sites’ institutional
review boards (IRB). The sample is formed by a total of 314
participants. The cohort includes 163 healthy controls (117
males, 46 females; average age 36.9 years) and 151 age- and
gender matched patients with SZ (114 males, 37 females; average
age 37.8 years).

Data Acquisition
All participants provided written informed consent before
scanning. Resting-state fMRI scans were collected at seven sites
using a 3T Siemens Tim Trio System scanner in six locations and
a 3T General Electric Discovery MR750 scanner in one location.
Participants were asked to lay still, stay awake and keep their eyes
closed during the whole scan duration. In all sites, T2∗-weighted
gradient-echo echo-planar images (EPIs) were acquired with the
following parameters: voxel size = 3.4375 × 3.4375 × 4.0 mm3,
repetition time (TR) = 2 s, eco time (TE) = 30 ms, flip angle
(FA) = 77 degrees, field of view (FOV) = 220 × 220 mm
(64 × 64 matrix), slice thickness = 4 mm, gap = 1 mm,
number of slices = 32 sequential ascending slices. Scans lasted
5:4 min, a total of 162 volumes of echo planar imaging BOLD
fMRI were collected.

Data Pre-processing, Group Independent
Component Analysis, and Post-processing
Detail information of selected rsfMRI scans quality control, pre-
processing, group independent component analysis (GICA), and
post-processing can be found in Damaraju et al. (2014). In
summary, functional images were preprocessed using custom
written Matlab scripts along with three available toolboxes,
Analysis of Functional NeuroImages (AFNI)1, Spatial Parametric
Mapping (SPM)2, and Group ICA/IVA of fMRI Toolbox (GIFT)3.
Rigid body motion correction was performed using INRIalign
(Freire and Mangin, 2001). Resting-state fMRI scans were
spatially normalized to the Montreal Neurological Institute
(MNI) space (Friston, 1995), resliced to 3 mm x 3 mm x 3 mm
voxels, and smoothed using a Gaussian kernel with a full-
width at half maximum (FWHM) of 6 mm. Lastly, each
voxel time-course was variance normalized completing the data
preprocess step. Participants (HC and SZ) whole brain functional
parcellation was obtained by applying the spatial GICA algorithm
implemented in the GIFT toolbox (Calhoun et al., 2001; Correa
et al., 2005) to the preprocessed fMRI data. Spatial GICA is an

1http://mialab.mrn.org/software/gift/
2https://afni.nimh.nih.gov/
3http://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 2 | Simulated data, (A) FNC seeds, (B) derivatives of FNC seeds, (C) Elbow criterion results for dFNC and tvFNC methods, panels (D,E) show FNC states
and their derivatives choosing optimal number of clusters = 5.

extension of spatial ICA, which decomposes all subjects’ fMRI
data into linear mixtures of maximally spatially independent
components and provides their unique time-course profiles.
One hundred independent components (ICs) representing whole
brain functional parcellation were obtained using principal
component analysis (Rachakonda et al., 2016) and the infomax
algorithm (Bell and Sejnowski, 1995). Subjects’ ICs anatomical
brain regions referred as spatial maps and their corresponding
time-courses were obtained using the spatiotemporal regression
back reconstruction approach (Calhoun et al., 2001; Erhardt
et al., 2011). Out of the 100 ICs that were estimated, N = 47
ICs were identified as meaningful resting state networks (RSNs)

by evaluating the ratio of high to low frequency power in the
spectra of components, as well as whether peak activations took
place in gray matter (Meda et al., 2008; Robinson et al., 2009;
Allen et al., 2011). Post-processing of the selected 47 RSNs time-
courses included: detrending and despiking using 3DDespike,
filtering using a fifth-order Butterworth low-pass filter with a high
frequency cutoff of 0.15 Hz, and variance normalization.

Estimation of dFNC and tvFNC Data
Whole brain dFNC is computed by obtaining a sequence of
time domains for each of the selected 47 RSNs time-courses
using the tapered sliding window approach (Allen et al., 2014).
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A total of 136 widows (W = 136) were obtained using a
rectangular window width of 22 TRs (=44 s, TR = 2 s) convolved
with a Gaussian of sigma 3 TRs, and sliding in one TR step
until covering the whole time domain. Then, for each subject’s
windows 1 to 136, FNC among the RSN windowed time-
courses was calculated generating a discrete sequence of wFNC
vectors containing 1081 [=N∗(N−1)/2] unique FNC pairs. Each
wFNC vector is then represented by a full covariance matrix
named wFNC and/or dFNC matrix. Since time-courses of short
length may have insufficient information to characterize full
covariance matrices, the graphical LASSO algorithm (Friedman
et al., 2008) was used to overcome this limitation. Covariance
matrices were estimated from regularized inverse covariance
matrices (Smith et al., 2011). A penalty on the L1 norm of
the precision matrix was applied to enforce sparsity. The cross-
validation scheme for estimating covariance with graphical lasso
framework is as follows: For each subject, a random windowed
data is chosen and rest of the subject’s windowed data is
considered as unseen data. The regularization parameter defined
as the optimum hyperparameter lambda (among a set of lambda
values selected a priori) that maximizes the log likelihood of the
unseen data is chosen. This process is repeated for few randomly
chosen windows of the subject and the mean lambda across the
repetitions is then used for estimating covariance for all of the
windows of that subject. Overall 42,704 (=314 participants times
136 wFNC) dFNC matrices were obtained representing subjects’
FNC as a function of time. To account for nuisance effects,
subjects’ dFNC data (zero order sliding windowed correlations)
were Fisher z transformed, and residualized with respect to
age, gender and multi-site (Damaraju et al., 2014). Next, time
derivatives of the dFNC data were computed (first order
derivatives of sliding windowed correlations). Lastly, tvFNC data
was formed as previously explained.

Clustering of dFNC and tvFNC Data
The dFNC data was represented by five FNC states using
the K-means clustering algorithm along with the correlation
distance metric. The optimal number of states/clusters k = 5
was identifying using the elbow criterion of the cluster index
(Damaraju et al., 2014). To be able to compare our results to the
dFNC results, the tvFNC data was clustered with the same cluster
algorithm, number of clusters and distance metric. Connectivity
dynamism was assessed by two measures computed from the
clustering results (1) mean dwell time and (2) fraction time. Mean
dwell time provides an average time an individual spend in each
state before changing to another state, and fraction time provides
a percentage of total time an individual spend in each state.

Group Differences
Group differences in tvFNC between HC and SZ subjects were
tested using two sample t-tests and results were corrected for
multiple comparisons applying false discovery rate threshold at
a significant level of q < 0.05. Group differences were tested for
connectivity dynamism on the clustering measures, mean dwell
time and fraction time; and for FNC states on all FNC pairs. In
each state, first we identified subjects with at least one tvFNC
element ([wFNC DwFNC]) in that state. Then, the median of

all identified tvFNC elements was calculated as the subject state
contribution. Therefore, the number of subjects in each state is
not fixed. Next, we separate subjects’ states’ median FNC as states
FNC and their corresponding derivatives. Lastly, SZ-HC group
differences were tested in each state and their corresponding
derivatives for each FNC pair.

RESULTS

Simulated dFNC Data
Simulations were designed to extend three original FNC states
(Figure 2A) into five states (Figure 2D). Dynamically, the first
two states show two patterns of positive and negative derivatives,
and the last state show small connectivity changes across time
(Figure 2E). From the Elbow plot Figure 2C, we can observe that
the dFNC method shows a sharp decay in the cluster index from
two to three clusters. This result could imply that three could
be selected as the optimal number of clusters/states. However,
we can notice no changes in the cluster index for the number
of clusters bigger than five. In other words, this data can be
well represented by five clusters. On the other hand, the tvFNC
method shows smooth cluster index decay from two to five
clusters and small decline for the higher number of clusters. The
tvFNC clustering results with the optimal number of clusters,
k = 5 are shown in Figure 2D (states) and Figure 2E (states
derivatives). These results show that the inclusion of a derivative
pattern in the simulation allowed for a clearer identification of
similar clusters with different temporal behavior.

The tvFNC method supports the identification of very similar
states capturing different temporal behavior not shown in the
dFNC method. The absence of derivatives in the clustering
estimation resulted in a poor differentiation of similar states even
at small noise perturbations. As in the simulation, clustering of
real data analyzed in the next subsection can also benefit from
the extra information provided by the derivatives.

Resting State fMRI Data
Functional classification of the selected 47 RSNs is based on
anatomy and brain functioning. The 47 RSNs were grouped into
seven functional domains: sub-cortical [(SC), 5 RSNs]; auditory
[(AUD), 2 RSNs]; visual [(VIS), 11 RSNs]; sensorimotor [(SM), 6
RSNs]; attention/cognitive control [(CC), 13 RSNs]; default mode
network [(DMN), 8 RSNs]; cerebellar [(CB), 2RSNs]. Table 1 in
Damaraju et al. (2014) of the 47 RSNs along with their Brodmann
area numbers, number of voxels in each components cluster,
component numbers and peak activation coordinates x, y, and
z. Figure 3 depicts the spatial maps of the 47 RSNs grouped by
seven functional domains.

Temporal Variation of Functional
Network Connectivity Characterization
Using sliding-window and k-means clustering whole brain
temporal variation of FNC during scan duration were
represented by five connectivity states. Figure 4 displays
the centroids of the five states broke down as FNC states 1–5
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FIGURE 3 | Spatial Maps and their corresponding independent component numbers of the 47 selected resting state networks group into seven domains subcortical
(SC), auditory (AUD), sensorimotor (SM), visual (VIS), default mode network (DMN), cerebellar (CB), and cognitive control (CC).

FIGURE 4 | Functional network connectivity states (A) and their derivatives (B).
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(first row) and their corresponding derivatives (second row); the
total number of wFNC in each state along with its equivalent
percent frequency in parenthesis is also listed. States numbering
was assigned based on the order of clustering formation. States’
FNC pattern description is presented in descend order based on
their wFNC frequency distribution.

State 5, the one with the higher frequency distribution (30%
wFNC) shows weak connectivity overall. This state displays
mostly negative correlations between domains and positive
correlations within visual, cognitive control and default mode
domains. The derivative of State 5 is represented by an
unstructured weak connectivity pattern. Small positive and
negative correlation values display a mix of increasing and
decreasing connectivity.

State 4, the one with the second higher frequency distribution
(19% wFNC) shows slightly stronger connectivity than State 5,
with higher within- and between connectivity modularity in the
visual and sensorimotor domains. The derivative of State 4 is
represented by a similar unstructured weak connectivity as the
derivative of State 5. In addition, this state derivative displays
more pronounced positive correlation values between cognitive
control and visual domain can be observed.

State 2, the one with the third higher frequency distribution
(18% wFNC) shows a more structured connectivity pattern
compared to States 4 and 5. This state captures stronger positive
correlations within the visual and sensorimotor domains, and
between most RSNs from the auditory, visual, and sensorimotor
domains, and a few components from the cognitive control
and default mode domains. We can also observe notable
negative correlations between the subcortical domain and the
auditory, visual, and sensorimotor domains. The derivative
of State 2 is represented by a well-structured connectivity
pattern displaying increase and/or decrease in connectivity
within and between domains. We can observe that the marked
positive and negative FNC captured in State 2 has negative
and positive derivatives. These results imply that (1) there is
noticeable decrease in connectivity within the visual domain
and between the auditory, visual, sensorimotor and a few
components from the cognitive control domains. (2) There
is noticeable increase in connectivity between the subcortical,
auditory, sensorimotor and some components from the cognitive
control and default mode domains.

State 1, the one with the second lowest frequency distribution
(17% wFNC) shows weaker connectivity patterns than States
2 and 3. This state also shows noticeable positive correlations
between RSNs from the default mode domain. In addition, we
can observe slightly stronger negative correlations between the
auditory, visual, sensorimotor, and default node domains. The
derivative of State 1 is represented by weaker connectivity pattern
in comparison to the derivative of State 3.

We can observe that most of the pronounced positive and
negative FNC captured in State 1 has positive and negative
derivatives. These results imply that (1) there is a noticeable
increase in connectivity within the visual domain and between
the auditory, visual, sensorimotor and a few components from
the cognitive control domains. (2) There is a noticeable decrease
in connectivity between the auditory, visual, and default mode

domains. Also we can observe weaker decrease in connectivity
between the subcortical, cognitive control, and cerebellar and the
rest of domains.

State 3, the one with the lowest frequency distribution
(16% wFNC) shows very similar connectivity patterns as State
2. However, the derivative of State 3 is represented by a
well-structured connectivity pattern very different than the
derivative of State 2. The derivative of State 3 seems like the
complement of the derivative of State 2 displaying increase
and/or decrease in connectivity within and between domains.
We can observe that the marked positive and negative FNC
captured in State 3 has positive and negative derivatives.
These results imply that (1) there is a noticeable increase in
connectivity within the visual domain and between the auditory,
visual, sensorimotor and a few components from the cognitive
control and default node domains. (2) There is a noticeable
decrease in connectivity between the subcortical, auditory,
sensorimotor and some components from the cognitive control
and default mode domains.

Figure 5 depicts the FNC states (A) and their derivative (B)
centroids separated by groups HC (first row) and SZ (second
row). The total number of subjects in each state is listed in
parenthesis. The HC and SZ group FNC states 1–5 and their
derivatives patterns are very similar to those shown in Figure 4.
State 1, the fourth state in the wFNC percent frequency rank
contains the highest number of subjects [N = 254, HC = 127,
and SZ = 127]. It is followed by State 5 [N = 236, HC = 109, and
SZ = 127], the number one in the wFNC percent frequency rank.
The HC FNC states show slightly higher positive and negative
connectivity patterns than SZ states.

Schizophrenia and Healthy Control
Group Differences in Temporal Variation
of Functional Network Connectivity
All presented results were corrected for multiple testing. From
Figure 6 we can observe that HC individuals spend significantly
more time in States 2 and 3. These states show stronger
within- and between-connectivity in the auditory, visual, and
sensorimotor domains compared to the other states. On the
other hand, SZ individuals spend more time in State 5 (a state
displaying weakly connectivity between RSNs from all domains).
The t- and p-values are listed in Table 1.

Figure 7 depicts the significant connectivity differences
between SZ and HC subjects in states 1–5 (Figure 7A, first
row) and in the states derivatives (Figure 7B, second row).
From Figure 7A, showing FNC group differences in states 1–3
we can observe that compared to HC, SZ patients showed
higher connectivity between a RSN from the subcortical domain
[thalamus (IC18)] and RSNS from the auditory [superior
temporal (IC58) and middle temporal gyrus (IC51)], visual
[lingual gyrus (IC91), parahippocampal gyrus IC(57), middle
temporal gyrus(IC42), middle frontal gyrus (IC20), cuneus
(IC78), middle temporal gyrus (IC80), cuneus IC(7), superior
parietal lobule (IC24)], and sensorimotor [medial frontal gyrus
(IC9), right post-central gyrus (IC6)] domains. We can also
notice less pronounced connectivity between RSNs from the
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FIGURE 5 | Healthy control (HC) and schizophrenia (SZ) participants’ functional Network connectivity states (A) and their derivatives (B).

subcortical domain and RSNs from the auditory, visual, cognitive
control, and cerebellar domains in State 1; between RSNs
from the subcortical and cerebellar domains and RSNs from
the other domains in States 2 and 3; between subcortical,
auditory, visual, cognitive control, default mode, and cerebellar
domains in State 4. On the other hand, compared to SZ, HC
showed higher within connectivity in the visual, sensorimotor,
cognitive control domains; and among the subcortical, auditory,
sensorimotor and the rest of domains. From Figure 7B, we
can observe FNC group differences between SZ and HC in
the derivatives of states 1–3. No significant differences in
the derivatives of states 4 and 5 were found. Compared
to HC, SZ subjects showed higher increase in derivatives
in State 1 between inferior parietal lobe (IC96, CC) and
precentral gyrus (IC5, SM), middle frontal gyrus (IC21, CC);
and between cingulate gyrus (IC47, CC) and anterior cingulate
gyrus (IC53, DMN); in State 2 between inferior frontal gyrus
(IC34, CC) and thalamus (IC18, SC), and middle frontal
gyrus (IC69, DMN) and post-central gyrus (IC6, SM); and

in State 3 between middle temporal gyrus (IC80, VIS), and
thalamus (IC18, SC).

DISCUSSION

In this work we have presented the tvFNC method which is
an extension of the current dFNC approach to include the first
derivative of the time dependent FNC patterns in the overall
analysis. We found that time derivatives exhibits their own
clustering patterns. The inclusion of the derivative information
was useful for the clustering procedure to find an accurate
clustering partition.

Clustering and tvFNC
Simulated data showed that the identification of occurring
connectivity patterns performed by clustering analysis can benefit
from using the first derivative information to support the
existence of similar patterns with different temporal behavior. We
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FIGURE 6 | Bar plots displaying mean dwell times in States 1–5 for HC (red)
and SZ (blue) participants. The states showing significant differences between
the HC and SZ groups are marked with a black star (FDR-corrected results).
The two test t- and p-values are listed in Table 1.

confirm the premise that time point information can be better
described, and subsequently clustered, by using its derivative.
It is not the first time that derivatives are used to improve the
characterization of a time varying signal. This assumption is
rooted in Taylor’s theorem. Notice that due to fMRI protocols
we don’t really have a continuous description of the signal. In
fact, the fMRI data consists of snapshots spaced in time by a
predefined TR. In the current context, we are improving the
discrete time estimation of the dFNC at a given time point
t = n∗TR by adding information of the estimated derivative
DdFNC at that time point. The simulation showed that including
time specific estimations of derivatives helped in recognizing
the different dFNC patterns imposed in the simulation. The
importance of the derivative extends to the real data where an
extra set of observations can be accounted for.

Dynamic FNC was captured by five connectivity states that
reoccurred over time supporting previous finding that whole-
brain functional connectivity is not stationary (Allen et al.,
2014; Damaraju et al., 2014; Rashid et al., 2014; Faghiri et al.,
2018; Espinoza et al., 2019). In addition, the dFNC states’ time
derivatives provide a measure that is sensitive to dFNC changes

TABLE 1 | Two t-test mean dwell time and fraction time results showing Healthy
control (HC) and Schizophrenia (SZ) differences in each state.

State-1 State-2 State-3 State-4 State-5

Mean dwell time

p-value 0.6984 0.0278∗ 0.0058∗ 0.3811 9.88e− 05∗

t-Value −0.3880 2.2134 2.7899 −0.8776 −3.9618

Fraction time

p-value 0.1089 0.0006∗ 3.22e− 07∗0.9943 9.98e− 10∗

t-Value −1.6088 3.4697 5.2759 −0.0072 −6.3690

The FDR corrected p-values showing significant differences between HC and SZ
are marked with a star.

over a period of time. These tvFNC results are also in line
with previous resting state studies results examining functional
disruptions in SZ. For instance, the five dFNC states identified in
this study are very similar to those identified by Damaraju and
collaborators (Damaraju et al., 2014). In that study, the optimum
number of clusters representing connectivity states was selected
using the Elbow criterion. Based on this approach, five states
were obtained to describe FNC over time. It can be observed in
both, Figure 4 here and in Damaraju et al., that States 2 and 3
are very similar. From just looking at the dFNC states results, it
can be inferred that the number of FNC states can be reduced
from five to four. However, the derivative patterns observed
using the tvFNC method complements the results from the dFNC
approach, validating the previously obtained FNC states and
providing additional support for states separation. A clear state
differentiation is observed from the FNC derivatives of States 2
and 3 which display different connectivity patterns, Figure 4B.

Another important observation to make is that the
connectivity patterns of States 2 and 3 derivatives seem to
complement each other. For example, from Figure 4 we observe
that the derivative of State 2 shows decreasing connectivity
among auditory, visual and sensorimotor domains while the
derivative of State 3, shows increasing connectivity among these
domains. On the other hand, the derivative of State 2 shows
increasing connectivity among subcortical, auditory, visual, and
sensorimotor domains while the derivative of State 3 shows
decreasing connectivity among these domains. Overall, both
states derivatives values are very close to zero showing almost
constant (very small temporal variations) connectivity over time.

HC Versus SZ
In terms of dynamism, HC changed states more than SZ subjects
did. These changes were measured by computing the fraction
time (FT) spend in states for the two groups. Compared to
HC, SZ individuals spend significant more time in State 5, a
state showing weakly dFNC and almost constant behavior over
time. Lower degree of functional connectivity and reduced in
modularity in SZ was also reported by Lynall et al. (2010),
Yu et al. (2011), and Damaraju et al. (2014). The tvFNC
analysis captured group differences in all five states. It also
uncovered significant group differences in States 4 and 5 not
previously captured (Damaraju et al., 2014). Figure 7 shows SZ
individuals with lower connectivity than HC in states where
the connectivity is already weak (States 4 and 5). These two
states might be visualized as a valley or a point in time where
the general connectivity lowers then rises. Since there is no
significant difference in the derivatives of States 4 and 5, we
can argue that spending more time in the weak states (just
as SZ subjects do) allows reaching lower connectivity. On the
contrary, HC dwelling is shorter and the connectivity does not
reach the same minimum value. This new observation shows
extra evidence that derivatives gives new refinements in the
analysis. With respect to States 1, 2, and 3, Figure 7A shows
hyperconnectivity in SZ between the subcortical (thalamus) and
RSNs from the auditory, visual and sensorimotor domains.
Hypoconnectivity between (1) subcortical and cognitive control
and default mode domains; (2) default mode and cognitive
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FIGURE 7 | Two t-test results showing states (A) and derivatives (B) connectivity differences between the SZ and HC groups, FDR corrected results threshold at a
q < 0.05.

control domains; and (3) cerebellar and auditory, visual and
sensorimotor, cognitive control domains is also observed. These
states (1, 2, and 3) suffer more sudden and faster changes, thus
the dynamics are different than States 4 and 5. Note that, a
similar pattern of hypoconnectivity within auditory and visual
domains can be seen in all five states which is consistent with the
disconnection hypothesis (Friston et al., 2016). Results seem in
higher agreement with the disconnection hypothesis since some
dFNC has slower dynamicity as seen in Figures 5B, 6 where some
derivatives exhibit lower magnitudes in SZ.

In a compensatory manner, thalamic connectivity is stronger
in SZ as it is the main characteristic shared by states 1, 2,
and 3. Although this observation seems contrary to Friston’s
disconnection hypothesis, it is not a rare observation. Resting-
state fMRI studies have reported SZ thalamic hyperconnectivity
with sensorimotor cortices, whole brain (Woodward et al.,
2012; Damaraju et al., 2014; Rashid et al., 2014) and seed-
based (Woodward et al., 2012; Anticevic et al., 2014). To
counterbalance the previous statement, we must point out
that thalamic hyperconnectivity pertain to states with short
dwelling while larger dwelling states characterizes the absence
of this hyperconnectivity (see Figures 5, 6). However, sensorial
hypoconnectivity (auditory, visual and sensorimotor) can be
found in all states, thus present 100 % of the time.

The novel contributions of this work are the differences
in dynamicity, as measured using the derivatives of dFNC.
Figure 7B displays states derivative differences’ between SZ
and HC. Group differences were captured in three out of the
five states among six domains. Compared to HC, SZ subjects
showed higher increase in derivatives in State 1 between inferior
parietal lobe and, precentral gyrus and middle frontal gyrus;
and cingulate gyrus and anterior cingulate gyrus. In State
2 between inferior frontal gyrus and thalamus; and middle

frontal gyrus and post-central gyrus. In State 3 between middle
temporal gyrus and thalamus. Despite these increments in
variation, the connectivity strength was not different for the
mentioned IC pairs in States 2 and 3. This can be observed
by comparing the mentioned derivatives in Figure 5B with the
connectivity in Figure 5A. This observation is not consistent
since we could expect that higher derivatives would help
increasing the magnitude of connectivity. Since this was not
the case, we can conclude that the aggregated effect of the
increased derivatives was not coherent or not strong enough
to produce a consistent difference in connectivity. However,
the observation points to a more rapid connectivity fluctuation
in CC and DMN brain areas pointing to possible causes
of cognitive deficiencies known to occur in schizophrenia
(Schaefer et al., 2013).

Limitations and Future Directions
Among the limitations to be consider in this work: Functional
connectivity is measured as the Pearson correlation between
fMRI time-courses, and this lower order statistic provided
significant results. Higher order statistics, such as mutual
information, could be considered in future work to extend
this analysis. The calculation of dFNC data requires a window
length selection. The selected windowed size should be able to
capture functional connectivity variability in small time domains
(Sakoğlu et al., 2010). Following this recommendation, a fixed
window size of 22 TR (=44 s) similar to the one used in
Damaraju et al. (2014) was selected. Future work should evaluate
state derivative changes over range of window sizes. Another
limitation lies on the scan duration. This resting state fMRI data
was collected for 5.4 min, a longer scanning time may uncover
the identification of critical time points where FNC states reaches
stationary behavior.
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Alzheimer’s disease (AD) is a severe type of neurodegeneration which worsens

human memory, thinking and cognition along a temporal continuum. How to identify

the informative phenotypic neuroimaging markers and accurately predict cognitive

assessment are crucial for early detection and diagnosis Alzheimer’s disease. Regression

models are widely used to predict the relationship between imaging biomarkers and

cognitive assessment, and identify discriminative neuroimaging markers. Most existing

methods use different matrix norms as the similarity measures of the empirical loss or

regularization to improve the prediction performance, but ignore the inherent geometry

of the cognitive data. To tackle this issue, in this paper we propose a novel robust

matrix regression model with imposing Wasserstein distances on both loss function and

regularization. It successfully integrate Wasserstein distance into the regression model,

which can excavate the latent geometry of cognitive data. We introduce an efficient

algorithm to solve the proposed new model with convergence analysis. Empirical results

on cognitive data of the ADNI cohort demonstrate the great effectiveness of the proposed

method for clinical cognitive predication.

Keywords: Alzheimer’s disease, cognitive assessment, Wasserstein distance, matrix regression, feature selection

1. INTRODUCTION

Alzheimer’s disease (AD), the most common form of dementia, is a Central Nervous System
(CNS) chronic neurodegenerative disorder with progressive impairment of learning, memory
and other cognitive function. As an incurable disease which severely impacts human thinking
and behavior, Alzheimer’s disease is the 6th cause of death in the United States (Alzheimer’s
Association, 2018). Along with the rapid progress in high-throughput genotype and brain image
techniques, neuroimaging has been developed to effectively predict the progression of AD or
cognitive performance in plentiful research (Ewers et al., 2011; Wang et al., 2011b), which benefits
for early diagnosis and explorition of brain function associated with AD (Petrella et al., 2003;
Avramopoulos, 2009). The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al.,
2005; Jack et al., 2008) provides neuroimaging and cognitive measurement of normal aging, mild
cognitive impairment as well as AD samples, which provides a wealth of resources for the study of
Alzheimer’s diagnosis, treatment and prevention.
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Until now, numerous studies (Eskildsen et al., 2013; Moradi
et al., 2015) have utilized neuroimaging techniques to detect
pathology associated with AD. Among them, structural magnetic
resonance imaging (MRI) is the most extensively used imaging
modality in AD related studies because of its completely non-
invasive nature, high spatial resolution, and high availability.
Thus, researchers have extracted plentiful MRI boimarkers in
classifying AD patients in different disease over the past few
years (Duchesne et al., 2008; Eskildsen et al., 2013; Guerrero
et al., 2014). And these abundant MRI boimarkers have been
used to many AD related studies, such as AD status prediction
and MCI-to-AD conversion prediction. Despite of great efforts,
we still cannot identify informative AD-specific biomarkers for
the early diagnosis and prediction of disease progression. The
reason for this is that the number of clinical status of AD is
small, which makes it difficult to observe and understand the
cognitive progression.

Consequently, many studies use clinical cognitive tests to
measure cognitive assessment. Recently, several clinical tests have
been presented to access individual’s cognitive level, such as Trail
making test (TRAILS) and and Rey Auditory Verbal Learning
Test (RAVLT) (Schmidt, 1996). Through predicting the cognitive
scores with MRI biomarks, we can explore the association
between imaging biomarkers and AD and find informative AD-
specific biomarkers. Therefore, a wide range of machine learning
approaches have been proposed to predict the cognitive scores
and uncover the pathology associated with AD (Wang et al.,
2011a, 2016; Moradi et al., 2017).

In the current study of predicting cognitive scores with
longitudinal phenotypic markers extracted from MRI data,
regression method has been demonstrated as a effective way to
excavate the correlation between cognitive measures. To modify
the traditional regression model, recent methods proposed to
integrate novel regularization term (such as sparse regularization
and low-rank regularization) into the traditional regression
model (Obozinski et al., 2010; Jie et al., 2015; Moradi et al., 2017).
In fact, the intrinsic idea of the studymentioned above is utilizing
different matrix norm or the combination of matrix norms as
the similarity measures of the empirical loss or regularization
to fit the prior assumption of neuroimaging markers. Though
the effectiveness of specific matrix norm as regularization, these
matrix norms simply meet the assumption rather than make full
use of the inherent geometry of the data. Thus, it is easy to achieve
a suboptimal solution for these models.

To tackle this problem, in this paper we consider Wasserstein
distance as distance metric for regression model. Different from
Lp distances (p ≥ 0) (Luo et al., 2017) or Kullback-Leibler
(Csiszár and Shields, 2004) and other f -divergences (Ali and
Silvey, 1966), Wasserstein distance is well-defined between any
pair of probability distributions over a sample space equipped
with a metric. Thus, it provides a meaningful notion of distance
for distributions supported on non-overlapping low dimensional
manifolds. For better performance of cognitive score predication,
we propose to substitute Wasserstein distance for matrix norm.

Although successfully applied to image retrieval (Rubner
et al., 2000), contour matching (Grauman and Darrell, 2004),
cancer detection (Ozolek et al., 2014), super-resolution (Kolouri

and Rohde, 2015), and many other problems, there is an
intrinsic limitation of Wasserstein distances. In fact, Wasserstein
distances are defined only between measures having the same
mass, which makes it difficult to applied Wasserstein distance
into cognitive score prediction. To overcome such a limitation,
many existed study (Piccoli and Rossi, 2014, 2016; Kondratyev
et al., 2016), have been proposed. However, these methods are
all based on distributions or histogram features of data. As
we know, in cognitive score prediction, we usually use the
original features rather histogram features to learn the regression
model parameters. Additionally, most of these methods use
traditional matrix norm to characterize model parameters in
Wasserstein distance loss minimization problem. This often leads
to suboptimal results since matrix norm is usually sensitive to
real noise.

To perfectly integrate Wassterstein distance into regression
model for better performance of cognitive score prediction,
in this paper we propose a novel efficient and robust Matrix
Regression method to employ Joint Wasserstein distances
minimization on both loss function and regularization (JWMR
for short). Different from the existing methods, which need to
extract histogram features of data in the preprocessing stage and
then calculate Wasserstein distances based on them, our method
considers histogram operator as an important component of
objective function and uses it to constrain loss term and the
estimated model parameters which are generated by original data
features. This is the first time for exploiting Wasserstein distance
as loss and regularization terms. As a result, our method is more
reliable and applicable than traditional regression method using
ℓp-norm regularizer. We derive an efficient algorithm based
on a relaxed formulation of optimal transport, which iterates
through applications of alternating optimization. We provide the
convergence analysis of our algorithm and describe a statistical
bound for the proposed new model. We apply our method on
cognitive data of the ADNI cohort and obtain promising results.

Our main contributions are three-fold: (1) The proposed
robust matrix regression via joint Wasserstein distances
minimization to circumvent the natural limitation of matrix
norms in regression model; (2) The proposed model is suitable
for revealing the relationship between cognitive measures
and neuroimaging markers; (3) Because our method not only
includes composition of W(·, ·), but also the computations
of Wasserstein distances with regard to different terms, we
derive an efficient algorithm to solve this problem with
convergence analysis.

2. STUDY OF COGNITIVE SCORE
PREDICTION

2.1. Notations
We summarize the notations and definitions used in this paper.
Matrices are written as boldface uppercase letters. ‖ · ‖F and ‖ · ‖∗
denote Frobenius norm and nuclear norm, respectively. 〈·, ·〉 is
the inner product operation. e ∈ R

m is a column vector of ones.
0 ∈ R

m is a column vector of zeros. For vector m ∈ R
m, its i-th

element is denoted by m(i). For matrix M ∈ R
n×m, its i-th row,
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j-th column and (i, j)-th element are denoted bymi,mj, and mij.
The ℓ2,1-norm ofM is defined as

‖M‖2,1 =

n
∑

i=1

√

√

√

√

m
∑

j=1

m2
ij =

n
∑

i=1

‖mi‖2, (1)

where ‖mi‖2 denotes the ℓ2-norm of the vector mi. We define
the Kullback-Leibler (KL) divergence between two positive
vectors by

KL(x, y) =
〈

x, log(x/y)
〉

+
〈

y− x, e
〉

, (2)

where / denotes the element-wise division.

2.2. Matrix Regression for Cognitive Score
Prediction
In the association study of predicting cognitive scores from
imaging markers, a wide range of work has employed regression
models to uncover the relationship between neuroimaging data
and cognitive test scores and predict cognitive score. Given the
imaging feature matrix A ∈ R

m×l and the cognitive score
matrix Y ∈ R

l×n, a common paradigm for regression to predict
cognitive score is to minimize the penalized empirical loss:

minZL(Y− ATZ)+ λ�(Z), (3)

where λ > 0 is the balance parameter, Z ∈ R
m×n is the weight

matrix, which is estimated from the imaging feature matrix A

and the cognitive score matrix Y to capture the relevant features
for predicting the cognitive scores, L(Y − ATZ) is the empirical
loss on the training set, and �(Z) is the regularization term that
encodes imaging feature relatedness. Different assumptions on
the loss L(Y − ATZ) and variate Z lead to different models. The
representative model include:

Least Squares Regression (LSR) (Lu et al., 2012):

minZ‖Y− ATZ‖2F + λ‖Z‖2F , (4)

Low Rank Representation (LRR) (Liu et al., 2010):

minZ‖Y− ATZ‖1 + λ‖Z‖∗, (5)

Feature Selection Based on ℓ2,1-norm (Nie et al., 2010):

minZ‖Y− ATZ‖2,1 + λ‖Z‖2,1. (6)

2.3. Feature Selection for Informative
Imaging Marker Identification
Due to the progress and prosperity of brain imaging and high-
throughput genotyping techniques, a large amount of brain
imaging data is available and a great quantity of imaging markers
is alternative to predict cognitive score. However, not all of them
are related to the pathological changes specific to AD, namely
some imaging markers are redundancy for the prediction task.
A forthright method to tackle this problem is to perform feature
selection, which aims to choose a subset of informative features
for improving prediction.

Feature selection has been demonstrated as a efficient way
to reflect the correlation between cognitive measures after
removing the non-distinctive neuroimaging markers. Regression
techniques with specific regularization can also used to identify
discriminative imaging markers. For instance, sparse regression
models have been extensively utilized to select discriminative
voxels for AD study in previous works (Guerrero et al., 2014;
Liu et al., 2014; Xu et al., 2017). Many sparse-inducing norm
have been iterated into the spare regression model: ℓ1 shrinkage
methods such as LASSO can identify informative longitudinal
phenotypic markers in the brain that are related to pathological
changes of AD (Liu et al., 2014); group LASSO with a ℓ2,1-norm
can select the most informative imaging markers related to all
participants including AD, mild cognitive impairment (MCI)
and healthy control (HC) by imposing structured sparsity on
parameter matrix (Jie et al., 2015); ℓ1,1-norm regularization term
can achieve both structured and flat sparsity (Wang et al., 2011a).

Nevertheless, matrix norms such as ℓ1-norm, ℓ2,1-norm, and
ℓ1,1-norm have the natural limitation that they can not take the
inherent geometry of the data into account. On this account, we
need to select a new distance metric to measure the empirical loss
and regularization term. In this paper, we choose the smoothed
Wassersetein distance as the distance metric.

2.4. Smoothed Wasserstein Distance
Wasserstein distance, originally introduced in Monge (1781),
is a powerful geometrical tool for comparing probability
distributions. It is derived form the optimal transport theory and
is intrinsically the optimal solution of transportation problem in
linear programming (Villani, 2008).

In a more formal way, given access to two sets of points

XS =
{

xSi ∈ R
d
}NS

i=1
and XT =

{

xTi ∈ R
d
}NT

i=1
, we construct two

empirical probability distributions as follows

µ̂S =

NS
∑

i=1

pSi δxSi
and µ̂T =

NT
∑

i=1

pSi δxTi
, (7)

where pSi and pTi are probabilities associated to xSi and xTi ,
respectively, and δx is a Dirac measure that can be interpreted
as an indicator function taking value 1 as the position of x

and 0 elsewhere. For these two distribution, the polytope of
transportation plans between XS and XT is defined as follows:

Uµ̂S ,µ̂T
=

{

P ∈ R
NS×NT
+ s.t.

∣

∣

∣

∣

Pe = pS

PTe = pT

}

. (8)

Given a groundmetricmatrixC ∈ R
NS×NT
+ , the optimal transport

consists in finding a probabilistic coupling defined as a joint
probability measure overXS×XT with marginals µ̂S and µ̂T that
minimize the cost of transport

minP∈Uµ̂S ,µ̂T
〈C,P〉, (9)

where P =
{

p(i, j), i = 1, · · · ,NS, j = 1, · · · ,NT

}

is the flow-
network matrix, and p(i, j) denotes the amount of earth moved
from the source XS to the target XT . This problem admits
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a unique solution P∗ and defines a metric on the space of
probability measures (called theWasserstein distance) as follows:

W(µ̂S, µ̂T)
def.
= minP∈Uµ̂S ,µ̂T

〈C,P〉 . (10)

Optimizing Wasserstein distance problem requires several costly
optimal transport problems. Specialized algorithm can solve it
withO((NS+NT) log(NS+NT)

2+NSNT(NS+NT) log(NS+NT))
(Orlin, 1993). To solving the computational problem, recent
works have proposed novel method to accelerate the calculation
procedure. Furthermore, as a minimum of affine functions,
the Wasserstein distance itself is not a smooth function of its
arguments. To overcome the above problems, Cuturi (2013)
proposed to smooth the optimal transport problem with an
entropy term:

Wγ(µ̂S, µ̂T) = minP∈Uµ̂S ,µ̂T
〈C,P〉 − γe(P), (11)

where γ > 0 and e(·) is the entropy function:

e(P) = −
〈

P, log(P)
〉

. (12)

With the entropy term, we can use Sinkhorn-Knopp matrix
scaling algorithm to solve the optimal transport problem
(Sinkhorn and Knopp, 1967).

3. MATRIX REGRESSION BASED ON JOINT
WASSERSTEIN DISTANCE

In the above formulations, the loss term and estimated variate are
characterized via the simple matrix norm. Thus, these models can
be easily solved by conventional convex optimization methods
[e.g., ADMM (Liu et al., 2010), gradient based methods (Bubeck
et al., 2015), and reweighted iterative methods (Nie et al., 2010)].
However, they do not take into account the geometry of the data
through the pairwise distances between the distributions’ points.
Accordingly, these models often achieve the suboptimal results in
cognitive score predication.

3.1. Joint Wasserstein Matrix Regression
Comparing with matrix norm, Wasserstein distance can
circumvent the above limitation. Therefore, in this paper we
propose to use Wasserstein distance to jointly characterize loss
term and estimated variate Z, which is formulated as

minZ

l
∑

i=1

Wγ((h(A
TZ)i), h(Yi))+ λ

m
∑

i=1

Wγ(h(Z
i), 0), (13)

where h(·) and Yi denote the histogram operator and ith row
of matrix Y, respectively. It should be noted that we use the
histogram operator to constrain each variable in model (13).

3.2. Optimization Algorithm
Solving problem (13) is extremely challenging since it not only
includes the composition of h(·) and Wγ(·, ·), but also the
computations of Wasserstein distance with regard to different

terms. Some existing (Genevay et al., 2016; Rolet et al., 2016)
algorithms are only suitable for solving Wasserstein distance loss
minimization with matrix norm regularizer. To cope with this
challenge, we relax the marginal constraints Uµ̂S ,µ̂T

in (11) using
a Kullback-Leibler divergence from thematrix to targetmarginals
µ̂S and µ̂T (Frogner et al., 2015; Chizat et al., 2016), i.e., (11) is
converted as

Wγ(µ̂S, µ̂T) = minP∈Uµ̂S ,µ̂T
γKL(P|K)+ µKL(Pe|µ̂S)

+µKL(PTe|µ̂T), (14)

where K = exp(−C/upgamma).

Algorithm 1: Optimization Algorithm of our proposed method.

Input: the given ADNI data A and related cognitive score
matrix Y and parameter λ

Output: model parameter Z
1: Initialization: P0 and P̂0

2: repeat

3: for t = 1 tom do

4: Update each Zi with proximal coordinate descent
5: end for

6: Update P(1), · · · ,P(l), P̂(1), · · · , P̂(m) via Sinkhorn iteration
7: until convergence

Let

fµ̂S ,µ̂T
(P) = γKL(P|K)+ µKL(Pe|µ̂S)+ µKL(PTe|µ̂T), (15)

where parameters γ, µ ≥ 0. Thenmodel (11) ultimately becomes
the following form

min J(Z;P(1), · · · ,P(l), P̂(1), · · · , P̂(m))

=

l
∑

i=1

f(ATZ)i ,Yi (P(i))+ γ

m
∑

i=1

fZi ,0(P̂(i))

s.t. Zi ≥ 0, ∀i = 1, 2, · · · ,m

(16)

where P and P̂ denote the flow-network matrix of
Wγ((h(A

TZ)i), h(Yi)) and Wγ(h(Z
i), 0), respectively, and

Zi ≥ 0 means all the elements in Zi is greater than or equal to 0.
Due to the relax operation in (14), we can straightly utilize

the original data ATZ, Y, and Z in model (16). Thus, we
do not need to extract the histogram features of data in the
preprocessing stage, which makes it suitable for the prediction
task in neuroimaging data.

TABLE 1 | Numbers of participants in the experiments using two different types of

imaging markers.

#Total #AD #pMCI #sMCI #HC

FreeSurfer 805 186 167 226 226

VBM 805 186 167 226 226
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FIGURE 1 | RMSE of four regression methods for VBM memory score prediction.

Strong convexity of model (16) is given by the entropy
terms KL(P|K). Thus, we propose to solve (16) by block
coordinate descent, alternating the minimization with respect to
the parameters {P(1), · · · ,P(l), P̂(1), · · · , P̂(m)} and each Zi, which
can be updated independently and therefore in parallel. This is
summarized in Algorithm 1. We now detail the two steps of
the procedure.

Updating coefficient matrix Z. Minimizing with respect to one
Zi while keeping all other variables fixed to their current estimate
yields the following problem

min
Zi

KL(P(i)e|(A
TZ)i)+ λKL(P(i)e|Z

i). (17)

Recalling the definition (2), it is easy to calculate the gradient of
objective (17) with regard to eachZi. Thus, we can use accelerated
gradient descent (Bubeck et al., 2015) to optimize problem (17).

Updating parameter set {P(1), · · · ,P(l), P̂(1), · · · , P̂(m)}. For

fixed Z, the update of each P(i) and P̂(i) boils down to an OT
problem, which can be solved via Sinkhorn iteration (Cuturi,
2013). These steps are summarized in Algorithm 2, where we list
the detailed iteration process for each P(i). For each P̂(i), we need
to replace (ATZ)i and Yi with Zi and 0.

3.3. Convergence Analysis
Following Sandler and Lindenbaum (2011), we can derive the
theorem as follow.

Theorem 1. Algorithm 1 converges to a local minimum.

Proof: Algorithm 1 is the alternative iteration with two iteration
stage. In the first stage, we can use gradient descent to solve the
convex problem (17). Thus it is obvious that it has a feasible
solution. And in the second stage, the problem is a sequence
of linear programming processes. As shown in (Sandler and
Lindenbaum, 2011), there is a feasible solution for every one of
them. To sum up, a feasible solution for (16) exists.

J(Z;P(1), · · · ,P(l), P̂(1), · · · P̂(m)) is convex, so applying

(17) can derive globally optimal Zk when given a
{P(1), · · · ,P(l), P̂(1), · · · P̂(m)}

k−1, where k denotes the iteration
time. Besides, linear programming minimizes the flow-network
matrix P and P̂. Thus, we can find global optimal Pk and P̂k for
a give Zk−1. Furthermore, the accelerated gradient descent used

TABLE 2 | Prediction performance measured by RMSE with top 10 features.

RR ℓ2,1 RSR RLRSS Proposed

VBM FLUENCY 0.8446 0.9166 0.9044 0.8564 0.8437

RAVLT 0.8376 0.8636 0.8742 0.8943 0.8263

TRAILS 0.9040 0.8823 0.8865 0.8886 0.8820

FreeSurfer FLUENCY 0.8136 0.8387 0.8536 0.8686 0.8122

RAVLT 0.7833 0.8051 0.8337 0.8132 0.7815

TRAILS 0.8416 0.8181 0.8433 0.8379 0.8626

The bold values indicate the minimal value in the raw (i.e., the best performance among

these methods).

TABLE 3 | Prediction performance measured by RMSE with top 30 features.

RR ℓ2,1 RFS RLRSS Proposed

VBM FLUENCY 0.8627 0.8815 0.8879 0.8503 0.8471

RAVLT 0.8543 0.8663 0.8741 0.8736 0.8327

TRAILS 0.8826 0.8618 0.8903 0.8743 0.8603

FreeSurfer FLUENCY 0.8351 0.8323 0.8517 0.8322 0.8186

RAVLT 0.8136 0.7903 0.8154 0.8051 0.7788

TRAILS 0.8295 0.8677 0.8579 0.8335 0.8274

The bold values indicate the minimal value in the raw (i.e., the best performance among

these methods).

to update Z and the Sinkhorn Iteration used to update P, P̂ both
have been proven converge.

Since the objective in these two stage is the same,
J(Zk; {P, P̂}k−1) ≤ J(Zk−1; {P, P̂}k−1), and J(Zk; {P, P̂}k) ≤
J(Zk; {P, P̂}k−1).

In above, every iteration of Algorithm 1 monotonically
decreases J(Z;P1, · · · ,P(l), P̂1, · · · P̂(m)). This objective is lower
bounded, and therefore the algorithm converges.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the prediction performance of our
proposed method by applying it to the Alzheimer’s Disease
Neuroimaging Initiative (ANDI) database (adni.loni.usc.edu),
where a plenty of imaging markers measured over a period of
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FIGURE 2 | Heat maps of our learned weight matrices on different cognitive assessment scores. The upper panel shows the weight matrices in VBM data and the

lower panel shows the weight matrices in FreeSurfer data.
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FIGURE 3 | Visualization of top identified imaging markers for RAVLT memory score prediction.

Algorithm 2: Sinkhorn Iteration.

Input: the given ADNI data A and coefficient matrix Z
Output: {P1, · · · ,Pl}
1: for i = 1 to n do

2: K(i) = exp(−C(i)/γ), where C(i) is the ground metric
between ((AZ)i)T and (Yi)T

3: repeat

4: ui ← (((AZ)i)T/Kvi)
5: vi ← ((Yi)T/KTui)
6: until convergence
7: P(i) ← (p(i)jt)n×n, where the (j, t)-th element of P(i) is p(i)jt =

ui(j)k(i)jtvi(t)
8: end for

2 years are examined and associated to cognitive scores that are
relevant to AD.

4.1. Data Description
The data used in the preparation of our work were obtained from
the ADNI cohort. As we know, two widely employed automated
MRI analysis techniques were used to process and extract
imaging phenotypes form scans of ADNI participants (Shen et al.,
2010). One is Voxel-Based Morphometry (VBM) (Ashburner
and Friston, 2000), which was performed to define global
gray matter (GM) density maps and extract local gray matter
density values for 90 target regions. The other one is automated
parcellation via FreeSurfer V4 (Fischl et al., 2002), which was
conducted to define volumetric total intracranial volume (ICV).
All these measures were adjusted for the baseline ICV using
the regression weights derived from the healthy control (HC)
participants. In this study, there are 805 participants, including
186 AD samples, progressive mild cognitive impairment (pMCI)

samples, 167 stable mild cognitive impairment (sMCI) samples
and 226 health control (HC) samples. In our work, we adopt
FressSurfer markers and VBM markers as imaging phenotypes.
Furthermore, the longitudinal scores were downloaded form
three independent cognitive assessments including Fluency Test,
RAVLT, and TRAILS. The details of these cognitive assessments
can be found in the ADNI procedure manuals. The detailed
information are shown in Table 1.

4.2. Performance Comparison on the ADNI
Cohort
To evaluate the performance of our model, we compare it
with the following related methods: RR (multivariate ridge
regression), ℓ2,1 (robust feature selection based on ℓ2,1-norm),
RSR (Regularized Self-Representation) (Zhu et al., 2015), and
RLRSS (Robust Low-Rank Structured Sparse Model) (Xu et al.,
2017). These comparing methods are all widely used in statistical
learning and brain image analysis.

In the experiments, we use ridge regression for the prediction
experiment after selecting the top related imaging markers.
We tune the hyper-parameter of all models in the range
of {10−4, 10−3, · · · , 104} via nested five-fold cross-validation
strategy, and report the best result of each method. To measure
prediction performance, we compute the root mean square error
(RMSE) between the predicted score and the ground truth.

The average results for each method are reported in Figure 1,
while, we also list the RMSE using the top 10 and 30 imaging
markers and reported in Tables 2, 3. It can be seen that our
ap proach obviously outperforms most of methods significantly.
Different matrix norms fit different assumption of the cognitive
measures, which makes it enable to uncover part of the
correlation of cognitive measures. However, due to the natural
limitation of the matrix norms, they fails to uncover the inherent
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geometry of the cognitive data. As for our proposedmethod, with
the effectiveness of Wasserstein distance, it can well utilize the
inherent geometry to reveal the underlying relationship between
cognitive measures and neuroimaging markers.

4.3. Identification of Informative Markers
The primary goal of the proposed method is to identify the
discriminative AD-specific imaging biomarkers which is crucial
for early detection, diagnosis and prediction of AD. Therefore,
we examine the neuroimaging markers selected by our method
and show it in Figure 2. Visualizing the parameter weights shown
in Figure 2 can help us locate the informative markers which
play important roles in the corresponding cognitive prediction
tasks. As the heat map in Figure 2 shows, different coefficient
values are represented in different colors. The yellow polar
means a significant effect of corresponding markers on cognitive
score performance.

As the Figure 2 shows, the extracted informative imaging
biomarks are highly AD-specific and effective for related studies
of AD, since it actually meets with the existing research findings.
For example, among the top selected features, we found that
hippocampal volume (HippVol) and middle temporal gyrus
thickness (MidTemporal) are on the top, whose impact on AD
have already been proved in the previous papers (Braak and
Braak, 1991; West et al., 1994). Furthermore, it also confirms
the important significance of the selected neuroimaging cognitive
associations to uncover the relationships between MRI measures
and cognitive levels.

4.4. Visualization of Top Identified Imaging
Markers
As shown in Figure 3, we also visualize the top ten selected
features for RAVLT memory score prediction on brain map
as a demonstration. In the brainmap for FreeSurfer, the top
15 brain regions are (in descending order according to the
ℓ2-norm of feature weights): LPrecuneus, RCerebellWM,
LHippVol, RCerebellCtx, RMedOrbFrontal, RLatVent,
RCerebWM, RPrecuneus, LParahipp, LMidTemporal,
LInfTemporal, RParacentral, LLingual, LPutamVol, RBanksSTS.
In the brainmap for VBM, the top 15 brain regions are
(in descending order according to the ℓ2-norm of feature

weights): LRectus, RAntCingulate, LInfFrontal_Triang,

RMidCingulate, ROlfactory, RCalcarine, RAmygdala, RRectus,
LParahipp, LPallidum, LInsula, RParacentral, LSupOccipital,
LInfFrontal_Oper, RMidOrbFrontal.

5. CONCLUSION

To reveal relationship between neuroimaging data and cognitive
test scores and predict cognitive score, we proposed a
novel efficient matrix regression model which employs joint
Wasserstein distances minimization on both loss function and
regularization. To eliminate the natural limitation of the matrix
norm in regression model, we utilize Wasserstein distance as
distance metric. Wasserstein based regularizer can promote
parameters that are close, according the OT geometry, which
take into account a prior geometric knowledge on the regressor
variables. Thus, our proposed method Furthermore, we provide
an efficient algorithm to solve the proposed model. Extensive
empirical studies on ADNI cohort demonstrate the effectiveness
of our method.
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Current diagnoses of schizophrenia and related psychiatric disorders are classified by 
phenomenological principles and clinical descriptions while ruling out other symptoms 
and conditions. Specific biomarkers are needed to assist the current diagnostic 
system. However, complicated gene and environment interactions induce great disease 
heterogeneity. This unclear etiology and heterogeneity raise difficulties in distinguishing 
schizophrenia-related effects. Simultaneously, the overlap in symptoms, genetic 
variations, and brain alterations in schizophrenia and related psychiatric disorders raises 
similar difficulties in determining disease-specific effects. Imaging genetics is a unique 
methodology to assess the impact of genetic factors on both brain structure and function. 
More importantly, imaging genetics builds a bridge to understand the behavioral and clinical 
implications of genetics and neuroimaging. By characterizing and quantifying the brain 
measures affected in psychiatric disorders, imaging genetics is contributing to identifying 
potential biomarkers for schizophrenia and related disorders. To date, candidate gene 
analysis, genome-wide association studies, polygenetic risk score analysis, and large-
scale collaborative studies have made contributions to the understanding of schizophrenia 
with the potential to serve as biomarkers. Despite limitations, imaging genetics remains 
promising as more aggregative, clustering methods and imaging genetics-compatible 
clinical assessments are employed in future studies. We review imaging genetics’ 
contribution to our understanding of the heterogeneity within schizophrenia and the 
commonalities across schizophrenia and other diagnostic borders, and we will discuss 
whether imaging genetics is ready to form its own diagnostic system.

Keywords: imaging genetics, diagnostic catalogues, heterogeneity, genetic overlap, brain alterations

INTRODUCTION

The current diagnosis of schizophrenia and psychiatric disorders is mainly based on 
phenomenological observation and clinical descriptions. Although these descriptions are reliable, 
they are not established on valid pathological bases (1). The heterogeneity of the symptoms, 
treatment response, and outcomes implies that there are different subtypes within schizophrenia, 
while phenomenological observation fails to generate precise subgroups revealing etiological 
and pathological differences (2). Additionally, similar psychotic symptoms aggregate in different 
disorders and in families. Behind this aggregation, shared biological mechanisms including genetics 
and neurophysiology are found (1). These findings suggest that the boundaries of psychiatric 
disorders are merging beyond the traditional categorical diagnostic system. The precise subgroups 
and disorder boundaries may optimize treatment and prognosis, and research-based biomarkers 
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may help to fulfill this goal. Importantly, efforts have already 
been made as part of the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition (DSM-5).

Combining genetics and imaging to assess accumulating 
genetic variations on brain function and morphometry has 
become the integrated research method known as imaging 
genetics (3). Imaging genetics not only serves as a tool to 
understand the impact of genetic variations on both structural 
and functional brain, but it also enables researchers to capture 
the behavioral implication of those genes and associated brain 
alterations (4). Importantly, imaging genetics characterizes 
different pathways from genes, imaging, and behavior data. 
Its quantified findings make it possible to contribute to 
the currently unknown map of future diagnosis (5). The 
common technologies in imaging genetic include candidate 
gene analysis, genome-wide association study (GWAS) 
using imaging phenotypes, polygenic approaches (polygenic 
scores, pathway analysis, and multivariate methods), and 
developing  novel approaches (6–8). We focus in this paper 
on  the subset of imaging genetics that focuses on the 
relationships from gene to brain to behavior, which have 
generally focused on common variants in the single nucleotide 
polymorphisms (SNPs).

Various genetically related brain abnormalities have been 
revealed in SZ. SZ patients generally show smaller brain 
volume, overall reductions in gray matter in fronto-temporal, 

thalamo-cortical, and subcortical-limbic circuits and enlargement 
of ventricles (9). These brain alterations induced in partly by 
genetic variations (10) are bridging the gap between gene and 
the phenotype and even clinical symptoms of SZ (see Figure 1) 
(11). It is encouraging that some shared genetics, imaging, and 
imaging genetics findings have been recognized across SZ, 
bipolar disorder (BD), and disorders under other categories. At 
the same time, imaging and genetics are helping to form subtypes 
with different mechanisms in SZ.

In this paper, we review the major imaging genetics findings 
on SZ with closely related psychotic disorders with an eye 
toward the following questions: 1) to date, what contribution 
have genetics, neuroimaging, and imaging genetics made to our 
understanding of the heterogeneity of SZ and the boundaries 
among psychiatric disorders and 2) whether imaging genetics is 
ready to form its own diagnostic system.

TRADITIONAL AND CURRENT DIAGNOSES 
OF SZ

Feighner and colleagues published the criteria for highly reproducible 
diagnoses based on behavioral observation in 1972 (12). From this 
historical view, clinical description, laboratory studies, delineation 
from other disorders, follow-up studies with retreatment response, 
and family studies are considered as major theoretical bases for 

FIGURE 1 | The classic “bottom–up” model in imaging genetics. Genetic variations acclimate their influences on the brain. The brain alterations further develop 
into behavioral phenotype changes, which can be clinically observed as symptoms and cognitive impairments. This observed clinical profile established the base of 
current phenomenological diagnostic system of psychiatric disorders.
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validating a diagnosis (13). However, the follow-up study and 
treatment response may be questioned for whether they could 
validate the diagnosis, per se. Antipsychotics are a major choice not 
only for SZ spectrum but also for depression and BD.

Accumulating new biological understanding does not always 
agree with the criteria and classification proposed at Feighner’s 
time. It is now accepted that family coaggregation implies shared 
abnormal genetic markers and mechanism in the family line. 
For example, SZ, BD, and schizoaffective disorder (SAD) are in 
different diagnostic categories, but observations of diagnoses 
in families of patients showed significant overlap among them, 
which is still being studied to explore the genetic background 
(14). Thus, the traditional methods for determining the 
diagnostic category boundaries are not sufficient.

GENETICS AND ITS IMPACT ON THE 
DIAGNOSTIC PROBLEM

Genetic Overlap Among SZ and Other 
Psychiatric Disorders
Genes contribute greatly to the etiology of SZ, and meta-analysis 
in SZ twin study shows a heritability around 80% (15). Val158Met 
single polymorphism (SNP) of catechol-O-methyltransferase 
(COMT), the Val66Met SNP of brain-derived neurotrophic 
factor (BDNF), and the Ser704Cys SNP of disrupted-in-SZ 1 
(DISC1) is the most well-known gene alteration examined by 
candidate gene analysis (7). The first few reports of GWAS, in 
contrast, demonstrated several loci associated with SZ including 
Zinc finger protein 804A (ZNF804A), neurogranin (NRGN), 
and the major histocompatibility complex (MHC) region. More 
recent GWAS studies with increased sample size discovered more 
SZ related loci (16), and some of these loci are shared by BD and 
other psychiatric disorders (17–25).

SZ and BD are often studied together to elucidate the genetic 
overlap and disorder boundaries. A genetic correlation around 0.6 
is suggested by family, twin, and adoption study (26). However, 
applying a hierarchical or nonhierarchical diagnostic system has 
provided conflicting co-occurrence results at the same time (27). 
SAD is often included in the study of SZ and BD and that genetic 
relationship could also be potentially affected (28).

In addition to epidemiological evidence, the GWAS study has 
brought more insight into the actual genetic overlap. ZNF804A 
is the first discovered marker that may increase the risk for both 
SZ and BD, and meta-analysis has supported its role (29). The 
combined SZ and BD GWAS study from Psychiatric Genomics 
Consortium (PGC) has identified calcium voltage-gated 
channel subunit alpha1 C (CACNA1C), ankyrin-3(ANK3) 
and inter-alpha-trypsin inhibitor heavy chain 3–4 (ITIH3-
ITIH4) as risk for both disorders (30, 31). Later by introducing 
pleiotropy-informed conditional false discovery rate, 14 loci 
were associated with both disorders, and CACNA1C and ITIH4 
were identified again (32). PGC’s diagnostic specificity of five 
disorders analyses has also shown 5′-nucleotidase, cytosolic 
II (NT5C2), and coiled-coil domain containing 68 (CCDC68) 
is associated with both disorders (33). The combined GWAS 
studies will continue to reveal more important loci, but the 

functional implications and roles of these distinct genes in SZ 
and BD will need further investigation.

Another idea is using a polygenetic method to combine and 
count the accumulating effects of a large number of loci, which 
may or may not reach the GWAS threshold for significance. 
Again in the PGC study, the cross-disorder group stated SZ 
and BD were affected by genetic correlation of 0.68 based on 
their common SNPs (33). Additional polygenic studies blur 
the distinction across categories and indicate a broad genetic 
mechanism for these psychiatric disorders (34–36).

However, there is also genetic evidence showing distinctions 
between SZ and BD (37). Large and rare copy number variations 
(CNV) have been identified in SZ and certain developmental 
disorders, but less consistently in BD. In addition, Sz 
pathogenic CNV carriers showed reduced subcortical regions 
including thalamus, putamen, pallidum, hippocampus, and 
accumbens, which were previously identified in Sz participants 
(38). This finding is consistent with the diagnosis hierarchy, 
by which BD is only diagnosed with the absence of SZ and 
developmental disorders.

Genetics Helps Reveal Heterogeneity and 
Future Subtypes of SZ
Many researchers have tried to provide genetic explanations for 
SZ’s heterogeneities. Arnedo and colleagues made a promising 
attempt trying to uncover the hidden genetic architecture of 
different subtypes of SZ (39). The basic idea of their research was 
to measure the complexity of hidden architecture in genotype and 
phenotype. It was expected that the association between distinct 
sets of phenotypes and SNPs could be revealed in heterogeneous 
SZ, and it would represent subtypes of SZ with the respective 
genetic mechanism.

Arnedo et al. generated phenotypic sets using non-negative 
matrix factorization from the data of series questionnaire 
and structured interview results. The factorization divided 
the SZ patients into distinct subgroups with different disease 
severity, process, and symptom domain (positive, negative, and 
disorganized symptoms) regardless of their genetic background. 
SNP sets were generated by a generalized factorization method 
combined with non-negative matrix factorization. The overlap 
of patients and SNPs in these sets ensured to be disjoint, to 
reflect the heterogeneity of SZ. Finally, the association between 
phenotypic sets and SNP sets were tested in the molecular 
genetics of schizophrenia (MGS) study. It was also largely 
replicated by them in the National Institute of Mental Health 
Clinical Antipsychotic Trials of Intervention Effectiveness 
(CATIE) project and Portuguese Island family samples.

The results were encouraging: Arnedo et al. found 42 SNP 
sets had >70% risk for SZ, and these SNP sets were significantly 
associated with different phenotypic sets. For instance, a 
phenotypic set indicating a general process of severe deterioration 
(severe process, with positive and negative symptom; moderate 
severity of impairment; unable to function since onset) was highly 
correlated with certain SNP set including polypyrimidine tract 
binding protein 2 (PTBP2) and several other genes which might 
play a role in neuron differentiation. This severe deterioration SZ 
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may be a potential clinical valid subtype, and following the track 
of PTBP2 and its SNP cluster may facilitate the examination of 
the mechanisms underlying severe deterioration.

Based on their findings, it was believed that SZ could be seen 
as “syndromes group” in which distinct clinical syndromes are 
associated with disjoint genotypic networks. The interaction 
map of disjoint genotype and distinct syndromes have shown a 
possible way of shaping SZ into biological markers or a networks-
based subtype.

IMAGING AND ITS IMPACT ON THE 
DIAGNOSTIC ISSUE

Anatomical changes in fronto-temporal, thalamo-cortical, 
subcortical-limbic circuits, enlargement of ventricles, and 
widespread white matter fibers abnormalities have been found 
in many structural studies of schizophrenia (40–43). With 
the growing sample size and collaboration through different 
sites, many large-scale meta-analyses have provided new 
information. The Enhancing Neuroimaging Genetics through 
Meta-Analysis (ENIGMA) SZ working group’s meta-analysis of 
subcortical regions across several thousand subjects reported the 
consistent findings of smaller hippocampus, amygdala, thalamus, 
accumbens, and intracranial volumes, but larger pallidum and 
lateral ventricle volumes (44). The putamen and caudate volume 
results were not reliable across different populations and studies 
even with this sample size, indicating the possibility of clinical 
heterogeneity affecting those regions (44). The development 
of these differences prior to, with, and after disease onset and 
diagnosis is also important for understanding the disease (45), 
and comparing the course of the morphometric reductions and 
increases across diagnoses will be informative. Functional imaging 
studies have also discovered various abnormal brain regions and 
connections in SZ. Partially overlapped with structural findings, 
functional alterations including the prefrontal cortex, superior 
temporal gyrus, thalamus, frontal lobe, and parietal lobe have 
been reported in either resting state or task fMRI (46).

Many of the above regions have been identified as structural 
or functional commonalities among DSM categories (1, 47, 48). 
Starting from the same point as genetics, there are also imaging 
research efforts trying to redraw the boundaries between 
psychotic disorders. One pioneer study is from the Bipolar-SZ 
Network on Intermediate Phenotypes (B-SNIP) Consortium, 
Clementz et al. applied neurobiological measures among SZ, BD, 
and SAD and tried to regroup them into different “biotypes” rather 
than DSM catalogs (49). A selection of psychotic biomarkers and 
functional brain activity were collected in this study. Not only 
patients with psychosis but also their first-degree relatives and 
healthy controls were included. Clementz et al. then identified 
three “biotypes,” which were also believed to be more heritable 
than their original DSM diagnoses. Sensorimotor reactivity and 
cognitive control distinguish three biotypes: biotype 1 patients 
showed serious impairment across sensorimotor reactivity 
and cognitive control; biotype 2 patients show only deficits in 
cognitive control; and biotype 3 patients seem to be the mildest 
in cognitive symptoms. The B-SNIP group has also been trying 

to find the factors that contribute to its biotyping; one attempt is 
using the flow–frequency fluctuations (ALFF/fALFF) across the 
SZ, BD, and SAD from the large B-SNIP family study (50). More 
recently, gray matter density was checked in these three biotypes, 
and the density loss followed the same order as cognitive decline: 
biotype 1 showed whole brain gray matter density loss, while type 
2 showed largely overlapping results with type 1, and the largest 
effects were found in fronto-temporal circuits, parietal cortex, 
and cerebellum. The findings were much more localized and of 
less magnitude for type 1. Type 3 only showed small reductions 
in frontal, cingulate, and temporal regions despite their similar 
DSM diagnoses (51).

IMAGING GENETICS TO REFINE THE 
DIAGNOSIS

Imaging Genetics Linking Genetics, 
Intermediate Imaging, and Cognitive 
Phenotypes
There are hundreds of papers using imaging genetics method 
to study SZ in the past 10 years, but here, we will focus on the 
findings with relatively clear functional implications. First, we 
selected the genes that have been highlighted in SZ and cognitive 
functions and if there is more than one report implicating those 
genes. The details of included genes can be found in Tables 1 and 2 
under “Risk SNPs/allele” column. We then searched PubMed 
database using the terms: [“gene symbols”] (genes we selected) 
AND [“schizophrenia”] AND [“symptom” OR “cognition” OR 
“cognitive function”] AND [“MRI”]. Abstracts and main texts 
were assessed with the following inclusion/exclusion criteria. 
The inclusion criteria were the following: 1) publications 
between January 2000 and January 2017, 2) diagnosis of any 
psychiatric disorders or risk gene, 3) brain structure with volume, 
concentration, thickness, and surface area, 4) brain function 
including resting state or task, and 5) including modalities of gene, 
imaging, and behavior simultaneously. Exclusion criteria were 
the following: 1) publications including letters, short reports, and 
brief communication; 2) MRI scanning sequences other than T1, 
T2, or BOLD; 3) in functional studies, the association between 
genes, images, and behavior were not directly assessed; and 4) 
in structural studies, symptoms, cognition, or behavior was 
not evaluated and collected at the same time window as images 
were acquired. After excluding 7 studies, 24 studies remained in 
Table 1 for functional studies. Table 1 lists the selected functional 
papers, and we highlight findings below by symptom/cognitive 
domains and possible intermediate imaging phenotype. However, 
most of these imaging genetic studies were done in healthy risk 
allele carriers.

Working memory deficit is fundamental and critical in SZ. The 
most well-studied possible intermediate imaging phenotype was 
the connection abnormalities between dorsolateral prefrontal 
cortex and hippocampus (DLPFC-HC). ZNF804A (52, 55, 56) 
and CACNA1C (58) were associated with DLPFC-HC connection 
alteration. In the healthy controls, risk allele of ZNF804A was 
associated with the increased DLPFC-HC connection. COMT 
(60), regulator of G protein signaling 4 (RGS4) (61), and 
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TABLE 1 | Clinical/cognitive domain specific imaging genetic evidence and potential intermediate functional imaging phenotypes.

Clinical/
cognitive 
domains

Risk SNPs/
allele

Study Population Scan 
modality

Scanner type Intermediate imaging 
phenotype

Specific cognitive task Risk allele associated functional 
imaging phenotypes

Working 
Memory

ZNF804A
rs1344706 (A)

Esslinger et al. 
(52)

HC (115) BOLD fMRI Siemens 3T R DLPFC functional 
connectivity

N-back task Increased DLPFC coupling with L 
hippocampus but decreased coupling 
within DLPFCs

Esslinger et al. 
(53)

HC (111) BOLD fMRI Siemens 3T R DLPFC functional 
connectivity

N-back task Increased DLPFC coupling with bilateral 
hippocampus but decreased coupling 
within DLPFCs in n-back task

Linden et al. (54) HC (43) BOLD fMRI Philips 1.5T Rostral R DLPFC 
activation

Memory task with 
Ekman face images

Decreased activation

Paulus et al. (55) HC (94) BOLD fMRI Siemens 3T DLPFC functional 
connectivity

– Increased DLPFC coupling with 
hippocampus formation

Rasetti and 
Weinberger (56)

SZ (78), US 
(171) and 
HC (153)

BOLD fMRI GE 3T DLPFC functional 
connectivity

N-back task Risk allele carriers’ DLPFC “inefficiency” in 
the SZ and US group greater than HC

CACNA1C
rs1006737 (A)

Bigos et al. (57) HC 
(131/316 in 
respective 
tasks)

BOLD fMRI GE 3T PFC activation Emotional face task and 
n-back task

Increased regional activation

Paulus et al. (58) HC (94) BOLD fMRI Siemens 3T DLPFC activation and 
functional connectivity

N-back task Decreased task related activation and 
increased coupling between DLPFC and 
hippocampus

ANK3 
rs9804190 (C)

Roussos et al. 
(59)

HC (52) BOLD fMRI GE 1.5T L IFG, L MFG activation N-back task Increased regional activation in L IFG and 
L MFG

COMT 
Val158Met

Tan et al. (60) HC (46) BOLD fMRI GE 3T DLPFC to striatal effective 
connectivity

Event-related working 
memory task

Increased DLPFC parietal ‘excitatory’ 
effective connectivity in Met-carriers

RGS4
rs951436 (A)

Buckholtz 
et al. (61)

HC (94) BOLD fMRI Siemens 1.5T R VLPFC connectivity N-back task Decreased right VLPFC connectivity to 
DLPFC and parietal cortex

COMT 
X GRM3 
epistasis

Tan et al. (62) HC (29) BOLD fMRI GE 3T DLPFC, VLPFC 
activation and functional 
connectivity

N-back task Inefficient PFC engagement and altered 
PFC-parietal coupling with COMT Val/Val 
and GRM3 AA/G

NRGN
rs12807809 
(T)

Rose et al. (63) HC (52) BOLD fMRI Philips 3T Activation in frontal lobe Block design spatial 
working memory task

A load-independent decrease in left 
superior frontal gyrus during task

Episodic 
memory

CACNA1C
rs1006737 (A)

Erk et al. (64) HC (50) BOLD fMRI Siemens 3T Activation in 
hippocampus and 
functional connectivity

3 consecutive memory 
tasks including coding, 
recall and face-
profession pairs

Decreased activation in hippocampus 
and various brain regions, and decreased 
bilateral hippocampus connectivity

Krug et al. (65) HC (205) BOLD fMRI Siemens 3T Hippocampus activation Memory encoding and 
retrieval task

Decreased activation in hippocampus 
during task

Erk et al. (66) US (188) BOLD fMRI Siemens 3T Activation in 
hippocampus, 
DLPFC and functional 
connectivity

Memory encoding and 
retrieval task

Replication to previous and decreased 
activation in DLPFC associated with 
genetic risk score

NRGN
rs12807809 
(T)

Krug et al. (67) HC (94) BOLD fMRI Siemens 3T Activation in various 
regions

Memory encoding and 
retrieval task

Increased activation in L lingual gyrus, ACC 
and Inhibited deactivation in L precentral 
gyrus, and L insula during task
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TABLE 1 | Continued

Clinical/
cognitive 
domains

Risk SNPs/
allele

Study Population Scan 
modality

Scanner type Intermediate imaging 
phenotype

Specific cognitive task Risk allele associated functional 
imaging phenotypes

Cognitive 
control/attention

ZNF804A
rs1344706 (A)

Thurin et al. (68) HC (208) BOLD fMRI GE 3T DLPFC and ACC 
activation and effective 
connectivity

Modified Flanker task Decreased PPI connection between 
DLPFC and ACC

CACNA1C
rs1006737 (A)

Thimm et al. (69) HC (80) BOLD fMRI Siemens 3T Activation in parietal and 
frontal lobes

Attention network test 
including: alerting, 
orienting and executive 
control

Decreased activation in R inferior parietal 
lobule and MFG

NOS1
rs3782206 (T)

Zhang et al. (70) HC (78) BOLD fMRI Siemens 3T Activation in R IFG and 
coupling of DLPFC

N-back task and stroop 
task

Decreased activation in R IFG and reduced 
connectivity between IFG and DLPFC

Emotion ZNF804A
rs1344706 (A)

Esslinger et al. 
(52)

HC (115) BOLD fMRI Siemens 3T Functional connectivity of 
R amygdala

N-back task Increased functional connectivity between 
R amygdala and numerous brain regions

CACNA1C
rs1006737 (A)

Bigos et al. (57) HC 
(116/131 in 
respective 
tasks)

BOLD fMRI GE 3T Activation in 
hippocampus

Emotional memory task, 
emotional face task

Increased activation in bilateral 
hippocampus during emotion memory task

COMT 
Val158Met

Drabant et al. 
(71)

HC (101) BOLD fMRI GE 3T Activation in 
hippocampus and VLPFC

Corticolimbic reactivity 
task

Increased hippocampus and VLPFC 
activation and in met/met there was 
increased limbic and prefrontal regions 
coupling during emotional face task

DRD2
rs1076560 (G)

Blasi et al. (72) HC (24) BOLD fMRI GE 3T Activation and functional 
connectivity of amygdala 
and DLPFC

Facial expression task Increased activation in both regions, and 
coupling of both of them associated with 
emotion control scores

MIR137
rs1625579(T)

Mothersill et al. 
(73)

HC (98) BOLD fMRI Philips 3T Fronto-amygdala 
functional connectivity

Face processing task Increased amygdala connectivity with 
various regions in frontal lobe

Theory of mind ZNF804A
rs1344706 (A)

Walter et al. (74) HC (109) BOLD fMRI Siemens 3T Functional connectivity of 
DLPFC and activation

A theory of mind task 
judging picture to picture 
changes

Decreased activation in various brain 
regions and increased functional 
connectivity between DLPFC and R 
precentral gyrus, medial temporal gyrus 
and L lingual gyrus

Mohnke et al. 
(75)

HC (188) BOLD fMRI Siemens 3T Functional connectivity 
of left temporal parietal 
junction

Theory of mind task 
same as above

Increased functional connectivity between 
left temporal parietal junction and various 
brain regions

The phenotypic changes in last column corresponds to the risk allele. ACC, anterior cingulate cortex; BOLD fMRI, blood-oxygen-level dependent functional magnetic resonance imaging; DLPFC, dorsolateral prefrontal cortex; HC, 
healthy controls; IFG, inferior frontal gyrus; L, left; MFG, medial frontal gyrus; PFC, prefrontal cortex; R, right; SZ, schizophrenia; US, unaffected siblings; VLPFC, ventrolateral prefrontal cortex.
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TABLE 2 | Potential structural imaging genetic phenotypes and possible function association.

Genetic 
factors

SNPs and risk 
allele

Study Population Scan 
modality

Scanner type Imaging phenotype associated with 
risk allele

Function/symptom implication

ANK3 rs1938526 and 
rs10994336

Cassidy et al. (76) First-episode 
psychosis patients 
(82)

T1 Siemens 1.5T Widespread cortical thinning General cognitive impairment

APOE e4 Hata et al. (77) SZ (21) T1 GE 1.5T Trend of reduce R hippocampal volume Memory and cognitive function
BDNF Val66Met(Met) Ho et al. (78) HC (80) and SZ 

(183)
T1, proton 
density and 
T2

GE 1.5T Reduced hippocampal, temporal and 
occipital grey matter

Hallucinations. Impaired cognitive functions 
including working memory, episodic memory 
and etc.

Pezawas et al. (79) HC (214) T1 GE 1.5T Reduced hippocampal and prefrontal 
grey matter volume

Memory, learning, executive function and 
attention

Bueller et al. (80) HC (36) T1 GE 1.5T Reduced hippocampal grey matter 
volume

Emotional reactivity traits and episodic 
memory

Aas et al. (81) Schizophrenia 
spectrum disorders 
(48), BD (58), and 
MDD (3)

T1 Siemens 1.5T Reduced hippocampal volume Impaired cognitive functions including working 
memory and episodic memory

Carballedo et al. (82) MDD (62) and HC 
(71)

T1 Philips 3T Reduced hippocampal volumes Met carriers were in line with MDD patients 
(smaller hippocampal volume)

Gatt et al. (83) HC (89) T1 Siemens 1.5T Reduced hippocampal and prefrontal 
volumes

Impaired working memory, depression and 
anxiety traits

Gerritsen et al. (84) HC (275 for 1.5T 
and 293 for 3T)

T1 Siemens 1.5T 
and 3T

Reduced anterior cingulate volume Sensitive to childhood adversity

Nemoto et al. (85) HC (109) T1 Siemens 1.5T Reduced DLPFC volume DLPFC reduction related to age and gender
CACNA1C rs1006737(A) Wang et al. (86) HC (55) T1 and BOLD 

fMRI
Siemens 3T Greater gray matter volume in cortico-

limbic fronto-temporal region
Decrease functional connectivities from altered 
structural regions observed during emotion 
tasks

Cerasa et al. (87) HC (57) T1 GE 1.5T Increased hippocampal volumes Executive cognition
COMT Val158 Honea et al. (88) HC (151) T1 GE 1.5T Reduced hippocampal and DLPFC gray 

matter volume
Nonlinear dependence of prefrontal neurons 
on extracellular dopamine

Mechelli et al. (89) HC (50) T1 and BOLD 
fMRI

GE 3T Reduced hippocampal volume 
and decreased activation of 
parahippocampal gyrus during facial 
expressions

Emotional processing

Taylor et al. (90) HC (31) T1 GE 1.5T Reduced temporal lobe and 
hippocampal volumes

Memory and emotional processing

McIntosh et al. (91) SZ (11), High risk 
subjects (67) and 
HC (15)

T1 and BOLD 
fMRI

Siemens 1T Reduced ACC grey matter volume and 
increased activation in L PFC and PCC

Increasing sentence difficulty

Ohnishi et al. (92) SZ (47) and HC (76) T1 Siemens 1.5T Reduced L ACC and R MTG grey matter 
volume

Mental efforts, working memory, etc.

Ho et al. (93) SZ (159) and HC 
(84)

T1 GE 1.5T and 
PET

Negative in MRI, but higher frontal lobe 
activation in
performing the one-back task

Working memory and executive function

DISC1 Ser704Cys (Cys) Gruber et al. (94) SZ (30) and non-
affected family 
members (52)

T1 Siemens 1.5T Reduced hippocampal volume Grey matter reduction shared in family 
structure
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TABLE 2 | Continued

Genetic 
factors

SNPs and risk 
allele

Study Population Scan 
modality

Scanner type Imaging phenotype associated with 
risk allele

Function/symptom implication

NRG1 HAPICE Tosato et al. (95) SZ (27) T1 Siemens 1.5T Reduced superior temporal gyrus 
volume

Implications of the language disturbances

Addington et al. (96) Childhood onset SZ 
(78) and HC (165)

T1 GE 1.5T Risk allele carriers have greater total 
grey matter and white matter volume 
in childhood and a steeper rate of 
subsequent decline in volume into 
adolescence.

Genetic effects in various cognitive and social 
function development

ZNF804A rs1344706 (A) Lencz et al. (97) HC (39) T1 GE 1.5T Larger total white matter volumes and 
reduced grey matter volumes in angular 
gyrus, parahippocampal gyrus, posterior 
cingulate, and medial orbitofrontal gyrus

Risk allele carrier showed worse visuomotor 
performance task

Donohoe et al. (98) SZ (70) and HC (38) T1 Siemens 1.5T Larger hippocampal volumes in patients
Larger white matter volume in total, 
frontal and parietal lobe.
Reduced L superior temporal gyrus 
volume with higher PRS for SZ

No genetic effects were found in the measures 
of positive, negative or general symptom 
severity 

Wassink et al. (99) Schizophrenia 
spectrum disorders 
(306) and HC (198)

T1 GE 1.5T Risk allele carriers also showed severer 
psychotic symptoms including hallucination 
and delusion

Polygenic 
Risk

Ohi et al. (100) SZ (160) and HC 
(378)

T1 GE 1.5T Contributing SNPs located in genes involved 
in developmental delay and cognitive 
impairment 

Terwisscha et al. 
(101)

SZ (152) and HC 
(142)

T1 Philips 1.5T Reduced whole brain white matter 
volume with higher PRS for SZ

SNPs located in neuronal functions are 
associated with white matter reduction

Harrisberger et al. 
(102)

At-risk mental 
state (43) and first 
episode psychosis 
(36)

T1 Siemens 3T Reduced hippocampal volumes with 
higher PRS for SZ

First episode psychosis patients have higher 
genetic risk than the at-risk mental state 
participants

The phenotypic changes in last column corresponds to the risk allele. ACC, anterior cingulate cortex; BOLD fMRI, blood-oxygen-level-dependent functional magnetic resonance imaging; DLPFC, dorsolateral prefrontal cortex; HC, 
healthy controls; L, left; MFG, medial frontal gyrus; MTG, middle temporal gyrus; PET, positron emission tomography; PFC, prefrontal cortex; PRS, polygenic risk score; R, right; SNP, single nucleotide polymorphism; SZ, schizophrenia.
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COMT X glutamate metabotropic receptor 3 (GRM3) epistasis 
were connected to prefrontal cortex-parietal coupling.

Episodic memory or long-term memory was also often 
disturbed in SZ. Possible intermediate imaging phenotypes 
included decreased coupling of the hippocampus–parietal cortex, 
hippocampus and ventrolateral prefrontal cortex (VLPFC), and 
bilateral hippocampus. However, the genetic association within 
this thread is elusive (46). In healthy controls, CACNA1C risk 
allele carriers showed the decreased activation during recall in 
decreased coupling between bilateral hippocampus (64). The 
NRGN rs12807809 was found with increased activation in the 
left lingual gyrus and decreased deactivation in the left precentral 
gyrus, cingulate, and left insula during the different stages of 
memory retrieval (67).

SZ patients often show attention or cognitive control deficits. 
Disturbances in PFC and DLPFC and connection alterations 
were the most important issue regarding this deficit. NOS1 risk 
allele carriers showed reduced inferior frontal gyrus and DLPFC 
connection associated with attention performance (103). For 
other risk genes, CACNA1C risk allele carriers showed decreased 
activation in the right inferior parietal lobule and medial frontal 
gyrus during an attention task (69). Again, ZNF804A showed 
association with the anterior cingulate cortex (ACC) and DLPFC 
coupling during attention and cognitive control (68). During 
emotional memory, SZ CACNA1C risk allele carriers showed 
increased activation in the bilateral hippocampus, which was in 
line with finding in BD (57).

Emotion processing is another important disruption common 
in SZ. ZNF804A (52) and DRD2 (72) have shown correlation with 
the amygdala and ACC/medial prefrontal cortex (mPFC) within 
emotion processing. Increased connectivity between amygdala 
and VLPFC, which was considered as another intermediate 
imaging phenotype for emotion processing, has been found in 
healthy risk allele carriers of the COMT (71) and MIR137 (73).

As part of social cognition that is often impaired in SZ, the 
theory of mind capabilities tends to help people understand 
mental states of themselves and others. ZNF804A risk alleles 
correlated with the PFC and various cortical regions in social 
information processes (74). Decreased activation in bilateral 
dorsal medial PFC, the left temporoparietal cortex, left inferior 
parietal cortex, posterior cingulate, and the left lateral PFC was 
found while investigating ZNF804A (74). There was also a trend 
for increased functional connectivity of the left temporal parietal 
junction with several regions (75).

Rather than a localized abnormality, most findings are notably 
in line with a “disconnection disorder” (104). Additionally, as 
noted above, these genes are not specific to risk for schizophrenia 
but show risk as well for other psychiatric disorders; the common 
functional impairments showing the genetic relationship in SZ 
and BD tend to be closely associated with connection disturbances 
and involve multiple brain regions (46, 105, 106).

Structural Brain Imaging Genetics 
Findings in SZ
It is more difficult for researchers to relate risk gene factors, brain 
structural alteration, and symptoms or cognitive impairments; 

large numbers of these structural brain imaging genetic studies 
have conflicting results (10). We reviewed structural brain 
imaging studies with the relatively clear and consistent symptom 
or cognitive implications following the criteria we described 
above. Note that only research involving genetics, structural 
brain, symptoms, or cognitions and the analysis between them 
were included. After excluding 8 studies, 27 structural studies 
remained (see Table 2).

Some genes like BDNF are engaged in many cognitive domains 
that are commonly impaired in SZ, although their associations 
with SZ per se may not be strong. BDNF is essential in nervous 
system development and prevention of cell loss in various brain 
regions including the hippocampus, striatum, and more. The 
Val66Met has been found to be related with reduced hippocampal 
(107), temporal (78), and frontal volume (80), which may affect 
various cognitive functions including working memory, episodic 
memory, executive function, and hallucinations. Its interaction 
with early life abuse may also result in reduced hippocampal 
volume in SZ, BD, and MDD (81, 82). As the disease progresses, 
BDNF is found to be connected with reduced frontal volume and 
impaired executive function (85, 108).

Other genes may have a closer relationship with SZ, but 
their imaging genetic findings with brain regions and clinical 
phenotypes are less consistent. COMT may be involved not only 
in reduced hippocampal volume but also in reduced cingulate 
and DLPFC volume, which may potentially affect memory, 
attention, and executive function (87, 91). Risk allele carriers with 
rs1006737(A) in CACNA1C show greater gray matter volume 
in a cortico-limbic and fronto-temporal region but generally in 
BD (86). The neuregulin 1 gene (NRG1) and its risk haplotype 
may also contribute to the hippocampal and temporal volume 
(95, 109). Other critical genes including ANK3 (76), Apoe (77), 
DISC 1 (110), and ZNF804A (97–99) and more have been found 
connected to reduced brain volume in hippocampus, cingulate, 
frontal, temporal, and various brain region volume, suggesting 
their role in SZ-related cognitive impairment and symptoms.

Polygenic risk score studies also provide imaging genetic 
evidence for SZ imaging genetic. Temporal volume (100), whole 
brain white matter volume (101), and hippocampal volume 
abnormality (102) have been suggested through these approaches.

Overall, the genetic influence on brain structure are widely 
spread, and their functional or clinical implications are complex. 
At the moment, the gene to the brain and behavior/symptom 
links are extensive, affecting many cognitive domains when tested 
in nonaffected individuals. The specificity of genetic effects on SZ 
need to be carefully examined, and uncovering better methods 
to form a link from imaging genetics to clinical phenotypes is 
important to contribute to the diagnostic issue.

LIMITATIONS AND FUTURE DIRECTIONS

Imaging genetics has contributed greatly to our understanding 
of the biological mechanism behind psychiatric disorders by 
revealing the potential association between genetics and imaging 
phenotypes. The merging boundaries between disorders and 
subtypes within SZ revealed by imaging genetics will continue 
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to shape the future diagnostic approach of psychiatric disorders. 
However, it also has inevitable limitations, and the pathways 
linking genetics, neuroimaging intermediate phenotypes, 
and clinically assessable phenotypes remain far from clear. A 
diagnostic system built on imaging genetics requires further 
research efforts.

Limitations
Typically, the effect size of candidate gene analyses is rather small 
and explains limited brain structural or functional variations 
(111). Alternatively, large sample imaging genetics research often 
report encouraging findings supporting vast common variations 
influence on the human brain (112).

However, these findings and even the logic behind imaging 
genetics has been questioned. Franke et al. mega-analyzed the 
largest GWAS data for SZ to date from PGC (33,636 cases and 
43,008 controls) and eight structural MRI brain measures from 
ENIGMA (11,840 individuals) to evaluate the relationship 
between the common variations and SZ-associated subcortical 
brain regions (113). For instance, the hippocampal volume 
deficit was thought fundamental in SZ (114). The hippocampus 
deficits in SZ are one of the most reliable findings of volumetric 
deficits (44). The ENIGMA analysis identified common genetic 
variations related to hippocampal volume without regard to 
disorder (112); the PGC identified common genetic variations 
highlighted by 108 loci from GWAS, which were thought to 
play important roles in the etiology of SZ without regard to 
hippocampal volume (16). Franke et al. did several analyses 
to investigate the correlation between these genetic and imaging 
findings. They used linkage disequilibrium score regression to 
estimate the SNP-based heritability of volumetric measures, 
computed and compared genetic predisposition scores to 
volumes, and quantified rank–rank hypergeometric overlap 
test and listed genetic variants influencing the brain volume. 
Unfortunately, all these analyses reported no significant results. 
They also analyzed the 128 index SNPs from PGC and their 
association with brain volume including the hippocampus, 
meta-analyses, conjunction analysis and compare the genetic 
effect sizes for SZ and volumes. Again, these analyses resulted in 
nonsignificant findings.

Although Franke et al. emphasized that there were several 
limitations that may result in this null finding, it strongly 
reminded us to think carefully about the logic of imaging 
genetics. Brain measures or structural brain deficits believed 
to be important pathological alterations of SZ may not be 
induced by those primary genetic causes of SZ as a diagnostic 
category. They may be reflecting prenatal and later development 
environmental effects that correlate with but are not specific 
to SZ, or the diagnostic category of SZ may not be uniformly 
organized so the large-scale studies of disease risk may have 
introduced too many heterogeneities.

Instead, the field must consider whether brain volume is a 
good bridge to look into the genetic influence on disorders. 
The idea of “intermediate phenotype” succeeded the idea of 
endophenotype, which was first used by Gottesman and Shields 
(115). Either structural or functional imaging was believed to be 

good intermediate phenotypes, as they provide a large amount of 
data that can show the effect of genes. Although many imaging 
genetics studies used the concept of intermediate phenotypes 
to conduct the hypothesis and research flow, they did not fully 
meet the criteria of intermediate phenotype. To fulfill the criteria, 
the phenotype must have the following: good psychometric 
properties, disorder and symptoms related in general population, 
stable over time, increased expression in unaffected relatives, 
cosegregation in families, and common genetic influences shown 
in the disorder. We have to verify whether a chosen brain measure 
meets each of these criteria.

Hippocampal volumes, in particular, did seem to fulfill these 
criteria, in that the volumes were more similar in unaffected 
siblings (116, 117), seemed to decrease with younger disease 
onset (118), and the smaller volumes were a strong effect in 
comparing SZ and controls (119). The other brain regions 
especially caudate and putamen, which showed a small effect 
size in ENIGMA, would also need to pass these criteria if they 
are to be used as intermediate phenotypes. However, these brain 
volume alterations may not be specific to SZ. As for hippocampal 
volume among psychiatric disorders, it is also affected in MDD 
(120, 121), obsessive–compulsive disorder (122), and attention 
deficit hyperactivity disorder (123). Other than psychiatric 
disorders, cardiovascular disease, diabetes, hypertension, 
obesity, physical activity, and various somatic factors may 
also play a role in modifying hippocampal volume to different 
extents (124, 125). The hippocampus is vulnerable to various 
environmental factors from the prenatal stage throughout the 
lifetime, which makes the hippocampal structure sensitive 
to neurodisruption but not necessarily specific to SZ (126). 
The specificity of these altered brain volume will need careful 
examination before being considered as part of SZ’s pathology 
in complicated clinical situations.

Another approach is to reconsider other imaging intermediate 
phenotypes bridging genetics and SZ. For example, there are 
various anatomic measures other than volumes that should 
be assessed for genetic effects (127, 128). Gray/white matter 
density, cortical thickness, cortical folding, cortical surface area, 
and white matter integrity are potential useful intermediate 
phenotypes from which to choose. However, although it may 
also be difficult to fully grasp, the functional implication of these 
brain measures and their compatibility with genetics will need 
further investigation (129). As for these other brain volumes and 
functional measurements, their stability, situation in unaffected 
relatives, families, and general population will need to be further 
investigated to answer the criteria question as well as their 
specificity to the diagnosis or clinical subgrouping.

It may be helpful to expand the genetic modality of imaging 
genetic study. More heritability could be captured by involving 
rare variance and chromosome structural variations like CNVs 
(38). Both options will need better imaging genetic analysis 
methods and models.

Future Directions
The current review summarized genetics, imaging, and imaging 
genetics in schizophrenia to date. Imaging genetics may continue 
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to shape the future conceptualization of SZ and psychotic 
disorders in both clinical and research field.

One future direction is collecting a large number of genetic 
effects. The method applied by Arnedo et al. is promising in 
coupling both genetic and phenotypic clusters, but it may need 
to establish its association with imaging data or physiological 
measures. The clustering method shows great complexity, while 
its compatibility with neuroimaging is unknown. The other 
polygenic method like polygenic risk score is also promising. 
However, it will call for more common variations and the 
combination with other data (e.g., the B-SNIP biotype study).

Parallel independent component analysis (pICA) may be 
another useful tool in this field. This method allows independent 
components from two modalities to be identified simultaneously, 
and the association between these two modalities is optimized. 
pICA is designed to be totally theoretically blind and data-
driven, but pICA with reference allows a priori knowledge as 
the reference to improve robustness. For instance, a set of genes 
from the same pathway can be used as a reference to highlight 
their effect on certain brain components as well as behavioral 
data (130). Chen et al. used pICA and reported that the gray 
matter density of frontal, precuneus, and cingulate regions 
might potentially be affected by various genes participating 
in synaptic plasticity, axon guidance, and molecular signal 
transduction (131).

Another possible direction is refining the clinical assessment 
tools to better complement imaging genetics. As raised in the 
B-SNIP study, a series of symptom rating scales including 
the Global Assessment of Functioning scale, the Positive and 
Negative Syndrome Scale, the Young Mania Rating Scale, the 
Montgomery–Åsberg Depression Rating Scale, the Schizo-
Bipolar Scale, and the Birchwood Social Functioning Scale were 
obtained from the participants. These measures were not able to 
distinguish SZ, BD, and SAD significantly or contribute much 
in the building of biotypes (132). Imaging genetic compatible 

comprehensive symptom scales are needed. These scales are 
not aiming at distinguishing traditional diagnostic groups or a 
certain diagnostic group usage. However, they would provide 
comprehensive clinical profiles “scanning” the symptom 
domains (2). Some scales like the Symptom Checklist-90 (SCL-
90) and its revised version (133) might be worth trying (134). 
More detailed multidimensional symptoms reflecting scale need 
to be developed to fit the need of imaging genetics and clarify 
the path linking genotypic variation, intermediate brain imaging, 
and clinical phenotypes.

Finally, future research will need to be enhanced by improving 
power and replicability. Studies with small number of subjects 
(below 100 participants) will be able to show moderate power 
with effect size of 0.5. However, it is critical to replicate them 
independently with same genetic variants, imaging, and 
behavioral measurements, and direction of the effects by 
Carter et al. (135). It is also argued, in such studies, null results 
or conflicting associations with failed replication should still 
be considered for publications as potentially informative or 
innovative studies (6, 136). In this case, meta-analytic studies 
addressing the conflicted results and the issues of publication 
bias will help to avoid the misleading information potentially 
generated from small sample research results (6, 137).
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The spontaneous dynamic characteristics of resting-state functional networks contain
much internal brain physiological or pathological information. The metastate analysis
of brain functional networks is an effective technique to quantify the essence of brain
functional connectome dynamics. However, the widely used functional connectivity-
based metastate analysis ignored the topological structure, which could be locally
reflected by node centrality. In this study, 23 healthy young volunteers (21–26 years)
were recruited and scanned twice with a 1-week interval. Based on the time sequences
of node centrality, we promoted a node centrality-based clustering method to find
metastates of functional connectome and conducted a test-retest experiment to assess
the stability of those identified metastates using the described method. The hub regions
of metastates were further compared with the structural networks’ organization to depict
its potential relationship with brain structure. Results of extracted metastates showed
repeatable dynamic features between repeated scans and high overlapping rate of hub
regions with brain intrinsic sub-networks. These identified hub patterns from metastates
further highly overlapped with the structural hub regions. These findings indicated that
the proposed node centrality-based metastates detection method could reveal reliable
and meaningful metastates of spontaneous dynamics and indicate the underlying nature
of brain dynamics as well as the potential relationship between these dynamics and the
organization of the brain connectome.

Keywords: metastate, dynamic functional connectivity, structural network, clustering analysis, node centrality,
hubs

INTRODUCTION

The functional brain connectome, considering the brain as a complex network, indicates the spatial
distributions and integrated organizations. Resting-state functional magnetic resonance imaging
(rs-fMRI) can provide these kinds of intrinsic information of brain function (Biswal et al., 1995;
Cordes et al., 2001) through measuring the synchronization between temporal fluctuations across
spatially separated brain regions, which are known as functional connectivity (FC). It is the most
basic measure and has been widely used in physiology (Damoiseaux et al., 2008; Betzel et al., 2014;
Chen et al., 2017, 2018) and pathology (Bing et al., 2010; Veer, 2010; Widjaja et al., 2013; Ham
et al., 2015; Su et al., 2015; Zhuo et al., 2018). More importantly, the brain function in resting
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state also reveals dynamics or temporal distributions of brain
connections, which spontaneously change from seconds to
minutes (Chang and Glover, 2010; Calhoun et al., 2014), which
is called dynamic FC. Dynamic FC provides a novel insight
into brain function which has been proved to contain useful
information (Viviano et al., 2017; Xia et al., 2019) and can even
be complementary to traditional static FC (Liégeois et al., 2019).
It also enables us to better understand the behavior of different
subnetworks (Al-Sharoa et al., 2019) and contains the intrinsic
neural activities (Hutchison et al., 2013b) associated with the
brain functional (Syed et al., 2017; He et al., 2018) or structural
organizations (Shen et al., 2015; Cabral et al., 2017). Though
dynamic FC presents a promising way to uncover the mysterious
activates in human brain function, it is still unclear how brain
function dynamically changes.

Metastate in the human brain is an interesting idea with
which to describe the spontaneous fluctuation of FC as well as
functional networks (Allen et al., 2014; Shakil et al., 2016; Shine
et al., 2016; Vidaurre et al., 2017) and originates from a typical
concept, “microstates,” in electrophysiological studies (Gale,
1983; Lehmann et al., 1987). Metastates are considered as the
certain brain FC patterns or brain states that repeatedly appear
over and over again in the scanning period and can somehow
represent those microstates at mesoscale. Increasing evidence
has shown that the occurrence of transition between metastates
contains meaningful information about normal aging and
schizophrenia (Hansen et al., 2015; Yu et al., 2015; Shakil et al.,
2016) and shows great potential regarding intrinsic interactions
and complicated organizations (Hutchison et al., 2013a) of brain
function (Hutchison et al., 2013a; Andrew and Michael, 2015).

Based on the sliding windowed correlations, plenty of previous
studies applied whole brain FC-based clustering to represent
and detect brain metastates (Allen et al., 2014; Hansen et al.,
2015; Yu et al., 2015; Shakil et al., 2016; Syed et al., 2017;
Cheng et al., 2018). It makes sense that the patterns of FC with
high similarity represent the same state and the connectivity
patterns are the first pictures of the fluctuations of whole brain
connection. However, high dimension in connection vectors may
limit the findings, and the whole brain FC patterns are not
well interpreted. What if using secondary measures of whole
brain dynamic FC would yield meaningful representations of
metastates? As is common knowledge, brain functional networks
exhibit rich-club organization, whereby a small number of
nodes tend to be connected densely. In fact, many studies
have found that certain nodes or brain regions dynamically
participate across different tasks (Schaefer et al., 2014; Bola and
Sabel, 2015; Preti et al., 2017) or across different provincial
communities (Hansen et al., 2015; Chen et al., 2017; Gordon
et al., 2018). These indicated the potential feature of dynamic
roles of nodes even in resting state. On the other hand, the
node centrality is the secondary measure and can represent the
topologic aspects of brain connectivity patterns. The regional
activities or the regional signals are the origins of brain
connectivity and the node centrality represents the significance
of regional activities. Therefore, the patterns of regions/nodes
would be reasonably more representative than the patterns
of connectivity.

Overall, this paper aims to propose a method to extract the
brain metastates using node centrality-based k-means clustering
in resting state. Specifically, the node centrality scores were
calculated as the degree-based eigenvector centrality (Correa
et al., 2012; Meghanathan, 2015a,b) for each windowed FC matrix
yielding a dynamic node centrality sequence. The metastates
would be defined by the cluster centers after k-means. We
expected that the metastates detected by the proposed method
can represent meaningful information of brain function or
physiological activities in resting state. Because of the lack
of mathematical proof of metastates, experimental reliability
analysis needs to be verified. Recently, there was a test-retest
reliability study (Chao et al., 2018) about dynamic FC, providing
the first insight into the reproducibility of dynamic FC but
only focusing on the FC not the metastates. Therefore, a test-
retest reliability experiment was performed to examine the
repeatability of metastates. Furthermore, we further compared
the hub distribution between functional metastates and the
structural network to explore the potential relationship between
them. Through this, we hopefully can verify the reliability of
metastates extracted with the proposed method and delineate the
potential mechanism of the functional dynamics in resting state.

MATERIALS AND METHODS

Participants and MRI Acquisition
All recruited participants underwent rigorous clinical
examinations and psychological evaluations and signed
informed written consent. In total, 23 healthy adults (mean age:
23.6 years; range from 21 to 26 years; 12 female), without history
of neurological or psychiatric disorders, with current physical
and mental health and also with healthy living habits (no drugs,
no alcohol addiction, no smoking, normal work and rest, and
emotional stability) were included in this study. One week before
MRI scanning, participants were told to keep normal emotion,
sleeping and food intake (not too heavy, e.g., too hot or too
salty). The study was approved by the medical ethics committee
for research in humans of Tianjin First Central Hospital.

Magnetic resonance imaging images were acquired on a 3.0T
Siemens scanner (Tim Trio, Germany) with a 32-channel head
coil at Tianjin First Central Hospital. For each subject, there was
a test-retest experiment: scanning twice with 1-week (7 days)
interval at the same imaging site and same time (6:00 pm–9:00
pm) of day. Acquisitions included resting-state fMRI with echo-
planar imaging (EPI) sequence, high-angular diffusion tensor
imaging (DTI) with spin echo-echo planar imaging (SS-SE-EPI)
sequence and anatomical T1 images with high-resolution 3-
dimensional (3D) magnetization-prepared rapid acquisition with
gradient echo (MPRAGE) sequence. Scanning settings for rs-
fMRI were as follows: repetition time (TR) = 2.5 s, echo time
(TE) = 30 ms, voxel size = 3.0 mm× 3.0 mm× 3.0 mm, flip angle
(FA) = 80◦, field of view (FOV) = 192 mm × 192 mm, matrix
size = 64 × 64, number of slices = 28, slice thickness = 3 mm
without interslice gap, scan time = 650 s, timepoints = 260.
During scanning, participants were instructed to relax, keep
their eyes open, try to keep their head and body still and
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not think anything special. Scanning settings for high-angular
DTI were as follows: TR = 4000 ms, TE = 30 ms, number of
slices = 45, slice thickness = 2 mm without interslice gap, voxel
size = 2.0 mm × 2.0 mm × 2.0 mm; three unweighted b0 scans
and 64 weighted diffusion scans with a weighting of 1000 s/mm2

were acquired within 12 min. Multiband acceleration sequencing
was used with accelerated factor = 4. Scanning parameters for
anatomical T1 images were acquired for anatomical reference
and definition of the different structural nodes of the network,
using the following scanning parameters: TR/TE = 10/4.6 ms,
FOV = 240 mm × 240 mm, 176 slices covering the whole brain,
1.0 mm isotropic voxel size, about 5 min.

Image Preprocessing
The fMRI data were preprocessed using the DPABI (V3.0)
package1 (Kevin et al., 2009). Preprocessing steps included
removing the first 10 volumes, slice-timing correction, head
motion correction, linear trend removal, band-pass filtering
with frequency of 0.02–0.1 Hz which depended on the size of
sliding window (Hindriks et al., 2016), and spatial smoothing
(FWHM = 6 mm full-width at half-maximum Gaussian kernel).
Nuisance signals including mean signals from ventricles (CSF),
white matter (WM), whole brain (global mean signal) and the
24 motion parameters (six motion parameters, derivative and
the quadratic terms) were regressed out (Fox et al., 2005).
There has long been controversy regarding global mean signal
processing (Kevin et al., 2009 and Fox et al., 2009). Because
global mean signal removal brings negative FCs, the global signal
contains much non-neural information and is sensitive to head
motion. However, researchers from the two perspectives come to
a consensus (Murphy and Fox, 2016) about this issue: whether
it is essential to do global signal removing really depends on
the specific question. In current research, node-degree-based
measures were obtained to capture the dynamic networks. It
is commonly known that the global mean signal removing can
greatly increase the specificity of the fMRI signal. Global mean
signal removing will be beneficial for our purpose. In addition,
removing the global mean signal can also reduce the impact
associated with head motion. To further control head motion
effects, we removed the volumes with frame-wise displacement
(FD) higher than 0.3 mm and removed the subject remaining
with less than 200 volumes. No significant differences were found
in terms of mean FD (p = 0.811) or the number of censored
volumes (p = 0.723) across all subjects between two scans by using
paired t-test.

Diffusion tensor imaging images were preprocessed using
DTI-Explore package2 (Leemans et al., 2009). Preprocessing
steps included susceptibility distortions correction (estimating
a field distortion map based on the three b0 images), eddy-
current distortions and motion corrections (Andersson and
Skare, 2002), a robust tensor fitting (Chang et al., 2005) and
WM tract reconstruction based on the FACT (fiber assignment
by continuous tracking) algorithm (Mori and Van Zijl, 2002;
Mori et al., 2010). This procedure resulted in a large sample of

1http://rfmri.org/dpabi
2http://www.exploredti.com

all possible (reconstructable) fiber tracts of the brain network.
A fiber streamline was stopped when the fiber track reached a
voxel with a FA value 0.1 (indicating a low level of preferred
diffusion within that particular voxel), when the trajectory of the
traced fiber left the brain mask or when the fiber tract made a
sharp turn of 45◦.

For each subject, T1 images from two sessions were aligned
and averaged for better quality. We utilized a two-step non-
linear spatial registration method to transform the native
functional or diffusional images to MNI space: firstly, native
functional image (the first volume) or diffusional image (b0
image) was individually affined to the averaged T1 image; second,
this natively averaged T1 image was nonlinearly registered
based on the MNI-152 T1 template in FMRIB Software
Library (FSL)3 software package (Linux, United Kingdom).
Combining these two steps, we can easily transform all the well
preprocessed functional images and diffusional measures into
standard MNI space.

Functional Network Construction
In this study, automated atlas labeling (AAL 90) (Tzourio-
Mazoyer et al., 2002) was adopted to define the regions of
functional networks. Each brain region in the AAL template was
used as a regional mask to extract the time signal of BOLD
functional data. We excluded the regions from the cerebellum
to focus more attention on the brain patterns. Ninety columns
of time signals were extracted and a 90 × 90 correlation matrix
was calculated using Pearson correlation. Then FC matrixes were
obtained by fisher z-transformation. The dynamic sequences of
FC matrixes were obtained by the sliding window correlation
method. There is still a lack of knowledge regarding what the
best window length is and how it influences the results. A large
number of previous studies (Hindriks et al., 2016; Chen et al.,
2017, 2018) have converged to a short range from 50 to 60 s.
Arbitrarily and also empirically, we fixed the length of the
rectangle window as 60 s (width = 24 × TR), and the window
was shifted with a step of 1 TR = 2.5 s (Hutchison et al., 2013a;
Leonardi et al., 2013; Allen et al., 2014). Therefore, for one scan
of each subject, a sequence of 232 FC matrixes were obtained.

The meaningless connections in static FC were removed
to make the FC matrix to be spared or less redundant.
Proportional thresholding on the weighted FC matrix was
conducted based on the connection density, which is one of
the two thresholding techniques of FC matrixes (the other is
deterministic thresholding based on a FC strength). In order to
select a proper density thresholding value, one sample t-test was
done on the static FC matrixes to find the significant connections
which were significantly >0 (FDR q < 0.05; focused on positive
connections), and two binarized matrixes for each group were
presented. A density thresholding value was selected referring
to the densities of these group binarized matrixes, which were
0.38 and 0.41. In this paper, 40% of the connections—which
had the higher FC strength—were retained (namely, 40% of the
connections had higher FC strength and were set to one while
the other 60% were set to zeros), yielding binarized connectivity

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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matrixes. Density-based binarization can provide binarized FC
matrixes which have the same number of connections. After the
density-based thresholding, the FC weights were given back to
the remaining connections, yielding weighted matrixes.

Clustering Analysis
The degree-based measure of node centrality is a direct and
local topologic measurement including degree centrality and
eigenvector centrality. Degree centrality:

CD (i) =
∑

i6=j
Aij (1)

Eigenvector centrality:

CE (i) =
1
λ1

∑N

j=1
Aijxj (2)

Here, Axj = λxj. “A” represents the FC matrix, “xj” and “λ,”
respectively, represent the nonzero eigenvector and eigenvalue of
“A,” “i” and “j” respectively, represent different nodes. Because
degree centrality is too local, ignoring the importance of the
nodes that the target node connects with, eigenvector centrality
is considered here. These node centrality scores were calculated
for each spared, weighted and windowed FC matrix, yielding
a series of node centrality scores. The yielded node centrality
time series represented the node centrality distribution of FC
patterns at each windowed time. Then, every node centrality
vector was normalized into a standard normal distribution
N(0,1). We also compared the difference of this dynamic node
centrality with different window length: 20, 30, 50, and 60 s
(Supplementary Figure S1). The node centrality time series with
all kinds of window lengths showed temporally repeated patterns.
However, the periods of patterns were shorter, with 20 and 30 s,
than that of other two window lengths, which were within the
popularly used window length range. The 50 and 60 s patterns
were quite similar.

Each node centrality vector of one windowed FC matrix
was treated as one sample in clustering analysis. Datasets
from scan I and scan II were treated as two independent
groups to conduct the clustering analysis separately. Based
on the k-means++ algorithm (Arthur and Vassilvitskii, 2007),
the clustering results based on all vectors within one group
were obtained first with randomized initialization (group-level
clustering). And then the resulted cluster centers were used
as the initial starts for a second round of clustering within
each subject’s node centrality vectors in that group (individual
clustering). K-means++ was reported to be more independent
from the initial points than the original k-means clustering.
Within the group-level clustering, an optimization about the
number of clusters was conducted with elbow criterion based
on the cluster validity index (Supplementary Figure S2).
Finally, k = 5 was outperformed. For the distance measure
in k-means, we tried several ones, and arbitrarily selected
the correlation distance (1 – Pearson correlation) because
of the better clustering and higher stability of the optimal
number of clusters. Typical individual results were shown in
Figure 1. The whole clustering strategies were done for each
group separately. Different clusters or centers indicated that

the extracted metastates and all the node centrality vectors
recognized as the same cluster were averaged to represent the
node centrality pattern of that metastate.

When the clustering was done, dwell time and transition time
were calculated, which are typically and popularly used features
to describe the dynamic of metastates (Allen et al., 2014; Chen
et al., 2019). Dwell time was the total time that one metastate
appears during the scan period (Supplementary Figure S3),
which was calculated by the number of windows belonged to
one cluster, or the number multiplied by TR (Damaraju et al.,
2014; Mennigen et al., 2018; Xia et al., 2019). Transition time
represented the times of transitions from one metastate to
another during the scan period (Chen et al., 2019; Lee et al., 2019;
Xia et al., 2019).

Test-Retest Reliability Analysis
The intra-class correlation coefficient (ICC) (Bartko, 1966) is
one of the reliability coefficient indexes to measure test-retest
reliability. Bartko (1966) first used it to evaluate the reliability
in 1966. Xi-Nian et al. (2010) and Zuo and Xing (2014)
used ICC to analyze the test-retest reliability of various fMRI
processing methods and indicators, which had important guiding
significance for fMRI studies. ICC is equal to the individual
variability divided by the total variability, and the value is between
0 and 1. A value of 0 represents completely untrusted, and 1
represents completely trusted. It is generally acknowledged that
ICC < 0.4 indicates poor reliability and >0.75 indicates good
reliability. ICC is defined as:

ICC =
∑n

i=1 (x1i − x̄) (x2i − x̄)

(n− 1) s2
x

(3)

Here, n represents the total number of subjects; x1i represents
the first measurement of the ith subject; x2i represents the second
measurement of the ith subject; and x̄ and sx represent the mean
value and the standard deviation of all observations, respectively.
Before the ICC analysis, the Bartlett and Kolmogorov–Smirnov
tests were applied to verify the heteroscedasticity and the
normality of the data.

Structural Network Construction
Based on DTI image analysis and fiber tracking, the direct
structural connections were calculated. With the AAL-90
parcellation, 90 brain typical regions within individual native
space were assigned and used to generate the structural
connectivity according to the number of tracts between each pair
of regions. Data processing was performed based on the whole
brain fiber tracts using TrackVis software4.

Regional Hub Nodes Analysis
A series of highly connected nodes, having high node degrees
or high centralities, are identified as “brain hubs.” In this
paper, we utilized a typical way to highlight the hub nodes.
All nodes were ranked according to node centrality scores,
and those higher than the mean up to one standard deviation

4http://trackvis.org/

Frontiers in Neuroscience | www.frontiersin.org 4 September 2019 | Volume 13 | Article 856265

http://trackvis.org/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00856 September 9, 2019 Time: 15:12 # 5

Zhao et al. Repeatability of Microstate in Dynamic FC

FIGURE 1 | The dynamic changing of node centrality (A,C) and changing states of clustering analysis (B,D) for two typical subjects. The color represents normalized
node centrality score and red means higher centrality.

were recognized as hub nodes (top-ranking nodes based on one
standard deviation criteria) (Van Den Heuvel and Sporns, 2013;
Dai et al., 2014; Oldham and Fornito, 2018). The node centrality
scores representing each metastate were used to define the hub
nodes of that metastate. Since the node centrality used here
is a kind of degree-based centrality, these hub nodes mainly
indicated the provincial hub characteristics. The hub nodes
distribution of five metastates were extracted and presented in
a 3D view. Also, the transition characteristics between different
metastates were analyzed.

For the structural network, rich-club analysis (Heuvel Van
Den and Olaf, 2011; Sharaev et al., 2018) was applied to
delineate the highly connected sub-network known as rich-
club, including all hubs. To define the rich-club, the steps
included: (1) ranking nodes according to node centrality scores;
(2) applying a threshold to define a subgraph that contains only
more than a certain sorted node; (3) calculating the total weight
of the connectivity between the reserved subgraph nodes; (4)
calculating the weight sum of the same number of edges, which
are the highest ranking weights in the complete network; and (5)
calculating the ratio of steps 3 and 4. The rich-club coefficient is
shown as follows:

∅
w (r) =

W>r∑E>r
l=1 wrank

l

, (4)

where, W>r is the weight sum of the edges in the subgraph
with nodal ranking higher than r, E>r is the number of

these edges in the subgraph, and wrank is one of the vectors
whose weights are ranked from high to low. Due to random
networks also showing an increasing function of ∅w (r),
∅

w (r) is typically normalized by a set of comparable random
networks of equal size and similar connectivity distribution,
resulting in a normalized rich-club coefficient ∅w

norm (r), which
was computed as:

∅
w
norm (r) =

∅
w (r)
∅

w
rand (r)

, (5)

Where, ∅w
rand (r) w rand is computed as the averaged rich-

club coefficient from 1000 random networks preserving the
same degree. This normalized rich-club coefficient gives a better
indicator of the significance of the rich-club effect. For this
metric, if for certain values of r then we have ∅w

norm (r) > 1, which
denotes the presence of the rich-club effect.

RESULTS

Clustering Results
As shown in Figure 1, individual node centrality vectors and
the corresponding time series of clusters’ labels from two typical
subjects were presented. It could be found that the clustering
results were well in accordance with the temporal changes of node
centrality distributions. For two scans and the average group,
the cluster centers were shown in Figure 2, including state 1
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FIGURE 2 | The clustering results for scan I, scan II and the averaged centers from two scans. The hotter regions represent a higher level of node centrality.

FIGURE 3 | The correlation distance of the cluster center for scan I, scan II
and the averaged centers from two scans. The dark color indicates the close
correlation distance and high correlation, which represents that the two states
can be considered to be the same state.

(S1), state 2 (S2), state 3 (S3), state 4 (S4), and state 5 (S5). The
Figure 3 indicated distances between each of the two cluster
centers. The dark color indicated low distance, which represented
that the two clusters were closed metastates. On the contrary,
the two states were quite different, which should be considered
as two different metastates. There was high consistency between
the clustering results from two scans, and the cluster centers
from one group could exactly correspond to the similar one from
the other group.

Test-Retest Results
The dwell time and transition time were illustrated in Figures 4,
5A. In Figure 4, there was no significant difference between
two scans in these two features, under FDR corrected p < 0.05.
However, for both scans, after one-way ANOVA and t-test
analysis, the dwell time of S5 was significantly lower than that
of the other four (p < 0.001). The transition time matrixes,
depicted in Figure 5A, also showed similar patterns between
two scans. In the transition time matrix, the columns of a
state represented that the time switched from other states
to that state, and the rows of a state represented that the
time moved from that state to other states. The ICC matrix
(Figure 5B) of these two features (diagonal for dwell time

FIGURE 4 | The dwell time of metastates under clustering, for all five
metastates of two scans. White represents the dwell time of scan I, and gray
represents the dwell time of scan II. ∗∗∗Represents significant difference.

and non-diagonal for transition time) revealed the reliability
of the appearances of the observed metastates across 1-week
interval scans. Results showed that there was high degree
of reliability (ICC > 0.4) for dwell time of states 1–4 and
most transition time between states. S5 showed relatively
low reliability in its dwell time and high reliability only in
transition from S1 to S5.

Hub Nodes of Networks
The node centrality distributions for different groups were
showed in Figure 6A, for Scan I, Scan II and the average
separately. Thresholding (mean + 1 standard deviation) the
hub nodes on the averaged node centrality scores provided the
binarized map indicating the hub nodes for each metastate,
as well as the corresponding spatial visualization with glass
brain in Figure 6B. The Figure 6B showed the hub node
distribution of each metastate, including S1, S2, S3, S4,
and S5. Moreover, the transition characteristics between
different metastates (the thicker line represented the higher
transition time) were described. Also, the overlapping rates
of the hub regions with brain intrinsic sub-networks were
shown. The detailed information of these hub nodes for
each metastate is listed in Table 1 along with one of
the previously well-established brain intrinsic sub-networks:
the frontoparietal network (FPN), occipital network (OCC),
sensorimotor network (SMN), default mode network (DMN)
and cingulo-opercular network (CON, mainly includes the
subcortical nucleus). Segmented based on AAL, these hub
patterns of each metastate could be uniquely assigned as
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FIGURE 5 | (A) The transition time matrix between different metastates for two scans. (B) The ICC matrix of two features (diagonal for dwell time and non-diagonal
for transition time). Red to yellow indicates the time from high to low.

FIGURE 6 | The group averaging results of the clustering. (A) The node centrality distribution for different groups, for Scan I, Scan II and the average separately; the
binary one represents the hub regions for each metastate; (B) the 3D view of the hub regions for each metastate, red nodes represent the hub nodes; gray nodes
represent the non-hub nodes. Transitions between different metastates are connected by straight lines, and thicker line represent the higher transition time. Each
metastate shows the corresponding brain sub-networks and overlapping rate of hub regions with brain sub-networks.

one of these intrinsic networks, according to the overlapping
rate between hub nodes and intrinsic sub-network regions.
In Table 1, the underlined regions are the most overlapping
regions between hub nodes and intrinsic network (state
1: 17/17 with SMN; state 2: 14/16 with OCC; state 3:
10/16 with DMN; state 4: 9/18 with CON; state 5: 12/15
with FPN). The hub nodes of the structural network are
also listed in Table 1 and visualized in Figure 7, which
resulted from rich-club analysis. The hub regions shared
with the structural network for each metastate are boldfaced
in Table 1.

DISCUSSION

In this paper, we proposed a method to extract metastates
based on the node centrality of the dynamic functional networks
and assessed the appearance of these metastates with test-retest
across a 1-week interval. To our knowledge, this is the first
study to analyze the repeatability of metastates of dynamic
functional networks with time interval in the resting state.
Furthermore, we also found the coupling relationship between
dynamic functional networks and the structural network at the
hub regions level. Several main findings are as follows: (1) the
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TABLE 1 | Hub regions of both metastate and structural network.

Network Hub Regions

State 1 (SMN) PreCG.L, PreCG.R, ROL.L, ROL.R, SMA.L, SMA.R,
INS.L, INS.R, PoCG.L, PoCG.R, SMG.L, SMG.R, PCL.L,
HES.L, HES.R, STG.L, STG.R

State 2 (OCC) CAL.L, CAL.R, CUN.L, CUN.R, LING.L, LING.R, SOG.L,
SOG.R, MOG.L, MOG.R, IOG.L, IOG.R, FFG.L, FFG.R,
PoCG.L, PoCG.R

State 3 (DMN) PCG.L, SFGmed.L, SFGmed.R, ORBsupmed.L,
ORBsupmed.R, REC.L, REC.R, ACG.L, MTG.L, MTG.R,
OLF.L, OLF.R, TPOmid.L, TPOmid.R, ANG.L, ANG.R

State 4 (CON) ROL.L, ROL.R, SMA.R, INS.L, INS.R, HES.L, HES.R, ACG.L,
ACG.R, DCG.L, DCG.R, _CAU.L, PUT.L, PUT.R, PAL.L,
PAL.R, THA.L, THA.R

State 5 (FPN) SMG.L, SMG.R, ORBsup.R, IPL.L, IPL.R, MFG.L, MFG.R,
ORBmid.L, ORBmid.R, FGoperc. L, IIFGoperc.R, IFGtriang. L,
IFGtriang.R, ORBinf.L, ORBinf.R

Structural SFGdor.L, SFGdor.R, SMA.L, SMA.R, SFGmed.L, DCG.R,
SOG.L, SOG.R, MOG.L, PCUN.L, PCUN.R, PUT.L, PUT.R,
THA.L, THA.R,

proposed method showed high reliability in individual metastates
extracted across a 1-week interval; (2) the hub regions of each
metastate highly overlapped with the intrinsic functional brain
subnetworks; (3) the hubs of metastates were highly overlapped
with the structural core network. It can be speculated that the
dynamic transitions between metastates are potentially associated
with the core structure of the structural network, indicating
structural constraint.

Repeatability of Proposed Method
Previous studies suggested that a high frequency of FC state
transitions existed in the brain (Damaraju et al., 2014; Li et al.,
2017; Marusak et al., 2017), but the stability of these states as
well as their transitions have not been proved. In our study,
the changes of dwell time and transition time can reflect the
temporal characteristics of functional metastates, which indicates
that metastates show a process of stable dynamic changes over
time. As shown in Figures 4, 5, according to the metastate results
of the same group of subjects at two scans in different time,

the repeatability of the metastate time series can be detected.
Dwell time can demonstrate the importance of a certain state
in the temporal series of brain dynamic function. Longer dwell
time indicates that the brain function corresponding to this state
is more dominant. Respectively, for five metastates, there is no
statistical significance in dwell time between scan I and scan II.
This result indicates the stability of the metastate. At the same
time, S5 is significantly different from the other states, which
demonstrates that S5 is not active at resting state (Figure 4).
The transition time indicates the information exchange and
cooperation mechanism between metastates (Chen et al., 2019).
In the brain dynamic functional network time series during
resting state, the more frequently the state is transiting indicates
that there is more information exchange in this state, which
may involve an internally close collaboration or interaction
mechanism. It is observed that the average number of metastate
transitions is highly consistent (Figure 5A). Moreover, a majority
of ICCs are higher than 0.4, which illustrates good reliability
(Figure 5B). Interestingly, compared with other states, the
transitions of S5 shows a low reliability, which may be related to
the instability of S5. It is concluded that the dynamic transition
rules of the metastates obtained by the two scans are almost
the same, which indicates that the time series of brain metastate
transitions in the same individual have good repeatability in
different time periods.

Specific Representations of Functional
Metastates
The hub nodes of each FC network metastate show the
particularity in spatial distribution. Considering the hub node
distribution of each metastate and functional subnetwork, it is
found that the hub node distribution is highly consistent with
the functional subnetwork nodes. Hub nodes for each metastate
are mainly located in the corresponding subnetwork. Specifically,
five metastates correspond to specific networks with FC, such
as the FPN (Emerson and Cantlon, 2012; Di and Biswal, 2015;
Lee and Telzer, 2016), OCC (Yan et al., 2011; Damoiseaux et al.,
2016; Chen et al., 2017; Zhang et al., 2017), SMN (Jolles et al.,
2011; Pujol et al., 2014; He et al., 2016; Syed et al., 2017), DMN
(Betzel et al., 2014; Wu et al., 2014; Jiao et al., 2016, 2017) and

FIGURE 7 | The rich-club results of the structural network. Red nodes represent the hub nodes of the structural network; gray nodes represent the non-hub nodes.
The yellow lines depict the connectivity.
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(CON, mainly includes the subcortical nucleus) (Betzel et al.,
2014; Luca et al., 2014; Raichlen et al., 2016; Long et al., 2017),
respectively (Figure 6). Accordingly, the dynamic changes of
the brain functional network reflect the characteristics whereby
different functional modules are “activated” alternately in a
certain time series.

It is found that the hub node distributions of five metastates
respectively, correspond with five intrinsic functional networks,
which reveals the physiological significance of metastates. Among
them, S5 corresponds to the FPN, which has a low repeatability.
As the main network in higher the cognitive and thinking
consciousness processes, the FPN is susceptible to brain activity
at resting state (Zanto and Adam, 2013; Gulbinaite et al.,
2014; Alarcón et al., 2018). A low repeatability of S5 can
be explained in that the resting state is an ambiguous and
imprecise state of brain function. Furthermore, S5 is relatively
less active in resting state with a lower dwell time, which
further indicates that the FPN is a brain network involved in
higher cognitive processes. The changes of dynamic network
time series seem to imply that the brain shows dynamic
“activation” characteristics of different intrinsic networks or
cognitive resources. On the other hand, the intrinsic networks
or network modularization structure are closely related to the
rotational activity of the dynamic local brain regions. Therefore,
it is speculated that compared with the traditional network
modularization organization of static FC, the single spatial
integration and separation characteristics reveal the internal
mechanism. This particular pattern of temporal and spatial
organization may better reflect the organization and operation
mechanism of brain networks. It is interesting to find that the
hub nodes of metastate are not fully consistent with the intrinsic
network of brain regions. Further analyzing the distribution of
hub nodes, we can find that the hub nodes of each metastate
respectively, belong to local hubs and global hubs. The local hub
is responsible for information integration within the network,
and the global hub is responsible for information integration
between networks. Thus, we can speculate that the changes of
hub nodes reflect the integration ability of local brain functional
resources, and it is simultaneously constrained by the global
network structure.

Coupling With the Structural Network
Through the rich-club analysis, we extracted the structural
core of the structural network (Figure 7). The most
important nodes were obtained in the structural network,
which are highly overlapped with hub nodes. In addition,
a small number of hub nodes in each metastate belonged
to the rich-club. It is indicated that the dynamic changes
of functional metastates are the spontaneous transition
of the intrinsic function resources, which are captured
based on the node centrality. This transition mechanism
relies on the structural core of the structural network,
which plays an important connector role in the metastate
transition process (Hagmann et al., 2008; Yong et al., 2009;
Heuvel Van Den and Olaf, 2011). At the same time, the
constant changes of metastates reflect the feeder effect of
local intrinsic networks. The connect-feed theory simplifies

brain network connectivity from an information-processing
perspective (Bullmore and Sporns, 2009). Connective core
nodes and hub nodes are defined as the connectors,
which have the effect of globally connecting different
modules. Connectivity that connects edge nodes or local
network nodes to core nodes or hub nodes is known as
feeder, which can transfer local information to advanced
network structure.

LIMITATIONS

We have designed a test-retest study to assess the reliability of
functional metastates, but there are still several aspects that need
further improvements. First, strictly inclusive participants are of a
relatively small size. Although we have some potential influential
factors that may affect the results, it is still hard to be sure because
of the small sample size. Specially, it is more focused on the age at
about 20 s and may not be represented. To further corroborate
our results and elucidate the spontaneous fluctuations of the
FC through metastates transitions, a better study should be
performed to follow subjects from wide ages. A study a with
large sample will also improve estimates of FC variability and
permit patterns of connectivity, which may be critical for future
investigations. Second, as mentioned in the discussion section,
the brain parcellation atlas used is a commonly used one, and
there are many finer templates with higher spatial resolution and
more detailed or specific divisions of brain regions. With finer
parcellation, it is probable to obtain more spatially dependent
patterns represented as metastates and provide more information
about coupling between dynamic function in resting state and
intrinsic structure. It is also another powerful way to verify the
reliability of the proposed method at different spatial levels of
brain parcellation. Third, how the hub regions are identified
here is not rigorous, but relatively comparable. With that said,
we used the normalized rich-club coefficient to find the hubs of
the structural network, and spurious hubs nodes will probably
be found. At the same time, there were many details that were
arbitrary and tricky from the perspective of more rigorous
thinking, for example the functional network thresholding, the
sliding window size and the fMRI preprocessing. This makes
it difficult to draw a strong conclusion. However, the methods
here provide a general method and insight view of the dynamic
hub nodes of functional networks. Future work should use
stricter methods to identify the hub nodes, for example using
non-parametrical testing and multiple comparison correction.
Fourth, the exact sliding window size is important and should
be carefully considered in dynamic FC research. In this work, we
arbitrarily chose an empirically used window length in previous
literatures without further exploring the potential effects for
varied window lengths. Future work on the effect of window size
on metastate extraction is needed. What is more important about
this is whether the sliding window correlation method reflects
the dynamic FC, which has been the focus of several studies
(Leonardi and Van De Ville, 2015; Hindriks et al., 2016) and
resulted in two sides. For example, with surrogate data, Hindriks
et al. (2016) concluded that with the sliding window-based
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method it was hard to reflect the dynamic FC, and Leonardi
suggested that an extra 0∼1/w low frequent pass filtering
on the sequence of dynamic FC can reduce spurious
information about dynamic FC, even though plenty of
studies have found meaningful things about dynamic FC.
In our thoughts, what really mattered is to know what
kind of or how to describe the characteristics of dynamic
FC in resting state. In any case, a surrogate can never
represent real fMRI data and we also never know the
exact information underlying our brain function. However,
with careful thinking, we might still explore the nature of
dynamic FC in practice.

CONCLUSION

In conclusion, we proposed a clustering method to extract
metastates based on the node centrality of the dynamic
functional networks, assessed the dynamic features of these
metastates in resting state across a 1-week interval and further
explored the possible meanings of these metastates. These
metastates were repeatable and highly related to the intrinsic
subsystems of brain function in resting state. Considering
the overlapping of the hub nodes between metastates and
the structural network, we also speculated that dynamic
functional network metastates were coupled with or constrained
by the structural network. We might further conclude that
the metastates, or possible sub-systems, interacted with each
other in an alternate provincial centralization under the
core frame of the structural network. In additional, node-
based representation of dynamic function networks, as well
as metastates, might provide a new useful insight into
the underlying information of spontaneous dynamics in
resting state networks.
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Dynamic functional network connectivity (dFNC) analysis is a widely-used to study

associations between dynamic functional correlations and cognitive abilities. Traditional

methods analyze time-varying association of different spatial networks while assuming

that the spatial network itself is stationary. However, there has been very little work

focused on voxelwise spatial variability. Exploiting the variability across both the temporal

and spatial domains provide a more promising direction to obtain reliable dynamic

functional patterns. However, methods for extracting time-varying spatio-temporal

patterns from large-scale functional magnetic resonance imaging (fMRI) data present

some challenges, such as degradation in performance with respect to increase in

size of the data, estimation of the number of dynamic components, and the potential

sensitivity of the resulting dFNCs to selection of the networks. In this work, we implement

subsequent extraction of exemplars and dynamics using a constrained independent

vector analysis, a data-driven method that efficiently estimates spatial and temporal

dynamics from large-scale resting-state fMRI data. We explore the benefits of analyzing

spatial dFNC (sdFNC) patterns over temporal dFNC (tdFNC) patterns in the context of

differentiating healthy controls and patients with schizophrenia. Our results indicate that

for resting-state fMRI data, sdFNC patterns were able to better classify patients and

controls, and yield more distinguishing features compared with tdFNC patterns. We also

estimate structured patterns of connectivity/states using sdFNC patterns, an area that

has not been studied so far, and observe that sdFNC was able to successfully capture

distinct information from healthy controls and patients with schizophrenia. In addition,

sdFNC patterns were also able to identify functional patterns that associate with signs

of paranoia and abnormalities in the patients group. We also observe that patients with

schizophrenia tend to switch to or stay in a state corresponding to a hyperconnected

brain network.

Keywords: prediction, dynamic functional connectivity, independent vector analysis, schizophrenia, spatio-

temporal, states
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1. INTRODUCTION

Dynamic functional network connectivity (dFNC) analyzes the
time-varying associations among different regions of the brain
and has been widely studied in order to identify correlations
between functional changes and cognitive abilities (Fox et al.,
2005; Chang and Glover, 2010; Sakoğlu et al., 2010). In order
to identify these functional patterns of different brain regions,
conventional methods identify groups of temporally coherent
voxels, referred to as spatial maps, and their corresponding
activation patterns, referred to as time courses (Lee et al., 2013).
Followed by the estimation of time courses, a sliding window
is applied on the time courses that divides it into consecutive
windows and an analysis on the time points within each window
is performed (Allen et al., 2014). The analysis of dFNC patterns
depends on the length of the window, where the use of a longer
window length increases the risk of averaging the temporal
fluctuations of interest resulting in false negatives (Preti et al.,
2017), and the use of a shorter window length has too few samples
for a reliable computation of correlation (Hero and Rajaratnam,
2016), resulting in the temporal variations to capture spurious
fluctuations and increasing the risk of false positives (Sakoğlu
et al., 2010; Hutchison et al., 2013; Leonardi and Van De Ville,
2015). Previous studies have shown that a window length
between 30 and 60 s successfully estimates temporal fluctuations
in resting-state functional magnetic resonance imaging (fMRI)
data (Preti et al., 2017), and for most cases higher window lengths
do not alter the results significantly (Keilholz et al., 2013; Li
et al., 2014; Liégeois et al., 2016). However, there is a lower
bound in being able to capture fluctuations due to the limited
number of samples, limiting the use of dFNC analysis in the
temporal domain.

Conventional methods also estimate the time-varying FNC
patterns of the spatial networks while assuming that the spatial
network itself is stationary. However, studies have shown that
changes in the FNC patterns imply changes in the spatial
networks (Calhoun et al., 2008). Hence, spatio-temporal dFNC
analysis relaxes the assumption of stationarity in both the spatial
and temporal domain, and provides a more general framework
for capturing time-varying FNC patterns (Ma et al., 2014;
Kottaram et al., 2018; Kunert-Graf et al., 2018). The availability
of higher number of samples in the spatial domain also
guarantees reliable estimation of functional correlations (Hero
and Rajaratnam, 2016), thus providing a promising direction
for the use of spatial domain for dFNC analysis. However, the
methods used to extract time-varying spatio-temporal patterns
face few challenges. Region of interest based methods use pre-
defined resting-state networks causing the estimated functional
connectivity to be sensitive to network selection. Dynamic
mode decomposition, a spatio-temporal modal decomposition
technique, requires significant dimension reduction that may
restrict the method to estimate fewer dynamic components
(Kunert-Graf et al., 2018). Independent vector analysis (IVA)
provides a general and flexible framework to spatio-temporal
dFNC analysis and estimates window-specific time courses and
spatial maps. However its performance degrades with increase in
the size of the data, for a given number of samples (Bhinge et al.,

2019). Hence, in this work, we use a data-drivenmethod to jointly
extract spatio-temporal patterns using the subsequent extraction
of exemplar and dynamic components using constrained IVA
(SED-cIVA) method (Bhinge et al., 2019), from a large-scale
fMRI data acquired from 91 healthy controls and 88 patients
with schizophrenia. This two-stage method preserves variability
in both domains while addressing the issue with large-scale data,
by using a parameter tuning technique. This parameter tuning
technique adapts to the variability of each brain region separately,
thus allowing accurate estimation of time-varying spatial maps
and corresponding time courses.

Although exploiting variability in the spatial domain for
dFNC analysis has shown better performance in terms of
classification using a seed-based analysis (Kottaram et al., 2018),
which is sensitive to the networks selected, the features extracted
from sdFNC patterns are not explored. In this work, we explore
the use of spatial domain for dFNC analysis in order to
demonstrate the benefits of exploiting variability in the spatial
domain and taking advantage of the large sample size in this
domain, using a data-driven approach. We perform a prediction
technique to compare the ability of temporal dFNC (tdFNC)
patterns and sdFNC patterns to predict if a subject is a patient
or a control. We also perform a joint analysis by combining
the sdFNC and tdFNC patterns together in order to explore
the contribution of each toward prediction and observe that
the use of sdFNC patterns alone provides higher prediction
accuracy than using tdFNC patterns, or a combined feature set.
This shows that exploiting the variability and taking advantage
of large sample size in the spatial domain provides meaningful
discriminative features. We also obtain structured patterns of
connectivity/states from sdFNC patterns and identify differences
between patients and controls in terms of dwell time, transition
matrix and fraction of time spent in each state. To the best
of our knowledge, no study has been performed to identify
these properties from sdFNC patterns. Our results indicate that
patients tend to stay in or transition between states associated
with hyperconnected brain network. We also find significant
associations between the resulting functional connectivity and
signs of paranoia in the patient group using sdFNC patterns.

The remainder of the paper is organized as follows. Section 2
introduces the dataset used in this work and the method used for
extraction of spatio-temporal dynamic patterns. This section also
discusses the prediction technique followed by the method used
for estimating states. Section 3 shows the results and discusses
these results. Section 4 concludes the paper.

2. MATERIALS AND METHODS

2.1. Material
We work with resting-state fMRI data is acquired from K =

179 subjects including 91 healthy controls (HCs) (average age:
38 ± 12) and 88 patients with schizophrenia (SZs) (average
age: 37 ± 14). The dataset was obtained from the Center for
Biomedical Research Excellence (COBRE) (Aine et al., 2017) and
is available on the collaborative informatics and neuroimaging
suite data exchange repository (https://coins.trendscenter.org/)
(Scott et al., 2011). The data was obtained over the duration of
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5 min with a sampling period of 2 s yielding 150 timepoints per
subject. The subjects were asked to keep their eyes open during
the entire scanning period. Each subject’s data was pre-processed
to account for motion correction, slice-time correction, spatial
normalization and was slightly re-sampled to 3 × 3 × 3mm3

yielding 53×63×46 voxels. The first 6 time points were removed
to account for the T1-effect. We perform masking on each image
volume to remove the non-brain voxels and flatten the result to
form an observation vector of V = 58,604 voxels, giving T = 144
time evolving observations for each subject.

2.2. SED-cIVA
In this work, we use the SED-cIVA method to extract time-
varying spatial and temporal patterns. SED-cIVA consists of two
stages: the first stage extracts exemplar/informative components
from all subjects and uses these components as reference signals
in a sliding-window parameter-tuned cIVA framework in the
second stage, to obtain the time-varying representation of these
components. The idea of SED-cIVA is to extract stationary
representation of the most informative resting-state networks
from the given dataset, in the first stage followed by estimating
the time-varying representation of these networks for each
subject using a sliding-window approach. Figure 1A shows the
flow-chart of the method.

2.2.1. Extraction of Exemplars
SED-cIVA provides flexibility in the choice of the method used
to extract the exemplar components. Templates of resting-
state networks of interest that are pre-defined based on
extensive studies of resting-state fMRI data can be used as
exemplars. Sparsity-learningmethods such as dictionary learning
(Varoquaux et al., 2011) or sparse ICA (Boukouvalas et al., 2017)
can be used to extract more focal spatial components. One of the
widely used methods for extraction of components frommultiple
subjects is group independent component analysis (GICA) that
estimates a common subspace consisting of the most informative
components across all subjects (Calhoun et al., 2001a,b). In this
work, we perform GICA on all subjects to extract exemplars of
resting-state networks using the group ICA for fMRI toolbox
(GIFT). GICA performs a subject-level principal component
analysis (PCA) to extract the signal subspace for each subject
followed by a group-level PCA on the principal components
(PCs) from all the subjects. In order to exploit higher order
statistics, it performs independent component analysis (ICA)
on the group-level PCs. We estimate the model order for each
subject using the minimum description length criterion that
accounts for sample dependence (Li et al., 2007) and the final
order is selected as the mean (30) plus one standard deviation
(5) across all subject’s model orders. The dimension of the signal
subspace in the subject-level PCA stage is set as 53 and the
order for the group-level PCA stage is set as 35. By default,
GIFT selects the subject-level PCA order (53) to be 1.5 times the
final order (35). We use the entropy rate bound minimization
(ERBM) algorithm (Li and Adali, 2010) to estimate the group-
level independent components. ERBM is a flexible ICA algorithm
that exploits multiple statistical properties of the sources such
as sample dependence and higher order statistics, and provides

a better estimation of fMRI sources (Long et al., 2018a). The
ICA algorithm is run 10 times and the best run is selected
using the minimum spanning tree approach (Du et al., 2014).
Among the 35 group-level components, we visually select N =

17 components as exemplars, denoted as dn, n = 1, . . . , 17,
and these components are used as reference signals in the
second stage.

2.2.2. Extraction of Spatial and Temporal Dynamics of

Exemplars
In the second stage, time-varying representation of the exemplar
components is estimated using a sliding-window IVA approach.
In the sliding-window approach, each subject’s data is divided
into M = 17 windows of length L = 16 (32 s) with a 50%
overlap. We extract time-varying spatio-temporal patterns of the
exemplars by performing parameter-tuned cIVA on each subject’s
data. Parameter-tuned cIVA is a type of IVA that incorporates
information regarding the exemplars into the IVA framework
and extracts window-specific time courses and spatial maps of
these exemplars. The general IVA model, for a given set of
observations, can be written as X[m] = A[m]S[m],m = 1, . . . ,M,
where X[m] ∈ R

L×V denotes the observations from window
m, A[m] ∈ R

L×L denotes the mixing matrix and the rows in
S[m] ∈ R

L×V are the latent sources. IVA estimates M demixing
matrices, W[m], such that the sources within each dataset are
maximally independent and sources across dataset are maximally
dependent. The cost function, written using random vector
notation, is given as (Anderson et al., 2012; Adali et al., 2014),

JIVA =

L
∑

l=1

[

M
∑

m=1

H

(

ŝ
[m]
l

)

− I
(

ŝl
)

]

−

M
∑

m=1

log
∣

∣

∣
detW[m]

∣

∣

∣
, (1)

where H

(

ŝ
[m]
l

)

denotes the entropy of the lth source estimate

for the mth dataset, and I (sl) denotes the mutual information
of the lth source component vector (SCV) estimate, ŝT

l
=

[

ŝ
[1]
l
, . . . , ŝ

[M]
l

]

. The optimization of Equation (1) jointly weighs

the independence within the dataset through the entropy term
along with the log determinant term and dependence across the
datasets through the mutual information term. The dependent
sources across datasets can be grouped together to form a SCV.
Thus, in the SED-cIVA framework, IVA treats each window as
a dataset and estimates window-specific time courses and spatial
maps, and a SCV represents the time-varying representation of a
spatial map. Parameter-tuned cIVA directs the estimation of the
sources toward the reference components through an additional
term in the IVA cost function given as,

J = JIVA −

L
∑

l=1

1

2γn

M
∑

m=1

{

[

max{0,µ[m]
n + γng(ŝ

[m]
n , dn)}

]2
− (µ[m]

n )2
}

,

(2)
where µ

[m]
n is the regularization parameter, γn is a positive scalar

and g(ŝ
[m]
l

, dn) is the inequality constraint function given as,

g(ŝ
[m]
l

, dn) = ρn −
∣

∣

∣
corr(ŝ

[m]
l

, dn)
∣

∣

∣
≤ 0. (3)

The constraint parameter, ρn, controls the amount of
correspondence between the exemplar, dn, and the estimated
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source, and acts as a lower bound for the amount of correlation
between them. A higher value for this parameter enforces
the estimated source to be exactly similar to the exemplar
component, not allowing the other components to interact with
the exemplar component. On the other hand, a lower value
deviates the estimated source from the exemplar component
causing the source to be prone to noise and other artifacts.
Additionally, the interaction between an exemplar component
and other components vary with respect windows and subjects,
hence a fixed value for this parameter across all m and for
all subjects does not allow the model to efficiently capture
the variability across windows. Thus in order to capture the
variability, SED-cIVA implements parameter-tuned cIVA, that
adaptively selects a value from a set of possible values for ρn,
denoted as P , as follows,

ρ̂n = arg min
ρn∈P

[

min
m

{∣

∣

∣
ρn −

∣

∣

∣
corr(ŝ

[m]
l

, dn)
∣

∣

∣

∣

∣

∣

}M

m=1

]

,

P ∈ {0.001, 0.1, ... , 0.9} (4)

This updates computes g(ŝ
[m]
l

, dn) for all m and for each value in
set P and selects the highest value of ρn from set P that satisfies
the condition in Equation (3) for all windows. From Equation (3),

we observe that ρn ≤
∣

∣

∣
corr(ŝ

[m]
l

, dn)
∣

∣

∣
, allowing ρn to be between

0 and 1. Thus, we define the set P as the possible values between
0 and 1. Hence, parameter-tuned cIVA selects the highest lower
bound using Equation (4) and adaptively tunes itself with respect
to each exemplar component, allowing the method to capture
variability across windows. The use of exemplars also guides
the solution toward the optimal solution addressing the issue of
large-scale data that is observed in regular IVA, and relaxes the
independence assumption of IVA (Bhinge et al., 2017). Hence
SED-cIVA effectively captures variability of the exemplars across
windows and subjects.

In parameter-tuned cIVA, we constrain one source at a

time, ŝ
[m]
1 , to one of the exemplar components, dn, whereas

the rest of the sources, ŝ
[m]
l

, l = 2, . . . , L, are unconstrained.
For each dn, we obtain 10 solutions using parameter-tuned
cIVA with γn = 3, n = 1, . . . ,N, using the IVA-L-SOS
algorithm for different random initializations and select the
most consistent run using the method described in Long et al.
(2018b). IVA-L-SOS is a type of IVA algorithm that assumes
the sources are multivariate Laplacian distributed and exploits
second order statistics (SOS) (Bhinge et al., 2019). This algorithm
provides a better match to the properties of fMRI sources, since
fMRI sources are in general expected to have a super-Gaussian
distribution, like Laplacian (Calhoun and Adali, 2012), and are
correlated across windows. The estimated sources corresponding
to the constrained exemplars from the consistent run are denoted

as y
[m,k]
n , n = 1, . . . ,N, m = 1, . . . ,M, k = 1, . . . ,K, whereas the

corresponding time courses are denoted as a
[m,k]
n .

2.3. Post-processing
SED-cIVA estimates time-varying spatial components and
corresponding time courses for each exemplars that are further
used to compute spatial and temporal dFNC matrices. The

time courses at each window are further processed to remove
quadratic, linear and cubic trends, and low-pass filtered with
a cutoff frequency of 0.15 Hz (Allen et al., 2014). The tdFNC
matrix at the mth time window for the kth subject is denoted
as R[m,k]. Each element in R[m,k] is obtained by computing the
Pearson’s correlation coefficient between each pair of the time

courses in that time window, r
[m,k]
ij = corr

(

a
[m,k]
i , a

[m,k]
j

)

, i, j =

1, . . . ,N. Similarly sdFNC matrices are obtained by computing
the Pearson’s correlation coefficient between each pair of
spatial maps at each time window. The correlation can be
interpreted as the similarity in the activated sources in the
spatial maps. Although IVA, like ICA, estimates spatial maps
that are maximally independent within a time window, it also
groups together the voxels that have a similar activation pattern
(Calhoun and de Lacy, 2017). Hence, if in a time window two
sources have a similar activation pattern these sources would
be estimated as a single spatial map. Hence, we would expect
a high correlation between the estimated spatial maps of the
corresponding constrained sources. These matrices are further
used to classify subjects as patients or controls, and to obtain
spatial and temporal FC states. The post-analysis steps are shown
in Figure 1B.

2.4. Prediction Technique
In order to study how informative the spatial and temporal dFNC
features are, we evaluate the predictability of these features in
terms of predicting if a subject is a patient or a control. Note
that the aim of this experiment is to observe potential advantages
of sdFNC features and not the actual prediction accuracy, hence
we use a simpler Naïve Bayes classifier that does not require
tuning of parameters. The flowchart for the prediction technique
is shown in Figure 2. We obtain 1,000 independent Monte-
Carlo subsamplings of the data. In each subsampling, subjects
from HC and SZ group are divided into training and testing
sets, where each training group consists of 75 randomly sampled
subjects from the HC and the SZ group (Ktrain = 150). The
remaining subjects form the testing set (Ktest = 29). We then
obtain Ktrain × M observations of N(N − 1)/2 dimensional
features from the tdFNC/sdFNC matrices. In order to select
the distinguishing features from the N(N − 1)/2 features, we
perform a two-sample t-test on the features from the HC and
SZ group as shown in Figure 2B. Features that demonstrate
significant difference (p < 0.05) are used in further stages. The
indices of the significant features are recorded and used in the
testing stage. This feature selection is done separately for tdFNC
and sdFNC matrices. The selected features are clustered into C
clusters, where in this experiment we vary the number of clusters
from 3 to 30. For training the Naïve Bayes classifier, we obtain
the probability of each state for the HC group and SZ group,
pg(Ci), g = {HC, SZ}. In the testing stage, the features that
indicated significant difference in the training stage were selected
and each observation from a test subject is assigned a state with
maximum Pearson’s correlation between the observation and the
cluster centroid. We then obtain the probability of each state

using p[k](Ci) = n
[k]
i /M, i = 1, . . . ,C and use the test feature

vector to predict the class of the subject. A test subject is assigned
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FIGURE 1 | (A) SED-cIVA technique consists of two stages. In the first stage exemplars of resting-state networks are extracted using GICA. In the second stage,

these exemplars are used as reference signals in a sliding-window cIVA framework to extract their spatial and temporal dynamics. (B) Spatial or temporal dFNC

matrices are obtained at each time window by computing the Pearson’s correlation coefficient between each pair of spatial maps or time course, respectively. These

matrices are further used to classify subject as a patient or a control, and also to identify states.

to HC or SZ group using the following rule,

ŷ = arg max
g=

{

HC,SZ
}

p(g)

C
∏

i=1

[

pg(Ci)
]ni (5)

where ni denotes the number of occurrences of state i in the
test subject. Steps (B–D) from Figure 2 are performed for each
sub-sampling of the data.

For the joint analysis of spatio-temporal features, the sdFNC
and tdFNC features selected after the two-sample t-test on these
feature sets separately, are concatenated in the feature dimension
to study the effect of combining the two feature sets on prediction
accuracy. We compare the results from the combined feature set
with the results from using sdFNC and tdFNC feature set alone.
Table 1 provides some inferences regarding the comparison
results. Let QS denote the prediction accuracy obtained using
sdFNC matrices, QT denote the prediction accuracy obtained
using tdFNC matrices and QST denote the prediction accuracy
obtained using the combined feature set. We can say that if the
prediction accuracy increases after combining the sdFNC and
tdFNC features, both feature sets provide unique discriminative

features, whereas if the prediction accuracy using sdFNC features
is greater than QST, then tdFNC provide non-discriminative
features, hindering the classification performance.

2.5. Identification of States
Recent studies have shown that fluctuations in the brain networks
in resting-state are not random but exhibit structured patterns
that vary over time (Cribben et al., 2012; Allen et al., 2014;
Yang et al., 2014). In this study, we obtain these structured
patterns or states using sdFNC matrices. In the first step toward
identifying the states, we flatten the upper diagonal part of each
correlation matrix, R[m,k], to obtain a feature vector of dimension
N(N − 1)/2 yielding MK observations. For each subject, the
standard deviation across the feature dimension is computed
and a subset of FNC matrices are selected corresponding to
the maximum standard deviation as subject exemplars. Thus
the subject exemplars represent the features that are more
informative, alternatively those with higher variability. Further k-
means clustering is performed to cluster these subject exemplars
into C clusters using Pearson’s correlation coefficient as the
distance measure. The centroids resulting from clustering the
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FIGURE 2 | Flowchart to obtain the features for prediction. (A) The subjects are divided into training and testing set, where the training set consists of 150 subjects,

75 from the HC and SZ group each. The remaining 29 subjects form the testing set. (B) Each tdFNC/sdFNC matrix is flattened to a row and the distinguishing features

are extracted using a two-sample t-test. The indices of the distinguishing features are recorded and used to select the corresponding features in the testing stage. In

the combined feature set for joint analysis, the flattened features from both domains are concatenated in the feature dimension and similar steps are performed.

(C) The selected features from the training set are clustered into C clusters using K-means clustering to obtain the centroids and the state vector for each subject. (D)

The probability of occurrence of each state is computed for the HC and SZ group separately. For the testing stage the state vector for each subject is obtained using

the centroids from the training stage and probability of occurrence for each state is computed.

subject exemplars are used as initial points to cluster the entire
observation set. This two-step clustering process is performed in
order to obtain a robust solution. The performance of k-means
clustering assigns a cluster or state index to each observation
resulting in a state vector for each subject. The state vector thus
represents the evolution of the states over time. This vector is
further analyzed to obtain the transition matrix, dwell time and
fraction of time spent for each state and for each subject. The
transition matrix denotes the number of transitions from state
i to state j, i, j = {1, . . . ,C}, the dwell time denotes the amount of
time a subject remains in a particular state, and fraction of time
spent denotes the probability of occurrence of a state.

3. RESULTS AND DISCUSSION

The 17 components selected as exemplars after performing

GICA are shown in Figure 3. These components are divided

into 8 domains: auditory (AUD), sensorimotor (SM), frontal
(FRO), fronto-parietal (FP), parietal (PAR), visual (VIS),
default mode network (DMN) and cerebellum (CB). The
PAR domain comprise three networks: PAR1, PAR2, and
PAR3, corresponding to their peak activation located in
the primary somatosensory cortex, supramarginal gyrus
and somatosensory association cortex, respectively. The
DMN domain consists of one component corresponding to
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TABLE 1 | Inferences about predictability of sdFNC, tdFNC, and combined

feature set.

QST > QS,QT sdFNC and tdFNC yield unique discriminative features

jointly contributing to classify subjects

QST < QS,QT sdFNC and tdFNC both yield non-discriminative features

that are unable to classify subjects

QS or QT > QST >

QT or QS

tdFNC or sdFNC yield non-discriminative features

affecting the prediction

QST = QS or QT tdFNC or sdFNC are not providing additional information

to classify subjects

QS denotes the prediction accuracy obtained using sdFNC matrices, QT denotes the

prediction accuracy obtained using tdFNC matrices and QST denotes the prediction

accuracy obtained using the combined feature set.

posterior DMN, one component corresponding to anterior
DMN (ADMN), one DIC network and one insular (INS)
component. The DIC component shows a network of a
de-activated posterior DMN component and an activated
central executive network and right fronto-insular (INS)
network. The VIS domain comprise two networks: VIS1
and VIS2, corresponding to their peak activation situated
in the lateral and medial visual cortex, respectively. The
FRO domain comprise two networks: FRO1 and FRO2
corresponding to their peak activation in the frontal cortex
located anterior to the premotor cortex and dorsolateral
prefrontal cortex, respectively.

3.1. Prediction Results
The average prediction accuracies computed across 1,000 Monte
Carlo subsamplings, using the sdFNC, tdFNC and combined
feature set for different number of clusters is shown in Figure 4.
Figure 4A shows the result for the HC group and Figure 4B

shows the result for the SZ group. In order to test if the prediction
accuracies computed using sdFNC and tdFNC features are
significantly different from the combined feature set, we perform
a permutation test using a two-sample t-test as the hypothesis
test. The results indicate that the prediction accuracy computed
using sdFNC features is significantly higher than the one
computed using tdFNC and the combined feature set for the
SZ group for different number of clusters. This suggests the
use of tdFNC features yield non-discriminative features that
degrade the prediction performance for the SZ group. For the
HC group, the prediction accuracy computed using sdFNC
features is higher than the one computed using tdFNC features
and equal to the combined feature set for the SZ group for
different number of clusters. This suggests that the tdFNC
features are not providing additional information to classify
subjects as controls.

We also compute the sensitivity and specificity of the
prediction model obtained using sdFNC and tdFNC
features. The true positives (TP) denote the percentage
of SZ subjects that are correctly identified as SZ, true
negatives (TN) denote the percentage of HC subjects
that are correctly identified as HC, false negatives (FN)
denote the percentage of SZ subjects incorrectly identified
as HC, and false positives (FP) denote the percentage
of HC subjects incorrectly identified as SZ. Sensitivity

and specificity for each Monte Carlo subsampling is
computed as follows,

Sensitivity =
TP

TP+ FN
, Specificity =

TN

TN+ FP
.

Figure 5 shows the results of these measures computed for
sdFNC and tdFNC features. Sensitivity and specificity values
are higher using sdFNC features compared with the tdFNC
features. A higher sensitivity for sdFNC features indicates that
these features are better able to identify SZ subjects than
HC subjects.

In order to test for differences between the prediction
accuracies using sdFNC and tdFNC features, and between
the HC group and the SZ group, we perform a permutation
test between these groups using a two-sample t-test as a
hypothesis test. The distribution plots of the accuracies and
the permutation test results are shown in Figure 6. The
permutation test result indicates that the sdFNC features yield
a significantly higher prediction accuracy when compared with
tdFNC features, providing evidence that exploiting variability in
the spatial domain yields meaningful distinguishing information.
The average prediction accuracy using tdFNC features is around
50%, which is equivalent to providing random guesses regarding
the class of a subject. This provides additional evidence that
tdFNC features are not providing any additional information
as compared to a random classifier. The permutation test result
between the HC and the SZ group indicates a significantly higher
prediction accuracy for the SZ group using sdFNC features. Since
the feature used in this technique is the probability of occurrence
of each state, we can infer that patients with schizophrenia tend
to stay or transition to a certain group of states more often
than healthy controls. A natural question is the identification of
these predictable states and their differences with respect to states
associated to a healthy group of subjects. In the next section we
discuss the results obtained from the state-based analysis using
the sdFNC matrices and identify the states that are associated
with the patients and controls group.

3.2. Analysis of States
We identify six distinct states using both temporal and spatial
FNC matrices using the method described in section 2.5. The
number of clusters is estimated as six using the silhouette
criterion. We also compute the optimal number of clusters using
other criteria available in the group ICA for fMRI toolbox.
The estimated values are in the range 2–10, with the median
value being six. Hence, we choose the final values as six for
the optimal number of clusters. The group-specific states and
features that demonstrate significant differences between HC and
SZ group using sdFNC matrices are shown in Figure 7A. The
significantly different features within each state were identified
by performing a permutation test between the HC group and
the SZ group. The group-specific states show differences in the
level of connectivity between pairs of components, which are
reflected in the third row of Figure 7A that shows differences
between the HC and SZ group. The parietal component has high
positive connectivity with the auditory, sensorimotor and frontal
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FIGURE 3 | The 17 components selected are divided into 8 domains: auditory (AUD), sensorimotor (SM), frontal (FRO), fronto-parietal (FP), parietal (PAR), visual (VIS),

default mode network (DMN), and cerebellum (CB). The DMN domain includes spatial maps consisting the anterior, posterior DMN, central executive network and

insular (INS) components. The number indicated next to each domain name is number of components belonging to that domain.

FIGURE 4 | Average prediction accuracy computed over 1,000 independent Monte-Carlo samplings using tdFNC, sdFNC and combined features for (A) HC group

and (B) SZ group. A blue triangle denotes significant difference between tdFNC result and combined feature set result, whereas a read triangle denotes significant

difference between sdFNC result and combined feature set result. A triangle pointing left, “⊳,” indicates the prediction accuracy of tdFNC/sdFNC is greater than the

combined feature set result, whereas a triangle pointing right, “⊲,” indicates the prediction accuracy of tdFNC/sdFNC is less than the combined feature set result.
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components in all states and indicates simultaneous activation of
these regions. The parietal lobe plays a vital role in processing
sensory information such as touch, sound and vision, which is
obtained from different parts of the body. A subject in the scanner
is exposed to scanner noise and hence the brain is involved
in processing the auditory information, causing activation of

FIGURE 5 | Sensitivity and specificity of the prediction model trained using

sdFNC and tdFNC features. The sensitivity and specificity values are averaged

over 1,000 Monte Carlo subsamplings. The results indicate that sensitivity and

specificity is higher using sdFNC features compared with the tdFNC features.

A higher sensitivity for sdFNC indicates a better prediction ability of these

features to correctly identify SZ subjects.

parietal and auditory components. The parietal component also
plays a role in receiving signals from sensory organs, which
is then passed to motor-related regions, such as sensorimotor
and frontal components, in order to control the body posture.
Since a subject is asked to lay still in the scanner, the subject
is focusing on balancing his/her body, causing the activation
of these regions. An observed positive correlation between
the sensorimotor and frontal component provides additional
support toward the hypothesis. Cerebellum on the other hand,
receives the sensory information from different parts of the
body. Hence, a high negative correlation between the parietal
and cerebellum component indicates simultaneous deactivation
of one component while the other is active, suggesting a
process of first receiving and then processing the sensory
information. This might also help explain the observed negative
correlation between cerebellum and motor-related components.
These connections are observed in all states, indicating that these
regions form a central hub at resting-state and play a vital role
resting-state fMRI data.

We obtain the transition matrix, dwell times and fraction of
time spent in each state for each subject as described in section
2.5. For each transition pair {i, j}, i, j = 1, . . . , 6, we perform
a permutation test to identify differences between the HC and
the SZ group. Each significantly different pair denotes that one
group transitioned from state i to jmore frequently than the other
group. Similarly, we perform a permutation test on the mean
dwell time of each state and fraction of time spent in each state
to test for differences between HC and SZ group. The results for
transition matrices (TM), mean dwell time (MDT) and fraction
of time spent (FR) are shown in Figures 7B–D, respectively. The
transition matrix indicates that healthy controls tend to stay in
State 1 more frequently, whereas patients with schizophrenia
tend to transition more frequently from State 3 to State 4 and

FIGURE 6 | Predictability results using Naïve Bayes classifier. Red color indicates the histogram of prediction accuracies obtained for the SZ group whereas blue

indicates the histogram of prediction accuracies for the HC group. X-axis denotes the number of clusters, C used to cluster the features from tdFNC/sdFNC graphs.

The green “+” sign denotes the mean value and “�” sign indicates the median value. The markers at the bottom show results from a permutation test to test for

statistical differences (p < 0.05, corrected). A “*” denotes the accuracies are significantly higher using sdFNC features compared with tdFNC features. A “⊲” denotes

higher prediction accuracy for SZ group. We observe a higher prediction accuracy using sdFNC features and a significantly higher accuracy for the patients group, for

different number of clusters.
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FIGURE 7 | (A) The top two rows shows the group-specific states obtained using sdFNC matrices. The bottom row corresponds to the features that demonstrated

significant difference (p < 0.05, corrected) between HC and SZ group. Red indicates higher value for SZ whereas blue indicates higher value for HC. (B) Transition

matrix (TM) with each element in the matrix showing transitions that are significantly (p < 0.05, corrected) different. Blue indicates HCs transitioned more frequently

from current state to next state whereas red indicates SZs transitioned more frequently from current state to next state. (C) Mean dwell time of each state for the HC

and SZ group. (D) Fraction of time spent (FR) in each state by the HC group and SZ group. Results indicate that SZ subjects tend to transition more frequently from

State 3 to State 4 whereas those obtained using dsFNC graphs indicate that SZ subjects transition more frequently from State 1 to State 5. We also observe that SZ

subjects tend to stay more in State 2.

State 1 to State 5. State 3 and 4 differ in the level of positive
correlation between cerebellum and auditory component, insular
and parietal component, visual and parietal component and
anterior DMN and visual component, whereas State 1 and 5 differ
in the level of positive correlation within the visual network, and
between the cerebellum and visual component. These states also
differ in the level of negative correlation between the cerebellum
and left fronto-parietal component. These connections are also
observed in State 2 where patients demonstrate a significantly
higher mean dwell time and fraction of time spent compared
to controls. Hence patients with schizophrenia tend to reside
in or switch to a state that has high positive correlation within

the visual network and between the anterior DMN and frontal
component, visual and parietal component, anterior DMN and
frontal component, and cerebellum and visual component. The
patients group also tend to reside in or switch to a state
that has high negative correlation between the cerebellum and
left fronto-parietal component. This suggests that patients with
schizophrenia are associated to a hyperconnected brain network
and studies have shown their tendency to engage more brain
regions than healthy controls (Ma et al., 2011; Ćurčić-Blake et al.,
2015; Walther et al., 2017).

Since patients with schizophrenia demonstrate a significantly
high mean dwell time and fraction of time spent in State 2, and
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controls show a high (although not significant) mean dwell time
in State 1, we discuss these two states in detail. State 2 differs
from State 1 in terms of high positive correlation within the
visual network, between frontal and anterior DMN component,
cerebellum and parietal component, cerebellum and visual
component, and DMN and insular component. A high negative
correlation is also observed between the frontal and visual
component, parietal and anterior DMN, DMN and anterior
DMN. As discussed above, a high negative correlation between
parietal and cerebellum component is due to the cognitive
process of receiving and processing sensory information one at
a time, a positive correlation between these components in State
2 suggests abnormal connectivity. A healthy brain has shown
evidence of positive correlation between anterior and posterior
DMN, and a deactivation in DMN due to an activated INS region
(Sridharan et al., 2008; Nekovarova et al., 2014). However a high
negative correlation between the anterior DMN and posterior
DMN, and a high positive correlation between posterior DMN
and insular region in State 2 of the SZ group also provides
evidence of dysfunction in the DMN domain of schizophrenia,
which is a common trait in this group (Nekovarova et al., 2014).
A high positive correlation between anterior DMN and frontal
component might suggest the activation of both region due
to their role in social behavior and impulse control. Patients
with schizophrenia are known to have paranoia traits, causing
them to be constantly aware of the surroundings and prone to
impulse control disorder. This causes hyperactivity in the DMN
and frontal components of schizophrenic patients (Fusar-Poli
et al., 2011; Guo et al., 2017; Zhou et al., 2019). The bottom
row of Figure 7 indicates the connections that demonstrated
significant difference (p < 0.05, corrected) between the HC and
SZ group. High absolute connectivity is SZ group is indicated by
red while high absolute connectivity in the HC group is indicated
by blue. State 2 shows most connections that have significantly
high absolute correlation in the SZ group. Patients exhibit high
correlation between the cerebellum and parietal component,
posterior and anterior DMN component, posterior DMN and left
fronto-parietal, auditory and DIC component, and cerebellum
and DIC network. A significantly high correlation between these
components in the SZ group suggest a hyperconnected DMN,
which is a common trait of patients with schizophrenia (Garrity
et al., 2007; Whitfield-Gabrieli et al., 2009). A significantly higher
connectivity between the anterior DMN and frontal component,
and parietal and cerebellum component provides additional
support to the hypothesis of paranoia and abnormal behavior in
schizophrenia patients.

4. CONCLUSION AND FUTURE WORK

Dynamic functional connectivity analysis is widely studied
in the temporal domain. However there are also substantial
dynamics present in the spatial variability across networks,
an understudied area. In this work, we explore the benefits
of exploiting the variability in the spatial domain using a
prediction technique. Our results indicate that for resting-state
fMRI data, the use of spatial dFNCmatrices provides meaningful
distinguishing characteristics from healthy controls and patients
with schizophrenia.We also observe a higher prediction accuracy

for the patients group compared with healthy controls, indicating
that patients are more likely to stay in or switch among a
particular group of states. We also identify the states associated
to patients with schizophrenia and study the characteristics of
these states. Our results indicate that patients with schizophrenia
tend to stay in or switch to a state corresponding to a
hyperconnected brain network. In additional, sdFNC features
show evidence of significant association of spatial networks to
a measure of paranoia in schizophrenia group, highlighting
the benefit of the proposed approach as a possible biomarker
of illness.

The higher predictability of the sdFNC features and its
ability to capture discriminating features, enables the analysis
of dFNC in the spatial domain, and leads to a number of
future directions. A study to compare different sliding window
lengths can be applied to identify a range of lengths suitable for
capturing dFNC patterns in the spatial domain. Due to large
number of samples in this domain, the sliding window length
can be reduced below 30 s as well, in order to capture highly
fluctuating networks of interest. This study would not have been
possible with conventional methods that use time courses to
study dFNC patterns, due to limited number of samples. In this
study we identified states from sdFNC patterns and obtained
state-based metrics such as transition matrix, mean dwell time
and fraction of time spent. Other metrics derived from graph-
theoretical analysis such as connectivity strength, modularity
and centrality can also be obtained. Different robust clustering
approaches can be used to obtain states and compared with the
method used in this paper. The study of dynamic functional
connectivity is prominent during resting-state during which
the neuronal activity is under no constraint as compared with
task-related fMRI. However, the benefits of spatial dynamics
can be explored under task-constraints. The main focus of this
paper is to determine the power of the spatial dynamic features
and not achieving a high classification accuracy. Hence, we
use a simple Naïve Bayes classifier for predicting the subject
class, which ensures that the classification rates would be as
independent as possible from the tuning of classifier parameters.
However, the prediction accuracy can be improved by using
complex classifiers such as kernel support vector machines
or neural networks, e.g., a seed-based approach obtained a
classification accuracy of 86.3% by using a support vector
machine classifier (Kottaram et al., 2018).
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