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Editorial on the Research Topic

Chimera States in Complex Networks

Dynamics of complex networks is a central issue in non-linear science with applications to
different fields ranging from natural to technological and socio-economic systems. The interplay
of non-linear dynamics, network topology, naturally arising delays, and random fluctuations
results in a plethora of spatio-temporal synchronization patterns. Chimera states in dynamical
networks consist of coexisting domains of spatially coherent (synchronized) and incoherent
(desynchronized) behavior. They are a manifestation of spontaneous symmetry-breaking in
systems of identical oscillators, and occur in a variety of physical, chemical, biological, neuronal,
ecological, technological, or socio-economic systems.

In this Research Topic, we focus on recent developments with future promising perspectives, for
instance, chimera patterns in small networks, adaptive networks, complex coupling topologies like
modular, fractal, or multilayer connectivity, coupled phase and amplitude dynamics, information
flow in chimera states, as well as filtering and control methods for stabilizing chimera states.

In particular, multilayer networks where the nodes are distributed in different layers offer
better representation of the topology and dynamics of real-world systems in comparison with
one-layer structures. One of the most promising applications of the multilayer approach is the
study of the brain, where the neurons can form different layers depending on their connectivity
through chemical or electrical synapses, or technological interdependent systems, i.e., those systems
in which the correct functioning of one of them strongly depends on the status of the others.
For instance, multilayer networks with interconnected layers naturally occur in transportation
systems and electrical power grids. The intriguing dynamics of multiplex networks includes relay
synchronization and partial synchronization patterns like chimera states.

The articles in this Research Topic are grouped such that we start from theoretical aspects and

methods, and then proceed to various applications in physics, chemistry, neurosciences, ecology,
and social dynamics. The first six articles focus on theoretical advances. Deschle et al. quantify the
directed flow of information within and between two coupled subpopulations of a phase oscillator
network in a chimera state. For this purpose they apply the delayed mutual information to the
time points at which the individual phases pass through their respective Poincaré sections. The
authors report on a functional flow of information from the desynchronized to the synchronized
subpopulation of the phase oscillator network. Banerjee et al. study amplitude chimeras, which
are distinct from conventional phase chimeras, since the coexistence of coherent and incoherent
domains here refers not to the correlation of the oscillator phases, but of their amplitudes: all
the oscillators have the same phase velocity, however, the oscillators in the incoherent domain
show periodic oscillations with randomly shifted origin. The authors investigate the effect of local
low-pass or all-pass filtering in the coupling path, and show that filtering can suppress amplitude
chimeras and give rise to global synchrony, in a generic model of Stuart-Landau oscillators.
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The paper by Sathiyadevi et al. investigates imperfect amplitude
mediated chimeras and shows that these states occur due to
competing attractive and repulsive interactions in non-locally
coupled networks of Stuart-Landau oscillators. The distinctive
feature of these patterns is that the oscillators constituting the
synchronized and desynchronized groups drift randomly in time
between the homogeneous and inhomogeneous regimes. The
authors demonstrate the robustness of the observed amplitude
mediated chimera state against Gaussian white noise. Dmitrichev
et al. study the mechanism of chimera state cloning in a large
two-layer multiplex network of coupled relaxation oscillators
with short-term interactions. In more detail, for certain values
of strength and time of multiplex coupling, in the initially
disordered layer, the authors detect a chimera state with the
same characteristics, like the chimera which has been set in
the other layer. The authors show that the cloning is not
related to synchronization, but arises from the competition of
oscillations in pairs of elements from different layers. Sawicki
et al. explore chimera states in a three-layer network of FitzHugh-
Nagumo oscillators, where each layer represents a non-locally
coupled ring. In particular, the role of time delays introduced
in both inter- and intra-layer interactions is investigated. In the
parameter plane of the two delay times, the authors determine the
regions where chimera patterns occur, alternating with regimes
of coherent states. It turns out that a proper choice of time
delay allows for achieving the desired state of the network:
chimera states or coherent patterns, full or relay inter-layer
synchronization. The work of Omelchenko et al. deals with
the control of chimera states in multilayer networks. In small-
size networks, chimera states usually exhibit short lifetimes
and erratic drifting of the spatial position of the incoherent
domain. A tweezer control scheme combining both symmetric
and asymmetric feedback loops can stabilize and fix the position
of chimera states. Here this control method is applied to a two-
layer network of Van der Pol oscillators. Tweezer control, applied
to only one layer, successfully stabilizes chimera patterns in the
other, uncontrolled layer.

The next seven articles feature various applications. Rode
et al. apply chimera states to chemical oscillators combining
numerical simulations with experiments on photo-coupled
relaxation oscillators. Focusing on the case of strong interactions
the authors find in chemical experiments that beyond weak
coupling chimera patterns consist of different coexisting cluster
states. Moreover, numerical modeling reveals that the observed
cluster states result from a phase-dependent excitability that is
also commonly observed in neural tissue and cardiac pacemaker
cells. Ocampo-Espindola et al. investigate the formation of
weak chimera states in modular networks of electrochemical
oscillators. Two globally coupled populations of highly non-
linear oscillators which are weakly coupled through a collective
resistance are studied experimentally and numerically. The
authors find very robust chimera states and conclude that they
could provide a mechanism for the generation of chimeras

in biological systems. The modular multilayer topology of
the connectome of C. elegans is studied by Pournaki et al.
They consider a network consisting of two synaptic (electrical
and chemical) layers and one extrasynaptic (wireless) layer.
Synchronization patterns and chimera-like states are investigated
using metrics of synchronization based on Euclidean distances
and a new method of finding clustered nodes by correlating
their dynamical variables. Their findings allow them to relate the
dynamics of the model neurons to biological neuronal functions
such as motor activities. Argyropoulos and Provata apply
chimera states to neural networks of coupled Leaky Integrate-
and-Fire models. They investigate the formation of chimera
states in 2D lattices with hierarchical (fractal) connectivity
that has the form of a deterministic or a random Sierpinski
carpet. Their findings confirm previous studies on symmetric
deterministic hierarchical connectivities and extend them to
slanted and random fractals. Hizanidis et al. analyze chimera
states in network models of locally and non-locally coupled
superconducting quantum interference devices (SQUIDs). They
demonstrate numerically that for both types of coupling, chimera
states as well as other spatially non-uniform states can be
generated under time-dependent applied magnetic flux for
appropriately chosen initial conditions. Furthermore, chimera
states can be achieved in the presence of a constant (DC) flux
gradient with the SQUIDmeta-material initially at rest. Saha et al.
apply chimera states to an ecological network. The population
dynamics of different species, dispersed in patches and connected
by weighted mean-field diffusion, is described by a modified
Rosenzweig-MacArthur predator-prey model. Various complex
population patterns emerge, namely multicluster and chimera
states, besides synchrony and homogeneous steady states. Lugo
et al. study chimera states in learning dynamics. An agent-
based two-layer model of the social dynamics in which the
state of the agents corresponds to one of two possible strategies
is used to find new configurations which do not exist in a
single isolated social network. They include chimera states in
which two different collective states coexist in the network,
namely, one with full coordination and one with coexistence
of strategies.
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We investigated interactions within chimera states in a phase oscillator network

with two coupled subpopulations. To quantify interactions within and between these

subpopulations, we estimated the corresponding (delayed) mutual information that—in

general—quantifies the capacity or the maximum rate at which information can

be transferred to recover a sender’s information at the receiver with a vanishingly

low error probability. After verifying their equivalence with estimates based on the

continuous phase data, we determined the mutual information using the time points

at which the individual phases passed through their respective Poincaré sections. This

stroboscopic view on the dynamics may resemble, e.g., neural spike times, that are

common observables in the study of neuronal information transfer. This discretization

also increased processing speed significantly, rendering it particularly suitable for a

fine-grained analysis of the effects of experimental and model parameters. In our

model, the delayed mutual information within each subpopulation peaked at zero

delay, whereas between the subpopulations it was always maximal at non-zero delay,

irrespective of parameter choices. We observed that the delayed mutual information

of the desynchronized subpopulation preceded the synchronized subpopulation. Put

differently, the oscillators of the desynchronized subpopulation were “driving” the ones

in the synchronized subpopulation. These findings were also observed when estimating

mutual information of the full phase trajectories. We can thus conclude that the delayed

mutual information of discrete time points allows for inferring a functional directed flow

of information between subpopulations of coupled phase oscillators.

Keywords: chimera states, phase oscillators, coupled networks, mutual information, information flow

1. INTRODUCTION

Oscillatory units are found in a spectacular variety of systems in nature and technology. Examples
in biology include flashing fireflies [1], cardiac pacemaker cells [2–6], and neurons [7–11]; in
physics one may think of Josephson junctions [12–14], electric power grids [15–21], and, of
course, pendulum clocks [22]. Synchronization plays an important role in the collective behavior
of and the communication between individual units [23–25]. In the last two decades or so, many
studies addressed the problem of synchronization in networks with complex structure, such as
networks of networks, hierarchical networks and multilayer networks [26–29]. Alongside efforts

6
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studying synchronization on networks, a new symmetry breaking
regime coined chimera state has been observed. In a chimera
state an oscillator population “splits” into two parts, one being
synchronized and the other being desynchronized [30–32], or
more generally, different levels of synchronization [33]. This
state is a striking manifestation of symmetry breaking, as it may
occur even if oscillators are identical and coupled symmetrically;
see [34, 35] for recent reviews. Chimera states have spurred
much interest resulting in many theoretical investigations, but
they have also been demonstrated in experimental settings using,
e.g., mechanical and (electro-)chemical oscillators or lasers [36–
39], and electronic circuits implementing FitzHugh-Nagumo
neurons [40].

Chimera states can be considered patterns of localized
synchronization. As such they may contribute to the coding
of information in a network. This is particularly interesting
since systems with chimera states typically display multi-stability,
i.e., different chimera configurations may co-exist for identical
parameters [41–44]. Such a network may hence be able to encode
different stimuli through different chimera states without the
need for adjusting parameters or altering network structure.
It is even possible to dynamically switch between different
synchronization patterns, thus allowing for dynamic coding of
information [45, 46].

The mere existence of different levels of synchronization in
the same network can also facilitate the transfer of information
across a network, especially between subpopulations. Coherent
oscillations between neurons or neural populations have
been hypothesized to provide a communication mechanism
while full neural synchronization is usually considered
pathological [24, 47, 48]. A recent study reported chimera-
like states in neuronal networks in humans, more specifically in
electro-encephalographic patterns during epileptic seizures [49].
Admittedly, our understanding of these mechanism is still in
its infancy also because the (interpretations of) experimental
studies often lack mathematical rigor, both regarding the
description of synchronization processes and the resulting
implications for the network’s capacity for information
processing. What is the information transfer within and between
synchronized and desynchronized populations? We investigated
the communication channels between two subpopulations
in a system of coupled phase oscillators. Since we designed
that system to exhibit chimera states, we expected non-trivial
interactions between the subpopulations. To tackle this, we
employed the delayed version of mutual information which
measures the rate at which information can be sent and
recovered with vanishingly low probability of error [50].
Furthermore, assuming symmetry of our configuration, any
directionality found in the system should be regarded of
functional nature. With this we sought not only to answer the
aforementioned question but to contribute to a more general
understanding of how information can be transferred between
subpopulations of oscillators. In view of potential applicability
in other (experimental) studies, we also investigated whether
we could gain sufficient insight into this communication
by looking at the passage times through the oscillators’
Poincaré sections rather than evaluating the corresponding

continuous-time data. Such data may resemble, e.g., spike trains
in neurophysiological assessments.

Our paper is structured as follows. First, we introduce
our model in the study of chimera states [32, 51–53]. It
consists of two subpopulations that either can be synchronized
or desynchronized. We generalize this model by including
distributed coupling strengths among the oscillatory units as well
as additive Gaussian white noise.We briefly sketch the conditions
under which chimera states can exist. Second, we outline the
concept of delayedmutual information and detail how to estimate
this for “event-based” data where we define events via Poincaré
sections of the phase oscillators’ trajectories. With this tool at
hand, we finally investigate the flow of information within and
between the two subpopulations, and characterize its dependency
on the essential model parameters.

2. MODEL

We build on a variant of the noisy Kuramoto-Sakaguchi
model [54], generalized to M subpopulations of phase
oscillators [55]. The phase φj,µ(t) of oscillator j = 1, . . . ,N
in population µ = 1, . . . ,M evolves according to

dφj,µ(t)=



ωj,µ +

M
∑

ν=1

Nµ
∑

k=1

Cjk,µν sin
(

φk,ν(t)− φj,µ(t)− αµν
)



 dt

+ dWj,µ(t), (1)

where ωj,µ is the natural frequency of the oscillator j in
subpopulation µ. Throughout our study ωj,µ is drawn from a
zero-centered Gaussian distribution with variance σ 2

ω. Oscillator
j in population µ and oscillator k in population ν interact
sinusoidally with coupling strength Cjk,µν and a phase lag α.
The phase lag α varies the interaction function between more
cosine (α → π/2) or more sine like-behavior (α → 0) and
can be interpreted as a (small) transmission delay between
units [34]. The additive noise term dWj,µ(t) represents mean-
centered Gaussian noise with variance (strength) σ 2

W , i.e.,
〈dWj,µ(t)dWk,ν(t

′)〉t = σ 2
Wδjkδµνδ(t − t′).

For the sake of legibility, we restrict this model to the case of
M = 2 subpopulations of equal size N1 = N2 = N, as illustrated
in Figure 1A. In the absence of noise and in the case of identical
oscillators, uniform phase lag and homogeneous coupling, i.e.,
for σW = 0, σω = 0, αµν := α, and σC = 0, respectively,
the aforementioned studies establishes corresponding bifurcation
diagrams [32, 51, 52].

To generalize the model toward more realistic, experimental
setting, we included distributed coupling strengths
via a non-uniform, (statistically) symmetric coupling
between subpopulations. This can be cast in the following
coupling matrix:

C =
1

N

(

Cζ Cη
Cη Cζ

)

∈ R
2N×2N (2)

with block matrices Cζ ,Cη ∈ RN×N . The self-coupling
within the subpopulation and the neighbor coupling between
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FIGURE 1 | (A) Chimera state in a network with M = 2 oscillator

subpopulations and non-uniform coupling, simulated using Equation (1).

(B) The time evolution of the order parameter, |Zµ(t)|,µ = 1, 2, reflects the

fluctuations driven by the coupling and the external field. Despite temporary

deviations off the synchronization manifold |Z1| = 1, the system remains near

the chimera state attractor. That is, chimera states appear robust to both

coupling heterogeneity and additive noise. Considering the time-average of the

order parameters, the state may be classified as a stable chimera.

(C) Snapshot in time of the phases φj,µ(t). The probability density distributions

(PDF) of the phases reveal a phase shift between subpopulations 1 and 2,

given by ψ := arg (Z2/Z1), which remains on average constant in time,

ψ = 0.26. (D) Times t′
j,µ correspond to the Poincaré sections of the phases

i.e., t′
j,µ such that φi (t

′
j,µ) = 0. The time period of collective oscillation is defined

as T := 1/� and � := 〈〈
dφ
dt

〉t〉j where 〈·〉t and 〈·〉j denote averages over time

and oscillators, respectively. Parameters are: A = 0.275, β = 0.125,

σC = 0.01, σω = 0.01, σ2
W

= 0.001.

subpopulations are represented by Cζ and Cη, respectively. Each
block Cζ (or Cη) is composed of random numbers drawn from
a normal distribution with mean ζ (or η) and variance σ 2

C. By
this, we can tune the heterogeneity in the network.We would like
to note that, in general, the chosen coupling is only symmetric
for σC > 0 in the sense of a statistical average, and that the
expected coupling values ζ and η in each block only can be
retrieved by the mean in the limit of large numbers. Although the
symmetry between the two subpopulations 1 ↔ 2 is broken and
only preserved in a statistical sense in the limit of large numbers,
we verified that chimera states appeared in both configurations.
That is, subpopulation 1 is synchronized and subpopulation 2 is
desynchronized (SD) and subpopulation 2 is synchronized and
subpopulation 1 is desynchronized (DS), for a particular choice of
parameters using numerical simulations. Another consequence
of distributed coupling strengths is that only a very few oscillators
may have experienced negative (inhibitory) coupling, which can
be neglected.

Following Abrams et al. [51], we parametrize the relation
between strengths by A = ζ − η with ζ + η = 1 and the
phase lag αµ,ν by βµ,ν = π

2 − αµ,ν which here can be kept
homogeneous for the entire network, i.e., βµ,ν := β . By this,
we may recover the results reported in Montbrió et al. [32] and
Abrams et al. [51], in the limit σC → 0, under the proviso of
σW = σω = 0. In brief, increasing A from 0 while fixing α (or
β := π/2 − α) yields the following bifurcation scheme: a “stable
chimera” is born through a saddle-node bifurcation and becomes
unstable in a supercritical Hopf bifurcation with a stable limit
cycle corresponding to a “breathing chimera,” which eventually is

destroyed in a homoclinic bifurcation. For all parameter values,
the fully synchronized state exists and is a stable attractor; see
also Figure A1. Subsequent studies demonstrated robustness of
chimera states against non-uniformity of delays (αµν 6= α) [33],
heterogeneity of oscillator frequencies (σω > 0) [56], and
additive noise [57]. Although non-uniform phase lags lead to
less degenerate dynamics and give room for more complex
dynamics [33, 53], we restrict ourselves to the case of uniform
phase lags without compromising the essential phenomenology
of chimera states.

The macroscopic behavior, i.e., the synchronization of the
two populations, may be characterized by complex-valued
order parameters, which are either defined on the population
level, i.e., Zµ := N−1

∑N
j=1 e

iθµ,j , or globally, i.e., Z =

(2N)−1
∑M
µ=1

∑N
j=1 e

iθµ,j . As common in the studies of coupled

phase oscillators, the level of synchrony can be given by Rµ :=

|Zµ|. Thus, Rµ = 1 implies that oscillators in population µ
are perfectly phase synchronized (S), while for Rµ < 1 the
oscillators are imperfectly synchronized or de-synchronized (D).
For our two-subpopulation case, full synchrony (SS) hence occurs
when R1 / 1 and R2 / 1, and chimera states are present
if R1 < 1 and R2 / 1 or vice versa. The angular order
parameter, 8µ := argZµ keeps track of the average phase of
the (sub)population. Fluctuations inherent to the model may
affect the order parameter as illustrated in Figure 1B (please refer
to section 3.1 for the numerical specifications). We therefore
always considered averages over time, 〈Rµ〉t , when discussing
the stability of a state. In fact, in our model chimera states
remain stable for relatively large coupling heterogeneity, σC > 0
presuming σω > 0 and σW > 0, as is evidenced by numerical
simulations; see also Figure A1. The perfect synchronization
manifold with R = 1 cannot be achieved; see Figure 1B. Further
aspects of these noisy dynamics will be presented elsewhere.

Adding noise and heterogeneity to the system may alter its
dynamics. In the present work we concentrated on parameter
regions characterized by the occurrence of dynamic states that
did resemble stable chimeras, i.e., 〈R1〉t > 〈R2〉t , where 〈·〉t
denotes the average over a duration of T = 9 · 106 time steps
(after removing a transient of T = 105 time steps). Figure A1
provides an overview and explanation of how parameter points
A and β were selected.

3. IMPLEMENTATION AND ANALYSIS

3.1. Simulations
For the numerical implementation we employed a Euler-
Maruyama schemewith1t = 10−2 forN = 128 phase oscillators
per subpopulation that were evolved for T = 106 [54]. We varied
the coupling parameter A and the phase lag parameter β , while
we fixed the width (standard deviation) of the natural frequency
distribution to σω = 0.01 and of the coupling distribution to
σC = 0.01. The additive noise had variance σ 2

W = 0.001.

3.2. Mutual Information
Mutual information I(X;Y), first introduced by Shannon and
Weaver [58], is meant to assess the dependence between
two random variables X and Y . It measures the amount of
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information that X contains about Y . In terms of communication
theory, Y can be regarded as output of a communication channel
which depends probabilistically on its input, X. By construction,
I(X;Y) is non-negative; it is equal to zero if and only if X
and Y are independent. Moreover, I(X;Y) is symmetric, i.e.,
I(X;Y) = I(Y;X) implying that it is not directional. The mutual
informationmay also be considered as ameasure of the reduction
in the uncertainty of X(Y) due to the knowledge of Y(X) or, in
terms of communication, the rate at which information is being
shared between the two [50]. Themaximum rate at which one can
send information over the channel and recover it at the output
with a vanishingly low probability of error is called channel
capacity, c = maxp(x) I(X;Y). In networks with oscillatory
nodes, the random variables are the degree of synchronization of
different subpopulations, and the rate of information shared will
depend on the state of the system for each of the subpopulations.

Mutual information can be defined via the Kullback-Leibler
divergence or in terms of entropies,

I(X;Y) = H(X)−H(X|Y)

= H(X)+H(Y)−H(X,Y). (3)

whereH(X) is the entropy of the random variable X, i.e.,H(X) =
−

∫

dx pX(x) log pX(x) with pX(x) being the corresponding
probability density.

3.3. Delayed Mutual Information
For time-dependent random variables, one may generalize
this definition to that of a delayed mutual information. This
variant dates back to Fraser and Swinney [59], who used the
delayed mutual information for estimating the embedding delay
in chaotic systems—in that context the delayed auto-mutual
information is often considered a “generalization” of the auto-
correlation function [60]. Applications range from the study of
coupled map lattices [61] via spatiotemporal [62] and general
dependencies between time series [63] to the detection of
synchronization [64]. With the notation IXY := I(X;Y) and
HX := H(X), the delayed mutual information for a delay τ
may read

IXY (τ ) = I(X(t);Y(t + τ ))

= HX +HY −HXY (τ ) (4)

which has the symmetry IXY (τ ) = IYX(−τ )
1. With this

definition, one can measure the rate of information shared
between X and Y as a function of time delay τ . In fact, we are
not particularly interested in the specific value of the mutual
information but rather focus here on the time delay at which
the mutual information is maximal. Hence, we define τmax :=

argmaxτ IXY (τ ). A positive (negative) value of τmax implies that
Y shares more information with a delayed (advanced) X. This
means there is an information flow from X(Y) to Y(X).

1This follows because of: IXY (τ ) = I
(

X(t);Y(t + τ )
)

= I
(

X(t − τ );Y(t)
)

=

I
(

Y(t);X(t − τ )
)

= IYX(−τ ).

3.4. Delayed Mutual Information Between
Subpopulations
3.4.1. Estimates Using Continuous-Time Data
When the time-dependent random variables are continuous time
series uµ(t) and uν(t) associated to populations µ and ν, the
delayed mutual information can be estimated from Equation (4)
for X(t) = uµ(t) and Y(t) = uν(t),

Ĩµν(τ ) = Ĩ
(

uµ(t); uν(t + τ )
)

. (5)

We determined the probability densities using kernel density
estimators with Epanetchnikov kernels with bandwidths given
through a uniform maximum likelihood cross-validation search.
For our parameter settings (254 oscillators and 106 samples), the
resulting bandwidths ranged from about 0.10 to 0.18 rad. This
software implementation is part of the KDE-toolbox; cf. [65] and
Thomas et al. [66] for alternative schemes.

3.4.2. Estimates Using Event-Based Time Data
For the aforementioned event signals in the subpopulations 1
and 2, i.e., discrete time points are defined as passing moments
through the respective Poincaré sections. The probability

densities to incorporate when estimating the mutual information
are densities of events, or densities of times. We implemented the
probability estimates as follows. Let Sµ be a set of event times, i.e.,

Sµ = {t
(m)
µ,1 , . . . , t

(m′)
µ,Nµ

} where t
(m)
µ,i stands for the time of the m-

th event of oscillator i in subpopulation µ. Then, the probability
density for an event to happen at time t in subpopulation µ is
pµ(t) = P(t ∈ Sµ) and the probability of an event to happen at
time t in subpopulation µ and time t + τ in subpopulation ν is

pµν(t, t + τ ) = P
({

t ∈ Sµ
}

∩ {t + τ ∈ Sν}
)

= P
(

t ∈ Sµ
)

+ P (t + τ ∈ Sν)

− P
({

t ∈ Sµ
}

∪ {t + τ ∈ Sν}
)

. (6)

The delayed mutual information can be given as

Iµν(τ ) =

∫

dt pµν(t, t + τ ) log
pµν(t, t + τ )

pµ(t)pν(t)

= Hµ +Hν −Hµν(τ ). (7)

We again computed the probability densities using kernel density
estimators [65] but now involving Gaussian kernels. We also
adjusted the bandwidth selection to a spherical, local maximum
likelihood cross-validation due to the sparsity of the data and
the resulting bandwidths ranged from about 25 to 35 time units.
These results appeared robust when using the aforementioned
uniform search; again we employed the KDE-toolbox.

3.5. Events Defined Via Poincaré Sections
We analyzed the times t1,µ, t2,µ, . . . tN,µ at which the individual
phases φ(t)j,µ passed through their respective Poincaré sections.

The latter were defined as tj,µ ∈ R
+
0 :φj,µ(tj,µ)/2π ∈ Z. As

mentioned above, every subpopulation µ generated an “event

sequence” Sµ = {t
(m)
µ,1 , . . . , t

(m′)
µ,Nµ

}; which, as already said, may be

considered reminiscent of spike trains; cf. Figure 1C.
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FIGURE 2 | (A) Mutual informations Iµν as a function of τ between and within

the two subpopulations µ and ν. (C) The range-zoomed curve reveals a

directionality in the mutual information I12(τ ) between the two subpopulations

1 and 2, with a maximum peak Imax := I12(τmax) located at τmax < 0.

(B,D) Comparison of the average mutual information obtained from

continuous time data (solid), Ĩ12, vs. event time data (dotted), I12. Obviously,

locations of the peaks agree very well. (B–D) display the average mutual

information (I− 〈I〉t )/maxt (I− 〈I〉t ) with 〈I〉t denoting the average over time

after discarding a transient (see text for details). Parameters across panels are

A = 0.275, β = 0.125, σω = 0.01, σC = 0.01, σ2
W

= 0.001.

4. RESULTS

To determine the directionality of the information flow in
the network we computed the time lagged mutual information
within the subpopulations, I11(τ ) and I22(τ ) and between them,
I12(τ ) = I21(−τ ).

The first results for the event data outlined in section 3.5 are
shown in Figure 2A. Since the recurrence of events mimicked the
mean frequency of the phase oscillators, the mutual information
turned out periodic. As expected, we observed (average) values
of the mutual information that differed between I11 (red), I22
(blue), I12 (black). This relates to the difference in entropy of the
subpopulations, with the less synchronized one (µ = 2) being
more disordered. The latter, hence, contained more entropy.
However, since we were not interested in the explicit values of
Iµν(τ ), we could rescale the mutual information to maximum
value which allowed for a comparative view when zooming in to
the neighborhood of τ ≈ 0; see Figure 2C. The off-zero peak
of Imax := I12(τmax) in τ = τmax clearly indicated a directed
information flow, i.e., there is a functional directionality despite
the structural symmetry of our model.

When comparing the estimates for the mutual information
obtained from the event data, I, with those from the continuous-
time, Ĩ, we found little to no difference in peak location. That is,
the positions τmax of the maximum peaks, Ĩmax and Imax, were
nearly identical using either method as shown in Figures 2B,D.
Thus, to study the effects of varying model parameters on
Iµν(τ ), our subsequent analysis may solely rely on the event
data approach.
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FIGURE 3 | Dependency of (Imax, νmax) on the synchronization level and on

the parameters β and A. (A) The maximizing time delay τmax has a nearly

linear dependency on the angular phase difference of order parameters

arg (Z1/Z2). (B) τmax appears largely independent of the ratio of the

magnitude of order parameters |Z1/Z2|, though results are weakly dependent

on β. (C,D) The normalized maximum peak of mutual information Imax/I
SS
max

shows a weak dependency on the ratio of order parameters. All other

parameters are fixed at σω = 0.01, σC = 0.01, σ2
W

= 0.001.

Varying the values of A and β revealed a strong relation
between the location of the peak of the delayed mutual
information τmax and the relative phase arg (Z1/Z2) between the
two subpopulations; see Figure 3A. This convincingly shows that
our approach to analyze the event-based data reveals important
information about the (otherwise continuous) dynamics of the
subpopulations, here given by the phases (arguments) of the
local order parameters. By contrast, the relative strength of local
synchronization |Z1/Z2| had little to no effect on τmax; see
Figure 3B. These dependencies were inverted when looking at
the value of mutual information, Imax/I

SS
max; see Figures 3C,D.

Consequently, the value of mutual information was affected
by relative strength of local synchronization |Z1/Z2| | after
all the more a subpopulation is synchronized, the lower the
corresponding entropy. However, effects were small and probably
negligible when transferring to (selected) experimental data.
More details about the normalization factor ISSmax are discussed
in Appendix B.

5. DISCUSSION

The delayed mutual information from event data, here, the
passing times through the oscillators’ Poincaré sections, agreed
with that of the continuous data. This is an important
finding as it shows that studying discrete event time series
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allows for inferring information-related properties of continuous
dynamics. This offers the possibility to bring our approach
to experimental studies, be that in neuroscience, where spike
trains are a traditional measure of continuous neuronal activity,
or economics, where stroboscopic assessments of stocks are
common practice. Here, we used this approach to explore
the information flow within and between subpopulations of
a network of coupled phase oscillators. This information flow
turned out to be directed.

Mutual information is the traditional measure of shared
information between the two systems [58]. Our findings relied
on the introduction of a time delay τ , which readily allows
for identifying a direction of flow of information. This concept
is much related to the widely used transfer entropy [67, 68].
In fact, transfer entropy is the delayed conditional mutual
information [69, 70]. It therefore differs from our approach
primarily by a normalization factor. Since here we were not
interested in the absolute amount of information (flow), we could
simplify assessments and focus on delayed mutual information
| adding the conditional part jeopardizes the approximation
of probabilities, i.e., estimating transfer entropy in a reliable
manner typically requires more data than our delayed mutual
information. A detailed discussion of these differences is beyond
the scope of the current study.

For our model we found that the delayed mutual information
between the synchronized subpopulation and the less
synchronized one peaked at a finite delay τmax 6= 0. Hence,
there was a directed flow of information between the two
subpopulations. Since we found that τmax < 0 for I12(τ ),
the direction of this flow was from the less synchronized
subpopulation to the fully synchronized one, i.e., 2 → 1 or
D → S. In fact, the delay largely resembled the relative phase
between the corresponding local order parameters, as shown
in of Figure 3A. We could not only readily identify the relative
phase by encountering event data only, but our approach
also allowed for attaching a meaningful interpretation in an
information theoretic sense. This is promising since event data
are, as stated repeatedly, conventional outcome parameters in
many experimental settings. This is particularly true for studies
in neuroscience, for which the quest on information processing
is often central. There, networks are typically complex and
modular. The complex collective dynamics switches at multiple
scales, rendering neuronal networks especially exciting when it
comes to information routing [71]. As of yet, our approach does

not allow for unraveling dynamics information routing. This
will require extending the (time-lagged) mutual information to
a time-dependent version, e.g., by windowing the data under
study. We plan to incorporate this in future studies.

6. CONCLUSION

Estimating the delayed mutual information based on time points
at which the individual phases passed through their respective
Poincaré sections allows for identifying the information flow
between subpopulations of networks. If the network displays
chimera states, the information flow turns out to be directed. In
our model of coupled phase oscillators, the flow of information
was directed from the less synchronized subpopulation to the
fully synchronized one since the first preceded the latter. Our
approach is a first step to study information transfer between
spike trains. It can be readily adopted to static well-defined
modular networks and needs to be upgraded to a time dependent
version to be applied to real, biological data.
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Amplitude chimera (AC) is an interesting chimera pattern that has been discovered

recently and is distinct from other chimera patterns, like phase chimeras and amplitude

mediated phase chimeras. Unlike other chimeras, in the AC pattern all the oscillators

have the same phase velocity, however, the oscillators in the incoherent domain show

periodic oscillations with randomly shifted origin. In this paper we investigate the effect

of local filtering in the coupling path on the occurrence of AC patterns. Our study is

motivated by the fact that in the practical coupling channels filtering effects come into play

due to the presence of dispersion and dissipation. We show that a low-pass or all-pass

filtering is actually detrimental to the occurrence of AC. We quantitatively establish that

with decreasing cut-off frequency of the filter, an AC transforms into a synchronized

pattern. We also show that the symmetry-breaking steady state, i.e., the oscillation death

state can be revoked and rhythmogenesis can be induced by local filtering. Our study

will shed light on the understanding of many biological systems where spontaneous

symmetry-breaking and local filtering occur simultaneously.

Keywords: chimera, amplitude chimera, oscillation death, filtering, control, rhythmogenesis, all-pass filter

1. INTRODUCTION

Networks of coupled identical oscillators show various cooperative behaviors. From the symmetry
considerations they can be categorized into two broad types: (i) symmetric (or symmetry
preserving) states, like synchronization, phase locking, and amplitude death (AD) state [1, 2], and
(ii) symmetry-breaking states, such as oscillation death (OD) [2] and chimera states [3]. Among all
these cooperative behaviors, in the center of recent research is the chimera state [4, 5] discovered
by Kuramoto and Battoghtokh in 2002. Chimera is a counterintuitive spatiotemporal pattern in
which coherence and incoherence coexist in a network of identical oscillators [3, 6]. In the initial
years studies on chimeras focused on exploring several aspects of chimera theoretically (see two
recent reviews on chimeras in [3, 6] for a detailed discussion). Later on experimental observations
of chimeras established their robustness in real systems. After the first experimental evidence of
chimeras in optical systems [7] and chemical oscillators [8], they have been observed experimentally
in several other systems also, e.g., in mechanical systems [9, 10], electronic [11, 12], optoelectronic
delayed-feedback [13–16], electrochemical [17–19] oscillator systems and Boolean networks [20].
Studies on chimeras are continuing to be a vibrant area of research owing to its connection to
various natural phenomena and systems, including epileptic seizure [21], unihemispheric sleep
[22, 23], ecological synchrony [24, 25], social systems [26], and quantum systems [27].

Although chimeras were discovered in phase oscillators, later on the notion was extended to
the general class of oscillators having both phase as well as amplitude dynamics. Those oscillators
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may show amplitude mediated phase chimeras (AMC) [28],
which is the coexistence of synchrony and asynchrony in both
phase and amplitude: here in the incoherent (coherent) domain
oscillators have disparate (same) phase velocities. Recently,
a new type of chimera has been discovered by Zakharova
et al. [29] called amplitude chimera (AC), in which all the
oscillators of the network are correlated in phase, however, in
the incoherent domain nodes have uncorrelated amplitude. The
distinct signature of an AC state is that in its coherent domain
nodes oscillate around the origin and have equal amplitude,
however, nodes belonging to the incoherent domain show limit
cycles of disparate amplitude and those limit cycles are shifted
from the origin.

In contrast to other chimera patterns, AC has strong
connections to another symmetry-breaking steady state, namely
the oscillation death state (OD) [2, 30–34]. The bridge between
AC and OD is mediated by an interesting emergent spatial
pattern called chimera death [29, 35], which carries the attributes
of both AC and OD. Since AC is the coexistence of spatially
homogeneous and inhomogeneous limit cycles, therefore, it is
believed to have relevance in the underlying mechanism for
cellular differentiation [36, 37] and ecological oscillations [24, 25,
38, 39] where coexistence of inhomogeneity and homogeneity
appears naturally.

As amplitude chimeras are a recently discovered variant of
chimera patterns, therefore, it is less explored: the effect of
node dynamics and coupling on the occurrence of AC demands
further investigations. Specifically, in realistic networks, where
signals often suffer from time delay [40], noise, dispersion
and dissipation [41], their effect on the AC pattern will be
important to explore. Although, the effect of noise and time
delay has recently been explored in detail in Loos et al. [42]
and Gjurchinovski et al. [43], however, the effect of dispersion
and dissipation on the AC state has not been studied yet. In
the presence of dispersion, signals having different frequencies
propagate with different velocities. Whereas, dissipation causes
attenuation and signal loss. A channel having both dispersion
and dissipation is said to behave like a low-pass filter. On the
other hand, a channel having only dispersion is said to behave
as an all-pass filter [44]. Several physical and biological systems
contain inherent local low-pass filters (LPFs): For example, the
musculoskeletal system of human body acts as low-pass filter
[45], the abdominal ganglion of crayfish contains local LPFs [46],
LPF is one of the building blocks of phase-locked loops [47]. On
the other hand, in the case of electronic communications and
neuronal systems the presence of local amplifiers or ion channels
[48], respectively, compensate for the dissipation, however, in
those systems signals still suffer dispersions making the coupling
path to behave as an all-pass filter (APF). The effect of low-pass
filtering was studied before in the context of synchronization
[49, 50] and rhythmogenesis from an amplitude or oscillation
death state [41] (by rhythmogenesis we mean the process by
which the rhythmic behavior of individual nodes in a network
of coupled oscillators is restored from the state of suppressed
oscillations without changing the intrinsic parameters associated
with the individual nodes); Banerjee et al. [51] reported a novel
transition from homogeneous to inhomogeneous limit cycle as a

consequence of low-pass or all-pass filtering. However, hitherto
the effect of filtering on the chimera state in coupled oscillators
has not been explored.

Motivated by the above discussion, in this paper we study
the effect of local filtering on the occurrence of amplitude
chimera (AC) in a network of nonlocally coupled Stuart-Landau
oscillators. By local filtering we mean that the filtering effect is
considered in the self-feedback path only. We consider local low-
pass and all-pass filters in the network and for the first time we
show that both types of filtering have a detrimental effect on
the occurrence of amplitude chimeras: filtering always suppresses
amplitude chimeras. With the variation of a filtering parameter
(namely, the corner or cut-off frequency) we observe transitions
from the oscillation death and amplitude chimera state to the
globally synchronized state.

2. WITHOUT FILTERING

We consider N = 200 Stuart-Landau oscillators interacting
through nonlocal symmetry-breaking coupling (i.e., only
through the x-variable). The mathematical model of the coupled
system is given by,

ẋi = (1− x2i − y2i )xi − yiω +
ε

2P

i+P
∑

j=i−P

(xj − xi), (1a)

ẏi = (1− x2i − y2i )yi + xiω, (1b)

with i = 1 · · · 200. The individual Stuart-Landau oscillators
have unit amplitude and eigenfrequency ω. Here ε denotes
the coupling strength and P is the coupling range of the
nonlocal coupling.

To explore the dynamics of the coupled network we
numerically solve Equation (1) using the fourth-order Runge-
Kutta method (step size = 0.01). Throughout this paper we
consider ω = 2 and use the following initial conditions [29]:
xi = 1 and yi = −1 for 1 ≤ i ≤ N

2 and xi = −1 and yi = 1

for N
2 < i ≤ N.
Figure 1A shows the phase diagram in the P − ε space: we

can see that the amplitude chimera (AC) state is interspersed in
between the completely synchronized oscillation zone (Sync) and
the oscillation death (OD) zone. This is in accordance with the
results of Zakharova et al. [29], Schneider et al. [52], Zakharova
et al. [53], and Tumash et al. [54] where this system was studied
in detail. Figures 1B–D illustrate the spatiotemporal evolution
of the synchronized state (ε = 5), AC pattern (ε = 20) and
multicluster OD state (ε = 30) at P = 10. Figure 2 depicts the
manifestation of AC and OD in the phase space for an exemplary
coupling range P = 10. Figure 2 (Left panel) shows AC for
ε = 20: here the small amplitude and shifted-origin limit cycles
represent incoherent nodes and those having large amplitude
oscillating around the origin represent the coherent nodes (for
clarity only a few nodes from coherent and incoherent domains
are shown). For higher coupling strengths a symmetry-breaking
steady state (OD state) emerges, which is shown in Figure 2
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FIGURE 1 | Without filtering: (A) phase diagram in the P− ε space for

N = 200 nonlocally coupled Stuart-Landau oscillators (ω = 2). Sync,

synhronized state; AC, amplitude chimera; OD, oscillation death. (B–D) The

spatiotemporal plots at P = 10 for three different coupling strengths ε: (B)

synchronized state for ε = 5 [shown by � in (A)], (C) AC for ε = 20 [shown by

⋆ in (A)] and (D) multicluster OD for ε = 30 [shown in N in (A)].

FIGURE 2 | Without filtering: Phase-space plot of a few nodes of the network

from the coherent and incoherent domains (Left panel) AC (ε = 20, ⋆ point

in Figure 1A), and (Right panel) OD (ε = 30, N point of Figure 1A). Other

parameter values are P = 10, ω = 2, N = 200.

(Right panel) for ε = 30. In the next section we will explore how

filtering affects this dynamical landscape in parameter space.

3. EFFECT OF LOW-PASS FILTERING

3.1. Mathematical Model
We consider N = 200 Stuart-Landau oscillators interacting
through nonlocal symmetry-breaking coupling as in
Equation (1), but here we consider local low-pass filter in
the coupling path. The mathematical model of the coupled
system is given by,

ẋi = (1− x2i − y2i )xi − yiω +
ε

2P

i+P
∑

j=i−P

(xj − zi), (2a)

ẏi = (1− x2i − y2i )yi + xiω, (2b)

żi = α(−zi + xi). (2c)

Equation ((2c)) is the mathematical equation of a low-pass filter
whose input is xi and output is zi. This zi is fed to the coupling
part of Equation (2a). Here α represents the corner or cut-off
frequency of the LPF: the lower is the value of α, the higher is
the effect of filtering. For larger α, filtering effects become lesser:
if we put α → ∞ in Equation (2a), it simply gives zi = xi, i.e., no
filtering effect is present and Equation (2) reduces to the original
Equation (1). Since in the literature of filters we are conversant
with the frequency domain representation, therefore, at first it
is difficult to realize the role of α in Equation (2c). However, a
close inspection reveals that α controls both phase and amplitude
of the output signal zi by the following way: the phase shift
between input and output is given by φi = arctan(ωα−1), the
ratio of output and input (called gain of the filter) is G =

1√
1+ω2α−2

(see [51] for details). Another equivalent form is

the representation of Equation (2c) as a distributed delayed
coupling term in Equation (2a) with an exponential delay kernel
exp(−ατ ) [55, 56].

3.2. Results
We investigate the effect of local low-pass filtering on the
occurrence of amplitude chimera. Since α is the only control
parameter, we will explore the effect of α on the dynamics of
the network. We keep all the parameters and initial conditions
the same as in the unfiltered case; the initial conditions for
the filter variable zi are chosen the same as those of xi for the
unfiltered case.

Figures 3A,B demonstrate the phase diagram of the network
in the P − ε space for three different (decreasing) values
of α. It can be observed from Figure 3 that the smaller the
value of α is, the more the network dynamics deviates from
the original scenario shown in Figure 1A. It is apparent from
Figure 3 that with decreasing α (i.e., increasing filtering effect)
the synchronized portion dominates and therefore suppresses the
AC and OD regions: a lower α shifts the AC and OD zone to a
higher P region and also quenches the area of the AC and OD
zone. Eventually, below a critical value of α (say αc) the AC and
OD state disappear and only the synchronized state prevails in
the whole P − ε space. This suppression of the AC and OD zone
is shown in Figure 3C for α = 10.

The scenario can be understood more clearly in the ε − α

space for a fixed P. Figure 4A shows this for P = 10: we can
observe that for comparatively high values of α the dynamics
of the system remains unchanged. However, as the value of α is
decreased the system goes to a synchronized state irrespectively
of ε. It also shows that there exists a critical value αc of α,
below which the synchronized state is the only possible state.
Figures 4B–D illustrate how decreasing α leads to the transition
from OD to synchrony via AC (ε = 25 and P = 10): for α = 45
the network shows a multi-clustered OD state (Figure 4B), and
the AC state is shown for α = 35 (Figure 4C), and finally global
synchrony (a coherent traveling wave or a splay state) appears for
further lowering of α (Figure 4D for α = 25). It is noteworthy
that in a range of lower ε, no OD state occurs and in this zone a
decreasing α leads to a direct transition from AC to synchrony.

Figure 4E shows the scenario in the P − α space (ε = 35):
here also we can see that at lower α values the completely
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FIGURE 3 | With local low-pass filtering: Phase diagram in the P vs ε space (N = 200, ω = 2) for (A) α = 50 and (B) α = 20. (C) shows complete suppression of AC

for α = 10.

synchronized state emerges out of either AC or OD. From
Figures 4A,E we see that OD state is predominant for higher
coupling strength (ε) and near-global coupling range (i.e., P →

N/2): it is interesting to note that a suitably chosen filtering
parameter α can suppress the steady state and therefore results
in rhythmogenesis in the network. In Zou et al. [41] and Banerjee
et al. [51] filtering-induced rhythmogenesis in coupled oscillators
was reported, however, in contrast to Zou et al. [41] and Banerjee
et al. [51] here we show the existence of a broad parameter
zone where OD does not transform into oscillation (SYNC)
directly, but another symmetry-breaking emergent state, i.e., an
amplitude chimera, mediates the transition. Therefore, filtering
plays an important role in networks of physical, biological,
and physiological systems where the occurrence of oscillation
suppression often leads to a fatal system degradation and an
irrecoverable malfunctioning [57–59]. A similar enhancement of
the stability domain of the synchronized solutions for small α
was found for distributed delayed coupling with an exponential
kernel [56].

In the above results we use suitable measures, such as the
measure of spatial correlation (g0) and the center of mass (ycmi ) to
ensure the occurrence of the synchronized state and AC state and
also to distinguish them (distinction of the OD state is relatively
simple as we have to check whether a steady state is reached or
not). According to Kemeth et al. [60], the measure of spatial
correlation is defined in terms of the normalized probability
density function g as

g0(t) ≡

δth
∑

|L̂ψi(t)|=0

g(|L̂ψi(t)|). (3)

Here L̂ψi(t) represents the local curvature at each node i at time
t given by

L̂ψi(t) = ψ(i−1)(t)− 2ψi(t)+ ψ(i+1)(t), (4)

where L̂ is the discrete Laplacian operator on each snapshot
{ψi}. In our present case the state variable ψi(t) = yi (one can
use xi as well). In Equation (3) we consider a threshold value
δth = 0.01Lmax, where Lmax is the maximum curvature in the

network [60]. The measure of spatial correlation g0(t) = 1 for
a fully synchronized network and g0(t) = 0 for a completely
unsynchronized network. Therefore, 0 < g0(t) < 1 represents
partial synchronization ensuring the occurrence of chimera state.
Although g0(t) can ensure the occurrence of a chimera state, it
cannot distinguish between phase and amplitude chimeras. To
ensure that AC indeed emerges in the network, we compute the
center of mass of each oscillator defined by [29]

ycmi =
1

T

∫ T

0
yidt, (5)

where yi represents the state of the i-th oscillator and T is a
sufficiently large time. The quantity ycmi gives a measure of the
shift of a limit cycle from the origin. Therefore, it can distinguish
the homogeneous limit cycles from inhomogeneous ones.

Figures 5A,C, respectively, show g0(t) and ycmi of each
oscillator corresponding to the synchronized state of Figure 4D
(α = 25): we observe that all the oscillators in the network
have g0(t) = 1 and ycmi = 0 indicating that the whole network
is synchronized. On the other hand, Figures 5B,D, respectively,
show g0(t) and ycmi corresponding to the AC state of Figure 4C
(α = 35): we can see that 0 < g0(t) < 1 indicating the occurrence
of chimeras and at the same time ycmi in the incoherent region
exhibits a random sequence of shifts to positive and negative
values, however, in the coherent region ycmi = 0 indicating that
the resulting chimera is indeed an AC pattern.

According to Tumash et al. [54], a strong measure that
distinguishes an AC state from the synchronized state is the
Floquet exponent. We study the stability of the periodic solution
of nonlocally coupled Stuart-Landau oscillators given by (2)
using Floquet theory [54]. We rewrite (2) as

ẋ = f (x(t)), (6)

with x(t) ∈ Rn and also consider that a periodic solution ψ(t) =
ψ(t + T) exists. In our case, we have three equations, therefore,
n = 3N. The linearized equation is written as,

δẋ(t) = J(ψ(t))δx(t), (7)
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FIGURE 4 | With local low-pass filtering: (A) phase diagram in the ε − α space for P = 10 (ω = 2). Three points at three α values at a particular ε = 25 are marked by

• (α = 45), H (α = 35) and � (α = 25). (B–D) spatiotemporal plots corresponding to those three points (decreasing α): (B) multicluster OD, (C) AC, (D) synchronized

state (coherent traveling wave or splay state). (E) phase diagram in the P− α space for ε = 35.

FIGURE 5 | With local low-pass filtering: (A,B) The time evolution of g0
corresponding to the synchronized (A) and AC (B) state as marked in

Figure 4A by (�) (α = 25) and (H) (α = 35), respectively. (C,D) The

corresponding center of mass (ycmi
) for the above two points, showing

synchronized (C) and AC (D) states, respectively. Other parameters are

P = 10, ε = 25 and ω = 2.

where J(ψ(t)) is the Jacobianmatrix evaluated atψ(t) and has the
following solution:

δx(t) = M(t)δx(0). (8)

Here δx(0) is the initial condition. The fundamental matrixM(t)

obeys the equation,

Ṁ(t) = J(ψ(t))M(t), (9)

where M(0) = 1, and M(t + T) = M(t)M(T). M(T) is
the monodromy matrix whose eigenvalues are called Floquet
multipliers (µk). Each Floquet multiplier can be expressed as
µk = exp((3k + i�k)T), where (3k + i�k) is the Floquet
exponent. The stability of the periodic orbit can be analyzed
by determining the sign of the real part of these exponents.

FIGURE 6 | With local low-pass filtering: Phase diagram of the periodic

solutions (Sync and AC) in ε−α space based on the Floquet exponent. For the

synchronized region (black), at each point, the largest real part of the Floquet

exponents (3max ) is negative (for the Goldstone mode it is approximately

equal to zero). For the AC region (orange) at each point it is greater than zero

(i.e., 3max > 0). Other parameters are P = 10, ω = 2, N = 200.

When the real parts of all the Floquet exponents are less than
zero (i.e., 3k < 0) except the Goldstone mode (which is
equal to zero) then the periodic solution is stable indicating a
synchronized solution [54]. But according to Tumash et al. [54]
when at least one or two of them are greater than zero (3k >

0), then the solution becomes unstable indicating a saddle
cycle in phase space which corresponds to an AC state. In
our computation we average the exponents over 200T (where
T = π). Figure 6 shows the zone in black where all the
exponents are negative (except the Goldstone mode), which
indicates the synchronized state; Again, at every point in the
orange region, a few 3ks have small (< 0.5) positive values,
which means that the system is in the AC state. Note the
agreement between Figure 4A and Figure 6, which confirms
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FIGURE 7 | With all-pass filtering: Phase diagram in the P− ε space for (A)

α = 50 and (B) α = 20. (C) spatiotemporal plot of AC corresponding to

α = 50 (shown by H in A). (D) spatiotemporal plot of the synchronized state

(coherent traveling wave) corresponding to α = 20 (shown by � in B). In both

(C,D) ε = 12, P = 15, ω = 2.

that a transition from AC to synchrony indeed occurs with
decreasing α.

4. EFFECT OF ALL-PASS FILTERING

Next we consider the effect of all-pass filtering (APF) in the
network of Stuart-Landau oscillators described in Equation (1).
The mathematical model of the coupled system is given by

ẋi = (1− x2i − y2i )xi − yiω +
ε

2P

i+P
∑

j=i−P

(xj − Ui) (10a)

ẏi = (1− x2i − y2i )yi + xiω (10b)

żi = α(−zi + xi) (10c)

Ui = 2zi − xi (10d)

Equations (10c, 10d) jointly represent the differential algebraic
equation of an all-pass filter, whose input is xi and output is Ui

[51]. In this case α has the same meaning as in Equation (2c),
but the effect of α is different on Ui: Here α does not affect the
amplitude of Ui, it only affects the phase part by introducing
a phase shift between the input and output signals, given by
θ = 2arctan(ωα−1). Note that for the same α the phase shift
introduced by a LPF (i.e., φ) is half of that of an APF (i.e., θ).

In Figure 7 the effect of an all-pass filter is shown in the
P − ε space for two α values: Figure 7A is for α = 50 and
Figure 7B is for α = 20. Figures 7C,D show the spatiotemporal
representation of AC (for α = 50) and synchronized state
(coherent traveling wave for α = 20), respectively: it shows that
α acts as an efficient control parameter for the suppression of AC.
Here it is evident that local all-pass filtering can also suppress AC
(and OD) and gives rise to the synchronized state. Comparing
Figures 7A,B of the low-pass filtering case with Figures 7A,B,
respectively, it is interesting to note that for the same α an APF is
more effective than a LPF as far as the suppression of amplitude
chimeras (and OD) is concerned: see for example at α = 20, low-
pass filtering only quenches the AC and OD zone in P − ε space
(Figure 3B), however, all-pass filtering completely suppresses the
AC and OD zone (Figure 7B). We ensure that αc, the critical
value below which AC and OD are completely suppressed, is
much higher for an APF compared to that of a LPF (not shown
here): therefore even a relatively weak all-pass local filtering
is equivalent to a stronger local low-pass filtering, as far as
suppressing AC and OD is concerned. This is the consequence of
the fact that at a particular value of α, the phase shift introduced
by an APF is twice of that of a LPF [51]. Therefore, all the results
suggest that α which is the control parameter of local filters, also
controls the dynamics of the whole network.

5. CONCLUSION

In this paper, we have revealed that the presence of local
filtering (either low-pass or all-pass) suppresses the amplitude
chimera state and therefore gives rise to global synchrony
(coherent traveling waves). Further, it has been shown that local
filtering causes rhythmogenesis by suppressing the steady state
behavior (i.e., OD state), which has immense importance in
many biological and engineering systems [58, 61]. Collectively,
our study has a broad significance: it establishes that local
filtering is detrimental for the symmetry-breaking states
(AC and OD) and favors restoration of the symmetry in
the network.

Our study reveals that the cut-off frequency α of the local
filter acts as an efficient control parameter of the network that
can be tuned to achieve a desired symmetry-breaking state
or synchronized state without changing coupling strength or
range. Several control methods to stabilize phase or amplitude
mediated phase chimeras have recently been proposed [62–64].
In Gjurchinovski et al. [43] it has been shown that a constant
time delay in the coupling path can stabilize amplitude chimeras.
In contrast, here we established that the local filtering has a
destabilizing effect on the occurrence of amplitude chimeras. In
the case of rhythmogenesis, the value of α that suppresses the
steady state depends upon the system and coupling parameters
in a nontrivial manner (see [51] for two mean-field coupled
oscillators). It has been observed that if one wants to ensure
rhythmogenesis (irrespectively of other parameters) the typical
value of α is of the order of the intrinsic frequency of an
individual oscillator (here ω). However, depending upon system
and coupling parameters, α (filtering) need not be so small
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(strong): rhythmogenesis appears much before that, i.e., for
α > ω.

From the perspective of dynamical systems the role of α
can be understood in the following way: α actually controls the
dissipative property of the whole network by controlling the
dissipation and dispersion in the coupling path; a smaller α
imposes a larger filtering effect and therefore smaller dissipation,
which favors synchrony and rhythmogenesis. In this context we
observe that filtering does not affect the pattern of phase chimera
appreciably. This may be due to the fact that additional phase
shift and/or attenuation caused by filtering has lesser effect on the
mean frequency than on the amplitude dynamics (note that in the
phase chimera the mean frequency is the determining factor that
distinguishes the coherent and incoherent domains, whereas in
the amplitude chimera, the amplitude of the nodes matters).

In this paper we have considered a network of Stuart-
Landau oscillators. However, we verified that the filtering affects
the amplitude chimera in a similar way in other systems
also, for example, in a network of Rayleigh oscillators [65]

(results not shown). Since the Stuart-Landau oscillator is

a generic model for systems near a Hopf bifurcation and
since filtering naturally arises in many biological and physical
systems, we believe that our results can also be extended to
those systems.
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We investigate the dynamical transitions in a network of nonlocally coupled

Stuart-Landau oscillators with a combination of attractive and repulsive couplings. The

competing interaction between the couplings plays a crucial role in many realistic

situations, particularly in neuronal systems. We report that the employed attractive and

repulsive couplings induce imperfect amplitude mediated chimera state which emerges

as an intermediate between the oscillatory dynamics and the oscillation death state.

Each oscillator in the synchronized and desynchronized groups constituting the imperfect

amplitude mediated chimera drifts between both the homogeneous and inhomogeneous

oscillations as a function of time. To distinguish the homogeneous and inhomogeneous

oscillations, we use the finite-time average of each oscillator. The observed distinct

dynamical states are further classified by finding the strength of the inhomogeneous

oscillators in the corresponding dynamical states.We also find that the number of clusters

in the cluster oscillation death states exponentially decays as a function of the coupling

range and obeys a power law relation. Finally, we confirm the robustness of the observed

amplitude mediated chimera state by introducing a Gaussian white noise in the system.

Keywords: nonlinear dynamics, coupled oscillators, dynamical transitions, synchronization, chimera states,

oscillation death

1. INTRODUCTION

During the past couple of decades studies on the emerging collective dynamical behavior of a
given network of complex nonlinear systems has become an active area of research, due to its
capability to mimic various natural phenomena such as clusters, synchronization, chimera, death
states, etc. [1–4]. Among the intriguing collective dynamical behaviors exhibited by networks of
coupled systems, chimera states have been receiving a wide attention in the recent literature both
theoretically and experimentally. In particular, much focus has been paid toward understanding the
onset of various types of chimeras. A flurry of research activities on the chimera states have been
provoked due to the nonintuitive nature of the associated hybrid dynamical state. Chimera state
is characterized by spatially coexisting coherent and incoherent dynamical behaviors arising out of
an ensemble of identical systems. So far, chimera states have been found theoretically in limit cycle
oscillators [5, 6], time discrete maps [7–9], chaotic models [10, 11], neural systems [10, 12, 13],
quantum oscillators [14], population dynamics [15, 16], boolean networks [17] and so on. Chimera
states have also been found experimentally in optical [18], electronic [18, 19], optoelectronic [20],
chemical [21, 22], electrochemical [23, 24] and mechanical systems [25].
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A diverse variety of chimera patterns have been identified
depending on the coupling geometry, the strength of the
interaction and the values of the parameters of the employed
dynamical systems. Specifically, based on the spatial or spatio-
temporal distribution of an ensemble of coupled identical
systems, chimera states have been classified as amplitude chimera
[26–30], globally clustered chimera [31], imperfect traveling
chimera [32], breathing chimera [33, 34], spiral wave chimera
[35], twisted chimera and multicore spiral chimera states [36].
Among the different types of chimeras, investigations on the
onset of the amplitude mediated chimera has received a wide
attention in the recent literature. Amplitude-mediated chimera
was reported in a nonlocally coupled complex Ginzburg-Landau
system in the strong coupling limit which may have potential
applications in understanding spatio-temporal patterns in fluid
flow experiments and in strongly coupled systems [6]. It is also
reported in a system of globally coupled complex Ginzburg-
Landau oscillators [37]. The robustness of amplitude mediated
chimera state has also been examined in a globally coupled system
of active and inactive Ginzburg-Landau oscillators by varying
the fraction of active and inactive oscillators [38]. Interestingly,
the notion of chimera state is not only restricted to oscillatory
dynamics but has also been extended to include so called the
death states which have been reported as chimera death [3].
Domains of inhomogeneous death states are termed as cluster
oscillation death states whereas coexisting domains of coherent
and incoherent death states (of the inhomogeneous death states)
constitute the cluster chimera death state. The number of
clusters in the death states are found to vary as a function of
the coupling range and cluster initial conditions in nonlocally
coupled networks [4, 39].

In this report, we unravel the emergence distinct collective
dynamical behavior in a network of nonlocally coupled Stuart-
Landau oscillators with competing attractive and repulsive
couplings. The trade-off between the attractive and repulsive
couplings in many natural systems has been revealed as
an essential element in determining their functional and
evolutionary processes [39, 40]. We find that the competing
interaction between them facilitates the emergence of imperfect
amplitude mediated chimera, which is characterized by a
continuous drift of the oscillators between the homogeneous and
the inhomogeneous oscillations as a function of time. Finite-
time average of each of the oscillators elucidates the continuous
shift between the homogeneous and the inhomogeneous states
of the imperfect amplitude mediated chimera. Further, the
homogeneous and inhomogeneous states can be distinguished
by estimating the strength of inhomogeneous oscillators in each
dynamical state. We find that the observed amplitude mediated
chimera mediates the transition between the oscillatory and
death states. Further, we will demonstrate the emergence of
distinct cluster oscillation death and chimera death states as a
function of the nonlocal coupling range. We have also found that
the number of clusters in the network exponentially decays as a
function of the coupling range and obeys a power-law relation.

The structure of the paper is organized as follows. In
section 2, we introduce our model of nonlocally coupled Stuart-
Landau oscillators with a combination of attractive and repulsive

couplings. The emergence of imperfect amplitude mediated
chimera state is demonstrated in section 3. The corresponding
dynamical transitions are delineated in section 4 and the global
dynamical behavior of the coupled systems is depicted in the
section 5. Finally, we summarize the obtained results in section 6.

2. THE MODEL

We consider the paradigmatic model of Stuart-Landau limit cycle
oscillators, which can be used to model a variety of weakly
nonlinear systems near Hopf-bifurcation [41]. In addition, the
limit cycle oscillations can be found in many biological and
chemical systems such as heart beats, chemical oscillations,
vibrations in bridges, etc. [42, 43]. Further, to demonstrate the
complex dynamical behaviors in a network of coupled identical
Stuart-Landau oscillators, we have employed the nonlocal
attractive and repulsive couplings, which can be represented as

ẋi = (λ − x2i − y2i )xi − ωyi +
ǫ

2P

i+P
∑

k=i−P

(xk − xi),

ẏi = (λ − x2i − y2i )yi + ωxi −
ǫ

2P

i+P
∑

k=i−P

(yk − yi), i=1, 2, ...,N,

(1)

where λ is the bifurcation parameter and ω is the natural
frequency of the system. xi and yi are the state variables of
the system. Here, the attractive and repulsive couplings are

established via the state variables xi and yi (i = 1, 2..,N),
respectively, and ǫ is the coupling strength. Throughout the
work, the number of oscillators in the network has been chosen as
N = 100, except for the cases mentioned specifically in the text,
and the values of the parameters are fixed as λ = 1.0, ω = 1.0.
The numerical results are obtained through the Runge-Kutta
fourth order scheme with a time step 0.01 and the initial states of
the oscillators (xi, yi) are chosen such that they are independently
distributed between -1 to +1 randomly.

3. AMPLITUDE MEDIATED CHIMERA

Amplitude chimera is characterized by a partial coherent and
a partial incoherent spatio-temporal pattern with amplitude
variations in their amplitude dynamics [26]. On the other hand
the amplitude mediated chimera state suffers variations in both
phase and frequency. Interestingly, we find that the system
of nonlocally coupled Stuart-Landau oscillators also exhibit
amplitude mediated chimera states, where the synchronized and
desynchronized groups are imperfect over time exhibiting quasi-
periodic oscillations. In particular, the synchronized group gives
rise to inhomogeneous small oscillations populating both the
upper and the lower branches of the inhomogeneous state while
the desynchronized group oscillates with a larger amplitude.
The space-time evolution in Figure 1a clearly illustrates that the
oscillators at the boundaries of the upper (yellow/light gray) and
the lower (blue/dark gray) branches of the inhomogeneous state
exhibit large oscillations. In addition, the oscillators exhibiting
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FIGURE 1 | (a) Spatio-temporal evolution of imperfect amplitude mediated

chimera (after leaving transients of the order 1× 104) and (b) time evolution of

a representative oscillator x72, a constituent of imperfect amplitude mediated

chimera. Parameters: r = 0.4, ω = 1.0, λ = 1.0, ǫ = 0.9 and N = 100.

large oscillations suffer a drift to either one of the inhomogeneous
states with small oscillations and vice versa as a function of
time. Further, to elucidate that the oscillators in the network
reside in the upper/lower branch of the inhomogeneous state
for a finite-time interval and then transits to the homogeneous
state for certain other time interval, we have depicted the time
evolution of a typical oscillator, indicated along the dotted line in
Figures 1a,b. The time evolution of the representative oscillator
x72 elucidates that the corresponding oscillator oscillates in
the upper branch of the inhomogeneous state for a certain
time interval, then it manifests itself as a homogeneous
oscillator. After a further finite time interval, the homogeneous
oscillations with large amplitude transit to the lower branch
of the inhomogeneous state exhibiting small oscillations. The
homogeneous large oscillations re-emerge again after a finite
time from the lower branch and then populate the upper branch
of the inhomogeneous state after a while. These transitions in
the dynamical nature of each oscillator takes place continuously
as a function of time, thereby manifesting as an imperfect
amplitudemediated chimera as a whole. The robust against initial
conditions and system size of imperfect amplitude mediated
chimera is discussed in the following.

3.1. Robustness of Imperfect Amplitude
Mediated Chimera for Distinct Initial States
and System Sizes
In order to show the robustness of the imperfect amplitude
mediated chimeras with respect to various initial conditions,
we have plotted the space-time evolution and snapshots of
such dynamical states for the distribution of different initial
states (see Figure 2). The menifestation of amplitude mediated
chimeras is evident from the space-time plots, Figures 2a–c,
which are plotted for random distribution of initial conditions
between 0 to 1, symmetric cluster and asymmetric cluster initial
states, respectively. The corresponding snapshots are shown
in Figures 2d–f. From Figure 2, it is clear that the observed
imperfect amplitude mediated states are robust against random
and cluster initial conditions.

Further, it is also found that the observed imperfect amplitude
mediated chimeras are robust againt system size (see Figure 3).
The space-time plots and snapshots in Figure 3 clearly depict
the persistence of amplitude mediated chimera state even while

increasing the system size to N = 200, N = 500 and N = 1000,
respectively.

The dynamical transitions exhibited by the coupled Stuart-
Landau oscillators will be described in the following as a function
of the coupling strength.

4. DYNAMICAL TRANSITIONS IN
COUPLED STUART-LANDAU
OSCILLATORS

To start with, the dynamical behavior exhibited by the nonlocally
coupled Stuart-Landau oscillators is inspected through the space-
time and snapshot plots of the variables xi, which are shown
in Figure 4, for the coupling range r = 0.4. We find that
a transition takes place from traveling wave (TW) state to
imperfect amplitude mediated chimera (IAMC) state and finally
to death states. In case of death states, the coupled Stuart-Landau
oscillators exhibit multi-chimera death states (MCDs) through
cluster oscillation death (COD) and cluster chimera death (CCD)
states. As noted above, the network exhibits traveling wave
(TW) state as shown in Figures 4a,f for the coupling strength
ǫ = 0.7. It is to be noted that here all the oscillators in the
network oscillate homogeneously about the origin with the same
frequency and constant velocity. The emergence of the imperfect
amplitudemediated chimera (IAMC) state is observed for further
increase in the coupling strength as depicted in Figures 4b,g

for ǫ = 0.9. In this state the oscillators in the network split
into synchronized and desynchronized groups with amplitude
variations. The oscillators hop between the synchronized and
the desynchronized groups as a function of time, which can be
clearly visualized in Figure 1a for sufficiently large time interval,
but it resembles stationary amplitude mediated chimera for a
short time interval (see Figure 4b). The synchronized group
of oscillators oscillates with smaller amplitudes both in the
upper and lower branches of the inhomogeneous state whereas
the desynchronized group oscillates homogeneously about the
origin. On increasing the coupling strength further, the oscillators
with homogeneous oscillations populate either the lower or
the upper branches of the inhomogeneous steady state, while
the oscillators with small inhomogeneous oscillations settle as
steady states in the respective branches resulting in a two cluster
oscillation death (2COD) state. As a result, all the oscillators
in the network occupy either the upper or lower branches of
the inhomogeneous steady states as shown in Figures 4c,h for
ǫ = 1.0. The emergence of multi-chimera death (MCD) state
via two cluster chimera death (2CCD) (see Figures 4d,i for
ǫ = 1.12) is observed upon increasing ǫ further as shown in
Figures 4e,j for ǫ = 1.2. In the 2CCD state, the oscillators in
the cluster edges populate either the upper or the lower branches
of the inhomogeneous state randomly and the MCD state is
characterized by multiple coherent and incoherent domains of
the death states. We may conclude that the imperfect amplitude
mediated chimera mediates the transition from traveling wave
state to death state.

We further note that the separation of the homogeneous and
inhomogeneous oscillations in the imperfect amplitude mediated
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FIGURE 2 | Space-time evolution of amplitude mediated chimera for the distribution of initial states (a) between 0− 1 randomly, (b) symmetric cluster, and (c)

asymmetric clusters. The corresponding snapshots of (a–c) are shown in (d–f). Parameters are the same as in Figure 1.

FIGURE 3 | Space-time evolution of amplitude mediated chimera as a function of the size of the network for (a) N = 200, (b) N = 500 , and (c) N = 1000. (d–f)

Correspond to the snapshots in (a–c). Other parameters are the same as in Figure 1.

FIGURE 4 | Dynamical behavior of the coupled Stuart-Landau oscillators as a function of coupling strength ǫ for the coupling range r = 0.4. Space-time plots of (a)

Traveling wave (TW) state for ǫ = 0.7, (b) imperfect amplitude mediated chimera (IAMC) for ǫ = 0.9, (c) two cluster oscillation death (2COD) for ǫ = 1.0, (d) two

cluster chimera death (2CCD) for ǫ = 1.12 and (e) multi-chimera death (MCD) state for ǫ = 1.2. The corresponding snapshots are shown in the lower panel (f–j),

respectively. Parameters: r = 0.4, ω = 1.0, λ = 1.0, and N = 100.

chimera state is impossible for a large time interval since these
states swing in time alternately in a random fashion. In order
to overcome this difficulty, we have considered the evolution

of the oscillators constituting the imperfect amplitude mediated
chimera in a short time interval as in Figure 5a, which depicts
the time evolution of distinct oscillators in the time interval 0
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to 500, where the oscillators x20 and x45 are the representative
oscillators from the inhomogeneous group whereas x4 is the
representative oscillator from the homogeneous group. The
phase space dynamics of the representative oscillators are shown
in Figure 5b. It is evident from the figures that the oscillator from
the incoherent group x4 (i = 4) oscillates about the origin quasi-
periodically while the oscillators from the coherent group, x20
(i = 20) and x45 (i = 45), oscillate in the upper and lower
branches of the inhomogeneous state with smaller amplitudes,
respectively. In addition, to distinguish the homogeneous and
inhomogeneous states, we have calculated the finite-time average
of the variable yi by dividing the total time (Ttol) into p bins of

equal size q =
Ttol
p (in this case Ttol = 500, which we have

divided into 5 bins of equal size q = 100, see Figure 5a). Then
the center of mass for the finite-time average of the variable

can be estimated by using the formula < yi(av)> =
∫ β2
β1

yi(t)dt
q ,

where β1 = q(p − 1) + 1 and β2 = pq. Here p is the number
of bins and q is the finite-time period of the oscillations. The
average value of the state variable< yi(av)> has been calculated for
the homogeneous and inhomogeneous oscillations in Figure 5,
which takes nonzero value for inhomogeneous oscillations
(denoted by squares in Figure 5b) and nearly null value for
the homogeneous oscillations (represented by a diamond in
Figure 5b).

In addition, the above dynamical transition is also analyzed
by estimating the average number of inhomogeneous oscillators.
In the traveling wave (TW) state, all the oscillators oscillate
homogeneously about the origin whereas some of the oscillators
take nonzero center of mass values in the amplitude mediated
chimera state constituting the inhomogeneous state. Thus the
coherent oscillators in the inhomogeneous state oscillate with
small amplitudes with nonzero value of the finite-time average
whereas the incoherent oscillators in the homogeneous states
oscillate with large amplitudes and null value of the finite-
time average. The nonzero value of the finite-time average of
the (individual) oscillators indicate that all the oscillators are
in the inhomogeneous states, i.e., death states. The strength
of inhomogeneous oscillators among the total population in a

FIGURE 5 | (a) Time series and (b) phase portraits of representative

oscillators from the homogeneous and inhomogeneous states constituting the

imperfect amplitude mediated chimera. The oscillators xi , i = 20, 45 are from

the upper and lower branches of the inhomogeneous state. The oscillator

xi , i = 4, represents the homogeneous oscillations from the desynchronized

group. The corresponding time average of the homogeneous and

inhomogeneous oscillations are denoted by diamond and squares in (b).

Parameters are the same as in Figure 1.

dynamical state can be found from the following relation,

K = 1−

∑N
i=1Hyi

N
, Hyi = 2(δ− < yi(av) >), (2)

where δ is a predefined threshold value and 2(.) is the Heaviside
step function. The strength of inhomogeneous oscillators (K)
shows null value for the traveling wave state and unity for the
death state. The value of K lying between 0 < K < 1 corresponds
to the amplitude mediated chimera state. To understand the
transition among the observed dynamical states, we have plotted
the strength of inhomogeneous oscillators (K) in the network as
a function of the coupling strength ǫ for two distinct coupling
ranges r = 0.2 and r = 0.4 ( which have been earlier
traced along the lines L1 and L2 in Figure 7) in Figures 6A,B,
respectively. It is evident from the figures that the transition
takes place from traveling wave to cluster oscillation death via
amplitude mediated chimera state. Shaded region corresponds to
the imperfect amplitude mediated chimera which constitutes the
intermediate state between the traveling wave and the coherent
death states.

FIGURE 6 | Strength of inhomogeneous oscillators in a network as a function

of the coupling strength ǫ for coupling ranges (A) r = 0.2 and (B) r = 0.4

which have been traced along the lines L1 and L2 in Figure 7. TW, IAMC,

COD/CCD are the traveling wave, imperfect amplitude mediated chimera,

cluster oscillation death or cluster chimera death states, respectively.

Parameters: ω = 1.0, λ = 1.0, and N = 100.

FIGURE 7 | Two parameter plot in (r, ǫ) space. DS, TW, and IAMC represent

the desynchronized state, traveling wave state and imperfect amplitude

mediated chimera state, respectively. COD, CCD, and MCD denote the cluster

oscillation death, cluster chimera death and multi-chimera death states,

respectively. Parameters are the same as in Figure 6.
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5. GLOBAL DYNAMICAL BEHAVIOR IN
COUPLED STUART-LANDAU
OSCILLATORS

The global dynamical behavior of the nonlocally coupled Stuart-
Landau oscillators is shown as a two-parameter phase diagram
(see Figure 7) in the (r, ǫ) space. For smaller values of the
coupling range, there is a transition from desynchronized state
to death state via the imperfect amplitude mediated chimera
as a function of the coupling strength. On the other hand, for
larger values of the coupling range r, the coupled system exhibits
transition from the traveling wave state to the death states via
imperfect amplitude mediated chimera as a function of the
coupling strength. For larger values of the coupling strength, the
number of oscillators exhibiting homogeneous large oscillations
(constituting incoherent domain of the imperfect amplitude
mediated chimera) decreases and finally settles among one of
the branches of the inhomogeneous steady state resulting in the
coherent oscillation death state in almost the entire coupling
range of r. The coherent oscillation death states manifest as a
cluster chimera death state and then as a stable multi-chimera
death state for further larger values of the coupling strength in
the entire coupling range r. We also note here that the structure
of the two parameter plot is similar for any other set of initial
conditions and that the coexistence of distinct dynamics takes
place only near the boundaries due to multistabilities among the
dynamical states.

The oscillators in the network segregate into different
numbers of clusters as a function of the coupling range r,
as shown in Figure 8. The system of coupled Stuart-Landau
oscillators exhibit more number of clusters for smaller coupling
range than that of larger coupling range. Eleven cluster states are
observed for coupling range r = 0.06 as depicted in Figure 8a.
Upon increasing the coupling range to r = 0.14 and r = 0.26,
it is observed that the number of clusters decreases to five and
three, respectively, as illustrated in Figures 8b,c. The number
of clusters become two for the coupling range r = 0.4 (see
Figure 8d). It is also evident from the figures that the size of the
clusters increases while the number of clusters decreases. It is
also found that the number of clusters in the amplitude mediated
chimera, cluster oscillation death and cluster chimera death states
exponentially decreases with increase in the coupling range r. The
number of clusters (n0) as a function of the coupling range r
is depicted in Figure 9, which clearly indicates the exponential

decrease of the number of clusters. It is also evident from the
inset of Figure 9 that the system obeys a power law relation
n0 = ra as a function of the nonlocal coupling range r with best
fit a = −0.505. The open circles in the inset denote numerical
data, while the corresponding best fit is shown by solid line (red).
It is also noticed that the system exhibits symmetric clusters in
the oscillation death state as a function of coupling range.

For any set of initial conditions, including random, symmetric
or asymmetric cluster conditions, the system exhibits only
symmetric clusters in the death states which are clearly
demonstrated through the transient behavior in Figure 10. The
emergence of symmetric clusters in the oscillation death states
from the random distribution of (xi, yi) between −1 to +1 and 0
to 1 are depicted in Figures 10a,b, respectively. The symmetric
initial state distribution ((xj, yj) = (+1,−1) for j = 1, 2.., N2
and (xj, yj) = (−1,+1) for j = N

2 + 1, ..,N) induced symmetric
cluster death states is evident from Figure 10c. Analogously, the
asymmetric distribution of initial states also exhibits symmetric
cluster death states which is shown in Figure 10d.

6. EFFECT OF NOISE INTENSITY ON
AMPLITUDE MEDIATED CHIMERA

The robustness of the imperfect amplitude mediated chimera
state is further analyzed in the system (1) by introducing a
Gaussian white noise. The system equation with the addition of

FIGURE 9 | Exponential decay of the number of clusters at ǫ = 1.0 in the

inhomogeneous states of cluster oscillation death as a function of the nonlocal

coupling range(r). The corresponding power law fit is shown in the inset. The

unfilled circles in the inset denote the numerical data and corresponding power

law fit is shown by solid line.

FIGURE 8 | Decreasing number of clusters with increasing value of the coupling range r for the coupling strength ǫ = 1.0: (a) 11 clusters for r = 0.06, (b) 5 clusters

for r = 0.14, (c) 3 clusters for r = 0.26 (d) 2 clusters for r = 0.4. Other parameters λ = 1.0, ω = 1.0, and N = 100.
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FIGURE 10 | Transient plots for the emergence of symmetric cluster ocillation death states from distict initial states at r = 0.4 and ǫ = 1.0. The initial states (xi , yi ) are

distributed (a) randomly between -1 to +1, (b) randomly between 0 to 1, (c) in symmetric cluster, and (d) asymmetric cluster conditions. Other parameters are same

as in Figure 8.

FIGURE 11 | Region of imperfect amplitude mediated chimera (IMAC) states

for noise intensities D = 0.0 (solid line), D = 0.1 (dot-dashed line), and D = 0.5

(dotted line).

Gaussian white noise can be expressed as,

ẋi = (λ − x2i − y2i )xi − ωyi +
ǫ

2P

i+P
∑

k=i−P

(xk − xi)+
√
2Dζi(t),

ẏi = (λ − x2i − y2i )yi + ωxi−
ǫ

2P

i+P
∑

k=i−P

(yk − yi), i= 1, 2, ...,N,

(3)

where ζi(t) ∈ R is the Gaussian white noise and D is the intensity
of noise. Here 〈ζi(t)〉 = 0, ∀i, and 〈ζi(t)ζi(t

′)〉 = δijδ(t − t′),
∀i, j, where δij and δ(t − t′) are the Kronecker-delta and delta
distribution, respectively. Figure 11 is plotted for the regions of
imperfect amplitude mediated chimera state in the (r, ǫ) space
for three different noise intensities, namelyD = 0.0,D = 0.1 and
D = 0.5 which are denoted by solid, dot-dashed and dotted lines,
respectively. It is evident from the figures that the emergence
imperfect amplitude mediated chimera even for increasing larger
values of noise intensity which confirms their robustness against
noise.

7. CONCLUSION

We have investigated the dynamical transitions in a network
of nonlocally coupled Stuart-Landau oscillators with combined
attractive and repulsive couplings. We found that the competing

attractive and repulsive interactions induce imperfect amplitude
mediated chimera states. These states are characterized by the
oscillators constituting the synchronized and desynchronized
groups, which drift randomly between the homogeneous and
inhomogeneous states as a function of time. Hence it becomes
impossible to determine homogeneous and inhomogeneous
groups of oscillators. To overcome this difficulty, we have
estimated the finite-time average of each oscillators to distinguish
each group. Further, we have distinguished each dynamical state
by calculating the strength of the inhomogeneous oscillators in
a total population of a network. We found that the observed
imperfect amplitude mediated chimera mediates the transition
between the oscillatory and oscillation death states and turns out
to be the transition route for the cluster oscillation death state.
We have also calculated the number of clusters in the oscillation
death states as a function of the coupling range. We found
that the number of clusters decays exponentially as a function
of the coupling range and obeys a power law relation with
the nonlocal coupling range.The obtained imperfect amplitude
mediated chimera state is robust against various initial states and
different sizes of the network. Finally, we also found that the
observed imperfect amplitude mediated chimera state is robust
against noise by introducing a Gaussian white noise.
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Cloning of Chimera States in a Large
Short-term Coupled Multiplex
Network of Relaxation Oscillators
Aleksei Dmitrichev*, Dmitry Shchapin and Vladimir Nekorkin

Nonlinear dynamics department, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia

A new phenomenon of the chimera states cloning in a large two-layer multiplex network

with short-term couplings has been discovered and studied. For certain values of

strength and time of multiplex interaction, in the initially disordered layer, a state of chimera

is formed with the same characteristics (the same average frequency and amplitude

distributions in coherent and incoherent parts, as well as an identical phase distribution

in coherent part), as in the chimera which was set in the other layer. The mechanism of

the chimera states cloning is examined. It is shown that the cloning is not related with

synchronization, but arises from the competition of oscillations in pairs of oscillators from

different layers.
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1. INTRODUCTION

Study of the formation of chimera states, i.e., peculiar types of hybrid states consisting of oscillators
with coherent and incoherent behavior is one of the hot problems of the modern non-linear
dynamics. To date, the chimera states have been discovered not only in a variety of theoretical
papers [1–18], but also in experimental systems of various natures, for example, mechanical
[19–22], optical [23, 24], chemical [25–29], and radiotechnical ones [30–33]. Similar states have also
been registered in the neural activity of animal brain networks [34, 35]. At present, great attention
is paid to studying of interaction of chimera states. The effects of generalized synchronization of
chimera states [36], synchronization of chimera states in ensembles with asymmetrical connections
[37], synchronization of chimera states in multiplex networks with delays [38], synchronization
of chimera states in a two-layer multiplex network with adaptive connections in each layer [39],
synchronization of chimera states in modular networks [40, 41], interaction of chimera states
with fully coherent or fully incoherent states [42], etc. were explored. Note that in all these works
the interaction of chimera states led to the formation of new chimera states (in some cases with
synchronous coherent parts) that are different from the pre-existing chimera state. Recently we
presented an example [43] of a two-layer multiplex network with seven oscillators in each layer
where due to short-term interaction, one more chimera is emerged which is identical to the initial
one (excluding the phase distribution of the incoherent part). We called this effect the chimera
states cloning. In this article, we generalize the results of Dmitrichev et al. [43] for the case of a
multiplex network with an arbitrary dimension of the layer and give a theoretical justification for
the cloning effect based on the study of the fast-slow dynamics of the model using the methods of
Geometric Singular Perturbation Theory (GPST) [44, 45].

31

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2019.00009
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2019.00009&domain=pdf&date_stamp=2019-02-18
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:admitry@appl.sci-nnov.ru
https://doi.org/10.3389/fams.2019.00009
https://www.frontiersin.org/articles/10.3389/fams.2019.00009/full
http://loop.frontiersin.org/people/635104/overview
http://loop.frontiersin.org/people/635798/overview
http://loop.frontiersin.org/people/635153/overview


Dmitrichev et al. Cloning of Chimera States

2. MODEL OF MULTIPLEX NETWORK

We consider a two-layer multiplex network with the topology
illustrated in Figure 1A. Each layer of the network is a ring of
locally and linearly coupled relaxational oscillators with phase
portrait shown in Figure 1B. The dynamics of the network is
described by the following system:

ε
duij

dt
= f (uij)− vij + dr(u

i
j−1 − 2uij + uij+1)+ dm(t)(u

i+1
j − uij)

dvij

dt
= uij,

dm(t) =







0, t ≤ 0
d, 0 < t ≤ Tc,
0, t > Tc,

j = 1,N, uiN+1 ≡ uij, i = 1, 2, u3j ≡ u1j ,

(1)
where f (u) = −u(u2 − a2)(u2 − b2)(u2 − c2); the parameters
controlling the dynamics of the layers are for definiteness fixed as
a = 0.32, b = 0.79, c = 1.166, ε = 0.001, and dr = 0.006; d > 0
and Tc > 0 are the parameters controlling the strength and the
time of inter-layer (multiplex) interaction.

FIGURE 1 | (A) Topology of multiplex network. Red and blue dots depict

correspondingly oscillators of first and second layer. Solid and doted lines

depict correspondingly intra-layer and (multiplex) inter-layer couplings.

(B) Qulitative phase portrait of a single oscillator. There exist two stable limit

cycles (bold black lines) separated by an unstable limit cycle (bold blue line)

and an unstable equilibrium state (bold blue dot) located at the origin.

If the oscillators do not interact with each other, i.e., dr = 0;
dm(t) ≡ 0 , then the dynamics of each oscillator is described by
second-order equation. Two stable limit cycles with “low” and
“high” amplitudes exist on the (u, v) phase plane (see Figure 1B).
The regions of attraction of these cycles are separated by an
unstable limit cycle. An unstable equilibrium state is located
at the coordinate origin (u = 0, v = 0). Thus, an oscillator
can be either in the regime of low-amplitude oscillations with
a dimensionless frequency of 0.0039 or, in the case of initial
conditions “outside” the unstable cycle, in the regime of high-
amplitude oscillations with a dimensionless frequency of 0.0021.

In our previous paper [32] we showed that various chimera
states exist in a separate layer of system (1) at the chosen
parameters and obtained chimera states at the experimental
system consisting of seven bistable self-exciting oscillators with
linear couplings. The example of chimera state is presented
in Figure 2A by black crosses (distribution of instant phases
ϕ, average amplitudes < A >, and average frequencies <

ω >). Coherent part of the chimera state is formed by first
99 (j = 1 − 99) oscillators with high-amplitude oscillations,
and incoherent part is formed by oscillators with j = 101 −

199 that demonstrate alternately the low- and high-amplitude
oscillations. The oscillation frequencies and phases of oscillators
were calculated as follows. For definiteness, we consider the jth
oscillator in the ith layer. Let {tnj } be a sequence of time instants at

which the output voltage of the oscillator increases and intersects
the straight line uij = 0; i.e.,

tnj = {t : uij(t) = 0, vij(t) > 0}.

Then, the oscillation phase of the jth oscillator at the time t is
given by the expression

φj = 2πωn
j (t − tnj ) for t ∈ [tnj , t

n+1
j ], (2)

and ωn
j = 1

tnj −tn−1
j

is the instantaneous oscillation frequency.

This definition of the phase is meaningful only if wn
j are constant

or quite close to each other. In the former case, the oscillator
undergoes regular oscillations and the phase always varies at the
same rate. In the latter case, oscillations can be, in particular,
irregular and the phase is a piecewise linear function of the time.
Furthermore, the phase introduced in Equation (2) describes the
dynamics of only an individual oscillator decoupled from the
remaining system. For this reason, to describe the dynamics of
the system as a whole, it is more convenient to use the parameter
ϕk
j = φj − φk describing the oscillation phase of the jth oscillator

with respect to oscillations of the reference kth oscillator. If
ϕk
j is independent of time, this means the phase matching of

oscillations of the kth and jth oscillators. In the general case of
interaction between oscillators, instantaneous frequencies and
amplitudes are not constant. For this reason, here and below,
frequencies and amplitudes are calculated with averaging over a
quite long time series

< ωj >=
1

n
6nω

n
j
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FIGURE 2 | Cloning of chimera state in system (1). Distribution of instant phases ϕ, average amplitudes < A > and average frequencies < ω > (from up to bottom) at

the initial instant of time (A); after the interaction (B). Indexes “1” (black cross) and “2” (red circle) correspond respectively to the first and second layer states.

Parameters values: a = 0.32,b = 0.79, c = 1.166, ε = 0.001,dr = 0.006,d = 0.06, Tc = 1, 000, and N = 200.

and

< Aj >=
1

n
6nA

n
j ,

where An
j = {vij(t) : u

i
j(t) = 0, vij(t) > 0}.

Notice that in addition to the coherent and incoherent
parts, the chimera state also contains two isolated oscillators
at j = 100 and j = 200. Such solitary states exist due
to the bistability of the network oscillators. The explanation
of this phenomenon was given in Nekorkin et al. [46]. The
bistability leads to formation of amplitude clusters with high-
and low-amplitude oscillations and so to an amplitude gap (see
the amplitude distribution in Figure 2A). The amplitude gap,
in turn, causes a frequency gap. Since the magnitudes of gaps
are quite large, diffusive coupling between the oscillators leads
to emergence of solitary oscillators whose dynamics “smooths
out” the dynamics of clusters (amplitude and frequency) having
significantly different characteristics.

3. CLONING OF CHIMERA STATES

Let the chimera state exist in the first layer at the initial instant
of time when there is no interaction between the layers (black

crosses in Figure 2A). And the initial conditions in the second
layer correspond to the low-amplitude oscillations with random
initial phases (red circles in Figure 2A). Now if we switch on the
interaction between the layers, and then after some time switch
the interaction off, then we can obtain a clone of the initial
chimera state in the second layer. For certain values of strength
and time of multiplex interaction, in the second layer, a chimera
state is formed with the same average frequency and amplitude
distributions in coherent and incoherent parts, as well as an
identical phase distribution in coherent part, as in the chimera
which was set in first layer. The example of such cloning for
interaction strength d = 0.06 and interaction time Tc = 1, 000
is shown in Figure 2. Notice that, by definition, instantaneous
phases of the incoherent parts in the chimera state should be
random, and integral characteristics, e.g., average frequencies and
amplitudes, are of fundamental importance for the incoherent
part. For this reason, we believe that the coincidence of the phases
of the incoherent parts is not necessary for the cloning of chimera
states. Note that the cloning of chimera states occurs with certain
initial conditions The role of initial conditions in more detail is
discussed in section 4.

Next we show that the cloning effect is structurally stable.
To do this, we introduce a reference layer with the index “0."
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FIGURE 3 | Dependence of the maximum errors between the average

frequencies ωierr (A) and amplitudes Aierr (B) in the reference chimera state

and the states occurring in first (dashed line) and second (solid line) layer.

Parameters values: a = 0.32,b = 0.79, c = 1.166, ε = 0.001,dr = 0.006, and

Tc = 1, 000.

Let us set in the reference layer a chimera state with the same
characteristics as the original chimera that we set in the first layer.
Then after the interaction of the first and the second layers we
compare states formed in those layers with one in the reference
layer using the following characteristics:

ωi
err = max

1≤j≤N

∣

∣

∣

∣

< ωi,j > − < ω0,j >

< ω0,j >

∣

∣

∣

∣

,

Ai
err = max

1≤j≤N

∣

∣

∣

∣

< Ai,j > − < A0,j >

< A0,j >

∣

∣

∣

∣

where < ωi,j > and < Ai,j > are averaged frequencies
and amplitudes of the oscillators with the number j of the ith
layer; accordingly, < ω0,j > and < A0,j > are those in the
reference layer.

The results of such calculations for Tc = 1, 000 are presented
in Figure 3. They indicate that there is an interval of multiplex
coupling strength 0.37 ≤ d ≤ 0.96 where the states in all layers
have the same averaged characteristics as the reference chimera
state. Thus, the cloning occurs in the large enough interval of
strength and so the effect is structurally stable.

4. THE CLONING MECHANISM

We showed above that cloning of chimera states takes place when
strength of coupling between the elements of the same layer is
much smaller than that between the elements of different layers
(dr << d, see Figure 3). So in the first approximation we can
assume that the key role in cloning is played by the dynamics of
(multiplex) pairs of elements taken from different layers. Next we
consider the dynamics of a pair in more detail. It is described by
the following system of equations:

ε
du1

dt
= f (u1)− v1 + dm(t)(u2 − u1)

ε
du2

dt
= f (u2)− v2 + dm(t)(u1 − u2)

dv1

dt
= u1,

dv2

dt
= u2,

(3)

where u1 ≡ u1j , u2 ≡ u2j , v1 ≡ v1j , v2 ≡ v2j .

Notice also that to realize the cloning, initial conditions in
non-interacting layers must be formed in a special way. In
particular, a chimera state is set in the first layer with coherent
part formed by the oscillators, demonstrating high-amplitude
oscillations, and incoherent part formed by the oscillators
demonstrating alternately low- and high-amplitude oscillations.
In the second layer all oscillators are set in the regime of low-
amplitude oscillations whose phases are randomly distributed.
Moreover, after interaction, the elements of the second layer
should switch to the regimes the corresponding elements of the
first layer were in initial moment. Thus, we need to consider the
evolution of a pair only for two types of initial conditions:

(I.C.)1 An oscillator of the first layer is in the regime of high-
amplitude oscillations, while that of the second layer is in the
regime of low-amplitude oscillations;

(I.C.)2 The oscillators of both layers are in the regime of
low-amplitude oscillations.

4.1. Dynamics of a Pair of Constantly
Coupled Oscillators
First, we study dynamics of a pair for the case when interaction
between its oscillators is not limited by time. Then we obtain the
following system of equations:

ε
du1

dt
= f (u1)− v1 + d(u2 − u1)

ε
du2

dt
= f (u2)− v2 + d(u1 − u2)

dv1

dt
= u1,

dv2

dt
= u2,

(4)

Since 0 < ε ≪ 1, the system (4) belongs to the class of fast-slow
systems. Such systems are characterized by the presence of two
timescales (or speeds), namely, fast and slow ones. In the result,
the trajectories of the systems have epochs of a slow and a fast
movements. In our system u1 and u2 are fast variables, while
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v1 and v2 are slow variables. Next to study the dynamics of the
system we use GPST theory. According to the GPST, the partition
of phase spaceR4 of system (4) into trajectories can be established
by studying two subsystems. As ε → 0, the trajectories of
system (4) converge during fast epochs to the trajectories of the
fast subsystem (or layer equations)

du1

dτ
= f (u1)− v1 + d(u2 − u1)

du2

dτ
= f (u2)− v2 + d(u1 − u2)

dv1

dτ
= 0,

dv2

dτ
= 0,

(5)

where t = ετ . During slow epochs the trajectories of (4) converge
to the trajectories of the reduced system (or the slow flow)

0 = f (u1)− v1 + d(u2 − u1)
0 = f (u2)− v2 + d(u1 − u2)
dv1

dt
= u1,

dv2

dt
= u2,

(6)

The goal of GPST is to use the fast and slow subsystems (5)
and (6) to understand the dynamics of the full system (4) for
0 < ε ≪ 1.

4.1.1. Dynamics of the Fast Subsystem
From system (5) one can see that v1 = const and v2 = const,
so they play the role of additional parameters (denote them by v01
and v02 correspondingly). Thus, system (5) can be rewritten in the
following gradient form

du1

dτ
= −

∂G

∂u1
du2

dτ
= −

∂G

∂u2

(7)

where

G = −

∫ u1

0
f (x)dx−

∫ u2

0
f (x)dx+ v01u1 + v02u2 +

d

2
(u1 − u2)

2.

Since

dG

dτ
= −(

∂G

∂u1
)2 − (

∂G

∂u2
)2,

the trajectories of system (7) [and so system (5)], except for
equilibrium states, relax to one of the stable equilibrium states.
Moreover, since the system is gradient their trajectories relax to
the equilibrium states by the fastest way. The number and type of
equilibrium states depend on the parameters andmay change due
to saddle-node bifurcations. For example, for v01 = v02 = d = 0
there are 49 equilibrium states, among which there are 16 stable
and 9 unstable nodes and 24 saddles. The qualitative phase plane
of system (7) in this case is shown in Figure 4.

FIGURE 4 | Qualitative phase portrait of fast subsystem (7) for

v01 = v02 = d = 0, a = 0.32,b = 0.79, and c = 1.166. The dots mark unstable

nodes (blue), stable nodes (yellow), and saddles (black). The lines mark the

separatrices of the saddle equilibrium states.

4.1.2. Dynamics of the Reduced Subsystem
The first two algebraic equations in system (6) define a critical
manifold S{(u1, u2, v1, v2) ∈ R

4|f (ui)− vi+d(ui+1−ui) = 0, i =
1, 2, u3 ≡ u1}. Let us rewrite (6) in terms of the fast variables
u1 and u2 to obtain the slow flow on S. For this, we differentiate
algebraic Equation (6) with respect to t and combine the result
with the equations for v̇1 and v̇2:

(

df (u1)

du1
− d

)

du1

dt
+ d

du2

dt
= u1

(

df (u2)

du2
− d

)

du2

dt
+ d

du1

dt
= u2

(8)

System (8) is a system of linear inhomogeneous algebraic

equations for derivatives du1
dt

and du2
dt

. Determinant of its
coefficient matrix

∆ =
df (u1)

du1

df (u2)

du2
− d

(

df (u1)

du1
+

df (u2)

du2

)

.

If ∆ 6= 0, then system (8) has the only solution

du1

dt
=

1

∆

[

df (u2)

du2
u1 − du1 − du2

]

du2

dt
=

1

∆

[

df (u1)

du1
u2 − du1 − du2

]

.
(9)

Note that in the four-dimensional phase space R4 of system (4),
algebraic equation ∆ = 0 and two algebraic equations of
system (6) define set S∆ = ∪jS

∆
j . Any its element, S∆

j , defines a

curve, where the fast and slow trajectories are stitched. According
to GPST, each equilibrium state of fast subsystem (5) [and
so (7)] in the phase space R

4 of system (4) corresponds to a
submanifold, whose stability with respect to the trajectories of the
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FIGURE 5 | (A) Mutual location of the stable slow submanifolds (Sa
j
) of system (5) on the phase plane (u1, u2). The boundaries of stable submanifolds (S∆

j
) defined by

the equations 1 = 0. (B) Trajectories behavior on slow submanifold Sa8. (C) Dependence of motion time over submanifold Sa8 to its boundary S∆
8 on the initial

conditions. Parameter values: a = 0.32,b = 0.79, c = 1.166, and d = 0.06.

fast subsystem coincides with the stability of the corresponding
equilibrium state. Since the coordinates of the equilibrium states
of system (5) depend on two parameters v01 and v02, any such
equilibrium state corresponds to a two-dimensional submanifold
in the phase space of (4). The boundary of the submanifold is
given by one of the curves S∆

j . Hence the curves S∆
j decompose

the critical manifold S into some number of submanifolds of
different stability

S = Sai ∪ S∆
l ∪ Srk ∪ S∆

j ∪ Ssadn ,

where Sai denotes one of the stable submanifolds, Sr
k
are the

unstable submanifolds, and Ssadn are the saddle submanifolds
of the slow flow. Note that ∆ > 0 on submanifolds Sai
and Sr

k
, ∆ < 0 on submanifolds Ssadn and ∆ = 0 on

submanifolds S∆
l
. The number of these submanifolds depends

on the parameter d. For example, Figure 5A for d = 0.06
on the phase plane (u1, u2) depicts submanifolds Sai , i = 1, 16,
corresponding to stable nodes Oa

j of the fast subsystem and

curves S∆
l
.

Since the system (4) on submanifolds Sai has no
equilibrium states and limit cycles, any trajectory starting
on the submanifolds eventually leave them. For example,

Figure 5B shows the behavior of trajectories on Sa8 starting
on entering part of its boundary S∆

8 (blue line) and going
till the exit part of the boundary (red line). Note that, the
time the trajectories stay on Sai varies depending on the initial
conditions. The dependence for trajectories on Sa8 is shown
in Figure 5C. Note that the dependence is a monotonically
increasing function asymptotically tending to the value
T ≈ 220.

4.1.3. Dynamics of System (4) for Initial

Conditions (I.C.)1
Let us study the dynamics of system (4) for initial conditions
(I.C.)1. Note, the dynamics of system (4) is formed by the
alternating dynamics of fast and slow epochs, which results in a
“stitched” trajectory.

4.1.3.1. Slow epoch of motion
The initial conditions (I.C.)1 corresponds to one of the stable
submanifolds of slowmotions Sa5, S

a
8, S

a
9, S

a
12 (see Figure 5A). First

let the initial conditions belong to Sa8. The motions on Sa8 are
defined by system (9). Since ∆ > 0 on Sa8, we can de-singularize
the slow flow near S∆

8 by rescaling time with the factor ∆. This
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FIGURE 6 | A part of level map of the function G(u1, u2) taken at the saddle-node equilibrium state Osn (u01, u
0
2) of the boundary Sa8 [i.e., when v01 = f (u01) and

v02 = f (u02)] for (A) d = 0.0075, (u01 = 1.07178, u02 = 0.166426); (B) d = 0.0115, (u01 = 1.07178, u02 = 0.16196); (C) d = 0.0150, (u01 = 1.07178, u02 = 0.15809);

(D) d = 0.0225, (u01 = 1.07178, u02 = 0.0.14980). Levels depicted are below the one of Osn (marked by red color). White color marks region with higher levels of G.

Curves Lhmax , L
h
min

(respectively Lvmax , L
v
min

) defined by Equation (14) are minimum and maximum of G on variable u2 (respectively variable u1). O
∗,Osad are additional

saddle-node equilibrium states and Oa9,O
a
12, and Oa13 are the node equilibrium states. Parameter values: a = 0.32,b = 0.79, and c = 1.166.

gives the following system:

du1

dtn
=

df (u2)

du2
u1 − d(u1 + u2)

du2

dtn
=

df (u1)

du1
u2 − d(u1 + u2),

(10)

where dt = ∆dtn. System (6), and hence system (10), have the
only equilibrium point at the origin. Therefore, the trajectories
starting on Sa8 leave the submanifold at some points of its
boundary S∆

8 . Let O
sn(u1 = u01, u2 = u02) ∈ S∆

8 be one of such
exit points (see Figure 5B). Since the fast and slow trajectories
of system (4) are glued together on S∆

8 , the point Osn is also
the equilibrium state of the fast system (5). From this condition
we find

v1 = f (u01)+ d(u02 − u01)

v2 = f (u02)+ d(u01 − u02).
(11)

By using Equation (11) fast system (5) can be rewritten in
the form

du1

dτ
= f (u1)− f (u01)+ d(u2 − u02 − u1 + u01)

du2

dτ
= f (u2)− f (u02)+ d(u1 − u01 − u2 + u02)

(12)

The eigenvalues of the Jacobian matrix of (12) in the point Osn

are given by

λ1 = 0, λ2 = −2d +
df (u1)

du1
|u1=u01

+
df (u2)

du2
|u2=u02

< 0 (13)

Because of Equation (13), the point Osn is a saddle-node with an
unstable separatrix and a stable nodal branch. Further we show
that there are such values of the parameter d that the separatrix
Wu(Osn) tends to the stable node Oa

13 as t → +∞.
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4.1.3.2. Fast epoch of motion
Consider the level curves of the function G(u1, u2) = C = const,
satisfying the condition C ≤ Csn, where Csn = G(u01, u

0
2).

Obviously, the curves of the level {G(u1, u2) = Csn} pass through
the saddle-node Osn. In Figure 6A, the curve of this level has
a maximum value, i.e., the curves of the higher levels are not
indicated (white color), and the curves of the level corresponding
to the values of the lower levels (C < Csn) are marked with
different colors. Each color corresponds to the same value of C.
Solid black lines in Figure 6 show the critical lines

Lhmin = {(u1, u2) ∈ R2| − f (u2)+ du2 − du1 + f (u02)

+ d(u01 − u02) = 0,−f ′(u2)+ d > 0}

Lhmax = {(u1, u2) ∈ R2| − f (u2)− du2 + du1 + f (u02)

+ d(u01 − u02) = 0,−f ′(u2)+ d < 0}

Lvmin = {(u1, u2) ∈ R2| − f (u1)+ du1 − du2 + f (u01)

+ d(u02 − u01) = 0,−f ′(u1)+ d > 0}

Lvmax = {(u1, u2) ∈ R2| − f (u1)+ du1 − du2 + f (u01)

+ d(u02 − u01) = 0,−f ′(u1)+ d < 0}. (14)

At the points of these lines the following conditions are satisfied:

∂G

∂u2
= 0,

∂2G

∂u22
> 0, if (u1, u2) ∈ Lhmin

∂G

∂u2
= 0,

∂2G

∂u22
< 0, if (u1, u2) ∈ Lhmax

∂G

∂u1
= 0,

∂2G

∂u21
> 0, if (u1, u2) ∈ Lvmin

∂G

∂u1
= 0,

∂2G

∂u12
< 0, if (u1, u2) ∈ Lvmax.

(15)

Consider the asymptotic behavior of the separatrix of the saddle-
node Osn. Taking into account Equation (8), the location of the
level curves of the function {G(u1, u2) = Csn} and lines (14), we
establish that for the parameter value d = 0.0075 (Figure 6A)
the separatrix Wu(Osn) asymptotically tends to the equilibrium
state Oa

12. Without changing the coordinates of the point Osn,
we increase the value of the parameter d = 0.0115 (Figure 6B).
For this value of the parameter d the lines Lhmin, L

v
max, L

v
min merge

at one point, a saddle-node bifurcation of equilibrium states
occurs, and a new equilibrium state O∗ appear (see Figure 6B).
With the further increase in the parameter, the equilibrium state
O∗ disappears, and following the arrangement of lines (14) and
the level curves of the function G, we find that in this case the
separatrix Wu(Osn) tends to the node Oa

9 (Figure 6C). A further
increase in the parameter d leads to the merging of the lines
Lhmin, L

h
max, L

v
min (d = 0.020909 = d∗). This corresponds to the

merging of the node Oa
9 and the saddle Osad (Figure 6C) and

emerging of the saddle-node equilibrium state. For d > d∗, this
equilibrium state disappears, and the separatrixWu(Osn) tends to
the equilibrium state Oa

13 (Figure 6D). It is clear that d∗ depends
on the coordinates of the point Osn.

To describe such possible transitions, we introduced the
distance R on the plane (u1, u2) of system (9) from the origin to

FIGURE 7 | The partition of (u01,d) - parameter plane into areas corresponding

to different transitions [along the trajectories of the fast system (7)] from the

border of submanifold (A) Sa8 (B) Sa8. R is the distance from the origin of slow

subsystem phase plane (u1, u2) to a next stable submanifold. The red color in

(A) marks the region where the next manifold is Sa13. Non-white colors in (B)

mark the region where the next manifold is only one of Sa6, S
a
7, S

a
10, S

a
11.

Parameters values: a = 0.32,b = 0.79, c = 1.166, and d = 0.06.

Sai . Note that the largest value of R corresponds to the points of
the submanifolds Sa1, S

a
13, S

a
4, and Sa16.

Figure 7A depicts the results of analyzing the behavior of
the separatrix Wu(Osn) for different values of u01 belonging to
the line of escape (u01, u

0
2) ∈ S∆

8 with the submanifold Sa8 (see
Figure 5A). For the values of u01, d from the region marked by
red color, the separatrix Wu(Osn) of any of the saddle-nodes in
the fast system (5) asymptotically tends to the stable node Oa

13.
Since in the phase space R4 the equilibrium state corresponds to
a stable manifold Sa13, high-amplitude oscillations are established
in both elements in the system (4). Note that the trajectories of the
submanifold Sa9 of the slow system (10) have a similar behavior.

Since the function
∂f
∂u is even, system (10) does not change when

converting (u1, u2) → (−u1,−u2). Thus, transitions from Sa9 to
Sa16 exist in R

4, and high-amplitude oscillations are established
in system (4). The initial conditions found by us do not exhaust
the entire set of initial conditions under which the oscillation
amplitude changes from low to high in the second oscillator.
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FIGURE 8 | Temporal snapshots of the pair of short-term coupled elements [system (3)] for 1,000 initial conditions such as (A) (I.C.)1; (B) (I.C.)2. Parameters values:

a = 0.32,b = 0.79, c = 1.166, ε = 0.001,d = 0.06, and Tc = 300.

4.1.4. Dynamics of System (4) for Initial

Conditions (I.C.)2
Let us study the dynamics of system (4) for initial conditions
(I.C.)2. These conditions correspond to one of the stable
submanifolds of slow motions Sa6, S

a
7, S

a
10, and Sa11. Similar

to the case of (I.C.)1 we have analyzed the behavior
of the trajectories leaving the submanifolds. Figure 7B

depicts the transitions of trajectories starting from the
points at the boundary S∆

7 of submanifold Sa7 obtained
for different strength of coupling d. One can see that
there are no transitions to submanifolds corresponding to
high-amplitude oscillations. We have established that such
behavior is also typical for other submanifolds, namely Sa6, S

a
10,

and Sa11.
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4.2. Dynamics of a Pair of Short-term
Coupled Oscillators
So far, we have considered the dynamics of system (4) without
any restrictions on the interaction time. However, in the
initial model, the layers interact only during the time Tc. We
numerically investigated the dynamics of system (3). For the
initial conditions such as (I.C.)1, Figure 8A shows the behavior of
1, 000 pair of oscillators, or in other words, 1, 000 different initial
conditions (I.C.)1 type, interacting during Tc = 300 and d =

0.06. For all initial conditions, after some transition process, high-
amplitude oscillations are established in the interacting pairs.
Figure 8B illustrates competition of oscillations in the pairs in
the case of initial conditions such as (I.C.)2 type. Here, interaction
of the pairs does not lead to high-amplitude oscillations, and the
regime of low-amplitude oscillations persists.

The occurrence of high-amplitude oscillations for the initial
conditions (I.C.)1 depends on the values of the parameters
Tc and d. We examine this dependence numerically and the
results are presented in Figure 9. The color gradation on
the plane (d,Tc) shows the dependence of the probability of
establishing high-amplitude oscillations. The area highlighted
in black corresponds to the establishment of high-amplitude
oscillations from any initial conditions. The area highlighted
in shades of gray corresponds to the establishment of high-
amplitude oscillations from only some initial conditions. And
finally the area marked in white corresponds to those values
of the parameters for which high-amplitude oscillations are not
established at all. Note that there are threshold values for both
parameters d and Tc. The existence of threshold value for d
has already been discussed above. The presence of threshold
value for Tc is associated with the motion time T over stable
submanifolds (see Figure 6C). Note that the value of the critical
value Tc is determined by the dynamics of both oscillators and
it is not related to the periods of high and low oscillations of the
isolated oscillator.

4.3. Dynamics of the Multiplex Network
Thus, it has been established that in the case of initial conditions
(I.C.)1, there are values of the parameters d and Tc corresponding
to the emergence of high-amplitude oscillations in the pairs of
interacting oscillators belonging to the different layers. On the
other hand, it has been shown that in the case of initial conditions
(I.C.)2, when the oscillators belonging to the different layers do
not change their initial regimes after the interaction and keep
demonstrating low-amplitude oscillations.

Now let us consider the dynamics of multiplex network (1)
based on the findings of the previous subsections. It can be
divided into two main stages.

(a) In the time interval 0 < t < Tc, oscillators of different
layers interact with each other through inter-layer couplings with
strengths, dc, greatly exceeding those of the diffusive intra-layer
couplings, dr . Therefore, in this stage the main contribution to
the dynamics of the system due to the dynamics of the interacting
pairs. We have established that as a result of this dynamics, the
pairs of oscillators with high-amplitude oscillations are formed
in (1) from the initial conditions (I.C.)1. On the other hand, the

FIGURE 9 | Dependence of establishing probability of high-amplitude

oscillations in the pair of short-term coupled elements [system (3)] for initial

conditions such as (I.C.)1 on the parameters (d,Tc). Parameters values:

a = 0.32,b = 0.79, c = 1.166, and ε = 0.001.

pairs of oscillators with low-amplitude oscillations are formed
in (1) from the initial conditions (I.C.)2. This means that the
average amplitude distribution in the first layer does not change,
while that of the second layer becomes the same as in the first one.

(b) For t > Tc, there are no inter-layer couplings, and the
oscillators interact only through diffusive intra-layer ones. Under
the influence of these couplings, the neighboring oscillators with
similar amplitudes become phase-locked with each other at some
average frequency and form the coherent part of the chimera
state. The neighboring oscillators with different amplitudes do
not become phase-locked with other oscillators and form the
incoherent part of the chimera state with distinguished bell-
shaped distributions of average frequencies and amplitudes.
Thus, the same chimera state is formed in the second layer as in
the first one. Note that a finite interaction time is required to stop
the competition of oscillations of pairs of oscillators. Otherwise,
new complex states arise in the layers and they differ from the
initial chimera.

5. CONCLUSIONS

In a large two-layermultiplex networkwith short-term couplings,
a new phenomenon of the chimera states cloning, has been
discovered and studied. Each layer of the system has a ring
topology and consists of relaxation oscillators having two stable
limit cycles on their phase planes. The oscillators inside the layers
interact through diffusive couplings, while those of different
layers interact by means of multiplex couplings. When the
chimera state existing in one of the layers interacts for a while
with oscillations of the other layer having a random distribution
of phases, the same chimera state appears in the latter layer. Note
that the time of occurrence of the chimera state in the second
layer is less than the minimal partial oscillation period. We have
found that the phenomenon is not related with synchronization
of oscillations existing in the layers, but instead is determined
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by the competition of high- and low-amplitude oscillations.
Using GPST, we showed that competition of oscillations in
each (multiplex) pair of oscillators in the multiplex network is
controlled by switching four-dimensional slow-fast dynamics.
We have analytically established the initial conditions leading
to the trajectories in phase space which start from stable
“competitive” submanifolds of slow motions and then transit
to stable “winner” submanifolds. The “competitive” submanifold
corresponds to the case where oscillations in different layers have
different (low and high) oscillation amplitudes. The “winner”
submanifold corresponds to the case where oscillations in
different layers have high amplitudes. Transitions between stable
submanifolds occur along the trajectories of a two-dimensional
fast subsystem. The given initial conditions belong to the basin
of attraction of both the initial chimera state and the clone. We
found that strength, as well as time ofmultiplex interaction, play a
crucial role in the existence of the cloning effect of chimera states.
A chimera clone is formed with 100% probability if the strength
and time of multiplex interaction exceed certain threshold values.

Below these threshold values a chimera clone occurs with a
certain probability. Note that the effect of chimera state cloning
does not depend on the choice of boundary conditions, since the
dynamics of pairs of oscillators plays a crucial role in its existence.
We hope also that the cloning effect is not specific to considered
model and exists in other models, since the conditions necessary
for it to take place are fairly general.
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Time delay in complex networks with multiple interacting layers gives rise to special

dynamics. We study the scenarios of time delay induced patterns in a three-layer network

of FitzHugh-Nagumo oscillators. The topology of each layer is given by a nonlocally

coupled ring. For appropriate values of the time delay in the couplings between the

nodes, we find chimera states, i.e., hybrid spatio-temporal patterns characterized by

coexisting domains with incoherent and coherent dynamics. In particular, we focus

on the interplay of time delay in the intra-layer and inter-layer coupling term. In the

parameter plane of the two delay times we find regions where chimera states are

observed alternating with coherent dynamics. Moreover, in the presence of time delay

we detect full and relay inter-layer synchronization.

Keywords: chimera states, multiplex networks, FitzHugh-Nagumo oscillator, time delay, relay synchronization

1. INTRODUCTION

During the early eighteenth century, Leonhard Euler published a paper on The Seven Bridges of
Königsberg providing a mathematical background on vertices and edges [1]. Later on, it became
the cornerstone of the field of network science. Network science presents a unique platform to
study various complex real-world systems by analyzing the interactions between its constituent
entities and collectively investigating its behaviors [2–4]. A recent addition to the network science
is the multiplex framework which incorporates multiple types of interactions among nodes by
representing them in different layers [5, 6]. For example, the neurons in the brain form different
groups consisting of the same neurons but interacting in different ways (chemical interaction
or electrical synapses) to perform different tasks [7, 8]. Multiplex framework divides these
neuronal groups into different layers based on their functionalities [9]. Similarly, transportation
networks, communication networks, social networks and a lot of other real-world networks can be
represented in a multiplex framework to understand their structural and dynamical features in a
better fashion [10].

Recently, various synchronization scenarios have been investigated in multilayer structures,
including remote and relay synchronization [11–14]. Moreover, it has been shown that
multiplexing can be used to control spatio-temporal patterns in networks [15–18]. The advantage
of control schemes based on multiplexing is that they allow to achieve the desired state in a certain
layer without manipulating its parameters, and they can work for weak inter-layer coupling. For
example, it has been found that weak multiplexing can induce coherence resonance [19] as well as
chimera states [18] in neural networks.
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Chimera state is a peculiar partial synchronization pattern that
refers to a hybrid dynamics where coherence and incoherence
emerge simultaneously in a network of identical oscillators [20–
22]. Since its inception [23, 24], chimera state has attracted
massive interest from the nonlinear community for both its
significance in understanding complex spatiotemporal patterns
and its probable applicabilities in various fields, especially in
neuroscience [25]. Here we study the role of the interplay of
intra- and inter-layer time delays for the emergence of chimera
states in a multi(tri)plex network. Time delays represent an
essential factor in real-world networks due to the finite speed of
information propagating through channels connecting the nodes.
They play a crucial role in determining the dynamical behavior
of a complex system [26–32]. Time delays have been shown to
heavily influence the parameter range for which chimera states
appear for both single and multiplex networks [14, 15, 33–35].
Moreover, recently a scheme has been proposed for engineering
chimera states using suitably placed heterogeneous delays [36].
In the present work we demonstrate that just the variation
of delay values in the intra- and inter-layer edges can lead
to various dynamical states and allows for control of spatio-
temporal patterns.

2. THE MODEL

We study amultiplex network with three layers (triplex) as shown
in Figure 1. Every single layer represents a ring of N identical
FitzHugh-Nagumo (FHN) oscillators with non-local (intra-layer)
topology. The outer layers i = 1 and i = 3 are coupled with the
middle layer i = 2, so that it acts as a relay layer. There is no direct
connection between layers 1 and 3 (so-called ordinal coupling).

FIGURE 1 | Triplex network with ordinal coupling: The middle layer i = 2 (red)

acts as relay layer between the two outer layers i = 1, 3 (blue). Black dots

indicate the nodes, solid lines represent the intra-layer connections, and

dashed lines denote the inter-layer links. The intra-layer coupling is

characterized by the strength σi and time delay τi , and the inter-layer coupling

is characterized by the strength σij and time delay τij . For example, in layer 3

the intra-layer coupling strength is given by σ3 and the intra-layer time delay is

τ3. Similarly, for the layers 1 and 2 the inter-layer coupling strength is given by

σ12 and the inter-layer time delay is τ12.

Our system is described by the following equations:

ẋ
i
k(t) = F(xik(t))+

σi

2Ri

k+Ri
∑

l=k−Ri

H[xil(t − τi)− x
i
k(t)]

+

3
∑

j=1

σijH[x
j

k
(t − τij)− x

i
k(t)], (1)

where x = (u, v)T ∈ R
2, k ∈ {1, ...,N}, i ∈ {1, ..., 3} with all

indices modulo N, describe the set of activator (u) and inhibitor
(v) variables. The intra-layer delay time is τi and the inter-layer
delay time is τij. The coupling radius in layer i is given by Ri. The
local dynamics of each oscillator is given by

F(x) =

(

ε−1(u− u3

3 − v)
u+ a

)

, (2)

where ε = 0.05 is the parameter characterizing the time
scale separation. The FHN oscillator exhibits either oscillatory
(|a| < 1) or excitable (|a| > 1) behavior depending on the
threshold parameter a. In this work we focus on the oscillatory
regime (a = 0.5). The parameter σi stands for the coupling

FIGURE 2 | Dynamical regimes in the parameter plane of intra-layer coupling

delay τi ≡ τ1 = τ2 = τ3 and inter-layer coupling delay τij ≡ τ12 = τ23: “salt &

pepper” states (green islands) occur in the region of coherent states (blue

region) as traveling waves, cluster or synchronized states. At the border

between these two regimes chimera states can be found (red color). We

distinguish between the different regions on the one hand, by analyzing the

mean phase velocity and a snapshot of variables uk , on the other hand, by

means of the Laplacian distance measure [39]. The boundaries of these

regions are fitted linearly after the (τi , τij ) plane has been sampled in steps

1τi = 0.05 and 1τij = 0.1. For all simulations of Equation (1) random initial

conditions are taken. Parameters are chosen as ε = 0.05, a = 0.5, σi = 0.2,

σij = 0.05, N = 500, Ri = 170, φ = π
2 − 0.1, and i, j = 1, 2, 3.
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FIGURE 3 | Dynamics in all three layers for different values of the inter-layer delay time τij : (A) Chimera state for τij = 0.4, (B) “salt & pepper” state for τij = 0.9, (C)

coherent state (cluster state) for τij = 1.7. The intra-layer delay time is fixed at τi = 0.8. The left column displays snapshots of variables ui
k
for the layers i = 1, 2, 3,

while the right column illustrates the mean phase velocity profile ωk (dark blue) for the individual layers and the local inter-layer synchronization error E
ij
k
(light yellow).

Other parameters as in Figure 2.

strength inside the layer (intra-layer coupling), and σij is the
inter-layer coupling. For an ordinal inter-layer coupling with
constant row sum we set σ12 = σ23, which yields the inter-layer
coupling matrix

σ =





0 σ12 0
σ12
2 0 σ23

2
0 σ23 0



 (3)

The connections between the nodes are given by the diffusive
coupling with the following coupling matrix

H =

(

ε−1 cosφ ε−1 sinφ

− sinφ cosφ

)

(4)

and coupling phase φ = π
2 − 0.1 [37]. This coupling

configuration (i.e., predominantly activator-inhibitor cross-
coupling) is similar to a phase-lag of approximately π/2 in
the Kuramoto model that ensures the occurrence of chimera
states [37].

3. INTERPLAY OF TIME DELAYS

Chimera states are spatio-temporal patterns where incoherent
and coherent domains coexist in space. For certain values of
coupling strength σi and coupling radius Ri one can detect
them in the ith layer [37]. Recently, the phenomenon of
relay synchronization of chimera states has been studied in a
three-layer network of FHN oscillators [38]. In more detail,
for varying the coupling delay and strength in the inter-layer
connections relay synchronization of chimera states in the outer
network layers has been reported. For appropriate parameters
the so-called “double” chimeras are possible where the coherent
parts of the chimera states are synchronized, whereas the
incoherent parts remain desynchronized. Additionally, the
transitions between different synchronization scenarios have
been studied. Moreover, time delay in the inter-layer coupling
has been shown to be a powerful tool for controlling various
partial synchronization patterns in the three-layer network [14].
Therefore, by multiplexing and introducing inter-layer time
delays it is possible to destroy or induce chimera states. Here we
study the interplay of inter- and intra-layer time delay.

To provide an overview of the patterns observed in the
network, we calculate the map of regimes in the parameter
plane of intra-layer delay time τi and inter-layer delay time τij
(Figure 2). The dominating region is the one corresponding to
coherent states (blue region in Figure 2). On the one hand, we
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FIGURE 4 | Dynamics in all three layers for different values of the intra-layer delay time τi : (A) Chimera state for τi = 2.8, (B) “salt & pepper” state for τi = 2.6, (C)

coherent state (traveling wave) for τi = 2.4. The inter-layer delay time is fixed at τij = 2.6. The left column displays snapshots of variables ui
k
for the layers i = 1, 2, 3,

while the right column illustrates the mean phase velocity profile ωk (dark blue) for the individual layers and the local inter-layer synchronization error E
ij
k
(light yellow).

Other parameters as in Figure 2.

detect the in-phase synchronization regime (see Figure 3C), on
the other hand, we also observe a region of coherent traveling
waves (see Figure 4C). By varying the delay times we can not
only switch between these states, but also adjust the speed of
traveling waves. In addition, we can observe salt and pepper states
(green region in Figure 2), where all nodes oscillate with the same
phase velocity but they are distributed between states with phase
lag π incoherently [40] (see Figures 3B, 4B). The reason for
this are strong variations on very short length scales, so that the
dynamical patterns have arbitrarily short wavelengths. Besides
these two patterns characterized by the samemean phase velocity
for all the nodes in the network, we also observe chimera states
(red region in Figure 2), where the oscillators within each layer
show a characteristic arc-shaped mean phase velocity profile.
The mean phase velocities of the oscillators are given by ωk =

2πSk/1T, k = 1, ...,N, where Sk denotes the number of complete
rotations performed by the kth oscillator during the time 1T.
The value 1T = 10, 000 is fixed throughout the paper. Because
of the delay, the system often exhibits traveling structures.
Therefore, the classical arc-shaped profile is transformed into a
wider, conical one [41] (see Figures 3A, 4A (right column)). We
distinguish between the different regions on the one hand, by
analyzing the mean phase velocity and a snapshot of variables uk,
on the other hand, by means of the Laplacian distance measure
[39]. The latter identifies strong local curvature in an otherwise
smooth spatial profile of xk by calculating the discrete Laplacian

‖(xk+1−xk)−(xk−xk−1)‖for each k. In case of coherent dynamics
we obtain low values (≈ 0) for all k, in case of salt and pepper
states we get high values (> 2). Chimera states show low and high
values for the coherent and incoherent domains, respectively. By
taking the mean over all k, we can distinguish between coherent,
chimera and “salt & pepper” states. For the numerical integration
an Euler integration method is used with a step size 1t = 0.0025
and a transient time ttrans = 2, 000. All simulations are evaluated
then after 1T = 10, 000 as mentioned above.

In many systems with time delays resonance effects can be
expected if the delay time is an integer or half-integer multiple
of the period in the uncoupled system [42–44]. Regarding the
inter-layer delay time τij we can observe this effect for half-
integer multiples of the period T = 2.3 of a uncoupled FHN
oscillator (see Figure 2 for τi ≈ 2.5). Concerning the intra-layer
delay time τi we find a resonance effect in the case of integer
multiple of the delay. For greater values of the delay times τi
and τij the dynamical regions are becoming curved (see green
islands in Figure 2 at τi ≈ 2.5). This can be explained by the
fact that branches of periodic solutions, which are reappearing for
integer multiples of the intrinsic period, are becoming stretched
with increasing delay time [41]. In comparison to the almost
vertical shape at τi ≈ 0.5, the green islands at τi ≈ 2.5 are
rotated clockwise by approximate π/8. The consequence is an
overlapping of the delay islands for small intra-layer delay time
τi, whereas for larger delays the islands become separated.
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4. RELAY SYNCHRONIZATION

Networks with multiple layers demonstrate remote
synchronization of distant layers via a relay layer. Regarding the
inter-layer synchronization, two synchronization mechanisms
are conceivable in a triplex network:

• full inter-layer synchronization when synchronization is
observed between all the layers and

• relay inter-layer synchronizationwhen synchronization occurs
exclusively between the two outer layers.

A useful measure for synchronization between two layers i, j is
given by the global inter-layer synchronization error Eij [14, 45]:

Eij = lim
T→∞

1

NT

∫ T

0

N
∑

k=1

∥

∥

∥
x
j

k
(t)− x

i
k(t)

∥

∥

∥
dt, (5)

where ‖·‖ denotes the Euclidean norm. One can distinguish
between the two synchronization mechanisms by measuring the
global inter-layer synchronization error between the first and
second layer E12 and between the first and third layer E13: In the
case of full inter-layer synchronization E12 = 0 as well as E13 = 0,
while in the case of relay inter-layer synchronization E12 6= 0 and
E13 = 0.

To provide more insight into the synchronizability of patterns
between two layers i, j, the local inter-layer synchronization error
in dependence of every single node k can be used [14]:

E
ij

k
= lim

T→∞

1

T

∫ T

0

∥

∥

∥
x
j

k
(t)− x

i
k(t)

∥

∥

∥
dt. (6)

The local inter-layer synchronization error is convenient for
detecting the synchronized nodes between two layers. In

Figures 3, 4 (right column) E
ij

k
is plotted (light yellow) together

with the mean phase velocity (blue): Depending on the delay
times τi and τij we can find full inter-layer synchronization
(see Figure 3C) as well as relay inter-layer synchronization (see
Figures 3A,B, 4A,C). These synchronization scenarios can be
found for both coherent and incoherent dynamics. An additional
effect is the partial relay synchronization scenario in Figure 4B:
In all three layers “salt & pepper” dynamics can be observed. The
nodes in the outer layers are almost all synchronized, but a small
part of them destroys the relay synchronization. On the other

hand a few oscillators in the relay layer are synchronized with
the outer layers.

5. CONCLUSION

In conclusion, we have studied chimera states in a three-
layer network of FitzHugh-Nagumo oscillators, where each
layer has a nonlocal coupling topology. Focusing on the role
of time delays in the coupling terms and their influence
on chimera states, we have performed a numerical study
of complex spatio-temporal patterns in the network. In the
parameter plane of the intra-layer τi and the inter-layer τij
time delay, we have determined the regions where chimera
patterns occur, alternating with regimes of coherent states. A
proper choice of time delay allows to achieve the desired state
of the network: chimera state or coherent pattern, full or relay
inter-layer synchronization.

Combining the delayed interactions with the multiplex
framework considered in this work can provide additional
insight into the formation of the complex spatio-temporal
patterns in real-world systems. Specifically, in brain networks
where EEG patterns are recently reported to display chimera-
like behavior at the onset of a seizure [46–48]. Inducing
the chimera states by tuning the inter- and intra-layer
delay values provides us with a powerful tool to control
chimera states.
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Control of Chimera States in
Multilayer Networks
Iryna Omelchenko*, Tobias Hülser, Anna Zakharova and Eckehard Schöll

Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany

Chimera states are intriguing complex spatio-temporal patterns of coexisting coherent

and incoherent domains. They can often be observed in networks with non-local coupling

topology, where each element interacts with its neighbors within a fixed range. In small-

size non-locally coupled networks, chimera states usually exhibit short lifetimes and

erratic drifting of the spatial position of the incoherent domain. This problem can be

solved with a tweezer feedback control which can stabilize and fix the position of chimera

states. We analyse the action of the tweezer control in two-layer networks, where each

layer is a small non-locally coupled ring of Van der Pol oscillators. We demonstrate that

tweezer control, applied to only one layer, successfully stabilizes chimera patterns in the

other, uncontrolled layer, even in the case of non-identical layers. These results might be

useful for applications in multilayer networks, where one of the layers cannot be directly

accessed, thus it can be effectively controlled via a neighboring layer.

Keywords: dynamical systems, synchronization, chimera states, multilayer networks, feedback control, Van der

Pol oscillators

1. INTRODUCTION

Networks of coupled oscillators are an intensively studied topic in non-linear science, they have
a wide range of applications in physics, biology, chemistry, technology, and social sciences.
Special interest has been paid to synchronization and partial synchronization of oscillators,
including chimera states which are characterized by a hybrid nature of coexisting spatially
coherent and incoherent domains [1–7]. Theoretical studies of chimera states have considered
a wide range of networks with different local dynamics and a variety of regular and irregular
coupling topologies: rings of phase oscillators with non-local coupling [8–12], interacting globally
coupled populations of phase oscillators [13, 14], non-locally coupled maps [15, 16], oscillators
with phase-amplitude dynamics [17–21], neural oscillators [22–26], two- and three-dimensional
lattices of oscillators [27–31], networks with adaptive topologies [32, 33], fractal complex
topologies [34–38], oscillators with local or global interaction [39–42], and networks with
multiple layers[43–47]. Experimentally, chimera states were demonstrated in optical [48] and
chemical [49, 50] systems, as well as in mechanical [51], electronic [52, 53], optoelectronic [54, 55],
electrochemical [56, 57] oscillator systems, and Boolean networks [58]. Possible analytical insights
and bifurcation analysis of chimera states have been obtained in the continuum limit, which
explains the behavior of very large ensembles of coupled oscillators [59–63]. In contrast, lab
experiments are commonly performed with small-size networks, where chimera states are more
difficult to observe [64–67].

49
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Ring networks with non-local coupling, where each element
interacts with its neighbors within a certain range, are a
prominent example of a topology allowing for the observation
of chimera states. However, the size of the network is essential.
In small-size rings of non-locally coupled oscillators, chimera
states are often short-living chaotic transients, which eventually
collapse to the synchronized state. Their mean lifetime decreases
rapidly with decreasing system size [10]. In addition to this,
chimera states exhibit a chaotic spatial motion of the position of
the coherent and incoherent domains, which ismore pronounced
with decreasing of the system size [68]. These two effects are
weakly noticeable in large networks, but they strongly impede
the observation of chimera states in small systems. Only in some
special cases beyond simple non-local topologies, chimera states
can be observed. For instance, when phase interaction involves
higher order harmonics [69, 70], or oscillators are organized in
globally coupled interacting subpopulations, the observation of
stable chimeras that are not transients is possible in small phase
oscillator networks [64, 70].

Control of non-linear systems is an important topic in
applied complex systems science [71]. Some control techniques,
which allow to stabilize chimera patterns in non-locally coupled
oscillator networks, have been proposed recently. The lifetime
of amplitude chimeras can be greatly enhanced by time-delayed
coupling [72]. For Kuramoto phase oscillators the lifetime of
chimera states can be extended by proportional feedback control
based on the measurement of the global order parameter [73].
The spatial position of the coherent and incoherent domains
of the chimera states can be fixed by a feedback loop inducing
a state-dependent asymmetry of the coupling topology [74],
defined by a finite difference derivative for a local mean field.
Moreover, in one-dimensional arrays of identical oscillators, a
self-feedback control applied to a subpopulation of the array
can be used for the stabilization of the spatial positions of the
coherent and incoherent domains of the chimeras [75]. Recently,
we introduced a tweezer control scheme for stabilization of
chimera states [76] in small-size non-locally coupled networks.
This control scheme consists of two parts, symmetric and
asymmetric, and effectively stabilizes chimera states in small
networks of oscillators exhibiting both phase and amplitude
dynamics. Note, that in contrast to pure phase oscillators, a
simple analytical study for the continuum limit (N → ∞) is
not possible for non-linear phase-amplitude oscillators, therefore
we concentrated mainly on the numerical stability analysis. In
small networks of Van der Pol and FitzHugh-Nagumo oscillators,
we demonstrated that tweezer control allows for stabilization
of variable chimera patterns with different sizes of coherent
domains [77].

Current research in the field of complex systems is moving
beyond simple network structures to more complicated, realistic
topologies. One of them are multilayer networks, which find
a wide range of applications in nature and technology, such
as neuronal and genetic networks, social networks, power
grids, transportation networks [78–91]. Recent studies have
been focused on various synchronization scenarios in multilayer
structures, including remote and relay synchronization [92–94].
Moreover, it has been reported that multiplexing can be used

to control spatio-temporal patterns in networks [86, 88, 95].
The advantage of control schemes based on multiplexing is
that they allow to achieve the desired state in a certain layer
without manipulating its parameters, and they can work for
weak inter-layer coupling. For example, it has been shown that
weak multiplexing can induce coherence resonance [96] as well
as chimera states and solitary states [95] in neural networks.
However, multiplexing has not been previously combined with
tweezer control.

In many real multi-layer networks some of the layers cannot
be easily accessed. An urgent issue, therefore, is the question
whether it is possible to control or stabilize spatio-temporal
patterns in one layer of the network by applying control to
the other layer. We aim to answer this question by an analysis
of a simple two-layer network of Van der Pol oscillators. We
demonstrate that chimera states which are not observable in
small isolated networks, can be efficiently stabilized by the
combined action of multiplexing and tweezer control.

2. TWEEZER CONTROL IN TWO-LAYER
NETWORK OF VAN DER POL
OSCILLATORS

We consider a network of 2N coupled Van der Pol oscillators,
organized in two layers, each of which contains N oscillators,
with non-local ring topology within each layer:
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(i)
k
)
]

+
[

ainter(x
(3−i)
k

− x
(i)
k
)+ binter(ẋ
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where x
(i)
k

∈ R, i = 1, 2 denotes the layer number, k = 1, ...,N is
the oscillator index within each layer. The scalar parameter ε > 0
determines the internal dynamics of the individual elements. For
small ε the oscillation of a single element is sinusoidal, while
for large ε it is a strongly non-linear relaxation oscillation. Each
element is coupled with Ri nearest neighbors to the left and
to the right, we assume that the oscillators within the layers
are arranged on a ring (i.e., periodic boundary conditions). The
coupling term inside each layer consists of two parts: the coupling
constants with respect to position and velocity to the left and to

the right are denoted as a
(i)
− , a

(i)
+ and b

(i)
− , b

(i)
+ , respectively. Such a

coupling scheme can be associated with biological [97, 98] and
technological applications [99]. Interaction between the layers
consists of one-to-one bidirectional connections between the
corresponding pairs of oscillators x

(1)
k

and x
(2)
k
, with inter-layer

coupling strength ainter and binter . Figure 1 shows schematically
the topology of the considered network: both layers consist of
non-locally coupled rings of oscillators, corresponding pairs of
oscillators in each layer are connected by inter-layer links shown
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FIGURE 1 | Schematic structure of the two layer networks: red dots denote

the oscillators, blue planes correspond to the two layers. Solid lines

show intra-layer couplings, dashed lines represent pairwise inter-layer

couplings between the oscillators. Tweezer control is applied to layer 1.

by dashed lines. This network structure can also be referred to as a
multiplex, since only one-to-one inter-layer connections between
the layers exist.

For the sake of simplicity we assume

a
(i)
− = a

(i)
+ = a(i), b

(i)
− = a(i)σ

(i)
− , b

(i)
+ = a(i)σ

(i)
+ , (2)

with rescaled coupling parameters a(i), σ
(i)
− , and σ

(i)
+ .

In order to introduce the tweezer control [76], we define two
complex order parameters within each network layer i
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where φ
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(t) is the geometric phase of the k-th oscillator

computed from
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The tweezer feedback control [76] for the non-locally coupled
ring of oscillators is defined as

σ
(i)
± = Ks

(

1−
1

2
|Z

(i)
1 + Z

(i)
2 |

)

± Ka(|Z
(i)
1 | − |Z

(i)
2 |). (6)

The control term has two parts referred to as symmetric and
asymmetric controls, with corresponding control gainsKs andKa.

The idea of the symmetric proportional control was suggested for
phase oscillators in Sieber et al. [73]. It is defined as a feedback

loop between coupling parameters σ
(i)
± and the global Kuramoto

order parameter of the oscillators within one layer |Z
(i)
s | =

|Z
(i)
1 +Z

(i)
2 |

2 . This feedback loop aims to suppress the collapse of
small-size chimera states and extend their lifetime.

The asymmetric control part is realized as a second feedback

loop between coupling parameters σ
(i)
± and the difference Z

(i)
a =

|Z
(i)
1 | − |Z

(i)
2 |. It indicates a relative spatial shift of the chimera’s

incoherent domain with respect to the center of the oscillator
array 1, ...,N. If the incoherent domain of the chimera state is

shifted toward larger indices (|Z
(i)
1 | > |Z

(i)
2 |), then the difference

is positive, and as a result σ
(i)
+ > σ

(i)
− . In the opposite case,

when the incoherent domain of the chimera state is shifted
toward smaller indices (|Z

(i)
1 | < |Z

(i)
2 |), we will obtain σ

(i)
+ <

σ
(i)
− . A discrepancy between σ

(i)
+ and σ

(i)
− introduces asymmetry

in the coupling term, and induces the counterbalancing lateral
motion of a chimera state toward dynamically preferable centered
position.

In Omelchenko et al. [76, 77] we have demonstrated the
effective action of the tweezer control in small rings of non-
locally coupled Van der Pol and FitzHugh-Nagumo oscillators.
When both the symmetric and asymmetric parts of the control
are acting (the control gains Ks and the Ka are positive), a stable
chimera state can be observed in the system. When we switch off
the asymmetric part of the control, Ka = 0, and keep a positive
symmetric gain Ks > 0, the chimera state starts to drift on the
ring. Its motion becomes stronger for decreasing system size. To

switch off both parts of the control, we keep σ
(i)
+ and σ

(i)
− constant,

and after a short transient time the chimera state collapses to the
completely synchronized state.

In the present work, the tweezer control acts in the first layer
of our network (1) only, while in the second layer the coupling
strength is constant. We will compare patterns obtained in both
layers in a network of relatively small size. The characteristic
signature of a chimera state is a pronounced difference of the
average frequencies for oscillators belonging to the coherent
and incoherent domains, respectively. The oscillators from the
coherent domain are phase-locked having equal frequencies,
while the oscillators from the incoherent domain have different
average frequencies which typically form an arc-like profile. The
mean phase velocities are obtained as

ω
(i)
k
(t) =

1

T0

∫ T0

0
φ̇
(i)
k
(t − t′)dt′, k = 1, . . . ,N, i = 1, 2, (7)

averaged over the time window T0. To visualize the temporal
dynamics of the oscillators we plot their mean phase velocities
defined by Equation (7) with T0 = 50 for each layer. Throughout
this work in our numerical simulations we use random initial
conditions.

Figure 2 shows the mean phase velocities for a two-layer
network of Van der Pol oscillators with N = 48 oscillators within
each layer, coupled to their R1 = R2 = 16 nearest neighbors.
Such an intermediate coupling range is the prerequisite of the
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FIGURE 2 | Mean phase velocities for a two-layer system of N = 48 oscillators in each layer with R1 = R2 = 16, ε = 0.2, a(1) = a(2) = 0.02, ainter = 0.002,

binter = 0.001. Layer 1 is controlled with Ka = 2, Ks = 0.5, layer 2 is uncontrolled with b
(2)
− = b

(2)
+ = 0.0027. Oscillators k = 1...48 represent the first layer, k = 49...96

the second layer; (A) space-time plot; (B) mean phase velocity profile averaged over 25,000 time units for the first layer (red dots) and the second layer (blue

diamonds) (top panel); snapshot of variables xk (middle panel) and snapshot in the (xk; ẋk ) phase space at t =25,000 (bottom panel).

existence of chimera patterns in non-locally coupled rings. In our
earlier work [21] we have demonstrated analytically that in the
ring of non-locally coupled Van der Pol oscillators the ratio of

the coupling constants of position and velocity (in our case a
(i)
±

and b
(i)
± ) can be associated with the phase lag parameter for a

reduced phase oscillator network. In order to observe chimera
states, the coupling constant of position should be chosen larger
than the coupling constant of velocity. In the following, we will
use this property for both intra- and inter-layer couplings. As
a first step, we consider very weak inter-layer coupling with
constants ainter = 0.002, binter = 0.001 approximately ten times
smaller than intra-layer coupling strengths. Figure 2A shows,
that in this case the intra-layer coupling dominates, and the two
layers perform different dynamics: in the first layer we observe
a stable chimera state due to the action of the tweezer control,
while in the second, uncontrolled layer after short transient time
all oscillators synchronize. Figure 2B shows the mean phase
velocities of the oscillators averaged over large time interval
T0 =25,000 (upper panel). In the first layer the typical arc-shape
profile is formed (shown red), which is one of the prominent
features of chimera states. In the second layer, all oscillators are
frequency-locked (shown blue). The middle panel demonstrates
snapshots for both layers at fixed time, and the bottom panel
depicts the same snapshots in the phase space, where the limit
cycle of one uncoupled Van der Pol unit is shown in black. The
oscillators from the incoherent domain of the chimera state are
scattered around this limit cycle.

With increasing inter-layer coupling strength, we observe
successful stabilization of the chimera state in the second layer
shown in Figure 3 for ainter = 0.011, binter = 0.0025. Due to
the fact that our layers are identical, the mean phase velocities

profiles have the same shape, and coherent/incoherent domains
of chimera states are synchronized spatially in both layers.
Figure 4 presents a diagram in the parameter plane of inter- and
intra-layer coupling constants. When the interlayer coupling is
too weak, chimera states in the second layer can not be stabilized
(blue region). In the red region synchronization of both layers,
and thus successful control of the chimera state in the second
layer via multiplexing is observed. In the thin hatched region our

numerical evidence shows a sensitive dependence on the initial

conditions. However, system (1) has numerous parameters which
should also be fixed appropriately. For instance, the control gains

Ks and Ka can influence the shape of the controlled chimera
pattern and the size of its coherent domain [77]. Moreover, in
the examples demonstrated in the present manuscript, the non-
linearity parameter ε of the individual Van der Pol oscillator is
chosen to be small, corresponding to sinusoidal oscillations. The
tweezer control acts successfully also in the case of relaxation
oscillations when ε is large [76].

Figure 5 demonstrates the behavior of chimera patterns
within two layers under the action of each part of the
control (6) separately. When the asymmetric part is deactivated,
Ka = 0, the lifetime of the chimera state is still extended,

but it starts to drift, as shown in Figure 5A. The coherent
and incoherent domains of the chimera state in the second

layer drift along with the chimera in the controlled layer.
Thus, extending of lifetime without position control in both

layers is possible as well. When we stop to control the

lifetime of chimeras, by keeping the coupling coefficients
constant in the first layer, after some transient time we observe
simultaneous chimera collapse in both layers as depicted in
Figure 5B.
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FIGURE 3 | Same as Figure 2 for ainter =0.011, binter = 0.0025.

FIGURE 4 | Diagram in the plane of inter-layer ainter and intra-layer a coupling

constants for a two-layer system of N = 48 oscillators in each layer with

R1 = R2 = 16. The red region corresponds to the successful stabilization of

chimera states in both layers, the blue region depicts chimera collapse in the

uncontrolled layer. In the hatched region only part of the numerical realizations

indicated successful control. Points A and B denote parameter values

corresponding to Figures 2 and 3, respectively. Other parameters as in

Figure 2.

Hence, the combination of tweezer control and multiplexing
allows for efficient control of chimera states in multiple
layers, with the control applied directly to only one
layer.

3. ROBUSTNESS OF THE TWEEZER
CONTROL IN TWO-LAYER NETWORKS

In real-world networks non-identical layers are more common.
Therefore, the analysis of the robustness of the tweezer control
in two-layer networks is an important issue. In the following
we will consider the topological inhomogeneity of the layers

in the network by introducing a coupling range mismatch
R1 6= R2. In non-locally coupled rings the coupling range
is one of the essential parameters for the observation of
chimera states. An intermediate coupling range is usually
favorable, while too small or too large numbers of coupled
neighbors prevent the formation of chimera states. Furthermore,
within intermediate values, smaller coupling ranges can cause
multiple coherent and incoherent domains of the chimera
state. Thus, considering different coupling ranges in two layers
will result in competitive patterns formed in each layer. As
before, the tweezer control acts only in the first layer of our
network.

Figure 6 depicts the stabilization of chimera states
in system (1) with N = 48 oscillators in each layer,
and slightly inhomogeneous topologies with coupling
ranges R1 = 16 and R2 = 18. After a short transient
time, the interplay of the tweezer control and inter-layer
coupling results in the successful spatial alignment of the
coherent and incoherent domains, and their mean phase
velocity profiles have similar shapes as well, as shown in
Figure 6B.

As a next step, we increase the layer mismatch and choose
R1 = 16, R2 = 12. In the isolated case, the second layer would
exhibit a chimera state with multiple incoherent domains [21],
which collapses to the completely synchronized state. Figure 7
demonstrates that by controlling the first layer, we successfully
suppress the collapse, and synchronize the chimera states in both
layers. However, due to the bidirectional inter-layer interaction,
the dynamics of the second layer has indeed an influence on
the first one. The chimera states shown in Figure 7 have larger
incoherent domains induced by the smaller coupling range in the
second layer. It is worth to note that to stabilize their position,
the asymmetric control gain had to be increased (Ka = 6). We
have shown numerically that we can stabilize the chimera states
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FIGURE 5 | Space-time plot of the mean phase velocities for a two-layer network with one part of the control switched off; (A) drifting chimera state in both layers

with Ka = 0; (B) collapse of the uncontrolled chimera state in both layers, with constant coupling coefficients σ
(1)
± = 0.14. Other parameters as in Figure 3.

FIGURE 6 | Mean phase velocities for a two-layer system of N = 48 oscillators in the layers and non-identical coupling ranges: R1 = 16, R2 = 18, other

parameters:ε = 0.2, a(1) = a(2) = 0.02, ainter = 0.009, binter = 0.0023, Ka = 2, Ks = 0.5, b
(2)
− = b

(2)
+ = 0.0027. Oscillators k = 1...48 represent the first layer,

k = 49...96 the second layer; (A) space-time plot; (B) mean phase velocity profile averaged over 25,000 time units for the first layer (red dots) and the second layer

(blue diamonds) (top panel); snapshot of variables xk (middle panel) and snapshot in the (xk; ẋk ) phase space at t =25,000 (bottom panel).

in two layers for an even larger topology mismatch, however, the
coupling parameters and control gains had to be tuned.

4. CONCLUSION

In the present manuscript, we have demonstrated that the
combination of the tweezer control for chimera states and
multiplexing allows for successful stabilization of chimera states
in both layers of two-layer networks of Van der Pol oscillators.

Considering a ring topology with non-local interaction between
the oscillators within each layer, and one-to-one connections
between the corresponding oscillators from the two layers, we
have focused on networks of relatively small size, where chimera
states are usually hard to observe. Tweezer control, consisting of
two parts, extends the lifetime of chimera states, and fixes their
spatial position on the ring.

In two-layer networks we have applied the tweezer control
to one layer only, and have shown that for sufficiently strong
inter-layer coupling the action of the control is transferred to
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FIGURE 7 | Same as Figure 6 with R1 = 16, R2 = 12, and Ka = 6.

the second layer, where the lifetime of the chimera state is
increased and its spatial position if fixed. Without the inter-layer
connections, or if their strength is too weak, after a short transient
time the chimera state collapses and all oscillators in the second
layer synchronize.

We have demonstrated that the combination of tweezer
control and multiplexing is robust with respect to the topological
inhomogeneity of the layers, and chimera states can be
successfully stabilized even in the case of large coupling range
mismatch between the layers. Previously, we have demonstrated
that tweezer control acts efficiently in non-locally coupled rings
consisting of inhomogeneous oscillators [76], therefore the
stabilization of chimera states in the two-layer networks with
inhomogeneous nodes is plausible as well.

Our results can be useful in real multilayer networks, where
the access to some layers is not possible, but there is need
to control spatio-temporal patterns. Combination of tweezer

control and multiplexing appears to be a powerful and robust
tool to solve this problem even for small networks with
inhomogeneous layers.
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2 Institute for Theoretical Physics, Technische Universität Berlin, Berlin, Germany

Weakly coupled oscillators can exhibit seemingly incongruous synchronization patterns

comprised of coherent and incoherent spatial domains known as chimera states.

However, the weak coupling approximation is invalid when the characteristic phase

response curve of an oscillator does not scale linearly with the coupling strength and

instead changes its shape. In chemical experiments with photo-coupled relaxation

oscillators, we find that beyond weak coupling chimera patterns consist of different

coexisting cluster states. Numerical modeling reveals that the observed cluster states

result from a phase-dependent excitability that is also commonly observed in neural

tissue and cardiac pacemaker cells.

Keywords: pattern formation, synchronization, chimera state, nonlocal coupling, networks, chemical oscillators

1. INTRODUCTION

In populations of coupled nonlinear oscillators synchronization [1] and macroscopic non-
equilibrium pattern formation [2] are intrinsically linked. In 2002, studying synchronization
in a system of nonlocally coupled phase oscillators, Kuramoto and co-workers discovered a
symmetry-broken solution comprised of in-phase synchronized and desynchronized oscillatory
domains [3, 4]. This state, which was later named chimera state due to its incongruous composition,
triggered an increasing number of studies on partial synchronization in populations of coupled
nonlinear oscillators [5, 6]. The existence of chimera states on ring topologies has been verified
in experiments with chemical and electrochemical oscillators [7, 8], electronic units [9, 10],
laser systems [11, 12] and hydrodynamically coupled colloids [13]. They are thought to play an

important role in neurological disorders [14] and new metamaterials [15].
Intuitively, chimera states exist due to the nonlocal coupling term, which does not depend

on the state of a single local element, but takes into account the spatially extended pattern. Both
dynamically distinct domains modulate the coupling term to maintain themselves, respectively. A
spatial domain with high coherence results in a large feedback signal that supports high coherence.
Conversely a domain with a low coherence leads to a small feedback signal that obstructs high
coherence. Together this reinforces the respective coexisting, but incongruous spatiotemporal
dynamics [4].

Many studies on coupled oscillators utilize the paradigmatic Kuramoto phase oscillator model
due to its simplicity and analytical tractability [16, 17]. Our goal in this paper is to go beyond the
weak coupling oscillators and describe chimera patterns on a ring of strongly coupled oscillators,
which are based on chemical laboratory experiments. The commonly employed weak-coupling
limit in oscillator networks is defined as the lowest order of a systematic perturbation expansion
in a smallness parameter ǫ, reducing dynamics of coupled limit-cycle oscillators to pure phase
dynamics. This reduction is possible, if the decay of amplitude disturbances, quantified by the
transversal Lyapunov exponent, is much faster than the decay of phase disturbances.
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A clear definition of a strong coupling limit is not so obvious
and the focus of current research on coupled oscillators [18,
19]. A coupling scheme that implies substantial changes in
the oscillator frequencies, cannot be viewed as weak. One
possibility to differentiate between weak and strong coupling is
to measure the phase response curve (PRC) of an oscillator [20].
It quantifies how much the phase φ, that parametrizes the
oscillation cycle, is advanced or delayed in response to an
external perturbation. Small perturbations representative of weak
coupling lead to a continuous phase response curve Q(φ). Strong
coupling perturbations evoke a non-smooth, discontinuous PRC
exhibiting a finite jump, for example. Moreover, the PRC under
weak-coupling scales linearly with the perturbation amplitude A,
while under strong coupling the amplitude scaling turns out to
be nonlinear: Q(φ; λA) 6= λ × Q(φ;A) with λ ∈ R.

2. MODELS

The dynamics on an arbitrary finite network of N interacting
Kuramoto phase oscillators are described by

dφi

dt
= ωi +

N
∑

j=1

Wij sin(φj − φi − α) . (1)

The state of the i-th oscillator is given by a scalar time-dependent
phase variable φi(t), that repeatedly cycles through values from 0
to 2π . The interaction with other nodes in the network effectively
modulates the natural angular frequency ωi. The modulation
strength is encoded in the weighted adjacency matrix Wij and a
2π-periodic interaction function of the phase difference φj − φi.

The weighted adjacency matrix Wij can encode any network
connectivity. Additionally each link can have its own individual
weight. In this paper we focus on global coupling given byWij =

K/N (1 − δij), where δij is the Kronecker delta, and rings with
nonlocal coupling given by Wij = K exp (||i− j||/κ). In both
cases K is the coupling strength. For global coupling, the weights
are normalized by the number of nodes N. In the nonlocally
coupled system, the weights between nonlocal neighbors decay
exponentially with a characteristic range of κ according to their
distance on the ring network.

The simplest choice for the interaction function is the first
Fourier mode. Given a vanishing phase frustration parameter
α = 0, if the neighboring node j is ahead in phase, node i
will accelerate and conversely if neighbor j lags behind, then
node i will decelerate. In the case of identical natural frequencies
this interaction eventually leads to exact in-phase alignment.
For α 6= 0, the contribution by the interaction function does
not vanish for in-phase alignment, which effectively impedes
in-phase synchronization.

Remarkably, all dissipative systems with oscillatory dynamics
can be reduced to a Kuramoto phase model with an appropriate
interaction function under the assumption that the coupling
between oscillators is weak [21]. As discussed above the most
important consequence is that the resultant phase change1φ due
to a perturbation scales linearly with the perturbation amplitude.
However, for strongly coupled oscillators this condition can be

violated, when the total effect of multiple perturbations is not
equal to the linear superposition of the individual effects.

We illustrate one possible realization of this case and its real-
world relevance with experimentally well-accessible chemical
relaxation oscillators [22–24], that show qualitatively identical
behavior to biological nerve and heart cells [25–31]. The
oscillators are based on the Belousov-Zhabotinsky reaction
and their dynamics are well-captured in the two-component
non-dimensionalized Zhabotinsky-Buchholtz-Kiyatkin-Epstein
(ZBKE) model [23, 32, 33]:

u̇i =
1

ǫ1

(

Ii − ui(1+ ui)−
ui − µ

ui + µ

(

β + qi
αvi

ǫ3 + 1− vi

)

+ γ ǫ2w
2
ss,i + (1− vi)wss,i

)

,

v̇i = 2Ii + (1− vi)wss,i −
αvi

ǫ3 + 1− vi
,

wss,i(ui, vi) =
1

4γ ǫ2

(

√

16γ uiǫ2 + v2i − 2vi + 1+ vi − 1

)

,

Ii(t) = I0 +

N
∑

j=1

Wij

[

vj(t − τ )− vi(t)
]

.

(2)

The oscillation takes place in the dimensionless concentrations of
u (bromous acid, HBrO2) and v (oxidized form of the ruthenium-
tris-dimethylene-bipyridine catalyst, Ru(dmbpy)3+3 ). The latter
can be measured spectrophotometrically via fluorescence light
in an experiment [23]. The parameters ǫ1, ǫ2, ǫ3,α,β , γ ,µ, q
depend on reaction rates and initial reagent concentrations.
The dimensionless steady-state concentration wss (bromous acid
radical HBrO+

2 ) adapts adiabatically. The interaction between
oscillators is mediated by individual light application Ii via a
spatial light modulator that influences the production rates of u
and v. For comparability with the Kuramoto model Equation (1),
here the interaction is chosen to depend linearly on the difference
of the oxidized catalyst concentrations vj − vi. To allow for phase
frustration in limit cycle oscillators, instead of a phase frustration
parameter α Equation (1) we utilize a time delay: vj(t− τ )− vi(t)
[5]. Only for τ = 0 in-phase synchronization is possible, whereas
τ 6= 0 obstructs it. The weighted adjacency matrix Wij in the
coupling term encodes the network connectivity and can be freely
chosen as discussed above. Due to the dissipative nature of both
models, we employ the explicit Euler method with a fixed time
step 1t for numerical simulation [34].

To get intuition for the dynamics of the ZBKE model
(Equation 2), we present the u-v phase plane of a single
oscillator in Figure 1A. It features an unstable fixed point
inside a stable limit cycle that resulted from a Hopf bifurcation
with a consecutive canard explosion [35]. The phase space
structure with the cubic shape of the u-nullcline (continuous)
and its single intersection with the v-nullcline (dashed) resembles
the FitzHugh-Nagumo model for neuronal oscillations [36].
However, the ZBKE phase plane is plotted in logarithmic scale
and thus there are only single fast and slow domains on the right
and left branch of the limit cycle, respectively. This is further
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FIGURE 1 | Relaxation oscillator dynamics of the ZBKE model (A) Logarithmically-scaled phase plane consisting of unstable fixed point (empty dot) at the intersection

of u- and v-nullclines (continuous, dashed black lines) surrounded by stable limit cycle (gray). Two example trajectories (blue) lasting 3 dimensionless time units

illustrate fast and slow dynamics along the limit cycle. (B) Time series of u, v variables (blue, red) exhibit time scale separation that is characteristic for a relaxation

oscillation. (C) Phase response curves for different perturbation amplitudes (red to yellow: Ip = {1, 1/2, 1/4, 1/8} × 10−3, blue: Ip = 10−5). Insets show perturbation

(red dashed) and perturbed phase plane trajectories (blue) in phase space underlying the measured phase change 1φ. Parameters: ǫ1 = 0.11, ǫ2 = 1.7× 10−5,

ǫ3 = 1.6× 10−3, α = 0.1, β = 1.7× 10−5, γ = 1.2, µ = 2.4× 10−4, q = 0.7, I0 = 5.25× 10−4, natural frequency ω0 = 0.177, time step 1t = 2× 10−4 .

reflected in the consecutive switches between fast rise and slow
decay of the v variable (Figure 1B).

To gain insight into the synchronization properties of a set of
such oscillators, we measure the corresponding phase response
curve Q(φ). In Figure 1C we choose an additive perturbation,
(u, v) 7→ (u+ǫ−1

1 Ip, v+2Ip), where Ip is the perturbation strength.
This perturbation imitates a short application of light intensity in
the experiment.

In contrast to commonly employed smooth phase response
curves [20] our PRC exhibits two distinguishing features
(Figure 1): First, there is a jump-discontinuity between an initial
flat interval, during which the oscillator is insensitive to a
perturbation, 1φ = 0, and a second interval, which is well
approximated by 1φ = 2π − φ. Secondly, the perturbation
strength does not linearly scale the amplitude of the PRC, but
instead changes the position of the jump point φ∗ and thus
the shape, Q(φ; λA) 6= λ × Q(φ;A). Overall the PRC is well
captured by:

Q(φ; Ip) =

{

0 ,φ < φ∗(Ip)

2π − φ ,φ ≥ φ∗(Ip)
. (3)

These features are incompatible with the commonly employed
weak coupling approximation. The reason is that the

perturbation amplitudes are large and our system exhibits
phase-sensitive excitability [37]: During the refractory window at
early phases, a perturbation of fixed amplitude fails to push the
state across the u-nullcline, but it succeeds during the vulnerable
window at later phases and induces a new oscillation cycle
immediately (insets Figure 1C). Consequently the position of the
jump point φ∗(Ip) in the PRC for a certain perturbation strength
Ip can be predicted by the distance between the left branch of the
limit cycle and the unstable branch of the u-nullcline. Note that
for weak perturbations the PRC qualitatively changes its shape
and scales linearly with the perturbation amplitude, as expected.

In Figure 2 we highlight the contrasting synchronization
behavior of strongly coupled oscillators (Equation 2) by direct
comparison with Kuramoto phase oscillators (Equation 1), which
are weakly coupled by definition. It is well known that in
an all-to-all coupled network heterogeneous Kuramoto phase
oscillators synchronize beyond a critical coupling strength [16].
The Kuramoto order parameter,

R =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiφj

∣

∣

∣

∣

∣

∣

, (4)
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FIGURE 2 | Comparison of chimera states in weakly and strongly coupled oscillators on a ring. Left column: Kuramoto phase oscillators (Equation 1), Right column:

ZBKE relaxation oscillators (Equation 2). (A,B) Collective dynamics in a globally coupled network quantified by Kuramoto order parameters as a function of

synchronization frustration (α, τ ) exhibiting in-phase synchronization, incoherence and d-clusters with d ∈ {2, 3}. Parameters for phase (ZBKE) oscillators: K = 50,

1t = 5× 10−3 (K = 4× 10−5, 1t = 2× 10−4). (C,D) Collective dynamics on a nonlocally coupled ring network consisting of dynamic modes found in a globally

coupled network. Snapshots show phases (black) and frequencies (yellow). Parameters for phase (ZBKE) oscillators: K = 0.1, κ = 35, α = 1.457 (K = 7.93× 10−4,

κ = 2, τ = 8.67, q ∈ [0.69, 0.71]). (E,F) Smoothed distributions of in-phase (red), 3-cluster (purple) and incoherent (gray) oscillator populations on the phase circle.

Parameters: N = 100. Others as in Figure 1 .

quantifies the level of phase synchronization. It ranges from
0 for evenly balanced phase distributions, that include
incoherent and cluster states, to 1 for coherent states where
all phases narrowly align together. Inclusion of an additive
phase frustration parameter in the interaction function
of the Kuramoto model, sin(φj − φi − α), allows for
tuning the interactions between oscillators from attractive
to repulsive, leading, respectively to phase alignment for
α ∈ [0,π/2[∪]3π/2, 2π[ or conversely to frequency detuning
for α ∈ [π/2, 3π/2] (Figure 2A).

On a ring topology with nonlocal interactions, it is possible
for these two distinct collective states to exist simultaneously

in neighboring spatial domains realizing a chimera state
(Figure 2C). Oscillators 21-79 are not frequency-locked and their
phases are spread out. In contrast, oscillators 1–20 and 80–
100 are frequency-locked and their phases align together. They
exhibit an average frequency that is smaller than their mean
natural frequency, because the phase frustration α for 1φ = 0
does not get compensated.

This phase pattern is furthermore illustrated with a smoothed
polar histogram of the oscillator population (Figure 2E). To
differentiate between the populations we employ a localized
version of the Kuramoto order parameter that measures the
phase coherence in a spatially-bounded interval [i − ℓ, i + ℓ]

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 June 2019 | Volume 5 | Article 3161

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Rode et al. Chimera States on a Ring

around oscillator i:

ri =
1

2ℓ + 1

∣

∣

∣

∣

∣

∣

i+ℓ
∑

j=i−ℓ

eiφj

∣

∣

∣

∣

∣

∣

. (5)

While oscillators in the coherent population, identified by ri ≥
0.7, coalesce to the same phase, incoherent oscillators with
ri < 0.7 are more evenly spread out over the phase circle. The
distribution of the incoherent population also exhibits a minor
peak that is slightly ahead in phase of the coherent population
due to intermittent phase-locking.

In comparison, the strongly coupled oscillators feature
coherent and apparently incoherent states in an all-to-all network
(Figure 2B). On closer inspection the incoherent state is revealed
to be a d-cluster with d ∈ {2, 3} as quantified by Rd − R1 with the
d-cluster Kuramoto order parameter [38]

Rd =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eidφj

∣

∣

∣

∣

∣

∣

. (6)

For d = 3 it maps phases of 0, 2π/3, 4π/3 and 2π onto the same
value due to the 2π/d-periodicity of the complex exponential.
Note that Rd also approaches unity for 1-cluster states, which
are also known as coherent in-phase synchronization states. To
distinguish d-cluster states from 1-cluster states, we use the
difference Rd − R1.

On the nonlocally coupled ring network we again observe
coexistence of the collective states from the all-to-all network.
However, for the strongly coupled ZBKE oscillators these are
1-cluster and 3-cluster states (Figure 2D). Apart from the state
shown, we also observed coexisting 1 and 2-cluster states as
well as 2 and 3-cluster states for other coupling parameters.
The polar phase histogram (Figure 2F) clearly highlights the
distinct populations as identified by rd,i, which is a localized
version of d-cluster Kuramoto order parameter (Equation 6)
similar to Equation (5). The coherent oscillators (r1,i ≥ 0.7)
coalesce around the same phase, while the members of the
3-cluster population (r3,i − r1,i > 0.5) are found at three
distinct locations on the phase circle. Oscillators at the spatial
border between both clusters fail to join either of them due to
competing perturbations.

We stress that themechanism for cluster formation in strongly
coupled limit cycle oscillators with delay is qualitatively different
from Kuramoto phase oscillators with higher harmonics in the
interaction function. The number of clusters for strongly coupled
oscillators is not determined by the number of harmonics in the
interaction function [21], but instead by the size of the refractory
window in relation to the time delay τ in the coupling. The role
of time delay is illustrated for a 2-cluster state in Figure 3.

In a globally coupled network starting from uniformly
random phases, oscillators will join either of two clusters,
depending on whether they are initially in their refractory
window or not. Once the two clusters establish themselves, they
stabilize each other via delayed perturbations (Figure 3A) that
are sharply localized in time due to the peaked waveform of
the v variable (Figure 1B). Even though the network is globally

FIGURE 3 | Cluster state mechanism. (A) The smoothed polar histogram

shows two antiphasic subpopulations in a globally coupled network. They

perturb each other a time δ after they have been perturbed themselves,

respectively. Parameters: N = 100, K = 1.4× 10−4, τ = 8.67. Other

parameters as in Figure 2. (B) The 2-cluster state emerges if the perturbation

from the other cluster arrives in the vulnerable window (green) given by the

jump point t* in the PRC.

coupled, this perturbation does not affect the population that
emits it, because its oscillators are still in their refractory window
(Figure 3B). Only the subsequent perturbation from the second
cluster induces a new firing event in the first cluster, because it
arrives in the vulnerable window. Consequently the period of an
oscillator is T2 = 2δ, where δ = τ + 1tpeak that accounts for
the transmission delay and the time required for a peak in v(t)
to rise (1tpeak ≈ 1). Utilizing the PRC, we find that a necessary
condition for the appearance of a 2-cluster is that the period T2

exceeds the refractory window given by the jump discontinuity
point t∗ = φ∗/ω0. Note that this can be generalized to d-clusters
with d ≥ 1, whose periods follow Td = δ×d/1d, where 1d < d
is the number of omitted clusters during one spike transmission.
It turns out that for weaker coupling strength K, and hence larger
refractory windows, cluster states with larger d are possible. This
opens the possibility of chimera states, which are comprised of
spatial domains exhibiting various d-cluster states [33, 39].

3. EXPERIMENTS

To demonstrate the real-world viability of the chimera state
in strongly coupled relaxation oscillators, we utilize a large
reservoir of more than 2,000 chemical micro-oscillators that are
coupled via light illumination [23, 33, 39]. From this reservoir
we select N = 100 oscillators with a narrow natural frequency
distribution (ω0 = 0.07 ± 0.01Hz). Starting from random
initial conditions we observe the development of a two-headed
chimera state consisting of two in-phase synchronized domains
separated by noisy cluster states (Figures 4A,B). Similar multi-
headed chimera states were previously only observed in laser
systems [11, 12]. Due to the inherent heterogeneity in periods and
phase response behavior [40], the oscillators in the clusters show
a larger phase spread than in simulations with homogeneous
oscillators. Stronger heterogeneity can furthermore lead to phase
switchers [41], which prevent the formation of stationary clusters,
resulting in an apparently incoherent domain.
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FIGURE 4 | Two-headed chimera state. (A) Experimental space-time plot of the fluorescence intensities of N = 100 nonlocally photo-coupled chemical oscillators

exhibiting a two-headed chimera state. (B) Snapshot of instantaneous phases and time-averaged frequencies at time t = 586 s revealing two in-phase synchronized

and two noisy cluster domains. Parameters: K = 0.1, κ = 3.3, τ = 32 s, T0 = 86± 12 s, [H2SO4]0 = 0.77M, [NaBrO3]0 = 0.51M, [malonic acid]0 = 0.16M, catalyst

load: 2.5× 10−5 mol Rudmbipy33 + /g resin. (C) Numerical space-time plot of the oxidized catalyst v. (D) Snapshot of instantaneous phases and time-averaged

frequencies at time t = 1, 362 revealing two in-phase synchronized and two noisy cluster domains. Parameters: K = 2.98× 10−4, κ = 4, τ = 8.67. Other parameters

as in Figure 1.

We stress that the chimera state with strongly coupled
oscillators does not require special initial conditions as in the
case with phase oscillators [42]. The space-time plot of the
observed fluorescence intensities emitted by the oscillators shows
the spontaneous formation of the first coherent head (i ∈

[8, 18]) in an environment of incoherent oscillators after only
3 periods. The second head (i ∈ [52, 63]) nucleates at the
opposite side of the ring network after 7 periods. After their
formation the coherent heads grow over 8 periods until they
encompass about 30 oscillators. Upon reaching this extent, their
size fluctuates, but their position is fixed on the ring. A snapshot
of the phases and frequencies at t = 586 s shows the coherent
domains and the clusters with equal phase differences between
their constituent subgroups. Even though both coherent heads
are respectively in-phase synchronized and move at the same
frequency, there is a phase-lag between them. Since in a d-cluster
domain, all oscillators are phase-locked they all exhibit the same
frequency depending on the number of clusters d. Thus, the
frequency distribution of a chimera state consisting of different
d-clusters shows distinct noisy flat plateaus for each cluster. This
is in contrast to chimera states in Kuramoto phase oscillators,

where the frequency distribution exhibits a flat plateau for
synchronized oscillators and a large band of frequencies for
desynchronized oscillators.

Corresponding numerical simulations (Figures 4C,D)
successfully reproduce the two-headed chimera state. In contrast
to the experiments, the space-time plot shows a different route to
a two-head chimera. At the beginning more than two coherent
domains form, but over time they merge together or breakup
into a 3-cluster state until only two coherent heads remain.
The simulations also highlight that the phase distribution, here
consisting of coherent and 3-cluster domains, is not enough
to fully characterize the state. The snapshot in Figure 4D

shows that the 3-cluster domains have a larger frequency than
the coherent domains, whereas the experiments shows the
opposite relationship.

Within established classification schemes put forward
by Kemeth et al. [43] and Gopal et al. [44], our states
can be identified as two-headed static chimera states
based on the spatial correlation measure g0(t) and
strength of incoherence SI(t) with a discontinuity
measure η = 2.
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4. CONCLUSIONS

We analyzed the collective behavior of strongly coupled limit
cycle oscillators through simulations and experiments. Under
strong perturbations the characteristic phase response curve
develops a jump-discontinuity, whose position depends on the
perturbation amplitude. This behavior is directly rooted in the
phase-dependent excitability of the oscillator (Figure 1) and is
found commonly in nature [25–31].

We further numerically elucidated the differences between
chimera states in Kuramoto phase oscillators and ZBKE
relaxation oscillators as exemplary cases for weak and strong
coupling. The coherence-incoherence chimera states emerging
in the case of weakly coupled Kuramoto phase oscillators are
replaced with chimera states consisting of coexisting domains
of coherence and d-clusters for strongly coupled relaxation
oscillators (Figure 2). The cluster states can be identified using
generalized Kuramoto order parameters [38] and their formation
can be understood in an all-to-all network with the help of
the phase response curve (Figure 3). Ultimately we verified our
predictions and their real-world robustness in an experimental
setup with photo-coupled chemical oscillators and observed a
two-headed chimera state that consisted of two coherent domains
and two 3-cluster states (Figure 4). In the future it would be
interesting to apply previously developed control schemes[45–
47] in the experiment to dictate the position, drift speed and
lifetime of the observed multi-headed chimera state as well as
investigate the role of noise [48] and multi-layer interaction [49].

Besides resulting in chimera states of different nature,
the strongly coupled oscillators also highlight the connection
between collective states in global and nonlocal networks. Our

results suggest that beyond incoherence-coherence patterns,
chimera states can be viewed as time-dependent pattern with
distinct spatial domains, whose behavior is inherited from
the various dynamical modes during global coupling of the
underlying dynamical units.
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Weak Chimeras in Modular
Electrochemical Oscillator Networks
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We investigate the formation of weak chimera states in modular networks of

electrochemical oscillations during the electrodissulution of nickel in sulfuric acid. In

experiment and simulation, we consider two globally coupled populations of highly

non-linear oscillators which are weakly coupled through a collective resistance. Without

cross coupling, the system exhibits bistability between a one- and a two-cluster state,

whose frequencies are distinct. For weak cross coupling and initial conditions for

the one- and two-cluster states for populations 1 and 2, respectively, weak chimera

dynamics are generated. The weak chimera state exhibits localized frequency synchrony:

The oscillators in each population are frequency-synchronized while the two populations

are not. The chimera state is very robust: The behavior is maintained for hundreds

of cycles for the rather heterogeneous natural frequencies of the oscillators. The

experimental results are confirmed with numerical simulations of a kinetic model for the

chemical process. The features of the chimera states are compared to other previously

observed chimeras with oscillators close to Hopf bifurcation, coupled with parallel

resistances and capacitances or with a non-linear delayed feedback. The experimentally

observed synchronization patterns could provide a mechanism for generation of

chimeras in biological systems, where robust response is essential.

Keywords: chimera, network, oscillation, synchronization, clustering

INTRODUCTION

Synchronization of oscillatory chemical reactions is an important dynamical phenomenon with
relevance to many physical and biological processes [1]. Early studies focused on the dynamics
of continuous, stirred tank reactors (CSTRs) where coupling is through active or passive mass
transfer, or by electrical means [2–6]. Different types of interactions were able to induce
different synchronization patterns, e.g., in-phase, anti-phase, and out-of-phase entrainment.
The CSTR technology however is difficult to scale up to a large population of reactors [7,
8]. Belousov-Zhabotinsky (BZ) microdroplets [9, 10], beads [11, 12], microwell arrays [13],
and nanodroplets [14] provide ways to study synchronization of populations. In oscillatory
electrochemical systems, electrode arrays can be applied to investigate coupled systems, up to
about 100 oscillators [15]. Globally coupled electrochemical oscillators indeed showed a variety
of synchrony patterns with various levels of coherence, including full synchrony [16] and other
stable [17] and intermittent [18] cluster states.

Understanding what coupling properties—topology, delay, symmetry, and non-linearity
—influence synchronization in dynamical models [1, 19] provides guidelines for the design of
experiments. In particular, phase-model-based predictions turned out to be useful for identification
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of synchronization patterns in experiments [17, 18]. While the
importance of phase models in interpreting synchronization
structures was emphasized in early studies [5], some reluctance
remained among chemists to adopt phase models in the
theoretical description of chemical reactions due to their
simplified nature [20]. Only one angular variable, the phase, is
used to uniquely identify the state of the chemical reactions.
However, oscillatory chemical reactions typically require at least
two chemical species [20]. While phase descriptions can be
rigorously justified for weak interaction [21], the full range of
interactions in chemical systems include strong and highly non-
linear coupling. Hence, pure phase model description should
be used with care. Nonetheless, many dynamical phenomena,
e.g., clustering [17], desynchronization [22, 23], and slow
switching [18] were interpreted and designed using phase
model approaches.

Chimeras, synchrony patterns with coexisting domains of
coherence and incoherence in networks of identical oscillators,
have attracted a tremendous amount of attention in the last
decades [24, 25]. They were originally reported by Kuramoto
and Battogtokh in rings of non-locally coupled oscillators
where the coupling strength depends on the distance between
oscillators [26]. These traditional chimeras have been studied
theoretically in the continuum limit of infinitely many oscillators
[26, 27]. By contrast, the concept of a “weak chimera” [28, 29]
provides a rigorous characterization of chimeras in networks of
finitely many oscillators and capture features of the chimeras
originally described by Kuramoto and Battogtokh: Weak
chimeras in networks of identical oscillators are characterized
by localized frequency synchrony, i.e., there are oscillators
that are synchronized in frequency and others which have
distinct frequencies.

The theoretically predicted chimera states challenged the
fundamental understanding of the non-linear dynamics of
chemical reactions and the experimental techniques that enabled
the construction of networks of coupled chemical reactions.
Can we design networks and choose experimental conditions
favorable for the chimera state?

As the theory of chimera states is quickly growing [24,
25], developments of experimental and data analysis techniques
were also needed to identify and classify partially synchronized
states as chimera states [30]. The BZ bead system with optical
feedback technique is a promising approach that can generate
various types of chimera patterns in different configurations [31–
34]. In electrochemistry, non-linear electrical coupling during
silicon dissolution generates localized patterns that possess many
features similar to chimeras [35–40]. The beating mercury drop
system also showed that while homogeneous coupling generates
rather synchronized states, inhomogeneous coupling results
in partial synchronization similar to a chimera [41]. Current
oscillations of nickel electrodissolution, in the transpassive
dissolution region, on electrode arrays exhibit a wide range
synchronization patterns [15]. Oscillation occurs due to the
hidden negative differential resistance of the electrodissolution
process [42]. Two different types of chimeras were identified
[43–45]. On a ring with long-range interaction, a short-lived
synchrony pattern, similar to the traditional chimera was found

[44, 45]. When non-linear coupling was generated with a
computer feedback, weak chimeras [28, 29, 46] were obtained
with a four-oscillator network, where two pairs of elements
were locked in-phase and anti-phase configurations with distinct
frequencies [43].

In this paper, we report the occurrence of weak chimera states
in a modular network of electrochemical oscillators with the
electrodissolution of nickel in sulfuric acid. First, for comparison
with previous results, an overview is given on the characteristics
of chimera states in the nickel electrodissolution system [43–45].
In these previous experiments, the chimera state was observed
either in a device [44, 45] with relatively short life-time, or in a
computer feedback system [43] with long life-time. Here we seek
long life-time chimeras in a device. Numerical simulations are
performed to explore parameter space and identify experimental
conditions for which weak chimera states can be observed with
strongly non-linear oscillators in the presence of linear (or
difference) coupling through the electrode potential. Finally,
experiments are performed to show the existence of the weak
chimeras in the electrochemical system.

MATERIALS AND METHODS

Figure 1 shows the experimental setup and the three different
network topologies. Each approach uses different techniques to
generate favorable experimental conditions for the chimera state.

Ring Network With Non-local Coupling
A standard three-electrode electrochemical cell for the ring
network with non-local coupling [44] is shown in Figure 1A.
This approach used an electrode array, in which the electrode
pairs are coupled by parallel resistance/capacitance circuit
elements. An array of nickel wires (only two are shown in
the figure) were used as the working electrode. A Hg/Hg2SO4

saturated K2SO4 is the reference, and a platinum rod is the
counter electrode. The electrodes were immersed in a 3MH2SO4

solution. The cell temperature was maintained at 10◦C by a
circulating bath. The working electrode array has 1mm diameter
wires, embedded in epoxy, with a spacing of 2mm. With this
large spacing the potential drop in the electrolyte is sufficiently
small (about 0.1mV), so that without the presence of additional
coupling, the oscillations do not show synchronization [16]. The
working electrodes were connected to a potentiostat through an
external resistance (Rind) for each wire. The potentiostat sets the
constant circuit potential, and the currents, measured from the
potential drops across the individual resistances, were digitized
using a National Instrument PCI 6255 data acquisition board at a
rate of 200Hz (Note that each wire has the same circuit potential
in this configuration).

The properties of individual oscillations for a wire of a
given diameter can be changed by the circuit potential (V),
the attached total external resistance, the concentration of the
sulfuric acid, and the temperature. Once the properties of the
individual oscillators are set, the wires in the electrode arrays
can be coupled externally for a given topology. As shown in
the bottom panel of Figure 1A, the network topology consists
of 20 nodes with 140 links. Each node is an oscillatory nickel
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FIGURE 1 | Schematics of the experimental setups (top) for the different types of network topologies (bottom). (A) Non-local ring network with 20 nodes and 140

links. Rind : individual resistance. C: capacitance. R: cross resistance. (B) Weakly non-linear oscillator and highly non-linear delayed feedback in two pairs of oscillators

with weak cross-coupling. CE: Counter electrode. RE: Reference electrode. WE: Working electrode. K: coupling strength. ε: cross coupling factor. N: number of

oscillators in a general configuration. (C) Highly non-linear oscillators and linear interactions in two populations of electrodes with weak, global cross coupling. Rcoll :

collective resistance. Rg: group resistance.

electrodissolution reaction, which takes place on the surface of
the electrode. The links of the network are established through
a coupling resistance R [45] and capacitance C. To induce some
delay in the coupling current a capacitor in parallel was added
to each coupling resistor [47]. In the network, each node is
coupled to seven of its nearest neighbors of the ring network in
both directions.

Network With Spatially Distributed

Non-linear Delayed Feedback
The experimental setup with non-linear feedback shown in
Figure 1B [43]. The system consisted of four oscillators divided
into two populations with stronger coupling in the populations
and a weaker coupling between them (Figure 1B bottom). The
oscillators are coupled through linear and quadratic delayed
feedback. The same electrode array can be used as with the non-
local ring network. (To further eliminate coupling through the
electrolyte, the electrodes had 3mm spacing.) A multichannel
potentiostat (ACM Instruments Gill IK64) was used. The
potential Vσ ,k(t) of the wire k in population σ ∈ {1, 2} with
respect Hg/Hg2SO4 sat K2SO4 reference electrode, was set with
a multichannel potentiostat interfaced with a real-time Labview
controller. The electrode potentials Eσ ,k (t) of the four wires were
converted using the currents (Iσ ,k(t)): Eσ ,k (t) = Vσ ,k (t) −

Iσ ,k(t)Rind, with Rind = 1 kOhm. The electrode potentials were

adjusted for offset with, Eσ ,k = Eσ ,k − o, where o is the time
averaged electrode potential (The quantity owasmeasured before

the experiments, for a timeframe of about 100 oscillations). The
circuit potential of each wire is adjusted by the feedback using
the equation:

Vσ ,k (t)=V0+K
∑

κ , j∈{1, 2}

Kκσh(Eκ ,j(t − τ )) (1)

where Kκσ determines the network topology, K is the total
feedback gain, τ is the global delay, and

h
(

Eκ ,j (t)
)

= k1
[

Eκ ,j (t)−Eκ ,j (t−τEx)
]

+k2
[

Eκ ,j (t)
2+Eκ ,j (t−τEx)

2
]

(2)

is the feedback. For each population, K11 = K22 = 1. Coupling
between the population is set to K12 = K21 = ε, where ε

is the cross-coupling factor. The linear and quadratic feedback
gains, k1 and k2, respectively, are applied to induce the required
dynamics. The delay τEx was set to be equal to half of the
period of the uncoupled oscillators. See [43] for more details on
the choice of the parameters k1, k2, and τEx. V0 = 1, 160mV
and the natural frequency (i.e., the frequency of the oscillation
without coupling) was about 0.45Hz. In a typical experiment
of about 500 oscillations, the natural frequency change is
about 2–3 mHz.

Modular Network
Figure 1C shows the experimental setup for a modular network
consisting of coupled oscillator populations. In the bottom
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FIGURE 2 | Experimental traditional chimera state in a non-locally coupled regular network. (A) Frequency of the oscillators. Open circles: natural frequency. Solid

circles: frequency with coupling. (B) Space-time plot of the current in gray scale. (C) Snapshot of the current of the electrodes. V = 1,094mV, Rind =1 kOhm,

R = 499 kOhm, C = 4.7 µF.

of Figure 1C a schematic of the network topology is shown:
A total of 80 oscillators are divided into two populations
of 40. The same working electrode array, reference and
counter electrodes, and electrolyte was used as with the
feedback experiment above. The cell was connected to a
single channel potentiostat (ACM Instruments, Gill AC), and
an individual resistance (Rind) was added to each electrode.
Additionally, two group resistances (Rg) and a collective
resistance (Rcoll) were used to generate the intra- and inter-
population coupling, respectively.

RESULTS AND DISCUSSIONS

To put our results in context, we start out with reviewing the
chimera states observed earlier with non-local ring network
(section Chimera State with Non-local Ring Network Close to
Hopf Bifurcation) and weak chimeras with non-linear feedback
(section Weak Chimera with Non-linear Feedback). In section
Weak Chimera in Modular Networks with Strongly Non-linear
Oscillators, new results are presented in a modular network of
highly non-linear oscillators coupled through differences in the
electrode potentials.

Chimera State With Non-local Ring

Network Close to Hopf Bifurcation
Here we considered oscillations in the experimental system that
occur close to Hopf bifurcation [48]. Normally, the natural
frequency of the oscillations has a range of about 16 mHz and
frequency of 0.4Hz [45]. To ensure nearly identical oscillators,
the range of the natural frequencies was carefully tuned to fall
below 0.5 mHz by small changes of the individual resistances,
as shown in Figure 2A. Coupling through resistors corresponds
to a Kuramoto-model-like behavior (i.e., with nearly sinusoidal
phase interaction function) [47]. When coupling is through
capacitance, the coupling signal is delayed with a phase of about
π /2 [47]. A combination of resistive and capacitive coupling
was applied such that the coupling parallel RC circuit had a
time constant 2.35 s, which approximatelymatches the oscillation
period of 2.5 s [45]. Such coupling, in our experiments, ensured
that the oscillations synchronized at relatively weak strengths,
with a delay sufficient for the chimera states to arise. As the
coupling was turned on, the population split into a domain
of synchronized (electrodes 1–4, 17–20) and desynchronized
(electrodes 5–16) elements, as shown in Figure 2B. The
frequency of the synchronized elements is 0.389Hz and the
desynchronized elements have lower frequencies (Figure 2A).
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FIGURE 3 | Experimental weak chimera state with non-linear feedback. (A) Hysteresis between the in-phase and anti-phase synchronization, as a function of the

global coupling delay, τ ; black line: forward sweep; red line: backward sweep. (B,C) Weak chimera state with τ = 0.51 s and ε = 0.1. (B) Space time plot of the

current of the four oscillators. (C) Time series of the phase difference within population 1 (black thin line ϕ1, 2 − ϕ1, 1), population 2 (red thick line, ϕ2, 2 − ϕ2, 1), and

for two elements between the populations (blue dashed line, ϕ2, 2 − ϕ1, 1). Feedback parameters: K = 0.52, k1 = 0.22, k2 = 2.0 1/V.

Additionally, these frequencies form a semi-circle as a function
of the position of the elements. This distribution was predicted
theoretically for the chimera state [26]. Note that for this
chimera state some oscillators are synchronized in frequency,
while others are not. Figure 2C shows a snapshot of the currents.
The elements 1–4 and 17–20 have very similar values and
the desynchronized elements have a broader distribution. This
chimera state has a limited lifetime of about 80–100 oscillations.
This lifetime is in accordance with theoretical predictions [49]
and numerical simulations with experiment-based phase models
[45] describing the chemical process. The observations thus show
that the experimentally observed dynamical state is similar to
the traditional Kuramoto chimera state, induced by non-local
interactions in a ring topology [49]. Later efforts were focused
on characterizing the impact of oscillator heterogeneity (i.e.,
“remnant” chimeras obtained without adjustments of natural
frequencies) [45], and increasing the lifetime of the chimera states
with a more non-linear system [43].

Weak Chimera With Non-linear Feedback
Weak chimeras can arise in modular oscillator networks
consisting of multiple populations with stronger coupling within
populations and weaker coupling between different populations
[28]. In a phase model, with a pair of oscillators, bistability
between an in-phase, and an anti-phase solution with distinct
frequencies can be observed. Under such conditions, a chimera
state forms in a network of two pairs of two oscillators, where one

of the two strongly coupled oscillator pairs exhibit in-phase, the
other anti-phase state. The two synchronized pairs of oscillators
have different frequencies, resulting in a weak chimera [29].

We used a synchronization engineering [18] technique to
design a combination of first and second order feedbacks to
induce a dynamics that represents the desired phase model.
When this feedback is applied to two oscillators [43], there
is region global delay τ with bistability between in-phase and
anti-phase synchronization (see Figure 3A). For τ = 0 s, the
electrodes are in-phase synchronized; increasing the value until
τ ≈ 0.8 s the dynamics shift to anti-phase synchronization.
Now, when we started from anti-phase synchronization and the
global delay was decreased, there was a critical point where the
dynamics shifted back into in-phase synchronization at about
0.2 s. Consequently, there is a region from τ ≈ 0.2 s to τ ≈ 0.8 s
in which both states can exist and are stable. A delay of τ ≈ 0.51 s
was chose for investigation of the chimera state.

As shown in Figure 3B, in the four-oscillator network with
weak cross coupling (ε = 0.1), population 1 is in anti-phase while
population 2 is in-phase synchronized [43]. The phase difference
between elements are shown in Figure 3C. For elements in the
same population, the phase difference remains nearly the same
(in- or anti-phase), but the phase difference between one element
in population 1 and population 2 is growing. This state thus
represents a weak chimera. With the weak chimera, the in- and
anti-phase populations can remain desynchronized even in the
presence of the cross coupling. Note that the oscillations of the
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FIGURE 4 | Numerical simulation: Cluster formation with global coupling (K = 2× 10−4). (A) Frequency of the one- (black solid circles) and the two-cluster states (red

empty diamonds) as a function of the circuit potential, V. (B) Space time plot of the electrode potential for the one- and the two-cluster states. (C) Frequency of the

elements in the one- (black solid circles) and two-cluster (red empty diamonds) states. (D,E) Time series of the electrode potentials for the elements in the one- (black

line) and two-cluster (red line) states. In panels (B–D), V = 25.0.

phase difference for the anti-phase pair arise due to the presence
of coupling from the two nearly in phase oscillators in the other
populations. These oscillators speed up and slow down the anti-
phase pair (due to their weak cross coupling) as their phase
difference drifts apart [43].

Weak Chimera in Modular Networks With

Strongly Non-linear Oscillators
We now consider networks of two coupled populations with a
larger number of oscillators per population and inherent non-
linearities through the phase response curve and the oscillators’
waveforms. For a phase description, these properties lead to
non-sinusoidal phase interaction, which can give multistability
between in-phase synchrony and other cluster states with global
coupling [17, 50, 51]. This suggests that weak chimeras can occur
for coupled populations. In contrast to the setup in the previous
section, the coupling is not mediated by a computer but through
a resistance, i.e., the electrode potential difference between the
electrodes results in a coupling current that can induce chemical

changes [47]. First, we demonstrate the approach with model
simulations, and then confirm the findings in experiments.

Numerical Simulations
Weused the kinetic scheme proposed byHaim et al. [52] of nickel
electrodissolution tomodel the behavior of a single electrode. The
model was written for two variables, the dimensionless electrode
potential e and the total surface coverage of the nickel oxide and
hydroxide θ . For 40 electrodes coupled through a combination
of individual (Rind) and global (collective) (Rcoll) resistance, the
charge and mass balance equations are the following [53]:

dei

dt
=

V − ei

R
− JF (ei, θi) + K

40
∑

j=1

(

ej − ei
)

(3)

Ŵi
dθi

dt
=

exp (0.5ei)

1+ Ch exp (ei)
(1− θi) −

bCh exp (2ei) θi

cCh + exp (ei)
(4)

where i = 1, . . . , 40, V is the dimensionless circuit potential, R =

20 is the dimensionless individual total resistance, JF (e, θ) is the
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FIGURE 5 | Numerical simulation: Weak chimera state in the modular network with weak cross coupling. V = 25, K = 2 × 10−4 and ε = 0.05. (A) Frequency of

elements (population 1: black solid circles; population 2: red open diamonds). (B) Space time plot of the electrode potential. Population 1: k = 1,…,40. Population 2: k

= 41,…,80. (C) Phase difference between two elements in population one, (black thick line ϕ1 − ϕ2), populations 2 red thin line, (ϕ41 − ϕ45), and between populations

(blue dashed, ϕ1 − ϕ41). (D) Time series of the electrode potential for the chimera state; population 1: black line, populations 2: red line.

Faraday current density calculated by the equation

JF (e, θ) =

[

Ch exp (0.5e)

1+ Ch exp (e)
+ a exp (e)

]

(1− θ) , (5)

and Ŵi is the surface capacity. Ŵi were randomly chosen
between 9.999 × 10−3 and 10.001 × 10−3 for simulating
the heterogeneities of the different natural frequencies of the
oscillators [54]. Moreover, Ch = 1600, a = 0.3, b = 6 ×

10−5 and c = 0.001 are kinetic parameters. The global coupling
occurs through the electrode potential equation (last term in
Equation 3). K is the global coupling strength, K = Rc/(RindR)
and R = Rind + 40Rc [53]. Equation 3 is the charge balance:
Current can be generated by charging the electrical double layer,
the charge transfer electrochemical reactions (Faradayic current),
and through coupling to the electrode potentials of the other
wires. Nickel electrodissolution and water electrolysis are the two
major chemical steps that contribute to the Faradayic current
density in Equation 5 [52]. The oxide layer, whose coverage
is given by Equation 4, blocks parts of the electrode from
dissolution and water electrolysis. Without coupling (K = 0),
Equations (3–5) exhibit a supercritical Hopf bifurcation at V =

10.2. The numerical simulations are performed at somewhat
elevated circuit potentials (V > 24), where the oscillations
exhibit non-linear waveforms.

Figure 4A shows the frequency of the synchronized

oscillations as a function of the circuit potential (V) with

K = 2 × 10−4 for the one- and two-cluster states for

24.3 ≤ V ≤ 25.3. At low V , only the one-cluster state exists.

For 24.9 ≤ V ≤ 25.3 there is bistability between the one- and

two-cluster states. Note the frequencies of both the one- and
the two-cluster states decrease with increasing the potential

and that the two-cluster states have slightly larger frequencies.
In previous study [17], a phase model analysis was performed,
which showed that very close to a Hopf bifurcation the phase
coupling function exhibits only first harmonic components, and
thus only one-cluster state is possible with positive coupling.
The two-cluster state arises because of the presence of higher
harmonics in the phase coupling function, which are induced
by higher harmonics in both the infinitesimal phase response
function and the oscillation waveform [17]. These non-linearities
have been interpreted with higher-order correction terms
of the amplitude equations close to a Hopf bifurcation [55],
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FIGURE 6 | Experiments: Cluster formation with global coupling. (A) Frequency of the one- (black solid circles) and the two-cluster state (red empty diamonds) as a

function of the circuit potential, V. The one cluster state was obtained by increasing the circuit potential from V = 1.100V. The two-cluster state can be obtained by

increasing the circuit potential past V = 1, 270mV, where the one-cluster state breaks up, and decreasing V. (B) Space time plot of the current for the one- and

two-cluster states. (C) Frequency of the elements in the one- (black solid circles) and two-cluster (red empty diamonds) states. (D,E) Time series of the current of the

elements in the one- (black line) and two-cluster (red line) states. Rind = 600 Ohm, Rg = 10 Ohm, Rcoll = 0 Ohm, K = 16.7 µS. In panels (B–E), V = 1,240mV.

or with integrate-and-fire type models with a refractory
period [56].

The behavior at V = 25.0 of the one- and the two-cluster
states are shown in Figures 4B–E. In the one-cluster state, the
electrode potentials (Figure 4D) follow the same variations. In
the two-cluster state (Figure 4E), there are two groups of 20
elements that are in nearly anti-phase configuration. Note that in
contrast to previous studies [43–45], the waveforms are not very
harmonic and exhibit a moderate relaxation character.

The space time plot for the one- and two-cluster state (the left

and right panel, respectively) are shown in Figure 4B. The one

cluster exhibits uniform oscillations, while in the two-cluster state
there are two groups in an approximate anti-phase configuration
(Note that in the two clusters the configurations depend on
initial conditions. Here we consider initial conditions opposite
of the limit cycle, randomized in space). The frequencies of
the elements are shown in Figure 4C. The two-cluster state has
about 5% higher frequency (ω = 0.06474) than the one cluster
(ω =0.06142) state, with frequency difference 1ω = 3.32 ×

10−3. Because there is bistability between the one-cluster and
the two-cluster states with differing frequency, the conditions

may favor the formation of weak chimera states in networks.
We note that oscillator heterogeneity was added to the model to
better represent the experimental scenario. The same bistability
also occurs for uniform populations (i.e., with Ŵi = 0.01 for
all oscillators).

As a simple modular network obtained from the globally
coupled oscillator populations, we introduce some cross coupling
between two populations. For the electrode potential, the
equations are:

del
dt

=
V − el

R
− JF

(

el, θl
)

+ K

40
∑

j=1

(ej − el)+ εK

80
∑

k=41

(ek − el)

l = 1, 2, . . . , 40 (6)

dei

dt
=

V − ei

R
− JF (ei, θi) + εK

40
∑

j=1

(

ej − ei
)

+ K

80
∑

k=41

(

ek − ei
)

i = 41, 42, . . . , 80 (7)

(The equations for surface coverages are the same, i.e.,
Equation 4). There is a strong global coupling within the
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FIGURE 7 | Experiments: Weak chimera state in modular network with weak cross coupling. (A) Frequency of elements (population 1: black solid circles; population

2: red open diamonds). (B) Space time plot of the current oscillations. Population 1: k = 1,…,40. Population 2: k = 41,…,80. (C) Phase difference between two

elements in population one (black thick line ϕ1 − ϕ2), populations 2 red thin line (ϕ41 − ϕ45), and between populations (blue dashed, ϕ1 − ϕ41 ). (D) Time series of the

currents of the elements in the chimera state; population 1: black line, population 2: red line. V = 1,250mV, Rind = 580 Ohm, Rg = 9 Ohm, Rcoll = 0.5 Ohm, K =

17.0 µS, ε = 0.03.

populations, K, and weak global cross coupling between the
populations εK, where ε is the cross-coupling factor (0 ≤ ε ≤ 1).

With ε = 0.05 with initial conditions corresponding to the

one (or two)-cluster states for all the oscillators, the expected

one (or two) cluster state was obtained. Figure 5 shows the
behavior with ε = 0.05 from initial conditions for population 1
(elements 1–40) with in-phase, and population 2 (elements
41–80) with conditions opposite of the limit-cycle randomized
in space (Other parameters are the same as in Figure 4).
Figure 5A shows the frequency of the elements. The two-
cluster still has about 5% higher frequency (ω = 0.06485) than
the one-cluster (ω = 0.06157) but the frequency difference
is slightly lower than that without coupling, 1ω = 3.28 ×

10−3. The grayscale plot (Figure 5B) shows that the first forty
elements (population 1) exhibit uniform oscillations while the
elements 41–80 (population 2) form two clusters in anti-phase
configurations. As shown in Figure 5C, the phase difference
of the elements in the one-cluster state remains constant,

approximately 2π (or zero), while in the two-cluster the phase
difference between two elements in different clusters has small
amplitude oscillations around π. For a pair of elements in
different populations, we observed a phase drifting behavior,
further confirming the chimera state. The presence of the
desynchronized behavior between the populations could also
be seen in the times series data of the electrode potentials
(Figure 5D). Under these conditions, the presence of the chimera
state is a unique behavior of the network interactions.With global
coupling (ε = 1.0), the chimera state disappears: With initial
conditions similar to the chimera state in Figure 5 we obtained
a one-cluster, in-phase synchronized state.

Experiments
Without coupling, the oscillators exhibit slight heterogeneity,
and the natural frequencies have a standard deviation of about
14 mHz. To confirm the weak chimera state, we performed a
set of experiments following the guidelines developed in the
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simulations. First, we used only population 1 (40 electrodes), and
coupled them globally (i.e., Rcoll = 0Ohm, Rg = 10 Ohm in
Figure 1C). With K = 16.7 µS, the frequencies of the elements
in the one- and two-cluster states are shown in Figure 6. ForV ≤

1, 220mV, only the one-cluster state is stable. The frequencies
decrease with increasing circuit potential. For 1, 230mV ≤ V ≤

1, 270mV a two-cluster state was also found (This two-cluster
state can be obtained by increasing the circuit potential past V =

1, 270mV, where the one-cluster state breaks up, and decreasing
the potential). Thus, in this region, there is bistability between
the one- and two-cluster states and, similar to the simulations,
the two-cluster state has slightly larger frequency than the one-
cluster state. Note that the occurrence of such bistability between
one- and two-cluster states was predicted by experiment-based
phase models [17].

As an example of the behavior observed in this region, the
dynamics is shown at V = 1, 240mV. The time series data
for the one- and two-cluster states also confirm that this state
was found with oscillation waveform of relaxation character (see
Figures 6D,E). The grayscale plots (Figure 6B) show the one-
(left) and two-cluster states (right). The elements in the one-
cluster state oscillate nearly uniformly, while those in the two-
cluster states form two groups, oscillating in anti-phase. The
two-cluster state forms an almost balanced configuration with
18 and 22 elements in each cluster. As in the simulation, the
two-cluster state has a higher frequency (ω = 0.437Hz) than the
one-cluster (ω = 0.396Hz); the frequency increase is about 10%
with a frequency difference of 41 mHz (see Figure 6C).

Now we consider the modular network with two populations
of 40 electrodes. The oscillators in each population are coupled
with Rg . As shown in Figure 1C, the two populations are coupled
through a collective resistance Rcoll. The resistance Rcoll induces
global coupling between every electrode pair, with coupling
strength Kcoll = Rcoll/[

(

Rind + 40Rg
)

Req], where Req = Rind +

40Rg+80Rcoll. The group resistance induces coupling only within
a population, i.e., Kg = Rg/[Rind(Rind + 40Rg)]. The total
coupling thus K = Kg + Kcoll, and ε = Kg/K.

Figure 7A shows the frequency of the one- and two-cluster
states in the network configuration with K = 17µS and ε =

0.03. In this set of experiments, the frequency of the one- and
the two-cluster states with ε = 0 was 0.384Hz and 0.413Hz,
respectively; the frequency difference was 29 mHz with the two-
cluster state having about 8% higher frequency than the one-
cluster state. With ε = 0.03, the frequency difference between
the populations decreased to 27 mHz; the frequency of the two-
cluster state (0.418Hz) was about 7% higher than that of the
one-cluster state (0.391Hz). The grayscale plot (Figure 7B) of the
chimera state shows that the first forty elements (population 1)
are in-phase synchronized and elements 41–80 (population 2)
form two clusters, in anti-phase configuration, with 17 and 23
elements in each cluster. The phase differences are shown in
Figure 7C. The elements in population 1 are nearly in-phase with
a phase difference close to 2π (or zero). The clusters in the two-
cluster population are approximately in anti-phase; the phase
difference shows the characteristics small amplitude oscillations
around π (The high frequency modulation on top of the slow
oscillation is due to in-cycle fluctuation of the phase; averaged

phasemodels cannot explain such fluctuations). Finally, elements
in between population 1 and 2 exhibit phase drifting. The lack of
frequency synchrony can also be seen in the current time series
in Figure 7D.

We also performed a long-term experiment to check for the
robustness of the chimera state. The chimera state was stable for
about 1,000 cycles, after which a one-cluster state was observed.
In this parameter region, the system parameters exhibit a slow
drift toward the Hopf bifurcation point. One explanation for
the loss of the chimera state is that during this slow drift the
oscillations become less non-linear for the chimera state to occur
as the parameters leave the region where bistability is present.

We also confirmed that by increasing the coupling strength,
the chimera state breaks down. While for ε = 0.1 stable chimera
state occurs, with ε = 0.2 (with similar coupling strengths and
initial conditions) only in-phase behavior can be observed in
the experiments.

CONCLUSIONS

Robust weak chimera states were observed in a modular network
of two populations of globally coupled electrochemical oscillators
with simple resistive cross coupling between populations that is
sufficiently weak (ε < 0.2). There are important differences in
the observed chimera states compared to those in our previous
studies [43–45]. A ring network of electrochemical oscillators,
close to Hopf bifurcation, showed chimera state with long-
range interactions [44, 45]. This chimera state was not very
robust in the sense that even small heterogeneities destroyed
the behavior, and only chimera “remnants” occurred. From an
engineering perspective, even the relatively small system size (20
electrodes) required large number (140) of coupling resistors
and capacitances. In addition, the chimera state only occurred
as a transient behavior, for about 80–100 cycles. In the weak
chimera state reported here, global coupling within and between
the modules can be induced with one resistance each; this
design greatly simplifies the experimental setup. Because the
chimera state is very robust it does not require adjustment of
natural frequencies, and the chimera state is sustained for many
hundreds of cycles.

In identifying the experimental conditions for the chimera
state, we relied on our previous study [43], where two populations
of weakly non-linear oscillators were coupled with a strongly
non-linear feedback mechanism. However, here we assumed
that the same type of non-linearities can be obtained with
linear (difference) coupling of highly non-linear oscillators. Such
conditions (1, 230mV ≤ V ≤ 1, 270mV) were found far
from the Hopf bifurcation (V ≈ 1.10V) in the electrochemical
system. While the parameter region favorable for the chimera
state is relatively small (40mV) compared to the region of
oscillations (∼200mV), we note that we focused here on weak
chimeras of a particular type with one- and two-cluster states
with distinct frequencies. Weak chimeras could also occur with
other initial conditions (e.g., with balanced and unbalanced
two-cluster states) and parameter regions with other types of
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desynchronized clusters, e.g., two- and three-cluster states; see
also Bick et al. [29].

Similar weak chimera states could be observed in many other
chemical systems. For example, other electrochemical systems
and the BZ reaction can generate rich variety of clusters, in
particular, when the sign of the coupling strength can also
be varied (e.g., excitatory and inhibitory coupling) [31, 39].
The weak chimera state could contribute to exploring chimeras
in robust biological systems, e.g., circadian clocks [57], and
dynamical diseases [58]; see also [59] for a recent review.
Along these lines, we showed that an integrate-and-fire neuron
model, with refractory period can generate bistability between
cluster states in globally coupled populations [56]. Other possible
biological system could include the oscillatory glycolysis, where
highly non-linear feedback mechanisms are common [60].
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We investigate synchronization patterns and chimera-like states in the modular multilayer

topology of the connectome ofCaenorhabditis elegans. In the special case of a designed

network with two layers, one with electrical intra-community links and one with chemical

inter-community links, chimera-like states are known to exist. Aiming at a more biological

approach based on the actual connectivity data, we consider a network consisting of

two synaptic (electrical and chemical) and one extrasynaptic (wireless) layers. Analyzing

the structure and properties of this layered network using Multilayer-Louvain community

detection, we identify modules whose nodes are more strongly coupled with each other

than with the rest of the network. Based on this topology, we study the dynamics of

coupled Hindmarsh-Rose neurons. Emerging synchronization patterns are quantified

using the pairwise Euclidean distances between the values of all oscillators, locally

within each community and globally across the network. We find a tendency of the

wireless coupling to moderate the average coherence of the system: for stronger

wireless coupling, the levels of synchronization decrease both locally and globally, and

chimera-like states are not favored. By introducing an alternative method to define

meaningful communities based on the dynamical correlations of the nodes, we obtain a

structure that is dominated by two large communities. This promotes the emergence of

chimera-like states and allows to relate the dynamics of the corresponding neurons to

biological neuronal functions such as motor activities.

Keywords: synchronization, multilayer network, chimera state, neuronal oscillators, metastability, community

detection

1. INTRODUCTION

Synchronization phenomena are widely studied across fields, from classical mechanics [1] to
complex dynamical systems [2–5] and music [6, 7]. Surprising phenomena in nature, for instance,
the synchronized flashing of fireflies [8] or the unexpected motion of bridges due to the emergence
of synchronized walking [9] have sparked the interest in synchronization patterns. However, some
more peculiar patterns of synchronization can also be observed in complex systems. These include
the surprising coexistence of coherent and incoherent parts of coupled identical oscillators, a hybrid
state that became known as chimera.
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Chimera states were first reported in rings of non-locally and
symmetrically coupled identical phase oscillators [10]. Since their
discovery, they have been extensively studied both theoretically
[11–26] and experimentally [27–31] in a wide range of systems.
For recent reviews see references [32–35]. For a long time,
chimera states were believed to exist mostly for nonlocal coupling
schemes. This consensus was revised when chimeras were found
in systems of globally [36–41] and locally coupled oscillators
[42–47]. Although these regular topologies often capture the
nature of the interaction between the coupled elements, there
are many real-world systems where a more complex connectivity
description is required. Prominent examples of such systems are
biological neuron networks, where synchronization is important
for various cognitive functions, and chimera states, in particular,
can be used to interpret phenomena such as epileptic seizures
[48] and bump states [49, 50].

Previous works on the effect of nontrivial topologies
on chimera states have involved scale-free and random
networks [51, 52], hierarchical (fractal) schemes [53], modular
structures [54], and “reflecting" connectivities [55]. Our aim is
to contribute in this direction and take it one step further by
considering a multilayer structure. In recent years, the study
of multilayer networks has become highly popular owing to
their significant relevance in several complex systems [56–58].
In the context of neuronal networks, such a multilayer approach
is ideal for addressing the relationship between structure and
function, an essential question in theoretical neuroscience [59].
Concerning chimera states, studies on multilayer/multiplex
networks are limited and mainly deal with artificial coupling
schemes [23, 60–63]. For example, the case of two populations
with various coupling schemes has been systematically studied in
reference [22]. In the present work, we focus on the possibility to
observe chimera-like patterns in a multiplex structure of a real-
world system, namely the neuronal network of Caenorhabditis
elegans (C. elegans). Our main focus is to demonstrate the
existence and emergence of synchronization patterns in a
multilayer network obtained from the connection of this real
organism. In short, we will show that chimera-like states can
be hard to identify in real-world networks and suggest an
alternative approach to dynamically define communities, whose
dynamics can be related to biological functions to the involved
neurons. The C. elegans multilayer connectome is used as a case
study, but the proposed approach can be easily generalized to
other networks.

The nematode C. elegans has been studied for many decades
as a standard model organism for many processes of biological
interest and beyond [64]. Particularly for neurobiology, the
structure and connectivity of its nervous system has been
deducted from reconstructions of electron micrographs of serial
sections [65, 66]. Its nervous system includes sensory organs
in the head and can produce highly plastic behavior, e.g.,
disassociative and associative learning and memory as response
to taste, smell, temperature, touch and slightly to light, even
though the nematode has no eyes [67]. A number of molecular
mechanisms is involved in learning and memory, mediated
through the same neurotransmitters as in humans and every
species with a nervous system. In fact, neurons in C. elegans

are very similar to those of humans, and their synapses are also
classified as electrical or chemical.

It has been found that some of C. elegans’ neurotransmitters,
specifically the four monoamines dopamine, octopamine,
serotonin and tyramine, act at both neurons and muscles to
affect egg laying, pharyngeal pumping, locomotion and learning,
or in general, modulate behavior in response to changing
environmental cues [68]. Not only in C. elegans but also in many
animals, one important route of neuromodulation is through
monoamine signaling, and it is well known that this extrasynaptic
communication is critical to some human brain functions. In
both humans and C. elegans, many neurons expressing aminergic
receptors are not post-synaptic to releasing neurons, indicating
that a significant amount of monoamine signaling occurs outside
the wired connectome. This defines a wireless connectivity
network between neurons [69] for C. elegans. In general, this
wireless or extrasynaptic communication is known as volume
transmission in neuroscience [70–72], and is characterized by
three-dimensional signal diffusion in the extracellular fluid, for
distances larger than the synaptic cleft. This leads to multiple
extracellular pathways connecting intercommunicating cells that
are not well characterized from a structural perspective. For
further details about our implementation of this network please
refer to the Methods 5.1.

In our multilayer approach to modeling the neuronal
connectivity of C. elegans, the network’s nodes represent neurons
connected by either electrical, chemical, or wireless pathways,
which defines three layers. The electrical network is undirected,
while the chemical and wireless networks are directed. Taking a
closer look at the three layers’ hubs in Figure 1, a strong overlap
exists between hubs in the electrical and in the chemical network,
however not so in the wireless network. This is in agreement with
results from Bentley et al. [69], where a multilayer analysis of
the three networks delineates topological overlaps between the
two synaptic networks and discrepancies between the wireless
and the synaptic networks. These topological differences of
the different layers can be further explored by the degree
distributions depicted in Figure 1, where it is clear that all of
them present a heavy-tailed degree distribution with a maximum
degree/average degree of 40/4 (electrical layer), 53/16 (chemical
layer), and 137/15 (wireless layer). Since there are not many
monoamine-releasing neurons, we observemany nodes with zero
in- and out-degree. Note that the values of the wireless degree
distribution need to be interpreted as maximum possible values.
The underlying parameters that could lead to an equivalent of
link weights are disregarded due to their complexity. Biologically,
a source neuron in the wireless network influences a potential
target neuron depending on parameters related to the diffusion
processes of neurotransmitters throughout the body. Such
parameters can be the physical distance between the presynaptic
source and the postsynaptic target or the chemical concentration
of the released neurotransmitters [70–72].

In order to investigate the synchronization patterns of the
neuronal network at hand, we will first investigate the dynamics
based on a previous approach from Hizanidis et al. [54]. This
modeling approach is then extended to get closer to the biological
connectome of C. elegans. The synchronization of the network
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FIGURE 1 | Layers of the C. elegans network and their degree distributions. All networks are plotted undirected and in a ring for visualization purposes only, with the

same node positions across layers. ▽: in-degree, △: out-degree. (A) Electrical sub-network. (B) Chemical sub-network. (C) Wireless sub-network. (D) Electrical layer

degree distribution. (E) Chemical layer in- and out-degree distribution. (F) Wireless layer in- and out-degree distribution.

is computed based on the pairwise Euclidean distances of the
dynamical variables of nodes (cf. Methods 5.3 and Kemeth et al.
[73]). Furthermore, we introduce an alternative way of finding
meaningful communities in the neuronal network and relate
the observed synchronization patterns—including chimera-like
states – to biological functions of the involved neurons.

2. COUPLING BY DESIGN

Before investigating the C. elegans network using the actual
connectivity data, we discuss results following the modeling
approach of Hizanidis et al. [54], where first, the communities
are computed from the aggregated connectome irrespective of
the link type. Then, all intra-community links are assigned
to the electrical layer and all inter-community links to the
chemical layer. In other words, the designed network is
modular or multilayer, where the neurons of each module
and their intra-community links occupy a different layer. We
follow this approach in order to test the applicability of the
Euclidean distance method in evaluating the synchronization of
the network.

Figure 2 shows the six communities obtained from the
Walktrap algorithm [74] applied to the aggregated connectome
of C. elegans. The resulting topology is exactly the same as
in Hizanidis et al. [54]: electrical intra-community links and

chemical inter-community connections. Therefore, numerical
integration of the coupled Hindmarsh-Rose (Equation 1) using
this topology leads to similar time series of the dynamical variable
as in Hizanidis et al. [54]. See Methods 5.2 for details on the
Hindmarsh-Rose model.

In Figure 3, the level of synchronization of every community
γ1 to γ6, the global level of synchronization γ of the whole
network, the chimera-like index χγ as well as the metastability
index λγ are shown for a large range of electrical and chemical
couplings. Note that the global level of synchronization γ is
computed from the pairwise Euclidean distances of the three
dimensional coordinates defined by the dynamical parameters
p, q and n, between any pair of nodes in the network (cf.
Methods 5.3). Thus, γ , in contrast to χγ and λγ is independent
of the community structure.

It can be seen that for an electrical coupling strength of gel =
0.4 and no chemical coupling (gch = 0) the chimera-like index
based on Euclidean distances attains a value of χγ ≈ 0.25.
Furthermore, the metastability index for these coupling strengths
λγ ≈ 0.12 is only half as large as the chimera-like index. This

serves as justification why we may call the state a “chimera-like”
state, in contrast to a “metastable” state where the metastability
index prevails.

Figure 4A depicts a space-time plot of the p-variable of the
Hindmarsh-Rose model, which corresponds to the membrane
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FIGURE 2 | Topology of the artificial C. elegans network. The network of 277 neurons is divided into 6 communities of different sizes using the Walktrap algorithm. (A)

Neurons are colored according to their community [1: gray (19 neurons), 2: violet (69 neurons), 3: red (18 neurons), 4: yellow (108 neurons), 5: blue (20 neurons), 6:

black (43 neurons)]. Electrical and chemical connections are shown as black and green lines, respectively. In this approach, electrical junctions exist only within every

communities, whereas chemical synapses span only across communities. (B) The adjacency matrix with electrical (black) and chemical (green) edges, where the axes

represent the node indices. The vertical and horizontal lines divides the matrix in the ordered communities (1 to 6), from left to right in the horizontal axis, and from up

to down in the vertical axis, respectively.

potential (cf. Methods 5.2) for disconnected communities with
high electrical (intra-community) coupling. One can see that
every community operates in the synchronized regime. For
smaller electrical coupling, Figure 4B shows the space-time
plot of the p-variable with a pattern of mixed synchrony that
resembles a chimera-like state, that is, varying synchronization
across communities. This state is achieved for gel = 0.4 and
gch = 0, that is, that communities are not connected. It can
be seen that especially the nodes in the larger communities
2 and 4 are much more synchronized than the nodes in the
small communities. The chimera-like index is still large in
a close neighborhood of this point (cf. Figure 3). However,
when the chemical coupling is increased, the intra-community
synchronization weakens and inhibits the emergence of chimera-
like states. In summary, different levels of synchronization can
be achieved by means of reducing the inter-community coupling
strength. This raises to the hypothesis that, when observing
the designed model, the main driver of chimera-like behavior
is in fact the relative size of the communities, since larger
communities do not need a high intra-community coupling
strength to reach a high level of synchronization. Figure 4C
shows the mean order parameter depending on the size of the
community. As expected, the order parameter grows with the
number of nodes in the community. While the mean order
parameter of the three small communities (1, 3, and 5) is always
below 0.6, the largest community reaches a value of γ4 ≈ 0.95.

The actual size of the community affects the order parameter
only in an indirect way. What seems to be more important is
the higher mean degree of nodes in the larger communities.
In Figure 4D, it can be seen that there is a strong correlation

between the number of nodes and the mean node degree of each
community. In other words, since the nodes in large communities
have more neighbors than the nodes in small communities, it
is easier for them to synchronize. Note that this does not imply
causality between node degree and level of synchronization.
To corroborate this, more general investigations, e.g., on
randomized versions of the network would be insightful. For our
purpose however, it suffices to know that different community
sizes influence the level of synchronization significantly.

3. COUPLING BY BIOLOGY

In order to investigate the synchronization of the C. elegans
network even further, a third layer is added to the graph,
representing the monoamine connections (wireless network).
Furthermore, the assumptions about electrical and chemical
synapses made in Hizanidis et al. [54] related to intra- and
inter-connectivity are dropped, and the three-layer neuronal
network is created using the actual connectivity data of the
three synapse types (see Methods 5.1). In this section, we
present two approaches to finding communities in this biological
multilayer network.

3.1. Communities Based on Topology
The communities are first evaluated using a Multilayer-Louvain
community detection algorithm (see Methods 5.4), which yields
8 communities instead of 6 as in the aggregated case discussed
in the previous section (cf. Figure 2). Figure 5 gives an overview
of the partition at hand. The adjacency matrices (Figures 5A–C)
highlight clear differences between the edge types: while the
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FIGURE 3 | Synchronization parameter scans of the designed network. Changes in the community dynamical properties and global dynamical properties as the

electric and chemical coupling strengths vary. (A–F) Level of synchronization of each community, γ1 to γ6. (G) The global level of synchronization γ of the whole

network. (H) The chimera-like index χγ . (I) The metastability index λγ . System parameters: a = 1, b = 3, c = 1, d = 5, s = 4, p0 = −1.6, Iext = 3.25, r = 0.005,

Vsyn = 2 and gwl = 0.

wireless network, presenting few intra-community links, is
distributed almost randomly across the network, the chemical
layer for instance strongly reflects the underlying community
structure in the adjacency matrix. Since chemical connections
make up most of the edges in the network, the algorithm
optimized the community partitionmainly based on the chemical
layer. Comparing this partition to the one in Figure 2, one
can observe that the clear separation between edge types into
intra- and inter-community edges is not achieved when using the
biological connectome without assumptions.

The unclear separation of edge types in the partition shows
its effects when analyzing the dynamics of the system using the
Hindmarsh-Rose equations (see Methods 5.2). Figure 6 shows
the parameter scans for the global level of synchronization
γ , the chimera-like index χγ and the metastability index λγ

for two different wireless coupling strengths. For the level of
synchronization γ1 to γ8 within the individual communities (see
Figures S1, S2). First of all, the global level of synchronization of
the system is highly reduced when using the real connectome,
which can be explained by the previously mentioned edge

distribution. Since the electrical layer synchronized the nodes
within communities in the designed partition, the inter-
community coupling could easily be tuned using the chemical
coupling strength. Therefore, a clear chimera-like region could be
observed in the parameter scans in Figure 3. In the case of the real
connectome, it is not possible to tune intra- and intercommunity
coupling separately, since all edge types are distributed across and
within communities.

Even though the parameters used to identify chimera-like
states (γ , χγ , and λγ ) are significantly lower than in the
model by design, the timeseries of the neuron membrane
potential p in Figure 7 suggest that the system adopts three
different synchronization patterns, depending on the dynamical
coupling strengths gwl, gel and gch. The corresponding coupling
strengths and synchronization parameters are noted in Table 1.
Figures 7A–C show the evolution of p for gwl = 0.0, and
Figures 7D–F show p for gwl = 0.2. One observes that for
high electrical coupling strengths (Figures 7A,D), the system is
synchronized, meaning that most of the nodes follow the same
periods of bursting (green) and quiescent (blue) states. However,
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FIGURE 4 | Space-time plots of the designed network. (A) Time series of the p-variables for a state in which every community is internally synchronized. The nodes

are ordered as in Figure 2 with communities 1 to 6 from left to right. This state is achieved for gel = 1.76, gch = 0. Keeping the chemical coupling at gch = 0 and

decreasing the electrical coupling to gel = 0.4 leads to the timeseries in panel (B), with the same color code and time scales as before, where the large communities

(2 and 4) are more synchronized than the smaller communities. We call this a chimera-like state. (C) Level of synchronization γm and (D) mean degree of each

community (m = 1, . . . , 6), vs. the size of the community, respectively, indicating a strong correlation between size and order. Parameters as in Figure 3.

one can see singular nodes that fall out of the synchronized
pattern (especially in communities 1 to 3), which correspond
to the nodes that are not electrically coupled. Figures 7C,F

depict the system in the desynchronized regime, where one
cannot distinguish any clear pattern of synchronization. The
desynchronization becomes higher when the wireless coupling
strength is increased. In Figure 7B, the system seems to exhibit
chimera-like behavior at first glance. However, the chimera-like
index for this coupling parameter set is very small (see Table 1).
Even though community 3 seems less synchronized, one can
read from the synchronization parameters (cf. Figure S1) that
in fact all communities present very low synchronization. This
behavior does not change significantly when adding wireless
coupling (cf. Figure 7E).

Using the Multilayer-Louvain community detection approach

to partition the network, one observes a system expressing
different synchronization patterns depending on the interplay

of the coupling strengths of the three layers. However, even
though these patterns are visible in the evolution of the p-variable
(Figure 7), the topological community partition cannot reflect
these patterns in the parameter scans (Figure 6). Therefore,
the question about the meaning of community detection can
be raised. The following section proposes an alternative way
of detecting communities in multilayer networks, which is not

based on the topology or link distribution, but on the correlation
of nodes with respect to their dynamic variable p.

3.2. Communities Based on Dynamics
In the previous section it was shown that the Multilayer-
Louvain partition already leads to significant differences in the
synchronization behavior of the distinct communities. Yet, as
this barely becomes apparent in the chimera-like index, we
investigated an alternative approach of finding communities,
based on dynamical correlations between the time series of the
p-variable. The heuristic algorithm leading to the correlation-
based partition is described in detail in Methods 5.5. It is worth
mentioning that this algorithm only changes the partition of the
network, it does not change the nodes’ dynamics when compared
to section 3.1, as the underlying graph itself remains untouched.
However, the synchronization measures (i.e. γm, χγ , and λγ , see
Methods 5.3) do intrinsically depend on the particular partition.

Figure 8 shows that the correlation-based partition strongly
differs from the partition found with the Multilayer-Louvain
algorithm. The most striking difference is the stronger
heterogeneity among inter-community links in the correlation-
based partition. The outgoing and incoming links between
communities are relatively evenly distributed in the topology-
based Multilayer-Louvain partition. In the correlation-based
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FIGURE 5 | Communities of the Multilayer-Louvain C. elegans network. The network is divided into 8 communities of different size using the Multilayer implementation

of the Louvain algorithm (see Methods 5.4). (A–C) Weighted adjacency matrices of the electrical (black), chemical (green) and wireless (red) networks, where the axes

represent the node indices. The vertical and horizontal lines divides the matrix in the counter-clockwise ordered communities, from left to right in the horizontal axis,

and from up to down in the vertical axis, respectively. Note that the maximum depicted weight is set to 10 in both the electrical and chemical layers for visualization

reasons, even though few higher weights exist. (D–F) Inter- and intra-community coupling of the three layers, where colored circles represent communities [1: gray (87

neurons), 2: violet (59 neurons), 3: orange (43 neurons), 4: red (31 neurons), 5: yellow (19 neurons), 6: pink (17 neurons), 7: blue (15 neurons), 8: black (8 neurons)],

and lines represent the cumulative link weight between two or within one community (self-loops).

partition however, the two largest communities (3 and 6)
are much stronger connected than the rest of the network.
Furthermore, it can be seen that the two smallest communities (5
and 8) present no electrical connection to any other community
in the network. In general, the electrical sub-network shows
only very few inter-community links compared to the strong
intra-community coupling (self-loops) of the two largest
communities (3 and 6).

Regarding the dynamical properties, the dynamical
correlation-based partition leads to qualitatively similar
results as the Multilayer-Louvain partition. Compare Figures 6

and 9. In particular, Figure 9B clearly shows that the highest
values of the chimera-like index χγ are still obtained for high
electrical couplings and small chemical couplings. Increasing the
wireless coupling as in Figure 9E reduces the value of χγ , similar

to what has been observed previously in the dynamical analysis
of the Multilayer-Louvain partition. However, the value of the
highest chimera-like index (χγ ≈ 0.14, obtained at gel = 1.96
and gch = 0.04) is significantly higher for the correlation-based
partition. Moreover, it is also higher than the corresponding
metastability index (λγ ≈ 0.07). Therefore, we may indeed call
the state “chimera-like" [38, 54, 75–78].

The reason for the high chimera-like index can be observed
in the space time plots of the p-variables in Figure 10. As
was mentioned before, the dynamics of single oscillators do
not depend on the partition. In order to compare the results
from the correlation-based partition with theMultilayer-Louvain
partition, we decided to show the time series of p using the
same coupling constants as in Figure 7. The different ordering
of the nodes, though, leads to a significantly higher homogeneity
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FIGURE 6 | Synchronization parameter scans of the Multilayer-Louvain network. Changes in the global dynamical properties as the electric and chemical coupling

strengths vary. (A–C) Absence of wireless coupling (gwl = 0) for different electrical and chemical couplings: the global level of synchronization of the whole network γ ,

the chimera-like index χγ and the metastability index λγ . (D–F) γ , χγ , and λγ for gwl = 0.2. The system parameters are the same as in Figure 3, except for gwl.

between nodes within one community, which is especially
apparent for the largest communities (3 and 6) in Figures 10A,D.
As a consequence, the respective levels of synchronization (γ3 ≈

0.40 and γ6 ≈ 0.67) are higher than for the other communities,
which raises the chimera-like index. The reason for this high
level of synchronization is the strong intra-community coupling
of the two large communities in the electrical layer, since
the electrical coupling strength is the very high in parameter
set (gel = 1.80).

For time series with small electrical coupling (see
Figures 10C,F), the communities are not separated as clearly,
particularly when wireless coupling is applied to the system,
which can be observed in Figure 10F. Especially the largest
community (3) is much less synchronized, which can be
explained by a stronger influence of the chemical and wireless
layers, where a high number of intra-community links exist. This
demonstrates that the dynamical correlation-based algorithm
seems to preferentially sort the network according to the
electrical sub-network, as this layer seems to be most important
for the overall synchronization of the network. The adjacency
matrices in Figures 8A–C support this observation: Only the
electrical layer shows a large number of intra-community links,
whereas the other layers present no clear visible structure. This is
again in contrast to the Multilayer-Louvain partition, where the
chemical layer also shows a pronounced community structure
(see Figure 5B).

TABLE 1 | Parameter sets used in Figure 7.

gwl gel gch γ χγ λγ

7 (A) 0.00 1.80 0.05 0.35 0.05 0.07

7 (B) 0.00 0.50 0.20 0.15 0.02 0.02

7 (C) 0.00 0.10 0.25 0.13 0.02 0.02

7 (D) 0.20 1.80 0.05 0.22 0.04 0.03

7 (E) 0.20 0.50 0.20 0.11 0.02 0.01

7 (F) 0.20 0.10 0.25 0.10 0.01 0.01

In the case of intermediate electrical, chemical coupling and
no wireless coupling (see Figure 10B), the distinct communities
can still be identified, yet the level of synchronization in the large
communities does not suffice to reach a high chimera-like index.
Adding wireless coupling as shown in Figure 10E does not lead
to significant changes in the values.

For a full review of the different coupling strengths of to the
system that lead to the time series in Figure 10, as well as the
consequent values of the synchronization parameters γ , χγ , and
λγ , please refer to Table 2.

4. DISCUSSION

Interesting synchronization patterns were found using different
modeling approaches in the multilayer network of C. elegans.
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FIGURE 7 | Space-time plots of the Multilayer-Louvain network. The system parameters are the same as in Figure 3, except for gwl. (A–C) Temporal evolution of the

p-variable for different gel and gch with gwl = 0. (D–F) Similar plots for gwl = 0.2. The values of all coupling strengths are summarized in Table 1. Red lines separate

different communities.

They were quantified based on the pairwise Euclidean distance
between the dynamical variables p, q and n of the underlying
Hindmarsh-Rose system (see Methods 5.3).

Following the approach of Hizanidis et al. [54], we first
assume purely electrical connections within the communities,
and chemical synaptic intercommunity coupling (section 2). This
results in a designed coupling scenario, where chimera-like states

are clearly visible due to a strong separation of connection types.
While the electrical sub-network synchronizes the communities
within themselves, the chemical sub-network only allows for
connections across communities.

Moving toward a more biologically-inspired modeling
(section 3), these synchronization states are more difficult
to observe. Since the edge types are not clearly separated
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FIGURE 8 | Communities of the dynamical correlation-based C. elegans network. The network is divided into 8 communities of different size using the correlation

matrices of the p-variable from the dynamical equations (see Methods 5.5). (A–C) Weighted adjacency matrices of the electrical (black), chemical (green) and wireless

(red) sub-network, where the axes represent the nodes indices. The vertical and horizontal lines divides the matrix in the counter-clockwise ordered communities, from

left to right in the horizontal axis, and from up to down in the vertical axis, respectively. Note that the maximum depicted weight is set to 10 in both the electrical and

chemical layers for visualization reasons, even though few higher weights exist. (D–F) Inter- and intra-community coupling of the three layers, where colored circles

represent communities [1: gray (25 neurons), 2: violet (20 neurons), 3: orange (91 neurons), 4: red (33 neurons), 5: yellow (15 neurons), 6: pink (75 neurons), 7: blue

(14), 8: black (6 neurons)]. Electrical and chemical connections are shown as black and green lines, respectively. Wireless connections are colored in red. In this

partition, edges are distributed more clearly than in the partition obtained from the Multilayer-Louvain approach in Figure 5.

anymore and it is therefore impossible to tune intra- and
intercommunity coupling separately, the nodes within one
community cannot synchronize as easily. This is especially the
case when partitioning the network with the Multilayer-Louvain
algorithm: the synchronization patterns are visible in the time
series (see Figure 7), but the synchronization indices are very
low (see Figure 6).

We also discussed an alternative way to identify correlated
clusters in the network, namely to sort nodes in communities
according to the Pearson correlation matrix of the p-variable (see
Methods 5.5). In this case, the community structure is dominated
by two large communities with a high amount of electrical
self-loops (see Figure 8) that present a strong synchronization
(see Figure 10). There are two small communities that share

no electrical links to the rest of the network and therefore
scarcely synchronize with nodes from the other communities.
This promotes the emergence of chimera-like states. Further
insights on the dynamical correlation-based partition can be
obtained by investigating the neuronal functions of the nodes. In
Table 3, one can see that the highly synchronized communities
(3 and 6) contain 75% of the motor neurons of the system.
The synchronization of motor neurons under varied coupling
strengths is in harmony with experimental findings, for example
in rats [79].

In this context, a question could be raised regarding the
multilayer nature of the studied network. Since the three layers
do not share the same number of neurons (only 253 of the 279
neurons are connected by electrical gap junctions), a certain
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FIGURE 9 | Synchronization parameter scans of the dynamical correlation-based network. Changes in the global dynamical properties as the electric and chemical

coupling strengths vary. (A–C) Absence of wireless coupling (gwl = 0) for different electrical and chemical couplings: the global level of synchronization of the whole

network γ , the chimera-like index χγ and the metastability index λγ . (D–F) γ , χγ , and λγ for gwl = 0.2. The system parameters are the same as in Figure 3, except

for gwl. Refer to Figures S3, S4 for the parameter scans including γi .

group of nodes are prone to remain desynchronized for certain
combinations of gel, gch and gwl. However, the strong biological
interplay between synapse types is crucial to the understanding
of the neuronal network as an entity [80, 81]. Therefore, the
connectome should be modeled as a multilayer network.

Keep in mind that the studied three-layer network
contains information only about the electrical, chemical
and monoamine connections. Another layer could be added
for the neuropeptide wireless network, which was not included
since many neuropeptide receptors, as well as ligands for many
neuropeptide receptors are unknown. Also, the distance over
which neuropeptide signaling can occur is uncharacterized for
many of them.

Furthermore, concerning the synchronization metric
based on Euclidean distances (see section 5.3), the threshold
parameter which defines the limit between synchronized
and desynchronized nodes has been set to δ = 0.01 as in
reference [73]. This value could be adapted to better suit the
system and the three-dimensional distances.

This work presents an approach for analyzing the complex
biological network of C. elegans using metrics of synchronization
based on Euclidean distances and a new method of finding
clustered nodes by correlating their dynamical variables. The
underlying framework can be extended for multiple complex
network applications.

5. METHODS

5.1. Datasets
The gap junction and chemical synapse networks of a

hermaphrodite C. elegans have been obtained in [66], and are

available through WormAtlas [82]. The associated adjacency

matrices are computed for the electrical and chemical layers,

where we omitted the neuromuscular junctions since we are only

interested in neuronal interaction. Note that this dataset does

not include the 20 pharyngeal neurons. Hence, we work with the

somatic giant component of the neuronal network.
The electrical sub-network consists of 253 neurons and

890 synapses or gap junctions from 517 unique neuron pairs

(including 3 self-connections). A total of 352 out of 517

neuron pairs have only one synapse between them, while the

other 165 pairs show multiple parallel connections, with a

maximum value of 23. This means that the respective symmetric

(undirected) adjacency matrix has weights varying from 1 to 23

for connected neurons.
The chemical sub-network contains 253 source and 268 target

neurons, the union of both sets is composed of 279 neurons,

which is the total number of nodes of the modeled C. elegans

network. There are 6,294 synapses from 2,575 unique source-
target neuron pairs. A total of 1,362 out of the 2,575 neuron pairs

have only one synapse, while the other 1,211 pairs have multiple
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FIGURE 10 | Space-time plots of the dynamical correlation-based network. The system parameters are the same as in Figure 3, except for gwl. (A–C). Temporal

evolution of the p-variable for different gel and gch with gwl = 0. (D–F) Similar plots for gwl = 0.2. The values of all coupling strengths are summarized in Table 2. Red

lines separate different communities. The time series are identical to Figure 7, but for a different ordering of nodes.

synaptic connections with a maximum value of 37. Therefore, the
associated asymmetric (directed) adjacency matrix has weights
varying from 1 to 37 for connected neurons.

The wireless sub-network of this study is restricted to the
monoamine network in Bentley et al. [69] and is available
in Bentley et al. [83]. Again, the pharyngeal neurons are
excluded. This network by itself can be thought of as a

directed quadripartite network composed of a source neuron,
a neurotransmitter, a receptor and a target neuron. The
considered wireless network is composed of 16 source neurons,
4 monoamine neurotransmitters, 16 associated protein receptors
and 215 target neurons. As a first approach to the implementation
of the wireless connectivity within our dynamical model, we are
only interested in an effective connectivity between a source and
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TABLE 2 | Parameter sets used in Figure 10.

gwl gel gch γ χγ λγ

10 (A) 0.00 1.80 0.05 0.35 0.11 0.06

10 (B) 0.00 0.50 0.20 0.15 0.03 0.03

10 (C) 0.00 0.10 0.25 0.13 0.03 0.02

10 (D) 0.20 1.80 0.05 0.22 0.07 0.03

10 (E) 0.20 0.50 0.20 0.11 0.02 0.01

10 (F) 0.20 0.10 0.25 0.10 0.02 0.02

TABLE 3 | Neuron functions of nodes in the dynamical correlation-based partition.

Function

Community 1 2 3 4 5 6 7 8 All

Interneuron 10 7 32 11 5 16 8 0 89

Motor 7 2 32 7 3 49 6 2 108

Sensory 8 11 27 15 7 10 0 4 82

All 25 20 91 33 15 75 14 6 279

a target neuron. For this purpose, we reduce the quadripartite
nature by assigning binary weights to the adjacency matrix: 1,
if there is any path between the neurons and 0, if there is no
possible connection from a source to a target neuron through
any neurotransmitter and matching receptor. The final directed
adjacency matrix includes 2,282 edges.

The functional classification of the neurons in three categories
(sensory, motor and interneurons) has also been obtained from
[66] and manually created based on the dataset in WormAtlas
[84]. We excluded the male data, since we only consider the
hermaphrodite information. If the description of a particular
neuron includes both interneuron and motor characteristics,
we choose to describe it as motor neuron, as well as we
define amphid neurons to be sensory, following the approach in
Varshney et al. [66].

For details relevant to our study on the individual neurons and
their characteristics, please refer to the Table S1.

5.2. Hindmarsh-Rose Dynamics
We consider a network of neurons locally characterized by
Hindmarsh-Rose dynamics [85], a model intended to describe
the transition between the stable resting state and the stable
limit cycle of neurons. The model was intended for two types of
coupling (electrical and chemical), we propose extending it by a
third coupling term to account for the wireless connections in the
studied network, as described by the following equations:

ṗi = qi − ap3i + bp2i − ni + Iext + gel

N
∑

j=1

LijH(pj)

− gch(pi − Vsyn)

N
∑

j=1

Ach
ij S(pj),−gwl(pi − Vsyn)

N
∑

j=1

Awl
ij S̃(pj),

q̇i = c− dp2i − qi,

ṅi = r[s(pi − p0)− ni], (1)

where i = 1, . . . ,N is the neuron index, pi is the membrane
potential of the i-th neuron, qi is associated with the fast current,
either Na+ or K+, and ni with the slow current, for example
Ca2+. The parameters of Equation (1) are chosen such that
a = 1, b = 3, c = 1, d = 5, s = 4, p0 = −1.6, and
Iext = 3.25, for which the system exhibits a multi-scale chaotic
behavior characterized as spike bursting [86]. The parameter r
modulates the slow dynamics of the system and is set to 0.005
so that each neuron lies in the chaotic regime in the absence of
coupling [54]. For these parameters, the Hindmarsh-Rose model
enables the spike-bursting behavior of the membrane potential
observed in experiments made with single neurons in vitro. We
choose random initial conditions in the time series shown and
find that changing the initial conditions does not change the long-
term synchronization behavior. In our time series analysis, we
always remove the transients and average over a long time period.
The chaotic behavior of the Hindmarsh-Rose model has been
studied in earlier publications with slightly different parameters,
which led to the investigation of a plethora of chaotic phenomena
using spike-counting techniques [87] and detailed bifurcation
analysis [88].

The connectivity structure of the electrical synapses is
described in terms of the Laplacian matrix L, whose elements are
defined as Lij = Ael

ij − δijk
el
i , where k

el
i is the degree of node i in

the electrical layer and δij = 1 if i = j, δij = 0 otherwise. Ael is

the symmetric adjacency matrix whose elements are Ael
ij 6= 0 if

there are electrical synapses connecting the neurons i and j, and
Ael
ij = 0 otherwise. The strength of the electrical coupling is given

by the parameter gel and its functionality is governed by the linear
function H(p) = p.

The connectivity structure of the chemical synapses is
described by the adjacencymatrixAch, whose elements areAch

ij 6=

0 if there are chemical synapses between neurons i and j, and
Ach
ij = 0 otherwise. The nonlinear chemical coupling is described

by the sigmoidal function S(p) = {1+ exp[−λsyn(p− θsyn)]}
−1 ,

which acts as a continuous mechanism for the activation and
deactivation of the chemical synapses. The associated coupling
strength is noted as gch. For the chosen set of parameters, |pi| < 2
and thus (pi − Vsyn) is always negative. Therefore, the chemical
coupling is excitatory if Vsyn = 2. The other parameters are
θsyn = −0.25 and λsyn = 10, following references [89, 90].

The wireless connectivity structure is described by the
adjacency matrix Awl. It is also considered nonlinear; however,
much slower than the chemical synaptic coupling [69].
Intuitively, the exponential function S(p) in the denominator can
be decreased by replacing λsyn with λ̃syn≪λsyn. We chose λ̃syn =

1, Vsyn = 2 and θsyn = −0.25, as for the chemical coupling.
Furthermore, the wireless coupling is considered as an additional
disrupting signal to the synchronization of the network. It is
therefore treated like excitatory chemical synapses.

5.3. Level of Synchronization
We adapt an approach based on Kemeth et al. [73] in order
to compute a level of synchronization of the studied network.
Instead of considering the local curvature, which is optimized
for a ring network, we calculate the pairwise Euclidean distances
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between the variables {x1, x2, . . . , xN} at every time step t, with
xi = (pi, qi, ni). For all t, we obtain a set of all possible distances
between a set of N nodes:

D̂x(t) : = {||xi(t)− xj(t)|| , ∀ i, j ∈ {1, . . . ,N} } . (2)

Two nodes i and j are now defined to be synchronized if ||xi(t)−
xj(t)|| ≤ δ and desynchronized if ||xi(t)− xj(t)|| > δ, where
δ = 0.01 · Dmax is a threshold value. The value Dmax is the
maximum possible Euclidean distance between a pair of nodes:

Dmax =

√

(xmax − xmin)
2, (3)

where xmax = (pmax, qmax, nmax) and xmin = (pmin, qmin, nmin)
are vectors containing the maximum and minimum values of the
dynamical variables for all time steps t and nodes N. Therefore,
two nodes are defined to be synchronized at time t if their
Euclidean distance does not exceed 1% of the maximum possible
distance, which is well defined for every space-time series.

Based on the set of Euclidean distances, we can measure the
amount of spatially coherent nodes at each time step t. For this
purpose, we consider a different set of distances, containing only
those that are smaller than the threshold value δ:

D̂δx(t) : = {||xi(t)− xj(t)|| < δ , ∀ i, j ∈ {1, . . . ,N} } . (4)

The fraction between the number of distances within the range
of the threshold value and the possible number of distances then
results in the amount of synchronized node pairs. Note that
the number of node pairs grows at a rate of N2. It is therefore
necessary to take the square root of this value, in order to make
it comparable across network sizes. We call the resulting value
“level of synchronization:”

γ (t) : =

√

|D̂δx(t)|

|D̂x(t)|
. (5)

If γ (t) is only computed for a certain community m, it is called
γm(t), representing the level of synchronization of communitym
at time t. For a network consisting of M communities, it is now
possible to compute the chimera-like index:

σγ (t) : =
1

M − 1

M
∑

m=1

(

γm(t)−
〈

γm(t)
〉

M

)2
(6)

at time t as proposed in Shanahan [91] and also used in
Hizanidis et al. [54], where

〈

γm(t)
〉

M
denotes the average level

of synchronization at time t over all communities m. Thus,
the only difference to Shanahan [91] is the application of the
Euclidean-distance-based level of synchronization γ (t) instead of
the Kuramoto order parameter. The temporal mean then defines
the time-averaged chimera-like index of the network:

χ̃γ : =
〈

σγ (t)
〉

T
. (7)

Similarly we can compute the metastability index:

σmet,γ (m) : =
1

T − 1

T
∑

t=1

(

γm(t)−
〈

γm(t)
〉

T

)2
(8)

of community m, where
〈

γm(t)
〉

T
denotes the temporal mean of

γm(t) over all time steps. The average over all communities yields
the metastability index of the whole network:

λ̃γ =
〈

σmet,γ (m)
〉

M
. (9)

The subscript γ is utilized to emphasize that these parameters
differ from the parameters in Shanahan [91] and Hizanidis
et al. [54] in the way the underlying level of synchronization
is computed.

In order to compare community partitions with different
numbers of communities, it is important to know that the ranges
of χγ and λγ depend on the number of communities M of
the studied network. The chimera-like index of a chimera state,
where half of the communities is completely synchronized and
the other half is desynchronized, becomes:

χ̃γ ,max =
M

4(M − 1)
, (10)

since the deviation from the mean is 0.5 for every community.
The same considerations lead to a maximum metastability
index of:

λ̃γ ,max =
T

4(T − 1)
, (11)

which is approximately 0.25, since the total number of time steps
T is large. Hence, we obtain the chimera-like and metastability
indices normalized to unity:

χγ =
χ̃γ

χ̃γ ,max
(12)

and,

λγ =
λ̃γ

λ̃γ ,max

. (13)

5.4. Multilayer-Louvain Community
Detection
The communities discussed in section 3 are computed based on a
multiplex Louvain community algorithm [92]. In single-layered
graphs, the key to finding communities usually lies in optimizing
the modularity function Q [93]:

Q =
1

2ml

N
∑

i,j=1

[

Aij −
kikj

2ml

]

δ
(

gi, gj
)

, (14)

whereAij is the graph’sN×N adjacencymatrix,ml =
1
2

∑N
i,j=1 Aij

is the total link weight in the network, and ki =
∑N

j=1 Aij is the

weight incident to node i. The weight of a link between i and
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FIGURE 11 | Community partitions of the biological C. elegans network. (A) The network is divided into 8 communities of different size using the Multilayer-Louvain

algorithm (see Methods 5.4). Neurons are colored according to their community as in Figure 5. (B) The same network is partitioned using the correlation matrix

approach (see Methods 5.5). Refer to Figure 8 for community sizes.

j corresponds to the number of connections between these two
nodes (see Methods 5.1). δ

(

gi, gj
)

= 1 if nodes i and j are in
the same community, and δ

(

gi, gj
)

= 0 otherwise. Therefore,

the term Aij −
kikj
2ml

quantifies how strongly the two nodes will be

coupled in the studied network, compared to how strongly they
would be coupled in a random network. In the algorithm, the
function Q is computed for every pair of nodes iteratively until it
reaches a maximum value.

For multilayer networks, the modularity as defined in
Equation (14) is not well suited as it does not differentiate if
nodes are connected by different layers. In order to extend the
modularity to multilayer applications, consider a network with S
layers. We define the degree of node j within the same layer as

k
(σ )
j =

∑N
i=1 A

(σ )
ij , σ = 1, . . . , Swith A

(σ )
ij denoting the adjacency

matrix in layer σ . The generalized modularity functionQmultilayer

for a multilayer network with S layers is defined as [92]:

Qmultilayer =
1

2µ

N
∑

i,j=1

S
∑

σ=1







A
(σ )
ij −

k
(σ )
i k

(σ )
j

2ml,σ



 δ

(

g
(σ )
i , g

(σ )
j

)



 ,

(15)

where ml,σ = 1
2

∑N
j=1 k

(σ )
j is the total link weight within layer σ ,

and µ =
∑S

σ=1ml,σ is used for normalization similar to ml in
Equation (14). Note that in the case of the considered C. elegans
network, there are no inter-layer connections, since every
connection type (electrical, chemical, and wireless) represents an
independent sub-network. In this study, we consider 3 layers
with σ ∈ {el, ch, wl} that are shown by black, red and green
link color in Figures 11A,B for the multilayer connectome and
correlation-based matrix, respectively. However, Equation (15)
can be extended to be used for the study of multiplex networks,
in which inter-layer connections exist [92].

5.5. Dynamical Correlation Community
Detection
We present a heuristic approach to finding meaningful
communities based on the dynamics of the system. While
previous approaches aimed to find a community structure based
on the topology, we propose an algorithm which partitions the
network based on the nodes’ correlations of the p-variable.

Figure 12 shows a schematic description of the algorithm. In
order to gain insight on the synchronization of the time series for
each pair of nodes, we compute the Pearson-correlation matrix
from the p-time series of all nodes

Pij =
〈[pi(t)− 〈p〉][pj(t)− 〈p〉]〉

√

〈pi(t)2〉 − 〈p〉2
√

〈pj(t)2〉 − 〈p〉2
. (16)

In the hereby created matrix, every entry represents the
correlation value of two time series of the two respective nodes
(cf. the matrix in Figure 12, top left corner).

In order to find a community partition in the correlation
matrix, we employ the stochastic block model approach from
the graph_tool framework [94]. Since this framework does not
intrinsically support weights in the network, we created a graph
with a discrete number of edges between two distinct nodes that
depends on the link weight in the correlation matrix; higher link
weight therefore corresponds to a larger number of edges.

For every parameter set (i.e. every combination of the three
different coupling strengths gel, gch and gwl) we obtain one
correlation matrix, on which we apply the graph_tool algorithm.
Note that, for some parameter sets, the algorithm will not
find a “reasonable” partition. In particular, some partitions may
consist of very small communities with only very few nodes.
This is problematic in terms of the level of synchronization
γm, since one node in a small community m plays a bigger
role in the synchronization of this community; this implies
stronger fluctuations of γm. Therefore, very small communities
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FIGURE 12 | Schematic description of the dynamical correlation-based community detection algorithm. In the sorted matrices red lines represent the borders

between two communities.

(especially communities consisting of only two or three nodes)
can have a significantly stronger influence on the chimera-like
and the metastability index than large communities. This is why
we only consider community partitions with at least six nodes
per community.

Another constraint applied to the partitions is a lower
boundary for the level of synchronization in at least one
community. The constraint is needed, because nodes do not
synchronize as easily in the system based on the connectivity data
(see section 3). However, a highly synchronized community is
crucial to finding chimera-like states. The threshold value used
to filter out partitions containing low-synchronized communities
was set to γthr = 0.30. This is a reasonable compromise
between reaching a high level of synchronization in at least
one community and still keeping a relatively high number
of partitions.

The algorithm finds 582 partitions that satisfy the constraints
out of an initial set of 50 · 15 · 7 = 5250 possible partitions

(gel ∈ [0.04, 0.08, ..., 2.00], gch ∈ [0.02, 0.04, ..., 0.30] and
gwl ∈ [0.00, 0.05, ..., 0.30]). Subsequently, we iterate over all
pairs of nodes (i, j) and count how often they are found in the
same community for the 582 partitions. In other words, if a
pair of nodes always finds itself in the same community, the
counter will be 582, while a pair that is always found in distinct
communities will receive a counter of 0. This then leads to a 2-
dimensional histogram as can be seen in Figure 12 in the bottom
right corner.

As a final step, this histogram is sorted using the graph_tool
algorithm in order to find a merged community partition
that contains information over a large set of parameter values
gel, gch, and gwl. The resulting sorted histogram is shown in
Figure 12 in the bottom left corner and the network is visualized
in Figure 11B. There is one community consisting of nodes
that almost always find themselves in the same community.
This implies that the time series of the corresponding nodes
have a high correlation value for almost every parameter
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set. All the results from section 3.2 were created using this
community partition.

Please note that the proposed algorithm is only one possible
way of finding partitions based on a system’s dynamical behavior.
In fact, it invites to further explore the interplay between topology
and dynamics.
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We study the formation of chimera states in 2D lattices with hierarchical (fractal)

connectivity. The dynamics of the nodes follow the Leaky Integrate-and-Fire model

and the connectivity has the form of a deterministic or a random Sierpinski carpet.

We provide numerical evidence that for deterministic fractal connectivity and small

values of the coupling strength, a hierarchical incoherent spot is produced with internal

structure influenced by the fractal connectivity scheme. The spot size is similar to

the size of the coupling matrix. Stable spots can be formed for symmetric fractal

connectivity, while traveling ones are found when the connectivity matrix is asymmetric

with respect to the center. For fractal coupling schemes spiral wave chimeras are

produced and curious stable patterns are reported, which present triple coexistence

of coherent regions, incoherent domains and traveling waves. In all cases, the coherent

domains demonstrate the lowest mean phase velocities ω, the incoherent domains show

intermediate ω-velocities, while the traveling waves show the highest ω-values. These

findings confirm previous studies on symmetric deterministic hierarchical connectivities

and extend here to slanted and random fractals.

Keywords: local synchronization, chimera states, leaky integrate-and-fire model, hierarchical connectivity,

deterministic fractals, random fractals

1. INTRODUCTION

A Chimera state is characterized by the unexpected coexistence of coherent and incoherent
domains in networks of coupled oscillators. Chimera states were first discovered in 2002 in a
system of coupled Kuramoto phase oscillators [1, 2] and were further established 2 years later in
a seminal work by Abrams and Strogatz [3]. They captivated scientific interest during the past
15 years due to their intriguing structural and dynamical properties and to potential applications
in physics [4–7], chemistry [8–10], and biology [11–16]. Although original studies referred to
coupled phase oscillators, later works have reported chimera states in coupled FitzHugh-Nagumo,
Hindmarsh-Rose, Van der Pol, and Leaky Integrate-and-Fire (LIF) oscillator networks [17–
24]. Most recent advances in the general domain of local synchronization are summarized in
review articles [25–29].

Previous studies on 2D nonlocal connectivity with periodic, toroidal boundary conditions have
demonstrated a variety of chimera patterns. Using the phase oscillator, the FitzHugh Nagumo
system or the LIF neuron oscillators chimera patterns emerged in the form of coherent and
incoherent single or multiple spots, rings, lines, and grids of spots [19, 30–34]. Some of these
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patterns, come as generalizations of the 1D chimera forms to 2D
geometry (e.g., spots and stripes), while others are new patterns
which do not have an analogy in 1D (e.g., spiral waves).

As early structural studies of the human brain, usingMagnetic
Resonance Imaging (MRI) techniques and Diffusion Tensor
Imaging (DTI) analysis, have captured fractal attributes and self-
similarities in the structure of the neuron axons network [35–
39], recent numerical studies have introduced fractal, hierarchical
connectivity in the simulations of networks of spiking neurons.
The use of Cantor-type connectivities in 1D ring networks has
demonstrated that the induced chimera states retain some of
the fractal features of the Cantor connectivity schemes [18, 21,
40–44]. More recently 2D simulations of chimera states were
attempted, using the LIF model with symmetric Sierpinski-
carpet connectivity and first evidence was provided that for
small values of the coupling strength single asynchronous spots
are formed which acquire hierarchical structure, reminiscent of
the Sierpinski connectivity matrix [45]. This was a first study,
providing evidence of hierarchical chimeras in 2D networks.

In the present study we confirm the presence of hierarchical
chimeras for different parameter values (especially for different
refractory periods) in 2D LIF networks and we extend our study
to slanted fractals and random fractal connectivity schemes.
We provide evidence of asymmetric hierarchical chimera states,
multiple incoherent spot chimeras with internal hierarchical
connectivity which fades away with time, as well as stable
patterns where coherent spots, incoherent domains, and traveling
waves coexist.

We would like to stress here, that the aim of this study is
not to simulate in detail the three-dimensional connectivity of
the human brain, based on the MRI recordings. Rather, this
research is inspired by the fractal and multifractal analysis of
the MRI images, which indicate that the neuron axons are
not homogeneously distributed in the brain but they span
a subspace with fractal dimension df ≈ 2.5. These fractal
attributes have been computed for length scales between [1 and
10 cm] using the box-counting technique [36–38]. The present
study aims to address the influence of fractal connectivity (as
opposed to the usual non-local connectivity) in the formation
of chimera states. Although chimera states with hierarchical
connectivity in one-dimensions have been studied inmany works
[18, 21, 41, 42, 44], the problem of hierarchical connectivity
in two-dimensions has not been adequately addressed. To this
end, several drastic simplifications were made due mostly to
limitations of computational resources: (a) the LIF model is
used which is a minimal model addressing the biological neuron
activity, (b) only restricted system sizes are considered as will be
described in the next section, (c) the connectivity was reduced
to a flat fractal kernel, and (d) periodic boundary conditions are
considered in order to retain the symmetry of interactions. All
these simplifications aim to avoid including toomany parameters
in the system and to focus on the mechanisms producing
hierarchical chimera patterns and 2D spiral wave chimeras.

In the next section we give a brief presentation of the
LIF model and its implementation on a 2D network with
deterministic and random fractal connectivity. In section 3.1 we
present our results when the fractal connectivity is deterministic

and symmetric, while the slanted fractal case is presented in
section 3.2. Our results on random fractal connectivity are
presented in section 4 where we report the finding of spiral
wave chimeras and chimeras exhibiting three different coexisting
domain types: coherent, incoherent and traveling waves. The
conclusions of this study are briefly summarized in the final
section 5 and relevant open issues are discussed.

2. THE MODEL AND THE CONNECTIVITY
SCHEMES

The LIF model for single neuron dynamics was introduced by
Louis Lapicque in 1907 and is in frequent use by computational
neuroscientists due to its easy numerical implementation, while it
retains the main dynamical features of biological neuron activity
[46–48]. In relation to collective neuron dynamics, coupled LIF
neurons were shown to produce chimera states under various
types of non-local connectivity schemes in 1D [22–24, 41, 49–51],
in 2D [19, 45], and in 3D [52].

In this section, we present the LIF coupling scheme in
2D using different fractal connectivity geometries. Namely,
after recapitulating the LIF dynamics in 2D for a generic
coupling matrix, we introduce the following coupling schemes:
(a) symmetric deterministic Sierpinski carpet, (b) slanted
deterministic Sierpinski carpet, and (c) random Sierpinski
carpet (which is almost always asymmetric). These coupling
schemes will be used in sections 3 and 4 for studying local
synchronization phenomena.

2.1. The LIF Coupling Scheme
The dynamics describing the temporal evolution of the potential
uij(t) of a neuron having Cartesian coordinates (i, j) is divided
in three phases: (i) the integration phase shown below in
Equation (1a) characterized by a linear differential equation
exhibiting an exponential increase of the membrane potential,
(ii) the abrupt resetting phase (Equation 1b) and (iii) a refractory
period (Equation 1c). These phases are expressed by the
following equations:

duij(t)

dt
= µ − uij(t)−

1

Nc

∑

kl∈{Nij}

σijkl
[

ukl(t)− uij(t)
]

(1a)

lim
ǫ→0

uij(tr + ǫ) → urest, when uij(tr) ≥ uth, r = 1, 2, · · · (1b)

uij(t) = urest, when tr ≤ t < tr + Tr , (1c)

On the right hand side of Equation (1a), the first two terms
correspond to the integration of the potential while the last
term accounts for the exchange between neuron (i, j) and other
neurons in the network.

The various parameters in Equation (1) have the following
interpretation: The variable uth defines the maximum value that
the potentials uij can take, after which the oscillators are reset to
their rest potential urest. The resetting times tr are counted by
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the index r = 1, 2, · · · . µ is the value that the potential of the
neuron (i, j) would asymptotically tend to if there was no resetting
condition, uth < µ. Tr is a refractory period after resetting,
during which the neuron potential remains at the rest state. Nc is
the number of neurons that are connected with the neuron (i, j).
These neurons are members of the set {Nij}.

In the present study we assume that all oscillators are identical,
they have identical parameters:µ, urest, uth andNc. For simplicity,
we also assume that the coupling is linear and every oscillator is
linked to all others through a couplingmatrix, whose element σijkl
links oscillators (i, j) and (k, l). The values of the matrix elements
may take any value (positive, negative, or zero), depending on the
connectivity of the network, but in the current study we restrict
the coupling matrix elements to the interval 0 ≤ σijkl ≤ 0.3 .

The solution of Equation (1) in the absence of coupling
provides the period Ts of the single neuron and the
corresponding phase velocity ωs (the subscript “s” stands
for “single”, uncoupled neuron), as:

Ts = ln
µ − urest

µ − uth
+ Tr , ωs = 2π/Ts. (2)

Although all neurons have the same parameters when uncoupled,
coupling induces local and global variations in the period of
the individual neurons and the network acquires a distribution
of mean phase velocities. This distribution characterizes the
collective behavior of the network. The mean phase velocity of
all coupled neurons ωij in a time interval 1t is computed as:

ωij =
2πZij(1t)

1t
(3)

where Zij(1t) is the integer number of full cycles that neuron
(i, j) has completed in the time interval 1t, and is computed
numerically during the simulations. The relative values of ω are
of central importance when studying chimera states, because they
differentiate between the coherent and incoherent domains. In
the coherent domains all the elements have commonmean phase
velocities, while the incoherent domains are characterized by a
distribution of ω-values [17].

2.2. Connectivity Schemes
In the present study the neuron oscillators are arranged on a 2D
lattice-network of sizeN×N. The three fractals used to construct
the connections of the LIF oscillators are Sierpinski carpets,
which are flat fractals with Hausdorff dimension ln 8/ ln 3 ≈

1.8928. The construction of the Sierpinski carpets is recursive and
follows three simple algorithms:

• The deterministic symmetric Sierpinski carpet: (a)We begin
with a square which we subsequently divide into 9 equal
smaller squares. (b) We then remove the central square and
this concludes the first iteration of the process. (c) We divide
each of the remaining 8 squares into 9 equal smaller squares
and remove the central one of each group of 9. (d) This
concludes the second iteration. (e) The same sequence of
dividing and removing can be applied arbitrarily many times
to obtain as many spatial scales as required [53, 54]. The
connectivity scheme which is produced is shown in Figure 1A.

• The deterministic slanted Sierpinski carpet: (a) We begin
with a square which we subsequently divide into 9 equal
smaller squares. (b) We then remove one of the 8 non-central
squares and this concludes the first iteration of the process. In
Figure 1Bwe have chosen to remove the lower right square. (c)
We divide each of the remaining 8 squares into 9 equal smaller
squares and remove the same one as in the previous iteration
(lower right squares) in each group of 9. (d) This concludes
the second iteration. e) The same sequence of dividing and
removing can be applied arbitrarily many times to obtain the
connectivity scheme depicted in Figure 1B.

• The random Sierpinski carpet: (a) We begin with a square
which we subsequently divide into 9 equal smaller squares.
(b) We then remove randomly one of the 9 squares and this
concludes the first iteration of the process. In Figure 1C we
have chosen to remove the central square. (c) We divide each
of the remaining 8 squares into 9 equal smaller squares and
remove one square at random from each group of 9. (d)
This concludes the second iteration. (e) The same sequence
of dividing and removing randomly can be applied arbitrarily
many times to obtain the connectivity of Figure 1C.

The resulting deterministic and random hierarchical pictures are
used as connection matrices. Namely, the central node (i, j) of
the connectivity scheme is only linked with all black nodes that
belong to the Sierpinski carpet surrounding it. The coupling of
other nodes is formed by translation of the fractals. To maintain
an identical coupling scheme for all nodes we use periodic
boundary conditions in both x− and y−directions, leading to a
torus geometry [45].

In all three cases, symmetric deterministic, slanted
deterministic or random hierarchical connectivity, if we
denote by {Nij} the set of all nonzero cells of the Sierpinski carpet
centered around the node (i, j) and denote by (k, l) any arbitrary
element of the system, then the coupling matrix elements σijkl
between nodes (i, j) and (k, l) take the form:

σijkl =

{

σ , ∀(k, l) ∈ {Nij}

0, elsewhere
(4)

In this study the coupling strength value σ is a positive constant,
common for all network connections [45]. As working parameter
set we use µ = 1, uth = 0.98, urest = 0 and N = 81, while N =

243 in some simulations. All simulations start with random initial
conditions. For the system integration the explicit Euler scheme
was used with integration step dt = 10−3. 4-th order Runge-
Kutta was also used as a test and the results were compatible
with the Euler scheme. The connectivity pattern was used directly
within the Euler scheme and the iteration time was 104 time units
for all reported simulations. The spatial coupling was performed
via direct convolution. Using an MPI parallel implementation of
the algorithm on multiple (usually 20–80) CPUs each simulation
took on average 8 CPU hours for 104 time units. The algorithms
are available online1.

1https://github.com/gArgyropoulos/LIF_2D (2019).
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FIGURE 1 | The Sierpinski carpets used as coupling matrices: (A) deterministic symmetric Sierpinski connectivity pattern, (B) deterministic slanted Sierpinski

connectivity pattern and (C) random Sierpinski connectivity pattern. In all cases three orders of iteration are used, based on a 3 × 3 initiation square.

In Table 1, we present collectively all the qualitative results
we obtained by scanning the parameters, 0.1 ≤ σ ≤ 0.3
and 0 ≤ Tr ≤ 2.0 (in time units). For the 2D LIF
scheme (Equation 1), it is relatively easy to find chimera
states in the parameter regions reported in Table 1. In these
regions there is little sensitivity to initial conditions and most
initial states end-up in the corresponding chimeras. Only
for intermediate parameter values, between domains which
support distinct chimera patterns, the different initial conditions
may result to different synchronization motifs. Overall, for
small σ values we observe spot chimeras many of which
present structure reminiscent of the features of the connectivity
matrix (see more in section 3). For larger values of σ

and Tr more intricate patterns arise such as multiple spots,
grids, stripes, spirals and even stable triple combinations of
coherent spots, incoherent domains and traveling waves. Details
on the particular patterns are given in sections 3, 4 and
the Table 1.

3. DETERMINISTIC FRACTAL
CONNECTIVITY

3.1. Symmetric Coupling
In a previous study, the present authors and T. Kasimatis
have used the symmetric coupling of Figure 1A to explore the
influence of the hierarchical connectivity in the form of 2D
chimera patterns [45]. For small positive values of the coupling
strength and medium values of the refractory period, Tr =

0.5 time units, they report spot chimera patterns with internal
structure reminiscent of the connectivity matrix. The chimeras
are best visualized in theω-profiles, when the spots are immobile.
For larger values of the coupling strength σ , stripe and grid
chimeras were reported which were mostly traveling and, as a
result, the hierarchical structure of the chimeras, visible in the
ω-profiles, was masked. In such cases one can always resort to
using the comoving frame to avoid that the motion of the spot
smooths out the ω-structure, but this is outside the scope of the
present study.

In the following we present evidence that hierarchical spot
chimeras are possible even for Tr = 0. In Figure 2A we present
the uij-profile for σ = 0.18 and Tr = 0. The internal structure

of an asynchronous spot chimera is visible but the hierarchical
scheme in Figure 2B is not as clear as it was in Argyropoulos
et al. [45], where Tr = 0.5 time units was used. In this realization
the incoherent elements are ordered in stripes parallel to the i-
direction. Depending on the initial conditions the stripes appear
parallel to the i− or to the j−direction, reflecting the square
geometry of the connectivity kernel. The grid-formations in
Argyropoulos et al. [45] (Figures 2B, 3B, therein) can be viewed
as coexistence/superpositions of stripes in both directions.

In Figure 3 we present the evolution of ω of two elements,
one belonging to the coherent domain (Figure 3A), and one
to the incoherent (Figure 3B). The calculations of ω were
performed in time windows of 1t = 30 time units. While in
the coherent domains the ω values stabilize mostly around 1.68
(with infrequent excursions to higher values), in the incoherent
domains the mean phase velocity alternates between the values
ω = 1.88 and ω = 1.68. This apparent bistability may reflect the
slight erratic motion of the incoherent domains. Their elements
may spent some time participating in the coherent domain and
other time in the incoherent and thus bistability is observed in
their mean phase velocity.

By increasing the system size it is possible to increase the
number of incoherent domains that the system can accommodate
(see Figure 4). They take the form of spiral wave multichimeras.
In the present case, each of the four incoherent domains is the
core region of a distinct spiral wave chimera. Around each core
there is a rotating phase wave with a large wavelength. Apart
from the number of asynchronous cores, larger systems (e.g.,
243×243 in the present case) can accommodate incoherent cores
with non-homogeneous internal structure, caused (as we believe)
by the hierarchical ordering of the connectivity matrix. This
is evident mainly in Figures 4A,B while in Figures 4C,D this
internal structure is gradually destroyed due to the tiny erratic
motion of the incoherent domains, giving rise to incoherent
cores composed of random phases. The filamented structure of
the incoherent domains in Figure 4A has been also found in
2D coupled phase oscillators [55]. In both cases the filaments
are observed in the 4-chimera states and for specific parameter
values. In the LIF case with fractal connectivity, these filaments
are short-lived and they dissociate passing via a hierarchical phase
(see Figures 4B,C) into becoming the stable incoherent domains
(see Figure 4D) of the spiral chimera.
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TABLE 1 | Collective presentation of the chimera patterns in the LIF model for σ ranging between (0.1–0.3) and Tr in the interval from 0 to 2.0 time units.

Trσ 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Deterministic Hierarchical Symmetric Coupling

0 sspot sspot sspot sspot sspot sspot sspot sspot sspot sspot sspot

0.1 sspot sspot sspot sspot sspot sspot sspot sspot hspot hspot hspot

0.2 sspot sspot sspot sspot sspot sspot hspot hspot spot s s

0.3 sspot sspot sspot sspot sspot sspot hspot spot s s s

0.4 sspot sspot sspot sspot sspot hspot hspot s s s s

0.5 sspot sspot sspot sspot sspot hspot s s s s s

0.6 sspot sspot sspot sspot sspot hspot s s s s s

0.7 sspot sspot sspot sspot sspot hspot s s s s tr

0.8 sspot sspot sspot sspot sspot hspot s s s s tr

0.9 sspot sspot sspot sspot hspot hspot s s s tr stripe

2.0 sspot sspot sspot hspot tr stripe stripe stripe tr mspots stripe

Deterministic Slanted Hierarchical Coupling

0 t t t t t t t t t t s

0.1 t t t t t t t t s s s

0.2 t t t t t t t s s s s

0.3 t t t t t s s s s s s

0.4 t t t t s s s s s s s

0.5 t t t t s s s s s s s

0.6 t t t s s s s s s s s

0.7 t t t s s s s s s s s

0.8 t t t s s s s s s s s

0.9 t t t s s s s s s s s

2.0 t s s s s s s s s s s

Random Hierarchical Coupling

0 spot spot spot spot spot spot spot spot spot spot spot

0.1 spot spot spot spot spot spot spot spot spot spot spot

0.2 spot spot spot spot spot spot spot spot spot s s

0.3 spot spot spot spot spot spot spot s s s s

0.4 spot spot spot spot spot spot spiral s s s spiral

0.5 spot spot spot spot spot spot spiral s s spiral s

0.6 spot spot spot spot spot spot spiral s s s s

0.7 spot spot spot spot spot spot s s s s s

0.8 spot spot spot spot spot s s s s s stripe

0.9 spot spot spot spot spot s s s s tr stripe

2.0 spot spot spot tr tr stripe stripe tr syn-spots syn-spot s

The annotation is mostly self explanatory: s, synchronized oscillations; t, triangle asymmetric spot; spot, single asynchronous spot; sspot, single asynchronous spot with striped ω-profile

(see Figure 2); hspot, hierarchical asynchrononous spot; tr, transient; syn-spot, synchronous spots; stripe, stripes; spiral, spiral wave chimera (see Figure 7).

In the 2nd row of Figure 4, first the long time ω-profile
is presented (Figure 4E). As the mean phase velocities change
during the transition time, we record here the ω-profile after
the four cores have stabilized to their full incoherent state.
The ω-histogram in logarithmic scale (Figure 4F) demonstrates
one very distinct peak at low frequencies which corresponds
to the coherent region and one distributed region in higher
frequencies, which correspond to the four incoherent spots,
collectively. There is no distinctive maximum related to the
incoherent cores due to the distributed ω− values in these
regions. In Figures 4G,H the temporal evolution of the ω-
values in the coherent and the incoherent domains are monitored
during the transition period. The incoherent elements are

frequently passing from low to high frequencies and thus have
higher average ω as compared with the coherent ones, which
mostly oscillate with low frequency. The development of this
pattern is presented in a short 30 s video included in the
Supplementary Material2.

3.2. Slanted Fractal Coupling
In the case of slanted deterministic coupling, with connectivity
depicted in Figure 1B, chimera patterns are produced which are
mostly traveling in the direction of the reflection symmetry axis

2Two videos related to Figures 4, 7 are added in the Supplementary Material

(2019).
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FIGURE 2 | (A) The potential profile and (B) the mean phase velocity profile for an asynchronous spot chimera realized for symmetric hierarchical coupling with

σ = 0.18 and Tr = 0. Other parameters are µ = 1, uth = 0.98, urest = 0 and N = 81. The simulations start from random initial conditions.

FIGURE 3 | The time evolution of ω for (A) element (i, j) = (0, 8) belonging to the coherent domain and (B) element (i, j) = (46, 39) belonging to the incoherent domain

of Figure 2. σ = 0.18 and Tr = 0. Parameters are as in Figure 2A.

of the kernel [56]. Because traveling is mostly accompanied by
erratic motion, it is difficult to detect the fractality in the ω-
profile. Figure 5 is a rare example of an immobile incoherent spot
where a meaningful ω-profile can be calculated. In Figure 5A the
uij-profile shows that the form of the chimera is not circular but
takes the arrow-like shape of the seeding connectivity, Figure 1B.
Besides u, also the ω−profile reflects the form of the connectivity
matrix, Figure 5B.

The external shape of the asymmetric spot, which mimics
the perimeter of the oblique connectivity kernel, supports
previous results in hierarchical 2D chimeras indicating that, for
appropriate choices of (small) coupling strengths, the form of
the kernel is mirrored in the ω-profile [45]. Here, the erratic
motion of the pattern does not allow the observation of potential
hierarchical internal structure in the ω−profile, induced as a
result of fractal connectivity schemes as in Argyropoulos et al.
[45]. A resolution of this issue involves the use of a comoving
frame, but this is outside the scope of the present study.

4. RANDOM FRACTAL CONNECTIVITY

Random connectivity is almost always asymmetric and this is the
case we consider here. As a general observation the asymmetry
of the connectivity pattern often causes motion of the chimera
patterns. As an example, for σ = 0.2 and Tr = 0.5 an erratically
traveling incoherent spot is formed, depicted in Figure 6. The

incoherent spot potential profile, uij, seems to present some
internal structure in the form of irregular vertical stripes (see
Figure 6A). To make an analogy, we remind of the more regular,
stripped structure that was reported in Figure 2 for deterministic
symmetric coupling. Here, the kernel is non-symmetric and this
fact together with the motion of the incoherent part makes
it difficult to discern any fine details in its ω−profile (see
Figure 6B). In Figure 6B the ω-profile has been calculated in
time windows of size 1t = 30 time units, where the incoherent
spot can be considered as almost immobile. As in all cases of
traveling patterns, the use of a comoving frame could resolve
possible patterns inside the incoherent part of the mean phase
velocity profile. Different realizations of the fractal coupling
matrix do not affect the number and sizes of the coherent and
incoherent domains of the chimera pattern, provided that the
fractal dimension and the hierarchical order are retained in the
different realizations.

Increasing slightly the coupling strengths while keeping Tr

to low values, the patterns become unstable. A typical example

is shown in Figure 7, where wave domains are shown spiraling

around the torus. The four spiraling regions have the form

of successive wavefronts with arrow-like shapes [55]. They

rotate around coherent cores which are characterized by different
wavelengths than the spiraling fronts. This is a new type of spiral
chimera composed by coherent waves with two different wave
lengths. Even in this case, we observe that the sizes of the spiraling
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FIGURE 4 | Top row: Spiral wave multichimera state with four incoherent cores in symmetric deterministic connectivity for system size 243× 243; the potential

profiles are depicted at times: (A) t = 1200, (B) t = 1800 (C) t = 2700 and (D) t = 10020 time units. Bottom row: (E) Mean phase velocity profile, (F) Typical

histogram of mean phase velocities, (G) Time evolution of ω on a node contained in the coherent regions and (H) Time evolution of ω on a node belonging to one of

the incoherent cores. Parameters are σ = 0.25 and Tr = 0.5 and N = 243. All other parameters are as in Figure 2A. Simulations start from random initial conditions.

A related video is included in the Supplementary Material.

FIGURE 5 | Chimera state with slanted fractal deterministic connectivity: (A) uij-profile and (B) ωij-profile. Parameters are σ = 0.2 and Tr = 0.1. All other parameters

are as in Figure 2A. Simulations start from random initial conditions.

fronts are similar to the size of the initiation connectivity pattern.
A related video is added in the Supplementary Material2.

For larger values of Tr coherent double spots and stripe
chimeras are formed, surrounded by the incoherent domains
(Figure 8). In the top row of Figure 8 we can see the formation
of a triple pattern (Figure 8A) composed by (i) a coherent
stripe crossed by a traveling wave [57], (ii) an incoherent stripe
surrounding the coherent region, while (iii) a third region
consisting of traveling waves appears within the incoherent
domain, at the top and bottom of the figure. The velocities of
the traveling waves and the oscillator frequencies are different
in the first and the third regions and this may support the
idea of bistability. The presence of the incoherent region serves
the purpose of continuity. Unlike the well known chimera
patterns which is composed of two types of domains (coherent

and incoherent), this is a curious chimera pattern which
consists of three different domain types: coherent traveling waves
with low velocity (region i), incoherent part (region ii) and
coherent traveling waves with high velocity (region iii). The
mean phase velocity distribution shows two maxima: one at
the low frequencies which corresponds to the coherent domain
and one in the high frequencies related to the high speed
traveling waves. The intermediate ω values are attributed to the
incoherent domain.

By increasing the coupling strength, σ = 0.26, the stripe
splits into two coherent spots, around which incoherent domains
develop (Figure 8B). Again, the two incoherent domains are
separated by spatial traveling patterns. Here the mean phase
velocity distribution shows only a distinct maximum in the
high frequencies which corresponds to the traveling waves. The
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FIGURE 6 | Single mobile spot in random fractal connectivity. Parameters are σ = 0.2 and Tr = 0.5. All other parameters are as in Figure 2A. Simulations start from

random initial conditions.

FIGURE 7 | Spiral wave chimeras around a coherent core for random hierarchical connectivity in LIF model; potential profiles are depicted at four instances: (A)

t = 3300 (B) t = 3360 (C) t = 3420 and (D) t = 3480 (in time units). Parameters are σ = 0.22 and Tr = 0.6. All other parameters are as in Figure 2A. Simulations

start from random initial conditions. A related video is included in the Supplementary Material.

two coherent spots have small sizes and their extent (size) is
relatively small, not enough to produce a maximum in the
low ω region in Figure 8F. Alternatively, the extent of “blue”
regions in Figure 8E which characterize the coherent cores is
similar to the extent of yellow regions which characterize the
incoherent domains and therefore the spectrum in Figure 8F

shows a plateau in the region of low mean phase velocities. The
ω-profiles demonstrate that the coherent spots and the stripe
acquire the lowest mean phase velocities, the incoherent domains
have intermediate ω-values, while the traveling wave regions
show the highest ω-values.

Related to the ω−profiles in the coherent domains (spots
and stripe) we may assume, similarly to the Kuramoto phase
oscillators, that the coupling term contribution in Equation (1a)
reduces to zero because oscillators in the coherent domains have
a phase difference of zero to their nonlocal neighbors. Unlike
the Kuramoto model, in the LIF model the coherent domains
present ω− values close (but not equal) to the uncoupled system.
In the incoherent domains the coupling term is not negligible
(because the oscillators in the nonlocal neighborhood have
different phases) and for the coupling strength we use in this
study we observe that ωincoh > ωcoh.

Calculations of the local order parameter in the uij profile
is often used to test synchronization in systems of coupled
oscillators [29]. The local order parameter rij around oscillator

(i, j) is defined as rij = 1
nc

∑

k,l exp
(

i φ(k, l)
)

. The phase φ(k, l)

of oscillator (k, l) is defined as φ(k, l) =
[

(2 π ukl)/uth
]

, so
that φ varies between 0 and 2π . The sum runs over the nc
first neighbors of the oscillator (i, j). In the present study the
immediate neighborhood is defined as a (3×3)-square around the
oscillator (i, j), and therefore nc = 8. The local order parameters
are depicted in Figure 9A for the state in Figures 7A, 9B for
the stripe of Figures 8A, 9C for the double coherent spots of
Figure 8D. The profile of the local order parameter confirms
the conclusions on the chimera profiles in all three cases, with
lighter colors indicating phase coherence and darker colors
phase incoherence.

In particular for the case of the stripe and the double coherent
spots (Figures 9B,C), the rij-values demonstrate coherence of
the uij values in the regions of the stripe and the spots,
respectively. To the best of our knowledge, these are new types of
chimera manifested in 2D geometries, which allow freedom for
coexistence of multiple stable domains with different oscillatory
features in each domain.

5. CONCLUSIONS AND OPEN PROBLEMS

In the present study we report on how details of the hierarchical
connectivity matrix modify the emerging chimera patterns in
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FIGURE 8 | Random hierarchical connectivity in LIF model. Top row: Stripe chimera for parameters σ = 0.22, Tr = 2.0. (A) uij-profiles, (B) ωij-profiles and (C)

distribution of ω-values. The P(ω) spectrum present two distinguishable maxima: one at the high ω-region which correspond to the traveling waves with short

wavelength and one in the low ω-values associated with the stripe. Bottom row: Double coherent spot chimera for σ = 0.26 and Tr = 2.0. (D) uij-profiles, (E)

ωij-profiles and (F) distribution of ω-values. The P(ω) spectrum presents only distinguishable maximum at the high ω-region which correspond to the traveling waves

with short wavelength. A peak in the low ω-values in (F) is not observable because the extent of the two coherent spots [“blue” regions in (E)] is of similar size to the

extent of the incoherent domains [“yellow” regions in (E)] and therefore a plateau appears. The dashed lines in (C,F) serve as eye guides. All other parameters are as in

Figure 2A. Simulations start from random initial conditions. Other related images are available in the Supplementary Material.

FIGURE 9 | The local order parameter rij for (A) the spiral wave chimera as depicted in Figures 7A, (B) the stripe chimera of Figures 8A, (C) the double coherent

spots of Figure 8D.

2D toroidal geometry. Using as working model the Leaky
Integrate-and-Fire oscillator, we present numerical evidence (see
Table 1) that traces of the hierarchical connectivity motif are
demonstrated only for small values of the coupling strength
σ (Figure 2). For large σ values, the exchange between the
oscillating elements is strong, the dynamics develop fast and
erratic motion or traveling patterns emerge which destroy
the formation of hierarchical ordering within the incoherent
domains of the chimera states. A complete list of our simulation
results is outlined in Table 1.

The introduction of asymmetric (not rotationally invariant)
coupling kernels, in the form of deterministic or random fractals,
has induced spiral wave chimeras and traveling or erratically
moving chimeras. In particular, for connectivity schemes with
random hierarchical kernels and for low refractory period, we

report a novel spiral wave chimera with a coherent core which is
different from the spiral wave chimeras reported in the literature
which rotate around incoherent cores. For larger values of the
refractory period we also report a peculiar type of chimera which
include three types of domains: coherent (in the form of coherent
spots or stripes), incoherent and traveling waves. These chimera
states are stable and emerge also for small values of the coupling
strength. For symmetric hierarchical coupling and large system
sizes spiral wave multichimeras are possible. These are composed
by ordered spiral waves on the torus rotating around multiple
cores consisting of asynchronous oscillators.

Regarding traveling chimera states, to study quantitatively
their ω-profiles in future studies it could be useful to use a
comoving frame, which moves with the velocity of the traveling
pattern. This way one could extract the correct frequencies, since
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all nodes will be fixed either to the coherent or to the incoherent
domains, without alternating between them.

From this study the rich variety of chimera patterns is evident,
especially in 2D geometries, which give enough freedom for
creation and stabilization of diverse forms. We have seen that by
increasing the size of the system, e.g., from 81× 81 to 243× 243,
it is possible to stabilize multichimera states, even for stochastic
fractal connectivity. Apart from increasing the system size, other
ways of pinning the traveling patterns (see e.g., Isele et al. [58]
and Ruzzene et al. [59]) could be used in order to clarify the
presence of hierarchical patterns in the ω− profile within the
incoherent domains.

Another class of related problems concerns the dimensionality
of the fractal kernels. In the present study flat fractals were
considered with Hausdorff dimension ln 8/ ln 3 ≈ 1.8928
as connectivity matrices. It would be interesting to consider
kernels with different dimensionality and study the chimera
patterns which are produced. Other open problems include the
introduction of hierarchical connectivity in three-dimensions
to explore the chimera patterns and other synchronization
phenomena which emerge. Further extensions include the use of
realistic connectivity schemes obtained directly fromMRI images
in order to address applications related to synchronization of
brain neurons.
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Figure S1 | Depicts the distribution of ω values P(ω) of the oscillator which have

local order parameter greater than 0.25 (these are about 90%).

Figure S2 | Depicts the distribution of ω values P(ω) of the oscillators which have

local order parameter less than 0.25.

Figure S3 | Depicts the distribution of ω values P(ω) of the oscillators which have

local order parameter greater than 0.5.

Figure S4 | Depicts the distribution of ω values P(ω) of the oscillators which have

local order parameter less than 0.5.

Video S1 | Rotating fronts in synchronous background. Corresponds to Figure 7.

Video S2 | Creation of 4 asynchronous sports with evolving internal structure.

Corresponds to Figure 4.
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Chimera States in Networks of
Locally and Non-locally Coupled
SQUIDs
Johanne Hizanidis*, Nikos Lazarides and Giorgos P. Tsironis

Department of Physics, University of Crete, Heraklion, Greece

Planar and linear arrays of SQUIDs (superconducting quantum interference devices)

operate as non-linear magnetic metamaterials in microwaves. Such SQUID

metamaterials are paradigmatic systems that serve as a test-bed for simulating

several non-linear dynamics phenomena. SQUIDs are highly non-linear oscillators

which are coupled together through magnetic dipole-dipole forces due to their mutual

inductance; that coupling falls-off approximately as the inverse cube of their distance,

i.e., it is non-local. However, it can be approximated by a local (nearest-neighbor)

coupling which in many cases suffices for capturing the essentials of the dynamics of

SQUID metamaterials. For either type of coupling, it is numerically demonstrated that

chimera states as well as other spatially non-uniform states can be generated in SQUID

metamaterials under time-dependent applied magnetic flux for appropriately chosen

initial conditions. The mechanism for the emergence of these states is discussed in

terms of the multistability property of the individual SQUIDs around their resonance

frequency and the attractor crowding effect in systems of coupled non-linear oscillators.

Interestingly, controlled generation of chimera states in SQUID metamaterials can be

achieved in the presence of a constant (dc) flux gradient with the SQUID metamaterial

initially at rest.

Keywords: SQUID, snaking resonance curve, SQUID metamaterials, magnetic metamaterials, coupled non-linear

oscillators, chimera states, attractor crowding, synchronization-desynchronization transition

1. INTRODUCTION

The notion of metamaterials refers to artificially structured media designed to achieve properties
not available in natural materials. Originally they were comprising subwavelength resonant
elements, such as the celebrated split-ring resonator (SRR). The latter, in its simplest version,
is just a highly conducting metallic ring with a slit, that can be regarded as an effectively
resistive–inductive–capacitive (RLC) electrical circuit. There has been a tremendous amount of
activity in the field ofmetamaterials the last two decades, the results of which have been summarized
in a number of review articles [1–8] and books [9–16]. One of metamaterial’s most remarkable
properties is that of the negative refraction index, which results from simultaneously negative
dielectric permittivity and diamagnetic permeability.

An important subclass of metamaterials is that of superconducting ones [17, 18], in which
the elementary units (i.e., the SRRs) are made by a superconducting material, typically Niobium
(Nb) [19] or Niobium Nitride (NbN) [20], as well as perovskite superconductors such as yttrium
barium copper oxide (YBCO) [21]. In superconductors, the dc resistance vanishes below a critical

108
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temperature Tc; thus, below Tc, superconducting metamaterials
have the advantage of ultra-low losses, a highly desirable
feature for prospective applications. Moreover, when they
are in the superconducting state, these metamaterials
exhibit extreme sensitivity in external stimuli, such as the
temperature and magnetic fields, which makes their thermal
and magnetic tunability possible [22]. Going a step beyond, the
superconducting SRRs can be replaced by SQUIDs [23, 24],
where the acronym stands for Superconducting QUantum
Interference Devices. The simplest version of such a device
consists of a superconducting ring interrupted by a Josephson
junction (JJ) [25], as shown schematically in Figure 1A; the most
common type of a JJ is formedwhenever two superconductors are
separated by a thin insulating layer (superconductor / insulator /
superconductor JJ). The current through the insulating layer and
the voltage across the JJ are then determined by the celebrated
Josephson relations. Through these relations, the JJ provides
a strong and well-studied non-linearity to the SQUID, which
makes the latter a unique non-linear oscillator that can be
actually manipulated through multiple external means.

SQUID metamaterials are extended systems containing a
large number of SQUIDs arranged in various configurations
which, from the dynamical systems point of view, can be
viewed theoretically as an assembly of weakly coupled non-linear
oscillators that inherit the flexibility of their constituting elements
(i.e, the SQUIDs). They present a non-linear dynamics laboratory
in which numerous classical as well as quantum complex spatio-
temporal phenomena can be explored. Recent experiments
on SQUID metamaterials have revealed several extraordinary
properties, such as negative permeability [26], broad-band
tunability [26, 27], self-induced broad-band transparency
[28], dynamic multistability and switching [29], as well as
coherent oscillations [30]. Moreover, non-linear effects, such
as localization of the discrete breather type [31] and non-
linear band-opening (non-linear transmission) [32], as well
as the emergence of counter-intuitive dynamic states referred
to as chimera states in current literature [33–35], have been
demonstrated numerically in SQUID metamaterial models [36].

The chimera states, in particular, which were first discovered
in rings of non-locally and symmetrically coupled identical phase
oscillators [37], have been reviewed thoroughly in recent articles
[38–40], are characterized by the coexistence of synchronous
and asynchronous clusters of oscillators; their discovery was
followed by intense theoretical [41–61] and experimental [62–
76] activities, in which chimera states have been observed
experimentally or demonstrated numerically in a huge variety of
physical and chemical systems.

Here, the possibility for generating chimera states in SQUID
metamaterials driven by a time-dependent magnetic flux is
demonstrated. These chimera states can be generated from a
large variety of initial conditions, and they are characterized
using well-established measures. Also, the present work is the
first to demonstrate numerically the generation of chimera states
while the system is “at rest” (i.e., with zero initial conditions)
by using a temporally constant force gradient (i.e, a dc flux
gradient) in addition to the time-dependent magnetic flux.
In that case, controlled generation of chimera states can be

achieved. The SQUIDs in such a metamaterial are coupled
together through magnetic dipole-dipole forces due to their
mutual inductance. This kind of coupling between SQUIDs falls-
off approximately as the inverse cube of their center-to-center
distance, and thus it is clearly non-local. However, due to the
magnetic nature of the coupling, its strength is weak [27, 30], and
thus a nearest-neighbor coupling approach (i.e., a local coupling
approach) is often sufficient in capturing the essentials of the
dynamics of SQUID metamaterials. Chimera states emerge in
SQUID metamaterials with either non-local [33, 35] or local [34]
coupling between SQUIDs.

In the next section (Methods), a model for a single SQUID
that relies on the equivalent electrical circuit of Figure 1B is
described, and the dynamic equation for the flux through the
ring of the SQUID is derived and normalized. In the same
section, the dynamic equations for a one-dimensional (1D)
SQUID metamaterial with non-local coupling are derived, and
subsequently they are reduced to the local coupling limit.
In section 3 (Results), various types of chimera states are
presented and characterized using appropriate measures. In this
section, the possibility to generate chimera states with a dc flux
gradient, is also explored. A brief discussion is given in section
4 (Discussion).

2. METHODS

2.1. The SQUID Oscillator
The simplest version of a SQUID consists of a superconducting
ring interrupted by a JJ (Figure 1A), which can be modeled by
the equivalent electrical circuit of Figure 1B; according to that
model, the SQUID features a self-inductance L, a capacitance
C, a resistance R, and a critical current Ic which characterizes
an ideal JJ. A “real” JJ (brown-dashed square in Figure 1B) is
however modeled as a parallel combination of an ideal JJ, the
resistance R, and the capacitance C. When a time-dependent
magnetic field is applied to the SQUID in a direction transverse
to its ring, the flux threading the SQUID ring induces two
types of currents; the supercurrent, which is lossless, and the so-
called quasiparticle current which is subject to Ohmic losses. The
latter roughly corresponds to the current through the branch
containing the resistor R in Figure 1B. The (generally time-
dependent) flux threading the ring of the SQUID is described in
the model as a flux source, 8ext . Many variants of SQUIDs have
been studied for several decades (since 1964) and they have found
numerous applications in magnetic field sensors, biomagnetism,
non-destructive evaluation, and gradiometers, among others [77,
78]. SQUIDs exhibit very rich dynamics including multistability,
complex bifurcation structure, and chaotic behavior [79].

The magnetic flux 8 threading the ring of the SQUID is
given by

8 = 8ext + L I, (1)

where 8ext is the external flux applied to the SQUID, and

I = −C
d28

dt2
−

1

R

d8

dt
− Ic sin

(

2π
8

80

)

, (2)
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FIGURE 1 | (A) Schematic of a SQUID (superconducting quantum interference device) in a magnetic field. (B) Equivalent electrical circuit. (C) Schematic top view of a

one-dimensional periodic array of SQUIDs in a magnetic field H.

is the total current induced in the SQUID as provided by
the resistively and capacitively shunted junction (RCSJ) model
of the JJ [80] (the part of the circuit in Figure 1B contained
in the brown-dashed square), 80 is the flux quantum, and t is
the temporal variable. The three terms in the right-hand-side of
Equation (2) correspond to the current through the capacitor C,
the current through the resistor R, and the supercurrent through
the ideal JJ, respectively. The combination of Equations (1) and
(2) gives

C
d28

dt2
+

1

R

d8

dt
+ Ic sin

(

2π
8

80

)

+
8 − 8ext

L
= 0. (3)

Note that losses decrease with increasing Ohmic resistance R,
which is a peculiarity of the SQUID device. The external flux
usually consists of a constant (dc) term 8dc and a sinusoidal (ac)
term of amplitude 8ac and frequency ω, i.e., it is of the form

8ext = 8dc + 8ac cos(ωt). (4)

The normalized form of Equation (3) be obtained by using
the relations

φ =
8

80
, φac,dc =

8ac,dc

80
, τ = ωLC t, � =

ω

ωLC
, (5)

where ωLC = 1/
√
LC is the inductive-capacitive (LC) SQUID

frequency (geometrical frequency), and the definitions

β =
IcL

80
=

βL

2π
, γ =

1

R

√

L

C
. (6)

for the rescaled SQUID parameter and the loss coefficient,
respectively. Thus, we get

φ̈ + γ φ̇ + φ + β sin (2πφ) = φdc + φac cos(�τ ). (7)

By substituting γ = 0 and φext = 0 and β sin (2πφ) ≃ βLφ into
Equation (7), we get φ̈ + �2

SQφ = 0, with �SQ =
√
1+ βL being

the linear eigenfrequency (resonance frequency) of the SQUID.
Equation (7) can be also written as

φ̈ + γ φ̇ = −
duSQ

dφ
, (8)

where

uSQ = −φext(τ )φ +
1

2

[

φ2 −
β

π
cos(2πφ)

]

, (9)

is the normalized SQUID potential, and

φext(τ ) = φdc + φac cos(�τ ), (10)

is the normalized external flux. The SQUID potential uSQ given
by Equation (9) is time-dependent for φac 6= 0 and � 6= 0. Here,
parameter values of βL less than unity (βL < 1) are considered, in
accordance with recent experiments; in that case, uSQ is a single-
well, although non-linear potential. For φext = φdc, there is no
time-dependence; however, the shape of uSQ varies with varying
φdc, as it can be seen in Figure 2. The potential uSQ is symmetric
around a particular φ for integer and half-integer values of φdc.
In Figures 2A,C,E, the potential uSQ is symmetric around φ =

0, 0.5, and 1, respectively. For all the other values of φdc, the
potential uSQ is asymmetric; this asymmetry of uSQ allows for
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FIGURE 2 | SQUID potential curves uSQ (φ) for βL = 0.86, φac = 0, and (A) φdc = 0; (B) φdc = 0.25; (C) φdc = 0.5; (D) φdc = 0.75; (E) φdc = 1.0.

FIGURE 3 | Flux amplitude–driving frequency (φmax − �) curves for a SQUID

with βL = 0.86, γ = 0.01, φdc = 0, and (A) φac = 10−4, (B) φac = 2× 10−3,

(C) φac = 10−2, (D) φac = 10−1.

chaotic behavior to appear in an ac and dc driven single SQUID
through period-doubling bifurcation cascades. Such cascades
and the subsequent transition to chaos are prevented by a
symmetric uSQ which renders the SQUID a symmetric system
in which period-doubling bifurcations are suppressed [81].
Actually, suppression of period-doubling bifurcation cascades
due to symmetry occurs in a large class of systems, including the
sinusoidally driven-damped pendulum.

For zero dc flux, the strength of the SQUID non-linearity
increases with increasing ac flux amplitude φac. This effect is
illustrated in Figure 3 in which the flux amplitude—driving
frequency (φmax − �) curves, i.e., the resonance curves, for four
values of φac spanning four orders of magnitude are shown (for
φdc = 0). In Figure 3A, for φac = 0.0001, the SQUID is in
the linear regime and thus its φmax − � curve is apparently
symmetric around the linear SQUID eigenfrequency, �SQ =
√
1+ βL ≃ 1.364. Weak non-linear effects begin to appear

in Figure 3B, for φac = 0.002, in which the curve is slightly
bended to the left. In Figure 3C, for φac = 0.01, the non-
linear effects are already strong enough to generate a multistable
φmax − � curve. In Figure 3D, for φac = 0.1, the SQUID is
in the strongly non-linear regime and the φmax − � curve has
acquired a snake-like form. Indeed, the curve “snakes” back and
forth within a narrow frequency region via successive saddle-
node bifurcations [79]. Note that in Figures 3C,D, the frequency
region with the highest multistability is located around the
geometrical frequency of the SQUID, i.e., at � ≃ 1 (the
LC frequency in normalized units). Inasmuch the frequency at
which φmax is highest can be identified with the “resonance”
frequency of the SQUID, it can be observed that this resonance
frequency lowers with increasing φac from the linear SQUID
eigenfrequency �SQ to the inductive-capacitive (geometrical)
frequency � ≃ 1. Thus, the resonance frequency of the SQUID,
where its multistability is highest, can be actually tuned by non-
linearity, i.e., by varying the ac flux amplitude φac. Note that the
multistability of the SQUID is a purely dynamic effect, which is
not related to any local minima of the SQUID potential (which
is actually single-welled for the values of βL considered here,
i.e., for βL < 1).

For φdc 6= 0, chaotic behavior appears in wide frequency
intervals below the geometrical frequency (� = 1) for relatively
high φac. As it was mentioned above, the SQUID potential uSQ
is asymmetric for φdc 6= 0, and thus the SQUID can make
transitions to chaos through period-doubling cascades [79]. In
the bifurcation diagram shown in Figure 4A, the flux φ is plotted
at the end of each driving period T = 2π/� for several tenths
of driving periods (transients have been rejected) as a function

of the driving frequency �. This bifurcation diagram reveals
multistability as well as a reverse period-doubling cascade leading

to chaos. That reverse cascade, specifically, begins at � = 0.64

with a stable period-2 solution (i.e., whose period is two times
that of the driving period T). A period-doubling occurs at � =

0.638 resulting in a stable period-4 solution. The next period-
doubling, at � = 0.62, results in a stable period-8 solution.
The last period-doubling bifurcation which is visible in this scale
occurs at � = 0.614 and results in a stable period-16 solution.
More and more period-doubling bifurcations very close to each
other lead eventually to chaos at � = 0.6132. Note that another
stable multiperiodic solution is present in the frequency interval
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FIGURE 4 | (A) Bifurcation diagram of φ(nT ) as a function of the driving frequency �, for βL = 0.86, γ = 0.01, φdc = 0.36, and φac = 0.18. (B) A typical chaotic

attractor on the φ − φ̇ phase-plane for � = 0.6. The other parameters are as in (A).

shown in Figure 4A. A typical chaotic attractor of the SQUID is
shown on the φ − φ̇ phase plane in Figure 4B for � = 0.6.

2.2. SQUID Metamaterials: Modeling
2.2.1. Flux Dynamics Equations
Consider a one-dimensional periodic arrangement ofN identical
SQUIDs in a transverse magnetic field H as in Figure 1C, whose
center-to-center distance is d and they are coupled through (non-
local) magnetic dipole-dipole forces [33]. The magnetic flux 8n

threading the ring of the n−th SQUID is

8n = 8ext + L In + L
∑

m6=n

λ|m−n|Im, (11)

where n,m = 1, ...,N, 8ext is the external flux in each SQUID,
λ|m−n| = M|m−n|/L is the dimensionless coupling coefficient
between the SQUIDs at the sitesm and n, withM|m−n| being their
mutual inductance, and

− In = C
d28n

dt2
+

1

R

d8n

dt
+ Ic sin

(

2π
8n

80

)

(12)

is the current in the n−th SQUID as given by the RCSJ model
[80]. The combination of Equations (11) and (12) gives

C
d28n

dt2
+

1

R

d8n

dt
+ Ic sin

(

2π
8n

80

)

+
1

L

N
∑

m=1

(

3̂−1
)

nm
(8m − 8ext) = 0, (13)

where 3̂−1 is the inverse of the symmetricN×N coupling matrix
with elements

3̂nm =

{

1, ifm = n;
λ|m−n| = λ1 |m− n|−3, ifm 6= n,

(14)

with λ1 being the coupling coefficient between nearest
neighboring SQUIDs. Note that due to the geometry of
the SQUID metamaterial considered here, which is planar,
and according to standard conventions for loops carrying
current flowing in the same direction, the mutual inductance

M|m−n| between the n−th and the m−th SQUIDs is negative
(M|m−n| < 0 for any n,m with n 6= m). Thus, since L > 0,
the coupling strength λ|m−n| is negative. The dependence of
the coupling strength on the center-to-center distance between
SQUIDs in Equation (14) is due to their mutual inductance
M|m−n|, which can be obtained using basic expressions from
electromagnetism. The magnetic field generated by a wire loop,
at a distance d greater than its dimensions, is given by the

Biot-Savart law as B =
µ0
4π

πr2wIw
d3

, where Iw is the current in the
wire, rw is the radius of the loop, which approximate the SQUID
geometry, d is the distance from the center of the loop, and µ0

is the permeability of the vacuum. The magnitude of the mutual
inductance between two such (identical) loops lying on the same
plane is given by

M =
Bπr2w
Iw

=
µ0

4π

(πr2w)
2

d3
∝ d−3, (15)

where it is assumed that the field B is constant over the area
of each loop, πr2w. For square loops of side a, the radius rw
should be replaced by a/

√
π . Equation (15) explains qualitatively

the inverse cube distance-dependence of the coupling strength
λ|m−n| between SQUIDs.

In normalized form Equation (13) reads (n = 1, ...,N)

φ̈n + γ φ̇n + β sin (2πφn) =

N
∑

m=1

(

3̂−1
)

nm
(φext − φm) , (16)

where Equation (5) and the definitions Equation (6) have
been used. When nearest-neighbor coupling is only taken into
account, Equation (16) reduces to the simpler form

φ̈n + γ φ̇n + φn + β sin (2πφn) = λ(φn−1 + φn+1)

+ (1− 2λ)φext , (17)

where λ = λ1.

2.2.2. Local and Non-local Linear Frequency

Dispersion
Equation (11) with 8ext = 0 can be written in matrix form as

L 3̂EI = E8, (18)
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where the elements of the coupling matrix 3̂ are given in
Equation (14), and EI, E8 are N−dimensional vectors with
components In, 8n, respectively. The linearized equation for the
current in the n−th SQUID, in the lossless case (R → ∞), is
given from Equation (12) as

− EI = C
d2

dt2
E8 + 2π

Ic

80

E8, (19)

where the approximation sin(x) ≃ x has been employed. By
substituting Equation (19) into Equation (18), we get

3̂

(

1

ω2
LC

d2

dt2
E8 + βL E8

)

+ E8 = 0. (20)

In component form, the corresponding equation reads

∑

m

3̂nm

(

1

ω2
LC

d2

dt2
8m + βL8m

)

+ 8n = 0, (21)

or, in normalized form

∑

m

3̂nm

(

1

ω2
LC

φ̈m + βLφm

)

+ φn = 0, (22)

where the overdots denote derivation with respect to the
normalized time τ = ωLCt.

Substitute the trial (plane wave) solution

φn = expi(κn−�τ ), (23)

where κ is the dimensionless wavenumber (in units of d−1), into
Equation (22) to obtain

�2 =
1

S
(1+ βLS) , (24)

where

S =
∑

m

3̂nm expiκ(m−n) . (25)

It can be shown that, for the infinite system, the function S is

S = 1+ 2λ

∞
∑

s=1

cos(κs)

|s|3
= 1+ 2λCi3(κ), (26)

where s = m − n, and Ci3(κ) is a Clausen function. Putting
Equation (26) into Equation (24), we obtain the non-local
frequency dispersion for the 1D SQUID metamaterial as

�κ =

√

�2
SQ + 2λβLCi3(κ)

1+ 2λCi3(κ)
, (27)

where �2
SQ = 1 + βL. In the case of local (nearest-neighbor)

coupling the Clausen function Ci3(κ) is replaced by cos(κ). Then,

by neglecting terms of order λ2 or higher, the local frequency
dispersion

�κ ≃

√

�2
SQ − 2λ cos(κ) (28)

is obtained.
The linear frequency dispersion � = �κ , calculated for

non-local and local coupling from Equations (27) and (28),
respectively, is plotted in Figure 5 for three values of the coupling
coefficient λ. The differences between the non-local and local
dispersion are rather small, especially for low values of λ, i.e.,
for λ = −0.02 (Figure 5A), which are mostly considered here.
Although the linear frequency bands are narrow, the bandwidth
1� = �max − �min increases with increasing λ. For simplicity,
the bandwidth 1� can be estimated from Equation (28); from
that equation the minimum and maximum frequencies of the

band can be approximated by �min,max ≃ �SQ

(

1± λ

�2
SQ

)

,

so that

1� ≃
2|λ|

�SQ
. (29)

That is, the bandwidth is roughly proportional to the magnitude
of λ. Note that for physically relevant parameters, the minimum
frequency of the linear band is well above the geometrical
(i.e., inductive-capacitive) frequency of the SQUIDs in the
metamaterial. Thus, for strong non-linearity, for which the
resonance frequency of the SQUIDs is close to the geometrical
one (� = 1), no plane waves can be excited. It is this frequency
region where localized and other spatially inhomogeneous states,
such as chimera states are expected to emerge (given also the
extreme multistability of individual SQUIDs there).

3. RESULTS

3.1. Chimeras and Other Spatially
Inhomogeneous States
Equation (16) are integrated numerically in time with free-end
boundary conditions (φN+1 = φ0 = 0) using a fourth-order
Runge-Kutta algorithm with time-step h = 0.02. The initial
conditions have been chosen so that they lead to chimera states. It
should be noted that chimera states can be obtained from a huge
variety of initial conditions. Here we choose

φn(τ = 0) =

{

1, for nℓ < n ≤ nr;
0, otherwise,

(30)

φ̇n(τ = 0) = 0, (31)

with nℓ = 18 and nr = 36. The number of SQUIDs in the
metamaterial in all calculations below is N = 54. Equation (16)
are first integrated in time for a relatively long time-interval,
107 T time-units, where T = 2π/� is the driving period, so
that the system has reached a steady-state. While the SQUID
metamaterial is in the steady-state, Equation (16) are integrated
for τsst = 1000 T more time-units. Then, the profiles of the
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FIGURE 5 | Linear frequency dispersion � = �κ for non-local (red) and local (blue) coupling, for βL = 0.86, and (A) λ = −0.02, (B) λ = −0.04; (C) λ = −0.06.

time-derivatives of the fluxes, averaged over the driving period
T, i.e.,

〈φ̇n〉T =
1

T

∫ T

0
φ̇n dτ , n = 1, ...,N, (32)

are mapped as a function of τ . Such maps are shown in
Figure 6, for several values of the ac flux amplitude, φac. In these
maps, areas with uniform colorization indicate that the SQUID
oscillators there are synchronized, while areas with non-uniform
colorization indicate that they are desynchronized.

In Figures 6A,B, i.e., for low values of φac, chimera states
are not excited since the 〈φ̇n〉T are practically zero during the
steady-state integration time. However, this does not mean that
the state of the SQUID metamaterial is spatially homogeneous,
as we shall see below. For higher values of φac, chimera
states begin to appear, in which one or more desynchronized
clusters of SQUID oscillators roughly in the middle of the
SQUIDmetamaterial are visible (Figures 6C–E). For even higher
values of φac, as can be seen in Figure 6F, the whole SQUID
metamaterial is desynchronized. In order to quantify the degree
of synchronization for SQUID metamaterials at a particular
time-instant τ , the magnitude of the complex synchronization
(Kuramoto) parameter r is calculated, where

r(τ ) =
∣

∣9(τ )
∣

∣ =
1

N

∣

∣

∣

∣

∣

∑

n

ei[2πφn(τ )]

∣

∣

∣

∣

∣

. (33)

Note that the phase in the earlier equation, which is enclosed
in the square brackets, 2πφn(τ ), or 2π8n(τ )/80 in natural
units, is actually the argument of the sine term in Equation (13).
Below, two averages of r(τ ) are used for the characterization of
a particular state of SQUID metamaterials, i.e., the average of
r(τ ) over the driving period T, 〈r〉T(τ ), and the average of r(τ )
over the steady-state integration time 〈r〉sst . These are defined,
respectively, as

〈

r(τ )
〉

T
=

1

T

∫ T

0
r(τ ) dτ , 〈r〉sst =

1

τsst

∫ τsst

0
r(τ ) dτ . (34)

The calculated 〈r〉T(τ ) for the states shown in Figure 6, clarify
further their nature. In Figure 7A, 〈r〉T(τ ) is plotted as a
function of time τ for all the six states presented in Figure 6.

It can be seen that for φac = 0.02 and 0.04 (black and red
curves), calculated for the states of the SQUID metamaterial
in Figures 6A,B, respectively, 〈r〉T(τ ) is constant in time,
although less than unity. For such states, 〈r〉T(τ ) = 〈r〉sst ,
where 〈r〉sst can be inferred from Figure 7B for the curves of
interest to be 〈r〉sst ≃ 0.972 and 〈r〉sst ≃ 0.894 for φac =

0.02 and 0.04, respectively. The lack of fluctuations indicates
that these states consist of “clusters” in which the SQUID
oscillators are synchronized together. However, the clusters
are not synchronized to each other, resulting in a partially
synchronized state with 〈r〉T(τ ) < 1. The exact nature of
these partially synchronized states can be clarified by plotting
the flux profiles φn at the end of the steady-state integration
time as shown in Figures 7C,D. In these figures, it can be
observed that all but a few SQUID oscillators are synchronized;
in addition, those few SQUIDs execute high-amplitude flux
oscillations. Moreover, it has been verified that the frequency of
all the flux oscillations is that of the driving, �. Such states can
be classified as discrete breathers/multi-breathers, i.e., spatially
localized and time-periodic excitations which have been proved
to emerge generically in non-linear networks of weakly coupled
oscillators [82]. In the present case, the multibreathers shown
in Figures 7C,D can be further characterized as dissipative ones
[83], since they emerge through a delicate balance of input power
and intrinsic losses. They have been investigated in some detail
in SQUID metamaterials in one and two dimensions [31, 84–
86], as well as in SQUID metamaterials on two-dimensional Lieb
lattices [87].

The corresponding 〈r〉T(τ ) for the states shown in
Figures 6C–F, are shown in Figure 7A as green, blue, orange,
and brown curves, respectively. In these curves there are
apparently fluctuations around their temporal average over

the steady-state integration time (shown in Figure 7B). These

fluctuations are typically associated with the level of metastability
of the chimera states [88, 89]; an appropriate measure of

metastability for SQUID metamaterials is the full-width half-
maximum (FWHM) of the distribution of 〈r〉T [33]. The FWHM
can be used to compare the metastability levels of different
chimera states. For synchronized (spatially homogeneous) and
partially synchronized states, such as those in Figures 6A,B, the
FWHM of the corresponding distribution of the values of 〈r〉T is
practically zero.
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FIGURE 6 | Maps of 〈φ̇n〉(τ ) on the n− τ plane for βL = 0.86, γ = 0.01, λ = −0.02, � = 1.01, N = 54, φdc = 0, and (A) φac = 0.02, (B) φac = 0.04, (C)

φac = 0.06, (D) φac = 0.08, (E) φac = 0.10, (F) φac = 0.12.

Another set of initial conditions which gives rise to chimera
states is of the form [34]

φn(τ = 0) =
1

2
cos

(

2jπn

N

)

, φ̇n(τ = 0) = 0, n = 1, ...,N.

(35)
The initial conditions in Equation (35) allow for generating
multiclustered chimera states, in which the number of clusters
depends on j. In Figures 8A,B, maps of 〈φ̇n〉T on the n− τ plane
for j = 1 and j = 2, respectively, are shown. In Figure 8A,
three large clusters can be distinguished; in the two of them, the
SQUID oscillators are synchronized, while in the third one, in
between the two sychronized clusters, the SQUID oscillators are
desynchronized. The flux profile φn of that state at the end of the
steady-state integration time τsst = 6, 000, is shown in Figure 8C

as blue circles (the black curve is a guide to the eye) along with
the initial condition (red curve). It can be seen that two more
desynchronized clusters at the ends of the metamaterial, which
are rather small (they consist of only a few SQUIDs each), are
visible. Obviously, the synchronized clusters correspond to the
spatial interval indicated by the almost horizontal segments in
the φn profile. The corresponding 〈φ̇n〉T map and flux profile
φn for j = 2 is shown in Figures 8B,D, respectively. In this
case, a number of six (6) synchronized clusters and seven (7)
desynchronized clusters are visible in both Figures 8B,D. In
Figure 8D, the red curve is the initial condition from Equation
(35) with j = 2. Chimera states with even more “heads” can be
generated from the initial condition Equation (35) for j > 2 in
larger systems (here N = 54).

Similar chimera states can be generated with local (nearest-
neighbor) coupling between the SQUIDs of the metamaterial.
For that purpose, Equation (17) is integrated in time using a
fourth order Runge-Kutta algorithm with free-end boundary
conditions and the initial conditions of Equation (30). As above,
in order to eliminate transients and reach a steady-state, Equation
(17) is integrated for 107 T time units and the results are
discarded. Then, Equation (17) is integrated for τsst = 103 T
more time units (steady-state integration time), and 〈φ̇n〉T is
mapped on the n − τ plane (Figure 9). The emerged states
are very similar to those shown in Figure 6, which is the case

of non-local coupling between the SQUIDs. In particular, the
states shown in Figures 9A–C, have been generated for exactly
the same parameters and initial-boundary conditions as those in
Figures 6C,E,F, respectively, i.e, for φac = 0.06, 0.1, and 0.12.
Note that the state of the SQUID metamaterial for φac = 0.12
is completely desynchronized both in Figures 6F, 9C. One may
also compare the plots of the corresponding 〈r〉T as a function
of τ , which are shown in Figure 9D for the local coupling case.
The averages of r over the steady-state integration time τsst for
φac = 0.06, 0.1, 0.12 are respectively, 〈r〉sst = 0.757, 0.656,
0.136 for the non-local coupling case and 〈r〉sst = 0.743, 0.656,
0.146 for the local coupling case. The probability distribution
function of the values of 〈r〉T , pdf (〈r〉T), for the three states in
Figures 9A–C are shown in Figures 9E–G, respectively. As it
was mentioned above, the FWHM of such a distribution is a
measure of the metastability of the corresponding chimera state.
The FWHM for the distributions in Figures 9E,F, calculated
for the chimera states shown in Figures 9A,B, are respectively
0.003 and 0.0215. Thus, it can be concluded that the chimera
state of Figure 9B is more metastable than that in Figure 9A.
The distribution in Figure 9G has a FWHM much larger than
the ones of the distributions in Figures 9E,F as expected, since
it has been calculated for the completely desynchronized state
of Figure 9C. Note that 106 values of 〈r〉T have been used to
obtain each of the three distributions. Also, these distributions
are normalized such that their area sums to unity.

The chimera states do not result from destabilization of the
synchronized state of the SQUID metamaterial; instead, they
coexist with the latter, which can be reached simply by integrating
the relevant flux dynamics equations with zero initial conditions,
i.e., with φn(τ = 0) = 0 and φ̇n(τ = 0) = 0 for any n. In
order to reach a chimera state, on the other hand, appropriately
chosen initial conditions, such as those in Equations (30) or
(35) have to be used. However, one cannot expect that the
synchronized state is stable over the whole external parameter
space, i.e., the ac flux amplitude φac, the frequency of the ac
flux field �, and the dc flux bias φdc. In order to explore the
stability of the synchronized state of the SQUID metamaterial,
the magnitude of the synchronization parameter averaged over
the steady-state integration time, 〈r〉sst , is calculated and then
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FIGURE 7 | (A) The magnitude of the synchronization parameter averaged over the driving period, 〈r〉T , as a function of time τ for βL = 0.86, γ = 0.01, λ = −0.02,

� = 1.01, N = 54, φdc = 0, and φac = 0.02 (black), φac = 0.04 (red), φac = 0.06 (green), φac = 0.08 (blue), φac = 0.10 (orange), φac = 0.12 (brown). (B) The

magnitude of the synchronization parameter averaged over the steady-state integration time τsst, 〈r〉sst, as a function of the ac flux amplitude φac. The other

parameters are as in (A). (C) The flux profile φn for φac = 0.02 and the other parameters as in (A). (D) The flux profile φn for φac = 0.04 and the other parameters

as in (A).

FIGURE 8 | (A) Map of 〈φ̇n〉T on the n− τ plane for βL = 0.86, γ = 0.01, λ = −0.02, � = 1.01, N = 54, φdc = 0, φac = 0.1, and initial conditions given by Equation

(35) with j = 1. (B) Same as in (A) with initial conditions given by Equation (35) with j = 2. (C) Flux profile φn at the end of the steady-state integration time (blue circles,

the black line is a guided to the eye), obtained with the initial conditions Equation (35) with j = 1 (red curve). (D) Flux profile φn at the end of the steady-state

integration time (blue circles, the black line is a guided to the eye), obtained with the initial conditions Equation (35) with j = 2 (red curve).

mapped on the φdc − φac parameter plane. For each pair of
φac and φdc values, the SQUID metamaterial is initialized with
zeros (it is at “rest”). Once again, the frequency � is chosen
to be very close to the geometrical resonance �LC (� ≃ 1).
In Figure 10, maps of 〈r〉sst on the φdc − φac plane are shown
for four driving frequencies � around unity. These maps are

a kind of “synchronization phase diagrams”, in which 〈r〉sst =

1 indicates a synchronized state while 〈r〉sst < 1 indicates a
partially or completely desynchronized state. In all subfigures, but
perhaps most clearly seen in Figure 10C (for � = 1.01) there are
abrupt transitions between completely synchronized (red areas)
and completely desynchronized (light blue areas) states. It can

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2019 | Volume 5 | Article 33116

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hizanidis et al. Chimera States in Coupled SQUIDs

FIGURE 9 | (A) Map of 〈φ̇n〉T on the n− τ plane for βL = 0.86, γ = 0.01, λ = −0.02, � = 1.01, N = 54, φdc = 0, φac = 0.06, and initial conditions given by

Equation (30). (B) Same as in (A) but with φac = 0.10. (C) Same as in (A,B) but with φac = 0.12. (D) The magnitude of the synchronization parameter averaged over

the driving period, 〈r〉T , as a function of time τ for φac = 0.06 (red), φac = 0.1 (black), and φac = 0.12 (green). The other parameters are as in (A). (E) The distribution

of 106 values of 〈r〉T , pdf (〈r〉T ), for the chimera state shown in (A). (F) Same as in (E) for the chimera state shown in (B). (G) Same as in (E,F) for the completely

desynchronized state shown in (C).

be verified by inspection of the flux profiles (not shown) that
these synchronization-desynchronization transitions do not go
through a stage in which chimera states are generated; instead,
the destabilization of a synchronized state results either in a
completely desynchronized state (light blue areas) or a clustered
state (green areas). Thus, it seems that chimera states cannot be
generated when the SQUID metamaterial is initially at “rest,”
i.e., with zero initial conditions. As we shall see in the next
subsection, this is not true for a position-dependent external
flux φext = φext (n).

3.2. Chimera Generation by dc Flux
Gradients
3.2.1. Modified Flux Dynamics Equations
In obtaining the results of Figure 10, a spatially homogeneous
dc flux φdc over the whole SQUID metamaterial is considered.
Although, all the chimera states presented here are generated at
φdc = 0, such states can be also generated in the presence of
a spatially constant, non-zero φdc, by using appropriate initial
conditions (not shown here). In this subsection, the generation
of chimera states in SQUID metamaterials driven by an ac flux
and biased by a dc flux gradient is demonstrated, for the SQUID
metamaterial being initially at “rest.” The application of a dc
flux gradient along the SQUID metamaterial is experimentally
feasible with the set-up of Zhang et al. [28]. Consider the SQUID
metamaterial model in section 2.2.1 in the case of local coupling
(for simplicity), in which the dc flux is assumed to be position-

dependent, i.e., φdc = φdc
n . Then, Equation (17) can be easily

modified to become

φ̈n + γ φ̇n + φn + β sin(2πφn) = φ
eff
n (τ )+ λ(φn−1 + φn+1), (36)

where

φ
eff
n = φext

n − λ(φext
n−1 + φext

n+1), (37)

with

φext
n = φdc

n + φac cos(�τ ). (38)

In the following, the dc flux function φdc
n is assumed to be of the

form

φdc
n =

n− 1

N − 1
φdc
max, n = 1, ...,N, (39)

so that the dc flux bias increases linearly from zero (for the
SQUID at n = 1) to φdc

max (for the SQUID at the n = N).

3.2.2. Controlled Generation of Chimera States
Equations (36) are integrated numerically in time with free-
end boundary conditions (Equation 36) using a fourth-order
Runge-Kutta algorithm with time-step h = 0.02. The SQUID
metamaterial is initially at “rest,” i.e.,

φn(τ = 0) = 0, φ̇n(τ = 0) = 0, n = 1, ...,N. (40)

This system is integrated for 105 T time units to eliminate the
transients and then formore τsst = 105 T time units during which
the temporal averages 〈r〉sst and 〈r〉T(τ ) are calculated. Note
that the transients die-out faster in this case since the SQUID
metamaterial is initialized with zeros. Typical flux profiles φn,
plotted at the end of the steady-state integration time are shown
in Figures 11A–I. The varying parameter in this case is φdc

max,
which actually determines the gradient of the dc flux. The state of
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FIGURE 10 | Map of the magnitude of the synchronization parameter averaged over the steady-state integration time, 〈r〉sst, on the dc flux bias–ac flux amplitude

(φdc − φac) parameter plane, for βL = 0.86, γ = 0.01, λ = −0.02, N = 54, and (A) � = 1.03, (B) � = 1.02, (C) � = 1.01, (D) � = 0.982.

FIGURE 11 | Flux profiles φn as a function of n for βL = 0.86, γ = 0.01, λ = −0.02, N = 54, φac = 0.04, � = 1.01, and (A) φdcmax = 0.25; (B) 0.30; (C) 0.35; (D)

0.40; (E) 0.45; (F) 0.50; (G) 0.55; (H) 0.60; (I) 0.65. (J) The magnitude of the synchronization parameter averaged over the steady-state integration time 〈r〉sst as a

function of φdcmax for the parameters of (A–I) but with φac = 0.02 (black), 0.04 (red), 0.06 (green), 0.08 (blue), 0.10 (magenta), 0.12 (brown). (K) Distributions of the

values of 〈r〉T for φac = 0.04, and φdcmax = 0.30 (black), 0.40 (red), 0.50 (green), 0.60 (blue). The other parameters as in (A–I). The numbers next to the distributions

are the corresponding full-width half-maximums.

the SQUID metamaterial remains almost homogeneous in space
for φdc

max increasing from zero to φdc
max = 0.22. At that critical

value of φdc
max, the spatially homogeneous (almost synchronized)

state breaks down, for several SQUIDs close to n = N become
desynchronized with the rest (because the dc flux is higher at this

end). The number of desynchronized SQUIDs for φdc
max = 0.25 is

about 6− 7 (Figure 11A). For further increasing φdc
max, more and

more SQUIDs become desynchronized, until they form a well-
defined desynchronized cluster (Figure 11B for φdc

max = 0.30).
As φdc

max continues to increase, the desynchronized cluster clearly
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shifts to the left, i.e., toward n = 1 (Figures 11C–E). Further
increase of φdc

max generates a second desynchronized cluster
around n = N for φdc

max = 0.50 (Figure 11F), which persists
for values of φdc

max at least up to 0.65. With the formation of
the second desynchronized cluster, the first one clearly becomes
smaller and smaller with increasing φdc

max (see Figures 11F–I).
Above, the expression “almost homogeneous” was used instead
of simply “homogeneous,” because complete homogeneity is not
possible due to the dc flux gradient. However, for φdc

max < 0.22,
the degree of homogeneity (synchronization) is more than 99%,
i.e., the values of the synchronization parameter 〈r〉sst are higher
than 0.99 (〈r〉sst > 0.99). The dependence of 〈r〉sst on φdc

max for
several values of the ac flux amplitude φac is shown in Figure 11J.
The SQUID metamaterial remains in an almost synchronized
state (with 〈r〉sst > 0.96 below a critical value of φdc

max, which
depends on the ac flux amplitude φac. That critical value of
φdc
max is lower for higher φac. For values of φdc

max higher than
the critical one, 〈r〉sst gradually decreases until it saturates at
〈r〉sst ≃ 0.12. For φac = 0.12, the SQUID metamaterial is in a
completely desynchronized state for any value of φdc

max (brown
curve). The distributions of the values of 〈r〉T , obtained during
the steady-state integration time, are shown in Figure 11K

for φdc
max = 0.30 (black), 0.40 (red), 0.50 (green), and 0.60

(blue). As expected, the maximum of the distributions shifts to
lower 〈r〉T with increasing φdc

max. These distributions have been
divided by their maximum value for easiness of presentation,
and the number next to each distribution is its full-width
half-maximum (FWHM).

Two typical “synchronization phase diagrams,” in which 〈r〉sst
is mapped on the φac − φdc

max parameter plane, are shown in
Figures 12A,B for λ = −0.02 and λ = −0.06, respectively. The
frequency of the driving ac field has been chosen once again to
be very close to the geometrical resonance of a single SQUID
oscillator, i.e., at� = 1.01. For each point on the φac−φdc

max plane,
Equation (36) are integrated in time with a standard fourth order
Runge-Kutta algorithm using the initial conditions of Equation
(40), with a time-step h = 0.02. First, Equation (36) are integrated
for 105 T time-units to eliminate transients, and then they are
integrated for τsst = 105 T more time-units during which 〈r〉sst is
calculated. A comparison between Figures 12A,B reveals that the
increase of the coupling strength between nearest-neighboring
SQUIDs from λ = −0.02 to λ = −0.06 results in relatively
moderate, quantitative differences only. In both Figures 12A,B,
for values of φac and φdc

max in the red areas, the state of the
SQUIDmetamaterial is synchronized. For values of φac and φdc

max

in the dark-green, light-green and light-blue areas, the state of
the SQUID metamaterial is either completely desynchronized,
or a chimera state with one or more desynchronized clusters. In
order to obtain more information about these states, additional
measures should be used, such as the incoherence index S
and the chimera index η.The definitions of these two measures
follow closely those of previous works [90, 91], with the only
difference being the choice of the relevant parameter on which
subsequent calculations are performed. Specifically, here the
time-derivative of the normalized fluxes through the loops of
the SQUIDs, averaged over the driving period T, 〈φ̇n〉T(τ ), is
chosen as the relevant variable. Note that a similar definition of
the chimera index, using the magnitude of the synchronization

(Kuramoto) parameter as the relevant variable, has been also
proposed [88].

The definitions for S and η employed here are as follows: First,
define

vn(τ ) ≡ 〈φ̇n〉T(τ ), (41)

where the angular brackets denote averaging over T, and

v̄n(τ ) ≡
1

n0 + 1

n+n0/2
∑

j=n−n0/2

vj(τ ), (42)

the local spatial average of vn(τ ) in a region of length n0 + 1
around the site n at time τ (n0 < N is an integer). Then, the
local standard deviation of vn(τ ) is defined as

σn(τ ) ≡

〈

√

√

√

√

√

1

n0 + 1

n+n0/2
∑

j=n−n0/2

(

vj − v̄n
)2

〉

sst

, (43)

where the large angular brackets denote averaging over the
steady-state integration time. The index of incoherence is then
defined as

S = 1−
1

N

N
∑

n=1

sn, (44)

where sn = 2(δ − σn) with 2 being the Theta function, and δ a
predefined threshold that is reasonably small. The index S takes
its values in [0, 1], with 0 and 1 corresponding to synchronized
and desynchronized states, respectively, while all other values
between them indicate the existence of a chimera or multi-
chimera state. Finally, the chimera index is defined as

η =

N
∑

n=1

|sn − sn+1|/2, (45)

and takes positive integer values. The chimera index η gives the
number of desynchronized clusters of a (multi-)chimera state,
except in the case of a completely desynchronized state where
it gives zero. In Figure 13, the incoherence index S and the
chimera index η are mapped on the φac−φdc

max plane for the same
parameters as in Figure 12A.

Figures 13A,B provide more information about the state of
the SQUID metamaterial at a particular point on the φac − φdc

max

plane. In Figure 13A, for values of φac and φdc
max in the light-

green area (S = 0) the SQUID metamaterial is in a synchronized
state (see the corresponding area in Figure 13B in which η = 0).
For values of φac and φdc

max in the red area (S = 1), the SQUID
metamaterial is completely desynchronized (the corresponding
area in Figure 13B has η = 0 due to technical reasons). For
values of φac and φdc

max in one of the other areas, the SQUID
metamaterial is in a chimera state with one, two, or three
desynchronized clusters, as it can be inferred from Figure 13B.

Using the combined information from Figures 12, 13, the
form of the steady-state of a SQUID metamaterial can be
predicted for any physically relevant value of φac and φdc

max. In
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FIGURE 12 | The magnitude of the synchronization parameter averaged over the steady-state integration time 〈r〉sst mapped as a function of the ac flux amplitude

and the maximum dc flux bias (φac − φdcmax plane), for βL = 0.86, γ = 0.01, N = 54, � = 1.01, and (A) λ = −0.02, (B) λ = −0.06.

FIGURE 13 | The index of incoherence S (A) and the chimera index η (B) are mapped on the φac − φdcmax plane, for the same parameters as in Figure 12A and

n0 = 4, δ = 10−4.

FIGURE 14 | Flux and voltage profiles φn (blue) and vn = φ̇n (red), respectively, as a function of n for βL = 0.86, γ = 0.01, � = 1.01, φac = 0.04, and (A) φdcmax = 0.2,

(B) φdcmax = 0.4, (C) φdcmax = 0.6.

Figure 14, three flux profiles φn are shown as a function of n,
along with the corresponding profiles of their time-derivatives,
φ̇n. The profiles in Figures 14A–C, are obtained for φac =

0.04 and φdc
max = 0.2, 0.4, and 0.6, respectively, which are

located in the light-green, light-blue, and dark-green area of
Figure 14B. As it is expected, the state in Figure 14A is an
almost synchronized one, in Figure 14B is a chimera state with
one desynchronized cluster, while in Figure 14C is a chimera
state with two desynchronized clusters. At this point, the use
of the expression “almost synchronized” should be explained.
In the presence of a dc flux gradient, it is impossible for a
SQUID metamaterial to reach a completely synchronized state.
This is because each SQUID is subject to a different dc flux,
which modifies accordingly its resonance (eigen-)frequency. As
a result, the flux oscillation amplitudes of the SQUIDs, whose
oscillations are driven by the ac flux field of amplitude φac

and frequency �, are slightly different. On the other hand, the

maximum of the flux oscillations for all the SQUIDs is attained
at the same time. Indeed, as can be observed in Figure 14A.
the flux profile φn is not horizontal, as it should be in the
case of complete synchronization. Instead, that profile increases
almost linearly from n = 1 to n = N (that increase is related
to the dc flux gradient). However, the voltage profile φ̇n is
zero for any n, indicating that all the SQUID oscillators are in
phase. Since, in such a state of the SQUID metamaterial there
is phase synchronization but no amplitude synchronization, the
synchronization is not complete. However, the value of 〈r〉sst in
such a state is in the worst case higher than 0.96 for moderately
high values of φac = 0.02−0.10 (Figure 11J), which is a very high
degree of global synchronization. Furthermore, the synchronized
clusters in the chimera state profiles in Figures 14B,C, whose
length coincides with that of the horizontal segments of the φ̇n

profiles, also exhibit a very high degree of global synchronization
(〈r〉sst > 0.96).
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4. DISCUSSION

The emergence of chimera and multi-chimera states in a 1D
SQUID metamaterial driven by an ac flux field is demonstrated
numerically, using a well-established model that relies on
equivalent electrical circuits. Chimera states may emerge both
with local coupling between SQUID (nearest-neighbor coupling)
and non-local coupling between SQUIDs which falls-off as the
inverse cube of their center-to-center distance. A large variety
of initial conditions can generate chimera states which persist
for very long times. In the previous section, the expression
“steady-state integration time” is used repeatedly; however, in
some cases this may not be very accurate, since chimera states
are generally metastable and sudden changes may occur at any
instant of time-integration which results in sudden jumps the
synchronization parameter 〈r〉T [33]. For the chimera states
presented here, however, no such sudden changes have been
observed. Along with the ac flux field, a dc flux bias, the same at
any SQUID, can be also applied to the 1D SQUID metamaterial.
Chimera states can be generated in that case as well, although not
shown here. Although a large volume of analytical and numerical
studies on the existence and properties of chimera states for a
variety of non-linear mathematical models of coupled oscillators
exists, there are comparatively very few studies in which the
oscillators are periodically (i.e., sinusoidally) driven. Some of the
latter studies include an array of locally coupled bistable Duffing
oscillators with a common sinusoidal forcing [92], in networks
of non-locally coupled van der Pol-Duffing oscillators excited
by a sinusoidal drive [93], and locally coupled extended Duffing
oscillators with harmonic forcing [94].

The emergence of those counter-intuitive states, their form
and their global degree of synchronization depends crucially
on the initial conditions. If the SQUID metamaterial is
initialized with zeros, the generation of chimera states does
not seem to be possible for spatially constant dc flux bias
φdc. In that case, synchronization-desynchronization and reverse
synchronization-desynchronization transitions may occur by
varying the ac flux amplitude φac or the dc flux bias φdc. In
the former transition, a completely synchronized state suddenly
becomes a completely desynchronized one. The replacement of

the spatially constant dc flux bias by a position-dependent one,
φdc
n , makes possible the generation of chimera states from zero

initial conditions. In the latter case, it is possible to generate
chimera states whose characteristics depend on the external
parameters, such as the dc flux gradient, and the amplitude and
frequency of the ac flux field. Specifically, given that the SQUID
metamaterial is initially “at rest” (φn(τ = 0) = φ̇n(τ = 0) = 0 for
any n), the values of the external parameters determine whether
a chimera state will be generated, its degree of synchronization
and its multiplicity, as well as the location and the size of its
desynchronized cluster(s). It is in this sense that we use the term
“controlled generation of chimera states” in the beginning of
this section.

Here, the driving frequency is always chosen to be very close to
the geometrical frequency of the individual SQUIDs. In the case
of relatively strong non-linearity, considered here, the resonance

frequency of individual SQUIDs is shifted to practically around
the geometrical frequency. That is, for relatively strong non-
linearity, the driving frequency was chosen so that the SQUIDs
are at resonance. For a single SQUID driven close to its
resonance, the relatively strong non-linearity makes it highly
multistable; then, several stable and unstable single SQUID states
may coexist (see the snake-like curves presented in section 2.1).
This dynamic multistability effect is of major importance for the
emergence of chimera states in SQUID metamaterials, as it is
explained below.

The dynamic complexity of N SQUIDs which are coupled
together increases with increasing N; this effect has been
described in the past for certain arrays of coupled non-linear
oscillators as attractor crowding [95, 96]. This complexity is
visible already for two coupled SQUIDs, where the number of
stable states close to the geometrical resonance increases more
than two times compared to that of a single SQUID [34]; some
of these states can even be chaotic. Interestingly, the existence
of homoclinic chaos in a pair of coupled SQUIDs has been
proved by analytical means [97, 98]. It has been argued that the
number of stable limit cycles (i.e., periodic solutions) in such
systems scales with the number of oscillators N as (N − 1)!.
As a result, their basins of attraction crowd more and more
tightly in phase space with increasing N. The multistability of
individual SQUIDs around the resonance frequency enhances
the attractor crowding effect in SQUID metamaterial. Apart
from the large number of periodic solutions (limit cycles), a
number of coexisting chaotic solutions may also appear as in
the two-SQUID system. All these states are available for each
SQUID to occupy. Then, with appropriate initialization of the
SQUID metamaterial, or by applying a dc flux gradient to it,
a number of SQUIDs that belong to the same cluster may
occupy a chaotic state. The flux oscillations of these SQUIDs
then generally differ in both their amplitude and phase, resulting
for that cluster to be desynchronized. Alternatingly, a number
of SQUIDs that belong to the same cluster may find themselves
in a region of phase-space with a high density of periodic
solutions. Then, the flux in these SQUID oscillators may jump
irregularly from one periodic state to another resulting in
effectively random dynamics and in effect for that cluster to
be desynchronized. At the same time, the other cluster(s) of
SQUIDs can remain synchronized and, as a result, a chimera
state emerges.
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In ecological landscapes, species tend to migrate between nearby patches in search

of a better survivability condition. By this dispersal process, they form connectivity

between the patches and thereby may develop various correlated or partially correlated

population dynamics among species living in the patches. We explore various possible

emergent collective population patterns using a simple ecological network model of

all-to-all connected patches where we use a particular type of dispersal process that

is controlled by a weighted mean-field diffusion to include the failed migration between

the interacting patches. We represent the population dynamics of both the predator

and prey in each patch by a modified Rosenzweig-MacArthur (mRM) model that

incorporates an additional effect of habitat complexity. Our theoretical investigations

on the network dynamics, using numerical and to some extent, analytical techniques,

show various complex patterns, namely, 2-cluster, 3-cluster and multicluster states, and

chimera states, besides synchrony (1-cluster) and homogeneous steady states (HSS) in a

migrating metapopulation. An important observation is that addition of habitat complexity

in the Rosenzweig-MacArthur (RM) model makes qualitative changes in the collective

behaviors. Especially to mention that it shrinks the region of synchrony and broadens the

region of HSS, in parameter space and, thereby leads to better survival probabilities and

increased population persistence in a natural ecosystem.

Keywords: ecological network, habitat complexity, weighted mean-field diffusion, homogeneous steady states,

synchrony, clustering, amplitude mediated chimera

1. INTRODUCTION

Dispersal is a natural tendency of species in search of a better survival condition against scarcity
of food, high population density, intense grazing, or extreme climate changes. An important
question in ecology is how dispersal between patches can influence the intrinsic as well as the
collective behavior of the interacting species, and therebymake a balance and control of populations
[1]. Earlier studies [2–6] showed that dispersal can lower the burden of high population density and
reduce the chances of global extinction [7, 8], as species can migrate from over-populated patches
to empty or sparsely populated patches. Population migration in fragmented patches is described
as metapopulation dynamics [9, 10]. In isolated patches, species may survive in a non-equilibrium
state, namely, in a state of stable limit cycle oscillation [11–13]. In an ecological landscape, dispersal
or migration-driven spatial synchrony is a most likely event [14–18] as usually seen in dynamical
networks, in general, when many agents or oscillatory units interact via diffusion [19]. Examples
of spatial synchrony are abundant in population dynamics [18]. In a synchronous state, species
in all patches of a metapopulation fluctuate in a common rhythm; then if one goes extinct,
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all others are likely to follow the same fate. Synchrony may
thus deteriorate the chances of survivability in a situation of an
imminent crisis [10, 20–22]. Dispersal driven population stability
is another expected and well-known possibility in ecological
patches. Such diffusion induced stabilization of oscillation by
breaking a synchrony is an established phenomenon [23–28]
in dynamical networks as well when a homogeneous steady
state (HSS) or inhomogeneous steady states (IHSS) may emerge.
Species may develop more persistence or less chances of
extinction [29] when populations stop oscillating and stabilized
to a constant size. This fact may be explained from the experience
of dynamical system studies that a stable steady state as an
analog of population stability is robust to external perturbation.
Besides synchrony and population stability, many long-lived
transient complex patterns, spiral waves, chaos may emerge
[30] in a spatially extended ecosystem; stable complex spatial
patterns such as spots, stripes, and holes are also seen in natural
vegetations [31]. In dynamical networks, partial synchrony such
as clustered states [32–34] and chimera patterns [35–37] are well-
known transient or stable patterns. This encourages theoretical
studies by the ecological community to search for such complex
patterns in a metapopulation, if they exists at all, which may
be undertaken as possible strategies to enhance survivability of
species from the edge of extinction through a recolonization
process. We treat here a migration-driven ecological network
model as a dynamical network and use the known theoretical
techniques to explore various possible collective states using
the globally connected network structure and a special type of
migration process as explained below.

We focus on clustered states and chimera states in our
investigation. Existence of clustered states and chimera states
are not reported so far in experiments in ecology, to the
best of our knowledge. However, chimera states were first
observed in a network of non-locally coupled phase oscillators
in 2002 [35, 36], but later reported in networks of limit cycle
systems [38, 39], and then, most surprisingly, in networks of
globally coupled oscillators [40–42]. Synchrony usually emerges
in both amplitude and phase of all identical oscillators in
a network above a critical coupling when all the oscillators
develop a common rhythm. In chimera states, the synchronous
population of identical oscillators splits into two subgroups
above a critical coupling when one subgroup is synchronized
completely while the other subgroup remains asynchronous.
It was an unexpected behavior for a homogeneous network
and more surprising in a globally coupled network whose all-
to-all connectivity structure is symmetric. Such a symmetry-
breaking partial synchrony was difficult to explain in the
beginning. The reason behind the emergence of such a coexisting
pattern of synchronous and asynchronous subpopulations in
a network is more or less understood very recently [33, 34].
Most importantly, such incongruous pattern really exists and
found in nature [43] that makes an expectation of such
complex patterns in dispersal-driven ecological network too.
Besides chimera patterns, clustered patterns may also emerge.
In clustered states, the whole ensemble of oscillators splits into
subgroups of oscillators [32–34], but in contrast to chimera
states, each subgroup is now synchronous. However, there

exists no synchrony between the subgroups. Moreover, the
number of oscillators in each subgroup may not be identical.
Usually species in ecological systems survive mostly in steady
states; the population may also oscillate and survive in a non-
equilibrium state although chances of extinction prevails. Quite
a few theoretical studies were reported on 2-clustered death and
multiclustered death states [46] and chimera states [44, 45, 47]
and also spiral chimera states [48] in ecological networks using
a variety of coupling, non-local, distance dependent power-law
coupling and a purely diffusive coupling. For non-local coupling
[44], an emergence of chimeralike states was seen where a
synchronous or coherent population splits into one coherent
subpopulation in oscillatory states and another subpopulation in
coexisting steady states and oscillatory states. For the distance
dependent power-law connectivity between the patches [45],
amplitude chimera (AC) states were reported. The amplitudes
of the oscillating incoherent subpopulation did not show any
amplitude variation, but showed a phase lag in oscillation of
population between the incoherent patches. Both the studies used
the RM prey-predator interaction model [49] to represent the
local dynamics of each connected patch. Alternatively, we explore
chimera states using a globally coupled network structure where
dynamics of each ecological patch is represented by the RM
model, but with additional effect of habitat complexity. We use
the weightedmean-field diffusion as amigration process to define
the links between the patches. Such a interactive diffusion process
was first introduced [50, 51] for quorum sensing of genetic
oscillators and also used [52] for dynamical networks, in general.
Recently, the weighted mean-field diffusion was interpreted [46,
53] as a very relevant migration process that explains nicely the
failed or misdirected migration of species in a dispersal-driven
metapopulation. Thereby the authors observed HSS, IHSS, and
multiclustered-death states in a RM model based ecological
network of smaller size. We extend the work in a similar
globally coupled network with larger number of patches, when
we observe additional complexity in population patterns, namely,
2-cluster, 3-cluster, multiclustered, and amplitude modulated
chimera (AMC) states for low to moderate migration rate. We
mainly focus in the low to moderate dispersal rates and low
strength of mean-field factor when such complexity arises. For
largemigration, we findHSS, in other words, population stability,
as usual. However, a significant region of synchronous oscillatory
state also exists between the clustered states and HSS for an
intermediate range of dispersal, in parameter space. Furthermore,
we introduce an additional effect of habitat complexity in the
local dynamics of patches that broadens the region of HSS, in
parameter space and, shrinks the region of parameter space
for synchrony, especially, for low migration of prey and high
migration of predator. We explain the ecological consequence of
our observed dynamical properties in the discussion.

2. GLOBALLY COUPLED NETWORK OF
PREDATOR-PREY SYSTEMS WITH
HABITAT COMPLEXITY

Habitat complexity is ubiquitous and found both in terrestrial
and aquatic ecosystem in variable degree. For example, presence
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of sea grass, salt marshes, coral reefs make marine habitat
complex and predator’s success is greatly determined by the
degree/strength of the physical and structural complexity of
habitat. There are plenty of laboratory and field experiments
[54–58] which confirm that structural complexity of the habitat
has significant influence on predator-prey interaction. The
common hypothesis is that habitat complexity reduces predation
rates by decreasing encounter rates between predator and prey,
thereby enhances persistence of the interacting species. The
physical structure of the habitat also reduces the available space
for the interacting species and thereby reduces the carrying
capacity of the environment [59]. Taking into account the effect
of habitat complexity on predation rate and environmental
carrying capacity in explicit way, the following model
was proposed [59]:

ẋ = rx(1−
x

(1− c1)K
)−

α(1− c2)xy

1+ α(1− c2)hx
,

ẏ =
θα(1− c2)xy

1+ α(1− c2)hx
− dy, (1)

where xi and yi represent, respectively, the prey and predator
population densities at time t. Here r is the intrinsic growth
rate of prey, K is the environmental carrying capacity, θ(0 <

θ < 1) is the conversion efficiency of the predator and d is
the food-independent death rate of predator. The parameters
α and h represent the prey attack rate and handling time,
respectively. The effect of habitat complexity on the carrying
capacity is represented by the parameter c1(0 < c1 < 1) and
the effect of habitat complexity on predator’s functional response
is represented by the parameter c2(0 < c2 < 1). We call this
model as a modified Rosenzweig-MacArthur (mRM) predator-
prey model. The model parameters can be easily rescaled so
as to retain the original form of the RM model [49]. In the
rescaled model, one will be unable to track the specific effect
of the habitat parameters hidden in the rescaled parameters
and hence we keep them distinctly visible here. Further
explanation and illustration of the model can be seen in Jana
and Bairagi [59]. All parameters are assumed positive from the
biological viewpoint.

We extend the one patch model to N all-to-all connected
network of patches, where the local dynamics of each patch
is governed by the mRM model. The network dynamics is
represented by

ẋi = rxi(1−
xi

(1− c1)K
)−

α(1− c2)xiyi

1+ α(1− c2)hxi
+ ǫ1(qx̄− xi),

ẏi =
θα(1− c2)xiyi

1+ α(1− c2)hxi
− dyi + ǫ2(qȳ− yi), (2)

where i = 1, 2, . . . ,N is the patch or node index. All
the patches are assumed identical meaning that individual
patches have identical intrinsic dynamics as decided by their
identical parameters. The weighted mean-field diffusion of
species between the patches is considered to control the
dispersal-guided diffusion process between the patches. In a
metapopulation ecology, the weighted mean-field coupling is
justifiable when the dispersal probability of a species from a

randomly selected patch is assumed to be a fraction of its mean
density. This type of dispersal of species has been interpreted
[44, 53] as failed, misdirected migration or a partial death of
species during a migration. The mean population densities of
prey and predators are defined as x̄ = 1

N

∑N
i=1 xi and ȳ =

1
N

∑N
i=1 yi, respectively. The dispersal of both prey and predator

between the patches follows a diffusion process governed by
their respective mean-field densities with a weight factor q
(0 < q < 1) that measures the dispersal fraction of the
mean population density. The parameters ǫ1 and ǫ2 represent
the dispersal rates of prey and predator population, respectively.
We investigate numerically and, to some extent, analytically the
emergent collective states of species in the network by varying the
dispersal rates (ǫ1, ǫ2) and the weighted mean-field parameter q.

There is no spatial identity of the patches in a global coupling
since all nodes have equal distance from each other and have
equal degree distribution and therefore each node has equal
priority, representing a symmetric and homogeneous network.
We emphasize on the role of habitat complexity parameters c1,2
and show that habitat complexities make qualitative changes in
the characteristic features of collective dynamics.

3. COLLECTIVE STATES: NUMERICAL
RESULTS

Numerical simulations are initiated with pseudo-randomly
generated initial conditions, where all prey and predator densities
are uniformly distributed, respectively, on the interval (100, 400)
and (20, 50) in all patches. The model parameters of the mRM

model are set [59] as r = 2.65, K = 898, h = 0.0437, θ = 0.215,
α = 0.045, c1 = 0.01, c2 = 0.1, d = 0.12 so that the dynamics of
an isolated patch exhibits relaxation type oscillation as shown in
Figure 1A; the oscillation never reaches a zero population. Our
choice of model parameters is guided by a notion [11] that slow-
fast time scale in variation of prey and predator populations is a
necessary condition for sptial synchrony in a metapopulation in
the weaker dispersal regime. In a similar study, the RMmodel was
considered earlier [46] in search of synchrony and population
stability where the model parameters of an isolated patch were
also chosen for relaxation type oscillation.

In this present study, a network of N = 100 globally connected
patches is considered and migration of both the prey and
predators are allowed between the patches. To explore all the
possible collective states, several phase diagrams are plotted in
the 2-parameter planes using the following quantitative measures
to identify various collective states, HSS, synchrony, clusters
and chimera states. A steady state in the network is identified
by estimating the standard deviations of the predator and prey
populations in each patch and averaging them as

1ASD =
1

N

N
∑

i=1

√

1

2

[

(
〈

x2i
〉

− 〈xi〉
2)+ (

〈

y2i
〉

−
〈

yi
〉2
)
]

. (3)

Here 〈.〉 denotes time average. A steady state is identified when
1ASD is zero and it has a finite non-zero value in oscillatory states.
Number of unique steady states in case of HSS is one.
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FIGURE 1 | (Color online) (A) Temporal dynamics of an isolated patch. It is governed by the mRM model where black and red lines denote prey and predator

populations, respectively. The intrinsic dynamics of an isolated patch is relaxation type (x > 0 and y > 0) for the choice of parameters r = 2.65, K = 898, h = 0.0437, θ

= 0.215, α = 0.045, c1 = 0.01, c2 = 0.1, and d = 0.12. (B) Phase diagram in a q− ǫ plane of the ecological network of N = 100 nodes where ǫ1=ǫ2=ǫ. Different colors

depict diverse collective states: light blue for HSS, orange for global synchrony (1-cluster), yellow for 2-cluster states; red indicates 3-cluster; green represents higher

cluster states; blue for chimera state. (C) R vs. ǫ plot (q = 0.02) shows global synchrony (R = 1, blue line) for 0.45 < ǫ ≤ 0.5, HSS for ǫ > 0.5 (R = 1, red line). For

ǫ < 0.45 (R < 1), partial synchronization, clustering, or chimera states are observed. (D) R vs. q plot shows effect of q on synchrony (ǫ = 0.31).

For global coherence (1-cluster) or synchronymeasure, we use
the complex Kuramoto order parameter (R) [60] defined by

Rej8 =
1

n

n
∑

i=1

ejφi , (4)

where j =
√
−1, φi is the instantaneous phase of the ith patch.

φi is determined by φi = arctan(
yi−y∗

xi−x∗ ), where (x∗, y∗) is the
non-zero fixed point of the system (2). When all patches are
synchronized, R = 1 and in an incoherent state R = 0, while
0 < R < 1 implies partial synchronization or clustering and even
chimera states, which are further classified by other measures as
described below.

For a more precise classification of clustered states (when
R 6= 1), we use a clustering index (CI) [61],

CI =
max(n)

N
u, (5)

where u = 1−9(σ−p), p = max(n)−n̄, and9(.) is theHeaviside
step function; σ is an arbitrary small number, n(t) is the number
of distinct states counted (using a standard numerical routine) at
every instant of time t in the time evolution of the network and
n̄ denotes the average in a long run. The max(n) is the largest
possible value of n(t). We calculate the number of cluster states
by rounding the value n̄. In clustered states, 0 < R < 1 and
CI = 0. In chimera states, however, these measures are given by
0 < CI < 1 and 0 < R < 1.

The chimera state is finally characterized by a local order
parameter (Li), which presents an overview about the local degree
of incoherency. The local order parameter of the ith oscillator is
defined as Bera et al. [62]

Li =

∣

∣

∣

∣

∣

∣

1

2δ

∑

|i−k|≤δ

ejφk

∣

∣

∣

∣

∣

∣

, i = 1, 2, . . . ,N, j =
√
−1, (6)

where δ is the nearest neighbor on both sides of the ith oscillator
(we choose δ = 5) and φi is the instantaneous phase of the
ith patch. Li ≈ 1 indicates that the ith oscillator belongs to
the coherent subgroup of the chimera state, i.e., Li = 1 means
maximum ordering or coherency. In contrary, Li ≈ 0 means
ith oscillator belongs to the incoherent neighbors. For each
oscillatory patch, the local order parameter Li is computed for
a long time interval. For a confirmation of the chimera states,
we employ a long time mean of phase velocity of each oscillatory
patch. For ith oscillator, it is given by Banerjee et al. [63]

�i =
2πMi

1t
, i = 1, 2, . . . ,N, (7)

where Mi is the number of periods of the ith oscillator in the
long time interval 1t. Basically, it gives an impression about
the distribution of oscillatory frequency of a group of oscillators.
In an AMC state, �i is identical for the coherent subgroup of
oscillators and scattered for the incoherent subgroup. In AC
states, �i shows no distribution for both the subgroups.
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To get a glimpse of a broader scenario of the collective
dynamics of the network, we first approximate a symmetric
case with identical dispersal rates (ǫ1 = ǫ2 = ǫ) of both
the predator and prey, without losing the essential dynamical
features.We consider an approximation of equal weightedmean-
field diffusion rates q for both the species. We consider an
asymmetry in dispersal rates (ǫ1 6= ǫ2), at a later stage. We
first draw a phase diagram in a q − ǫ plane in Figure 1B

that gives an overview of different collective states denoted by
colors. A unique state of complete coherence (1-cluster) is seen
(orange) in a large region of parameter space, where populations
of both species in all patches oscillate in a common rythm and
the population densities in all patches are identical in time.
The parameter region of complete coherence (orange) is seen
to form a typical arnold-toungue-like structure [64], which has
a tip at a very small q value, but the region broadens with
increasing dispersal rate ǫ and for increasingly larger q values.
This coherent state (1-cluster) represents a globally synchronous
state. From the ecological viewpoint, both prey and predator
species follow a coherent oscillation in their temporal behavior.
In such a coherent state, the network becomes vulnerable to
external attack or perturbation. If population in any one of the
patches goes extinct at any arbitrary instant of time then all
other patches will follow the same trend, and thus enhances
the possibility of a global extinction. For larger dispersal ǫ, the
coherent region (orange) changes to a globally stable steady
state or HSS (light blue region), as shown in the right side of
the phase diagram. The transition to HSS occurs via reverse
Hopf bifurcation: the analytically drawn Hopf line (black line)
closely matches with the numerically drawn line of separation
that delineates the HSS region (light blue) from the coherent
region (orange). In the HSS region, both species reach a constant
density in all the patches; they coexist with non-zero identical
population density in each patch and they are safe. In dynamical
sense, a stable steady state has the ability to return to its original
stable state after a transient time under a perturbation and thus
HSS signifies robustness of a population to external attacks.
Besides these coherent oscillatory state (synchrony) and the
HSS, we find regions of 2-cluster (yellow), 3-cluster (red), and
multi-cluster (green) states. A symmetry-breaking line (black
circles) delineates the regions of synchrony and 2-cluster states
as obtained from numerical simulations of a reduced 2-patch
system (see Appendix in Supplementary Material) and it closely
fits to the separating line (boundary of orange and yellow regions)
as designated by numerical simulations of the full system. In
clustered states, all the patches split into coherent subgroups. In
a coherent subgroup or a cluster, species oscillate coherently with
almost identical population density at any time instant, however,
the subgroups remain incoherent between themselves. We notice
complex patterns such as chimera states (blue) for low q and a
range of ǫ values. The complexity in collective behavior is clearly
visible in the lower range of q values, and hence we focus on this
range of q values, in the next section. Before that we elaborate
the nature of transition to synchrony from an initial state of
incoherence. For this, we plot the order parameter R (Figure 1C)
against ǫ that decreases first, indicating a decreasing level of
coherence with higher clusters and emergence of chimera states.

Then R increases for increasing ǫ, indicating a decrease in cluster
size, but finally R = 1 when the network transits to synchrony
(blue line) at ǫ = 0.45 and it continues until ǫ = 0.5. The
HSS (red line) is reached (where R = 1) for ǫ > 0.50. The
transition to synchrony is also checked with a variation of q for
a fixed dispersal rate ǫ = 0.31 as shown in Figure 1D. It follows
a monotonic increase to R = 1, indicating existence of clustered
and chimera states before reaching synchrony.

A globally coupled network based on the RM model using
the weighted mean-field controlled dispersal was investigated
earlier [44, 46], in exhaustive details, numerically as well as
analytically, in two coupled patches to establish the evolution of
spatial synchrony and population stability, HSS and two regions
of transcritical bifurcation, in parameter space. They made an
extension to a 16-patch network to present two more emergent
IHSS states, 2-clustered death and multiclustered-death states
[28, 46]. We reproduce some of the previous results, mainly,
synchrony, HSS and two additional transcritical bifurcations (see
Appendix in Supplementary Material) for larger values of ǫ1,2,
which we do not focus here. Taking earlier experience [46] into
consideration, we rather focus our investigations on the lower
range of q values and weaker dispersal rates where complex
patterns (green, red, blue regions) really evolve as shown in
Figure 1B and as detailed in Figures 2A,B. Existence of complex
patterns, clustered states, multiclustered states and chimera
states, in non-equilibrium states, is absent in the earlier study
[46]. In a metapopulation, emergence of such complex oscillatory
patterns may play crucial role on the survival probability of
species. The main difference in our results lies in the choice of
low q and ǫ values.

Now we focus on the lower range of q in search of complexity
of collective behaviors. Selecting a lower value of q (0.02), as an
example, and varying both the dispersal rates ǫ1,2, two separate
phase diagrams (Figure 2) are drawn in the ǫ1 − ǫ2 plane using
the quantitative measures defined above. Figure 2A presents
collective dynamical scenarios of the network of predatory-
prey interactions represented by the original RM model; a
comparative picture of the collective states in the network
represented by the mRM patches is presented in Figure 2B.
In both the cases, we obtain regions of HSS (light blue),
spatial synchrony (orange) and 2-cluster (yellow), multiclustered
(green) and chimera patterns (blue) by numerically simulating
the full system of N = 100 patches. We attempt an analytical
stability analysis of the full system to derive the separating
boundaries of different complex patterns in the phase diagrams.
So far we are unable to do the stability analysis of the full
system (N = 100), however, we are able to reduce the network
to a 2-dimensional 1-patch system at HSS and then do the
stability analysis of equilibrium points of the reduced system.
Thereby we draw (see Appendix in Supplementary Material)
the Hopf bifurcation lines (black lines) in Figures 2A,B that
almost match the border of HSS and synchrony as obtained from
simulation of the full system. Similarly, we check the separating
line of synchrony and 2-cluster states, in parameter space, by
reducing the full system to a 2-cluster system (see Appendix

in Supplementary Material). We numerically simulate the 4-
dimensional reduced system to put a demarcation boundary
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FIGURE 2 | (Color online) Collective dynamical states in ǫ1-ǫ2 parameter plane. (A) Original RM network model (c1 = c2 = 0), (B) modified RM network model (c1 =

0.01, c2 = 0.1). Different colors depict various collective states: HSS (light blue), global synchrony (orange), 2-cluster (yellow), 3-cluster (red dots), higher cluster

(green), and chimera states (blue). Black circles on both phase diagrams denote the symmetry-breaking line from synchrony (1-cluster) to 2-cluster state as obtained

from numerical simulations of a reduced 2-patch mode. Other system parameters are same for both the models: r = 2.65, K = 898, h = 0.0437, θ = 0.215, α = 0.045,

d = 0.12, q = 0.02, and N = 100.

FIGURE 3 | (Color online) Temporal dynamics of prey and predator in presence of habitat complexity for different dispersal rates: (A) HSS for ǫ1 = 0.71, ǫ2 = 0.63, (B)

synchronous state for ǫ1 = 0.66, ǫ2 = 0.3, (C) 2-cluster states for ǫ1 = 0.3, ǫ2 = 0.11, and (D) 3-cluster states for ǫ1 = 0.4 ǫ2 = 0.44. Other parameters are chosen as

per in Figure 2B for the mRM based network.

between synchrony and 2-cluster state (black circles), which
shows an almost matching with the separating line obtained from
a simulation of the full system. Using the reduced system, we
depict a similar demarcation boundary of synchrony (orange
region) and 2-cluster state by putting a border of black circles at
the top left of Figure 2A.

Now we draw an attention to significant changes in our results
by the addition of habitat complexity. Figures 2A,B apparently
look similar since both the plots show large regions of HSS
(light blue) and regions of synchrony (orange) and 2-cluster
(yellow) states. A closer inspection, however, reveals noticeable
qualitative changes in collective dynamics in presence of habitat
complexity. Figure 2B clearly shows a larger area of HSS in the
ǫ1−ǫ2 parameter plane compared to Figure 2A. Changes in other
regions of clustered states (yellow, red dots, green) and chimera
states (blue) are also noticed. In the HSS region, both prey and
predator population densities become stable at a non-zero steady
state in all patches, as confirmed by their temporal dynamics in
Figure 3A, although isolated patches were in oscillatory states.
This represents a globally stable steady state (cf. R = 1, red line
in Figure 1C). The weighted mean-field-controlled dispersal of
species plays an important role in the emergence of this HSS

state. The non-zero fixed point explains its ecological relevance
as a coexistence of both prey and predator populations with
non-zero constant densities. This leads to a better survivability
condition of both the species in HSS since it is a robust state
against external or environmental perturbations. Obviously, the
presence of habitat complexity enhances persistence of species
by increasing the region of HSS in parameter space and thereby
supports the experimental results [54–58]. In the lower range
of dispersal rates, all patches are driven out of the HSS state
and enter into an oscillatory state (orange color), yet they
maintain a coherent state. A transition from the HSS state (light
blue) to the globally synchronous oscillatory state (orange) is
seen immediately below the HSS region via Hopf bifurcation
in Figure 2. Both the prey and predators start oscillating in a
globally synchronous state (orange), where all patches oscillate
in one common rhythm, as illustrated in the temporal dynamics
of the patches in Figure 3B. The oscillation in all the N = 100
patches show a single period limit cycle. As mentioned above,
extinction probability is higher in case of coherent oscillatory
populations as population may go extinct due to additional
environmental perturbation when population density is at the
nadir of a cycle [5, 6, 20]. If population in one patch goes
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FIGURE 4 | (Color online) Collective dynamics of predators in all N(=100) patches. Left and right panels show, respectively, snapshots and spatio-temporal

asymptotic dynamics of predators in 100 patches. (A,B) show snapshot and spatio-temporal of 1-cluster state for ǫ1 = 0.66, ǫ2 = 0.3. (C,D) represent snapshot and

spatio-temporal of 2-cluster states for ǫ1 = 0.3, ǫ2 =0.11. (E,F) represent snapshot and spatio-temporal of 3-cluster states for ǫ1 = 0.4, ǫ2 = 0.44. System

parameters are as chosen in Figure 2B with q = 0.02 for the mRM based network.

extinct for some external perturbations, it will be followed by
the populations of all other patches in the network, causing
global extinction of the species. In this sense, synchrony is always
a curse for ecological systems. A reasonably large region of
globally synchronous state also exists in the lower range of prey
dispersal rate and larger predator movement as seen (top left)
in Figure 2A. This synchronous state is almost vanished in the
same parameter region in Figure 2B. The presence of habitat
complexity thus incurs another qualitative change and thereby
improves the survivability condition by breaking the synchrony
and inducing multi-clustered states (green) and chimera states
(blue) in this region of the ǫ1 − ǫ2 parameter plane.

For weaker dispersal rates, below the synchronous state
(orange), regions of 2-cluster states (yellow), 3-clustered
(scattered red dots), multi-clustered (green) states and chimera
states (blue) are seen in both the phase diagrams in Figure 2.

For further illustration of collective states, we select dispersal
parameters from different colored regions of the phase diagram
Figure 2B, representing the mRM based network, and present
their respective temporal dynamics, snapshots, spatio-temporal
dynamics and also plots of local order parameter Li and
mean phase velocity �i. The temporal dynamics of both
predator and prey populations in all patches are plotted in
Figures 3C,D for 2-cluster and 3-cluster states, respectively,
which are quasiperiodic in nature in both the states. Snapshots
of predator population in all patches (indicated by node indices)
are plotted in Figures 4A,C,E, showing 1-cluster (synchrony),
2-cluster and 3-cluster states, respectively, for different choices
of (ǫ1, ǫ2). One coherent group (1-cluster) splits into 2- and 3-
coherent subgroups of unequal number of patches (node indices);
each subgroup have identical population density (yi level), in the
snapshot, but there exist different levels of densities for different
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FIGURE 5 | (Color online) Chimera states for the dispersal rates ǫ1 = 0.29, ǫ2 = 0.22. (A) Spatio-temporal plots and (B) snap shot of predator population. (C) Local

order parameter Li and (D) mean phase velocity �i . (E) Temporal dynamics of coherent patches and (F) the same for incoherent patches. Other parameters are as

chosen in Figure 2B for the mRM network.

subgroups. Corresponding spatio-temporal plots presented in
Figures 4B,D,F also confirm the collective states of 1-cluster,
2-cluster, and 3-cluster, respectively. Clearly, the subgroups in
each 2-, 3-cluster states have no coherence.

Multi-clustered states (green color) and chimera states (blue
color) are present in smaller islands, but clearly noticeable
in parameter space as shown in Figure 2 for both the cases.
A spatio-temporal plot of yi population in all the patches in
Figure 5A shows chimera pattern with two subgroups: one
coherently oscillating and another oscillating incoherently. The
spatio-temporal plot of the local order parameter Li (node
index) presented in Figure 5C is in agreement with Figure 5A.
This chimera pattern is further confirmed by a snapshot in
Figure 5B that shows coherence in predator densities yi in all
the patches, while a smaller subgroup of patches show random
distribution. The mean phase velocity is plotted in Figure 5D

that shows a distribution for the incoherent patches in the same
subgroup while they are identical for the coherent patches. This
identifies the chimera states as amplitude mediated, i.e., as a
case of AMC. The temporal dynamics of all the coherent and
incoherent patches are presented in Figures 5E,F, respectively.

The coherent patches show identical oscillation, while oscillation
in the incoherent patches have varying amplitude, but both are of
quasiperiodic nature.We have checked the quasiperiodicity using
a Poincáre plot, which we do not present here.

4. DISCUSSION

A globally connected network structure is considered here as
an approximate model for studies of metapopulation dynamics
in ecological networks [14, 65]. Although a number of
complex natural processes is involved in ecological systems,
a deterministic model approach, as proposed here, can still
be used to extract reliable information on the complexity of
population dynamics [65]. Here we assume that all the patches
in the network have all-to-all connectivity by the process of
dispersal of species and the predator-prey interaction in each
patch is governed by the mRM model, where the local dynamics
exhibits stable limit cycle oscillation in isolation. Both the
prey and predator species have freedom to migrate within the
patches [11–13] and the migration of both species depends
upon its average or mean population density. The diffusion or
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the migration process between the patches is controlled by the
weighted mean-field density of each species [50, 53, 66]. Such
a weighted mean-field guided diffusion process was initiated in
quorum sensing of synthetic genetic oscillators [50, 51] and later
on, it has been applied to other generic dynamical models to
realize HSS in coupled oscillatory systems [52, 67]. We used the
weighted mean-field diffusion process to describe a dispersal-
drivenmetapopulation since it is more realistic in a perspective of
partial loss of population duringmigration of species as suggested
earlier [46, 53], however, extended their results [46] in a search of
complex patterns.

A basic question in ecological network study is—how such
a diffusion process of dispersal of species can influence the
collective dynamics of the network and if it can originate
complex spatio-temporal patterns? Another important question
is how does complexity in collective spatio-temporal pattern
help an ecological landscape and most importantly, if it can, at
all, improve the survivability and persistence of species when
such complex collective states may emerge? To address the
questions, we first plotted a two parameter phase diagram in
the dispersal rate and weighted mean-field parameter plane
under an approximation of identical dispersal rates of both
species. The phase diagram gave an overview of the collective
dynamics of the ecological network as shown by different
colors under varying weighted mean-field diffusion and dispersal
rate. A spatial synchrony prevailed in a large region of the
parameter space along with a significantly large region of 2-
cluster and HSS. However, we observed smaller regions of
complex collective patterns such as 2-cluster, 3-cluster, multi-
cluster, and chimera states in the lower range of weighted mean-
field diffusion constant. To have a closer look on the complex
dynamics for lower values of the weighted mean-field diffusion
constant, another phase diagram was plotted with respect to
the dispersal rates of prey and predator species for a low value
of weighted mean-field constant. It showed prominent regions
of complex patterns in a parameter plane of dispersal rates:
2-cluster, 3-cluster, multi-clustered, and chimera states in the
region of lowweightedmean-field constant. Existence of complex
collective patterns were identified using several quantitative
measures, namely, Kuramoto order parameter, clustering index,
local order parameter and mean phase velocity. Spatio-temporal
plots, snapshots of predator, and prey population dynamics of
all patches gave us confirmation of our claims of the variety of
collective states, especially, information about clustered states
and chimera states. A transition from synchronous oscillatory
state to HSS occurred via reverse Hopf bifurcation for higher
dispersal rates as confirmed by a stability analysis of the
reduced system at HSS (Appendix in Supplementary Material).
A representative example of emergent complex patterns for a low
q value is presented here, however, it has been found true for a
range of q values.

Another important question that we tried to address is
the role of habitat complexity on the emergence of complex
patterns. For a comparative understanding of the collective
dynamics in presence and absence of habitat complexity, a
phase diagram in the same parameter plane of dispersal rates
was added using the ecological network where each node was

represented by the original RM model without having habitat
complexity parameter. The region of HSS had been enlarged
significantly, in parameter space, by the addition of habitat
complexity in our proposedmRMmodel, indicating an increased
parameter region of dispersal rates that provided an improved
condition of persistence. Furthermore, in the absence of habitat
complexity, a region of synchrony that existed for lower rates of
dispersal of prey and higher dispersal of predator, disseminated
into larger varieties of complex patterns in presence of habitat
complexity. By decreasing the parameter space for spatial
synchrony, species in an ecological landscape were allowed to a
large variety of dispersal possibilities that may reduce the risk
of extinction.

Habitat complexity has no specific role in the origin of
complex patterns. In fact, we showed in a comparative study
that complex patterns originate for both cases: in absence and
presence of habitat complexity. Complexity in collective states
may be attributed to the choice of low q and ǫ values. Finally,
we mention that all the complex patterns emerge, in non-
equilibrium states, in our globally coupled ecological network.
How complex oscillatory patterns help improving survivability
or persistence of species is a future question of investigation
to address.
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In many real-life situations, individuals are dared to simultaneously achieve social

objectives of acceptance or approval and strategic objectives of coordination. Since

these two objectives may take place in different environments, a two-layer network is

the simple and natural framework for the study of such kind of dynamical situations. In

this paper we present a model in which the state of the agents corresponds to one of

two possible strategies. They change their states by interaction with their neighbors in

the network. Inside each layer the agents interact by a social pressure mechanism, while

between the layers the agents interact via a coordination game. From an evolutionary

approach, we focus on the asymptotic solutions for all-to-all interactions across and

inside the layers and for any initial distribution of strategies. We find new asymptotic

configurations which do not exist in a single isolated social network analysis. We report

the emergence and existence of chimera states in which two different collective states

coexist in the network. Namely, one layer reaches a state of full coordination while the

other remains in a dynamical state of coexistence of strategies. In addition, the system

may also reach a state of global anticoordination where a full coordination is reached

inside each layer but with opposite strategies in each of the two network layers. We

trace back the emergence of chimera states and global anticoordination states to the

agents inertia against social pressure, referred here to as the level of skepticism, along

with the degree of risk taken into account in a general coordination game.

Keywords: multilayer network, coordination games, chimera states, anticoordination states, skepticism

1. INTRODUCTION

The chimeric states refer to the emergence of a hybrid state in a coupled dynamic system in which
one domain of the system exhibits a coherent behavior in combination with another domain that
displays an incoherent behavior. The coexistence of coherent and incoherent states has received
much attention as an intriguing manifestation of collective behavior. This interesting behavior
was first observed by Kuramoto et al. [1] and then named it as chimera state [2]. Although the
literature about chimera states started with the study of interacting populations of oscillators in
dynamical systems [3–7], it has been dizzily expanded to many fields in physics, chemistry, biology,
etc (see [8–20]). Also in social systems, situations of two interacting populations in which one
exhibits a coherent or synchronized behavior while the other is incoherent or desynchronized
are commonly observed [21, 22]. This phenomena has also been addressed from the conceptual
framework of chimera states. Models based on individual interactions have been introduced for
opinion formation and cultural dissemination [21] and [22] in order to analyze the emergence of
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localized coherent or chimeras states behavior in social contexts.
The systems considered consist in two populations of social
agents mutually coupled through global interaction fields that
account for the state of the majority of the agents in each
population. The internal interactions in each group have a
condition that allow for non-interacting states. Two examples of
such dynamics have been analyzed: (i) Axelrod’s model for social
influence [23], and (ii) a discrete version of a bounded confidence
model for opinion formation [24]. In both systems, there are
localized coherent states for some parameter values, in which a
group reaches a homogenous or consensus state, while the other
group remains in a disordered or polarized state. In this paper we
contribute further to the study of chimera states in social systems,
searching for them in the context ofmodels of social coordination
and learning dynamics [25].

The goal of reaching coordination has become one of the
most important challenges in modern societies: In spite of
the fact that individuals are now more connected and handle
more information due to technological progress, it seems that
coordination to reach consensus is becoming an increasingly
difficult goal. It is common to observe how some societies become
polarized either by economics concerns, ideological or political
opinions, or, the collective behavior leads the population to
states in which one part reaches a consensus while the other
part behaves in an unstable manner, or it displays a dynamical
coexistence of states. It can be argued that such diversity
of outcomes is the result of a constant search for achieving
simultaneously two different kinds of aims, namely, social and
economic aims. On one side, individuals, influenced by others,
seek for social acceptance and recognition and on the other
side they attempt to get higher gains. Whenever the social and
economic concerns take place in two different social networks or
environments, the population unavoidably splits into two disjoint
target groups. For instance, we can consider a country divided
into two regions. Between the regions the habitants search for
fulfilling economic aims and inside each region they search for
social aims of approval and acceptance.

Here we present a simple model to illustrate such situation
in which individuals of a population divided into two groups
are dared to coordinate in order to accomplish their social
and economic goals. Our framework for studying such kind of
population is a two-layer network. Each layer corresponds to a
group of the population and the interactions within the group
aim to satisfy social concerns, while interactions between agents
of different layers aim to satisfy economic concerns. In our
system, the economic goal turns out to be reached when agents
play the same strategy. Since there will be as many consensus
as numbers of possible strategies a coordination problem arises.
This situation is an important issue in economics, being analyzed
in many theoretical and experimental studies. From the game-
theoretical approach this situation has being modeled as a non-
cooperative game called coordination game, [26–30]. In our
framework, the individuals play a pairwise two-person two-
strategy coordination game.

In a social context, there is a wide number of theoretical
models and empirical evidences that explain and show how the
social influence can lead individuals to modify their behaviors,

attitudes or beliefs, and as results, collective behaviors of
consensus, polarization, or diversity may arise, [31], [32], [33].
Here, we consider an alternative model of social influence based
on the popularity of the strategies instead of the payoffs. Agents
search for social goals of acceptance or approval of the strategy
they use in their interlayer interactions.

There are a number of studies on population games with
binary choices and externalities in discrete time (e.g., [34–36]).
Within this literature, an interesting recent contribution by
Dal Forno and Merlone [37] considers the dynamical effect in
discrete time of a reference group in a system of two-group
population. They consider the reference group as a “model” in
which the behavior of such group affects the other population’s
dynamics. Our study follows the two-group population model
described in Lugo and San Miguel [38]. Both models study
the dynamics of a system of two-group population with binary
choices in discrete time and obtain results that can not be
obtained in a single isolated system. However, our model differs
from Dal Forno andMerlone [37] in several aspects, in particular
in two main points. A first one is where the binary choice game
takes place. In our model individuals in one population play the
two-strategy coordination game with the individuals in the other
population, instead of playing a game inside each population as
in the model of Dal Forno and Merlone [37]. A second main
difference is where the social influence takes place. In our model,
it takes place inside each population. In terms of the approach of
Dal Forno and Merlone [37], we may say that each group serves
as its own reference group.

Despite the simplicity of our model, the accomplishment of
social goals can be difficult to achieve because there is skepticism
in people to be influenced by the popularity of the opposite
strategy of their partners. The previous work of Lugo and
San Miguel [38] that considers such population searching for
social and strategic objectives shows that for an initial uniform
distribution of two possible strategies the skepticism to follow
the opposite strategy and the local connectivity are the driving
forces to accomplish full coordination for this two-layer network.
Here, we consider the role of different initial conditions leading
to different asymptotic states of the dynamics and we determine
the basin of attraction of these states. As one of our main results,
we find two asymptotic states with non-trivial collective behavior
which can not be found in a single isolated network analysis. A
first outcome is a social analog of a chimera state with coexistence
of coherent and incoherent states. In our model, one layer can
reach a homogeneous state of full coordination while the other
remains in a dynamical state of coexistence of strategies. The
second non-trivial asymptotic state is the anticoordination or
polarization state in which the system reaches coordination with
a different strategy in each layer.

The paper is organized as follows. Section 2 introduces the
general frame of our model. Based on a two-layer network, we
describe the kind of interactions inside and between layers and
the dynamical rule for individuals to update their strategies.
Section 3 describes the possible asymptotic solutions of the
collective dynamics reached by the system, as well as the basins of
attraction to reach these solutions. In particular we describe the
non-trivial chimera and anticoordination states and their basins
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FIGURE 1 | Sketch of a two-layer network. The nodes are connected to each

other in a pairwise manner both inside the layers (intralayer links) and across

the layers A and B (interlayer links). Dotted lines describe the interlayer

interactions and the solid lines describe the intralayer interactions. Black nodes

stand for the agents playing strategy L, while white nodes stand for the agents

playing strategy R in a coordination game.

of attraction. Section 4 shows bifurcation diagrams, in section 4.1
for the case of a symmetric coordination game and in section 4.2
for the case of an asymmetric coordination game. Finally, section
5 summarizes our conclusions. In the Appendix, we present a
mean-field theory for the time evolution of the system in the
infinite size limit.

2. METHODS

We consider an individual based model consisting in a
population in which individuals interact in two different groups,
A and B of sizes NA and NB respectively. We take NA = NB = N.
Using the frame of a two-layer network (see Figure 1), inside each
layer the individuals interact with social objectives and between
layers they interact with strategic or economic objectives, as
described in the following.

2.1. Interactions Between the Layers:
Coordination Games
In Game Theory, the coordination game is a prototype model
of a non-cooperative game in which players share the goal of
coordinating on any of the feasible actions, [26–30]. It has
multiple pure strategy Nash equilibria, and hence, a problem of
equilibrium selection arises. In our model, players between the
layers play a two-person, two-strategy coordination game.

The strategic interaction proceeds as follows. In each time
step, each agent in a layer plays with each agent in the other layer
a pairwise coordination game. Table 1 shows the payoff normal
form representation of a coordination game: For example if one
agent plays L and the other plays R, the payoff for the former is
0, and−b for the latter. We focus our analysis on two parametric
settings, a pure or symmetric coordination game (SCG) in which
s = 0 and b = 0 and a general or asymmetric coordination
game (ACG) in which s = 1 and b > 0. The profiles (L, L) and
(R,R) are the two pure strategy Nash equilibria in both settings.

TABLE 1 | Payoff matrix for a two-person, two-strategy coordination game.

L R

L 1, 1 0,−b

R −b, 0 1+ s, 1+ s

A problem of equilibrium selection is present in both settings. In
the symmetric coordination game both equilibria are equivalent,
in the sense that the payoff of each player for coordinating either
on L or R is equal to 1. However, in the general coordination
game, the payoff is equal to 2 for coordinating on (R,R) and 1
for coordinating on (L, L). Then, the higher payoff is achieved
when agents coordinate on R. The profile (R,R) is the socially
efficient solution and it is known in game theory, as the Pareto
(payoff) dominant equilibrium. However, when b > 1, the profile
(L, L) becomes the risk dominant equilibrium, in the sense of
[30]. When players coordinate on (L, L), the cost of a unilateral
deviation is 1 + b and when they coordinate on (R,R) the cost
of a unilateral deviation is 2. The cost of deviation from L to R
is greater than the cost of deviation from R to L, if 1 + b > 2,
or equivalently, if b > 1. In this case, by the criterion of risk
dominance, when b > 1, the agents select the profile (L, L) since
the socially efficient solution (R,R) turns risky. The parameter b
becomes a measure of the risk for playing the strategy R. For a
complete review, see [29].

2.2. Interactions Inside the Layers: the
Effect of Social Pressure
Inside each layer, searching for social acceptance and approval,
each agent observes the strategies being played by her partners.
An agent may not feel at ease with her strategy when such
strategy is not as popular as she wants in her social environment.
The level of skepticism in the population is calibrated by a
threshold T that determines the effect of the social pressure
exerted on an individual. The criterion used by each player i is
to measure how well she is doing by comparing the share of
agents who are playing the opposite strategy to hers, denoted
by di, with the threshold T ∈ [0, 1]. We may distinguish two
types of populations. Herding population, for T < 0.5, in which
individuals are influenced by low levels of popularity of the
opposite strategy, and, skeptical population, for T > 0.5, where
the social pressure has a weak effect on individuals: a feeling
of disapproval only arises for high levels of popularity of the
opposite strategy. Therefore, when di > T, the social pressure
is effective because player i generates a feeling of non-acceptance
about the strategy she is currently playing and she is willing to
revise it.

2.3. Inter-layer and Intra-layer Objectives:
The Degree of Satisfaction
In the interactions across and inside the layers agents intend to
satisfy two different objectives: social objectives of acceptance
and approval, and strategic objectives of coordination. These
objectives give rise into two different sources of satisfaction:
strategic satisfaction in terms of the monetary payoff obtained
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TABLE 2 | Degrees of satisfaction according to the fulfilment of social and

strategical objectives.

S P1 P2 U

πi = (1+ s)N πi = (1+ s)N πi < (1+ s)N πi < (1+ s)N

di < T di > T di < T di > T

in the coordination game and social satisfaction in terms of the
popularity of the current strategies. Therefore, there are four
degrees of satisfaction described in Table 2, where πi is the
aggregate payoff that agent i in a layer gets playing with all the
other agents in the other layer.

The value of s is derived from the parametric setting of the
coordination game. When s = 0 the equality πi = N shows the
total payoff when player i coordinates with all the members of
the other layer in the symmetric game. Then we say that agent i is
strategically satisfied. In the case of a general coordination game,
s = 1, an agent is strategically satisfied when the coordination
is on the socially efficient solution, i.e., the Pareto dominant
strategy. Then, the total payoff is πi = 2N. Besides, when di < T
the share of agents inside the layer of player i who play the same
strategy as she does is high enough so the player i feels socially
satisfied with her current strategy. This means that her social
objectives of acceptance and approval are fulfilled. Then, the level
of satisfaction of agent i can be: S (satisfied) when she is both
socially (di < T) and strategically (πi = (1 + s)N) satisfied, P1
or P2 (partially satisfied) when she is either socially (di < T)
or strategically (πi = (1 + s)N) satisfied and is U (unsatisfied)
when she is both socially (di > T) and strategically (πi <

(1+ s)N) unsatisfied.

2.4. Learning Dynamics
The learning dynamics in the system is described by the update
rule used to change strategy: at each elementary time step each
player plays the coordination game with all the members in
the other layer. Once the game is over and an aggregate payoff
is assigned to each player, each agent observes and measures
the popularity of her strategy in her own group. As a result, a
level of satisfaction arises. Then, she might change her strategy
impelled by her level of satisfaction. The process is repeated
setting aggregate payoffs to zero. The synchronous update rule
in which each player can change her current strategy according
to her level of satisfaction is described as follows,

1. If her level of satisfaction is S, she remains with the
same strategy.

2. If her level of satisfaction is P1 or P2, she imitates the strategy
of her best performing agent inside the layer in case that
such agent has received a larger payoff than the player herself,
otherwise she remains with the same strategy.

3. If her level of satisfaction is U, she changes her
current strategy.

Although the update rule takes place inside the layers,
individuals change their strategies by both social and strategic
considerations. The imitation of the best performing individuals

in her social environment aims to capture the individual behavior
observed in many complex real life situations. This learning
dynamics was first implemented in Lugo and San Miguel [38]
to study the effect of local interactions on a two-layer network
with an initial uniformly distribution of strategies and also, in
González-Avella et al. [39] to study the emergence of polarization
in a skeptical population for any initial distribution of strategies.

3. RESULTS

3.1. Asymptotic Solutions
Analytical equations for our model and their asymptotic
solutions are discussed in the Appendix. For the general case
of the asymmetric coordination game these solutions, described
below, are the following:

Solution I:Coordination in strategy L: All agents in both layer
play strategy L. It is linearly stable and exists for any T ∈ [0, 1].

Solution II: Coordination in strategy R: All agents in both
layer play strategy R. It is linearly stable and exists for any T ∈

[0, 1].
Solutions III: Coexistence of strategies. These solution exist

for any T 6= 1 and it occurs in two ways:

(1) unstable fixed points and,
(2) family of marginally stable periodic solutions.

Solutions III-a and III-b: Chimera solutions. This is an
interesting case of coexistence of two distinct solutions, namely,
solutions I and III. One of the layers goes to the absorbing state
of coordination in strategy L, namely layer A for Solution III-
a and layer B for solution III-b, while the other layer goes to a
dynamical state of coexistence of strategies, solution III type (2).
We also find the case of coexistence of two solutions in which
one layer coordinates in L and the other layer remains disordered
with both strategies coexisting in the same proportion [Solution
III type (1)]. Chimera solutions only appear when agents are
playing the asymmetric coordination game. They exist for almost
any T < 0.5 and almost any b > 0.

Although the strategies L and R are not equivalent in the
asymmetric coordination game because the first is the socially
undesired and the second the socially desired outcome, solutions
III-a and III-b are equivalent in the sense that the layer reaching
the absorbing state L is determined by the initial conditions
of strategies in the two layers. We refer to these solutions as
chimera states because of the coexistence of an ordered layer and
a disordered layer. The disordered layer can be in a dynamical
state [solution III (2)] or in a configuration in which the number
of agents playing each strategy is equal and constant in time
[solution III (1)].

Solutions IV Anticoordination states, layer A coordinates in
strategy L while layer B in strategy R.

Solutions V Anticoordination states, layer A coordinates in
strategy R while layer B in strategy L.

Solutions IV and V exist and they are linearly unstable and
exist for almost all T ∈ [0.5, 1].

We summarize in Figure 2 the domain of existence of
the different asymptotic solutions for the general case of the
asymmetric coordination game as a function of the threshold T
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FIGURE 2 | Domain of existence of the different asymptotic solutions in the

Asymmetric Coordination Game (ACG) as a function of the threshold T and the

risk parameter b as obtained from the analytic solution of the equations

discussed in the Appendix. The two curves ( T = 1+b
3+b and 1− T = 1+b

3+b ) and

the two lines (b = 1, T = 0.5) divide the figure in eight zones from (A) to (H). In

each of these zones the asymptotic solutions that exist are indicated. The red

dots correspond to values of T and b used in Figure 5.

and the risk b parameters. For this general case the parameters
of the pay-off matrix take the values s = 1 and b > 0 for
any T ∈ [0, 1]. Asymptotic solutions of the dynamics depend
on initial conditions (see below Figure 5), and in this sense we
refer to Q1 as those chimera states, solutions III-a and III-b, that
are reached from initial conditions such that xaa

0 + xbb
0 < 1,

where xaa
0 and xbb

0 are the initial conditions for xaa and xbb
respectively. Likewise we refer to Q2 as those chimera states,
solutions III-a and III-b, that are reached from initial conditions
such that xaa

0 + xbb
0 > 1. It turns out that solutions Q1 exist

for b > 0, zones A, C, and D in Figure 2, while Q2 only exist for
b > 1, zones D and C. The range of values of b and T in which
the system reaches solutions Q1, Q2, I ,II and III corresponds
to zones C and D in the Figure. The difference between zones
C and D refers to the areas of the basins of attraction of each
solution, as explained in section 3.2. For the case of symmetric
coordination game, the parameters take the values s = 0 and
b = 0. The asymptotic solutions in this case are the same as
those for the asymmetric coordination game except for Solutions
III-a and III-b, the Chimera states. Chimera states could not be
found for any level of skepticism in the case of the symmetric
coordination game.

Given that the agent population is divided in two layers, A and
B, we define xaa as the fraction of individuals playing strategy R
in layerA, and xbb as the fraction of individuals playing strategy R
in layer B. To describe the different asymptotic solutions we also
introduce the order parameter nAB giving the density of inter-
layer active links, i.e., the proportion of links connecting agents
in different layers with opposite strategies. The order parameter
nAB can be written in terms of xaa and xbb by,

nAB = xaa(1− xbb)+ xbb(1− xaa)

TABLE 3 | Asymptotic states and associated values of xaa, xbb, and nAB.

Asymptotic state nAB xaa xbb Solution SCG ACG

Coordination
0 0 0 I 3 3

1 1 II 3 3

Anticoordination
1 0 1 IV 3 3

1 0 V 3 3

Coexistence of strategies

1
2

1
2

1
2 III 3 3

4(1+b)
(3+b)2

1+b
3+b

1+b
3+b 7 3

u+v -2uv u, 1-u v, 1-v 3 3

Chimera states

v,1-v 0 v, 1-v III-a 7 3

1
2 0 1

2 7 3

u, 1-u u, 1-u 0 III-b 7 3

1
2

1
2 0 7 3

The last two columns indicate existence or non-existence of the state in the Symmetric

Coordination Game (SCG) and in the Asymmetric Coordination Game (ACG). The

parameter b corresponds to the risk parameter of the ACG and the numbers u, 1 − u

and v, 1 − v for u, v ∈ (0, 1) describe the family of periodic solutions in layer A and

layer B respectively. Chimera states in which the three variables xaa, xbb, and nAB take

constant values, either 0 or 1/2, correspond to the case in which the disordered layer is

in a solution III (1).

The different solutions described in terms of the asymptotic
values of nAB, xaa, and xbb are shown in Table 3. These solutions
follow from the mean-field analysis described in the Appendix.
We next describe these solutions as obtained from numerical
simulations. In these simulations, we have fixed the system size
NA + NB = 2000 where NA = NB = 1000.

Figure 3 shows the time evolution of xaa and xbb, as obtained
from the simulation of our individual based model, for different
initial conditions that lead to the asymptotic solutions I, II,
III, III-a, III-b, IV, and V. Figures 3A–G correspond to the
symmetric coordination game (SCG), while chimeras states
appearing in the asymmetric coordination game (ACG) are
shown in Figures 3H–J. In Figures 3A,B the order parameter
nAB = 0, indicates that the system goes to an absorbing state in
which the agents in both layers play the same strategy. Figure 3A
shows that after a short transient time the fractions xaa =

xbb = 0 and the density of inter-layer active links is nAB = 0
corresponding to solution I, while for Figure 3B after a short
transient time the fractions xaa = xbb = 1 and nAB = 0
corresponding to solution II.

In Figure 3C (solution IV) and Figure 3D (solution V), the
value nAB = 1 indicates that in both cases the system goes
to an anticoordination absorbing state, i.e., agents in each layer
are playing opposite strategies. This state of anticoordination
can emerge only in skeptical populations where T > 0.5. It
is interesting to notice that the layer with an initial higher
proportion of R is the layer that ends playing L. A complete
analysis of the anticoordination solutions for a skeptical two-
group population can be found in González-Avella et al. [39].

It is important to note that there exist absorbing states other
than solutions I, II, IV, and V. They correspond to an unstable
fixed point xaa = xbb = r of the dynamics for 0 < r < 1.
These solution correspond to the classification (1) of Solution III,
namely, r = 1/2 in the SCG for all T ∈ (0, 1) and in the ACG for

T < 1/2, or the fixed point r = 1+b
3+b

in ACG when T > 1/2.
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FIGURE 3 | Time evolution of xaa (circles), xbb (squares) and the density of active inter-layer links n
AB

(dashed lines). (A–D) Show the time evolution to coordination

(solutions I and II) and anticoordination states (solutions IV and V) for symmetric game (s = 0,b = 0) with T = 0.75. (E–G) Show the phase and anti-phase oscillations

[solutions III (2)] of the fraction of strategies xaa and xbb for symmetric game (s = 0,b = 0) with T = 0.25. (H–J) Show the temporal evolution of xaa and xbb and the

active inter-layer links n
AB

, for the asymmetric coordination game (s = 1,b = 0.5) with T = 0.25. (H,I) Show the chimera states, solution III-a and III-b respectively and

(J) shows the case when the initial and the final states are the same when xaa = 0 and xbb = 0.5.

FIGURE 4 | Plot in color scale of the fraction of active links between layer A and B in the asymptotic solution of the dynamics as a function of the initial density of xaa
and xbb for the Symmetric Coordination Game (s = 0, b = 0). The color scale defines the values of the fraction of actives links, nAB = 1 black color and nAB = 0

white color. Asymptotic solutions are as indicated. (A–F) Correspond to different values of T: (A) T = 0, (B) T = 0.25, (C) T = 0.5, (D) T = 0.75, (E) T = 0.85, and (F)

T = 1. System size, NA + NB = 1000+ 1000 = 2000.

Figures 3E–G display the temporal evolution of the system for
marginally stable periodic solutions [solutions III (2)] in the case
of the symmetric coordination game. The asymptotic dynamical
configurations show phase (Figures 3F,G) and anti-phase
(Figure 3E) oscillations of strategies between the two layers. Note
that 0 < nAB < 1 remains constant during these oscillations.

The Chimera solutions are illustrated in Figures 3H–J for the
ACG with parameter values T = 0.25, b = 0.5. Figure 3H
corresponds to a solution III-a, in which all agents play strategy
L in layer A, i.e., xaa = 0 while a configuration of dynamical
coexistence of strategies takes place in layer B, i.e., 0 < xbb <

1. Note that the fraction of agents that choose to play strategy
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FIGURE 5 | Plot in color scale of the fraction of active links between layer A and B in the asymptotic solution of the dynamics as a function of the initial density of xaa
and xbb for the Asymmetric Coordination Game. The color scale defines the values of the fraction of actives links, nAB = 1 black color and nAB = 0 white color.

Asymptotic solutions are as indicated. (A–H) Correspond to the values of the threshold T and parameter b indicated by red dots in Figure 2. (A) T = 0.25,b = 0.50,

(B) T = 0.46,b = 0.50, (C) T = 0.25,b = 0.30, (D) T = 0.25,b = 3.00, (E) T = 0.55,b = 3.00, (F) T = 0.80,b = 3.00, (G) T = 0.55,b = 0.50, (H)

T = 0.80,b = 0.50. System size, NA + NB = 1000+ 1000 = 2000.

L or R in layer B changes over time, so that we also observe
an oscillation of nAB . Figure 3I corresponds to a solution III-
b. In this case the behavior is similar to the one in Figure 3H,
but now the L coordinating absorbing state occurs in layer B,
while the dynamical coexistence of strategies appears in layer
A. We also notice that possibly similar solutions with xaa 6= 0
constant, and xbb oscillating are not found in our model due
to the non-equivalence of the L and R strategies in the ACG.
In Figure 3J we illustrate the particular case of a chimera state
in which one layer coordinates in L, in this case layer B, while
the other layer remains in a solution III (1) in which agents in
that layer start and continue playing for all times both strategies
with equal proportions.

The particular collective behaviors described by solutions
III-a and III-b, are the social analog of a chimera state
arising in two interacting populations of oscillators observed
in dynamical systems. In general a chimera state describes a
situation where two populations that interact with each other, one
exhibits a coherent or synchronized behavior while the other is
incoherent or desynchronized. Likewise we have two populations
of interacting agents such that one reaches an absorbing state,
while the other remains in a dynamically disordered state. The
chimera states only arise in our system when the population
is herding (T < 0.5) and play an asymmetric coordination
game. This means that beside the initial distribution of strategies,
a herding behavior is the underlying mechanism that allows
to reach chimera states when the two Nash equilibria of the
coordination game are not equivalent in terms of payoff.

3.2. Basins of Attraction: The Global
Picture
Depending on the initial conditions for xaa and xbb, the
system reaches different asymptotic solutions characterized by
their value of the order parameter nAB. Extensive numerical

simulations of our individual based model are summarized in
Figures 4, 5 that show the basins of attraction of the different
asymptotic solutions in terms of the initial densities of xaa and
xbb, and for different values of the threshold parameter T for the
SCG and for different values of T and b for the ACG, respectively.
The color code defines the solutions in terms of the fraction
of inter-layer active links. Both figures show how the basins of
attraction in terms of the initial conditions are determined by the
value of the threshold parameter T in the case of the SCG and the
threshold T along with the parameter b in the case of the ACG.

4. BIFURCATION DIAGRAMS

In this section we consider possible transitions among the
different solutions discussed before. These transitions are
described by means of bifurcations diagrams obtained in terms
of the control parameters T and b.

4.1. Symmetric Coordination Game
We have shown in the previous section that the solution obtained
for the SCG, and for a fixed initial condition, depends on the
value of the threshold parameter T, so that by varying T we find
transitions among those solutions. Examples of these transitions
are shown in Figures 6A–C. These are bifurcation diagrams that
give the average of the fractions of inter-layer active links nAB
or 1 − nAB as a function of the threshold T. These bifurcation
diagrams describe transitions that occur, for threshold values of
T, between solutions III to I, III to V, and I to V, respectively for
different fixed values of the initial conditions. Each panel shows
two examples. We also find subsequent transitions among three
solutions. For instance, the bifurcation diagram Figure 7A for
the average of nAB, illustrates a first transition between solution
III and solution I, followed by a second transition between
I and V as T increases. These results show the effect of the
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skepticism on the collective behavior in a two-layer network.
Tuning the level of skepticism from the limit value T = 0, where
the population is extremely herding to the limit value T = 1
where the population is extremely skeptical. Figure 4 indicates
that the system goes from a state of complete coexistence of
strategies, Solution III for almost all initial conditions, to states
of anticoordination, Solutions IV and V, and states of global
coordination, Solutions I and II.

4.2. Asymmetric Coordination Game
As discussed before, Figure 2 shows for the ACG case a phase
diagram, obtained from a mean field theoretical approach,
indicating domains of existence of different asymptotic solutions
in the b - T parameter space. In comparison with the SCG
case, the additional parameter b allows for new transitions that
occur for a threshold value of b and fixed T, including transition
to chimera states. Examples of these transitions are shown in
Figures 6D–G. Figure 6D shows a transition between a state
of anticoordination IV and a state of full coordination I and
Figure 6G shows a transition between a state of full coordination
II and a state of anticoordination V, while Figures 6E,F show
transitions between a state of coordination II or dynamical
coexistence III and a chimera state III-a. On the other hand,
Figure 7B shows an example of subsequent transitions as T
increases for fixed b = 3, with a first transition between a state of
dynamical coexistence III and a chimera state III-a, followed by a
transition between III-a and a state of full coordination II and a
final transition between II and a state of anticoordination IV.

A different form of bifurcation diagrams can be obtained by
considering the area of the basin of attraction of a given solution
in the parameter space of the initial conditions xaa

0 and xbb
0.

Results for this area are indicated in Table 4 for the chimera
states Q1 and Q2 and the different zones of the T-b parameter
space of Figure 2. We recall that Q1 are those solutions III-
a and III-b reached from initial conditions such that xaa

0 +

xbb
0 < 1, while Q2 are those obtained when xaa

0 + xbb
0 > 1.

The areas of the basins of attractions AQ1 , AQ2 for Q1 and Q2

respectively are plotted vs. T and b in Figure 8. Using AQ1 , AQ2

as order parameters, these figures show bifurcation diagrams for
the transition from existence AQ 6= 0 to non-existence AQ = 0 of
a chimera state.

Figures 8A,B show a threshold value T = 0.5, so that chimera
states exist for T < 0.5 in agreement with the phase diagram
of Figure 2. They also show that as T increases the areas of
the basin of attraction of chimera states first increase until a
certain value of T and then they decrease to become zero for
T = 0.5. In addition Figures 8C,D identify a threshold value
of b for the existence of chimera states. For Q2 chimeras this is
fixed at b = 1 independently of T, while for Q1 it depends on T,
with Q1 chimera states existing for all values of b and T small
enough. For both Q1 and Q2 we also identify a characteristic
T-dependent value of b beyond which the area of the basin of
attraction remains constant.

More generally and on a qualitative basis, it follows from
Figures 4, 5 that, for any fixed b, the basins of attraction of
solution III and chimeras states disappear as T increases, so that
and in the limiting case of T = 1, only Solutions I, II, IV and V

TABLE 4 | Areas of the basin of attraction of chimera states in the parameter

space of initial conditions of xaa and xbb according to the zones

described in Figure 2.

Zones Ranges AQ1
AQ2

A T < 1+b
3+b < 0.5 2

(

1+b
3+b − T

)

T 0

B 1+b
3+b < T < 0.5 0 0

C 1− 1+b
3+b < T < 0.5 2(1− 2T )T 2(1− 2T )T

D T < 1− 1+b
3+b < 0.5 2

(

1+b
3+b − T

)

T 2
(

2 1+b
3+b − 1

)

T

can be reached by the system. Another interesting limiting case
is the one of the risk parameter b → ∞, where it is extremely
risky to play strategy R. It can be expected that in this limit
solution I becomes preponderant. Indeed, we show in Figure 9,
as compared with Figure 5, that the basin of attraction of solution
I increases, solution II disappears and solution III and chimeras
remain for fixed values of T < 0.5. When both parameters b and
T increase, solutions II, III, IV, and V disappear and the basin of
attraction of solution I increases. In the limit case, T = 1 and
b → ∞, solution I becomes the main solution in the system for
almost every initial condition.

5. CONCLUSIONS

We have considered a model of evolutionary game of a
population divided into two groups where individuals are
searching to fulfil their social and strategic objectives. The frame
for this situation has been a multilayer network of two layers.
Interactions within each layer aim to fulfill social objectives
associated with learning dynamics, while interactions across layer
consist in a coordination game, therefore involving strategic
objectives. Our analysis, based on a mean-field theoretical
approach and corroborated by numerical simulations of the
model, reveals the existence of collective behaviors commonly
observed on nature but impossible to find on a single isolated
network analysis. In our multilayer framework we find states
different of those of global coordination or dynamical states
of coexistence of the strategies. Namely, in the multilayer
coordination challenge, anticoordination and chimera states
solution emerge. In the former the dynamics of the system
polarizes the population, with each layer coordinating in a
different strategy. This can also happen in the asymmetric
coordination game where the two strategies correspond to
different Nash equilibria: the socially efficient or Pareto
dominant, and the risk dominant equilibrium. In the chimera
states one layer coordinates in the risk dominant equilibrium,
while the second remains disordered, that is with coexistence of
the two strategies. This coexistence can be time independent or
in the form of periodic solutions.

In connection with the standard notion of chimera states in
two populations of dynamical oscillators having global or long
range interactions [2, 8, 14, 40], we note that in our evolutionary
game theory framework we also have the basic ingredients of
two non-linear dynamical systems which are globally coupled.
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FIGURE 6 | Bifurcation diagrams for the average of nAB as function of T for fixed initial conditions for the SCG, (A–C), and for the ACG, (D–G). (A): xaa = 0.40 and

xbb = 0.10 (circles), xaa = 0, 40 and xbb = 0.30 (squares). (B): xaa = 0.40 and xbb = 0.60 (circles), xaa = 0, 10 and xbb = 0.90 (squares). (C): xaa = 0.25 and

xbb = 0.51 (circles), xaa = 0, 37 and xbb = 0.52 (squares). (D): xaa = 0.30 and xbb = 0.45 with T = 0.75. (E): xaa = 0.10 and xbb = 0.48 with T = 0.15. (F):

xaa = 0.25 and xbb = 0.1 with T = 0.7. (G): xaa = 0.45 and xbb = 0.65 with T = 0.75.

FIGURE 7 | (A): Bifurcation diagram among solutions III, I, and V of the average of nAB as function of T in the SCG for a fixed initial condition xaa = 0.20 and

xbb = 0.60. (B): Bifurcation diagram among solutions III, III-a, II, and IV of the average of nAB as function of T for a fixed initial condition xaa = 0.78 and xbb = 0.60

where the risk parameter b = 3 in the ACG.

In chimera states of coupled oscillators, one population is in

a coherent state and coexists with the other population in
an incoherent state. In our social analog of the chimera state
we have interpreted the coordination states in one layer as a
coherent or ordered state, while we identify the incoherent state
with the layer that exhibits coexistence of the two strategies.
In most cases this coexistence is of dynamical nature, being
the disordered layer in an active dynamical state of oscillation
between the two possible strategies. Our model only incorporates
two possible individual states of the agents, but we envisage that
in social models including more individual states or strategies,
such as those in reference [21, 22], the disordered state would
show a richer dynamical behavior, since the individual elements
can dynamically visit a large number of possible states. In

this case the disordered or incoherent population would have

a dynamical behavior similar to those found in populations
of dynamical oscillators.

We observe chimera states only for the asymmetric
coordination game where the coherent state reached is in
the socially least desired coordination state. For herding
individuals, the presence of a degree of risk in coordinating on
the socially efficient outcome has an effect on the emergence
of chimera states. However, for skeptical individuals, the
anticoordination states are present in both symmetric and
asymmetric coordination games. While the presence of two
layers in the network is a consequence of the type of interaction
that individuals have inside and across the layers, the actual
factors that play a key role for the existence of chimera and
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FIGURE 8 | Sizes of the basins of attraction of chimera states categorized by Q1 and Q2, denoted by AQ1
and AQ2

, as function of T for different values of b (A,B) and

as function of b for different values of T (C,D).

FIGURE 9 | Plot in color scale of the fraction of active links between layer A and B in the asymptotic solution of the dynamics as a function of the initial density of xaa
and xbb for the Asymmetric Coordination Game. The color scale defines the values of the fraction of actives links, nAB = 1 black color and nAB = 0 white color.

Asymptotic solutions are as indicated. (A): b = 100, T = 0.25, and (B): b = 100, T = 0.50.

anticoordination states are the level of skepticism and the
existence of a risk parameter on the coordination game.

In the context of coordination in social systems,
our contribution brings a more realistic insight about
the consequences of a collective behavior that makes
a distinction between social and strategic objectives.
This collective behavior may lead herding societies to
chimera states and skeptical societies to polarized states
of anticoordination.
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