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Editorial on the Research Topic

Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine

By utilizing high-throughput technologies, precision medicine is being developed as a preventative,
diagnostic and treatment tool to combat complex human diseases. It is therefore necessary to
investigate how to integrate these multi-scale ‘omics datasets to distinguish the novel individual-
specific disease causes from conventional cohort-common disease causes. Currently, machine
learning plays an important role in biological and biomedical research, especially in the analysis of
big ‘omics data. This Research Topic focuses on the application of wet ‘omics technology and dry
machine learning approaches together to further develop precision medicine.
STUDIES BASED ON INDIVIDUAL TEMPORAL ‘OMICS DATA
FROM DISEASE COHORTS OR ANIMAL MODELS

Liu, R. et al. proposed a single-sample-based hidden Markov model approach to detect the
dynamical differences between a normal and a pre-disease states, to detect the immediately
upcoming critical transition from the pre-disease state. Lee et al. implemented a deep learning-
based python package for multimodal longitudinal data integration, especially the numerical data
including time series and non-time series data. Yu et al. implemented an adjusted individual-specific
edge-network analysis (iENA) method when a limited number of samples from one individual are
available, and made a proof-of-concept study on individual-specific disease classification based on
microbiota compositional dynamics.
STUDIES BASED ON MULTIPLE ‘OMICS DATA, E.G., THE
COMBINATION OF GENOMIC, TRANSCRIPTOMIC, EPIGENOMIC,
OR PROTEOMIC DATA FOR A SINGLE DISEASE/CONDITION

Chen et al. analyzed the miRNA expression profiles in whole plasma, Extracellular Vesicle (EV) and
EV-free plasma of lung cancer patients and identified several discriminative miRNAs and
February 2020 | Volume 10 | Article 134317
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classification rules as potential non-invasive biomarkers by
Monte-Carlo feature selection method and Repeated
Incremental Pruning to Produce Error Reduction method. Liu,
Z. et al. conducted a genome-wide analysis of allele-specific
expression (ASE) in colorectal cancer patients, providing a
systematic understanding of how ASE is implicated in both
tumor and normal tissues. Hu et al. used RNA sequencing data
to identify and quantify the circRNAs in atrial fibrillation (AF)
by bioinformatics analysis and characterized their potential
functions through the competing endogenous RNA network
and protein-protein interaction network. Shi, X. et al. screened
a cohort of Total anomalous pulmonary venous connection cases
and healthy controls for rare copy number variants by whole
exome sequencing, providing candidate genes associated with
rare congenital birth defect. Wu et al. performed whole exome
sequencing on seven members of an HSCR family, making a first
report on the in-frameshift variant p.Phe147del in RET
responsible for heritable HSCR. Xie et al. investigated rare
Copy number variants (CNVs) in a recruited cohort of
unrelated patients with pulmonary atresia and a population-
matched control cohort of healthy children by whole-exome
sequencing, helping elucidate critical disease genes and new
insights of pathogenesis. Meng et al. made a brief research
report on the driver gene mutations in Chinese patients with
non-small cell lung cancer by target sequencing and Hotspot3D
computational approach together.

Ho et al. provided a review of polygenic risk scoring and
machine learning in complex disease risk prediction with tissue-
specific targets, expecting their power to manage complex
diseases for customized preventive interventions. Li et al.
identified target genes at Juvenile idiopathic arthritis risk loci
in neutrophils by an integrated multi-omics approach,
constructing a protein-protein interaction network on the basis
of a machine learning approach. Dai et al. applied the mega-
analysis of Odds Ratio (MegaOR) method to prioritize candidate
genes of Crohn's Disease, based on a comprehensive collected
multi-dimensional data. Wang, C.H. et al. detected differentially
expressed lncRNAs and mRNAs in atherosclerosis by analyzing
public datasets with the weighted gene co-expression network
analysis, and this bioinformatics study would provide potential
novel therapeutic and prognostic targets for atherosclerosis.
Jiang, S. et al. collected and profiled the circRNA expressions
of heart tissues from Atrial fibrillation patients and healthy
controls, providing new insights of the circRNA roles in AF
with highly potential interaction mechanisms among circRNAs,
microRNAs, and mRNAs.

Gu et al. reused the Surveillance, Epidemiology, and End
Results registry database to conduct stratification analyses,
univariable and multivariable analyses, indicating surgery is an
important component of multidisciplinary treatment and
sublober resection is not inferior to lobectomy for the specific
patients. Zhang, J. et al. exploited the largest crohn's disease
dataset and ulcerative colitis dataset by a two-step approach,
exhaustively searching for epistasis with dense markers and
Frontiers in Genetics | www.frontiersin.org 28
exploiting marker dependencies. Du et al. analyzed the
genome-wide splicing data in 16 cancer types with normal
samples by a network-based and modularized approach and
captured the pan-cancer splicing and modularized perturbation,
which support the dominant patterns of cancer-associated
splicing. Zhao et al. assessed the prognostic value of
Apolipoprotein E and explored the potential relationship with
tumor progression in colorectal cancer (CRC), by collecting the
microarray data from the Gene Expression Omnibus and
exploring the gene with prognostic significance from the
TCGA database. Tang et al. proposed an effective data
integration framework HCI (High-order Correlation
Integration) to realize high-dimensional data feature extraction
with extensive flexibility and applicability on sample clustering
with RNA-seq data on bulk and single-cell levels. Chang et al.
identified new susceptibility genes and causal sub-networks in
schizophrenia by an integrated network-based approach, and
reported the N-methyl-D-aspartate receptor interactome highly
targeted by multiple types of genetic risk factors. Wang and Liu
recognized potential diagnostic biomarkers of Alzheimer's
disease by integrating gene expression profiles from six brain
regions in a machine-learning manner and validating marker
genes in multiple cross-validations and functional enrichment
analyses. Xu et al. provided an effective way for the annotation of
nuclear non-coding and mitochondrial genes and the
identification of new steady RNAs, making a pan RNA-seq
analysis to suggest the ubiquitous existence of both 5' and 3'
end small RNAs.
STUDIES BASED ON THE GUT
METAGENOME AND HOST ‘OMICS FOR
COMPLEX DISEASES DIAGNOSIS AND
TREATMENT

Yang et al. presented a new pathogen detection and strain typing
method UltraStrain for Salmonella enterica based on whole
genome sequencing data, which includes a noise filtering step,
a strains identification step on the basis of statistical learning,
and a final refinement step. Tan et al. conducted comprehensive
and systematic experiments, including in vitro genetic
assessments and an in vivo acute toxicity study, aiming to
study safety issues associated with Bacteroides ovatus ELH-B2.
Qiu et al. set up an in-silico model emerging or re-emerging
dengue virus (DENV) based on possible antigenicity-dominant
positions of envelope (E) protein, so that, the DENV serotyping
may be re-considered antigenetically rather than genetically.
Zhang, B. et al. collected and re-analyzed the published fecal
16S rDNA sequencing datasets to identify biomarkers to classify
and predict colorectal tumors by random forest method, and the
trained random forest model has good AUC performance for
CRC when combined all samples, although the predication
performed poorly for advance adenoma and adenoma.
February 2020 | Volume 10 | Article 1343
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STUDIES BASED ON CONDITIONAL
GENOTYPE-PHENOTYPE DETECTION
WITH DEEP LEARNING OR OTHER
BRAIN-LIKE ARTIFICIAL INTELLIGENCE
(AI) TECHNOLOGIES

Luo et al. proposed a manifold learning-based method to predict
disease-gene associations by assuming that the geodesic distance
of related disease-gene pairs should be shorter than that of non-
associated disease-gene pairs. Tkachev et al. proposed a heuristic
technique termed FLOating Window Projective Separator
(FloWPS) for data trimming with SVM and applied it for
personalized predictions based on molecular data. Wang, W. et
al. developed a new multiple-instance leaning algorithm derived
from AdaBoost and accessed this algorithm on annotating
proteins that bind DNA and RNA. Xiao et al. proposed a
method called BPLLDA to predict lncRNA-disease associations
from a heterogeneous lncRNA-disease association network
assuming the association paths on network with fixed lengths.
Zou et al. used decision tree, random forest and neural network
to predict diabetes mellitus by the hospital physical examination
data, and the best prediction could be achieved by random forest
after dimensionality reduction by principal component analysis
and minimum redundancy maximum relevance.

Guo et al. proposed a new approach SGL-LMM for mining
multivariate associations of quantitative traits by combining
sparse group lasso and linear mixed model together, which can
consider confounding effects and groups of SNPs simultaneously.
Zhang, W. et al. developed a new calling method for differentially
expressed genes as DECtp by integrating tumor purity
information into a generalized least square procedure and a
follow-up Wald test. Cheng et al. utilized a Mendelian
randomization (MR) to test the influence of body mass index
(BMI) on the risk of T2DM based on GWAS data, validating the
causal effect of high BMI on the risk of T2DM. Feng et al. utilized
one analysis procedure of feature selection and classification on
both transcriptomes and methylomes cancer data, suggesting age
should be an essential factor rather than confounding factor in
the training and optimization of disease diagnosis model.
Frontiers in Genetics | www.frontiersin.org 39
Qin et al. developed a new joint gene set analysis statistical
framework, aiming to improve the power of identifying enriched
gene sets by integrating multiple similar disease datasets when
the sample size is limited. Shi, Q. et al. proposed a new
computational framework of “Multi-view Subspace Clustering
Analysis” to capture the underlying heterogeneity of samples
from multiple data types, by first measuring the local similarities
of samples in the same subspace and then extracting the global
consensus sample patterns. Jiang, P. et al. developed a new
variants mining algorithm based on trio-based sequencing
data, and applied this method on a Ventricular septal defect
(VSD) trio and identified several genes and lncRNA highly
related to VSD.

Finally, we sincerely thank the reviewers for their great efforts to
ensure the high quality of all contributing articles, and we hope
this Research Topic can attract wide attention in these topics of
precision medicine based on machine learning and omics data.
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Identifying differentially expressed genes (DEGs) between tumor and normal samples is

critical for studying tumorigenesis, and has been routinely applied to identify diagnostic,

prognostic, and therapeutic biomarkers for many cancers. It is well-known that solid

tumor tissue samples obtained from clinical settings are always mixtures of cancer

and normal cells. However, the tumor purity information is more or less ignored in

traditional differential expression analyses, which might decrease the power of differential

gene identification or even bias the results. In this paper, we have developed a novel

differential gene calling method called DECtp by integrating tumor purity information into

a generalized least square procedure, followed by the Wald test. We compared DECtp

with popular methods like t-test and limma on nine simulation datasets with different

sample sizes and noise levels. DECtp achieved the highest area under curves (AUCs) for

all the comparisons, suggesting that cancer purity information is critical for DEG calling

between tumor and normal samples. In addition, we applied DECtp into cancer and

normal samples of 14 tumor types collected from The Cancer Genome Atlas (TCGA)

and compared the DEGs with those called by limma. As a result, DECtp achieved more

sensitive, consistent, and biologically meaningful results and identified a few novel DEGs

for further experimental validation.

Keywords: differentially expressed genes, tumor purity, generalized least square, the Wald test, generalized least

square

INTRODUCTION

Nowadays, RNA sequencing (RNA-Seq) has become a routine for measuring RNA expression
levels (Mortazavi et al., 2008; Wang et al., 2009). Due to continuous improvements on sequencing
accuracy and reduction on costs, this technology has revolutionized most fields in life sciences
especially clinical medicine (Berger et al., 2010). Among many goals of RNA-Seq study, identifying
differentially expressed genes (DEGs) between usually two conditions is probably the most
common (Ritchie et al., 2015). Generally speaking, DEG analysis performs statistical analysis
to discover significant gene expression changes between the experimental and control groups,
which are critical for explaining transcriptomic changes incurred by experimental conditions. For
instance, DEGs between normal and tumor samples help to study tumorigenesis, and have been
routinely applied to identify diagnostic, prognostic, and therapeutic biomarkers for many cancers
(Wu et al., 2013).
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Over the past years, a number of statistical methods
and softwares have been developed for identifying DEGs by
considering the distributions of gene transcript abundance
measured by read counts, Fragments Per Kilobase of transcript
per Million (FPKM) (Trapnell et al., 2012), RNA-Seq by
Expectation Maximization (RSEM) (Li and Dewey, 2011), and so
on. Gene read counts usually follow a multinomial distribution,
which can be approximated by a Poisson distribution, if they are
independently sampled from a population with fixed fractions
of genes. Consequently, the Poisson distribution has been
widely assumed to test for differential expressions (Marioni
et al., 2008; Wang et al., 2010). However, there is only one
single parameter in the Poisson distribution, so the resulting
statistical test does not control for the type-I error (Robinson and
Smyth, 2007). To solve this so-called over-dispersion problem,
the negative binomial (NB) distribution has been proposed
to model count data (Anders and Huber, 2010; Zhou et al.,
2011; McCarthy et al., 2012; Wu et al., 2013). Alternatively,
the read counts can be converted to log2 transformed counts
per million, for which the Bayes moderated Student’s t-test and
linear modeling methods like limma can be used. For instance,
limma used a linear model to assess differential expression
from microarray or RNA-Seq technologies by using multifactor
designed experiments. It has a few advantages include stable
on even small sample sizes and good in complex experiments
with a variety of experimental conditions and predictors
(Ritchie et al., 2015).

Differential expression analyses have been widely performed
in cancer (Liang and Pardee, 2003). It is known that clinical
tumor samples contain not only tumor cells but also tumor-
associated normal epithelial and stromal cells, immune cells, and
vascular cells (Joyce and Pollard, 2009), which play important
roles in tumor growth, disease progression, and drug resistance
(Hanahan and Weinberg, 2011; Junttila and de Sauvage, 2013).
As a result, tumor purity, i.e., the percentages of cancer cells
in solid tumor samples, is critical in genomic, transcriptomic,
and methylation analyses in cancer (Aran et al., 2015; Zheng
et al., 2017). For example, we recently developed InfiniumPurify
by integrating tumor purity into differential methylation (DM)
analysis, which significantly improved the accuracy of the DM
identification (Zheng et al., 2017). In addition, we developed
a rigorous statistical method InfiniumClust to perform sample
clustering on DNA methylation data using tumor purity,
which also exhibited superior accuracy (Zhang et al., 2017).
There are also a few attempts to account for tumor purity
in differential expression analysis (Wang et al., 2015; Shen
et al., 2016) by adding it as an additive or semi-additive
covariate in linear models (Aran et al., 2015). For example,
contamDE proposed a few statistical models to call differential
genes between unmatched or matched normal and tumor
samples, in which the mean expression for a “contaminated”
tumor cell sample follows a semi-additive pattern (Shen et al.,
2016). Briefly, let wi be the proportion of tumor cells in
the ith tumor sample. For the jth gene, contamDE models
the distribution of reads from normal cell samples as Nij ∼

NB(kiµj,φj) and those from “contaminated” tumor samples as
Tij ∼ NB(ki

′
(

µj + wiδj),φj

)

, where NB denotes the negative

binomial distribution, ki and k
′

i are normalization size factors
for normal and tumor samples, µj and µj + wiδj are the
adjusted means for normal and tumor samples, and φj is the
dispersion. The DE is obtained by testing if δj is 0. UNDO is
designed for deconvoluting array-based gene expression data
of tumor samples (Wang et al., 2015), which models the
mixing proportion of pure tumor and stroma cells as latent
variables. However, tumor purity has multiplicative effects on
gene expression, which might not be additive (Zheng et al.,
2017). Thus, it is inadequate to simply treat tumor purity
as an additive or semi-additive covariate in computational
models.

To solve this problem, we have developed a novel method
called Differential Expression Caller by combining tumor
purity information (DECtp) to identify DEGs between tumor
and normal samples. DECtp models expression profiles of
tumor samples as a mixed Gaussian distribution, where
the mixing proportion is tumor purity. With known or
estimated tumor purity, differential expressions are then
called based on a generalized least square procedure followed
by the Wald test. We performed analyses on extensive
simulated data with different sample sizes and noise levels
and TCGA data of various cancers. DECtp achieves more
accurate, consistent, and biologically meaningful results than
those from other state of the art methods, such as limma
(Ritchie et al., 2015).

MATERIALS AND METHODS

Supposing that the input data consists of expression profiles
of N genes on n0 normal and n1 cancer samples, we first
transform the expression values on each sample group (by log2
transformation, quantile normalization, and so on) such that they
will follow a Gaussian distribution. This transformation allows
for the introduction of a linear model with Gaussian noise in
subsequent steps.

Specifically, for any gene i, let Xi be its transformed
expressions on all normal samples. We assume that Xi ∼

N(mi, σ
2
i ), where mi and σ 2

i represent the mean and variance
of Xi. Similarly, let Yi be the transformed expressions on
“pure” cancer samples for gene i, which also admits a normal
distribution. Without loss of generality, we assume Yi = Xi + δi,
where δi represents the difference between cancer and normal
samples. Clearly, δi is a random variable following a normal
distribution with mean µi and variance τ 2i , i.e., δi ∼ N

(

µi, τ
2
i

)

.
Thus, differential genes could be inferred by the hypothesis test:
H0 :µi = 0. However in practice, the expression profile of
“pure” cancer sample Yi is not observed. Instead, the observed
expressions of solid tumor samples are always a mixture of
expressions on cancer and normal cells.

Let Y
′

i be the expression profile of gene i on observed tumor
samples. For a tumor sample with known purity λs estimated by

existing methods, we use Y
′

is to denote the expression of gene i on

sample s. Then Y
′

is can be modeled by a linear formula: Y
′

is =

(1− λs)Xis + λsYis = (1− λs)Xis + λs (Xis + δis) = Xis + λsδis,
so Yis

′ ∼ N(mi + λsµi, σ
2
i + λ2s τ

2
i ). Clearly, the gene expression
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variance of tumor samples are greater than or equal to that of
normal samples since σ 2

i + λ2s τ
2
i ≥ σ 2

i , and bias can arise when

directly testing themean difference betweenXis and Y
′

is due to the
influence of tumor purity. It is worth noting that tumor purity has
multiplicative (instead of additive) effect (Zheng et al., 2017) on
differential expression under this assumption. So previous DEG
calling method modeling tumor purity as an additive covariate
might be inappropriate (Aran et al., 2015).

To solve this problem, we propose a simple linear model and a
generalized least square procedure by taking Xis and Y

′

is as input
data. Specifically for gene i, the linear regression model is trained
as follows: Zi = Wβi + ǫi, where

Zi =































Xi1

Xi2

...
Xin0

Y
′

i1

Y
′
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Y
′

in1
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.

Here, the (n0 + n1) × 1 vector Zi represents expressions from
normal and tumor samples with the first n0 entries from
normal samples, and the last n1 entries from tumor samples. In
addition, W is a matrix of dimensionality (n0 + n1) × 2 with
the first column consisting of all 1 s and the second column
consisting of n0 0 s and n1 tumor purities (i.e., λ1, λ2, . . . , λn1 )
for respective tumor samples. βi is the linear model parameter to
be determined, and ǫi is the random error. The objective is to test
H0 :µi = 0.

The parameters can be fitted by a least square

procedure to minimize
∣

∣Zi − (Wβi + ǫi)
∣

∣

2

2
. As a result,

β̂i = (WTW)
−1

WTZi , HZi where H = (WTW)
−1

WT ,

and var
(

β̂i

)

= Hvar (Zi)H
T . The variance of Zi is

[

6

0

0

6
′

]

,

where6 =







σ 2

0
0

0

. . .

0

0

0
σ 2







n0×n0

and 6
′
=









σ
′2

0
0

0

. . .

0

0

0

σ
′2









n1×n1

.

So, var
(

β̂i

)

= Hvar (Zi)H
T = [H1 H2]

[

6

0

0

6
′

] [

HT
1

HT
2

]

=

H16HT
1 + H26

′HT
2 , then var(β̂i) can be obtained with σ 2

and σ
′2, the residual variances from normal and cancer groups

respectively. Given estimated β̂i, regression residuals are now
ǫ̂ = Zi − Wβ̂i, and the residual variances from normal and

cancer groups are obtained as σ 2 =

∑n0
i=1 ǫ̂2i
n0−2 , σ

′2 =

∑n0+n1
i=n0+1 ǫ̂2i

n1−2 .
We apply a shrinkage estimator similar to Cui et al. (2005) on

the estimated cancer/normal variances, and obtained σ̃ 2 and σ̃
′2.

The procedure shrinks all residual variances to the genometeric

mean and stabilizes the estimates. After getting β̂i and var
(

β̂i

)

,

the Wald test statistics for testing H0 :µi = 0 is calculated

as ti =
β̂i[2]

√

var(β̂i)[2,2]

, where β̂i[2] is the second item of β̂i and

√

var(β̂i)[2,2] is the element of the matrix

√

var(β̂i) at indices

[2,2]. Finally, we assume theWald test follow a t distribution with
n0 + n1− 2 degrees of freedom, and the p-values can be obtained
accordingly. False discovery rate (FDR) can be estimated using
established procedures such as the Benjamini-Hochberg method
(Benjamini et al., 2001).

RESULTS

We applied and compared DECtp with canonical DEG calling
algorithms like limma on a few simulated datasets and cancer
datasets downloaded from The Cancer Genome Atlas (https://
cancergenome.nih.gov/). Before stepping into detailed analyses,
it is insightful to first examine the relationship between gene
expression and tumor purity.

Correlation Between Gene Expression and
Tumor Purity
Through extensive analyses of the TCGA data, we discovered
that the expression levels of many genes have strong correlation
with tumor purity in cancer and the correlation increases with
the difference of gene expressions between cancer and normal
samples. Specifically, the tumor purities were downloaded
from https://zenodo.org/record/253193, which were calculated
by InfiniumPurify (Zhang et al., 2015; Zheng et al., 2017).
InfiniumPurify for purity estimation is based on an important
observation from the Illumina Infinium 450 k methylation data:
the number of probes with intermediate methylation level is
significantly greater in tumor samples than that in normal
samples. InfiniumPurify first identifies a number of informative
differentially methylated CpG sites (iDMCs) from cancer-normal
comparison by using a non-parametric Wilcoxon Rank-Sum test
and ANOVA analysis for each probe, and then estimates purity
from the probability density of methylation levels of iDMCs.

Expression Levels of Many Genes Have Strong

Correlation With Tumor Purity
We used Prostate adenocarcinoma (PRAD) in TCGA as an
example to illustrate the correlation between gene expression
and tumor purity. Specifically, after quantile-normalizing the
expression profiles (quantified by RSEM, Li and Dewey, 2011) for
tumor samples, the purity value of each sample was estimated
by InfiniumPurify (Zheng et al., 2017). For each gene, we
computed the Spearman correlation between expression levels
and tumor purities across tumor samples (termed as “Observed”
in Figure 1A). From there we obtained 20440 correlation values,
each for a gene. As a comparison, we also randomly shuffled the
purities of all tumor samples, and used the shuffled tumor purities
as input to compute the correlation (termed as “Random” in
Figure 1A). As can be seen from Figure 1A, the distribution of
observed correlations has a longer right tail, demonstrating that
there are much more genes with high correlation with tumor
purity than by random. In particular, we identified 1252 genes
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FIGURE 1 | Correlations between tumor purities and gene expressions for PRAD: (A) Distributions of Spearman correlations between gene expression and observed

or randomly shuffled tumor purities across tumor samples; (B) Observed correlations, grouped by t-test statistics; (C) t-test statistics, grouped by observed

correlations.

with absolute observed correlation over 0.5 (accounting for 6.2%
of all genes), while this number is close to 0 by random.

Correlation Between Gene Expression and Tumor

Purity Increases With the Difference of Gene

Expressions Between Cancer and Normal Samples
We identified genes highly correlated with tumor purity. What
are these genes? To answer this question, we studied the
relationship between previously calculated correlations and
gene expression changes between tumor and normal samples.
Specifically, we first conducted a t-test on the normalized
expression profiles of each gene between tumor and normal
samples, and then divided all genes into 10 subsets by the
test statistics. We then plotted in Figure 1B the distribution
of observed correlations (between tumor purity and gene
expression) in each group. As can be seen, the mean observed
correlation in each group increases with the t-test statistics
(measuring the extent of gene expression difference between
tumor and normal samples). Similarly, we also classified the
genes into 10 subgroups according to their correlations with
tumor purity and observed a positive correlation between the
t-test statistics and group labels (see Figure 1C).

We conducted the above analyses across 14 cancer types
with sufficient normal tissues (each cancer type with over
10 normal samples) including Bladder Carcinoma (BLCA),
Breast Invasive Carcinoma (BRCA), Esophageal Carcinoma
(ESCA), Head-Neck Squamous Cell Carcinoma (HNSC), Kidney
Chromophobe (KICH), Kidney Renal Clear Cell Carcinoma
(KIRC), Cervical Kidney renal papillary cell carcinoma (KIRP),
Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma
(LUAD), Lung Squamous Cell Carcinoma (LUSC), PRAD,
Stomach Adenocarcinoma (STAD), Thyroid Cancer (THCA),
and Uterine Corpus Endometrial Carcinoma (UCEC). The top
1000 genes with the largest correlations for each cancer type were
shown in Supplementary Table S1. The results were similar for
all cancers, which could be well explained by our linear regression
model on gene expression (see Materials and Methods). When

there are significant differences between tumor and normal
samples (i.e., δis is big), the gene expressions are more correlated
with purities. However, when there is no difference between
tumor and normal samples (i.e., δis is close to 0), the gene
expressions will have a low correlation with purities. These
results revealed that tumor purity will bias differential expression
analysis if not correctly accounted for, and our method was
motivated from this observation.

Analyses on Simulated Data
To evaluate DECtp and compare it with other methods, we
simulated a few datasets resembling true biological scenarios with
different sample sizes and noise levels.

Simulated Datasets
We first downloaded from TCGA the LUAD gene expression
data (in RSEM values) consisting of 517 tumor and 59
matched normal samples. Each RSEM value was transformed
to log2 (RSEM + min), where min is the minimum non-
zero RSEM value. The log2-transofmred data was quantile
normalized, which was then used to generate simulation
data.

It is worth mentioning that our purpose is to call DEGs
between pure normal and pure tumor samples. However, both
kinds of samples are infeasible to retrieve in reality, thus we
adopted a compromised strategy as follows:

(1) For each gene i, we simulated expression profile of “pure”
normal sample j as Xij ∼ N(mi, σ

2
i ), where mi is the mean

expression of gene i across all 59 LUAD normal samples, and
σ 2
i is their variance.

(2) Similarly, we simulated expression profile of “pure” tumor

sample j as Yij ∼ N(m
′

i, σ
′2
i ), where m

′

i is mean expression

across 517 LUAD tumor samples and σ
′2
i is the variance.

Since the two expression profiles (“pure” normal and “pure”
tumor) are normally distributed, we assumed that gene i is a

true DEG if
∣

∣

∣
mi −m

′

i

∣

∣

∣
≥ δ, where δ is a predefined threshold.
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(3) We generated tumor purity values λj uniformly from [0.05,

0.95]. Plugging in Xij, Yij and λj into the formula Y
′

ij =

λjYij + (1 − λj)Xij, we simulated Y
′

ij as the observed

expression profile of sample j at gene i, which is a mixture
of expression profile from “pure” tumor and “pure” normal
samples.

We then called DEGs between simulated pure normal (e.g.,

Xij) and mixed (e.g., Y
′

ij) samples and compared them with the

underlying true DEGs to assess accuracy. Because the true mean
expression levels are known, we can construct a gold standard
for comparison. For a gene, if the absolute difference of the true

expression profiles between normal and pure tumor samples is
greater than a threshold, it is defined as a DEG. The simulations
were repeated for δ = 1, 2, 3, which roughly provides proportions
of DEGs at 38%, 16%, and 8% of total number of genes. We also
tested the performance of the algorithms with varied sample sizes
from 10, 50, and 100, respectively.

DECtp Outperforms Other Methods in Simulated

Datasets
We performed DEG calling on the 9 simulated datasets using
DECtp and a few popular methods including t-test, limma.
The receiver operating characteristic (ROC) curve analysis

FIGURE 2 | Comparison of DE detection accuracies of the three methods including t-test, limma and DECtp on 9 simulated datasets with sample sizes 10, 50, and

100 and cutoffs (δ) 1, 2, and 3.
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(Davis and Goadrich, 2006) using truth DEGs as a gold standard
was performed to compare the performances of the methods
(see Figure 2). Compared with traditional DEG calling methods,
DECtp takes purity as an experimental design factor in a linear
model. So we added to tumor purities a noise of the Gaussian
distribution with mean 0 and standard deviations 0.1 to test
the robustness of our method against purity estimation. It is
clear that DECtp achieved the best AUCs in all simulated
datasets even if estimated tumor purities are biased. In addition,
limma and t-test have very similar performances, which is not
surprising since it is known that they are similar for normal
distributed data (Murie et al., 2009). Moreover, the performances
of all methods became better when the thresholds (δ) or
sample sizes increase as expected. Overall, these real data-based
simulation results demonstrate the robustness and accuracy of
DECtp in DE detection when tumor purity is a confounding
factor.

Analyses on Real Data
With the success of DECtp on simulated data, we next tested
DECtp on real TCGA tumor data on 14 cancer types including
BLCA, BRCA, ESCA, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, LUSC, PRAD, STAD, THCA, and UCEC respectively.
There are overall 6289 tumor and 632 normal samples. For
all cancers, we estimated tumor purities by InfiniumPurify
(Zheng et al., 2017).

The Top Differential Genes Identified by DECtp Is

More Associated With Tumor Purity Than Those of

Limma
To study the correlation between tumor purity and top ranked
differential genes, we first ranked genes by their false discovery
rate calculated by DECtp or limma. We then calculated the
average absolute correlation between tumor purity and top
n ranked genes. In Figure 3A, we plotted the average absolute
correlation against n (0 ≤ n ≤ 20000) for BLCA and PRAD.
Similar to previous findings, we found that top differentially
expressed genes are more correlated with purity than other genes
for both DECtp and limma. The trend is clearer for DECtp,
indicating that it is better in identifying tumor purity-associated
differential genes. The observation holds for all 14 cancer types
(see Supplementary Figure S1).

We also examined the overlaps of DEGs (at FDR 0.001)
called from the t-test, limma and DECtp. Figure 3B shows the
overlapping Venn diagrams for BLCA and PRAD respectively.
For BLCA, the t-test identified 5,689 DEGs, among which
4,231 (74%) are overlapped with those identified by DECtp.
limma identified 5,393 DEGs, among which 4180 (78%) are
overlapped with those identified by DECtp. Similarly for PRAD,
the t-test identified 9,223 DEGs, among which 8696 (94%) are
overlapped with those identified by DECtp. Limma identified
8682 DEGs, among which 8271 (95%) are overlapped with
DECtp. The overlaps of DEGs for other cancer types were

FIGURE 3 | (A) Scatter plot of the number of top-ranked genes versus the average absolute correlations for BLCA and PRAD; (B) Overlaps of DEGs called from

t-test, limma and DECtp for BLCA and PRAD; (C) Inter-cancer correlations of test statistics by limma and DECtp.
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shown in Supplementary Figure S2. In summary for all tested
cancer types, there are 114842 DEGs overlapped between DECtp
(with an overall of 151327 DEGs) and t-test (with an overall
of 136918 DEGs), 107621 DEGs overlapped between DECtp
and limma (with an overall of 121378 DEGs), 112772 DEGs
overlapped between t-test and limma, suggesting that the three
methods are generally consistent. We also have downloaded
RNA-seq count data of six cancer types from TCGA, including
BLCA, BRCA, HNSC, LUAD, LUSC, and PRAD to investigate
the overlaps of DEGs called from DECtp, limma and edgeR.
To have a fair comparison, we selected the same tumor and
normal samples from the two different data type (count vs.
RSEM value) when using DECtp and edgeR (332 normal

samples versus 2858 tumor samples). The overlaps of DEGs
for the three methods were shown in Supplementary Figure S3.
It is shown that DEGs called from the three methods have
rather significant overlap for the six cancer types. To be
specific, for the six cancer types, limma identified 55593
DEGs, edgeR identified 59860 DEGs, and DECtp identified
71115 DEGs, and 44532 DEGs (accounting for 62.6%) in
DECtp are overlapped with those identified by limma and
edgeR.

Next, we examined the Pearson correlation among test
statistics for different cancer types. Even though different cancer
types have distinct etiologies, they might still share many
genomic and transcriptomic features. We plotted in Figure 3C

FIGURE 4 | A few exemplified DEGs only detected by DECtp in BRCA. Left panel shows log2 expression profiles distributions for tumor and normal samples. Middle

panel shows Spearman correlations between log2 expression profiles and tumor purities. Right panel shows log2 expression profiles for tumor and normal samples

after adjusting tumor purities.
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the correlation of test statistics among 14 cancer types using both
DECtp and limma. Overall the correlations for DECtp are higher
than those of limma.

DECtp Identifies New Biological Meaningful

Differential Genes
We selected several gene expression profiles from BRCA
to demonstrate the confounding effect of tumor purity on
differential expression analysis. As shown in Figure 4, the
left panel displays the boxplots of three genes expression
profiles including IRF8, CECR1 and IL10RA for tumor and
normal samples. It is clear that the p-values are not statistically
significant for limma, i.e., the p-value is 0.872 for IRF8, 0.959
for CECR1, and 0.867 for IL10RA. The middle panel shows
the scatter plot of expression profiles versus InfiniumPurify
purities, in which the correlations are all very high, especially,
−0.68 for IL10RA. The high correlation indicates that the large
within group variance of cancer samples is mostly caused by
variation in purities for different samples, which dilutes the
signals of DEGs. And thus, after removing the effect of tumor
purity, we could observe significant difference on expressions
of these genes between normal and tumor groups. Indeed,
there are many studies linking these 3 genes to breast cancer
(Heinonen et al., 2008; Takaoka et al., 2008; Pavlides et al., 2010).
We also selected the differentially expressed genes detected
only by DECtp for the David enrichment analysis (at FDR
< 0.05). Supplementary Table S2 shows the enrichment of
DE genes for the 10 cancer types. We have obtained a lot
of biological functions. For example, GO:0006955∼immune
response is the most enriched Go term for BLCA and PRAD
with FDR being 6.161542e-29 and 1.45e-12, respectively.
Thus, by considering tumor purity, DECtp could identify
new biological meaningful DEGs for further experimental
validation.

DECtp Is More Consistent and Identifies More

Biological Meaningful Differential Genes Than Limma
It is known to us all that consistency is a very important
criteria to evaluate DE calling methods on real data. Generally
speaking, a robust method should obtain consistent results on
technical or biological replicates. To compare the consistency
of DECtp with that of limma, we randomly divided tumor
samples in each cancer into two groups, and then detected
DEGs by comparing the two tumor groups with normal samples,
respectively. This process was repeated 50 times. Figure 5A

shows the overlapping odd ratios of the top 500 DE genes for all
14 cancers. Clearly, DECtp detected more overlapped DE genes
than those of limma in most cancer types, which suggests that it
is more consistent. We then examined the biological implications
of the DE calling results. To have a fair comparison, we selected
top 4,000 differential genes by the two methods, and tested their
enrichments with “PATHWAYS_IN_CANCER” from KEGG
(Kanehisa and Goto, 2000), which contains 328 biologically
meaningful genes. DECtp detects 110 genes compared to
80 genes by limma in UCEC. Figure 5B shows the –
log10 of the p-values for the enrichment of DEGs in
“PATHWAYS_IN_CANCER” by using the Chi-square test. As
can be seen, DECtp shows much smaller p-values compared
to limma in most cancer types, especially in UCEC and
BRCA. Overall, these results suggest that DECtp can detect
more enriched DEGs in “PATHWAYS_IN_CANCER” than
limma.

DISCUSSIONS

In this work, we systematically investigated the impact of tumor
purity as a confounding factor in differential expression analysis
(Aran et al., 2015; Wang et al., 2015; Shen et al., 2016), and
proposed a novel statistical model to adjust for tumor purity in

FIGURE 5 | Comparing the DEGs called by limma and DECtp: (A) The overlapping odd ratios of the top 500 DEGs between biological replicates for all 14 cancers;

(B) Enrichment p-values for top 4,000 differentially expressed genes within “PATHWAY-IN-CANCER” from KEGG.
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DE calling. We first examined the correlations between cancer
expression profiles and tumor purity, and found that DE genes
have high correlations with tumor purity. It is known that tumor
purity has multiplicative effect on gene expression, instead of
additive, so traditional DE callingmethods ignoring tumor purity
or modeling it as an additive covariate may present biased
results. To solve this problem, we proposed DECtp, in which
gene expression profiles from tumor samples are modeled as
mixed Gaussian distributions, where the mixing proportion is
tumor purity. DECtp achieved more robust and accurate DEGs
in both simulation and real data studies compared with canonical
methods like limma, which reinforces our previous claim that
tumor purity may confound genomic analyses if not correctly
accounted for (Zhang et al., 2017; Zheng et al., 2017).

DECtp is specifically developed to identify DEGs for gene
expression profiles admitting normal distributions. However,
RNA-sequencing technology has led to a rapid increase in gene
expression data in the form of counts. The counts data are usually
modeled by the negative binominal (NB) models, thus DECtp
cannot be directly applied. In the future, it will be interesting to
develop similar models using the NB distributions incorporating
tumor purity information.

Finally, we would like to point out that DECtp may have
a few further applications. Similar to differential gene analysis,
differential protein and differential methylation analyses have
also been widely performed between cancer and normal samples.
In principle, DECtp could be applied to any differential analysis
between cancer and normal samples given the data is Gaussian.
In addition, Aran et al. found that identifying co-expression
networks from genomics data without accounting for tumor

purity is problematic (Aran et al., 2015). So we believe that similar
principals proposed in this work can be applied to analyzing
gene co-expression. Moreover, tumor purity information might
be useful in identifying cancer associated expression quantitative
trait loci (eQTLs). However, it is out of the scope of this
study.
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Hundreds of genomic loci have been identified with the recent advances of
schizophrenia in genome-wide association studies (GWAS) and sequencing studies.
However, the functional interactions among those genes remain largely unknown.
We developed a network-based approach to integrate multiple genetic risk factors,
which lead to the discovery of new susceptibility genes and causal sub-networks, or
pathways in schizophrenia. We identified significantly and consistently over-represented
pathways in the largest schizophrenia GWA studies, which are highly relevant to
synaptic plasticity, neural development and signaling transduction, such as long-term
potentiation, neurotrophin signaling pathway, and the ERBB signaling pathway. We
also demonstrated that genes targeted by common SNPs are more likely to interact
with genes harboring de novo mutations (DNMs) in the protein-protein interaction
(PPI) network, suggesting a mutual interplay of both common and rare variants in
schizophrenia. We further developed an edge-based search algorithm to identify the
top-ranked gene modules associated with schizophrenia risk. Our results suggest that
the N-methyl-D-aspartate receptor (NMDAR) interactome may play a leading role in the
pathology of schizophrenia, as it is highly targeted by multiple types of genetic risk
factors.

Keywords: schizophrenia, GWAS, PPI Network, copy number variation (CNV), gene modules

INTRODUCTION

Schizophrenia is a psychiatric disorder with profound genetic heterogeneity. Genetic risk factors
of schizophrenia range in frequency from common to rare, including common single nucleotide
polymorphisms (SNPs), recurrent rare copy number variants (CNVs) and de novo mutations
(DNMs) (Friedman et al., 2008; International Schizophrenia Consortium, 2008; Vrijenhoek et al.,
2008; Walsh et al., 2008; Xu et al., 2008; Glessner et al., 2010; Mulle et al., 2010; Girard et al.,
2011; Levinson et al., 2011; Vacic et al., 2011; Kirov et al., 2012; Xu et al., 2012; Ripke et al., 2013;
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Sleiman et al., 2013; Fromer et al., 2014; Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014). Current
genome-wide association studies (GWAS) in schizophrenia have
reported 108 genome-wide significant loci, each of small effect
size (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). It has also been reported that at least a
quarter of the genetic contribution to schizophrenia risk can
be explained by common SNPs (Lee et al., 2012; Ripke et al.,
2013; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). On the other hand, multiple case-control
studies have identified rare CNVs of strong effect to the risk of
schizophrenia (International Schizophrenia Consortium, 2008;
Vrijenhoek et al., 2008; Walsh et al., 2008; Xu et al., 2008; Glessner
et al., 2010; Mulle et al., 2010; Levinson et al., 2011; Bergen et al.,
2012; Kirov et al., 2012; Szatkiewicz et al., 2014). In addition,
recent sequencing studies have shed new light on the genetic
basis of schizophrenia that DNMs play a prominent part in the
sporadic form of schizophrenia (Xu et al., 2012; Gulsuner et al.,
2013; Fromer et al., 2014; McCarthy et al., 2014).

In these studies, multiple pieces of evidence show that genetic
susceptibility of schizophrenia displays disruption across a group
of functionally related genes implying a complex genetic network
underlying schizophrenia (Glessner et al., 2010; Gulsuner et al.,
2013; Fromer et al., 2014). To explore the network structure
of schizophrenia, many network-based approaches have been
applied to different types of genetic variations (Bullmore and
Sporns, 2009; Gilman et al., 2012; Jia et al., 2012; Luo et al.,
2014a,b). Among the different types of gene networks, protein-
protein interaction (PPI) networks have been shown to be a
powerful tool to identify the disease-associated modules and
pathways, and reveal the biological significance of diverse
genetic variations (Barabasi et al., 2011; Jia et al., 2011; Chang
et al., 2013; Han et al., 2013; International Multiple Sclerosis
Genetics Consortium, 2013; Leiserson et al., 2013; Luo et al.,
2014b; Zhou et al., 2014). For example, instead of pursuing
genome-wide significance, two GWA studies have successfully
identified disease-associated gene modules, which are comprised
of many closely interacting genes showing nominal significance,
by integrating PPI networks analysis into GWAS (Han et al.,
2013; International Multiple Sclerosis Genetics Consortium,
2013). However, it is still a challenge to conduct a comprehensive
PPI network analysis, in particular by incorporating different
types of genetic factors from different tissue types.

In the present study, we established a network-based approach
to investigate the gene modules and pathways underlying
schizophrenia, and to explore the inherent associations among
multiple genetic risk factors. Our analysis uncovered significantly
enriched association signals in pathways relevant to synaptic
plasticity, neural development and signaling transduction such as
long-term potentiation, neurotrophin signaling pathway, ERBB
signaling pathway and MAPK signaling pathway, suggesting
those play contributory roles in the pathophysiology of
schizophrenia. We also demonstrated that genes targeted by
common SNPs are more likely to interact with genes carrying
DNMs. Finally, we identified a group of interacting genes
showing a significant combined effect to the genetic susceptibility
of schizophrenia.

MATERIALS AND METHODS

GWAS Data Sets
Gene-level P values were calculated based on SNP P values
from the largest GWAS conducted by Schizophrenia Psychiatric
Genome-Wide Association Study Consortium (PGC), which
recruited 36,989 cases and 113,075 controls (PGC phase 2,
abbreviated as PGC2) (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). The association results
were downloaded from the website of PGC1. As a control, we used
the GWAS data of Crohn’s disease (CD) from the International
IBD Genetics Consortium2 including a total of 3,685 cases and
5,968 controls (Jostins et al., 2012).

Gene-Level Associations
Gene-level associations were calculated by VEGAS (Liu et al.,
2010). VEGAS performs Monte-Carlo simulations from the
multivariate normal distribution based on the LD pattern from
reference populations and assigns an estimated P value to
each gene. SNPs located within 50 kb upstream and 50 kb
down stream of gene boundaries are used in the analysis in
order to capture regulatory regions and SNPs in LD. Previous
studies suggested P-value < 0.05 as the threshold of gene-level
significance (Liu et al., 2010; International Multiple Sclerosis
Genetics Consortium, 2013). However, since the number of
genome-wide significant loci from the PGC2 study are much
more than from the previous studies as a result of study size
differences, the gene-level significance at both P-value < 0.01
(2501 significant genes) and P-value < 0.05 (4698 significant
genes) was evaluated in this study. Genes located in the MHC
region (25–34 mb on chr6) were excluded in the analysis.

Rare Variations Curation
In this study, we used the sequencing results from previous
studies (Xu et al., 2012; Gulsuner et al., 2013; Fromer et al.,
2014) and annotated the variants by wANNOVAR3 (Chang and
Wang, 2012). We used SIFT and Polyphen2 (HDIV) scores
compiled by dbNSFP2 database as well as the AVSIFT score based
on annotations at http://sift.bii.a-star.edu.sg to assess whether
the missense variants are benign or damaging (Supplementary
Table S1).

For the CNVs, we collected the genes disrupted by
CNVs reported in large case-control studies of schizophrenia
(Supplementary Table S2).

Network Analysis
Schematic overview of the network analysis pipeline in this study
was provided in Supplementary Figure S2.

The PPI Network was constructed based on the database
iRefindex, which collected the protein interactions from a
number of primary interaction databases (Razick et al., 2008).
In order to control the rate of false positive interactions, we
selected only those interactions that were supported by at least

1http://www.med.unc.edu/pgc/downloads
2http://www.ibdgenetics.org
3http://wannovar.usc.edu
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FIGURE 1 | (A,B) Comparison of the number of nodes between the real network and random networks. Connectedness of the LCC based on gene-wise significant
genes (Pgene < 0.01) from PGC2 study. The background distributions are generated by the number of nodes and edges of LCCs from 10,000 random simulations. P
values are estimated by the proportion of LCCs from 10,000 random networks with more nodes or edges than the real network. Both node and edge numbers of
the real data are significantly larger than random simulations (Pnode = 0.0012; Pedge = 0.0003).

two independent PubMed literatures. A high-confidence network
with 9,090 proteins (nodes) and 25,864 interactions (edges) was
subsequently built for downstream analyses.

We next mapped the significant genes (P < 0.05) identified
by VEGAS to the PPI network, and obtained a sub-network
comprised of the significant genes and the interactions among
them. The sub-network contains several connected components
and many singletons. We then extracted the largest connected
component (LCC) of the sub-network for downstream analysis.

To test whether the size of the LCC is larger than what would
be expected by chance, we randomly assigned P values of the same
network and generated the simulated LCCs. We repeated this
procedure 10,000 times, and use these simulations as background
to estimate the significance of the LCCs generated from the real
data (Figure 1 and Supplementary Table S3). To investigate the
biological significance of the genes in the LCC, we carried out
a gene function enrichment analysis against the KEGG database
using DAVID (Supplementary Table S4) (Huang et al., 2007).

Gens (GWAS Edge-Based Network
Search) Algorithm
Gens algorithm is modified based on a previously published
node-based network search method (Ideker et al., 2002; Chuang
et al., 2007; Jia et al., 2011).

Gens first assigns a weight to each edge of the network
calculated by the gene-wise P values and mRNA expression
correlations of interacting gene pairs (Supplementary Data
Sheet 1). The weight of each edge is defined as

Wij = Cij ×
√
Pi × Pj

where Cij denotes the Pearson Correlation Coefficient of
interacting gene pairs, gene i and gene j. Pi is the P value of Gene
i, Pj is the P value of Gene j.

The gene mRNA expression data were downloaded from Allen
Brain Atlas4

The weight of each edge was then converted into a Z score

Zij = φ−1 (1−Wij
)

where φ−1 represents the inverse normal cumulative distribution
function.

The score of gene module is defined as

Zm =
∑

Zij/
√

k

where k is the number of edges in the module.
The search procedure starts from the seed edge, neighborhood

interactors are added into the module if they can yield an
increment greater than Zm×r, r is set to 0.05 in this study.

To evaluate the likelihood of the detected modules were
identified by chance, Gens creates a background distribution
by scoring 100,000 randomly generated modules with the same
number of genes as the detected module. The significance is
calculated as the proportion of those random generated modules
whose Zm are larger than or equal to that of the identified
module. Gens also adjusted the identified module size by defining
a normalized module score

Zn = (Zm −mean (Zm (π)))
/
sd (Zm (π)),

4http://human.brain-map.org/static/download
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where Zm(π) represents the distribution of Zm generated by
100,000 simulations.

RESULTS

Enriched Pathways Underlying
Schizophrenia
We first used VEGAS to convert the SNP associations into gene-
level P values (Supplementary Figure S1). We next extracted
the sub-networks by genes with a significant gene-level P
value. The identified sub-networks are comprised of connected
components and singletons. Among the connected components,
the LCC contains most of the nodes and edges in the sub-
network, which may participate in potential pathways underlying
schizophrenia. To investigate the biological significance of the
LCCs, we carried out a gene function enrichment analysis on the
gene set of LCCs. We found significantly over-represented KEGG
pathways, which are highly relevant to synaptic plasticity, neural
development and signaling transduction such as long-term
potentiation, neurotrophin signaling pathway, ERBB signaling
pathway, MAPK signaling pathway, and T cell receptor signaling
pathway. Other enriched pathways include proteasome, ubiquitin
mediated proteolysis pathway and multiple cancers associated
pathways (Supplementary Table S4).

We further confirmed that the sizes of LCCs are significantly
larger than the LCCs generated by simulated random networks
(Figure 1 and Supplementary Table S3). For comparison, we
performed the same analysis on a CD cohort, the LCC size is also
larger than random simulations (Supplementary Table S3). This
result is consistent with a previous study pointing to a biological
plausibility that a set of genes coherently contribute to disease risk
through interactive co-function and co-regulation (International
Multiple Sclerosis Genetics Consortium, 2013).

Mutual Interplay of Common and Rare
Genetic Risk Factors in Schizophrenia
To examine whether genes belonging to the LCC network and
identified by GWAS data are more likely to interact with genes
harboring DNMs, We added the genes carrying potential DNMs
(frameshift insertions/deletions, missense variants, or nonsense
variants) and extracted the LCC based on the merged gene set.
The size of the LCC significantly increased, larger than 10,000
simulations of the above procedure based on the same number of
randomly selected genes. As a control, we tested the same number
of top significant genes from CD GWAS. The size of the resulting
LCC was not significantly different from random simulations.
Furthermore, we also found the size of LCC did not increase
significantly than random simulations if genes with silent de
novo variants in schizophrenia cases were included (Figure 2 and
Supplementary Table S5).

Causal Gene Modules Identified by
Network Search Algorithm
In an attempt to add some more understanding to the
schizophrenia genetic puzzle, we collected evidence for literature
reported genes that are known to be disrupted by CNVs in

schizophrenia patients (Supplementary Table S2), and added
them to the PPI network analysis. We subsequently derived the
LCC from genes targeted by SNPs, DNMs, and CNVs.

To pinpoint a small group of interactive genes with significant
combined/additive effect to schizophrenia, we developed an
edge-based network search algorithm (Gens) for detecting causal
gene modules in PPI networks (Supplementary Figure S2).
The results from gene-level significance at both 0.05 and 0.01
were highly consistent with each other demonstrating that
the top-ranked gene modules overlapped considerably in their
gene content. The shared genes between top-ranked modules
significantly pointed to the interactome of N-methyl-D-aspartate
receptor (NMDAR) genes including DLG1, DLG2, DLG4, ERBB4,
GRIN2A, and GRIN2B (Supplementary Figure S3). All of
those genes exhibited strong associations with schizophrenia
susceptibility (DLG1, rs436564, P = 8.97 × 10−4; DLG2,
rs12294291, P = 4.90 × 10−7; DLG4, rs222854, P = 3.76 × 10−5;
ERBB4, rs16846200, P = 1.62 × 10−5; GRIN2A, rs9922678,
P = 6.72 × 10−9; GRIN2B, rs11757887, P = 8.81 × 10−7;
Supplementary Figure S4) with GRIN2A, reaching genome-wide
significance in the PGC2 study.

Some of the NMDAR genes are also targeted by rare variations.
For example, DLG1 and GRIN2A have been reported to be
targeted by DNMs; DLG1, DLG2, and ERBB4 have been reported
to be targeted by CNVs. To further explore the risk genes from
the PPI network, we next select all the gene modules with
P < 0.05 (P value calculated by random simulation, see Methods)
and calculated the frequency of genes occurring in the selected
modules. Genes with the frequency above the upper quartiles
were defined as ‘top genes’. The ‘top genes’ was used to construct
a new PPI network of 152 nodes and 324 edges (Figure 3),
which reflects the most significant gene module derived from the
network analysis.

Enrichment analysis indicated that they are enriched in the
neurotrophin signaling pathway (P = 7.27 × 10−13), ERBB
signaling pathway (P = 1.84 × 10−7), long-term potentiation
(P = 5.37× 10−5), MAPK signaling pathway (P = 3.16× 10−5), T
cell receptor signaling pathway (P = 1.17 × 10−5), and pathways
in cancer (P = 4.87 × 10−8) to name a few (Supplementary
Table S6). Moreover, in this network, we found multiple genes
are connected with the core members of NMDAR interactome,
such as ATP2B2, DLGAP, MAP1A, NOS1, PTK2B, PTPRG and
PRKCA. Among them, ATP2B2 (rs9879311, P = 2.77× 10−6) and
NOS1 (rs2293052, P = 1.24× 10−6) exhibited strong associations
with schizophrenia risk in the PGC2 GWAS.

Beside the NMDAR interactome, we also found candidate
genes showing strong associations with schizophrenia risk in the
network, such as ANKS1B (rs10745841, P = 1.28× 10−6), CHUK
(rs975752, P = 2.52× 10−6), CNTN2 (rs16937, P = 8.69× 10−7),
CNTNAP2 (rs6961013, P = 4.80 × 10−5), CREB1 (rs2709410,
P = 4.07× 10−6), CREB5 (rs4722797, P = 7.58× 10−6; rs887622,
P = 8.79 × 10−6), CUL3 (rs11685299, P = 1.11 × 10−8),
EP300 (rs9607782, P = 6.76 × 10−12), GABBR2 (rs2304389,
P = 3.81 × 10−7), GNA13 (rs11868185, P = 4.44 × 10−5),
NCOR2 (rs2229840, P = 2.90 × 10−4), NTRK3 (rs146797905,
P = 3.35× 10−7; rs8042993, P = 7.84× 10−6), PAK2 (rs10446497,
P = 5.30 × 10−6), PTK2 (rs4961278, P = 1.86 × 10−5), PTK2B
(rs2565065, P = 1.94× 10−7), PTN (rs3735025, P = 7.75× 10−9),
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FIGURE 2 | (A,B) Comparison of the number of nodes between the real network (damaging events) and random networks. (C,D) Comparison of the number of
nodes between the real network (benign events) and random networks. Connectedness of the LCC based on gene-level significant genes (Pgene < 0.01) from PGC2
study and genes harboring DNMs. Original size of LCC based on gene-wise significant genes constituting 402 nodes and 620 edges. 635 genes harboring DNMs
are added to generate the new LCC. The background distribution is generated by 10,000 LCCs based on adding 635 random selected genes. P values are
estimated by the proportion of LCCs from random networks with more nodes or edges than the real network. As a control, we use the LCC generated by adding top
635 gene-level significant genes from Crohn’s disease as control. Dash line denotes the size of LCC generated by adding DNMs. Solid line denotes the size of LCC
generated by adding CD top genes. Adding DNMs significantly increased the size of LCCs (DNMs: Pnode = 0.0022, Pedge = 0.0032; CD: Pnode = 0.1941,
Pedge = 0.0678), while adding top CD genes did not. For comparison, we also added the synonymous and non-frameshift substitutions to generate the new LCC.
The size of new LCC is not significantly larger than random simulations (Benign substitutions: Pnode = 0.698, Pedge = 0.0571; CD: Pnode = 0.1922, Pedge = 0.1900).

PTPRF (rs11210892, P = 4.97 × 10−10), STK4 (rs6065777,
P = 5.92 × 10−6), TCF4 (rs9636107, P = 9.09 × 10−13).
Among them, CUL3, EP300, NCOR2, PTK2B, and PTPRF were
targeted by DNMs, and PAK2, PARK2 and PTK2 were targeted
by CNVs.

DISCUSSION

Given the heterogeneity and complexity of the genomic
landscape in schizophrenia, we employed multiple

network-based methods to reveal the instinct associations
among different types of genetic risk variants, resulting in the
discovery of novel gene modules and pathways underlying
schizophrenia (Supplementary Figure S2).

With the recent GWAS success measures in schizophrenia
uncovering 108 genome-wide significant loci (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014),
the genetic underpinning of this complex disease have begun
to unravel. However, a considerable number of nominally
significant loci are likely to be identified in future studies
through the analysis of larger sample sizes or the application of
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FIGURE 3 | PPI network visualization of the most significant gene module derived from the network analysis. Gene-level P values (<0.05) are colored from green to
red. Genes harboring DNMs and CNVs are shown as circles, and triangles respectively. Genes harboring both DNMs and CNVs are diamond shaped. Edges width
reflects the gene co-expression correlation between two connected nodes. Solid and dash line denote positive, and negative correlations respectively.

new and innovative methods. For example, the schizophrenia
susceptibility gene CAMKK2 showing nominal significance
(rs1063843, P = 2.32× 10−5) in the PGC2 study was successfully
identified by integrative analysis of gene expression and PPI (Luo
X.J. et al., 2014).

We hypothesize that a group of functionally related genes with
nominal significance could jointly contribute to schizophrenia
susceptibility. We further performed a PPI network-based
pathway analysis on two GWA studies of schizophrenia and
identified significantly enriched KEGG pathways in both studies.
Some pathways have been strongly associated with schizophrenia,
such as the long-term potentiation, ERBB signaling pathway and
MAPK signaling pathway (Fazzari et al., 2010; Pitcher et al., 2011;
Funk et al., 2012; Savanthrapadian et al., 2013; Salavati et al.,
2015). Interestingly, we found both the proteasome pathway and
the ubiquitin mediated proteolysis pathway to be significantly
enriched (Supplementary Table S4). Dysfunction of the
ubiquitin-proteasome pathway (UPP) has been implicated in the
pathology of various neurodegenerative conditions, and has been
linked to several late-onset neurodegenerative diseases caused by

aggregate-prone proteins such as Alzheimer’s disease Parkinson’s
disease and Huntington’s disease (Rubinsztein, 2006; Hegde
and Upadhya, 2011). Cumulative evidence also suggests that
schizophrenia patients have aberrant gene expression patterns
and protein expression disruptions in the UPP suggesting the
UPP may also contribute to the deficits in schizophrenia (Vawter
et al., 2001; Aston et al., 2004; Altar et al., 2005; Bousman et al.,
2010; Rubio et al., 2013). Our results are consistent with these
findings and provide new evidence in support of the association
between the UPP and the pathogenesis of schizophrenia.

Cumulative evidence suggests that DNMs are an important
cause of mental disorders such as schizophrenia, autism and
intellectual disability (Veltman and Brunner, 2012). DNMs
occur in different genes of different patients may be collectively
responsible for a portion of sporadic schizophrenia cases.
However, unlike CNVs, genes recurrently mutated by SNVs
are rare and the overlap of genes disrupted by DNMs from
recent studies is also small (Supplementary Figure S5). Thus,
we naturally raise the question if genes targeted by common
SNPs are more likely to be targeted by DNMs, and if genes
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targeted by common SNPs are more likely to interact with genes
carrying DNMs? For the first question, the PGC2 study unveiled
significant overlap between genes in the schizophrenia GWAS
associated intervals and those with DNMs in schizophrenia
(P = 0.0061) (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). For the second question, our
analysis provides new evidence suggesting that genes targeted
by common SNPs or DNMs are likely to interact with each
other or participant in the same pathway. Collectively, these
results suggest that schizophrenia susceptibility involves a mutual
interplay of both common and rare genetic risk factors.

We additionally developed an edge-based network search
algorithm to identify the leading disease associated modules
underlying schizophrenia. The network search method was
initially node-based, and developed in order to detect a
group of interactive genes which show significantly changes in
mRNA expression (Ideker et al., 2002). Later, this method was
successfully applied on the post-GWAS network analysis (Jia
et al., 2011; Jia et al., 2012; Han et al., 2013; International Multiple
Sclerosis Genetics Consortium, 2013). Here, the advantage of
Gens is that the edge-based method can utilize not only the
node P values for the node but also the gene co-expression
information as edge weights to score and rank the detected
modules (Methods).

Using this approach, we found the top-ranked modules
were significantly enriched in the NMDAR pathway associated
genes including DLG1, DLG2, DLG4, ERBB4, GRIN2A, and
GRIN2B. All of those genes show strong association with
schizophrenia from GWAS. DLG1, DLG2, ERBB4, and GRIN2A
were also targeted by DNMs or CNVs. In addition to GRIN2A,
which has surpassed genome-wide significance (rs9922678,
P = 6.72 × 10−9) in the PGC2 study, DLG2 (rs12294291,
P = 4.90 × 10−7), GRIN2B (rs11757887, P = 8.81 × 10−7)
also showed strong associations nearly reaching genome-wide
significance. These results suggested that the dysfunction of
the NMDAR complex plays a leading role in the pathology of
schizophrenia and is highly impacted by multiple genetic risk
factors.

We further pinpointed two genes ATP2B2 (rs9879311,
P = 2.77× 10−6) and NOS1 (rs2293052, P = 1.24× 10−6), which
were closely connected to the NMDAR interactome and showed
strong associations with schizophrenia risk. ATP2B2 encodes
the plasma membrane calcium-transporting ATPase 2 which
plays an important role in intracellular calcium homeostasis and
extrudes Ca2+ from cytosol into extracellular space. Family-based
association studies suggested ATP2B2 as a risk gene for autism
in multiple ethnicities (Carayol et al., 2011; Prandini et al., 2012;
Yang et al., 2013). A previous study also suggested ATP2B2 could
confer risk to schizophrenia (Ikeda et al., 2010). NOS1 encodes a
member of nitric oxide synthases, which functions as a biologic
mediator in neurotransmission. Previous studies also provided
evidence of the associations between NOS1 and schizophrenia
risk (Shinkai et al., 2002; Reif et al., 2011; Zhang et al., 2014).

Besides the NMDAR interactome, CUL3, EP300, PTN, PTPRF,
TCF4 reached genome-wide significance in the PGC2 study.
CUL3, EP300, and PTPRF were also targeted by DNMs. EP300
servers as an important hub in the network which directly

interacted with 14 genes (TCF4, EGR1, SREBF1, and SREBF2
located in genome-wide significant regions; AKT1 and SMAD7
targeted by DNMs). The product of EP300 functions as histone
acetyltransferase and regulates transcription via chromatin
remodeling. Defects of EP300 can cause Rubinstein-Taybi
syndrome (a disease with short stature and intellectual disability)
and may result in the formation of tumors (Tillinghast et al.,
2003; Roelfsema et al., 2005; Negri et al., 2015). Interestingly,
the DNM (NM_001429, exon14, c.C2656G, p.P886A) found
in EP300 is not predicted as damaging by either SIFT nor
PolyPhen2, and a common missense variant in EP300 is also
strongly associated with schizophrenia (rs20551, P = 1.38× 10−8;
NM_001429, exon15, c.A2989G, p.I997V), which suggest that
slight changes in the protein conformation of EP300 may confer
risk to schizophrenia. EP300 is also interacted and co-expressed
with CREB1 in the network. It is reported that EP300 can
mediate cAMP-gene regulation through phosphorylated CREB
proteins. CREB1 also showed strong association (rs2709410,
P = 4.07 × 10−6) in the PGC2 study. CREB1 has been linked
to drug addiction, memory disorders and neurodegenerative
diseases (Bilecki and Przewlocki, 2000; Nestler, 2002; Josselyn
and Nguyen, 2005; Lee et al., 2005). There is also some
evidence of the association between CREB1 and schizophrenia
(Li et al., 2013; Ma et al., 2014; Kumar et al., 2015). PTN
is another important hub, which interacted with eight genes
(NCAN, PSMB10, and SGSM2 located in genome-wide significant
regions; NCAN, PSMD2, and SGSM2 targeted by DNMs).
PTN encodes pleiotrophin, which may suppress long-term
potentiation induction (Pavlov et al., 2002).

In the network, candidate genes with nominal significance
such as ANKS1B, CNTN2, CNTNAP2, GABBR2, NCOR2, and
NTRK3 also may be involved in the pathology of schizophrenia.
The product of ANKS1B is predominantly expressed in brain
tissue and interacted with amyloid beta protein precursor,
which may play a role in brain development. A recent study
demonstrated that ANKS1B product regulates synaptic GluN2B
levels and further influence the NMDAR function. Multiple
pieces of evidence have linked CNTN2, CNTNAP2, GABBR2, and
NTRK3 to neuropsychiatric disorders, including schizophrenia
(Weickert et al., 2005; Friedman et al., 2008; Otnaess et al., 2009;
Fazzari et al., 2010; Fatemi et al., 2011; Roussos et al., 2012;
Bormuth et al., 2013; Fatemi et al., 2013; Karayannis et al., 2014).
SNPs in NCOR2 are associated with cocaine dependence in a
recent GWAS (Gelernter et al., 2014).

In conclusion, the heterogeneity and complexity of the genetic
landscape in schizophrenia is high. Here, we demonstrate that
common and rare genetic risk factors converge on PPI networks
that are enriched for schizophrenia candidate genes involved in
synaptic plasticity and neural development. We also provide new
evidence demonstrating that the NMDAR interactome is highly
targeted by multiple types of genetic risk factors and may play
a leading role in the risk of schizophrenia. Furthermore, we
pinpointed many nominally significant genes in GWAS showing
strong evidence to influence schizophrenia risk according to
their network properties. These genes may reach genome-wide
significance or carry DNMs to be unveiled in further genetic
studies with more samples.
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In recent years, it has been increasingly clear that long noncoding RNAs (lncRNAs)

play critical roles in many biological processes associated with human diseases.

Inferring potential lncRNA-disease associations is essential to reveal the secrets

behind diseases, develop novel drugs, and optimize personalized treatments. However,

biological experiments to validate lncRNA-disease associations are very time-consuming

and costly. Thus, it is critical to develop effective computational models. In this study,

we have proposed a method called BPLLDA to predict lncRNA-disease associations

based on paths of fixed lengths in a heterogeneous lncRNA-disease association network.

Specifically, BPLLDA first constructs a heterogeneous lncRNA-disease network by

integrating the lncRNA-disease association network, the lncRNA functional similarity

network, and the disease semantic similarity network. It then infers the probability of

an lncRNA-disease association based on paths connecting them and their lengths

in the network. Compared to existing methods, BPLLDA has a few advantages,

including not demanding negative samples and the ability to predict associations

related to novel lncRNAs or novel diseases. BPLLDA was applied to a canonical

lncRNA-disease association database called LncRNADisease, together with two popular

methods LRLSLDA and GrwLDA. The leave-one-out cross-validation areas under

the receiver operating characteristic curve of BPLLDA are 0.87117, 0.82403, and

0.78528, respectively, for predicting overall associations, associations related to novel

lncRNAs, and associations related to novel diseases, higher than those of the two

compared methods. In addition, cervical cancer, glioma, and non-small-cell lung cancer

were selected as case studies, for which the predicted top five lncRNA-disease

associations were verified by recently published literature. In summary, BPLLDA exhibits

good performances in predicting novel lncRNA-disease associations and associations

related to novel lncRNAs and diseases. It may contribute to the understanding of

lncRNA-associated diseases like certain cancers.

Keywords: disease similarity, lncRNA similarity, path with limited length, Gaussian interaction profile kernel

similarity, leave-one-out cross validation, ROC curve
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INTRODUCTION

It is known that there are about 20,000 protein-coding genes,
consisting of less than 2% of the human genome (Bertone et al.,
2004; Claverie, 2005). Most DNA regions in the human genome
are either not transcribable or transcribed into noncoding RNAs
(ncRNAs), which are deemed to be transcriptional noises in

a long period of time. However, many recent studies have
suggested that ncRNAs play key regulatory roles in many
important biological processes such as cell proliferation (Esteller,
2011). Based on their sizes, ncRNAs can be divided into long
ncRNAs (lncRNAs) (Pauli et al., 2011) and small ncRNAs
such as microRNAs (miRNAs) (Farazi et al., 2013), transfer
RNAs (tRNAs) (Birney et al., 2007), and Piwi-interacting RNAs
(piRNAs) (Li et al., 2013). LncRNAs are ncRNAs of lengths
greater than 200 nucleotides (Mercer et al., 2009; Mitchell
Guttman et al., 2013). Compared to protein-coding, RNAs,

lncRNAs are less conservative among species (Harrow et al., 2012;
Cabili et al., 2016), and have a relatively low expression level,
more tissue-specific patterns (Guttman et al., 2010), and longer
but less exons (Chen, 2015). Recently, more and more lncRNAs
have been identified in eukaryotes from nematodes to human
beings due to the advancement in sequencing technologies and
computational methods (Awan et al., 2017).

Previous studies have suggested that lncRNAs are critical
in cell proliferation, cell differentiation, chromatin remodeling,
genome splicing, epigenetic regulation, transcription, and many

other important biological processes (Guttman et al., 2009).
The dysregulation of lncRNAs has also been associated with
the development of many diseases, including diabetes (Pasmant
et al., 2011), cardiovascular diseases (Congrains et al., 2012),
HIV (Zhang et al., 2013), neurological disorders (Johnson,
2012), and several cancers such as lung cancer (Ji et al., 2003;
Zhang et al., 2003), breast cancer (Barsyte-Lovejoy et al., 2006;
Gupta et al., 2010), and prostate cancer (Kok et al., 2002; Szell
et al., 2008). As a result, it has become a hot topic recently
to identify lncRNA-disease associations, and many important
disease-associated lncRNAs have been discovered. For example,
breast cancer metastasis patients have about 100 to 2,000 times
higherHOTAIR expression than that of the healthy people, based
on a quantitative PCR study (Gupta et al., 2010). HOTAIR is also
related to metastasis and progression of other cancers, such as
liver cancer (Hrdlickova et al., 2014), lung cancer (Li et al., 2014),
colorectal cancer (Res, 2011; Maass et al., 2014), gastric cancer
(Li et al., 2014; Liu et al., 2014), and so on. Therefore, HOTAIR
is deemed to be a potential biomarker for cancers (Maass et al.,
2014). In addition, the dysfunction of lncRNA H19 is found in
several diseases, such as bladder cancer (Ariel et al., 2000). The
downregulation of H19 also significantly reduces the clonogenic
and anchored nondependent growth of breast cancer cells based
on a knock-down study (Barsyte-Lovejoy et al., 2006).

Known lncRNA-disease associations have been stored in a
few databases, including LncRNADisease (Chen et al., 2013),
Lnc2Cancer (Ning et al., 2016), MNDR (Wang et al., 2013), and
so on, which are the basis for predicting novel associations using
efficient computational methods. The computational models to
predict lncRNA-disease associations are generally divided into

two categories including machine learning-based models and
network-based models (Chen et al., 2017). Machine learning-
based models usually train predictors from features based on
training samples and test their performances based on cross-
validation or independent data. For example, Chen et al.
developed Laplacian Regularized Least Squares for LncRNA-
Disease Association (LRLSLDA) for inferring candidates of
disease-associated lncRNAs by applying a semisupervised
learning framework (Chen and Yan, 2013). LRLSLDA assumes
that similar diseases tend to correlate with functionally
similar lncRNAs, and vice versa. Thus, known lncRNA-disease
associations and lncRNA expression profiles are combined to
prioritize disease-associated lncRNA candidates by LRLSLDA,
which does not require negative samples (i.e., confirmed
uncorrelated lncRNA-disease associations). However, LRLSLDA
faces difficulty in optimizing the best model parameters. Zhao T.
et al. (2015) proposed a naïve Bayesian classifier, which exploits
various information related to cancer-associated lncRNAs,
including regulome, genome, transcriptome, andmultiomic data.
As a result, 707 potential cancer-related lncRNAs were identified.
However, this method requires negative samples, which are
usually unknown. In contrast, network-based methods take the
advantage of the lncRNA-disease association network, the disease
similarity network, and the lncRNA similarity network to study
the connectivity of lncRNAs and diseases. For instance, Sun et al.
(2014) developed RWRlncD, which infers potential lncRNA-
disease associations by a random walk with restart (RWR) on
the lncRNA functional similarity network. However, the method
cannot predict lncRNAs related to novel diseases (i.e., diseases
with no known associated lncRNA). Gu et al. (2017) provided
a global network random walk model for predicting lncRNA-

disease associations (GrwLDA), which performs RWR on both
lncRNA functional similarity network and disease similarity
network. However, GrwLDA also faces a dilemma in optimizing
model parameters.

In this study, we have proposed a novel method BPLLDA to
predict lncRNA-disease associations based on paths connecting
them with limited lengths in a heterogeneous network.
Specifically, BPLLDA first establishes a heterogeneous network
consisting of the known lncRNA-disease association network, the
disease similarity network, and the lncRNA similarity network. It
then calculates the association between a disease and an lncRNA
by the paths connecting them and their lengths. BPLLDA does
not require negative samples and is capable of predicting novel
diseases and novel lncRNAs.

MATERIALS AND METHODS

lncRNA-Disease Associations
The lncRNA-disease association data were retrieved from
the database LncRNADisease (Chen et al., 2013; Sun et al.,
2014). After eliminating identical lncRNA-disease entries from
distinct pieces of evidence, there were 352 experimentally
confirmed lncRNA-disease associations, containing 156
lncRNAs and 190 diseases (see Supplementary Figure 1

and Supplementary Tables 2, 3). We summarize some basic
characteristics (e.g., the average degree) of the dataset in Table 1.
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TABLE 1 | The basic characteristics of the lncRNA-disease association dataset.

Total of

lncRNAs

Total of

diseases

Total of

associations

Average degree of

lncRNAs

Average degree of

diseases

Max degree of

lncRNAs

Max degree of

diseases

Min degree of

lncRNAs/diseases

156 190 352 2.3 1.9 41 15 1

We then established the lncRNA-disease association network,
whose adjacency matrix is denoted by LD. That is, LD

(

i, j
)

is
set to 1 if lncRNA l (i) is associated with disease d

(

j
)

, and 0 if
otherwise. Before presenting the details of BPLLDA, we first
introduced two important notations, namely, disease semantic
similarity and lncRNA functional similarity.

Disease Semantic Similarity
The Disease Ontology (DO) is an open source ontology of human
diseases (http://www.disease-ontology.org/). The terms in DO
are diseases or disease-correlated concepts, which are organized
in a directed acyclic graph (DAG). On the basis of Disease
Ontology, Li et al. (2011) provided an R package called DOSim
to calculate the disease semantic similarity, and we adopted this
method in this study. Specifically, we used a symmetric matrix
SS to record semantic similarity values among diseases, in which
SS
(

i, j
)

represents semantic similarity between disease d (i) and
d
(

j
)

as calculated by DOSim. We plot the distribution of SS in
Figure 1A. There are overall 36100 (190 × 190) values, among
which 21148 values (58.58%) are 0 s.

lncRNA Functional Similarity
We adopted a similar method to Sun et al. for measuring the
functional similarity between two lncRNAs (Wang et al., 2010;
Sun et al., 2014). Specifically, suppose lncRNA l (i) is associated
with a disease set Di =

{

dik
∣

∣ 1 ≤ k ≤ m} and lncRNA l
(

j
)

is
associated withDj =

{

djl
∣

∣ 1 ≤ l ≤ n}. Themethod first calculates
the semantic similarity between a disease, say di1, and a disease
group, say Dj, as

SIM
(

di1,Dj

)

=
(

SS
(

di1, d
))

.

Then, the functional similarity between l (i) and l
(

j
)

is calculated
as

FS
(

l (i) , l
(

j
))

=

∑

1≤k≤m SIM
(

dik,Dj

)

+
∑

1≤l≤n SIM
(

djl,Di

)

m+ n
.

It is clear that the lncRNA functional similarity matrix FS is
symmetric. Similarly, we plot the distribution of FS in Figure 1B.
There are 24336 (156× 156) values, among which 8662 (35.59%)
are 0 s.

Gaussian Interaction Profile Kernel
Similarity for lncRNAs
There are many zeros in FS due to the fact that lncRNA-disease
associations are rather incomplete. To avoid such scenario, we
introduced the Gaussian interaction profile kernel similarity
between lncRNA l (i) and l (i) as

GL
(

l (i) , l
(

j
))

= exp
(

−γl
∥

∥IP
(

l (i)
)

− IP
(

l
(

j
))∥

∥

2
)

,

where IP
(

l (i)
)

and IP
(

l
(

j
))

are the vectors in the ith and jth
row of the lncRNA-disease association matrix LD. The parameter
γl is a regulation parameter of the kernel bandwidth with

γl = γ ′
l/

(

1
ln

∑ln
i=1

∥

∥IP
(

l (i)
)∥

∥

2
)

, where ln is the number of

all lncRNAs studied and γ ′
l is usually set to 1 according to van

Laarhoven et al. (2011).

Gaussian Interaction Profile Kernel
Similarity for Diseases
Similarly, we defined the Gaussian interaction profile kernel
similarity for diseases as

GD
(

d (i) , d
(

j
))

= exp
(

−γd
∥

∥IP
(

d (i)
)

− IP
(

d
(

j
))∥

∥

2
)

with γd = γ
′
d/

(

1
dn

∑dn
i=1

∥

∥IP
(

d (i)
)
∥

∥

2
)

, where IP
(

d (i)
)

and

IP
(

d (i)
)

are the binary vectors in the ith and jth column of the
adjacency matrix LD and dn is the numbers of diseases. Clearly,
GD is also symmetric.

Integrated Similarity Between lncRNAs and
Between Diseases
We integrated disease semantic similarity (lncRNA functional
similarity) with the Gaussian interaction profile kernel similarity
for diseases (lncRNAs) as follows:

DS
(

d (i) , d
(

j
))

=

{

GD
(

d (i) , d
(

j
))

if d(i) ∈ NS or d(j) ∈ NS

SS
(

d (i) , d
(

j
))

otherwise

LS
(

l (i) , l
(

j
))

=

{

GL
(

l (i) , l
(

j
))

if l(i) ∈ NF or l(j) ∈ NF

FS
(

l (i) , l
(

j
))

otherwise

where NS is the set of diseases with no sematic similarity with any
other disease, and NF is the set of lncRNAs with no functional
similarity with any other lncRNAs. By definition, DS and LS are
symmetric. We plot the distributions of DS and LS in Figure 2,
in which the numbers of 0 s are greatly reduced compared to SS
and FS.

BPLLDA
The general workflow of BPLLDA is illustrated in Figure 3, in
which a heterogeneous network is first constructed with nodes
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FIGURE 1 | The distributions of disease semantic and lncRNA functional similarity. (A) Disease semantic similarity (SS) distribution. (B) lncRNA functional similarity (FS)

distribution. The x-axis indicates the intervals of similarity values and the y-axis indicates the numbers of values in the interval. The actual values are also marked

above the histograms.

FIGURE 2 | The distributions of integrated similarities. (A) Distribution of the integrated similarity for diseases (DS). (B) Distribution of the integrated similarity for

lncRNAs (LS). The x-axis indicates the intervals of similarity values and the y-axis indicates the numbers of values in the interval. The actual values are also marked

above the histograms.

denoting lncRNAs or diseases. For any two diseases d (i) and d(j),
the weight of the edge between them is defined to be

WD
(

d (i) , d
(

j
))

=

{

0 if DS
(

d (i) , d
(

j
))

< T

DS
(

d (i) , d
(

j
))

otherwise
,

where T is a threshold value to avoid all diseases being connected
(You et al., 2017). Similarly, the weight of the edge between two

lncRNAs l (i) and l
(

j
)

is

WL
(

l (i) , l
(

j
))

=

{

0 if LS
(

l (i) , l
(

j
))

< T

LS
(

l (i) , l
(

j
))

otherwise
.

The weight of an edge between an lncRNA l (i) and a disease d
(

j
)

is LD
(

l (i) , d
(

j
))

, that is, the weight is 1 if they are associated
and 0 if otherwise. We tuned T from 0.1 to 0.5 with interval 0.1
by a leave-one-out cross-validation (LOOCV) process and finally
chose T to be 0.2.

For a given lncRNA node l (i) and a disease node d
(

j
)

, we
performed a depth-first search (Hopcroft and Tarjan, 1974) to

Frontiers in Genetics | www.frontiersin.org 4 October 2018 | Volume 9 | Article 41133

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Xiao et al. BPLLDA

FIGURE 3 | The flowchart of BPLLDA. It consists of three steps: (1) disease similarity measurement, (2) lncRNA similarity measurement, and (3) the BPLLDA algorithm.

identify all noncyclic paths between them. To avoid long paths,
we restricted the maximum number of edges in the path to be
τ . Similarly, we performed an LOOCV search for τ being 1
to 4 and decided τ to be 3. Intuitively, l (i) and d

(

j
)

tend to
be associated if there are many paths with high edge weights
connecting them. Therefore, a score measuring their association
confidence can be defined using the paths together with a decay
function Fdecay

(

pw
)

:

score(l(i), d(j))=

n
∑

w=1

(

∏

pw

)Fdecay(pw)

where p =
{

p1, p2, . . . , pn
}

is the set of paths connecting l (i) and
d
(

j
)

, and
∏

pw denotes the product of the weights of all edges

in the path pw. Generally speaking, long paths will have little
contribution to the total score. So the decay function Fdecay

(

p
)

is denoted as

Fdecay
(

pw
)

= α × len
(

pw
)

,

where the decay factor α is set to 2.26 based on a previous study
(Ba-Alawi et al., 2016; You et al., 2017) and len

(

pw
)

is the length
of the path pw. Clearly, the higher the score(l (i) , d

(

j
)

), the more
likely that l (i) and d

(

j
)

will be associated.

Analysis of the Computational Complexity
We analyzed the time complexity and space complexity of
BPLLDA. Recall that there are m diseases and n lncRNAs with
m > n. The algorithm mainly consists of two steps. First, a
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heterogeneous network was constructed, for which two matrices
were established. So the time complexity and space complexity
are O

(

m2
)

respectively in this step. Then, BPLLDA infers the
probability of an lncRNA-disease association based on paths
with limited lengths in the network. We performed a depth-first
search to identify all noncyclic paths between nodes and the time
complexity is O((m+ n)2) on each node. Because there are m
diseases, the time complexity is O

(

m3
)

in this step. And the space
complexity is O (mn) because we need to only save the prediction
result. In summary, the time complexity and space complexity are
at most O

(

m3
)

and O
(

m2
)

, respectively, for BPLLDA.

RESULTS AND DISCUSSIONS

Performance of BPLLDA in Predicting
lncRNA-Disease Associations
We applied BPLLDA to a known lncRNA-disease association
data LD, together with two popular methods GrwLDA (Gu et al.,
2017) and LRLSLDA (Chen and Yan, 2013). The reason why
we selected the two methods for comparison is that they can
both predict novel lncRNAs and novel diseases. Specifically, two
LOOCV methods namely global LOOCV and local LOOCV
were adopted to evaluate their performances. Global LOOCV
sets each experimentally confirmed lncRNA-disease association
as a test sample once, but local LOOCV sets all associations of
an lncRNA or those of a disease as test samples once. Other
known lncRNA-disease associations are considered as training
samples. The performances of the methods were evaluated
by the area under the receiver operating characteristic (ROC)

curve (AUC).
As a result, we plotted the global LOOCV ROC curves and

their associated AUCs of BPLLDA, GrwLDA, and LRLSLDA,
respectively, in Figure 4. BPLLDA has an AUC of 0.87117,
and outperformed LRLSLDA (0.81952) and GrwLDA (0.78246).
Similarly, we plotted the local LOOCV ROC curves and AUCs
of the three methods on novel lncRNAs in Figure 5. As can
be seen, BPLLDA has an AUC of 0.82403, about 8 and 18%
higher than that of LRLSLDA (0.76542) and GrwLDA (0.69817),
respectively. Finally, the AUC of BPLLDA (0.78528) in predicting
novel diseases is significantly higher than that of LRLSLDA
(0.65812) with an increase of 19% andGrwLDA (0.65802) with an
increase of 20% (see Figure 6). In summary, our method is better
than LRLSLDA andGrwLDA in both lncRNA-disease association
prediction and prediction related to novel lnRNAs and diseases.

Meanwhile, we list in Table 2 the precision versus the
prediction scores in the global LOOCV. In general, the higher the
score, the more likely the disease is related to the lncRNAs. The
association confidence is greater than 0.9 when the prediction
score is larger than 21.58.

Effects of Parameters
There are two model parameters in BPLLDA, including the
maximum path length L and the weight threshold T. We tested
the effects of these parameters on AUCs for LOOCV with L (L =

2, 3, 4) and T (T = 0.2, 0.4, 0.5), and we list the results in
Table 3. As can be seen, the parameter L has significant effects
on the performance of BPLLDA, and the best AUC is achieved at

FIGURE 4 | Performance evaluation of BPLLDA, LRLSLDA, and GrwLDA in

predicting lncRNA-disease associations by global LOOCV.

FIGURE 5 | Performance evaluation of BPLLDA, LRLSLDA, and GrwLDA in

predicting novel lncRNA-associated diseases.

L = 3. In contrast, T has only minor effects on the performance
of our method. To further illustrate this, we fixed L to be 3, and
let T vary from 0.1 to 0.5 with interval 0.1 (see Table 4). The
AUC values are between 0.85568 and 0.87117, only about 2%
difference.

Effects of Gaussian Interaction Profile
Kernel Similarity for lncRNAs and Diseases
Disease similarity and lncRNA similarity are calculated by
integrating disease semantic similarity, lncRNA functional
similarity, as well as the Gaussian interaction profile kernel
similarity for lncRNAs and diseases. We tested the effects of the
Gaussian interaction profile kernel similarity for lncRNAs and
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FIGURE 6 | Performance evaluation of BPLLDA, LRLSLDA, and GrwLDA in

predicting novel disease-associated lncRNAs.

TABLE 2 | Precision of BPLLDA on global LOOCV.

Prediction

scores

1.002∼9.929 10.028∼17.601 21.580∼24.391 25.778∼37.757

Precision >= 0.134 >= 0.446 >= 0.933 1

TABLE 3 | Tuning two model parameters: the maximum path length L and the

weight threshold T by LOOCV.

L 2 3 4

T = 0.2 0.83903 0.87117 *

T = 0.4 0.82043 0.85568 0.81205

T = 0.5 0.81761 0.85959 0.80830

The value in each cell represents LOOCV AUC.

*T = 0.2 and L = 4 was not calculated because it takes more than 48 h.

TABLE 4 | The effects of T on AUC when fixing L = 3.

T 0.1 0.2 0.3 0.4 0.5

AUC 0.87102 0.87117 0.86889 0.85568 0.85959

diseases on LOOCV with L = 3 and T = 0.2 with four settings:
(1) without using both the Gaussian interaction profile kernel
similarity for lncRNAs and diseases; (2) only using the Gaussian
interaction profile kernel similarity for lncRNAs; (3) only using
the Gaussian interaction profile kernel similarity for diseases; (4)
using both the Gaussian interaction profile kernel similarity for
lncRNAs and diseases. The results are summarized in Table 5.
As can be seen, the two similarities indeed have a significant
influence on the LOOCV AUC. The best AUC (0.87117) was
achieved when both similarities were adopted into our model.

TABLE 5 | The effects of the Gaussian interaction profile kernel similarity for

lncRNAs and diseases on LOOCV.

No GD and GL GL GD GL and GD

0.78718 0.79036 0.80924 0.87117

The value in each cell represents LOOCV AUC.

TABLE 6 | The top five lncRNA candidates predicted for cervical cancer, glioma,

and non-small-cell lung cancer.

Disease lncRNA Evidence

Cervical cancer MEG3 LncRNADisease

(Zhang J. et al., 2016)

Cervical cancer PVT1 LncRNADisease

(Yang et al., 2016)

Cervical cancer CDKN2B-AS1 LncRNADisease

(Zhang D. et al., 2016)

Cervical cancer HOTAIR LncRNADisease

(Huang et al., 2014)

Cervical cancer GAS5 LncRNADisease

(Cao et al., 2014)

Glioma H19 LncRNADisease

(Shi et al., 2014)

Glioma MALAT1 LncRNADisease

(Ma et al., 2015)

Glioma PVT1
(Zou et al., 2017)

Glioma HOTAIR LncRNADisease

(Ke et al., 2015)

Glioma GAS5 LncRNADisease

(Zhao X. et al., 2015)

Non-small-cell lung cancer H19 LncRNADisease

(Zhang E. et al., 2016)

Non-small-cell lung cancer MEG3 LncRNADisease

(Lu et al., 2013)

Non-small-cell lung cancer HOTAIR LncRNADisease

(Liu X. H. et al., 2013)

Non-small-cell lung cancer PVT1 LncRNADisease

(Yang et al., 2014)

Non-small-cell lung cancer CDKN2B-AS1 LncRNADisease

(Nie et al., 2015)

Case Studies on Predicted
lncRNA-Disease Associations
It is known that lncRNAs play critical roles in the development
of many diseases. To further evaluate the ability of BPLLDA
in inferring novel lncRNA-disease associations, we used all
known lncRNA-disease associations in LD as training data and
assessed the potential of predicted associations by our model.
The novel lncRNA-disease associations were ranked according to
the predicted score of BPLLDA. To validate the predictions, the
newest LncRNADisease database was used, which curated 1766
distinct known lncRNA-disease associations among 888 lncRNAs
and 328 diseases. Specifically, we listed the top five lncRNAs
associated with three diseases, including cervical cancer, glioma,
and non-small-cell lung cancer (NSCLC), respectively, in Table 6
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and the paths of cervical cancer in Supplementary Table 1. For a
better view, we also plotted the associations of the three diseases
and their top 10 predicted lncRNAs in Figure 7.

Cervical cancer is a cancer in the cervix and its early symptoms
are hard to uncover. As the second common cancer among
women all over the world, cervical cancer causes numerous
incidents of death in developing countries (Forouzanfar et al.,
2011). It was reported that there are approximately 500,000
novel cases of cervical cancer diagnosed annually (Tewari
et al., 2014). Therefore, there is an urgent need to explore its
biological mechanisms and develop effective treatment strategies.
Interestingly, all of the top five novel cervical cancer-associated
lncRNAs predicted by BPLLDA were confirmed by the newest
updates of the LncRNADisease database. For example, the top
predicted lncRNA, MEG3, can inhibit tumor growth in cervical
cancer by regulating miR-21-5p, which is regarded as a tumor
suppressor (Zhang J. et al., 2016). Serum PVT1 can accurately
differentiate patients with cervical cancer from healthy controls
(Yang et al., 2016). The high expression of HOTAIR is involved
in cervical cancer progression and may be a potential target for
diagnosis and gene therapy (Huang et al., 2014).

Glioma is considered to be the most common malignant
tumor in the central nervous system and is characterized by
aggressive blood vessel formation (Khasraw et al., 2010). Despite
the continuous improvement of various treatments, including
surgery, radiotherapy, and chemotherapy, the overall survival of
patients with glioma is only about 12–14 months after diagnosis
(Wang et al., 2015). The poor treatment effect is mainly due to
the prominent tumor angiogenesis. Similarly, BPLLDA achieved
good performance in predicting glioma-associated lncRNAs as
all top five predicted lncRNAs were confirmed by the newest
LncRNADisease database and literature. For example, it was
shown that H19 regulates the development of glioma by deriving
miR-675 and offers an essential clue to understanding the
key role of the lncRNA-miRNA functional network in glioma
(Shi et al., 2014). The expression level of lncRNA MALAT1 is
significantly correlated with the overall survival of patients with
glioma and can be used as a convictive prognostic biomarker for
patients with glioma (Ma et al., 2015). In addition, Gas5 inhibits
tumor malignancy by downregulating miR-222, which may be a
promising treatment for glioma (Zhao X. et al., 2015).

FIGURE 7 | Network view of the top 10 predicted lncRNAs for cervical cancer,

glioma, and non-small-cell lung cancer.

NSCLC, including adenocarcinoma and squamous cell
carcinoma, is a predominant form of lung cancer (Siegel
et al., 2012). Despite the progress in clinical and experimental
oncology, the prognosis remains difficult. More and more
evidence indicates that ncRNAs could take part in the
pathogenesis of NSCLC. Similarly, the top five NSCLC-correlated
lncRNA candidates predicted by BPLLDA were validated by
literature. For example, HOTAIR is significantly upregulated in
NSCLC tissues and partly regulates cell invasion and metastasis
of NSCLC by HOXA5 downregulation (Liu X. H. et al.,
2013). So, HOTAIR is a potential therapeutic target for NSCLC
intervention. In addition, patients with NSCLC with high PVT1
expression have a significantly lower overall survival rate than
those with low PVT1 expression (Yang et al., 2014). Finally,
the expression of CDKN2B-AS1 (ANRIL) might damage cell
proliferation and leads to cell apoptosis in vitro and in vivo (Nie
et al., 2015), which is linked to the survival of patients with
NSCLC.

Case Studies on Predicted Novel Diseases
and Novel lncRNAs
To test the ability of BPLLDA in predicting novel disease-
associated lncRNAs, all known lncRNA-disease associations
correlated with a disease were eliminated. We selected two
diseases: colorectal cancer and breast cancer (see Table 7). As can

TABLE 7 | The top five novel disease-correlated lncRNA candidates predicted for

colorectal cancer and breast cancer.

Disease lncRNA Evidence

Colorectal cancer H19 lncRNADisease (Tsang et al., 2010)

Colorectal cancer CDKN2B-AS1 lncRNADisease (Sun et al., 2016)

Colorectal cancer PVT1 lncRNADisease (Ping et al., 2018)

Colorectal cancer MEG3 lncRNADisease (Zhu et al., 2018)

Colorectal cancer MALAT1 lncRNADisease (Ji et al., 2014)

Breast cancer H19 lncRNADisease (Vennin et al., 2015)

Breast cancer CDKN2B-AS1 lncRNADisease (Xu et al., 2017)

Breast cancer PVT1 lncRNADisease (Guan et al., 2007)

Breast cancer MALAT1 lncRNADisease (Chou et al., 2016)

Breast cancer B2 SINE RNA Unconfirmed

TABLE 8 | The top five novel disease-correlated lncRNA candidates predicted for

H19 and HOTAIR.

lncRNA Disease Evidence

H19 Prostate cancer lncRNADisease (Zhu et al., 2014)

H19 Tumor (Matouk et al., 2007)

H19 Cancer lncRNADisease (DeBaun et al., 2002)

H19 Breast cancer lncRNADisease (Vennin et al., 2015)

H19 Decreased myogenesis Unconfirmed

HOTAIR Cancer lncRNADisease (Gupta et al., 2010)

HOTAIR Breast cancer lncRNADisease (Xue et al., 2016)

HOTAIR Hepatocellular carcinoma lncRNADisease (Yang et al., 2011)

HOTAIR Prostate cancer lncRNADisease (Zhang et al., 2015)

HOTAIR Tumor Unconfirmed
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be seen, all top five predicted lncRNAs associated with colorectal
cancer were confirmed by the newest LncRNADisease database,
whereas four of the top five lncRNAs associated with breast
cancer were also validated by the database or literature.

Similarly, to test the ability of BPLLDA in predicting
novel lncRNA-associated diseases, all known lncRNA-disease
associations correlated with an lncRNA were removed. As two
case studies, we selected two lncRNAs, H19, and HOTAIR (see
Table 8). In both cases, four of the top five associated diseases
were validated by the database and literature. In summary,
BPLLDA achieves favorable performances in predicting novel
disease-associated lncRNAs and novel lncRNA-associated
diseases.

CONCLUSIONS

Many studies have demonstrated that lncRNAs are essential in
many physiological processes related to human diseases. They
could be important biomarkers for the diagnosis, prognosis,
and treatment of these diseases. However, the biological
experiments to validate lncRNA-disease associations are not
only time consuming but also costly, which promotes the
need for developing computational prediction models. In this
study, we proposed BPLLDA, a novel computational method to
predict lncRNA-disease associations based on simple paths with
limited lengths in a heterogeneous network consisting of the
lncRNA similarity network, the disease similarity network, and
the lncRNA-disease association network. BPLLDA outperforms
two compared methods in prediction accuracy, and most top
predicted novel lncRNA-disease associations were validated by
literature. However, there are a few limitations of BPLLDA. First,

available experimentally validated lncRNA-disease associations

are rather incomplete. Secondly, lncRNA similarity is computed
on the basis of known lncRNA-disease associations. There is
a problem of sparseness in the disease semantic similarity and
lncRNA functional similarity, which is remedied by integrating
the Gaussian interaction profile kernel similarity for diseases
and lncRNAs, respectively. So, BPLLDA may result in biased
predictions. Finally, the distance-decay function in BPLLDA is
relatively simple and could be improved by machine learning
methods.
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Diabetes mellitus is a chronic disease characterized by hyperglycemia. It may cause
many complications. According to the growing morbidity in recent years, in 2040, the
world’s diabetic patients will reach 642 million, which means that one of the ten adults
in the future is suffering from diabetes. There is no doubt that this alarming figure needs
great attention. With the rapid development of machine learning, machine learning
has been applied to many aspects of medical health. In this study, we used decision
tree, random forest and neural network to predict diabetes mellitus. The dataset is the
hospital physical examination data in Luzhou, China. It contains 14 attributes. In this
study, five-fold cross validation was used to examine the models. In order to verity the
universal applicability of the methods, we chose some methods that have the better
performance to conduct independent test experiments. We randomly selected 68994
healthy people and diabetic patients’ data, respectively as training set. Due to the
data unbalance, we randomly extracted 5 times data. And the result is the average
of these five experiments. In this study, we used principal component analysis (PCA)
and minimum redundancy maximum relevance (mRMR) to reduce the dimensionality.
The results showed that prediction with random forest could reach the highest accuracy
(ACC = 0.8084) when all the attributes were used.

Keywords: diabetes mellitus, random forest, decision tree, neural network, machine learning, feature ranking

INTRODUCTION

Diabetes is a common chronic disease and poses a great threat to human health. The characteristic
of diabetes is that the blood glucose is higher than the normal level, which is caused by defective
insulin secretion or its impaired biological effects, or both (Lonappan et al., 2007). Diabetes can lead
to chronic damage and dysfunction of various tissues, especially eyes, kidneys, heart, blood vessels
and nerves (Krasteva et al., 2011). Diabetes can be divided into two categories, type 1 diabetes
(T1D) and type 2 diabetes (T2D). Patients with type 1 diabetes are normally younger, mostly less
than 30 years old. The typical clinical symptoms are increased thirst and frequent urination, high
blood glucose levels (Iancu et al., 2008). This type of diabetes cannot be cured effectively with
oral medications alone and the patients are required insulin therapy. Type 2 diabetes occurs more
commonly in middle-aged and elderly people, which is often associated with the occurrence of
obesity, hypertension, dyslipidemia, arteriosclerosis, and other diseases (Robertson et al., 2011).
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With the development of living standards, diabetes is
increasingly common in people’s daily life. Therefore, how
to quickly and accurately diagnose and analyze diabetes is a
topic worthy studying. In medicine, the diagnosis of diabetes
is according to fasting blood glucose, glucose tolerance, and
random blood glucose levels (Iancu et al., 2008; Cox and
Edelman, 2009; American Diabetes Association, 2012). The
earlier diagnosis is obtained, the much easier we can control
it. Machine learning can help people make a preliminary
judgment about diabetes mellitus according to their daily physical
examination data, and it can serve as a reference for doctors (Lee
and Kim, 2016; Alghamdi et al., 2017; Kavakiotis et al., 2017). For
machine learning method, how to select the valid features and the
correct classifier are the most important problems.

Recently, numerous algorithms are used to predict diabetes,
including the traditional machine learning method (Kavakiotis
et al., 2017), such as support vector machine (SVM), decision
tree (DT), logistic regression and so on. Polat and Günes (2007)
distinguished diabetes from normal people by using principal
component analysis (PCA) and neuro fuzzy inference. Yue
et al. (2008) used quantum particle swarm optimization (QPSO)
algorithm and weighted least squares support vector machine
(WLS-SVM) to predict type 2 diabetes Duygu and Esin (2011)
proposed a system to predict diabetes, called LDA-MWSVM.
In this system, the authors used Linear Discriminant Analysis
(LDA) to reduce the dimensions and extract the features. In order
to deal with the high dimensional datasets, Razavian et al. (2015)
built prediction models based on logistic regression for different
onsets of type 2 diabetes prediction. Georga et al. (2013) focused
on the glucose, and used support vector regression (SVR) to
predict diabetes, which is as a multivariate regression problem.
Moreover, more and more studies used ensemble methods to
improve the accuracy (Kavakiotis et al., 2017). Ozcift and Gulten
(2011) proposed a newly ensemble approach, namely rotation
forest, which combines 30 machine learning methods. Han et al.
(2015) proposed a machine learning method, which changed the
SVM prediction rules.

Machine learning methods are widely used in predicting
diabetes, and they get preferable results. Decision tree is one
of popular machine learning methods in medical field, which
has grateful classification power. Random forest generates many
decision trees. Neural network is a recently popular machine
learning method, which has a better performance in many
aspects. So in this study, we used decision tree, random forest
(RF) and neural network to predict the diabetes.

MATERIALS AND METHODS

Data
The dataset was obtained from hospital physical examination
data in Luzhou, China. This dataset is divided two parts: the
healthy people and the diabetes. There are two healthy people
physical examination data. We used one of healthy people
physical examination data that contains 164431 instances as the
training set. In the other data set, 13700 samples were randomly
selected as an independent test set. The physical data include

14 physical examination indexes: age, pulse rate, breathe, left
systolic pressure (LSP), right systolic pressure (RSP), left diastolic
pressure (LDP), right diastolic pressure (RDP), height, weight,
physique index, fasting glucose, waistline, low density lipoprotein
(LDL), and high density lipoprotein (HDL). In the training
dataset, there are many missing data. We deleted the abnormal
and missing samples to reduce the impact of data processing on
result. Consequently, we got 151598 diabetic physical data and
69082 healthy people physical data. So, we randomly selected
68994 healthy people and diabetic patients’ data, respectively as
training set. Due to the data unbalance, we randomly extracted 5
times. The final result was the mean value of 5 experiments. The
13,700 patients physical examination data, which were randomly
selected as the independent test set, were different from the
previous five sets which were used as training set.

Another dataset is Pima Indians diabetics data (Jegan, 2014).
In particular, all patients are females at least 21 years old of Pima
Indian heritage. The dataset contains 8 attributes which are times
of pregnancy, plasma glucose concentration after an 2-h oral
glucose tolerance test, diastolic blood pressure, triceps skin fold
thickness, 2-h serum insulin, body mass index, diabetes pedigree
function and age. In this dataset, the original 786 diabetics data
reduces to 392 after deleted the missing data.

Classification
In this section, we used decision tree, RF and neural network as
the classifiers. Decision tree and RF can implement in WEKA,
which is a free, non-commercial, open source machine learning
and data mining software based on JAVA environment. Neural
network can be implemented in MATLAB, which is a commercial
mathematics software exploited by MathWorks, Inc. It is used
for algorithmic development, data visualization, data analysis
and provides advanced computational language, and interactive
environment for numerical calculation

Decision Tree
Decision tree is a basic classification and regression method.
Decision tree model has a tree structure, which can describe the
process of classification instances based on features (Quinlan,
1986). It can be considered as a set of if-then rules, which also
can be thought of as conditional probability distributions defined
in feature space and class space.

Decision tree uses tree structure and the tree begins with
a single node representing the training samples (Friedl and
Brodley, 1997; Habibi et al., 2015; Liao et al., 2018). If the samples
are all in the same class, the node becomes the leaf and the class
marks it. Otherwise, the algorithm chooses the discriminatory
attribute as the current node of the decision tree. According to the
value of the current decision node attribute, the training samples
are divided into serval subsets, each of which forms a branch,
and there are serval values that form serval branches (Quinlan,
1986; Kohabi, 1996). For each subset or branch obtained in the
previous step, the previous steps are repeated, recursively forming
a decision tree on each of the partitioned samples (Quinlan, 1986;
Friedl and Brodley, 1997; Habibi et al., 2015).

The typical algorithms of decision tree are ID3, C4.5, CART
and so on. In this study, we used the J48 decision tree in WEKA.
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FIGURE 1 | The structural of two–layer-feed-back network in MATLAB. This figure is from MATLAB, which can describe this network working principle preferably.
Where, W is representation the weight and b is the bias variable.

J48 another name is C4.8, which is an upgrade of C4.5. J48
(Salzberg, 1994; Kohabi, 1996) is a top-down, recursive divide
and conquer strategy. This method selects an attribute to be root
node, generates a branch for each possible attribute value, divides
the instance into multiple subsets, and each subset corresponds to
a branch of the root node, and then repeats the process recursively
on each branch (Kohabi, 1996). When all instances have the same
classification, the algorithm stop. In J48, the nodes are decided by
information gain. According to the following formulas, in each
iteration, J48 calculates the information gain of each attribute,
and selects the attribute with the largest value of information
gain as the node of this iteration (Quinlan, 1996a,b; Sharma et al.,
2014).

Attribute A information gain:

Gain (A) = Info (D)− InfoA (D)

Pre-segmentation information entropy:

Info (D) = Entropy (D) = −
∑

j

p
(
j|D
)

logp(j|d)

Distributed information entropy:

InfoA (D) =

v∑
i=1

ni

n
Info (Di)

Random Forest
RF is a classification by using many decision trees. This algorithm
proposed by Breiman (Breiman, 2001). RF is a multifunctional
machine learning method. It can perform the tasks of prediction

TABLE 1 | Predict the diabetes by using all features.

Dataset Classifier ACC SN SP MCC

Luzhou RF 0.8084 0.8495 0.7673 0.6189

J48 0.7853 0.8153 0.7563 0.5726

Neural network 0.7841 0.8231 0.7451 0.5699

Pima Indians RF 0.7604 0.7578 0.7631 0.5210

J48 0.7275 0.7027 0.7523 0.4569

Neural network 0.7667 0.7828 0.7508 0.5349

and regression. In addition, RF is based on Bagging and it plays
an important role in ensemble machine learning (Breiman, 2001;
Lin et al., 2014; Svetnik et al., 2015). RF has been employed in
several biomedicine research (Zhao et al., 2014; Liao et al., 2016).

RF generates many decision trees, which is very different from
decision tree algorithm (Pal, 2005). When the RF is predicting a
new object based on some attributes, each tree in RF will give its
own classification result and ‘vote,’ and then the overall output
of the forest will be the largest number of taxonomy. In the
regression problem, the RF output is the average value of output
of all decision trees (Liaw and Wiener, 2002; Svetnik et al., 2015).

Neural Network
Neural network is a math model, which imitates the animal’s
neural network behaviors. This model depends on the complexity
of the system to achieve the purpose of processing information
by adjusting the relationship between the internal nodes (Mukai
et al., 2012). According to the connections’ style, the neural
network model can be divided into forward network and
feedback network. In this paper, we used the Neural Pattern
Recognition app in MATLAB, which is a two-layer-feed-back
network with sigmoid hidden and softmax output neurons.
The neural network structural is shown in (Figure 1).

In neural network, there are some important parts, namely
input layer, hidden layer and output layer. The input layer is
responsible for accepting input data. We can get the results from
the output layer. The layer between the input layer and the output
layer is called hidden layer. Because they are invisible to the
outside. There is no connection between neurons on the same
layer. In this network, the number of hidden layers set to 10,
which can get a better performance. We suppose the input vector
is Ex, the weight vector is Ew, and the activation function is a
sigmoid function, then the output is:

y = sigmoid
(
EwT
· Ex
)

and the sigmoid is:

sigmoid (x) =
1

1+ e−x
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Model Validation
In many studies, authors often used two validation methods,
namely hold-out method and k-fold cross validation method,
to evaluate the capability of the model (Kohavi, 1995; Bengio
and Grandvalet, 2005; Kim, 2009; Chen et al., 2016; Refaeilzadeh
et al., 2016; Yang et al., 2016, 2018; Su et al., 2018; Tang
H. et al., 2018). According to the goal of each problem and
the size of data, we can choose different methods to solve
the problem. In hold-out method, the dataset is divided two
parts, training set and test set. The training set is used to train
the machine learning algorithm and the test set is used to
evaluate the model (Kim, 2009). The training set is different
from test set. In this study, we used this method to verity
the universal applicability of the methods. In k-fold cross
validation method, the whole dataset is used to train and test
the classifier (Kim, 2009). First, the dataset is average divided
into k sections, which called folds. In training process, the
method uses the k-1 folds to training the model and onefold
is used to test. This process will be repeat k times, and each
fold has the chance to be the test set. The final result is
the average of all the tests performance of all folds (Kohavi,
1995). The advantage of this method is the whole samples
in the dataset are trained and tested, which can avoid the
higher variance (Refaeilzadeh et al., 2016; Kavakiotis et al.,
2017). In this study, we used the five-fold cross validation
method.

Feature Selection
Feature selection methods can reduce the number of attributes,
which can avoid the redundant features. There are many
feature selection methods. In this study, we used PCA and
minimum redundancy maximum relevance (mRMR) to reduce
the dimensionality.

Principal Component Analysis
PCA (Wang and Paliwal, 2003; Polat and Günes, 2007; You
et al., 2018) obtains the K vectors and unit eigenvectors by
solving the characteristic equation of the correlation matrix of
the observed variables. The eigenvalues are sorted from large
to small, representing the variance of the observed variables
explained by K principal components, respectively (Smith,
2002).

The model for extracting principal component factors is:

Fi = Ti1X1 + Ti2X2 + TikXk (i = 1, 2, . . . , m)

where, Fi is the i principal component factor; Tij is the load of the
i principal component factor on the j index; m is the number of
principal component factors; k is the number of indicators.

The PCA method can reduce the original multiple indicators
to one or more comprehensive indicators. This small number
of comprehensive indicators can reflect the vast majority of
the information reflected by the original indicators, and they
are not related to each other, and they can avoid the repeated

FIGURE 2 | Decision tree structure by using all features and Luzhou dataset. In this figure, we can find the fasting blood sugar is an important index for predicting
diabetes And weight, age also have the higher information gain and play vital roles in this method.
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FIGURE 3 | Decision tree structure by using all features and Pima Indians dataset. From this figure, we can find in this method glucose as the root node, which can
indicate the index has the highest information gain and insulin and age play important roles in this method.

TABLE 2 | Predict the diabetes by using blood glucose.

Dataset Classifier ACC SN SP MCC

Luzhou RF 0.7597 0.8795 0.6400 0.5350

J48 0.7610 0.8818 0.6401 0.5379

Neural network 0.7572 0.8870 0.6274 0.5327

Pima Indians RF 0.6728 0.6765 0.6692 0.3461

J48 0.6895 0.7320 0.6355 0.3733

Neural network 0.7198 0.6950 0.7446 0.4411

information (Jackson, 1993; Jolliffe, 1998). At the same time, the
reduction of indicators facilitates further calculation, analysis and
evaluation.

We used Statistical Product and Service Solutions (SPSS) to
implement the PCA algorithm. SPSS is a general term for a series
of software products and related services launched by IBM. It
is mainly used for statistical analysis, data mining, predictive
analysis and other tasks. SPSS has a friendly visual interface and
is easy to operate.

TABLE 3 | Predict diabetes of using mRMR to reduce dimensionality.

Dataset Classifier ACC SN SP MCC

Luzhou RF 0.7508 0.8334 0.6681 0.5085

J48 0.7613 0.8795 0.6431 0.5379

Neural network 0.7570 0.8828 0.6313 0.5312

Pima Indians RF 0.7721 0.7458 0.7985 0.5451

J48 0.7534 0.7228 0.7846 0.5095

Neural network 0.7390 0.8073 0.6708 0.4837

TABLE 4 | Predict diabetes of using PCA to reduce dimensionality.

Dataset Classifier ACC SN SP MCC

Luzhou RF 0.7395 0.7435 0.7354 0.4790

J48 0.7388 0.7335 0.7441 0.4777

Neural
network

0.7414 0.7370 0.7457 0.4828

Pima Indians RF 0.7144 0.7057 0.7231 0.4291

J48 0.7167 0.7381 0.6954 0.4353

Neural
network

0.7475 0.7381 0.7569 0.4968

Minimum Redundancy Maximum Relevance
mRMR (Jackson, 1993; Sakar et al., 2012; Li et al., 2016;
Wang et al., 2018) ensures the features have the max Euclidean
distances, or their pairwise have the minimized correlations.
Minimum redundancy standards are usually supplemented
by the largest relevant standards, such as maximum mutual
information and target phenotypes. Two ways can achieve
the benefits. First, with the same number of features, mRMR
feature set can have a more representative target phenotype for
better generalization. Secondly, we can use a smaller mRMR
feature set to effectively cover the same space made by a
larger regular feature set. For individual categorical variables,
the similarity level between each feature is measured by using
mutual information. Minimum redundancy is the choice to have
the most different features. Similar to mRMR, researchers also
developed Maximum Relevance Maximum Distance (MRMD)
(Zou et al., 2016b) for features ranking. And they were employed
in several biomedicine researches (Zou et al., 2016a; Jia et al.,
2018; Tang W. et al., 2018; Wei et al., 2018).
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TABLE 5 | Predict diabetes of using all features without blood glucose.

Dataset Classifier ACC SN SP MCC

Luzhou RF 0.7225 0.7228 0.7222 0.4450

J48 0.6917 0.6880 0.6953 0.3834

Neural network 0.6986 0.6646 0.7326 0.3981

TABLE 6 | Predict diabetes of using 11 features.

Dataset Classifier ACC SN SP MCC

Luzhou RF 0.7104 0.7082 0.7125 0.4207

J48 0.6916 0.6880 0.6953 0.3833

Neural network 0.6983 0.6685 0.7281 0.3973

Measurement
In this study, we used sensitivity (SN), specificity (SP), accuracy
(ACC), and Matthews correlation coefficient (MCC) to measure
the classified effectiveness. And the formulas are as follow:

SN =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TN + TP

TN + TP + FP + FN

MCC =
(TP × TN)− (FN × FP)

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

where true positive represents (TP) the number of identified
positive samples in the positive set. True negative (TP) means the
number of classification negative samples in the negative set. False
positive (FP) is the number of the number of identified positive
samples in the negative set. And false negative (FN) represents
the number of identified negative samples in the positive set. It
is often used to evaluate the quality of classification models. The
accuracy is defined as the ratio of the number of samples correctly
classified by the classifier to the total number of samples. In medical
statistics, there are two basic characteristics, sensitivity (SN) and
specificity (SP). Sensitivity is the true positive rate, and specificity
is the true negative rate. The MCC is a correlation coefficient
between the actual classification and the predicted classification.
Its value range is [-1, 1]. When the MCC equals one, it indicates
a perfect prediction for the subject. When the MCC value is 0,
it indicates the predicted result is not as good as the result of
random prediction, and -1 means that the predicted classification
is completely inconsistent with the actual classification.

RESULTS AND DISCUSSION

In the tables, we used Luzhou to represent the dataset from
hospital physical examination data in Luzhou, China and Pima
Indians represents the Pima Indians diabetics data. The two
datasets contain 14 and 8 attributes, respectively.

For better comparison, firstly, we used all features for
predicting diabetes. And the results are shown in Table 1.

Through the Table 1, we can get better results. In addition,
RF has the best result among the three classifiers when the

FIGURE 4 | The results of using Luzhou dataset. According to this figure, we found the method, which used all features and random forest has the greatest
performance. And the methods without blood glucose are not good.
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FIGURE 5 | The results of using Pima Indians dataset. From the figure, mRMR is friendly for this dataset and method only using glucose is not suitable for this
dataset.

TABLE 7 | Predict diabetes of using independence test data.

Method Classifier ACC SN SP MCC

mRMR RF 0.8857 0.9568 0.8146 0.7794

J48 0.7547 0.8647 0.6447 0.5223

Neural
network

0.7470 0.8655 0.6284 0.5085

All features RF 0.8963 0.9226 0.8700 0.7937

J48 0.8011 0.8135 0.7887 0.6025

Neural
network

0.7725 0.7942 0.7508 0.5455

Blood glucose RF 0.7537 0.8704 0.6371 0.5218

J48 0.7535 0.8713 0.6358 0.5218

Neural
network

0.5010 0.9388 0.0631 0.0040

TABLE 8 | Predict diabetes of using all features without blood glucose.

Method ACC Reference

mRMR (RF) 0.7852 Our study

mRMR (J48) 0.7806 Our study

All feature (RF) 0.7604 Our study

All feature (J48) 0.7275 Our study

AWAIS(10xCV) 0.7587 Polat and Kodaz, 2005

NNEE 0.7557 Jiang and Zhou, 2004

AIRS(13xCV) 0.7410 Watkins and Boggess, 2002

dataset is Luzhou physical examination. When the dataset
is Pima Indians, random forest has similar effects to neural
networks. And the decision tree structure of Luzhou dataset
is shown in Figure 2, the decision tree structure of Pima

Indians dataset is shown in Figure 3. According to Figures 2, 3,
we can find the root node is glucose, which can show the
glucose has the max information gain, so it confirm the
common sense and the clinical diagnosis basis. But there are
diabetic patients whose fasting blood glucose is less than 6.8 in
Luzhou dataset, we considered the reason maybe they injected
insulin before the physical examination to control blood sugar
levels.

According to consulting relevant information, we know there
are three indicators to determination the diabetes mellitus, which
are fasting blood glucose, random blood glucose and blood
glucose tolerance. Because the data only has fasting blood glucose
in Luzhou dataset and the Pima Indians dataset only has blood
glucose tolerance, we used fasting blood glucose and blood
glucose tolerance to prediction, respectively. And the results are
shown in Table 2.

According to the Table 2, we found in Luzhou dataset J48
has a better performance than the others do, and the accuracy is
above 0.76. In the Pima Indians dataset, only using blood glucose
tolerance is not good.

Then, we used mRMR to select features. We get the score
of each feature. According to the matrix, we chose the first five
features, which are height, HDL, fasting glucose, breathe, and
LDL, to predict diabetes using Luzhou dataset and select the first
three attributes, which are glucose, 2-h serum insulin and age,
to predict the Pima Indians dataset. The results are shown in
Table 3.

When we use the Luzhou dataset, J48 has the best
performance. But the results are not better than using all features.
In the Pima Indians dataset, this method, which used RF as the
classifier, has the best performance.
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Then we used PCA to reduce the features. Because height
and weight are related to physical index, we did not use height
and weight to using PCA in Luzhou dataset. We used SPSS to
analyzing the factors. According to the KMO and Bartlett test,
the two datasets can use PCA to reduce the features. And we
can get the composition matrix and eigenvalues. According to
the composition matrix and total variance interpretation, we can
get the new five features for Luzhou dataset and three features
for Pima Indians dataset. We use the new features to conduct
experiment, and the results are shown in Table 4.

The ACC of Luzhou dataset is less than the above methods.
The results show PCA is not suitable for this data. For Pima
Indians dataset, the accuracy is better than only use glucose.
In this second, neural network has the best performance for
predicting diabetes.

In order to explore the importance of other indexes in
predicting diabetes, we designed the following experiments by
using Luzhou dataset. Firstly, we used the all features without
blood glucose to predict diabetes, and the results are shown in
Table 5.

And then, we deleted the blood glucose, LDL and HDL which
need to go to the hospital for testing data. So there are 11 features
in this experiment, and the results are shown in Table 6.

According to the Tables 5, 6, we found the RF is able to predict
better diabetes. Although the accuracy is not the best, we can use
the prediction as a reference.

According to the above experiments, we summarized the
above results and get Figures 4, 5, which can more clearly
demonstrate the accuracy of each method in order to make a
better comparison.

From the Figures 4, 5, we can find PCA is not very suitable to
the two dataset. And using all features has a good performance,
especially for the Luzhou dataset. There is not much difference
among random forest, decision tree and neural network when
the feature set contains blood glucose. When we used the features
without blood glucose, random forest has the best performance.
But relatively speaking, the neural network performs poorly.

According to the Figure 4, we selected several methods
that performed better and conducted independent testing
experiments by using Luzhou dataset. So we chose three methods
(all features, mRMR and blood glucose) to conduct independent
test experiments. The results are shown in Table 7.

According to Table 7, we found the method using all features
still has a better result. And the method only using blood glucose
is not good, especially using neural network as classifier. The
reason for this result may be that the blood glucose contains too
little information.

Because Luzhou dataset is collected by ourselves, it is unable
to use this data for comparison experiments. In order to compare

with the methods in other papers, we used Pima Indians dataset
for 10-fold cross validation experiments. The results are shown in
Table 8.

CONCLUSION

Diabetes mellitus is a disease, which can cause many
complications. How to exactly predict and diagnose this disease
by using machine learning is worthy studying. According to the
all above experiments, we found the accuracy of using PCA is
not good, and the results of using the all features and using
mRMR have better results. The result, which only used fasting
glucose, has a better performance especially in Luzhou dataset.
It means that the fasting glucose is the most important index for
predict, but only using fasting glucose cannot achieve the best
result, so if want to predict accurately, we need more indexes. In
addition, by comparing the results of three classifications, we can
find there is not much difference among random forest, decision
tree and neural network, but random forests are obviously better
than the another classifiers in some methods. The best result for
Luzhou dataset is 0.8084, and the best performance for Pima
Indians is 0.7721, which can indicate machine learning can
be used for prediction diabetes, but finding suitable attributes,
classifier and data mining method are very important. Due
to the data, we cannot predict the type of diabetes, so in
future we aim to predicting type of diabetes and exploring the
proportion of each indicator, which may improve the accuracy
of predicting diabetes. We uploaded the Pima Indians dataset in
http://121.42.167.206/PIMAINDIANS/data.html.
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Bacteroides ovatus ELH-B2 is considered as a potential next-generation probiotic due
to its preventive effects on lipopolysaccharides-associated inflammation and intestinal
microbiota disorders in mice. To study safety issues associated with B. ovatus ELH-
B2, we conducted comprehensive and systematic experiments, including in vitro
genetic assessments of potential virulence and antimicrobial resistance genes, and
an in vivo acute toxicity study of both immunocompetent and immunosuppressed
mice via cyclophosphamide treatment. The results indicated that this novel strain is
non-toxigenic, fragilysin is not expressed, and most of potential virulence genes are
correlated with cellular structures such as capsular polysaccharide and polysaccharide
utilizations. The antibiotic resistance features are unlikely be transferred to other intestinal
microorganisms as no plasmids nor related genomic islands were identified. Side effects
were not observed in mice. B. ovatus ELH-B2 also alleviated the damages caused by
cyclophosphamide injection.

Keywords: Bacteroides ovatus, safety evaluation, antibiotic resistance, virulence genes, next-generation
probiotics

INTRODUCTION

Probiotics, prebiotics, and antibiotics are the most relevant therapies for disorders induced by
disturbed microbiota. Traditional probiotics mainly refer to Lactobacillus and Bifidobacterium,
which are normally obtained from traditional fermented foods and are widely accepted as food
ingredients or supplements for daily intake, with a prediction of global turnover value of US$46.55
billion by 2020 (O’Toole et al., 2017).

Beneficial strains other than the traditional probiotics have been discovered due to the
developments in bacterial culture methodologies and sequencing techniques and have started to be
authorized as ingredients in food, particularly from Bacteroides which is one of the most abundant
genera in the human intestine. For example, Bacteroides xylanisolvens DSM23964, which promotes
the maturation of natural antibodies against cancers in humans, has recently been permitted to
be added to pasteurized milk products under Novel Food Regulation No. 258/97 by the European
Commission (Brodmann et al., 2017); B. uniformis CECT7771 can improve overweight-induced
disorders by reducing the levels of cholesterol and triglyceride (Cano et al., 2012), with no obvious
damages identified in vivo (Fernandez-Murga and Sanz, 2016).
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B. ovatus is another dominant species identified as next-
generation probiotics either in its original form with sufficient
tumor-specific Thomsen–Friedenreich antigen expressed for
cancer prevention (Ulsemer et al., 2013), or genetically modified
with genes encoding human keratinocyte growth factors
(Hamady et al., 2010) or transforming growth factors (Hamady
et al., 2011) to facilitate therapies for bowel diseases. However,
the beneficial functions of Bacteroides are strain-dependent, such
as the polysaccharides A (PSA)-producing B. fragilis is capable
of relieving Helicobacter hepaticus associated inflammation and
autism spectrum disorders (Mazmanian et al., 2008; Hsiao
et al., 2013), but the fragilysin (bft)-carrying B. fragilis directly
contributes to severe colitis (Yim et al., 2013), emphasizing the
necessities for safety evaluations of each potentially beneficial
strain.

Previously, we established an efficient method for purifying
low-abundant Bacteroides species from the human intestine
(Tan et al., 2018), and discovered that one of the isolates,
B. ovatus ELH-B2 displaying promising potentials of modulating
lipopolysaccharides (LPS)-induced disorders in cytokine
secretions and intestinal microbiota through restoring the
balance of regulatory T cells (Tregs) and T helper 17 (Th-17)
cells (data unpublished). In this study, a pilot safety assessment
of this novel strain was carried out, including explorations of
its hemolytic and motile characteristics, antibiotic resistance,
genetic virulence factors, and underlying side effects in both
normal and immunosuppressed mice.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Bacteroides ovatus ELH-B2 was recovered from the in-house
preservations at Culture Collections of Food Microbiology
(CCFM), Jiangnan University (Wuxi, China). B. ovatus
JCM5824 was purchased from RIKEN BioResource Center,
Japan. Salmonella enterica CMCC50335 and Escherichia coli
CMCC44102 were acquired from the National Center for
Medical Culture Collections, China.

Salmonella enterica and E. coli were anaerobically cultured
in brain heart infusion (BHI, Hopebio, China) at 37◦C. The
B. ovatus strains were cultured in BHI supplemented with
hemin (Sangon Biotech, China) and vitamin K1 (BHIS) at
37◦C in anaerobic chamber for further analysis of bacterial
characterizations. The bacteria solutions for in vivo tests were
prepared with cells at early stationary phase after centrifugation
at 6000 rpm for 15 min and re-suspension in phosphate buffer
saline supplemented with 20% glycerol, and maintained at
−80◦C. Cell viability after freezing and thawing was evaluated
via colony-forming unit (cfu) enumeration on BHIS agar before
use.

Bacterial Characterizations
Bacteroides ovatus type strain JCM5824 was used as control for
the bacterial characterization assessments of ELH-B2. Hemolytic
capabilities were examined by dropping 5 µl of overnight culture
on Brucella agar (Hopebio, China) supplemented with hemin,

vitamin K1 and 5% sheep blood (Nanjing SenBeiJia Biological
Technology Co., Ltd., China) (Robertson et al., 2006). Motility
was tested via standard motility agar assays using BHIS broth
supplemented with 0.5% (w/v) agar (soft agar) (Cousin et al.,
2015), inoculated with 5 µl of overnight culture and incubated
anaerobically for 48 h. S. enterica CMCC50335 was adopted as
the positive control and E. coli CMCC44102 as the negative
control. All of the experiments were carried out in three biological
replicates.

Genome Sequencing and Screening of
Potential Virulence Factors
The genomic DNA was extracted from B. ovatus ELH-B2
culture at early stationary phase and sequenced with Illumina
Hiseq system by Majorbio (China). Library of average insert
size of 410 bp was generated with low-quality reads filtered.
The genome was assembled using SOAPdenovo v2.041 (Li
et al., 2008; Li et al., 2010) followed by gap closure and
base correction using GapCloser v1.12. A K-mer value of
23 was determined according to the accuracy evaluation.
Gene annotation was performed by blastp (BLAST 2.2.28+)
against Nr, Swiss-prot, string and GO databases. In order
to show the relationships between B. ovatus ELH-B2 and
other B. ovatus isolates, whose genome sequences were
available from the NCBI database2, a neighbor-joining
phylogenetic tree (Bottacini et al., 2014) was established
by phyML3 (Guindon et al., 2009) after alignment of
homologous genes identified by graph theory-based Markov
clustering algorithm using mafft4 (Katoh and Standley, 2013)
(Figure 1).

Putative antibiotic resistance genes and virulence genes were
identified in the genome of B. ovatus ELH-B2 by using a Protein-
translated nucleotide Basic Local Search Tool (tblastn) according
to the Comprehensive Antibiotic Resistance Database (CARD5

(McArthur et al., 2013) and the Virulence Factor Database
(VFDB6) (Chen et al., 2012) respectively. Positive results were
accepted with at least 30% identity and 70% coverage, and
e-value less than 0.01 (Salvetti et al., 2016). Genetic islands
were also predicted using IslandPath-DIMOB and Islander (Lu
and Leong, 2016) for identifying putative virulence factors and
possibilities of transportation of antibiotics resistance genes
between bacteria. Moreover, Bacteroides-specific virulence factors
including bft, ompW, upaY, upaZ, wcfR, wcfS, cfiA, cepA, and
cfxA, of which the amino acid sequences were acquired from
the NCBI database (Table 1B), were screened in B. ovatus
ELH-B2 using tblastn based on BioEdit v7.2.5 with e-value
less than 1e-5. The genome sequence of B. ovatus JCM5824
(GenBank accession number NZ_CP012938) was analyzed for
comparison.

1http://soap.genomics.org.cn/
2https://www.ncbi.nlm.nih.gov/
3http://www.atgc-montpellier.fr/phyml/
4https://mafft.cbrc.jp/alignment/software/
5http://arpcard.mcmaster.ca/
6http://www.mgc.ac.cn/VFs/main.htm
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FIGURE 1 | Phylogenetic tree based on the complete genome sequences of Bacteroides ovatus ELH-B2 and other B. ovatus strains.

Minimum Inhibitory Concentration (MIC)
of Different Antibiotics
Fourteen antibiotics, corresponding to ampicillin, cefoxitin,
ceftriaxone, penicillin G, and vancomycin which suppress
cell wall synthesis; chloromycetin, clindamycin, erythromycin,
kanamycin, streptomycin, and tetracycline which restrain protein
synthesis; ciprofloxacin and metronidazole which inhibit nucleic
acid synthesis; and polymyxin B which suppresses cytoplasmic
functions, were applied to determine the antibiotic resistance
profiles of B. ovatus ELH-B2, with the type strain of JCM5824
as comparison. B. ovatus overnight culture (100 µl) at a
concentration of 107 cfu/ml was treated with serially diluted
antibiotics from 0.125 to 1024 µg/ml in sterile 96-well plates. The
optical density at 600 nm was checked with a microplate reader
(Multiskan GO, Thermo Scientific, United States) after anaerobic
cultivation at 37◦C for 48 h. The MIC of each antibiotic was
determined by the lowest concentration that inhibited 90% of the
growth of the tested B. ovatus strains (D’Aimmo et al., 2007). All
of the experiments were carried out in three biological replicates.

Animals
Male C57 mice (7 weeks old, spf grade) were purchased from
Shanghai Laboratory Animal Center (China) and raised within
the IVC rodent caging system at Jiangnan University. The mice
were maintained under a 12-h light/dark cycle with temperature
and humidity strictly controlled. Treatment was initiated after
acclimatization for at least 1 week. The entire experiment
was approved by the Animal Ethics Committee of Jiangnan
University (JN. No. 20180415c0450730[61]), and protocols for
the care and use of experimental animals were based on the
European Community guidelines (Directive 2010/63/EU).

Acute Toxicity to Immunocompetent and
Immunosuppressed Mice
Both immunocompetent and immunosuppressed mice were
involved in this acute toxicity assessment of B. ovatus ELH-B2.
The immunocompetent mice, comprising control group (CTRL,
6 mice) and B. ovatus ELH-B2 group (BO, 6 mice), were given
150 µl of PBS/glycerol solution or 109 cfu B. ovatus ELH-B2
solution by gavage, respectively, every 24 h for 5 days. The other
12 mice were immunosuppressed by intraperitoneal injection
with 250 mg/kg of cyclophosphamide (CTX, Sigma-Aldrich,
United States), and were allocated to CTX group or CTX + BO
group 3 days after followed by daily oral administration of 150 µl
of PBS/glycerol solution or 109 cfu B. ovatus ELH-B2 solution,
respectively, for 5 days (Hirsh et al., 2004; Salva et al., 2014).

The behavior and body weight of each mouse were monitored
and recorded throughout the experiments. All of the mice
were anesthetized with sodium pentobarbital and sacrificed by
cervical dislocation. Liver, spleen and colon tissues and blood
samples were collected immediately after sacrifice for further
investigations.

Assays of Hematological and Liver
Parameters
Hematological parameters were assessed using automatic
hematology analyzer (BC-5000, Mindray, China) and associated
buffers with fresh blood samples. The liver parameters were
examined using automatic biochemical analyzer (BS-480) and
corresponding kits (Mindray, China) with serum obtained by
centrifuging the blood samples at 2500 rpm for 10 min. The
serum standard (Shanghai Zhicheng Biological Technology Co.
Ltd., China) was used for quality control.
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Cytokine Concentrations in Serum
The secretions of tumor necrosis factor alpha (TNF-α),
interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-10 (IL-
10) were determined using mouse Elisa kits purchased from
Nanjing SenBeiJia Biological Technology Co., Ltd. (China) with
serum samples, according to the manufacturer’s instructions.

Histological Analysis
Liver, spleen and colon tissues were preserved in 4%
paraformaldehyde solution and then embedded in paraffin.
The histological analysis was conducted using Hematoxylin-
Eosin (H&E) staining as published (Al-Hashmi et al., 2011).
Images were recorded using Pannoramic digital slide scanner
(Pannoramic MIDI II, 3DHISTECH Ltd., Hungary).

Statistical Analysis
Significant differences between groups were determined by
unpaired Student’s t-test using Graphpad Prism v5.0 (Graph Pad
Software Inc., United States), with p-values of less than 0.05. All
of the data were presented as mean± SD.

RESULTS

Microbiological Properties
Bacteroides ovatus ELH-B2 grew well at 37◦C on the Brucella
agar supplemented with laked sheep blood under strict anaerobic
conditions. The colonies were round, semi-opaque with smooth
edges, and the bacteria were Gram-negative and rod shaped,
which matches the description of B. ovatus in Bergey’s Manual
(Krieg et al., 2001). Similar to the type strain B. ovatus JCM5824,
ELH-B2 was confirmed to be non-motile, but slightly hemolytic.

Genetic Characteristics and
Identification of Potential Virulence
Factors
The size of the complete genome of B. ovatus ELH-B2 is 1 206
654 732 base pair, including 102 scaffolds and 5909 genes. The
GC concent is 41.98%. The genomic information indicates the
most similar strain to B. ovatus ELH-B2 is B. ovatus CL03T12C18
(Figure 1).

According to the blast against VFDB database, 44 virulence
factor homologs were identified in B. ovatus ELH-B2 (Table 1A),
most of which correlate with cellular structures like capsular
polysaccharide and polysaccharide utilizations such as
glycosyltransferase, and yet have been discovered as the
pathogenesis of B. ovatus. And there are nine predicted genomic
islands of over 30 kb (Table 1B), six of which are metabolism-
related. Toxin-antitoxin system-associated genes were discovered
two of the potential genomic islands, and one of the components
in the Type IV secretion system (T4SS) were also identified.

As for the Bacteroides-specific virulence factors (Table 1C),
Similar to B. ovatus JCM5824, B. ovatus ELH-B2 does not
contain the diarrhea-associated B. fragilis enterotoxin bft. The
coding gene of TonB-linked outer membrane protein (ompW),
which has been implicated in inflammatory bowel disease (IBD)

(Wei et al., 2001), were identified in both B. ovatus strains with
high similarity. No hits or only low matches were identified
in ELH-B2 for the highly conserved open reading frames,
upaY and upaZ, and another two genes critical for synthesizing
capsular PSA, wcfR and wcfS. And among the three β-lactamase-
associated genes, only cepA was found in the two genomic
sequences with high similarity.

Minimum Inhibitory Concentrations of
Antibiotics
As shown in Table 2A, the potential antibiotic resistance genes
indicated the possibilities of B. ovatus ELH-B2 to survive
under the treatment of tetracycline, kanamycin, macrolide
antibiotics like erythromycin, cationic antibiotics like polymyxin
B, and glycopeptide like vancomycin. Accordingly, the MIC
experiments verified that B. ovatus ELH-B2 was resistant to
these antibiotics except tetracycline (Table 2B). It was also
clinically susceptible to penicillin, cefoxitin, chloromycetin, and
metronidazole with MICs of no more than 32 µg/ml (D’Aimmo
et al., 2007). The lowest MIC of ELH-B2 was 4 µg/ml during
treatment with metronidazole. Clindamycin and erythromycin
were able to inhibit the growth of B. ovatus JCM5824 rather than
ELH-B2.

In vivo Toxicity of B. ovatus ELH-B2
All of the animals were alive and healthy at the end of
the experiment, and no abnormal behaviors were witnessed.
Although the immunosuppressed mice displayed significantly
less body weights, B. ovatus ELH-B2 treatment did not
induce obvious alterations in the body mass of healthy or
cyclophosphamide-injected mice (Figure 2A). Concerning the
organ index, which refers to the ratio of organ weight to
body weight, ELH-B2 had very little effect on liver indexes
in immunocompetent mice, and did not enhance the enlarged
spleen indexes of the drug-injected mice (Figure 2B). Colon
length was also not notably influenced by the administration of
ELH-B2.

B. ovatus ELH-B2 intervention did not show significant
alterations in the hematological (Table 3A) or liver parameters
(Table 3B) of normal mice. After CTX injection, the percentages
of lymphocytes (p < 0.01), hemoglobin concentration
(p < 0.001), hematocrit value (p < 0.01) and platelets
enumeration (p < 0.05) were markedly dropped, and the
percentage of neutrophils were dramatically increased (p < 0.01).
However, during the treatment with ELH-B2, the hematocrit
value of the immunosuppressed mice was recovered (p < 0.01)
and corpuscular volume was also significantly increased
(p < 0.01). As for the liver parameters, CTX induced notable
upregulation of alanine aminotransferase (p < 0.05), and
concentration of alkaline phosphatase was dropped to normal
level due to the administration of ELH-B2 in CTX-treated mice
(p < 0.01).

No obvious modifications in cytokine productions were
observed after the treatment of B. ovatus ELH-B2 in both
healthy and immunosuppressed mice (Figure 3). Treatment with
B. ovatus ELH-B2 did not lead to any histopathological damage in
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TABLE 1 | (A) Identification of potential virulence factors in the genome of Bacteroides ovatus ELH-B2 according to VFDB database; (B) prediction of putative genomic
islands of over 30 kb in the genome of B. ovatus ELH-B2; (C) comparison of Bacteroides-specific virulence genes in B. ovatus ELH-B2 and JCM5824.

(A)

VFDB_ID Name Description Original source Identity Coverage e-value

VFG000077 clpP ATP-dependent Clp protease proteolytic
subunit

Listeria monocytogenes EGD-e 54% 76% 3.00E-67

VFG000165 pchF Pyochelin synthetase PchF Pseudomonas aeruginosa PAO1 71% 88% 6.00E-04

VFG000321 rfbD GDP-D-mannose dehydratase Helicobacter pylori 26695 59% 74% 2.00E-136

VFG000366 ybtQ Inner membrane ABC-transporter YbtQ Yersinia pestis CO92 56% 72% 3.00E-04

VFG000574 mgtB Mg2+ transport protein Salmonella enterica subsp. enterica serovar
Typhimurium str. LT2

55% 72% 0.00E+00

VFG000696 bexA ATP-dependent polysaccharide export
protein BexA

Haemophilus influenzae str. 1007 49% 78% 1.00E-07

VFG001266 pchI ABC transporter ATP-binding protein Pseudomonas aeruginosa PAO1 53% 76% 1.00E-05

VFG001269 cyaB Cyclolysin secretion ATP-binding protein Bordetella pertussis Tohama I 59% 75% 8.00E-04

VFG001301 cap8E Capsular polysaccharide synthesis enzyme
Cap8E

Staphylococcus aureus subsp. aureus
MW2

63% 78% 1.00E-137

VFG001303 cap8G Capsular polysaccharide synthesis enzyme
Cap8G

Staphylococcus aureus subsp. aureus
MW2

57% 72% 1.00E-140

VFG001341 cpsJ Glycosyl transferase CpsJ(V) Streptococcus agalactiae 2603V/R 58% 78% 6.00E-10

VFG001342 cpsO Glycosyl transferase CpsO(V) Streptococcus agalactiae 2603V/R 56% 76% 3.00E-14

VFG001374 cps4J Capsular polysaccharide biosynthesis protein
Cps4J

Streptococcus pneumoniae TIGR4 72% 85% 1.00E-160

VFG001375 cps4K Capsular polysaccharide biosynthesis protein
Cps4K

Streptococcus pneumoniae TIGR4 61% 78% 1.00E-169

VFG001376 cps4L UDP-N-acetylglucosamine 2-epimerase Streptococcus pneumoniae TIGR4 79% 90% 0.00E+00

VFG001855 htpB Hsp60, 60K heat shock protein HtpB Legionella pneumophila subsp.
pneumophila str. Philadelphia 1

59% 77% 2.00E-168

VFG001937 Cj1136 Glucosyltransferase Campylobacter jejuni NCTC11168 48% 70% 7.00E-14

VFG001939 Cj1138 Glycosyltransferase Campylobacter jejuni NCTC11168 47% 74% 2.00E-13

VFG001940 wlaN Beta-1,3 galactosyltransferase Campylobacter jejuni NCTC11168 50% 76% 1.00E-12

VFG001968 Cj1440c Sugar transferase Campylobacter jejuni NCTC11168 49% 70% 1.00E-11

VFG002181 cpsJ ABC transporter, ATP-binding protein Enterococcus faecalis V583 58% 76% 1.00E-03

VFG002187 cpsD Glycosyl transferase, group 2 family protein Enterococcus faecalis V583 36% 71% 3.00E-12

VFG002225 gmd GDP-mannose 4,6-dehydratase Brucella melitensis bv. 1 str. 16M 69% 81% 2.00E-156

VFG002365 gmd GDP-mannose 4,6-dehydratase Yersinia enterocolitica 8081 64% 78% 2.00E-151

VFG002368 wbcG Putative glycosyltransferase Yersinia enterocolitica 8081 50% 78% 2.00E-09

VFG002376 ddhB CDP-glucose 4,6-dehydratase Yersinia enterocolitica 8081 49% 71% 5.00E-113

VFG002377 ddhA Glucose-1-phosphate cytidylyltransferase Yersinia enterocolitica 8081 58% 74% 2.00E-94

VFG002440 bprB Two-component response regulator Burkholderia pseudomallei K96243 50% 72% 6.00E-07

VFG002480 tssH-5/clpV Clp-type ATPase chaperone protein Burkholderia pseudomallei K96243 56% 74% 2.00E-83

VFG002563 wzt2 ATP-binding ABC transporter capsular
polysaccharide export protein

Burkholderia pseudomallei K96243 51% 80% 3.00E-06

VFG005773 cylZ 3R-hydroxymyristoyl ACP dehydratase CylZ Streptococcus agalactiae 2603V/R 52% 86% 5.00E-04

VFG011414 kdsA 2-dehydro-3-deoxyphosphooctonate
aldolase

Brucella melitensis bv. 1 str. 16M 53% 70% 1.00E-65

VFG011430 acpXL Acyl carrier protein Brucella melitensis bv. 1 str. 16M 64% 80% 2.00E-24

VFG012509 iroC ATP binding cassette transporter Escherichia coli CFT073 45% 71% 4.00E-05

VFG013354 kfiC Lipopolysaccharide biosynthesis protein Haemophilus influenzae Rd KW20 47% 83% 2.00E-14

VFG013368 rffG dTDP-glucose 46-dehydratase Haemophilus influenzae Rd KW20 50% 70% 3.00E-99

VFG013471 lgtA N-acetylglucosamine glycosyltransferase Haemophilus influenzae Rd KW20 48% 80% 2.00E-10

VFG037028 katA Catalase Neisseria meningitidis MC58 71% 82% 0.00E+00

VFG037386 bauE Ferric siderophore ABC transporter,
ATP-binding protein BauE

Acinetobacter baumannii ACICU 42% 70% 8.00E-05

VFG038722 AHA_1389 CobQ/CobB/MinD/ParA family protein Aeromonas hydrophila ATCC7966 51% 71% 5.00E-04

VFG038918 rtxE RTX toxin transporter, ATPase protein Aeromonas hydrophila ATCC7966 63% 77% 2.00E-05

VFG043373 cheA Histidine kinase CheA Helicobacter pylori 26695 39% 70% 5.00E-04

(Continued)
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TABLE 1 | Continued

VFDB_ID Name Description Original source Identity Coverage e-value

VFG043394 cheA Chemotaxis histidine kinase Campylobacter jejuni NCTC11168 34% 70% 7.00E-04

VFG045340 ricA Rab2 interacting conserved protein A Brucella melitensis bv. 1 str. 16M 43% 75% 6.00E-07

(B)

Island no. Genes in island Size (kb) Potential functional genes within island

1 g0188–g0233 37.2 Zeta-toxin (g0214); antitoxin (g0215)

2 g0842–g0866 35.3 Arabinan endo-1,5-alpha-L-arabinosidase (g0844); SusC/RagA family TonB-linked outer membrane protein (g0846);
glycosyl hydrolase (g0842, g0851, g0854)

3 g0978–g1164 170 Thiamine biosynthesis protein ApbE (g0984); tonB-linked outer membrane, SusC/RagA family protein (g1005, g1062,
g1092); CepA family class A extended-spectrum beta-lactamase (g1025); xylulokinase (g1107)

4 g1544–g1594 34.9 Type IV secretory pathway TrbF components (g1575)

5 g1605–g1720 105.8 Glycosyl transferase 2 family protein (g1616, g1619); two-component sensor histidine kinase (g1646);, TonB-dependent
receptor (g1709)

6 g1837–g1864 32.2 Membrane protein (g1855); iron ABC transporter ATP-binding protein (g1864)

7 g2583–g2631 33.3 Redox-active disulfide protein (g2584); thioredoxin (g2585); conjugal transfer protein TraG (g2600, g2610), TraA
(g2605), TraH (g2611), TraJ (g2613), TraK (g2614), TraM (g2616), TraN (g2617)

8 g2866–g2999 91.7 Phage Mu F like family protein (g2947); phage tail tape measure protein, TP901 family, core region (g2955);
toxin-antitoxin system, antitoxin component, MerR family (g2998)

9 g3114–g3160 41.2 N-acetylmuramoyl-L-alanine amidase (g3133)

(C)

Potential virulence
factors

GenBank accession
number

Size (aa) % Similarity in B. ovatus
ELH-B2

% Similarity in B. ovatus
JCM5824

Reference

bft AAF72837.1 63 No hit No hit Gutacker et al., 2000

ompW AAL09385.1 947 95% (904/947) 95% (901/947) Wei et al., 2001

upaY AAK68912.1 172 29% (48/163) 30% (48/160) Coyne et al., 2001

upaZ AAK68913.1 157 No hit No hit

wcfR AAK68921.1 407 20% (88/407) 25% (101/395)

wcfS AAK68922.1 198 48% (68/141) 48% (68/141)

cfiA AAK71520 111 No hit No hit Gutacker et al., 2002

cfxA CAP78899.1 306 40% (111/273) 40% (110/273) Garcia et al., 2008

cepA AAA21538.1 300 77% (233/299) 77% (233/299) Rogers et al., 1994

the liver, spleen or colon of the healthy mice (Figure 4). However,
the CTX-treated mice suffered from hypertrophy of spleen,
the histological structure of which was severely damaged with
obvious fibrosis and hemorrhage. The red and white pulps could
not be well-defined and splenocytes were irregularly aligned
(Figure 4).

DISCUSSION

Evidences of indigenous and genetically modified intestinal
commensals which obtain underlying efficacy in modulating
immune and metabolic disorders, extend the range of
probiotics, and are termed “next-generation probiotics” or
“live biotherapeutic products.” The United States Food and Drug
Administration (FDA) provide a definition for live biotherapeutic
products as “a biological product that contains live organisms,
such as bacteria, and is applicable to the prevention, treatment
or cure of a disease or condition of human beings, but is not a
vaccine,” which is also suitable for next-generation probiotics

(O’Toole et al., 2017). In the meantime, the FDA drafted guidance
that next-generation probiotics should be authorized as food
ingredients when first entering the market. However, specific
guidelines for applications of these promising microorganisms
are yet to be developed. Therefore, a safety evaluation of
B. ovatus ELH-B2 was carried out according to the regulations
of the FAO/WHO for development of probiotics, in which
explained the importance of complete bacterial characterizations
such as original source, culture history, phenotype and genotype,
antibiotic resistance, and manufacturing methods and three-
step clinical trials, including safety assessment and functional
characterization; double blind, randomized, placebo-controlled
human studies; and efficiency comparisons with standard
treatments, and published toxicity analyses of Lactobacillus spp.
(Yakabe et al., 2009; Jia et al., 2011), B. xylanisolvens DSM23964
(Ulsemer et al., 2012a,b), B. uniformis CECT7771 (Fernandez-
Murga and Sanz, 2016), and B. fragilis ZY312 (Wang et al., 2017),
along with previous results which revealed that ELH-B2 had little
effect on the production of secretory immunoglobulin A (sIgA)
and chemokine (C-X-C motif) ligand 2 (CXCL2) or the balance
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TABLE 2 | (A) Predicted genes associated with antibiotic resistance in the genome of B. ovatus ELH-B2; (B) minimum inhibitory concentrations for antibiotics against
B. ovatus ELH-B2 and B. ovatus JCM5824 (µg/ml).

(A)

CARD_ID Name Description Original source Identity Coverage e-value

ARO:3000191 tetQ Tetracycline resistance Bacteroides fragilis 96% 98% 0.00E + 00

ARO:3000197 tet36 Tetracycline resistance Bacteroides coprosuis DSM 18011 60% 79% 0.00E + 00

ARO:3000206 emrK Major facilitator superfamily (MFS) antibiotic
efflux pump

Escherichia coli 41% 73% 7.00E-03

ARO:3000250 ErmC Erythromycin resistance Staphylococcus epidermidis 49% 71% 1.00E-72

ARO:3000375 ErmB Erythromycin resistance Enterococcus faecium 98% 99% 4.00E-158

ARO:3000499 acrE Resistance-nodulation-cell division (RND)
antibiotic efflux pump

Escherichia coli str. K-12 substr. MG1655 46% 73% 5.00E-05

ARO:3000768 abeS Small multidrug resistance (SMR) antibiotic
efflux pump

Acinetobacter baumannii AB307-0294 64% 81% 3.00E-26

ARO:3000816 mtrA Resistance-nodulation-cell division (RND)
antibiotic efflux pump

Mycobacterium tuberculosis H37Rv 40% 75% 5.00E-07

ARO:3000828 baeR Resistance-nodulation-cell division (RND)
antibiotic efflux pump

Escherichia coli str. K-12 substr. W3110 50% 71% 1.00E-08

ARO:3002522 novA Type III ABC transporter Streptomyces niveus 49% 71% 3.00E-03

ARO:3002626 ANT(6)-Ia Aminoglycoside nucleotidyltransferase Exiguobacterium sp. S3-2 62% 78% 2.00E-114

ARO:3002627 aadK Aminoglycoside nucleotidyltransferase Bacillus subtilis subsp. subtilis str. 168 58% 76% 1.00E-102

ARO:3002628 aad(6) Aminoglycoside nucleotidyltransferase Streptococcus oralis 64% 78% 5.00E-107

ARO:3002629 ANT(6)-Ib Aminoglycoside nucleotidyltransferase Campylobacter fetus subsp. Fetus 73% 87% 2.00E-133

ARO:3002817 carA ABC transporter involved in macrolide
resistance

Streptomyces thermotolerans 46% 74% 5.00E-06

ARO:3002825 ErmY Methyltransferase Staphylococcus aureus 52% 72% 2.00E-70

ARO:3002827 tlrC Efflux pump Streptomyces fradiae 47% 71% 1.00E-02

ARO:3002830 vgaALC Efflux protein Staphylococcus haemolyticus 56% 75% 3.00E-04

ARO:3002845 vatH Acetyl transferase Enterococcus faecium 45% 72% 2.00E-04

ARO:3002871 tet37 Tetracycline resistance Uncultured bacterium 65% 79% 1.00E-31

ARO:3002925 vanRF Glycopeptide resistance Paenibacillus popilliae ATCC14706 44% 70% 7.00E-15

ARO:3003036 oleB ABC transporter Streptomyces antibioticus 46% 72% 7.00E-04

ARO:3003048 rosA Efflux pump for resistance to cationic
antimicrobial peptides such as polymyxin B

Yersinia enterocolitica (type O:8) 53% 72% 1.00E-96

ARO:3003109 msrE ABC-efflux pump for resistance to
erythromycin

Escherichia coli 65% 81% 2.00E-03

ARO:3003548 mdtN Multidrug resistance efflux pump Escherichia coli str. K-12 substr. W3110 43% 70% 5.00E-04

ARO:3003559 cepA Beta-lactamase Bacteroides fragilis 78% 89% 3.00E-157

ARO:3003577 ugd Resistance to cationic antimicrobial
peptides

Escherichia coli str. K-12 substr. MG1655 58% 72% 7.00E-156

ARO:3003728 vanRI Glycopeptide resistance gene Desulfitobacterium hafniense 42% 70% 3.00E-17

ARO:3003744 vatF Streptogramin A acetyl transferase Yersinia enterocolitica 44% 72% 1.00E-08

ARO:3003836 qacH Small multidrug resistance (SMR) antibiotic
efflux pump

Vibrio cholerae 53% 71% 1.00E-29

ARO:3003841 kdpE Adaptive regulator involved in the virulence
and intracellular survival of pathogenic
bacteria

Escherichia coli str. K-12 substr. MG1655 43% 74% 6.00E-06

ARO:3003922 oqxA RND efflux pump Escherichia coli 56% 72% 2.00E-05

ARO:3003971 erm(44) Resistance to lincosamide and macrolide
antibiotics

Staphylococcus saprophyticus 49% 73% 1.00E-67

ARO:3003986 TaeA Efflux pump Paenibacillus sp. LC231 43% 74% 3.00E-05

ARO:3003987 VatI Acetyltransferase for resistance to
streptogramin A antibiotics

Paenibacillus sp. LC231 43% 72% 6.00E-04

ARO:3004038 emrE Multidrug transporter for resistance to
kanamycin

Pseudomonas aeruginosa PAO1 50% 73% 2.00E-10

ARO:3004039 emrE Efflux pump for resistance to erythromycin Escherichia coli 53% 71% 4.00E-30

(Continued)
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TABLE 2 | Continued

CARD_ID Name Description Original source Identity Coverage e-value

ARO:3004042 acrA Resistance-nodulation-cell division
(RND) antibiotic efflux pump

Enterobacter cloacae 45% 70% 1.00E-03

ARO:3004451 Chloramphenicol
acetyltransferase

Chloramphenicol acetyltransferase Agrobacterium tumefaciens str.
C58

53% 71% 2.00E-10

(B)

Antibiotics B. ovatus ELH-B2 B. ovatus JCM5824

Ampicillin MIC ≤ 64 MIC ≤ 128

Penicillin G MIC ≤ 32 MIC ≤ 32

Vancomycin MIC ≤ 64 MIC ≤ 64

Cefoxitin MIC ≤ 16 MIC ≤ 32

Ceftriaxone MIC ≤ 256 MIC ≤ 128

Clindamycin MIC ≤ 1024 MIC ≤ 0.25

Chloromycetin MIC ≤ 16 MIC ≤ 8

Erythromycin MIC ≤ 1024 MIC ≤ 4

Kanamycin MIC > 1024 MIC > 1024

Streptomycin MIC > 1024 MIC > 1024

Tetracycline MIC ≤ 8 MIC < 0.125

Metronidazole MIC ≤ 4 MIC ≤ 4

Ciprofloxacin MIC ≤ 64 MIC ≤ 16

Polymyxin B MIC ≤ 512 MIC ≤ 128

FIGURE 2 | Impact of B. ovatus ELH-B2 on (A) the body weight and (B) the
organ indexes of immunocompetent and immunosuppressed mice. The organ
indexes of the liver and spleen are expressed as the ratio of the corresponding
weight of the organ and body, while the colon index is expressed as the colon
length of each animal. Data are displayed as mean ± SD, “##” indicates
statistically significant differences between the CTX + BO group and the CTRL
group (p < 0.01).

of Treg and Th-17 cells, and even upregulated the diversity of
intestinal microbiota (unpublished data).

Morphological analysis showed that B. ovatus ELH-B2 cells
were non-motile, which excluded the pathogenic factor of flagella
for inducing inflammation via activating the NF-κB pathway
through Toll-like receptor 5 and secreting IL-8 (Neville et al.,
2012), and facilitating nutrient acquisition, niche colonization
(Lane et al., 2007; Neville et al., 2012), and biofilm formation
(Houry et al., 2010). The translucent circles around ELH-B2
colonies on blood agar plates indicated the possible existence of
hemolysin, which is a pore-forming toxin with cytolytic functions
on various types of cells, such as keratinocytes, epithelial cells,
and lymphocytes (Kennedy et al., 2010; Wilke and Wardenburg,
2010).

The virulence factors discovered via the Virulence
Factor Database include genes facilitating protein secretion,
carbohydrates degradation and maintaining cellular structures.
These elements could be probiosis-related and contribute to
bacterial adhesion and colonization, rather than pathogenicity
(Wassenaar et al., 2015). The majority of the predict islands
were discovered to be metabolism-related. Although TrbF of
T4SS were identified, the rest preserved genes were absent.
Thus B. ovatus ELH-B2 are not capable of producing the entire
secretion systems for any possibilities of transfering virulence
protein and antibiotic resistance genes (Aguilar et al., 2010).
Moreover, toxin-antitoxin system are widely existed in natural
bacteria strains for better adaptive ability to the environment
resulted from evolution (Buts et al., 2005), the virulence
characteristics of which requires further analysis.

Bacteroides species are, to some extent, considered to be
opportunistic pathogens as some of them are carriers of
virulence factors, such as the enterotoxigenic B. fragilis with bft
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TABLE 3 | Profiles of (A) hematological values and (B) liver parameters in immunocompetent and immunosuppressed mice after 5-day treatments with B. ovatus
ELH-B2.

(A)

CTRL BO CTX CTX + BO

WBC (10ˆ9/L) 2.47 ± 0.38 2.76 ± 0.64 2.19 ± 0.43 2.21 ± 0.92

Neu (10ˆ9/L) 0.73 ± 0.23 0.40 ± 0.20 0.92 ± 0.38# 1.01 ± 0.65

Lym (10ˆ9/L) 2.56 ± 0.49 2.31 ± 0.48 1.15 ± 0.17## 1.10 ± 0.31

Mon (10ˆ9/L) 0.05 ± 0.02 0.03 ± 0.02 0.08 ± 0.04 0.09 ± 0.05

Eos (10ˆ9/L) 0.02 ± 0.02 0.01 ± 0.01 0.03 ± 0.01 0.04 ± 0.02

Bas (10ˆ9/L) 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.02

Neu (%) 14.76 ± 5.61 13.90 ± 4.10 40.27 ± 10.93## 39.44 ± 4.86

Lym (%) 83.16 ± 5.67 84.00 ± 4.58 54.17 ± 12.04## 54.95 ± 4.41

Mon (%) 1.30 ± 0.60 1.10 ± 0.58 3.17 ± 1.23# 2.93 ± 0.90

Eos (%) 0.36 ± 0.19 0.57 ± 0.24 1.33 ± 0.40## 1.90 ± 0.37

Bas (%) 0.42 ± 0.13 0.43 ± 0.14 1.07 ± 0.66 1.35 ± 0.23

RBC (10ˆ12/L) 10.44 ± 0.23 10.07 ± 0.46 8.35 ± 0.20 8.88 ± 0.32

HGB (g/L) 171.40 ± 3.14 168.00 ± 3.92 141.33 ± 3.30### 147.50 ± 6.60

HCT (%) 49.78 ± 0.93 48.65 ± 0.70 39.90 ± 0.73### 44.98 ± 2.12∗∗

MCV (fL) 47.72 ± 0.28 48.08 ± 0.38 47.80 ± 0.29 50.17 ± 0.65∗∗

MCH (pg) 16.98 ± 0.17 17.27 ± 0.26 16.93 ± 0.25 16.43 ± 0.27

MCHC (g/L) 356.20 ± 4.71 358.67 ± 5.02 354.00 ± 4.55 356.50 ± 3.59

RDW-CV (%) 12.56 ± 0.24 12.83 ± 0.38 12.63 ± 0.09 13.07 ± 0.59

RDW-SD (fL) 26.88 ± 0.53 27.45 ± 0.73 29.07 ± 0.74 29.77 ± 1.06

PLT (10ˆ9/L) 1227.60 ± 171.16 1059.25 ± 49.44 907.33 ± 109.00# 984.50 ± 160.82

MPV (fL) 5.50 ± 0.24 5.38 ± 0.07 6.00 ± 0.22 5.93 ± 0.22

PDW (%) 15.54 ± 0.12 15.43 ± 0.07 15.77 ± 0.25 15.98 ± 0.17

PCT (%) 0.68 ± 0.10 0.54 ± 0.05 0.55 ± 0.07 0.58 ± 0.09

WBC, white blood cells; Neu, neutrophils; Lym, lymphocytes; Mon, monocytes; Eos, eosinophils; Bas, basophils; RBC, red blood cells; HGB, hemoglobin concentration;
HCT, hematocrit value; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell
distribution width; CV, coefficient of variation; SD, standard deviation; PLT, platelet; MPV, mean platelet volume; PDW, platelet distribution width; PCT, thrombocytocrit.
Data are displayed as mean ± SD, “∗∗” indicates statistically significant differences between the CTX + BO group and the CTX group (p < 0.01); “#”, “##,” and “###”
indicate statistically significant differences between the CTX + BO group and the CTRL group (p < 0.05, p < 0.01 and p < 0.001, respectively).

(B)

CTRL BO CTX CTX + BO

Glu (mmol/L) 6.40 ± 0.49 6.59 ± 0.56 7.07 ± 0.96 6.76 ± 0.40

TC (mmol/L) 1.87 ± 0.23 1.90 ± 0.28 1.78 ± 0.28 1.77 ± 0.17

TG (mmol/L) 1.51 ± 0.31 1.58 ± 0.11 1.56 ± 0.45 1.36 ± 0.46

ALT (U/L) 16.30 ± 1.41 17.85 ± 1.57 24.00 ± 3.82# 22.08 ± 1.21

AST (U/L) 175.06 ± 1.42 178.44 ± 13.43 172.50 ± 36.94 180.48 ± 32.45

TBIL (µmol /L) 1.94 ± 0.64 1.96 ± 0.34 2.39 ± 0.43 2.27 ± 0.35

ALP (U/L) 5.25 ± 3.90 5.40 ± 2.24 8.25 ± 3.27 5.00 ± 1.41∗∗

TP (g/L) 40.80 ± 3.17 40.70 ± 4.99 44.10 ± 2.36 44.50 ± 1.47

ALB (g/L) 25.44 ± 2.62 25.05 ± 3.57 27.80 ± 1.81 27.60 ± 1.60

CK (U/L) 2072.58 ± 203.93 2262.52 ± 284.58 2431.00 ± 974.13 2256.23 ± 676.64

LDH (U/L) 423.83 ± 228.77 465.80 ± 69.24 511.00 ± 63.94 516.30 ± 62.95

Glu, glucose; TC, total cholesterol; TG, triglyceride; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; ALP, alkaline phosphatase; TP,
total protein; ALB, albumin; CK, creatine kinase; LDH, lactic dehydrogenase.

(Sears, 2009) and B. caccae with ompW (Wei et al., 2001). The
metalloprotease bft was not identified in ELH-B2, but ompW
was found to be 95% identical. The protein encoded by ompW
in B. caccae was discovered by pANCA monoclonal antibody in
IBD patients and is closely associated with a pathogenic factor
of Porphyromonas gingivalis that contributes to tissue damage.

However, this TonB-linked structure of ompW is also conserved
in the starch-utilization system of Bacteroides species that helps
to break down resistant carbohydrates in the host. Hence, the
underlying role of the ompW-like structure in ELH-B2 requires
further investigation. Meanwhile, the blast results of the four
genes essential for constructing PSA indicated the absence

Frontiers in Genetics | www.frontiersin.org 9 November 2018 | Volume 9 | Article 53959

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00539 November 5, 2018 Time: 7:47 # 10

Tan et al. Safety Evaluation of Bacteroides ovatus

FIGURE 3 | Impact of B. ovatus ELH-B2 on the cytokine productions of
immunocompetent and immunosuppressed mice. Data are displayed as
mean ± SD.

of the capsular polysaccharide, which suggests that ELH-B2
does not possess the PSA-associated anti-inflammatory character
(Mazmanian et al., 2008), but also avoids the consequently
potential abscess formation (Cohen-Poradosu et al., 2011).

Overall, the putative antibiotic resistance gene list based on
the Comprehensive Antibiotic Resistance Database are almost in
correspondence to the antibiotic resistance profiles of B. ovatus
ELH-B2 acquired from MIC experiments. B. ovatus ELH-B2 was
found to be less susceptible to antibiotics compared with the
type strain. The three genes encoding β-lactamase, corresponding
to cfxA for class A cephalosporinase, cfiA for class B metallo-
β-lactamase and cepA for endogenous cephalosporinase (Garcia
et al., 2008), were not or were only partially aligned in the genome
of ELH-B2, which was consistent with the result that the novel
strain was clinically resistant to penicillin G and cefoxitin. It
is notable that neither plasmid nor antibiotic resistance-related
genomic islands were found in the genome, indicating low
chances of transferring the characteristics of antibiotic resistance
to other intestinal commensals.

In general, the results demonstrated that B. ovatus ELH-B2
showed no oral pathogenicity in healthy animals with a daily
dose of 109 cfu live cells, which is the appropriate concentration
for commercial application that guarantees both the viability
and integrity of bacterial cells after freeze-drying and restoration
procedures (Miyamoto-Shinohara et al., 2000). Based on a mean
body weight of 20 g for the mice, 3.5 × 1012 cfu of ELH-B2 cells
are predicted to be safe for a 70 kg healthy human adult.

In the meantime, confidence in authorizing treatments
for industrial and clinical applications would be enhanced
once no side effects of the bacteria have been confirmed in
immunodeficient animals (FAO/WHO, 2002). In this study,
immunosuppressed condition was established via CTX injection,
which is one of the most commonly used as a chemotherapeutic
treatment for cancers and as an immunosuppressive agent
before myeloablative therapies (Ehrke, 2003). Accordingly, the
cytotoxicity was reflected in liver which is the first target organ
engaging all toxic drugs (Singh et al., 2018), and spleen which is
responsible for the immune status by controlling the proliferation
of T cells, B cells and lymphocytes (Gong et al., 2015). CTX
treatment led to distinctly upregulated liver parameter of alanine
aminotransferase, injuries in spleen and disturbed hematological
values.

Nevertheless, B. ovatus ELH-B2 did not accelerate the
toxicities of CTX. Besides, the restoration of alkaline phosphatase
revealed a recovery effect on the liver and pancreatic functions.
Alkaline phosphatase contributes to the dephosphorylation of
LPS from the gut by circulation (Moreira et al., 2012), and thereby
the downregulation of which emphasized the capability of the
Bacteroides to help reduce the threats of endotoxemia in the
mice. This result corresponds to the previous characterization
study of this novel strain. A reduction in the secretion of TNF-α
was observed with B. ovatus ELH-B2 treatment, demonstrating
its potential anti-inflammatory function, although in a non-
significant way.

FIGURE 4 | Impact of B. ovatus ELH-B2 on the tissue histology of immunocompetent and immunosuppressed mice.
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In summary, B. ovatus ELH-B2, a novel strain which
was confirmed to be capable of attenuating LPS-induced
inflammation in vivo, did not raise severe safety issues in
either immunocompetent or immunosuppressed mice, and
even partially relieved the side effects associated with the
chemotherapeutic drug. Further assessments of viable doses and
extreme conditions, such as intraperitoneal injection of bacteria,
should be considered (Ulsemer et al., 2012b).
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Objective: The prognostic analysis of limited resection vs. lobectomy in stage IA small
cell lung cancer (SCLC) remains scarce.

Methods: Using the Surveillance, Epidemiology, and End Results registry (SEER)
database, we identified patients who were diagnosed with pathological stage IA
(T1a/bN0M0) SCLC from 2004 to 2013. The overall survival (OS) and lung cancer-
specific survival (LCSS) rates of patients with different treatment schemes were
compared in stratification analyses. Univariable and multivariable analyses were also
performed to identify the significant predictors of OS and LCSS.

Results: In total, we extracted 491 pathological stage IA SCLC patients, 106 (21.6%)
of whom received lobectomy, 70 (14.3%) received sublobar resection and 315 (64.1%)
received non-surgical treatment, respectively. There were significant differences among
the groups based on different treatment schemes in OS (log-rank p < 0.0001) and
LCSS (log-rank p < 0.0001). Furthermore, in subgroup analyses, we did not identify
any differences between sublober resection group and lobectomy group in OS (log-
rank p = 0.14) or LCSS (log-rank p = 0.4565). Patients with four or more lymph node
dissection had better prognosis. Multivariable analyses revealed age, laterality, tumor
location, and N number were still significant predictors of OS, whereas age, tumor
location, and N number were significant predictors of LCSS.

Conclusion: Surgery is an important component of multidisciplinary treatment for stage
IA SCLC patients and sublober resection is not inferior to lobectomy for the specific
patients.

Keywords: lung cancer, small cell lung cancer, prognosis, sublober resection, lobectomy
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INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer
and the leading cause of death from cancer worldwide (Jemal
et al., 2011). Small cell lung cancer (SCLC), as the most common
neuroendocrine tumor, comprises almost 14% of all lung cancer
patients (Siegel et al., 2016). Besides, SCLC is recognized as an
aggressive neoplasm characterized by rapid growth and early
development of widespread metastases (especially hematogenous
metastases) (Ettinger et al., 2018). When compared with non-
small cell lung cancer (NSCLC), the 5-year overall survival rate
is only 6.2% while the rate reaches to 18.0% in NSCLC patients
(Kalemkerian et al., 2013).

As the Veterans Administration (VA) Lung Study Group
proposed, SCLC is typically classified as limited-stage
and extensive-stage disease (Argiris and Murren, 2001).
Approximately 30% of SCLC patients present with limited-stage
disease, most of whom have experienced lymphatic metastasis
at their first diagnosed. SCLC is sensitive to chemotherapy and
radiotherapy. Thus, systemic therapy is recommended for all
patients with SCLC by the National Comprehensive Cancer
Network (NCCN) Guidelines. However, the NCCN Guidelines
indicates that, for stage I SCLC patients without mediastinal
lymph node metastasis, surgery should be considered (Ettinger
et al., 2018).

In early-staged NSCLC patients, surgical resection could offer
a potential cure in clinical practice (Islam et al., 2013). Lobectomy
with mediastinal lymph mode dissection has been recommended
as the standard scheme for early-staged NSCLC patients
(Darling et al., 2011). However, limited resection (anatomical
segmentectomy and non-anatomical wedge resection) is
considered as a compromising surgical procedure for high-risk
patients, whereas it has the advantage of preserving lung function
and providing the chance for a second operation (Kocaturk
et al., 2011; Zuin et al., 2013; Gu et al., 2017). Although the
efficacy of limited resection for early-staged NSCLC patients has
been doubted, many studies have proved it achieves equivalent
oncological outcomes to lobectomy, no matter in the elderly or
the young set (Altorki et al., 2014; Sihoe and Van Schil, 2014; Gu
et al., 2017).

As for early-staged SCLC patients, the role of surgery has not
been assessed by any prospective studies. However, data from
retrospective studies showed favorable results when additional
surgery was applied in patients with stage I SCLC (James
et al., 2010; Yang et al., 2016). And the 5-year survival rate
could be improved to 40–60% by surgery in stage I SCLC
patients (James et al., 2010). However, given the characteristics of
rapid growth and the sensitivity to chemoradiotherapy, limited
resection, especially for high-risk patients, is only recognized as a
compromise procedure by many surgeons. Few studies evaluated
the oncological effect of limited resection and the equivalency
of limited resection verse lobectomy among stage IA SCLC
patients. In this study, we used the population-based Surveillance,
Epidemiology, and End Results (SEER) registry to compare the
oncological efficacy between limited resection and lobectomy in
patients with stage IA SCLC patients, and further investigated the
prognostic factors for these patients.

MATERIALS AND METHODS

Study Population
The study population was confined to patients who were
diagnosed with pathological stage IA (T1a/bN0M0) SCLC from
2004 to 2013 in SEER database. The exclusion criteria were
as follows: (1) patients with a second primary neoplasm or
with synchronous multiple primary lung cancer; (2) surgical
patients treated with neoadjuvant/intraoperative radiotherapy,
which could be neoplasms of higher stage; (3) patients with
lung metastases (pathologically conformed SCLC) from other
locations; (4) unknown tumor location or primary main
bronchus tumor; (5) patients with unknown medical records
on survival status. All the data extracted from the Surveillance,
Epidemiology, and End Results registry, which is a public
population-based database and the Institutional Review Board
of our hospital approved our study with a waiver for the
requirement of patient consent.

The codes of tumor histology were consistent with the
International Classification of Diseases for Oncology (Percy
et al., 1990). Relevant sociodemographic information was
extracted from SEER database, along with all the available
tumor features, including age, gender, race, laterality (left or
right), primary tumor location (which lobe), grade, tumor size,
and treatment strategy. Tumor pathologic TNM stage were
determined according to the 7th edition of TNM staging system
proposed by the American Joint Committee on Cancer (AJCC)
(Edge et al., 2010).

Survival time was defined as the time frame of the date of
diagnosis to the date of death. Patients still alive at the time point
of December 31, 2013 were set as censored cases. Furthermore,
deaths from other causes were censored at the time of death when
investigating the lung cancer specific survival (LCSS).

Statistical Analysis
All the patients were grouped by treatment strategies and the
baseline variables of different groups were compared. Data with
continuous covariates were presented as median ± standard
deviation (SD) and were analyzed using Student’s t-test while
data with categorical covariates were presented as number (%)
and were analyzed using Pearson χ2 test. The distributions of
overall survival (OS) and LCSS were calculated with Kaplan-
Meier method, and the significance among different groups was
explored by the log-rank test. Furthermore, a Cox proportional
hazards model was established to probe prognostic factors for OS
and LCSS by univariable and multivariable analyses.

All the clinicopathological data were analyzed using SPSS 22.0
software package (SPSS Inc., Chicago, IL, United States) while
the distributions of OS and LCSS were draw utilizing Prism 5
(Graph Pad Software Inc., La Jolla, CA, United States). Statistical
significance was set as p < 0.05.

RESULTS

Totally, we identified 491 stage IA SCLC patients from SEER
database. There were 106 (21.6%) patients received lobectomy,
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70 (14.3%) received sublobar resection, 215 (43.8%) received
adjuvant radiotherapy alone, and 100 (20.3%) received no
treatment, respectively. Furthermore, of all the patients who
underwent surgical resection, 83 patients underwent lobectomy
only, 23 underwent lobectomy plus adjuvant radiotherapy, 54
underwent sublober resection only, and 16 underwent sublober
resection plus adjuvant radiotherapy, respectively.

The baseline characteristics of all the patients were listed in
Table 1. The elderly patients account for the majority of the
patient sets. Based on the data in Table 1, there was no statistical
difference among the three groups of different treatment schemes
in gender, race and tumor location. However, compared with
patients who had surgical treatment, patients without surgical
resection were apt to had older age (p < 0.001), higher tumor

TABLE 1 | The baseline characteristics of enrolled patients stratified by different
treatment schemes.

Characteristics Lobectomy
(n = 106)

Sublober
resection (n = 70)

Non-surgical
(n = 315)

p

Age <0.001

<65 38 (35.8) 18 (25.7) 50 (15.9)

≥65 68 (64.2) 52 (74.3) 265 (84.1)

Gender 0.852

Male 47 (44.3) 31 (44.3) 148 (47.0)

Female 59 (55.7) 39 (55.7) 167 (53.0)

Race 0.069

White 99 (93.4) 66 (94.3) 274 (87.0)

Black 4 (3.8) 4 (5.7) 29 (9.2)

Others 3 (2.8) 0 (0) 11 (3.5)

Unknown 0 (0) 0 (0) 1 (0.3)

Laterality 0.048

Left 42 (39.6) 20 (28.6) 140 (44.4)

Right 64 (60.4) 50 (71.4) 175 (55.6)

Tumor location 0.067

Upper lobe 64 (60.4) 53 (75.7) 187 (59.4)

Middle lobe 10 (9.4) 2 (2.9) 24 (7.6)

Lower lobe 32 (30.2) 15 (21.4) 104 (33.0)

Pathological T stage 0.003

1a 69 (65.1) 51 (72.9) 167 (53.0)

1b 37 (34.9) 19 (27.1) 148 (47.0)

T size (mm) 18.2 ± 6.2 16.8 ± 6.8 20.6 ± 6.4 <0.001

N number <0.001

0 4 (3.8) 33 (47.1) 306 (97.1)

1 to 3 12 (11.3) 13 (18.6) 1 (0.3)

4 or more 85 (80.2) 22 (31.4) 4 (1.3)

Unknown 5 (4.7) 2 (2.9) 4 (1.3)

Grade <0.001

Well 3 (2.8) 0 (0) 1 (0.3)

Moderate 2 (1.9) 1 (1.4) 2 (0.6)

Poor 35 (33.0) 22 (31.4) 39 (12.4)

Undifferentiated 33 (31.1) 28 (40.0) 52 (16.5)

Unknown 33 (31.1) 19 (27.1) 221 (70.2)

Radiotherapy <0.001

Yes 23 (21.7) 16 (22.9) 215 (68.3)

No 83 (78.3) 54 (77.1) 100 (31.7)

stage (p = 0.003), larger tumor size (p < 0.001), and more
radiotherapy (p < 0.001). Moreover, between patients underwent
sublobar resection and patients received lobectomy, there was
no significant difference in age at diagnosis (p = 0.152), gender
(p = 0.994), race (p = 0.464), laterality (p = 0.129), tumor location
(p = 0.071), T stage (p = 0.275), tumor size (p = 0.143), grade
(p = 0.619), and radiotherapy (p = 0.857) whereas more lymph
nodes were dissected in lobectomy group (p < 0.001).

As for the survival, there were significant differences among
the groups with different treatment schemes in OS (log-rank
p < 0.0001) and LCSS (log-rank p < 0.0001) (Figure 1). Besides,
patients who received surgery plus postoperative radiotherapy
experienced the longest survival time (Figure 1). In subgroup
analyses, there was no difference among the groups based on
different surgical procedures both in OS (log-rank p = 0.14) and
LCSS (log-rank p = 0.4565). However, survival in patients with
lobectomy was better than those with sublober resection in trend
(Figure 2). Moreover, postoperative radiotherapy would help
improving the survival both in lobectomy group and sublober
resection group (Figure 2). More lymph nodes dissected would
lead to better survival both in OS (log-rank p < 0.0001) and LCSS
(log-rank p = 0.0007) (Figure 3).

Univariable analysis revealed that age, laterality, tumor
location, N number, and grade were significant predictors of
OS while age, laterality, tumor location, and N number were
significant predictors of LCSS (Table 2). Furthermore, age,
laterality, tumor location, and N number were still significant
predictors of OS, whereas age, tumor location, and N number

FIGURE 1 | Kaplan-Meier survival analyses of overall survival (A) and lung
cancer-specific survival (B) based on different treatment schemes in patients
with stage IA small cell lung cancer.

Frontiers in Genetics | www.frontiersin.org 3 November 2018 | Volume 9 | Article 56865

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00568 November 20, 2018 Time: 15:8 # 4

Gu et al. Surgical Procedures for SCLC Patients

FIGURE 2 | Kaplan-Meier survival analyses of overall survival (A) and lung
cancer-specific survival (B) based on different treatment schemes in stage IA
small cell lung cancer patients who underwent surgery.

were significant predictors of LCSS in multivariable analysis
(Table 3).

DISCUSSION

Lung cancer maintains the leading cause of death from
cancer around the world. The treatment of SCLC, with the
characteristics of rapid growth and early metastasis, is still
an intractable problem. Although some researchers verified
the effect of surgery on early-staged SCLC (stage I) (Ahmed
et al., 2017), no previous studies focused on the equivalency
of lobectomy versus sublober resection among stage IA SCLC
patients. In the current study of stage IA SCLC patients, we
analyzed the prognosis (OS and LCSS) among groups based on
different treatment schemes. Our findings revealed that surgery
is an important part of multidisciplinary treatment for stage IA
SCLC patients and sublober resection is not inferior to lobectomy
for the specific patients. Sublober resection could preserve more
lung parenchyma and have reduced overall mortality when
compared to lobectomy, considering that the clinicopathological
data are unavailable in SEER database, whether sublober
resection could be recommended for stage IA SCLC patients still
need further study.

As NCCN Guidelines suggested, chemotherapy acts as
an essential part of appropriate regimens for all SCLC

FIGURE 3 | Kaplan-Meier survival analyses of overall survival (A) and lung
cancer-specific survival (B) based on different numbers of lymph node
dissection in patients with stage IA small cell lung cancer.

patients, especially for those with surgical resection, no matter
limited-stage or extensive-stage disease (Ettinger et al., 2018).
Radiotherapy is also recommended for concurrent use with
chemotherapy, but the optimal dose and schedule of radiotherapy
has not reached a consensus. In our study, patients who received
radiotherapy alone could acquire better survival than those
without treatment in both OS (log-rank p < 0.0001) and LCSS
(log-rank p = 0.0016). Moreover, surgery plus radiotherapy could
achieve the best prognosis. Ahmed et al. (Ahmed et al., 2017)
analyzed stage I SCLC patients based on the SEER database, and
they also found patients with surgery plus radiation owned the
longest survival, which is in concordance with our findings.

As for stage IA SCLC patients without mediastinal lymph
nodes involved, surgery should be considered (Schneider et al.,
2011). In early days, surgery alone could not be identified
as a significant benefit for patients with limited-stage SCLC
(Fox and Scadding, 1973; Osterlind et al., 1985). Recently,
most of the retrospective studies regarding surgery in early-
staged SCLC patients have revealed improved survival with
surgical resection (James et al., 2010; Combs et al., 2015).
Weksler et al. (2012) identified 3566 stage I or II SCLC
patients in SEER database from 1988 to 2007, and the findings
showed patients who underwent surgical resection had better
outcomes when compared with those without surgery (median,
34.0 months versus 16.0 months, p < 0.001). Moreover, they also
found patients who underwent lobectomy or pneumonectomy
experienced significant longer survival than those underwent
wedge resection (median, 39.0 months versus 28.0 months,
p < 0.001). Similar findings were vertified by another study
(Ahmed et al., 2017). Although many researchers in favor of
lobectomy for early-staged SCLC patients due to the aggressive
characteristics of the tumor, and they thought lobectomy plus
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TABLE 2 | Univariable analyses for OS and LCSS.

OS LCSS

Variable HR 95% CI P HR 95% CI P

Age, years 1.750 1.205–2.543 0.003 1.734 1.072–2.804 0.025

Gender 0.796 0.604–1.048 0.103 0.842 0.589–1.202 0.344

Race 0.989 0.711–1.375 0.947 1.148 0.782–1.684 0.481

Laterality 0.733 0.556–0.966 0.027 0.695 0.487–0.994 0.046

Tumor location 0.823 0.702–0.964 0.016 0.706 0.566–0.879 0.002

Pathological T stage 1.069 0.810–1.412 0.635 1.022 0.713–1.467 0.905

T size 1.005 0.985–1.027 0.611 1.009 0.982–1.037 0.498

N number 0.654 0.542–0.789 <0.001 0.681 0.538–0.862 0.001

Grade 1.268 1.072–1.499 0.006 1.191 0.965–1.469 0.104

Radiation 0.805 0.611–1.060 0.122 0.918 0.642–1.311 0.637

OS, overall survival; LCSS, lung cancer specific survival; HR, hazard ratio; CI, confidence interval.

TABLE 3 | Multivariable analyses for OS and LCSS.

OS LCSS

Variables HR 95% CI P HR 95% CI P

Age, years 1.564 1.072–2.282 0.020 1.630 1.005–2.644 0.048

Laterality 0.756 0.573–0.996 0.047 0.712 0.498–1.018 0.062

Tumor location 0.800 0.683–0.938 0.006 0.695 0.559–0.865 0.001

N number 0.699 0.576–0.848 <0.001 0.703 0.554–0.890 0.004

Grade 1.139 0.956–1.357 0.146

OS, overall survival; LCSS, lung cancer specific survival; HR, hazard ratio; CI, confidence interval.

lymph node dissection could achieve complete resection, we did
not observe any survival differences between lobectomy group
and sublober resection group in our study. The reason would be:
(1) the tumor of stage IA SCLC was small and harbors relatively
weaker invasiveness; (2) the number of patients with sublober
resection in the set was relatively small, which would cause some
bias.

Adequate lymph node dissection also made sense for overall
survival. The dissected number of lymph nodes was identified
as a significant predictor of OS and LCSS. The removal of four
or more lymph nodes yielded important long-term benefit in
survival for stage IA SCLC patients. Besides, adequate lymph
node dissection is helpful in the determination of pathological
tumor staging, choice of therapy and prediction of prognosis.

Our results also showed that elderly patients (65 years
or more) were less likely to receive surgical resection
(p < 0.001). The probable reasons may be the higher incidence
of comorbidities and poorer lung function (Jazieh et al., 2002).
Similarly, McCann et al. (2005) suggested that the lower surgical
rate of surgical resection for older patients because of lower
performance status and concurrent comorbidities.

The limitations of the study are as follows. First, it
was a retrospective study and the nature of retrospective
analysis may cause selection bias. Second, despite SEER
database is a population-based data, many clinicopathological
variables are unavailable, such as lung function, clinical
tumor stage, comorbidities, adequacy of resection margin,

and neoadjuvant or adjuvant chemotherapy. Consequently,
the effect of chemotherapy could not be evaluated and the
heterogeneity of enrolled patients would exist. However, as
pathological stage IA SCLC, when compared with advanced
SCLC, the number of stage IA SCLC patients who received
preoperative radiochemotherapy is much smaller. Thus, the
deficiency of preoperative radiochemotherapy data has limited
influence on our conclusions. Third, the number of patients who
underwent surgery were relatively small, and thus we could not
further investigate the equivalency of wedge resection versus
segmentectomy in stage IA SCLC patients. Prospective studies
are required to further confirm the role of different surgical
procedures in stage IA SCLC patients.

In summary, our findings revealed that surgery is an
important component of multidisciplinary treatment for stage IA
SCLC patients and sublober resection is not inferior to lobectomy
for the specific patients. But these findings still need to be verified
by further prospective researches.
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Total anomalous pulmonary venous connection (TAPVC) is a rare congenital heart
anomaly. Several genes have been associated TAPVC but the mechanisms remain
elusive. To search novel CNVs and candidate genes, we screened a cohort of 78 TAPVC
cases and 100 healthy controls for rare copy number variants (CNVs) using whole exome
sequencing (WES). Then we identified pathogenic CNVs by statistical comparisons
between case and control groups. After that, we identified altogether eight pathogenic
CNVs of seven candidate genes (PCSK7, RRP7A, SERHL, TARP, TTN, SERHL2, and
NBPF3). All these seven genes have not been described previously to be related to
TAPVC. After network analysis of these candidate genes and 27 known pathogenic
genes derived from the literature and publicly database, PCSK7 and TTN were the most
important genes for TAPVC than other genes. Our study provides novel candidate genes
potentially related to this rare congenital birth defect (CHD) which should be further
fundamentally researched and discloses the possible molecular pathogenesis of TAPVC.

Keywords: congenital heart defects, total anomalous pulmonary venous connection, whole-exome sequencing,
copy number variants, pathogenesis

INTRODUCTION

Total anomalous pulmonary venous connection (TAPVC) is a rare but heterogeneous congenital
heart anomaly in which pulmonary veins do not connect routinely to the left atrium but abnormally
connect to the right atrium or systemic venous system. The incidence of TAPVC is approximately 1
out of 15,000 live births (Ammash et al., 1997; Bjornard et al., 2013; Thummar et al., 2014). TAPVC
is rare but without proper intervention in the first year of life the mortality of TAPVC is nearly 80%
(Burroughs and Edwards, 1960). However, the molecular mechanism of TAPVC remains unknown.

So far, only a few genes have been demonstrated as pathogenic genes for TAPVC and these genes
are just a partial explanation for some patients. Bleyl et al. (2006) used genetic linkage analysis
found a locus for TAPVR at 4p13-q12 called total anomalous pulmonary venous return 1 (TAPVR1)
and other important pathogenic genes in this region include vascular endothelial growth factor
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receptor 2 (VEGFR2) and platelet-derived growth factor receptor
α (PDGFRA). Nash et al. (2015) used whole genome sequence
to identify a non-synonymous variant in the retinol binding
protein 5 (RBP5) gene which probably related to TAPVC. Li et al.
(2017) considered activin A receptor type II-like 1 (ACVRL1)
and sarcoglycan delta (SGCD) as TAPVC pathogenic genes using
whole exome sequence from 6 TAPVC cases. However, these
pathogenic genes explain only a small fraction of the molecular
mechanism of TAPVC, the underlying cause in most patients
remains unknown.

Copy number variant (CNV) is defined as a segment of DNA
at least 1 kb in size that differs in copy number compared with a
representative reference genome (Wellcome Trust Case Control
Consortium et al., 2010; Pinto et al., 2011). CNVs have been
shown to play an important role in the pathogenicity of complex
birth defects (Greenway et al., 2009). CNV, or submicroscopic
chromosomal deletions or duplications, has emerged as an
important contributor to congenital genetic disorders and has
identified critical dosage sensitive genes important for cardiac
development (Hitz et al., 2012; Southard et al., 2012; Mlynarski
et al., 2015). Whether CNV detection could be as a genetic
selection for novel pathogenesis genes of TAPVC is still not
reported previously, and it needs to be further studied.

MATERIALS AND METHODS

Patient Ascertainment
Our study recruited patients with TAPVC Xinhua Hospital
Affiliated to Shanghai Jiao Tong University School of Medicine
whose diagnoses were confirmed by echocardiography,
cardiac catheterization, computed tomography, and
other medical recordings. Patients with multiple major
developmental anomalies, developmental syndromes, or
major cytogenetic abnormalities were excluded. Ethical
approval was given by the medical ethics committee of Xinhua
Hospital.

Detection of CNVs From WES Data
Peripheral blood samples were obtained and DNA was
extracted using the QIAamp DNA Blood Midi Kit (Qiagen,
Germany). WES samples were captured with the Agilent
Sure Select Target Enrichment kit (V6 58 Mb; Agilent
Technologies, United States) and sequenced on the Illumina
HiSeq 2500 platform (Glessner et al., 2014; Li et al., 2015).
CNV coordinates were converted to the GRCh37/hg19 build
using the UCSC Genome Browser LiftOver tool. CNVs with
50% or larger overlap with telomere, centromere, segmental
duplications, or immunoglobulin regions were excluded
(Hanemaaijer et al., 2012). After filtering we screened out
rare CNVs by comparing with the Database of Genomic
Variants (DGV1) and Online Mendelian Inheritance in Man
(OMIM2).

1http://dgv.tcag.ca/
2http://omim.org

Identification of Pathogenic CNV
Candidates
The CNV regions were firstly annotated with RefSeq genes.
For each gene and each sample, the copy number status was
determined by the annotated CNV regions. The pathogenic
CNV candidates were then identified by statistical comparisons
between the case and control groups. The statistical comparisons
between groups were analyzed by one-side Fisher’s exact test with
alternative hypothesis that the mutation frequency is greater in
case group than the control group. The CNV candidates were
defined as potentially pathogenic if the P < 0.01. The analysis and
visualization were implemented in R programming software with
version 3.5.0.

Protein–Protein Interaction (PPI) Analysis
Protein–Protein Interactions (PPI) are physical contacts with
molecular associations between chains that occur in a cell or in a
living organism in a specific biomolecular context (De Las Rivas
and Fontanillo, 2010). Our candidate pathogenic genes with
CNVs, combined with 27 known disease-causing genes derived
from the literature and publicly available database, were mapped
to PPI network in STRING database3 (Brohee et al., 2008), which
identified the connections between the candidate pathogenic
genes and the known disease-causing genes. Information found
in STRING databases supports the construction of interaction
networks (McDowall et al., 2009).

Expression Patterns of the Selected
Genes During Human Embryonic Heart
Development
Expression patterns of the human embryonic heart of candidate
genes were detected using an Affymetrix HTA 2.0 microarray.
To determine whether these candidate genes could affect human
embryonic heart development, Carnegie stages 11 through 15
of human embryonic heart samples were collected from Xinhua
hospital. RNA extraction used TissueLyser II (Qiagen, Germany)
and the RNeasy MinElute Cleanup Kit (Qiagen, Germany) as
previous study (Nolan et al., 2006). The integrity and purity of the
RNA was detected by the Experion automated gel electrophoresis
system (Bio-Rad, United States) and the NanoDrop 2000c
spectrophotometer (Thermo Fisher Scientific, United States).

RESULTS

Clinical Data
A total of 78 sporadic TAPVC cases and 100 healthy controls
were recruited in our research. Among these patients, no one
had central nervous system malformations, vertebral defects, or
genitourinary malformations. The patients’ ages ranged from
27 days to 7 years; 45 patients were male (57.7%) and 33
were female (42.3%). Among all these patients, 47 had atrial
septal defect (ASD), 16 had patent foramen ovale (PFO), 10
had ventricular septal defect (VSD), and 16 had patent ductus

3https://string-db.org/
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arteriosus (PDA). Double outlet right ventricle (DORV) was
discovered in three patients, atrioventricular septal defect in three
patients. The detailed clinical data and cardiac phenotypes are
summarized in Table 1. All patients were recruited via Xinhua
Hospital Affiliated to Shanghai Jiao Tong University School of
Medicine and all signed an informed consent approved by the
Ethics Committee of Xinhua Hospital.

TABLE 1 | The summary of 78 TAPVC patients.

Patient characteristics Discovery cohort

Mean age at diagnosis (years) 0.95 ± 1.87

BMI (kg/m2) 14.92 ± 3.05

Male (n, %) 45(57.7)

Mortality (n, %) 4(5.1)

Associated cardiac lesion (n, %)

ASD 57(73.7)

PFO 16(20.5)

VSD 10(12.8)

PDA 16(20.5)

DORV 3(3.8)

AVSD 3(3.8)

CNVs in Patients With TAPVC and
Identification of Candidate Genes
To discover the pathogenic CNV candidates, we identified
WES data by statistical comparisons between the case and
control groups. We use circos plot for CNV visualization with
broad horizontal area from chromosome level (Figure 1). In all
chromosomes, chromosome 1 had the most CNV numbers than
other in our patients.

Based on these data, we identified statistically significant
CNVs at different genomic loci. CNVs were filtered as
potentially pathogenic if the P < 0.01 (Table 2). Finally, we
identified eight potentially pathogenic CNVs of seven genes
(PCSK7, RRP7A, SERHL, TARP, TTN, SERHL2, and NBPF3)
among 45 patients with TAPVC (Figure 2). The percentage of
subjects with CNVs candidates was 58.4% (45 of 78 TAPVC
subjects).

Expression Pattern in Human Embryonic
Heart
We then detected the time course expression patterns of the
candidate genes during different Carnegie stages of human heart
development using microarray (Table 3). Expression of TNN in

FIGURE 1 | A whole-genome view of copy number variations in case and control groups. Circos plot for variants visualization with broad horizontal area from
chromosome level. The outer, middle, and inner tracks display the chromosomes, CNV frequency in case group, and CNV frequency in control group. The lines
above or under zero represent gain or loss.
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TABLE 2 | Copy number variant (CNV) detected by Fisher’ test.

CNV Chromosome Gene Case with CNV P-value

Duplication Chr1 PCSK7 9 0.00040

Duplication Chr22 RRP7A 7 0.00241

Duplication Chr22 SERHL 7 0.00241

Duplication Chr7 TARP 13 0.00394

Deletion Chr2 TTN 8 0.00584

Duplication Chr22 SERHL2 6 0.00584

Duplication Chr1 NBPF3 6 0.00584

Deletion Chr1 PCSK7 6 0.00584

Duplication Chr17 KRTAP9-6 7 0.01239

Deletion Chr2 TTN-AS1 5 0.01404

Duplication Chr7 MTRNR2L6 5 0.01404

Deletion Chr20 FER1L4 8 0.01818

Deletion Chr1 FLG2 15 0.02036

Deletion Chr1 FLG-AS1 15 0.02036

Deletion Chr19 ZNF844 9 0.02292

Deletion Chr1 CROCC 6 0.02292

Deletion Chr1 OR2L5 6 0.02643

Deletion Chr1 SPATA21 4 0.03347

Deletion Chr1 RPTN 4 0.03347

Deletion Chr11 AHNAK 10 0.03347

Deletion ChrX DMD 4 0.03347

Duplication Chr3 MUC4 4 0.03347

Duplication Chr16 STX4 4 0.03347

Deletion Chr22 GGT3P 4 0.03347

Deletion Chr1 OR2L3 4 0.03347

Deletion Chr19 ZNF611 4 0.03347

Duplication Chr10 ANTXRL 8 0.04273

human embryonic hearts had a significantly higher level than
other genes. Expression of PCSK7, RRP7A, and NBPF3 were also
high just behind TNN.

STRING Network Analysis
We got 27 known pathogenic genes derived from the literature
and publicly database. Then we used STRING database to explore
the PPI network between CNV candidate genes and known
pathogenic genes. Through PPI network, we found PCSK7 and
TTN had more direct and obvious relation to known pathogenic
genes (Figure 3). PCSK7 directly interacts with KDR and TTN
indirectly interacts with ANKRD1 and SGCD. These two genes
could interact with other pathogenic genes via several other
genes.

DISCUSSION

Total anomalous pulmonary venous connection is a rare
congenital heart defect characterized by the misconnection of all
four pulmonary veins, which could cause severe morbidity and
mortality (Bando et al., 1996). Several genes have been associated
TAPVC but the etiology of TAPVC is still complicated. To detect
the underlying mechanism of TAPVC, we screened a cohort of 78
TAPVC cases and 100 healthy controls for rare CNVs and novel
candidate genes, using whole exome sequencing (WES). Then we
got seven totally novel candidate genes (PCSK7, RRP7A, SERHL,
TARP, TTN, SERHL2, and NBPF3) that were associated with
TAPVC. STRING network analysis demonstrated that PCSK7
and TTN which are highly related to known pathogenic genes,
appear to play an important role in the genetic mechanism of
TAPVC.

Both deletion and duplication of CNV could have been
associated with congenital disorders (McLysaght et al., 2014).
Recent data show that the frequency of duplications is
approximately half of deletions and their phenotypes of heart
malformation are much more diverse. It is possible that genomic
deletions are more likely to cause dosage sensitivity compared
with duplications because the fold change is greater for deletions.

FIGURE 2 | Manhattan plot of CNVs detected by whole exome sequencing. CNVs detection by statistical comparisons between the case and control groups.
Different colors of points mean CNVs from different chromosome. P > 0 means duplication while P < 0 means deletion.
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TABLE 3 | Expression patterns of candidate genes in human embryonic hearts at different time points.

Chromosome Gene S10 S11 S12 S13 S14 S15 S16

chr12 GAPDH 17.47 17.50 17.48 17.45 17.35 17.24 17.00

chr11 PCSK7 7.01 7.04 7.05 7.07 7.18 7.17 7.05

chr22 RRP7A 7.00 6.93 7.03 6.69 7.05 6.93 6.88

chr22 SERHL 4.96 5.02 4.87 4.93 4.85 5.02 4.93

chr7 TARP 3.76 3.69 3.58 3.69 3.69 3.69 3.69

chr2 TTN 15.74 17.84 18.00 17.83 17.82 17.85 17.77

chr22 SERHL2 5.09 5.10 5.07 5.10 5.10 5.10 5.10

chr1 NBPF3 7.12 7.11 7.14 7.08 7.14 7.16 7.14

FIGURE 3 | Protein–protein interaction between candidate genes and known genes. STRING networks included 27 genes previously associated to TAPVC and 7
candidate genes highlighted by CNV detection analysis.

In seven candidate genes, we found deletion CNVs only in PCSK7
and TTN.

A total of 9 (9/78, 11.5%) patients had duplication and 6
(6/78, 7.7%) patients had deletion in PCSK7. PCSK7 (Proprotein
convertase subtilisin/kexin type 7) is a member of the subtilisin-
like proprotein convertase family (Constam et al., 1996). The
genetic regulation of PCSK expression especially PCSK7 could
bind to other genes to make huge impact on the blood pressure
(Peloso et al., 2014; Turpeinen et al., 2015). Recent research

of cardiovascular Disease (CVD) network using 1512 SNPs
associated with 21 traits in genome-wide association showed
PCSK7 connected closely to the incidence of CVD (Yao et al.,
2015). In our study, 8 (8/78, 10.3%) patients were detected to have
the deletion in TTN.TTN (Titin) encodes the sarcomere protein
titin. Among its related pathways are dilated cardiomyopathy
(DCM) and cardiac conduction (Hinson et al., 2015). A large
literature suggested that majority of familial and sporadic
DCM had the rare variants in TTN (Herman et al., 2012;
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Ware et al., 2016). A study found TTN and ANKRD1 which was
an important pathogenic gene of TAPVC could combine to cause
DCM (Arimura et al., 2009). And expression of TNN and PCSK7
were higher than other genes in human embryonic hearts. Above
all, PCSK7 and TTN can be a totally novel candidate gene for
TAPVC pathogenesis but the underlying mechanism remains
unclear.

We found seven patients had duplications in SERHL, RRP7A
and six patients in SERHL2. SERHL, SERHL2, and RRP7A,
these genes are all located on chromosome 22q13. SERHL
(Serine hydrolase-like) was encoded within the mRNA is an
open reading frame of 311 amino acids which shows identity
to a family of serine hydrolases (Sadusky et al., 2001). SERHL
was found in tetralogy of Fallot patients and was associated
with DNA methylation abnormalities (Serra-Juhe et al., 2015).
SERHL2 also belongs to the serine hydrolase family, while
its functional role is yet to be elucidated, and other nearby
genes in the region, such as RRP7A, could also be biological
candidates linked to 22q13 deletion syndrome (Okada et al.,
2018). Patients with 22q13 duplication have been reported to
have the clinical diagnosis of cardiovascular abnormalities and
intrauterine growth restriction (Chen et al., 2003; Rahikkala et al.,
2013). The relationship between RRP7A, SERHL, and SERHL2
and TAPVC needs to be further validated experimentally. Thus
far, the functions of these genes in cardiovascular development
remain unknown, and they be might newly associated with
TAPVC pathogenesis.

In our research, TARP had the most patients than other
genes, 13 (13/78, 16.7%) patients with duplication was detected
in TARP.TARP (TCR gamma alternate reading frame protein)
which is a marker for T cells and NKT cells and uniquely
expressed in males in prostate epithelial cells and prostate
cancer cells (Littman et al., 1987). It has been reported to be
a biomarker for viral myocarditis (Rowe et al., 2018). We also
found 6 (6/78, 7.7%) patients had duplication in NBPF3.NBPF3
(NBPF member 3) is a member of the neuroblastoma breakpoint

family (NBPF) which consists of dozens of recently duplicated
genes primarily located in segmental duplications on human
chromosome 1 (Vandepoele et al., 2005). NBPF3 is reported to
express in a variety of tissues (Vandepoele and van Roy, 2007).
Our study is flawed. First, the lack of parental samples limited
our ability to study the genetic backgrounds of the variants.
Second, we lack the information of prognosis of TAPVC cases.
In addition, the functions of our candidate genes need to be
further verified with fundamental research. In summary, an
effective analytical bioinformatics strategy allowed us to identify
CNVs in novel genes that play a vital role in TAPVC pathology.
Based on the results of CNV discovery in a case-control cohort,
our study found evidence that CNVs of seven candidate genes
(PCSK7, RRP7A, SERHL, TARP, TTN, SERHL2, and NBPF3)
could contribute to the genetic etiology of TAPVC. Our candidate
genes open new fields of investigation into TAPVC pathology and
provide novel insights into pulmonary vein development.
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Accumulating evidence from small-scale studies has suggested that allele-specific
expression (ASE) plays an important role in tumor initiation and progression. However,
little is known about genome-wide ASE in tumors. In this study, we conducted
a comprehensive analysis of ASE in individuals with colorectal cancer (CRC) on a
genome-wide scale. We identified 5.4 thousand genome-wide ASEs of single nucleotide
variations (SNVs) from tumor and normal tissues of 59 individuals with CRC. We
observed an increased ASE level in tumor samples and the ASEs enriched as hotspots
on the genome. Around 63% of the genes located there were previously reported
to contain complex regulatory elements, e.g., human leukocyte antigen (HLA), or
were implicated in tumor progression. Focussing on the allelic expression of somatic
mutations, we found that 37.5% of them exhibited ASE, and genes harboring such
somatic mutations, were enriched in important pathways implicated in cancers. In
addition, by comparing the expected and observed ASE events in tumor samples, we
identified 50 tumor specific ASEs which possibly contributed to the somatic events
in the regulatory regions of the genes and significantly enriched known cancer driver
genes. By analyzing CRC ASEs from several perspectives, we provided a systematic
understanding of how ASE is implicated in both tumor and normal tissues and will be of
critical value in guiding ASE studies in cancer.

Keywords: allele-specific expression, colorectal cancer, cis-regulatory variation, somatic mutation, tumor

BACKGROUND

Allele-specific expression (ASE) refers to the phenomenon that occurs in diploid or polypoid
genomes, where two or more alleles of a gene has an imbalanced expression (Kwaepila et al., 2006;
Ge et al., 2009; Heap et al., 2010; Tung et al., 2011). It is common in both humans (Lo et al., 2003)
and other organisms (Tung et al., 2011; Graze et al., 2012; Hasin-Brumshtein et al., 2014), and
potentially contributes to multiple phenotypes and complex traits (Frazer et al., 2009). Because of
the intrinsic power of using two alleles of a gene in the same individual, as controls to reduce the
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background genetic and environmental effects, ASE is also an
accurate and sensitive marker for cis-regulatory variation
(Pastinen, 2010). For example, an ASE can indicate a
heterozygous variant within the translated region, resulting
in a modified or truncated protein (Kukurba et al., 2014); at a
regulatory site, it can cause differential binding of transcription
factors or epigenetic modifiers (Prendergast et al., 2012; Reddy
et al., 2012); or at a splice site or UTR, it can affect transcript
processing (Li et al., 2012).

Allele-specific expressions are also frequently observed in
tumors (Valle et al., 2008; Curia et al., 2012; Walker et al., 2012;
Wei et al., 2013). ASE was first proposed as a direct approach
for connecting a genotype to disease susceptibility in 2002 (Yan
et al., 2002). In 2013 it was discovered that ASE, at the death-
associated protein kinase 1 (DAPK1) gene locus, was potentially
predisposed to chronic lymphocytic leukemia (CLL) using a
single-nucleotide primer extension (SNuPE) and MALDI-TOF
mass spectrometry (Wei et al., 2013). In colorectal cancer (CRC),
a decrease in expression of one adenomatous polyposis coli tumor
suppressor (APC) gene allele, leads to the development of familial
adenomatous polyposis (Curia et al., 2012). In addition to APC,
ASE of transforming growth factor beta receptor 1 (TGFBR1),
which leads to reduced expression of the gene, can also cause
an increased risk of CRC (Valle et al., 2008). In addition to
the association with cancer risk, ASE also affects the prognosis
and outcome of cancer patients. For example, the monoallelic
expression of TP53 and IDH1 was found to determine the
oncogenic progression and survival in brain tumors (Walker
et al., 2012).

With the development of large-scale transcriptome
sequencing, the systematic analysis of the ASE in the
transcriptome was achieved at the single nucleotide resolution
(Tuch et al., 2010; Smith et al., 2013). To date, several studies
have reported genome-wide ASE, in human, mice and cell lines,
and identified hundreds of genes exhibiting ASE (Heap et al.,
2010; Smith et al., 2013; Hasin-Brumshtein et al., 2014). However,
little is known about genome-wide patterns of ASE in tumor
tissues. In this study, we carried out an ASE study in a cohort
of 59 patients with CRC (Seshagiri et al., 2012) and revealed the
comprehensive landscape of ASE in CRC patients.

MATERIALS AND METHODS

Data Preprocessing
RNA and Exon sequencing data of matched human colorectal
tumor-normal samples was downloaded from the European
Genome-Phenome Archive (EGA) under accession number
EGAS00001000288 (Seshagiri et al., 2012). Fifty-nine pairs of
samples correctly processed were retained for ASE analysis.

Quality controlled DNA and RNA sequencing data was
mapped with bowtie2 (Langmead and Salzberg, 2012)
with default parameters to report the best alignment. The
base qualities were then recalibrated using the procedure
recommended by GATK (DePristo et al., 2011).

Somatic mutations were called with both Mutect (Cibulskis
et al., 2013) and Varscan (Koboldt et al., 2009), and the

intersection was considered a reliable result and used for the
following analysis. Germline SNVs were called using the GATK
best practices from DNA sequencing data, and filtered using the
flowing four criteria to obtain a final SNV list ready for ASE
analysis.

(1) SNVs cluster together;
(2) SNVs covered by less than 20 reads;
(3) SNVs located within repeated regions;
(4) SNVs located within non-coding regions;
(5) SNVs were identified as a somatic mutation in exon

sequencing data.

Allele counts for each germline SNV and the somatic
mutation in DNA and RNA sequencing data, were generated with
SAMtools (Li et al., 2009) in a pileup format.

The list of germline SNV and somatic mutation, as well as
the corresponding pileup files were subjected to cisASE for ASE
identification, respectively.

ASE Identification
Allele-specific expression SNVs and genes were identified by the
cisASE pipeline (Liu et al., 2016). SNVs with a coverage of less
than 10 in RNA or DNA sequencing data were filtered. SNVs
or genes with a log likelihood ratio (LLR) value more than the
LLR cutoff, at a significance level of 0.01, were defined as ASE. In
addition, genes with a heterogeneity p-value less than 0.05, which
indicates inconsistent ASE status of SNVs within the gene, were
excluded from further analysis.

Identifying ASE Hotspots
Allele-specific expression counts and frequency was calculated
in consecutive sliding windows with fixed sizes along the
genome. We randomly assigned ASE labels to the SNVs across
chromosomes, according to the total ASE frequency. By repeating
this process 1000 times, we obtained a null distribution of ASE
density in each of the sliding windows. A p-value was derived
by counting the number of times the number of ASEs in the
window after perturbation, exceeded the observed ASE, and
adjusted it with an add-one smoothing. These p-values were
then corrected for multiple tests using the Benjamini-Hochberg
method.

Group of ASE Somatic Mutation
We mapped the ASE somatic mutations to genes and then
classified the genes into two categories, i.e., genes with over-
expressed mutant alleles and genes with under-expressed mutant
alleles. Genes harboring multiple somatic mutations with
conflicting mutant allele expression, were excluded from the
following analysis. Gene expression profiles were generated with
tophat2 (Kim D. et al., 2013) and cufflinks (Trapnell et al.,
2012) software. For genes in each group, we compared the
FPKM value of both tumor and normal tissues of patients
with the somatic mutation, and defined the FPKM fold
change of 2 and 1/2 as the threshold of up-regulated and
down-regulated expression in tumor samples. This resulted
in three groups for each category according to the gene
expression.
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Identifying Somatic ASE Genes
We counted the number of ASE somatic events (si) and the
number of total tested pairs (ti) in a population of 118 individuals,
for each gene. We refer to the ASE somatic event (si) as the gene
showing ASE in a tumor sample but not in the matched normal
sample. In addition, we refer to the tested pairs (ti) as the sample
pairs, and the gene is tested in both matched tumor-normal
samples. The expected ASE somatic event rate was calculated by
the following equation,

f =
n∑

i=1

Si

/ n∑
i=1

ti,

where n is the number of genes.
The expected number of the ASE somatic event for each gene,

was calculated as the product of the total tested pairs and the
expected ASE somatic event rate (f∗ti). A p-value was obtained
for each gene using the Poisson distribution and the observed
and expected number of ASE somatic events (P[X ≥ x]). These
p-values were corrected for multiple testing using the Benjamini-
Hochberg method and genes that had a corrected p-value <0.05
were called a somatic ASE gene.

RESULTS

Increased ASE Level in Tumor Samples
We identified SNV and gene level ASEs in both normal and
tumor tissues of 59 CRC patients with our previously developed
pipeline for ASE identification (Kukurba et al., 2014; Figure 1 and
Supplementary Table S1). The major steps included sequence
alignment, variant calling, ASE detection using cisASE (Kukurba
et al., 2014), and further filtration (see section “Materials and
Methods” for details). We detected 431 (SD = 133.3) SNV-level
ASEs per normal tissue and 477 (SD = 181.6) per tumor tissue,
and 137 (SD = 39.3) and 216 (SD = 108.5) gene-level ASEs per
normal and tumor tissue, respectively (Supplementary Table S1).
The frequency of ASE SNVs (a ratio of number of ASE SNVs to
number of non-ASE SNVs) in normal tissue is in agreement with
previous studies (Zhang et al., 2009; Skelly et al., 2011).

We compared the portion of sites exhibiting an ASE in
tumors with its matched normal tissues. On average, 20.0%
of the SNVs in tumor samples and 16.8% in normal samples
exhibited an ASE (two-tailed paired t-test, p-value = 7.1e−09),
indicating a significantly higher ASE level in tumor samples
than in normal samples. When only testing the SNVs identified
in tumor and normal tissues, the results were the same, i.e., a
significantly higher portion of the ASE in tumor samples (21.6%)
than in the normal samples (18.1%; two-tailed paired t-test,
p-value = 1.2e−04; Figure 2A).

For each tumor-normal pair, we found that 68% of the ASEs
are either normal (29%) or tumor (39%) specific (Figure 2B).
And the remaining 32% of the ASEs are shared by both the tumor
and normal samples (Figure 2B), most of which had the same
ASE direction. This indicates that the majority of ASEs (about
2/3) are dynamic in tumorigenesis while the other 1/3 ASEs are
consistent.

Next, we identified genes with recurrent ASE events in tumor
and normal samples. There were 94 and 95 genes with ASE events
in at least 20% of the tumor and normal samples, respectively, of
which 63 genes were shared by both tumor and normal samples
(common ASE genes) (Supplementary Table S2 and Figure 3).
The allele ratio of recurrent of ASE genes was significantly
segregated from the background and the total pool of ASE genes
(Supplementary Figure S1) and the average major haplotype
allele ratio of common ASE genes was 0.92.

The ASE genes that was mostly recurrently observed in both
tumor and normal samples had a high allele imbalance, such as
AP3P1, BCLAF1, STED8, PRIM2, IL32, SEC22, and MAP2K3
(Figure 3A). The recurrent ASE genes in tumor samples
include Chromosome-Associated Kinesin KIF4B, spindle and
kinetochore associated complex subunit 3 (SKA3) and so on. We
also found that the ASE of TP53 was specifically and recurrently
observed in tumor samples (observed in 12 tumor samples and 1
normal sample). There were 32 recurrent ASE genes observed in
normal samples. For example, PYY, CD177, PEG3, and FAM83D,
were observed in more than 11 normal samples, while less than 3
were observed in tumor samples.

The ASE Hotspots in the Normal and
Tumor Genome
Variants on the cis-regulatory element on the genome, tend to
affect the expression of one or more genes nearby (Pastinen,
2010), and if the variation is heterozygous, the genes regulated
by it will exhibit an ASE, therefore we prioritized the existence of
such variations by identifying clusters of the ASEs on genomic
regions. We calculated the ASE density and frequency in the
tumor and normal samples, by using a sliding window approach
with a window size of 100k base pair (bp) and a step size of
10 kbp. Windows with an adjusted p-value <0.05 were kept, and
overlapping windows were manually checked and merged, to get
focal hotspot regions.

We identified 32 ASE hotspots in normal samples
(Supplementary Table S3) and 27 in tumor samples
(Supplementary Table S4), affecting a total of 57 genes
(Supplementary Figure S2), which resulted in 4.0% (723 out of
17866) and 4.4% (748 out of 17866) of the ASE SNVs identified
in normal and tumor samples, respectively. There were 21 genes
located within hotspots identified in both normal and tumor
samples, as well as 22 and 14 genes located within the hotspots
specific to tumor and normal samples, since the tumor or normal
differential expression might result in a different power of ASE
detection. We checked the expression of all these genes in tumor
and normal samples (Supplementary Table S5), and found no
difference of the tumor and normal FPKM ratio among the three
groups of genes (Kruskal–Wallis test p-value = 0.07), indicating
the difference of the ASE hotspots in tumor and normal samples
did not result from the different detection powers, due to the
expression difference. In addition, one gene with relatively low
expression (PRSS1, FPKM < 0.1) was excluded (Figure 4).

To investigate the biological process affected by the ASE, we
conducted the GO and KEGG enrichment analyses for the ASE
genes. The ASE genes shared by tumor and normal tissues were
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FIGURE 1 | Circos diagram of ASE detected in tumor (red) and normal (blue) samples. The height of histogram indicates the counts of ASE in a window of 1 million
base pair.

significantly enriched in antigen processing. The significantly
enriched GO and KEGG terms of tumor specific ASE genes were
closely associated with immune activity. However, the normal
ASE genes were not enriched in specific functions. The results
impose the possibility that the ASE plays a role in maintaining
regular immune activities, and an excessive ASE event was
activated in tumor tissues.

Among the genes shared in normal and tumor tissues, several
genes involved in polymorphism, or which were reported to be
related to cancer predisposition or progression were included,
such as, the human leukocyte antigen (HLA) on chromosome 6,
members of the mucin gene family (MUC) on chromosome 3,
and the MAP2K3 and CDC27 locus, which is involved in the cell
proliferation and cell cycle on chromosome 7. Three members
of the carcinoembryonic antigen (CEA) family (CEACAM5,
CEACAM6, and CEACAM7) were also included.

Though 35.6% (21 out of 59) of the ASE genes were common
in both normal and cancer tissues, it was reported that the change
in the allele ratio of the ASE can also lead to phenotypic diversity,
for example, a study reported that the proportion of the JAK2
V617F mutant allele in RNA levels is significantly associated

with distinct subtypes of BCR/ABL-negative myeloproliferative
neoplasms (MPNs) (Kim H.R. et al., 2013). Therefore, we tested
whether there are similar cases in ASE genes between the tumor
and normal tissues. We found that four out of the 21 shared ASE
genes (HLA-A, HLA-B, HLA-C, and CEACAM7) and showed
significant differences in the allele ratios between tumor and
normal tissues (paired t-test; Supplementary Table S6). Three of
the four genes belong to the HLA family, i.e., HLA-A and HLA-
B, and HLA-C, and all revealed a lower allelic heterozygosity in
tumor tissues (Figure 5). Loss of heterozygosity (LOH) of the
HLA loci was reported in many cancers (Maleno et al., 2002;
Wang et al., 2006; Zollikofer et al., 2014). In our case, these loci
are heterozygous at the DNA level, while at the mRNA level, one
of the copies showed a significantly reduced expression compared
to the other one. The results suggest the possibility that in tumor
tissues, the allele-specific regulation on the transcriptional level
may lead to a similar consequence as the LOH.

The other 18 shared ASE genes, showed no difference in the
allele ratio, between normal and tumor tissues (Supplementary
Figure S3), indicating that most of the shared ASEs are conserved
during tumorigenesis. However, because the normal tissues we
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FIGURE 2 | Comparison of ASE in normal and tumor tissues. (A) The fraction of ASE in normal and tumor samples. (B) Intersection of ASE identified in paired
normal and tumor samples.

studied were obtained from CRC patients, ASE genes shared
by tumor and normal tissues can be involved either in normal
physiological functions or associated with tumor predisposition.
Since it is hard to obtain gut tissue samples from healthy people,
we cannot distinguish these two possibilities.

Of the twenty-two genes located in the tumor-specific
hotspots (Supplementary Table S4), several were reported to
play an important role in tumor progression. For example,
over-expression of the FAT1 was observed in different tumors
including in DCIS breast cancer (Kwaepila et al., 2006),
melanoma (Sadeqzadeh et al., 2011) and leukemia (de Bock
et al., 2012). MKI67 is a protein that is widely used as a marker
for cell proliferation, and its increased expression in human
cancer specimens generally denotes an aggressive phenotype
(Cidado et al., 2016). The observed allele specific expression
of these phenotypes may help to prioritize the underlying
mechanisms which contribute to the abnormal expression in
tumors. Furthermore, 14 genes (ACSF3, AHNAK, APOBR,
CCBL2, CLN3, EPPK1, FAM104B, FUT2, HLA-DRA, HLA-G,
MUC12, NBPF1, RASIP1, RBMXL1, and SLC25A5) were located
in the normal-specific hotspots (Supplementary Table S3),
which suggests that precise control of the ASE may be important
for maintaining the normal function of cells. These results might
provide opportunities for mining new therapy targets.

Overexpressed Allele With Somatic
Mutations in Tumors
Somatic mutations (missense mutations and non-sense
mutations) within the coding region may lead to abnormal
protein products. However, the impact of a heterozygous
coding SNV depends on whether the SNV-containing allele is

transcribed to the RNA. In addition, clinical therapy-selection
for targeted drugs, often assay mutations using DNA as an
analyte, such as KRAS assays designed to identify responders
to anti-EGFR therapy (Allegra et al., 2009). However, if the
mutant allele is selectively lost in the transcript, the mutation
may not have a therapeutic impact and the merit of using
a DNA-based assay for clinical decision-making may be
problematic. The above are the major reasons for us to further
analyze the allelic expression of somatic mutations in tumors.
A genome-wide study in mouse tumor cell lines reported that
mutations are transcribed in proportion to their DNA allele
frequency (Castle et al., 2014). However, to our knowledge,
a genome-wide study of the relationship between DNA and
RNA mutation allele frequency in tumor tissues, has not been
done.

We found that 37.5% of the 2,754 somatic mutations exhibit
an ASE in the colorectal tissues (Figure 6A), which is more
than two times higher than that for germline polymorphisms
(18%) (Figure 6B). This indicates a significant imbalance
of the allelic expression for somatic mutations. Furthermore,
78% of the ASE somatic mutations over-expressed mutant
alleles, comparing to a proportion of 52% for germline
polymorphisms (chi-square test p-value <2.2e−16). The results
reveal that gene copies with somatic mutations have prevailing
expression superiority compared to the wild type ones in tumor
tissues.

Next, we explored the functional significance of the ASE
somatic mutations with a different mutant/wild-type allele
expression pattern. We mapped the ASEs to genes and classified
them into six groups according to the alteration of both mutant
allele expression and total gene expression in tumor tissues
(Figure 7 and Supplementary Table S7; Materials and Methods).
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FIGURE 3 | The frequency of recurrently observed ASE genes and heatmap
of their allele ratio among samples. (A) Genes shared by tumor and normal
samples, (B) ASE genes recurrently observed in tumor samples; (C) ASE
genes recurrently observed in normal samples.

Ideally, if an ASE somatic mutation is functional, the direction
of the mutant allele expression change should be the same as the
direction of the gene expression change in tumor cells, compared
with normal cells (Group a and f in Figure 7). Genes which
exhibited the ASE somatic mutation but an unchanged total gene
expression (Group b and e in Figure 7) might be regulated by
other trans-regulatory factors, and the effects of the ASE were
buffered. Those conflicting with the somatic allele expression
and tumor gene expression (Group c and d in Figure 7) were
possible artificial results, or the ASE was a random event without
functional significance.

FIGURE 4 | Gene expression in tumor and normal samples for genes located
in ASE hotspots.

FIGURE 5 | Allele ratio of the four shared ASE genes which exhibited
differential allele ratio in tumor and normal samples. ∗p < 0.05, ∗∗p < 0.01.

As expected, only the genes in Groups a were farely
significantly enriched in KEGG pathways (Du et al., 2014;
Table 1). Group a, which contain genes over-expressing mutant
allele and showing an up-regulated gene expression level in
tumor samples compared with the matched normal sample, is
enriched in the DNA replication and mismatch repair pathways.
Dysfunction of the DNA replication and DNA mismatch repair
pathways are implicated in many cancer types (Boyer et al., 2016;
Puigvert et al., 2016), which initiates cancer or promotes cancer
cell proliferation (Padmanabhan et al., 2004; Dudderidge et al.,
2007). The average mutant allele fraction for the genes enriched
in these two pathways is 80%, indicating a widely over-expressed
mutant allele. This suggests that in tumor tissues, genes involved
in the DNA replication and DNA mismatch repair pathways, tend
to selectively express mutant proteins with abnormal functions,
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FIGURE 6 | Statistics of ASE for somatic mutations (A) and germline polymorphisms (B).

which may compete with normal proteins to disrupt normal
signal pathways, or decrease the dosage of normal proteins for
normal functions.

Genes in Group f, which contain genes with under-expressed
mutant alleles and down-regulated gene expression in tumor
samples, compared with matched normal ones, are enriched
in the focal adhesion signal pathway. The genes enriched
in the focal adhesion pathway showed limited mutant allele
fractions only 10% of the two alleles, suggesting that mutation-
containing alleles are effectively silenced by epigenetic and
chromatin modification mechanisms (Jaenisch and Bird, 2003) or
mutation-containing transcripts are degraded by activating RNA
surveillance mechanisms (Rehwinkel et al., 2006), resulting in an
overall decrease of gene expression levels and thus an abnormal
signal pathway.

Somatic ASE Genes Are Enriched in
Known Cancer-Related Genes
Genes specifically exhibiting the ASE in cancer tissues are
likely linked to somatic variations in regulatory regions. In
order to detect genes with an excess of somatic cis-regulatory
events, we used matched tumor and normal samples to identify
genes specifically and significantly exhibiting ASE in tumor
samples (which we defined as the “somatic ASE gene”). We
found 50 somatic ASE genes (Supplementary Table S8), which
significantly enriched TCGA pan-cancer drivers (Gonzalez-Perez
et al., 2013) (five pan-cancer drivers p-value = 0.010) and
CRC drivers (Gonzalez-Perez et al., 2013) (two CRC drivers
p-value = 0.04), indicating that the tumor specific ASE genes
analysis catches known cancer genes, and has the potential to be a
complementary method for driver detection. Next we compared
the somatic ASE gene with differential expressed genes (DEG)
between tumor and normal samples (Supplementary Table S9),
and found that they significantly enriched in DEGs (fisher exact
test p-value = 5.0e−07, odds ratio = 3.22).

DISCUSSION

The ASE is a measure of the effect of genetic variants on
gene expression, that does not require any assumption on the
genetic structure of the population studied, and hence a direct
measurement of how gene-expression changes at the individual
level (Yan et al., 2002). The development of next generation
sequencing technologies and our unbiased computation method
cisASE (Kukurba et al., 2014) have enabled us to characterize this
genome-wide landscape of the ASE in tumor and normal tissues
of CRC patients from diverse perspectives.

The higher incidence of the ASE in tumor samples than that of
normal samples is consistent with the fact that gene expression in
tumor cells is under more complicated cis-regulation (Maurano
et al., 2012). Furthermore, 29 and 39% of the ASE SNVs
were specific to either normal or cancer samples, respectively,
indicating both the gain and loss of cis-regulatory variation as
possible contributors to tumor initiation or development. We
also observed a high percentage (32%) of ASEs shared by normal
and tumors tissues of patients, which might be a mixture of
CRC preposition sites, as well as sites where ASE play a role in
maintaining regular cellular function. Since it is difficult to obtain
gut tissue samples from healthy people to distinguish these two
categories of ASE, some researchers suggest using blood samples
from normal healthy people (Valle et al., 2008). However, cis-
regulatory variation is a tissue dependent feature, so is the ASE
(GTEx Consortium, 2015), therefore, using a different tissue as
control might result in high false discovery rates. Creative and
accurate methods are needed to further explore cancer risk sites
from regular sites.

By summarizing the ASE in a region-based fashion, we
identified the ASE hotspots under true and recurrent cis-
regulation in the studies samples. Although the majority of
the ASE hotspots, including the HLA loci, were shared by
both normal and tumor tissues, four of the HLA genes
revealed a significant lower heterozygosity in the tumor tissues
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FIGURE 7 | Groups of genes harboring ASE somatic mutations. FPKM (t) and FPKM (n) represent the FPKM value of gene in tumor and its matched normal tissue,
respectively.

TABLE 1 | Enriched KEGG pathways for genes in group a and f.

Type a

Term ID Adj.pvalue Genes

DNA replication hsa03030 0.019631059 RFC3, MCM7, RFC1, POLD2, MCM3, RNASEH2A

Mismatch repair hsa03430 0.026586385 EXO1, RFC3, RFC1, POLD2, MLH3

Type f

Term ID Adj.pvalue Genes

Focal adhesion hsa04510 0.017378214 TLN1, TNC, COL6A3, ZYX, THBS1, FLNA, MYLK
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compared with normal tissues. The LOH in the short arm of
chromosome 6 is the most frequent mechanism contributing
to the HLA haplotype loss in human cancer, which is a tumor
escape mechanisms from the host’s immune surveillance system
(So et al., 2005). The selective expression of one allele of the HLA
gene might be another mechanism that contributes to the HLA
haplotype loss in cancer.

One category of targeted drugs, is the targeting of specific
genes with or without certain somatic mutations, such as
osimertinib targeting at EGFR (with EGFR T790M mutation)
and afatinib targeting at EGFR(with EGFRL858R mutations) in
non-small cell lung cancer, vemurafenib targeting at BRCA(with
BRAF V600 mutation) in melanoma, and panitumumab
targeting at EGFR (with KRAS will type) in CRC. A DNA assay
is usually used to test whether a specific gene mutation codes
the target. However, an RNA level expression is not necessary a
faithful replication of the DNA. We found that 38% of the somatic
ASE exhibited the ASE, indicating that the DNA-assay based
therapy-selection might be problematic. Somatic mutations and
mutant allele that followed the same direction as the total gene
expression, i.e., Group a and f, were enriched in important
signal pathways involved in tumor initiation and progression.
However, mutations belonging to other groups may also have
biological implications, are not significantly enriched in the
KEGG pathways, since we cannot exclude the possibility that, in
some cases, homeostatic or feedback mechanisms act to constrain
the total expression so that an imbalance in allelic expression does
not change the total output.

Somatic ASE genes were regulated by cis-regulatory elements
with somatic variations, which may be the driver mutation
implicated in cancers, the fact that the identified somatic ASE
genes enriched pan-cancer and CRC driver genes, support this
speculation.

In this study, we focused on the ASE of protein coding
regions. However, in recent years, lncRNAs were reported to be
involved in gene regulation and other cellular processes (Quinn
and Chang, 2016). With an ASE analysis, Almlof et al. (2014)
found that 22.9% (258 out of 1122) of intergenic lncRNAs were
regulated by cis-rSNP in human primary monocytes, which is
comparable to our analysis. Though the number of lncRNAs
exceeded the protein coding genes, because of a much lower
expression (Iyer et al., 2015), a higher sequencing depth and more
sensitive detector is required to quantify ASE in lncRNAs more
efficiently.

CONCLUSION

By applying the ASE studies in CRC patients, we found a higher
incidence of the ASE in tumor tissues, which implicated more
complicated cis-regulation in tumors. ASEs under recurrent cis-
regulation were enriched as hotspots on the genome and the
majority of the genes (∼63%) involved in the hotspots, were
previously reported to have complex regulatory elements, or were
implicated in tumor progression. In addition, the ASE analysis
of somatic mutation revealed a significant increased ASE rate for

somatic mutations, and genes harboring such somatic mutations
were enriched in important pathways implicated in CRC (DNA
replication and focal adhesion). Furthermore, the somatic ASE
genes analysis catches known cancer genes.

In summary, this study provides a systematic understanding
of how the ASE is implicated in tumors and a schema of the
application of the ASE studies in patients with cancerous tumors.
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Emerging or re-emerging dengue virus (DENV) causes dengue fever epidemics globally.

Current DENV serotypes are defined based on genetic clustering, while discrepancies are

frequently observed between the genetic clustering and the antigenicity experiments.

Rapid antigenicity determination of DENV mutants in high-throughput way is critical

for vaccine selection and epidemic prevention during early outbreaks, where accurate

prediction methods are seldom reported for DENV. Here, a highly accurate and efficient

in-silico model was set up for DENV based on possible antigenicity-dominant positions

(ADPs) of envelope (E) protein. Independent testing showed a high performance of

our model with AUC-value of 0.937 and accuracy of 0.896 through quantitative Linear

Regression (LR) model. More importantly, our model can successfully detect those

cross-reactions between inter-serotype strains, while current genetic clustering failed.

Prediction cluster of 1,143 historical strains showed new DENV clusters, and we

proposed DENV2 should be further classified into two subgroups. Thus, the DENV

serotyping may be re-considered antigenetically rather than genetically. As the first

algorithm tailor-made for DENV antigenicity measurement based on mutated sequences,

our model may provide fast-responding opportunity for the antigenicity surveillance on

DENV variants and potential vaccine study.

Keywords: dengue virus, envelope protein, bioinformatics, antigenicity-dominant positions, antigenicity clustering

INTRODUCTION

Dengue virus (DENV) is a mosquito-borne RNA virus from flaviviridae family, which could cause
dengue fever epidemics in tropical and subtropical countries (Rodenhuis-Zybert et al., 2010). Every
year, nearly 390 million people were infected by DENV, among them, 96 million developed into an
acute systemic illness and over 500 thousand experienced potentially life-threatening complications
such as dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS) (WHO/TDR, 2009;
Bhatt et al., 2013). Traditionally, DENV are genetically divided into four subtypes (Lanciotti et al.,
1997; Zhang et al., 2005; Chau et al., 2008). In 1952, an early clinical study reported that individuals
with primary DENV infections often provide protections among the homologous type, and show
only partial cross-protection against heterologous types (Sabin, 1952). As such, DENV serotypes
were simply defined based on genetic clusters. This classification was subsequently supported by
in vitro experiments in which DENV strains were better neutralized by antisera from homologous
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rather than those of heterologous types (Hammon et al., 1960).
Despite above, it was frequently realized that antigenic variation
does occur within same DENV serotype. Initially, this intra-
serotype difference was considered as substantially less than
those of inter-serotypes, and can be neglected (Russell and
Nisalak, 1967; Gentry et al., 1982). Yet, with the accumulation of
clinical and epidemiological evidence, researchers noted that the
traditional classification of DENV serotypes based on genotypes
can no more explain the clinical observations. Cross-reactions
were often found between antiserum from different serotypes,
which leads to the rethinking of the DENV antigenicity clustering
(Katzelnick et al., 2015). Currently, it was believed that the
antigenicity of DENV viruses was actually volatile, while the
traditional genotypic categorization may not be sensitive enough
to evaluate the antigenicity difference (Katzelnick et al., 2015).
Also, the epidemic magnitude of DENV might not only be
affected by traditional serotypes, but most importantly, be
determined by antigenic differences between particular infecting
viruses (Kochel et al., 2002; Adams et al., 2006; OhAinle
et al., 2011). Since antigenic differences among the DENV
types correlate with not only disease outcome and vaccine-
induced protection, but also epidemic magnitude and viral
evolution, accurate antigenic analysis were highly desired for
DENV serotypes.

In order to investigate the antigenicity relationship of DENV
subtypes, comprehensive serological tests were accomplished on
both animal and vaccinated or infected humans to calibrate
the serological relationship between DENV subtypes. In Leah’s
study, 36 DENV isolates covering four serotypes were selected
to inoculate against African green monkey, and the anti-serum
of each monkey was tested against 47 DENV strains to generate
dengue antigenic mapping (Katzelnick et al., 2015). According
to antigenic cartography, the antigenicity of DENV isolates
are usually similar to those viruses from the same serotypes.
However, a substantial number of strains illustrated greater
antigenic variance to inter-type viruses than those from intra-
types (Katzelnick et al., 2015).

Above results suggest that the traditional genotype
classification cannot fully meet the needs of antigenicity
clustering, and new methods of more accurate antigenicity
evaluation are highly needed. With the development of
bioinformatics technology, computational approaches have
started to provide possibility in both accurate and high-
throughput way (Liao et al., 2009; Qiu et al., 2016). Although,
this may be managed by a few general in-silico model (Qiu et al.,
2018), the limitation often includes requiring clearly defined
epitope residues and low computational efficiency. In this study,
a rapid model tailor-made for DENV was established to infer
the antigenic relationship between inter- and intra-serotypes of
DENV strains considering the conformational environment of
major surface envelope (E) protein. Based on the comprehensive
experimental dataset collated from previous researches,
antigenicity-dominant positions (ADPs) of DENV and four
serotypes were firstly derived based on the correlation between
residual mutation of E protein and antigenicity variance. Then,
the position specific scoring matrix (PSSM) was combined with
physic-chemical descriptors (PCDs) to build the antigenicity

calculation model. Finally, 1,143 historical sequences of DENV E
antigens from NCBI (Resch et al., 2009) were predicted and the
antigenicity relationship was analyzed between DENV serotypes.

MATERIALS AND METHODS

Dataset
For model construction, virus-antiserum neutralization titers
which reflecting the antigenic relationship were collated from
previous researches (Katzelnick et al., 2015), in which the
binding ability between DENV and DENV-post-infection
African green monkey antisera were determined. Corresponding
envelope protein of DENV were collected from National Center
for Biotechnology Information (NCBI) (Resch et al., 2009).
Considering the injected time and integrity of data, antisera
samples derived from African green monkey which injected
with corresponding vaccine for 3 mouth were chosen for model
construction and validation. Totally, 1,444 strain pairs with
experimental antigenicity distance involving 46 strains were
retained and those with antisera value labeled as <10 were
arbitrarily set as 5 to simplify the calculation. For model
construction, 80% of strain pairs (1,155) from experimental data
were randomly selected as training dataset and the remaining
20% (289 strain pairs) were defined as independent validation set.

Further, historical DENV strains with envelope protein
sequence were collected virus variation resources at the NCBI
(Resch et al., 2009), a total number of 4,633 E protein sequences
were retained. Based on the sequence identity of 100%, 1,143 un-
redundant E protein sequence were selected for further analysis.
The three-dimensional structure of envelope protein was collated
from Protein Data Bank (PDB id: 1OAN) (Berman et al., 2000;
Modis et al., 2003).

Identifying Antigenicity-Dominant
Positions of E Protein Surface
Since the antigenicity recognition between antigen and antibody
often occurs at the interaction interface of antigen surface, those
surface mutations exposed on protein surface in training set were
initially selected as candidates. After mapping all positions to
template structure (PDB id: 1OAN), 357 surface positions are
collected with solvent accessible surface areas (SASA) over 1
Å, which was calculated through Naccess V2.1.1. As antigenic
variation often related withmutations atmultiple positions, it can
be further correlated with antisera titer values by linear regression
(LR).

For each strain pair to be compared, the candidate ADPs are
defined as set P, which initially covers 357 surface positions.
By marking the positions with amino acid mutations as 1
and otherwise as 0, a 357-bit vector vec(P) can be generated.
Combined with the normalized antisera titer value, a LR was
established and those positions with weight (absolute value)
over 0 was defined as positions correlated with antigenicity
distance. In that case, 97 ADPs were retained. According to
geometric distance, those 97 positions can be classified into four
antigenic patches. Here, antisera titer value (V) was normalized
by logarithm (Log2V). For individual serotypes, the ADPs were
derived based on intra-serotypes experimental titers.
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Quantitative Model Construction Based on
Antigenicity-Dominant Positions
Position Specific Scoring Matrix
To quantitatively describe amino acid mutations on each
antigenic dominant position, amino acid distribution was
calculated to reflect the effect of residue mutations. A PSSM
was generated by position-specific iterated basic local alignment
search tool (PSI-BLAST) (Altschul et al., 1997) based on 1,143
historical envelope protein sequence. Each score on a 1 × 20
matrix represents the frequency of each amino acid occurred
on the described positions. For a pair of DENV strains, PSSM
vector was constructed based on the score of each position,
each score was defined as absolute difference of matrix score
for compared residues. For each queried E protein pairs, a 97-
bit PSSM descriptor was formulated to summarize amino acid
mutations at 97 positions.

Physical Chemical Property Descriptors
Physical chemical property descriptors were based on amino
acid index from AAindex database (Kawashima and Kanehisa,
2000). The optimization of physic-chemical indexes was done
as below: (1) Pair-wised Pearson Correlation Coefficient (PCC)
were calculated between any two AAindexes. (2) Two indexes
were defined as similar only when the corresponding PCC-
value was over 0.8. (3) All indexes were ranked according
to the number of similar ones which can be represented in
descending order. (4) From the top to the bottom of rank
list, indexes which can be represented by others were removed
sequentially. (5) Minimum index set was obtained which can
represent the full index list. Physic-chemical property descriptor
was generated based on the absolute difference of AAindex
summed for each antigenic region, further, the relationship
between PCDs, and experimental titers were constructed through
LR for feature selection. Here, the neighborhood region of
conformational structures was set as 1 Å according to distance
screen from 1 to 5 Å (Supplementary Table 2). Each round,
those indexes with weight unequal to 0 were remained and after
iterative selection, 20 antigenically-related indexes were selected
for further model construction. For the four antigenic patches,
(4∗20=) 80 bits of descriptors were generated as physic-chemical
property descriptors.

Modeling the Antigenic Variance
Based on antigenic descriptors incorporating PSSM profile and
physic-chemical properties, prediction model for antigenicity
regression could be constructed. Here, both qualitative and
quantitativemodel were adopted formodel construction between
normalized experimental titers and antigenicity descriptors. To
further analysis the antigenic relationship, different antigenic
cutoffs were set for classifications based on the homologous titers
between DENV strains and the antiserum against itself. In that
case, for the strain pairs based on E protein marked as Ea and Eb,
a 177-array quantitative descriptor for antigenicity-dominant
positions (QDAP) was derived as below containing PSSM profiles
and PCD. Further, the machine learning model can be generated
to fit the parameters of 177-dimensional descriptors for antigenic
variation which defined by logarithm of experimental titers

(LogVab) on the training set, as follows:

{

QDAP
(Ea ,Eb)
1 : 177 =

{

PSSM
(Ea ,Eb)
1 : 97 + PCD

(Ea ,Eb)
1 : 80

}

LogVab = Train1155(α1QDAP1,α2QDAP2 · · ·α177QDAP177)+ εα

(1)

Till the optimized model is reached as below:

L̂ogVab = γ0+γ1QDAP1+γ2QDAP2+· · ·+γ177QDAP177 (2)

Here, score L̂ogVab stood for the predicted antigenicity variation
between two DENV strains. The experimental LogVab represent
the logarithm of experimental titers which used for model

training. Thus, the escape threshold for the predicted L̂ogVab is
the same as that of LogVab from experimental titers.

Parameter Definition
To evaluate the performance of our model, statistical parameters
were defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Sensitivity =
TP

TP + FN
(5)

Here, TP represents true positive, TN represents true negative,
FP represents false positive, and the FN represents false negative.
Also, to evaluate our regression mode, correlation coefficient
(CC) was introduced as follows:

Correlation coefficient =

∑n
i=1 (Xi − X)(Yi − Y)

√

∑n
i=1 (Xi − X)

2
√

∑n
i=1 (Yi − Y)

2
(6)

Where Xi represents the predicted value, Yi represents the actual
value, X refer to average of Xi, and Y refer to the average of Yi.

RESULTS

Determination of Antigenicity-Dominant
Positions
Antigenicity-dominant positions (ADPs), whose mutations
are correlated with antigenicity variation, were determined
by following procedures: (1) surface exposed residues with
potential to become epitopes for immune response, and
(2) essential positions where mutations will likely lead to
antigenicity variations (see section Materials and Methods).
Three hundred and fifty-seven surface exposed positions were
initially retrieved. According to the correlation with training data
from experimental antigenicity variance (Katzelnick et al., 2015),
97 were identified as potential ADPs. It can be found that ADPs
are mainly located in domain ED1, ED2, and ED3 on E protein
surface, which was illustrated in Figure 1A. Above ADPs can be
clustered into four major surface patches according to spatial
distance, which may correlate to potential epitope areas on E
protein. Here, all four domains were labeled as D1, D2, D3, and
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FIGURE 1 | Antigenic-dominant positions of DENV. (A) The 97 ADPs mapped on envelope (E) protein (PDB id: 1OAN). D1, D2, D3, and D4 patches were marked in

blue, red, black, and green, respectively. (B) Clustering tree based on geometric distances between 97 ADPs, antigenic regions were marked with colors. (C)

Broad-neutralizing epitope areas previously determined for E protein (Aaskov et al., 1989; Cockburn et al., 2012; Fibriansah et al., 2014, 2015). (D) 30 ADPs for DENV

serotype 1. (E) 40 ADPs for DENV serotype 2. (F) 47 ADPs for DENV serotype 3. (G) 37 ADPs for DENV serotype 4.

D4, as being marked in blue, red, black, and green in Figure 1B,
respectively.

It can be seen that those 97 ADPs are highly overlapping
with broad-neutralizing epitopes derived from corresponding
antibodies targeting all four serotypes (Figure 1C). For instance,

the cross-neutralizing mAb of 4E11 was reported to recognize the
ED3 region of E protein monomer structure (Cockburn et al.,
2012), and another mAb of 1F4 could bind to ED1 regions
(Fibriansah et al., 2014). They are well-matched with our region
of D1 (blue) and D2 (red), respectively. Also, cross-neutralizing
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antibodies for polymer structures, such as 1B7 (Aaskov et al.,
1989) and 2D22 (Fibriansah et al., 2015), are partially overlapping
with our region of D3 (black) and D4 (green).

Besides the general ADPs for DENV, serotype-specific
antigenic sites were also determined for each DENV serotype
according to antisera of corresponding serotypes in a similar
way (see section Materials and Methods). Finally, 30, 40, 47,
and 37 sites are derived as serotype-specific ADPs for DENV
1–4, respectively, as been illustrated in Figures 1D–G and
Supplementary Table 1.

Model Construction and Evaluation
Machine learning models are adopted here for DENV
antigenicity predictions. Molecular features mainly cover
positions specific scoring matrix (PSSM) and physic-chemical
environments for each of the ADPs, which were previously
reported important to antigenicity predictions (Qiu et al.,
2016, 2018). The workflow of DENV antigenicity prediction
model covers four steps: (1) deriving PSSM for each ADP, (2)
generating physic-chemical properties of neighboring regions for
each ADP clusters, (3) selecting appropriate machine learning
approaches, and (4) calculating the antigenicity distance between
two compared DENV strains. Detailed information can be found
in section Materials and Methods.

For machine learning methods, both qualitative and
quantitative approaches were tested. Five qualitative models
including Sequential Minimal Optimization (SMO), Naïve
Bayes (NB), Support Vector Machine (SVM), Logistic Classifier
(LC), and Random Forest (RF) were used to establish different
classification models. Note that, no titer threshold has been
reported in DENV case. According to experimental results
of Katzelnick’s (Katzelnick et al., 2015), over 90% of self-
reactive titer value is over 20. In that case, tilter value of 10,
15, 20, and 40 were tentatively tried in turn as classification
cutoff for evaluation. Through 10-fold cross-validation, the
performance of all five algorithms indicated that NB classifier
obtained the best overall performance on different thresholds
and achieved the AUC-value over 0.88 under the threshold

of 20 (Figure 2A). Also, the average (AVG) accuracy of our
model achieved a range from 0.763 to 0.931 and fluctuation of
accuracy is extremely small with variance (VAR) no more than
0.002 (Supplementary Figure 1). This results illustrated that
our model could provide an accurate and robust prediction on
antigenic classifications and NB classifier was chosen to establish
our qualitative mode. After that, the performance of our
model was evaluated through independent testing dataset from
previous experiments (Katzelnick et al., 2015). Results indicated
that our NB classifier could achieve high AUC from 0.81 to 0.90
and ACC from 0.77 to 0.86 under different thresholds, which
indicate the outstanding ability of our model for qualitative
antigenicity classifications between comparable DENV strains
(Supplementary Figure 2).

For quantitative approaches, different regression model
including Additive Regression (AR), Support Vector Regression
(SVR), Gaussian Processes (GP), LR, and Isotonic Regression
(IR) were evaluated. Results indicated that LR could
achieve the best quantitative predictions with CC of 0.744
(Supplementary Figure 3). Thus, LR was chosen to establish
our quantitative model. Further, by setting different thresholds,
the classification performance of quantitative LR model was
also evaluated and compared with qualitative NB classifier
(Figure 2B). The results showed that quantitative LR model
are always better than qualitative NB classifier under different
thresholds. Thus, quantitative model of LR was adopted for final
analysis.

The Discrepancy Between DENV Serotypes
And Antigenicity Clusters
With above model, we made a large-scale antigenicity mapping
for 1,143 historical DENV strains retrieved from NCBI to
investigate the relationship between DENV serotypes (genetic
clusters) and antigenicity clusters. Firstly, the pair-wised
antigenicity similarity of all 1,143 historical strains were
calculated through our model for intra- and inter-serotypes.
Similarly, the genetic distance was also done by counting the
number of residual mutations for intra- and inter-serotypes

FIGURE 2 | Model performance of our model. (A) Cross-validation performance of qualitative model constructed by Sequential Minimal Optimization (SMO), Naïve

Bayes (NB), Support Vector Machine (SVM), Logistic Classifier (LC), and Random Forest (RF). Here, Y axis represents the AUC-value of different computational

models. (B) Performance of Linear Regression and Naïve Bayes on independent dataset.
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FIGURE 3 | Antigenicity and sequence analysis of DENV. (A) Genetic distance between intra- and inter-DENV serotypes by the number of residual mutations. Blue

bars represent the results of 1,143 historical strains, red bars represent the experimental strains of 47 strains from Leah’s work (Katzelnick et al., 2015). X axis

represents the four intra-groups and six inter-groups, Y axis represents mutation abundancy of compared strain pairs. (B) Antigenic similarity between intra- and inter-

DENV strains. Blue bars represent the results of 1,143 historical strains, red bars represent the experimental binding results of 47 strains from Leah’s work (Katzelnick

et al., 2015). X axis represents four intra- groups and six inter-groups. Y axis represents antigenic similarity of compared strain pairs, represented by logarithm of titer

value. (C) Antigenicity clustering of 1,143 DENV strains, red, yellow, blue, and cyan represents DENV serotype 1, 2, 3, and 4, respectively. (D) Antigenicity clustering of

two major clusters of DENV serotype 2, including DENV 2a and DENV 2b.

(Figure 3). It can be seen that, the genetic distance or variation
within one serotype is significantly less than that of inter-
serotypes and the distribution ranges of genetic distance were
clearly distinguishable without any overlapping between the
two classes (Figure 3A). However, in the case of antigenicity
similarities, this border become overlapping, despite the slight
differential trends (Figure 3B). Because the computational
principle to predict clusters is that the similarity of intra-
serotype strains should be separable from that of inter-serotype
strains, now the mixed border will certainly lead to discrepancies
between DENV genetic cluster (serotypes) and antigenic
clusters.

As reference, the large-scale animal data from Leah’s study
(Katzelnick et al., 2015) were calculated similarly to show the
difference between 4 intra- and 6 inter-groups (Figures 3A,B).
The discriminable genetic border, but not the antigenic border,
can be observed again in experiments as well. The agreeing results
indicated that DENV can be clearly clustered into four groups
genetically, but not antigenically. Thus, the traditional DENV
antigenic cluster should be re-evaluated.

Then, all the pair-wised antigenic similarity of 1,143 historical
strains were mapped into a clustering tree (Figure 3C), while
different colors represent different DENV serotypes. It can be
found that most of the intra-type strains tend to cluster together,
which were consistent with the serotype classification, as in the
case of serotype 1 and serotype 3. However, substantial number
of strains are clearly clustered into other serotypes. For instance,
a number of serotype 4 strains are grouped into serotype 2 and
3. More interesting, two different antigenic groups can be clearly
demonstrated for DENV 2. Therefore, we would like to propose
the further subtyping of DENV 2 into two sub-clusters, where
DENV 2a was antigenically closer to serotype 4 rather than
DENV 2b (Figure 3D).

Further, we clustered the antigenicity distance of DENV
based on neutralization titer value from monkey experiments
(Katzelnick et al., 2015). Because of the noise, the raw
experimental data was cleaned as below: (1) null values were
abandoned; (2) small and uncertain titers which labeled as “<10”
were defined as 5; (3) the logarithm of each titer values was
defined as the antigenic similarity of two compared strains.
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Antigenic clustering between remained pairs involving 28 DENV
strains was illustrated in Supplementary Figure 4.

It can be found that besides four clusters representing four
traditionally defined serotypes, a new cluster of DENV2 can be
detected, which was antigenically closer to serotype 4 rather than
serotype 2. This experiments result can support our proposal of
two sub-clusters for DENV2.

DISCUSSION

The antigenic difference between DENV viruses plays essential
role to the DENV epidemic control, vaccine-based prevention,
and clinical treatment. In this paper, we built an accurate and
efficient model to calculate the antigenic similarity for DENV
strains based on mutated sequences of E proteins. To achieve
that, we primarily considered the possible ADPs instead of all
mutations in E antigens, not only for the reasons of computing
efficiency, but also for predicting accuracy.

It is aware that not all mutations can cause antigenicity
variation. After possible ADPs were derived where mutations
could significantly affect the antigenicity, ADPs were further
clustered into spatial patches for detecting potential epitope
regions based on geometric distance on protein surface. It
is noted that ADPs were calculated from experimental data
previously accumulated. More abundant experimental data will
lead to more accurate model. Despite the creditability of our
model, the range of ADPs might be refreshed, and slightly
adjusted with the future accumulation of latest binding assays,
so as the minor changes of antigenic grouping.

Apart from the contribution of ADPs, the performance of our
model is also contributed by full consideration of PSSM profile
and the physic-chemical environment around the ADPs. Here,
the PSSM generated by PSI-BLAST (Altschul et al., 1997) could
provide a detailed description on evolution pressure of ADPs
at sequence level. Moreover, the physic-chemical environment
described by amino acid indexes are also considered to better
reflect the micro-environment variations between two compared
strains (Qiu et al., 2016). Thus, by incorporating PSSM profiles
and PCDs, our model could better predict the antigenicity
variation of DENV strains.

It was reported that, many DENV isolates are antigenic
similar to those viruses from different types rather than those
from the same type (Katzelnick et al., 2015). In this paper,
we explained the reasons why canonical DENV types are
not antigenically homogenous. Both data of experiments

and historically published sequences showed that, the
mutation accumulation is discrete but the antigenicity
variation of mutants tends to be continuous among the
DENV mutant populations (Supplementary Figure 5). The
discrete genetic distance between intra- and inter-groups
make it easy to define DENV subgroups but that may not
correlate with the antigenic similarity. Thus, we suggest the
re-consideration of the traditional serotype definition via DENV
antigenic similarity instead of genetic distance. Our model
provides convenient way to calculate the relative antigenicity
difference.

In summary, we established as a fast and efficient model
for DENV antigenicity based on sequence input of E antigens.
With the improvement of ADPs updating and incorporation of
additional antigens, it will be possible to establish an on-line tool
to serve the purpose of epidemicmonitoring and broad-spectrum
vaccine design of DENV.
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Apolipoprotein E (ApoE) plays a key role in tumorigenesis and progression, such as
cell proliferation, angiogenesis and metastasis. ApoE overexpression was associated
with aggressive biological behaviors and poor prognosis in a variety of tumor according
to previous studies. This study aimed to assess the prognostic value and explore
the potential relationship with tumor progression in colorectal cancer (CRC). We
collected the expression profiling microarray data from the Gene Expression Omnibus
(GEO), investigated the ApoE expression pattern between the primary CRC and liver
metastasis of CRC, and then explored the gene with prognostic significance based
on the TCGA database. ApoE high expression was associated with poor overall
survival (OS, p = 0.015) and progression-free survival (PFS, p = 0.004) based on
the public databases. Next, ApoE expression was evaluated in two CRC cohorts
by immunohistochemistry, of whom 306 cases were stage II and 201 cases were
metastatic liver CRC. In the cohort of the liver metastasis, the ApoE expression was
increasing in normal mucosa tissue, primary colorectal cancer (PC), and colorectal liver
metastases (CLM) in order. Meanwhile, the level of ApoE expression in stage II tumor
sample which had no progression evidence in 5 years was lower than that in PC of
synchronous liver metastases. The high ApoE expression in PC was an independent risk
factor in both stage II (HR = 2.023, [95% CI 1.297–3.154], p = 0.002; HR = 1.883, [95%
CI 1.295-2.737], p = 0.001; OS and PFS respectively) and simultaneous liver metastasis
(HR = 1.559, [95% CI 1.096–2.216], p = 0.013; HR = 1.541, [95% CI 1.129–2.104],
p = 0.006; OS and PFS respectively). However, the overexpression of ApoE could
not predict the benefit from the chemotherapy in stage II. The study revealed that the
relevance of the ApoE overexpression in CRC progression, conferring a poor prognosis
in CRC patients especially for stage II and simultaneous liver metastasis. These finding
may improve the prognostic stratification of patients for clinical strategy selection and
promote CRC clinic outcomes.

Keywords: colorectal cancer, Apolipoprotein E (ApoE), prognosis, stage II, simultaneous liver metastasis,
biomarkers, chemotherapy
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INTRODUCTION

Colorectal cancer (CRC) is one of the most common digest
track malignant tumors, which are threatening the public health
worldwide. According to the data published by Chinese National
Cancer Center, in China, over 376.3 thousand CRC new cases and
191.0 thousand CRC-related deaths were estimated just in 2015
(Chen et al., 2016).The current treatment regimen option mainly
depends on American joint committee on cancer TNM staging
classification system which is based on the clinicopathologic
characteristics. However, owing to the tumor heterogeneity, the
patients with the same staging and similar treatment may gain
different clinical outcomes. Moreover, chemotherapy as one of
principal therapeutic means is recommended for stage III, IV and
part of II CRC patients according to the CRC treatment guideline.
Regarding stage II CRC, chemotherapy could improve survival
outcome of patients, but absolute improvement in survival was
less than 5% (Chen et al., 2016). Adverse events from adjuvant
chemotherapy would have impacts on the quality of life of
patients (Rosmarin et al., 2014). Therefore, there remains an
urgent to identify valuable biomarkers aiming to improve the
prognostic stratification of patients for clinical strategy selection.

Apolipoprotein E (ApoE) plays a multi-functional role in
cholesterol transport and metabolism, which mediates the
cellular uptake of lipoprotein particles by binding to receptors
of low-density lipoprotein (LDL) receptor family and the
receptor for chylomicron remnants (Gliemann, 1998). Previous
research has suggested ApoE abnormal function is associated with
Alzheimer’s disease, atherosclerosis and chronic heart disease
(Wilson et al., 1996; Hofman et al., 1997; Greenow et al., 2005).
Besides, the functions of ApoE have been identified in DNA
synthesis, cell proliferation, angiogenesis and metastasis, so the
aberration of these functions may lead to tumorigenesis and
progression. ApoE overexpression has previously been reported
in gastric, lung, prostate, thyroid, ovarian, endometrial cancer
and glioblastoma (Nicoll et al., 2003; Venanzoni et al., 2003;
Oue et al., 2004; Ito et al., 2006; Huvila et al., 2009; Su et al.,
2011). A recent study has shown that ApoE was associated
with tumor advanced grade and stage in gastric carcinomas
and involved in invasion, metastasis and carcinogenesis (Oue
et al., 2004). Another study found that increased expression
of ApoE might represent a late event in the progression
of endometrioid endometrial adenocarcinoma (Huvila et al.,
2009). In lung adenocarcinoma, ApoE over-expression promotes
cancer proliferation and migration and is related to chemo-
resistance (Su et al., 2011). A recent study implicated the ApoE
moderates the colon homeostasis and constitutes a risk factor
for colon pathologies (El-Bahrawy et al., 2016). However, the
prognostic value of ApoE expression for CRC remains unclear,
and to the best of our knowledge, although some previous
research has been implicated that APOE might influence CRC
development through three potential path ways: cholesterol
and bile metabolism, triglyceride and insulin regulation, and
the prolonged inflammation (Slattery et al., 2005; Mrkonjic
et al., 2009; Kato et al., 2010), there has not been a prior
study of functional expression and prognostic significance
for CRC.

In the present study, we analyzed Affymetrix gene microarray
in the setting of liver metastatic CRC from the GEO, which aimed
to study the expression pattern of ApoE between CRC primary
and liver metastasis samples. Next, we evaluated the expression
patterns of ApoE in CRC and assessed prognostic significance
based on The Cancer Genomic Atlas (TCGA). Subsequently,
we further studied the expression pattern in stage II and liver
metastasis of CRC respectively, and made survival analysis in two
cohorts, to explore the relationship of the expression features with
the clinic and prognosis.

MATERIALS AND METHODS

Patients and Tissue Samples
The specimens in this study were collected from the CRC
patients who underwent the surgical resection from January
2006 through December 2012, which were all archived by
Pathology Department of Cancer Institute and Hospital, Chinese
Academy of Medical Sciences. All the sample diagnoses were
confirmed according to the 7th edition of TNM staging system.
The inclusive criteria of stage II were as follow: (A) AJCC
pathology staging was stage II (T3-4N0M0); (B) no systemic
or chemotherapy before the surgery; (C) the case can provide
complete clinical information, such as age, gender, tumor
location, histology, differentiation, TNM classification, adjuvant
therapy regime, follow-up information and so on. At the
same time, we utilized the primary tumor and corresponding
metastatic liver specimen to establish another simultaneous liver
metastatic CRC cohort (LMCRC). Totally, 306 cases of stage II
CRC and 201 cases of liver metastatic CRC were collected based
on the inclusive criteria. The Clinical Research Ethics Committee
of Cancer Institute and Hospital, Chinese Academy of Medical
Sciences approved this study. All the patients were followed up
regularly until December 31st, 2017, every 3 months up to the
5th year.

ApoE Expression Analyses in the GEO
and TCGA Databases
To investigate the ApoE expression pattern between the
primary CRC (PC) and liver metastasis of CRC (CLM),
we collected the expression profiling microarray data from
the Gene Expression Omnibus (GEO1) database under the
accession number GSE41258 (Affymetrix Human Genome
U133A Array), GSE62322 (Affymetrix Human Genome U133B
Array) and GSE68468 (Affymetrix Human Genome U133A
Array), respectively. Gene expression was first measured at the
probe set level using the RMA (Robust Multi-array Average)
methodology on perfect match probes, followed by quantile
normalization. Probe set annotation for the U133 Array was
downloaded from Affymetrix’s website. The probe set with the
greatest average expression across all samples was chosen to
represent each gene. Information about datasets was summarized
in Supplementary Table S1. All the sample preparation and
microarray were performed based on the standard protocols.

1http://www.ncbi.nlm.nih.gov/geo/
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The standardized ApoE expression was obtained by dividing
into N (normal mucosa), PC and CLM in each of datasets after
annotation.

Two hundred and seventy one cases of colon cancer and
89 cases of rectal cancer are provided by the TCGA project
(Supplementary Table S8). According to the expression value of
ApoE, the cohort was classified into high expression group and
low expression group (cut-off = 50%) after merging the colon
and rectal cancer cases. The Box Plots was generated to compare
the ApoE expression level between the tumor and normal tissues
of CRC, and to show the ApoE expression features in different
pathological stages. A tool named GEPIA2 which is an interactive
web server for analyzing the RNA sequencing expression data
from the TCGA projects is used for batch TCGA data processing
and visualization in this study (Tang et al., 2017).

Tissue Microarray and
Immunohistochemistry
The stage II cohort included the tumor and normal tissue of
each patient, and LMCRC cohort consisted of the primary tumor,
metastatic tumor, normal intestinal mucosa and normal liver
tissue from each patient. The TMAs were built after verification
by HE staining and the punched sample which measured 1.0 mm
were taken from the center of the tumor. The different specimen
derived from one patient were placed on the same TMA and every
TMA has another copy to reduce systematic errors.

Immunohistochemical staining was performed on the slides
(5 µm thick) from the TMAs, using an ApoE (pan) (D7I9N)
rabbit monoclonal antibody (#13366; 1:500; Cell Signaling
Technology, United States) antibody to ApoE, as it was described
previously (Holtzman et al., 2000). The SI score was calculated
by multiplication of the staining intensity (0, negative; 1, weak;
2, moderate; 3, strong) and the percentage of positive stained cells
(no staining, 0; 1–10%, 1; 11–50%, 2; 50–100%, 3). In this study,
moderate/strong cytoplasm staining of (SI = 3–9) was defined as
positive staining, while weak or negative staining (SI = 0–2) was
defined as negative staining. Representative staining of ApoE in
the specimens illustrated in Figure 1. Positive rate refers to the
proportion of ApoE positive staining samples, namely positive
rate = positive samples/(positive samples+ negative samples).

Statistical Analysis
The statistical significance of the difference was assessed using
Student t-test, and the one-way ANOVA with Tukey post-test was
conducted for multiple comparisons. Chi-square test or Fisher
exact test was used to evaluate the difference in rates among
different groups. All the statistical results were summarized in
Supplementary Table S9. Survival curves were plotted according
to the Kaplan–Meier method and the log-rank test was used to
compare the overall survival (OS) and progression free survival
(PFS) in the study cohort. Univariate and multivariate analysis for
CRC prognosis were undertaken using Cox proportional hazards
regression model. The calculations were performed with IBM
SPSS Statistics 24.0 software program and R version 3.3.3. A value
of p < 0.05 was considered as significant.

2http://gepia.cancer-pku.cn/index.html

FIGURE 1 | Representative immunohistochemistry staining pictures of ApoE
expression in CRC tissues Tissue high expression (4X for A, 10X for C) and
low expression (4X for B, 10X for D) for the ApoE protein are shown. Each of
punched samples is 1.0 mm in the tissue microarrays.

RESULTS

ApoE Is Highly Expressed in Colorectal
Liver Metastasis and Has Prognostic
Significance in Colorectal Cancer Based
on the Public Databases
We first assessed the ApoE expression level in the normal
intestinal mucosa, PC and CLM based on 3 datasets from
GEO (Supplementary Table S1). In GSE41258 and GSE 62322,
PC refers to the primary tumor from metastatic CRC, but
to account for the limit of clinical data PC in GSE68468
included all the stages. As demonstrated in Figure 2, ApoE
was significantly higher expressed in CLM compared with
normal tissue and PC in all three datasets. However, there
was no significant difference between the normal mucosa
and PC.

To further investigate the ApoE expression pattern and
prognostic significance in CRC, we analyzed the expression of
ApoE in TCGA database. The result revealed that there was
no significant difference between the PC and normal tissues
in both the colon cancer (COAD) and rectal cancer (READ)
dataset, which was consistent with GEO data (Figure 3A). In the
meanwhile, the ApoE expression demonstrated rising tendency in
general as the pathology stage development and ApoE expression
level in stage I was significantly lower than the other stages
(Figure 3B). As illustrated in the Kaplan–Meier survival curves,
overexpression ApoE proved to associated with poorer OS and
the DFS in CRC patients (p = 0.015 for OS; p = 0.004 for DFS;
Figures 3C,D).
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FIGURE 2 | ApoE expression pattern in the normal intestinal mucosa, primary tumor and colorectal liver metastasis based on 3 datasets (A, GSE41258, B,
GSE62322, C, GSE68468) from GEO and their pooling set (D). N, normal intestinal mucosa; PC, primary colorectal cancer; CLM, colorectal liver metastasis;
∗∗Represents p-value < 0.01.

The ApoE Expression Features in the
LMCRC and the Stage II CRC Cohort
According to the results analyzed from the public data, we
primary identified the expression patterns and the potential
prognostic value of ApoE in CRC. Therefore, we further
investigated the expression patterns of ApoE in 201 cases of
PC and CLM from simultaneous liver metastasis patients and
corresponding adjacent normal mucosa and liver tissues utilizing
immunohistochemistry staining. As shown in Table 1, ApoE
protein expression was detected in 103/201 (51.2%) of the PC
samples, 128/201 (63.7%) of the CLM samples and 43 cases
(21.4%) of adjacent normal mucosa stained positively. Thus, at
protein levels, the expression of ApoE was higher than normal
mucosa (51.2% vs. 21.4%, p < 0.001) and ApoE was upregulated
in the CLM tissues (63.7% vs. 51.2%, p = 0.012) comparing
with PC.

In the cohort of stage II, there was no significant difference
between the tumor and normal tissue (34.3% vs. 39.2%,
p = 0.209). According to the follow-up, 306 cases of the stage II

patients were divided into the non-progression group (195 cases)
and the progression group (111 cases), and 30 cases with
liver metastasis after surgery included. Immunohistochemistry
staining indicated that progression group had a higher ApoE
expression positive rate than the non-progression group (45.9%
vs. 27.7%, p = 0.001). Comparing the ApoE expression level of the
primary tumor between stage II and simultaneous liver metastatic
group, the latter turned out to be higher (34.3% vs. 51.2%,
p = 0.001). We further analyzed the ApoE expression pattern in
primary tumor between the stage II with liver metastasis after
surgery and the simultaneous liver metastatic group, whereas it
proved no significant difference (53.3% vs. 51.2%, p = 0.831).

The Low ApoE Expression Is Associated
With Improved Survival Outcome in Two
Cohorts
Two cohorts of CRC patients were classified into low ApoE
expression group (SI 0–4) and high ApoE expression group
(SI 6–12) based on the immunohistochemistry staining of the
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FIGURE 3 | Expression of the ApoE protein in CRC and Kaplan–Meier Curves based on TCGA database. The tumor was represented by red color and the normal
tissue was represented by gray color (A). The ApoE expression box plots were generated based on CRC patient pathological major TNM staging (B). The most
extreme value from bottom to top in the box plot represents minimum value, the lower quartile, the median, the upper quartile and the maximum value. The method
for differential gene expression analysis is one-way ANOVA, using the pathological stage as a variable for calculating differential expression. The ApoE high
expression group was associated with decreased overall survival (C) and disease-free survival (D) in CRC according to the data from TCGA, which were calculated
using a log-rank test. CRC, Colorectal cancer; TPM, transcript per million; #Represents p-value < 0.05.

primary tumor. The relationship between the ApoE expression
and the clinicopathologic characteristics of stage II and LMCRC
patients are summarized in Supplementary Tables S2, S3,
respectively. ApoE highly expressed in the LMCRC cohort
patients who underwent neoadjuvant therapy. Besides, the
other clinicopathologic information such as age, gender, tumor
location, gross pathology type, differentiation grade, T stage,
MSI (Microsatellite instability) status, preoperative CEA level

and preoperative CA19-9 level had no significant correlation
with the ApoE expression in both two cohorts (Supplementary
Tables S2, S3).

To identify the prognostic significance of the ApoE expression
in CRC, we further conducted the survival analysis in two cohorts
respectively. In the cohort of stage II, the median follow-up
was over 59 months, 78 died cases and 111 relapsed patients
included. Kaplan–Meier curves revealed that the patients with
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TABLE 1 | The ApoE expression pattern in different samples by IHC staining.

ApoE ApoE Positive

Sample Positive Negative Rate %

Stage II Tumor 105 201 34.3

Normal tissue 120 186 39.2

Progression 51 60 45.9

Non-progression 54 141 27.7

Recurrence of liver metastasis 16 14 53.3

after surgery

LMCRC Primary tumor 103 98 51.2

Normal colorectal mucosa 43 158 21.4

Liver metastasis 128 73 63.7

Normal liver tissue 89 112 44.3

Stage II, stage II colorectal cancer; LMCRC, liver metastatic colorectal cancer;
Progression, tumor recurrence after surgery in 5 years; Non-Progression, no
recurrence signs after surgery in 5 years.

low ApoE expression had a longer 5-year OS and PFS (p = 0.002
for OS and p = 0.001 for PFS; Figures 4A,B) in stage II cohort.
Multivariate Cox regression analysis confirmed that high ApoE
was independently associated with worse prognosis significance
for OS (HR 2.023, [95% CI 1.297–3.154]) and PFS (HR
1.883, [95% CI 1.295–2.737]) (Tables 2, 3 and Supplementary
Tables S4, S5). MSI status was independently associated with
better OS (HR 0.328, [95% CI 0.120–0.897]) and neurological
involvement was an independent prognostic factor for PFS in
multivariate analysis (HR 2.115, [95% CI 1.133–3.949]).

Kaplan–Meier analysis was also conducted in simultaneous
liver metastatic patients. With 27-month median follow-up, 141
patients died and 168 patients relapsed. ApoE-low group had a
significantly improved OS (p = 0.002 for OS and p = 0.008 for
PFS; Figures 4C,D). The multivariate analysis demonstrated that
ApoE expression in PC was an independent prognosticator for
OS (HR 1.559, [95% CI 1.096–2.216]) and PFS (HR 1.541, [95%
CI 1.129–2.104]) in patients with synchronous liver metastasis
CRC (Tables 4, 5 and Supplementary Tables S6, S7). Besides,
in the LMCRC cohort, N staging was an independent prognostic
indicator in both OS (HR 0.488, [95% CI 0.302–0.789]) and PFS
(HR 0.462, [95% CI 0.302–0.706]).

The Expression of ApoE Could Not
Predict the Benefit From the Adjuvant
Chemotherapy for Stage II CRC
Next, we investigated the potential role of ApoE as a predictor
of adjuvant chemotherapy for stage II. In the stage II cohort,
131 patients received the 5-FU-based adjuvant chemotherapy,
63 lower rectal cancer patients underwent radiotherapy (50Gy)
and 112 patients underwent surgery alone. ApoE expression was
shown to have a negative impact on survival both the patients
who underwent surgery alone (25.5% vs. 43.9%, p = 0.049)
and those who received the 5-FU-based chemotherapy (53.3%vs.
73.3%, p = 0.019) (Figures 4E,F). We explored the association
between ApoE expression and PFS among the patients who either
received or did not receive the chemotherapy. However, there was
no significant interaction between the chemotherapy and high

ApoE expression of CRC. Further analysis showed the benefit
observed in high ApoE expression group was superior to that in
low expression group.

DISCUSSION

In the present study, we studied the ApoE expression profiling
and relevant prognostic value of ApoE in CRC, especially for
stage II and liver metastasis. We compared the expression level
of ApoE in primary lesion, liver metastases and corresponding
normal mucosa according to three GEO datasets and two our
center cohorts. We found that ApoE was significantly higher
expressed in CLM compared with normal tissue and PC. Here,
we proposed an assumption that the different expressing genes
between the CRC primary and liver metastatic tumors may play
roles in the metastasis or progression and these genes would have
the potential prognostic value. We found that ApoE expression
level proved rising tendency in stage II tumor, primary tumor and
liver metastasis of CLM in order, and high ApoE expression was
associated with shorter PFS in stage II cohort. Thus we conducted
survival analysis based on TCGA data and validated the result
in our two cohorts. When we made survival analysis based on
the TCGA data, it was demonstrated that the expression of ApoE
was significantly associated with OS and PFS of CRC. Next, the
survival analysis was performed in the two cohorts to validate the
prognostic significance in stage II and metastatic CRC. In two
cohorts, the higher expression level of ApoE has been shown to
be independently associated with a reduced prognosis. Besides,
neurological involvement was also independently related to the
PFS of stage II. Concerning liver metastasis of CRC, we found that
N staging was one of the independent risk factors both in OS and
PFS. The patients should be stratified based on the independent
prognostic factor to accept suitable treatment regime.

Previous studies have demonstrated the overexpression of
ApoE was associated with a series of malignant behaviors and
it was regarded as a prognostic marker in a variety of cancers
according to previous studies (Nicoll et al., 2003; Oue et al.,
2004; Ito et al., 2006). Related studies have revealed that
ApoE activity on cancer cells is dual according to different
tissues and ApoE affects several signaling cascades, including
by increasing disabled phosphorylation and by activation of
the ERK1/2 pathway (Hoe et al., 2005; Zheng et al., 2018). At
the same time, ApoE could activate PI3K/AKT/mTOR signaling
pathway, which has been confirmed as a critical regulator during
tumor progression, including cell–cell adhesion, proliferation,
and migration (Thorpe et al., 2015). Meanwhile, the aberration
of ApoE expression might also lead to the development of CRC.
Niemi et al. (2002) found HT29 cell line with overexpressed ApoE
would enhance the cell polarity which was one potential step
of tumor metastasis. Mrkonjic et al. (2009) reported that ApoE-
expressing cell would induce proliferative signals and inhibit
apoptosis in CRC. These findings suggested that ApoE might be
a potential predictive marker during the development of CRC.
Intriguingly, in our cohorts ApoE was highly expressed in liver
metastasis than primary tumor, however, there was no significant
difference in primary lesion between the stage II and stage IV
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FIGURE 4 | Prognostic power of ApoE in stage II CRC cohort and liver metastatic CRC cohort. Kaplan–Meier analyses of overall survival and progression free
survival in patients with CRC based on the expression of ApoE. OS and PFS according to ApoE expression in stage II CRC (A,B) and liver metastatic CRC (C,D).
The relationship between ApoE expression and PFS benefit from adjuvant chemotherapy in patients with stage II CRC. Treatment with 5-FU based chemotherapy
was not associated with a higher rate of PFS both in the ApoE high group (E) and the ApoE low group (F).
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TABLE 2 | Cox analyses of potential prognostic factors for overall survival in the stage II CRC cohort.

Factor Comparison Univariate Analysis Multivariate Analysis

HR 95%CI p-value HR 95%CI p-value

MSI status MSI vs. MSS 0.343 0.126–0.939 0.037 0.328 0.120–0.897 0.030

ApoE expression HIGH vs. LOW 1.973 1.266–3.077 0.003 2.023 1.297–3.154 0.002

TABLE 3 | Cox analyses of potential prognostic factors for progression-free survival in the stage II CRC cohort.

Factor Comparison Univariate Analysis Multivariate Analysis

HR 95%CI p-value HR 95%CI p-value

Neurological Involvement Present vs. Absent 2.222 1.191–4.145 0.012 2.115 1.133–3.949 0.019

ApoE expression HIGH vs. LOW 1.913 1.317–2.780 0.001 1.883 1.295–2.737 0.001

TABLE 4 | Cox analyses of potential prognostic factors for overall survival in the simultaneous liver metastatic CRC cohort.

Factor Comparison Univariate Analysis Multivariate Analysis

HR 95%CI p-value HR 95%CI p-value

T Stage T1-3 vs. T4 0.696 0.499–0.970 0.032 0.786 0.556–1.109 0.170

N Stage N0 vs. N+ 0.502 0.312–0.808 0.005 0.488 0.302–0.789 0.003

Chemotherapy Yes vs. No 0.641 0.429–0.956 0.029 0.766 0.512–1.146 0.195

ApoE expression HIGH vs. LOW 1.629 1.163–2.281 0.005 1.559 1.096–2.216 0.013

TABLE 5 | Cox analyses of potential prognostic factors for progression-free survival in the simultaneous liver metastatic CRC cohort.

Factor Comparison Univariate Analysis Multivariate Analysis

HR 95%CI p-value HR 95%CI p-value

N stage N0 vs. N+ 0.483 0.317–0.737 0.001 0.462 0.302–0.706 <0.001

MSI MSI vs. MSS 0.497 0.262–0.942 0.032 0.555 0.291–1.057 0.073

ApoE expression HIGH vs. LOW 1.496 1.100–2.033 0.010 1.541 1.129–2.104 0.006

according to the TCGA data. Because stage IV samples in TCGA
databases were not the only liver metastasis but also included
the other types of metastatic CRC. Consequently, we suspect
that ApoE may be one of the potential liver metastasis-specific
biomarkers in CRC, but this assumption remains to be further
verified by the larger sample scale.

However, it turned out that ApoE had a prognostic rather than
predictive value, which did not seem to be associated with the
resistance to chemotherapy in stage II. Even so, we demonstrated
that stage II CRC with overexpressed ApoE was more prone to
recurrence or metastasis and worse prognosis. The results remind
us stage II patients should increase the postoperative follow-up
frequency properly according to the ApoE expression level. The
study indicated the association between the high ApoE expression
and MSS (Microsatellite Stability) status in stage II. Previous
studies have shown that the prognosis of with MSI is better than
those with MSS for the stage II patients (Salazar et al., 2011)
and the result was also confirmed in our study. It may include
that some interactions between the ApoE expression level and
DNA mismatch-repair (MMR) functional status, which needs
to be further explored and identified. The results also showed
that the neoadjuvant therapy for liver metastasis significantly

increased the ApoE expression level. We hypothesize that high-
dozen chemotherapy might lead to metabolic abnormality of
lipid through the body and therefore a high level of ApoE was
detected in CRC. The alternative of ApoE after neoadjuvant
chemotherapy cannot reflect the real expression level in the
tumor. Consequently, if we intend to take the ApoE as a
prognostic marker, the effects from preoperative chemotherapy
should be taken into account in advance. Besides, we think ApoE
could be considered as a valuable molecular marker for prediction
of CRC prognosis and it might be a potential new therapeutic
target of the CRC.

One of the limitations of this study is that we did not detect the
presence of three common isoforms, including ApoE2, E3 and
E4 which are from amino acid substitutions (Raffai et al., 2001).
Different ApoE isoforms by binding to the LDL receptor could
lead to various of biological behaviors for tumor, so the related
research stratified by ApoE phenotypes is required. On the other
hand, although the result analyzed by TCGA indicated that the
ApoE expression level increases with the development of CRC
and ApoE have potential prognostic value in CRC, our validation
cohorts only consist of stage II and liver metastatic CRC patients.
Especially the TCGA data showed that ApoE expression level in
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stage I was significantly lower than the other stages. Whether the
ApoE could be regarded as a potential biomarker for diagnosis or
ApoE plays some critical roles in the development from stage I to
the higher stage, it should be further verified. Therefore, next, we
need to complete the CRC cohort establishment of stage I, stage
III and even precancerous, in order to further vindicate current
results.

CONCLUSION

In this study, we found that the ApoE expression was higher in the
primary tumor of liver metastasis as compared with the stage II.
High level of ApoE was an independent prognostic indicator for
OS and PFS in stage II and simultaneous liver metastatic CRC.
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Hirschsprung disease is a birth defect characterized by complete absence of neuronal
ganglion cells from a portion of the intestinal tract. To uncover genetic variants
contributing to HSCR, we performed whole exome sequencing on seven members
of an HSCR family. With the minor allele frequency (MAF) calculated by gnomAD, we
finally filtered a total of 1,059 rare variants in this family (MAF < 0.1%). With the mode
of inheritance and pathogenicity scores by bioinformatics tools, we identified an in-
frameshift variant p.Phe147del in RET as the disease-causing variant. Further analysis
revealed that the in-frameshift variant may function by disrupting the glycosylation of
RET protein. To our knowledge, this is the first study to report the in-frameshift variant
p.Phe147del in RET responsible for heritable HSCR.

Keywords: whole exome sequencing, Hirschsprung disease, RET variant, minor allele frequencies, bioinformatics

INTRODUCTION

Hirschsprung disease (HSCR) is a congenitally genetic disorder of the enteric nervous system (ENS)
characterized by complete absence of neuronal ganglion cells from a portion of the intestinal tract.
The incidence of HSCR is approximately 1 in 5,000 live births, which varies among different ethnic
groups (Parisi and Kapur, 2000). HSCR can be classified into short-segment HSCR (S-HSCR),
long-segment HSCR (L-HSCR), and total colonic aganglionosis (TCA) based on the length of the
aganglionic segment (Lantieri et al., 2006). Treatment options for HSCR include surgical treatment
with resection of the aganglionic segment and reconstitution of the intestinal passage after the first
year of life, following bridging therapy with colostomy (Bachmann et al., 2015).

The mode of inheritance of HSCR vary from dominant with reduced penetrance or recessive
in familial cases to a more complex, non-Mendelian mode of inheritance in the sporadic cases
(Amiel et al., 2008). So far, several genes have been found to contribute to HSCR, such as RET
(Tomuschat and Puri, 2015), ECE1 (Vohra et al., 2007), EDN3 (Sanchez-Mejias et al., 2010), EDNRB
(Sanchez-Mejias et al., 2010), GDNF (Eketjall and Ibanez, 2002), NRTN (Doray et al., 1998), SOX10
(Lecerf et al., 2014), PHOX2B (Fernandez et al., 2013), and KIAA1279 (Amiel et al., 2008). With the
exception of the RET proto-oncogene that is responsible for approximately 50% of familial and up
to 15% of sporadic cases, other HSCR genes only account for a small proportion of the cases (Amiel
et al., 2008). RET encodes a transmembrane tyrosine kinase receptor that, during development of
specific neuronal cell lineages, transduces extracellular signals for cell growth and differentiation.
The mechanism of HSCR caused by loss-of-function mutations in RET is highly dependent on their
location in the protein (So et al., 2011). For example, mutations affecting the intra-cytoplasmatic
domain could impair the kinase activity required for proper signal transduction, altering either the
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catalytic function, the stability of the enzyme structure or the
binding of transduction effectors (Hyndman et al., 2013). In
contrast, mutations of the extracellular domain (ECD) can
affect RET function through a number of different mechanisms,
such as lack of ligand binding, and impairment of protein
folding (Kjaer and Ibanez, 2003). However, these mechanisms are
mostly revealed for missense, nonsense, frameshift, and splicing
mutations, and the pathogenicity of in-frameshift variants is
underestimated by previous studies.

In the present study, we collected an HSCR family with
four affected and three unaffected members. To uncover the
novel pathogenic genes or variants, we performed whole exome
sequencing on seven family members. With the filtering steps
by minor allele frequency (MAF), the mode of inheritance, co-
segregation, and pathogenicity scores by the bioinformatics tools,
we identified a novel in-frameshift variant p.Phe147del in RET
as the disease-causing variant, which may function by disrupting
RET N-glycosylation. To our knowledge, this is the first study to
report the p.Phe147del in RET as a disease-causing variant for
heritable HSCR.

RESULTS

Clinical Features of the HSCR Cases
The proband (III-2) was a 2-month-old Chinese boy who had
the symptoms of abdominal distension and vomiting after birth
(Figure 1A). The proband was diagnosed as Hirschsprung disease
by barium enema examination (Figures 1B–D), which showed
typical symptoms of congenital megacolon. In detail, we observed
that the ganglion cells were present in dilated segment, but not
detected in narrow segment of mucosa of intestinal wall and
myenteric nerve plexus by microscopic image-based histologic
examination. Unmyelinated nerve fiber and Schwann cells were
increased in the narrow segment. Further family history survey
revealed that the proband’s father (II-1), older brother (III-
1), and cousin (III-3) had the similar symptoms (Figure 1A).
The proband as well as his older brother and cousin was
diagnosed as short-form and long-form aganglionosis based
on the length of aganglionosis, respectively. Unfortunately, the
length of aganglionosis was unclear due to loss of medical record.
All the patients were cured by radical operation.

Identification of Rare Variants in Coding
or Splicing Regions
To uncover the genetic variants contributing to HSCR, we
performed whole exome sequencing on the seven family
members, including II-1, II-2, II-3, II-4, III-1, III-2, and III-
3. Variants were called by VarScan (Koboldt et al., 2012) with
the trio-based mode. The steps of genetic variant analysis were
illustrated in Figure 2. In total, we detected 239,225 variants at
which at least one family member had an allele that varied from
the reference genome, including 217,172 substitutions and 22,053
indels (insertion and deletion) (Figure 2A). For the three affected
boys (III-1, III-2, and III-3), the Mendelian errors were estimated
about 1.10, 1.43, and 1.33%, suggesting that the variants were high
reliable by the trio-based variant calling strategy.

FIGURE 1 | The pedigree of three generations of the HSCR family.
(A) Pedigree of the three-generation, Chinese family with four affected
individuals. Squares indicate males, and circles represent females. Black and
white symbols represent affected and unaffected individuals, respectively. The
proband is indicated by an arrow. (B–D) The colon X-ray images of the
proband at three different views.

As the heritable Hirschsprung disease was rare in the
population, the pathogenic variants were more likely to be
rare in healthy population. To identify the rare variants, we
firstly obtained their MAFs from gnomAD database (Lek et al.,
2016). By excluding the non-coding and synonymous variants,
we finally filtered a total of 1,059 rare variants in this family
(MAF < 0.1%). As the Hirschsprung disease could be inherited by
autosomal dominant and recessive patterns (Amiel et al., 2008),
autosomal dominant and recessive variants were considered.
Among the homozygous variants and biallelic variants, no
recessive variants were shared by the four patients. Notably,
under the hypothesis of autosomal dominant inheritance, the
unaffected female, II-4, may be a carrier of the pathogenic variant
due to incomplete penetrance. Finally, we identified 18 dominant
variants (Figure 2B), including 14 missenses, 1 nonsense, 2
frameshifts, and 1 in-frameshift variants, co-segregated in the
three boys.

Identification of Pathogenic Candidate
for HSCR
To identify pathogenic variants, we evaluated the pathogenicity
of the 18 dominant variants using bioinformatics tools,
such as SIFT (Ng and Henikoff, 2003), PolyPhen (Adzhubei
et al., 2013), MutationTaster (Schwarz et al., 2010), M-CAP
(Jagadeesh et al., 2016), DDIG-in (Zhao et al., 2013), and
SIFT-indel (Hu and Ng, 2013) (Supplementary Table S1).
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FIGURE 2 | The workflow of discovering the disease-causing variant for the HSCR family. (A) Variants are called by VarScan with the trio-based calling mode.
(B) The disease-causing variant is identified by filtering steps including falling within coding/splicing regions, the minor allele frequency (MAF) in healthy population,
mode of inheritance, and pathogenicity analysis.

The 14 missense variants were filtered using the pathogenic
scores in SIFT (≤0.05), PolyPhen (≥0.957), MutationTaster
(‘disease causing’), and M-CAP (>0.025), and CAPN9, GLYCTK,
and DRD5 were recognized. Moreover, RET, FANCI, and
CALN1 were identified by the two pathogenicity prediction
algorithms for indels, DDIG-in and SIFT-indel. The nonsense
variant in NPHP3 was recognized as potentially pathogenic
by MutationTaster and DDIG-in. In summary, seven genes,
including CAPN9, GLYCTK, DRD5, NPHP3, FANCI, CALN1,
and RET, were pathogenic candidates by the bioinformatics
tools.

To further evaluate the relationship between the variants
and HSCR, we performed literature review about the seven
pathogenic candidates. We found one in-frameshift variant
p.Phe147del in RET, the most commonly observed pathogenic
gene for HSCR. The remaining genes, such as GLYCTK (Sass
et al., 2010), DRD5 (Daly et al., 1999), NPHP3 (Bergmann
et al., 2008), and FANCI (Mehta and Tolar, 1993), were well-
characterized pathogenic genes for some other rare diseases
with recessive mode of inheritance or multi-gene diseases, such
as D-glyceric aciduria, attention deficit-hyperactivity disorder,
Meckel syndrome, and Fanconi Anemia. However, these genes

Frontiers in Genetics | www.frontiersin.org 3 January 2019 | Volume 9 | Article 752107

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00752 January 11, 2019 Time: 16:8 # 4

Wu et al. Whole Exome Sequencing Identifies Variant

were excluded due to recessive inheritance of their associated
diseases. To further clarify the implications of CALN1 and
CAPN9 in HSCR, we mapped the RET, CALN1 and CAPN9,
combined with some known HSCR pathogenic genes, including,
ECE1, EDN3, EDNRB, GDNF, NRTN, SOX10, PHOX2B, and
KIAA1279, to protein–protein interaction (PPI) network curated
in STRING database (Szklarczyk et al., 2015). CALN1 and CAPN9
were observed to connect with none of these known genes
directly or indirectly within five nodes, suggesting that the two
genes may not be pathogenic for HSCR (Figure 3). Only RET
connected with the known pathogenic genes in the PPI network,
in particular, which was also a known HSCR gene. The result
indicated that the in-frameshift variant p.Phe147del in RET was
pathogenic for the HSCR family.

Potential Impact of the In-Frameshift
Variant on RET Protein Function
As illustrated in Figure 4A, the ECD of RET was composed of
four cadherin-like domains (CLD1-4), and cysteine-rich domain
(CRD). We found the in-frameshift variant p.Phe147del was
located within CLD1. Previous study (Leon et al., 2012) reported
that a disease-causing mutation at pVal145Gly in RET, which
was close to the in-frameshift variant p.Phe147del, could disrupt
RET N-glycosylation, giving us a hint that the in-frameshift
variant may also function by disrupting RET N-glycosylation.

To determine the consequence of the in-frameshift variant
p.Phe147del on RET glycosylation, we predicted the N-glycosites
of wild-type and p.Phe147del RET proteins using GlycoEP
(Chauhan et al., 2013), a webserver for predicting potential N-
and O-glycosites in protein sequence. Moreover, the N-glycosites
of p.Val145Gly was also predicted as a positive control. Finally,
the sites of Asn151, Asn834 and Asn1084 were predicted to be
glycosylated in wild-type RET protein (GlycoEP score > 0.85).
However, Asn151, which is closest glycosylated site to the two
mutants, p.Phe147del and p.Val145Gly, was predicted to be not
glycosylated in the two mutant RET proteins (Table 1). The
result indicated that the in-frameshift variant p.Phe147del could
function by disrupting RET N-glycosylation.

Validation of Pathogenic Variant by
Sanger Sequencing
We validated the two variants by Sanger sequencing (Figure 4B).
Our results demonstrated that the four patients carried the
in-frameshift variant p.Phe147del in RET. Moreover, we also
confirmed our hypothesis that the pathogenic variant carrier II-
4 was unaffected due to incomplete inheritance. In accordance
with the genotyping by whole exome sequencing, the other family
members, II-2 and II-3, were wild genotypes. The result indicated
that whole exome sequencing was efficient to identify pathogenic
variants for monogenic inherited diseases.

FIGURE 3 | The protein–protein interaction subnetwork of two pathogenic candidates and nine known pathogenic genes.
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FIGURE 4 | The in-frameshift disease-causing variant in the RET protein structure and validation of this variant by Sanger sequencing. (A) The in-frameshift
disease-causing variant p.Phe147del in RET is located within the CLD1 domain. (B) The in-frameshift variant in RET (p.Phe147del) in four patients and one
unaffected carrier, and two unaffected members with wild genotype are validated by Sanger sequencing. The deleted three bases were enclosed by the red box.

MATERIALS AND METHODS

Ethics Statement
The present study was approved by the Ethics Committee of the
Children’s Hospital of Shanghai Jiao Tong University, Shanghai,
China, and was conducted according to the principles expressed
in the Declaration of Helsinki. Participants and/or their legal
guardians involved in this study gave a written informed consent
prior to inclusion in the study.

Sample Collection
The present study included DNA samples from four patients (II-
1, III-1, III-2, and III-3) and three unaffected family members
(II-2, II-3, and II-4) as shown in Figure 1A. Genomic DNA

samples were obtained with written informed consent. TIAN
amp Blood DNA Kit (Tiangen Biotech, Co., Ltd., Beijing) was
used for extracting genomic DNA from blood samples.

TABLE 1 | The glycosylated sites predicted by GlycoEP for RET proteins with
wild-type, and p.Phe147del and p.Val145Gly mutants.

RET protein Asn151 Asn834 Asn1084

Wild-type + + +

p.Phe147del − + +

p.Val145Gly − + +

+, glycosylated site (GlycoEP score > 0.85).
−, non-glycosylated site (GlycoEP score < 0.85).

Frontiers in Genetics | www.frontiersin.org 5 January 2019 | Volume 9 | Article 752109

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00752 January 11, 2019 Time: 16:8 # 6

Wu et al. Whole Exome Sequencing Identifies Variant

Reads Mapping and Variants Calling
Paired-end reads of 300 bp (150 bp at each end) from whole
exome sequencing were mapped to UCSC human reference
genome (GRCh37/hg19 assembly) using BWA (Li and Durbin,
2010) version 0.7.7-r441 ‘mem’ mode with default options
followed by removal of PCR duplicates and low-quality reads
(BaseQ < 20). The bam files were then sorted and indexed by
samtools (Li et al., 2009), and were converted as three-sample
mpileup format for each parents-offspring trio. Variant calling
was performed by VarScan (Koboldt et al., 2012) software1 using
version 2.3.7 of Trios mode.

Variant Annotation and Prioritization
We used the ANNOVAR (Wang et al., 2010) software to
annotate the MAF in gnomAD (Lek et al., 2016) database,
variant pathogenicity scores by SIFT (Ng and Henikoff, 2003),
PolyPhen (Adzhubei et al., 2013), MutationTaster (Schwarz
et al., 2010), M-CAP (Jagadeesh et al., 2016), RefSeq gene and
the consequences on protein, such as missense, frameshift, in-
frameshift, stop-gain, and splicing. For the indels, we used DDIG-
in (Zhao et al., 2013) and SIFT-indel (Hu and Ng, 2013) to
evaluate their pathogenicity. Rare variants (MAF < 0.1% in Asian
cohort) were filtered based on the gnomAD (Lek et al., 2016)
database.

Prediction of Glycosylated Sites
The glycosylated sites for RET proteins with wild-type, and
p.Phe147del and p.Val145Gly mutants were predicted by
GlycoEP (Chauhan et al., 2013)2 with standard predictor, a
webserver for predicting potential N- and O-glycosites in protein
sequence. The prediction was performed based on Average
Surface Accessibility (ASA+BPP) with threshold score 0.85.

DISCUSSION

Hirschsprung disease is a birth defect characterized by complete
absence of neuronal ganglion cells from a portion of the
intestinal tract. In the present study, we performed whole exome
sequencing on seven members of the HCSR family to identify
the disease-causing gene. Microscopic image-based histologic
examination of the proband’s diseased tissue also observed the
absence of neuronal ganglion cells in narrow segment of mucosa
of intestinal wall and myenteric nerve plexus.

To uncover genetic variants contributing to HSCR, we
identified 100s of 1000s variants in seven members of the
HSCR family using whole exome sequencing data. The lower
Mendelian error demonstrated that trio-based variant calling
was an effective strategy for family-based sequencing. As the
heritable Hirschsprung disease was rare in the population, the
disease-causing variants were more likely to be rare in healthy
population. With the MAF calculated by gnomAD, we finally
filtered a total of 1,059 rare variants in this family (MAF < 0.1%).
In addition to MAF in healthy population, the dominant and

1http://varscan.sourceforge.net/
2http://crdd.osdd.net/raghava/glycoep/

recessive inheritance modes of HSCR were also considered in this
family. In general, the autosomal recessive genes may be altered
by two compound heterozygous variants, or one homozygous
variant. However, we did not detect any recessive variants based
on this assumption. For the assumption of autosomal dominant
inheritance, the unaffected female, II-4, must be a carrier of the
pathogenic variant due to incomplete penetrance, in accordance
with the previous studies (Parisi and Kapur, 2000; Belknap,
2002). Moreover, the pathogenic variant must be co-segregated
in the four patients and the carrier. The filtering steps by MAF,
mode of inheritance and co-segregation could greatly exclude
non-pathogenic variants.

To accurately identify the pathogenic variants, we further
performed pathogenicity analysis on the 18 dominant variants.
Generally, the algorithms evaluating the pathogenicity of single
nucleotide substitutions and indels were different. Specifically,
among the single nucleotide substitutions, the missense variants
were mostly evaluated by SIFT, PolyPhen, MutationTaster
and M-CAP, while the nonsense variants were evaluated by
MutationTaster and DDIG-in. On the other side, we evaluated
the pathogenicity of indels, frameshift and in-frameshift variants,
using DDIG-in (Zhao et al., 2013) and SIFT-indel (Hu and
Ng, 2013). Among the 18 dominant variants, seven genes or
variants, including CAPN9, GLYCTK, DRD5, NPHP3, FANCI,
CALN1, and RET, were predicted as pathogenic candidates
by these algorithms. To our knowledge, GLYCTK (Sass et al.,
2010), DRD5 (Daly et al., 1999), NPHP3 (Bergmann et al.,
2008), and FANCI (Mehta and Tolar, 1993), were well-
characterized pathogenic genes for some other rare diseases with
recessive mode of inheritance or multi-gene diseases, such as D-
glyceric aciduria, attention deficit-hyperactivity disorder, Meckel
syndrome, and Fanconi Anemia. However, these genes were
excluded due to recessive inheritance of their associated diseases.
In addition, CAPN9 and CALN1 are thought to be associated
with gastric cancer (Yoshikawa et al., 2000) and schizophrenia
(Schizophrenia Psychiatric Genome-Wide Association Study
(GWAS) Consortium, 2011), respectively. To further narrow
down the gene list that may contribute to HSCR, we performed
literature review and mapped the pathogenic candidates to
protein–protein interaction network. Apart from RET, the
literature review and PPI network analysis successfully excluded
the other six genes. Notably, p.Phe147del in RET was a novel
pathogenic variant in HSCR based on the curation by ClinVar
database (Landrum et al., 2018). Finally, the in-frameshift variant
p.Phe147del in RET, the most commonly observed pathogenic
gene for HSCR, was identified as the pathogenic variant.

To further examine the functional impact of the in-
frameshift variant p.Phe147del in RET on the occurrence
of the disease, we mapped the variant to RET protein
structure. It is well-recognized that variants locating within
specific functional domains or protein translation modification
sites could alter the protein conformation, protein–ligand
binding, or protein–protein interaction. In this study, the in-
frameshift variant p.Phe147del in RET was located within
the CLD1 domain. We accessed the Uniprot database, and
found that the five amino acids adjacent to the in-frameshift
variant were only characterized to be glycosylated, not be
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phosphorylated or methylated. Further literature investigation
also accorded with the annotations by Uniprot database. RET
encodes a transmembrane receptor, which is composed of
ECD, transmembrane domain, and intracellular tyrosine kinase
domain. Particularly, the CLD1 domain belongs to the ECD.
Further analysis of the consequence of p.Phe147del variant on the
RET protein revealed that this in-frameshift variant may disrupt
glycosylation of RET protein, which may be the cause of HSCR in
this family.

Compared with previous studies, our study focused on the
cases from familial HSCR. The pathogenic genes for familial
HSCR including RET, EDNRB and EDN3, exhibited high
penetrance. However, for the sporadic cases with Hirschsprung
disease, like the report by Tang et al. (2018), some novel
pathogenic or susceptibility genes, such as PLD1, had reduced
penetrance, indicating that the penetrance of pathogenic genes
was higher in familial HSCR than the sporadic Hirschsprung
disease. The sporadic Hirschspring disease may be caused by
additive effect of the susceptibility genes and environmental
factors.

In reality, the lack of experimental validation is a major
concern about this research. However, we conducted systematic
bioinformatics analysis to demonstrate the pathogenicity and
functionality of the variant in this family. To our knowledge,

this is the first study to report the in-frameshift variant
p.Phe147del in RET responsible for heritable HSCR. In
conclusion, the systematic analysis of this study not only
improved understanding of the causes of this disease, but also was
useful for clinical and prenatal diagnosis.
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Here, we propose a heuristic technique of data trimming for SVM termed FLOating
Window Projective Separator (FloWPS), tailored for personalized predictions based on
molecular data. This procedure can operate with high throughput genetic datasets like
gene expression or mutation profiles. Its application prevents SVM from extrapolation
by excluding non-informative features. FloWPS requires training on the data for the
individuals with known clinical outcomes to create a clinically relevant classifier. The
genetic profiles linked with the outcomes are broken as usual into the training and
validation datasets. The unique property of FloWPS is that irrelevant features in validation
dataset that don’t have significant number of neighboring hits in the training dataset are
removed from further analyses. Next, similarly to the k nearest neighbors (kNN) method,
for each point of a validation dataset, FloWPS takes into account only the proximal
points of the training dataset. Thus, for every point of a validation dataset, the training
dataset is adjusted to form a floating window. FloWPS performance was tested on
ten gene expression datasets for 992 cancer patients either responding or not on the
different types of chemotherapy. We experimentally confirmed by leave-one-out cross-
validation that FloWPS enables to significantly increase quality of a classifier built based
on the classical SVM in most of the applications, particularly for polynomial kernels.

Keywords: bioinformatics, machine learning, oncology, gene expression, support vector machines, personalized
medicine

Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; ASCT, allogeneic stem cell
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INTRODUCTION

Support vector machine is one of the most popular machine
learning methods in biomedical sciences with constantly growing
impact and more than 11,000 citations in the PubMed-indexed
literature1, of those ∼2,300 are only for the 2017 and first
6 months of 2018. This method has been successfully applied
for a wide variety of biomedical applications like searching
Dicer RNase cleavage sites on pre-miRNA (Ahmed et al., 2013),
prediction of miRNA guide strands (Ahmed et al., 2009a),
identification of poly(A) signals in genomic DNA (Ahmed et al.,
2009b), finding conformational B-cell epitopes in antigens by
nucleotide sequence (Ansari and Raghava, 2010). More recent
developments include drug design according to physicochemical
properties (Yosipof et al., 2018), learning on transcriptomic
profiles for age recognition (Mamoshina et al., 2018), predictions
of drug toxicities and other side effects (Zhang et al., 2018).

The performance quality of the classifiers based on these
methods may reach the value of 0.80 or higher for the metrics
such as ROC AUC2 and/or accuracy rate, e.g., for problems of
age recognition (Mamoshina et al., 2018) and drug compound
selection (Yosipof et al., 2018). However, although generally
clearly helpful, the SVM approach frequently demonstrates
insufficient performance in several applications for separating
groups of the patients with different clinical outcomes (Mulligan
et al., 2007; Ray and Zhang, 2009; Babaoglu et al., 2010;
Kim et al., 2018). These failures were most likely caused by
insufficient number of preceding clinical cases, which provokes
overtraining of all machine learning algorithms. Particularly,
the rareness of training points in the feature space leads to
frequent extrapolations, and SVM method is known to be highly
vulnerable to such conditions (Arimoto et al., 2005; Balabin and
Lomakina, 2011; Balabin and Smirnov, 2012; Betrie et al., 2013).

In order to increase the performance of SVM for
distinguishing between clinically relevant features, such as
degrees of response to cancer therapies, we propose here a new
method termed FloWPS for data trimming that generalizes
the SVM technique by precluding extrapolation in the feature
space. FloWPS acts by selecting for further analysis only those
features that lay within the intervals of data projections from the
training dataset. This approach can avoid extrapolations in favor
of interpolations and thus increases a prediction quality of the
output data. FloWPS combines somehow two methods, SVM and
kNN (Altman, 1992), where kNN plays a particular role to extract
informative features. The idea to combine feature extraction
methods with SVM is well known (Tan and Gilbert, 2003;
Kourou et al., 2015; Tan, 2016; Liu et al., 2017; Tarek et al., 2017).
The approach proposed in this paper, however, is in principle a

1This is the result of a PubMed query https://www.ncbi.nlm.nih.gov/pubmed/
?term=support+vector+machine_
2The ROC (receiver–operator curve) is a widely-used graphical plot that illustrates
the diagnostic ability of a binary classifier system as its discrimination threshold
is varied. The ROC is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. The area under the ROC
curve, called ROC AUC, or simply AUC, is routinely employed for assessment of
any classifier’s quality.

novelty, at least because its selection capacity is focused on every
single point available for prediction.

We tested FloWPS on ten published gene expression datasets
for totally 992 cancer patients treated with different types of
chemotherapy with known clinical outcomes. In all the cases,
the classifiers built using FloWPS outperformed standard SVM
classifiers.

RESULTS

Data Sources and Feature Selection
In this study, we investigated gene expression features associated
with the responses to chemotherapy. The gene expression profiles
were extracted from the datasets summarized in Table 1. The
clinical outcome information was related to response on different
chemotherapy regimens, linked with high throughput gene
expression profiles for the individual patients.

Each patient was primarily labeled as either responder or
non-responder to a treatment. For all the datasets taken from
the GEO repository, we used the response criteria formulated
in the respective original papers first publishing these data.
Namely, for two breast cancer datasets, GSE25066 (Hatzis et al.,
2011; Itoh et al., 2014) and GSE41998 (Horak et al., 2013), we
considered partial responders as responders. For the first multiple
myeloma dataset, GSE9782 (Mulligan et al., 2007), we took the
(non)responder classification used by the authors, where patents
with complete and partial response were annotated as responders,
and with no change and progressive disease – as non-responders.
For three other multiple myeloma datasets, GSE39753 (Chauhan
et al., 2012), GSE68871 (Terragna et al., 2016), and GSE55145
(Amin et al., 2014), we considered complete, near-complete and
very good partial responders as responders, whereas partial, minor
and worse responders – as non-responders. For the datasets of
pediatric Wilms kidney tumor, ALL and AML, extracted from the
TARGET gene expression repository of National Cancer Institute
(Goldman et al., 2015), the cases was classified according the dis-
tribution of the event-free survival time, which appeared to have
two modes with different slopes (Supplementary Figure S1).

To preclude any possible bias that may affect the performance
of machine-learning classifiers due to unequal representation
of samples in two different classes (clinical responders and
non-responders), numbers of responding and non-responding
cases were equalized within each dataset. Equalization was done
by taking the full smaller subset of those for the two classes
(responders/non-responders), and then by random selection of
samples from the bigger subset. Thus, each resulting dataset
contained equal numbers of cases classified as responders and
non-responders.

To engineer a plausible feature space, where the SVM can be
applied efficiently, we proposed to select from tens of thousands
of individual gene expression features only few of them, which
produce a good separation of clinical responders from non-
responders. To do so, for every dataset under investigation we
selected its particular top 30 genes, whose expression levels taken
one by one had the highest ROC AUC values for distinguishing
responder and non-responder profiles. We made a number of
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TABLE 1 | Clinically annotated gene expression datasets.

Reference Dataset ID Disease type Treatment type Experimental
platform

Number of samples Number of core
marker genes

Hatzis et al., 2011;
Itoh et al., 2014

GSE25066 Breast cancer with different
hormonal and HER2 status

Neoadjuvant taxane +
anthracycline

Affymetrix Human
Genome U133 Array

235 (118 responders,
117 non-responders)

20

Horak et al., 2013 GSE41998 Breast cancer with different
hormonal and HER2 status

Neoadjuvant doxorubicin +
cyclophosphamide,
followed by paclitaxel

Affymetrix Human
Genome U133 Array

68 (34 responders,
34 non-responders)

11

Mulligan et al., 2007 GSE9782 Multiple myeloma Bortezomib Affymetrix Human
Genome U133 Array

169 (85 responders,
84 non-responders)

18

Chauhan et al., 2012 GSE39754 Multiple myeloma Vincristine + adriamycin +
dexamethasone followed
by ASCT

Affymetrix Human
Exon 1.0 ST Array

124 (62 responders,
62 non-responders)

16

Terragna et al., 2016 GSE68871 Multiple myeloma Bortezomib-thalidomide-
dexamethasone (VTD)

Affymetrix Human
Genome U133 Plus

98 (49 responders,
49 non-responders)

12

Amin et al., 2014 GSE55145 Multiple myeloma Bortezomib followed by
ASCT

Affymetrix Human
Exon 1.0 ST Array

56 (28 responders,
28 non-responders)

14

Goldman et al., 2015;
Walz et al., 2015

TARGET-50 Childhood kidney Wilms
tumor

Vincristine sulfate +
non-target drugs +
conventional surgery +
radiation therapy

Illumina HiSeq 2000 72 (36 responders,
36 non-responders)

14

Goldman et al., 2015;
Tricoli et al., 2016

TARGET-10 Childhood B acute
lymphoblastic leukemia

Vincristine sulfate +
non-target drugs

Illumina HiSeq 2000 60 (30 responders,
30 non-responders)

14

Goldman et al., 2015 TARGET-20 Childhood acute myeloid
leukemia

Non-target drugs
including busulfan and
cyclophosphamide

Illumina HiSeq 2000 46 (23 responders,
23 non-responders)

10

Goldman et al., 2015 TARGET-20 Childhood acute myeloid
leukemia

Non-target drugs
excluding busulfan and
cyclophosphamide

Illumina HiSeq 2000 124 (62 responders,
62 non-responders)

16

top informative features equal to 30 because the usual number
of samples in considered datasets was not lower than 50 (a direct
heuristic number for degree of freedom). These 30 top marker
genes, and response statuses (100 for a responder, 0 for a non-
responder) for all selected patients from all datasets are listed on
Supplementary Table S1.

To produce more robust feature selection, for each dataset
having, say, N samples, the leave-one-out procedure has been
performed. Each individual sample was removed from the
investigation one at a time, so N subdatasets each having N-1
individuals were generated. For each subdataset, the ROC AUC
test was performed between responders and non-responders for
each gene. The genes were next sorted according to their ROC
AUC, and top 30 were selected for each subdataset. The final list
of such core informative genes was generated as an intersection
between top 30 selected genes for all N subdatasets. For every
dataset under investigation, these final core sets are listed in
Supplementary Table S2; the number of core marker genes is also
shown on Table 1.

Data Trimming for Application in SVM
We developed a first of its class data trimming3 tool termed
FloWPS that has a potential to improve the performance of
machine learning methods. Since extrapolation is a widely
recognized Achilles heel of SVM (Arimoto et al., 2005; Balabin

3Data trimming is the process of removing or excluding extreme values, or outliers,
from a dataset (Turkiewicz, 2017).

and Lomakina, 2011; Balabin and Smirnov, 2012; Betrie et al.,
2013), FloWPS avoids it by using the rectangular projections
along all irrelevant expression features that cause extrapolation
during the SVM-based predictions for every validation point.

In this section we describe and investigate our data trimming
procedure (FloWPS) as a preprocessing for SVM application.

Since the number of samples in most of the datasets used here
was relatively low, we tested our classifier using the leave-one-
out cross-validation method, which introduces lesser errors than
the standard five-bin cross-validation scheme generally applied
for bigger datasets. According to the leave-one-out approach, for
each sample i = 1, N serves as a validation case whose response to
the treatment had to be predicted, whereas all remaining samples,
j = 1,. . .(i−1),(i+1),. . .,N, collectively acts as a training dataset,
and this procedure is repeated for all the samples. For machine
leaning without data trimming, in a predefined feature space
F = (f 1,. . ., fs ) every sample i, given for the test, is assigned by
a classifier, constructed to (N-1) samples used for training.

According to the current data trimming approach, instead
a fixed space F for all N testing samples, we propose using
an individual space Fi, which contains individually adapted
training data (of N-1 samples) for the testing sample i. It can be
implemented using the following heuristics (Figure 1).

(1) From the whole predefined feature space F = (f 1,. . ., f s ) we
extract a subset Fi (m), where m is a parameter. A feature fj is kept
in Fi(m) if on its axis there are at least m projections from training
samples, which are larger than fj (i), and, at the same time, at least
m, which are smaller than fj (i). The procedure for extraction of
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FIGURE 1 | Data trimming pipeline. (A) selection of relevant features in FloWPS according to the m-condition. A violet dot shows the position of a validation point.
Turquoise dots stand for the points from the training dataset. The features (here: f1 and f2) are considered relevant when they satisfy the criterion that at least m
flanking training points must be present on both sides relative to the validation point along the feature-specific axis. In the figure, it is exemplified that m-condition is
satisfied for f1 feature when m = 0 only, and for the f2, when m ≤ 5. (B) After selection of the relevant features, only k nearest neighbors in the training sets are
selected to construct the SVM model. On the figure, k = 4, although k starting from 20 was used in our calculations, to build SVM model.

a subset Fi(m) is illustrated in Figure 1A for a two-dimensional
space F = (f 1, f 2). A violet point stands for the validation sample
in the feature space. Turquoise dots represent scattering of the
training points. For example, the m-condition for the feature f 2
is satisfied when m = 0,1,2,3,4,5 (projection of the training set
on f 2 axis has five points both below and above the validation
point), whereas for the feature f 1 it is satisfied only for m = 0
(projection of the validation point on axis f 1 lies outside of the
cloud of training points).

(2) In Fi (m) we keep for training only k closest samples (from
given (N-1) samples); k is also a parameter (Figure 1B; note that
although for the sake of simplicity k = 4 in the picture, in the
computational trials we varied k from 20 to N-1).

Hence, for every individual i = 1, N, and m and k parameter
values, the predicted classification values are obtained [i.e.,
predictions Pi (m,k), i = 1, N]. Considering known response status
for each sample i, it is possible to calculate AUC values for a whole
set of samples as a function over whole range of the parameters m
and k (Figure 2B). Since the predicted classification efficiencies
depend upon the chosen values for m and k, it is possible to
interrogate the AUC values over the full lattice of all possible
(m, k) pairs.

We propose an algorithm of achieving the optimal (m,k)-
settings for a final classifier (Figure 2A). The AUC threshold (θ) is
set to θ = p ·max(AUC), where max(AUC) is the maximal value
of AUC, taken over the set of all possible (m, k) pairs, and the
parameter p equals to a user-defined confidence threshold. To
illustrate performance of this approach, we took two alternative
values of p = 0.95 or 0.90, and then considered all the (m,k)
pair positions on the AUC(m,k) topogram. We next screened
for the positions where AUC exceeded the threshold θ, and the
total combination of these positions was taken as the prediction-
accountable set S (Figure 2B; prediction-accountable positions
are shown in yellow). The final prediction of FloWPS (PF) for a
certain validation case should be calculated by averaging the SVM
predictions, P(m,k), over the whole set of positions belonging
to the prediction-accountable set S, according to the formula:
PF = meanS(P(m,k)).

The usual SVM method, i.e., without FloWPS data trimming,
corresponds to a very right and bottom corner of the AUC(m,k)
topogram (Figure 2B), with the parameter settings m = 0,
k = N− 1. On the example shown in Figure 2B, the classical
SVM, without any doubt, provides essentially lower accuracy
than FloWPS.
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FIGURE 2 | Optimization of data trimming parameters m and k for a given individual. (A) Overall scheme for prediction for an individual sample i = 1, N. All but one
individuals serve as a training dataset. For a training dataset at the fitting step, the AUC for a classifier prediction is calculated and plotted (B) as a function of data
trimming parameters m and k. Positions of this AUC topogram where AUC > p ·max(AUC), p = 0.95, are considered prediction-accountable (highlighted with bright
yellow color) and form the prediction-accountable set S. This AUC topogram, as well as the set S, is individual for every validation point i.

TABLE 2 | Performance of clinical response classifiers for clinically annotated gene expression datasets.

Dataset Top 30 marker genes Core marker genes

SVM FloWPS
p = 0.95

FloWPS
p = 0.90

SVM FloWPS
p = 0.95

FloWPS
p = 0.90

AUC FDR AUC FDR AUC FDR AUC FDR AUC FDR AUC FDR

GSE25066 (Hatzis et al., 2011;
Itoh et al., 2014)

0.70 0.28 0.76 0.10 0.77 0.13 0.73 0.26 0.76 0.25 0.76 0.23

GSE41998 (Horak et al., 2013) 0.79 0.25 0.87 0.14 0.91 0.14 0.87 0.14 0.89 0.15 0.92 0.12

GSE9782 (Mulligan et al., 2007) 0.73 0.28 0.78 0.22 0.76 0.17 0.68 0.33 0.71 0.33 0.72 0.34

GSE39754 (Chauhan et al., 2012) 0.65 0.36 0.68 0.27 0.71 0.34 0.65 0.36 0.68 0.36 0.72 0.35

GSE68871 (Terragna et al., 2016) 0.66 0.35 0.75 0.25 0.74 0.27 0.68 0.33 0.78 0.20 0.77 0.24

GSE55145 (Amin et al., 2014) 0.84 0.19 0.86 0.11 0.90 0.11 0.77 0.24 0.81 0.19 0.82 0.06

TARGET-50 (Goldman et al., 2015;
Walz et al., 2015)

0.64 0.35 0.75 0.13 0.78 0.16 0.72 0.26 0.81 0.08 0.82 0.09

TARGET-10 (Goldman et al., 2015;
Tricoli et al., 2016)

0.85 0.16 0.86 0.14 0.87 0.12 0.87 0.13 0.94 0.07 0.94 0.04

TARGET-20 (Goldman et al., 2015)
with busulfan and cyclophosphamide

0.74 0.26 0.79 0.16 0.79 0.17 0.76 0.23 0.77 0.22 0.83 0.00

TARGET-20 (Goldman et al., 2015)
w/o busulfan and cyclophosphamide

0.73 0.28 0.76 0.30 0.76 0.27 0.74 0.26 0.77 0.13 0.79 0.11

Area-under-curve (AUC) and false discovery rate (FDR) values calculated for each version of a classifier are shown. All calculations were made using leave-one-out
cross-validation approach.

FloWPS Performance for Default SVM
Settings
At first, we investigated performance of FloWPS on ten cancer
gene expression datasets (Table 1) with the default SVM settings
(linear kernel and cost/penalty parameter C = 1). During our
calculations, the FloWPS classifier was first fitted for the training

dataset without a sample (say, i) to be classified. For these all
(N-1) samples AUCi(m,k) was calculated as a function of data
trimming parameters m and k (see Figure 2A). This enabled
finding the prediction-accountable set Si in the AUCi(m,k)
topogram (on Figure 2B, the set was marked with bright yellow).
The m and k values from the set Si were then used for data
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FIGURE 3 | Distribution (violin plots together with each instance showed as a red/green dot) of FloWPS predictions (PF) for patients without (red plots and dots) and
with (green plots and dots) positive clinical response to chemotherapy treatment. For FloWPS, core marker genes and p = 0.90 settings were used. Black horizontal
line shows the discrimination threshold (τ) between responders and non-responders for each classifier. Panels represent different data sources, (A) GSE25066;
(B) GSE41998; (C) GSE9782; (D) GSE39754; (E) GSE68871; (F) GSE55134; (G) TARGET-50; (H) TARGET-10; (I) and (J): TARGET-20 with and without busulfan
and cyclophosphamide, respectively.
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trimming and classifying of a single sample i. In parallel, we
applied the standard SVM algorithm for leave-one-out cross-
validation without data trimming, i.e., m = 0, k = N-1 for
each training sub-dataset. The comparison is shown on Table 2,
Supplementary Table S3, and Figures 3, 4.

The discrimination threshold (τ), which is shown as a black
horizontal line on Figure 3 (so that any sample with FloWPS
prediction value above τ is classified as a responder, and below
it – as a non-responder), was set to minimize the sum of FP and
FN predictions.

For every dataset, confidence parameter p and scheme
of gene selection, FloWPS classifier demonstrated the ROC
AUC exceeding the corresponding value for the classical SVM
(Table 2). For three datasets out of ten, AUC for classical SVM
was between 0.64 and 0.68. For all these cases, application
of FloWPS with confidence level p = 0.90 enabled obtaining
essentially better AUC values ranging between 0.71 and 0.78.

The comparison of classifier’s quality by another metric,
the FDR4, has demonstrated similar results: FDR was lower
for FloWPS than for classical SVM for almost all the cases
(Table 2, columns without boldface font). Other metrics, such as
sensitivity (Sn), specificity (Sp), accuracy rate (ACC) and MCC5

also strongly tend to be higher for FloWPS than for classical SVM
without data trimming (Supplementary Table S3).

FloWPS Performance at Different
Settings and Comparison With
Alternative Data Reduction Approach
Although the classifier quality tended to be higher for data
trimming than for default SVM settings, the advantages were
different in different cancer datasets. The FloWPS performance,
therefore, was investigated for different SVM kernels (linear vs.
polynomial) and different values for cost/penalty parameters C
(ranged from 0.1 to 1000), Figure 5 and Supplementary Table S4.
These calculations were done for the core marker gene datasets
and FloWPS confidence parameter p = 0.90. The advantage of
FloWPS over SVM is more essential in the conditions vulnerable
to SVM overtraining, e.g., for linear kernel with high values of
the cost/penalty parameter (C = 100 or 1000) or for polynomial
kernel, where SVM may be easily overfitted. Fortunately, FloWPS
precludes such overfitting, thus raising AUC and decreasing FDR.
The same pattern was also seen for the Sn, Sp, ACC and MCC
values (Supplementary Table S4).

Note that FloWPS is not the only possible data
reduction/feature selection method, which may be used for
preprocessing to improve the classifier’s quality. To try a
simple alternative to FloWPS, which is, however, not specific
to individual samples, we did calculations based on PCA mode
rather than original features. The number of PCs taken for
building the SVM model, may act as a parameter, which is
optimized in a manner similar to optimization of m and k for
FloWPS. Namely, a maximum for AUC as a function of PC

4FDR shows the percentage of false positive (FP) predictions among all those
classified as positive, FDR = FP/(FP+ TP), where TP means true positive.
5MCC can be calculated from the confusion matrix,
MCC = TP·TN−FP·FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

FIGURE 4 | Receiver–operator curves (ROC) showing the dependence of
sensitivity (Sn) upon specificity (Sp) for FloWPS-based classifier of treatment
response for datasets with core marker genes. Red dots: confidence
parameter p = 0.95, blue dots: p = 0.90. Panels represent different clinically
annotated datasets, (A) GSE25066; (B) GSE41998; (C) GSE9782;
(D) GSE39754; (E) GSE68871; (F) GSE55134; (G) TARGET-50;
(H) TARGET-10; (I,J) TARGET-20 with and without busulfan and
cyclophosphamide, respectively.
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FIGURE 5 | AUC and FDR for (non)responders classifier as a function of cost/penalty parameter C for classical SVM (without data trimming) and FloWPS for both
linear and polynomial kernels. Calculations were done for core marker gene datasets and confidence parameter p = 0.90. Different panels represent different
datasets, (A) GSE25066; (B) GSE41998; (C) GSE9782; (D) GSE39754; (E) GSE68871; (F) GSE55134; (G) TARGET-50; (H) TARGET-10; (I,J) TARGET-20 with and
without busulfan and cyclophosphamide, respectively. (K) Legend showing FloWPS and SVM modifications.

number is found and then used as the optimal number of PCs for
an SVM-based prediction.

Thus, we compared the classifier qualities for three methods,
namely classical SVM without data reduction, PCA-assisted SVM
with pre-trained PC number, and FloWPS with the confidence
parameter p = 0.90 (Table 3; note that both classical SVM
and FloWPS calculations were done using gene expression

features rather than PCs). The calculations were done for core
marker gene datasets and cost/penalty SVM parameters C = 1
and 100. For linear kernel, several datasets had comparable
AUC for simple PCA-assisted data reduction and for FloWPS
(Table 3). However, for polynomial kernel FloWPS essentially
outperformed the PCA-assisted data reduction, most likely due
to bigger risk of overtraining for SVM with nonlinear kernels.
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TABLE 3 | AUC of (non)responder classifier for classical SVM without data reduction (SVM), PCA-assisted SVM (PCA) and FloWPS with confidence parameter p = 0.90.

Dataset Linear kernel Polynomial kernel

C = 1 C = 100 C = 1 C = 100

SVM PCA FloWPS SVM PCA FloWPS SVM PCA FloWPS SVM PCA FloWPS

GSE25066 (Hatzis et al., 2011;
Itoh et al., 2014)

0.73 0.77 0.76 0.63 0.77 0.75 0.65 0.67 0.74 0.63 0.66 0.75

GSE41998 (Horak et al., 2013) 0.87 0.84 0.92 0.82 0.88 0.86 0.60 0.62 0.69 0.75 0.74 0.81

GSE9782 (Mulligan et al., 2007) 0.68 0.72 0.72 0.60 0.72 0.72 0.62 0.68 0.73 0.64 0.68 0.76

GSE39754 (Chauhan et al., 2012) 0.69 0.68 0.72 0.56 0.68 0.71 0.66 0.61 0.67 0.65 0.61 0.68

GSE68871 (Terragna et al., 2016) 0.68 0.68 0.77 0.69 0.68 0.76 0.64 0.65 0.72 0.69 0.76 0.74

GSE55145 (Amin et al., 2014) 0.77 0.84 0.82 0.77 0.84 0.85 0.63 0.73 0.77 0.80 0.73 0.83

TARGET-50 (Goldman et al., 2015;
Walz et al., 2015)

0.72 0.75 0.82 0.68 0.76 0.81 0.68 0.64 0.73 0.65 0.72 0.74

TARGET-10 (Goldman et al., 2015;
Tricoli et al., 2016)

0.87 0.85 0.94 0.82 0.83 0.94 0.68 0.65 0.85 0.78 0.83 0.86

TARGET-20 (Goldman et al., 2015)
with busulfan and cyclophosphamide

0.76 0.78 0.83 0.70 0.80 0.82 0.63 0.63 0.77 0.83 0.72 0.82

TARGET-20 (Goldman et al., 2015)
w/o busulfan and cyclophosphamide

0.74 0.81 0.79 0.65 0.79 0.79 0.69 0.68 0.77 0.72 0.69 0.79

FIGURE 6 | (A) Global machine learning methods, such as SVM, may fail to separate classes in datasets without global order. (B) Machine-learning with data
trimming works locally and may separate classes more accurately.

DISCUSSION

It was seen previously that SVM sometimes fails when it is
intended for distinguishing fine biomedical properties such
as disease progression prognosis or assessment of clinical
efficiency of drugs for an individual patient, using high
throughput molecular data, e.g., complete DNA mutation or
gene expression profiles (Ray and Zhang, 2009; Babaoglu
et al., 2010). Particularly, for many biologically relevant
applications, SVM occurred either fully incapable to predict
drug sensitivity (Turki and Wei, 2016), or demonstrated poorer
performance than competing method for machine learning
(Davoudi et al., 2017; Cho et al., 2018; Jeong et al., 2018; Leite
et al., 2018; Sauer et al., 2018; Yosipof et al., 2018). Thus,
the tool for improvement of SVM performance is certainly
needed.

In this study, we investigated ten sets of gene expression
data for cancer patients treated with different anti-cancer

drugs with known clinical outcomes, where the original
dimension of samples (patients) is many hundreds times
larger than the numbers of patients. So, the first problem
in such applications was to extract an appropriate number
of features, in which space one could achieve a classifier-
predictor with a high level of quality. There are many
authors focused to resolve the preprocessing problem (Tan
and Gilbert, 2003; Kourou et al., 2015; Tan, 2016; Liu
et al., 2017; Tarek et al., 2017). Some feature selection
methods, like the DWFS wrapping tool (Soufan et al.,
2015), use sophisticatedly designed approaches such as genetic
algorithms to improve the classifier quality. In this paper
we proposed one more, FloWPS, which is very different
from all known. Its critical characteristic is that for every
single new sample, which class has to be predicted, the
method extracted its individual sub-space and, more, in that
subspace takes for training data an appropriate subset of
samples.
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FloWPS data trimming method simultaneously combines
the advantages of both global (like SVM) and local (like
kNN) (Altman, 1992) methods of machine learning, and
successfully acts even when purely local and global approaches
fail. The failure of SVM, which we have observed at least
for 3 out of 10 datasets in the current study (Table 2),
means that there is no strict distant order in the placement
of responder and non-responder points in the space of
gene expression features. Yet, the lack of distant order does
not necessary mean the absence of local order (Figure 6).
The latter may be detected using local methods such as
kNN, which has been confirmed by our FloWPS (Table 2
and Figures 3, 5). The FloWPS advantages are better seen
for SVM with polynomial than for linear kernel due to
higher risk of overtraining on such models (Figure 5 and
Table 3).

We hypothesize that FloWPS and data trimming may be
also helpful for improving other learning methods based on
multi-omics data, including nowadays-flourishing deep learning
approaches (Bengio et al., 2013; LeCun et al., 2015; Schmidhuber,
2015).

MATERIALS AND METHODS

Preprocessing of Gene Expression Data
For the datasets investigated using the Affymetrix microarray
hybridization platforms, gene expression data were taken from
the series matrices deposited in the GEO public repository and
then quantile-normalized (Bolstad et al., 2003) using the R
package preprocessCore (Bolstad, 2018). All pediatric datasets
taken from the TARGET database (Goldman et al., 2015)
contained results of NGS mRNA profiling at Illumina HiSeq 2000
platforms; they were normalized using R package DESeq2 (Love
et al., 2014).

SVM Calculations
All the SVM calculations with linear and polynomial kernels
were performed using the Python package sklearn (Pedregosa
et al., 2012) that employs the C++ library ‘libsvm’ (Chang and
Lin, 2011). The penalty parameter C varied from 0.1 to 1000
for different calculations. Other SVM parameters had the default
settings for the sklearn package.

Plot Preparations
AUC(m,k) topograms, like Figure 2B, were plotted using
mathplotlib Python library (Hunter, 2007). Violin plots for
FloWPS predictions (see Figure 3) for responders and non-
responders were plotted using the ggplot2 R package (Wilkinson,
2011).

AVAILABILITY OF DATA AND MATERIALS

The datasets analyzed during the current study are available in
the GEO repository,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25066

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41998
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39754
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68871
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55145
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ftp://caftpd.nci.nih.gov/pub/OCG-DCC/TARGET/AML/mRNA-
seq/
ftp://caftpd.nci.nih.gov/pub/OCG-DCC/TARGET/ALL/mRNA-
seq/

The Python module that performs data trimming according
to the FloWPS method for different values of parameters m and
k, as well as the R code that makes FloWPS predictions using
the results obtained with the Python module, and a README
manual how to use these codes, were deposited on Gitlab and are
available by the link: https://gitlab.com/oncobox/flowps.
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Copy number variants (CNVs) are major variations contributing to the gene heterogeneity
of congenital heart diseases (CHD). Pulmonary atresia with ventricular septal defect (PA-
VSD) is a rare form of cyanotic CHD characterized by complex manifestations and the
genetic determinants underlying PA-VSD are still largely unknown. We investigated rare
CNVs in a recruited cohort of 100 unrelated patients with PA-VSD, PA-IVS, or TOF
and a population-matched control cohort of 100 healthy children using whole-exome
sequencing. Comparing rare CNVs in PA-VSD cases and that in PA-IVS or TOF positive
controls, we observed twenty-two rare CNVs only in PA-VSD, five rare CNVs only in
PA-VSD and TOF as well as thirteen rare CNVs only in PA-VSD and PA-IVS. Six of these
CNVs were considered pathogenic or potentially pathogenic to PA-VSD: 16p11.2 del
(PPP4C and TBX6), 5q35.3 del (FLT4), 5p13.1 del (RICTOR), 6p21.33 dup (TNXB),
7p15.2 del (HNRNPA2B1), and 19p13.3 dup (FGF22). The gene networks showed
that four putative candidate genes for PA-VSD, PPP4C, FLT4, RICTOR, and FGF22
had strong interaction with well-known cardiac genes relevant to heart or blood vessel
development. Meanwhile, the analysis of transcriptome array revealed that PPP4C and
RICTOR were also significantly expressed in human embryonic heart. In conclusion,
three rare novel CNVs were identified only in PA-VSD: 16p11.2 del (PPP4C), 5q35.3
del (FLT4) and 5p13.1 del (RICTOR), implicating novel candidate genes of interest for
PA-VSD. Our study provided new insights into understanding for the pathogenesis of
PA-VSD and helped elucidate critical genes for PA-VSD.

Keywords: copy number variants, congenital heart defects, pulmonary atresia with ventricular septal defect,
whole exome sequencing, network, PPP4C, FLT4, RICTOR

INTRODUCTION

Pulmonary atresia with ventricular septal defect (PA-VSD) is a kind of rare complex manifestations
of congenital heart diseases (CHD), characterized by the lack of luminal continuity and blood flow
from either the right ventricle and the pulmonary artery, together with ventricular septal defect
(Digilio et al., 1996; Tchervenkov and Roy, 2000). PA-VSD is considered as one of the most complex
and unmanageable CHD, with an estimated prevalence of 0.2% of live births and roughly 2% in
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congenital heart defects (Hoffman and Kaplan, 2002; Abid et al.,
2014). Surgical interventions and medical care are always needed
for patients with PA-VSD, nevertheless, PA-VSD remains a
leading cause of neonatal death (Leonard et al., 2000; Amark et al.,
2006).

Copy number variants (CNVs) contribute to the gene
heterogeneity of CHD (Soemedi et al., 2012; Tomita-Mitchell
et al., 2012; Warburton et al., 2014), providing important genetic
information of complex CHD. Previous studies showed the
22q11.2 deletion was a well-known pathogenic variant in CHD
and was most common in tetralogy of Fallot (TOF) and PA-VSD
(Momma, 2010; Xu et al., 2011; Warburton et al., 2014). Deletions
in 15q11.2 and 8p23.1 also contribute to the risk of sporadic
CHD (Soemedi et al., 2012). Additionally, some rare CNVs and
relevant genes were associated with pulmonary atresia (PA-IVS
and PA-VSD), such as 5q14.1dup (DHFR), 10p13dup (CUBN),
and 17p13.2del (CAMTA2) (Xie et al., 2014). However, it lacks
genetic evidence of PA-VSD in current studies and the majority
of them have typically focused on the diagnostic instruments
and surgical procedures; the genetic determinants underlying
PA-VSD are still needed to be identified.

The aim of our study is to determine the contribution of
rare CNVs in the etiology of sporadic PA-VSD and distinguish
the genetic pattern between PA-VSD and PA-IVS or TOF. Here
we genotyped sixty PA-VSD patients with the whole-exome
sequencing and investigated the same or different rare CNVs in
PA-VSD compared to non-PAVSD CHD cohort (PA-IVS or TOF)
to explain their common or diverse phenotypes. In addition, we
detected putative candidate genes encompassed in rare CNVs and
identified functional gene sets associated with heart development
through gene network analysis.

MATERIALS AND METHODS

Study Population
We recruited unrelated patients with PA-VSD (n = 60) or TOF
(n = 20) or PA-IVS (n = 20), diagnosed by echocardiogram,
cardiac catheterization, or surgery from Shanghai Xin Hua
Hospital. Patients with TOF and PA-IVS were as a non-PAVSD
CHD cohort and 100 healthy children without heart diseases were
as controls. Written informed consents were obtained from the
parents or guardians of participants in this study. The study was
conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Ethics Committee of Xin Hua
Hospital. The genomic DNA of participants was extracted by
using the QIAamp DNA Blood Mini Kit (QIAGEN, Germany)
following the manufacturer’s instructions and was then stored at
−80 ◦C.

Whole-Exome Sequencing and Data
Analysis
The whole exome sequencing was performed for copy number
variations (CNVs) in all participants. Whole exome sequencing
data sequenced by HiseqTM Sequencer was filtered (removing
the adaptor sequences, reads with >5% ambiguous bases (noted
as N) and low-quality reads containing more than 20 percent

TABLE 1 | Cardiac diagnoses for study population of patients.

Diagnoses Number Gender/Number Age

PA-VSD 60 F21 M39 2m-13y

PA-IVS 20 F10 M10 2m-10y

TOF 20 F8 M12 2m-2y

total 100 F39 M61 2m-13y

PA-VSD, pulmonary atresia with ventricular septal defect; PA-IVS, pulmonary
atresia with intact ventricular septum; TOF, tetralogy of Fallot; F, female; M, male;
d, day(s); m, month(s); and y, year(s).

FIGURE 1 | Venn diagram outlining overlap between rare CNVs in PA-VSD
(gray), PA-IVS (yellow), and TOF (blue). We compared rare CNVs in PA-VSD
cases with that in PA-IVS or TOF positive controls. There were twenty-two
rare CNVs only in PA-VSD, five rare CNVs only in PA-VSD and TOF as well as
thirteen rare CNVs only in PA-VSD and PA-IVS.

of bases with qualities of <20) and mapped to Cattle genome
(Human genome Version GRCh37 Ensembl75 NCBI) utilizing
BWA-mem under following parameter (bwa mem -t 8 -R) (Li and
Durbin, 2010). Duplicated reads were marker by PICARD1 and
recalibration was applied based on the GATK standard calling
pipeline tools2.

CNV Determination From WES Data
CNVkit (Talevich et al., 2016) was used to calculate the CNV
in the WES analysis. This method applies the copy number
in control group as base line and CNVs below 1.5 times
than baseline in case group were excluded. Then CNVs were
analyzed with the Database of Genomic Variants (DGV3) and the
overlapped CNV region was filtered. CNVs were excluded if they
were shorter than 10 kb.

Tissue Collection and Transcriptome
Array
Human embryos from Carnegie stages 10–16 were acquired
after medical termination of pregnancy at Shanghai Xin Hua

1http://broadinstitute.github.io/picard/
2https://software.broadinstitute.org/gatk/
3http://dgv.tcag.ca/
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Hospital. The medical ethics committee of Xin Hua Hospital
approved the study. Human embryonic heart samples were
remained for transcriptome array. TissueLyserII (Qiagen) and the
RNeasy MinElute Cleanup Kit (Qiagen) were utilized for RNA
extraction. The integrity and purity of the RNA was detected
by the Experion automated gel electrophoresis system (Bio-Rad)
and the NanoDrop 2000c spectrophotometer (ThermoFisher
Scientific). The time course expression patterns of the candidate
genes were measured using an Affymetrix HTA 2.0 microarray.

Network Analysis
We used the bioinformatic software, Cytoscape, with STRING
database to perform network analysis. Three different gene lists
derived from previous literatures and MalaCards database4 were
used. The lists were constructed as follows: (1) Genes associated
with CHD outflow tract development, the secondary heart field
(SHF) or cardiac neural crest (CNC) from previous studies; (2)
Genes involved in blood vessel development; (3) Genes related

4http://www.malacards.org/

to well-known syndromes with heart defects from previously
reported studies and database (Supplementary Table S1). We
selected 30 genes from the rare CNV loci and then severally
analyzed the network between these genes and the three gene lists.

RESULTS

Identification of Rare CNVs
Of the 100 patients, sixty were PA-VSD, twenty were TOF and
another twenty were PA-IVS. The patients are from the Chinese
Han population with ages ranging from 2 months to 13 years
(Table 1). We studied the 100 patients genotyped by WES
analysis.

Using a stringent CNV analysis strategy described in the
Methods, 129 CNVs were identified and 66 (51%) were
duplications and 63 (49%) were deletions. These CNVs had
been analyzed with DGV for overlap, which not detected in the
DGV were considered as rare CNVs. Moreover, rare CNVs were
excluded if they were shorter than 10 kb. We compared rare

TABLE 2 | Rare CNVs only in PA-VSD.

Locus Start End Size (bp) CN Genes Cases

6p21.33 31779686 31797413 17727 gain HSPA1L, HSPA1A, HSPA1B PA_VSD111, PA_VSD21,
PA_VSD22, PA_VSD27,
PA_VSD37

15q15.3 43886386 43910353 23967 gain CKMT1B PA_VSD21, PA_VSD58,
PA_VSD38

22q13.2 42522572 42538657 16085 gain CYP2D6 PA_VSD110, PA_VSD27,
PA_VSD151

10p12.33 17875713 17952468 76755 loss LOC101928757, MIR511 PA_VSD116, PA_VSD35

5p13.1 38924520 38965026 40506 loss OSMR, RICTOR PA_VSD14, PA_VSD29

9q34.12 131009642 131038507 28865 gain SWI5 PA_VSD107, PA_VSD46

1q21.2 149815116 149832746 17630 gain HIST2H2BD, HIST2H2BC, HIST2H2AA4, HIST2H3A,
HIST2H4B

PA_VSD37, PA_VSD46

16p11.2 29465517 29478590 13073 gain SLX1B, SLX1B-SULT1A4, SULT1A4, LOC388242 PA_VSD13, PA_VSD5

16p11.2 29790460 30134962 344502 loss ZG16, KIF22, MAZ, LOC100289283, PRRT2, PAGR1,
MVP, CDIPT, CDIPT-AS1, SEZ6L2, ASPHD1, KCTD13,
TMEM219, TAOK2, HIRIP3, INO80E, DOC2A,
C16orf92, FAM57B, ALDOA, PPP4C, TBX6, YPEL3,
LOC101928595, GDPD3, MAPK3

PA_VSD130

11q23.3 118037598 118134881 97283 loss SCN2B, AMICA1, MPZL3, MPZL2 PA_VSD116

5q35.3 179991469 180042160 50691 loss SCGB3A1, FLT4 PA_VSD111

4p12 44682653 44724286 41633 loss GUF1, GNPDA2 PA_VSD130

6p22.1 27775621 27806847 31226 gain HIST1H2BL, HIST1H2AI, HIST1H3H, HIST1H2AJ,
HIST1H2BM, HIST1H4J, LOC100996513, HIST1H4K,
HIST1H2BN, HIST1H2AK

PA_VSD37

13q33.1 103381765 103411283 29518 loss CCDC168 PA_VSD130

11p15.5 1003620 1031082 27462 gain AP2A2, LOC101927462, MUC6 PA_VSD38

2p16.1 58366794 58392993 26199 loss VRK2, FANCL PA_VSD130

18p11.21 14828224 14852418 24194 loss ANKRD30B, MIR3156-2 PA_VSD42

15q15.3 43986218 44009815 23597 gain CKMT1A PA_VSD19

11q12.1 60164032 60184537 20505 loss MS4A14 PA_VSD107

10q23.31 90350323 90366691 16368 loss LIPJ PA_VSD130

17q12 39182910 39197477 14567 gain KRTAP1-5, KRTAP1-4, KRTAP1-3, KRTAP1-1 PA_VSD138

2p23.2 27789783 27802104 12321 loss LOC100420668, C2orf16 PA_VSD130

PA-VSD, pulmonary atresia with ventricular septal defect; Locus, cytogenetic location of CNV; Size, in base pairs; CN, type of copy number aberration.

Frontiers in Genetics | www.frontiersin.org 3 January 2019 | Volume 10 | Article 15127

http://www.malacards.org/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00015 January 24, 2019 Time: 19:9 # 4

Xie et al. CNVs in PA-VSD

CNVs in PA-VSD cases and PA-IVS or TOF positive controls
and there were twenty-two rare CNVs only in PA-VSD, five rare
CNVs only in PA-VSD and TOF as well as thirteen rare CNVs
only in PA-VSD and PA-IVS (Figure 1).

Rare CNVs Only in PA-VSD
Twenty-two rare CNVs were only identified in PA-VSD with a
size range from 12.3 to 344.5 kb (Table 2). Among these rare
CNVs, some have been reported to implicated in CHD. The
most compelling was 16p11.2 deletion previously detected in
a neonate with TOF with pulmonary atresia (Hernando et al.,
2002) and identified in a CHD cohort (Zhu et al., 2016). Besides,
the duplication of 1q21.2 and 17q12 were previously related to
TOF (Liu et al., 2016). In a previous study, the 13q33.3 deletion,
together with a 4p12 duplication were detected in a patient with
double outlet right ventricle (McMahon et al., 2015). However,
the deletion of 4p12 and 13q33.1 (near 13q33.3 locus) were
observed in the same patient in our study. Additionally, there

were two rare CNVs previously relevant to syndromes with heart
defects: one was 11q23.3 deletion involving Jacobsen syndrome
with severe cardiac malformations (Mattina et al., 2009), and
another was 5q35.3 deletion correlated with 5q35.3 subtelomeric
deletion syndrome which showed developmental delay and CHD
(Rauch et al., 2003).

Amongst these rare CNVs of note, the deletions of 16p11.2
and 5q35.3 implicated specific candidate genes of interest.
The 344.5 kb 16p11.2 deletion included two candidate genes:
PPP4C (BMP signaling pathways) and TBX6 (T-box family),
and we considered that they might have an impact on cardiac
development or are implicated by a relevant family of genes.
We also identified a 50.7 kb deletion at 5q35.3 locus containing
the FLT4 gene, which are also called VEGFR3 (Ferrara and
Alitalo, 1999). Another interesting rare CNV identified in
two patients with PA-VSD was 5p13.1 deletion containing the
RICTOR gene which played a crucial role in heart development
(Figure 2).

FIGURE 2 | Rare CNVs overlapping novel candidate gene for PA-VSD: RICTOR, PPP4C, and FLT4. The dotted rectangles represent the part of candidate genes
which are not within the CNVs. Genomic parameters from Ensembl (GRCh37.p13).
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Rare CNVs in PA-VSD and TOF
Pulmonary atresia with ventricular septal defect shows similar
phenotype and hemodynamics to TOF with PA, so sometimes
PA-VSD is considered as the most severe type of TOF. To
explain the possible similar development mechanism of PA-
VSD and TOF, we compared the rare CNVs in PA-VSD and
TOF, then identified five rare CNVs in both PA-VSD and TOF
and they were 6p21.33 duplication, 22q13.2 duplication, 7p22.1
deletion, 16q22.1 duplication, and 15q21.1 deletion (Table 3).
A duplication of 15q21.1 (chr15: 48023616-49017024) was
previously reported to associate with CHD and identified in
a patient with TOF and PA (Molck et al., 2017). However,
the deletion of 15q21.1 spanned approximately 17.8 kb in
our study did not include the vital genes involving in heart
morphogenesis.

An interesting CNV in eight PA-VSD patients and two TOF
patients at the 6p21.33 locus was observed as a recurrent rare
event, and the gain CNV overlapped the TNXB gene, which
was reported to be highly expressed in fetuses and pregnancies

with isolated ventricular septal defects (VSD) (Arcelli et al., 2010;
Morano et al., 2018).

Rare CNVs in PA-VSD and PA-IVS
Although the genetic developmental patterns of PA-VSD are
partly different from that of PA-IVS, we believe that the common
CNVs and genes in these two populations may help explain
the similarity in phenotypes. In this study, PA-VSD and PA-
IVS had thirteen rare CNVs identified in common (Table 4).
We identified a duplication of 2q37.1 in four PA-VSD patients
and one PA-IVS patients. It was previously reported that
2q37 microdeletion syndrome showed developmental delay and
congenital heart disease phenotypes (Doherty and Lacbawan,
2007).

In this group, we focused on 7p15.2 deletion and 19p13.3
duplication which encompassed candidate genes. The loss CNV
at 7p15.2 containing the HNRNPA2B1 gene was identified in
one PA-VSD patients and one PA-IVS patients. Another rare
CNV at 19p13.3 locus identified in two PA-VSD patients

TABLE 3 | Rare CNVs only in PA-VSD and TOF.

Locus Start End Size (bp) CN Genes Cases

6p21.33 32016526 32036947 20421 gain TNXB PA_VSD111, PA_VSD115, PA_VSD21, PA_VSD22, PA_VSD27,
PA_VSD37, PA_VSD51, PA_VSD58, TOF129, TOF148

22q13.2 42897617 42915769 18152 gain SERHL,
LOC101927372,
RRP7A

PA_VSD24, PA_VSD38, PA_VSD39, PA_VSD110, PA_VSD113,
TOF124

7p22.1 6785685 6864382 78697 loss PMS2CL PA_VSD135, PA_VSD53, TOF121

16q22.1 70161181 70190826 29645 gain PDPR PA_VSD39, TOF149

15q21.1 48443249 48461040 17791 loss MYEF2 PA_VSD14, TOF125

PA-VSD, pulmonary atresia with ventricular septal defect; TOF, tetralogy of Fallot; Locus, cytogenetic location of CNV; Size, in base pairs; CN, type of copy number
aberration.

TABLE 4 | Rare CNVs only in PA-VSD and PA-IVS.

Locus Start End Size (bp) CN Genes Cases

19p13.2 8986992 9091771 104779 gain MUC16 PA_VSD32, PA_VSD49, PA_VSD4, PA_VSD27,
PA_VSD40, PA_VSD45, PA_IVS63

2q32.1 186610162 186697940 87778 loss FSIP2, LOC100420895 PA_VSD112, PA_VSD130, PA_VSD134,
PA_VSD29, PA_IVS62

11q14.3 89370649 89451020 80371 loss TRIM77 PA_VSD101, PA_VSD112l, PA_VSD130,
PA_VSD55, PA_IVS120

2q37.1 233243677 233274613 30936 gain ALPP, ECEL1P2, ALPPL2 PA_VSD113, PA_VSD136, PA_VSD53,
PA_VSD42, PA_IVS119

15q15.3 43923716 43975639 51923 loss STRC, CATSPER2, PPIP5K1P1 PA_VSD112, PA_VSD112, PA_IVS61

19p13.3 603581 649792 46211 gain POLRMT, FGF22, RNF126 PA_VSD27, PA_VSD43, PA_IVS71

12q21.31 85408233 85450970 42737 loss TSPAN19, LRRIQ1 PA_VSD29, PA_IVS143

6q24.3 146240456 146276155 35699 loss SHPRH, LOC101928598 PA_VSD130, PA_VSD29, PA_IVS67

13q13.3 35730170 35758241 28071 loss NBEA PA_VSD14, PA_IVS143

16p11.2 28606954 28631399 24445 gain SULT1A2, SULT1A1,
LOC101929366

PA_VSD112, PA_VSD53, PA_IVS67

7p15.2 26222835 26236674 13839 loss HNRNPA2B1 PA_IVS61, PA_VSD134

7q22.1 99817552 99831375 13823 gain GATS, PVRIG PA_VSD136, PA_IVS80

5q13.2 70234620 70248318 13698 loss SMN1 PA_IVS142, PA_VSD112

PA-VSD, pulmonary atresia with ventricular septal defect; PA-IVS, pulmonary atresia with intact ventricular septum; Locus, cytogenetic location of CNV; Size, in base
pairs; CN, type of copy number aberration.
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FIGURE 3 | Expression pattern of candidate genes in human embryonic
heart. Human embryonic heart in different Carnegie stages from S10 to S16
were performed the gene expression analysis using microarray.

and one PA-IVS patients contained the candidate gene
FGF22.

Expression Pattern of Candidate Genes
in Human Embryonic Heart
We collected human embryonic heart in different Carnegie stages
from S10 to S16 and performed the gene expression analysis
using transcriptome array. Among these candidate genes,
HNRNPA2B1 was the most highly expressed in embryonic heart;
additionally, the expression levels of RICTOR and PPP4C were
also significantly higher than those of other genes (Figure 3).

Gene Networks
The cardiovascular malformations of PA-VSD are caused by
heart and vessel abnormally development, such as the formation
and development of the cardiac outflow tract, pulmonary artery,
SHF, or CNC. Additionally, multiple systemic syndromes show
heart defects, like LEOPARD syndrome, Noonan syndrome,
Digeorge syndrome and so on. Therefore, we consider that
the genes implicated in these above aspects may play roles in

FIGURE 4 | Network analysis between candidate genes and genes associated with CHD, outflow tract development, the secondary heart field (SHF) or cardiac
neural crest (CNC). We used the Cytoscape, a bioinformatic software with STRING database, to perform network interaction of proteins. The red bold fonts
represent candidate genes, the blue nodes represent rare CNVs loci genes in this study and the yellow nodes represent the genes in list 1. The different width of line
connecting proteins represents different intensity of the protein interaction, and the wider the connecting line is, the closer the interaction is.
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FIGURE 5 | Network analysis between candidate genes and genes involved in blood vessel development. We used the Cytoscape, a bioinformatic software with
STRING database, to perform network interaction of proteins. The red bold fonts represent candidate genes, the blue nodes represent rare CNVs loci genes in this
study and the yellow nodes represent the genes in list 2. The different width of line connecting proteins represents different intensity of the protein interaction and the
wider the connecting line is, the closer the interaction is.

the pathogenesis of PA-VSD. To detect which aspects of heart
development the genes in rare CNVs identified in our study
were related to, we screened previous studies and MalaCards
database to get known genes about heart morphogenesis, blood
vessel development and syndromes involved in heart defects, and
then analyzed the networks between these candidate genes and
three gene groups, respectively (Figures 4–6). We found that
PPP4C, FLT4, RICTOR, and FGF22 were directly relevant to all
three gene groups. TBX6 directly interacts with FGF8, BMP4 and
PAX3 in gene list 1 which were related to heart development.
HNRNPA2B1 directly interacts with RAF1 and DGCR8 in gene
list 3 associated with syndrome. These data suggested that the
four genes, PPP4C, FLT4, RICTOR and FGF22, had strong roles
in cardiac development and pathogenesis of PA-VSD.

DISCUSSION

Copy number changes appear to be important genetic variants
contributing to the etiology of PA-VSD, however, the current
understanding of the role of CNVs in the etiology of PA-VSD
is limited. There is just one report of rare de novo CNVs in
patients with pulmonary atresia by Xie et al. (2014); however,
it did not separate PA-IVS from PA-VSD. Thus, to investigate
the pathogenesis of PA-VSD, we collected genomic DNA samples

from sixty patients with PA-VSD and 100 controls; meanwhile,
the samples of PA-IVS and TOF were also collected as positive
control. All cases and controls were assayed using WES. Rare
CNVs were identified in 100 patients and six of these CNVs were
considered pathogenic or potentially pathogenic to PA-VSD.

Pulmonary atresia with ventricular septal defect is considered
as the most severe type of TOF, and we intent to discover
the different genomic causes of severity; whilst the genetic
developmental pattern of PA-VSD partly differs from that of
PA-IVS. Therefore, we compared rare CNVs between PA-VSD
cases and positive controls (PA-IVS and TOF) to find the
unique CNVs in PA-VSD. One CNV was a 344.5 kb deletion
on 16p11.2 that contained PPP4C and TBX6. PPP4C, a catalytic
subunit of protein phosphatase 4 which plays in various cellular
signaling and regulation, is highly conserved from invertebrates
to vertebrates (Cohen et al., 2005). Knockdown of ppp4c inhibits
ventral development in zebrafish embryos via enhancing BMP
signaling responses through its direct interaction with Smad1.
Meanwhile, PPP4C also enhances BMP2 cellular responses in
mammalian cells including mouse C2C12 myoblast cells (Jia
et al., 2012). We all know that Bmp2-null mice show abnormal
cardiac formation and BMP2 plays a pivotal role in cardiac
development in human (Zhang and Bradley, 1996; Tan et al.,
2017). It indicated that PPP4C could be implicated in human
PA-VSD. The second gene, TBX6, was found in the same
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FIGURE 6 | Network analysis between candidate genes and genes related to well-known syndromes with heart defects. We used the Cytoscape, a bioinformatic
software with STRING database, to perform network interaction of proteins. The red bold fonts represent candidate genes, the blue nodes represent rare CNVs loci
genes in this study and the yellow nodes represent the genes in list 3. The different width of line connecting proteins represents different intensity of the protein
interaction, and the wider the connecting line is, the closer the interaction is.

deletion as PPP4C. TBX6 is a member of the T-box family
of transcription factors which are critical for normal heart
development (Plageman and Yutzey, 2005). T-box genes are
deemed to be important in early cardiac lineage determination
and valvuloseptal development, including TBX1 (Yagi et al.,
2003), TBX5 (Li et al., 1997), TBX20 (Plageman and Yutzey,
2004), and so on. Previous studies have revealed that Tbx6 has
important roles in the formation of somite borders and the
specification of presomitic mesoderm (Chapman et al., 1996;
Chapman and Papaioannou, 1998; Chapman et al., 2003; White
et al., 2003). Moreover, a recent research further indicated
that Tbx6 was essential for pluripotent stem cells (PSCs)
differentiation into mesoderm and inhibits cardiac specification
(Sadahiro et al., 2018). The deletion CNV with TBX6 in our study
may loss its function and result in the heart defects.

In addition, the 5q35.3 deletion contains the FLT4 gene, which
encodes a receptor tyrosine kinase for VEGF-C and VEGF-D and
promotes lymph angiogenesis as well as angiogenesis (Alitalo,
2011; Benedito et al., 2012). Moreover, FLT4 is highly expressed
in the pulmonary arterial endothelial cells and interacts closely
with BMPR2 to regulate BMP signaling which has an intimate
association with cardiac development; genetic deletion of Flt4
in endothelial cells led to impaired BMP signaling in mouse
(Hwangbo et al., 2017). It supports that the role of FLT4 in the
pathogeny of PA-VSD is crucial.

The 5p13.1 deletion includes another interesting candidate
gene RICTOR. RICTOR protein is an essential regulatory protein
and structural subunit of the mammalian target of rapamycin
complex 2 (mTORC2), which is a signaling protein complex
involved in the epithelial-mesenchymal transition of embryonic
development (Lamouille et al., 2012). Loss of endothelial
homozygous Rictor results in mouse embryonic lethality at
E11.5 (Aimi et al., 2015). It is reported that Rictor/mTORC2
may play a key role in the cardiomyocyte differentiation
of the mouse embryonic stem cells with reduced protein
levels of Nkx2.5 (cardiac progenitor cell protein), α-Actinin
(cardiomyocyte biomarker), and brachyury (mesoderm protein)
in Rictor knockdown mice during cardiogenesis. Furthermore,
Rictor knockdown specifically suppressed the ventricular-like
cells differentiation of the mouse embryonic stem cells (Zheng
et al., 2017). These demonstrated that the crucial functions of
RICTOR in heart development and potential pathogenesis of
PA-VSD.

To a certain extent, PA-VSD and TOF show similar phenotype
and may share the similar genetic mechanism. We identified a
6p21.33 duplication in both PA-VSD and TOF overlapping the
TNXB gene, which encodes the tenascin-X protein. Tenascin is
one of tendon-related extracellular matrix components (Peacock
et al., 2008), expressing at the valve leaflets in chicken and
mouse embryos as well as playing an important role in heart
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valve development (Lincoln et al., 2004; Combs and Yutzey,
2009).

Furthermore, PA-VSD shows the similar phenotype
“pulmonary atresia” with PA-IVS, we intent to explain the
similarity in genetic level by comparing the rare CNVs between
PA-IVS and PA-VSD. For the common rare CNVs in PA-
VSD and PA-IVS, 7p15.2 deletion was detected in this study
and comprised HNRNPA2B1 gene. The HNRNPA2B1 gene,
a molecular homolog of HNRNPA1 (Hutchison et al., 2002),
has the similar structure and function to that of HNRNPA1
(Biamonti et al., 1994; Patry et al., 2003). The HNRNPA1 gene
codes heterogeneous ribonucleoprotein (hnRNP) A1 protein,
which is well-known trans-acting splicing factors that inhibit
splice site recognition (Matlin et al., 2005) and promotes
alternative splicing of target genes (Jean-Philippe et al., 2013).
A recent study observed that the hnRNP A1 knockout mice had
heart structure defects and the alternative splicing of mef2c was
evidently affected (Liu et al., 2017). In our results, HNRNPA2B1
was highly expressed in human embryonic heart. Therefore,
we inferred that HNRNPA2B1 may also play a role in heart
development, especially involved in the formation of PA.

FGF22, another candidate gene within a duplication CNV
at 19p13.3 locus, is most closely related to FGF7 and FGF10;
these three FGFs constitute a subfamily among FGF family
members (Miki et al., 1992; Ornitz et al., 1996; Yeh et al.,
2003). Previous studies revealed that Fgf10 have dosage sensitive
requirements in multiple aspects of early murine cardiovascular
development (Urness et al., 2011) and plays an essential role in
outflow tract morphogenesis (Kelly et al., 2001; Golzio et al.,
2012). Although FGF22 was reported most in the neurology
(Pasaoglu and Schikorski, 2016; Terauchi et al., 2016; Williams
et al., 2016), we detected its variant in our patient populations
with heart defects and speculated that FGF22 may have some
similar function with FGF10 in heart development. Additionally,
from the network we found that FGF22 directly interact with
PDGFRA and KDR which are cardiac progenitor populations
with Flk1 in differentiating embryonic stem cells (Kattman
et al., 2006; Yang et al., 2008; Kattman et al., 2011). The
result implied that FGF22 indeed have relation with heart
development.

For the candidate genes, PPP4C, FLT4, RICTOR, and FGF22
showed strong interaction with all gene groups in networks
analysis; meanwhile, RICTOR and PPP4C had high expression
levels in human embryonic heart. It gives evidences that the
rare CNVs of RICTOR and PPP4C contribute to pathogenesis of
PA-VSD with great potential.

In conclusion, we identified three rare CNVs only in patients
with PA-VSD and the putative candidate genes: 16p11.2 del
(PPP4C), 5q35.3 del (FLT4) and 5p13.1 del (RICTOR). These

rare CNVs and genes were not previously described and may
contribute significantly to the genetic basis of PA-VSD. There
were, however, limitations to this study. Our cohorts lacking
parental samples and large or multicentric studies with trio
samples may be needed for further replication studies to define
the significance of the novel rare CNVs identified in our study.
In order to minimize false positives in our small cohorts, the
restricted CNV analytic methods were used for rare CNVs and
it might have resulted in missing some rare variants of interest.
Additionally, further mechanism studies are needed to prove
the functional significance of putative candidate genes of PA-
VSD in vivo or in vitro. Nevertheless, the discovery in our study
of rare novel CNVs in patients with PA-VSD helps elucidate
critical genes for PA-VSD and may provide new insights into
understanding the pathogenesis of PA-VSD.
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Introduction: High body mass index (BMI) is a positive associated phenotype of
type 2 diabetes mellitus (T2DM). Abundant studies have observed this from a clinical
perspective. Since the rapid increase in a large number of genetic variants from the
genome-wide association studies (GWAS), common SNPs of BMI and T2DM were
identified as the genetic basis for understanding their associations. Currently, their
causality is beginning to blur.

Materials and Methods: To classify it, a Mendelian randomisation (MR), using genetic
instrumental variables (IVs) to explore the causality of intermediate phenotype and
disease, was utilized here to test the effect of BMI on the risk of T2DM. In this article,
MR was carried out on GWAS data using 52 independent BMI SNPs as IVs. The pooled
odds ratio (OR) of these SNPs was calculated using inverse-variance weighted method
for the assessment of 5 kg/m2 higher BMI on the risk of T2DM. The leave-one-out
validation was conducted to identify the effect of individual SNPs. MR-Egger regression
was utilized to detect potential pleiotropic bias of variants.

Results: We obtained the high OR (1.470; 95% CI 1.170 to 1.847; P = 0.001), low
intercept (0.004, P = 0.661), and small fluctuation of ORs {from −0.039 [(1.412 – 1.470)
/ 1.470)] to 0.075 [(1.568– 1.470) / 1.470)] in leave-one-out validation.

Conclusion: We validate the causal effect of high BMI on the risk of T2DM. The low
intercept shows no pleiotropic bias of IVs. The small alterations of ORs activated by
removing individual SNPs showed no single SNP drives our estimate.

Keywords: body mass index, type 2 diabetes mellitus, casual effect, Mendelian randomisation, phenotype

INTRODUCTION

Diabetes mellitus (DM) is characterized by a bunch of chronic metabolic diseases leading to insulin-
secretion deficiency (Olokoba et al., 2012; Pan et al., 2013; Shi and Hu, 2014). High blood sugar
levels in DM patients over a prolonged period impair body tissues, such as eye, kidney, heart, and
so on. Currently, more than 400 million people suffer from diabetes worldwide, of which type
2 DM (T2DM) makes up about 90% (Olokoba et al., 2012; Pan et al., 2013; Shi and Hu, 2014).
Most patients who suffer from T2DM are over the age of 40 (Olokoba et al., 2012; Pan et al., 2013;
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Shi and Hu, 2014). In theory, people have a long time to prevent
T2DM under the right direction. To this end, researchers go out
of their way to investigate the causes of T2DM.

Observational studies exposed that body mass index (BMI)
was strongly associated with the risk of being diagnosed with
T2DM (Sanada et al., 2012; Ganz et al., 2014; Chen et al., 2015,
2016; Zhao et al., 2017). In Sanada et al. (2012) conducted
a 10-year retrospective cohort study on 969 men and 585
women (Sanada et al., 2012). They observed high BMI was
an independent and dose-dependent risk factor for T2DM in
Japanese patients (Sanada et al., 2012). In Ganz et al. (2014)
directed a case-control study to assess the association between
BMI and the risk of T2DM in the United States (Ganz et al.,
2014). A positive association between them was found in 12,179
cases (> = 18 years old) and 25,177 controls (Ganz et al., 2014).
The analogous studies without considering genetic factors almost
came to a consistent conclusion.

After identifying a large number of BMI-associated and
T2DM-associated loci in genome-wide association studies
(GWAS), their common associated variants were then
interpreted as the underlying cause of BMI and the risk of
T2DM. In 2007, the first common variant in the FTO gene of
BMI and T2DM was reported in European descents (Frayling
et al., 2007). Subsequently, corresponding investigations sprung
up for validating the existing common locus and identifying
their novel common variants of BMI and T2DM (Andreasen
et al., 2008; Herder et al., 2008; Cauchi et al., 2009; Legry et al.,
2009; Webster et al., 2010; Song et al., 2012; Xi et al., 2014).
In 2014, a meta-analysis of 42 studies for BMI and T2DM
associated variants was conducted (Xi et al., 2014). Eventually,
4 statistically significant associated variants (FTO rs9939609,
SH2B1 rs7498665, FAIM2 rs7138803, GNPDA2 rs10938397)
were identified for both in Europeans.

Whether a higher BMI increases the risk of T2DM or T2DM
affects BMI or their common genetic factors take effect, is still
unknown according to current observations. In addition, after
considering confounding factors, the causal relationship between
BMI and T2DM may be reverse. To estimate the causal effect
of BMI on the risk of T2DM, we conducted this Mendelian
randomization (MR) study, which is an instrumental variable
(IV) based method to infer causality of exposure and disease
in observation studies. Genetic variants that are associated
with intermediate phenotypic exposures are introduced as IVs
by MR to estimate the effect of phenotypic exposures on a
disease outcome (Figure 1A). Due to random distribution of
gene variants during gametogenesis, IV-based analysis can avoid
reverse causality. The basic principle of estimating the influence
of BMI on the risk of T2DM using MR is shown in the Figure 1B,
where Z (e.g., variants) represents IV, X indicates exposure BMI,
and Y is disease T2DM. Two assumptions should be suitable for
the case before using MR.

1© The variants are robustly associated with BMI.
2© The variants are independent of the T2DM without

considering BMI and confounders. It means the only
way to influence the T2DM by the variants is via an
intermediate.

The two assumptions mean the variants should be associated
with BMI but not with T2DM. Therefore, the conclusions based
on MR could not result from the common genetic factors of
BMI and T2DM.

MATERIALS AND METHODS

Two summary-level data of GWAS datasets were utilized by MR
analysis. One of them was for extracting significant BMI SNP
sets to meet the assumption 1. And the other was for extracting
no significant T2DM SNP sets to meet assumption 2. The
intersections of these two SNP sets were then analyzed using MR.

Summary-Level Data for Associations
Between Genetic Variants and BMI
In Locke et al. (2015) conducted a meta-analysis of BMI using
GWAS on Metabochip studies (Voight et al., 2012). Totally,
322,154 individuals of European descents and 17,072 individuals
of non-European descent were analyzed. As a result, 97 BMI-
associated SNPs (P < 5 × 10−8) were identified for European.
The corresponding SNPs, effect allele (EA), allele frequencies,
beta coefficients, and standard errors (SEs) were extracted
from Genetic Investigation of Anthropometric Traits (GIANT)
consortium (Locke et al., 2015) as summary-level data for
associations between genetic variants and BMI.

Summary-Level Data for Associations
Between Genetic Variants and T2DM
Morris et al. (2012) carried out a combined meta-analysis of
European descents on two GWAS data sets (Yang et al., 2010;
Lee et al., 2011), which involved 22,669 cases and 58,119 controls.
All the variants were then genotyped with Metabochip involving
1,178 cases and 2,472 controls of Pakistani descent. The analytical
result contains novel susceptibility locus together with other
SNPs, SEs and their P-values on the risk of T2DM. These were
utilized as summary-level data for associations between genetic
variants and T2DM.

Data Processing and Analysis
Two summary-level datasets were processed into assumption-
oriented data (Figure 2). According to assumption 2, genetic
pleiotropy can result in over-precise estimates in subsequent
analysis. According to the application principles of Mendelian
randomization analysis, the study is based on Mendel’s second
law of inheritance: the separation and combination of genetic
gametes controlling different traits do not interfere with each
other; in the formation of gametes, the paired genetic gametes
that determine the same trait are separated from each other,
and the genetic gametes that determine different traits are
freely combined. When the two genes are not completely
independent, they will show a certain degree of linkage,
a situation called linkage disequilibrium (LD), which will greatly
affect the exclusiveness of the variable tool to phenotypic
inheritance, leading the subsequent calculations bias generally
called “over-precise estimates.” To avoid this situation, these
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FIGURE 1 | Mendelian randomisation analysis using genetic variants as instrumental variables for estimating the influence of BMI on T2DM. (A) Causal effect in
Mendelian randomisation. (B) The basic principle of estimating the influence of BMI on the risk of T2DM.

FIGURE 2 | The schematic of data processing and analysis.

loci with potential LD were removed from 97 BMI-associated
SNPs, which was done by Noyce et al. (2017) in the previous
study. The 97 SNPs were first ranked from the smallest to
largest P-values. Then for the top ranked SNPs, Noyce et al.
(2017) removed those in LD (R2 threshold of 0.001) or those
within 10,000 kb physical distance based on a reference dataset
(Devuyst, 2015) from the 97 SNPs. This process was iterated
for the remaining SNPs. As a result, 78 BMI-associated SNPs
(P < 5 × 10−8) without potential LD of each other were
obtained. According Xi et al. (2014), meta-analysis, four SNPs
(rs9939609, rs7498665, rs7138803, rs10938397) were found at
the T2DM-associated locus, and were also further removed from
these 78 SNPs. In addition, those SNPs with P-value less than
0.05 by Morris et al. (2012) were removed as well. Finally, 52
SNPs that confirmed to the two MR assumptions were retained
for MR analysis.

Three subjects involving the influence of BMI on the risk
of T2DM (Figure 2), the sensitivity of the disproportionate
effects of variants, and the detection of bias due to pleiotropy
were investigated in MR analysis. These issues were analyzed by
MR method, leave-one-out validation, and MR-Egger regression
(Bowden et al., 2015), respectively.

• MR method

MR method was described in the previous study (Bowden
et al., 2015) and summarized for evaluating the influence of BMI
on the risk of T2DM as below. Assuming X, Y, and Z are BMI,
T2DM, and variants, respectively, Wald ratio (βXY ) of BMI to
T2DM through specified variant is calculated as follows:

βXY = βZY/βZX, (1)

where βZY represents the per-allele log(OR) of T2DM from
summary-level data of Morris et al. (2012) study. βZX is the per-
allele log(OR) of BMI from summary-level data of Locke et al.
(2015) study. SE of BMI-T2DM association of each Wald ratio is
defined as follows:

SEXY = SEZY/SEZX, (2)

where SEZY and SEZX represent the SE of the variant-T2DM
and variant-BMI associations from corresponding summary-
level data, respectively. Subsequently, 95% confidence intervals
(CIs) were then calculated from the SE of each Wald ratio.
These summarized data were then estimated using inverse-
variance weighted (IVW) linear regression for meta-analysis. The
meta-analysis model for the point estimate is according to the
heterogeneity of the summarized data. Fixed effect model is used
for no significant heterogeneity, and random-effect model is used
for others.

To evaluate the genetic heterogeneity of summarized data,
Cochran’s Q-test and statistic I2 were utilized here. Cochran’s
Q-test follows a χ2 distribution with k−1 degrees of freedom,
where k represents the number of variants for analysis.
I2 = (Q−(k−1))/Q × 100% ranges from 0 to 100%. P < 0.01
and I2 > 50% were defined as the significant heterogeneity here
(Zhang et al., 2015).

• Leave-one-out validation

To test the sensitivity of variants, we designed a leave-one-out
validation measure. In brief, to test the influence of an SNP to
the conclusion, the SNP was removed from the 52 SNPs to carry
out IVW point estimate. The fluctuation of the results before and
after removing the SNP reflects the sensitivity of this SNP. Here
this process was iterated for each of these 52 SNPs.
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TABLE 1 | Associations of genetic variants with BMI and T2DM.

BMI T2DM T2DM T2DM

SNP Chr Gene BP beta BMI SE BMI P beta SE P

rs977747 1 TAL1(N) TAL1(N) 47457264 0.017 0.003 2.18E-08 −0.010 0.020 0.63

rs657452 1 AGBL4(N) 49362434 0.023 0.003 5.48E-13 −0.010 0.020 0.45

rs3101336 1 NEGR1(B,C,D,N) 72523773 0.032 0.003 2.66E-26 0.010 0.020 0.66

rs12401738 1 FUBP1(N); USP33(D) 78219349 0.02 0.003 1.15E-10 0.000 0.020 0.86

rs11165643 1 PTBP2(D,N) 96696685 0.022 0.003 2.07E-12 0.030 0.019 0.11

rs543874 1 SEC16B(N) 176156103 0.05 0.004 2.62E-35 0.039 0.019 0.093

rs2820292 1 NAV1(N) 200050910 0.018 0.003 1.83E-10 −0.010 0.020 0.45

rs10182181 2 NCOA1(B) 25003800 0.031 0.003 8.78E-24 −0.020 0.015 0.34

rs1016287 2 LINC01122(N) 59, 159,129 0.0229 0.0034 2.25E-11 0.030 0.019 0.17

rs2121279 2 LRP1B(N) 142759755 0.024 0.004 2.31E-08 0.030 0.024 0.18

rs1460676 2 FIGN(N) 164275935 0.021 0.004 4.98E-08 0.020 0.024 0.49

rs1528435 15 UBE2E3(N) 65864222 0.018 0.003 1.20E-08 0.020 0.020 0.21

rs17203016 2 CREB1(B,N); KLF7(B) 207963763 0.021 0.004 3.41E-08 0.020 0.024 0.45

rs7599312 2 ERBB4(D,N) 213121476 0.021 0.003 1.17E-10 0.020 0.015 0.4

rs492400 2 PLCD4(B,Q); CYP27A1(B); USP37(N); TTLL4(M,Q);
STK36(B,M); ZNF142(M); RQCD1(Q)

219057996 0.015 0.003 6.78E-09 −0.010 0.015 0.54

rs6804842 3 RARB(B) 25081441 0.018 0.003 2.48E-09 0.020 0.020 0.21

rs2365389 3 FHIT(N 61211502 0.02 0.003 1.63E-10 −0.010 0.015 0.7

rs13078960 3 CADM2(D,N) 85890280 0.029 0.004 1.74E-14 0.020 0.020 0.44

rs16851483 3 RASA2(N) 142758126 0.048 0.008 3.55E-10 −0.010 0.034 0.82

rs13107325 4 SLC39A8(M,N,Q) 103407732 0.047 0.007 1.83E-12 0.039 0.042 0.38

rs11727676 4 HHIP(B,N) 145878514 0.037 0.006 2.55E-08 −0.077 0.045 0.12

rs205262 6 C6orf106(N); SNRPC(Q) 34671142 0.021 0.003 1.75E-10 0.000 0.020 0.97

rs2033529 6 TDRG1(N); LRFN2(D) 40456631 0.018 0.003 1.39E-08 0.020 0.020 0.32

rs2207139 6 TFAP2B(B,N) 50953449 0.045 0.004 4.13E-29 0.039 0.024 0.14

rs9400239 6 FOXO3(B,N); HSS00296402(Q) 109084356 0.017 0.003 1.61E-08 0.010 0.020 0.62

rs13201877 6 IFNGR1(N); OLIG3(G) 137717234 0.024 0.004 4.29E-08 0.030 0.029 0.23

rs13191362 6 PARK2(B,D,N) 162953340 0.029 0.005 7.34E-09 0.020 0.029 0.4

rs1167827 7 HIP1(B,N); PMS2L3(B,Q); PMS2P5(Q);
WBSCR16(Q)

75001105 0.02 0.003 6.33E-10 – 0.024 0.24

rs2245368 7 PMS2L11(N) 76, 446,079 0.0317 0.0057 3.19E-08 0.049 0.033 0.15

rs6465468 7 ASB4(B,N) 95007450 0.016 0.003 4.98E-08 −0.030 0.019 0.23

rs2033732 8 RALYL(D,N) 85242264 0.018 0.003 4.89E-08 −0.010 0.020 0.63

rs4740619 9 C9orf93(C,M,N) 15624326 0.017 0.003 4.56E-09 0.020 0.020 0.29

rs10968576 9 LINGO2(D,N) 28404339 0.025 0.003 6.61E-14 0.000 0.020 1

rs6477694 9 EPB41L4B(N); C9orf4(D) 110972163 0.017 0.003 2.67E-08 0.010 0.020 0.42

rs1928295 9 TLR4(B,N) 119418304 0.018 0.003 7.91E-10 0.030 0.015 0.12

rs10733682 9 LMX1B(B,N) 128500735 0.019 0.003 1.83E-08 0.030 0.019 0.057

rs7899106 10 GRID1(B,N) 87400884 0.038 0.007 2.96E-08 −0.020 0.034 0.67

rs11030104 11 BDAF(B,M,N) 27641093 0.042 0.004 5.56E-28 0.010 0.025 0.49

rs12286929 11 CADM1(N) 114527614 0.021 0.003 1.31E-12 0.010 0.020 0.5

rs11057405 12 CLIP1(N) 121347850 0.03 0.005 2.02E-08 −0.095 0.044 0.055

rs10132280 14 STXBP6(N) 24998019 0.022 0.003 1.14E-11 0.030 0.019 0.12

rs3736485 15 SCG3(B,D); DMXL2(M,N) 49535902 0.016 0.003 7.41E-09 0.020 0.015 0.29

rs16951275 2 M4P2K5(B,D,N); LBXCOR1(M) 181259207 0.03 0.004 1.91E-17 0.030 0.019 0.21

rs758747 16 NLRC3(N) 3567359 0.023 0.004 7.47E-10 0.000 0.025 0.97

rs3888190 16 ATXN2L(Q); SBK1(Q,D); SULT1A2(Q); TUFM(Q) 28796987 0.031 0.003 3.14E-23 0.010 0.015 0.77

rs1000940 17 RABEP1(N) 5223976 0.018 0.003 1.28E-08 0.010 0.025 0.49

rs1808579 18 NPC1(B,G,M,Q); C18orf8(N,Q) 19358886 0.016 0.003 4.17E-08 0.030 0.019 0.13

rs7239883 18 LOC284260(N); RIT2(B,D) 38401669 0.015 0.003 1.51E-08 0.020 0.015 0.34

rs29941 14 KCTD15(N) 78969207 0.018 0.003 2.41E-08 0.000 0.020 0.92

rs2287019 19 QPCTL(N); GIPR(B,M) 50894012 0.035 0.004 4.59E-18 −0.030 0.029 0.33

rs6091540 20 ZFP64(N) 50521269 0.019 0.003 2.15E-11 0.010 0.020 0.8

rs2836754 21 ETS2(N) 39213610 0.017 0.003 1.61E-08 −0.020 0.020 0.18
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FIGURE 3 | Forest plot of Wald ratios and 95% CIs from BMI-associated SNPs.
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• MR-Egger test

To ensure that violations of our analysis were not biasing
the estimate of the directional causal association, MR-Egger
regression asymmetry test was used (Bowden et al., 2015). The
MR-Egger regression is adapted from Egger regression, which
is a tool to detect small study bias in meta-analysis and test for
bias from pleiotropy. The estimated value of the intercept in MR-
Egger regression can be interpreted as an estimate of the average
pleiotropic effect across the genetic variants. An intercept that
differs from zero is indicative of overall directional pleiotropy.
The slope coefficient from MR-Egger regression provides a bias
estimate of the causal effect.

All statistical tests for MR analysis were undertaken using
the R Package of meta-analysis1 and Mendelian Randomization
(Yavorska and Burgess, 2017).

RESULTS

Among the 97 BMI-associated SNPs (Locke et al., 2015),
19 SNPs with LDs, 2 T2DM-associated SNPs (rs7138803,
rs10938397) from Xi et al. (2014) study, 20 T2DM-associated
SNPs and 1 unmapped SNPs from Morris et al. (2012) study,
and 3 uncertain SNPs were removed (Supplementary Table 1).
52 BMI-associated SNPs were eventually selected for the MR
analysis in Table 1. Each line of the table documents 12 items
involving the SNP, EA and its frequencies, beta coefficients of the
SNP on the risk of BMI and T2DM, and SEs.

The Influence of BMI on the
Risk of T2DM
The pooled results using IVW method from 52 individual SNPs
showed that high BMI significantly increases the risk of T2DM.
Due to the lack of evidence of heterogeneity between variants
of the summarized data (P = 0.499 and I2 = 0%; Figure 3), the
fixed-effect model was utilized here for meta-analysis. The OR
of T2DM per 5kg/m2 higher BMI was 1.470 (95% CI 1.170 to
1.847; P = 0.001). In addition, we analyzed the effect of BMI on
the risk of T2DM by six other methods involving Simple median,
Weighted median, Penalized weighted median, Penalized IVW,
Robust IVW, and Penalized robust IVW methods (Zhao et al.,
2017). The results were shown in Table 2, which are consistent
with the result based on IVW method.

Sensitivity Analysis
ORs from leave-one-out analysis were shown in Figure 4. In
comparison with the observed result (1.470) from 52 SNPs, the
OR increased by 0.075 [(1.568 – 1.470) / 1.470] after removing
rs10182181. The ORs after removing other SNPs range from
1.412 to 1.507, which means that the small fluctuation {from
−0.039 [(1.412 – 1.470) / 1.470] to 0.025 [(1.507 – 1.470)
/ 1.470]} can be activated by most of the individual SNPs.
These results demonstrated that no single SNP drives the IVW
point estimate. The detailed results about Heterogeneity test and

1http://cran.r-project.org/web/packages/meta/index.html

TABLE 2 | Associations of genetic variants with BMI and T2DM.

Method OR Lower OR Upper OR P-value

Simple median 1.767 1.252 2.492 0.001

Weighted median 1.790 1.270 2.524 0.001

Penalized weighted median 1.956 1.383 2.770 0.000

Penalized IVW 1.531 1.215 1.931 0.000

Robust IVW 1.542 1.178 2.016 0.003

Penalized robust IVW 1.573 1.240 1.998 0.000

meta-analysis of the leave-one-out analysis were shown in the
Supplementary Table 2.

Pleiotropic Effect Analysis
Figure 5 shows the symmetrical inverted funnel of the point
estimate from individual variants. The effect estimated from MR-
Egger regression was 1.24 (95% CI 0.553 to 1.928; P = 0.493),
with an intercept of 0.004 (95% CI −0.013 to 0.020; P = 0.661;
Figure 6). Together these findings provided evidence against
the possibility that horizontal pleiotropic effects tend to be bias
IVW estimates.

DISCUSSION

In this study, we exposed the causal effect of BMI on the risk
of T2DM using MR method. Here, two-summary level data
involving association between genetic variants and BMI from
Locke et al. (2015) study and association between genetic variants
and T2DM from Morris et al. (2012) study were utilized for this
purpose. According to the previous investigation, the MR was
viewed as a meta-analysis of multiple genetic variants (Bowden
et al., 2015; Nordestgaard et al., 2017; Noyce et al., 2017; Wei et al.,
2017). Since there was very low heterogeneity between variants
of the summarized data (P = 0.499 and I2 = 0%) (Figure 3),
the fixed-effect model was utilized for meta-analysis. The pooled
results of point estimates using IVW method indicate that the
OR of T2DM per 5 kg/m2 higher BMI was 1.470 (95% CI 1.170
to 1.847; P = 0.001). This evidence suggested that high BMI
increases the risk of T2DM.

Sensitivity analysis and bias analysis were then carried out
for genetic variants. To test whether the results are influenced
by individual SNPs, we conducted the leave-one-out validation.
Results in Figure 4 indicate very small fluctuations after the
removal of individual SNPs. The statistical evidence of MR-Egger
regression (P = 0.493) with a very low intercept (0.004; Figure 6)
indicates no significant bias of our data and no pleiotropic effect
of the genetic variants, respectively.

The inference that the causal effect of BMI on the risk
of T2DM from this study is valuable for both investigations
and clinical practice. Although abundant observational studies
identified the association between BMI and T2DM, a causal
effect cannot be ascertained from these investigations. Especially
when their common SNPs were identified in recent studies, these
genetic variants were then deemed as the primary cause of the
BMI-T2DM association by some of the researchers. In brief,
current studies cannot help to understand how BMI is associated
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FIGURE 4 | Scatter plot of the ORs in leave-one-out analysis. Red dot is the result without missing SNPs. Blue dots represent the results after missing one SNP.

FIGURE 5 | Funnel plot for pleiotropic effect analysis of the variants.
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FIGURE 6 | The associations of individual SNPs with BMI and T2DM. Bars
represent 95% CIs. The slopes of the blue and black lines show the estimates
of genetic variants using IVW method and MR-Egger method, respectively.

with T2DM. The observation of this causal effect suggested that
helping to decline BMI could be used as a potential method when
developing T2DM prevention strategies. Excessive BMI means
that the body is overweight or in most cases obese, and this
is most likely as the real initial cause of T2DM. Obesity has
become a pandemic disease worldwide, which has resulted in a
significant increase in the incidence of diabetes, non-alcoholic
fatty liver disease and coronary heart disease (Milic et al., 2014;
Rao et al., 2015; Zhou et al., 2017). In obesity, the hypertrophy,
hypoxia of fat cells, endoplasmic reticulum stress, lipids toxicity
and many other factors can lead to adipocytokines dysfunction,
increased vascular permeability, along with promoting immune
cell infiltration into fat tissue, release of more inflammatory
factors, and formation of a vicious circle of inflammatory
reactions, leading to the persistence of chronic inflammatory
states. It is now widely believed that inflammation plays a key
mediator role in the development of type 2 diabetes (Ramalho
and Guimaraes, 2008; Engin, 2017). Therefore, strengthening
exercise, maintaining a reasonable diet and good fitness are still
the iron we must adhere to.

Our study benefits from both the GWAS data and MR method.
Clinical statistics using typical methods exposed large number
of the associations between diseases and phenotypic exposures.
With the rapid increase in the identifications about the genetic
basis of diseases and phenotypic exposures, using genetic variants
for precise estimates of the causal effect of phenotype on disease
by MR method, attracts more and more attention (Benn et al.,
2017; Richmond et al., 2017; Rodriguez-Broadbent et al., 2017;
Went et al., 2017). For example, Noyce et al. (2017) utilized
the MR method for assessing the causal influence of BMI on
the risk of Parkinson disease (PD). Nordestgaard et al. (2017)
estimated the effect of BMI on Alzheimer’s disease (AD). On
account of multiple genetic variants of phenotypes, Bowden et al.
(2015) proposed a strategy to view MR with multiple instruments
as a meta-analysis and an MR-Egger method for analyzing

bias caused by pleiotropy, which was widely used in current
studies. Considering the fuzzy relation between BMI and T2DM,
we conducted this MR analysis to specify their relationship.

The two assumptions were described in the “Introduction”
section for our MR study. Following assumption 1, 97 BMI-
associated SNPs were extracted from summary-level data of
Locke et al. (2015) study. After removing SNPs with LD and
T2DM-associated SNPs, 52 SNPs conforming to the assumption
2 were assigned for further analysis. In addition, MR requires that
the genetic variants are independent of any known confounding
variables. During to the lack of information about potential
confounding factors of BMI and T2DM, no confounders were
considered in this study. Therefore, our observation may be
limited by this weakness. Link prediction (Liu et al., 2017; Zhang
et al., 2017; Peng et al., 2018a) and artificial intelligence methods
(Cabarle et al., 2017; Peng et al., 2018b; Wei et al., 2017, 2018b,c)
may be used to solve this problem, which has been successfully
applied in the prediction of disease genes (Peng et al., 2017;
Zeng et al., 2017), miRNAs (Zeng et al., 2016, 2018; Zou et al.,
2016), RNA methylation (Wei et al., 2018a), and drug-induced
hepatotoxicity (Su et al., 2018).

In summary, the MR analysis in this article verified that high
BMI can increase the risk of T2DM. It helps us to understand
the pathogenic factor of T2DM. It also may help to enhance
the molecular and phenotypic annotations of T2DM and human
diseases (Cheng et al., 2016, 2018c), which could be further
applied in analyzing diseases in a system biology perspective
(Cheng et al., 2018a,b; Hu et al., 2018).
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In this study, we used pan RNA-seq analysis to reveal the ubiquitous existence of
both 5′ and 3′ end small RNAs (5′ and 3′ sRNAs). 5′ and 3′ sRNAs alone can be
used to annotate nuclear non-coding and mitochondrial genes at 1-bp resolution and
identify new steady RNAs, which are usually transcribed from functional genes. Then,
we provided a simple and cost effective way for the annotation of nuclear non-coding
and mitochondrial genes and the identification of new steady RNAs, particularly
long non-coding RNAs (lncRNAs). Using 5′ and 3′ sRNAs, the annotation of human
mitochondrial was corrected and a novel ncRNA named non-coding mitochondrial RNA
1 (ncMT1) was reported for the first time in this study. We also found that most of
human tRNA genes have downstream lncRNA genes as lncTRS-TGA1-1 and corrected
the misunderstanding of them in previous studies. Using 5′, 3′, and intronic sRNAs,
we reported for the first time that enzymatic double-stranded RNA (dsRNA) cleavage
and RNA interference (RNAi) might be involved in the RNA degradation and gene
expression regulation of U1 snRNA in human. We provided a different perspective on
the regulation of gene expression in U1 snRNA. We also provided a novel view on
cancer and virus-induced diseases, leading to find diagnostics or therapy targets from
the ribonuclease III (RNase III) family and its related pathways. Our findings pave the way
toward a rediscovery of dsRNA cleavage and RNAi, challenging classical theories.

Keywords: small RNA, 5′ end, 3′ end, Pan RNA-seq, genome annotation

INTRODUCTION

RNA sequencing (RNA-seq), performed primarily on next-generation sequencing (NGS) platforms,
is widely used to measure the expression levels of multiple genes simultaneously, with higher
accuracy than Serial Analysis of Gene Expression (SAGE) and microarray (Gao et al., 2014).
RNA-seq is also used for genome annotation, enabling the study of gene transcription, RNA
processing and various other biological functions. In particular, RNA-seq or small RNA sequencing
(sRNA-seq) is indispensable for the annotation of non-coding genes, while the annotation of
protein-coding genes can be conducted based on the analysis of protein codons. However, RNA-seq
cannot be used to obtain full-length transcripts by de novo assembly or alignment. Both PacBio
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full-length transcripts (PacBio cDNA-seq) (Ren et al., 2016)
and Nanopore cDNA sequencing (Nanopore cDNA-seq) (Gao
et al., 2014) can be used to obtain full-length transcripts
of mature RNAs or RNA precursors (Gao et al., 2016).
PacBio cDNA-seq produces reads with lower error rates than
Nanopore cDNA-seq, while Nanopore cDNA-seq can produce
longer reads than PacBio cDNA-seq. However, neither PacBio
cDNA-seq nor Nanopore cDNA-seq can provide the exact
3′-end information of transcripts (e.g., polyA regions) due to
reverse transcription. This results from the fact that primers
anneal to random positions located in the polyA or A-enriched
regions within the transcripts to start reverse transcription.
Nanopore direct RNA sequencing (Nanopore RNA-seq), as the
only available sequencing technology which can sequence RNA
directly (Garalde et al., 2018), theoretically can be used to
obtain the full-length 3′ ends of transcripts. However, it cannot
be used to obtain the exact 3′-end information of transcripts
either, due to the high error rate of Nanopore RNA-seq data.
Combined with specific capture or enrichment technologies,
several other RNA-seq methods have been developed to extend
the use of standard RNA-seq. Parallel Analysis of RNA Ends
and sequencing (PARE-seq), Cap Analysis of Gene Expression
and sequencing (CAGE-seq) and Precision nuclear Run-On and
sequencing (PRO-seq) have been developed to identify the 5′ ends
of mature RNAs (Bouvy-Liivrand et al., 2017). Polyadenylation
sequencing (PA-seq) has been developed to identify the 3′
ends of mature RNAs (Ni et al., 2013). Global Run-On and
sequencing (GRO-seq) has been developed to sequence nascent
RNAs (Bouvy-Liivrand et al., 2017), which helps to determine the
primary transcripts of genes.

In our previous studies, we used standard RNA-seq, sRNA-seq,
PARE-seq, CAGE-seq, PRO-seq, PA-seq, GRO-seq, PacBio
cDNA-seq, Nanopore cDNA-seq, and Nanopore RNA-seq etc to
improve gene annotation, defined as pan RNA-seq analysis. Using
pan RNA-seq analysis, we reported the corrected annotation
of tick and human rRNA genes (Chen et al., 2017), insect
mitochondrial genes (Gao et al., 2016) and human mitochondrial
genes (Gao et al., 2017). We also reported two novel long
non-coding RNAs (lncRNAs) found in human mitochondrial
DNA (Gao et al., 2017). In addition, we unexpectedly detected
the existence of 5′ and 3′ end small RNAs (5′ and 3′ sRNAs)
in animal rRNA genes (Chen et al., 2017) and later proved the
ubiquitous existence of 5′ and 3′ sRNAs in nuclear non-coding
and mitochondrial genes. In this study, we demonstrated that
5′ and 3′ sRNAs alone can be used to annotate nuclear
non-coding and mitochondrial genes at 1-bp resolution and
identify new steady RNAs. Using public sRNA-seq data from
the same species, this method provides a simple and cost-
effective way to annotate nuclear non-coding and mitochondrial
genes and identify new steady RNAs, which are defined to
be against transient RNAs. Furthermore, 5′, 3′, and intronic
sRNAs can be used to investigate RNA processing, maturation,
degradation and even gene expression regulation. Using 5′, 3′,
and intronic sRNAs, we revealed that enzymatic double-stranded
RNA (dsRNA) cleavage initiates RNA interference (RNAi), which
might be involved in the RNA degradation and gene expression
regulation of U1 snRNA in human. Our findings pave the way

toward a rediscovery of dsRNA cleavage and RNAi, challenging
classical theories.

RESULTS

Discovery of 5′ and 3′ sRNAs
A genome-alignment map of sRNA data usually exhibits certain
peaks or hotspots (Li et al., 2012) where the depths of these
positions are much higher than those of other positions in the
genome. In our previous study of human rRNA genes (Chen
et al., 2017), we found that some peaks represented 5′ and
3′ sRNAs that existed ubiquitously in nuclear non-coding and
mitochondrial genes in eukaryotes. Given that current sRNA-seq
technologies usually provide sequences with short lengths, 5′
and 3′ sRNAs are defined as sRNA-seq reads with lengths of
15∼50 bp, which are precisely aligned to the 5′ and 3′ ends
of mature RNAs, respectively (Figures 1A,B). They exhibit the
following features: (1) 5′ and 3′ sRNAs are degraded fragments
of mature RNAs and their lengths vary progressively with 1-
bp differences; (2) the cleavage sites between 3′ sRNAs and
their downstream 5′ sRNAs are not limited to one, but instead
consist usually of three sites (Figure 1C), due to inexact cleavage
by enzymes; and (3) 5′ and 3′ sRNAs of steady RNAs (e.g.,
18S, 5.8S, and 28S rRNA) are significantly more abundant
than their intronic sRNAs, while 5′ and 3′ sRNAs of transient
RNAs (e.g., internal transcribed spacers of rRNA, ITS1, and
ITS2) are not. The last criterion can be used to identify new
steady RNAs, which are usually transcribed from functional
genes. One example of a new steady RNA lncTRS-TGA1-1 and
another example of two novel mitochondrial lncRNAs (MDL1
and MDL1AS) are introduced in the following paragraphs. In
addition, we demonstrated that MDL1 and MDL1AS are two
steady lncRNAs in human mitochondrial DNA with biological
functions (Gao et al., 2017).

We used 5′ and 3′ sRNAs from one sRNA-seq dataset to
annotate genes and used one CAGE-seq dataset, one GRO-seq
dataset and one PacBio cDNA-seq dataset (section “Materials
and Methods”) to validate the annotations. Later, we developed a
simplified procedure for gene-annotation. Using only 5′ sRNAs,
gene annotation can be reduced to the identification of the 5′
ends of mature RNAs. In doing so, the 3′ ends of their upstream
mature RNAs and their cleavage sites can be derived (Figure 1A).
We have defined a new file format, named “5-end format,” to
easily identify the 5′ ends of mature RNAs. The new format
is derived from the Pileup format (see section “Materials and
Methods”) to include eight columns (Figure 1C) for each line
providing information for a genomic position: (1) chromosome
ID; (2) 1-based coordinate of this position; (3) reference base; (4)
depth (the number of reads covering the position); (5) ratio-1
(the number of positive-stranded reads starting at this position
divided by the total number of positive-stranded reads); (6)
the number of positive-stranded reads starting at this position
and the total number of positive-stranded reads; (7) ratio-2
(the number of negative-stranded reads starting at this position
divided by the total number of negative-stranded reads); and (8)
the number of negative-stranded reads starting at this position

Frontiers in Genetics | www.frontiersin.org 2 February 2019 | Volume 10 | Article 105147

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00105 February 12, 2019 Time: 19:35 # 3

Xu et al. 5′ and 3′ End sRNAs

FIGURE 1 | Definition of 5′ and 3′ sRNAs. (A) 5′ and 3′ sRNAs (in red color) are defined as sRNA-seq reads with lengths of 15∼50 bp, which are precisely aligned to
the 5′ and 3′ ends of mature RNAs, respectively. The lengths of them vary progressively with 1-bp differences. This figure shows 5′ and 3′ sRNAs from a typical
tRNA (in blue color). As for longer RNAs (e.g., snRNAs or rRNAs), there could be abundant sRNAs in the body. (B) 5-end format is defined to easily identify 5′ ends
of mature RNAs using sRNA-seq data. (C) Human rRNA genes (RefSeq: NR_046235.1) were annotated using alignment results in the 5-end format. Among
positions 7923, 7924, and 7925 with ratio1s (the 5th column) above 70%, the position 7925 with the highest ratio1 was determined as the 5′ end of 28S rRNA.

and the total number of negative-stranded reads. As the inexact
cleavage in RNA processing results in two or three neighboring
sites, we select the most occurred one for annotation. Using
the 5-end format, the 5′ end of one mature RNA can easily be
identified from two to three candidates (Figure 1C), the ratio-1s
or ratio-2s of which must be above a threshold (e.g., 75%) and
significantly higher than those of the positions surrounding them.

5′ and 3′ sRNAs in Nuclear Non-coding
Genes
Using 5′ and 3′ sRNAs, we corrected the annotation of human
rRNA genes. For the 5′ end of each mature RNA, we obtained
two or three candidates and selected the position with the highest
ratio-1 or ratio-2 to annotate genes on the positive or negative
strands. For example, we obtained three positions, 7,923, 7,924,
and 7,925, to identify the 5′ end of 28S rRNA and selected 7,925
for annotation (Figure 1C). In the same way, the 5′ ends of

18S and 5.8S rRNA were also identified using 5′ sRNAs. Then
the 3′ ends of 18S, 5.8S, and 28S rRNA were identified using 3′
sRNAs. Finally, the annotations of ITS1 and ITS2 were derived
using the annotations of 18S, 5.8S and 28S rRNA (Figure 2A).
The corrected annotations of human rRNA genes (Table 1) were
validated using the CAGE-seq dataset and the GRO-seq dataset
(Figures 2B,C). Although the depth of 1,471,247 reads at position
6,601 was much higher than the depth of 647,406 reads at position
6,596 in the sRNA-seq dataset, the 5′ end of 5.8S rRNA annotated
at position 6,601 with a ratio-1 of 35.42% (520,006/1,468,024)
was still corrected as position 6,596 with a ratio-1 of 88.11%
(569,882/646,805). In addition, the genome-alignment map using
the sRNA-seq dataset showed that human rRNA genes had peaks
at positions 6,596, 7,925, and 6,756 corresponding to the 5′ ends
of 5.8S and 28S rRNA and the 3′ end of 5.8S rRNA, respectively
(Figure 2A). The genome-alignment map using the CAGE-seq
dataset showed that human rRNA genes had peaks at positions
3,657 and 7,926 corresponding to the 5′ ends of 18S and 28S
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FIGURE 2 | Genome-alignment maps using sRNA-seq, Cage-seq, and
GRO-seq. This figure shows the count distribution of all aligned reads on the
reference rRNA sequence (RefSeq: NR_046235.1). These reads are from one
sRNA-seq dataset (A) one CAGE-seq dataset (B) and one GRO-seq dataset
(C) the description of these datasets can be seen in the Section “Materials
and Methods.” The identified 5′ and 3′ ends of mature RNAs are marked by
boxes.

rRNA, respectively (Figure 2B). This suggested that 18S and
28S rRNA could be capped by 5′ m7G or other caps, but 5.8S
rRNA could at most be capped at a low level, if at all. By
analyzing the 3′ sRNAs, we confirmed that mature rRNAs did not
contain 3′ polyAs.

Lee et al. (2009) a novel class of sRNAs named tRNA-derived
RNA fragments (tRFs) was introduced and three series of
tRFs (tRF-5, tRF-3, and tRF-1) were identified using the
sRNA-seq data of the human prostate cancer cell line by 454
deep sequencing. However, these authors did not achieve a

TABLE 1 | Annotation of human rRNA genes with corrections.

Gene Start End Start∗ End∗ Length∗

18S rRNA 3,655 5,523 3,655 5,523 1,869

ITS1 5,524 6,600 5,524 6,595∗ 1,072

5.8S rRNA 6,601 6,757 6,596∗ 6,756∗ 161

ITS2 6,758 7,924 6,757∗ 7,924 1,168

28S rRNA 7,925 12,994 7,925 12,993∗ 5,069

Human rRNA genes (RefSeq: NR_046235.1) were annotated using 5′ and 3′

sRNAs and ∗represented the corrected annotation.

full understanding of tRFs due to technological limitations
and their small dataset size. Using pan RNA-seq analysis, we
elucidated that the tRF-5 and tRF-3 series were 5′ and 3′ sRNAs
from mature tRNAs and that the tRF-1 series were 5′ sRNAs
from mature RNAs of the downstream genes (Figure 1B).
As these 3′ sRNAs contained detailed 3′-end information of
mature RNAs, we were able to assess factors related to tRNA
processing, maturation and degradation by analyzing 12 mature
tRNAs and their 42 precursors (Supplementary Table S1). For
example, we found that there are four types of 3′ sRNAs
derived from tRNAs: non-tail, C-, CC-, and CCA-tailed. The
proportions of these four types were 5.26% (22,906/435,595),
12.36% (53,845/435,595), 13.81% (60,176/435,595), and 68.57%
(298,668/435,595). In addition, we obtained the sequences of
full-length mature tRNAs of all four types: with non-tail, C-,
CC-, and CCA-tailed. Among these full-length mature tRNAs,
8,539 TRD-GTC2-1 tRNAs (for Asp) and 16,900 TRE-CTC1-1
tRNAs (for Glu) were obtained. These results suggested that
3′ sRNAs were produced by tRNA degradation during its
synthesis, when CCAs were post-transcriptionally added to
the 3′ ends of tRNAs one nucleotide at a time. Another
example was the correction of TRL-TAG3-1’s annotation.
Mature TRL-TAG3-1 (chr16:22195711-22195792) was annotated
as an 82-nt sequence from the human genome with its 3′
cleavage site ACCGCTGCCA| cacctcagaa. Using 5′ and 3′
sRNAs, the 3′ cleavage site of TRL-TAG3-1 (chr16:22195710-
22195792) was determined to be ACCGCTGCCAC| acctcagaa.
The genome-alignment results using the CAGE-seq dataset
showed that 5′ m7G or other caps of tRNAs did not exist. By
analyzing the 3′ sRNAs, we confirmed that mature tRNAs did
not contain 3′ polyAs. 5′ and 3′ sRNAs from all of the 13 mature
tRNAs were represented by peaks in the genome-alignment
maps, while only a few 3′ sRNAs of their upstream genes or 5′
sRNAs of their downstream genes were represented by peaks.
Among the peaks from these upstream or downstream genes, the
highest one was downstream of TRS-TGA1-1 (chr10:67764503-
67764584), which suggested that this peak was the 5′ end of a
new steady RNA which might be transcribed from a functional
gene that had not been annotated in the current genome
(version GRCh38/hg38). Since this new gene was downstream of
TRS-TGA1-1, it was named by lncTRS-TGA1-1 (Figure 1B).

Small nuclear RNAs (snRNAs) include a class of small RNA
molecules that are found within the splicing speckles and Cajal
bodies of the cell nucleus in eukaryotic cells (Matera et al., 2007).
snRNAs are always associated with a set of specific proteins and
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the complexes are referred to as small nuclear ribonucleoproteins
(snRNPs). SnRNAs are also commonly referred to as U-RNAs
and one well-known member is U1 snRNA (Cheng et al.,
2017b). Using 5′ sRNAs, we confirmed annotations of U1,
U2, U3, U4, U5, U6, and U7 (Supplementary Table S1). The
genome-alignment results using the CAGE-seq dataset showed
that U1, U2, U3, and U4 snRNAs could be capped by 5′ m7G or
other caps, but U5, U6, and U7 snRNAs could at most be capped
at a low level, if at all. By analyzing 3′ sRNAs, we confirmed
that mature snRNAs did not contain 3′ polyAs. In addition, we
did not find any new steady RNA upstream or downstream of
seven snRNA genes.

5′ and 3′ sRNAs in Mitochondrial Genes
Using pan RNA-seq analysis, we confirmed that nuclear
mitochondrial DNA segments (NUMTs) in the human genome
did not transcribe into RNAs (Gao et al., 2017). This finding
simplified the analysis of mitochondrial genes (e.g., mutation
detection or quantification) using transcriptome data. In our
previous study, we annotated two primary transcripts and
30 mature transcripts (tRNAIle, tRNAGlnAS, tRNAMet, ND2,
tRNATrp, tRNAAlaAS/tRNAAsnAS/tRNACysAS/tRNATyrAS,
COI, tRNASerAS, tRNAAsp, COII, tRNALys, ATP8/6, COIII,
tRNAGly, ND3, tRNAArg, ND4L/4, tRNAHis, tRNASer, tRNALeu,
ND5/ND6AS/tRNAGluAS, Cytb, tRNAThr, MDL1, tRNAPhe,
12S rRNA, tRNAVal, 16S rRNA, tRNALeu, and ND1) on the
H-strand at 1-bp resolution (Gao et al., 2017). We classified
mitochondrial genes into tRNA, mRNA, rRNA, antisense tRNA
(e.g., tRNASerAS), antisense mRNA (e.g., ND6AS), antisense
rRNA and lncRNAs (e.g., MDL1 and MDL1AS) (Gao et al.,
2017). Among the mature transcripts in human mitochondrial
DNA, tRNA transcripts were tailed by 3′ CCAs, while other
mature transcripts were tailed by 3′ polyAs. The analysis of
3′ sRNAs using the human931 sRNA-seq dataset (section
“Materials and Methods”) showed that the maximum lengths
of the polyAs in tRNAGlnAS, ND2, tRNAAlaAS-tRNATyrAS,
COI, tRNASerAS, COII, ATP8/6, COIII, ND3, ND4L/4,
ND5/ND6AS/tRNAGluAS, Cytb, MDL1, 12S rRNA, 16S rRNA,
and ND1 are 22, 13, 22, 17, 22, 24, 35, 22, 19, 22, 29, 25, 28,
32, 24, and 24, respectively. There was no significant difference
in length distribution between polyAs in mRNAs and rRNAs,
which updated the previous finding that the lengths of polyA
tails in rRNAs could only be estimated within 3–4 or 6–7 bp
(Stewart and Beckenbach, 2009). 3′ sRNAs containing polyAs
or CCAs of different lengths were captured to demonstrate
that 3′ sRNAs were produced by RNA degradation during its
synthesis, when polyAs or CCAs were post-transcriptionally
added to the 3′ ends of RNAs one nucleotide at a time. In
this study, we also confirmed that mitochondrial mRNAs and
rRNAs were capped by 5′ m7G or other caps (Gao et al., 2016).
Our data also showed that MDL1AS, ND5/ND6AS/tRNAGluAS
and tRNAAlaAS/tRNAAsnAS/tRNACysAS/tRNATyrAS could be
capped by 5′ m7G or other caps, but tRNAGlnAS and MDL1
could at most be capped at a low level, if at all. Although MDL1
was not capped by 5′ m7G or other caps as was MDL1AS, we
still proposed that both MDL1 and MDL1AS were steady RNAs
with biological functions, due to the fact that 5′ and 3′ sRNAs

of MDL1 and MDL1AS were significantly more abundant than
their intronic sRNAs. Further study showed that qPCR of MDL1
provided higher sensitivities than that of BAX/BCL2 and CASP3
in the detection of cell apoptosis (Liu C. et al., 2018).

The annotation resolution of mitochondrial tRNAs is limited
due to the complexity of tRNA processing. The annotation
of consecutive tRNAs (e.g., tRNATyr/tRNACys/tRNAAsn/tRNAAla

in human) is still difficult to solve (Figure 3). Using 5′ and
3′ sRNAs, we annotated the mitochondrial tRNAs of human
at 1 bp resolution, which corrected the previous annotations
(GenBank: NC_012920.1). Based on these results, we propose
a mitochondrial tRNA processing model. One mitochondrial
tRNA is cleaved from a mitochondrial primary transcript into
a precursor (Figure 3A), and then the acceptor stem of the
precursor is adenylated (e.g., tRNATyr in human) or trimmed
(e.g., tRNAAsn in human) to contain a 1-bp overhang at the
3′ end. Finally, CCAs (for most of tRNAs) or CAs (e.g.,
tRNAHis in Erthesina fullo) are post-transcriptionally added
to the 3′ ends of tRNAs, one nucleotide at a time. Using
other existing methods, mitochondrial tRNAs are annotated
between two trimming sites of their mature RNAs, which
misses the information of the cleavage sites. Using our method,
mitochondrial tRNAs are annotated between two cleavage sites
and the information of the trimming sites (Figure 3B) can be
derived using the mitochondrial tRNA processing model. As
the new annotations cover both entire strands of mitochondrial
genomes without any gaps or overlaps between neighboring
genes, a novel ncRNA named non-coding mitochondrial RNA
1 (ncMT1) was first discovered between tRNACys and tRNAAsn.
ncMT1 (NC_012920.1:5730-5760) with a length of 31 nt is
encoded by the L-strand and was identified as a steady
RNA (Figure 3B). The mature ncMT1 has a polyA tail as
mitochondrial mRNAs and rRNAs.

Mitochondrial genome annotation can also be confirmed
by the “mitochondrial cleavage” model that we proposed in
our previous study (Gao et al., 2017). The model is based
on the fact that RNA cleavage is processed: (1) at 5′ and
3′ ends of tRNAs, (2) between mRNAs and mRNAs (e.g.,
ATP8/6 and COIII) except fusion gene [e.g., ATP8/6/COIII
in Platysternon megacephalum (Liu J. et al., 2018)], (3)
between antisense tRNAs and mRNAs (e.g., tRNATyrAS
and COI) and (4) between mRNAs and antisense tRNAs
(e.g., COI and tRNASerAS); but is not processed: (1) between
mRNAs and antisense mRNAs (e.g., ND5 and ND6AS) or
(2) between antisense RNAs (e.g., ND6AS and tRNAGluAS
or tRNAAlaAS/tRNAAsnAS/tRNACysAS/tRNATyrAS). This
model does not rule out the possibility of a few cleavage
events in tRNAAlaAS/tRNAAsnAS/tRNACysAS/tRNATyrAS,
ND5/ND6AS/tRNAGluAS or MDL1 (tRNAProAS/D-loop),
however, such events are not necessary for their biological
functions. Among these 30 mature transcripts on the H-strand,
the enzymatic cleavage of COI/tRNASerAS was the most
complicated in that the cleavage site contained an A-enriched
region TCTAGACAAAAAA. The analysis of full-length
transcripts using the PacBio cDNA-seq dataset (section
“Materials and Methods”) showed that 95.65% (23,000/24,045)
of COI/tRNASerAS was not further cleaved, while only 0.19%
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FIGURE 3 | Corrected annotations of mitochondrial tRNAs. tRNATyr/tRNACys/tRNAAsn/tRNAAla is encoded by L-strand of human mitochondrial genome. tRNAAla is
not showed, as it does not need correction. ncMT1 was first discovered in this study. (A) Mitochondrial tRNAs are annotated between two cleavage sites using the
sRNA-seq based method, while they are annotated between two trimming sites and several nucleic acids in red color are missed using other existing methods.
(B) The acceptor stem of a tRNA precursor is trimmed to contain a 1-bp overhang at the 3′ end. CCAs are post-transcriptionally added to the 3′ ends of tRNAs, one
nucleotide at a time. A polyA tail is post-transcriptionally added to the 3′ end of ncMT1.

(45/24,045) and 4.16% (1,000/24,045) were cleaved at TCT|
agacaaaaaa and TCTAGAC| aaaaaa, respectively. This suggested
that COI/tRNASerAS was used as the template for the synthesis of
proteins as ND5/ND6AS/tRNAGluAS was used as the template.
This model was used to correct annotations of non-coding RNAs
in human mitochondrial DNA. For example, the identification of
ND5/ND6AS/tRNAGluAS, MDL1 and MDL1AS demonstrated
that all other reported mitochondrial lncRNAs (Hedberg
et al., 2018) could be degraded fragments of transient RNAs
or random breaks during experimental processing. Another
example included the observation that tRNAAlaAS-tRNATyrAS
(NC_012920: 1318-1638) was not further cleaved for specific
functions, which contradicted the hypothesis of a previous study
(Seligmann, 2010).

We had previously determined that the first transcription
initiation site (TIS) of the H-strand (ITH1) and the TIS of the
L-strand (ITL) were at positions 561 and 407 of the human
mitochondrial genome (RefSeq: NC_012920.1); however, the
second TIS of the H-strand (ITH2) was not determined using
only sRNA-seq data (Gao et al., 2017). By the analysis using
sRNA-seq and GRO-seq data, ITH2 was determined to be at
position 647 or 648 that was also the 5′ end of 12S rRNA. This

finding went against the long-standing claim that ITH2 was at
position 638 (Montoya and Attardi, 1982). Using pan RNA-seq
analysis, we found that all of the TISs (ITH1, ITH2 and ITL) could
be capped by 5′ m7G or other caps. We also found polyAs before
the TISs, particularly GAG6A0∼11 before ITH1, which suggested
that the transcription of mitochondrial genes could be initated by
primers containing polyAs. This finding explained why all of the
TISs resided in A-enriched regions. However, further studies are
necessary to support these explanations.

Be Careful With Design of Experiments
on ncRNAs
As it has been accepted that yeast and human cells transcribe
almost their entire genomes, a huge mass of hidden or cryptic
ncRNAs, particularly lncRNAs, has been identified (Houseley
and Tollervey, 2009). However, some of them are basic
transcriptional noise (Houseley and Tollervey, 2009), fragments
from RNA degradation or random breaks during experimental
processing. The correct identification of lncRNAs, particularly
steady lncRNAs, has not been addressed before this study.
Using the incomplete annotation of genome, researchers could
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FIGURE 4 | SiRNA duplexes discovered from U1 snRNAs. (A) The count distribution of all aligned reads on the reference U1 snRNA (RefSeq: NR_004430.2).
(B) The above is a mountain plot representation of the MFE structure, the thermodynamic ensemble of RNA structures and the centroid structure. The positional
entropy for each position is showed below. (C) The secondary structure of U1 snRNA. (D) U1 over-expression in the HEK293 (human), SY5Y (human) and PC-12
(rat) cell lines were conducted by virus transfection. The qPCR results showed the relative expression levels of U1 in 12 groups. For each experiment, 12 groups of
samples named control, ×1, ×2, ×3, ×4, ×5, ×6, ×7, ×8, ×9, ×10, and ×11 were transfected by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 µL U1-packaged
lentiviruses The control group used unprocessed samples.

misinterpret the results from experiments on ncRNAs. Here is a
typical example. In a previous study, Lee et al. (2009) designed
RNAi experiments to show that the knockdown of tRF-1001
impaired cell proliferation. However, tRF-1001 belongs to 5′
sRNAs from lncTRS-TGA1-1, which is an antisense gene of
HERC4 (Figure 1B). Therefore, the knockdown experiments

using siRNA duplexes in that study could result in the decrease in
the expression of both lncTRS-TGA1-1 and HERC4. We suggest
to use single-stranded siRNAs, instead of siRNA duplexes, to
knockdown these 5′ sRNAs and then compare the results to
those using over-expression of HERC4, since 5′ sRNAs from
lncTRS-TGA1-1 could inhibit the expression of HERC4 via RNAi
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or similar mechanisms based on new findings in this study. We
also found that most of human tRNA genes have downstream
lncRNA genes as lncTRS-TGA1-1 and the 5′ sRNAs of these
lncRNAs could perform molecular functions by inhibiting the
expression of their antisense genes.

Analysis of RNA Degradation Using 5′, 3′

and Intronic sRNAs
As 5′, 3′ and intronic sRNAs are degraded fragments of mature
RNAs, they can be used to investigate RNA degradation
(Houseley and Tollervey, 2009), particularly that of steady RNAs.
The analysis of sRNA-seq data showed that in general, 5′ and 3′
sRNAs were more abundant than intronic sRNAs and short 5′
and 3′ sRNAs were more abundant than longer ones for tRNAs,
rRNAs, snRNAs and mitochondrial RNAs. This suggested that
these mature RNAs, particularly short RNAs (e.g., tRNAs), were
mainly degraded by 3′ and 5′ exonucleases to accumulate 5′ and
3′ sRNAs. As for rRNAs and snRNAs, we found many peaks
representing intronic sRNAs in the body of genes, which were
significantly higher than the peaks representing 5′ or 3′ sRNAs in
the genome-alignment map. In addition, the peaks representing
intronic sRNAs in rRNAs showed tissue specificities. Liver tissue
(SRA: SRP002272) exhibited specific peaks at position 12,891.
Plasma (SRA: SRP034590) exhibited specific peaks at positions
5,431, 9,891, and 11,158. B-cells and exosome (SRA: SRP046046)
exhibited specific peaks at positions 3,789 and 9,891. Platelets
(SRA: SRP048290) exhibited specific peaks at positions 4,384 and
10,627. A more comprehensive study of these tissue specificities
was beyond the scope of this study. Instead, we focused on a study
of the secondary structures around these peaks in rRNAs and
snRNAs and found that some of them were involved in dsRNA
regions. In particular, we found a featured peak spanning a 43-bp
region from 49 bp to 92 bp of U1 snRNA (Figure 4). In this
region, the 5′ ends of most intronic sRNAs were precisely aligned
to 49 or 78 bp (Figure 4A). We also found a series of duplexes
with lengths from 15 bp to at least 25 bp (Figure 4C) from the
43-bp region forming a hairpin in the secondary structure of
U1 snRNA. The most abundant reads AGGGCGAGGCTTATC
and TGTGCTGACCCCTGC formed a 15-bp duplex structure.
The second most abundant reads AGGGCGAGGCT and
TGTGCTGACCC formed a 11-bp duplex structure. 99.97%
(49,889/49,903) of these duplexes were found from 14
samples of plasma (SRA: SRP034590) and the duplex ratio
of AGGGCGAGGCTTATC against TGTGCTGACCCCTGC
was 2.15 (34,065/15,824) and, which suggested that this dsRNA
region was cleaved by the RNase III family (Nicholson, 2013)
to produce these siRNA duplexes (Niu et al., 2017) and could
induce RNAi. This 15-bp and 11-bp duplex structures from
U1 snRNA are symmetric with 2-bp overhangs at the 5′ and 3′
ends, while duplexes from other snRNAs are not. For example,
the most abundant reads AAAATTGGAACGATACAGAGAA
and TGAAGCGTTCCATATTTTT from U6 snRNA formed
a asymmetric duplex structure, which still suggested that
this dsRNA region was cleaved by the RNase III family and
could induce RNAi. Based on the findings in this study, we
hypothesize that 5′ and 3′ exonucleases are more prevalent

than endonucleases for the degradation of mature non-coding
RNAs, hence the abundance of 5′ and 3′ sRNAs observed using
sRNA-seq data. The longer mature RNAs have more and longer
dsRNA regions (e.g., 15 bp long for stems in U1 snRNAs) than
shorter ones (e.g., 7–9 bp as the longest for stems in tRNAs) to
induce dsRNA cleavage to produce siRNA duplexes. Although
the vast majority of the lengths of siRNA duplexes revealed
in this study were concentrated at 15 bp (section “Conclusion
and Discussion”), we still hypothesized that they could induce
RNAi due to the unbalanced duplex ratio of 2.15. As RNAi
regulates the expression of these genes through a negative
feed-back mechanism, we designed preliminary experiments
to over-express U1 snRNA in the HEK293 (human), SY5Y
(human), and PC-12 (rat) cell lines to prove our hypothesis. The
basic idea was that if the negative feed-back mechanism existed,
the expression level of U1 snRNA would decrease rather than
remain stable once its over-expression surpassed a threshold.
The experimental results showed that the expression level of
U1 snRNA decreased after ×4, ×9, and ×6 dosages (section
“Materials and Methods”) in the HEK293 (human), SY5Y
(human), and PC-12 (rat) cell lines, respectively (Figure 4D). In
particular, the results in the HEK293 cell line showed a significant
effect caused by the negative feed-back mechanism. Therefore,
RNAi could be involved in the RNA degradation and regulation
of gene expression in U1 snRNA.

CONCLUSION AND DISCUSSION

In this study, we used pan RNA-seq analysis to reveal the
ubiquitous existence of both 5′ and 3′ end small RNAs.
5′ and 3′ sRNAs alone can be used to annotate nuclear
non-coding and mitochondrial genes at 1-bp resolution and
identify new steady RNAs. The identification of new steady
RNAs lead to the discovery of new genes (e.g., MDL1
and MDL1AS), new biological functions and even new
mechanisms. In our previous study on human rRNA genes
(Chen et al., 2017), we hypothesized that 5′ and 3′ sRNAs
performed biological functions and they are likely to have
detrimental effects on the regulation of gene expression, as
RNA degradation intermediates (Houseley and Tollervey, 2009).
Cellular experiments showed the RNAi knockdown of one 20-nt
degraded fragment “ATTCGTAGACGACCTGCTTC” from 28S
rRNA induced cell apoptosis and inhibited cell proliferation
(Chen et al., 2017). Additional investigation of the biological
functions of 5′ and 3′ sRNAs was beyond the scope of this study.

Using 5′, 3′ and intronic sRNAs, we reported for the first
time that enzymatic dsRNA cleavage and RNAi might be
involved in the RNA degradation and gene expression regulation
of U1 snRNA in humans. The function of RNAi in RNA
degradation was reported as an inappropriate event in yeast
rRNA and tRNA degradation and only happened when 5′ and
3′ degradation were absent (Buhler et al., 2008). However, our
findings suggest that the function of RNAi in RNA degradation
might be a general mechanism. Based on a previous study,
the Rnt1p protein cleaves hairpin structures in pre-rRNAs,
pre-mRNAs and transcripts containing non-coding RNAs (e.g.,
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snoRNAs) for their maturation in yeast. Rnt1p recognizes the
tetraloops [A/u]GNN and cleaves the stems ∼14–16 bp from
the hairpin structures (Nicholson, 2013). The most abundant
read AGGGCGAGGCTTATC discovered in this study contained
AGGG and AGGC tetraloops and had a length of 15 bp.
This suggested that Rnt1p-like enzymes could produce siRNA
duplexes from U1 snRNAs but Rnt1p has yet to be reported
in human to the best of our knowledge. This finding also
contradicted our basic knowledge that Dicer is required for
RNAi in mammal, producing siRNA duplexes with lengths of
∼20–25 bp. As members of RNase III family, both Rnt1p and
Dicer have RIIIDa, RIIIDb, and dsRBD domains. Rnt1p in
Saccharomyces cerevisiae contains a 155-aa N-terminal domain
(NTD), whereas Dicer and Drosha in human have much longer
N-terminal. The structure of Rnt1p post-cleavage complex shows
that a novel RNA-binding motif (RBM) recognizes the guanine
nucleotide in the [A/u]GNN tetraloop and that NTD and dsRBD
function as two rulers measuring the distance between the
tetraloop and the cleavage site (Song et al., 2017). Although our
preliminary experiments supported the existence of RNAi, the
identity of the enzyme that caused 15-bp duplexes in U1 snRNAs
remains unclear.

The ancestral function of RNAi is generally agreed to have
been immune defense against exogenous genetic elements such
as transposons and viral genomes (Buchon and Vaury, 2006).
However, our findings have rediscovered dsRNA cleavage and
RNAi. Our rediscovery is that both dsRNA cleavage and RNAi
are housekeeping systems rather than immune defense systems.
Basically, enzymatic dsRNA cleavage is responsible for RNA
processing, maturation and degradation, while RNAi regulates
gene expression via highly efficient RNA degradation. RNAi
of one gene produces siRNA duplexes that regulate expression
levels of itself or other genes. Mature RNAs containing a greater
number of hairpin structures have more chances to induce
RNAi, which is important for highly expressed genes (e.g., U1
snRNA) or viral genes. As DNA complemented palindromes
are prone to produce dsRNA regions, viruses containing a
greater number of such DNA complemented palindromes in their
genomes have more chances to induce RNAi for the regulation
of gene expression, which is important for their infectivity and
pathogenesis. In addition, we reported for the first time the
existence of complemented palindromic small RNAs (RNAs) and
proved that one cpsRNA from a 22-bp DNA complemented
palindrome in the SARS-CoV genome could induced RNAi
(Liu C. et al., 2018).

We provided a different perspective on the regulation of gene
expression in U1 snRNA. The primary function of U1 snRNA is
its involvement in the splicing of pre-mRNAs in nuclei. In the
past 20 years, research on U1 snRNA has focused on its primary
function, particularly as it relates to neurodegenerative diseases
caused by abnormalities in U1 snRNA (Cheng et al., 2017b). In
one of our previous studies, we reported that over-expression
of U1 snRNA induced a decrease in U1 spliceosome function
associated with Alzheimer’s disease. However, the relationship
between U1 snRNA over-expression and U1 snRNP loss of
function remains unknown (Cheng et al., 2017a). In another
study, we reported that U1 snRNA over-expression induced

cell apoptosis in SY5Y cells, but not in PC-12 cells (Cheng
et al., 2017b). This inconsistent result can be explained by
considering the function of RNAi in the RNA degradation
of U1 snRNA. Though SY5Y cells and PC-12 cells exhibited
different responses to U1 snRNA over-expression, both of
them displayed phenomena caused by the negative feedback
mechanism (Figure 4D). Using the human931 sRNA-seq dataset
(section “Materials and Methods”), we also found that sRNAs of
U1 snRNA were enriched in brain (SRA: SRP021924) but only
a few of them were siRNA duplexes. It suggested that RNAi did
not take a major role in the degradation of U1 snRNA in brain.
This finding helped better understanding of neurodegenerative
diseases caused by abnormalities in U1 snRNA.

We also provided a novel view on cancer and virus-induced
diseases. In one of our previous studies, we reported that U1
snRNA over-expression affected the expression of mammal genes
on a genome-wide scale and that U1 snRNA could regulate
cancer gene expression. This was explained by the fact that
alternative splicing (AS) and alternative polyadenylation (APA)
were deregulated and exploited by cancer cells to promote
their growth and survival (Spraggon and Cartegni, 2013). Our
alternate explanation is that the over-expressed U1 snRNA in
cancer cells recruits excess RNase III for RNAi, thereby causing
RNase III to lose its abilities to function in the RNA degradation
of other genes or in genome surveillance (Nicholson, 2013).
Viruses also recruit excess RNase III, prompting RNase III
to lose its abilities to function in host defense as well as its
regular functions.

MATERIALS AND METHODS

Datasets and Data Analysis
Data in four projects (SRP002272, SRP034590, SRP046046, and
SRP048290) were selected from the human931 sRNA-seq dataset
to build one sRNA-seq dataset for this study. Human931 was
built using 931 runs of human sRNA-seq data downloaded
from the NCBI SRA database (Wang et al., 2016). 15, 14,
12, and 6 runs of sRNA-seq data in these four projects were
produced using Illumina sequencing technologies with length
35∼46, 101, 101, and 101 bp, respectively. One CAGE-seq
dataset, one GRO-seq dataset (Bouvy-Liivrand et al., 2017)
and one PacBio cDNA-seq dataset (Gao et al., 2017) were
used to validate the annotations. The cleaning and quality
control of sRNA-seq, CAGE-seq and GRO-seq data were
performed using the pipeline Fastq_clean (Zhang et al., 2014)
that was optimized to clean the raw reads from Illumina
platforms. To simply annotate genes from a sequenced genome,
we aligned all the cleaned reads from sRNA-seq, CAGE-seq,
and GRO-seq data to the reference sequences using the
software bowtie v0.12.7 allowing one mismatch. Then, we
obtained SAM, BAM, sorted BAM, Pileup files using the
software samtools (Zhang et al., 2016). One perl script
(Supplementary Table S1) was used to transform Pileup files
into 5-end files. Statistical computation and plotting were
performed using the software R v2.15.3 with the Bioconductor
packages (Gao et al., 2014).
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Validation by Preliminary Experiments
U1 over-expression in the HEK293 (human), SY5Y (human), and
PC-12 (rat) cell lines were conducted by virus transfection using
the pLVX-shRNA1 plasmids and the Lenti-X HTX Packaging
System (Clontech, United States), which had been described
in our previous study (Cheng et al., 2017a). U1 snRNAs of
human and rat used synthetic DNA containing the sequence
(RefSeq: NR_004430.2) and the sequence (GenBank: V01266.1),
respectively. For each experiment, 12 groups of samples named
control,×1,×2,×3,×4,×5,×6,×7,×8,×9,×10, and×11 were
transfected by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 µL U1-packaged
lentiviruses (Figure 4D). Each group contained three samples for
biological replicates and the control samples used unprocessed
cells. Each sample contained 105 cells and virus titer was 107

TU/mL for 1X. After transfection, RNA extraction, cDNA
synthesis and cDNA amplification were performed following the
same procedure in our previous study (Cheng et al., 2017b). For
each sample, total RNA was isolated using RNAiso Plus Reagent
(TaKaRa, Japan) and the cDNA was synthesized by Mir-X miRNA
First-Strand Synthesis Kit (Clontech, United States). The cDNA
product was amplified by qPCR (Thermo Fisher Scientific,
United States) using U6 snRNA as internal control under gene-
specific reaction conditions. U1 snRNAs of human and rat used
the forward and reverse primers GGGAGATACCATGATCAC
and CCACTACCACAAATTATGC. U6 snRNAs of
human and rat used CGGCAGCACATATACTAA and
GAACGCTTCACGAATTTG. The qPCR reaction mixture was
incubated at 95◦C for 30 s, followed by 40 PCR cycles (5 s at
95◦C, 5 s at 60◦C, and 10 s at 68◦C for each cycle) using Hieff
qPCR SYBR Green Master Mix (Yeasen, China).
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Circular RNAs (circRNAs) are an emerging class of RNA species that may play a critical
regulatory role in gene expression control, which can serve as diagnostic biomarkers
for many diseases due to their abundant, stable, and cell- or tissue-specific expression.
However, the association between circRNAs and atrial fibrillation (AF) is still not clear.
In this study, we used RNA sequencing data to identify and quantify the circRNAs.
Differential expression analysis of the circRNAs identified 250 up- and 126 down-
regulated circRNAs in AF subjects compared with healthy donors, respectively. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
of the parental genes of the dysregulated circRNAs indicated that the up-regulated
parental genes may participate in the process of DNA damage under oxidative stress.
Furthermore, to annotate the dysregulated circRNAs, we constructed and merged the
competing endogenous RNA (ceRNA) network and protein-protein interaction (PPI)
network, respectively. In the merged network, 130 of 246 dysregulated circRNAs were
successfully characterized by more than one pathway. Notably, the five circRNAs,
including chr9:15474007-15490122, chr16:75445723-75448593, hsa_circ_0007256,
chr12:56563313-56563992, and hsa_circ_0003533, showed the highest significance
by the enrichment analysis, and four of them were enriched in cytokine-cytokine
receptor interaction. These dysregulated circRNAs may mainly participate in biological
processes of inflammatory response. In conclusion, the present study identified a set
of dysregulated circRNAs, and characterized their potential functions, which may be
associated with inflammatory responses in AF. To our knowledge, this is the first study
to uncover the association between circRNAs and AF, which not only improves our
understanding of the roles of circRNAs in AF, but also provides candidates of potentially
functional circRNAs for AF researchers.

Keywords: circular RNAs, atrial fibrillation, ceRNA network, PPI network, inflammatory responses

INTRODUCTION

Atrial fibrillation (AF) is one of the most common arrhythmias, which is closely associated with
poor life quality, stroke, heart failure, and elevated mortality (Chu et al., 2013; Lang et al., 2014).
The number of individuals with AF worldwide in 2010 was estimated to be about 33.5 million
(Chugh et al., 2014). The prevalence of AF varies regionally according to previous reports, ranging
from 0.1% in India (Kaushal et al., 1995) to 1–2% in Europe and North America (Go et al., 2001;
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Krijthe et al., 2013) and 4% in Australia (Middleton et al.,
2002). The prevalence and incidence of AF have been reported
to be higher in European ancestry than non-Europeans (Go
et al., 2001; Ball et al., 2013). The occurrence and development
of AF are significantly associated with multiple risk factors,
including aging (Chugh et al., 2014), male sex (Ball et al.,
2013), ethnicity (Rodriguez et al., 2015), cigarette smoking
(Ball et al., 2013), alcohol consumption (Ball et al., 2013),
obesity (Rahman et al., 2014), hypertension, left ventricular
hypertrophy (LVH), coronary artery disease (CAD) (Schnabel
et al., 2009), heart failure (HF) (Wang et al., 2003), and valve
disease (Rahman et al., 2014).

With the development of high-throughput technologies, such
as microarray, next generation sequencing, and mass-spectrum
based proteomics, our understanding of the AF pathogenic
mechanisms at different levels has been greatly improved.
Previous studies (Uemura et al., 2004; Pei et al., 2010; Li
et al., 2011; Yao et al., 2015; Mase et al., 2017) used a variety
of means to uncover potential molecules responsible for the
pathogenesis of AF. For example, genome-wide association
studies (Benjamin et al., 2009; Ellinor et al., 2010, 2012;
Sinner et al., 2014; Christophersen et al., 2017; Low et al.,
2017) have identified at least 30 loci associated with AF,
which expand the diversity of genetic pathways implicated in
AF and provide novel molecular targets for future biological
investigation. Furthermore, transcriptome analysis is one of
the most utilized approaches to study human diseases at the
mRNA level (Casamassimi et al., 2017). It has been used to
define the atrial mRNA expression in different types of AF (e.
g., postoperative, chronic, and paroxysmal) (Kim et al., 2003,
2005; Ohki et al., 2005; Deshmukh et al., 2015). In addition
to transcriptome analysis, mass-spectrometry-based proteomics
has matured into a broadly applied analytical tool over the
past decade (Aebersold and Mann, 2016). Mayr et al. (2008)
and Zhang et al. (2013) performed proteome analyses in left
and right human atrial appendages with persistent AF and
found 17 and 223 differentially expressed proteins compared
to patients with sinus rhythm. These studies suggest that the
pathogenesis of AF is multifactorial, and highlight the association
between increased inflammatory burden and the presence and
future development of AF (Kourliouros et al., 2009). However,
the increased morbidity of AF suggested that some specific
pathogenic mechanisms have not been fully understood.

Recently, there is growing evidence that non-coding
RNAs, including microRNAs, small nucleolar RNAs and long
non-coding RNAs, play important roles in occurrence and
development of diseases (Shi et al., 2013; Ruan et al., 2015; Yi
et al., 2018). Furthermore, circular RNAs are emerging as a new
type of regulatory molecules that participate in gene expression
control and disease progression (Han et al., 2018). In AF,
circRNA-associated ceRNA networks revealed that dysregulated
circRNAs (hsa_circRNA002085, hsa_circRNA001321) in non-
valvular persistent atrial fibrillation (NPAF) may be involved in
regulating hsa-microRNA (miR)-208b and hsa-miR-21 (Zhang
et al., 2018). Moreover, bioinformatics analysis provides a novel
perspective on circRNAs involved in AF due to rheumatic heart
disease and established the foundation for future research of the

potential roles of circRNAs in AF. To uncover the association
between circRNAs and AF, we performed an integrative
analysis of circRNAs, and identified dysregulated circRNAs in
lymphocytes of AF. The functions of the dysregulated circRNAs
were annotated by network-based Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis,
which highlighted several circRNAs participating in biological
processes of inflammatory response.

MATERIALS AND METHODS

Data Collection and Format Conversion
RNA sequencing data of 6 cases with AF and 6 healthy donors
were downloaded from Sequence Read Archive (SRA)1 database
(Leinonen et al., 2011) with an accession number SRP093226
using SRA Toolkit (Leinonen et al., 2011) version 2.9.22, which
was released by previous study (Yu et al., 2017). The downloaded
files with SRA format were converted to paired-end FASTQ files
by fastq-dump with the option –split-files.

RNA Sequencing Data Analysis
The RNA sequencing data were analyzed by two pipelines. For the
gene expression quantification, we mapped the RNA-seq reads
to UCSC human reference genome (hg19)3 by samples using
hisat2 (Kim et al., 2015). The resulting SAM files were sorted by
SAMtools. Gene expression was quantified by StringTie (Pertea
et al., 2015) with GENCODE (Harrow et al., 2012) annotation
v19. For the circular RNA detection and quantification, we
used the BWA-mem aligner to map the RNA-seq reads to
UCSC human reference genome (hg19). The circular RNAs were
predicted and quantified by CIRI-2 with GENCODE (Harrow
et al., 2012) annotation v19.

Identification of Highly Reliable Circular
RNAs Using RNA-seq Data
To identify the circular RNAs, we filtered the circRNAs with
more than 5-read counts in more than two samples. Moreover,
the threshold of the average ratio of junction reads supporting
circRNAs was also set to 10%.

Differential Expression Analysis
The count-based expression was used to identify differentially
expression genes and circRNAs by DESeq2 (Love et al., 2014),
a differential expression analysis based on the negative binomial
distribution. The gene and circRNA expression were normalized
to avoid the influence of sequencing depth and transcript length,
and was implemented in R package DESeq2. The differentially
expressed genes/circRNAs were identified at the threshold
P-value < 0.05 and fold change > 2 or < 1/2. The up- or down-
regulation status was determined based on the fold change for
each gene/circRNA.

1https://www.ncbi.nlm.nih.gov/sra
2http://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/
3http://www.genome.ucsc.edu
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GO and KEGG Enrichment Analysis
The Gene Ontology (GO) and KEGG enrichment analysis
was implemented at WEB-based Gene Set Analysis Toolkit
(WebGestalt) (Wang et al., 2017). The Gene Ontology
(Ashburner et al., 2000) biological processes and KEGG pathways
(Kanehisa et al., 2017) were selected as the functional database.

Protein-Protein Interaction Analysis
The Search Tool for the Retrieval of Interacting Genes/ Proteins
(STRING) (Szklarczyk et al., 2017) online software4 was used to
assess the interactions. The interactions of the proteins encoded
by the differently expressed genes were searched using STRING
online software.

MiRNA Target Prediction
The miRNA binding sites of circRNAs were predicted by Miranda
(Betel et al., 2008) with option –strict. We selected default
options for other parameters. The miRNA-mRNA interactions
were extracted from MiRTarBase (Chou et al., 2018). Together
with the reverse co-expression analysis of miRNA and mRNA,
miRNA and mRNA interaction pairs were predicted.

Competing Endogenous RNA Prediction
The competing endogenous RNAs (ceRNAs) function by
competing for miRNAs with mRNAs. The number of
miRNAs shared by each circRNA and mRNA pair should
be significantly higher. For each mRNA-circRNA pair, Fisher’s
exact test was used to estimate the significance of shared
miRNAs (P-value < 0.0001).

Functional Annotation of circRNAs
The protein-protein interaction (PPI) and ceRNA network were
merged and visualized using Cytoscape software5. The function of
circRNAs were predicted by the KEGG pathway (Kanehisa et al.,
2017) enrichment analysis performed on the genes connected to
these circRNAs within one node in the merged network.

Statistical Analysis
The statistical analyses, such as hierarchical clustering
analysis and Fisher’s exact test, were implemented in R
programming software6.

RESULTS

Identification of circRNAs in
Lymphocytes From Atrial Fibrillation and
Healthy Donors
We collected RNA sequencing data of 6 cases with atrial
fibrillation and 6 healthy donors from SRA7 database with an
accession number SRP093226 (Yu et al., 2017) (see section

4https://string-db.org
5http://www.cytoscape.org
6http://www.r-project.org/
7https://www.ncbi.nlm.nih.gov/sra

“Materials and Methods”), the RNA libraries of which were
constructed by rRNA-removal protocol and could be used to
identify circular RNAs (circRNAs). As described in the previous
study, two and three male samples were collected in AF and
healthy controls, respectively. Moreover, all samples did not
have smoking habits and alcohol abuse. Particularly, the average
age of AF patients was about 62 years old, which was slightly
older than that of healthy controls. The analysis of sequencing
data allowed for identifying 52,024 circRNAs in total, of which,
28,384 were identified in both atrial fibrillation and healthy
donors (Figure 1A). Among these identified circRNAs, we
observed that 13,899 were curated by a circRNA database,
circBase8 (Glazar et al., 2014). Moreover, we also found 13,733
and 9,907 circRNAs to be specific to the atrial fibrillation and
healthy donors, respectively (Figure 1A). Genomic annotations
revealed that these circRNAs were mostly originated from the
exons (77%), followed by introns (13%) and intergenic regions
(10%), suggesting that a considerable portion of circRNAs
were circularized at unannotated splicing sites in lymphocytes
(Figure 1B). The ratio of circRNAs transcribed from the sense
strands was close to 0.5, indicating that there was not strand-
preference in circRNA biogenesis (Figure 1C). In addition, we
also examined the distribution of circRNAs expression levels in
each sample, and observed that most of circRNAs were expressed
at low levels (Figure 1D). However, there were also about 25%
circRNAs in each sample that were expressed at a higher level
(> 30 read count, Figure 1D).

Identification of Dysregulated Genes and
circRNAs in Atrial Fibrillation
To identify the dysregulated genes and circRNAs, we performed
differential expression analysis on the gene and circRNA
expression profiles, respectively. We identified 713 up- and
994 down-regualated genes, and 250 up- and 126 down-
regulated circRNAs in atrial fibrillation compared with healthy
donors (P < 0.05 and fold change > 2 or < 1/2, Figures
2A,B), respectively. The hierarchical clustering analysis of
the dysregulated circRNA expression profiles revealed that
the samples with AF could be clearly distinguished from the
healthy donors (Figure 2C), suggesting that the dysregulated
circRNAs may act as potential AF diagnostic biomarkers
in lymphocytes. Notably, we observed an up-regulated
circRNA, hsa_circ_0030569, in AF patients (P-value < 0.05
and fold change > 1), which has been reported to response
to Mycobacterium tuberculosis (Mtb) infection in human
monocyte derived macrophages (MDMs), suggesting that this
circRNA may participate in immune or inflammatory processes
(Huang et al., 2017).

GO and KEGG Analysis of the
Dysregulated circRNA Parental Genes
It has been shown in previous studies that there is a
close association between circRNAs and their parental genes
as they could affect the expression of their parental genes

8http://www.circbase.org/
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FIGURE 1 | Overview of the identified Circular RNAs (circRNAs) in atrial fibrillation (AF) and healthy controls. (A) The Venn diagram displays the number of circRNAs
identified in AF and healthy controls, respectively. (B) The pie chart displays the ratio and number of circRNAs originated from exonic, intronic, and intergenic regions.
(C) The number and ratio of circRNAs transcribed from sense and antisense strands. (D) The distribution of count-based circRNA expression in each sample. The
purple and green boxes represent the AF and healthy control samples, respectively.

(Zhang et al., 2016; Wei et al., 2017). To investigate the
functions of the parental genes of dysregulated circRNAs in
AF samples compared with normal samples, we conducted a
gene set enrichment analysis of their parental genes based on
biological processes from GO and pathways from KEGG database
(Supplementary Table S1).

Gene ontology analysis indicated that the upregulated
genes were mainly involved in the regulation of chromosome
segregation, response to radiation, cell cycle phase transition,

DNA repair, cilium organization, mRNA processing, mitotic
nuclear division, cell projection assembly, microtubule
cytoskeleton organization, and peptidyl-lysine modification
(Figure 3A). Furthermore, the downregulated genes were mainly
enriched in categories associated with the regulation of histone
modification, forebrain development, microtubule cytoskeleton
organization, chromosome segregation, protein acylation,
macromolecule deacylation, skeletal system development,
organelle localization, in utero embryonic development, and
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FIGURE 2 | Differentially expressed genes and circRNAs. (A) and (B) display the volcano plots for gene- and circRNA-based differential expression analysis,
respectively. (C) The dysregulated circRNAs and samples are co-clustered by hierarchical clustering analysis. The count-based expression levels are normalized,
log2-transformed and scaled by circRNA.
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FIGURE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of parental genes of dysregulated circRNAs The enriched GO
terms and KEGG pathways are presented in (A–D). The pink and blue bars represent the GO terms or KEGG pathways enriched by parental genes of up-regulated
and down-regulated circRNAs, respectively.

reproductive system development (Figure 3B). These up-
regulated pathways noted above indicated that the up-regulated
parental genes may participate in the process of DNA damage
under oxidative stress.

Kyoto encyclopedia of genes and genomes pathway analysis
revealed that upregulated genes were primarily enriched in

pathways associated with RNA transport, endocytosis, cell
cycle, fanconi anemia pathway, terpenoid backbone biosynthesis,
protein processing in endoplasmic reticulum, p53 signaling
pathway, and hepatitis C (Figure 3C). In accordance with the
enriched GO terms, the up-regulated genes were significantly
enriched in pathways related to DNA damage under oxidative
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FIGURE 4 | Alternative circularization of the dysregulated circRNAs. (A) The number of circRNA isoforms for the parental genes with alternative circularization.
(B) Expression levels of switched circular RNA isoforms for six parental genes between AF and healthy controls. (C) The schematic diagram for the two circRNA
isoforms in PRRC2C with differential usage of the 10-th exon.
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FIGURE 5 | Functional annotation of dysregulated circRNAs by merging ceRNA and PPI network. (A) The merged network involving protein-protein and
circRNA-mRNA interactions. (B) The number of circRNAs for the top-ten most frequently enriched pathways.
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TABLE 1 | The top-five circRNAs with the highest significance level by KEGG enrichment analysis.

circRNA KEGG pathway P-value Genes

chr9:15474007-15490122 Cytokine-cytokine receptor interaction 4.97E-18 IL2RA,CCR5,CXCL10,CCR1,FASLG,CCL2,CCR2,IL5RA,IFNK,HGF,TNFSF10

chr16:75445723-75448593 Cytokine-cytokine receptor interaction 1.79E-15 IL2RA,IL5RA,IFNK,TNFSF10,FASLG,CCL2,CXCL10,CCR5,CCR2,TNFSF13B

hsa_circ_0007256 Cytokine-cytokine receptor interaction 4.09E-15 CCR5,CXCL10,CCR1,FASLG,IL2RA,CCL2,CCR2,HGF,TNFSF10

chr12:56563313-56563992 Cytokine-cytokine receptor interaction 4.44E-14 CCR5,CXCL10,CCR1,FASLG,IL2RA,CCL2,CCR2,HGF,TNFSF10

hsa_circ_0003533 RIG-I like receptor signaling pathway 4.58E-14 CXCL10,IRF7,DDX58,ISG15,FADD,CASP10,IFIH1,DHX58

stress. Downregulated genes were mainly associated with
homologous recombination, HTLV-I infection, transcriptional
misregulation in cancer, N-Glycan biosynthesis, FoxO signaling
pathway, lysine degradation, and breast cancer (Figure 3D).

Alternative Circularization of
Dysregulated circRNAs in Exonic
Regions
Alternative RNA circularization was determined only by back-
splicing sites, and therefore we inferred the gene structure
of circRNAs based on annotated transcripts. To avoid the
occurrence of fuzzy gene structure, only exonic circRNAs
were included in such analyses. We found that 24 genes had
more than two circRNA isoforms, of which, 20 produced
two isoforms, and 4 produced three isoforms (Figure 4A).
Interestingly, we also observed that six genes, including NCOA1,
ANKRD36BP2, PAPD4, PRRC2C, SCLT1, and EIF2AK1,
produced circRNA isoforms with opposite expression patterns
(Figure 4B), indicating that these expression-switched circRNA
isoforms may have opposite functions. Moreover, the expression-
switched circRNA isoforms for 5 of 6 genes did not have
overlapping exons. Exceptionally, the two circRNA isoforms,
hsa_circ_0015210 and chr1:171493960-171502100, produced by
PRRC2C, shared the 10-th exon (Figure 4C), indicating that the
differential usage of the 10-th exon was associated with AF.

Functional Annotation of circRNAs by
Integrating Potential ceRNA and PPI
Networks
To further investigate the regulatory mechanism of circRNAs, we
predicted the miRNA binding sites for each circRNA. Finally,
we predicted 43,307 miRNA-circRNA interactions by Miranda
v3.3a with a strict mode. As circRNAs could also act as ceRNAs
by competing for miRNAs with mRNAs, we also collected
322,389 experimentally validated miRNA-mRNA interactions
from MiRTarBase (Chou et al., 2018), of which, 12,930 were
miRNA/dysregulated mRNA interactions.

To construct the ceRNA network, we estimated the
significance of shared miRNAs for each circRNA-mRNA pair. We
predicted 1,025 up-regulated and 245 down-regulated circRNA-
mRNA pairs by one-tailed Fisher’s exact test (P-value < 0.0001),
involving 246 dysregulated circRNAs. Furthermore, we also
mapped the up-regulated and down-regulated protein-coding
genes to PPI network, respectively. To characterize the biological
functions of circRNAs, we merged the potential ceRNA network
with the PPI network (Supplementary Table S2), and performed

KEGG enrichment analysis on the genes connected to the
circRNAs within one node in the merged network. Finally,
130 of the 246 dysregulated circRNAs in the merged network
were successfully characterized by more than one pathway.
Notably, the five circRNAs, including chr9:15474007-15490122,
chr16:75445723-75448593, hsa_circ_0007256, chr12:56563313-
56563992, and hsa_circ_0003533, showed the highest significance
in the enrichment analysis, and four of them were enriched in
cytokine-cytokine receptor interaction (Table 1 and Figure 5A).
Notably, CCR5, which acted as a receptor for chemokines,
was the target of three circRNAs in the ceRNA network,
suggesting that the three circRNAs may enhance the activity of
cytokine-cytokine receptor interaction through CCR5. As shown
in Figure 5B, the pathways charactering top-ten number of
circRNAs, such as RIG-I-like receptor signaling pathway, Toll-
like receptor signaling pathway, NOD-like receptor signaling
pathway, and JAK-STAT signaling pathway, were mostly related
to inflammation, suggesting that the circRNAs enriched in these
pathways may participate in biological processes of inflammatory
response (Supplementary Table S3).

DISCUSSION

Circular RNAs are an emerging class of RNA species that
may play a critical regulatory role in gene expression control.
CircRNAs can serve as diagnostic biomarkers for many diseases
(Han et al., 2018) due to their abundant, stable, and cell- or
tissue-specific expression (Bachmayr-Heyda et al., 2015; Li et al.,
2018). However, the association between circRNAs and AF is
still not clear.

In this study, we used RNA sequencing data to identify and
quantify the circRNAs. Differential expression analysis of the
circRNAs identified 250 up- and 126 down-regulated circRNAs
in atrial fibrillation patients compared with healthy donors,
respectively (Figures 2A,B). The hierarchical clustering analysis
of the dysregulated circRNA expression profiles revealed that the
samples with AF could be clearly distinguished from the healthy
donors (Figure 2C), suggesting that the dysregulated circRNAs
may act as potential AF diagnostic biomarkers in lymphocytes.
GO and KEGG analysis of the parental genes of the dysregulated
circRNAs indicated that parental genes of dysregulated circRNAs
may participate in the process of DNA damage under oxidative
stress (Figures 3A,C). The down-regulated parental genes were
mainly associated with homologous recombination, HTLV-I
infection, transcriptional misregulation in cancer, N-Glycan
biosynthesis, FoxO signaling pathway, lysine degradation, and
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breast cancer (Figures 3B,D). To examine whether circRNA
isoforms originated from the same genes were dysregulated
in AF, we inferred the gene structure of circRNAs based on
annotated transcripts. Interestingly, among the dysregulated
circRNA isoforms, six genes, including NCOA1, ANKRD36BP2,
PAPD4, PRRC2C, SCLT1, and EIF2AK1, were identified to
produce circRNA isoforms with opposite expression patterns,
indicating that these expression-switched circRNA isoforms may
have opposite functions (Figure 4B). Notably, the two circRNA
isoforms, hsa_circ_0015210 and chr1:171493960-171502100,
produced by PRRC2C, shared the 10-th exon (Figure 4C),
indicating that the differential usage of the 10-th exon was
associated with AF. To further annotate the dysregulated
circRNAs, we constructed and merged the ceRNA network and
PPI network. In the merged network, 130 of 246 dysregulated
circRNAs were successfully characterized by at least one pathway.
Notably, the five circRNAs, including chr9:15474007-15490122,
chr16:75445723-75448593, hsa_circ_0007256, chr12:56563313-
56563992, and hsa_circ_0003533, showed the highest significance
in the enrichment analysis, and four of them were enriched in
cytokine-cytokine receptor interaction (Table 1). In summary,
these dysregulated circRNAs may participate in biological
processes of inflammatory response.

In this study, there also existed some limitations. Firstly,
more samples were needed considering the small sample size in
the present study. Secondly, we provided a set of dysregulated
circRNAs associated with AF, however, further experimental
validation would be required for future verification. Moreover,
specific functions of those dysregulated circRNAs had not been
further excavated in this study. We hope to conduct further
researches with a larger samples group, to perform experimental
validation and much deeper analysis in the near future.

CONCLUSION

We identified six genes, including NCOA1, ANKRD36BP2,
PAPD4, PRRC2C, SCLT1 and EIF2AK1, producing circRNA

isoforms with opposite expression patterns, and characterized
some inflammation-related circRNAs, such as chr9:15474007-
15490122, chr16:75445723-75448593, hsa_circ_0007256,
chr12:56563313-56563992, and hsa_circ_0003533, which may
be associated with inflammatory responses in AF. To our
knowledge, this is the first study to uncover the association
between circRNAs and AF, which not only improves our
understanding of the roles of circRNAs in AF, but also
provides candidates of potentially functional circRNAs
for AF researchers.
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Atherosclerosis is one of the most common type of cardiovascular disease and the prime
cause of mortality in the aging population worldwide. However, the detail mechanisms
and special biomarkers of atherosclerosis remain to be further investigated. Lately,
long non-coding RNAs (lncRNAs) has attracted much more attention than other types
of ncRNAs. In our work, we found and confirmed differently expressed lncRNAs
and mRNAs in atherosclerosis by analyzing GSE28829. We performed the weighted
gene co-expression network analysis (WGCNA) by analyzing GSE40231 to confirm
highly correlated genes. Gene Ontology (GO) analysis were utilized to assess the
potential functions of differential expressed lncRNAs in atherosclerosis. Co-expression
networks were also constructed to confirm hub lncRNAs in atherosclerosis. A total of
5784 mRNAs and 654 lncRNAs were found to be dysregulated in the progression of
atherosclerosis. A total of 15 lncRNA-mRNA co-expression modules were identified
in this study based on WGCNA analysis. Moreover, a few lncRNAs, such as ZFAS1,
LOC100506730, LOC100506691, DOCK9-AS2, RP11-6I2.3, LOC100130219, were
confirmed as important lncRNAs in atherosclerosis. Taken together, bioinformatics
analysis revealed these lncRNAs were involved in regulating the leukotriene biosynthetic
process, gene expression, actin filament organization, t-circle formation, antigen
processing, and presentation, interferon-gamma-mediated signaling pathway, and
activation of GTPase activity. We believed that this study would provide potential novel
therapeutic and prognostic targets for atherosclerosis.

Keywords: long non-coding RNA, atherosclerosis, WGCNA analysis, co-expression analysis, biomarker

INTRODUCTION

Atherosclerosis is characterized by intima-media thickness (IMT) in the middle membrane
of cervical artery and the formation of atherosclerotic plaque (Sluimer and Daemen, 2009).
Atherosclerosis is one of the most common types of cardiovascular disease and the prime
cause of mortality in the aging population worldwide (Sarnak et al., 2003; Mannino and Buist,
2007). Although the previous studies that indicated Immune system responses and inflammation
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responses were involved in the progression of atherosclerosis,
the detail mechanisms, and special biomarkers of atherosclerosis
remained to be further investigated.

Previous studies have revealed that non-coding RNAs, such as
miRNAs, lncRNAs, and circRNAs, played important regulatory
roles in human diseases. For instance, miRNAs were a type of
post-transcriptional regulators involved in mRNAs degradation
or translation blocking (Chekulaeva and Filipowicz, 2009;
Huntzinger and Izaurralde, 2011). Lately, lncRNAs have attracted
much more attention than other types of ncRNAs. lncRNAs were
a type of ncRNAs with more than 200 bps and observed to
be dysregulated in human diseases, including cancers, diabetes,
neurodegenerative disease, and cardiovascular diseases (Zamore
and Haley, 2005; Hauptman and Glavač, 2013; Zhang et al., 2013).
lncRNAs played crucial roles in regulating genome epigenetic
modification, RNA splicing, protein translation and mRNA
decay. For instance, XIST was a well-known lncRNAs involved
in X chromosome inactivation (McHugh et al., 2015). Of note,
emerging studies indicated lncRNAs could serve as a type of
novel biomarkers for diseases. For example, PCA3 was a potential
prognostic marker of prostate cancer, which was more sensitive
than the most widely used biomarker, prostate specific antigen
(PSA) (Leyten et al., 2014).

In the past decades, a few lncRNAs had been found to be
involved in the progression and prognosis of atherosclerosis.
For example, Shen and She (2018) reported rs145204276 in
the promoter region of GAS5 was associated with the risk of
atherosclerosis. Yao et al. (2018) found ENST00113 promotes cell
growth and metastasis in atherosclerosis via PI3K/Akt/mTOR
pathway. Moreover, H19 was also involved in atherosclerosis
through influencing NF-kB and MAPK pathway (Ding et al.,
2018). However, there was still lacking system identification of
differently expressed lncRNAs in atherosclerosis. Exploring the
functions and mechanisms of atherosclerosis related lncRNAs
will be useful for the identification of novel biomarkers for
this disease.

The Weighted gene co-expression network analysis
(WGCNA) method was widely used to identifying key
genes involved in human diseases progression. In our work,
atherosclerosis related lncRNAs were detected by analyzing
GEO datasets GSE28829. Furthermore, we performed the
WGCNA to analyze GSE40231 to confirm highly correlated
genes. Bioinformatics analysis were also performed to reveal
the potential functions of atherosclerosis related lncRNAs. We
thought this study will provide novel biomarkers associated with
atherosclerosis prognosis and progression.

MATERIALS AND METHODS

Data Sources
The public datasets, GSE28829 and GSE40231, were downloaded
from the NCBI Gene Expression Omnibus database. GSE28829
included 13 primary atherosclerotic plaques and 16 advanced
atherosclerotic plaques. GSE40231 included 278 atherosclerotic
samples from 66 patients. The original data were converted into
recognizable format in R, and the preprocess Core package was

used for the normalization. Afterward, the limma package of R
was used to identify the differentially expressed genes (DEGs) in
the progression of atherosclerosis.

Data Preprocessing
The R software package affy (Gautier et al., 2004) was used to
read the microarray data. The robust multiarray business method
(Hoffmann et al., 2006) was used for data preprocessing. For the
GSE28829 dataset, we identified differently expressed genes using
the limma package (Ritchie et al., 2015). The DEG with adjusted
P-value of less than 0.05 was selected.

lncRNA Classification Pipeline
In this work, a pipeline was utilized to identify lncRNA
expression pattern in atherosclerosis, which was described by
Zhang et al., 2012).

Weighted Gene Co-expression Network
Analysis (WGCNA) Analysis
In this study, we conducted WGCNA to predict the potential
roles of lncRNAs in atherosclerosis progression. The WGCNA
R package was used to evaluate the significance of the two
lncRNAs and their module membership. We assessed the
weighted co-expression relationship among all dataset subjects
in an adjacency matrix using the pairwise Pearson correlation.
Following the identification of weighted correlation, the network
was presented by Cytoscape 3.4.0.

Functional Group Analysis
Here, we used GO analysis and KEGG analysis to predict
the potential roles of genes by using DAVID system1

(Huang et al., 2009).

Identification of lncRNA-Associated PPI
Modules
We applied the analysis of the interaction between lncRNA and
protein by utilizing STRING online software was utilized to
analyze (Zhang et al., 2016) and the combined score >0.4 was
used as the cut-off criterion (Yan et al., 2017). The PPI network
was built by utilizing Cytoscape software (Kohl et al., 2011).

RESULTS

Identification of Atherosclerosis
Progression Related mRNAs and lncRNA
We performed analysis of a public dataset GSE28829 to identify
atherosclerosis related mRNAs and lncRNA. GSE28829 was
reported by Döring et al. (2012), and contained 13 early and 16
advanced atherosclerosis samples. As shown in Figure 1A, we
identified 3542 up-regulated mRNAs and 2487 down-regulated
mRNAs in advanced atherosclerosis samples compared to early
atherosclerosis samples.

1https://david.ncifcrf.gov/
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FIGURE 1 | Identification of atherosclerosis progression related mRNAs and
lncRNA. (A,B) Hierarchical clustering analysis shows differential mRNAs (A)
and lncRNAs (B) expression in advanced atherosclerosis samples compared
to early atherosclerosis samples by using GSE28829.

After applying lncRNA classification according to Hägg et al.
(2009) report, we identified 356 up-regulated mRNAs and 412
down-regulated lncRNAs in advanced atherosclerosis samples
compared to early atherosclerosis samples Figure 1B. However,
most of these lncRNA, such as RP11-212P7.2, RP11-498E2.7,
RP11-803D5.4, RP11-646J21.6, and RP11-334C17.5, were for the
first time observed to be associated with atherosclerosis.

Construction and Analysis of Gene
Co-expression Network
In order to explore the potential functions and mechanisms
of these lncRNAs in the progression of atherosclerosis, we
conducted WGCNA10 analysis using GSE40231. The network
was built by utilizing the WGCNA10.11 package in R software
(Langfelder and Horvath, 2008). After identifying the best
parameter (β = 4), we applied the WGCNA analysis according
to Langfelder et al.’s (2008) reports.

Based on such hypothesis, we acquired 15 gene modules
(Figure 2A). We acquired 78 gene modules by using
cutreeDynamic in WGCNA package (Langfelder and Horvath,
2008). According to Pidsley et al.’s (2014) reports, the soft
thresholding power five was selected, then, a large minimum
module size 10, and a medium sensibility (deep Split = 2)
were utilized to segment cluster (Figure 2B). After the Pearson
correlation coefficient between modules was calculated, the
key network was built (Figures 2C,D). When the absolute
value of correlation was greater than 0.45, two modules
would be connected.

Construction of Atherosclerosis Related
lncRNA-mRNA Co-expression Networks
Furthermore, we built atherosclerosis associated lncRNA-mRNA
co-expression networks by the Pearson correlation coefficient of
lncRNA-mRNA pairs in 15 gene modules based on WCGNA

analysis. lncRNA-mRNA pairs with | R| > 0.65 were selected
for co-expression networks construction. Our results revealed
that module 1 related network consisted of 36 lncRNAs and 520
DEGs, module 2 related network consisted of 22 lncRNAs and
229 DEGs, module 3 related network consisted of 17 lncRNAs
and 195 DEGs, module 4 related network consisted of 10
lncRNAs and 143 DEGs, module 5 related network consisted of
19 lncRNAs and 175 DEGs, module 6 related network consisted
of 15 lncRNAs and 104 DEGs (Figure 3), module 7 related
network consisted of 11 lncRNAs and 89 DEGs, module 8 related
network consisted of 10 lncRNAs and 61 DEGs, module 9 related
network consisted of 14 lncRNAs and 88 DEGs, module 10
related network consisted of 7 lncRNAs and 79 DEGs, module 11
related network consisted of 9 lncRNAs and 66 DEGs, module 12
related network consisted of 7 lncRNAs and 60 DEGs (Figure 4),
module 13 related network consisted of 4 lncRNAs and 34
DEGs, module 14 related network consisted of 5 lncRNAs and
34 DEGs, module 15 related network consisted of 4 lncRNAs and
20 DEGs (Figure 5).

A few lncRNAs, such as ZFAS1 (degree = 358), LOC100506730
(degree = 183), LOC100506691 (degree = 170), DOCK9-AS2
(degree = 167), RP11-6I2.3 (degree = 166), LOC100130219
(degree = 157), LOC100268168 (degree = 138), DAPK1-IT1
(degree = 130), LOC100507250 (degree = 129), HLA-J
(degree = 128), and LOC102723845 (degree = 121), were
identified as key regulators in this network.

Function Annotation of Atherosclerosis
Related lncRNAs
Furthermore, we performed bioinformatics analysis for
atherosclerosis related lncRNAs using DAVID system. Our
results showed lncRNAs in module 1 were involved in
regulating leukotriene biosynthetic process, response to
heat, integrin-mediated signaling pathway, Fc-gamma receptor
signaling pathway involved in phagocytosis, signal transduction,
positive regulation of catalytic activity, and inflammatory
response. lncRNAs in module 2 were involved in regulating
positive regulation of gene expression, sequestering of actin
monomers, gene silencing by RNA, muscle cell differentiation,
and ubiquitin-dependent protein catabolic process. lncRNAs
in module 3 were involved in regulating actin filament
organization, regulation of focal adhesion assembly, I-kappaB
kinase/NF-kappaB signaling, response to stress, and apical
constriction. lncRNAs in module 4 were involved in regulating
positive regulation of t-circle formation, t-circle formation,
interstrand cross-link repair, protein phosphorylation, and
mRNA processing Figure 6.

lncRNAs in module 5 were involved in regulating antigen
processing and presentation, interferon-gamma-mediated
signaling pathway, immunoglobulin production, humoral
immune response, and positive regulation of insulin secretion.
lncRNAs in module 6 were involved in regulating activation of
GTPase activity, positive regulation of transcription, positive
regulation of receptor biosynthetic process, negative regulation of
angiogenesis, and negative regulation of protein ubiquitination.
lncRNAs in module 7 were involved in positive regulation
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FIGURE 2 | Result of weighted gene correlation network analysis (WGCNA) analysis. (A,B) Cluster result and trait heatmap of data samples (A) and determination of
parameter β of the adjacency function in the WGCNA algorithm (B). (C) The scale independence of WGCNA analysis. (D) The mean connectivity of WGCNA analysis.
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FIGURE 3 | Continued
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FIGURE 3 | Result of atherosclerosis related lncRNA-mRNA co-expression networks. Construction of module 7–12 lncRNA-mRNA co-expression networks based
on WCGNA analysis. (A–F) The co-expression networks of module 1 (A), module 2 (B), module 3 (C), module 4 (D), module 5 (E), and module 6 (F).
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FIGURE 4 | Continued
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FIGURE 4 | Result of atherosclerosis related lncRNA-mRNA co-expression networks. Construction of module 7–12 lncRNA-mRNA co-expression networks based
on WCGNA analysis. (A–F) The co-expression networks of module 7 (A), module 8 (B), module 9 (C), module 10 (D), module 11 (E), and module 12 (F).
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FIGURE 5 | Result of atherosclerosis related lncRNA-mRNA co-expression networks. Construction of module 13–15 lncRNA-mRNA co-expression networks based
on WCGNA analysis. The co-expression networks of module 13 (A), module 14 (B), and module 15 (C).
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FIGURE 6 | Function annotation of atherosclerosis related lncRNAs. Gene Ontology (GO) analysis shows lncRNAs in module 1 (A), module 2 (B), module 3 (C),
module 4 (D), module 5 (E), module 6 (F), and module 9 (G) regulate multiple biological processes.
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of DNA topoisomerase activity, and ossification. lncRNAs
in module 8 were involved in positive regulation of protein
import into nucleus. lncRNAs in module 9 were involved
in circadian rhythm, multicellular organism development,
intracellular protein transport, protein polyglutamylation.
lncRNAs in module 10 were involved in response to virus,
positive regulation of GTPase activity, cellular response
to caffeine. lncRNAs in module 12 were involved in cell
cycle, positive regulation of t-circle formation, t-circle
formation Figure 6.

DISCUSSION

Atherosclerosis had been the prime cause of mortality in
the ageing population worldwide. However, the detail
mechanisms underlying atherosclerosis progression and
accurate biomarker for the prognosis of atherosclerosis
remained to be investigated. In our work, we aimed to
confirm atherosclerosis related lncRNAs and mRNAs
using GSE28829 and GSE40231. Totally, 5784 mRNAs and
654 lncRNAs were identified to be dysregulated in the
progression of atherosclerosis. WGCNA was performed
to identify highly correlated lncRNAs and mRNAs.
Moreover, co-expression network and bioinformatics
analysis were used to find the potential functions of lncRNAs
in atherosclerosis.

lncRNAs played crucial roles in human diseases via binding
to DNA, proteins and RNA molecules. Recently, a few
lncRNAs, such as GAS5 (Chen et al., 2017), NEAT1 (Jian
et al., 2016) and MALAT1 were reported to be associated
with regulating atherosclerosis progression and prognosis.
For example, interactions among MALAT1 (Han et al.,
2018), NEAT1, and key immune effector molecules could
regulate the development of atherosclerosis. However, still
lacking was a systematic identification of differentially
expressed lncRNAs in atherosclerosis. In this study, we
identified 356 up-regulated mRNAs and 412 down-regulated
lncRNAs in advanced compared to early atherosclerosis
samples. Among these lncRNAs, MBNL1-AS1, HAND2-
AS1, and RP11-999E24.3 were most down-regulated and
PSMB8-AS1, LINC01094, and RP11-389C8.2 were most
up-regulated lncRNAs in advanced atherosclerosis patients.
Interestingly, we observed several well-known lncRNAs, such
as TUG1, PCA3, and HOTAIR, which were also involved
in regulating atherosclerosis progression. A previous study
showed TUG1 knockdown could ameliorate atherosclerosis
via inducing FGF1 expression (Zhang et al., 2018). Moreover,
TUG1 was reported to be an oncogene in various types of
human cancers, such as colorectal cancer, ovarian cancer,
and gastric cancer (Huarte, 2015). PCA3 was a novel
potential biomarker for prostate cancer (Leyten et al., 2014).
HOTAIR is abnormally expressed in cancers and involved
in regulating cancer proliferation, cell cycle and apoptosis
(Esteller, 2011). This study together with previous studies
demonstrated lncRNAs also played key roles in the progression
of Atherosclerosis.

One of the biggest challenges in exploring the functions
of lncRNAs in human diseases was that lncRNAs could
not be used to perform GO and KEGG analysis. In
previous studies, many groups conducted bioinformatics
analysis for lncRNAs using their co-expressing genes.
For instance, Feng et al. (2018) identified and predicted
the functions of implantation failure related lncRNAs by
constructing the lncRNA-mRNA co-expression network. In
order to study the potential functions of atherosclerosis-
related lncRNAs, we performed WGCNA analysis.
A total of 15 lncRNA-mRNA co-expression modules
were identified in this study. A few lncRNAs, such as
ZFAS1, LOC100506730, LOC100506691, DOCK9-AS2,
RP11-6I2.3, LOC100130219, LOC100268168, DAPK1-IT1,
LOC100507250, and LOC102723845, were confirmed as
important lncRNAs due to that they co-expressed with
more than 100 different mRNAs in Atherosclerosis. Besides
ZFAS1, the roles of these lncRNAs remained unknown.
Here, we found ZFAS1 played the most important roles
in this network though co-expressing with 358 mRNAs.
ZFAS1 was dysregulated in breast cancer, gastric cancer,
and colorectal cancer, and played as an oncogene in cancer
progression though promoting cancer metastasis, growth
and EMT. Furthermore, we performed bioinformatics
analysis and observed these dysregulated lncRNAs were
significantly associated with the regulation of leukotriene
biosynthetic process, gene expression, actin filament
organization, t-circle formation, antigen processing, and
presentation, interferon-gamma-mediated signaling pathway,
and activation of GTPase activity. Of note, we observed
lncRNAs in module 5, such as RP11-171N4.1, DKFZP434K028,
LOC101929153, LGALS8-AS1, and LINC01410, were
significantly involved in regulating immune system responses
and inflammation responses, which had been reported to be key
regulators in atherosclerosis.

We should point out that there were several limitations
included in this study. First, the expression levels of key lncRNAs
in atherosclerosis was not validated using clinical samples.
Second, the detail of molecular functions of key lncRNAs in
the progression of atherosclerosis had not been investigated.
Therefore, the further validation and function investigation will
still require further study.

CONCLUSION

In conclusion, we identified a total of 275 lncRNAs were found to
be dysregulated in the progression of atherosclerosis. WGCNA
was performed to identify highly correlated lncRNAs and
mRNAs. Moreover, ZFAS1, LOC100506730, LOC100506691,
DOCK9-AS2, RP11-6I2.3, and LOC100130219 were identified
as key lncRNAs in atherosclerosis. Bioinformatics analysis
revealed these lncRNAs were involved in regulating the
leukotriene biosynthetic process, gene expression, actin
filament organization, t-circle formation, antigen processing,
and presentation, interferon-gamma-mediated signaling
pathway, and activation of GTPase activity. This research would
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provide potential novel therapeutic and prognostic targets
for atherosclerosis.
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Alzheimer’s disease (AD) is a neurodegenerative and progressive disease, which often

causes irreversible damages to the cerebrum. The pathogenesis of AD is far from being

fully understood, while there are some popular hypotheses. So far, the diagnosis of AD

relies only on clinical screening in the form of imaging techniques or cerebrospinal fluid

analysis, which may lead to inaccurate evaluation and then cause the delay of suitable

treatments. While molecular biomarkers provide promising alternatives of establishing

correct relationships between genotypes and phenotypes of clinical symptoms. In this

paper, we propose a machine-learning-based method of identifying potential diagnostic

biomarkers of AD based on gene coexpression network by integrating gene expression

profiles in six brain regions. After building an integrated gene coexpression network of

multiple brain regions, we decompose the differential network into some subnetwork

modules. The module candidates from these coexpressed gene communities are then

identified by screening their discriminative powers in control from disease samples.

The potential biomarkers are then validated by multiple cross-validations and functional

enrichment analyses. If the biomarkers successfully pass clinical significance tests, they

can be used as a reference for clinical diagnosis after wet-experimental validations.

Keywords: Alzheimer’s disease, biomarker discovery, gene expression, data integration, classification, machine

learning

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative and progressive disease, which causes irreversible
damages to the cerebrum with cognitive and functional impairments (Porteri et al., 2017).
Approximately, 50 million peoples are suffering from AD worldwide. The pathogenesis of AD
is still poorly understood and some popular hypotheses have been proposed, such as genetics,
cholinergic, amyloid and Tau protein hypothesis (Goedert and Spillantini, 2006). The progression
of AD is rather long-time because its pathological change is a slowly accumulating process. It often
takes years to decode, reveal and recognize the neuronal dysfunctions and neurodegeneration with
dominant symptoms (Hardy and Selkoe, 2002; Goedert and Spillantini, 2006).

Currently, the diagnosis of AD generally relies on clinical screening in the form of imaging
techniques or cerebrospinal fluid analysis (Jack et al., 2010). The limited dementia at an early stage
often leads to inaccurate diagnosis and then results in the delay of beneficial treatments. Thus,
the discovery of effective and efficacious biomarkers that can establish correct correspondences
and relationships with clinical symptoms has become an urgent request (Porteri et al., 2017).
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Take it into consideration that the complicated genetic and
environmental risk factors of developing AD in the human
brain, there are thousands or 10,000 of candidates from
genes, transcripts, and proteins with their interactions (Wang
et al., 2016). It is a big challenge to identify AD biomarker
molecules by making full use of the available big data. Due
to the underlying complexity, network-based computational
methods become important options to meet the challenge
(Liu et al., 2011, 2012a).

In this paper, we aim to detect AD biomarkers by integrating
gene expression data in six brain regions. Gene expression
profiling data generates a genome-wide measurement of RNA
abundance in parallel manners, which provide possible materials
of bridging the gap between genotype and phenotype, which is
the foundation of biomarker screening. Physiological and cellular
processes are executed through interactions among genes and
their products. Through the analysis of genetic network, which
models their interactive activities, it is possible to screen out
the core genes which play crucial roles in AD development
and progression (Liu et al., 2009). Moreover, the incidence of
AD in brain regions is sequential during disease progression.
It is necessary to identify molecular biomarkers by integrating
gene expression data from brain regions (Jack et al., 2013). To
these ends, we provide a bioinformatics framework of detecting
the potential diagnostic biomarkers based on differential gene
coexpression network obtained by integrating gene expression
profiles in multiple brain regions.

2. METHODS

2.1. Framework of Biomarker Discovery
Figure 1 demonstrates our proposed framework of identifying
diagnostic biomarkers of AD by integrating gene expression
data in six brain regions. Briefly, we identify the correlation
coefficients between differentially expressed genes across control
and disease samples. By integrating the correlations of six brain
regions, differential co-expressed gene pairs are selected by a
statistical test, and they construct a differential co-expressed
network. Then, we employ a network clustering method to
partition off it into subnetwork modules. By evaluating their
classification ability of distinguishing controls from diseases,
the modules are screened individually by machine learning
algorithms. The modules with the highest performance are
identified as biomarkers after functional enrichment analysis and
validation. The details shown in Figures 1A–D are introduced
as follows.

2.2. Data Pre-processing
The microarray gene expression datasets are downloaded from
NCBI GEO (ID:GSE5281) database (www.ncbi.nlm.nih.gov/
geo) (Liang et al., 2007). The experiments contain the gene
expression profiles of 161 samples in six brain regions, i.e.,
EC (entorhinal cortex), HIP (hippocampus), MTG (medial
temporal gyrus), PC (posterior cingulate cortex), SFG (superior
frontal gyrus), and VCX (primary visual cortex). In each brain
region, there are the corresponding samples of disease and
control simultaneously. The numbers of samples of affect/control

cases are 10/13 in EC, 10/13 in HIP, 16/12 in MTG, 9/13
in PC, 23/11 in SFG, and 19/12 in VCX. According to
the GPL570 annotation table, we map the probe set IDs
to Entrez gene IDs and gene official symbols, respectively.
When there are two or more corresponding gene IDs, we
only select the one with maximum interquartile range. In
each sample, the gene expression values are then normalized
into Z-scores (Cheadle et al., 2003). Totally, there are 23,643
unique genes to get their expression measurements after
data pre-processing.

2.3. Integration of Data in Six Brain Regions
2.3.1. Differential Gene
First of all, we identify the differentially expressed genes in the
six brain regions by the pre-processed gene expression data.
Specifically, we evaluate the differential p-value of each gene
across the control and disease samples via Welch’s two sample
t-test. For removing the high probability of committing type I
error in multiple hypotheses testing, the corresponding FDR is
also calculated (Noble, 2009). By setting up p ≤ 0.05 and FDR ≤

0.01, we screen out these differential genes in each brain region
respectively. We integrate the top 200 (top 10%) differential
genes in each brain region and get the union of differentially
expressed genes.

2.3.2. Correlation Analysis
For building gene-gene coexpression relationships in multiple
brain regions, we pick out the dysregulated interactions between
genes using differential correlation analysis in each region
individually. We firstly associate gene pairs in these identified
differential genes in an all-against-all manner. In other words,
we generate all the non-repetitive gene pairs that are produced
by these differential genes. For each gene pair, we calculate their
coexpression status in the samples via PCC (Pearson correlation
coefficient) (Liu et al., 2012b), i.e.,

r(X,Y) =

n
∑

i=1
(Xi − X)(Yi − Y)

(n− 1)SXSY
, (1)

where X and Y are the gene expression vectors. X and Y
refer to the mean values of X and Y . SX and SY represent
their standard deviations. Then the coexpression values for all
gene pairs in control and disease are obtained, respectively. We
integrate the six coexpression values under control condition
and those under disease condition into two new vectors across
six brain regions. The differentially coexpressed gene pairs are
identified via a nonparametric statistical testing. For the two
vectors of six elements, we implement Spearman’s t-test to detect
the differential gene coexpressions with thresholds of p-value ≤
0.05 and FDR ≤ 0.1.

2.4. Differential Co-expression Network
After collecting these differentially coexpressed gene pairs, we put
them together to form into a differential coexpression network
as shown in Figure 1C. It can be visualized when we import
these dysregulated gene interactions into Cytoscape (Shannon
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FIGURE 1 | The framework of detecting AD biomarkers from gene expression data. (A) The gene expressions of AD samples and controls in the six brain regions of

EC, HIP, MTG, PC, SFG and VCX respectively. (B) The union of differentially expression gene in each brain region. We generate the non-repetitive gene pairs from the

pairwise differential genes. For each gene pair, we calculate their coexpression status in the control and disease samples via PCC. For the two correlation vectors, we

implement Spearman’s t-test to detect the differential gene coexpressions with thresholds of p-value ≤ 0.05 and FDR ≤ 0.1. (C) The differential correlation gene pairs

construct a differential coexpression network. (D) The differential coexpression network is grouped into several subnetwork modules by clustering. They are screened

out as candidate biomarkers when they successfully classify controls and diseases. The functional enrichment analysis will be performed to justify the dysfunctions

underlying these candidates. Then, the validations in independent experimental settings are to check the classification performances of the identified biomarkers.

et al., 2003). The subnetworks of this network will be targeted
for identifying module biomarkers.

2.5. Clustering
For decomposing the whole differential coexpression
network into subnetwork modules, we group the nodes by
a network clustering algorithm, i.e., MCL (Markov clustering)
(Van Dongen, 2000). Specifically, MCL algorithm is a fast and
scalable unsupervised network clustering algorithm based on
topological structures and features. It repeats two basic algebraic
operations on matrices to simulate random walks on the network
(Vlasblom and Wodak, 2009). The first operation is expansion,
which is a process to calculate the probability of a random walk
of length n between any two nodes in the network. Considering

that the behavior of matrix multiplication is similar to random
walks on graph, the Markov matrix associated with the graph
can be used as the foundation of simulating these random walks.
In a network, the flow is much easier within its dense regions
than across its sparse boundaries. Thus, the second operation of
MCL is inflation, which aims to keep this property by changing
the distribution of each vertex transition values in the Markov
matrix such that high values are further high and low values
are further low. If the two-step iterations produce a convergent
matrix, the final clustering will be achieved (Van Dongen, 2000).

2.6. Classification
These gene subnetwork modules provide the candidates for
screening out the module biomarkers of classifying control
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and disease samples in brain regions. We perform an SVM
(support vector machine) classification procedure to evaluate the
discriminative ability of each module in distinguishing disease
state from a normal state. SVM classifier aims to find an optimal
hyperplane that satisfies the classification requirement and the
optimal margin evaluation criteria are based on the distance
between two support vectors (Suykens and Vandewalle, 1999).
In the classification with two categories, the classifier can be
constructed as follows. Given a training set of data points (xi, yi),
i = 1, 2, · · · ,m, x ∈ Rn, y ∈ {±1}, optimal hyperplane H is:

(w · x)+ b = 0. (2)

SVM classifier should meet some constraints, one of them is:

w·xi+b ≥ 1, if yi = +1;w·xi+b ≤ −1, if yi = −1 (3)

which is equivalent to

yi[w · xi + b ] ≥ 1, i = 1, 2, · · · ,m (4)

The other is to maximize the margin which is calculated
as 2/‖w‖. In other words, it is to minimize w. For
solving the constraint optimization problem, the Lagrange
function is introduced:

L(w, b, a) =
1

2
‖w‖ − λ ( y ((w · x )+ b )− 1) (5)

Where λi > 0 is Lagrangian multiplier. By setting partial
derivatives of (4) for w and b as 0, we finally find the optimal
hyperplane and construct a classifier as:

y(x) = sign [

m
∑

i=1

λi yi x
T
i x+ b ] (6)

In the case of binary classification, we assess the classification
performance of the SVM-based classifier by a leave-one-out cross
validation (Cawley and Talbot, 2004). For a comparison study,
we also implement several machine learning algorithms in the
classification, such as naive Bayes, neural network and random
forest (Liu, 2016).

2.7. Classification Evaluation
We evaluate the classification performance of these modules
by the ROC (receiver operating characteristic) curves and their
corresponding AUC (area under ROC curve) values. For each
gene module, we compare the classification AUC values achieved
by integrating gene expressions in six brain regions as well as in a
single brain region. In addition, we also implement naive Bayes,
neural network and random forest algorithms for classification.
The comparison identifies the target module selected by SVM
with the consistently high classification performance serving
as AD module biomarkers. We also prove the rationality of
data integration in six brain regions in the identification. The
subnetwork module with highest AUC values is identified as
the module biomarkers of AD for further cross-brain-region
and cross-dataset validations. Then, the target network module
with the best classification performances is regarded as the final
identified AD biomarkers.

2.8. Enrichment Analysis
The functional implications of these network modules with
good classification performance are obtained by GO (gene
ontology) enrichment analysis. We implement our NOA
(network ontology analysis) method (http://app.aporc.org/
NOA/) to identify the enriched dysfunctions in these biomarker
genes. From the functional implications, we can partially
validate these identified biomarkers about their roles of AD
development and progression.

3. RESULTS

3.1. Differentially Expressed Genes
After data pre-processing, we obtain 23,643 genes with their
expression profiles. In each brain region, we identify the top 200
(top 10% genes picked after setting up p ≤ 0.05 and FDR ≤ 0.01)
differential genes. All together, we identify 1,001 differentially
expressed genes. Figure 2 illustrates the overlapping summary
statistics of these differential genes distributed in the six brain
regions. We find that most of the differential genes are only the
differentially expressed genes in individual brain regions. Few
genes are simultaneously differential across several brain regions.

3.2. Coexpression Network and Modules
For each pair of differential genes, we calculate the differential
correlation values via a statistical testing between control and
disease samples. We identify the differentially coexpressed gene
pairs and put them together to form a differential coexpressed
network with 615 dysregulated interactions. By employing
MCL algorithm, we identify some dysregulated subnetwork
modules from the network. Figure 3A demonstrates five (top 5
number of genes in modules) of these modules. We note that
there is obviously a hub gene in these modules individually,
which indicates a topological feature of these differential
coexpression networks.

As shown in Figure 3A, gene NPIPA1 (nuclear pore complex
interacting protein family member A1) is the identified hub
differential gene with differential correlations with all the
other genes in Cluster 1. NPIPA1 is proved to perform
biological functions of mRNA transport and protein transport.
It has an interacting gene MAP2K4, which encodes an
important membrane protein of MAPK (mitogen-activated
protein kinase) family. From the interacting partners in Cluster
1, the biologically cooperative dysfunctions can be revealed.
The differential coexpressed interaction between NPIPA1 and
MAP2K4 implies the dysfunctional signal transduction in AD.
From the network-based approach, the global scenario of
dysfunctions is displayed for AD development and progression
in the form of molecular subnetworks.

3.3. Biomarker Classification
For evaluating the performance of these clusters in distinguishing
control and disease, we perform leave-one-out classifications.
The ROC curves of these five clusters in the six brain regions are
shown in Figure 3B. We also implement our evaluations in each
brain region respectively. The sensitivity, specificity and AUC
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FIGURE 2 | Top differentially expressed genes and their overlapping gene numbers in six brain regions.

values are shown simultaneously. The detailed AUC values in six
brain regions are shown in Table 1.

From Table 1, we find that the five clusters reach high AUC
values in the six brain regions. The 5th cluster reaches the highest
AUC values of 1.0. These results provide direct evidence for
the effectiveness and efficiency of these candidate biomarkers
in distinguishing between control and disease states. We also
calculate the AUC values of summarizing these individual
brain regions and their average values. The good classification
performances indicate these modules can service as biomarkers
of classifying the disease states in multiple brain regions. For
better AUC values of these modules in various brain regions,
we select Cluster 1 and Cluster 5 to further screening through
different classification algorithms.

We further test the discriminative capability of the two
clusters by other three classification algorithms, i.e, naive
Bayes, neural network, and random forest. Joint with SVM,
Figures 4A,B demonstrate the ROC curves of the classifiers
based on the four algorithms. In Cluster 1, we find that random
forest achieves the best AUC of 0.994 from Figure 4A. While in
Cluster 5, it achieves the AUC of 0.755 as shown in Figure 4B.
Relatively, SVM obtains stably high AUC values of 0.984 and
1.0, respectively. Thus, we prefer SVM classifier to distinguish

normal and disease states and Cluster 1 is the identified
AD biomarkers.

For a comparison study with conventional biomarker
discovery methods, we implement two widely-used methods,
i.e., the method using differentially expressed genes (denoted as
‘DiffGene’ method) (Liu, 2016) and the variable/feature selection
method by SVM-RFE algorithm (denoted as ‘SVM-RFE’ method)
(Guyon et al., 2002). Figure 5 demonstrates the AUC values of
classification results. As shown Figure 5A, the AUC values of
‘DiffGene’ method are not as good as our proposed method
shown in Table 1. In Figure 5B, the AUC values of ‘SVM-RFE’
method are not consistently high. In brain regions of HIP, SFG
and VCX, the AUC values of our proposed method (Table 1)
exceed those of ‘SVM-RFE’. The comparisons demonstrate our
method outperforms the conventional methods in terms of
classification performance.

3.4. Biomarker Dysfunctional Analysis
For analyzing the functional implications in these identified
diagnostic biomarkers of AD, we use NOA to enrich the
GO annotations underlying these gene modules. Table 2 shows
the significant GO terms of biological process. As shown in
Table 2, we find the function of ‘lipid transport’ is enriched,
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FIGURE 3 | Five differential subnetwork modules and their ROC curves in classification. (A) Five gene modules identified by MCL clustering of differential

coexpression network. Clusters 1–5 contain 44, 15, 13, 10, and 7 genes respectively. (B) The ROC curves of Clusters 1–5 in classifications in EC. The specificity and

sensitivity are (0.955, 0.932), (0.933, 0.865), (0.385, 1.000), (0.800, 0.900), and (1.000, 1.000), respectively.
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FIGURE 4 | The ROC curves of four classification algorithms on Cluster 1 (A) and on Cluster 5 (B).

TABLE 1 | The classification AUC values of the five clusters.

Region Cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

ALL 0.983 0.960 0.633 0.900 1.000

Average 0.961 0.887 0.730 0.813 1.000

EC 0.938 0.938 0.331 0.890 1.000

HIP 0.953 0.956 1.000 0.730 1.000

MTG 1.000 0.609 0.988 0.550 1.000

PC 0.936 0.920 0.799 0.930 1.000

SFG 0.966 0.942 0.538 0.780 1.000

VCX 0.972 0.960 0.722 1.000 1.000

FIGURE 5 | The classification performances by conventional biomarker discovery methods in the six brain regions. (A) The ROC curves of ‘DiffGene’ method on top

44 differential genes. (B) The ROC curves of ‘SVM-RFE’ method on top 1,000 differential genes.

which indicates the dysfunctional metabolism and energy
transformation in AD. The epigenetics of ‘regulation of DNA
methylation’ indicates the dysfunctional modifications related to
AD. The important enrichments provide a functional map with
blocks in these identified biomarker genes. They provide more
evidence of functional importance of these biomarkers, which
enlighten the insightful findings of AD pathogenesis.

4. DISCUSSION

4.1. Cross-Region Biomarker Classification
AD is a chronic neurodegenerative disease which affects various

brain regions of controlling various physical functions (Liang

et al., 2007). The module biomarker of Cluster 1 with good

classification power in control and disease samples has been
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TABLE 2 | The enriched GO biological processes in the identified AD biomarkers.

GO term Representative

gene

Term

name

Corrected

P-value

GO:0006869 CEL, FABP2, SORL1 lipid transport 8.9E-5

GO:0050892 CEL, FABP2 intestinal absorption 2.6E-4

GO:0022600 CEL, FABP2 digestive system process 0.0015

GO:0018350 CEL protein amino acid esterification 0.0016

GO:0044030 TNNI3 regulation of DNA methylation 0.0016

GO:0034196 APOH acylglycerol transport 0.0016

identified by integrating gene expression data of six brain regions.
It is of interest to investigate the cross-region classification
performances for checking the potential pathogenic relationship
between brain regions.

To evaluate the classification accuracy of module biomarker
between six brain regions, we train the SVM classifier by utilizing
gene expression data in one brain region and then test it in the
other brain regions. Taking EC brain region as an example, we
first extract the expression data of these module biomarker genes
in EC and train the classifier for recognizing their patterns in
control and disease samples. Then we test the trained classifier of
distinguishing controls from diseases by the gene expression of
these biomarker genes in the other five brain region individually.
The five AUC values of classification are shown in Figure 6A.
They are plotted as a bar. Secondly, we train the SVM classifier by
the gene expressions in the other five brain regions, respectively
and then test the classification performance in EC. The five AUC
values are shown as the other bar graphs in Figure 6A.

From the AUC values of cross-brain-region validations, we
can roughly estimate the dysfunctional relationships between the
six brain regions from the view of dynamic gene expressions.
In Figure 6A, we can find the classifiers achieve higher AUC
values in HIP, MTG, PC, and SFG than that in VCX when we
train them by the expressions of biomarkers in EC (0.657, 0.707,
0.598, and 0.809 vs. 0.508). This indicates the gene expressions
in VCX are different from the other five brain regions. During
AD progression in brain regions, the differences of effect in VCX
have been identified (Liang et al., 2007; Liu et al., 2011). When we
train the classifiers by the gene expression of biomarkers in the
five brain regions, the classification performance for the samples
in EC achieves high AUCs, i.e., 0.912 of HIP, 0.827 of MTG,
0.843 of PC, 0.802 of SFG, and 0.496 of VCX, respectively. We
find the AUC of VCX is still the lowest one. This provides more
evidence for the distinction of VCX during AD development.
Moreover, the high AUC in some specific brain region implies its
dysfunctional specificity. While we mainly focus on integrating
the gene expression data of six brain regions to identify general
biomarkers for AD instead of detecting specific biomarkers for
individual brain regions.

Compared to the former AUCs by training the classifiers
in EC and testing them in the other five regions, the higher
AUC values prove the significant gene expression deviance of
these biomarkers in EC. When we train the classifiers in the
other five brain regions, the accurate classification performance
in EC indicates that the gene expressions in the four brain
regions contain the information of distinguishing controls from

diseases. The asymmetric cross-brain-region classification results
also inspire us to integrate the gene expressions in six brain
regions to identify AD biomarkers for compensating the diversity
of gene expressions in multiple brain regions.

4.2. Individual-Region Biomarker
Classification
Instead of detecting AD biomarkers in the six individual brain
regions, we integrate the differential coexpression gene pairs in
these regions by a systematic strategy. For the comparison study,
we also identify the candidate biomarkers by the gene expression
data in the six brain regions individually and investigate
their classification powers. We implement the whole former-
described processes of biomarker discovery except the selection
of differential gene coexpression pairs. In individual brain
regions, the differential gene correlation pairs are alternatively
based on the absolute difference values of the PCCs in control
and disease samples. In each brain region, we rank the gene
pairs according to differential correlations and select the same
number of them as those in the former integrationmethod. These
differential gene pairs construct the individual gene coexpression
networks in the six brain regions, respectively.

For each gene coexpression network, we also employ the MCL
algorithm to decompose it to subnetwork clusters. For similarity,
the clusters with the largest number of genes are recognized
as the candidate biomarkers. For comparing the classifications
of individual candidate biomarkers with the region-integrated
biomarkers, we implement the leave-one-out cross-validations in
these competitors and in the identified AD biomarkers.

Figure 6B demonstrates the comparison of AUC values in the
six brain regions. By leveraging the gene expressions in each
brain region, we implement the cross-validations of classification
in the individual-region biomarkers and the region-integrated
biomarkers. Except in EC, we can find the module biomarker
achieves higher AUC values when compared to these candidate
biomarkers in individual brain regions. In EC, the candidate
biomarkers achieve a perfect AUC of 1.0 (vs. 0.938 of the
identified biomarker). However, the identifiedmodule biomarker
obtains higher classification AUC values than those in the other
four individual brain regions. The results also indicate the
rationality of identifying AD biomarkers by integrating gene
expression datasets in several brain regions.

4.3. Cross-Dataset Biomarker
Classification
For cross-dataset validation of our identified AD biomarkers, we
also test their classification performance in independent datasets.
The other AD gene expression profiles are downloaded from
NCBI GEO (access ID: GSE48350). The dataset consists two
sample-paired subsets in EC. One contains 15 AD brain samples
and 21 control samples (from donors of young ages from 20 to
52). The other contains 15 AD brain samples and 18 control
samples (from donors of old ages from 64 to 99). By utilizing
the biomarkers, we test the classification in the two subsets,
respectively. The ROC curves of classification by our module
biomarker are shown in Figure 6C.
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FIGURE 6 | The classification validations of identified biomarkers. (A) The AUC values of cross-brain-region classifications between EC and the other five brain

regions by module biomarker. ‘Predict EC’ means that we train the classifier by the gene expression of biomarkers in the other five brain regions respectively, and then

test the classification performance in EC. And ‘Train EC’ means that we train the classifier in EC and test the classification in the other five brain regions respectively.

(B) The classification AUC values obtained by individual-region and integration-region methods. The AUCs of the ‘individual’ module biomarkers are 1.000, 0.720,

0.719, 0.847, 0.902, and 0.954 in the six brain regions respectively. For the ‘integration’ module biomarker, the corresponding AUCs are 0.938, 0.953, 1.000, 0.936,

0.966, and 0.972, respectively. (C) The ROC curves of classification by AD biomarkers in independent datasets. ‘Young’ and ‘Old’ represent the datasets with

different types of control sample respectively. The gray region refers to the standard deviations of classification in 30 random-choosing gene sets. (D) The ROC curve

of biomarker classification in independent blood samples.

In classifying the AD samples with old-aged controls, the
module biomarker achieves the AUC of 0.877. And the AUC
value in the samples with young-aged controls is 0.972. The two
AUC values prove the effectiveness and efficacy of our identified
module biomarker in distinguishing AD samples from controls.
Figure 6C also shows the ROC curve (with the gray range
of standard deviations) in the same-size number of gene sets
randomly choosing from the gene expression profiling data. The
higher classification performances in the identified biomarkers
provide more evidence for the efficiency and advantage of our
proposed method.

4.4. Blood Validation
Currently, the accurate detection of AD in clinics is often
based on nuclear magnetic resonance imaging, cerebrospinal
fluid as well as PET (positron emission tomography) - CT

(computed tomography). The finding diagnosis biomarkers
provide possible alternatives with more clinical validations. Note
that our identification is based on gene expression profiles
in human brains. From a practical perspective in clinician,
peripheral blood plasma testing is much more convenient,
cheaper and with lower invasion in AD diagnosis (Suhre
et al., 2017). Thus, we perform validation of these potential
gene markers in blood gene expression samples to check their
classification performances. The gene expression profiling data
in blood mononuclear cells is downloaded from NCBI GEO
(Access ID: GSE4226) (Maes et al., 2007). By mapping 44
genes in Cluster 1 to the measured blood gene expressions,
we get 6 overlapping markers in blood samples of 14 AD
patients and 14 normal controls. Using these six biomarker genes,
the classification performance of ROC curve in distinguishing
controls from diseases is demonstrated in Figure 6D. The AUC
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FIGURE 7 | The relationship between biomarker genes in Cluster 1 and AD genes. After filtering the intersection of first-order neighbors of Cluster 1 and KEGG AD

genes, we obtain 16 AD genes which have one-step indirect interaction with biomarker genes in Cluster 1.

value achieves as high as 0.76. Although the number of biomarker
genes measured in the samples is small, the diagnotic accuracy is
competitive with the available clinic approaches. From the cross-
dataset and blood validations, we partially verify the identified
biomarkers in public data.

Recently, the circulating microRNAs in serum seem to be an
alternative promising way of finding diagnostic biomarkers for
complex diseases (Chen et al., 2017, 2018a). The development
of computational methods for identifying potential diagnostic
lncRNA biomarkers is also promising in the biomarker screening
for AD, especially when these kind of high-throughput data
are available (Chen et al., 2016, 2018b). It is an interesting
research direction for AD biomarkers discovery from epigenetic
transcripts in blood.

4.5. Relationship Between Biomarkers and
AD Genes
Although APP (Jonsson et al., 2012), APOE (Morris et al.,
2010) and PSEN (Hjermind, 2016) have been recognized as
genetic risk factors of AD, we have not identified them in
the diagnostic biomarkers because they are not differentially
expressed genes in any of the six brain regions. It is of interest
to study the relationship between biomarkers and AD genes. We
firstly build up an integrative human protein-protein interaction
(PPI) network by combining the interactions in various PPI
databases (Liu et al., 2011). We employ the 28 genes in KEGG
AD pathway as the documented AD genes (Liu et al., 2011). Then
we identify the intersection of the first-order neighbors of the
biomarker genes in Cluster 1 and those of AD genes. Figure 7
demonstrates their linkages. There are 16 AD genes containing
the overlapping 38 first-order neighbors with the 44 biomarker
genes. This indicates that the biomarkers have close relationships
with these AD genes although they are not contained in the
identified biomarkers. The results also prove the effects of AD
causal genes have close distances with those biomarker genes in
the molecular interactome.

CONCLUSION

In this paper, we proposed a computational method of detecting
AD biomarkers by integrating gene expression data in six brain
regions. The framework is based on differential coexpression
network and machine learning. The network modules are
screened out by their classification powers via SVM classifiers.
We identified five module candidates and regarded Cluster
1 as the identified AD biomarkers by using the other three
classification algorithms for further screening. The cross-brain-
region, cross-dataset, and validations in blood gene expression
data provide evidence of its efficiency, efficacy, and advantage.
Totally, 44 genes in Cluster 1 are targeted as the potential
biomarkers in the form of a network module. Furthermore, the
blood biomarkers are also important in clinical applications (Ngo
et al., 2018), and we should screen out more genetic biomarkers
from different datasets to map more potential blood biomarkers
to improve classification accuracy. In the future, we also intend
to incorporate these risky AD genes in our identification and
investigate the causality between disease genes and marker genes.
Considering the false positives in the computational strategy
of identifying disease biomarkers, clinical validations of these
potential biomarkers are urgent requests. If these identified AD
biomarkers pass the multiple phases of clinical trials, they will be
highly beneficial for early diagnosis of AD.
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Patients at different ages have different rates of cell development and metabolisms. As a
result, age should be an essential part of how a disease diagnosis model is trained and
optimized. Unfortunately, most of the existing studies have not taken age into account.
This study demonstrated that disease diagnosis models could be improved by merely
applying individual models for patients of different age groups. Both transcriptomes and
methylomes of the TCGA breast cancer dataset (TCGA-BRCA) were utilized for the
analysis procedure of feature selection and classification. Our experimental data strongly
suggested that disease diagnosis modeling should integrate patient age into the whole
experimental design.

Keywords: age, feature selection, TriVote, BRCA, classification, transcriptome, methylome

INTRODUCTION

Some types of cancers grow faster in younger hosts. Renal cancer has an average growth rate of
0.3 cm per year and many clinical studies focused on the surveillance of small tumors only in elderly
patients (Mues et al., 2010; Mehrazin et al., 2014). However, renal cancers in younger patients may
grow at a much larger rate of 2.13 cm per year (Gofrit et al., 2015), which requires more frequent
follow-up examinations. Prostate cancer was mostly diagnosed at an older age (>65 years old),
but the early-onset cases (<55 years old) had a much faster growth rate and a stronger genetic
association (Salinas et al., 2014).

Breast cancer has the largest incidence rates for females in both China (Chen et al., 2016) and
United States (Siegel et al., 2018) and tends to grow faster in younger females (Weedon-Fekjaer
et al., 2008). One of twenty breast tumors may double in diameter from 10 mm within 1.2 months,
compared with 6.3 years for the same proportion with the slowest growth rates (Weedon-Fekjaer
et al., 2008). Generally, younger age was one of the risk factors for poor prognosis and high
aggressiveness (Bardia and Hurvitz, 2018; Lee et al., 2018). Even the genomic or transcriptomic
biomarkers demonstrated different associations with younger breast cancer patients compared to
older ones (Wang et al., 2018) and required age-specific treatments (Kim et al., 2018).
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Breast cancer diagnosed at its early stage may be treated with
mastectomy or lumpectomy and systematically reduces relapse
risk (Kummerow et al., 2015; Santa-Maria et al., 2015). Early-
stage breast cancer was usually diagnosed by radiological imaging
technologies (Simos et al., 2014) or molecular biomarkers (Duffy
et al., 2015). X–ray-based mammogram (Kashyap et al., 2017;
Sinthia and Malathi, 2018) and breast magnetic resonance
imaging (MRI) were the predominant choices for detecting the
candidate lesion sites of breast cancer (Wang et al., 2013; Loggers
et al., 2016). Serum microRNA and urine DNA damage were
also recently observed to have strong associations with early-stage
breast cancer (Guo et al., 2017; An et al., 2018). Unfortunately,
these early-stage breast cancer detection technologies did not
integrate the age information in the decision-making process.

This study hypothesized that the integration of age
information may improve the performance of the biomarker
detection problem, which is known as the feature selection
problem in the machine learning area (Alshawaqfeh et al., 2017;
Xu et al., 2018). Following this, we split the transcriptomic and
methylomic datasets of breast cancer into multiple age groups
and investigated whether a machine learning procedure achieved
better performance after the split of age groups.

MATERIALS AND METHODS

Summary of Datasets
This study utilized the transcriptomic and methylomic datasets
from The Cancer Genome Atlas database (TCGA) (Ma and Ellis,
2013). The level-3 transcriptomes of the TCGA breast cancer
(BRCA) project were hybridized and measured by the Agilent
244K Custom Gene Expression G4502A-07-3 array (TCGA
platform code AgilentG4502A_07_3), which was designed by
the University of North Carolina on the Agilent (Santa Clara,
CA, United States) Sure Print G3 Microarray Platform (Cancer
Genome Atlas Network, 2012). Each sample has the expression
levels of 17,814 probe sets. The developmental stage of each
sample was retrieved from the entry “tumor_stage” in the
clinical annotations of the TCGA-BRCA project at the NIH
National Cancer Institute GDC Data Portal (Cancer Genome
Atlas Network, 2012; Ciriello et al., 2015). There were 502
transcriptomic samples with the stage annotations, among which
there were 90, 291, 108, and 13 samples for stages I, II, III, and
IV, respectively.

Methylome was generated by the Illumina Infinium
HumanMethylation450K BeadChip, and each sample had
485,577 features (Morris and Beck, 2015). There were 765
methylomic samples with the stage annotations in the TCGA-
BRCA project, among which there were 125, 433, 196, and 11
samples for stages I, II, III, and IV, respectively.

Feature Selection Algorithms
Biomedical datasets have two major types, either a large feature
number with a small sample number or a large sample number
with a small feature number. The OMIC datasets usually extract
a large number of features for a small number of samples, and
the number of features must be reduced to avoid the overfitting

problem for machine learning modeling (Lyu et al., 2017; Ye et al.,
2017; Ali and Aittokallio, 2018; Xu et al., 2018). For the second
style of biomedical datasets, although it is not a required step,
reducing the dimensions may substantially increase modeling
performance (Guan et al., 2018; Zou et al., 2018).

Seven feature selection algorithms were evaluated for their
classification performances on the datasets with different age
groups. The F-test evaluated the analysis of variation between
two variables, or a variable and the phenotype (Lomax and Hahs-
Vaughn, 2013). The PCC (Pearson Correlation Coefficient) was
used to evaluate how significantly a feature was associated with
the phenotype (Yoon and Chung, 2013). The classic T-test was
also chosen to rank the features by their association significance
with the phenotype (Kim, 2015;Ye et al., 2017).

The Recursive Feature Elimination (RFE) strategy was
evaluated based on three different algorithms. The Support
Vector Machine (SVM) was frequently used to facilitate the
procedure of recursive feature elimination and denoted as
rfeSVM (Xu et al., 2018). The L1 regularization was known as
the least absolute shrinkage and selection operator and generated
weights for each chosen feature (Guyon and Elisseeff, 2003).
The RFE procedure based on Lasso was denoted as rfeLasso
(Sfakianakis et al., 2014). The logistic regression (LR) model was
also used to calculate how the features were eliminated by their
weights (Pandey et al., 2018).

TriVote (Tri-Step Feature Voting algorithm) was recently
proposed to perform very well on both transcriptomic and
methylomic data and evaluated on the datasets in this study
(Xu et al., 2018).

Classification Algorithms
Classification algorithms may achieve drastically different
performances on the same dataset (Ge et al., 2016; Liu et al.,
2017; Xu et al., 2018). As a result, in this study, we chose
three representative classification algorithms to evaluate the
classification performance of a given feature subset, i.e., Logistic
Regression (LR), Support Vector Machine (SVM) and Gaussian
Naïve Bayes (GaussianNBayes).

Logistic regression calculated the probability of a binary
response for a given dataset (Menard, 2018). SVM optimized
the maximal separation margin of a discrimination hyperplane
between the groups of positive and negative samples, and
the discrimination hyperplane tended to have a good binary
classification performance (Suthaharan, 2016). The Gaussian
Naïve Bayes (GaussianNBayes) assumed the inter-feature
independence and calculated the probability that a given query
sample belonged to a class (Bouckaert, 2004).

Ten-fold cross-validation was utilized to calculate the binary
classification performances (Ren et al., 2018).

Performance Measurements
A binary classification problem was usually evaluated by
the performance metrics accuracy (Acc), sensitivity (Sn), and
specificity (Sp) (Xu et al., 2017; Ye et al., 2017). There were two
classes of samples in a binary classification problem, denoted
as Positive and Negative ones, respectively. There were P and
N samples in the classes of Positive and Negative samples.
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Sensitivity (Sn) was defined as the percentage of correctly
predicted positive samples, i.e., Sn = TP/P, where TP (True
Positive) was the number of correctly predicted positive samples,
and FN (False Negative) was defined as FN = P−TP. The
measurement Specificity (Sp) was defined as the percentage of
correctly predicted negative samples, i.e., Sp = TN/N, and the
number of false positive samples (FP) was defined as FP = N−TN.
The overall accuracy was Acc = (TP+ TN)/(P+ N).

The balanced accuracy [bAcc = (Sn + Sp)/2] was
usually utilized to evaluate the classification model without
generating bias for a dataset with significantly different
numbers of positive and negative samples (Feng et al., 2018).
Matthew’s correlation coefficient (MCC) was defined as
MCC = (TP × TN−FP × FN)/sqrt[(TP + FP) × (TP + FN) ×
(TN + FP) × (TN + FN)], where sqrt() is the squared root (Xu
et al., 2018; Zhang et al., 2018; Zhao et al., 2018).

Experimental Design
This study modeled the early detection of breast cancer as a
binary classification problem, due to the fact that there were
much fewer samples in stage IV than the other three stages.
A binary classification problem was defined as a discrimination
function to separate samples between stages I/II and III/IV.
The investigations in this study were planned as shown in the
outline in Figure 1.

First, a given dataset was screened by variance, which was
defined as the average of the squared deviations from the mean
in the Python numpy.var(). This study supposed that an OMIC-
feature with a large standard deviation may be clinically detected
more easily. Thus, this step kept 10,000 features with the largest
standard deviations for further biomarker screening.

Then, the dataset was screened by one of the three algorithms
(F-test, PCC, and T-test) for the associations of each feature
with the class label. The top 1000 ranked features were kept for
further analysis. Iteratively, the remaining dataset was evaluated
by one of the recursive feature elimination algorithms (rfeSVM,
rfeLasso, and rfeLR), and the feature with the smallest weight
was removed from the dataset while the remaining dataset was
processed repeatedly. This study decided that the numbers of
features would be between 10 and 100 with a step size of 5.

RESULTS AND DISCUSSION

Data Preprocessing
First of all, we need to rule out the hypothesis that the sample
age was correlated with the tumor stages. The Pearson correlation
coefficient (PCC) (Mpairaktaris et al., 2017; Zhang et al., 2017)
between the sample age and the tumor stage was −0.0221 with
P-value = 0.6206 for the transcriptome samples. The methylome
samples had PCC = −0.0223 with P-value = 0.5377 between the
sample age and the tumor stage. The hypothesis was rejected for
both the transcriptome and methylome samples. The maximal
information coefficient (MIC) is very sensitive in detecting weak
or non-linear correlations (Reshef et al., 2011) and has been
widely used in feature selection (Ge et al., 2016) and inter-gene
synergy (Xing et al., 2017), etc. The MIC value was in the range
[0, 1] and a larger MIC value means a higher correlation between
the two variables. The MIC values between age and tumor
stage were 0.0591 and 0.0490 for transcriptome and methylome
samples, respectively. These two MIC values were similar to that
of the random correlations, as described in Reshef et al. (2011).

FIGURE 1 | Experimental design of this study. Pairs of three filters and three RFE feature selection algorithms were evaluated for their binary classification
performances on the datasets with different age groups. Three binary classifiers were utilized to calculate the classification performances.
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As a result, both PCC and MIC correlation measurements
rejected the hypothesis that the sample age was correlated with
the tumor stages.

Among the 502 transcriptomic samples in the TCGA-BRCA
project, there were 121 and 381 samples in the early stages (I
and II) and late stages (III and IV), respectively. This dataset was

denoted as RNA(1). The early-stage patients were regarded as the
negative class, and the late-stage ones were the positive class.

Each class of samples was split into two or three bins
with equally-sized sample age ranges, as illustrated in Table 1.
The minimum age of samples with either transcriptome or
methylome was 26, and the maximum age was 90. We used the

TABLE 1 | Samples with transcriptomes (RNA) and methylomes (Methy) were grouped using the same age bins.

Age thresholds [20, 55) [55, 90]

k = 2 RNA P 51 70

N 153 228

Methy P 93 114

N 222 336

Age thresholds [20, 44) [44, 67) [67, 90]

k = 3 RNA P 21 71 29

N 56 227 98

Methy P 31 121 55

N 67 345 146

Samples in the early stages (I and II) were denoted as positives, and the other samples in the late stages (III and IV) were the negatives.

FIGURE 2 | Classification performances of rfeSVM screening of top-ranked 1000 features by T-test. The accuracy was calculated by the 10-fold cross validation of
three classifiers, i.e., LR, SVM, GaussianNBayes. The horizontal axis was the number of features screened by rfeSVM, and the vertical axis was accuracy. The plots
were for the datasets (A) RNA(1), (B) RNA(2)(0), (C) RNA(2)(1), (D) RNA(3)(0), (E) RNA(3)(1), and (F) RNA(3)(2).

TABLE 2 | The number of times each classifier achieved the best accuracy for the RFE-screened features of a given dataset.

rfeSVM LR SVM GaussianNB rfeLasso LR SVM GaussianNB rfeLR LR SVM GaussianNB

RNA(1) 6 13 0 RNA(1) 8 11 0 RNA(1) 10 9 0

RNA(2)(0) 3 16 0 RNA(2)(0) 16 2 1 RNA(2)(0) 13 6 0

RNA(2)(1) 10 9 0 RNA(2)(1) 7 11 1 RNA(2)(1) 10 9 0

RNA(3)(0) 4 15 0 RNA(3)(0) 10 9 0 RNA(3)(0) 11 8 0

RNA(3)(1) 6 13 0 RNA(3)(1) 15 4 0 RNA(3)(1) 11 8 0

RNA(3)(2) 10 9 0 RNA(3)(2) 12 7 0 RNA(3)(2) 10 8 1

Total 39 75 0 Total 68 44 2 Total 65 48 1

There were 19 feature subsets screened by rfeSVM/rfeLasso/rfeLR, with the numbers of features 10, 15, 20, . . ., 100.
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TABLE 3 | Summary of whether each classifier achieved the best classification
accuracy on the 19 feature subsets of each dataset.

Dataset RFE MaxAcc Classifiers

RNA(1) rfeSVM 0.9183 SVM

RNA(1) rfeLasso 0.7669 LR

RNA(1) rfeLR 0.8725 SVM

RNA(2)(0) rfeSVM 0.9951 SVM

RNA(2)(0) rfeLasso 0.8284 SVM

RNA(2)(0) rfeLR 0.9363 LR, SVM

RNA(2)(1) rfeSVM 0.9732 LR

RNA(2)(1) rfeLasso 0.7718 LR

RNA(2)(1) rfeLR 0.9094 SVM

RNA(3)(0) rfeSVM 1.0000 SVM

RNA(3)(0) rfeLasso 0.8961 SVM

RNA(3)(0) rfeLR 0.9740 LR, SVM

RNA(3)(1) rfeSVM 0.9732 LR

RNA(3)(1) rfeLasso 0.7819 LR

RNA(3)(1) rfeLR 0.9228 SVM

RNA(3)(2) rfeSVM 1.0000 LR, SVM

RNA(3)(2) rfeLasso 0.9055 LR

RNA(3)(2) rfeLR 0.9685 SVM

Column “MaxAcc” provides the maximal accuracy achieved by the three classifiers
on the 19 feature subsets screened by the RFE algorithm given in the Column
“RFE”. The column “Classifiers” provides the algorithms achieving the maximal
accuracy in the column “MaxAcc.” More than one classifier may achieve the
same best accuracy. Best model of each dataset was illustrated in bold.

upper integers of (20 + 70 × i/k) as the thresholds. The age bins
for k = 2 were [20, 55) and [55, 90], while the age bins for k = 3
were [20, 44), [44, 67), and [67, 90].

The 121 negative samples were split into two groups with
51 and 70 samples. Moreover, the two groups of positive
samples had 153 and 228 members. This dataset was denoted
as RNA(2). The two pairs of negative and positive groups
were denoted as RNA(2)(0) and RNA(2)(1). The dataset

TABLE 4 | Summary of whether each classifier achieved the best classification
accuracy on the 19 feature subsets of each dataset.

Dataset FS MaxAcc Classifiers

RNA(1) T-test 0.9183 SVM

RNA(1) F-test 0.9422 SVM

RNA(1) PCC 0.9223 SVM

RNA(2)(0) T-test 0.9951 SVM

RNA(2)(0) F-test 1.0000 LR, SVM

RNA(2)(0) PCC 0.9951 SVM

RNA(2)(1) T-test 0.9732 LR

RNA(2)(1) F-test 0.9966 SVM

RNA(2)(1) PCC 0.9765 SVM

RNA(3)(0) T-test 1.0000 SVM

RNA(3)(0) F-test 1.0000 LR, SVM

RNA(3)(0) PCC 1.0000 SVM

RNA(3)(1) T-test 0.9732 LR

RNA(3)(1) F-test 1.0000 SVM

RNA(3)(1) PCC 0.9765 SVM

RNA(3)(2) T-test 1.0000 LR, SVM

RNA(3)(2) F-test 1.0000 LR, SVM

RNA(3)(2) PCC 1.0000 SVM

Column “MaxAcc” provides the maximal accuracy achieved by the three classifiers
on the 19 feature subsets screened by rfeSVM. The initial subset of 1000 features
was ranked by the algorithm given in the Column “FS.” The column “Classifiers”
provides the algorithms achieving the maximal accuracy in the column “MaxAcc.”
More than one classifier may achieve the same best accuracy. Best model of each
dataset was illustrated in bold.

RNA(1) was also split into three bins with equally-sized
sample age ranges, which was denoted as RNA(3). The three
groups of negative samples in RNA(3) had 21, 71 and 29
members, respectively, and the positive class was split into
three groups with 56, 227 and 98 members. The three pairs
of negative and positive groups were denoted as RNA(3)(0),
RNA(3)(1) and RNA(3)(2).

FIGURE 3 | Comparison of early-stage breast cancer detection models with different age groups based on transcriptome data. The patients were split into (A) two
groups and (B) three groups with equally-sized age ranges. The horizontal axis shows the numbers of features chosen by rfeSVM and the vertical axis shows the
10-fold cross validation accuracy of the classifier SVM. F-test was used to generate the initial subset of the 1000 top-ranked features.
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FIGURE 4 | Comparison of early-stage breast cancer detection models with different age groups based on methylome data. The patients were split into (A) two
groups and (B) three groups with equally-sized age ranges. The horizontal axis depicts the numbers of features chosen by rfeSVM and the vertical axis depicts the
10-fold cross-validation accuracy of the classifier SVM. F-test was used to generate the initial subset of the 1000 top-ranked features.

FIGURE 5 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data. Transcriptomes
of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The methylomes were split into (C) two groups and (D) three
groups in the same way. The horizontal axis shows the numbers of features chosen by TriVote and the vertical axis shows the 10-fold cross-validation accuracy of
the classifier SVM. F-test was used to generate the initial subset of the 1000 top-ranked features.
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The 765 methylomic samples had 207 early-stage and 558 late-
stage samples and were denoted as the dataset Methy(1). The two
classes in Methy(1) were split into two bins with equally-sized
sample age ranges, which was denoted as the dataset Methy(2).
There were 93 and 114 members in the two negative groups. The
sizes of the two positive groups were 222 and 336. Thus, we had
two pairs of negative and positive groups, denoted as Methy(2)(0)
and Methy(2)(1). The dataset Methy(3) was constructed by
splitting the two classes of samples in Methy(1) into three bins
with equally-sized sample age ranges. There were 31, 121 and
55 members in the three negative groups. The sizes of the three
positive groups were 67, 345 and 146. The three pairs of negative
and positive groups Methy(3)(0), Methy(3)(1) and Methy(3)(2)
refer to the three split datasets.

The 17,814 features were first reduced to the 10,000 with
the largest variance, as described in the Section “Materials
and Methods.”

An Initial Investigation of
T–Test-Selected Features on
Transcriptomes
The T-test was widely used to evaluate how significantly a
feature was associated with the phenotype for various biomedical

data types, including transcriptome (Ye et al., 2017), methylome
(Aref-Eshghi et al., 2015), imaging data (Beheshti et al., 2016),
etc. As described in the above Section “Materials and Methods,”
the top 1000 features ranked by the T-test were further screened
by the three RFE algorithms, i.e., rfeSVM, rfeLasso, and rfeLR.

Figure 2 demonstrated that the classifier GaussianNBayes did
not perform very well on the features screened by rfeSVM. For
the first dataset of 10 rfeSVM-screened features, GaussianNBayes
(Acc = 0.7629) performed slightly worse than the other two
classifiers LR (Acc = 0.7849) and SVM (Acc = 0.7769).
When more features were chosen by rfeSVM, GaussianNBayes
performed even worse classification. It is interesting to observe
that LR and SVM seemed to have performed similarly well. As
a result, we generated a more precise summary of how the three
classifiers performed, as shown in Table 2. The data suggested
that SVM achieved maximal accuracy in 75 cases while LR
achieved the same in 39 cases. Unfortunately, GaussianNBayes
did not achieve maximal accuracy at any point.

Table 2 also suggested that GaussianNBayes outperformed the
other two classifiers SVM and LR only on very few feature subsets
screened by rfeSVM/rfeLasso/rfeLR. For most of the feature
subsets chosen by the three RFE algorithms, the two classifiers
SVM and LR performed similarly well. We further generated
another summary table to demonstrate whether each of the three

FIGURE 6 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data. Transcriptomes
of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The methylomes were split into (C) two groups and (D) three
groups in the same way. The horizontal axis shows the numbers of features chosen by TriVote and the vertical axis shows the 10-fold cross-validation accuracy of
the classifier RFC. F-test was used to generate the initial subset of the 1000 top-ranked features.
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classifiers achieved the best accuracy across the 19 feature subsets
of each dataset, as shown in Table 3. We may observe that the
best classifier was usually SVM or LR, and sometimes these two
classifiers performed the same best accuracy. Moreover, for all
six datasets, rfeSVM outperformed the other two RFE feature
selection algorithms. As a result, the following sections would use
rfeSVM as the RFE screening choice.

Comparison of T-Test, F-Test, and PCC
for Association Evaluation
A comparison was carried out to evaluate whether the choice of
the top 1000 features was important for the binary classification
problem of early-stage breast cancer detection, as shown in
Table 4. The pair comprised of the feature selection algorithm
F-test and the classifier SVM achieved the best accuracies for all
six datasets. The classifier LR also achieved the same best accuracy
for the three datasets RNA(2)(0), RNA(3)(0), and RNA(3)(2).
Thus, the default modeling procedure in the following sections
started with the top 1000 features ranked by F-test. Then, rfeSVM
was utilized to find the number of features with the best accuracy
calculated by the 10-fold cross-validation of the classifier SVM.

Age Grouping for Transcriptomes
We first split the negative and positive samples into two equally-
sized groups, as shown in Figure 3A. The SVM models trained

over RNA(2)(0) and RNA(2)(1) were much better than that
on the whole dataset RNA(1). The averaged improvement in
accuracy was 0.0900 for the dataset RNA(2)(0) compared to
RNA(1). The model accuracy of RNA(2)(1) was also improved by
0.0654 in accuracy on average. If we chose the best model of each
dataset as the final result, both RNA(2)(0) and RNA(2)(1) were
improved at least 0.0544 in accuracy compared against RNA(1).
The best model of RNA(1) used 100 features to achieve 0.9422 in
accuracy, while only 40 features were needed for both RNA(2)(0)
and RNA(2)(1) to outperform this model.

Similar results were observed for the experiment of splitting
RNA(1) into three equally-sized groups of samples, as shown
in Figure 2B. The averaged improvements in accuracy were
0.1078, 0.0673, and 0.1086 for the three datasets RNA(3)(0),
RNA(3)(1), and RNA(3)(2). A minimum 0.0578 improvement
in accuracy was achieved for all three datasets compared with
the best model of RNA(1). Only 50 features were required for
the three datasets RNA(3)(0), RNA(3)(1), and RNA(3)(2) to
outperform the complete dataset RNA(1) (0.9422 in accuracy
with 100 features).

Age Grouping for Methylomes
The same default classification procedure on the datasets
with smaller age groups outperformed that of the complete
dataset Methy(1), as shown in Figure 4. A minimum 0.0524

FIGURE 7 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data. Transcriptomes
of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The methylomes were split into (C) two groups and (D) three
groups in the same way. The horizontal axis shows the numbers of features chosen by TriVote and the vertical axis shows the 10-fold cross-validation accuracy of
the classifier XGB. F-test was used to generate the initial subset of the 1000 top-ranked features.
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FIGURE 8 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data using the
classifier SVM on the training datasets. Transcriptomes of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The
methylomes were split into (C) two groups and (D) three groups in the same way. The horizontal axis shows the numbers of features chosen by rfeSVM and the
vertical axis shows the 10-fold cross-validation accuracy of the classifier SVM. F-test was used to generate the initial subset of 1000 top-ranked features.

FIGURE 9 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data using the
classifier SVM on the independent test datasets. Transcriptomes of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges.
The methylomes were split into (C) two groups and (D) three groups in the same way. The horizontal axis shows the numbers of features chosen by rfeSVM, and the
vertical axis shows the accuracy of the classifier SVM on the independent test dataset. F-test was used to generate the initial subset of 1000 top-ranked features.
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FIGURE 10 | Comparison of early-stage breast cancer detection models with different age groups based on both transcriptome and methylome data using the
classifier SVM on the dataset TCGA-HNSC. Transcriptomes of the patients were split into (A) two groups and (B) three groups with equally-sized age ranges. The
methylomes were split into (C) two groups and (D) three groups in the same way. The horizontal axis shows the numbers of features chosen by rfeSVM and the
vertical axis shows the 10-fold cross-validation accuracy of the classifier SVM on the independent test dataset. F-test was used to generate the initial subset of the
1000 top-ranked features.

improvement in accuracy was achieved against the complete
dataset Methy(1), if the dataset was split into two groups with
equally-sized age ranges. The best model for Methy(1) achieved
0.8745 in accuracy with 100 features, while the classifier SVM
achieved 0.9910 and 0.9353 in accuracy for the two datasets
with smaller age groups, i.e., Methy(2)(0) and Methy(2)(1). Even
better improvements were achieved for datasets with smaller
age groups. The classifier SVM achieved 1.0000, 0.9958, and
1.0000 in accuracies for the three smaller datasets Methy(3)(0),
Methy(3)(1), and Methy(3)(2), respectively. Only 40 features
were needed by these three datasets to outperform that of the
complete dataset Methy(1).

TriVote Selected Features for Both
Transcriptomes and Methylomes
A comparison between different age groups was also conducted
using a recently published feature selection algorithm, TriVote
(Xu et al., 2018), as shown in Figure 5. TriVote selected
features with very good accuracies on both transcriptomes and
methylomes calculated by the best classifier SVM, mentioned
above. We have a similar pattern in that a biomedical
classification problem may be improved simply by splitting

the samples into multiple groups with equally-sized age
ranges. The best model on the dataset RNA(1) with the
accuracy 0.9223 was achieved by 95 features, as shown in
Figure 5, while the two smaller groups RNA(2)(0) and
RNA(2)(1) achieved their best accuracies, 0.9412 and 0.9664,
with only 35 and 65 features, respectively. Moreover, the
best models of both datasets outperformed the best model
of RNA(1), with at least 0.0508 in accuracy. An average
improvement of 0.0676 was achieved by merely splitting
the dataset RNA(1) into three smaller groups with equally-
sized age ranges.

Similar patterns were also observed on the TriVote-selected
feature subsets, as shown in Figures 5C,D. TriVote achieved
average accuracy improvements of 0.0607 and 0.0965 for the cases
of two and three groups with equally-sized age ranges.

We further evaluated our hypothesis using two more
classifiers, Random Forest Classifier (RFC) (Pal, 2005; Gislason
et al., 2006) (Figure 6) and XG boost (XGB) (Chen and Guestrin,
2016) (Figure 7). A similar pattern was observed, but RFC
achieved weaker improvements in Acc, as shown in Figure 6.
RFC also did not achieve Acc higher than 0.8500. Even weaker
improvements in Acc were performed by the age-specific models
trained by the classifier XGB, as shown in Figure 7. For example,

Frontiers in Genetics | www.frontiersin.org 10 March 2019 | Volume 10 | Article 212202

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00212 March 22, 2019 Time: 17:59 # 11

Feng et al. Age Improves Transcriptomic/Methylomic Biomarkers

only 0.0123 and 0.0294 in Acc improvements were achieved by
the age-specific XGB models.

SVM Models on the Independent Test
Datasets Using the Features Selected by
F-Test and rfeSVM
This section covers the investigation of the best algorithms on
the independent test sets. Features selected by F-test and rfeSVM
tended to achieve the best performances, as demonstrated in
Figures 3–5. Table 4 suggests that the classifier SVM usually
achieved the best classification accuracies. A stratified splitting
strategy was used to get 10% of samples as an independent
test dataset, which was used for evaluating the model trained
over the other samples. The classification performances were
iteratively calculated over the next 10% of samples to ensure that
all samples were tested.

Figure 8 demonstrates that the age-specific models
outperformed the age-dependent models for both transcriptomes
and methylomes on the total dataset, while Figure 9 suggests that
a similar relationship was observed between the age-independent
models and the age-specific models.

Comparison of Age-Independent and
Age-Specific Models on the Head-Neck
Squamous Cell Carcinoma (HNSC)
Samples
We further analyzed the TCGA-HNSC (Head-Neck Squamous
Cell Carcinoma) dataset for our hypothesis to see whether the
age-specific models outperformed the age-independent ones,
as shown in Figure 10. The analysis procedure with the best
performance was utilized for the TCGA-HNSC dataset, i.e., the
SVM classifier on the F-test+ rfeSVM feature selection duet.

The age-independent model in the solid lines in Figure 10
demonstrated very good accuracies (Acc = 0.9223 for
transcriptome and Acc = 0.8758 for methylome). However, at
least a 0.05 improvement in Acc may be achieved by building
two age-specific transcriptome models, as in Figure 10A. The
averaged improvement 0.0676 in Acc may be achieved if the
transcriptome dataset is split into three age groups, as in
Figure 10B. The classification accuracy of the age-independent
methylome model may be improved by 0.0607 and 0.0965 on
average for the two-group and three-group age-specific models,
respectively (Figures 10C,D).

CONCLUSION

This study carried out a series of extensive modeling experiments
and demonstrated that age was an essential factor in selecting
biomarkers. A biomarker-based disease diagnosis model may

be improved by simply splitting the samples into multiple
groups with smaller age ranges. SVM achieved the largest Acc
improvements compared with the other classification algorithms.
It should be further investigated how age could be directly
integrated into the biomarker selection and diagnosis modeling.

We have tried to investigate the discrimination model
between cancer and control samples. Unfortunately, there only 1
transcriptome and 6 methylome control samples contained both
stage and age data, respectively. These sample numbers were
much fewer than those of the cancer samples. We regret that we
did not find the dataset to compare cancer and normal samples
with our proposed age-specific models.
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Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease
among children which could cause severe disability. Genomic studies have discovered
substantial number of risk loci for JIA, however, the mechanism of how these loci affect
JIA development is not fully understood. Neutrophil is an important cell type involved
in autoimmune diseases. To better understand the biological function of genetic loci
in neutrophils during JIA development, we took an integrated multi-omics approach to
identify target genes at JIA risk loci in neutrophils and constructed a protein-protein
interaction network via a machine learning approach. We identified genes likely to be
JIA risk loci targeted genes in neutrophils which could contribute to JIA development.

Keywords: juvenile idiopathic arthritis, target gene identification, epigenetic regulation, protein-protein
interaction, pathway enrichment

INTRODUCTION

Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in childhood at
a prevalence rate of 1 in 1000, and JIA is a common cause of disability among children (Oen and
Cheang, 1996). The typical clinical manifestation of JIA is joint enlargement of unknown origin for
more than 6 weeks in children under 16 years old (Petty et al., 2004). JIA has long been considered
as a type of autoimmune disease, however, its etiology is still not fully understood. Similar to other
complex diseases, genetic and environmental factors both contribute to its pathogenesis (Glass
and Giannini, 1999). Substantial evidence suggests the large contribution of genetic components.
Previous studies showed that monozygotic twin concordance rates for JIA are between 25 and
40%, much higher than the population prevalence rate (Savolainen et al., 2000). Affected sibling
studies showed that siblings of JIA probands had an over 10-fold increased risk of developing
the disease (Frisell et al., 2016). Our recent heritability study based on SNP-h2 estimated that the
heritability of JIA is 0.73 among the most highly heritable pediatric autoimmune diseases (Li et al.,
2015b). Several genome-wide association studies (GWAS) have been carried out and discovered a
number of JIA susceptibility loci, but how these loci affect the pathogenesis and development of
JIA remains to be explored (Behrens et al., 2008; Hinks et al., 2009, 2013; Thompson et al., 2012;
Cobb et al., 2014; Aydin-Son et al., 2015; Li et al., 2015a; Finkel et al., 2016; Ombrello et al., 2017;
Haasnoot et al., 2018).
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Neutrophils are one of the most important innate immune
cells in human bodies. When infection or inflammation occurs,
they are recruited to the disease site under the attraction of
chemokines. In recent years, studies have found that neutrophils
can secrete a variety of cytokines to play a key role in
immunomodulation. The clinical manifestations of JIA are highly
similar to those of classical autoinflammatory diseases. The large
accumulation of white blood cells is one of the causes for local
tissue damage and loss of joint function due to the inflammatory
response at the joint (Fattori et al., 2016). Neutrophils likely
play an important role in the effector phase of autoimmune
diseases including JIA, and their action can cause or exacerbate
articular inflammation (Németh and Mócsai, 2012). Neutrophil
extracellular traps (NETs) are the newly discovered mechanism
by which neutrophils fight infection, and has been demonstrated
to play a role in pathogenesis of systemic immune diseases
such as systemic lupus erythematosus (SLE) (Hakkim et al.,
2010), antineutrophil cytoplasmic antibodies (ANCA)-associated
systemic vasculitis (Kessenbrock et al., 2009) and multiple
sclerosis (Naegele et al., 2012). However, little is known about the
genes involved in JIA development in neutrophils.

A number of JIA loci have been identified in GWAS (Behrens
et al., 2008; Hinks et al., 2009, 2013; Thompson et al., 2012; Cobb
et al., 2014; Aydin-Son et al., 2015; Li et al., 2015a; Finkel et al.,
2016; Ombrello et al., 2017; Haasnoot et al., 2018), but few have
been functionally characterized as most of the GWAS SNPs are
located at the intronic or intergenic regions, without directly
affecting the sequence of any protein product. We hypothesize
that they may function as cis-regulatory elements, regulating
target gene expression. Therefore, we focused on understanding
the target genes of JIA GWAS loci in neutrophils.

JIA is a heterogeneous group of diseases including several
different subtypes. In recent years, due to the progress in disease
management, their prognosis has been greatly improved, but
there are still few effective treatments. Our study took an in silico
analysis approach, utilizing genomics, transcriptome, epigenome,
and methylome data to find genes targeted by JIA risk loci in
neutrophils, facilitating the design of precision strategy of JIA
prevention and treatment.

MATERIALS AND METHODS

Extraction of JIA GWAS Loci
Juvenile idiopathic arthritis loci identified in previous GWAS
were found in GWAS catalog (MacArthur et al., 2017) by
conducting search using keyword “Juvenile idiopathic arthritis.”
All loci found were downloaded without further imposing any
significance threshold.

eQTL Analysis
eQTL analysis was performed via Genotype-Tissue Expression
(GTEx) Project website (Lonsdale et al., 2013), from which the
correlation between each SNP genotype and gene expression level
in whole blood was extracted. We set the significance threshold
as P-value < 0.05. The boxplots for the SNP-gene pairs were
reviewed via GTEx Portal.

Analysis of Microarray Data
Series matrix files of microarray datasets GSE11083 (Frank
et al., 2009a,b) and GSE67596 (Jiang et al., 2015) containing
transcriptome data from neutrophils of 36 JIA patients and 26
healthy controls were downloaded from NCBI Gene Expression
Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2013). Gene
expression levels were compared between JIA patient group and
control group. Expression values across studies was summarized
through median polish and normalization was performed using
Robust Multi-array Average (RMA) algorithm which minimizes
variance across arrays and log transformation was conducted
for variance stabilization (Irizarry et al., 2003). Meta-analysis
were performed using RankProd package (Hong et al., 2006)
in R 3.5.1 (R Core Team, 2018). The threshold used to select
for differentially expressed genes was defined as possibility
of false positives (PFP) < 0.05 and absolute value of fold
change (FC) > 1.2.

Histone Modification Analysis
The SNPs of interest were input into web portal Haploreg1

(Ward and Kellis, 2012) and their overlap with histone
modification regions in neutrophil cell line E030 BLD.CD15.PC
(primary neutrophils from peripheral blood) was evaluated
using epigenome data from ROADMAP epigenomics database
(Kundaje et al., 2015).

Methylation Data Analysis
The methylation data were extracted from the genome-wide
methylation profiles of 843 subjects processed on the Infinium
HumanMethylation450 BeadChip at the Center for Applied
Genomics, the Children’s Hospital of Philadelphia, which has
been described in previous publication (Van Ingen et al.,
2016). The log2 ratio between the methylated and unmethylated
intensities of each probe on the chip was represented by the
M-values. The association between JIA SNP genotype and
methylation probes in each of the 11 genes was assessed in
a linear regression model conditioned on gender, age and 10
genotype-derived principle components.

Construction of Protein-Protein
Interaction (PPI) Network
Protein-Protein Interaction network on the 11 target genes
was constructed via NetworkAnalyst2 (Xia et al., 2014) which
was based on integration of machine learning and Walktrap
algorithms (Pons and Latapy, 2005). The resource of protein-
protein interaction data was IMEx Interactome database
(Orchard et al., 2012). Hypergeometric test for gene set
enrichment analysis was implemented in NetworkAnalyst and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa et al., 2017) was used as the pathway database
resource. In addition to FDR P-value calculated based on
hypergeometric test and multiple-testing adjustment, empirical
P-value of pathways was derived from permutation analysis. A list

1https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
2https://www.networkanalyst.ca
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of 11 genes was randomly generated from the human genome
and such resampling was performed 100 times. For each 11-
gene list randomly drawn, the steps of network construction,
pathway analysis were similarly performed as for JIA target
genes in neutrophils, and a list of significantly enriched pathways
with FDR < 0.05 was resulted from each resampling. For each
enriched pathway in PPI network of JIA target genes, its empirical
P-value was derived based on the number of times it appears as
significantly enriched pathway from 100 permutations.

Hi-C Data Visualization
Hi-C data visualization for the JIA loci and target genes were
carried out via the 3D Genome browser3 (Wang et al., 2018) and
FUMA GWAS4 (Watanabe et al., 2017). Hi-C data from cell line
K562 (Rao et al., 2014; Schmitt et al., 2016) were used.

RESULTS

A large number of GWAS loci have been identified for human
complex diseases, including JIA. We extracted all 127 genomic
regions that have been reported to be associated with JIA from
GWAS catalog (Behrens et al., 2008; Hinks et al., 2009, 2013;
Thompson et al., 2012; Cobb et al., 2014; Aydin-Son et al., 2015; Li
et al., 2015a; Finkel et al., 2016; MacArthur et al., 2017; Ombrello
et al., 2017; Haasnoot et al., 2018). All these SNPs are located
outside of gene exons, which may contribute to disease etiology
by affecting gene expression. We then input these SNPs into
GTEx database (Lonsdale et al., 2013) to identify genes that are
regulated by these SNPs. Because GWAS SNPs and their target
genes may not always exhibit highly significant correlation in
eQTL analysis, exemplified by obesity SNP rs9930506 and IRX3
gene (Smemo et al., 2014), we set the significance threshold as
nominal P-value < 0.05. We found that the expression level of
238 genes correlates with JIA SNP genotype in whole blood.

As we are particularly interested in identifying genes regulated
by JIA GWAS loci in neutrophils, we examined which of these
238 genes showed differential expression in neutrophils between
JIA cases and controls. We extracted two microarray datasets
from gene expression omnibus (GEO) database, GSE11083
(Frank et al., 2009a,b) and GSE67596 (Jiang et al., 2015).
Gene expression data from a total of 36 JIA cases and 26
controls were meta-analyzed. Among the 264 eQTL genes for JIA
SNPs, only 11 genes showed significant differential expression,
including 5 up-regulated and 6 down-regulated (Table 1). Our
in silico analysis suggested that these genes may function as
JIA loci targeted genes in neutrophils. Among the 13 pairs of
JIA SNPs and target genes, only SNP rs79893749 is located
in the intron of its target gene CCR3; all the other SNPs
are located outside of the transcript region of their target
genes. Hi-C data provide additional supporting evidence for
plausible chromatin interactions between some JIA SNPs and
their target genes (Supplementary Figures 1, 2), with the caveat
that these data came from a chronic myelogenous leukemia cell

3promoter.bx.psu.edu/hi-c/
4http://fuma.ctglab.nl/ TA
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FIGURE 1 | PPI network of first-order interactions constructed for JIA loci
target genes in neutrophils.

line K562 (Rao et al., 2014; Schmitt et al., 2016). Experiments
using neutrophils would be necessary to further explore their
possible interactions.

To understand how these genes coordinately contribute to
JIA development, we constructed PPI network among proteins
encoded by these genes and their direct interactors (Figure 1)
using NetworkAnalyst which integrates statistical analyses and
machine learning for interactive PPI network visualization.
We further conducted pathway analysis and found several
signaling pathways significantly enriched among proteins in
this network, including neurotrophin signaling pathway, cardiac
muscle contraction, cell cycle and hypertrophic cardiomyopathy
(HCM) (Table 2). To test the cell type specificity of 11
target genes and enriched pathways, we repeated the whole
process using microarray gene expression data from PBMC

samples of the same GEO datasets. We found that among
the 11 target genes in neutrophils, one gene (TRIM58) was
shared with PBMC (Table 1 and Supplementary Table 1). No
enriched pathway was shared between neutrophils and PBMC
(Figure 1, Table 2, Supplementary Figure 3, and Supplementary
Table 2). To further determine the specificity of the 4 enriched
pathways among JIA target genes in neutrophils, we checked
the distribution of significantly enriched pathways from 100
randomly generated 11-gene lists and derived the empirical
P-values for each of the 4 pathways of interest (Table 2).
The pathways of cardiac muscle contraction and hypertrophic
cardiomyopathy were of empirical P-value < 0.01. Based on these
two control gene set analyses, we demonstrated the specificity of
these target genes and pathways in neutrophils, serving the initial
screening purpose for further functional validation.

Next, we investigated how JIA loci may regulate the expression
of their targeted genes. To address this question, we examined the
ROADMAP database (Kundaje et al., 2015) through HaploReg
(Ward and Kellis, 2012). We found rs79893749 and rs149850873
overlap with histone marks in a neutrophil cell line E030
BLD.CD15.PC, suggesting that these loci may regulate their
targeted gene expression through histone modifications in the
promoter or enhancer region. We also looked into the potential
mechanism of DNA methylation. In our methylation analysis,
we tested the 10 JIA SNPs against their corresponding one
or two genes which each contains ∼11 methylation probes
on average. A total of 144 SNP-methylation-probe pairs were
tested, thus the multiple-testing adjusted P-value cutoff is set
at 3.5 × 10−4. The correlation between four SNP-methylation-
probe pairs reached this experiment-wide significance threshold,
suggesting that these JIA SNPs may regulate the expression of
their target genes through DNA methylation (Table 1).

DISCUSSION

In this study, we conducted data mining in existing datasets
to gain a better understanding of the molecular mechanism
of JIA GWAS loci. By eQTL and transcriptome analyses, we
identified 11 genes may be JIA loci target genes in neutrophils.
We further built PPI network and found pathways enriched
among target genes and their interactors. We also found multiple
JIA GWAS SNPs overlap with histone marks and/or correlate
with methylation level in their target genes.

We did not observe extensive overlap between JIA eQTL
genes in whole blood and genes of differential expression in

TABLE 2 | KEGG pathways enriched among the PPI network formed by JIA loci target gene and their interactors (FDR < 0.05).

Pathway Total Expected Hits P-value FDR Empirical P-value

Neurotrophin signaling pathway 123 1.34 10 5.60E-07 1.21E-04 0.1

Cardiac muscle contraction 12 0.131 4 5.81E-06 6.30E-04 <0.01∗

Cell cycle 124 1.35 8 4.74E-05 3.43E-03 0.14

Hypertrophic cardiomyopathy 25 0.272 4 1.34E-04 7.25E-03 <0.01∗

Total = the total number of genes in each pathway; Expected = the expected number of genes in each pathway given the number of JIA target genes; Hits = the actual
number of JIA target genes falling into each pathway; P-value = P-value of each pathway in enrichment test; FDR = false discovery rate of each pathway; ∗empirical
P-value < 0.01 based on permutation analysis.
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neutrophils. It possibly resulted from the small sample size in
our microarray datasets which did not have enough power to
detect certain differentially expressed genes. In addition, JIA
eQTL genes may be expressed in cell types other than neutrophils
which we are particularly interested in.

Several of the target genes we identified are highly related
to the immune system, such as CCR3, ELL2, and HLA-DPA1.
Others play a role in cell proliferation, carcinogenesis and/or
other biological functions. The Human leukocyte antigen (HLA)
gene complex encodes human major histocompatibility complex
(MHC), a group of cell-surface proteins playing important roles
in the regulation of human immune system. HLA genes have
been reported to be associated with autoimmune diseases (Sollid,
2017; Kawabata et al., 2018), including rheumatoid arthritis
(Onuora, 2015; Smolen et al., 2018) and JIA (Smerdel et al.,
2002). The HLA-DPA1 locus has been particularly linked to
ankylosing spondylitis, a type of chronic inflammatory rheumatic
disease (Diaz-Pena et al., 2011). As expected, HLA genes
were also found as target genes in PBMC, suggesting they
contribute to pathogenesis of JIA in diverse immune cell types.
CCR3 gene encodes a protein as a member of the G protein-
coupled receptor family, responding to the C-C type chemokines.
SNP in CCR3-CCR5 region has been linked to family history
of autoimmune disease among children with type I diabetes
(Parkkola et al., 2017). It has been reported that CCR3 expression
was increased under rheumatoid arthritis conditions, and it
mediated eotaxin-1 induced matrix metalloproteinase (MMP)-
9 upregulation in fibroblast-like synoviocyte which may further
result in articular damage (Liu et al., 2017). Previous studies have
also demonstrated that CCR3 is highly expressed in infiltrated
synovial neutrophils of rheumatoid arthritis patients (Hartl et al.,
2008). ELL2 gene encodes Elongation Factor for RNA Polymerase
II 2, a component of the super-elongation complex. It functions
in immune regulation by affecting IgH alternative processing,
Ig secretion and plasma cell differentiation. Missense mutation
in ELL2 gene affects IgA and IgG level associated with multiple
myeloma (Swaminathan et al., 2015). Study has shown that ELL2
is expressed in mature neutrophils and its expression is elevated
in responses to inflammatory stimuli (Zhang et al., 2004). Our
results suggest that these genes may also play a role in neutrophils
mediating the effect of JIA risk loci during JIA pathogenesis
which should be further investigated by experimental approaches.

The pathways of cardiac muscle contraction and hypertrophic
cardiomyopathy are significantly and specifically enriched in PPI
network of JIA target genes and their interactors in neutrophils.
Multiple studies have reported that patients with rheumatoid
arthritis have a higher incidence and mortality of cardiovascular

disease (Maradit-Kremers et al., 2005; Voskuyl, 2006; Avina-
Zubieta et al., 2008; Georgiadis et al., 2008). Cardiac involvement
has similarly been found in JIA patients (Svantesson et al., 1983;
Hull, 1988). However, whether JIA increases the long-term risk
of cardiovascular disease is still uncertain (Coulson et al., 2013).
Our results suggest that JIA and cardiovascular disease may share
common underlying molecular mechanism.

High-throughput omics technology provides a wealth of
experimental data for disease gene discovery. The multi-omics
studies on the interplay between genes, RNA, proteins and small
molecules reveal new directions for the research of complex
diseases (Bersanelli et al., 2016; Bock et al., 2016). Integration
of data from different dimensions of multi-omics data via
different analytical approaches facilitates prioritizing genes for
efficient functional studies and contributes to the understanding
of disease etiology.
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In the past decade, precision genomics based medicine has emerged to provide tailored
and effective healthcare for patients depending upon their genetic features. Genome
Wide Association Studies have also identified population based risk genetic variants
for common and complex diseases. In order to meet the full promise of precision
medicine, research is attempting to leverage our increasing genomic understanding and
further develop personalized medical healthcare through ever more accurate disease
risk prediction models. Polygenic risk scoring and machine learning are two primary
approaches for disease risk prediction. Despite recent improvements, the results of
polygenic risk scoring remain limited due to the approaches that are currently used.
By contrast, machine learning algorithms have increased predictive abilities for complex
disease risk. This increase in predictive abilities results from the ability of machine
learning algorithms to handle multi-dimensional data. Here, we provide an overview
of polygenic risk scoring and machine learning in complex disease risk prediction.
We highlight recent machine learning application developments and describe how
machine learning approaches can lead to improved complex disease prediction, which
will help to incorporate genetic features into future personalized healthcare. Finally,
we discuss how the future application of machine learning prediction models might
help manage complex disease by providing tissue-specific targets for customized,
preventive interventions.

Keywords: machine learning, polygenic risk score, precision medicine, genetic disease risk prediction,
personalized medicine, complex disease risk

PRECISION MEDICINE

Since the completion of the Human Genome Project, DNA sequencing technologies have
been advancing rapidly (Laksman and Detsky, 2011; Johnson, 2017). These advances have
been most notable in terms of a dramatic decrease in the cost per base pair sequenced
(Schuster, 2008). This has led to an exponential increase in the abundance of individual-
specific genotype data and other forms of human biological “omics” information (Laksman and
Detsky, 2011; Spiegel and Hawkins, 2012). As a result of these technological developments, the
concept of precision medicine, or personalized medicine, has undergone a world-wide upsurge
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in support as a way of transforming disease prediction, prognosis,
and individual participation in preventative strategies (Laksman
and Detsky, 2011; Johnson, 2017).

The objective of precision medicine is to deliver tailored
medical treatments for patients according to their genetic
characteristics. This primarily involves customizing proactive
and preventive care to maximize medical efficacy and cost-
effectiveness (Laksman and Detsky, 2011). Personalization is
achieved by integrating and utilizing various types of omics
information to generate and understand disease risks (Laksman
and Detsky, 2011; Spiegel and Hawkins, 2012; Redekop
and Mladsi, 2013). The application of precision medicine
to pharmacogenomics has allowed for customized drug and
dosage use with considerable success. For example, genetic
information is regularly incorporated into treatment strategies
for trastuzumab treatment for HER2-positive breast cancers,
erlotinib for EGFR-overexpressing lung cancers, or imatinib
for Philadelphia chromosome-positive chronic myelogenous
leukaemias (Salari et al., 2012; Wald and Morris, 2012). However,
in the context of population health, it is hotly debated whether
precision genomics is yet at a point where it offers cost-
benefits over and above fully implemented standard public
health approaches.

GENOME-WIDE ASSOCIATION STUDIES

There are millions of single nucleotide polymorphisms (SNPs,
also known as genetic variants) in each human genome (Auton
et al., 2015). Genome-wide association (GWA) studies identify
SNPs that mark genomic regions that are strongly associated with
phenotypes in a population (Visscher et al., 2012). These genomic
regions must contain the variant that is causally associated with
the phenotype, however it does not follow that the SNP that is
identified by the GWA study is causal. Notably, many common
and complex diseases [e.g., type 2 diabetes (T2D) and obesity]
are influenced by multiple SNPs, each with small per-SNP effect
sizes (Visscher et al., 2017). Of note, the majority of these SNPs
are located in non-coding regions and thus must be indirectly
involved in their disease association, likely through tissue-specific
regulatory activities (Visscher et al., 2017; Schierding et al., 2018).
New methods to understand these regulatory activities include
the integration of spatial and temporal aspects of gene expression
data (Schierding and O’Sullivan, 2015; Schierding et al., 2016;
Fadason et al., 2017, 2018; Nyaga et al., 2018). These approaches
are providing insights into the impacts of genetic variants that
can reassign population based risk to individualized risk.

PREDICTING RISK SCORES AND AUC

Traditional epidemiology based models of disease risk (with
limited predictive power) have been primarily informed by
lifestyle risk factors such as family history (Jostins and Barrett,
2011; Wang et al., 2016). Recently, the inclusion of genetic
risk factors, including disease or phenotype associated SNPs,
into risk modeling has improved the accuracy of individual

disease prediction (Jostins and Barrett, 2011; Wang et al., 2016).
Perhaps the greatest promise of risk prediction models lies in
their potential to guide diease prevention and treatment without
the need for costly and potentially adverse medical screening
procedures (e.g., invasive biopsies) (Wray et al., 2007; Ashley
et al., 2010; Manolio, 2013; Abraham and Inouye, 2015).

Currently, the main focus of developing genetic risk models
is to achieve accurate predictive power for recognizing at-
risk individuals in a robust manner (Ashley et al., 2010;
Manolio, 2013; Montañez et al., 2015). As stated earlier,
GWA studies define SNPs according to their association with
a disease/phenotype at a population level. Therefore, the
incorporation of SNPs into a risk prediction model requires
integration into models that score an individual’s genotype to
enable the estimation of risk. Genetic risk prediction models
are typically constructed by: (1) Polygenic risk scoring; or (2)
Machine learning (Wei et al., 2009; Abraham and Inouye, 2015).
The predictive performance of both model types is evaluated
by receiver operating characteristic curves (ROCs) (Kooperberg
et al., 2010; Jostins and Barrett, 2011; Vihinen, 2013; Wang et al.,
2016), where the sensitivity and specificity of the predictions are
ranked at various cut-off values (Kooperberg et al., 2010; Jostins
and Barrett, 2011; Vihinen, 2012; Wang et al., 2016). The area
under a ROC curve (AUC) is the probability of the examined
model correctly identifying a case out of a randomly chosen pair
of case and control samples (Kooperberg et al., 2010; Jostins and
Barrett, 2011; Kruppa et al., 2012; Vihinen, 2012; Wang et al.,
2016). AUC results range from 0.5 (i.e., random) to 1 (i.e., 100
percent accuracy) (Kooperberg et al., 2010; Jostins and Barrett,
2011; Vihinen, 2012; Wang et al., 2016).

POLYGENIC RISK SCORING

Polygenic risk scoring uses a fixed model approach to sum the
contribution of a set of risk alleles to a specific complex disease
(Belsky et al., 2013; Che and Motsinger-Reif, 2013; Wang et al.,
2016; So et al., 2017). Polygenic risk scores can be unweighted or
weighted. In weighted polygenic risk scores, the contributions of
the risk alleles is typically weighted by their odds ratios or effect
sizes (Evans et al., 2009; Purcell et al., 2009; Wei et al., 2009;
Carayol et al., 2010; Medicine and Manolio, 2013). By contrast,
unweighted polygenic risk scores are equal to the sum of the
number of associated variant alleles in a genome. The unweighted
model assumes that all variants have an equivalent effect size
(Carayol et al., 2010; Abraham and Inouye, 2015; Hettige et al.,
2016). This simplistic assumption limits the utility of unweighted
polygenic risk scores for complex traits with underlying genetic
architectures that include uneven variant effects (Carayol et al.,
2010; Abraham and Inouye, 2015; Hettige et al., 2016).

There are two stages to the development of a polygenic
risk score: (1) the discovery stage; and (2) the validation
stage. The discovery stage of a weighted polygenic risk
score uses statistical association testing (e.g., linear or logistic
regression) to estimate effect sizes from a large case and
control dataset of individual genotype profiles (Evans et al., 2009;
Che and Motsinger-Reif, 2013; Dudbridge, 2013). The discovery
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stage of an unweighted polygenic risk score requires strict
SNP selection parameters to prevent incorporation of SNPs
with minor effect sizes. In both the weighted and unweighted
polygenic risk score, once developed, the discovery model is
passed to the validation stage. Validation of the polygenic risk
score requires the extraction of informative SNP identities and
effect sizes from the discovery set, using a stringent association
p-value threshold (e.g., 5 × 10−8) (Dudbridge, 2013; Wray
et al., 2014),which is subsequently passed to a scoring phase
of the validation. During this process, the polygenic risk score
model is applied to a testing dataset [i.e., an independent set
of case and control genotype data (Che and Motsinger-Reif,
2013; Dudbridge, 2013)]. Polygenic risk scores are calculated for
each individual genotype profile in the testing data (Che and
Motsinger-Reif, 2013; Dudbridge, 2013). The predictive power
of the individual polygenic risk scores for the complex trait are
then established by the strength of the score associations with the
clinically measured outcomes (phenotypes) in the testing dataset
(Che and Motsinger-Reif, 2013; Dudbridge, 2013).

Early attempts to use weighted polygenic risk scores, were
based on small numbers of highly significant SNPs identified
from GWA studies, and achieved only limited predictive value
for complex diseases (Amin et al., 2009; Dudbridge, 2013). This
illustrates a key limitation of weighted polygenic risk score
modeling, specifically the p-value threshold for SNP choice in
the discovery dataset impacts on the model’s performance and
predictive power. The selection of limited numbers of SNPs, with
large effect sizes, over-simplifies the biological underpinnings of
the complex diseases by ignoring the bulk of the variants that
make much smaller individual contributions to the phenotype
(Visscher et al., 2017). For example, the average odds ratio
per T2D risk allele ranges from 1.02 to 1.35 (Shigemizu et al.,
2014). Recent polygenic risk score models incorporate expanded
SNP selection to achieve better predictive results for complex
polygenic traits (Dudbridge, 2013; Escott-Price et al., 2015;
So et al., 2017). For example, the use of relaxed p-value
thresholds (as high as 0.01, 0.1, and 0.2 etc. . .) has enabled
the development of improved polygenic risk score models for
psychiatric diseases, with minimal increases in false positive
errors (i.e., the models have an acceptable power-to-noise ratio)
(Amin et al., 2009; Kooperberg et al., 2010; Wray et al., 2014).
The weighted polygenic risk score approach has enabled the risk
prediction of schizophrenia to achieve reasonable efficacy with an
AUC of ∼0.65 (Jostins and Barrett, 2011). Similarly, significant
results from weighted polygenic risk score predictions were also
obtained for other complex traits including Type 1 diabetes and
celiac disease (CD) (Jostins and Barrett, 2011; Wray et al., 2014;
So et al., 2017).

MACHINE LEARNING DISEASE
PREDICTION MODELS

Machine learning approaches adapt a set of sophisticated
statistical and computational algorithms (e.g., Support vector
machine (SVM) or Random forest) to make predictions by
mathematically mapping the complex associations between a set

of risk SNPs to complex disease phenotypes (Quinlan, 1990;
Wei et al., 2009; Kruppa et al., 2012; Mohri et al., 2012).
These methods use supervised or unsupervised approaches to
map the associations with complex diseases (Dasgupta et al.,
2011). Despite the utility of unsupervised machine learning
methods and non-genetic data in disease predictions (Singh and
Samavedham, 2015; Worachartcheewan et al., 2015), we will
focus the remainder of this manuscript on supervised modeling
that is informed by SNP data.

Supervised machine learning disease prediction models are
generated by training the pre-set learning algorithms to map
the relationships between individual sample genotype data and
the associated disease (Dasgupta et al., 2011; Okser et al., 2014).
Optimal predictive power for the target disease is achieved by
mapping the pattern of the selected features (variables) within
the training genotype data (Quinlan, 1990; Mohri et al., 2012;
Okser et al., 2014). Some models use gradient descent procedures
and iterative rounds of parameter estimation to search through
the training data space for optimized predictive power (Yuan,
2008; Mehta et al., 2019). This recursive process continues until
the optimal predictive performance is reached (Yuan, 2008;
Mehta et al., 2019). At the end of the training stage, the models
with the maximum predictive power on the training dataset are
selected for validation (Vihinen, 2012; Abraham and Inouye,
2015). A generalized workflow for creating a machine learning
model from a genotype dataset is illustrated in Figure 1.

During the validation stage, the performance of the predictive
machine learning models is evaluated to determine their power
for generalized prediction. As with polygenic risk scoring, the
validation stage is accomplished by evaluating the algorithm
on an independent dataset. The validation stage is essential
for ensuring the prediction models do not overfit the training
data (Dasgupta et al., 2011; Okser et al., 2014; Abraham and
Inouye, 2015). Cross validation is a commonly used procedure
for validating the models performance using the original dataset
(Schaffer, 1993; Kruppa et al., 2012; Vihinen, 2012; Nguyen
et al., 2015; Zhou and Troyanskaya, 2015). However, external
validation (testing) using an independent dataset is required
to finally confirm the predictive power of a machine learning
model. The utility of the algorithm is finally determined through
randomized controlled comparisons to current clinical best
practice. Only if the algorithm adds information to more
accurately stratify populations, predict disease risk or treatment
responses does it ultimately prove its clinical utility.

FACTORS THAT IMPROVE THE POWER
OF PREDICTIVE MODELS FOR
COMPLEX DISEASES

Despite initial promise, the predictive performance of polygenic
risk scores for complex diseases has only been moderately
successful (Wei et al., 2009; Kruppa et al., 2012; Abraham and
Inouye, 2015). A significant contributor to this relatively poor
performance revolves about the finding that experimental GWA
study data suggests that risk allele contributions to complex
diseases have average odds ratios of between 1.1 and 2 (Wray
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FIGURE 1 | Workflow for creating a supervised machine learning model from a genotype dataset.

et al., 2007). However, GWA studies are typically underpowered
and only capable of detecting risk SNPs with odds ratios of
>1.3 (Dudbridge, 2013; Wray et al., 2014). Thus, improving
the predictive power of polygenic disease risk models could be
as simple as increasing GWA study sample sizes (Wei et al.,
2009; Okser et al., 2014; Abraham and Inouye, 2015). Rapidly
decreasing DNA sequencing costs have led to meta-GWA studies
analyzing datasets containing half a million or more samples
(The Wellcome Trust Case Control Consortium, 2007; Amin
et al., 2009; Lyall et al., 2018). The use of larger datasets has
increased the frequency of detection of SNPs with small effect
sizes. Incorporating SNPs with small effect sizes into polygenic
risk models has resulted in an increase in the accuracy of complex
disease predictions (Wei et al., 2009; Jostins and Barrett, 2011;
Vihinen, 2012; Abraham and Inouye, 2015). It remains likely
that this trend to use SNPs identified from bigger datasets will
continue into the future, with the associated increases in the
accuracy of the resulting risk prediction models.

The size of the training and validation datasets is another
critical element in machine learning modeling. However, size is
not enough and the datasets must be of high quality with accurate
phenotyping that ensures the generalizing predictive power of
the resultant machine learning models (Vihinen, 2012; Wei et al.,
2014). Wei et al. (2013) illustrated the impact of training sample
size on the predictive power of a machine learning classification
algorithm for inflammatory bowel disease (IBD). The dataset
used in the study contained 60,828 individual genotypes from
15 European counties (Wei et al., 2013). A machine learning
prediction model for Crohn’s disease (a subtype of IBD) created
from a small subset (n = 1,327) of the dataset only performed
moderately (AUC = 0.6). However, the predictive power of
the model improved consistently with increases in size of the
training datasets until the predictive performance reached the

maximum (AUC = 0.86) with the full training dataset (n = 11,943)
(Wei et al., 2013).

Technological advances are constantly improving the quality
and quantity of the complex integrative datasets that are collected
on human phenotypes and disease. Integration of these highly
dimensional genomic data within machine learning models
can lead to improvements in genetic risk prediction over that
achieved for polygenic risk scores (Wei et al., 2009; Okser
et al., 2010, 2014; Kruppa et al., 2012; Fourati et al., 2018;
Joseph et al., 2018). Polygenic risk score predictions are based
on a linear parametric regression model that incorporates strict
assumptions, which include additive and independent predictor
effects, a normal distribution for the underlying data, and that the
data observations are non-correlated (Wei et al., 2009; Abraham
et al., 2013; Che and Motsinger-Reif, 2013; Casson and Farmer,
2014; Abraham and Inouye, 2015). These assumptions do not
necessarily hold true for the fundamental genetic structures
of complex polygenic diseases, thus leading to greatly reduced
predictive efficacy (Wei et al., 2009; Abraham et al., 2013; Che
and Motsinger-Reif, 2013). Notably, linear additive regression
modeling is incapable of accounting for complex interactive
effects between associated alleles (Abraham et al., 2013; Che
and Motsinger-Reif, 2013; Okser et al., 2014), which have been
reported to make major contributions to phenotypes (Furlong,
2013). Thus, linear additive regression based modeling leads
polygenic risk scores toward biased and less effective predictions
(Clayton, 2009; Huang and Wang, 2012; Che and Motsinger-
Reif, 2013; Okser et al., 2014). By contrast, machine learning
algorithms employ multivariate, non-parametric methods that
robustly recognize patterns from non-normally distributed and
strongly correlated data (Wei et al., 2009; Okser et al., 2010,
2014; Ripatti et al., 2010; Silver et al., 2013). The capacity of
machine learning algorithms to model highly interactive complex
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data structures has led to these approaches receiving increasing
levels of interest for complex disease prediction (Wei et al., 2009;
Okser et al., 2010, 2014; Ripatti et al., 2010; Silver et al., 2013).
The strengths and weaknesses of both polygenic risk scoring and
predictive machine learning models are summised in Figure 2.

MACHINE LEARNING FEATURE
SELECTION AND REGULARIZATION

Data feature selection is the major factor that impacts on a
machine learning model’s predictive performance (Okser et al.,
2014). Data feature selection occurs during the machine learning
training stage with the aim of reducing data dimensionality,
removing noisy and irrelevant data, and thus preserving the
most useful signals from the dataset (Kwak and Choi, 2002;
Okser et al., 2014). Data feature selection procedures can be
broadly implemented using filtering, embedded modules, or
wrapper methods (Pal and Foody, 2010; Kruppa et al., 2012;
Okser et al., 2013, 2014; Shi et al., 2016). The choice of
selection procedures depends on the original data attributes
and prediction model criteria (Pal and Foody, 2010; Okser
et al., 2014). For complex polygenic diseases, SNPs are currently
considered the most informative data features within genotype
data (Abraham et al., 2013; Okser et al., 2013; Wei et al., 2013;
Shi et al., 2016). It is assumed that the SNPs that are selected
for inclusion in the predictive models are associated with loci
that contribute mechanistically to the underlying disease etiology
(Pal and Foody, 2010; Okser et al., 2014; López et al., 2017).
Despite this, how the SNP mechanistically contributes to the
disease may not be understood. Commonly, in the first stage
of the model building, variants within the genotype data are
filtered and subdivided into groups according to their GWA
study P-value thresholds (Wei et al., 2009, 2013; Okser et al.,
2013, 2014; Montañez et al., 2015). Embedded methods are
implemented inside the model building algorithm and function
to select SNPs following the detection of their interactive
effects (Okser et al., 2013) and thus enable incorporation of
only informative SNPs into the predictors (Wu et al., 2009;
Okser et al., 2013; Wei et al., 2013). Wrappers serve the
same purpose as embedded methods. However, wrappers are
independent stand-alone SNP selection modules implemented
before the model building process (Pahikkala et al., 2012;
Okser et al., 2013).

Overfitting is a phenomenon whereby models are so closely
fitted to a dataset and they cannot be used to generalize
to other datasets. The chances of overfitting models can be
reduced by regularization, which is a process that maximizes
the generalized predictive power of machine learning models
(Tibshirani, 1996; Zou and Hastie, 2005; Okser et al., 2014).
For example, the two most common types of regression-based
regularization are L1 and L2. L1 and L2 regularizations both
use a penalized loss function to assign weights that adjust data
feature effects and reduce the complexity of the regression
models (Tibshirani, 1996; Zou and Hastie, 2005; Okser et al.,
2014). L1 regularization sets the weights of non-informative
data features to zero, thus eliminating effects and allowing only

FIGURE 2 | The strengths and weaknesses of polygenic risk scoring and
machine learning model.

essential and valuable data feature effects to be included into the
machine learning regression modeling (Tibshirani, 1996; Zou and
Hastie, 2005; Okser et al., 2014). By contrast, L2 regularization
minimizes non-essential data features using non-zero weights
(Tibshirani, 1996; Zou and Hastie, 2005; Okser et al., 2014).
As a result of this, L2 regularization is not typically used for
feature selection.

Regression-based L1-regularization is one of the most
commonly used machine learning feature selection methods,
with Lasso and Elastic Net currently being the most popular
L1 regularization modules (Tibshirani, 1996; Zou and Hastie,
2005; Wu et al., 2009; Okser et al., 2014). There are many
examples where L1-regularization has enhanced the machine
learning algorithm’s predictive performance for different diseases
(Abraham et al., 2013; Wei et al., 2013; Shigemizu et al., 2014;
Shieh et al., 2017). For example, Wei et al. (2013) implemented
a two-step model training process in the development of an
L1-regularized algorithm for Crohn’s disease prediction. Firstly,
the Lasso-logistic regression method identified a set of essential
and informative SNPs. Subsequently, the selected SNPs were
applied to a SVM and a logistic predictor for Crohn’s disease.
Following SNP optimization by L1-regularization, both the non-
parametric and parametric predictors achieved similar results
with an AUC = 0.86 compared to an AUC = 0.73 for the simple
polygenic risk score.

Abraham et al. (2014) used six European genotype datasets
to develope a Lasso–SVM integrated model, with an AUC = 0.9,
for CD. Following data cleaning and adjustment for population
structure effects by principal components, Abraham et al.
(2014) created a L1-SVM predictor from each dataset with
cross-validaion. They then used the other five datasets for
external validation. Data feature selection for all the predictors
was acomplished by the Lasso method embedded within the
SVM algorthm. The best predictor that was generated had
an AUC = 0.9 and its clinical utility is being explored for
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CD prediction (Abraham and Inouye, 2015). Notably, the
identification of the essential SNPs by the Lasso-SVM model
has provided insights that will help decipher the genetic basis
underlying the etiologic pathways of CD pathogenesis.

SUPERVISED LEARNING ALGORITHMS

Supervised learning algorithms can be classified as regression-
based or tree-based methods (Table 1; Dasgupta et al., 2011;
Okser et al., 2014). Logistic regression, linear regression,
neural networks, and SVM are popular examples of regression
based supervised learning algorithms (Dasgupta et al., 2011;
Kruppa et al., 2012). Regression-based supervised learning
methods employ polynomial parametric or non-parametric
regression methods to map the associations of multidimensional
input data to outputs (Dasgupta et al., 2011; Okser et al.,
2014; Mehta et al., 2019). By contrast, tree-based supervised
learning algorithms, which include Decision trees and
Random forests, typically utilize binary decision splitting
rule approaches to model the relationships between the input
and output data (Dasgupta et al., 2011; Okser et al., 2014;
Mehta et al., 2019).

Regression-based machine learning approaches have been
widely employed in risk prediction for many diseases including:
cancer; Alzheimer’s; cardiovascular disease; and diabetes
(Capriotti et al., 2006; Cruz and Wishart, 2006; Palaniappan
and Awang, 2008; Yu, 2010; Zhang and Shen, 2012). For

example, an SVM regression-based non-parametric machine
learning model of the genetics of type 1 diabetes was built and
trained from 3443 individual genotype samples (Mieth et al.,
2016) achieving an AUC = 0.84, which is significantly higher
than the polygenic risk scoring model AUC = 0.71 (Clayton,
2009; Wei et al., 2009; Jostins and Barrett, 2011). Notably,
validation testing confirmed that the predictive power of the
non-parametric SVM consistently outperformed the logistic
regression control prediction model on two independent datasets
(Wei et al., 2009).

Deep learning prediction models developed from neural
network algorithms have been gaining a lot of interest following
their successful implementation in image recognition and natural
language processing applications (He et al., 2016; Young et al.,
2018). In genomics, deep learning applications are helping
to identify functional DNA sequences, protein binding motifs
and epigenetic marks (Alipanahi et al., 2015; Zhou and
Troyanskaya, 2015; Zhang et al., 2018). A deep learning model
incorporating SNPs associated with obesity has demonstrated
a remarkable ability to correctly identify a case out of a
randomly chosen pair of case and control samples with an
AUC = 0.99 (Montañez et al., 2015). After data cleaning, a
genotype dataset of 1997 individuals including 879 cases and
1118 controls with 240,950 SNPs was obtained. The dataset was
subsequently filtered into four SNP feature sets, according to
P-value thresholds obtained from the GWA study. The numbers
of SNPs in the feature sets were: 5 (P-value: 1 × 10−5);
32 (P-value: 1 × 10−4); 248 (P-value: 1 × 10−3); and 2465

TABLE 1 | A brief view of common machine learning algorithms.

Regression based Examples

Logistic regression • Use parametric regressions to estimate the probabilities of
dichotomous outputs (Dasgupta et al., 2011)

Cox, 1958; Yu et al., 2014; Niriella et al., 2018

Neural Network • Use multi-layers of non-parametric regressions and
transformations to model input data to outputs
(Mehta et al., 2019)

Rosenblatt, 1962; Montañez et al., 2015;
Xue et al., 2018

Support vector
machine (SVM)

• Use non-parametric regressions to model input data for
creating multi-dimensional hyperspaces to discriminate the
outputs (Yu, 2010)

Corinna and Vladimir, 1995; Abraham et al.,
2014; Han, 2018

Regression based regularization

Lasso • Apply L1 penalized loss functions in regression
(Okser et al., 2014)

Tibshirani, 1996; Wei et al., 2013;
Song et al., 2018

Elastic net • Apply L1 and L2 penalized loss functions in regression
(Okser et al., 2014)

Zou and Hastie, 2005; Abraham et al., 2013;
Rashkin et al., 2018

Tree-based

Decision tree • Utilize binary decision splitting rule approaches to model the
relationships between input data and outputs
(Mehta et al., 2019)

Quinlan, 1986; Geurts et al., 2009;
Li et al., 2018

Random forest • Utilize an ensemble of randomized decision trees to model
input data to outputs (Mehta et al., 2019)

Breiman, 2001; Worachartcheewan et al.,
2015; Dai et al., 2018

The examples include the founding papers and current examples as at December 2018.
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(P-value: 1 × 10−2). The feature set with 2465 SNPs (P-
value: 1 × 10−2) was used to construct an artificial neural
network (ANN) deep learning model from 60% of the original
genotypes as training, 20% as internal validation, and 20% as
testing. The ANN deep learning model delivered a significant
predictive performance for obesity on the testing set with an
AUC = 0.9908 (Montañez et al., 2015). Montañez et al. (2015)
clearly demonstrated the ability of the ANN deep leaning
algorithm to capture combined SNP effects and predict complex
polygenic diseases.

Tree-based machine learning commonly uses a Random
Forest algorithm (Jiang et al., 2009; Boulesteix et al., 2012; Touw
et al., 2013; López et al., 2017). Random Forest algorithms
construct prediction models using an ensemble method with
many decision trees. Specifically, Random Forest algorithms
select for and evaluate SNPs that are informative in the
decision-tree building process (Boulesteix et al., 2012; Nguyen
et al., 2015). A strength of Random Forest models is their
ability to effectively handle missing and highly dimensional
data structures that contain complex interactions (Boulesteix
et al., 2012; Nguyen et al., 2015). For example, in a recent
study a Random Forest algorithm was used to predict T2D
risk, outperforming both SVM, and logistic regression models
(López et al., 2017). In this study, a set 1074 individual
genotypes and 101 preselected T2D related SNPs were collected
and cleaned. The cleaned data (677 samples with 96 related
SNPs) were fed into a Random Forest learning algorithm and
produced a T2D predictor that delivered an AUC = 0.85
with cross validation (López et al., 2017). In so doing, the
Random Forest model also refined the preselected SNPs to
identify a subset that are strongly associated with T2D and can
be used to interrogate the etiology of the disease (Boulesteix
et al., 2012; Nguyen et al., 2015; López et al., 2017). The
implementation of Random Forrest is still useful as a machine
learning method for complex disease risk modeling (Boulesteix
et al., 2012; Chen and Ishwaran, 2012; Austin et al., 2013;
López et al., 2017).

INDIVIDUAL TISSUE-SPECIFIC
HETEROGENEITY

Although PRS and machine learning approaches have been
extensively used in complex disease prediction, little attention
has been given to the utility of machine learning applications
in calculating tissue-specific disease risk in individuals.
This is largely because GWAS studies identify relationships
between global somatic SNPs and their associated phenotypes
(Visscher et al., 2017). However, GWAS-identified, disease-
associated SNPs are recognized as modifying regulatory
mechanisms which affect gene expression in a tissue-specific
manner (Parker et al., 2013; Ardlie et al., 2015). Therefore,
by expanding GWAS methodology to include expression
measures (i.e., expression quantitative trait locus, eQTL),
genetic analyses could help to interrogate the inter-related
biological networks between cell and tissue types that
propagate the causal effects to complex diseases (Ardlie

et al., 2015; Ongen et al., 2017). For example, incorporating
eQTL data led to the identification of adipose-specific gene
expression patterns that could have an inferred causal role
in obesity (Nica and Dermitzakis, 2013). Similarly, genes
with liver specific expression are now thought to be a major
contributor to T2D (Rusu et al., 2017). By extending eQTL
analyses to include chromatin spatial interaction (Hi-C)
data, it was shown that T2D and obesity associated SNPs
have spatial-eQTLs which implicate dysfunction of specific
regulatory actions in various tissue types (Fadason et al.,
2017). These studies strongly suggest that by aggregating
biological data types (e.g., DNA, RNA, and epigenetic data),
the accumulated result becomes a tissue-specific network
analysis of associated dysfunctionally regulated genes. Thus,
specific disease risk to individuals should be calculated
using a tissue-by-tissue approach, concluding with tissue-
specific networks and pathways that are particular to the
development of a disease.

In so doing, it may be possible to leverage the tissue-effect
heterogeneity of patients by identifying the correct genes and
tissue loads to provide essential targets for potential therapeutic
interventions leading to enhanced therapeutic effectiveness.
The tissue-effect heterogeneity could also help to recognize
individual subtypes of complex disease, facilitating personalized
treatments. By targeting the causal associated SNP tissue-
specific effects, predictions of patient specific tissue-effect
disease risks could provide informative biomarkers for early
disease prevention, bringing about a substantial reduction
of later disease burdens and costs. Zhou and Troyanskaya
(2015) have utilized the deep learning algorithm to predict
the functional effects of non-coding variants by modeling
the pattern of genomic and chromatin profiling information.
They have been able to employ this method to distinguish
important eQTLs and disease-related SNPs from various eQTL
and SNP databases. Nevertheless, despite the immense promise
of machine learning, it is important to recognize that at
present there is insufficient research in their application for
the identification of disease-associated tissue-specific risks. It
is likely that these caveats will be attenuated in the near
future through advanced tissue-specific studies of complex
traits and disease.

CONCLUSION

Precision medicine is a rapidly advancing field that already
provides customized medical treatments and preventative
interventions for specific diseases, especially cancer. Using a
patient’s SNPs to predict individual disease risks is an essential
element for delivering the fuller promise of precision medicine.
Polygenic risk scoring is a straightforward model for assigning
genetic risk to individual outcomes, but has achieved only limited
success in complex disease predictions due to its dependency on
linear regression. The polygenic risk scoring method is ineffective
in modeling highly dimensional genotype data with complex
interactions. By contrast, the strength of machine learning data
modeling in complex disease prediction lies in its handling
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of interactive high-dimensional data. Coupled with large new
population datasets with high-quality phenotyping at different
stages in the lifecourse, machine learning models are capable of
classifying individual disease risks with high precision. Notably,
machine learning predictors that include tissue-specific disease
risks for individuals show even greater promise of insights that
could ultimately provide cost-effective and proactive healthcare
with great efficacy.

DATA AVAILABILITY

No datasets were generated or analyzed for this study.

AUTHOR CONTRIBUTIONS

DH conceived and wrote the manuscript. MW and RS
advised DH and commented on the manuscript. WS and JO’S
supervised DH and co-wrote the manuscript.

FUNDING

This review was funded by grant UOAX1611: New Zealand –
Australia Lifecourse Collaboration on Genes, Environment,
Nutrition and Obesity (GENO) from the Ministry of Business
Innovation and Employment of New Zealand.

REFERENCES
Abraham, G., and Inouye, M. (2015). Genomic risk prediction of complex human

disease and its clinical application. Curr. Opin. Genet. Dev. 33, 10–16. doi:
10.1016/j.gde.2015.06.005

Abraham, G., Kowalczyk, A., Zobel, J., and Inouye, M. (2013). Performance and
robustness of penalized and unpenalized methods for genetic prediction of
complex human disease. Genet. Epidemiol. 37, 184–195. doi: 10.1002/gepi.21698

Abraham, G., Tye-Din, J. A., Bhalala, O. G., Kowalczyk, A., Zobel, J., and
Inouye, M. (2014). Accurate and robust genomic prediction of celiac disease
using statistical learning. PLoS Genet. 10:e1004137. doi: 10.1371/journal.pgen.
1004137

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the
sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nat. Biotechnol. 33, 831–838. doi: 10.1038/nbt.3300

Amin, N., Van Duijn, C. M., and Janssens, A. C. J. W. (2009). Genetic scoring
analysis: a way forward in genome wide association studies? Eur. J. Epidemiol.
24, 585–587. doi: 10.1007/s10654-009-9387-y

Ardlie, K. G., Deluca, D. S., Segre, A. V., Sullivan, T. J., Young, T. R., Gelfand, E. T.,
et al. (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue
gene regulation in humans. Science 348, 648–660. doi: 10.1126/science.1262110

Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E.,
et al. (2010). Clinical assessment incorporating a personal genome. Lancet 375,
1525–1535. doi: 10.1016/S0140-6736(10)60452-7

Austin, P. C., Tu, J. V., Ho, J. E., Levy, D., and Lee, D. S. (2013). Using methods
from the data-mining and machine-learning literature for disease classification
and prediction: a case study examining classification of heart failure subtypes.
J. Clin. Epidemiol. 66, 398–407. doi: 10.1016/j.jclinepi.2012.11.008

Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Bentley, D. R.,
Chakravarti, A., et al. (2015). A global reference for human genetic variation.
Nature 526, 68–74. doi: 10.1038/nature15393

Belsky, D. W., Moffitt, T. E., Sugden, K., Williams, B., Houts, R., McCarthy, J.,
et al. (2013). Development and evaluation of a genetic risk score for obesity.
Biodemogr. Soc. Biol. 59, 85–100. doi: 10.1080/19485565.2013.774628

Boulesteix, A. L., Janitza, S., Kruppa, J., and König, I. R. (2012). Overview
of random forest methodology and practical guidance with emphasis on
computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 2, 493–507. doi: 10.1002/widm.1072

Breiman, L. E. O. (2001). Random forest. Mach. Learn. 45, 5–32. doi: 10.1023/A:
1010933404324

Capriotti, E., Calabrese, R., and Casadio, R. (2006). Predicting the insurgence
of human genetic diseases associated to single point protein mutations with
support vector machines and evolutionary information. Bioinformatics 22,
2729–2734. doi: 10.1093/bioinformatics/btl423

Carayol, J., Tores, F., König, I. R., Hager, J., and Ziegler, A. (2010). Evaluating
diagnostic accuracy of genetic profiles in affected offspring families. Stat. Med.
29, 2359–2368. doi: 10.1002/sim.4006

Casson, R. J., and Farmer, L. D. M. (2014). Understanding and checking the
assumptions of linear regression: a primer for medical researchers. Clin. Exp.
Ophthalmol. 42, 590–596. doi: 10.1111/ceo.12358

Che, R., and Motsinger-Reif, A. (2013). Evaluation of genetic risk score models
in the presence of interaction and linkage disequilibrium. Front. Genet. 4:138.
doi: 10.3389/fgene.2013.00138

Chen, X., and Ishwaran, H. (2012). Random forests for genomic data analysis.
Genomics 99, 323–329. doi: 10.1016/j.ygeno.2012.04.003

Clayton, D. G. (2009). Prediction and interaction in complex disease genetics:
experience in type 1 diabetes. PLoS Genet. 5:e1000540. doi: 10.1371/journal.
pgen.1000540

Corinna, C., and Vladimir, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Cox, D. R. (1958). The regression analysis of binary sequences. J. R. Stat. Soc. 20,
215–242. doi: 10.1007/978-3-642-33442-9_35

Cruz, J. A., and Wishart, D. S. (2006). Applications of machine learning in
cancer prediction and prognosis. Cancer Inform. 2, 59–77. doi: 10.1177/
117693510600200030

Dai, J. Y., LeBlanc, M., Goodman, P. J., Lucia, M. S., Thompson, I. M., and Tangen,
C. M. (2018). Case-only methods identified genetic loci predicting a subgroup
of men with reduced risk of high-grade prostate cancer by finasteride. Cancer
Prev. Res. 12, 113–120. doi: 10.1158/1940-6207.CAPR-18-0284

Dasgupta, A., Sun, Y. V., König, I. R., Bailey-Wilson, J. E., and Malley, J. D. (2011).
Brief review of regression-based and machine learning methods in genetic
epidemiology: the Genetic Analysis Workshop 17 experience. Genet. Epidemiol.
35, 5–11. doi: 10.1002/gepi.20642

Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS
Genet. 9:e1003348. doi: 10.1371/journal.pgen.1003348

Escott-Price, V., Sims, R., Bannister, C., Harold, D., Vronskaya, M., Majounie, E.,
et al. (2015). Common polygenic variation enhances risk prediction for
Alzheimer’s disease. Brain 138, 3673–3684. doi: 10.1093/brain/awv268

Evans, D. M., Visscher, P. M., and Wray, N. R. (2009). Harnessing the information
contained within genome-wide association studies to improve individual
prediction of complex disease risk. Hum. Mol. Genet. 18, 3525–3531. doi: 10.
1093/hmg/ddp295

Fadason, T., Ekblad, C., Ingram, J. R., Schierding, W. S., and Justin, M. (2017).
Physical interactions and expression quantitative traits loci identify regulatory
connections for obesity and type 2 diabetes associated SNPs. Front. Genet. 8:150.
doi: 10.3389/fgene.2017.00150

Fadason, T., Schierding, W., Lumley, T., and O’Sullivan, J. M. (2018). Chromatin
interactions and expression quantitative trait loci reveal genetic drivers of
multimorbidities. Nat. Commun. 9:5198. doi: 10.1038/s41467-018-07692-y

Fourati, S., Talla, A., Mahmoudian, M., Burkhart, J. G., Klen, R., Henao, R., et al.
(2018). A crowdsourced analysis to identify ab initio molecular signatures
predictive of susceptibility to viral infection. Nat. Commun. 9:4418. doi: 10.
1038/s41467-018-06735-8

Furlong, L. I. (2013). Human diseases through the lens of network biology. Trends
Genet. 29, 150–159. doi: 10.1016/j.tig.2012.11.004

Geurts, P., Irrthum, A., and Wehenkel, L. (2009). Supervised learning with decision
tree-based methods in computational and systems biology. Mol. Biosyst. 5,
1593–1605. doi: 10.1039/b907946g

Han, J. (2018). “The design of diabetic retinopathy classifier based on parameter
optimization SVM,” in Proceedings of the 2018 International Conference

Frontiers in Genetics | www.frontiersin.org 8 March 2019 | Volume 10 | Article 267220

https://doi.org/10.1016/j.gde.2015.06.005
https://doi.org/10.1016/j.gde.2015.06.005
https://doi.org/10.1002/gepi.21698
https://doi.org/10.1371/journal.pgen.1004137
https://doi.org/10.1371/journal.pgen.1004137
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1007/s10654-009-9387-y
https://doi.org/10.1126/science.1262110
https://doi.org/10.1016/S0140-6736(10)60452-7
https://doi.org/10.1016/j.jclinepi.2012.11.008
https://doi.org/10.1038/nature15393
https://doi.org/10.1080/19485565.2013.774628
https://doi.org/10.1002/widm.1072
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1093/bioinformatics/btl423
https://doi.org/10.1002/sim.4006
https://doi.org/10.1111/ceo.12358
https://doi.org/10.3389/fgene.2013.00138
https://doi.org/10.1016/j.ygeno.2012.04.003
https://doi.org/10.1371/journal.pgen.1000540
https://doi.org/10.1371/journal.pgen.1000540
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/978-3-642-33442-9_35
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1177/117693510600200030
https://doi.org/10.1158/1940-6207.CAPR-18-0284
https://doi.org/10.1002/gepi.20642
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1093/brain/awv268
https://doi.org/10.1093/hmg/ddp295
https://doi.org/10.1093/hmg/ddp295
https://doi.org/10.3389/fgene.2017.00150
https://doi.org/10.1038/s41467-018-07692-y
https://doi.org/10.1038/s41467-018-06735-8
https://doi.org/10.1038/s41467-018-06735-8
https://doi.org/10.1016/j.tig.2012.11.004
https://doi.org/10.1039/b907946g
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00267 March 25, 2019 Time: 18:12 # 9

Ho et al. Genetic Risk Prediction Modeling

Intelligence Informatics Biomedical Science, (Shanghai), 52–58 doi: 10.1039/
b907946g

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference Computer Vision Pattern
Recognition, (Silver Spring, MD), 770–778. doi: 10.1109/ICIIBMS.2018.8549947

Hettige, N. C., Cole, C. B., Khalid, S., and De Luca, V. (2016). Polygenic risk
score prediction of antipsychotic dosage in schizophrenia. Schizophr. Res. 170,
265–270. doi: 10.1016/j.schres.2015.12.015

Huang, Y., and Wang, P. (2012). Network based prediction model for genomics
data analysis. Stat. Biosci. 4, 1–23. doi: 10.1007/s12561-012-9056-7

Jiang, R., Tang, W., Wu, X., and Fu, W. (2009). A random forest approach to the
detection of epistatic interactions in case-control studies. BMC Bioinformatics
10:S65. doi: 10.1186/1471-2105-10-S1-S65

Johnson, S. G. (2017). Genomic Medicine in Primary Care,” in Genomic and
Precision Medicine (Third Edition). Amsterdam: Elsevier Inc., 1–18. doi: 10.
1186/1471-2105-10-S1-S65

Joseph, P. V., Wang, Y., Fourie, N. H., and Henderson, W. A. (2018).
A computational framework for predicting obesity risk based on optimizing
and integrating genetic risk score and gene expression profiles. PLoS One
13:e0197843. doi: 10.1371/journal.pone.0197843

Jostins, L., and Barrett, J. C. (2011). Genetic risk prediction in complex disease.
Hum. Mol. Genet. 20, 182–188. doi: 10.1093/hmg/ddr378

Kooperberg, C., LeBlanc, M., and Obenchain, V. (2010). Risk prediction using
genome-wide association studies. Genet. Epidemiol. 34, 643–652. doi: 10.1002/
gepi.20509

Kruppa, J., Ziegler, A., and König, I. R. (2012). Risk estimation and risk prediction
using machine-learning methods. Hum. Genet. 131, 1639–1654. doi: 10.1007/
s00439-012-1194-y

Kwak, N., and Choi, C. H. (2002). Input feature selection for classification
problems. IEEE Trans. Neural Netw. 13, 143–159. doi: 10.1109/72.977291

Laksman, Z., and Detsky, A. S. (2011). Personalized medicine: understanding
probabilities and managing expectations. J. Gen. Intern. Med. 26, 204–206.
doi: 10.1007/s11606-010-1515-6

Li, Q., Diao, S., Li, H., He, H., and Li, J. Y. (2018). Applying decision trees to
establish risk rating model of breast cancer incidence based on non-genetic
factors among Southwest China females. Zhonghua Zhong Liu Za Zhi 40,
872–877. doi: 10.3760/cma.j.issn.0253-3766.2018.11.015

López, B., Torrent-Fontbona, F., Viñas, R., and Fernández-Real, J. M. (2017). Single
nucleotide polymorphism relevance learning with random forests for type 2
diabetes risk prediction. Artif. Intell. Med. 85, 43–49. doi: 10.1016/j.artmed.
2017.09.005

Lyall, L. M., Wyse, C. A., Morales, C. A. C., Lyall, D. M., Cullen, B., Mackay, D.,
et al. (2018). Seasonality of depressive symptoms in women but not in men: a
cross-sectional study in the UK Biobank cohort. J. Affect. Disord. 229, 296–305.
doi: 10.1016/j.jad.2017.12.106

Manolio, T. A. (2013). Bringing genome-wide association findings into clinical use.
Nat. Rev. Genet. 14:549. doi: 10.1038/nrg3523

Medicine, G., and Manolio, T. A. (2013). Genomewide association studies and
assessment of the risk of disease. N. Engl. J. Med. 363, 166–176. doi: 10.1038/
nrg3523

Mehta, P., Bukov, M., Wang, C.-H., Day, A. G. R., Richardson, C., Fisher, C. K.,
et al. (2019). A high-bias, low-variance introduction to Machine Learning for
physicists. Phys. Rep. (in press). doi: 10.1016/j.physrep.2019.03.001

Mieth, B., Kloft, M., Rodríguez, J. A., Sonnenburg, S., Vobruba, R., Morcillo-
Suárez, C., et al. (2016). Combining multiple hypothesis testing with machine
learning increases the statistical power of genome-wide association studies. Sci.
Rep. 6, 1–14. doi: 10.1038/srep36671

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine
Learning. Cambridge, MA: MIT press. doi: 10.1038/srep36671

Montañez, C. A. C., Fergus, P., and Chalmers, C. (2015). “Deep learning
classification of polygenic obesity using genome wide association study SNPs,”
in Proceedings of the 2018 International Joint Conference on Neural Networks
(IJCNN), (Budapest).

Nguyen, T.-T., Huang, J., Wu, Q., Nguyen, T., and Li, M. (2015). Genome-wide
association data classification and SNPs selection using two-stage quality-based
random forests. BMC Genomics 16:S5. doi: 10.1186/1471-2164-16-S2-S5

Nica, A. C., and Dermitzakis, E. T. (2013). Expression quantitative trait loci: present
and future. Philos. Trans. Biol. Sci. 368, 1–6. doi: 10.1098/rstb.2012.0362

Niriella, M. A., Kasturiratne, A., Pathmeswaran, A., De Silva, S. T., Perera, K. R.,
Subasinghe, S. K. C. E., et al. (2018). Lean non-alcoholic fatty liver disease
(lean NAFLD): characteristics, metabolic outcomes and risk factors from a 7-
year prospective, community cohort study from Sri Lanka. Hepatol. Int. doi:
10.1007/s12072-018-9916-4 [Epub ahead of print].

Nyaga, D. M., Vickers, M. H., Jefferies, C., Perry, J. K., and O’Sullivan, J. M. (2018).
Type 1 diabetes mellitus-associated genetic variants contribute to overlapping
immune regulatory networks. Front Genet. 9:535. doi: 10.3389/fgene.2018.
00535

Okser, S., Lehtimäki, T., Elo, L. L., Mononen, N., Peltonen, N., Kähönen, M., et al.
(2010). Genetic variants and their interactions in the prediction of increased
pre-clinical carotid atherosclerosis: the cardiovascular risk in young Finns
study. PLoS Genet. 6:e1001146. doi: 10.1371/journal.pgen.1001146

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., and Aittokallio, T.
(2014). Regularized machine learning in the genetic prediction of complex
traits. PLoS Genet. 10:e1004754. doi: 10.1371/journal.pgen.1004754

Okser, S., Pahikkala, T., and Aittokallio, T. (2013). Genetic variants and their
interactions in disease risk prediction - Machine learning and network
perspectives. BioData Min. 6, 1–16. doi: 10.1186/1756-0381-6-5

Ongen, H., Brown, A. A., Delaneau, O., Panousis, N. I., Nica, A. C., and
Dermitzakis, E. T. (2017). Estimating the causal tissues for complex traits and
diseases. Nat. Genet. 49, 1676–1683. doi: 10.1038/ng.3981

Pahikkala, T., Okser, S., Airola, A., Salakoski, T., and Aittokallio, T. (2012).
Wrapper-based selection of genetic features in genome-wide association studies
through fast matrix operations. Algorithms Mol. Biol. 7, 1–15. doi: 10.1186/
1748-7188-7-11

Pal, M., and Foody, G. M. (2010). Feature selection for classification of
hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48, 2297–2307.
doi: 10.1109/TGRS.2009.2039484

Palaniappan, S., and Awang, R. (2008). “Intelligent heart disease prediction system
using data mining techniques,” in Proceedings of the 2008 IEEE/ACS Int. Conf.
Comput. Syst. Appl, (Doha), 108–115. doi: 10.1109/AICCSA.2008.4493524

Parker, S. C. J., Stitzel, M. L., Taylor, D. L., Orozco, J. M., Erdos, M. R., Akiyama,
J. A., et al. (2013). Chromatin stretch enhancer states drive cell-specific gene
regulation and harbor human disease risk variants. Proc. Natl. Acad. Sci. U.S.A.
110, 17921–17926. doi: 10.1073/pnas.1317023110

Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C.,
Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk
of schizophrenia and bipolar disorder. Nature 460, 748–752. doi: 10.1038/
nature08185

Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn. 1, 81–106. doi:
10.1038/nature08185

Quinlan, J. R. (1990). Learning logical definitions from relations. Mach. Learn. 5,
239–266. doi: 10.1023/A:1022699322624

Rashkin, S. R., Chua, K. C., Ho, C., Mulkey, F., Jiang, C., Mushiroda, T.,
et al. (2018). A pharmacogenetic prediction model of progression-free survival
in breast cancer using genome-wide genotyping data from CALGB 40502
(Alliance). Clin. Pharmacol. Ther. 108, 738–745. doi: 10.1002/cpt.1241

Redekop, W. K., and Mladsi, D. (2013). The faces of personalized medicine: a
framework for understanding its meaning and scope. Value Heal. 16, S4–S9.
doi: 10.1016/j.jval.2013.06.005

Ripatti, S., Tikkanen, E., Orho-Melander, M., Havulinna, A. S., Silander, K.,
Sharma, A., et al. (2010). A multilocus genetic risk score for coronary heart
disease: case-control and prospective cohort analyses. Lancet 376, 1393–1400.
doi: 10.1016/S0140-6736(10)61267-6

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory
of Brain Mechanisms. 1st Edition. Ann Arbor, MI: Spartan Books, Michigan
University. doi: 10.1016/S0140-6736(10)61267-6

Rusu, V., Rusu, V., Hoch, E., Mercader, J. M., Gymrek, M., von Grotthuss, M.,
et al. (2017). Type 2 diabetes variants disrupt function of SLC16A11 through
two distinct mechanisms. Cell 170, 199–212.e20. doi: 10.1016/j.cell.2017.
06.011

Salari, K., Watkins, H., and Ashley, E. A. (2012). Personalized medicine: hope or
hype? Eur. Heart J. 33, 1564–1570. doi: 10.1093/eurheartj/ehs112

Schaffer, C. (1993). Technical note: selecting a classification method by cross-
validation. Mach. Learn. 13, 135–143. doi: 10.1023/A:1022639714137

Schierding, W., Antony, J., Cutfield, W. S., Horsfield, J. A., and O’Sullivan,
J. M. (2016). Intergenic GWAS SNPs are key components of the spatial and

Frontiers in Genetics | www.frontiersin.org 9 March 2019 | Volume 10 | Article 267221

https://doi.org/10.1039/b907946g
https://doi.org/10.1039/b907946g
https://doi.org/10.1109/ICIIBMS.2018.8549947
https://doi.org/10.1016/j.schres.2015.12.015
https://doi.org/10.1007/s12561-012-9056-7
https://doi.org/10.1186/1471-2105-10-S1-S65
https://doi.org/10.1186/1471-2105-10-S1-S65
https://doi.org/10.1186/1471-2105-10-S1-S65
https://doi.org/10.1371/journal.pone.0197843
https://doi.org/10.1093/hmg/ddr378
https://doi.org/10.1002/gepi.20509
https://doi.org/10.1002/gepi.20509
https://doi.org/10.1007/s00439-012-1194-y
https://doi.org/10.1007/s00439-012-1194-y
https://doi.org/10.1109/72.977291
https://doi.org/10.1007/s11606-010-1515-6
https://doi.org/10.3760/cma.j.issn.0253-3766.2018.11.015
https://doi.org/10.1016/j.artmed.2017.09.005
https://doi.org/10.1016/j.artmed.2017.09.005
https://doi.org/10.1016/j.jad.2017.12.106
https://doi.org/10.1038/nrg3523
https://doi.org/10.1038/nrg3523
https://doi.org/10.1038/nrg3523
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1038/srep36671
https://doi.org/10.1038/srep36671
https://doi.org/10.1186/1471-2164-16-S2-S5
https://doi.org/10.1098/rstb.2012.0362
https://doi.org/10.1007/s12072-018-9916-4
https://doi.org/10.1007/s12072-018-9916-4
https://doi.org/10.3389/fgene.2018.00535
https://doi.org/10.3389/fgene.2018.00535
https://doi.org/10.1371/journal.pgen.1001146
https://doi.org/10.1371/journal.pgen.1004754
https://doi.org/10.1186/1756-0381-6-5
https://doi.org/10.1038/ng.3981
https://doi.org/10.1186/1748-7188-7-11
https://doi.org/10.1186/1748-7188-7-11
https://doi.org/10.1109/TGRS.2009.2039484
https://doi.org/10.1109/AICCSA.2008.4493524
https://doi.org/10.1073/pnas.1317023110
https://doi.org/10.1038/nature08185
https://doi.org/10.1038/nature08185
https://doi.org/10.1038/nature08185
https://doi.org/10.1038/nature08185
https://doi.org/10.1023/A:1022699322624
https://doi.org/10.1002/cpt.1241
https://doi.org/10.1016/j.jval.2013.06.005
https://doi.org/10.1016/S0140-6736(10)61267-6
https://doi.org/10.1016/S0140-6736(10)61267-6
https://doi.org/10.1016/j.cell.2017.06.011
https://doi.org/10.1016/j.cell.2017.06.011
https://doi.org/10.1093/eurheartj/ehs112
https://doi.org/10.1023/A:1022639714137
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00267 March 25, 2019 Time: 18:12 # 10

Ho et al. Genetic Risk Prediction Modeling

regulatory network for human growth. Hum. Mol. Genet. 25, 3372–3382. doi:
10.1093/hmg/ddw165

Schierding, W., Antony, J., Karhunen, V., Vääräsmäki, M., Franks, S., Elliott, P.,
et al. (2018). GWAS on prolonged gestation (post-term birth): analysis of
successive finnish birth cohorts. J. Med. Genet. 55, 55–63. doi: 10.1136/
jmedgenet-2017-104880

Schierding, W., and O’Sullivan, J. M. (2015). Connecting SNPs in diabetes: a spatial
analysis of meta-GWAS loci. Front. Endocrinol. 6:102. doi: 10.3389/fendo.2015.
00102

Schuster, S. C. (2008). Next-generation sequencing transforms today’s biology. Nat.
Methods 5, 16–18. doi: 10.1038/nmeth1156

Shi, H., Kichaev, G., and Pasaniuc, B. (2016). Contrasting the genetic architecture
of 30 complex traits from summary association data. Am. J. Hum. Genet. 99,
139–153. doi: 10.1016/j.ajhg.2016.05.013

Shieh, Y., Eklund, M., Madlensky, L., Sawyer, S. D., Thompson, C. K., Stover
Fiscalini, A., et al. (2017). Machine learning–based gene prioritization identifies
novel candidate risk genes for inflammatory bowel disease. Nat. Rev. Cancer 12,
1–12. doi: 10.1016/j.tig.2017.09.004

Shigemizu, D., Abe, T., Morizono, T., Johnson, T. A., Boroevich, K. A.,
Hirakawa, Y., et al. (2014). The construction of risk prediction models using
GWAS data and its application to a type 2 diabetes prospective cohort. PLoS
One 9:e0092549. doi: 10.1371/journal.pone.0092549

Silver, M., Chen, P., Li, R., Cheng, C.-Y., Wong, T.-Y., Tai, E.-S., et al. (2013).
Pathways-driven sparse regression identifies pathways and genes associated
with high-density lipoprotein cholesterol in two Asian cohorts. PLoS Genet.
9:e1003939. doi: 10.1371/journal.pgen.1003939

Singh, G., and Samavedham, L. (2015). Unsupervised learning based feature
extraction for differential diagnosis of neurodegenerative diseases: a case study
on early-stage diagnosis of Parkinson disease. J. Neurosci. Methods 256, 30–40.
doi: 10.1016/j.jneumeth.2015.08.011

So, H. C., Sham, P. C., and Valencia, A. (2017). Exploring the predictive power of
polygenic scores derived from genome-wide association studies: a study of 10
complex traits. Bioinformatics 33, 886–892. doi: 10.1093/bioinformatics/btw745

Song, J. Y., Perry, A. M., Herrera, A. F., Chen, L., Skrabek, P., Nasr, M., et al. (2018).
New genomic model integrating clinical factors and gene mutations to predict
overall survival in patients with diffuse large B-Cell lymphoma treated with
R-CHOP. Blood 132(Suppl. 1):346. doi: 10.1093/bioinformatics/btw745

Spiegel, A. M., and Hawkins, M. (2012). “Personalized medicine” to identify genetic
risks for type 2 diabetes and focus prevention: can it fulfill its promise? Health
Aff. 31, 43–49. doi: 10.1377/hlthaff.2011.1054

The Wellcome Trust Case Control Consortium (2007). Genome-wide association
study of 14 000 cases of seven common diseases and 3 000 shared controls.
Nature 447, 661–678. doi: 10.1038/nature05911.Genome-wide

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.
Soc. Ser. B 58, 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x

Touw, W. G., Bayjanov, J. R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., et al.
(2013). Data mining in the life science swith random forest: a walk in the park
or lost in the jungle? Brief. Bioinform. 14, 315–326. doi: 10.1093/bib/bbs034

Vihinen, M. (2012). How to evaluate performance of prediction methods?
Measures and their interpretation in variation effect analysis. BMC Genomics
13(Suppl. 4):S2. doi: 10.1186/1471-2164-13-S4-S2

Vihinen, M. (2013). Guidelines for reporting and using prediction tools for genetic
variation analysis. Hum. Mutat. 34, 275–277. doi: 10.1002/humu.22253

Visscher, P. M., Brown, M. A., McCarthy, M. I., and Yang, J. (2012). Five years of
GWAS discovery. Am. J. Hum. Genet. 90, 7–24. doi: 10.1016/j.ajhg.2011.11.029

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A.,
et al. (2017). 10 years of GWAS discovery: biology, function, and translation.
Am. J. Hum. Genet. 101, 5–22. doi: 10.1016/j.ajhg.2017.06.005

Wald, N. J., and Morris, J. K. (2012). Personalized medicine: hope or hype. Eur.
Heart J. 33, 1553–1554. doi: 10.1093/eurheartj/ehs089

Wang, X., Strizich, G., Hu, Y., Wang, T., Kaplan, R. C., and Qi, Q. (2016). Genetic
markers of type 2 diabetes: progress in genome-wide association studies and
clinical application for risk prediction. J. Diabetes 8, 24–35. doi: 10.1111/1753-
0407.12323

Wei, L., Liao, M., Gao, Y., Ji, R., He, Z., and Zou, Q. (2014). Improved and
promising identificationof human microRNAs by incorporatinga high-quality
negative set. IEEE/ACM Trans. Comput. Biol. Bioinform. 11, 192–201. doi:
10.1109/TCBB.2013.146

Wei, Z., Wang, K., Qu, H.-Q., Zhang, H., Bradfield, J., Kim, C., et al. (2009). From
disease association to risk assessment: an optimistic view from genome-wide
association studies on type 1 diabetes. PLoS Genet. 5:e1000678. doi: 10.1371/
journal.pgen.1000678

Wei, Z., Wang, W., Bradfield, J., Li, J., Cardinale, C., Frackelton, E., et al. (2013).
Large sample size, wide variant spectrum, and advanced machine-learning
technique boost risk prediction for inflammatory bowel disease. Am. J. Hum.
Genet. 92, 1008–1012. doi: 10.1016/j.ajhg.2013.05.002

Worachartcheewan, A., Shoombuatong, W., Pidetcha, P., Nopnithipat, W.,
Prachayasittikul, V., and Nantasenamat, C. (2015). Predicting metabolic
syndrome using the random forest method. Sci. World J. 2015, 1–10. doi:
10.1155/2015/581501

Wray, N., Goddard, M., and Visscher, P. (2007). Prediction of individual genetic
risk to disease from genome-wide association studies. Genome Res. 17, 1520–
1528. doi: 10.1101/gr.6665407.1520

Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A. E., Dudbridge, F., and
Middeldorp, C. M. (2014). Research review: polygenic methods and their
application to psychiatric traits. J. Child Psychol. Psychiatry Allied Discip. 55,
1068–1087. doi: 10.1111/jcpp.12295

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., and Lange, K. (2009). Genome-wide
association analysis by lasso penalized logistic regression. Bioinformatics 25,
714–721. doi: 10.1093/bioinformatics/btp041

Xue, L., Tang, B., Chen, W., and Luo, J. (2018). Prediction of CRISPR sgRNA
activity using a deep convolutional neural network. J. Chem. Inf. Model. 59,
615–624. doi: 10.1021/acs.jcim.8b00368

Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018). Recent trends in deep
learning based natural language processing [Review Article]. IEEE Comput.
Intell. Mag. 13, 55–75. doi: 10.1109/MCI.2018.2840738

Yu, F., Rybar, M., Uhler, C., and Fienberg, S. E. (2014). “Differentially-private
logistic regression for detecting multiple-SNP association in GWAS databases,”
in Privacy in Statistical Databases, ed. J. Domingo-Ferrer (Cham: Springer
International Publishing), 170–184.

Yu, W. (2010). Application of support vector machine modeling for prediction
of common diseases: the case of diabetes and pre-diabetes. BMC Med. Inform.
Decis. Mak. 10:16. doi: 10.1186/1472-6947-10-16

Yuan, Y. (2008). Step-sizes for the gradient method. AMS IP Stud. Adv. Math.
42:785.

Zhang, D., and Shen, D. (2012). Multi-modal multi-task learning for joint
prediction of multiple regression and classification variables in Alzheimer’s
disease. Neuroimage 59, 895–907. doi: 10.1016/j.neuroimage.2011.09.069

Zhang, Z., Zhao, Y., Liao, X., Shi, W., Li, K., Zou, Q., et al. (2018). Deep learning in
omics: a survey and guideline. Brief. Funct. Genomics doi: 10.1093/bfgp/ely030
[Epub ahead of print].

Zhou, J., and Troyanskaya, O. G. (2015). Predicting effects of noncoding variants
with deep learning-based sequence model. Nat. Methods 12, 931–934. doi: 10.
1038/nmeth.3547

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic
net. J. R. Stat. Soc. Ser. B 67, 301–320. doi: 10.1111/j.1467-9868.2005.00503.x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Ho, Schierding, Wake, Saffery and O’Sullivan. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 10 March 2019 | Volume 10 | Article 267222

https://doi.org/10.1093/hmg/ddw165
https://doi.org/10.1093/hmg/ddw165
https://doi.org/10.1136/jmedgenet-2017-104880
https://doi.org/10.1136/jmedgenet-2017-104880
https://doi.org/10.3389/fendo.2015.00102
https://doi.org/10.3389/fendo.2015.00102
https://doi.org/10.1038/nmeth1156
https://doi.org/10.1016/j.ajhg.2016.05.013
https://doi.org/10.1016/j.tig.2017.09.004
https://doi.org/10.1371/journal.pone.0092549
https://doi.org/10.1371/journal.pgen.1003939
https://doi.org/10.1016/j.jneumeth.2015.08.011
https://doi.org/10.1093/bioinformatics/btw745
https://doi.org/10.1093/bioinformatics/btw745
https://doi.org/10.1377/hlthaff.2011.1054
https://doi.org/10.1038/nature05911.Genome-wide
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1093/bib/bbs034
https://doi.org/10.1186/1471-2164-13-S4-S2
https://doi.org/10.1002/humu.22253
https://doi.org/10.1016/j.ajhg.2011.11.029
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1093/eurheartj/ehs089
https://doi.org/10.1111/1753-0407.12323
https://doi.org/10.1111/1753-0407.12323
https://doi.org/10.1109/TCBB.2013.146
https://doi.org/10.1109/TCBB.2013.146
https://doi.org/10.1371/journal.pgen.1000678
https://doi.org/10.1371/journal.pgen.1000678
https://doi.org/10.1016/j.ajhg.2013.05.002
https://doi.org/10.1155/2015/581501
https://doi.org/10.1155/2015/581501
https://doi.org/10.1101/gr.6665407.1520
https://doi.org/10.1111/jcpp.12295
https://doi.org/10.1093/bioinformatics/btp041
https://doi.org/10.1021/acs.jcim.8b00368
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1186/1472-6947-10-16
https://doi.org/10.1016/j.neuroimage.2011.09.069
https://doi.org/10.1093/bfgp/ely030
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1111/j.1467-9868.2005.00503.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 02 April 2019

doi: 10.3389/fgene.2019.00270

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 270

Edited by:

Chuan Lu,

Aberystwyth University,

United Kingdom

Reviewed by:

Ling-Yun Wu,

Academy of Mathematics and

Systems Science (CAS), China

Min Chen,

Hunan Institute of Technology, China

*Correspondence:

Fang-Xiang Wu

faw341@mail.usask.ca

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 21 December 2018

Accepted: 12 March 2019

Published: 02 April 2019

Citation:

Luo P, Xiao Q, Wei P-J, Liao B and

Wu F-X (2019) Identifying

Disease-Gene Associations With

Graph-Regularized Manifold Learning.

Front. Genet. 10:270.

doi: 10.3389/fgene.2019.00270

Identifying Disease-Gene
Associations With Graph-Regularized
Manifold Learning

Ping Luo 1, Qianghua Xiao 2, Pi-Jing Wei 1,3, Bo Liao 4 and Fang-Xiang Wu 1,4,5,6*

1Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada, 2 School of Mathematics and

Physics, University of South China, Hengyang, China, 3College of Computer Science and Technology, Anhui University,

Hefei, China, 4 School of Mathematics and Statistics, Hainan Normal University, Haikou, China, 5Department of Mechanical

Engineering, University of Saskatchewan, Saskatoon, SK, Canada, 6Department of Computer Science, University of

Saskatchewan, Saskatoon, SK, Canada

Complex diseases are known to be associated with disease genes. Uncovering

disease-gene associations is critical for diagnosis, treatment, and prevention of diseases.

Computational algorithms which effectively predict candidate disease-gene associations

prior to experimental proof can greatly reduce the associated cost and time. Most

existing methods are disease-specific which can only predict genes associated with

a specific disease at a time. Similarities among diseases are not used during the

prediction. Meanwhile, most methods predict new disease genes based on known

associations, making them unable to predict disease genes for diseases without known

associated genes.In this study, a manifold learning-based method is proposed for

predicting disease-gene associations by assuming that the geodesic distance between

any disease and its associated genes should be shorter than that of other non-associated

disease-gene pairs. The model maps the diseases and genes into a lower dimensional

manifold based on the known disease-gene associations, disease similarity and gene

similarity to predict new associations in terms of the geodesic distance between

disease-gene pairs. In the 3-fold cross-validation experiments, our method achieves

scores of 0.882 and 0.854 in terms of the area under of the receiver operating

characteristic (ROC) curve (AUC) for diseases with more than one known associated

genes and diseases with only one known associated gene, respectively. Further de novo

studies on Lung Cancer and Bladder Cancer also show that our model is capable of

identifying new disease-gene associations.

Keywords: disease gene identification, manifold learning, disease module theory, gene ontology, multi-task

learning

1. INTRODUCTION

Complex diseases are caused by a group of genes known as disease genes. Identifying disease-gene
associations is of critical importance since it helps us unravel the mechanisms of diseases, which
has many applications such as diagnosis, treatment and prevention of disease. With the advances
in high-throughput experimental techniques, a large amount of data that indicate associations
between diseases and their associated genes have been generated, which could accelerate the
identification of disease-associated genes. However, it is expensive and time-consuming to
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experimentally prove an association between a gene and a disease.
Computational methods that translate the experimental data
into legible disease-gene associations are necessary for in-depth
experimental validation.

Currently, many algorithms have been developed to predict
disease-gene associations, and they can be briefly divided into
two categories: the machine learning-based methods and the
network-based methods. The typical machine learning-based
methods extract gene-related features and train models that
can discriminate disease genes and passenger genes (Mordelet
and Vert, 2011; Yang et al., 2012; Singh-Blom et al., 2013; Luo
et al., 2019a,b). Since the features are extracted for genes, these
algorithms are usually single-task algorithms which once can
only predict disease genes for a specific disease. Thus, for diseases
that have a few or no known associated genes, the number of the
genes would be too small to train the model. In the meantime,
the relationships among diseases are usually not used in the
prediction since only one disease is considered at a time. Matrix
completion methods, as a type of machine learning methods,
can solve the above two issues by jointly predicting disease-
gene associations and leveraging the similarities among diseases
during the calculation (Natarajan and Dhillon, 2014; Zeng et al.,
2017). However, matrix completion methods generally do not
have the global optimal solutions and could take a very long
time to converge to even a local optimal solution. Network-
based methods are based on the assumption that genes close
related in the network are associated with the same diseases.
Centrality indices, random walk and network energy are used
in many methods to predict disease-gene associations (Köhler
et al., 2008; Vanunu et al., 2010; Chen et al., 2014a,b). Although
most network-based methods are not affected by the above
two issues, their performance is strongly affected by the quality
of networks, and they usually perform worse than machine
learning-basedmethods on diseases with many known associated
genes (Chen et al., 2015, 2016).

In this study, we propose a manifold learning-based method
(dgManifold) to predict disease-gene associations. In our
dgManifold, genes and diseases are regarded as points in the
same high-dimensional Euclidean space. Our assumption is that
diseases and their associated genes should be consistent in
some lower dimensional manifold, and the geodesic distance
between a disease and its associated genes should be shorter
than that of other non-associated disease-gene pairs. Although
the Euclidean distance between diseases and genes in the high-
dimensional spacemay not reflect their true geodesic distance, we
can map the diseases and genes into a low-dimensional manifold
based on the experimentally verified disease-gene associations
(Tenenbaum et al., 2000; Ham et al., 2005). Then, the true
geodesic distance between all the disease-gene pairs can be
calculated. In the meantime, the mapping process is regularized
by two affinity graphs, disease similarity network and gene
similarity network, so that the learned representations with
the similarity information can further increase the prediction
accuracy. Additionally, since our dgManifold is a supervised
method, and it is difficult (if possible) to learn valuable
representations for diseases that only have a few or no known
associated genes. A prior information vector calculated with

the disease similarities and known disease-gene associations
should be combined with the original association data to solve
this issue. Similar strategies have been applied to calculate
the initial probabilities used in the random walk, which have
improved the accuracy of predicting miRNA-disease associations
(Chen et al., 2016b, 2018a,b).

In the rest of themanuscript, section 2 describes our algorithm
as well as the data sources and evaluation metrics used in the
study. Section 3 discusses the evaluation results. Section 4 draws
some conclusions.

2. MATERIALS AND METHODS

2.1. General Model
Given n diseases and m genes, the associations among them can
be represented by a matrix A ∈ Rn×m in which aij = 1 if disease
i is associated with gene j, and otherwise aij = 0. Intuitively, each
disease can be represented by a binary m-dimensional row vector
while each gene can be represented by a binary n-dimensional
column vector. However, in these high-dimensional spaces, it is
hard to calculate the actual distance between a disease and a gene.

If we map the diseases and genes into the same manifold with
a lower dimensionality and assume that the distance between a
disease and its associated genes should be as short as possible
on this manifold, predicting disease-gene associations can be
solved by computing this mapping based on known disease-
gene associations, which can be mathematically formulated as:
finding k-dimensional representatives of diseases r1, . . . , rn and
k-dimensional representatives of genes q1, . . . , qm such that the
following objective function is minimized

Ok =

n
∑

i=1

m
∑

j=1

aij‖ri − qj‖
2. (1)

However, without any constraints, the objective function (1)
is not well defined. To illustrate this, if k-dimensional vectors
r+i and q+j for i = 1, . . . , n and j = 1, . . . ,m minimize the

objective function (1), then ǫr+i and ǫq+j can further minimize

the objective function when 0 ≤ ǫ < 1. Especially, when
ǫ = 0, any k-dimensional vectors r+i and q+j can minimize the

objective function. Therefore, to make the optimization problem
well defined, the following constraints are added

n
∑

i=1

rir
T
i = Ik and

m
∑

j=1

qjq
T
j = Ik. (2)

where Ik is the k × k identity matrix. As a results, the learned
representations are unique with these constraints.

To insure that the mapped representations of diseases and
genes are in concert with their intrinsic properties, two affinity
graphs, disease similarity network and gene similarity network
are used to regularize the objective function (1), and the new
objective function is as follows

Ok =

m
∑

j=1

n
∑

i=1

aij‖ri − qj‖
2 +

α

2

n
∑

i=1

n
∑

j=1

sdij‖ri − rj‖
2

Frontiers in Genetics | www.frontiersin.org 2 April 2019 | Volume 10 | Article 270224

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Luo et al. Identifying Disease Genes With Manifold Learning

+
β

2

m
∑

i=1

m
∑

j=1

s
g
ij‖qi − qj‖

2 (3)

where Sd and Sg are the adjacency matrices of the disease
similarity network and the gene similarity network, respectively.

Note that

Ok =

n
∑

i=1

(

m
∑

j=1

aij)r
T
i ri +

m
∑

j=1

(

n
∑

i=1

aij)q
T
j qj − 2

n
∑

i=1

m
∑

j=1

aijr
T
i qj

+α

n
∑

i=1

(

n
∑

j=1

sdij)r
T
i ri − α

n
∑

i=1

n
∑

j=1

sdijr
T
i rj

+β

m
∑

i=1

(

m
∑

j=1

s
g
ij)q

T
i qi − β

m
∑

i=1

m
∑

j=1

s
g
ijq

T
i qj

=

n
∑

i=1

Arir
T
i ri +

m
∑

j=1

Acjq
T
j qj − 2

n
∑

i=1

m
∑

j=1

aijr
T
i qj

+α

n
∑

i=1

Sdi r
T
i ri − α

n
∑

i=1

n
∑

j=1

sdijr
T
i rj

+β

m
∑

j=1

S
g
j q

T
j qj − β

m
∑

j=1

m
∑

i=1

s
g
ijq

T
i qj

=

n
∑

i=1

(Ari + αSdi )r
T
i ri +

m
∑

j=1

(Acj + βSdj )q
T
j qj

−2

n
∑

i=1

m
∑

j=1

aijr
T
i qj − α

n
∑

i=1

n
∑

j=1

sdijr
T
i rj − β

m
∑

j=1

m
∑

i=1

s
g
ijq

T
i qj

(4)
where Sdi =

∑n
j=1 s

d
ij, S

g
i =

∑m
j=1 s

g
ij,Ari =

∑m
j=1 aij,Acj =

∑n
i=1 aij. Let

L11 = diag[Ar1 + αSd1 ,Ar2 + αSd2 , . . . ,Arn + αSdn]− αSd,

L22 = diag[Ac1 + βS
g
1,Ac2 + βS

g
2, . . . ,Acm + βS

g
m]− βSg ,

(5)

the objective function (3) can be simplified as

Ok =

n
∑

i=1

n
∑

j=1

L11rTi rj +

m
∑

i=1

m
∑

j=1

L22qTi qj − 2

n
∑

i=1

m
∑

j=1

aijr
T
i qj (6)

Furthermore, let

ri =











xi1
xi2
...
xik











, qj =











yj1
yj2
...
yjk











, zt =





















x1t
...
xnt
y1t
...

ymt





















=

[

xt
yt

]

, (7)

Ar = diag[Ar1, . . . ,Arn], Ac = diag[Ac1, . . . ,Acm],

Ld = diag[Sd1 , . . . , S
d
n]− Sd, Lg = diag[S

g
1, . . . , S

g
m]− Sg ,

(8)

L =

[

Ar + αLd −A

−AT Ac + βLg

]

, (9)

objective function (6) can be simplified as

Ok =

k
∑

t=1

n
∑

i=1

n
∑

j=1

L11xitxjt +

k
∑

t=1

m
∑

i=1

m
∑

j=1

L22yityjt

−2

k
∑

t=1

n
∑

i=1

m
∑

j=1

aijxityjt

=

k
∑

t=1

[xTt L
11xt + yTt L

22yt − 2xTt Ayt]

=

k
∑

t=1

[xTt y
T
t ]

[

L11 −A

−AT L22

] [

xt
yt

]

=Tr(ZTLZ)

(10)

Therefore, minimizing the objective function (4) with constraints
(2) is equivalent to minimize the following function

Qk = Tr(ZTLZ) (11)

with constraints

ZTZ = XTX + YTY = 2Ik (12)

According to Bolla (2013), minimizing objective function (11)
with constraints (12) can be solved by

Z∗ = (u0, u1, . . . , uk−1) (13)

where u0, u1, . . . , uk−1 are k eigenvectors correspond to the k
smallest eigenvalues of L. Meanwhile, the smallest eigenvalue is 0,
and the corresponding eigenvector u0 is a constant vector which
does not contribute to the calculation of the geodesic distance.

Thus, let Ẑ denote the matrix by removing the fist column of

Z∗. The first n rows of Ẑ are the obtained (k − 1)-dimensional
representations of diseases, and the rest m rows of Ẑ are the
learned representations of genes. The geodesic distance between
a disease i and gene j can be calculated by

gdistij = ‖r̂i − q̂j‖
2. (14)

2.2. Similarity Network
2.2.1. Gene Similarity
In this study, the learning process is regularized by similarity
networks, and the similarities of genes are calculated based
on the Gene Ontology (GO). GO database provides a set of
vocabularies to describe the function of genes and gene products
(Ashburner et al., 2000; Consortium, 2017). The GO terms
and their relationships are manifested as a directed acyclic
graph (DAG) where nodes represent terms while edges represent
semantic relationships. Many algorithms have been proposed to
calculate the similarities of genes using ontology data, and the
approach proposed by Wang et al. (2007) is used in this study.
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Let DAGh = (Th,Eh) denote GO term h, where Th contains
all the successor GO terms of h in the DAG, and Eh contains
the semantic relationships between h and other terms in Th. Each
term t in Th has a τ -value related to h:

{

τh(t) = 1, if t = h

τh(t) = max{we ∗ τh(t
′
)|t

′
∈ children of t}, otherwise

(15)

where we is the weight of the edge (semantic relationships) in the
DAG. Two types of semantic relationships (“is_a” and “part_of ”)
are used in the DAG, and the corresponding we is set to 0.8 and
0.6, respectively, as recommended in Wang et al. (2007).

Given DAGh = (Th,Eh) and DAGb = (Tb,Eb) for GO terms h
and b, their similarity can be computed by

sgo(h, b) =

∑

t∈Th∩Tb
(τh(t)+ τb(t))

∑

t∈Th
τh(t)+

∑

t∈Tb
τb(t)

(16)

Then, the similarity of one GO term t′ and a set of GO terms
GO = {t1, t2, . . . , tl} is defined as

SGO(t′,GO) = max
1≤i≤l

(SGO(t′, ti)) (17)

Finally, the functional similarity of two genes g1 and g2 is
calculated by

s
g
g1 ,g2 =

∑

1≤i≤n1
SGO(t1i,GO2)+

∑

1≤j≤n2
SGO(t2j,GO1)

n1 + n2
(18)

where GO1 = {t11, t12, . . . , t1n1} and GO2 = {t21, t22, . . . , t2n2}
are two sets of GO terms that describe g1 and g2, respectively.

2.2.2. Disease Similarity
The similarities among diseases are also calculated with the
ontology data. Instead of GO, the Human Phenotype Ontology
(HPO) (Köhler et al., 2018) is used to characterize human
diseases. The HPO provides a vocabulary of phenotypic terms
related to human diseases. Each term represents a clinical
abnormality, and all the terms are structured as a DAG, in which
every term is related to their parent terms by “is_a” relationships.
Although diseases are not directly described by the HPO, the
annotation file provided by HPO contains terms associated
with every disease, and thus Equations (17) and (18) can be
used to compute the similarities of diseases. When we calculate
the similarities of phenotypic terms based on the DAG, we in
Equation (15) is set to 0.7 as recommended in Li et al. (2011).

2.3. Prior Information
For diseases with only a few associated genes, the limited
information would affect the performance of any computational
algorithms. This problem is especially serious for diseases with
no known associated genes. To solve this problem, we add some
prior information for diseases with no known associations.

Specifically, given a disease i′, pi′ is added to the i′-th row of
the matrix A as prior information so that the shortage of known
information can be alleviated. The j-th entry of pi′ is calculated by

pi′j =

( n
∑

i=1,i6=i′

sdii′aij

)

/

( n
∑

i=1,i6=i′

aij

)

(19)

In our experiments, when cross-validation is used to evaluate
the algorithm, the prior information is added to the i-th row of
matrix A as long as one of the associated genes of disease i is
left to test the model. Meanwhile, in the de novo study, prior
information is also added to the diseases used for evaluation.

2.4. Data Sources
The disease-gene association data are downloaded from the
Online Mendelian Inheritance in Man (OMIM) database
(Amberger et al., 2014) in August 2018. The Morbid Map
at OMIM contains nearly seventy-five hundred entries sorted
alphabetically by disorder names. Each entry represents an
association between a gene and a disease. Different entries are
labeled with different tags (“(3),” “[],” and “?”) which indicate
their reliabilities. To obtain a reliable association dataset, based
on (Goh et al., 2007), three steps were performed to preprocess
the originally downloaded data. First, entries with the tag “(3)”
are selected while others are abandoned. We adopt this strategy
because diseases with tag “(3)” indicate that the molecular basis
of these diseases is known and the associations are reliable, while
entries with “[]” represent abnormal laboratory test values, and
entries with “?” represent provisional disease-gene associations.
Second, disease entries are classified into distinct diseases by
merging disease subtypes based on their given disorder names.
For instance, 17 entries of “Leigh syndrome” are merged into
disease “Leigh syndrome,” and the 19 complementary terms
of “Lung cancer somatic” are merged into “Lung Cancer.”
Third, 74 diseases are removed because they are not annotated
by any HPO terms. During the classification, string match
was used to classify adjacent entries, followed by a manual
verification. Finally, we obtain a dataset consisting of 4,770
associations between 1,537 diseases and 3,320 genes. Among the
1,537 diseases, 917 have only one associated gene (single-gene
disease), while the rest diseases have at least two associated genes
(multiple-gene disease).

The ontology data of genes and phenotypes are downloaded
from the GO database (Ashburner et al., 2000; Consortium,
2017), and the HPO database (Köhler et al., 2018), respectively.
The PPI network used in the competing algorithms is
downloaded from the InWeb_InBioMap database (version
2016_09_12) (Li et al., 2016).

2.5. Evaluation Metrics
In this study, the algorithm is evaluated in two steps. In the
first step, our dgManifold is compared with two competing
algorithms: PCFM (Zeng et al., 2017) and Katz (Singh-Blom
et al., 2013). PCFM is a matrix completion method which
integrates disease similarities and gene similarities to predict
disease-gene associations. Katz is a classic network-basedmethod
which uses Katz centrality to rank the disease-gene associations.
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We choose these two algorithms because they are all multi-task
algorithms which can predict all disease-gene associations as our
dgManifold does. The AUC (area under of the receiver operating
characteristic (ROC) curve) scores calculated from 3-fold cross-
validation are used to compare these three algorithms.

ROC curve plots the true positive rate [TP/(TP+FN)] verses
the false positive rate [FP/(FP+TN)] at different thresholds, and a
larger AUC represents better overall performance. In this study,
a true positive (TP) is a known disease-gene association (positive
sample) predicted as a disease-gene association, while a false
positive (FP) is a non-disease-gene association (negative sample)
predicted as a disease-gene association. A false negative (FN) is a
positive sample predicted as negative while a true negative (TN)
is a negative sample predicted as negative. Since negative samples
are not included in existing databases, we randomly select a
set of unknown disease-gene pairs as negative samples. The
number of negative samples is equal to that of positive samples.
Considering that the selected negative samples may have small
possibilities to be a real disease-gene association, the random
selection was run for five times to generate 5 sets of negative
samples. The final AUC score is the average score obtained from
the 5 sets of samples.

During the cross-validation, the known disease-gene
associations are split into 3 groups, and the algorithm is run for
3 rounds. In each round, one group of associations is regarded as
unknown (aij = 0), while the rest two groups of associations are
used to train the model. The prior information is recomputed
during every round of the cross-validation. Considering that
single-gene diseases would have no known associated genes if
they are left for testing the model during the cross-validation,
predicting disease genes for these diseases is similar to predict
disease genes for a completely new disease. Thus, the three
algorithms are compared on multiple-gene diseases and single-
gene diseases separately. Additionally, to show the effect of the
prior information, the AUC scores of our method without prior
information are also calculated.

In the second step, the model is trained with all the known
associations, and the geodesic distance between every unknown
disease-gene pairs is calculated. To find out whether our new
predictions are in concert with existing experimental studies, the
top-10 predictions of two diseases, Lung Cancer and Bladder
Cancer, are searched from the existing literature. In our dataset,
Lung Cancer has 16 associated genes, and Bladder Cancer
has 4 associated genes. We choose these two types of cancer
because they are experimentally well studied which could better
prove our results.

3. RESULTS

3.1. Model Parameters
In our study, several parameters affect the performance
of the model. To obtain the optimal parameters,
the grid search is conducted by searching k from
{20, 30, 50, 100, 500, 800, 1, 000, 1, 200, 1, 500} and α from
{0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. β is set to be equal to α. The AUC
score is used to determine whether the selected parameters are
optimal. Finally, for multiple-gene diseases, the model performs

FIGURE 1 | ROC curves of the three competing algorithms on multiple-gene

diseases.

FIGURE 2 | ROC curves of the three competing algorithms on single-gene

diseases.

best when k = 30,α = β = 0.2, and for single-gene diseases, the
optimal parameters are k = 30,α = β = 0.1.

3.2. Cross-Validation
Figures 1, 2 show the resulted ROC curves and AUC scores of
the three competing algorithms on multiple-gene diseases and
single-gene diseases, respectively. For multiple-gene diseases, our
dgManifold achieves AUC score of 0.882 with prior information
and 0.873 without prior information, while the AUC scores of
Katz and PCFM are 0.742 and 0.636, respectively. For single-
gene diseases, the AUC score of our dgManifold is 0.854 when
prior information is used and 0.485 with no prior information,
while the AUC scores of Katz and PCFM are 0.455 and 0.322,
respectively. These results show that our method is superior to
the competing methods in terms of the AUC scores.

It is worth noting that the AUC scores of all three algorithms
are less than 0.5 when they are applied to single-gene diseases.
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TABLE 1 | Top 10 predictions for lung cancer and bladder cancer.

Gene symbol References

LUNG CANCER

SEMA4A

KCNK9 Sun et al., 2016

MYL2 Che et al., 2013

DENND5A

HTRA1 Esposito et al., 2006

GABRA1

ATP6AP1 Sabrkhany et al., 2018

KCTD17

HFE McLarty et al., 2008

BCS1L

BLADDER CANCER

PDYN

DKC1

SMAD3 Tong et al., 2018

MCC

DMP1 Peng et al., 2015

MGP

CALR Kageyama et al., 2004

CASQ2

SOX18

GATM

This is mainly because that single-gene diseases have no known
associated genes during the cross-validation, and algorithms
can only use disease similarities and association data of other
diseases to perform the prediction. These data are not enough
to generate accurate results, especially for supervised algorithms.
Thus, prior information is necessary for the algorithm. In fact, the
results of our experiments have shown that the prior information
is beneficial to the prediction of disease-gene associations,
especially when the diseases have no known associated genes.

3.3. De novo Study
In addition to AUC scores, we evaluate the performance of
our dgManifold in predicting new disease-gene associations.
Specifically, Lung Cancer and Bladder Cancer are selected, and
prior information corresponded to these two diseases is added to
matrix A. Then, all known disease-gene associations are used to
train the model (k = 30,α = β = 0.2), and the geodesic distance
between all the unknown disease-gene pairs is calculated. For
each of the two selected diseases, the unknown disease-gene pairs
are ranked based on the geodesic distance in ascending order, and
the top-10 predictions are searched from existing literature.

Table 1 shows the results of de novo studies. 5 out of
10 predicted genes have been experimentally confirmed as
associated with Lung Cancer. Among these genes, KCNK9 is a
potential therapeutic target (Sun et al., 2016). HTRA1 contributes
to the tumor formation by inhibiting the TGF-beta pathway
(Esposito et al., 2006). ATP6AP1 and MYL2 are two potential
biomarkers (Che et al., 2013; Sabrkhany et al., 2018). Mutation

of C282Y allele in HFE is associated with Lung Cancer (McLarty
et al., 2008). Although SEMA4A is not proved to be associated
with Lung Cancer yet, it is related to Lung Inflammation and
Colorectal Cancer, and its role in Lung Cancer genesis might
be discovered in the future (Iyer and Chapoval, 2019). For
Bladder Cancer, 3 out of 10 genes have been experimentally
verified. Among them, SMAD3mediates epithelial-mesenchymal
transition which affects the invasion and migration of Bladder
Cancer (Tong et al., 2018). DMP1 is a tumor suppressor gene of
Bladder Cancer (Peng et al., 2015). CALR is potential biomarker
(Kageyama et al., 2004). These results show that our predictions
are in concert with existing reports, and thus our dgManifold is
valuable for predicting new disease-gene associations.

4. CONCLUSION

In this study, we have proposed dgManifold to predict disease-
gene associations with manifold learning. Our dgManifold
assumes that the distance between diseases and their associated
genes should be shorter than that of other non-associated disease-
gene pairs and maps the diseases and genes into a lower
dimensional manifold based on known disease-gene associations,
disease similarity and gene similarity. The prediction of new
associations can be achieved by sorting the geodesic distance
between unknown disease-gene pairs. The cross-validation
results show that our model outperforms the competing
algorithms in terms of AUC scores for both multiple-gene
diseases and single-gene diseases. The further de novo studies also
demonstrate that our dgManifold is valuable in predicting new
disease-gene associations.

Note that dgManifold is only regularized by disease
similarities and gene similarities at the current version, and the
prior information is also obtained from the disease similarities.
In the future, we can improve our method by regularizing the
objective function with more types of data and computing the
prior information with clinical evidences.
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Splicing perturbation in cancers contribute to different aspects of cancer cell progression.

However, the complete functional impact of cancer-associated splicing have not been

fully characterized. Comprehensive large-scale studies are essential to unravel the

dominant patterns of cancer-associated splicing. Here we analyzed the genome-wide

splicing data in 16 cancer types with normal samples, identified differential splicing

events in each cancer type. Then we took a network-based and modularized approach

to reconstruct cancer-associated splicing networks, determine the module structures,

and evaluate their prognosis relevance. This approach in total identified 51 splicing

modules, among which 10/51 modules are related to patient survival, 8/51 are

related to progression-free interval, and 5/51 are significant in both. Most of the 51

modules show significant enrichment of important biological functions, such as stem

cell proliferation, cell cycle, cell growth, DNA repair, receptor or kinase signaling, and

VEGF vessel development. Module-based clustering grouped cancer types according to

their tissue-of-origins, consistent with previous pan-cancer studies based on integrative

clustering. Interestingly, 13/51modules are highly common across different cancer types,

suggesting the existence of pan-cancer splicing perturbations. Together, modularized

perturbation of splicing represents an functionally important and common mechanism

across cancer types.

Keywords: alternative splicing, splicing network, splicing modules, cancer splicing, prognosis

INTRODUCTION

Newly transcribed messenger RNAs undergo processing steps such as capping, splicing and
polyadenylation to derive mature RNAs for export and translation (Hocine et al., 2010). The
splicing process, as accomplished by the spliceosome machine, can produce multiple alternative
products, which is a well-known phenomena called alternative splicing (AS) (Lee and Rio,
2015). Since its first discovery in 1977, many classical studies have characterized its widespread
participation in biological processes such as cell proliferation, apoptosis, angiogenesis, neuronal
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functions, and transcriptional regulation (Kelemen et al., 2013).
Deregulation of AS also contributes to human diseases and
various aspects of cancer development (David and Manley, 2010;
Scotti and Swanson, 2016).

To systematically characterize the extensive cancer-associated
AS perturbations, it is essential to design effective analytic
strategies suitable for the ever-growing cancer genomic datasets,
largely from projects such as The Cancer Genome Atlas (TCGA).
Several approaches have already been taken previously. One
of the most popular approaches is the event-driven approach,
which aimed to detect individual events that are correlated with
cancer or prognosis (Danan-Gotthold et al., 2015; Dvinge and
Bradley, 2015; Shen et al., 2016). A second approach focuses
on the splicing machinery side and tries to determine the
deregulation of splicing factors in tumors (Sebestyén et al., 2016;
Sveen et al., 2016; Seiler et al., 2018). Since these approaches
emphasized different aspects of the AS perturbations, several
recent studies have been linking the splicing factors and events
together to identify AS deregulation and the corresponding
functional impacts (Li et al., 2017; Kahles et al., 2018). However,
this approach may oversee the vast majority of perturbed splicing
events that are not easily explained by the few known regulatory
factors (Li et al., 2017). Moreover, these studies essentially relied
on single-event analysis, and have missed the inter-event linkages
which could be equally important to fully understand cancer-
specific AS perturbations. To complement these analyses, a fully
network-based approach is needed to capture the concurrent
perturbation patterns of cancer-associated AS. In addition, such
an approach might also discover more robust AS patterns in one
or multiple cancer types.

FIGURE 1 | Flowchart of analyses.

We carried out an extensive analysis of AS events and their
interactions in different cancer types. For each cancer type, a
network of cancer-associated events is reconstructed. To uncover
the potential modularized control in these splicing networks,
a random walk-based community identification algorithm is
employed. These analyses have revealed representative splicing
modules in each type of cancers, and a number of them are
prognosis-relevant and involved in cancer-related functional
processes. Finally, our work supports the unique value of
an splicing network-based approach in understanding cancer
splicing deregulation.

MATERIALS AND METHODS

Data Sets and Processing
Splicing data have been downloaded from the TCGASpliceSeq
database (Ryan et al., 2016). Clinical information is from the
GDC TCGA project. Splicing events that failed to be quantified
>10% in normal samples or >1% in cancer samples were filtered
without further use. Cancer samples with >0.1% missing data
were also removed. The remaining missing values were imputed
with the Bioconductor impute package.

Network Reconstruction and Module
Identification
For each cancer type, Pearson correlation coefficients among
splicing events were computed between each pair of the
differentially spliced events (Wilcoxon signed-rank test
FDR<0.1, |delta PSI|>0.1), and were used as edge weights
in the reconstructed undirected graph. The Pons-Lapaty random
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walk algorithm (step = 4) was used to partition the weighted
graph. The identified modules from each cancer type were
named according to the order of module sizes (from larger to
smaller). So M1 is always at least as large as M2, and M2 at least
as large as M3, etc.

Overall and Progression-Free Survival
Analysis
Module scores are averaged from all splicing events in each
sample, with normal sample PSI values used as references and
subtracted. Thus, the score measures how strong the module is
perturbed in one cancer sample. To ensure robustness, both the
average and median scores have been calculated. Overall survival
(OS) and progression-free intervals (PFI) are respectively
categorized for testing with module scores. The Kaplan-Meier
survival curves are fitted and compared between samples with

a higher vs. a lower module score using the Log-rank test.
Hazard ratios and confidence intervals are estimated from the
Cox proportional regression model. In total, 13 modules were
found to be significantly correlated to either OS (10 modules) or
PFI (8 modules). Of these, 5 modules were commonly significant
in both OS and PFI. In addition, 2 Lung squamous cell carcinoma
(LUSC) modules were nearly significant in OS and also included
as candidates. Therefore, 15 modules were retained after filtering
with OS and PFI analyses.

Functional Enrichment Analyses
Gene ontology (GO) enrichment was used to assess the functional
properties of each module. The enrichment was determined by
the Fisher’s exact test method. For all significant GO terms,
careful manual inspection and curation were performed to find
the most relevant and biologically important functions, which is
often a subset of the significant terms.

FIGURE 2 | Splicing networks for different cancer types. Modules identified by random walks are highlighted in different colors.
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RESULTS

Splicing Network-Based Flowchart for
Identifying Prognosis-Relevant Splicing
Modules
The main analytic flowchart consist of six steps (Figure 1):
(1) Collection of annotated events from the TCGASpliceSeq
database across 33 cancer types. The splicing classes included
are exon skipping (ES), retention of introns (RI), alternative
donor (AD), alternative acceptor (AA), mutually exclusive exons
(ME), alternative terminator (AT). The numbers of quantified
events were found in at least 99% of the samples in each
cancer type range from 21129 to 43937 across the cancer types.
(2) Differential splicing events between cancer samples and
adjacent normal samples were identified for 16 cancer types
with at least 10 normal samples. The Wilcoxon signed-rank
test was used for testing. The number of differential events
obtained ranges from 228 in ESCA to 1133 in LUSC. (3)
Reconstruction of splicing network for each cancer type, with
Pearson correlation coefficient-based similarity linkages. Pearson
and Kendall correlation coefficients showed a good consistency
in subsequent community detection, confirming the reliability of
this procedure (Figure S1). (4) Network module identification
with the Pons-Lapaty algorithm which is based on random
walks in 3–5 steps to measure vertex distances for hierarchical
clustering and subsequent modularity-optimized graph partition
(Pons and Latapy, 2005). (5) Modules are then scored with the
averaged splicing deregulation between each cancer sample and
the normal samples, which provide a reasonable quantification of
module-level perturbation across cancer samples. (6) Prognosis
analyses for each module and its corresponding cancer type.
Figure 1 shows a schematic diagram of these steps.

Cancer Splicing Networks and Modules for
TCGA Cancer Types
We reconstructed splicing networks for each cancer type with
at least 10 normal samples on differential events. There are 16
cancer types that bypass the above criteria, namely: Bladder
urothelial carcinoma (BLCA), Breast invasive carcinoma
(BRCA), Colon adenocarcinoma (COAD), Esophageal
carcinoma (ESCA), Head and Neck squamous cell carcinoma
(HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell
carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP),
Liver hepatocellular carcinoma (LIHC), Lung adenocarcinoma
(LUAD), Lung squamous cell carcinoma (LUSC), Prostate
adenocarcinoma (PRAD), Rectum adenocarcinoma (READ),
Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA),
and Uterine Corpus Endometrial Carcinoma (UCEC). The
number of modules identified with the Pons-Lapaty algorithm
varied between 2 and 5 for these cancer types. The visualized
inspection revealed quite clear network partitions (Figure 2). In
total, 51 modules were identified, and the number of events and
genes in each module can be found in Table 1 and Table S1. For
example, the KIRC_M1 module consisted of 710 events in 630
genes, with 41 AA events, 36 AD events, 229 AT events, 210 ES
events, 3 ME events, and 191 RI events.

TABLE 1 | A list of 51 cancer splicing modules.

Module Genes Events AA AD AT ES ME RI

BLCA_M1 302 332 22 19 130 73 0 88

BLCA_M2 188 191 4 0 152 30 1 4

BLCA_M3 118 119 8 7 91 12 0 1

BLCA_M4 104 111 3 4 73 26 1 4

BRCA_M1 239 257 14 8 137 73 1 24

BRCA_M2 216 221 8 8 158 37 2 8

BRCA_M3 107 121 6 5 54 40 1 15

BRCA_M4 51 52 2 2 25 19 1 3

COAD_M1 91 94 2 0 67 15 0 10

COAD_M2 57 66 2 1 48 8 1 6

COAD_M3 56 56 1 4 49 1 0 1

COAD_M4 42 43 2 3 16 6 0 16

ESCA_M1 132 141 5 13 60 32 0 31

ESCA_M2 86 87 1 8 64 12 1 1

HNSC_M1 200 220 14 9 93 53 1 50

HNSC_M2 159 165 3 4 126 28 0 4

HNSC_M3 116 127 7 2 84 29 0 5

KICH_M1 449 490 23 23 224 125 1 94

KICH_M2 363 383 10 19 232 90 5 27

KICH_M3 272 290 7 17 164 78 2 22

KIRC_M1 630 710 41 36 229 210 3 191

KIRC_M2 279 286 1 3 243 30 5 4

KIRC_M3 104 137 8 5 80 38 2 4

KIRP_M1 442 483 34 29 189 110 0 121

KIRP_M2 283 324 6 8 262 33 2 13

LIHC_M1 163 169 5 7 105 28 1 23

LIHC_M2 148 154 6 4 118 21 0 5

LIHC_M3 49 53 2 4 30 8 0 9

LIHC_M4 42 43 2 1 36 3 0 1

LUAD_M1 305 321 11 4 212 79 4 11

LUAD_M2 217 230 13 21 71 64 0 61

LUAD_M3 192 196 7 7 132 42 3 5

LUSC_M1 526 574 16 16 312 208 5 17

LUSC_M2 397 428 20 38 235 113 6 16

LUSC_M3 281 333 19 24 128 81 1 80

PRAD_M1 202 220 11 9 82 51 0 67

PRAD_M2 105 105 1 1 80 19 0 4

PRAD_M3 8 11 0 0 11 0 0 0

READ_M1 186 199 11 17 106 31 1 33

READ_M2 132 154 10 7 66 29 1 41

READ_M3 122 131 3 1 67 52 0 8

STAD_M1 141 164 11 13 37 41 0 62

STAD_M2 123 130 9 10 51 51 2 7

STAD_M3 108 112 1 3 71 35 1 1

STAD_M4 34 34 0 0 25 8 0 1

STAD_M5 17 24 1 1 16 4 0 2

THCA_M1 157 168 0 2 128 22 0 16

THCA_M2 149 151 4 2 114 17 0 14

UCEC_M1 292 302 7 5 244 31 2 13

UCEC_M2 206 210 4 4 172 14 0 16

UCEC_M3 117 121 4 7 65 27 1 17

AA, alternative acceptor; AD, alternative donor; AT, alternative terminator; ES, exon

skipping; ME, mutually exclusive exons; RI, retention of introns. For cancer type

abbreviations, see text.
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Overall and Progression-Free Survival
Analyses for Cancer Splicing Modules
Since the motivation of this study is to discover prognosis-
related splicing modules, we quantified module scores in
each cancer sample and test associations between module
scores and patient survival. Both the average score and
median score were computed and assessed for prognosis
correlation, and a very good consistency was found (Figure S2),
indicating robustness of the module scoring procedure. At a
0.05 significance level, Log-rank tests identified 10 prognosis-
related modules: BLCA_M1, BLCA_M2, KIRC_M1, KIRC_M2,
LIHC_M1, LIHC_M2, LUAD_M1, LUAD_M3, PRAD_M1, and
UCEC_M3 (Table 2, Figure 3). Two additional modules, the
LUSC_M2 (P = 0.0595, HR = 0.75 with a confidence interval
0.55–1.01) and the LUSC_M3 (P = 0.099, HR = 0.77 with a
confidence interval 0.57–1.05), are close to the significance level,
and therefore are still likely to be potential prognosis biomarkers
(Figure 3E). Notably, LUSC_M2 contains a ME event on the
known LUSC amplification gene FGFR1 (exons 12.1:12.2 vs. exon
13), which could be functionally important in LUSC (Weiss et al.,
2010; Heist et al., 2012).

Besides overall survival (OS) that reflects a long-term
prognosis, it is often of interest to evaluate short-term effects
on disease progression. Therefore, to further capture more
prognosis-related modules, we also tested the correlation
betweenmodule scores and progression-free intervals (PFI). This
analysis returned 8 significant modules (P ≤ 0.05), namely,
BLCA_M1, BLCA_M2, BLCA_M4, LUAD_M3, PRAD_M1,
PRAD_M2, THCA_M1, and UCEC_M3 (Table 2, Figure 4).
Note that BLCA_M4 is also marginally significant in OS
analysis (P = 0.076, HR = 0.75 with a confidence interval of
0.54–1.03), while PRAD_M2 (OS P = 0.29) and THCA_M1
(OS P = 0.7) are only significant in PFI analysis. Five

modules are strictly significant in both the OS and PFI
settings (BLCA_M1, BLCA_M2, LUAD_M3, PRAD_M1, and
UCEC_M3), and interestingly, their HR ratios in these two
settings are in a similar trend, either both reducing or
both increasing malignancy risks. BLCA_M1 lowers both the
death risk (0.57, 0.41–0.78) and the disease progression risk
(0.67, 0.48–0.91); BLCA_M2 increases both the death risk
(1.78, 1.29–2.48) and the progression risk (1.42, 1.04–1.95);
LUAD_M3 also increases both risks (1.86, 1.34–2.58 and 1.42,
1.05–1.93, respectively); PRAD_M1 also increases both risks
(6.42, 0.78–52.60 and 1.80, 1.16–2.79, respectively); UCEC_M3
similarly increases both risks (1.81, 1.15–2.84 and 1.66, 1.12–
2.47, respectively). These strongly indicate the consistency of
splicing modules as potential prognosis biomarkers, suggesting
underlying functional involvement of these modules in their
corresponding cancer types.

Cancer Splicing Modules Are Enriched for
Critical Biological Functions
The above analyses yielded 15 modules with potential prognosis
relevance (Table 2). To characterize the functional properties of
each splicing module, GO enrichment analysis was performed
on the 15 modules. The major functional implications of
each module were manually examined and curated from the
enrichment results (Table 2). Since nearly all genes transcribed
in the genome, including many long non-coding genes,
underwent alternative splicing, typically very few events
could drive strong functional changes, and the majority
of alternative splicing events at most function as weaker
modifiers. Surprisingly, we found that the 15 modules, when
compared to the splicing events catalog, showed very strong
enrichment of important biological functions, such as stem cell
proliferation and epithelial-mesenchymal transition (EMT),

TABLE 2 | Cancer splicing modules correlated with prognosis.

Module OS_HR OS_P PFS_HR PFS_P Function

BLCA_M1 0.57 (0.41–0.78) 0.00052 0.67 (0.48–0.91) 0.011 Stem cell proliferation; EMT

BLCA_M2 1.78 (1.29–2.48) 0.00044 1.42 (1.04–1.95) 0.027 Microtubule bundle; actin filament polymerization

BLCA_M4 0.75 (0.54–1.03) 0.076 0.70 (0.51–0.97) 0.029 Cell junction; Rac and Ras signaling

KIRC_M1 2.04 (1.46–2.84) 2E−05 1.24 (0.89–1.74) 0.2 mRNA splicing and export; transcription termination

KIRC_M2 0.50 (0.36–0.70) 3.5E−05 0.77 (0.55–1.08) 0.12 Drug metabolism; PI3K signaling; amino acid metabolism

LIHC_M1 2.06 (1.41–3.02) 0.00013 1.32 (0.96–1.82) 0.085 ERK1/2 signaling; organ growth; PI3K signaling

LIHC_M2 0.50 (0.34–0.73) 0.00023 0.79 (0.57–1.08) 0.14 ERK1/2 signaling; stem cell proliferation; embryonic epithelium

LUAD_M1 0.63 (0.45–0.87) 0.0043 0.74 (0.55–1.01) 0.054 PKC signaling; VEGF and lymph vessel development

LUAD_M3 1.86 (1.34–2.58) 0.00018 1.42 (1.05–1.93) 0.023 Mitosis; double-strand break repair

LUSC_M2 0.75 (0.55–1.01) 0.059 0.80 (0.56–1.15) 0.22 Phospholipase activity; formation of primary germ layer

LUSC_M3 0.77 (0.57–1.05) 0.099 0.98 (0.69–1.41) 0.93 EMT; GPCR signaling; double–strand break repair

PRAD_M1 6.42 (0.78–52.60) 0.049 1.80 (1.16–2.79) 0.0081 Calcium ion homeostasis; muscle contraction; mesoderm morphogenesis

PRAD_M2 0.42 (0.08–2.19) 0.29 0.52 (0.33–0.81) 0.0032 Calcium ion homeostasis; cell-cell adhesion

THCA_M1 1.21 (0.45–3.23) 0.7 0.55 (0.31–0.99) 0.041 Stem cell proliferation

UCEC_M3 1.81 (1.15–2.84) 0.0087 1.66 (1.12–2.47) 0.01 Type I interferon production; DNA duplex unwinding

OS, overall survival; PFS, progression-free survival; HR, hazard ratio; P, Log-rank test p-value.
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FIGURE 3 | Overall survival analyses for splicing modules. Red curves are with a high module score, and blue curves with a low module score. (A) BLCA_M1; (B)

KIRC_M2; (C) LIHC_M1; (D) LUAD_M1; (E) LUSC_M2; (F) UCEC_M3.

(BLCA_M1, LIHC_M2, LUSC_M1, THCA_M1, THCA_M2,
UCEC_M2), cell cycle control (BRCA_M1, BRCA_M2,
COAD_M4, KICH_M1, STAD_M1), DNA repair or regulation
(COAD_M3, ESCA_M2, HNSC_M3, KICH_M1, LUAD_M3,
LUSC_M3, UCEC_M3), developmental cell growth (BRCA_M4,
COAD_M1, LIHC_M1, LIHC_M3, READ_M1, READ_M2,
STAD_M2, STAD_M3), receptor or kinase signaling pathways
(BLCA_M4, HNSC_M1, KICH_M1, KIRC_M2, KIRP_M1,
KIRP_M2, LIHC_M1, LIHC_M2, LUAD_M1, LUAD_M2,
LUSC_M1, LUSC_M3, READ_M2), VEGF-mediated vessel
development (LUAD_M1, LUSC_M1) (Table 2). Among
these major functions, EMT is required for cancer invasion
and metastasis, which is closely related to cancer mortalities
and prognosis (Singh and Settleman, 2010). The important

EMT-related gene modulated in BLCA and LIHC is FGFR2,
which regulates mesenchymal condensation in BLCA (Chaffer
et al., 2006). Targeting FGFR signaling through splicing
factors might expand the current toolkits (Touat et al.,
2015). Vessel development controlled by VEGF signaling
is another pathway directly involved in cancer metastasis
and patient survival (Stacker et al., 2002; Su et al., 2006).
Both VEGFA and its receptor FLT4 (VEGFR-3) were altered
during splicing in lung cancers LUAD and LUSC, which
might modulate angiogenesis through splicing control. In
summary, these suggest that the splicing network-based module
identification approach taken in this study was powerful enough
to extract the few critically functional events from a much larger
splicing background.
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FIGURE 4 | Progression-free survival analyses for splicing modules. Red curves are with a high module score, and blue curves with a low module score. (A)

BLCA_M4; (B) LUAD_M3; (C) PRAD_M1; (D) PRAD_M2; (E) THCA_M1; (F) UCEC_M3.

Splicing Modules Across Cancer Types
Reveal Pan-Cancer Signatures
Having obtained those functionally coherent modules, we next
asked whether it would be helpful to explore the pan-cancer
landscape at the module level. Hierarchical clustering of cancer
types with the 51 modules revealed a clear pattern that is closely
related to tissue origins (Figure 5A). Lung cancers (LUAD,
LUSC), colon cancers (COAD, READ), gynecological cancers
(BRCA, UCEC), kidney, and prostate cancers (KIRC, KIRP,
KICH, PRAD) each are clustered in a tissue origin manner.
This is actually consistent with a recent pan-cancer analysis
using multi-platform integrative clustering (Hoadley et al., 2018),
suggesting that splicing events can also be useful for cancer
classification and subtyping.

Due to the intra-type and between-type heterogeneity of

cancers, it is important to knowwhich of the splicingmodules are

shared by multiple cancer types and which modulesare restricted
to one or few cancer types. We summarized the scores for

each module in the cancer samples and categorized them by
cancer type (Figure 5B). The diagonal line here reflects the score

of modules in their corresponding cancer types, while the off-
diagonal regions depicts their pan-cancer potential. Although
a few modules from kidney and liver cancers show a strong
cancer type specificity, and largely not perturbed in other
types (KICH_M3, LIHC_M3, LIHC_M4), many other modules
display strong pan-cancer perturbation patterns, suggesting their
wider involvement in most cancer types. With a strict criteria
(perturbation found in at least 15/16 cancer types), we found that
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FIGURE 5 | (A) Hierarchical clustering of cancer types by 51 splicing modules. (B) Heatmap of module scores in each cancer type. “+” and “–” respectively denote

that for ≥80% samples in the cancer type are with a higher and lower module score than normal samples. “∗∗” denotes the module are consistently “+” or “–“ in

≥15/16 cancer types.
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13/51 modules are highly common across different cancer types
(marked with ∗∗, Figure 5B), again suggesting that the modules
identified with splicing network analysis are highly informative
and important.

DISCUSSION

Although AS has been identified and studied for many years,
the full regulation pattern of these many AS events within
and across cancer types are still not completely understood.
Previous studies have taken advantage of single-event analyses
and linked splicing to splicing factors as well as the cis-elements.
Very recently, an interesting study sets out to determine the
involved of spliceosome RNAs in cancer-specific AS regulation
(Dvinge et al., 2018).

In this study, we have taken a novel approach that
emphasizes the inter-event correlations and uncovers the
modularized perturbation of splicing events in cancers.
Previous studies have not emphasized the modularized
control of splicing events, which according to our study
is quite important. Indeed, a relatively small number of
functionally important and prognosis-relevant modules have
been successfully identified, with some of them being common
across cancer types and others being more specific to one or
few cancer types, indicating that our approach is both powerful
and useful.

To focus on the more typical AS classes, we have not
considered alternative promoters in this study, as their
regulation are more relevant to transcriptional factors, enhancers
or even epigenetic modifications (Maunakea et al., 2010;
Kowalczyk et al., 2012). Nonetheless, it would be interesting to
investigate the possibility of combining transcriptional events
and splicing events in the future, as co-transcriptional splicing
has already been proposed and supported by various studies.
This might serve as a plausible framework for those interactions
(Lee and Rio, 2015).
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event is named as “gene::eventID::eventType”.

REFERENCES

Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E.

W., and Williams, E. D. (2006). Mesenchymal-to-Epithelial transition

facilitates bladder cancer metastasis: role of fibroblast growth factor

receptor-2. Cancer Res. 66, 11271–11278. doi: 10.1158/0008-5472.CAN-

06-2044

Danan-Gotthold, M., Golan-Gerstl, R., Eisenberg, E., Meir, K., Karni, R.,

and Levanon, E. Y. (2015). Identification of recurrent regulated alternative

splicing events across human solid tumors. Nucl. Acids Res. 43, 5130–5144.

doi: 10.1093/nar/gkv210

David, C. J., and Manley, J. L. (2010). Alternative pre-mRNA splicing regulation

in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364.

doi: 10.1101/gad.1973010

Dvinge, H., and Bradley, R. K. (2015). Widespread intron retention diversifies

most cancer transcriptomes. Genome Med. 7:45. doi: 10.1186/s13073-015-

0168-9

Dvinge, H., Guenthoer, J., Porter, P. L., and Bradley, R. K. (2018). RNA components

of the spliceosome regulate tissue- and cancer-specific alternative splicing.

bioRxiv [Preprint] 326983. doi: 10.1101/326983

Heist, R. S., Mino-Kenudson, M., Sequist, L. V., Tammireddy, S.,

Morrissey, L., Christiani, D. C., et al. (2012). FGFR1 amplification in

squamous cell carcinoma of the lung. J. Thorac. Oncol. 7, 1775–1780.

doi: 10.1097/JTO.0b013e31826aed28

Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., et al. (2018).

Cell-of-origin patterns dominate the molecular classification of 10,000 tumors

from 33 types of cancer. Cell 173, 291–304.e6. doi: 10.1016/j.cell.2018.03.022

Hocine, S., Singer, R. H., and Grünwald, D. (2010). RNA Processing and Export.

Cold Spring Harb. Perspect. Biol. 2:a000752. doi: 10.1101/cshperspect.a000752

Kahles, A., Lehmann, K.-V., Toussaint, N. C., Hüser, M., Stark, S. G., Sachsenberg,

T., et al. (2018). Comprehensive analysis of alternative splicing across tumors

from 8,705 Patients.Cancer Cell 34, 211–224.e6. doi: 10.1016/j.ccell.2018.07.001

Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva,

M., et al. (2013). Function of alternative splicing. Gene 514, 1–30.

doi: 10.1016/j.gene.2012.07.083

Kowalczyk, M. S., Hughes, J. R., Garrick, D., Lynch, M. D., Sharpe, J. A., Sloane-

Stanley, J. A., et al. (2012). Intragenic enhancers act as alternative promoters.

Mol. Cell 45, 447–458. doi: 10.1016/j.molcel.2011.12.021

Lee, Y., and Rio, D. C. (2015). Mechanisms and regulation of

alternative pre-mRNA splicing. Ann. Rev. Biochem. 84, 291–323.

doi: 10.1146/annurev-biochem-060614-034316

Li, Y., Sahni, N., Pancsa, R., McGrail, D. J., Xu, J., Hua, X., et al. (2017). Revealing

the determinants of widespread alternative splicing perturbation in cancer. Cell

Rep. 21, 798–812. doi: 10.1016/j.celrep.2017.09.071

Frontiers in Genetics | www.frontiersin.org 9 April 2019 | Volume 10 | Article 246238

https://www.frontiersin.org/articles/10.3389/fgene.2019.00246/full#supplementary-material
https://doi.org/10.1158/0008-5472.CAN-06-2044
https://doi.org/10.1093/nar/gkv210
https://doi.org/10.1101/gad.1973010
https://doi.org/10.1186/s13073-015-0168-9
https://doi.org/10.1101/326983
https://doi.org/10.1097/JTO.0b013e31826aed28
https://doi.org/10.1016/j.cell.2018.03.022
https://doi.org/10.1101/cshperspect.a000752
https://doi.org/10.1016/j.ccell.2018.07.001
https://doi.org/10.1016/j.gene.2012.07.083
https://doi.org/10.1016/j.molcel.2011.12.021
https://doi.org/10.1146/annurev-biochem-060614-034316
https://doi.org/10.1016/j.celrep.2017.09.071
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Du et al. Splicing Networks and Modules in Human Cancers

Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D’Souza, C., Fouse,

S. D., et al. (2010). Conserved role of intragenic DNAmethylation in regulating

alternative promoters. Nature 466, 253–257. doi: 10.1038/nature09165

Pons, P., and Latapy, M. (2005). Computing Communities in Large Networks Using

Random Walks (Long Version). arXiv:physics/0512106. Available online at:

http://arxiv.org/abs/physics/0512106 (Accessed May 5, 2016).

Ryan, M., Wong, W. C., Brown, R., Akbani, R., Su, X., Broom, B., et al. (2016).

TCGASpliceSeq a compendium of alternativemRNA splicing in cancer.Nucleic

Acids Res. 44, D1018–D1022. doi: 10.1093/nar/gkv1288

Scotti, M. M., and Swanson, M. S. (2016). RNA mis-splicing in disease. Nat. Rev.

Genet. 17, 19–32. doi: 10.1038/nrg.2015.3

Sebestyén, E., Singh, B., Miñana, B., Pagès, A., Mateo, F., Pujana, M. A.,

et al. (2016). Large-scale analysis of genome and transcriptome alterations

in multiple tumors unveils novel cancer-relevant splicing networks. Genome

Res.115:gr.199935. doi: 10.1101/gr.199935.115

Seiler, M., Peng, S., Agrawal, A. A., Palacino, J., Teng, T., Zhu, P., et al.

(2018). somatic mutational landscape of splicing factor genes and their

functional consequences across 33 cancer types. Cell Rep. 23, 282–296.e4.

doi: 10.1016/j.celrep.2018.01.088

Shen, S., Wang, Y., Wang, C., Wu, Y. N., and Xing, Y. (2016). SURVIV

for survival analysis of mRNA isoform variation. Nat. Commun. 7:11548.

doi: 10.1038/ncomms11548

Singh, A., and Settleman, J. (2010). EMT, cancer stem cells and drug resistance:

an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751.

doi: 10.1038/onc.2010.215

Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E., and Alitalo, K. (2002).

Metastasis: lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2,

573–583. doi: 10.1038/nrc863

Su, J.-L., Yang, P.-C., Shih, J.-Y., Yang, C.-Y., Wei, L.-H., Hsieh, C.-Y., et al.

(2006). The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer

cells. Cancer Cell 9, 209–223. doi: 10.1016/j.ccr.2006.02.018

Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R. A., and Skotheim, R. I. (2016).

Aberrant RNA splicing in cancer; expression changes and driver mutations of

splicing factor genes. Oncogene 35, 2413–2427. doi: 10.1038/onc.2015.318

Touat, M., Ileana, E., Postel-Vinay, S., Andr,é, F., and Soria, J.-C. (2015).

Targeting FGFR signaling in cancer. Clin Cancer Res. 21, 2684–2694.

doi: 10.1158/1078-0432.CCR-14-2329

Weiss, J., Sos, M. L., Seidel, D., Peifer, M., Zander, T., Heuckmann, J. M., et al.

(2010). Frequent and focal FGFR1 amplification associates with therapeutically

tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2,

62ra93-62ra93. doi: 10.1126/scitranslmed.3001451

Conflict of Interest Statement: Author YZ was employed by the company

Medcurius Co.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Du, Li, Du, Shi, Arai, Chen, Wang, Zhang, Fang, Zhang and Ma.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 April 2019 | Volume 10 | Article 246239

https://doi.org/10.1038/nature09165
http://arxiv.org/abs/physics/0512106
https://doi.org/10.1093/nar/gkv1288
https://doi.org/10.1038/nrg.2015.3
https://doi.org/10.1101/gr.199935.115
https://doi.org/10.1016/j.celrep.2018.01.088
https://doi.org/10.1038/ncomms11548
https://doi.org/10.1038/onc.2010.215
https://doi.org/10.1038/nrc863
https://doi.org/10.1016/j.ccr.2006.02.018
https://doi.org/10.1038/onc.2015.318
https://doi.org/10.1158/1078-0432.CCR-14-2329
https://doi.org/10.1126/scitranslmed.3001451
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 03 April 2019

doi: 10.3389/fgene.2019.00257

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 257

Edited by:

Tao Huang,

Shanghai Institutes for Biological

Sciences (CAS), China

Reviewed by:

Xiang Yu,

University of Pennsylvania,

United States

Richa Gupta,

University of Helsinki, Finland

*Correspondence:

Zhi Wei

zhiwei@njit.edu

Hakon Hakonarson

hakonarson@email.chop.edu

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 11 December 2018

Accepted: 08 March 2019

Published: 03 April 2019

Citation:

Zhang J, Wei Z, Cardinale CJ,

Gusareva ES, Van Steen K, Sleiman P,

International IBD Genetics Consortium

and Hakonarson H (2019) Multiple

Epistasis Interactions Within MHC Are

Associated With Ulcerative Colitis.

Front. Genet. 10:257.

doi: 10.3389/fgene.2019.00257

Multiple Epistasis Interactions Within
MHC Are Associated With Ulcerative
Colitis
Jie Zhang 1,2, Zhi Wei 1*, Christopher J. Cardinale 3, Elena S. Gusareva 4, Kristel Van Steen 4,5,

Patrick Sleiman 3,6, International IBD Genetics Consortium and Hakon Hakonarson 3,6*

1Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, United States, 2 Adobe Inc., San Jose,

CA, United States, 3 The Children’s Hospital of Philadelphia, Center for Applied Genomics, Philadelphia, PA, United States,
4GIGA-R Medical Genomics - BIO3, University of Liege, Avenue de l’Hôpital 11, Liège, Belgium, 5WELBIO—Walloon

Excellence in Life Sciences and BIOtechnology, Liège, Belgium, 6Division of Human Genetics, Department of Pediatrics, The

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States

Successful searching for epistasis is much challenging, which generally requires very

large sample sizes and/or very dense marker information. We exploited the largest

Crohn’s disease (CD) dataset (18,000 cases + 34,000 controls) and ulcerative colitis

(UC) dataset (14,000 cases + 34,000 controls) to date. Leveraging its dense marker

information and the large sample size of this IBD dataset, we employed a two-step

approach to exhaustively search for epistasis. We detected abundant genome-wide

significant (p < 1 × 10−13) epistatic signals, all within the MHC region. These signals

were reduced substantially when conditional on the additive background, but still nine

pairs remained significant at the Immunochip-wide level (P < 1.1 × 10−8) in conditional

tests for UC. All these nine epistatic interactions come from the MHC region, and each

explains on average 0.15% of the phenotypic variance. Eight of them were replicated

in a replication cohort. There are multiple but relatively weak interactions independent

of the additive effects within the MHC region for UC. Our promising results warrant

the search for epistasis in large data sets with dense markers, exploiting dependencies

between markers.

Keywords: epistasis, genome-wide association study, immunochip, major histocompatibility complex,

ulcerative colitis

INTRODUCTION

Genome-wide association studies (GWAS) have been conducted widely to interrogate the genetic
architecture of common and complex diseases (McCarthy et al., 2008). For Crohn’s disease
(CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD),
GWAS have been fruitful in identifying their susceptibility loci with independent, additive, and
cumulative effects (Franke et al., 2010; Anderson et al., 2011; Jostins et al., 2012). Like most other
GWAS, these studies have employed a single-locus analysis strategy, namely, testing the variants
one at a time for association. Complementary to single-locus analysis, searching for gene-gene
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interactions, or epistasis, has also attracted extensive research
interest in the past decades (Cordell, 2009). However, in contrast
to the fruitful achievements of identifying independent additive
effects, the success of searching for epistasis is very limited so far.

For IBD, epistasis in CD was once searched in an
exhaustive epistatic SNP association analysis on the expanded
Wellcome Trust data of seven complex diseases. However,
no significant epistasis in CD was identified (Lippert et al.,
2013). Indeed, searching for epistasis is much more challenging
than detecting additive effects for various reasons, including
weaker linkage disequilibrium capturing for a pair of tagging
SNPs, increased model complexity, and curse of dimensionality.
Very dense marker information and very large sample sizes
therefore are required to overcome these challenges (Wei
et al., 2014), as well as standardized analysis protocols
(Gusareva and Van Steen, 2014).

The Immunochip R©, a custom Illumina genotyping
microarray, is designed to perform both deep replication
of suggestive associations and fine mapping of established
GWAS significant loci of major autoimmune and inflammatory
diseases (Parkes et al., 2013). For each disease, about 3,000
top-ranked SNPs are selected from available GWAS data. At
loci with established disease associations, it includes all known
SNPs in the dbSNP database, from the 1000 Genomes project
(Feb. 2010 release), and from any other sequencing initiatives
that were available to the consortium. As a result, it has in
total 196,524 variants, including 718 small insertion deletions
and 195,806 SNPs. Thus, it provides a more comprehensive
catalog of the most promising candidate variants by picking
up the remaining common variants and rare variants that
are missed in the first generation of GWAS. Recently, using
three large Immunochip datasets, Wei et al. confirmed multiple
interactions within themajor histocompatibility complex (MHC)
and reported novel non-MHC epistatic signals of suggestive
significance in their analyses of epistasis in rheumatoid
arthritis (Wei et al., 2016).

Here we used the largest data set to date for IBD compiled by
the International IBD Genetics Consortium’s from its members
Immunochip projects to examine epistasis in IBD. Leveraging
its dense marker information and the large sample size of this
IBD dataset, we searched for epistasis in hope to identify gene-
gene interactions for IBD that were missed in previous single-
locus analysis.

MATERIALS AND METHODS

Subjects, Genotyping, and Quality Control
We used the large IBD cohort samples from the International
IBD Genetics Consortium. These cohort samples have been
described in detail elsewhere (Jostins et al., 2012). Briefly,
a total of 68,427 samples were recruited from 15 European
countries, including 18,227CD cases with 34,050CD controls
and 14,224 UC cases with 33,954 UC controls, and typed by
11 different genotyping centers on the Immunochip. As shown
in Table 1, we randomly split the dataset into a discovery
cohort and a replication cohort, each with an approximately
equal size (See Tables S1, S2 for details). We refer to the

TABLE 1 | Cohort information.

Cohort #CD case #CD CTRL #UC case #UC CTRL

Discovery cohort 9,125 16,662 7,083 16,578

Replication cohort 9,102 17,388 7,141 17,376

Total 18,227 34,050 14,224 33,954

MHC as residing between 28.7 and 34.0Mb on chromosome
6, based on SNP genomic locations in the GRCh38/hg38
version throughout.

The IBD dataset used has gone through rigorous quality
control (QC) by the IBD consortium (Jostins et al., 2012). Briefly,
initial SNP QCwas conducted by removing SNPs that fail Hardy-
Weinberg equilibrium (HWE) tests across the entire collection or
within each batch, SNPs that have significant missing genotypes
across the entire collection or within each batch, and SNPs
that have different missing genotype rates in case vs. control.
The sample QC followed by removing individuals who have a
high missing genotype rate, individuals who show significant
heterozygosity rate, and duplicated/related individuals. Then,
another round of SNP QC was conducted by removing SNPs that
show heterogeneous allele frequencies across batches, and SNPs
not identified in 1000G project phase 2. For our epistasis analysis,
we performed further QC by filtering out markers with Hardy-
Weinberg equilibrium P < 10−6 and minor allele frequency
<10−5, which results in 149,532 and 150,424 markers for CD and
UC, respectively.

Statistical Analysis
We employed PLINK (Purcell et al., 2007) with default
parameters (i.e., “--logistic --hide-covar --adjust”) to perform a
GWAS in each cohort using a logistic regression model with
5 principal components and the batch indicators as covariates.
The consensus genome-wide significance threshold of 5 ×

10−8 was applied. We expect that many of these genome-
wide significant SNPs are correlated. To obtain independent
signals, we further pooled the selected SNPs (P < 5 × 10−8)
and re-fit the logistic regression model using all of them.
For the fully correlated SNPs, only one will be kept. Then
we considered the SNPs with P < 0.05 from the logistic
regression fitted with all marginally genome-wide significant
SNPs, as independent additive signals. As we describe later, these
significant independent GWAS SNPs will be used as the additive
background to screen the SNP pairs we identify, for ensuring they
are truly novel epistasis signals that are not captured by any single
additive signals.

We used a 2-step approach to detect epistasis. First, we utilized
the fast approximate tests provided by BOOST (Wan et al.,
2010) to screen candidate gene-gene interactions. BOOST can
perform quickly a full pairwise screening without correction
for covariates in the discovery cohort. The BOOST P-values
were approximate and we retained all possible epistatic pairs
of SNPs with an interaction P < 10−10 and r2 < 0.2. We
subsequently computed accurate P-values for the retained SNP
pairs using a full logistic regression model accounting for
population stratification and batch effect covariates. The epistatic
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interaction was tested using a likelihood ratio test with 4 degrees
of freedom as previously described (Gyenesei et al., 2012).
Following Wei et al. (2016), we adopted two P-value thresholds,
10−13 for claiming genome-wide significant epistatic SNP pairs
(Wei et al., 2014), and 1.1× 10−8 for claiming Immunochip-wide
5% significance.

Finally, to identify significant epistatic SNP pairs conditioning
on the additive background, we added the selected independent
GWAS SNPs as covariates into the logistic regression model
for testing the epistasis. Variance explained by the selected
epistatic SNP pairs was estimated using a full logistic
regression model including all the covariates, independent
SNPs and SNP pairs. The SNP pairs identified in the
discovery cohort were tested similarly in the replication
cohort. We considered a pair to be directly replicated if its
epistatic P-value remained <0.05 after conditioning on the
additive background.

RESULTS

The univariate GWAS scan of the discovery cohorts identified
2,765 and 1,123 genome-wide significant SNPs (P < 5 × 10−8)
for CD and UC, respectively. After the further independence
screening, we obtained 306 and 121 independent SNPs for CD
and UC, respectively. The detailed information about the SNPs
selected in each stage were presented in the Supplemental Data.
The full pairwise scan by BOOST produced 13,843 and 35,373
candidate pairs of SNPs that have BOOST interaction P <

10−10 and r2 < 0.2 for CD and UC, respectively. We computed
their accurate P-values, and detected 11 and 513 genome-wide
significant pairs (P < 10−13) for CD and UC, respectively.
Conditioning on the additive background of the 306 independent
CD SNPs, none of the 11CD pairs remained significant (smallest
P = 3.0 × 10−4). For UC, we obtained 9 pairs significant at the
Immunochip-wide level (P < 1.1 × 10−8), and all of them came
from the MHC region. Conditional on the additive background,
these epistatic pairs jointly explain an additional 0.49% of the
phenotypic variance on the observed scale, of which 0.36% by
interactions only, suggesting that these interaction effects were
not negligible jointly, but weak individually (i.e., on average
explained 0.15% of the phenotypic variance). Except for the pair
of lowest significance, the top 8 of these 9 pairs were replicated
in the independent replication cohort with P < 0.05 (See Table 2
and Figure S1 for details).

Following Hemani et al. (2014), we decompose the genetic
effects of each of the SNP pairs into orthogonal additive
(A1, A2), dominant (D1, D2) and epistatic effects (A1xA2,
A1xD2, D1xA2, D1xD2); and then display them (regression
coefficients) as a heatmap (Figure 1). For these interactions, we
observe that the epistatic effects (A1xA2, A1xD2, D1xA2,
D1xD2) generally act in opposite direction against the
main effects (A1, A2, D1, D2). In addition, we note that
the effects across the discovery and replication cohorts are
largely concordant.

All the 10 SNPs contributing to the 8 epistatic pairs are
non-coding, with rs3852215 close to HLA-DQB1, and rs6928482 T
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FIGURE 1 | Effects of the orthogonal additive (A1, A2), dominant (D1, D2), and epistatic effects (A1xA2, A1xD2, D1xA2, D1xD2) for the 8 replicated UC interactions.

and rs7744001 close to HLA-DQB1-AS1. It has been known
for some time that the single strongest genetic association
for IBD is the HLA-DRB1∗103 allele, which is located within
the MHC region (Silverberg et al., 2003). A recent study
by Goyette et al. demonstrated the importance of HLA-
DRB1∗0103 in both CD and UC by genotyping 7,406 MHC
SNPs in 32,000 IBD cases and an equal number of controls
(Goyette et al., 2015) The fine resolution of mapping allowed
localization of the association signal to specific amino acid
substitutions in the MHC molecule which revealed that the
causal variants are located within the peptide binding groove
and thereby influence antigen presentation directly (Goyette
et al., 2015). The mechanism by which these mutations produce
autoimmunity could be by enabling self- or commensal-antigenic
peptides to bind and be presented to helper T cells. The
non-coding SNPs identified in our study which have gene-
gene interaction with these high-risk variants could affect
transcriptional regulation of the high-risk MHC molecules
themselves, enabling greater amounts of self or commensal
antigens to be presented in a differential manner provoking an
inflammatory response.

DISCUSSION

In this study we present results from an epistatic analysis of a
large data set from the International IBD Genetics Consortium
genotyped on the Immunochip array. Most previous studies
have used a relatively small sample sizes (with <2,000 cases and
3,000 controls) and a GWAS array (Wan et al., 2010; Lippert
et al., 2013), while here we had the largest IBD dataset to date
with a much increased sample size (14,000+ cases and 30,000+
controls) genotyped on the high-density Immunochip. The large
sample size has enabled us to identify genome-wide significant
interactions within the MHC region for UC for the first time.
All the 8 replicated epistasis signals are local interactions (within
a distance <1Mb), which is consistent with recent finding that
examining local interactions between SNP closely located but

with low LD (r2 < 0.2) could increase the power of detection
of missing variants and/or functional interactions (Wei et al.,
2013, 2014). It is noted that 3 of these 8 interaction signals are
genome-wide significant and the other 5 remain Immunochip-
wide significant after conditioning on the additive background.
These independent interactions each with a substantial effect
were statistically replicated in an independent replication cohort.
These results confirm the increased level of complexity in the
entire MHC region as observed also in rheumatoid arthritis (Wei
et al., 2016), namely, there can still exist additional epistatic
interactions over and above the well-established multiple
independent MHC signals. The current resolution provided by
the Immunochip SNP resolution should be able to identify
most MHC diversity. Even if some additive background may
be derived imperfectly, the large sample size of the IBD dataset
should compensate and lend sufficient power for capturing
all the additive background comprehensively. Therefore, the 8
epistatic pairs we report here should be independent from the
additive background.

Finally, we would like to point out that multiple views to
genome-wide data for epistasis screening exist. In this work, we
developed a protocol that lead to replicable statistical results.
Notably, small changes in the protocol (including the use of prior
biological knowledge about the disease, LD pruning, analytic
methodology, correction for population structure or multiple
testing) may give rise to widely varying results (Bessonov et al.,
2015). More work is needed to investigate the relation between
MHC susceptibility genes and their relation with other genomic
regions, aiding the hunt for non-MHC driven epistasis.

In conclusion, by leveraging the large sample size available
through the International IBD Genetics Consortium genotyped
on the Immunochip, we have identified and replicated
concordant epistatic interactions within the MHC region
for UC. Further examination of these identified epistatic
interactions may help to understand the molecular mechanisms
underlying epistatic interactions with the MHC locus and their
contributions to immunological diseases. Our promising results
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warrant the search for epistasis in large data sets to address
the missing heritability in complex disease. Optimal epistasis
analysis protocols need to be derived in order to exploit the
richness potentially harbored by dense marker panels.
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In the last few years, advances in next-generation sequencing (NGS) technology for

whole genome sequencing (WGS) of foodborne pathogens have provided drastic

improvements in food pathogen outbreak surveillance. WGS of foodborne pathogen

enables identification of pathogens from food or environmental samples, including

difficult-to-detect pathogens in culture-negative infections. Compared to traditional

low-resolution methods such as the pulsed-field gel electrophoresis (PFGE), WGS

provides advantages to differentiate even closely related strains of the same species,

thus enables rapid identification of food-source associated with pathogen outbreak

events for a fast mitigation plan. In this paper, we present UltraStrain, which is a

fast and ultra sensitive pathogen detection and strain typing method for Salmonella

enterica (S. enterica) based on WGS data analysis. In the proposed method, a noise

filtering step is first performed where the raw sequencing data are mapped to a

synthetic species-specific reference genome generated from S. enterica specific marker

sequences to avoid potential interference from closely related species for low spike

samples. After that, a statistical learning based method is used to identify candidate

strains, from a database of known S. enterica strains, that best explain the retained

S. enterica specific reads.Finally, a refinement step is further performed by mapping all

the reads before filtering onto the identified top candidate strains, and recalculating the

probability of presence for each candidate strain. Experiment results using both synthetic

and real sequencing data show that the proposedmethod is able to identify the correct S.

enterica strains from low-spike samples, and outperforms several existing strain-typing

methods in terms of sensitivity and accuracy.

Keywords: metagenomes, next-generation sequencing (NGS), whole genome sequencing (WGS), Salmonella

enterica, strain typing

1. INTRODUCTION

Rapid pathogen identification is one of the most important issues for microbial community studies
for infectious diseases and food security. It is reported that in theUnited States alone, at each year 31
major pathogens cause 9.4million episodes of foodborne illness, resulting in 55,961 hospitalizations
and 1,351 deaths (Scallan et al., 2011). Foodborne illness poses a $77.7 billion economic burden in
the United States annually, excluding indirect costs to the food industry such as reduced consumer
confidence, recall losses, or litigation (Mandernach et al., 2013). The faster the sources linked with
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the outbreak being investigated are identified, the faster the
outbreak can be stopped, limiting the potential loss it may cause.

A large number of laboratory (in vitro) tools have been
developed over the past decades for pathogen identification to
assist the diagnosis, treatment, and monitoring of infectious
diseases. Traditionally, in vitro diagnostics of infectious diseases
have been performed using culture-based testing, which usually
yields diagnostic results in days. In addition, cultivation of
bacteria is not always successful under laboratory conditions due
to possibly unsuitable methods. In recent years, deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA) based molecular
assays (Barghouthi, 2011) have become more routine. A DNA-
based in vitro assay may take the form of a quantitative or
qualitative polymerase chain reaction (PCR) assay where the
target for detection is a pathogen-specific gene or an anti-
microbial resistance marker. The most common bacterial broad-
range PCR methods use primers that recognize conserved DNA
sequences of bacterial genes that encode ribosomal RNA (rRNA
16S or 23S) (Greisen et al., 1994). Such methods allow the
detection of multiple targets in a single experiment and are faster
and more sensitive than culture-based methods. However, these
targeted approaches require the clinician’s a priori knowledge of
the potential targets to order the appropriate diagnostic tests.

The application of NGS in metagenomics has revolutionized
the field of microbial ecology and greatly facilitates the
identification and classification of microbes. The enormous
increase in sequencing throughput has enabled the adoption of
metagenomic sequencing approaches in which highly complex
communities of microorganisms are sequenced in parallel.
Compared to the traditional culture-based and assay-based
approaches, metagenomic approaches are less biased because
they do not require any a priori knowledge of the sample
composition. Clinical samplesmay contain amixture ofmicrobes
with varying levels of constituents and additional DNA from
a host organism. Metagenomic sequencing data obtained from
such samples provides a qualitative and quantitative profile of the
individual components of the respective microbial community.
Genus, species and even strain-level taxonomic assignments of
microorganisms, as well as their relative abundance, could be
potentially obtained. For example, metagenomic sequencing data
can identify infections with pathogen-specific strain (Maxson
andMitchell, 2016). It also allows the detection and identification
of antibiotic resistant genes and virulence factors in complex
samples (Jitwasinkul et al., 2016). The ability to rapidly
characterize and identify the entire microbial composition of
a complex sample provides a unique and novel strategy for
pathogen detection and identification in diagnosis and outbreak
investigation of infectious diseases, or to guide treatment options.

On the other hand, metagenomic data brings new
challenges for downstream analysis and biologically meaningful
interpretation. First of all, the vast amount of sequencing
data which contains billions of short reads leads to high time
consumption. The short read length and low coverage would
result in many short contigs and unassembled sequences, leading
to the prediction of a large number of small, fragmented genes
which may not exhibit any matches in the reference sequence
database, or match with low confidence. The second challenge

lies in the sample complexity (Rose et al., 2015), as the target
pathogens could be surrounded by a complex background of
commensal organisms at a range of abundances in addition to
hosting nucleic acids. In addition, problems arise from variation
between similar subspecies, genomic sequence similarity
between different species, the difference in abundance for species
in a sample, and different sequencing depths for individual
species, etc.

In pathogen identification frommetagenome data, strain-level
bacterial typing from uncultured food samples is an especially
challenging task. Advances in metagenome bioinformatics over
the last decade have refined the resolution of microbial
community taxonomic profiling from phylum to the species, but
it is still challenging to characterize microbes in communities
at strain level (Truong et al., 2017). Strain typing distinguishes
between different strains of the same species, and is more
valuable in a number of specialized fields including epidemiology,
compared to species level typing. More specifically, strain
typing helps to trace the source of food poisoning and relate
individual cases to an outbreak of infectious disease. Strain level
variants within microbial species are crucial in determining their
functional capacities within the human microbiome (Truong
et al., 2017). Strain typing of a single genome has been well
studied (Li et al., 2009). However, the tools built under the
assumption of assembling a single genome often underperform
when used for complex metagenome assemblies. Salmonella is a
diverse genus of Gram-negative bacilli and a major foodborne
pathogen responsible for more than a million illnesses annually
in the United States alone. In particular, strain typing for
foodborne pathogen such as S. enterica is of special interest and
importance (Bell et al., 2016). Methods specific for Salmonella
detection and identification have been proposed in the literature,
including serotyping (Zhang et al., 2015; Yachison et al., 2017),
multilocus sequence typing (MLST) (Ranjbar et al., 2017), and
strain typing (Hong et al., 2014b; Wood and Salzberg, 2014; Ahn
et al., 2015; Truong et al., 2015), etc. However, as different S.
enterica strains share many common genome regions that are
very similar to those from other bacteria in food samples, the
accuracy of traditional strain typing methods is not satisfactory
especially when the target strain has very low abundance.

In this paper, we introduce UltraStrain, which is a highly
sensitive strain typing method based on shot-gun sequencing
data. The method exploits the concept of species-specific marker
genes (Segata et al., 2012) that are used as genetic proxies of
species to efficiently extract high-confidence S. enterica reads
from the metagenomics sample, whereby subsequent strain
typing is performed on a large pool of S. enterica reference
database based on the high confident S. enterica reads. More
specifically, in UltraStrain, we first perform a denoise filtering
step to remove ambiguous reads that may come from other
bacteria or species other than S. enterica. This is done bymapping
the raw shot-gun sequencing reads to a synthetic reference
genome that contains only specific genome regions for S. enterica,
and keeping only reads that could be successfully mapped to
the synthetic reference genome on certain criteria. After that,
we compare the resulting high-confidence S. enterica specific
reads against a pool of known S. enterica strains, and formulate
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strain identification as statistical learning problem, as to identify
the probabilities of S. enterica strains that could be able to
produce those reads if they were present in the original sample.
A preliminary version of UltraStrain was used in our submission
to PrecisionFDA’s CFSAN Pathogen Detection Challenge in 2018
and was one of the top performers in this competition (https://
precision.fda.gov/challenges/2/view/results).

2. RELATED WORK

Taxonomic profiling of metagenome data can be done by
aligning every read to a large database of genomic sequences
using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). However,
this is always not clinically applicable due to the large data
amount. Other methods for strain typing frommetagenome data
include de novo assembly based methods and mapping based
methods. Depending on how the reference sequence library is
constructed, mapping based methods further include k-mer and
marker-gene based methods, and those that map reads to full
reference genomes.

Metagenomic assembly of single isolates can be used
to identify strains of uncharacterized species with high
sensitivity. Strain level metagenomic assembly methods, such
as the Lineage (OBrien et al., 2014) and the DESMAN
algorithms (Quince et al., 2017), typically use contig binning and
statistical analysis of base frequencies across different strains in
the sample to resolve ambiguities. The intuition behind is that
the frequencies of variants associated with a strain fluctuate with
the abundance of that strain. However, metagenomic assembly
for multiple strains is computationally challenging. In addition,
especially for complex clinical samples when multiple similar
strains co-exist, it is generally impossible for assembly based
method to achieve high accuracy on strain level due to the
conserved regions between strains. Instead, direct assembly
of multiple similar strains always produces highly fragmented
assemblies which represent aggregates of multiple similar strains.
Therefore, it is difficult to generalize assembly-based approaches
to large sets of metagenomes and low abundance microbes.

Mapping based methods align the reads to a target reference
library and apply statistical and probabilistic analysis techniques
on the alignment results to identify the multiple strains
that present in the sample. Raw reads of a metagenome
can be aligned against full reference genomes for microbe
identification if the library of target reference genomes can
be constructed. Short read alignment-based methods can
achieve high accuracy in strain level identification and are
considerably faster than metagenome assembly based methods.
Sigma (Ahn et al., 2015) is a read mapping based method
that maps the metagenomic dataset onto a user-defined
database of reference genomes. A probabilistic model is
used to identify and quantify genomes, and the reads are
assigned to their most likely reference genomes for variant
calling. PathoScope2 (Hong et al., 2014b) builds a complete
pipeline for taxonomic profiling and abundance estimation
from metagenomic data, integrating modules for reads quality
control (Hong et al., 2014a), reference library preparation,

filtering of host and non-target reads (Byrd et al., 2014),
alignment, and Bayesian statistical inference to estimate the
posterior probability profiles of identified organisms (Francis
et al., 2013), etc. It can quantify the proportions of reads
from individual microbial strains in metagenomic data from
environmental or clinical samples.

To speed up the alignment process, the reference library
may contain only part of the whole reference genomes that
have differentiating power among different but closely related
strains. In such methods, metagenomic reads are aligned to a
set of preselected marker sequences, e.g., k-mers, marker genes,
or even pangenomes, and assigned to its most likely origin
according to the alignment results. The taxonomic classification
can be inferred from phylogenetic distances to these marker
sequences. These methods differ in terms of the selection of the
markers and the probabilistic algorithms for read assignment.
The performance also heavily depends on the completeness of the
reference database, and how the marker sequences are extracted.

Kraken (Wood and Salzberg, 2014) is a fast k-mer based
method for metagenomic sequence classification. Kraken builds
a database that contains records consisting of a k-mer and
the lowest common ancestor (LCA) of all organisms whose
genomes contain that k-mer. The database is built from a
user-specified library of genomes and allows quick look-up
of the most specific node in the taxonomic tree, leading to
fast and accurate strain identification. StrainSeeker (Roosaare
et al., 2017) constructs a list of specific k-mers for each
node of a given guide tree, whose leaves are all the strains,
and analyzes the observed and expected fractions of node-
specific k-mers to test the presence of each node in the
sample. MetaPhlAn (Segata et al., 2012) is a taxonomic
profiling method using marker genes. The method estimates
the relative abundance of microbial cells by mapping reads
against a reduced set of clade-specific marker sequences
that unequivocally identify specific microbial clades at the
species level and cover all of the main functional categories.
MetaPhlAn2 (Truong et al., 2015) further extends the reference
library from species level markers to subspecies markers that
enable strain-level analysis, and increases the accuracy on
taxonomic composition reconstruction. PanPhlAn (Scholz et al.,
2016) builds a pangenome of the species of interest by extracting
all genes from available reference genomes and merging them
into gene family clusters. The method then leverages gene family
co-abundance within a metagenomic sample to identify strain-
specific gene repertoires, with the assumption that single-copy
genes from the same genome should have comparable sequencing
coverage within the sample.

3. METHODS

In this paper, we present an ultra sensitive pipeline for S.
enterica strain typing frommetagenomics samples based on NGS
data analysis. The processing modules involved in the proposed
pipeline are illustrated in Figure 1. The major components of
the pipeline include quality control (QC), reads filtering and
strain identification.
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FIGURE 1 | Flow chart of the proposed method. A synthetic reference genome (B) is first constructed by concatenating S. enterica specific marker sequences, and

used to select the high confidence S. enterica reads (C) from the raw metagenome sample data (A). The selected reads are then aligned to a reference library consisting

of known S. enterica strains (D). Using the alignment results (E) as input, a statistical machine learning algorithm (F) is proposed for high sensitive strain identification.

3.1. Quality Control
The first step of the metagenomic sequencing data
processing is quality control (QC). The QC procedure
usually includes identification and filtration of sequencing
artifacts such as low-quality reads and contaminating
reads, which would significantly affect and sometimes
mislead downstream analysis. In our method, we apply
fastp (v.0.19.4; http://opengene.org/fastp/fastp) (Chen et al.,
2018) to trim the reads in the front and the tail. For all
the raw reads used in our experiments, we trim the front

of both reads in a pair with fastp options (-f 15 -

F 15), and perform per-read cutting by quality in the
tail (--cut_by_quality3).

3.2. Reads Filtering
Metagenomics samples could be contaminated with DNA from
host genomes or commensal species. Such background noise
will often dominate metagenomics samples, which can swamp
out target signal, resulting in inaccurate analysis and even
leading to incorrect strain identification results. To mitigate
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this issue, in this step we filter out reads that are not specific
to S. enterica to minimize potential false positive results in
strain identification. This is achieved by aligning the reads after
QC to a synthetic reference genome which is composed of
S. enterica specific regions. Only the properly mapped paired
reads that meet certain criteria will be retained for further
analysis. The read filtering module consists of the following
two steps.

3.2.1. Generating a Synthetic Reference Genome
We follow the method in Laing et al. (2017) to identify species-
specific regions for S. enterica. First of all, Panseq Laing
et al. (2010) is used to identify regions of 1000 bp
from closed S. enterica genomes in GenBank. These
regions are then screened against the online GenBank
non-redundant (nr) database to filter out genomic
regions that also present in other bacterial genomic
sequences. The resulting 403 regions, 1,000 bp each,
are identified as marker genomic regions that represent
S. enterica species.

These regions are concatenated into a single sequence to
create a synthetic reference genome that represents the S.
enterica species. During the concatenation, we insert “separating
regions” of repeating N’s in-between of the adjacent regions,
as shown in Figure 1B. The purpose of inserting such
separating regions is to avoid the unfavorable case when a
read is mapped to a subsequence on the synthetic reference
genome that overlaps with two different S. enterica specific
regions. The length of the separating regions, or the number
of N’s, can be set to one more than the maximum read
length. In our experiments, we use a large number of 500.
The resulting synthetic reference genome is then used to
identify reads that can be mapped to unique S. enterica
genome regions from the shotgun sequencing data for further
strain typing.

3.2.2. Read Filtering Through Alignments
We align the sample reads after QC to the synthetic reference
genome using BWA (v.0.7.12-r1039; https://github.com/lh3/bwa.
git) (Li, 2013). We then analyze the resulting SAM file to filter
the reads such that only high confidence S. enterica specific reads
that are “properly mapped” to the synthetic reference genome
are retained.

A read is considered to be “properly mapped” if all
the following criteria are met. First of all, its edit distance
to the reference genome is no larger than a predefined
threshold, with default value of 5 in our implementations.
Secondly, the total length of soft clipping bases is no larger
than a predefined threshold, with default value 10. Lastly,
paired-end reads are retained only if both reads satisfy
the above two criteria. The filtering is implemented in
Python using the pysam (https://github.com/pysam-developers/
pysam) module.

The alignments in the SAM file that pass the filtering
are then converted back to fastq format using Picard
tools (http://broadinstitute.github.io/picard) as input to the
strain identification module.

3.3. Strain Identification
3.3.1. Building a Reference Library of S. enterica

Genomes
A basic step for strain identification from metagenomics
sequencing data is to build a library of reference genomes,
which contains all the possible strains that may exist in the
sample. In this work, we also create a reference genomes
library containing known S. enterica strains. First, we download
all the closed S. enterica reference genomes from NCBI. At
the time when experiments presented in this paper were
performed, we downloaded 380 whole S. enterica genomes and
157 chromosomes from NCBI which contain the main sequence
and plasmids. We remove the plasmids and keep only the
main sequence.

3.3.2. Identification of S. enterica Strains
At this stage, we try to identify a subset of S. enterica strains from
the reference library that best explains the S. enterica specific
reads present in the sample. The strain identification problem
can be formulated as a statistical inference problem that identifies
a set of S. enterica strains that maximizes the likelihood of the
observed S. enterica specific reads, as it is unlikely that those reads
are from non S. enterica strains. Let 8 = {φm|m = 1, . . . ,M}

denote the reference library where each φm represents a known S.
enterica strain. Let R = {rn|n = 1, . . . ,N} denote the set of high
confidence S. enterica specific reads after QC and read filtering
steps. The strain typing problem can be formulated as:

argmax
I∈8

[

L(R|I)− γ |I|
]

, (1)

where L(R|I) is the likelihood of R under the assumption that a
subset of S. enterica strains I are present in the sample under test,
| · | is the cardinality of a set, and γ is a regulator parameter
introduced to avoid trivial solutions such as using the entire
reference library as the optimal solution. Note that the parameter
γ controls the sparsity level of the solution. The larger the value
γ is, the fewer potential candidate strains will be included in
the solution.

The optimization problem Equation (1) is a minimum set
cover problem, which is typically solved using integer linear
programming (ILP) (Garfinkel and Nemhauser, 1972). However,
the optimal solution of minimum set cover problem is NP-
hard and intractable for large data sets. Instead, in this work we
propose an alternative statistical learning based method to solve
this problem. More specifically, denote xnm = 1 if a read rn is
from strain φm, and xnm = 0 otherwise. We notice that xnm is
a random variable of which the probability distribution by and
large depends on how well rn maps to φm, and the number of
reference genomes in 8 that rn can be successfully mapped to.

Denote such a conditional probability as P(xnm = 1|µnm, νn),
where µnm is the editing distance from read rn to reference
φm, and νn denotes the number of reference genomes in the
library that read rn has successfully mapped to. The probability of
whether a strain φm is present in the sample is given by 1 minus
the joint probability of xnm = 0 for all the reads rn ∈ R, i.e.,

f (m) = 1−
∏

∀rn∈R

[

1− p(µnm, νn)
]

, (2)
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where p(µ, ν) , P(x = 1|µ, ν). In actual implementation, p(µ, ν)
can be trained from generated metagenomic samples with spike-
in reads from known S. enterica strains. Once the values for
p(µ, ν) are trained, for a given sample under test, strain-typing
can be accomplished by identifying strains with highest f (m)
calculating using Equation (2) from the alignment information
(µnm, νn) of all the S. enterica specific reads from the sample.

3.3.3. Refinement
In our experiments, we observed that for sample with very low
S. enterica abundance, there could be more than one candidate
S. enterica strains with highest f (m) since there are not enough
S. enterica specific reads to identify the true target strain using
Equation (2). To further improve the specificity of the proposed
algorithm, in this case an additional reassignment step is
conducted where the statistical inference procedure Equation (2)
is performed again on a subset of reference library that contains
only the top N candidate strains obtained from previous step
using all the reads from the entire sample after the quality control
step. The final candidate strains are identified from the highest
probability f (m) after the refinement step.

4. EXPERIMENTAL RESULTS

In this section, we first describe the training of the conditional
probability distribution table from simulated training data.
Then, we evaluate the sensitivity of the proposed UltraStrain
method and compare with three existing methods, namely,
Kraken (Wood and Salzberg, 2014), Sigma (Ahn et al., 2015),
and Pathoscope2 (Hong et al., 2014b). For all the algorithm
test, the same library of S. enterica genomes as described
in section 3 was used. Simulated metagenome sequencing
data, which were created by merging reads from target
strains with reads from real background microbial samples at
various spike-in levels, were used in performance evaluation
as they provide necessary ground truth information. We then
further evaluated the performance of the proposed method
using data from PrecisionFDA’s CFSAN Pathogen Detection
Challenge (https://precision.fda.gov/challenges/2). Finally, we
compared the runtime performance of these methods using two
set of samples generated from dataset of PrecisionFDA CFSAN
Pathogen Detection Challenge.

4.1. Training of Conditional Probability
Distribution Table
First, we created a training data set for the purpose of learning
the conditional probability distribution table. The training set
included 1,100 simulated samples, which were created using
ART simulator (Huang et al., 2011) from various S. enterica
genomes. All simulated reads were created with 250 bases long
with error profile that mimics typical MiSeq v1 sequencing
machine (options: “-ss MSv1 -p -l 250 -m 300 -s

10 -na”). The generated simulated reads were then filtered
using the synthetic S. enterica specific reference to obtain reads
that mapped to the S. enterica specific regions for constructing
the conditional probability distribution table as follows.

The S. enterica specific reads rn obtained from previous step
were mapped to the reference library 8, and a condition matrix
CN×M was extracted from the alignment results, whereN denotes
the total number of reads being analyzed andM denotes the size
of the reference library. Each element of C is a 2-tuple Cnm =

(µnm, νn), where µnm is the editing distance from read rn to
reference φm, and νn denotes the number of reference genomes
in the library that read rn has successfully mapped to. Note that
read rn could map to different reference genomes with different
editing distance values. For each read rn, the ground truth label
xnm is also available for all reference strains φm, i.e., xnm = 1 if
read rn comes from strain φm and xnm = 0 otherwise.

For each (µnm, νn)-tuple, we counted the number of
occurrences when xnm = 1 and xnm = 0, respectively, as follows:

c+
(µnm,νn)

=

∣

∣

∣

⋃

xnm=1

{(µnm, νn)}
∣

∣

∣
(3)

c−
(µnm,νn)

=

∣

∣

∣

⋃

xnm=0

{(µnm, νn)}
∣

∣

∣
. (4)

The conditional probability of a positive hit can then be
calculated as

p(µnm, νn) =
c+
(µnm,νn)

c+
(µnm ,νn)

+ c−
(µnm,νn)

(5)

Due to the large number of strains in the reference library,
the total number of possible conditions is large. This may cause
the so-called “null context” problem where some conditions
may only have very small number of occurrences, leading
to inaccurate estimation of probability. This problem can be
overcome by reducing the number of conditions using non-
uniform binning method on νn. Specifically, we grouped values
of νn into a number of bins with different sizes. The calculation
of conditional probabilities is then performed on the grouped
bins using accumulated counting from those of all the νn
inside each bin. In our simulation, we used 6 bins which are
{[0, 2), [2, 5), [5, 10), [10, 30), [30, 100), [100,∞)} where the last
bin covers all νn values that are not less than 100.

The learned conditional probability table was then used in the
following experiments for strain identification by calculating the
probability of presence of each candidate strain from the library
as described in section 3.

4.2. Experiment on Abundance
To evaluate the performance of the proposed UltraStrain, we
generated 65 synthetic sample data with spike-in of different
S. enterica strains at different abundance levels for testing.
The background reads in the synthetic samples were produced
from a mixture of simulated reads generated from 10 non S.
enterica genomes listed in Table 1, and the foreground reads
were simulated from 13 target S. enterica genomes as listed
in Table 2. In both cases the simulated reads were generated
using ART read simulator (Huang et al., 2011) with the same
parameters as in section 4.1. For the background, the reads
were generated at 10x coverage from the 10 listed non S.

Frontiers in Genetics | www.frontiersin.org 6 April 2019 | Volume 10 | Article 276250

https://precision.fda.gov/challenges/2
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yang et al. UltraStrain for sensitive strain typing

enterica genomes, respectively. In addition, to avoid potential
contamination from the background sample, reads that could be
aligned to the synthetic S. enterica specific reference genome at
high quality were removed. Finally, the foreground reads were
randomly down-sampled to 5 different abundance levels of 10%,
1%, 0.1%, 0.01%, 0.001% according to the total read number in
the background sample, and mixed with the background sample
to generate the synthetic testing samples.

The strain identification results on the 65 data sets for the
abundance test are showed in Figure 2. In can be seen from the
results that UltraStrain perform best in correctly identifying the
target strains. In particular, UltraStrain correctly identifies all the
13 strains at 0.1%, while Pathoscope2, Sigma, and Kraken2 only
correctly identify 7, 5, and 0 strains, respectively. In addition,
UltraStrain could still correctly identifies 4 out of 13 strains at
0.01% abundance while all the other algorithms under test failed
to identify the correct strain at this abundance level.

4.3. Experiments on Coverage
It is interesting to note that due to the filtering process used in the
algorithm, the sensitivity of UltraStrain will be increased if more

TABLE 1 | The 10 non-S. enterica genomes used as background strains in the

simulated data sets.

Species Strain Taxid ASM name

Escherichia coli UTI89 364106 ASM1326v1

Shewanella putrefaciens 97 24 ASM331542v1DOE

Campylobacter fetus subsp.

testudinum

D6856 1507806 ASM169948v1

Campylobacter jejuni OXC6265 197 7038_3_16

Borreliella burgdorferi IPT92 1408876 BorBurgIPT92

Campylobacter coli BIGS0010 1247735 ASM31420v1

Helicobacter pylori NAB47 1156914 ASM25607v2

Leptospira interrogans

serovar Copenhageni

HAI0156 996862 CLC_glsol191

Buchnera aphidicola LL01 713603 ASM18322v1

Azorhizobium caulinodans ORS 571 438753 ASM1052v1

metagenomic data are available for a given sample. That is, for a
given sample with low abundance of S. enterica contamination,
the chance of UltraStrain to correctly identify its strain will be
higher if it is sequenced to higher coverage. This is because that
with higher coverage of data, more S. enterica specific reads will
be retained after the filtering operation. Hence it will give better
chance for UltraStrain to correctly identify the target strain. Note
that this property is in general not applicable to other strain
typing software since the ratio of reads from S. enterica vs.
other species simultaneously present in the sample will remain
constant without the filtering operation.

To illustrate that the sensitivity of UltraStrain will be increased
with higher coverage data, we further evaluated the performance
of UltraStrain on metagenomic data of different coverage. The
same procedure in previous sector was followed to create the
testing data. The synthetic background reads were generated
from 10 non S. enterica strains at 17 different coverage values
ranging from 10×, 15×, · · · , to 500×, and the target S. enterica
reads were spiked-in at constant abundance level of 0.01%. In
total, 102 test data sets were generated for this experiment.
Figure 3 shows the performance of UltraStrain on the testing
data. It can be seen that with increasing coverage, the calculated
probability of target strain is also increased. Note that the
increment is not monotonically due to the randomness nature of
the number of spiked-in reads present in the S. enterica specific
genome region. However, at higher coverage, UltraStrain is able
to correctly identify the target that it is not able to detect at
lower coverage.

We had also tested other three algorithms (Pathoscope2,
Sigma, and Kraken2). However, none of them was able to
correctly identify the target strain under all testing conditions.

4.4. Results on FDA CFSAN Pathogen
Detection Challenge
The PrecisionFDA CFSAN Pathogen Detection
Challenge (https://precision.fda.gov/challenges/2/) aims at
detecting S. enterica in shotgun metagenomic samples from
contaminated cilantro. The goal of the challenge was to identify
and type Salmonella in naturally and in silico contaminated

TABLE 2 | The 13 S. enterica genomes used as target strains in the simulated data sets.

Species Strain Taxid ASM name Genbank accession

Albany ATCC 51960 1173798 ASM48751v2 CP019177.1

Choleraesuis SCB67 321314 ASM810v1 AE017220.1

Enteritidis EC20121178 1412595 ASM62309v2 CP007271.2

Heidelberg SH14009 611 ASM169265v1 CP016581.1

Infantis N55391 595 ASM193159v1 CP016410.1

Newport 0307213 108619 ASM127831v1 CP012599.1

Paratyphi A ATCC 9150 295319 ASM1188v1 CP000026.1

Pullorum ATCC 9120 1029979 ASM33048v2 CP012347.1

Saintpaul SARA26 702982 ASM48616v2 CP017727.1

Typhi CT18 220341 ASM19599v1 AL513382.1

Typhimurium SO2 28901 ASM157627v1 CP014356.1

Montevideo USDAARSUSMARC1903 1454603 ASM94097v1 CP007222.1

Anatum CDC 060532 1454592 ASM94089v2 CP007271.2
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FIGURE 2 | Comparison of UltraStrain, Pathoscope2, Sigma, and Kraken2 in strain identification from 65 simulated data sets. The reads from each of the 13 target

strains, as listed in the rightmost column, are mixed with the reads from the background strains, at 5 different abundance levels from 10% to 0.001%. “1” means that

the method successfully identifies the target strain from the simulated sample data, while “0” means failure, i.e., the method either identifies a different S. enterica

strain as the most probable strain, or did not identify any S. enterica strains from the simulated sample data.

FIGURE 3 | Performance of UltraStrain on the 102 simulated data sets in the coverage experiments. In all the data sets, the abundance level of the target strain is

fixed at 0.01%, while the coverage ranges from 10× to 500×. The probability of the target strain keep increasing with increasing coverage. At a higher coverage,

UltraStrain is able to correctly identify the target strain that it cannot detect at lower coverage. The other three algorithms (Pathoscope2, Sigma and Kraken2) were not

able to identify the correct strains under all testing conditions.

samples. The Challenge provided 24 test samples, and the
participants were asked to identify the serotype, sequence
type (i.e., MLST), and strain of Salmonella present in positive
challenge samples.

We tested the performance of UltraStrain on the 24 challenge
samples, and the results are shown in Figure 4. Among these 24
samples, 13 are positive, including 5 in silico synthetic samples
with a spike-in known S. enterica target strain into the culture-
negative samples, and 8 culture-positive samples. The remaining
11 samples are culture-negative samples. UltraStrain correctly

identified the target S. enterica strain in 8 positive samples
(5 in silico and 3 culture-positive samples). Both Pathoscope2
and Sigma successfully identified the target strain in 7 samples,
while Kraken failed in all samples. However, for culture-positive
samples C01, C08, C18, C21, and C24, none of the four methods
can identify the correct S. enterica strain.

It can be seen from the results that for some negative
samples, UltraStrain still identify target strains with very high
probabilities. This could possibly be due to two reasons. First,
the negative sample may not be truly negative due to the high
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FIGURE 4 | Comparison of performance of UltraStrain, Pathoscope2, Sigma, and Kraken2 on PrecisionFDA CFSAN Pathogen Detection Challenge data set. For

each testing sample, the most probable strains identified by the algorithms are shown. Correctly identified strains are marked with red color. For UltraStrain,

Pathoscope2, and Sigma, the scores reported in the figure indicate the probabilities of the identified strains present in the sample. For Kraken2, the scores indicate

the related abundances of the identified strains.

FIGURE 5 | Comparison of the runtime performance of UltraStrain,

Pathoscope2, Sigma and Kraken2. (A). Performance on four different samples

(C03, C04, C06, C19 from PrecisionFDA CFSAN challenge) that have different

levels of S. enterica abundance of 0.00 (C06), 0.005 (C03), 0.03 (C04), 0.06

(C19). For fair comparison, all the files are truncated to 1.2 GB. (B)

Performance on four samples with increasing file size from 318 MB (1×) to 1.3

GB (4×) constructed by duplicating testing sample C13. A higher bar indicates

a computationally more expensive process. Note that the runtime results are

shown in logarithmic scale.

sensitivity of UltraStrain. In particular, there are still some
amount of S. enterica specific reads left after the filtering process,
which may suggest that the sample may contain certain level of S.
enterica contamination. Secondly, it is possible that the sensitivity

of UltraStrain could be too high for real-life samples. Therefore,
it is possible that we select a higher cut-off value of probability
(e.g., 0.99) when it is used for S. enterica detection.

4.5. Experiments on Runtime
To compare the computational complexity of UltraStrain in
terms of runtime with other methods, we tested the runtime
performance of all four methods using two sets of samples
selected from PrecisionFDA CFSAN challenge dataset. The
experiments were conducted on an Intel Xeon workstation with
48 CPU threads and 256 GB RAM. All methods were run with
their default settings, and set to utilize up to 44 CPU threads
whenever it is possible. The results are shown in Figure 5.
It can be seen that the runtime performance of these tools
varies dramatically, which can take from 101 to 104 seconds per
test depending on respective method as well as the sizes and
compositions of samples under test. In general, the runtime of
each tool increases as the file sizes of testing samples increase.
In addition, the runtimes of UltraStrain and Pathoscope2 also
increase as the abundances of the target spike-in strains increase,
which is reasonable as there will be more matched reads
to be processed in both algorithms when the abundances of
target strains increase. Overall, Kraken2 has lowest complexity
among all tools. UltraStrain has the second lowest complexity
followed by Pathoscope2. Sigma has the highest complexity in
all cases.

5. CONCLUSIONS

UltraStrain is a highly sensitive, rapid and efficient method
for metagenomic taxonomic classification at strain level. In
UltraStrain pipeline, the reads filtering step uses a synthetic
reference genome consisting of differentiating regions from
known S. enterica strains to filter out the reads that are not
specific to S. enterica species, greatly improving the efficacy as
well as efficiency of the process. Strain identification through
the proposed statistical learning provides a fast and accurate
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solution for metagenome sample data analysis. Experiments
on both simulated data sets and real sample demonstrate that
UltraStrain achieves high accuracy even at very low abundance
level. Ultrastrain achieves both shorter run time and higher
sensitivity, which indicates its usability as a standalone pathogen
identification pipeline. In addition, our experiments show that
the sensitivity of UltraStrain can be further improved by using
deeper sequencing of the sample, which could be particularly
useful when it is necessary to perform strain typing on sample
with extremely low abundance of target strains.

The proposed algorithm can be further improved in many
aspects. For example, although it is developed with the target
of high-sensitivity S. enterica in mind, the proposed framework
can be easily extended to taxonomic profiling and analyze
other bacteria strains by adapting its filter and reference library
designs. In addition, the ability of current algorithm in dealing
with sample with more than one target strains from the same
species still needs further investigation. Importantly, the current
approach, as its primary goal is for ultra sensitive strain typing,
lacks the ability to accurately identify the relative abundance

of multiple bacteria species/strains present in a sample as
provided by other similar tools. Therefore, it is anticipated that it

could be used in conjunction with other metagenomic pipelines
when necessary.
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The progression of complex diseases is generally divided as a normal state, a pre-disease

state or tipping point, and a disease state. Developing individual-specific method that

can identify the pre-disease state just before a catastrophic deterioration, is critical for

patients with complex diseases. However, with only a case sample, it is challenging

to detect a pre-disease state which has little significant differences comparing with a

normal state in terms of phenotypes and gene expressions. In this study, by regarding

the tipping point as the end point of a stationary Markov process, we proposed a

single-sample-based hidden Markov model (HMM) approach to explore the dynamical

differences between a normal and a pre-disease states, and thus can signal the

upcoming critical transition immediately after a pre-disease state. Using this method,

we identified the pre-disease state or tipping point in a numerical simulation and two real

datasets including stomach adenocarcinoma and influenza infection, which demonstrate

the effectiveness of the method.

Keywords: hidden Markov process, single-sample-based diagnosis, dynamical network biomarker (DNB),

pre-disease state, critical transition, early-warning signal

INTRODUCTION

Considerable evidence suggests that during the progression of many complex diseases the
deterioration is not necessarily smooth but abrupt (Litt et al., 2001; McSharry et al., 2003; Scheffer
et al., 2009). In order to describe the underlying mechanism of complex diseases, their evolutions
are often modeled as time-dependent non-linear systems, in which the abrupt deterioration is
viewed as the phase transition at a tipping point (Murray, 2002; Venegas et al., 2005; Hirata et al.,
2010; He et al., 2012; Liu et al., 2012). Therefore, from a dynamical systems’ perspective, the general
progression of complex diseases was modeled as three states or stages (Figure 1A): (i) a normal
state, which represents a relative healthy stage with high stability and robustness to perturbations;
(ii) a pre-disease state, which was defined as the limit of the normal state, and locating just before the
occurrence of sudden deterioration, therefore, with low stability and robustness; (iii) a disease state,
which represents a serious deteriorated stage generally with high stability and robustness, because
it is usually very difficult to return to the normal state even with intensive treatment (Liu et al.,
2014a). In contrast to the irreversible disease state, the pre-disease state is sensitive to perturbation
and thus reversible to the normal state if timely and appropriate treatment is received during this
stage. It is thus crucial to detect the pre-disease state for patients with complex diseases. However,
it is hard to detect a pre-disease state by traditional biomarkers since it is similar to the normal state
in terms of the phenotype and gene expression.
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FIGURE 1 | The outline for identifying the SSI score based on HMM. (A) The progression of complex diseases is generally modeled as three states, i.e., a normal

state, a pre-disease state, and a disease state. The pre-disease state is immediately before the sudden deterioration, which is sensitive to treatment and reversible to

the normal state. The disease state is usually irreversible even with intensive medical care. For an individual, samples from a few initial time points can be regarded as

reference. Each single case sample was added to the reference, forming a series of combining samples. (B) At each time point t = 1, 2, … T, a differential network Nt
was constructed by PCC. (C) The sharp increase of SSI score signals the upcoming critical transition into the disease state.

Recently, the dynamical network biomarker (DNB) method
was proposed to detect the pre-disease state (Chen et al., 2012),
that is, by identifying a group of DNB biomolecules (e.g., genes
and proteins) which together signal the occurrence of pre-disease
state in the following three ways: (i) the DNB members turn to
be widely fluctuating; (ii) the correlation between any two DNB
members increase significantly; (iii) the correlation between a
DNB member and a non-DNB molecule decrease significantly.
Different from traditional biomarkers, DNB aims at signaling
the pre-disease state before the occurrence of catastrophic
deterioration. This method has been employed by many groups
and applied to a number of cases, including detecting the
tipping points of cell fate decision (Mojtahedi et al., 2016) and
cellular differentiation (Richard et al., 2016) studying immune

checkpoint blockade (Lesterhuis et al., 2017) and identifying the
critical transition states during various biological processes (Liu
et al., 2014b, 2018; Chen et al., 2015, 2017, 2018). However, it is
noted that the DNB method works only when there are multiple
case samples, so that the above three statistical conditions can be
evaluated. This limits the practical application of DNB in many
clinical cases because generally it is impossible to collect multiple
samples for each individual at a time point.

In this work, by exploring the differential information between
the normal and pre-disease states, we proposed a single-sample-
based hidden Markov model (HMM) to signal the tipping point,
even if there was only one case sample available. Specifically,
the normal state was modeled as a stationary Markov process
due to its highly stable nature in dynamics, while the pre-disease
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state was viewed as a time-varying Markov process considering
its dynamical instability. Taking multiple normal samples as the
references or background, a differential network whose edges
carried the differential information before and after combing a
single sample with references, was obtained specific to the single
sample derived at a time point (Figure 1A). Then, under the
hypothesis that a time point t = T (T > 2) is the candidate
tipping point, a probabilistic score, namely single-sample-based
inconsistency score (SSI score), was developed for quantitatively
measuring the difference between samples from a normal state
and that from a pre-disease state. The calculation of SSI score
was based on an HMM, where the HMM was trained by
taking a series of differential networks derived up to t = T−1
as the training set (Figure 1B). The abrupt increase of such
probabilistic score indicates the occurrence of tipping point
(Figure 1C). Clearly, this approach is individual-specific, and
thus may help to achieve personalized diagnosis based on the
historical information of patients. To validate the effectiveness,
this method has been applied to a numerical simulation and
two real datasets, i.e., stomach adenocarcinoma (STAD) dataset
from TCGA database and influenza infection dataset from
GEO database.

METHODS

Theoretical Basis
The theoretical basis of this study is the DNB theory, which
provide the following generic properties when a dynamical
system approaches a bifurcation point (Chen et al., 2012):

1. SD(x) increases sharply, where x represents the expression of
a DNB member, SD represents the standard deviation.

2. PCC(x1, x2) increases sharply, where x1 and x2 represent
the expressions of any two DNB members, PCC means the
Pearson correlation coefficient.

3. PCC(x, y) decreases sharply, where x and y, respectively,
represent the expressions of a DNB member and a non-
DNB gene.

4. Neither SD(y) nor PCC(y1, y2) has significant change, where
y, y1 and y2 represent expressions of non-DNB genes.

The detailed description and derivation of DNB can be seen in
reference (Liu et al., 2015) and its Supplementary Information.
In view of the dynamical characteristics of the normal state, i.e.,
stable dynamics with little fluctuation and high resilience, it was
modeled as a stationary Markov process. The pre-disease was
modeled as a time-varying Markov process due to its highly
unstable dynamics with strong fluctuation and low resilience.
The disease state can be regarded as another stationary Markov
process because of its dynamical stability (Chen et al., 2016). To
identify the pre-disease state, it is equivalent to detect a switching
point at which a stationary Markov process ends and turns into a
time-varying Markov process.

Algorithm
A sketch of the single-sample-based HMM algorithm was
provided in Figure 2. Specifically, detecting the outset of a pre-
disease state is equivalent to identifying the end of this stationary

Markov process, which requires a detailed model to present such
stationary Markov process. Therefore, an HMM was trained and
employed to describe the dynamical characteristics of the system
in the normal state. And a probability index was proposed to
evaluate the inconsistency between a sample from a testing point
and the trained HMM. We carry out the following algorithm to
identify the tipping point by using only one case sample.

(i) Choosing Reference Samples

A few samples that represents the relatively healthy condition
were chosen as the reference or background. Generally,
for individual-specific samples (e.g., samples for each
symptomatic subject in influenza infection dataset), samples
from a few initial time points of an individual (as shown in
Figure 1A) can be regarded as reference. For stage-course data
(e.g., TCGA data for stomach adenocarcinoma), samples from
a normal cohort or normal tissue can be viewed as reference.

(ii) Training Process

First, we added each single case sample to the reference
(Figure 1A), forming a series of combining samples. In other
words, if there were n samples in the reference, in each time
point we obtained a set of n+ 1 samples, which can be viewed
as a perturbation to n samples in the reference group.

Second, based on the observation samples at each time
point t, a differential network Nt was constructed by
the difference of the corresponding Pearson correlation
coefficient (PCC) between the reference and combined
samples (Figures 1A,B), that is,

1PCC(gi, gj) = |PCCn+1(gi, gj)|−|PCCn(gi, gj)|,

Where gi and gj represent gene expressions for any pair of
genes. Then |1PCC(gi, gj)| was employed to constructed the
differential network, i.e., when |1PCC(gi, gj)| > d, there was a
differential link between gi and gj (Figure 1B), where threshold
d was selected based on specific real data, that is, d was chosen
such that few differential links arising in the initial differential
networks of the normal state, thus highlighting the pre-disease
state when many links appear. After this step, we obtained a
differential-network series {N1, N2, . . . , NT , . . . }.

Third, suppose a time point t = T (T > 2) as a candidate
tipping point. Then differential-network series was divided
into training part ranging from t = 1 to t = T−1, i.e.,
observation sequence OT−1 = {o1, o2 , . . . , oT−1} = {N1, N2

, . . . , NT−1}, and testing part starting from t = T, i.e., oT =

{NT}. Let {s1, s2, . . . , st} represents the state sequence up to t.
Symbols P0 and P1, respectively, denote the normal state (P0)
and a possible pre-disease state (P1), which are two unobserved
(hidden) states. Then based on the training samples OT−1 =

{N1, N2 , . . . , NT−1}, a HMM

θT−1 (OT−1) = (AT−1,BT−1,π)

was trained by the Baum-Welch procedures (Bilmes, 1998).
Here, the subscript T-1 of θ denotes that the HMM θ was
obtained from the training samples up to t = T−1. The state
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FIGURE 2 | The algorithm of the single-sample-based HMM. The above flowchart shows how the algorithm works based on a series of single case samples.

Regarding a point t = T (T > 2) as a candidate tipping point, the sample series is divided into training part ranging from t = 1 to t = T−1, and testing part starting from

t = T. If a probabilistic score (single-sample-based inconsistency score, SSI score) increases significantly, then the candidate t = T is determined as the identified

tipping point, and the algorithm ends. Otherwise, if there is no significant change in SSI score, then t = T is classified as a time point belonging to the normal state,

and the algorithm continues with t = T+1 being a new candidate tipping point.

transition matrix at time point T−1 is

AT−1 =
(

aij
)

2×2

with

aij = P(sq = Pi|sq−1 = Pj), i, j ∈ { 0, 1}.

q − 1 ∈ {1, . . . ,T − 2} stands for a time point in the training
process, q stands for the next time point after q − 1. The
observation matrix at time point T−1 is

BT−1 =
(

bjk
)

2×N

with

bjk = P(#1
(

q
)

= k|sq = Pj), j ∈ {0, 1} , k ∈ {0, 1, . . . ,M } ,

Where #1
(

q
)

= k represents that there are k edges in the
differential network NT−1, M is the number of all possible
edges, e.g., M = C2

m if there are m nodes in Nq. The initial
probabilities are

π = {π1, π2}

with πi = P
(

sq−1 = Pi
)

, i ∈ { 0, 1}.

(iii) Testing Process
Based on the testing sample oT−1 = {NT} we tested if
the candidate point t = T is a “real” tipping point.

A single-sample-based inconsistency score (SSI score) was
proposed, i.e.,

SSI (T) = P
(

sT = P1

∣

∣

∣
s1 = P0, s2 = P0, . . . , sT−1 = P0; θ

T−1
)

= 1− P
(

sT = P0

∣

∣

∣
s1 = P0, s2 = P0, . . . , sT−1 = P0; θ

T−1
)

= 1− P
(

sT = P0

∣

∣

∣
sT−1 = P0; θ

T−1
)

= 1−
P

(

sT = P0, sT−1 = P0; θ
T−1

)

P
(

sT−1 = P0; θT−1
) .

Given the HMM θT−1, the SSI score was calculated
by a forward algorithm. According to above settings,
the calculation of probability SSI (T) (the inconsistency
probability) at a time point t = T only relies on the samples
from T−1 and T. If SSI (T) increases significantly, then the
candidate point t = T is determined as the identified tipping
point, and the algorithm ends (Figure 2). Otherwise, if there
is no significant change in SSI (T), then t = T is classified as
a time point belonging to the normal state. Accordingly, the
differential network oT = {NT} is added to the training set, and
the algorithm continues with t = T+1 being a new candidate
tipping point (Figure 2).

According to the DNB theory, there are few differential
edges in a differential network constructed in a normal stage,
due to the high stability nature of the system during the
normal stage. However, when the system approaches the critical
transition point, there are many differential edges appearing
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in the differential network due to the time-varying and
fluctuating dynamics of the system. Specifically, the algorithm
is guaranteed by the generic properties 2 and 3 listed in section
Theoretical Basis.

Data Accessing and Processing for Real
Datasets
Two gene expression profiling datasets including the time-
course dataset for influenza virus infection process (GSE30550)
downloaded from the NCBI GEO database (www.ncbi.nlm.nih.
gov/geo) and stage-course dataset for stomach adenocarcinoma
(STAD) from TCGA database (http://cancergenome.nih.gov).
For omics data (GSE30550), we discarded the probes without
corresponding NCBI Entrez gene symbol. After removing any
redundancy in dataset GSE30550, we obtained 11,451 molecules
through probe mapping. For each gene mapped by multiple
probes, the average value was employed as the gene expression.

When applied the algorithm to both two disease datasets, there
were two extra steps as follows.

First, the expression profiling information was mapped to
the protein-protein interaction networks from STRING (http://
stringw-db.org) (Szklarczyk et al., 2014) for Homo sapiens. In
such a network, the edges were filtered by the confidence level
with a threshold of 0.700. All the isolated nodes were discarded.
Then we choose the cutoff parameter d so that there are only
10% edges in the first differential network comparing with
original STRING network, that is, over 90% edges disappear
comparing with the original STRING network due to the generic
property that the network structure would remain stable during
the normal stage, and thus there are few edges in a differential
network based on samples generated from normal stage.

Second, the differential network was partitioned into local
networks to reduce computational complexity. Each local
network contained a center node and its first-order neighbors.
The local SSI score for each local network was calculated through
above algorithm. Given k local networks, then a weighted average
SSI score was derived as follows,

SSI =
n1SSI1 + n2SSI2 + . . . + nkSSIk

n1 + n2 + . . . + nk
,

Where ni denotes the number of nodes in the i-th local network
(I = 1, 2,. . . , k) and SSIi stands for the local SSI score of
this subnetwork.

The networks were visualized using Cytoscape (www.
cytoscape.org) and the functional analysis was based on
Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com/
products/ipa) and KEGG enrichment analysis (http://www.
genome.jp/kegg/tool/map/_pathway2.html).

RESULTS

Identifying the Critical Transition for a
Numerical Simulation Model
The proposed computational method and SSI score was applied
to a numerical simulation dataset, which was generated from
a nine-node regulatory network (Figure 3A) with a set of

nine stochastic differential equations Equation (S1) provided in
Supplementary Information. Such model of regulatory network
of Michaelis-Menten form, is usually employed to study genetic
regulations including transcription, translation, diffusion, and
translocation processes (Chen et al., 2009). With varying
parameter p ranging from −0.45 to 0.15, a dataset was generated
for numerical simulation.

In Equation (S1), the parameter value p = 0 was set as
a bifurcation value, at which the system undergoes a critical
transition. The dynamical change in SSI score was exhibited
in Figure 3B. Clearly, there is an abrupt increase of SSI score
when the system approaches the tipping point (p = 0). Thus, the
significant increase of SSI score indicates the upcoming critical
transition at p = 0. In Figure 3C, after 1,000 simulations, the
distribution of differential edges was illustrated for the network
specific to each parameter value. It is seen that the frequency
for the occurrence of differential edges was significantly different
in the vicinity of the tipping point (p = 0), which implies that
much more edges would occur in the differential network when
the system approaches the tipping point.

Identifying the Critical Transition for
Stomach Adenocarcinoma
Cancer of the stomach is difficult to cure unless it is found
at an early stage (before its metastasis). Unfortunately, because
early stomach cancer causes few symptoms, the disease is
usually advanced when the diagnosis is made (Wadhwa et al.,
2013). According to a clinical-stage division (Guide, 2009)
stage IV is generally regarded as a severe deteriorated stage,
at which cancer has spread to nearby tissues and distant
lymph nodes or has metastasized to other organs. Generally,
a cure is very rarely possible at stage IV. Therefore, it is
important to detect the early-warning signal for metastasis
before stage IV.

The proposed method was employed in STAD dataset from
TCGA, and identified the tipping point of distant metastasis
(IIIA stage). This dataset contained RNA-Seq data and included
141 tumor samples and 33 tumor-adjacent samples. The tumor
samples were grouped into seven stages, that is, stage IA (9
samples), stage IB (18 samples), stage IIA (23 samples), stage IIB
(29 samples), stage IIIA (27 samples), stage IIIB (20 samples),
and stage IV (15 samples) of stomach cancer. The tumor-adjacent
samples were regarded as control data and were employed as
reference samples.

As shown in Figure 4A, the abrupt increase of average SSI
score indicated the imminent critical transition in tipping point
stage (IIIA), after which cancer would spread to the serosal layer
of the stomach wall (stage IIIA) and ultimately cause distant
metastasis (stage IV). In Figure 4B, the box plot showed that
the expression deviation of deferential expression genes fails
to provide any effective signals for the tipping point, where
the differential-expression genes were obtained by comparing
with tumor-adjacent TA samples at each stage. Figure 4C shows
the dynamical evolution of the whole gene regulatory network
including 3,247 nodes and 22,301 edges. These edges were
selected through the STRING network with high confidence
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FIGURE 3 | The application of SSI score in numerical simulation. (A) The numerical simulation was based on a nine-node regulatory network. (B) The abrupt increase

of SSI score indicates the tipping point at P = 0. (C) From the dynamical changes of differential-edge distribution, it is seen that there is a significantly different

distribution (purple bars) comparing with others (green bars) when the system approaches the tipping point (p = 0).

level (level higher than 0.700). A group of 214 nodes, i.e., genes
with the most significant increases in their local SSI score, were
intentionally arranged at the right bottom corner. This group of
genes together exhibited obvious signal at the tipping point (stage
IIIA), and can be regarded as the dynamical network biomarker
for distant metastasis of STAD. These top 1% genes with the most
significant increase in local SSI scores were considered as the SSI-
signaling genes which is a set of dynamical network biomarker
and may highly relate to the catastrophic deterioration. Thus, we
carried out functional analysis on these SSI-signaling genes.

Based on IPA analysis, the common SSI-signaling genes were
highly related to functions annotation “Digestive organ tumor”
(P-value = 3.0E-34), “Abdominal adenocarcinoma” (P-value =

7.1E-29), “Cancer of cells” (P-value = 2.2E-10), “Metastasis” (P-
value = 2.0E-04), etc. Besides, from KEGG enrichment analysis,
the SSI-signaling genes were enriched in cancer-related pathways
including Pathways in cancer, AMPK signaling pathway, Ras
signaling pathway. Some SSI-signaling genes have been found
in literatures and identified to be associated with the process
of cancer metastasis. For example, COL11A1 was reported as a
remarkable biomarker for carcinoma progression and metastasis
(Vázquez-Villa et al., 2015). BLNK was known as one of the
downstream targets of Pax-5, which plays important role in
metastasis (Crapoulet et al., 2011). HNRNPC, whose specific

siRNA was reported to inactivate Akt pathway (Hwang et al.,
2012) was also identified to control the metastatic potential of
glioblastoma by regulating PDCD4 (Park et al., 2012). MMP1
proteolytically engage EGF-like ligands in an osteolytic signaling
cascade for metastasis (Lu et al., 2009). LIN9 is a component of
the metastasis-predicting Mammaprint gene signature in breast
cancer (Van’t Veer et al., 2002). The functional analysis showed
that the SSI-signaling genes were highly related to metastasis or
related biological functions, which also validated the sensitivity
and effectiveness of the identified SSI-signaling genes. A list of
common SSI-signaling genes for STADwas provided inTable S1.

Identifying the Critical Transition for
Influenza Infection
We applied the proposed method to a time-course dataset of
live influenza infection challenge (GSE30550), in which there
were 17 subjects who received injection of influenza virus
(H3N2/Wisconsin). Among the 17 subjects, nine (subjects 1, 5,
6, 7, 8, 10, 12, 13, and 15) were infected who showed clinic
symptoms and the other eight (subjects 2, 3, 4, 9, 11, 14, 16, and
17) were always stay healthy who didn’t show any clinic symptom
during the whole period of infection challenge (Figure 5A). The
gene expression profiles were derived in the whole peripheral
blood drawn from all subjects at 16 time points, i.e., 24 h before
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FIGURE 4 | The application of SSI score in STAD dataset. (A) The significant increase of SSI score indicates the tipping point at stage IIIA, before the deterioration into

distant metastasis at stage IV. (B) The average expression deviation between each single sample and the reference. (C) The dynamical evolution of the whole gene

regulatory network. The top 1% genes with the largest local SSI scores were arranged at the right-bottom corner.

injection, 0, 5, 12, 21, 29, 36, 45, 53, 60, 69, 77, 84, 93, 101,
and 108 h after the injection. At each time point, there was only
a single sample for each subject. By employing the proposed
method, we obtained the individual-specific SSI score for each
subject either in symptomatic or asymptomatic group.

The individual-specific SSI scores in Figure 5B demonstrated
that there were obvious signals provided by SSI score for all
symptomatic subjects (9 red curves), while there were few
significant changes in the SSI scores for asymptomatic subjects
(8 blue curves). The specific SSI scores for nine symptomatic
subjects were shown in Figure 5C. Clearly, the SSI score
indicated the pre-disease states (the state before the appearance
of clinical symptom) for each symptomatic individual, with 100%
accuracy. However, there was 25% false positive rate (Figure 5A).
To demonstrate the evolution of individual-specific differential
network, two sets of differential networks, respectively, for
two symptomatic subjects, i.e., subject 1 and subject 12, were
illustrated in Figure 6. Clearly, at the respective tipping point,
there were many differential edges arising just before the
emergence of clinic symptoms. At the tipping point of each
symptomatic subject, the top 1% genes with the largest local SSI
scores were regarded as a set of dynamical network biomarker,
which were selected for further functional analysis.

Based on IPA analysis, the common SSI-signaling genes
were highly related to functions annotation “Quantity of
lymphocytes” (P-value = 2.23E-11), “Inflammation” (P-value =
2.47E-10), “Viral Infection” (P-value = 1.06E-09), “Homeostasis

of leukocytes” (P-value = 1.14E-08). From KEGG enrichment
analysis, the common SSI-signaling genes were enriched in
Influenza A, and a variety of cellular pathways including PI3K-
Akt signaling pathway, MAPK signaling pathway, NF-kappa B
signaling pathway, etc. The functional analysis again validated
the effectiveness of SSI-signaling genes. A list of common SSI-
signaling genes for influenza infection was provided in Table S2.

DISCUSSION

Detecting the early-warning signal before a sudden deterioration
into a severe disease state is crucial to patients all over the
world. However, it is generally challenging to signal such critical
transition through only a single case sample, since the lack of
samples disables statistical indices and thus makes conventional
methods fail. In this work, we proposed a computational
method to identify the pre-disease state on the basis of a single
sample. Specifically, given a number of reference samples which
can be the normal samples of an individual (Figure 1A), the
proposed method can distinguish the abnormal single sample
by a differential-network-based HMM scheme. The proposed
method has been validated by both the numerical simulation
(Figure 3) and two real datasets (Figures 4, 5).

Comparing with the traditional methods which are mostly
based on the differential expression of observed biomolecules, the
proposed method aims at exploring the dynamic information of
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FIGURE 5 | The application of SSI score in influenza infection dataset. (A) The overall information of the 17 subjects in the influenza-infection challenge. (B) Line chart

of SSI score for all 17 subjects. The red curves are for symptomatic subjects, while the blue curves represent asymptomatic subjects. (C) The individual-specific SSI

scores for 9 symptomatic subjects. For each SSI curve, the star symbol represents the time point when SSI-score signal arises, the diamond symbol represents the

time point at which the initial flu symptoms appears.
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FIGURE 6 | The dynamical evolution of subject-specific networks. To illustrate the dynamical evolution of the differential network, the individual-specific networks of

two symptomatic subjects (subjects 1 and 12) were exhibited. (A) The individual-specific networks for subject 1. (B) The individual-specific networks for subject 12.

Clearly, at the identified tipping point of each subject, there were considerably more differential edges than that at other time point.

differential associations among biomolecules when a biological
system is in the vicinity of a tipping point. This method thus
possesses several obvious advantages. First, it works when only
a single case sample is available, which benefits the analysis in
personalized medicine. Second, it detects the pre-disease state
rather than a disease state, which may help to achieve early
diagnosis of some complex diseases. Third, it well-exhibits the
critical properties at a network level which may provide new
insights into catastrophic deterioration, such as the abnormally
arising differential associations.

Although the proposed method is merely a step toward the
identification of pre-disease state and the algorithm is expected
to be improved in both sensitive and accurate ways, following
the idea of personalized medicine, it provides a computational
way and achieves individual-specific analysis and prediction by
making use of only a single sample.
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Crohn’s Disease (CD) is one of the predominant forms of inflammatory bowel disease
(IBD). A combination of genetic and non-genetic risk factors have been reported to
contribute to the development of CD. Many high-throughput omics studies have been
conducted to identify disease associated risk variants that might contribute to CD, such
as genome-wide association studies (GWAS) and next generation sequencing studies.
A pressing need remains to prioritize and characterize candidate genes that underlie the
etiology of CD. In this study, we collected a comprehensive multi-dimensional data from
GWAS, gene expression, and methylation studies and generated transcriptome-wide
association study (TWAS) data to further interpret the GWAS association results. We
applied our previously developed method called mega-analysis of Odds Ratio (MegaOR)
to prioritize CD candidate genes (CDgenes). As a result, we identified consensus
sets of CDgenes (62–235 genes) based on the evidence matrix. We demonstrated
that these CDgenes were significantly more frequently interact with each other than
randomly expected. Functional annotation of these genes highlighted critical immune-
related processes such as immune response, MHC class II receptor activity, and
immunological disorders. In particular, the constitutive photomorphogenesis 9 (COP9)
signalosome related genes were found to be significantly enriched in CDgenes, implying
a potential role of COP9 signalosome involved in the pathogenesis of CD. Finally, we
found some of the CDgenes shared biological functions with known drug targets of
CD, such as the regulation of inflammatory response and the leukocyte adhesion to
vascular endothelial cell. In summary, we identified highly confident CDgenes from
multi-dimensional evidence, providing insights for the understanding of CD etiology.

Keywords: GWAS, TWAS, eQTL, integrative study, Crohn’s Disease, COP9 signalosome, IL12RB2, LTBR
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INTRODUCTION

Crohn’s Disease (CD) is one of the major forms of inflammatory
bowel disease (IBD). CD has a prevalence of 26 to 200 per
100,000 person in populations with European ancestry (Loftus,
2004). Family studies have shown that CD has 0.25 to 0.42
heritability (Gordon et al., 2015). Dysregulated immune response
to environmental factors such as gut microbiome (Khor et al.,
2011; Jostins et al., 2012; Ananthakrishnan, 2013) has been
reported in CD. Complex diseases like CD are usually affected by
a large number of genetic factors and environment factors (Rivas
et al., 2011). Recent genome-wide association studies (GWAS) of
CD have successfully identified more than two hundreds disease-
associated loci at the genome-wide significance level (Franke
et al., 2010; Liu et al., 2015). However, these findings could only
explain a moderate proportion of the heritability (Verstockt et al.,
2018). Recently, integrating GWAS signals with transcriptome-
wide association study (TWAS) and expression quantitative
trait loci (eQTL) annotation has become an effective approach
to identify new susceptibility loci and has been successfully
applied in several complex diseases including CD (He et al.,
2013; Marigorta et al., 2017; Gusev et al., 2018). Other forms of
genetic variants are also implied, such as copy number variation
(CNV) and rare variants, and they are expected to have large
effects (Visscher et al., 2017). For example, a genome-wide
association study of CNVs identified IRGM (immunity-related
GTPase family, M) and the HLA gene family for CD (Wellcome
Trust Case Control Consortium et al., 2010). Several genes were
reported to harbor rare variants associated with CD, such as
NOD2 (Nucleotide Binding Oligomerization Domain Containing
2, Alias CARD15) and ADCY7 (Adenylate Cyclase 7) (Hunt
et al., 2013; Luo et al., 2017). Apart from those genetic variants,
epigenetic alternations were also observed in CD patients. For
example, altered methylation levels in peripheral blood were
reported for the genes MIR21 (MicroRNA 21), TXK (TXK
Tyrosine Kinase), ITGB2 (Integrin Subunit Beta 2) and HLA loci
in case-control studies (Adams et al., 2014; Ventham et al., 2016).
Lastly, a number of transcriptome profiling studies have been
conducted, revealing genes that were differentially expressed in
CD compared to controls, such as IFITM1 (Interferon Induced
Transmembrane Protein 1), STAT1 (Signal Transducer And
Activator Of Transcription 1), TAP1 (Transporter 1, ATP Binding
Cassette Subfamily B Member), and PSMB8 (Proteasome Subunit
Beta 8) identified using endoscopic pinch biopsies (Wu et al.,
2007) and SERPINB2 (Serine (or cysteine) proteinase inhibitor,
clade B (ovalbumin), member 2, PAI 2), NCK2 (NCK Adaptor
Protein 2), and ITGB3 (Integrin Subunit Beta 3) identified
using peripheral blood mononuclear cell (PBMC) (Burczynski
et al., 2006). Each of these unbiased, GWAS have provided
unique insights and candidate pathogenic variants and genes to
understand the etiology of CD. However, challenges remain in
how to effectively integrate these heterogeneous association data
that range in a wide variety of biological processes.

Considerable work have been developed by integrating high-
throughput multi-omics data ranging from unsupervised data
integration to supervised data integration (Jiang et al., 2014;
Wang et al., 2015; Huang et al., 2017; Jia et al., 2017). However,

most of these tools require domain expertise, especially for the
investigated diseases. Under the assumption that the number of
susceptibility genes to complex disease is limited (Yang et al.,
2005), we developed an unsupervised machine learning approach
named mega-analysis of Odds Ratio (MegaOR) to prioritize
candidate genes from multiple omics data (Jia et al., 2018).
MegaOR relies on that each single omics data was conducted with
control of false discoveries using the domain specific criteria (e.g.,
fold change for gene expression studies and stringent genome-
wide significance threshold for GWAS data). We successfully
demonstrated the method in schizophrenia (Jia et al., 2018). In
this study, we collected five types of omics data, each representing
a genome-wide association study of a molecular type with CD.
We investigated the disease relevant tissues using unbiased
GWAS data and conducted TWAS for CD in these tissues. By
applying MegaOR, we prioritized consensus sets of candidate
genes and investigated their characteristics using functional
enrichment analysis and drug target crosstalk.

MATERIALS AND METHODS

GWAS Summary Statistics
We collected the summary statistics from a GWA study for
CD conducted by the International Inflammatory Bowel Disease
Genetics Consortium (IIBDGC) (Liu et al., 2015). The study
included 27,726 individuals (5,956 cases and 21,770 controls)
of European ancestry genotyped using a combination of array
platforms, including Affymetrix GeneChip Human Mapping
500K, Affymetrix Genome-Wide Human SNP Array 6.0, and
Illumina HumanHap300 BeadChip. The genotype data were also
imputed based on the 1000 Genomes Project reference panel
(1000 Genomes Project Consortium et al., 2015). In total, the
GWAS summary statistics included association results for a total
of 11,002,658 SNPs either genotyped or imputed (score> 0.3).

Gene Expression Data
We approached the gene expression data from a recent study
that profiled the whole blood expression of 24 CD patients and
23 healthy controls (Ventham et al., 2016) (GEO accession ID:
GSE86434). The expression data was generated using Illumina
HumanHT-12 V4.0 expression BeadChip platform (GPL10558),
which contained about 31,000 annotated genes with more
than 47,000 probes. We used the online tool GEO2R1 to
conduct differential gene expression analysis. We compared
the expression of whole blood mRNA between CD cases and
controls. Following the method used in the original paper,
log2 transformation was conducted for the expression data,
and then Limma (R package) was used to adjust covariates
(age and gender) to obtain the differentially expressed genes
(DEGs) between CD cases and controls. Genes with fold change
(FC) ≥ 1.5 or ≤ 0.67 and adjusted p-value< 0.05 (the Benjamini
and Hochberg method) were defined as DEGs (Mitra et al., 2015;
Ritchie et al., 2015; Hu et al., 2018).

1https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Methylation Data
We obtained the methylation data from a recent study that
conducted differential methylation analysis using 121 CD
cases and 191 healthy controls (Ventham et al., 2016) (GEO
accession ID: GSE87648). The study provided whole genome
methylation using Illumina HumanMethylation450 BeadChip
platform (GPL13534), which contained ∼485,000 probes. We
requested the methylation results from the author of the study.
This differential methylation genes was generated using whole
blood leukocyte samples. In the original work (Ventham et al.,
2016), the authors normalized the methylation matrix using the
R package lumi and estimated the cell proportion by the R
package minfi. Lastly, Limma was used to identify differentially
methylated CpG probes. Probes were mapped to genes according
to the annotation file of the chip (Jiang et al., 2016). For
genes with multiple probes, we selected the most significant
probe for the gene.

Gene-Based Association Test
Using Pascal
As our analysis builds on genes and the GWAS summary
statistics provided association results for SNPs, we compiled
a p-value for each gene using the association results of SNPs
mapped to the gene. Specifically, we considered all SNPs mapped
to the gene body or 50 kb upstream or downstream of the
gene. We used the method Pascal to calculate the gene-based
p-values (Lamparter et al., 2016). Pascal utilizes the sums of
chi-squares and controls potential biases from gene length, SNP
density, and the local LD structure. We used the European
panel as the reference, as similarly, did in a recent study
(Sun et al., 2018).

Tissue-Specific Enrichment
Analysis (TSEA)
To identify the tissues in which the GWAS genes were specifically
expressed, we conducted a tissue specific enrichment analysis
using our in-house R package, deTS (Pei et al., 2019a). deTS
provides a preprocessed reference panel with 47 tissues (each
with ≥ 30 samples) from the GTEx (v7) expression data (GTEx
Consortium et al., 2017) and implements Fisher’s Exact Test for
the enrichment analysis. We applied deTS to genes defined by
the Pascal results.

Transcriptome Wide Association
Studies (MetaXcan)
Transcriptome-wide association study estimates genetically
regulated expression (GReX) for each gene and conducts
association studies between genes and traits by assessing the
difference of GReX in trait samples and control samples. We
utilized the method MetaXcan for a TWAS analysis of the
CD GWAS summary statistics (Barbeira et al., 2018). The
pre-calculated weight matrix was downloaded from http://
predictdb.org/. We utilized three disease-relevant tissues for the
analyses, where were determined based on previous knowledge
and deTS results.

Integrative Analysis of eQTL and GWAS
Data (Sherlock)
Considering that many disease-associated genetic variants have
regulatory roles, we applied the method Sherlock to integrate
eQTLs and GWAS with the aim to identify concordant evidence
between the two platforms (He et al., 2013). Sherlock uses a
Bayesian statistical method to match the signature of genes from
eQTLs to GWAS. As eQTL data have population and tissue
specificity, we applied Sherlock for the CD GWAS data using
the same tissues as for MetaXcan. A gene-based p-value was
calculated from Sherlock for each gene in each tissue.

Mega-Analysis of Odds Ratio (MegaOR)
We adopted our previous work MegaOR to identify a consensus
set of candidate genes that collectively had the most intensive
load of evidence for their association with CD (hereafter
referred as CDgenes). MegaOR took a multidimensional data
matrix as the input. In each dimension, genes that were
determined as significantly associated with the trait based
on the domain-specific threshold were labeled as 1 while
other genes that failed the significance threshold were labeled
as 0. For example, in the category of gene expression,
significantly differentially expressed genes [FDR < 0.05 and
(FC) ≥ 1.5 or ≤ 0.67] were labeled 1 and other genes 0. The
same preprocessing was performed for each dimensional data
following the particular domain-specific thresholds. As a result,
the multidimensional data matrix included only binary values.
MegaOR took this binary data matrix and defined a combined OR
(cOR):cOR = µ−

∑
(OR−µ)2

d , where OR represented the Odds
Ratio for each dimension, d was the dimension of evidence, and
µwas the average OR across dimensions. The part

∑
(OR−µ)2

d was
introduced as the penalty to control deviation of any dimensional
OR and served to balance the multidimensional lines of evidence.
MegaOR implemented an iterative optimization procedure to
find the best set of genes (denoted by S) with the pre-defined
size n such that at the stable status, genes in S had the best cOR.
A workflow was illustrated in Figure 1. Further details can be
found in our previous work (Jia et al., 2018).

Functional Enrichment Analysis
We used the R package RDAVIDWebService (version 1.16.0) for
functional enrichment analysis. We focused on Gene Ontology
(GO) and genetics association database (GAD) (Fresno and
Fernandez, 2013). GO functional annotation tool (FAT) was used
to filter out very broad terms based on a measured specificity
of each term (not level-specificity). We further use the plug-in
ClueGO of Cytoscape to display the relationship between genes
and GO terms (Shannon et al., 2003; Bindea et al., 2009). Only
GO terms with more than five CDgenes were demonstrated.

Drug Target Gene Enrichment Analysis
We queried the Therapeutic Target Database2 to identify Food
and Drug Administration (FDA) approved drugs that were used

2http://bidd.nus.edu.sg/group/cjttd/ (accessed 2 February 2019).
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FIGURE 1 | Workflow of the study. DEG, differentially expressed genes; DMG, differentially methylated genes; pBH, the Benjamini and Hochberg method; FC, fold
change; OR, Odds Ratio; CDgenes, Crohn’s Disease genes.

for CD (Li et al., 2018). Meditation target genes for CD were
extracted from the database.

Protein-Protein Interaction (PPI) Analysis
We searched the STRING database3 to identify protein-protein
interactions (PPIs) between CD drug target genes and our
CDgenes (Szklarczyk et al., 2017). We selected Homo sapiens
as the organism and considered only the PPIs that were
experimentally validated with medium confidence> 0.35.

RESULTS

Multi-Dimensional Evidence for
Crohn’s Disease
Using the approaches described in methods, we organized
our data into five major categories: Pascal (combined GWAS
information), Sherlock (integrative information of GWAS and
eQTL), MetaXcan (TWAS), gene expression (with DEGs labeled
as 1), and methylation (with differentially methylated genes
(DMGs) labeled as 1). Particularly for Sherlock and MetaXcan,
the analyses were performed for different tissues and thus,
each had multiple sets of omics data. Each dimension presents
a unique biological aspect to assess the potential association
between a gene and CD.

As previously reported, interpretation of disease-associated
genetic variants are more appropriate in tissues that are related to
the diseases, as genetic regulation has a strong tissue specificity.
To determine the disease-relevant tissues to CD, we conducted
TSEA using the CD GWAS data (see the section “TSEA to
determine CD related tissues”) and determined three tissues for

3https://string-db.org/ (accessed 13 February 2019).

the analysis of Sherlock and MetaXcan: whole blood (the most
significant p-value was 9.75 × 10−7), spleen (p = 4 × 10−3), and
small intestine (terminal ileum) (p = 5.48 × 10−3) (Figure 2A).
As a result, we had a total of nine groups of genes: Pascal, three
groups of Sherlock results, three groups of MetaXcan, DEGs, and
DMGs. For each group, we applied group-specific thresholds to
select positive genes (i.e., genes to be labeled as 1 in the matrix)
(Table 1). Specifically, there were 773 Pascal genes (pBH < 0.05),
289 Sherlock genes in whole blood (pBH < 0.2), 170 Sherlock
genes in spleen (pBH < 0.2), 108 Sherlock genes in small intestine
(terminal ileum) (pBH < 0.2), 200 MetaXcan genes in whole blood
(pBH < 0.2), 112 MetaXcan genes in spleen (pBH < 0.2), 69
MetaXcan genes in small intestine (terminal ileum) (pBH < 0.2),
282 DEGs (pBH < 0.05 and | log2(FC)| > 0.58), and 337
DMGs (pBH < 0.2). These data collectively nominated a total of
1,668 genes, each with at least one type of association evidence.
By applied TSEA to each gene sets (Figure 2B), we found
that whole blood, spleen, lung, and small intestine (terminal
ileum) were the most enriched tissues. Specifically, Pascal genes
(p = 1.44 × 10−6), DEGs (p = 8.05 × 10−52), and DMGs
(p = 5.82 × 10−5) were all most significantly enriched in whole
blood. Six gene sets were most significantly enriched in spleen: the
three Sherlock gene sets, MetaXcan genes calculated using small
intestine (terminal ileum) and MetaXcan genes calculated using
whole blood, and the merged gene set of Sherlock genes.

Among the 1,668 genes, 1,287 (79.3%) genes had only one
line of evidence and no gene was found with more than eight
lines of evidence. We further merged the Sherlock genes from the
three tissues and obtained a union of 398 Sherlock genes (5.6%,
Figure 2C) for the following analysis of MegaOR. Similarly, a
union of 305 MetaXcan genes (4.1%, Figure 2D) were obtained
from three result sets in three tissues for MetaXcan. Collectively,
these multidimensional data were organized as the input matrix
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FIGURE 2 | Summary of multidimensional data. (A) Tissue-Specific Enrichment Analysis (TSEA) of PASCAL genes. X-axis: groups of genes defined according to
different threshold based on Pascal p-value. Y-axis: 47 GTEx tissues used as the reference panel. Top three significant tissues (adjusted p < 0.05 from Fisher’s
Exact Test) were marked in numbers. (B) TSEA of genes from each gene sets. (C) Distribution of MetaXcan adjusted p-value. X-axis: –log10 MetaXcan adjusted
p-values from each of the three disease-relevant tissues [whole blood, spleen and small intestine (terminal ileum)]. Red-line indicates the –log10 (0.2) threshold.
(D) Distribution of Sherlock adjusted p-values. X-axis: –log10 Sherlock adjusted p-values from each of the three disease-relevant tissues [whole blood, spleen and
small intestine (terminal ileum)]. Red-line indicates the –log10 (0.2) threshold. (E) Pair-wise comparison among the five lines of evidence. Fisher’s Exact Test was used
for the significance test. The values in each cell represent the –log10 p-value. The figure was based on 1,668 genes that had at least one line of evidence.

with 1,668 genes in five dimensions, each representing one kind
of disease association evidence. We referred this matrix as the
evidence set (ES) genes.

As a control, we generated a second set of genes containing
all the protein-coding genes that were expressed in the three
CD related tissues, without requiring them to have at least
one line of evidence in association with CD. Specifically, we

obtained 13,763 protein-coding genes (GENCODE v19) that had
an average RPKM (Reads Per Kilobase of transcript, per Million
mapped reads) value>1 in whole blood, spleen, or small intestine
(terminal ileum) (GTEx v7 data). These genes, referred as tissue
set (TS) genes, were considered with very weak support for their
potential association with CD. A total of 1,286 genes were shared
between the TS genes and the 1,668 genes with evidence. After
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TABLE 1 | Summary of genes from nine lines of evidence for Crohn’s Disease.

Evidence Threshold∗ Number of genes
passed threshold

Pascal FDR < 0.05 773

Sherlock, whole blood FDR < 0.2 289

Sherlock, small intestine
(terminal ileum)

FDR < 0.2 108

Sherlock, spleen FDR < 0.2 170

MetaXcan, whole blood FDR < 0.2 200

MetaXcan, small intestine
(terminal ileum)

FDR < 0.2 69

MetaXcan, spleen FDR < 0.2 112

DEG FDR < 0.05 282

| log2FC| > 0.58

DMG FDR < 0.2 337

∗FDR, false discovery rate; FC, fold change; DEG, differentially expressed genes;
DMG, differentially methylated genes.

removing redundancy, we built a second matrix with a union of
14,065 genes (13,763 TS genes expressed in CD-relevant tissues
and 1,668 genes with at least one line of evidence in association
with CD). We applied MegaOR to both matrices and we expected
that MegaOR could prioritize disease genes with or without the
TS genes that had weak association evidence.

TSEA to Determine CD Related Tissues
Crohn’s Disease causes inflammation of the gastrointestinal tract
(Fakhoury et al., 2014). Digestive tissues such as colon and small
intestine (terminal ileum) have long been considered to be related
to CD (Wu et al., 2007). Among the multidimensional data
and methods, Sherlock and MetaXcan both require pre-defined
disease relevant tissues. DEGs and DMGs were obtained using
blood samples. Hence, only Pascal genes from GWAS data were
suitable for the determination of tissues (Pei et al., 2019b). We
performed TSEA using Pascal genes defined at different threshold
(p < 0.05, p < 0.01, p < 5 × 10−3, p < 1 × 10−3, p < 5 × 10−4,
p < 1 × 10−4, p < 5 × 10−5, p < 1 × 10−5, and p < 5 × 10−6,
Figure 2). As shown in Figure 2, Pascal genes were found to be
most significantly enriched in whole blood at different thresholds
(e.g., the most significant p-value being 9.75 × 10−7 when using
genes with pPascal < 0.05), followed by small intestine (terminal
ileum) (the most significant p-value being 3.22 × 10−3 when
using genes with pPascal < 0.005). Both spleen and lung were
found to be enriched with Pascal genes. However, considering
that spleen acted as a filter for blood as part of the immune system
while lung had no obvious link to CD, we selected whole blood,
small intestine (terminal ileum), and spleen as the three most
relevant tissues to CD and used these tissues for the application
of Sherlock and MetaXcan.

Pair-Wise Comparison of the
Multidimensional Association Data
To explore the correlation among different dimensional data, we
conducted a pair-wise comparison using genes from each group.
We used Fisher’s exact test to test if any two types of evidence
were associated. As shown in Figure 2E, among all possible pairs

(n = 15), we only observed a significant correlation between
Sherlock and MetaXcan genes (p = 2.63 × 10−43). This is within
expectation because both data types measure the integrative
signals of genetic variants and their regulatory roles in diseases.
Surprisingly, Pascal genes had no correlation with either Sherlock
genes (p = 0.95) or MetaXcan (p = 0.98), even though both
Sherlock and MetaXcan used the same GWAS data as the input
to calculate gene-based p-values. This lack of association implied
that there was independent information that could be obtained
by integrating eQTL and GReX in interpreting GWAS data,
providing a fundamental support to our work of integrating these
diverse evidence data. In addition, DEGs and DMGs showed no
association with any of the other dimensional data.

CDgenes Identified by MegaOR
To identify a set of candidate genes that have the most intensive
load of evidence, we applied MegaOR to the multidimensional
evidence data, respectively, the ES matrix with 1,668 genes (each
with at least one type of evidence) and the TS matrix with
14,065 genes (the union of the genes expressed in disease-relevant
tissues and genes from the ES matrix). We tested eight set sizes
separately, i.e., S = 150, 190, 230, 270, 310, 350, 390, 430 for the
ES matrix and T = 230, 270, 310, 350, 390, 430, 470, 510 for the
TS matrix. For each set size, there were likely different sets of
genes reaching the best cOR, even though they have the same
number of genes. Thus, we applied MegaOR for each set size
100 times. The average ORs at each set sizes were displayed in
Figures 3A,B. Taking the ES matrix as an example, we obtained
eight sets of CDgenes. At each size, we selected genes that were
retained in more than 50% times (Figure 3E). We referred the
genes at each set size to S1 (set size: S = 150, CDgenes: 62), S2
(S = 190, CDgenes: 121), S3 (S = 230, CDgenes: 148), S4 (S = 270,
CDgenes: 162), S5 (S = 310, CDgenes: 210), S6 (S = 350, CDgenes:
234), S7 (S = 390, CDgenes: 235), and S8 (S = 430, CDgenes:
235). CDgenes obtained using large set sizes covered nearly all
the CDgenes obtained using lower set sizes. For example, the 121
genes in S2 included all the 62 genes in S1. For TS-set, T1 for
set size T = 230 (CDgenes: 124), T2 for T = 270 (148), T3 for
n = 310 (155), T4 for n = 350 (165), T5 for n = 390 (196), T6
for n = 430 (222), T7 for n = 470 (230), and T8 for n = 510
(235). In both sets, a converged stable status could be observed
from S6 to S8 and T7 to T8, respectively (Figures 3C,D). Thus,
we suggested that the 235 CDgenes in S7 and the 235 genes in
T8 were close to consensus sets of CDgenes that could reach the
global maximum load of evidence. Interestingly, the two sets of
CDgenes (S7 and T8) shared 234 genes. Thus, we found MegaOR
performed relatively stable to generate such consensus sets of
candidate genes.

CDgenes Interact With Each
Other Significantly
Many disease genes were reported to interact with each other
more often than with randomly selected genes, especially genes
associated with the same diseases (Barabasi et al., 2011). This
was likely because genes underlying the same disease are often
involved in related biological pathways. To investigate whether
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FIGURE 3 | Summary of Crohn’s Disease candidate genes from MegaOR. (A) Odds Ratio (OR) distribution for each type of evidence in each set size for the
evidence matrix with 1,668 genes. Each dot indicates the average ORs in the corresponding evidence type from 100 stable sets resulted from MegaOR (see section
“Mega-Analysis of Odds Ratio”). (B) OR distribution for the TS-matrix. (C) Distribution of CDgenes at each set size. (D) Distribution of TS-CDgenes at each set size.
(E) The frequency of genes covered by 100 stable sets at an example size S = 390 in at least on type of evidence set (ES). Genes on the left part of the plot in green
were less frequently recovered (<50% occurrence). Genes on the right part of the plot were selected as the CDgenes for the corresponding set size.

our CDgenes tended to interact more often with each other,
we curated protein-protein interaction (PPI) data from three
sources. The first network was from HumanNet and has been
previously used to study GWAS data (Lee et al., 2011). The
second network was from a precomputed influence graph that
was recently used in cancer (Ding et al., 2015). The third
network was a combined dataset of HPRD and STRING (MAGI)
(Hormozdiari et al., 2015). For each set of CDgenes, we recorded
the number of interactions among CDgene and resampled 10,000

random gene sets, each with the same number of CDgenes. The
number of random gene sets that had interactions exceeding the
actual number of interactions was used to calculate an empirical
p-value. We performed this analysis in each human PPI network,
respectively. Interestingly, CDgenes showed significantly more
PPIs than those from random gene sets in both HumanNet
joint, influence_graph, and MAGI (Figure 4), implying that our
CDgenes tended to interact with each other significantly more
frequently than expected in random gene sets.
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FIGURE 4 | Distribution of protein-protein interactions (PPIs) among CDgenes. The analysis was conducted using the HumanNet joint reference panel (A), the
influence graph reference panel (B), and MAGI (C). In each panel, the distribution of the intersections was displayed for 10,000 randomly selected gene sets, each
set with the same set sizes as the query set. X-axis is the number of interactions. Y-axis is the frequency of the interactions. In the title of each panel, V denoted the
number of CDgenes that were annotated in the corresponding PPI network, E denoted the number of interactions among these CDgenes, and the p-value was the
empirical rank p-value. The vertical red line indicates the number of interactions observed for the actual CDgenes.
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FIGURE 5 | Functional enrichment for the consensus set. (A) Bubble plot of the functional enrichment results using the consensus CDgenes obtained at S = 390
(#CDgenes = 235 genes). Y-axis indicated the enriched gene sets with adjusted p-value < 0.05. X-axis is the –log10 (adjusted p-value). Circle sizes were
proportional to the shared CDgenes with genes from the corresponding gene set. Circle color was proportional to the adjusted p-value. (B) Enrichment analysis
results using the ClueGO method in Cytoscape (Bindea et al., 2009). Each dot represented a gene or a GO term. Dots in the same color were considered from the
same functional group by ClueGO annotation. Gene names were highlighted in red. Each edge indicated the gene was a component gene of the linked GO term.

Functional Enrichment Analysis
of CDgenes
To identify the biological roles of the genes in the significant
modules, we performed functional enrichment analysis using
DAVID (See section “Materials and Methods”). We focused
on GO terms and gene sets from the GAD. Our finding

showed that the 235 CDgenes in S7 were enriched with
MHC class II receptor activity (GO: 0032395, Molecular
Function, p = 9.08 × 10−6), immune response (GO:
0006955, Biological Process, p = 1.02 × 10−14), and MHC
protein complex (GO: 0042611, Cellular Component,
p = 2.85 × 10−5) (Figure 5A). In GAD, immunological
disorders such as Systemic Lupus Erythematosus (adjusted
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p = 2.52 × 10−24) and Psoriasis (adjusted p = 7.56 × 10−20)
were found to be most significantly enriched (Figure 5A).
Importantly, the category “Crohn’s Disease” from GAD
was also significantly enriched in our CDgenes (adjusted
p = 2.44 × 10−13). Evidence of 235 CDgenes was provided in
Supplementary Tables S1, S2.

DISCUSSION

In this work, we collected five multi-dimensional data to
prioritize CD-associated genes. Using tissue specific enrichment
analysis and GWAS data, we determined three tissues that
were most related to CD [whole blood, spleen, and small
intestine (terminal ileum)]. With these tissues, we calculated
integrative association signals between tissue eQTL and
GWAS data and conducted tissue-specific TWAS. We
constructed two evidence matrices and applied MegaOR
to identify a consensus set of CD-associated genes. The
candidate CDgenes in this consensus set tended to interact
with each other more often than size-matched random
genes, indicating these CDgenes could functionally cooperate
with each other. Functional enrichment analysis showed
that these CDgenes were enriched in immune related
diseases and biological processes. Moreover, methods of
integrative studies such as MegaOR are powerful tools
to unravel the etiology of complex diseases (Wang et al.,
2016; O’Brien et al., 2018). With the increasing volume of
omics data, these methods could be easily extended to other
complex diseases, such as cancer, psychiatric diseases, and
immune diseases.

Consensus CDgenes Overlaps With
Known Disease Risk Genes
Although we did not collect the rare mutations as our
evidence, two genes from our CDgenes were previously
reported to harbor rare variants with CD, ADCY7 (adjusted
pPascal = 4.76 × 10−10, adjusted pSherlock = 2.20 × 10−3

in whole blood, adjusted pMetaXcan = 9.15 × 10−4 in whole
blood, and adjusted pDMG = 0.045) and NOD2 (adjusted
pPascal = 4.76 × 10−10, adjusted pSherlock = 2.20 × 10−3 in
whole blood, and adjusted pMetaXcan = 0.096 in whole blood)
(Hunt et al., 2013; Luo et al., 2017). Moreover, previously
known DEGs and DMGs (MIR21, TXK, IFITM1, and TAP1)
could also be observed in our CDgenes, suggesting these
genes have robust association with CD (Adams et al., 2014;
Ventham et al., 2016).

Function Enrichment Analysis of
CDgenes Highlighted COP9 Signalosome
Our consensus CDgenes provided a promising list of candidate
genes for CD. The significantly enriched pathways and functional
sets suggested that CDgenes were biologically related to CD.
In addition, we observed quite a number of promising genes
with various types of evidence, such as genes involved in
antigen binding (HLA-DOA, HLA-DOB, HLA-DQA2, HLA-
DQB1, TAP1, and TAP2) and genes involved in the immune

response (NOD2, IFITM1, PSMB8, TXK, and AIM2). Other
genes of interest included NCKIPSD (NCK interacting protein
with SH3 domain: adjusted pPascal = 1.00 × 10−3, adjusted
pSherlock = 0.037 in whole blood, adjusted pMetaXcan = 0.13
in whole blood), WDR6 (WD repeat domain 6, adjusted
pPascal = 0.029, adjusted pSherlock = 5.60 × 10−3 in small
intestine (terminal ileum), adjusted pMetaXcan = 0.025 in
whole blood), DOCK7 (dedicator of cytokinesis 7, adjusted
pPascal = 2.00 × 10−3, adjusted pSherlock = 2.40 × 10−3

in whole blood, adjusted pMetaXcan = 2.10 × 10−3 in
whole blood), SPNS1 [Sphingolipid Transporter 1 (Putative),
pPascal = 4.02 × 10−3, adjusted pSherlock = 2.19 × 10−3

in whole blood, pMetaXcan = 7.43 × 10−3), FLOT1 (flotillin
1, pPascal = 3.79 × 10−3, pSherlock = 0.13 in whole blood,
pDEG = 5.87 × 10−3),and HSPA7 (encoding heat shock
protein family A (Hsp70) member 7, pSherlock = 0.14 in
whole blood, pDEG = 1.34 × 10−3)]. With NOD2, these
seven genes were all from the COP9 signalosome (CSN) (53
genes in this term from ClueGO annotation, Figure 5B and
Supplementary Tables S3, S4). Interestingly, these seven genes
were not the subunits of CSN complex, but they interacted
with CSN complex as suggested by affinity purification and
mass spectrometry experiment (Fang et al., 2008). CSN is a
multi-subunit protease that regulates the activity of cullin-
RING ligase (CRL) families of ubiquitin E3 complexes with
isopeptidase activity. The major activities that CSN was involved
included de-ubiquitination activity and phosphorylation of
important signaling regulators in protein kinase activities (Wei
and Deng, 2003; Wei et al., 2008). Previous studies have revealed
COP9 signalosome subunit 5 (CSN5/Jab1) could regulate the
development of immune system in Drosophila (Harari-Steinberg
et al., 2007). In mice, deficiency of one subunit of COP9
resulted in dysfunction of paneth cell and colonic enterocyte,
which could lead to impaired antimicrobial peptide and might
change the composition of intestinal microbiota (Wang et al.,
2014). This evidence infers the dysregulation of CSN might
impact the intestinal microbiota and lead to pathogenesis
of inflammatory bowel disease. In addition, disrupting CSN
subunit showed impact in T-cell development and antigen
response, indicating CSN might involve in the homeostasis
of T cells (Menon et al., 2007; Panattoni et al., 2008).
Although the debates continue on that whether microbiota,
innate immunity or T cell activation leads to CD, our study
shed lights on the potential etiology of CD through the
dysregulation of COP9 signalosome. These seven genes were
only able to be discovered when integrating multi-dimensional
evidence, demonstrating the advance of MegaOR to unveil
such signals, which cannot be achieved by traditional single
domain approaches.

CDgenes as the Potential Drug Target
Disease associated genes are natural candidates for drug
development in both complex disease and cancer (Butcher et al.,
2004; Zhao et al., 2015; Lee et al., 2016). We further compared
our CDgenes with known target genes of CD meditation using
the Therapeutic Targets Database (TTD) (Li et al., 2018).
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Overall, six FDA approved drugs were found for CD:
Clofazimine, Metronidazole, Ustekinumab, MLN0002,
Infliximab, and Vedolizumab. These drugs had seven target
genes: ABCB11, CYP51A1, IL12B, IL23A, ITGA4, ITGB7,
and TNF (Supplementary Table S5). None of them were
included in our CDgenes. We queried the STRING database
(See text footnote 3.) for the interactions between the seven
drug target genes and the 235 CDgenes (Szklarczyk et al.,
2017). We observed two CDgenes had experimental medium-
confidence (>0.35) in interaction with two drug target genes:
IL12RB2 (CDgene) interacting with IL12B (drug target) and
LTBR (CDgene) interacting TNF (drug target) (Supplementary
Figure S1). IL12RB2 was the receptor of the drug target gene
IL12B and was discovered from Pascal (p = 4.76 × 10−10),
Sherlock (p = 2.19 × 10−3) and MetaXcan (p = 0.12). LTBR
(Tumor Necrosis Factor Receptor Superfamily Member 3)
was the receptor of tumor necrosis factor ligand Superfamily
member 14 and was discovered from Pascal (p = 0.013)
and Sherlock (p = 0.16). Moreover, two TNF Superfamily
ligand genes (TNFSF10 and TNFSF15) and three interleukin
family genes IL18RAP, IL27, and IL4 were found in our
CDgenes. These findings provided some insights of our
CDgenes into the identification of drug targets from multi-
omics datasets.

Limitation
There were some limitations of the current work. First, although
we collected five dimensional data, there were still other omics
data that were missed in our work. For example, previous studies
have reported that copy number variations could be associated
with CD (Wellcome Trust Case Control Consortium et al., 2010).
However, the number of genes implied by CNV studies were
very limited (∼10) and we could not include them into our
matrix. Second, due to the limited tissue data, our DEGs and
DMGs were both generated using PBMCs from CD patients and
samples, instead of disease tissues from the patients. PBMCs
are signs of infection and auto-immune diseases (Burczynski
et al., 2006). Future studies are warranted to use samples from
disease related tissues, such as intestinal biopsies (Wu et al.,
2007). Lastly, due to the data heterogeneity, we used different
threshold to control FDR for each individual omics data, e.g.,
adjusted p < 0.05 in selecting DEGs while adjusted p < 0.2
for MetaXcan, Sherlock and DMGs. This inconsistence among
different omics data may lead to inaccurate estimate of the actual
OR. In future studies, when more data are generated, either from
different omics or multiple data sets for the same omics, an
enhanced evidence matrix could be constructed to validate the
current CDgenes.

CONCLUSION

In summary, we conducted an integrative analysis of genetic,
epigenetic, and transcriptomic data in CD. Our approach
prioritized candidate genes associated with CD from multi-
dimensional data and such methods could be extended to
many other complex diseases with multi-dimensional omics data

being available. Functional analysis of these CDgenes revealed
strong immune response enrichment. We further highlighted the
potential involvement of COP9 signalosome in CD and suggested
interactions among our CDgenes with CD drug target genes.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. The data
used in R package “deTS” can be found here: https://gtexportal.
org/home/. Other data could be obtained from the resource
described in Materials and Methods.

AUTHOR CONTRIBUTIONS

PJ and ZZ conceived and designed the study. YD performed
the data preparation and analysis, YD and GP performed the
result demonstration. YD, PJ, and ZZ wrote the manuscript.
All authors have read, edited, and approved the current version
of the manuscript.

FUNDING

This work was supported by the UTHealth Presidential
Collaborative Research Award. This work was partially supported
by National Institutes of Health grant (R01LM012806).
The funders had no role in the study design, data
collection and analysis, decision to publish, or preparation
of the manuscript.

ACKNOWLEDGMENTS

The authors would like to extend the gratitude to Dr. Ventham
from The University of Edinburgh to share the methylation
results with us and to answer our questions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2019.00318/full#supplementary-material

FIGURE S1 | STRING-network interaction of genes.

TABLE S1 | Binary table for 1,688 Crohn’s Disease related genes collected from
five evidence. We collected this data based on the criteria from Table 1.

TABLE S2 | Binary table for 1,688 Crohn’s Disease related genes collected from
nine evidence. We collected this data based on the criteria from Table 1.

TABLE S3 | Binary table for seven genes shared by COP9 signalosome and
Crohn’s Disease consensus genes from five evidence.

TABLE S4 | Binary table for seven genes shared by COP9 signalosome and
Crohn’s Disease consensus genes from nine evidence.

TABLE S5 | FDA approved Crohn’s Disease drugs and their target genes obtained
from Therapeutic Target Database.

Frontiers in Genetics | www.frontiersin.org 11 April 2019 | Volume 10 | Article 318276

https://gtexportal.org/home/
https://gtexportal.org/home/
https://www.frontiersin.org/articles/10.3389/fgene.2019.00318/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00318/full#supplementary-material
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00318 April 9, 2019 Time: 12:44 # 12

Dai et al. Multidimensional Analyses of Crohn’s Disease

REFERENCES
1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M.,

Garrison, E. P., Kang, H. M., et al. (2015). A global reference for human genetic
variation. Nature 526, 68–74. doi: 10.1038/nature15393

Adams, A. T., Kennedy, N. A., Hansen, R., Ventham, N. T., O’leary, K. R.,
Drummond, H. E., et al. (2014). Two-stage genome-wide methylation profiling
in childhood-onset Crohn’s disease implicates epigenetic alterations at the
VMP1/MIR21 and HLA loci. Inflamm. Bowel Dis. 20, 1784–1793. doi: 10.1097/
MIB.0000000000000179

Ananthakrishnan, A. N. (2013). Environmental risk factors for inflammatory bowel
disease. Gastroenterol. Hepatol. 9, 367–374.

Barabasi, A. L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: a
network-based approach to human disease. Nat. Rev. Genet. 12, 56–68.
doi: 10.1038/nrg2918

Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E.,
Torres, J. M., et al. (2018). Exploring the phenotypic consequences of tissue
specific gene expression variation inferred from GWAS summary statistics. Nat.
Commun. 9:1825. doi: 10.1038/s41467-018-03621-1

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A.,
et al. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093.
doi: 10.1093/bioinformatics/btp101

Burczynski, M. E., Peterson, R. L., Twine, N. C., Zuberek, K. A., Brodeur, B. J.,
Casciotti, L., et al. (2006). Molecular classification of Crohn’s disease and
ulcerative colitis patients using transcriptional profiles in peripheral blood
mononuclear cells. J. Mol. Diagn. 8, 51–61.

Butcher, E. C., Berg, E. L., and Kunkel, E. J. (2004). Systems biology in drug
discovery. Nat. Biotechnol. 22, 1253–1259.

Ding, J., Mcconechy, M. K., Horlings, H. M., Ha, G., Chun Chan, F.,
Funnell, T., et al. (2015). Systematic analysis of somatic mutations impacting
gene expression in 12 tumour types. Nat. Commun. 6:8554. doi: 10.1038/
ncomms9554

Fakhoury, M., Negrulj, R., Mooranian, A., and Al-Salami, H. (2014). Inflammatory
bowel disease: clinical aspects and treatments. J. Inflamm. Res. 7, 113–120.
doi: 10.2147/JIR.S65979

Fang, L., Wang, X., Yamoah, K., Chen, P. L., Pan, Z. Q., and Huang, L.
(2008). Characterization of the human COP9 signalosome complex using
affinity purification and mass spectrometry. J. Proteome Res. 7, 4914–4925.
doi: 10.1021/pr800574c

Franke, A., Mcgovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad,
T., et al. (2010). Genome-wide meta-analysis increases to 71 the number of
confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125. doi:
10.1038/ng.717

Fresno, C., and Fernandez, E. A. (2013). RDAVIDWebService: a versatile R
interface to DAVID. Bioinformatics 29, 2810–2811. doi: 10.1093/bioinformatics/
btt487

Gordon, H., Trier Moller, F., Andersen, V., and Harbord, M. (2015). Heritability
in inflammatory bowel disease: from the first twin study to genome-wide
association studies. Inflamm. Bowel Dis. 21, 1428–1434. doi: 10.1097/MIB.
0000000000000393

GTEx Consortium, Laboratory Data Analysis and Coordinating Center-Analysis
Working Group [LDACC], Statistical Methods groups-Analysis Working
Group, Enhancing GTEx groups [eGTEx], NIH Common Fund, NIH/NCI,
et al. (2017). Genetic effects on gene expression across human tissues. Nature
550, 204–213. doi: 10.1038/nature24277

Gusev, A., Mancuso, N., Won, H., Kousi, M., Finucane, H. K., Reshef, Y., et al.
(2018). Transcriptome-wide association study of schizophrenia and chromatin
activity yields mechanistic disease insights. Nat. Genet. 50, 538–548. doi: 10.
1038/s41588-018-0092-1

Harari-Steinberg, O., Cantera, R., Denti, S., Bianchi, E., Oron, E., Segal, D., et al.
(2007). COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of
the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis.
Genes Cells 12, 183–195.

He, X., Fuller, C. K., Song, Y., Meng, Q., Zhang, B., Yang, X., et al. (2013). Sherlock:
detecting gene-disease associations by matching patterns of expression QTL
and GWAS. Am. J. Hum. Genet. 92, 667–680. doi: 10.1016/j.ajhg.2013.
03.022

Hormozdiari, F., Penn, O., Borenstein, E., and Eichler, E. E. (2015). The discovery
of integrated gene networks for autism and related disorders. Genome Res. 25,
142–154. doi: 10.1101/gr.178855.114

Hu, R., Dai, Y., Jia, P., and Zhao, Z. (2018). ANCO-GeneDB: annotations and
comprehensive analysis of candidate genes for alcohol, nicotine, cocaine and
opioid dependence. Database 2018:bay121. doi: 10.1093/database/bay121

Huang, S., Chaudhary, K., and Garmire, L. X. (2017). More is better: recent
progress in multi-omics data integration methods. Front. Genet. 8:84.
doi: 10.3389/fgene.2017.00084

Hunt, K. A., Mistry, V., Bockett, N. A., Ahmad, T., Ban, M., Barker, J. N., et al.
(2013). Negligible impact of rare autoimmune-locus coding-region variants on
missing heritability. Nature 498, 232–235. doi: 10.1038/nature12170

Jia, P., Chen, X., Xie, W., Kendler, K. S., and Zhao, Z. (2018). Mega-analysis of odds
ratio: a convergent method for a deep understanding of the genetic evidence in
schizophrenia. Schizophr. Bull. doi: 10.1093/schbul/sby085

Jia, P., Han, G., Zhao, J., Lu, P., and Zhao, Z. (2017). SZGR 2.0: a one-stop
shop of schizophrenia candidate genes. Nucleic Acids Res. 45, D915–D924.
doi: 10.1093/nar/gkw902

Jiang, J., Jia, P., Zhao, Z., and Shen, B. (2014). Key regulators in prostate
cancer identified by co-expression module analysis. BMC Genomics 15:1015.
doi: 10.1186/1471-2164-15-1015

Jiang, W., Mitra, R., Lin, C. C., Wang, Q., Cheng, F., and Zhao, Z. (2016).
Systematic dissection of dysregulated transcription factor-miRNA feed-forward
loops across tumor types. Brief. Bioinform. 17, 996–1008.

Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., Mcgovern, D. P., Hui, K. Y.,
et al. (2012). Host-microbe interactions have shaped the genetic architecture of
inflammatory bowel disease. Nature 491, 119–124. doi: 10.1038/nature11582

Khor, B., Gardet, A., and Xavier, R. J. (2011). Genetics and pathogenesis of
inflammatory bowel disease. Nature 474, 307–317. doi: 10.1038/nature10209

Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z., and Bergmann, S. (2016).
Fast and rigorous computation of gene and pathway scores from SNP-Based
summary statistics. PLoS Comput. Biol. 12:e1004714. doi: 10.1371/journal.pcbi.
1004714

Lee, I., Blom, U. M., Wang, P. I., Shim, J. E., and Marcotte, E. M. (2011). Prioritizing
candidate disease genes by network-based boosting of genome-wide association
data. Genome Res. 21, 1109–1121. doi: 10.1101/gr.118992.110

Lee, J. H., Zhao, X. M., Yoon, I., Lee, J. Y., Kwon, N. H., Wang, Y. Y., et al.
(2016). Integrative analysis of mutational and transcriptional profiles reveals
driver mutations of metastatic breast cancers. Cell Discov. 2:16025. doi: 10.1038/
celldisc.2016.25

Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., et al. (2018). Therapeutic
target database update 2018: enriched resource for facilitating bench-to-
clinic research of targeted therapeutics. Nucleic Acids Res. 46, D1121–D1127.
doi: 10.1093/nar/gkx1076

Liu, J. Z., Van Sommeren, S., Huang, H., Ng, S. C., Alberts, R., Takahashi, A., et al.
(2015). Association analyses identify 38 susceptibility loci for inflammatory
bowel disease and highlight shared genetic risk across populations. Nat. Genet.
47, 979–986. doi: 10.1038/ng.3359

Loftus, E. V. Jr. (2004). Clinical epidemiology of inflammatory bowel disease:
incidence, prevalence, and environmental influences. Gastroenterology 126,
1504–1517.

Luo, Y., De Lange, K. M., Jostins, L., Moutsianas, L., Randall, J., Kennedy, N. A.,
et al. (2017). Exploring the genetic architecture of inflammatory bowel disease
by whole-genome sequencing identifies association at ADCY7. Nat. Genet. 49,
186–192. doi: 10.1038/ng.3761

Marigorta, U. M., Denson, L. A., Hyams, J. S., Mondal, K., Prince, J., Walters,
T. D., et al. (2017). Transcriptional risk scores link GWAS to eQTLs and predict
complications in Crohn’s disease. Nat. Genet. 49, 1517–1521. doi: 10.1038/ng.
3936

Menon, S., Chi, H., Zhang, H., Deng, X. W., Flavell, R. A., and Wei, N. (2007).
COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis
and antigen receptor-induced entry into the cell cycle from quiescence. Nat.
Immunol. 8, 1236–1245.

Mitra, R., Lin, C. C., Eischen, C. M., Bandyopadhyay, S., and Zhao, Z.
(2015). Concordant dysregulation of miR-5p and miR-3p arms of the same
precursor microRNA may be a mechanism in inducing cell proliferation and
tumorigenesis: a lung cancer study. RNA 21, 1055–1065. doi: 10.1261/rna.
048132.114

Frontiers in Genetics | www.frontiersin.org 12 April 2019 | Volume 10 | Article 318277

https://doi.org/10.1038/nature15393
https://doi.org/10.1097/MIB.0000000000000179
https://doi.org/10.1097/MIB.0000000000000179
https://doi.org/10.1038/nrg2918
https://doi.org/10.1038/s41467-018-03621-1
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1038/ncomms9554
https://doi.org/10.1038/ncomms9554
https://doi.org/10.2147/JIR.S65979
https://doi.org/10.1021/pr800574c
https://doi.org/10.1038/ng.717
https://doi.org/10.1038/ng.717
https://doi.org/10.1093/bioinformatics/btt487
https://doi.org/10.1093/bioinformatics/btt487
https://doi.org/10.1097/MIB.0000000000000393
https://doi.org/10.1097/MIB.0000000000000393
https://doi.org/10.1038/nature24277
https://doi.org/10.1038/s41588-018-0092-1
https://doi.org/10.1038/s41588-018-0092-1
https://doi.org/10.1016/j.ajhg.2013.03.022
https://doi.org/10.1016/j.ajhg.2013.03.022
https://doi.org/10.1101/gr.178855.114
https://doi.org/10.1093/database/bay121
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.1038/nature12170
https://doi.org/10.1093/schbul/sby085
https://doi.org/10.1093/nar/gkw902
https://doi.org/10.1186/1471-2164-15-1015
https://doi.org/10.1038/nature11582
https://doi.org/10.1038/nature10209
https://doi.org/10.1371/journal.pcbi.1004714
https://doi.org/10.1371/journal.pcbi.1004714
https://doi.org/10.1101/gr.118992.110
https://doi.org/10.1038/celldisc.2016.25
https://doi.org/10.1038/celldisc.2016.25
https://doi.org/10.1093/nar/gkx1076
https://doi.org/10.1038/ng.3359
https://doi.org/10.1038/ng.3761
https://doi.org/10.1038/ng.3936
https://doi.org/10.1038/ng.3936
https://doi.org/10.1261/rna.048132.114
https://doi.org/10.1261/rna.048132.114
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00318 April 9, 2019 Time: 12:44 # 13

Dai et al. Multidimensional Analyses of Crohn’s Disease

O’Brien, T. D., Jia, P., Caporaso, N. E., Landi, M. T., and Zhao, Z. (2018).
Weak sharing of genetic association signals in three lung cancer subtypes:
evidence at the SNP, gene, regulation, and pathway levels. Genome Med. 10:16.
doi: 10.1186/s13073-018-0522-9

Panattoni, M., Sanvito, F., Basso, V., Doglioni, C., Casorati, G., Montini, E., et al.
(2008). Targeted inactivation of the COP9 signalosome impairs multiple stages
of T cell development. J. Exp. Med. 205, 465–477. doi: 10.1084/jem.20070725

Pei, G., Dai, Y., Zhao, Z., and Jia, P. (2019a). deTS: tissue-specific enrichment
analysis to decode tissue specificity. Bioinformatics btz138. doi: 10.1093/
bioinformatics/btz138

Pei, G., Sun, H., Dai, Y., Liu, X., Zhao, Z., and Jia, P. (2019b). Investigation of multi-
trait associations using pathway-based analysis of GWAS summary statistics.
BMC Genomics 20:79. doi: 10.1186/s12864-018-5373-7

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007

Rivas, M. A., Beaudoin, M., Gardet, A., Stevens, C., Sharma, Y., Zhang, C. K.,
et al. (2011). Deep resequencing of GWAS loci identifies independent rare
variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073.
doi: 10.1038/ng.952

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage,
D., et al. (2003). Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 13,
2498–2504.

Sun, H., Kim, P., Jia, P., Park, A. K., Liang, H., and Zhao, Z. (2018). Distinct
telomere length and molecular signatures in seminoma and non-seminoma of
testicular germ cell tumor. Brief Bioinform. doi: 10.1093/bib/bby020

Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M.,
et al. (2017). The STRING database in 2017: quality-controlled protein-
protein association networks, made broadly accessible. Nucleic Acids Res. 45,
D362–D368. doi: 10.1093/nar/gkw937

Ventham, N. T., Kennedy, N. A., Adams, A. T., Kalla, R., Heath, S., and O’leary,
K. R. (2016). Integrative epigenome-wide analysis demonstrates that DNA
methylation may mediate genetic risk in inflammatory bowel disease. Nat.
Commun. 7:13507. doi: 10.1038/ncomms13507

Verstockt, B., Smith, K. G., and Lee, J. C. (2018). Genome-wide association studies
in Crohn’s disease: past, present and future. Clin. Transl. Immunol. 7:e1001.
doi: 10.1002/cti2.1001

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., Mccarthy, M. I., Brown, M. A.,
et al. (2017). 10 years of GWAS discovery: biology, function, and translation.
Am. J. Hum. Genet. 101, 5–22. doi: 10.1016/j.ajhg.2017.06.005

Wang, B., Deng, Z.-B., Dryden, G., Miller, D., Wei, N., and Zhang, H.-G.
(2014). COP9 regulates intestinal microbial ecology and susceptibility to colitis
(MUC4P.839). J. Immunol. 192, 133.115.

Wang, Q., Yu, H., Zhao, Z., and Jia, P. (2015). EW_dmGWAS: edge-
weighted dense module search for genome-wide association studies and gene
expression profiles. Bioinformatics 31, 2591–2594. doi: 10.1093/bioinformatics/
btv150

Wang, Y., Guo, X., Bray, M. J., Ding, Z., and Zhao, Z. (2016). An integrative
genomics approach for identifying novel functional consequences of PBRM1
truncated mutations in clear cell renal cell carcinoma (ccRCC). BMC Genomics
17(Suppl. 7):515.

Wei, N., and Deng, X. W. (2003). The COP9 signalosome. Annu. Rev. Cell Dev.
Biol. 19, 261–286.

Wei, N., Serino, G., and Deng, X. W. (2008). The COP9 signalosome: more than a
protease. Trends Biochem. Sci. 33, 592–600. doi: 10.1016/j.tibs.2008.09.004

Wellcome Trust Case Control Consortium, Craddock, N., Hurles, M. E., Cardin,
N., Pearson, R. D., Plagnol, V., et al. (2010). Genome-wide association study
of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.
Nature 464, 713–720. doi: 10.1038/nature08979

Wu, F., Dassopoulos, T., Cope, L., Maitra, A., Brant, S. R., Harris, M. L.,
et al. (2007). Genome-wide gene expression differences in Crohn’s disease
and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive
pathogenesis. Inflamm. Bowel Dis. 13, 807–821.

Yang, Q., Khoury, M. J., Friedman, J., Little, J., and Flanders, W. D. (2005).
How many genes underlie the occurrence of common complex diseases in the
population? Int. J. Epidemiol. 34, 1129–1137.

Zhao, X. M., Liu, K. Q., Zhu, G., He, F., Duval, B., Richer, J. M., et al.
(2015). Identifying cancer-related microRNAs based on gene expression
data. Bioinformatics 31, 1226–1234. doi: 10.1093/bioinformatics/
btu811

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Dai, Pei, Zhao and Jia. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 13 April 2019 | Volume 10 | Article 318278

https://doi.org/10.1186/s13073-018-0522-9
https://doi.org/10.1084/jem.20070725
https://doi.org/10.1093/bioinformatics/btz138
https://doi.org/10.1093/bioinformatics/btz138
https://doi.org/10.1186/s12864-018-5373-7
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/ng.952
https://doi.org/10.1093/bib/bby020
https://doi.org/10.1093/nar/gkw937
https://doi.org/10.1038/ncomms13507
https://doi.org/10.1002/cti2.1001
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1093/bioinformatics/btv150
https://doi.org/10.1093/bioinformatics/btv150
https://doi.org/10.1016/j.tibs.2008.09.004
https://doi.org/10.1038/nature08979
https://doi.org/10.1093/bioinformatics/btu811
https://doi.org/10.1093/bioinformatics/btu811
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 10 April 2019

doi: 10.3389/fgene.2019.00271

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 271

Edited by:

Tao Huang,

Shanghai Institutes for Biological

Sciences (CAS), China

Reviewed by:

Yan Huang,

Harvard Medical School,

United States

Yen-Wei Chu,

National Chung Hsing University,

Taiwan

*Correspondence:

Maozu Guo

guomaozu@bucea.edu.cn

Alon Keinan

alon.keinan@cornell.edu

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Genetics

Received: 17 December 2018

Accepted: 12 March 2019

Published: 10 April 2019

Citation:

Guo Y, Wu C, Guo M, Zou Q, Liu X

and Keinan A (2019) Combining

Sparse Group Lasso and Linear Mixed

Model Improves Power to Detect

Genetic Variants Underlying

Quantitative Traits.

Front. Genet. 10:271.

doi: 10.3389/fgene.2019.00271

Combining Sparse Group Lasso and
Linear Mixed Model Improves Power
to Detect Genetic Variants
Underlying Quantitative Traits

Yingjie Guo 1,2, Chenxi Wu 3, Maozu Guo 1,4*, Quan Zou 5, Xiaoyan Liu 1 and Alon Keinan 2,6*

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China, 2Department of Computational

Biology, Cornell University, Ithaca, NY, United States, 3Department of Mathematics, Rutgers University, Piscataway, NJ,

United States, 4 School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture,

Beijing, China, 5 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China,

Chengdu, China, 6Cornell Center for Comparative and Population Genomics, Center for Vertebrate Genomics, and Center

for Enervating Neuroimmune Disease, Cornell University, Ithaca, NY, United States

Genome-Wide association studies (GWAS), based on testing one single nucleotide

polymorphism (SNP) at a time, have revolutionized our understanding of the genetics

of complex traits. In GWAS, there is a need to consider confounding effects such as

due to population structure, and take groups of SNPs into account simultaneously due

to the “polygenic” attribute of complex quantitative traits. In this paper, we propose

a new approach SGL-LMM that puts together sparse group lasso (SGL) and linear

mixed model (LMM) for multivariate associations of quantitative traits. LMM, as has

been often used in GWAS, controls for confounders, while SGL maintains sparsity of

the underlying multivariate regression model. SGL-LMM first sets a fixed zero effect to

learn the parameters of random effects using LMM, and then estimates fixed effects using

SGL regularization. We present efficient algorithms for hyperparameter tuning and feature

selection using stability selection. While controlling for confounders and constraining for

sparse solutions, SGL-LMM also provides a natural framework for incorporating prior

biological information into the group structure underlying the model. Results based on

both simulated and real data show SGL-LMM outperforms previous approaches in terms

of power to detect associations and accuracy of quantitative trait prediction.

Keywords: genome-wide association studies, single nucleotide polymorphisms, quantitative traits, linear mixed

model, sparse group lasso

1. INTRODUCTION

Quantitative traits are important in medicine, agriculture, and evolution but, until recently, few
polymorphisms have been shown to be related in these traits. Genome-wide association studies
(GWAS) is a statistical technique that has been used successfully in the identification of over
65,000 single-nucleotide polymorphisms (SNPs) that are connected to various traits or diseases
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(MacArthur et al., 2017). Typically, GWAS are carried out
using single-locus models (i.e., testing for association between
each SNP and a given phenotype independently using linear
or logistic regression). However, according to the popular
“polygenic theory” (Li et al., 2015b; Dudbridge, 2016), complex
traits are often controlled by multiple SNPs collectively. Due
to the need to eliminate multi-testing corrections that decrease
statistical power, a better understanding of the underlying
heritable genetic architecture of complex traits requires one
to move beyond single-locus models to multivariate linear
regression models that incorporate the joint effects of multiple
SNPs explicitly (Ma et al., 2013).

Usually, the multi-locus GWAS are large p small n problems
(i.e., the number of features (SNPs) far exceeds the number of
samples, and one would expect only a small number of features
are associated with the phenotype predictor). Therefore, as is
customary for similar regression problems, it is necessary to
regularize by demanding sparsity in the coefficients of the final
model to prevent over-fitting and to maintain interpretability.
The most popular regularizing penalty that serves this purpose
is the lasso (i.e., least absolute shrinkage and selection operator)
(Tibshirani, 1996), which is the L1 norm of the coefficients of
features. Yang et al. (2012) fit sparse predictors for all genome-
wide SNPs using stepwise, forward selection. Li et al. (2011)
imposed a Laplace prior, which led to the Bayesian lasso. Arbet
et al. (2017) developed a permutation-based, selection procedure
to test the significance of lasso coefficients.

In GWAS, one expects the effective SNPs to be clustered
in a few genes or pathways, hence, adding group structure by
mandating sparsity on the group level is a good way to apply this
prior knowledge that can potentially outperform the simple lasso.
Yuan and Lin (2006) proposed using the group lasso for the linear
regressions, which imposed a regularization penalty of the sum
of the L2 norm on groups that guaranteed that few groups were
selected. But if a group is selected, so are all the predictors in it.

The group lasso has already enjoyed much success in GWAS
(Li et al., 2015a; Lim and Hastie, 2015). A caveat, however, is its
assumption that either all SNPs in a group being associated or
none of the SNPs in a group being associated. It is desirable to
not only constrain sparsity between groups (only a few groups
are associated), but also within groups; only a few SNPs in
each active group are associated. Hence, we propose to employ
a sparse group lasso (SGL), which is a regularization method
aimed at achieving both between- and within-group sparsity
simultaneously (Rao et al., 2013, 2016; Simon et al., 2013). The
SGL has a L2 penalty that promotes the selection of only a subset
of the groups and L1 penalty that promotes the selection of only
a subset of the predictors within a group.

Another important factor in genetic association studies is
the existence of confounding, which are indirect associations
between markers and traits due to factors like population
structure, family structure, and cryptic relatedness. Methods
for correcting these confounding factors include EIGENSTRAT
(Price et al., 2006), family-based association, genomic control,
and linear mixed models (LMMs) (Fisher, 1919; Hoffman, 2013;
Hoffman et al., 2014). Compared with other methods, LMMs
provide more fine-grained control by modeling the contribution
of these confounders as a random effect term. They are capable

of capturing the cumulative effect of all types of confounding
simultaneously without the need of prior knowledge on which
confounding is present and without the need to estimate them
individually. However, the time and space costs of LMM are
high compared with simpler confounding models. Previous
attempts to improve the performance of LMM includes Zhou
and Stephens (2012) (EMMA), Kang et al. (2010) (EMMAX),
Zhang et al. (2010) (P3D), Lippert et al. (2011) (FaST-LMM), and
Li et al. (2017) (StepLMM). All of these methods are univariate
models that are powerful in detecting few associations with large
effect sizes.

Although joint modeling of multiple weak effects and
correction for population structure have been tackled
individually, few existing methods are capable of addressing
them simultaneously. Segura et al. (2012) proposed a multi-
locus, mixed model approach using stepwise forward selection.
Rakitsch et al. (2012) and Papachristou et al. (2016) developed
new association methods that combined LMM and lasso to enjoy
the benefits of both methods.

There are a variety of patterns that typically arise in
regularization (Figure 1). Prior knowledge can be utilized by
using the SGL, which maintains both between- and within-group
sparsity. The relative strength between L1 and L2 norms can be
used to represent prior knowledge on the comparative degrees
of sparsity at the SNP and gene level. In particular, by varying
the ratio between L1 and L2 norms, the approach includes both
group lasso and lasso as special cases.

In this paper, we propose a novel analysis that not only
combines multivariate analysis with population correction
using Fast-LMM, but we also incorporate the group structure
of the SNPs as biological priors. We use the gene as
the group unit, and it is reasonable to assume that the
model should be sparse not only on the SNP-level (only
relatively few SNPs are involved), but on the gene level
as well (those functional SNPs belong to relatively few
genes). Experiments on semi-empirical data showed that the
combination of sparse group lasso and a linear mixed model
yielded better power to identify marker associations in a
large range of settings, and application to real datasets have
verified that SGL-LMM generated a sparse solution with
accurate prediction of phenotypes and interpretable detection of
marker associations.

2. MATERIALS AND METHODS

2.1. Method
We used a linear mixed model to model the genetic effects on the
phenotypes. More precisely, we modeled the phenotype as a sum
of three terms: a fixed effect determined by the association SNPs,
a random confounding effect due to population structure, and an
i.i.d. noise as follows:

y = Xβ + ypop + φ (1)

where y is a vector of observed phenotypes of size m × 1 for m
samples, X is am×qmatrix that consists of SNPs and other (e.g.,
environmental, familial etc.) variables of the m samples, ypop is

a m × 1 random matrix with distribution N (0, σ 2
g K) where K
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FIGURE 1 | A comparison of different sparsity patterns that occur in the analysis of genome-wide association studies. SNPs belong to M genes. Association SNPs

that influence the phenotype are represented by boxes that are shaded gray. (a) Shows a lasso sparse pattern. An example of the group sparse pattern is shown in

(b). In (c), we show the pattern in which we are interested in this paper.

is an m by m matrix called realized relationship matrix(RRM)
that captures the overall genetic similarity between all pairs of
samples, and φ ∼ N (0, σ 2

e I).

To make a prediction on y, one only needs β and δ =
σ 2
e

σ 2
g
.

Following FAST-LMM, our overall strategy for estimating the
parameters β and δ goes as follows:

1. Set β = 0, find the optimal δ.
2. Use the δ from the first step to estimate β , regularizing by

using SGL.

Now we describe each of the two steps in more detail.

2.1.1. Estimate of δ

To calculate δ we use an approach similar to Fast-LMM. Because
β was set to 0, we have:

y ∼ N (0, σ 2
g (K + δI)) (2)

Hence the log likelihood for a given y is

LL(δ, σ 2
g ) = logN (0, σ 2

g (K + δI))

= −
1

2

(

m log(2πσ 2
g )+ log(det(K + δI)

+
1

σ 2
g

yT(K + δI)−1y

)

(3)

Diagonalize K into K = USUT where U is orthogonal and S is
diagonal, and we have:

LL(δ, σ 2
g ) = −

1

2

(

m log(2πσ 2
g )+ log(det(S+ δI)

+
1

σ 2
g

(UTy)T(S+ δI)−1(UTy)

)

(4)

Substitute σ 2
g with the optimal value:

σ̂ 2
g =

(UTy)T(S+ δI)−1(UTy)

m
(5)

we have:

LL(δ) = −
1

2

(

log(det(S+ δI))+m log
(UTy)T(S+ δI)−1(UTy)

m

)

+C (6)

Where C does not depend on δ. The optimal δ can
then be calculated from above as a one dimensional
optimization problem:

δ̂ = argmin

(

log(det(S+ δI))+m log
(UTy)T(S+ δI)−1(UTy)

m

)

(7)

2.1.2. Estimate of β

In this subsection, we describe the estimation for β based on
model described by Equation (1), then, in the next subsection,
we introduce the SGL regularization.

Equation (1) implies that:

y ∼ N (Xβ , σ 2
g (K + δI)) (8)

Hence, using the diagonalization we see that, after δ and σ 2
g have

been estimated in the previous subsection, the log-likelihood
becomes:

LL(β) = logN (Xβ , σ̂ 2
g (K + δ̂I))

=−
m

2
log(2πσ̂ 2

g )−
1

2
log(det(S+ δ̂I)

−
1

2σ̂ 2
g

(UT(y− Xβ))T(S+ δ̂I)−1(UT(y− Xβ))
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=−
1

2σ̂ 2
g

(UT(y − Xβ))T(S+ δ̂I)−1(UT(y − Xβ))+ C

(9)

Let S
δ̂
be the non-negative diagonal matrix defined by S−2

δ̂
=

S+ δ̂I, or, more concretely, (S
δ̂
)ii = (Sii + δ̂)−1/2, then the MLE

of β is

β̂ = argmin(UT(y − Xβ))T(S+ δ̂I)−1(UT(y − Xβ))

= argmin(S
δ̂
UTy− S

δ̂
UTXβ)T(S

δ̂
UTy − S

δ̂
UTXβ)

= argmin ‖S
δ̂
UTy− S

δ̂
UTXβ‖22 (10)

Here ‖ · ‖2 is the L
2 norm. S

δ̂
UTy and S

δ̂
UTX are obtained from

y and X by a rotation and a scaling, and to simplify notations we
denote them as ỹ and X̃, respectively.

2.1.3. Sparse Group Lasso
To maintain sparsity in the estimated β , we need to add a
regularizer to Equation (10). We used the SGL regularizer: let G
be a family of possibly overlapping groups of components in β ,
for each group G ∈ G, let βG be the vector that consists of these
components, let λ > 1 and 0 ≤ α ≤ 1, then the regularized
optimization problem becomes:

β̂reg = argmin ‖SδU
Ty−SδU

TXβ‖22+λ(1−α)
∑

G∈G

‖βG‖2+λα‖βG‖1

(11)
Here λ is the strength of regularization, and α is the comparative
strength of the L1 and L2 regularization, with indicating how
much sparsity at the SNP level is desired compared to the sparsity
at the group level. From a Bayesian perspective, one can think of
it as adding a regularizing prior to β of the form:

log p(β) ∝ (1− α)
∑

G∈G

‖βG‖2 + α‖βG‖1 (12)

2.1.4. Phenotype Prediction
With estimated β and δ, phenotype prediction follows from
a straight-forward MLE using Equation (1). Suppose there are
other samples with genotype X′ and unknown phenotype y′, then

LL(y′) ∝

([

y′

y

]

−

[

X′

X

]

β̂

)T

(K + δ̂I)−1

([

y′

y

]

−

[

X′

X

]

β̂

)

(13)

Here K =

[

KX′X′ KX′X

KT
X′X

KXX

]

So, by linear algebra, the MLE

estimate for y′ is

ŷ′ = X′β̂ + KX′X(KXX + δ̂I)−1(y− Xβ̂) (14)

We can summarize the SGL-LMM significant SNPs selection in
the following algorithm:

2.1.5. Complexity Analysis
Let n be the number of samples and s be the number of SNPs.
When training the null model, the complexity is O(n3) which
is from the computation of eigenvalues and eigenvectors. This

Algorithm 1: Parameter estimate for LMM with SGL
regularization

Data: Genotype X, Phenotype y, α, λ

Result: β̂reg

1 Calculate K by selected genetic markers, orthogonal
decompose it into U and S;

2 Estimate δ using Equation (6);
3 Use the δ and S from above to evaluate Sδ ;

4 Calculate β̂reg using Equation (11).

is reasonable when n is about 10k but for higher n one can
improve on the time complexity by only taking into account
the dominant eigenevalues. The proximal gradient step has a
complexity of about O(ns), and since n is usually much less than
s, one can see it as more or less O(s). The prediction step has a
complexity ofO(nn′s), where n′ is the size of the testing set. From
the complexity analysis, we can see that SGL-LMM is scalable for
the genome-wide association analysis. But when analysing with
a huge genome such as the human genome, we recommend to
analysis each chromosome individually or doing a 2nd step based
on suggested loci from GWAS.

2.2. Model Selection
When solving the Equation (11), we employ SGL R package.
Instead of doing a two dimensional grid search of λ and α to
determine the optimal parameters, the package fix the mixing
parameter α and compute solutions for a path with many λ

values. The path begins with lambda sufficiently large to set
β̂ = 0 and let lambda decrease until the result is close to
unregularized. Taking advantage of this mechanism, we carry out
feature selection using LMM-SGL through the following steps:

(1) Finding the λ that optimizes phenotype
prediction accuracy

In order to find the best λ for phenotype prediction, we first
fitted the sparse group lasso model with the whole dataset to
find a λ path. We then used 5-fold cross validation to find the
appropriate λ, whichmaximize the average explained variance on
the test dataset.

(2) Stability selection
To evaluate the significance of individual SNPs, we carry

out stability selection (Meinshausen and Bühlmann, 2010). To
obtain a more accurate ranking of SNPs, after the optimal
λ was selected in the step above, we chose another 9
λs from the larger λs in the λ path evenly spaced. This
group of λs were used in each stability selection process to
rank the features by the order of inclusion into the model.
We drew randomly no more than 50% of the samples as
proposed in the original artical 100 times. We selected all
SNPs that were found in ≥ 50% of all results. Significance
estimate can be deduced from the selection frequency of
individual SNPs.

We summarize the process as the algorithm below and the
overall pipeline of SGL-LMMmethod as Figure 2:
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FIGURE 2 | Flow chart of the SGL-LMM method. The dotted line shows the data flow, and the solid line shows the flow of control.

Algorithm 2: Feature selection using SGL-LMM

Data: Genotype, Phenotype, groupstructure, α, nlam_times
Result: List of features and their importance measured by

frequencies
1 For a decreasing sequence of nlam_times different λs, use
5-fold validation to measure the performance of the result
of Algorithm 1, pick the optimal λ;

2 Pick another 9 λs larger than the optimal, evenly spaced in
the λ-path used above, label them λi, i = 1, 2, . . . 10;

3 Sample the data set 100 times, use all 10 λi, estimate β using
Algorithm 1. Output the features with non-zero coefficients
in more than half of the estimates β̂ and their frequencies;

2.3. Simulation Study
To evaluate the accuracy of SGL-LMM and pervious methods
for association mapping, we considered a semi-empirical
example based on the genotypic and phenotypic data for
up to 1307 world-wide accessions of Arabidopsis thaliana
from Atwell et al. (2010). The data can be downloaded
from https://github.com/Gregor-Mendel-Institute/atpolydb.
Based on the quality control provided by GWAS, we
excluded a SNP if its Minor Allele Frequency (MAF) was
< 0.05, if its missing rate was > 0.05 of the population,
or its allele frequencies were not in Hardy-Weinberg
equilibrium (P < 0.0001). After filtering, there were 200155
SNPs left.

To simulate the effect of population structure, we used the
real phenotypic leaf number at flowering time (LN,16◦C,16 h
daylight) which is available for 177 plants of the 1307 plants
of A.thaliana. Univariate analyses showed that the phenotype
had an excess of associations when population structure was
not taken into account (Atwell et al., 2010). After correction
for population effect, the p-values are approximately uniformly
distributed, Which means this phenotype is totally subjected
to population structure. Hence, we use this phenotype to
simulate the confounding effect. First, to determine the fraction
δ of genetic and residual variance, we fit a random effects
model to LN, which we subsequently used to predict the
population structure for the remaining 1,130 plants. We run
the random effect model multiple times, and choose the final
dataset which the difference of genetic variance parameter
between real and synthetic data are less than 0.0001. In addition
to this empirical background, we added simulated association
with different effect sizes and a range of complexities of
genetic models.

We then simulated the phenotype as follows:

y = σsigysig + (1− σsig)[σpopypop + (1− σpop)ϕ] (15)

where ysig = Xkβ , Xk is the genotype data for the k causal
SNPs. By introducing the group structure, we consider a case with
Ng = 200 genes(groups) on the chromsome1 which covered 2000
SNPs, we set m groups to be active. We vary the sparsity level of
the active groups to get the total active SNPs to be k. β ∼ N (0, I)
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and ϕ ∼ N (0, I).During the simulation, we maintained the
original LD structure in each gene.

The initial setting used for simulation were 3 active groups
each containing 5 effective SNP (k = 15 andm = 3). To investigate
the influence of the confounding effect strength and the overall
noise, we considered varied σpop ∈ {0.5, 0.7, 0.9} and σsig ∈

{0.1, 0.2, 0.3, 0.4, 0.5}. For each combination of σpop and σsig ,
we generate 10 datasets, resulting in 120 datasets in total for
the 12 combinations.

2.4. Application With Arabidopsis thaliana

Data
To assess the capacity of SGL-LMM to deal with real
association mapping of quantitative phenotypes, we investigated
the susceptibility of a set of SNPs that belong to genes of several
flowering phenotypes in A. thaliana. We used the same dataset as
in the simulation study. From the 107 phenotypes, we chose 10
flowering time phenotypes (Table S1).

To verify our method, we constructed our dataset in the
following ways:

1. We obtained gene information from the A. thaliana
annotation file. For each gene, 10kb of buffer region was added
both upstream and downstream of the defined gene location.
All SNPs between the regions were considered.

2. From chromosome 1 to chromosome 5, we chose the top 1,000
largest genes to form a genotype data file. There were a total
49,962 SNPs in the 1,000 genes.

3. According to the most promising association listed in Atwell’s
paper, we chose 19 genes that were related strongly to
flowering time and added them to the genotype. The 19 genes
consisted of 367 SNPs, so that the final genotype file had
50,329 SNPs (Table S2).

4. For each phenotype, a corresponding kinship matrix
was generated in the same way as described in the
simulation study.

3. RESULTS

3.1. Existing Methods
To compare our SGL-LMM method with existing techniques,
we considered standard regularization methods that included
Lasso and SGL, which model all SNPs simultaneously without
correcting for population structure. Also, we combined
LMM with different regularization strategies (e.g., Lasso-
LMM was listed as a comparison). All the methods that
were related to regularization were fit in identical ways
(see section 2.2).

3.2. Performance Measurements
In this paper, all the models output a ranking list of SNPs
with their frequencies of being chosen; true significant
markers were rare and accounted for only 15 out of
1,993 in our simulation datasets. Hence, we treated this
as a binary classification problem with an imbalanced
dataset where we assigned association markers as label
1 and background markers as label 0. The frequency

of each marker was treated as the predicted probability
for label 1.

The ROC (Receive operating characteristic) curve and the
PR (Precision-Recall) curve are commonly used to evaluate
performance of classification models. The ROC curve is created
by plotting the Sensitivity against the Specificity while varying the
threshold settings:

sensitivity(TruePositiveRate,TPR) =
TP

TP + FN

specificity(FalsePositiveRate, FPR) =
TN

TN + FP

The PR curve is created by plotting the Precision against the
Recall at various threshold settings:

precision =
TP

TP + FP

recall =
TP

TP + FN

where TP=TruePositve, TN=TrueNegative, FP=FalsePositive,
and FN=FalseNegative.

In our imbalanced setting, the ROC curve was not a good
visual illustration, because the False Positive Rate did not
drop drastically when the True Negative was huge. Whereas,
the PR curve was highly sensitive to False Positive and was
not impacted by a large True Negative denominator. Hence,
we chose the PR curve to evaluate the performance for all
the methods, and we used the average AUC (Area Under
Curve) of the PR curve to explore the impact of various
simulation settings.

3.3. Results of the Simulation Study
3.3.1. SGL-LMM Ranks Causal SNPs Higher Than

Alternative Methods

We assessed the performance in recovering causal SNPs with
a true simulated association. PR curves were constructed while
varying σpop in {0.5, 0.7, 0.9} with σsig set at 0.2 (Figure 3).
Notice that a larger AUC score indicated better performance.
For this experiment, we chose effective SNPs from three of the
200 groups, while taking sparsity into account, and we set the
ratio α of L1 and L2 penalty in SGL-LMM to be 0.95. The
two methods that incorporated LMM for population correction
performed better than those without, and SGL-LMM was the
best model (Figure 3). For most sets of parameters, SGL-LMM
outperformed Lasso-LMM in AUC by about 10%.

Next, we explored the impact of various simulated setting.
As mentioned in section 3.2, the area under the Precision-
Recall curve is a summary performance measurement to assess
different methods. The AUC under the PR curve is shown as
a function of an increasing ratio between true genetic marker
signals compared with confounding and noise (Figure 4). The
performance of all methods improved when σsig became larger,
and the AUC = 1 at σsig = 0.5 for all methods. Among
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FIGURE 3 | The Precision Recall curve by varying the σpop ∈ {0.5, 0.7, 0.9} and set σsig = 0.2. Each parameter combination had five datasets. The legend in each

subplot shows the area under the curve (AUC) for each method. L represents Lasso only, LL means Lasso-LMM, S is SGL only, and SL means SGL-LMM. (A) Shows

the PR curve under σpop = 0.5, σsig = 0.2, (B) for σpop = 0.7,σsig = 0.2, and (C) for σpop = 0.9,σsig = 0.2.

them, SGL-LMM was the best. We also notice that when σsig =

0.1, only SGL was more accurate than Lasso-LMM in the
majority of datasets. SGL and Lasso-LMM performed similarly
(Figure 3). One possible explanation is that when the variation
explained by causal SNPs was relatively small, noise dominated
the results. Under this scenario, eliminating false positives caused
by population structure did not improve the performance of the
models significantly. However, imposing group structure seems
to be useful in generating accurate results.

The AUC under the PR curve is shown as a function of an
increasing ratio of population structure and independent random
noise with a specific σsig and, as expected, strong confounding
was harmful to performance, because the AUC of all methods

decreased when the confounding ratio increased. Again, SGL-
LMM was superior to its counterparts. However, when σsig =

0.3, the performance of methods with the population correction
exhibited an upper trend when σpop varied from 0.5 to 0.7
(Figure 5C). The performance of δsig to be 0.1,0.2 and 0.4 can
be found in Figures 5A,B,D. This effect indicated that with a
medium signal to noise ratio, it was advantageous to include
a genetic covariance matrix K that accounted for confounding
that was caused by population structure. SGL-LMM performed
better than alternative methods for the entire range of considered
settings. The benefits of population correction and inclusion of
group structure in SGL-LMM were most pronounced in the
scenario with strong confounding.
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FIGURE 4 | The boxplot of a sample of five points for each method with a specific when varying the σpop. Each method has a different color frame, and each that is

filled with a different color is shown in the legend. (A) for σpop = 0.5, (B) for σpop = 0.7, and (C) for σpop = 0.9.

3.4. Application With Arabidopsis thaliana

Data
Having shown the accuracy of SGL-LMM in recovering the
association SNPs in the simulation study, we can demonstrate
that the SGL-LMM models association mapping in the A.
thaliana dataset better than other models. For this experiment
based on real data, we compared the performance of SGL-
LMM and Lasso-LMM in predicting phenotype and in selecting
predictive SNPs. For the ratio α between L1 and L2 penalty,
we considered eight possible values {0.95, 0.85, 075, 0.65,
0.55, 0.45, 0.35, 0.25}; we picked the one that resulted in the
largest correlation coefficient between the predicted and the
real phenotype for subsequent stability selection. Because it is
a verification experiment, we did not cover all genes in the
experimental design. It may be the case that few, or even none,

of the related genes in the selected phenotypes were covered in
our genotype file. As a consequence, when setting the threshold
for stability selection to be 50%, few SNPs are chosen by Lasso-
LMM, and usually no more than 20 SNPs are chosen by SGL-
LMM. Hence, we chose to rank the SNPs by their frequency
of being chosen in both approaches and to investigate the first
100 SNPs. We summarized the genes to which these 100 SNPs
belonged and the number of these genes in the candidate gene
list (Table 1).

SGL-LMM had the following two advantages (Table 1):

3.4.1. SGL-LMM Had Higher Prediction Accuracy

For most of the 10 phenotypes, correlation coefficients
between the predicted and the true phenotypes were higher
using SGL-LMM than those obtained with Lasso-LMM by
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FIGURE 5 | The boxplot of a sample of five points for each method with a specific σsig when varying the σpop. Each method with a different color frame and each σsig

filled with a different color are shown in the legend. (A) for σsig = 0.1, (B) for σsig = 0.2, (C) for σsig = 0.3, and (D) σsig = 0.4.

> 10%; for FT10, the predictions by SGL-LMM had a
correlation coefficient 100% higher than that obtained by Lasso-
LMM. Therefore, incorporating prior knowledge of genetic
structure significantly improved the accuracy of models of
quantitative phenotypes.

3.4.2. SGL-LMM Selected Fewer Genes, and It

Tended to Find More Genes That Were Known to be

Functional

Compared with Lasso-LMM, associations that were located
by SGL-LMM were more enriched to known candidate genes
(Table 1). It linked more candidate genes in five phenotypes,
and it linked the same number of candidate genes in the
phenotypes SD and SDV. However, SGL-LMM linked many
fewer genes compared with Lasso-LMM, which was consistent
with our assumption that phenotypes should be related to a

few SNPs in a few genes. Hence, adding group information
into SGL-LMM made the results more interpretable and
more meaningful biologically. The remaining three phenotypes
that were related to leaf numbers seemed to be largely
unrelated to the 19 candidate genes and to the randomly
selected background genes and, therefore, both methods
performed badly.

4. DISCUSSION

Quantitative traits are important in medicine, agriculture,
and evolution, but the association mapping studies of these
traits are insufficient. In this paper, we have proposed a
sparse group lasso, multi-marker mixed model (SGL-LMM)
to identify genetic associations in quantitative traits with
the presence of confounding influences, such as population
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TABLE 1 | Summary of associations found in SGL-LMM and Lasso-LMM in real data application.

Phenotype Method (lambda) Correlation Number of genes covered by top 100 SNPs Number of genes in the 19 selected genes

FT10 Lasso+LMM (1) 0.100938 90 4

SGL+LMM (0.35) 0.231566 14 10

SGL+LMM (0.85) 0.233074 36 12

FT16 Lasso+LMM (1) 0.184048 78 5

SGL+LMM (0.95) 0.225247 61 8

FT22 Lasso+LMM (1) 0.228702 87 6

SGL+LMM (0.85) 0.233883 31 10

LD Lasso+LMM (1) 0.186646 85 7

SGL+LMM (0.95) 0.278401 63 9

LDV Lasso+LMM (1) 0.118177 80 6

SGL+LMM (0.95) 0.168179 61 7

SD Lasso+LMM (1) 0.267138 82 10

SGL+LMM (0.95) 0.294031 53 10

SDV Lasso+LMM (1) 0.050816 94 4

SGL+LMM (0.25) 0.063342 14 4

LN10 Lasso+LMM (1) 0.053226 90 1

SGL+LMM (0.25) 0.062286 12 0

LN16 Lasso+LMM (1) 0.040451 92 0

SGL+LMM (0.85) 0.061766 45 0

LN22 Lasso+LMM (1) 0.062493 81 1

SGL+LMM (0.45) 0.066171 13 1

We report the correlation between the predicted phenotype and the real phenotype in the column titled “correlation.”. A bold entry indicates that the method located more true positives

than its competitor.

structure. The approach benefits from the attractive properties
of linear mixed models that allow for elegant correction of
confounding effects and those of group-based, multi-marker
models that not only consider the joint effects of sets of
genetic markers rather than one single locus at a time, but
that also incorporate biological group information as prior
knowledge. As a consequence, SGL-LMM was able to better
predict the phenotype and to identify true genetic associations,
even in challenging scenarios with complex underlying genetic
models, weak effects of individual markers, or presence of strong
confounding effects.

SGL-LMM is useful for genome-wide association studies
of complex quantitative phenotypes. In this paper, we have
illustrated such practical use through a semi-empirical simulation
study and retrospective analysis of A. thaliana. First, we found
that imposing gene structure as group structure into the model
improved both the prediction of phenotype from genotype
and the selection of association SNPs, which suggested that
incorporating prior biological knowledge into models led to a
better fit to real genetic architectures. Second, the combination
of a random effect model and a multivariate linear model is
a way to reveal the true association of complex phenotypes,
especially with a medium signal to noise ratio. It is widely
accepted that parts of the unexplained portion of genetic
variance can be due to a large number of loci that have a
joint effect on the phenotype, but which lead to only a weak
signal if considered independently. In addition, SGL-LMM
yields much more biologically meaningful and interpretable

associations, which suits the biological assumption that complex
traits are only related to a few SNPs in a few genes. Our
experiments on the flowering phenotype of A. thaliana showed
that SGL-LMM linked many more candidate genes, but this
was true only in a smaller gene set compared with the
Lasso-LMMmethod.

The SGL-LMM included both GL-LMM (group lasso with
linear mixed model) and Lasso-LMM as special cases by varying
the ratio between the L1 and L2 norms. The sparsity within
groups and group-wise sparsity influenced the performance of
SGL-LMM. Small groups did not benefit from the within-group
sparsity that led the method act as group lasso with LMM. In
practical use, we recommend doing imputation first, which can
ensure a moderate size for each group. The SGL-LMM can be
made even more powerful by adding a strategy to deal with
overlapping groups, which has been shown to be feasible by Jacob
et al. (2009). Assessing the statistical significance of association
results of SGL-LMM remains a challenge for future research.
In summary, SGL-LMM is a useful addition to the current
toolbox of computational models for unraveling associations of
quantitative traits.
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Environmental factors such as the gut microbiome are thought to play an important
role in the development and treatment of many diseases. But our understanding
of microbiota compositional dynamics is still unclear and incomplete because the
intestinal microbial community is an easily-changed ecosystem. It is urgently required
to understand the large variations among individuals. These variations, however, will
be an asset rather than a limitation to personalized medicine. For a proof-of-concept
study on individual-specific disease classification based on microbiota compositional
dynamics, we implemented an adjusted individual-specific edge-network analysis (iENA)
method to address a limited number of samples from one individual, and compared
it to the temporal 16S rRNA (ribosomal RNA) gene sequencing data from individuals
in a challenge study. Our identified individual-specific OTU markers or their combined
markers are consistent with previously reported markers, and the predictive score based
on them can perform a better AUROC than the previous 0.83 and achieve about 90%
accuracy on predicting whether an individual developed diarrhea [i.e., were symptomatic
(Sx)] or not. In addition, iENA also showed satisfactory efficiency on another dataset
about bacterial vaginosis (BV). All these results suggest that the combination of high-
throughput microbiome experiments and computational systems biology approaches
can efficiently recommend potential candidate species in the defense against various
pathogens for precision medicine.

Keywords: network, individual-specific edge-network analysis, complex diseases, personalized microbiota
dynamics, omics data

INTRODUCTION

In addition to genetic risks, environmental factors are accumulating more and more evidence
regarding their critical roles in human complex diseases (Qin et al., 2012; Hoyles et al., 2018).
As one of these key factors, the gut microbiome is gradually being accepted to be a key player
in controlling disease development and progression (Claesson et al., 2012; Forslund et al., 2015).
Many studies have concluded that the alterations of commensal microbiota may contribute to a
range of significant pathogen states such as antibiotic-associated diarrhea, inflammatory bowel
disease, irritable bowel syndrome, pseudomembranous colitis, and cancer (Pop et al., 2016). The

Frontiers in Genetics | www.frontiersin.org 1 April 2019 | Volume 10 | Article 283290

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00283
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2019.00283
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00283&domain=pdf&date_stamp=2019-04-11
https://www.frontiersin.org/articles/10.3389/fgene.2019.00283/full
http://loop.frontiersin.org/people/660892/overview
http://loop.frontiersin.org/people/714484/overview
http://loop.frontiersin.org/people/618121/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00283 April 9, 2019 Time: 18:5 # 2

Yu et al. Personalized Microbiota Dynamics

high-throughput sequencing of microbial communities provides
a bio-technical foundation to characterize the associations of the
host microbiome (Blow, 2008; Pushkarev et al., 2018), which is
helpful to detect pathogens and identify the crosstalk between
an organism’s microbiome and the environment (Wagner et al.,
2018). This frontier research not only links intestinal microbial
communities with health or disease phenotypes but also provides
lots of processed data for public requirement and reuse.

As is known, the intestinal microbial community is actually
a more complex ecosystem with essential influences on host
health status in numerous ways, such as regulating metabolism,
developing immunity, and suppressing enteropathogens (Gill
et al., 2006; Round and Mazmanian, 2009; Maynard et al.,
2012). These beneficial co-evolved interactions between host and
microbiota can be disrupted by different environmental stresses
such as changes in dietary habits, natural physiology, virus
infections, and medical treatments (Dethlefsen et al., 2008; Wu
et al., 2011; Pop et al., 2014). Specifically, antibiotic treatments for
enteric infections such as ETEC may even lead to immediate and
significant changes of gut microbiota (Dethlefsen and Relman,
2011), e.g., loss of beneficial species, increase of drug-resistant
strains, and predisposition of pathogen infections. The intestinal
ecosystem is easily changed, although it is able to recover
and is often incomplete (Lozupone et al., 2012). Thus, it is
necessary to carry on long-term observational studies to detect
the possible permanent functional alterations among certain
microbiota (Jernberg et al., 2010).

Despite the critical role of microbiota in human health
attracting more attention, our understanding of microbiota
compositional dynamics is still incomplete, and more well-
designed analytical methods are also required to make full use
of rich data resources. In the gradually increasing observational
studies of the gut microbiota, the microbial communities’
sequencing data, e.g., metagenomics data, are widely tested
and analyzed (Vedoy et al., 2018). Different from the other
high-throughput data in genetic studies (Yu and Zeng, 2018),
metagenomics data can be easily changed within different
conditions and individuals. Thus, individual heterogeneity is
particularly important and individual variation should not
be ignored in analytical approaches. In fact, in the era of
precision medicine, many methods have focused on the common
molecular biomarkers which can diagnose disease states at the
cohort/population level. However, to study the occurrence and
progression of a disease in a given patient (Zeng et al., 2014;
Yu et al., 2015), accurate diagnosis of individuals by sample-
specific biomarkers is a key concept and action (Zeng et al., 2016).
In contrast to the traditional molecular biomarker analysis, our
previously proposed individual-specific edge-network analysis
(iENA) (Yu et al., 2017) combined with dynamic network
biomarker (DNB) (Li et al., 2014) has detected the early-
warning signals or the pre-disease state before serious disease
deterioration based on second-order statistics from the observed
data, e.g., “covariance” for expressions among genes or proteins.

Holding an assumption that the microbiota like genetic
molecules will have significant network characteristics associated
with phenotypes (Rakoff-Nahoum et al., 2016), it is worth
extracting discriminative and interpretative features from the

microbiota community-like gene network to monitor the
disruption of microbial communities during disease occurrence
and development (Wang et al., 2018). To take a proof-of-
concept study on the dynamic change of intestinal ecosystem
and their disease signals, we have adjusted the iENA method
(Yu et al., 2017) with reference group to address the limited
number of samples from one individual, and applied it to analyze
temporal high-throughput 16S rRNA data from individuals,
which is expected to overcome the great individual difference and
changeability of the intestinal ecosystem and reveal biological and
biomedical insights.

To carry out a proof-of-concept study on the individual-
specific disease classification based on microbiota compositional
dynamics, we captured the temporal changes from microbiota
data of volunteers during the ETEC challenge and subsequent
treatment with ciprofloxacin (Pop et al., 2016), and we found
the following: (i) the common microbiota biomarkers (OTUs)
reported in the previous work can be mostly recovered and
are also more effective in distinguishing clinical phenotypes of
individuals; (ii) individual-specific biomarkers can be detected
depending on the temporal 16S rRNA data from each subject
and the given reference data from multiple subjects; (iii) the
individual microbiota data can be used to effectively carry
out statistics, explore and integrate for personalized diagnosis,
prognosis and prediction. In addition, in order to further validate
the efficacy and robustness of our concept and method, we
have employed iENA on another real-world data from the
daily composition and relative abundance of bacteria in vaginal
samples from twenty-five women with and without bacterial
vaginosis (BV), and again satisfactory performance was achieved
on distinguishing BV occurrence from healthy controls. In total,
this work supplied novel evidence of individual biomarkers
to promoting microbiota-based disease classification, while the
high-ranked critical OTUs deserve future clinical validations.

MATERIALS AND METHODS

Description of Data Organization Used in
Proof-of-Concept Study
Escherichia coli (ETEC) has two expected outcomes: watery
diarrhea as symptomatic (Sx), or the host remains asymptomatic
(Asx) (Pop et al., 2016). The wild-type virulent ETEC strain
(E. coli O78:H11) was most frequently used in volunteer studies,
which induces severe diarrhea, with mild fever and vomiting
being reported in a relatively higher proportion of subjects.
The 16S rRNA data from gut microbiota reported in previous
volunteer challenge studies with ETEC H10407 were selected for
our study (Pop et al., 2016), which can be obtained from NCBI
under project ID: PRJNA298336. The simple summary of the
challenge protocol are as follows: the health status of subjects
in this volunteer challenge was assessed before the challenge;
early antibiotic treatment was given to the patients when some
symptoms appear; and starting on day 5, all subjects received a
3-day ciprofloxacin treatment. Importantly, the stool specimens
were collected at 12 time points: prior to ETEC infection (day
−1, 0) and on days 1–7, 9, 28, and 84 after the infection (Pop
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et al., 2016). After sequencing, 124 samples finally passed quality
controls and time matches which were used in our analysis,
corresponding to 50 samples from 5 Sx volunteers and 74 samples
from 7 Asx volunteers (Pop et al., 2016).

Temporal Microbiota Data Analysis by
Individual-Specific Edge-Network
Analysis (iENA)
We previously developed an advanced computational
framework, i.e., iENA, based on our proposed high-order
correlation measurement as shPCC for one-sample omics
data (Yu et al., 2017). In brief, iENA provides a powerful
network-analysis tool for studying temporal omics data of
complex diseases in a manner of individual samples, which is
suitable for applications in precision medicine or personalized
medicine. As noted in previous iENA analysis, each individual
used some samples in the early stages as network references
in dynamics analysis. However, when the number of samples
for each individual is limited, this strategy cannot work.
Thus, to investigate the microbiota dynamics in this work, we
implemented an adjusted iENA particularly using samples from
the baseline of individuals as the network reference and applied
it for analyzing the temporal 16S rRNA data (or even other
metagenomics data) as in Figure 1.

Collecting Data
To apply iENA, we downloaded temporal 16S rRNA datasets
from NCBI, which include the ETEC challenge infection samples
on individual subjects.

Selecting Reference Samples
In order to obtain the mean and variance of microbiota
compositions used for evaluating each new single sample (i.e.,
for each sample of one subject at one time point), a group of
reference samples (i.e., control samples, or normal samples) is
required to be confirmed ahead of follow-up analysis. Here, we
set the samples from the normal stage, i.e., the samples at baseline
as a reference group. Whether these samples came from the
same subject or different subjects are depending on the data
organization. Any sample with similar properties could serve as a
reference group in theory.

Selecting OTUs Based on Non-zero Value
One difficulty for processing 16S rRNA data is to deal with the
large number of zero values for iENA, e.g., during any division
computation; thus, similar to previous studies, we deleted OTUs
with a large percent of zero values (i.e., 85% or other percent
determined by a given threshold) to reduce the bias impact.

Constructing Microbiota Network by sPCC
Calculation
When we had reference samples, we were able to construct
the co-expression network of one sample by our single-sample
measurement of the Pearson correlation coefficient (sPCC),
consistent with previous studies (Yu et al., 2017). Considering the
absence of background network for microbial communities, we
selected edges (i.e., one edge represented the association between

two microbiota, represented by a pair of OTUs here) from a direct
rank cut-off for correlations because the distribution of the new
PCC values is not the normal distribution. Then, the top-ranked
edges with strong relations were finally selected, which consisted
of conventional node-network or microbiota community (Wang
et al., 2016; Sung et al., 2017), and were used as the background
“nodes” for constructing the following edge-network (e.g., a
network of OTU-pairs).

Constructing Microbiota-Pair Network by shPCC
Calculation
Between two OTU-pairs, we carried out the estimation of the
fourth-order single-sample correlation coefficient for each edge-
pair (i.e., two OTU-pairs) by shPCC (Yu et al., 2017) for each
single-sample (e.g., for each sample of one subject at one time
point). Note that, in this step, we actually only computed the
correlations between the pre-selected OTU-pairs from the above
steps, and thus we could reduce the unnecessary computations
drastically. Finally, we obtained the microbiota-pair network
model corresponding to each sample at a particular time point,
and each subject had personalized features on a time series in the
OTU-pair networks.

Recognizing Individual OTU-Pair Biomarkers
Similar to the OTU-pair selection, we selected top-ranked edge-
pairs as edge-biomarkers (i.e., OTU-pair biomarkers), which have
strong relations with each other in terms of the high-order
compositional correlations. Those strong correlated OTU-pairs
can be viewed as DNB candidates, represented as a set called
“Marker.” Then, for each individual, the OTU-pairs in the edge-
network were used as individual OTU-pair biomarkers, and these
OTUs were applied in the clinical phenotype prediction.

Quantifying the Predictive Markers by sCI
As is known, the DNB has been developed to identify the
pre-disease state before a sudden deterioration during disease
development and progression as general disease-warning signals
(Chen et al., 2012; Zeng et al., 2013). Recently, the DNB model
with its quantification criterion (i.e., CI, composite index) based
on multiple samples has been widely adopted:

CI =
PCCin

PCCout
× SDin (1)

In our previous work on gene networks, the DNB criterion is
further re-defined from the above correlation measurements in a
manner of single-sample, i.e., sCI is defined as:

sCI =

∑
x,y∈Marker |sPCC(x, y)|∑

x∈Marker,y/∈Marker |sPCC
(
x, y

)
|

×

∑
x∈Marker

|x− ux| (2)

where PCCin
is the average PCC of the compositions of OTUs

in the dominant group or DNB (e.g., a group of marker OTUs
or molecules) in absolute value in one sample; PCCout

is the
average PCC of the compositions of OTUs between the dominant
group and other in absolute value in one sample; SDin

is the
average standard deviation of the compositions of OTUs in the
dominant group or DNB. “Marker” is the set of DNB members.
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FIGURE 1 | Concept of edge-network and individual-specific edge-network analysis (iENA).

Then, the sCI of individual OTU markers was used to indicate
the disease-warning signals when its value was greater than a
given threshold.

Comparing OTU Markers and Their Disease
Classification
For each individual, we obtained the differential OTU-pairs in
each single-sample (i.e., the edge associations in each time point)
as novel edge-biomarkers to indicate the disease-warning signal.
We obtained the sCI value with edge biomarkers for each subject
or sample, and we observed different sCI scores at consecutive
time points. Thus, the value of sCI changed with time and we
defined a threshold to indicate the criticality, i.e., warning disease
or not for a subject. In addition, for the challenge data, we also
examined the OTU markers induced from each subject, and
compared them with previously reported 32-OTU markers from
the original research of the experimental data (Pop et al., 2016).

RESULTS AND DISCUSSION

Parameter Setting of the Analysis on
ETEC Challenge Data
To make full use of iENA, we used 16S rRNA (ribosomal RNA)
gene sequencing data to describe changes in the fecal microbiota
from 12 human volunteers during the challenge study with
ETEC (H10407), where three males and two females developed

diarrhea symptoms while four males and three females did not
(Pop et al., 2016).

As shown in Figure 2, according to iENA, we divided subjects
into two groups according to clinical symptoms: a Sx group with
5 subjects (subjects 4, 11, 16, 17, and 38 in Figure 2) and an
Asx group with 7 subjects (subjects 3, 13, 22, 29, 30, 33, and
41 in Figure 2). Samples before infection from baseline time
(green in Figure 2, days −1 and 0) were used as the reference
group. After selecting OTUs (non-zero percent > 0.85), we could
calculate the sPCC (with mean and variance from the reference
group) for each sample. We focused on the edges with strong
correlations and finally determined the 1500 strongest relations
at each time point. Then, these pre-selected edges were used as
the background “nodes” for constructing the edge-network, and
the significant signal peaks of edge-biomarkers were captured for
each subject across multiple time points, which were candidate
DNB members. Different from previous iENA applications, there
was another parameter to control; the number of final OTU
markers, due to the tested microbiota, was much less than tested
human genes or proteins.

OTU Markers Identified by iENA Are
Consistent With Reports in the Literature
Based on the above temporal data, we determined different
numbers of OTUs as marking features on each time/sampling
point of each subject by iENA, and the OTU-index score (i.e.,
CI index of OTU markers) is an average measurement against
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FIGURE 2 | The sample organization of ETEC challenges dataset. The subjects are divided into two groups according to the clinical symptom chart based on
standardized symptom scoring: symptomatic (Sx) group with 5 subjects (subjects 4, 11, 16, 17, and 38 in the original data) and asymptomatic (Asx) group with 7
subjects (subjects 3, 13, 22, 29, 30, 33, and 41 in the original data). The samples before the challenge (in green) were used as a reference group; the non-symptom
samples (in gray) have no significant clinical symptom; samples in orange indicate administration of ciprofloxacin; red marks represent diarrhea symptoms; pink
element indicates the overlapping time/day of diarrhea symptoms and administration of ciprofloxacin.

FIGURE 3 | The general abundance of OTU markers in Sx and Asx individuals.

the effect of OTU number. To further prove OTU markers’
satisfactory discrimination of the eventual clinical outcomes
of individuals, we identified individual biomarkers comprising
differently numbered bacterial OTUs.

Next, we checked the individual-specific biomarkers by
combining all OTUs detected on each sample for the same
subject. OTU markers found in five Sx individuals were very
different from those identified in Asx individuals, which may
be the reason why these OTUs can be used to predict displayed
symptoms (or disease occurrence). We finally obtained 19
common OTUs in the Sx group, which were also distinguished
from the Asx group in a combination manner (Figure 3).

These 19 common OTU markers represent robust signatures
and most of them have been reported in previous works (Pop
et al., 2016), which demonstrates the effectiveness of iENA
on OTU marker discovery. Patients who eventually developed
diarrhea symptoms were primarily affected by the abundance
of OTUs from the genus Bacteroides as well as Dialister. The
microbiota predictors included previously observed Bacteroides
sp., Blautia sp., Alistipes sp., and our newly found Escherichia and
Lachnospiraceae with a potential role during disease occurrence.
Looking at Figure 3 on the one hand, globally, the abundance of
OTU signatures seems to be absent in samples of Sx individuals
but abundant in samples of Asx individuals; and on the other
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FIGURE 4 | The disease classification performance of OTU markers on the ETEC challenges dataset. (A) The predictive score of OTU markers based on CI index
from DNB theory. The score curves of subjects from the Sx group are in red, and those of subjects from the Asx group are in blue. Generally, the Sx individuals tend
to have a larger score during the disease occurrence. (B) The classification evaluation of OTU marker score by ROC and AUC. (C) The OTU marker scores
correspond to each subject, where the Sx individual will have a large score at earlier time points than Asx individuals.

hand, locally, Escherichia and Lachnospiraceae appeared most
in the samples from Sx individuals. By contrast, some OTUs
from Bacteroides and Dialister are more frequently observed
in samples from Asx individuals. These results indicate the
biological significance of our OTU markers.

OTU Markers Outperform Previously
Reported OTU Signatures
To further explore whether the microbiota could predict the
eventual clinical outcome, we used OTU index scores of above
19 common OTUs to divide individuals into normal and disease
groups. With an optimal threshold, the model was able to achieve
an AUC of 0.9, larger than previously reported 0.83 (Pop et al.,
2016), which means these predictors are robust. Based on these
OTUs, the accuracy is about 90% in Figure 4, much larger than
the previously reported 76% (Pop et al., 2016), which supports
again that the new OTU markers and their quantifications
are efficient in judging whether a patient developed diarrhea
symptoms or not by individual microbiota data. Following our
assumption, the abundance variance rather than abundance level

would have more predictive power according to DNB theory,
meaning that the OTU-index score of OUT-markers based on
abundance variance achieved higher performance.

Another Case Study on Bacterial
Vaginosis (BV)
In order to further validate the efficacy and robustness of our
model, we carried out this method on other data (Ravel et al.,
2013). This data was obtained from the daily composition and
relative abundance of bacteria in vaginal samples from twenty-
five women: 15 SBV women diagnosed with Sx BV, six ABV
women with Asx BV, and four healthy women at twenty time
points during the 10-week study (Ravel et al., 2013). Due to the
great influence of bacteria abundance and the association caused
by SBV treatment, the bacteria data of the Sx group (9 SBV) and
the Asx group (6 ABV and 4 healthy) at the first nine time points
ahead of most treatments were used in following analysis.

Similar to the above case, the samples at the first time
points of all individuals were used as the reference group. After
selecting OTUs (non-zero percent > 0.5), we could calculate
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FIGURE 5 | The disease classification performance of OTU markers on the bacteria in vaginal samples. (A) The predictive score of OTU markers based on CI index
from DNB theory. The score curves of subjects from Sx BV (Sx) group are in red, and those of subjects from Asx BV and healthy (Asx) group are in blue. Generally,
the Sx individuals tend to have larger scores during disease occurrence. (B) The classification evaluation of OTU marker score by ROC and AUC. (C) The OTU
marker scores correspond to each subject.

the sPCC (with mean and variance from the reference group)
for each sample. Due to the limited number of bacteria in
this data, we focused on the edges with strong correlations
and finally determined the 10 strongest relations at each
time point. Then, these pre-selected edges are used as the
background “nodes” for constructing the edge-network and

capturing the significant signal peaks of edge-biomarkers for
each subject. As shown in Figure 5, to explore whether
bacteria could be predictive of the eventual outcome as BV
or not, we again simply used the OTU-index scores to
divide individuals into Sx (BV) and Asx (not BV) groups.
A threshold optimal cutoff led the single OTU-index score
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to achieve an AUC larger than 0.8, which means these
predictors are efficient.

We also checked the individual-specific biomarkers by
combining all OTUs detected on each sample for the same
subject. Finally, we found 3 OTU markers in nine Sx
(BV) individuals—Aerococcus christensenii, Veillonellaceae, and
Bacteria. Meanwhile, in the Asx group (6 ABV and 4 healthy)
the common markers were Gardnerella vaginalis, Aerococcus
christensenii, and Bacteria. In order to observe more OTU
markers distinguishing the two groups, we reduced the selection
conditions, and 13 markers appeared in more than a half of the Sx
members while 9 markers appeared in more than half of the Asx
members. The Sx-special OUT markers were Lactobacillus iners,
BVAB2, Bifidobacteriaceae, Parvimonas micra, and most of them
have been reported in previous works (Pop et al., 2016) or are BV-
associated. These results indicate again the biological significance
of our selected OTU markers.

CONCLUSION

There is growing interest in bolstering resistance to infections
or diseases by altering the microbiota (Jia et al., 2008; Holmes,
2016; Waterman et al., 2016; Delzenne and Bindels, 2018).
Here, we have presented a computational framework, i.e.,
iENA, to identify the key OTU features to distinguish normal
and disease states, by extracting higher-order statistics and
dynamic information from 16S rRNA (ribosomal RNA) gene
sequencing data in a one-sample manner. As a proof-of-concept
study, we carried out iENA on the temporal development
data of twelve subjects (healthy adults) undergoing a challenge
with intestinal microbiota by ETEC. Although the sample
size is relatively small and the variations among individuals
are large, our iENA achieved robust results that may lead
to more confirmed conclusions. The analysis outcome from
iENA indicates the following: (i) for challenged subjects, the
individual symptom-related OTU markers will have stable
relation (higher-order information) rather than sensitive OTU
abundance; (ii) the OTU markers are significantly related

to the disease development and progression (e.g., ETEC
infection) which will be able to predict whether an individual
would develop symptoms or not with reasonable accuracy.
In addition, iENA also showed satisfactory efficiency on
another dataset about BV. These consequences all demonstrate
the effectiveness of iENA with DNB on an individual’s
microbiota dynamics. Excluding the limitations from individual
heterogeneity and sample numbers, network-based approaches
like iENA will actually provide more universal tools on
different types of real sequencing data (Davis-Richardson et al.,
2014), which makes precision medicine more practical in
clinical applications.

On account of the intestinal microbiota, iENA can explore
differential microbiota pair networks based on differential
OTU abundance, variance, and covariance. Although iENA has
previously been validated on transcriptome datasets (Yu et al.,
2017), it is also able to detect the individual-specific OTU markers
on metagenomic datasets like 16S rRNA data, and disclose
the higher-order associations between the microbiota and
clinical symptoms during the ETEC challenge, or other disease
developments like BV. Thus, the combination of new high-
throughput microbiome experiments and computational systems
biology approaches has the power to recommend potential
candidate species in the defense against various pathogens for
precision medicine.
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Motivation: Gene set enrichment analysis is a widely accepted expression analysis tool

which aims at detecting coordinated expression change within a pre-defined gene sets

rather than individual genes. The benefit of gene set analysis over individual differentially

expressed (DE) gene analysis includes more reproducible and interpretable results and

detecting small but consistent change among gene set which could not be detected

by DE gene analysis. There have been many successful gene set analysis applications

in human diseases. However, when the sample size of a disease study is small and no

other public data sets of the same disease are available, it will lead to lack of power to

detect pathways of importance to the disease.

Results: We have developed a novel joint gene set analysis statistical framework which

aims at improving the power of identifying enriched gene sets through integrating multiple

similar disease data sets. Through comprehensive simulation studies, we demonstrated

that our proposed frameworks obtained much better AUC scores than single data

set analysis and another meta-analysis method in identification of enriched pathways.

When applied to two real data sets, the proposed framework could retain the enriched

gene sets identified by single data set analysis and exclusively obtained up to 200%

more disease-related gene sets demonstrating the improved identification power through

information shared between similar diseases. We expect that the proposed framework

would enable researchers to better explore public data sets when the sample size of their

study is limited.

Keywords: public data integration, cross disease transcriptome, gene expression, gene set enrichment analysis,

mixture model, EM algorithm

BACKGROUND

High-throughput technology like microarray and next-generation sequencing (NGS) allows
researchers measure the expression levels of thousands of genes or microRNAs in one
sample simultaneously. These high-throughput genomic data have enabled researchers to better
identification of disease related genes and pathways (Gu et al., 2014, 2017; Zheng et al., 2015,
2016; Liu et al., 2016, 2017, 2018; Gong et al., 2018). Gene set enrichment analysis has become a
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widely accepted expression analysis tool whose purpose is to
identify coherent altered expression change within a predefined
gene set or a pathway rather than identifying individual
differentially expressed (DE) genes (Mootha et al., 2003; Kim
and Volsky, 2005; Subramanian et al., 2005; Nam and Kim,
2008). Compared with DE gene analysis, more reproducible
and interpretable results could be obtained through gene set
enrichment analysis. Gene set enrichment could also detect small
but consistent change which is ignored by DE gene analysis
(Luo et al., 2009). There are many successful applications of
gene set enrichment analysis approach in human disease-related
gene/pathway discovery. For example, Drier et al. (2013) showed
that enriched gene sets could serve as biomarkers in predicting
survival time in glioblastoma and colorectal cancer patients. Zhao
et al. combined gene set enrichment analysis information and
microRNA target gene sets to identify cancer-related microRNAs
(Zhao et al., 2014). Lee et al. utilized gene set enrichment
analysis based on mutation and transcriptional data to identify
driver mutation behind breast cancer metastasis (Lee et al.,
2016). Identifying the enriched gene set will provide crucial
information of molecular functions and mechanisms underlying
different diseases.

Many gene set enrichment analysis methods have been
developed to identify differentially expressed gene sets with
different assumptions and data types (Edgar et al., 2002; Kim
and Volsky, 2005; Subramanian et al., 2005; Dinu et al., 2007;
Freudenberg et al., 2010; Rahmatallah et al., 2015; Zhao and
Li, 2017). These methods focused on the analysis of one
single data set, thus cannot make full utilization of the rich
amount of public expression data. Further, with the cost of
microarray and next generation sequencing technique decreasing
and stabilization of the experiment protocol, there are now over
1,000,000 samples deposited in public databases such as Gene
Expression Ominus (GEO) (Subramanian et al., 2005), meta-
analysis is one way to improve the identification power by
integrating data sets of same conditions together (Qin et al.,
2016). Shen and Tseng (2010) and Chen M. et al. (2013) both
proposed meta gene set enrichment analysis frameworks to
integrate public data sets of same biological condition and
demonstrated improved identification power. However, these
meta-analysis frameworks simplify the model by assuming
a simple concordance model: a gene is either differentially
in all studies or non-differentially expressed in all studies.
This is a reasonable assumption when analyzing the dataset
of same biological condition but might be problematic in
conditions where there are not many public studies available for
this disease.

On the other hand, the joint analysis approach has proven
more effective in combiningmultiple different but similar sources
of data than meta-analysis approach. The joint analysis methods
developed in other fields of omics data analysis have proven
useful in increasing the identification power by borrowing
information from other similar diseases (Chen X. et al., 2013;
Chung et al., 2014; Wang et al., 2016; Lin et al., 2017). In our
previous study, we also demonstrated that our joint analysis
framework aiming at DE gene detection is more advantageous
than single data set analysis and meta-analysis in both simulation

studies and real data cases combining different similar disease
data sets (Qin and Lu, 2018).

In this study, we extended our previous joint gene analysis
framework to joint gene set analysis framework. Base on the
assumption that similar disease tends to share similar disease-
related genes and pathways (Carson et al., 2017; Qin and Lu,
2018), we developed two joint gene set analysis frameworks
aiming at improving identification power of enriched gene
sets by borrowing different levels of information from other
similar diseases. Compared with previous joint gene analysis
framework, we unified DE gene/pathway statistic modeling
through a two-component beta-uniform mixture model of p-
values and combined the model with normalized Kolmogorov-
Smirnov (KS) statistic for joint gene set enrichment analysis.
These novel frameworks were then compared with single data
set analysis as well as the MAPE framework proposed by Shen
and Tseng (2010) in simulation studies while Chen’s method
is not available from their website (Chen M. et al., 2013).
The simulation results demonstrated that our proposed joint
analysis framework outperformed all other methods in AUC
under different simulation scenarios. When applied to two real
data examples, the proposed joint analysis framework could
recover most of the enriched gene sets which is identified by
single data set analysis and further identified more pathways
with better biological interpretability than single data set analysis.
These results demonstrated the improved identification power
of enriched gene sets of the proposed joint gene set analysis
framework by borrowing information through similar diseases.

METHODS

EM Algorithm Implementation for Joint
Gene Set Analysis Framework
To perform joint gene set analysis, we need to first address the
issue of modeling DE gene/enriched pathway statistics in a single
data set. In this study, P-values derived from differential test
statistics (for example, two sample t-statistic or Kolmogorov–
Smirnov (KS) statistic designed for detecting enriched pathways)
in a single data set are modeled directly by a beta-uniform
two component mixture model as described in Pounds and
Morris (2003) where the p-values of non-DE genes/non-enriched
pathways are assumed to belong to uniform distribution and
p-values of DE genes/enriched pathways belong to a beta
distribution with scale parameter α and 1, i.e., f

(

p
∣

∣D = 1
)

=

αpα−1 ; f
(

p
∣

∣D = 0
)

= 1, where the categorical variable D
represents either DE/enriched or non-DE/non-enriched status of
a gene/pathway. The marginal density of p-value is thus written
as follows:

f
(

p
)

= Pr (D = 1) αpα−1 + (1− Pr (D = 1)) (1)

where Pr (D = 1) is the percentage of DE genes/enriched
pathways in a single data set and αǫ(0, 1) is the parameter of
the beta distribution. In the joint analysis framework setup,
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let pg =
{

pg1, . . . pgN
}

represent all computed p-values of g-
th gene/pathway across N diseases. The formula (1) could be
extended to N diseases:

f
(

pg
)

=
∑

Pr(D1...,DN )

Pr (D1 . . . ,DN)
∏

i=1..N

f
(

pgi
∣

∣Di

)

(2)

where Pr(D1 . . . ,DN) represents the global configuration of DE
gene/enriched pathway status across all diseases. In this model,
Pr(D1 . . . ,DN) and α = {α1,α2, . . . αN} need to be estimated
from the data. This is a typical mixture model problem, therefore
an EM algorithm is implemented to obtain the maximum
likelihood estimate of these parameters following the derivation
in previous literature (Pounds and Morris, 2003; Qin and Lu,
2018). The details are described as follows:

Given initial guess of Pr (0) (D1 . . . ,DN) = 1
2N

and α(0) =
{

α1
(0),α2

(0) . . . αN
(0)

}

where αi
(0) = 0.5, the EM algorithm

update at t-th step for α(t) and Pr(D1 . . . ,DN) is written
as follows:

E-Step
The posterior probability of g-th gene’s configuration status given
observed pg and α(t) is given by:

Pr
(

D1 . . . ,DN

∣

∣

∣
pg , α

(t)
)

=
f
(

pg
∣

∣D1 . . . ,DN ,α
(t)

)

(D1 . . . ,DN)

f
(

pg ,α(t)
) (3)

M-Step
Then the updated Pr(t+1)(D1 . . . ,DN) and α(t+1) is shown
as follows:

Pr (t+1) (D1 . . . ,DN) =

∑G
g=1 Pr

(

D1 . . . ,DN

∣

∣pg , α
(t)

)

G
(4)

αj
(t+1) =

∑G
g=1 Pr

(

D1 . . .Dj = 1,DN

∣

∣pg , α
(t)

)

∑G
g=1 Pr

(

D1 . . .Dj = 1,DN

∣

∣pg , α(t)
)

(−logpgj)
(5)

Normalized KS Statistic and
Corresponding p-value Calculation for
a Pathway
Normalized KS statistic defined in Mootha et al. (2003) is used to
detect significantly enriched pathways by measuring if the ranks
of genes along one pathway are more enriched on the top rank of
an ordered gene list than expected by chance while controlling
for pathway size. A normalized KS statistic for a pathway P
containing M members is computed as follows:

1. Order all G genes by their statistical significance.

2. CalculateRi = −

√

M
G−M if the gene i does not belong to

a pathway; CalculateRi =

√

G−M
G if the gene i belongs to

the pathway.
3. Run a running sum across all G genes and compute the

normalized KS statistic as:

nKSP = max
j=1 to G

j
∑

i=1

Ri (6)

To evaluate the significance of the observed normKS for a
pathway, a gene-based permutation test is used to calculate
the p-value.
The permutation test contains the following steps:

1. Random permutate the gene labels.
2. Compute the permutated normalized KS statistics for each

pathway and pool them together as nKSperm.
3. Repeat step 1 and 2 B times.
4. The p-value of a pathway P could be obtained by counting how

many permutated normalized KS statistics are larger than the
observed normalized KS statistic, i.e.,:

p (nKSP) =

∑

I
(

nKSP ≥ nKSperm
)

+ 1

B ∗ P + 1
(7)

where I(·) is the indicator function.

Gene-Level Joint Gene Set Enrichment
Analysis Framework (JointNormKS)
Based on the two-component mixture modeling of p-value
for a single data set defined before a gene-level joint gene
set enrichment framework is then developed which is based
on normalized KS statistic (JointNormKS). The outline of the
framework could be summarized as follows:

1. Compute and convert the differential statistics into p-value,
denote pgi as the p-value of gene g in data set i.

2. Joint analysis based on a two-component beta-uniform
mixture model is performed with these p-values and the
posterior probability of DE status for each gene g in disease
i is computed:

Pr
(

Di = 1
∣

∣pg1 , . . . , pgN
)

=
∑

Di=1 f (pg1 , pg2 . . . , pgN |D1 ,D2 , . . .Di = 1, . . .DN ) Pr(D1 ,D2 , . . .Di = 1, . . .DN )

f
(

pg1 , pg2 . . . , pgN
)

(8)

3. Compute normKS statistic and corresponding p-
value based on the ranking of posterior probability
Pr

(

Di = 1
∣

∣pg1, . . . , pgN
)

within each data set i.
4. After p-values of all pathways within each data set are

computed, use Benjamini-Hochberg (BH) procedure
(Benjamini and Hochberg, 1995) to compute FDR for each
pathway and order the pathways within each dataset by the
FDR respectively.

Pathway-Level Joint Pathway Enrichment
Analysis Framework (JointPathway)
In this section, JointPathway is proposed as another joint
gene set enrichment analysis framework which summarizes the
enrichment evidence on pathway-level first within each disease
data set and then performs joint analysis on pathway-level p-
value to identify potential enriched pathways. The assumption
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of the framework is based on that similar disease tends to
share similar shared dysregulated pathways. The outline of the
framework is summarized as follows:

1. Within each disease dataset, compute the normKS statistics
for each pathway and obtain their p-values based on the
permutation procedures denoted as pgi where g represents
g-th pathway and i represents i-th disease data set. The
implementation of the permutation procedures is described in
detail in JointNormKS section.

2. Perform joint analysis procedure based on pgi of all
pathways across all data sets. Estimate prior probability,
Pr(D1 . . . ,DN), and beta distribution parameter of each data
set, α = {α1,α2, . . . αN}, from pgi through EM algorithm as
described before.

3. Compute posterior probability Pr
(

Di = 1
∣

∣pg1, . . . , pgN
)

of
for each pathway g within each data set i as similarly
defined in Equation (8) in JointNormKS and rank the
pathways accordingly.

Meta-Analysis for Pathway Enrichment
Analysis (MAPE)
Meta-Analysis for Pathway Enrichment Analysis (MAPE) is
a series of meta-analysis frameworks proposed by Shen and
Tseng (2010), which is specifically designed for pathway/gene
set enrichment meta-analysis. It consists of three different
frameworks: MAPE_Gene, MAPE_Pathway, andMAPE_I. Here,
we briefly introduce the implementation of each framework.
MAPE_Gene could be summarized by the following steps:

1. Compute p-value of differential statistic for each gene.
2. Perform MaxP meta-analysis for all genes across all data sets.
3. Compute KS statistics for each pathway.
4. Determine the p-value and false discovery rate (FDR) for each

pathway through permutation test.

MAPE_Pathway could be summarized by the following steps:

1. Compute KS statistic and its p-value through permutation test
for all pathways within each data set.

2. Perform MaxP meta-analysis for all pathways across all
data sets.

3. Determine the p-value and FDR for each pathway through
permutation test.

MAPE_I is a hybridization of MAPE_Gene and MAPE_Pathway
frameworks which takes the minimum p-value of a pathway
obtained through MAPE_Gene and MAPE_Pathway as its
test statistic. The p-value and FDR of this statistic are then
determined through permutation test.

Simulation Study
To evaluate the effectiveness of the proposed joint gene set
analysis frameworks, we performed comprehensive simulation
studies. Assume that there is a total of 1,000 DE genes out of
10,000 genes. The expression value of each gene in a sample
within each data set is generated as described in our previous
study (Qin and Lu, 2018) with different means and variance
set for each gene. We further assume that the number of data

TABLE 1 | Simulation parameter setup under different scenarios.

P
P

P
P

P
P

Pathway

Gene
(0,0) (DE,0) (0,DE) (DE,DE)

(A) SCENARIO 1, ENRICHMENT STRENGTH = 20%

(0,0) 45 0 0 5

(EP,0) 40 0 5 5

(0,EP) 40 5 0 5

(EP,EP) 40 0 0 10

(B) SCENARIO 2, ENRICHMENT STRENGTH = 20%

(0,0) 45 0 0 5

(EP,0) 40 5 10 0

(0,EP) 40 10 5 0

(EP,EP) 40 0 0 10

(C) SCENARIO 1, ENRICHMENT STRENGTH = 30%

(0,0) 45 0 0 5

(EP,0) 35 0 5 10

(0,EP) 35 5 0 10

(EP,EP) 35 0 0 15

(D) SCENARIO 2, ENRICHMENT STRENGTH = 30%

(0,0) 45 0 0 5

(EP,0) 30 5 15 0

(0,EP) 30 15 5 0

(EP,EP) 20 15 15 0

EP: Enriched Pathway

sets to be jointly analyzed is fixed at N = 2 and the number
of shared DE genes between two data sets is fixed at 600, 700,
800, or 900, so the DE gene similarity between two data sets
are defined as the average shared percentage of DE genes i.e.,
1
2 (Pr (D2 = 1|D1 = 1) + Pr (D1 = 1|D2 = 1)) would be 60, 70,
80, and 90%. After the gene expression data are generated, we
further assume that there is a total of 1,000 pathways each of
which contains 50 genes and therefore we would expect to see 5
DE genes within each pathway and any pathway containing more
than 5 DE genes would be considered as an enriched pathway.
In this simulation study, we set the number of DE genes of an
enriched pathway at 10 and 15, respectively. Within each data
set, there is a total of 100 enriched pathways. Similar to DE gene
similarity definition, we define the shared number of enriched
pathways at 60, 70, 80, and 90 between two data sets and consider
it as enriched pathway similarity between two diseases. Each
pathway is formed by randomly sampling DE and non-DE gene
and could be represented by Table 1 where each row represents
the enrichment status of a pathway in two data sets and the
number in each cell represents how to sample genes from two
data sets. Finally, to systematically evaluate the performance of
different frameworks, Receiver Operation Curve (ROC) (Fawcett,
2006) is used. Each parameter setup is repeated 30 times and the
average Area Under Curve (AUC) is calculated and recorded for
each framework.

Gene Set Collection Database
The up-to-date C2 canonical pathway collection (Version 6.1) of
MsigDB (Subramanian et al., 2007) which contains 1,329 gene
sets is used in this study. Before the gene set enrichment analysis,
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any gene set which contains <15 genes, or more than 500 genes
is removed from further analysis.

Lung Adenocarcinoma and
Colorectal Adenocarcinoma
Adenocarcinomas are observed to share similar DE genes as
discovered in our previous study (Qin and Lu, 2018), we decide
to use lung adenocarcinoma (GEO accession no.: GSE32863)
and colorectal adenocarcinoma (GEO accession no.: GSE41258)
as one evaluation of our proposed joint gene set analysis
frameworks. After we combined multiple probe sets representing
same gene by taking the maximum expression value in each
sample, a total of 12,054 unique genes and 991 canonical
pathways are used in the analysis.

Alzheimer’s Disease (AD) and Huntington’s
Disease (HD)
AD and HD are known to share highly similar pathology
(Narayanan et al., 2014). In this study, GSE33000 which contains
both AD and HD postmortem samples are used to evaluate
the performance of joint gene set enrichment analysis. Multiple
probe sets representing same gene are combined by taking the
maximum expression value in each sample. A total of 21,576
genes and 1,071 pathways are used in the analysis.

RESULTS

Overview of Proposed Joint Gene Set
Enrichment Analysis Frameworks
Figure 1 outlines the flowchart of three joint gene set enrichment
frameworks proposed in this study. The details of the algorithm
implementation could be found in the Methods section. Here
we briefly discuss the difference between the two frameworks.
The joint gene set enrichment framework could be split into
gene-level (JointNormKS) and pathway-level (JointPathway). In
JointNormKS, the differential expression status of each gene
is first jointly analyzed across all similar disease data sets and
gene set enrichment analysis is then performed based on the
jointly analyzed results which incorporates information from
other similar diseases. In this framework, we would expect to
observe increased identification power of pathway enrichment
when a gene successfully borrows information from other genes.
In JointPathway, gene-level information is first summarized
based on pathway within each dataset and joint analysis is
then performed based on the pathway-level evidence. Under
this framework, we would expect to see increased identification
power when similar diseases share many enriched pathways
among each other.

Comparisons Among JointNormKS,
JointPathway, Single Data Set Analysis and
MAPE Methods in Simulated Data Sets
In this section, we evaluated the performance of the proposed
joint gene set enrichment analysis framework through simulation
study and compared their performance with single data set
analysis and published MAPE methods (Shen and Tseng, 2010).

The detailed implementation of the simulation study and
parameter setup could be found in Methods section and Table 1.
Briefly speaking, expression data sets of two similar diseases
are generated with different number of DE genes within a
pathway, DE gene similarity and enriched pathway similarity.
Furthermore, we consider two different DE gene configuration
scenario in the pathway. In the first scenario, the enriched
pathway in the target disease data set will contain fully overlapped
shared DE genes from the similar disease data set from which
information is borrowed. In the second scenario, the DE genes
in the enriched pathway of the target disease data set will not
overlap with any DE genes in the similar disease data set.
This is a reasonable assumption as similar situation has been
observed in other literature where one pathway is enriched in
both datasets but DE genes are different (Shen and Tseng, 2010).
The comparison results are summarized in Figure 2.

In Scenario 1, we assume that one enriched pathway is
composed of shared DE genes. In this scenario, we observe that
our proposed JointNormKS outperforms all other methods when
the enrichment strength is set to 20% DE genes in an enriched
pathway. We observe that JointNormKS is not sensitive to the
DE gene similarity, different DE gene similarity yields similar
significant AUC improvement over single data set analysis. On
the other hand, enriched pathway similarity shows a stronger
impact on the performance of JointNormKS: the AUC improves
when the enriched pathway similarity increases. JointPathway
in this scenario does not show difference with single data set
analysis when the enrichment strength is low mainly because
the p-value signals of enriched and non-enriched pathways are
not separable in this case. The information borrowing in the
joint analysis is thus not working for low-signal case. MAPE
methods do not work well in this case. MAPE_Gene shows worse
performance in all Enriched pathway parameter setup mainly
because when MAPE_Gene summarizes evidence at gene-level,
it takes the maximum p-value of a gene in both diseases which
will lead to failing to identify many disease-specific DE genes in
a pathway. MAPE_Pathway shows increased performance when
enriched pathway similarity increases. However, even when the
enriched pathway similarity is set to 90%, JointNormKS still
outperforms MAPE_Pathway because disease-specific pathway
will be regarded as false positive by MAPE_Pathway and
thus has a low rank. MAPE_I method combines best results
calculated from MAPE_Gene and MAPE_Pathway methods and
thus cannot demonstrate better performance than JointNormKS.
When the enrichment strength increases from 20% DE genes
to 30% DE genes, JointNomrKS still outperforms all other
methods. we also observe that JointPathway demonstrates
improved AUC over single data set analysis when the enrichment
strength increases because the signal of an enriched pathway
in a single data set could be distinguished from non-Enriched
pathway which enables the information sharing between two
similar diseases. MAPE_gene performs similar as before while
MAPE_pathway does not show improvement over single data
set analysis mainly because when the signal of a single data
set is strong enough, meta-analysis-based method would, on
the contrary, cause the decrease of the rank of disease-specific
Enriched pathway.
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FIGURE 1 | Overview of the proposed joint gene set enrichment frameworks.

FIGURE 2 | AUC comparison among different methods under different parameter setup.
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FIGURE 3 | Venn diagram of identified enriched pathways by JointNormKS and single data set analysis in lung and colorectal adenocarcinoma data sets. FDR cutoff

is set to 0.1.

In Scenario 2, we assume that enriched pathways are
composed of non-overlapping DE genes in two data sets.
JointNormKS still outperforms all othermethods in this scenario.
The AUC improvement is even larger than that in scenario 1.
As we further examine the result, we find that the reason that
JointNormKS could efficiently borrow shared enriched pathway
information is due to the combined use of normalized KS
statistic and joint analysis at gene level (see Conclusion and
Discussions for details). MAPE_Gene performs even worse in
this scenario because there is not shared DE genes within
a pathway. Meta-analysis by taking maximum p-value would
thus produce many false positives in DE gene detection. Other
methods based on pathway-level evidence summarization remain
same performance as in Scenario 1.

To sum up, the simulation test with different parameter setup
and two different scenarios demonstrates that JointNormKS
performs best among all other methods even when there are no
shared DE genes within an enriched pathway. We then decide to
use JointNormKSmethod in real data application in next section.

Comparison of JointNormKS With Single
Data Set Analysis in Real Data Application
Based on the simulation test results, we apply the JointNormKS
framework on two real data sets and compare their identified
enriched gene sets with those derived from single data
set analysis, respectively. We use lung and colorectal
adenocarcinoma as one example because adenocarcinoma
both develop from gland cells of different tissues and as shown
in our previous study, we observed that lung and colorectal
adenocarcinoma shared a significant higher percentage of DE
genes than other cancers (Qin and Lu, 2018). Alzheimer’s disease
and Huntington’s disease are selected as another example due to
their highly similar clinical phenotypes.

Real Data Application: Lung Adenocarcinoma and

Colorectal Adenocarcinoma
JointNormKS is first applied on adenocarcinoma data sets
and results are compared with those obtained through
single data set analysis with the use of NormKS statistic
by setting the FDR cutoff at 0.1. The comparison results
are summarized in Figure 3. In lung adenocarcinoma data

set, single data set analysis identified 19 pathways while
JointNormKS could identify all these pathways plus 12 more
enriched pathways. The common pathways identified by
both methods contain “KEGG_CELL_CYCLE” which is
the KEGG pathway documented in KEGG disease pathway
database about known pathways involved with non-small
cell lung cancer (pathways taken from hsa05223). The
p-value and FDR of this pathway is significantly improved
in JointNormKS (FDR∼0.005) compared with single data set
analysis (FDR∼0.012). We also examined other known pathways
involved with non-small-cell lung cancer recorded in KEGG and
found that most of these pathways have improved significance in
JointNormKS over single data set analysis (Additional File 1A).
Among other commonly identified pathways, many cancer
related pathways are identified including cell cycle related
pathways such as “REACTOME_DNA_REPLICATION” and
cancer signaling pathways such as “PID_E2F_PATHWAY”
(Nevins, 2001; Bracken et al., 2003; Tazawa et al., 2007),
“PID_AURORA_B_PATHWAY” all of which play an important
role in tumor progress (Chieffi et al., 2006; Girdler et al.,
2006; Qi et al., 2007). For exclusively identified pathways by
JointNormKS shown in Table 2, many of them are related to
lung cancer after an extensive literature search. For instance,
“PID_MYC_ACTIV_PATHWAY” is a classic cancer-related
pathway regulating cell proliferation process which is found
in many cancers (Zajac-Kaye, 2001; Bild et al., 2006; Chou
et al., 2010). “BIOCARTA_MCM_PATHWAY” which controls
initialization of DNA replication process was reported in several
lung cancer studies (Ho et al., 2007; Brambilla and Gazdar,
2009). Other pathways which is closely related to cancer progress
includes pathways of amino acid metabolism and DNA synthesis.
The full list of identified pathways in lung adenocarcinoma could
be found in Additional File 1B.

In colorectal adenocarcinoma data sets, single data set
analysis slightly identified more enriched pathways than
JointNormKS. One hundred and twenty six pathways
were identified by both methods. We observe that three
pathways are exclusively identified by JointNormKS while six
exclusively by single data set analysis. The biological process
represented by 126 commonly identified enriched pathways
are similar to what was observed in lung adenocarcinoma
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TABLE 2 | Pathways exclusively identified by JointNormKS in lung

adenocarcinoma data set.

Pathway Single

FDR

JointNormKS

FDR

KEGG_BASE_EXCISION_REPAIR 0.1011 0.0797

KEGG_BLADDER_CANCER 0.1144 0.0988

BIOCARTA_MCM_PATHWAY 0.1144 0.0999

BIOCARTA_COMP_PATHWAY 0.1004 0.0797

BIOCARTA_CELLCYCLE_PATHWAY 0.1011 0.0912

PID_MYC_ACTIV_PATHWAY 0.1093 0.0961

PID_AURORA_A_PATHWAY 0.1035 0.0961

REACTOME_MUSCLE_CONTRACTION 0.1144 0.0978

REACTOME_SYNTHESIS_OF_DNA 0.1011 0.0867

REACTOME_METABOLISM_OF_CARBOHYDRATES 0.1144 0.0961

REACTOME_COMPLEMENT_CASCADE 0.1011 0.0797

NABA_ECM_AFFILIATED 0.1144 0.0961

data set. Among them, “KEGG_CELL_CYCLE” and
“KEGG_P53_SIGNALING_PATHWAY” are two pathways that
are documented in pathways known to be related to colorectal
cancer in KEGG database (hsa05210). When examining all
eight pathways known to be related to colorectal cancer, we also
observed that JointNormKS overall improved the FDR statistical
significance of these pathways compared with single data set
analysis. The full result is summarized inAdditional File 2A. We
further examined the enriched pathways exclusively identified by
JointNormKS and single data set analysis, respectively. We find
that all three pathways exclusively identified by JointNormKS
are closely related to cancer. “BIOCARTA_P53_PATHWAY”
and “PID_MYC_PATHWAY” are two canonical cancer-related
pathways. As for “REACTOME_TRANSCRIPTION,” after we
examined the gene family categorization on MsigDB, we find
that many genes in this gene set belong to gene family related to
cancer such as “oncogene,” “tumor suppressor” etc. On the other
hand, in the six gene sets exclusively identified by single data set
analysis, only one gene set: “WNT_SIGNALING” is the process
known to be related to cancer progress. The other four gene sets
might be potential false positives because very few reports could
be found for these biological processes. The full list of identified
enriched gene sets in colorectal adenocarcinoma could be found
in Additional File 2B.

Real Data Application: Alzheimer’s Disease and

Huntington’s Disease
Furthermore, we apply JointNormKS on two neurodegenerative
disorder data sets and evaluate the identified enriched gene
sets. The comparison results are summarized in Figure 4.
JointNormKS demonstrated improved statistical power by
identifying more enriched gene sets than single data set analysis
while enriched gene sets identified by single data set analysis
could also be identified by JointNormKS. On the other hand,
in AD data set, JointNormKS exclusively identified 13 enriched
gene sets and in HD data set, the number is 57. A clear statistical
power gain is observed in JointNormKS over single data set
analysis here.

In AD data set, we first examined three pathways
known to be related to AD disease documented in KEGG
disease pathway (hsa05010). “KEGG_APOPTOSIS” and
“KEGG_OXIDATIVE_PHOSPHORYLATION” are identified
by both methods with similar level of significance. The results
of three known AD related pathways are summarized in
Additional File 3A. A further examination on the 13 exclusively
identified gene sets by JointNormKS shows that these gene
sets belong to category of apoptosis/cell survival, neuron
development and energy metabolism all of which has a close
relationship to AD (Table 3). The full list of identified enriched
gene sets are summarized in Additional File 3B.

In HD data set, seven pathways known to be related to
HD documented in KEGG disease pathway are first examined
(hsa05016). “KEGG_CALCIUM_SIGNALING_PATHWAY,”
“KEGG_OXIDATIVE_PHOSPHORYLATION,”
“KEGG_PROTEASOME,” “KEGG_APOPTOSIS” are identified
by both methods where JointNormKS demonstrated on average
better statistical significance. It worth noting that one HD-related
pathway, “KEGG_RNA_POLYMERASE” is exclusively identified
by JointNormKS. The full result of these HD related pathways
is summarized in Additional File 4A. Furthermore, among
the 57 gene sets exclusively identified by JointNormKS, we
are surprised to find many cancer-related pathways. A further
literature search shows that biological processes such as cell
cycle, DNA repair, apoptosis and kinase signaling are both
implicated in both diseases suggesting a potential link between
two diseases (Plun-Favreau et al., 2010; Driver, 2012). The full
list of enriched gene sets identified in HD are summarized in
Additional File 4B.

CONCLUSIONS AND DISCUSSION

In this study, we proposed two novel joint gene set enrichment
analysis frameworks: JointNormKS and JointPathway aiming
at borrowing shared information across similar disease from
gene-level and pathway-level, respectively. Compared our
previously developed joint gene analysis framework, the
framework proposed here focused on pathway-level detection
and demonstrated that assumption of similar disease sharing
similar pathways is valid. The framework provides researchers
with new opportunities to view their data from a different angle
and could complement the limitation of gene-level analysis.

The two frameworks were first tested through simulation test
and compared with MAPE, the current meta-analysis methods
of gene set enrichment analysis. The results showed that the
JointNormKS performed best among all tested methods under
all simulation scenarios. The JointNormKS was then applied
to two real data sets and identified a comparable or more
number of enriched gene sets than analyzing the data set
alone. Further examination revealed that JointNormKS could
recover most of enriched gene sets that was identified by
single data set analysis and the enriched gene sets exclusively
identified by JointNormKS were mostly related to the disease.
These results demonstrate that when similar diseases are
jointly analyzed, the proposed joint gene set framework
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FIGURE 4 | Venn diagram of identified enriched pathways by JointNormKS and single data set analysis in AD and HD data sets. FDR cutoff is set to 0.1.

TABLE 3 | Pathways exclusively identified by JointNormKS in AD data set.

Pathway Single FDR JointNormKS

FDR

KEGG_APOPTOSIS 0.0117 0.0087

KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 0.0125 0.0090

BIOCARTA_CERAMIDE_PATHWAY 0.0125 0.0096

BIOCARTA_PDGF_PATHWAY 0.0116 0.0081

ST_JNK_MAPK_PATHWAY 0.0128 0.0092

REACTOME_DEVELOPMENTAL_BIOLOGY 0.0268 0.0081

REACTOME_NEURONAL_SYSTEM 0.0128 0.0091

REACTOME_MRNA_PROCESSING 0.0106 0.0087

REACTOME_AXON_GUIDANCE 0.0241 0.0091

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 0.0116 0.0087

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 0.0445 0.0100

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS 0.0129 0.0081

REACTOME_ACTIVATED_TLR4_SIGNALLING 0.0129 0.0055

could borrow information from each other and improve
identification power.

In the simulation test, we observed that in Scenario 1,
the JointNormKS was not sensitive to the DE gene similarity
(Figure 2). The reason is that after the joint analysis at gene-
level, the rank of genes which are DE in both data sets
would be prioritized to the top of the gene list ordered by
posterior probability of DE status and the improvement of
the rank of these genes is similar across different DE gene
similarity values. Since the Normalized KS statistic is rank-
sensitive, the ranks of enriched pathways would remain the
same and so is the ROC although the posterior probability of
these DE genes within an enriched pathway keep increasing.
In scenario 2, when an enriched gene set in both data sets
is composed of non-overlapped DE genes across two data
sets, we observed that JointNormKS was still able to detect
these gene sets and even had a better AUC improvement. The
reason is that after gene-level joint analysis, the ranks of DE
genes in the disease to be borrowed from would improve and
Normalized KS statistic which is sensitive to these changes would
increase the rank of these shared pathways. This might raise
a concern whether this will lead to increased number of false

positives. We would like to argue that the whole framework is
designed based on the assumption that similar diseases would
share similar enriched pathways. If this assumption holds, the
JointNormKS framework would work well as demonstrated in
simulation tests.

Three improvements need to be implemented in the future
work. The first improvement is to design a likelihood test
to detect the shared DE gene or enriched pathway similarity
before joint analysis is performed so that researchers using this
framework would have a better sense of whether these disease
data sets should be jointly analyzed or not. The test procedure
would be similar to that described in Chung et al. (2014). The
second improvement is the ability of the framework to include
more disease data sets to borrow as currently the size of prior
probability vector increases exponentially based on the total
number N of data sets (2N). A heuristic approximation or a
hierarchical structure could be implemented as described in Lai
et al. (2017). The third improvement is the incorporation of
gene set dependence in the joint gene set enrichment analysis
framework. In this study, gene set independence is assumed
even many gene sets share common genes. This is hardly
the case in real world. How to address the gene set/pathway
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dependence has been discussed and is a hot topic in the field
of statistics (Tamayo et al., 2016; Tomoiaga et al., 2016; Xie
et al., 2017). Extra work is needed to include it in the framework
proposed in this study and several options would be explored in
the future.
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Extracellular Vesicle (EV) is a compilation of secreted vesicles, including micro vesicles,
large oncosomes, and exosomes. It can be used in non-invasive diagnosis. MicroRNAs
(miRNAs) processed by exosomes can be detected by liquid biopsy. To objectively
evaluate the discriminative ability of miRNAs from whole plasma, EV and EV-free
plasma, we analyzed the miRNA expression profiles in whole plasma, EV and EV-free
plasma of 10 lung adenocarcinoma and 9 granuloma patients. With Monte-Carlo feature
selection method, the top discriminative miRNAs in whole plasma, EV and EV-free
plasma were identified, and they were quite different. Using the Repeated Incremental
Pruning to Produce Error Reduction (RIPPER) method, we learned the classification
rules: in whole plasma, granuloma patients did not express hsa-miR-223-3p while the
lung adenocarcinoma patients expressed hsa-miR-223-3p; in EV, the hsa-miR-23b-3p
was highly expressed in granuloma patients but not lung adenocarcinoma patients;
in EV-free plasma, hsa-miR-376a-3p was expressed in granuloma patients but barely
expressed in lung adenocarcinoma patients. For prediction performance, whole plasma
had the highest weighted accuracy and EV outperformed EV-free plasma. Our results
suggested that EV can be used as lung cancer biomarker. However, since it is less
stable and not easy to detect, there are still technological difficulties to overcome.

Keywords: microRNA signatures, biomarker, classification, lung adenocarcinoma, granuloma

INTRODUCTION

Blood is a mixture of plasma, blood platelet and various blood cells, such as erythrocytes, leukocytes,
neutrophilic granulocytes, eosinophilic granulocytes, basophilic granulocytes, monocytes, and
lymphocytes (Basu and Kulkarni, 2014). It can reflect the body health and wellness. Extracellular
Vesicle (EV) is a compilation of secreted vesicles, including micro vesicles, large oncosomes,
and exosomes (Lawson et al., 2018). Exosomes, with a diameter of 30–100 nm, are a kind of
membrane-bound EVs and originate from endosome (Raposo and Stoorvogel, 2013). Nearly all
kinds of cells can secrete exosomes whether under normal or stressful conditions (Srivastava
et al., 2015). When compared with normal cells, tumor cells of the specific organs have been
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proven to secrete more exosomes. Besides, the membrane of
exosomes richly contains plenty of functional proteins, including
tetraspanin, endosome-related membrane transport and fusion
proteins and multivesicular bodies-genesis proteins, and thus
exosomes could be applied as biomarkers (O’Driscoll, 2015).
Exosomes can be extracted from diverse body fluids, which
contain numerous biological molecules (DNAs, RNAs, and
proteins). Recently, liquid biopsy has been developed as a novel,
non-invasive diagnosis method to explore tumor development
(Sheridan, 2016).

MicroRNAs (miRNAs) processed by exosomes could be
detected by liquid biopsy (Iranifar et al., 2019). miRNAs are
a group of non-coding RNAs, which regulate gene expression
at the post-transcriptional and translational levels (Inamura,
2017). Dysregulation of miRNA expression is related to the
progression of lung adenocarcinoma. Besides, Nadal et al. (2014)
have demonstrated that different morphological subtypes of
lung adenocarcinoma have specific miRNA expression profiles,
for instance, miR-212-3p, miR-132-5p, and miR-27a-3p are
found significantly upregulated in adenocarcinomas with solid
subtype. A mass of miRNAs play important roles in the process
of lung cancer pathogenesis and are recognized as potential
diagnostic biomarkers and tumor targeted therapeutic molecules
(Inamura, 2017).

As a well-studied, common cancer, lung cancer maintains
the leading cause of cancer-specific death around the world.
Adenocarcinoma accounts for nearly half of all lung cancer types,
remaining the most common histologic subtype (Travis et al.,
2011; Rosell and Karachaliou, 2018). Although the development
of new therapies has significantly improved the prognosis of
patients with lung adenocarcinoma, the 5-year survival rate
remains low (less than 16%) (Crino et al., 2010).

To evaluate the discriminative ability of miRNAs from whole
plasma, EV, and EV-free plasma, we analyzed the miRNA
expression profiles in whole plasma, EV, and EV-free plasma
of lung adenocarcinoma and granuloma patients. The same
feature selection method, Monte-Carlo feature selection and the
same rule learner, Repeated Incremental Pruning to Produce
Error Reduction (RIPPER), were applied in the three miRNA
expression datasets for lung adenocarcinoma and granuloma
patients. The prediction performances and classification rules
of whole plasma, EV, and EV-free plasma were compared and
analyzed. Our results suggested that the prediction performance
of EV miRNAs was better than EV-free plasma miRNAs. What’s
more, we identified EV specific miRNA expression pattern in
lung cancer. These results supported the usage of EV miRNAs as
lung cancer biomarkers but the whole plasma achieved a better
prediction performance. The utilization of EV biomarkers still
has a long way to go.

MATERIALS AND METHODS

The MicroRNA Expression Profiles in
Whole Plasma, EV, and EV-Free Plasma
We downloaded the processed miRNA expression profiles
in whole plasma, EV, and EV-free plasma of 10 lung

adenocarcinoma patients and the miRNA expression profiles in
whole plasma, EV and EV-free plasma of 9 granuloma patients
from GEO (Gene Expression Omnibus) under accession number
of GSE71661 on August 30, 2018. The expression levels of
miRNAs were measured with next generation sequencing using
Illumina HiSeq 2500. The reads were mapped onto known
human miRNA in miRbase Release 21 using Blast and Bowtie.
The mapped reads were normalized with the total number of
reads. In each miRNA dataset of whole plasma, EV, and EV-free
plasma, there were 10 lung adenocarcinoma and 9 granuloma
patients; there were 1,509 miRNAs. The downloaded miRNA
profiles were provided in Supplementary Table S1.

To systematically compare the miRNA expression difference
between lung adenocarcinoma and granuloma patients, whole
plasma, EV, and EV-free plasma were analyzed separately. Our
goal was to compare their prediction performance and unique
expression of miRNAs.

Key MicroRNAs in Whole Plasma, EV,
and EV-Free Plasma Identified With
Monte-Carlo Feature Selection
Since there were 19 samples and 1,509 miRNA features in
whole plasma, EV, and EV-free plasma dataset, the number
of features was much greater than the sample size. If we
use all miRNAs to build the classification model, all samples
will be perfectly classified. But it will be overfitting and
will have no actual meanings. Therefore, we adopted the
Monte-Carlo feature selection (Draminski et al., 2008) to
identify the key miRNA features and then used these few
key features to construct the classification model. The Monte-
Carlo feature selection method has been widely used and has
achieved great performance in many fields (Chen et al., 2018c,e;
Pan et al., 2019).

The Monte-Carlo feature selection method will randomly
choose several features multiple times and then construct a
series of tree classifiers (Chen et al., 2018a; Pan et al., 2018b;
Wang et al., 2018). Based on the frequency and classification
accuracies of the feature nodes on these classification trees,
each feature will be assigned with a relative importance.
Intuitively speaking, if a feature has been selected many times
to construct the classification tree, it is important as the
classification tree will find the most discriminative features
to be the nodes.

Let’s denote the total number of miRNA features with d, i.e.,
1,509 in this study. m miRNA features (m�d) will be randomly
selected and be used to construct t classification trees for s times.
Each of the t trees was trained and tested based on the training
and test patient samples randomly divided from the full dataset.
Therefore, s · t classification trees will be constructed. Based on
how many times a miRNA feature g has been selected by these
s · t trees and how much this miRNA feature g has contributed to
the classification of the s · t trees, its relative importance (RI) can
be calculated:

RIg =

st∑
τ=1

(wAcc)u
∑
ng(τ )

IG
(
ng(τ )

) (no · in ng(τ )

no · inτ

)v
(1)

Frontiers in Genetics | www.frontiersin.org 2 April 2019 | Volume 10 | Article 367311

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00367 April 25, 2019 Time: 16:15 # 3

Chen et al. MicroRNA Signatures for Lung Adenocarcinoma and Granuloma

FIGURE 1 | The heatmaps of top 10 microRNAs in whole plasma, EV, and EV-free plasma. (A) For whole plasma, there were two miss clustered cancer patients;
(B) for EV, there was one miss clustered granuloma patient; (C) for EV-free plasma, the cluster pattern was not clear.
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FIGURE 2 | The Venn Diagram of the top 10, 15, and 20 discriminative microRNAs in whole plasma, EV and EV-free plasma. (A) The overlap among the top 10
microRNAs. There was only one overlapped microRNA between whole plasma and EV. The overlap microRNA was hsa-miR-5010-5p. (B) The overlap among the
top 15 microRNAs. (C) The overlap among the top 20 microRNAs.

where wAcc is the weighted classification accuracy of decision
tree τ , IG(ng(τ )) is the information gain of node ng(τ ), which
is a decision rule using the expression levels of miRNA feature
g, (no · in ng(τ )) is the number of samples under node ng(τ ),
(no · in τ ) is the number of samples in decision tree τ , u, and
v are adjust parameters.

By analyzing the s · t classification trees, each miRNA feature
will be assigned with a RI and will be ranked decreasingly.

The Monte-Carlo feature selection method was applied using
the dmLab software (Draminski et al., 2008) downloaded from
http://www.ipipan.eu/staff/m.draminski/mcfs.html.

Classification Rules for Lung
Adenocarcinoma and Granuloma in
Whole Plasma, EV, and EV-Free
Plasma Learned With RIPPER
Repeated Incremental Pruning to Produce Error Reduction is a
widely used method to learn the classification rules (Cai et al.,
2018; Chen et al., 2018a,c,e,f; Pan et al., 2018a). Since we want
to evaluate the prediction performance objectively, we did the
10-fold cross-validation for three times and combined the three-
time results. In each cross validation (Wang et al., 2017; Zhang
et al., 2017; Chen et al., 2018b,d; Li et al., 2018), the samples
were randomly divided into 10 parts and each part was used
as test dataset for once. After 10 rounds, all samples have been
tested. As the random splits of data may cause bias, we repeated
the 10-fold cross-validation for three times. In this study, the
lung adenocarcinoma patients and granuloma patients were
treated as positive samples and negative samples, respectively.
We used weighted accuracy to evaluate the RIPPER prediction

performance, i.e., the average of the accuracies of positive samples
and negative samples.

RESULTS

The Discriminative MicroRNAs Between
Lung Adenocarcinoma and Granuloma
Patients in Whole Plasma, EV, and
EV-Free Plasma
The miRNA expression profiles of lung adenocarcinoma
and granuloma patients in whole plasma, EV and EV-free
plasma were analyzed separately. In whole plasma, the top
10 discriminative miRNAs were hsa-miR-223-3p, hsa-miR-
501-5p, hsa-miR-130b-3p, hsa-miR-5010-5p, hsa-miR-330-5p,
hsa-miR-378f, hsa-miR-3158-3p, hsa-miR-542-3p, hsa-miR-
183-5p and hsa-miR-942-5p. In EV, the top 10 discriminative
miRNAs were hsa-miR-23b-3p, hsa-miR-548ac, hsa-miR-
3126-3p, hsa-miR-15b-5p, hsa-miR-205-5p, hsa-miR-5010-5p,
hsa-miR-331-5p, hsa-miR-1249-3p, hsa-miR-548c-5p, and
hsa-miR-1827. In EV-free plasma, the top 10 discriminative
miRNAs were hsa-miR-511-3p, hsa-miR-376a-3p, hsa-miR-
3150b-3p, hsa-miR-3150b-5p, hsa-miR-3168, hsa-miR-98-5p,
hsa-miR-3136-5p, hsa-miR-210-5p, hsa-miR-340-3p, and hsa-
miR-636. Figure 1 shows the heatmaps of the top 10 miRNAs
in whole plasma, EV and EV-free plasma. The miRNAs and
patients were clustered using ward D2 method (Murtagh and
Legendre, 2014) based on Euclidean distance. The R package
pheatmap1 was applied to plot the heatmaps. It can be seen

1https://CRAN.R-project.org/package=pheatmap
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from Figure 1 that for whole plasma, there were two miss
clustered cancer patients; for EV, there was one miss clustered
granuloma patient; for EV-free plasma, the cluster pattern was
not clear. The miRNAs in EV-free plasma were not suitable as
cancer biomarkers.

We plotted the Venn Diagram of the top 10 discriminative
miRNAs in whole plasma, EV and EV-free plasma in Figure 2A.
There was only one overlapped miRNA between whole plasma
and EV. The overlap miRNA was hsa-miR-5010-5p. It can
be seen that the miRNA expression pattern was different in
whole plasma, EV and EV-free plasma. It was necessary to
investigate which blood compartments should be used for
biomarker discovery.

To investigate whether the overlap pattern would change when
more miRNAs were analyzed, we plotted Venn Diagrams of
the top 15 and top 20 miRNAs as Figures 2B,C, respectively.
There was still no overlap among the whole plasma, EV and
EV-free plasma. The overlap between whole plasma and EV
became larger when more top miRNAs were included but the
overlap between EV and EV-free plasma remained to be one no
matter whether the top 15 or 20 miRNAs were analyzed. The EV
miRNAs were more similar with the whole plasma miRNAs than
the EV-free plasma miRNAs.

The Prediction Accuracies of MicroRNA
Signatures for Lung Adenocarcinoma
and Granuloma Patients in Whole
Plasma, EV, and EV-Free Plasma
We evaluated the prediction accuracies of miRNA signatures for
lung adenocarcinoma and granuloma patients in whole plasma,
EV and EV-free plasma with 10-fold cross validations. To avoid
the bias of random splits of samples, we repeated the 10-fold
cross validation for three times. Therefore, the samples size in the
confusion matrix will be the original sample size 19 multiplied
by 3 which was 57.

The confusion matrices of miRNA signatures in whole
plasma, EV and EV-free plasma were given in Table 1. The
weighted accuracies using whole plasma, EV and EV-free
plasma miRNA data were 77.22, 65.19, and 64.82%, respectively.
The EV miRNAs performed better than the EV-free plasma
miRNAs. The accuracy of granuloma in EV-free plasma, 29.63%,
was extremely low.

The Classification Rules in Whole
Plasma, EV, and EV-Free Plasma
With the RIPPER method, we learned the classifications of
miRNA expression levels in whole plasma, EV and EV-free
plasma. These rules were given in Table 2. In whole plasma,
granuloma patients did not express hsa-miR-223-3p while the
lung adenocarcinoma patients expressed hsa-miR-223-3p. In
EV, the hsa-miR-23b-3p was highly expressed in granuloma
patients but not lung adenocarcinoma patients. In EV-free
plasma, hsa-miR-376a-3p was expressed in granuloma patients
but barely expressed in lung adenocarcinoma patients. We
compared the mean expression levels of hsa-miR-23b-3p in
whole plasma cancer, whole plasma granuloma, EV cancer TA
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TABLE 2 | The RIPPER rules in whole plasma, EV and EV-free plasma.

Whole plasma EV EV-free plasma

Granuloma hsa-miR-223-3p <= 0 Granuloma hsa-miR-23b-3p >= 210.43 Granuloma hsa-miR-376a-3p >= 4.50

Adenocarcinoma Others Adenocarcinoma Others Adenocarcinoma Others

and EV granuloma. We found that in EV, hsa-miR-23b-3p
was more highly expressed in granuloma than cancer with
a fold change of 1.82, while in whole plasma, hsa-miR-23b-
3p was more lowly expressed in granuloma than cancer with
fold change of 0.84. What’s more, we compared the mean
expression levels of hsa-miR-376a-3p in EV-free plasma as well.
We found that in EV-free plasma, the mean expression levels
of hsa-miR-376a-3p in cancer and granuloma were 0 and 10.30,
respectively, while in whole plasma, the mean expression levels
of hsa-miR-376a-3p in cancer and granuloma were 1.45 and
0, respectively. The expression pattern between EV or EV-free
plasma and whole plasma were different. These results suggested
it was necessary to measure the EV, EV-free plasma and whole
plasma, separately.

hsa-miR-223-3p was reported to have an increased expression
in H. pylori-infected gastric cancer patients, which was related to
progressive proliferation and migration of cancer cells (Ma et al.,
2014; Wang et al., 2015). Thus, in plasma, the expression of hsa-
miR-223-3p in granuloma patients would not be as high as in
cancer patients.

Zhou et al. (2015) found that cancer patients with higher
expression of has-miR-23b had better outcomes then those with
lower expression. In our study, we found that has-miR-23b-3p
had higher expression in granuloma patients compared to in lung
adenocarcinoma patients.

Joerger et al. (2014) reported that hsa-miR-376a was
insensitive to perturbations in advanced non-small cell lung
cancer patients. We found has-miR-376a-3p had a higher
expression in granuloma patients, while its expression was very
low in lung adenocarcinoma patients.

DISCUSSION

We identified the discriminative miRNAs in different blood
compartments, such as hsa-miR-501-5p and hsa-miR-130b-3p
in plasma; hsa-miR-548ac in EV and hsa-miR-511-3p in EV-
free plasma.

hsa-miR-501 has been proven to have an association with
clear cell renal cell carcinoma (Liu et al., 2018), pancreatic ductal
adenocarcinoma (Liao et al., 2018), cervical cancer (Guo et al.,
2018) and so on. Besides, they all found upregulation of has-miR-
501 enhances tumor cell proliferation, migration and invasion.

hsa-miR-130b-3p is a novel miRNA in lung cancer, we
found hsa-miR-130b-3p are upregulated in the plasma of lung
cancer patients, which would be applied as a new biomarker to
distinguish cancer and granuloma, and further guide therapeutic
decisions clinically.

As for hsa-miR-548, Liu et al. (2015) investigated hsa-miR-548
expression in fresh tumor tissues from 22 patients with primary

non-small cell lung cancer via RT-PCR and they found that the
hsa-miR-548 expression level was significantly higher (p < 0.01)
in adjacent non-tumor tissues than that in the tumor. That is,
non-small cell lung cancer would down-regulate the expression
of hsa-miR-548. Furthermore, they also observed that hsa-miR-
548 was involved in the migration and invasion of non-small cell
lung cancer cells by targeting the AKT1 signaling pathway.

For hsa-miR-511-3p, it has been reported to be related to
lung adenocarcinoma by triggering BAX (Zhang et al., 2014) and
TRIB2 (Zhang et al., 2012).

As for the diagnostic value, plasma is the most valuable,
followed by EV and EV-free plasma. Previous studies have
demonstrated that exosomes can be used as a type of novel
biomarker for tumors and some benign diseases (Principe
et al., 2013; Vella et al., 2016). Considering the diagnostic
value of testing plasma is better than testing exosomes
in plasma, many useful information may be missed when
only exosomes in plasma were tested. The reasons are as
follows: (1) Methods like OptiPrepTM density-based separation
(DG-Exos), ultracentrifugation (UC-Exos), and immunoaffinity
capture using anti-EpCAM-coated magnetic beads (IAC-Exos)
are not effective enough to isolate exosomes and may destroy
exosomes during the isolation process (Greening et al., 2015);
(2) exosomes are not stable and are easily degraded, which could
cause a bias (Kumar et al., 2018).

Since the sample size of this study was limited, the results
should be validated in an independent large cohort. Another
factor that may have affected the results was the disease type.
For lung adenocarcinoma, the results were like this. But for
other diseases, which release a large amount of RNAs and
proteins into the circulatory system directly, the importance of
exosome may decrease.

CONCLUSION

Extracellular Vesicle is a promising technology for non-invasive
diagnosis. miRNAs processed by exosomes can be detected
by liquid biopsy and used as biomarkers. To evaluate the
discriminative ability of miRNAs from whole plasma, EV and
EV-free plasma, we analyzed the miRNA expression profiles in
whole plasma, EV and EV-free plasma of lung adenocarcinoma
and granuloma patients. We found that the top discriminative
miRNAs in whole plasma, EV and EV-free plasma were
quite different, and the classification rules also varied. The
prediction performance of whole plasma was the best but the EV
outperformed EV-free plasma. Our results suggested that EV can
be used as a lung cancer biomarker but EV may be less stable or
difficult to detect than whole plasma, therefore, the whole plasma
was still a good choice as lung cancer signatures.
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Quantifying or labeling the sample type with high quality is a challenging task, which

is a key step for understanding complex diseases. Reducing noise pollution to data

and ensuring the extracted intrinsic patterns in concordance with the primary data

structure are important in sample clustering and classification. Here we propose an

effective data integration framework named as HCI (High-order Correlation Integration),

which takes an advantage of high-order correlation matrix incorporated with pattern

fusion analysis (PFA), to realize high-dimensional data feature extraction. On the one

hand, the high-order Pearson’s correlation coefficient can highlight the latent patterns

underlying noisy input datasets and thus improve the accuracy and robustness of the

algorithms currently available for sample clustering. On the other hand, the PFA can

identify intrinsic sample patterns efficiently from different input matrices by optimally

adjusting the signal effects. To validate the effectiveness of our new method, we firstly

applied HCI on four single-cell RNA-seq datasets to distinguish the cell types, and we

found that HCI is capable of identifying the prior-known cell types of single-cell samples

from scRNA-seq data with higher accuracy and robustness than other methods under

different conditions. Secondly, we also integrated heterogonous omics data from TCGA

datasets and GEO datasets including bulk RNA-seq data, which outperformed the other

methods at identifying distinct cancer subtypes. Within an additional case study, we

also constructed the mRNA-miRNA regulatory network of colorectal cancer based on

the feature weight estimated from HCI, where the differentially expressed mRNAs and

miRNAs were significantly enriched in well-known functional sets of colorectal cancer,

such as KEGG pathways and IPA disease annotations. All these results supported that

HCI has extensive flexibility and applicability on sample clustering with different types and

organizations of RNA-seq data.

Keywords: high–order, integration, clustering, single-cell, bulk data analysis
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INTRODUCTION

Cells, the fundamental unit in biology, can be distinguished
by their size and shape using a microscope. Later, advanced
technological developments have made it possible to isolate a
large number of cells, and along with improvements in RNA
isolation and amplificationmethods, next-generation sequencing
technologies are used to profile the transcriptome of individual
cells. Single-cell RNA sequencing (scRNA-seq) now allows for
omics analysis of individual cells, which can expose exciting
biological processes, novel medical insights and efficient clinical
applications (Dunham et al., 2012; Kolodziejczyk et al., 2015;
Wagner et al., 2016). The advances in single-cell technologies
have led to more comprehensive studies for multicellular
organisms than previous approaches. Recently, 10X Genomics
could release a single-cell dataset of more than 1.3 million cells
(2017)1. With the production of large amount of single-cell data,
understanding the development of an organic organ requires
to characterize all of its cell types, so that, it is important to
quantify single-cell cell types with high quality. Conventionally,
one key application of scRNA-seq is to cluster cell types
based on cells’ transcriptome profiles through unsupervised
computational methods (Lloyd, 1982; Jaitin et al., 2014; Mahata
et al., 2014; Grün et al., 2015; Kiselev et al., 2017; Jiang et al., 2018;
Shi et al., 2018; Dai et al., 2019). These approaches in recently
published studies show some good performances in determining
different cell types (Xue et al., 2013; Patel et al., 2014; Pollen
et al., 2014; Shalek et al., 2014). SAFE-clustering (Yang Y. et al.,
2018) can take as input results from multiple clustering methods
and scmap (Kiselev et al., 2018) can compare clusters across
data sets without merging. RaceID (Grün et al., 2015) augments
k-means to identify rare cell types by detecting outliers, but k-
means faces the problem of global solution. Meanwhile, SC3
(Kiselev et al., 2017) adopts repeated application of k-means
using a small subset of principal components or different initial
conditions and finding the consensus clusters. SC3 is a user-
friendly clustering method that works well for smaller datasets.
However, it takes too long in terms of computation time because
of amount of calculating correlation matrix of cells. Besides,
CIDR (Lin et al., 2017) adapts hierarchical clustering (HCA) for
single-cell datasets by adding an implicit imputation of zeros
into the distance calculation. But, an important shortcoming of
hierarchical clustering is that it is prohibitively expensive for large
datasets. Therefore, themore efficient and accurate method is still
urgently needed to cluster cell types.

At the same time, large amounts of bulk data have already
become widely available resources along with rapid development
of high throughput technologies. To take full advantage of
these rich data sets, integrating multiple datasets will give
more opportunities to address biological dynamics and cancer
heterogeneity (Hamid et al., 2009; Wang et al., 2014). Some
integrationmethods have been developed in recent years, such as:
iClusters, SNF, NMF, and PFA (Zhang et al., 2011; Mo et al., 2013;
Mahata et al., 2014; Wang et al., 2014; Shi et al., 2017). However,
there are still several limitations of these approaches. For

110X Genomics single cell gene expression datasets from https://support.

10xgenomics.com/single-cell-gene-expression/datasets

example, iClusterPlus is based on Gaussian assumption, which
could not make sense when data is too heterogeneous on signal
distributions. And recently developed pattern fusion analysis
(PFA) can integrate multidimensional data (Shi et al., 2017) so
as to provide a comprehensive way to understand biological
processes and complex diseases in a multi-view manner. In
theory, PFA can align local sample-patterns derived from each
single data type into a global sample-pattern to characterize the
sample types in a low-dimensional feature space, so that, it is
expected that PFA can model the sample types (i.e., cell types)
when using scRNA-seq. However, the original PFA is designed for
multi-source data rather than only one source data, in addition to
insufficient analysis on the sample features. Thus, it is required to
extend the original PFA to sample clustering even for one source
data by a unified integration framework.

To overcome above challenges, we proposed a unified
computational framework for distinguishing single-cell cell types
from single-cell RNA-seq data, which also keeps the ability
for clustering sample types from bulk RNA-seq data. The new
method named as HCI (High-order Correlation Integration),
can integrate joint high-order correlation matrices, where the
iterative use of Pearson’s correlation coefficient in sample data
are incorporated into our previously developed pattern fusion
analysis method (PFA) (Shi et al., 2017). Technically, HCI
integrates single-cell data sets and different distance matrices
corresponding to different sample correlation feature spaces (i.e.,
the distance between the cells) by joint matrix factorizations.

On the one hand, HCI has been compared with other
existing methods [i.e., SC3 (Kiselev et al., 2017) and SEURAT
(Macosko et al., 2015)] for identifying cell types on various
single-cell RNA-seq data. And the robustness of HCI was also
tested in different correlation orders (e.g., one-order, second-
order, different percentage of differentially expressed genes).
Furthermore, a case study was conducted by HCI on a scRNA-seq
dataset of Diabetes, which successfully clustered the ambiguous
cells unassigned in previous study. On the other hand, HCI
was also applied to analyze bulk RNA-seq data as previous
PFA, e.g., bulk RNA-seq and other omics data (Schuster, 2008).
By comparing HCI with the original PFA on three datasets
with multiple data types (e.g., gene expression and miRNA
expression), it is found that HCI can improve computational
efficiency of sample clustering and can recognize gene regulatory
networks in an accurate and reliable manner (Joung et al., 2007;
Tran et al., 2008; Hamid et al., 2009; Peng et al., 2009).

Totally, HCI can not only cluster cell types with scRNA-seq
data in an efficient way, but also capture biologically meaningful
sample types as well as extracting network modules with bulk
RNA-seq data or other omics data. It provides a new and general
way to detect the sample-specific characteristics from the high-
order correlation information in an integration manner.

MATERIALS AND METHODS

HCI pipeline schematically is shown in Figure 1. Input is the
expression matrix M where columns correspond to cells or
samples and rows correspond to genes or molecules, e.g., each
element of X corresponds to the expression of a gene in a given
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cell. The analysis procedure of HCI can be summarized as several
steps in follows.

Pre-processing
The gene filtering removes genes with zero expressions in all cells
(or samples), which are not informative for the cell clustering.
And, the normalization for each column data is carried to
maintain the feature stability of each cell or sample. Then, we can
get a filtered expression matrix X.

High-Order Correlation Matrix
Construction
We firstly calculate F1, the correlation of the gene expression
profiles Xm·n, in which the expressions of m genes are measured
for n samples and xkj denotes the expression level of gene k in
sample j , the correlation of sample i and j can be calculated by the
Pearson correlation coefficient (Rodgers and Nicewander, 1988):

f
(1)
ij =

∑n
k=1(xki − x−i)(xkj − x−j)

√

∑n
k=1(xki − x−i)2

√

∑n
k=1(xkj − x−j)2

(1)

where xki and x−i are the expression level of gene k and
the average gene expression level of sample i, respectively.
Similarly, xkj and x−j are the expression level of gene k and the
average gene expression level of sample j, respectively. Thus,
we can obtain a correlation matrix F1n·n of X in which f 1i·j is its

element measuring the correlation coefficient between sample i
and sample j. Now, based on the matrix F1n·n, we can further
calculate F2n·n as follows:

f
(2)
ij =

∑n
k=1

(

f
(1)
ki

− f
(1)
−i

) (

f
(1)
kj

− f
(1)
−j

)

√

∑n
k=1

(

f
(1)
ki

− f
(1)
−i

)2
√

∑n
k=1

(

f
(1)
kj

− f
(1)
−j

)2
(2)

F1n·n is called as the first-order correlation matrix of X, and F2n·n
is the second-order correlation matrix of X. The advantage of
this transformation with expression matrixX can highlight latent
structures between samples with noisy (Hubert, 1985; Ren et al.,
2013). In fact, we also investigated the other kind of distance
matrix by using other method, such as Spearman correlation,
however, F2n·n is similar to F1n·n due to its consideration on
element rank rather than element value in matrices. Cleary, the
higher-order correlation matrix can be constructed in a similar
way. Therefore, in this paper, we only use the Pearson metrics to
construct our high-order correlation matrices. Noted, such high-
order matrix can enhance the sample clustering performance. In
our prior analysis, the clustering accuracy increased quickly on
the first-order correlation features, and it almost approached the
highest on the second-order correlation features and tended to
be saturated when the order further increased. Without loss of
generality, we only used the first-order matrix and the second-
order matrix to incorporate into HCI in this work.

Correlation Matrix Induced Pattern Fusion
Analysis (PFA)
The input data X has m rows and n columns, and matrices F1n·n
and F2n·n have n rows and n columns. We integrated these three

input datasets by pattern fusion analysis. This methodology has
been proved and evaluated in previous work (Shi et al., 2017), and
the key steps used in our work are as follows:

The first step is to obtain the optimal local information sets of
Ui,Yi, which requires to minimize the error Ei as follows:

min ‖ Ei ‖= minci ,U i ,Y i ‖ Wi − (ci1T + U iY i) ‖2F (3)

where Wi is the input data sets X, F1n·n, F
2
n·n, and F is the

Frobenius norm. Then, we have











U i = Qi
di

Y i =
(

U i
)T (

Wi − ci1T
)

ci = Wi1
n

(4)

where Qi
di

is an orthogonal matrix formed by the eigenvectors

corresponding to the first di largest eigenvalues of (Wi −

ci1T)(Wi − ci1T)T . It is important noted that the sensible default

values di of matrix X is chosen according to
di

∑

r=1δr/
p

∑

r=1δr ≥

0.8 and di is the r largest eigenvalues of (Wi − ci1T)(Wi − ci1T)T

and the number of the non-zeros eigenvalues is p . Meanwhile,
the di-dimension of matrix F1n·n and F2n·n is chosen according to

di
∑

r=1δr/
p

∑

r=1δr ≥ 0.9 due to their different feature dimensions
with X.

And then, the adaptive optimal alignment is used to capture
the global sample-pattern matrix Y. The detailed adaption
method can be seen in the original study (Shi et al., 2017), and
the related parameters can be easily adjusted by the user.

Sample Clustering and Cluster Number
Estimation
The global sample-spectrum Y obtained in the above step
instead of conventional data matrix X can be clustered by many
clustering methods, such as K-means or HCA. In this paper, K-
means clustering (Ding and He, 2004) is performed on the global
sample-spectrum matrix Y by using the “kmeans()” MATLAB
function.

The ratio of distance between clusters (RDC) is calculated to
estimate the number K of clusters. One hundred realizations of
the sample clustering used K-means clustering. The number K of
clusters is inferred by the average RDC number [K =min (K, the
average RDC’s slope is nearly 0)]. The RDC can be calculated as:

RDC =
Din

Dout
(5)

where Din is the average sample distance in clusters; Dout is the
average sample distance between clusters.

Since the reference labels of cells or samples are already
known for all published datasets, the Adjusted Rand Index (ARI)
(Hubert, 1985) is applied to calculate the similarity between
the HCI clustering results and prior-known clusters, which
can be further used to evaluate HCI and other methods [e.g.,
SC3 (Kiselev et al., 2017), PFA, one-order, second-order, and
CV situations].

Frontiers in Genetics | www.frontiersin.org 3 April 2019 | Volume 10 | Article 371320

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Tang et al. High-Order Correlation Integration

FIGURE 1 | HCI framework of high-order correction matrices based on pattern fusion analysis Overview of single-cell clustering with HCI framework (see section

Materials and Methods).

Molecular Network Construction for Case
Study on Bulk RNA-seq Data
The multi-level network is integratively constructed by using
HCI schematically shown in Figure 4A. In the same way, we
calculated the high-order matrices F1n·n and F2n·n of the input
datasets XI (e.g., RNAseq, Methylation, MicroRNA), where n
is number of samples in data. And then we integrated all
input datasets XI and high-order correlation matrices F1I , F

2
I

by using pattern fusion analysis method. Based on the global
sample-spectrummatrixY, we can get the differentially expressed
mRNAs (or miRNAs) from heterogeneous genomic datasets
according to the coefficient matrix UI∗ . In this work, we
calculated a coefficient of variation for each element on the rows
of UI∗:

ci =
δi

µi
(6)

where µi is the average weight of mRNA i (or miRNA i) in UI∗ ,
and δi is the standard deviation. We can define differentially
expressed mRNA (or miRNA) i if ci is greater than a given
threshold T, and they called DEGs (or DE-miRNAs).

Besides, we also performed functional enrichment analysis
for genes by Gene Ontology and KEGG. We also analyzed
DEGs using Ingenuity Pathway Analysis (IPA), providing
the association between a particular gene set and known
functions, pathways, networks and associated diseases. An online
database miRDB was used for miRNA target prediction and
functional annotations.

We defined key genes that significantly enriched in cancer
dependent on KEGG, GO and IPA analysis. We found the key

genes in the DEGs, which can be linked and correlated by the
combined functional couplings of protein-protein interactions of
STRING. MicroRNAs which can regulate key DEGs were defined
as key miRNAs (degree s > 80) (Hu et al., 2018). Cytoscape
was used to reconstruct and visualize gene-gene and miRNA-
gene network.

RESULTS

Performance Comparison and Robustness
Evaluation
To demonstrate the performance of HCI on the single-cell
datasets, we firstly downloaded four publicly available scRNA-Seq
datasets (Figure 2A) (Yan et al., 2013; Deng et al., 2014; Wang
et al., 2016; Xin et al., 2016). These datasets were selected on
the basis that one can be highly confident on the cell labels as
representative cells from different stages, conditions and lines.
In order to quantify the similarity between the reference cell
types and the clusters obtained by HCI or other comparable
methods. We calculated the average ARI of the clustering
results (Figure 2D, Figure S1) and estimated cluster number K
according to RDC by running K-means 100 times (Figure 2C).
Obviously, high-order correlation matrices incorporated into
PFA actually improves both the accuracy and the stability of
analysis solutions. We found that the accuracy was significantly
improved compared with the one-order correlation matrix (only
using F1I ) or the second-order matrix (only using F2I ) according
to the ARI and the RDC (Figures 2B,D). Besides, in order to
determine the robustness as a consistent performance under
different conditions, the same analysis on four datasets were both
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FIGURE 2 | Accuracy and robustness evaluation (A) A brief introduction of four published datasets used in HCI. N is the number of cells in a dataset; K is the number

of clusters originally identified; Units: FPKM is Fragments Per Kilobase of transcript per Million mapped reads, CPM is Counts of per Million mapped reads. (B)

Number of clusters K predicted by HCI, One-order situation, Second-order situation, 80% CV used and 60% CV used for all datasets. Ref is the cell cluster reported

in previous studies and used as reference of comparison among HCI, One-order situation, and Second-order situation. (C) RDC was applied 100 times in global

sample-pattern matrix Y to each dataset. The solid lines correspond to the value of each RDC calculation. The dashed black lines correspond to the average of these

solid lines. Y-coordinate in each graph represents the RDC value and the x-coordinate represents the number of cluster K. The star indicates K which we choose (see

methods). (D) The mean and standard deviation of ARI in four datasets by running k-means 50 times separately in different situations.

repeated 50 times under different systematic conditions (e.g.,
60% CV genes or 80% CV genes used) respectively, where CV
genes mean ones with largest expression variances. Similarly,
the performance of HCI under different correlation matrices or
conditions was better (i.e., robust) than other methods according
to the ARI and the RDC (Figures 2B,D, Figure S1). Overall,
HCI always outperformed compared methods on distinguishing
single-cell types.

Comparison of Sample-Cluster
Identification With One-Level Data
We applied HCI and SC3 method to the above four datasets for
evaluation and comparison on the cell clustering. We calculated
the cluster number K and the running time in each individual
dataset by using the R package of SC3 (Kiselev et al., 2017).
On the one hand, as shown in Table 1, HCI performs better
than SC3 across almost all datasets in estimating the number
K of clusters (except for similar performance on Deng dataset).
On the other hand, the running time of 2,000 cells for SC3 is
more than 1 h. By contrast, the running time of HCI for 2,000

TABLE 1 | The estimation of K compared with SC3 on real datasets.

yan deng diabetes1 diabetes2

Ref 7 10 6 4

cPFA 6 7 5 or 6 4

SC3 6 9 11 13

cells is <10min as shown in Table 2. It is worth noted that
HCI can even apply to large datasets, such as: 10k datasets from
10x genomics, with more than 10,000 cells by using MATLAB
efficiently (Table 2, Figure S2). From these results, we included
that, HCI has better performance than SC3 because it considers
the high-order correlation information, and integrates this
potential heterogeneous information by our PFA framework well.

Case Study on the scRNA-seq Data of
Diabetes
We then applied HCI to a diabetes scRNA-seq data (Wang
et al., 2016) with 430 annotated cells belonging to six cell types,
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TABLE 2 | The running time compared with SC3 on real datasets.

yan deng diabetes1 diabetes2 brain 10x

N cells 90 259 430 1,600 3,003 10,000

cPFA 5 s 18 s 31.85 s 5.8min 16.4min 3.1 h

SC3 7.33min 18min 29.67min 101.18min 98min 4 h (no result)

where 205 ambiguous cells previously unassigned. For the 430
annotated cells, the RDC of HCI suggested that K is 5 or
6 (Figures 2B,D), provides the reasonable cluster number of
cells. When we applied HCI to the whole cells included 430
annotated cells and 205 dropped cells, the results suggested
that the K is 7. Obviously, there are potential new cell types
included, and we found there were 27 annotated mesenchymal
cells in the ambiguous cells. This result also showed that the
other ambiguous cells can be clustered well in seven cell types
separately (Figure 3A). Besides, the other methods (e.g., tSNE,
HCA) were used to visualize the clusters of these dropped
cells (Figure 3). As a control to this analysis, one well-known
scRNA-seq analysis method SEURAT (Macosko et al., 2015) was
also applied. As the results shown (Figure S3), HCI performed
better than these traditional methods on distinguishing cell types.
Noted, cluster dendrogram of global sample-pattern matrices Y,
F1, and F2 are shown in Figure S4 for illustrating the influence of
HCI on information integration.

In addition, marker genes are particularly useful since they
can usually uniquely indicate a cell cluster, e.g., α-cells with
high expression on IRX2 and ARX. To further interpret the
biological meaning of HCI based cell clustering, we applied the
50 key marker genes of the annotated cell types to categorize
the previously dropped cells which had been clustered well
by HCI now. The violin plot shown the expression level of
IRX2 and ARX are significantly high in alpha cells previously
identified and also in alpha-dropped cells newly clustered by
HCI (Figure S5). Furthermore, it was observed a high degree
of expression similarity between annotated cells and their
corresponding clustered-dropped cells in these key markers
(Figures S6, S7). Together with these results, we concluded that
HCI is able to identify new cell types with high accuracy and
biological significance.

Comparison of Sample-Cluster
Identification With Multi-Level Data
To demonstrate the effectiveness of HCI inherited from PFA for
integrating multi-level datasets, we applied HCI to three cancer
omics datasets, two from the TCGA Data Portal included kidney
renal clear cell carcinoma (KIRC) and Adrenocortical carcinoma
(ACC), and one from the GEO (Colorectal cancer) (Sayagués
et al., 2016). For the two TCGA data, the gene expression, miRNA
expression and DNA methylation profiles were prepared in a
similar way as those in Shi et al. (2017). As for the Colon cancer,
the gene expression and miRNA expression were obtained,
and we removed those mRNAs or miRNAs if they have more
than 80% zero expression values across all samples. Then these

datasets with 122 patients in KIRC, 79 in ACC and 51 in colon
cancer were prepared, respectively (Figure 4B).

After carried on HCI and PFA on these datasets, respectively,
we compared their results according to the RDC, which show that
that HCI indeed performs better in terms of accuracy of cluster
quality across datasets (Figures 4C–E). In this comparison, the
heterogeneity factors including different complex conditions,
varying data resources and dissimilar samples size would provide
strong evidences to support the ability of HCI on identifying
clinically relevant disease subtypes and predicting network
modules involved in complex diseases (Zhang et al., 2011;
Zang et al., 2016).

Case Study on the Matched mRNA and
miRNA Data of Colorectal Cancer
Finally, we carried on a case study again on colorectal cancer
data, especially providing the integrated mRNA-miRNA network
according to the global sample-spectrum matrix Y. Firstly,
the HCI results suggested that the normal (9 samples) and
disease (42 samples) can be clustered into two discriminative
groups (Figure 5A). Then, 6,930 differentially expressed genes
and 2,976 differentially expressed miRNAs were obtained. By
functional enrichment analysis on these differentially expressed
genes with GO BP terms, KEGG pathways and IPA annotations,
all significant physiological system development, function terms,
disease and networks are listed in Tables S1, S2. We found
that there are 2,289 genes (nearly 33% DEGs) are significantly
correlated with colon cancer among all DEGs. Besides, according
to the miRNA target predication from miRDB, 1,661 DEGs
can be regulated by 141 DE-miRNAs (Figure 5B). Note that all
enrichment analysis results involve 25 key genes, 14 of which
can be regulated by 22 key miRNAs (Figure 5B). In addition,
the survival risks of these genes were also evaluated as shown in
Figure 5C.

As an illustrative instance, we constructed the gene-gene
network of 25 key genes (Figure 5D) based on the STRING
(p = 1.0e-16) (2018)2. The enrichment analysis results of this
network are listed in Figure 5E (Table S3), and this network is
significantly enriched with cytosol (P = 3.86e-05), beta-catenin
destruction complex (P = 1.57e-04), colorectal cancer (P =

2.73e-46), and pathways in cancer (P = 6.82e-41). We also found
that the hub genes (e.g., MAPK8, EGF, FALGDS, CCND1, MYC)
in this network have been linked to cancer in wide literature
reports. For example, the MAPK-signaling pathways have been
identified as one of the most strongly associated gene markers
to colorectal cancer (CRC) (Cummins et al., 2006; Barault et al.,
2008; Lascorz et al., 2010; Slattery et al., 2012). MAPK8 has
been shown to interact with MYC which is frequently observed
in numerous human cancers. Strikingly, 22 key miRNAs are
correlated with 14 key genes in this network. MiRNA-647
and miRNA-449a have been reported their association with
colorectal cancer (Noguchi et al., 1999; Feng et al., 2018). These
results revealed HCI would classify the sample types clearly
and could integrate the multi-level regulatory network based on
multiple heterogeneous data. All relevant DEGs andDE-miRNAs

2https://string-db.org/
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FIGURE 3 | Case study on the diabetes (A) The two-dimensional projection of the global-sample pattern matrix Y of diabetes1 dataset using t-SNE. Colors represent

different cell types where gray dots specifically mean dropped cells. (B) Hierarchical clustering diagram of all cells. The colors at the top represent the references labels

(see color legend in A). The purple represents the ductal cell and mesenchymal cell because these two cells are mixed together. (C) For the previously dropped cells,

HCI can cluster them into different groups corresponding to known cell types well. Thus, it is more efficient on cell type identification with less non-identified cells. (D)

Heatmap representation of Y of all cells. The first color bar represents the type of annotated cell and ambiguous cells and the second bar represents the seven cell

types as the same as in (A) legend.

are worthy of future experimental investigation, and listed in
Tables S4, S5.

DISCUSSION AND CONCLUSION

The distinct types of biological data could provide a precise
explanation for understanding the complex biological processes
(Ghazalpour et al., 2006; Kutalik et al., 2008; Li et al., 2012;
Zhang et al., 2012; Chen and Zhang, 2016; Zeng et al., 2016;
Feng et al., 2018; Yu and Zeng, 2018). In recent decades,
many approaches were proposed for analyzing single-cell data
or multi-omics data to identify subtypes and construct biological
networks (Gygi et al., 1999; Ding and He, 2004; Chari et al.,
2010; Zhang et al., 2011; Kiselev et al., 2017; Guo et al., 2018a,b;
Wang et al., 2018). However, for most methods, there are
some limitations on reliably identifying the sample types by
exploiting multi-datasets, such as the effect of noise on data
and the computational cost. And some methods would fail to
make full use of the similarity information between samples,
thus making the results unreliable. Hence, in order to overcome

this problem, a flexible and efficient integration method with
automated information fusion and bias correction is demanded.
In this work, we introduced the data-driven integrating method
HCI. The key idea of this method is to incorporate the high-order
similarity matrices (e.g., Pearson correlation matrix) into pattern
fusion analysis, where the sample cluster or subtype structure
can be actually determined benefiting from the high-order

correlations. And the obtained combinatorial sample patterns
from HCI could represent comprehensive characterization of

inherent sample relations in data. In order to demonstrate
the benefits of HCI, various evaluations have been carried

on both scRNA-seq and bulk RNA-seq datasets for complex
diseases. As expected, HCI effectively captured the sample

(e.g., cell or patient) clusters and outperformed the existing

methods under different conditions in terms of accuracy and
robustness. And two deep case studies supported that HCI has

satisfactory flexibility and applicability. Noted, HCI is based on
PFA, which has been evaluated and compared with a few multi-

view clustering methods in previous study (Shi et al., 2017).
Meantime, SC3 has also been evaluated and compared with
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FIGURE 4 | The enhanced framework flow for integrating bulk datasets and comparison of PFA (A) The flow chart of HCI to integrating multiple heterogeneous omics

data (B) A brief introduction to the datasets we used in this comparison. (C–E) Bars correspond to the average of the RDC values by running 100 times in each

dataset. Red and gray colors correspond to result of HCI and PFA respectively.

FIGURE 5 | Case study on the colorect cancer (A) Hierarchical clustering diagram of samples in matrix Y . Color bars represent the normal samples and disease

samples. (B) The process diagram of selecting key genes. (C) Evaluation of the selected 25 important genes related to colorectal cancer in (B). In SurvExpress, we

used the average for selected genes, two risk groups and Cox fitting to generate Survival curves. The total number of each group is shown in the top right corner of

graph, and the number of censoring samples is marked with +. The CI per curve is also included. P-value is shown in the top of figure. (D) The highly connected

network consists mainly of 25 DEG genes and 22 miRNAs. The 22 miRNAs targets 16 genes based on miRDB database. The size of node indicates the network

degree of gene. And the PPI enrichment P-value of genes is shown in the top right corner of this figure. (E) Top-ranked pathways and biological functions enriched in

the 25 genes in (D).

many existing approaches (Kiselev et al., 2017). Thus, in this
study of scRNA data, we have directly compared HCI and SC3
on multiple datasets. It is worthy to carry on more benchmark
studies in this field as a future topic (Zeng et al., 2016). Also

as a future topic, we can improve HCI by further exploiting
dynamics and network information, such as applying network
biomarker (Zhang et al., 2015; Liu et al., 2016; Zhao et al., 2016;
Liu, X. et al., 2018) or applying dynamic network biomarker
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(Chen et al., 2012; Li et al., 2017; Liu et al., 2017; Liu, R. et al.,
2018; Yang B. et al., 2018) for accurate and reliable clustering
and classification based on omics data from the perspectives of
dynamics and network.

As genomic data sources is increasing in diversity
and volume, HCI can fit the data structures on both
one level data or multiple level data, so that, HCI could
provide new avenues for the systematic explanation
of various data and complex biological phenotypes
at a system-wide level. Indeed, there are still a few
future topics to further extend HCI method, e.g.,
integrating discrete data types including somatic, SNP, and
CNV information.
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Colorectal cancer (CRC) ranks second in cancer-associated mortality and third in the
incidence worldwide. Most of CRC follow adenoma-carcinoma sequence, and have
more than 90% chance of survival if diagnosed at early stage. But the recommended
screening by colonoscopy is invasive, expensive, and poorly adhered to. Recently,
several studies reported that the fecal bacteria might provide non-invasive biomarkers
for CRC and precancerous tumors. Therefore, we collected and uniformly re-analyzed
these published fecal 16S rDNA sequencing datasets to verify the association and
identify biomarkers to classify and predict colorectal tumors by random forest method.
A total of 1674 samples (330 CRC, 357 advanced adenoma, 141 adenoma, and 846
control) from 7 studies were analyzed in this study. By random effects model and
fixed effects model, we observed significant differences in alpha-diversity and beta-
diversity between individuals with CRC and the normal colon, but not between adenoma
and the normal. We identified various bacterial genera with significant odds ratios for
colorectal tumors at different stages. Through building random forest model with 10-
fold cross-validation as well as new test datasets, we classified individuals with CRC,
advanced adenoma, adenoma and normal colon. All approaches obtained comparable
performance at entire OTU level, entire genus level, and the common genus level
as measured using AUC. When combined all samples, the AUC of random forest
model based on 12 common genera reached 0.846 for CRC, although the predication
performed poorly for advance adenoma and adenoma.

Keywords: fecal bacteria, colorectal cancer, colorectal adenoma, random forest, random effects model

INTRODUCTION

Colorectal cancer (CRC) ranks second in term of cancer-associated mortality and third in term
of incidence, with an estimation of 881000 deaths and over 1.8 million new cases in 2018 in
both sexes globally (Bray et al., 2018). CRC incidence rates are about 3-fold higher in developed
countries than developing ones. The incidence and mortality rates also showed an increasing trend
in China in the past decades. The age-standardized incidence and mortality rates by world standard
population are 17.52 and 7.91 per 100000 in 2014, respectively (Chen W. et al., 2018). Survival
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exceeds 90% if the cancer is detected at early stage, but decreases
to 13% with advanced metastatic disease (Shah et al., 2018).
Moreover, development of most CRC cases follows adenoma-
carcinoma sequence, spanning more than 10–15 years in average.
Therefore, targeting the CRC by early screening and treatment,
especially as early to the adenoma stage, would have profound
clinical and socioeconomic significances.

Colonoscopy is regarded as the golden standard of CRC
screening. However, this test is poorly adhered to due to the
invasiveness, frequency, and expensive price. For example, it
is reported that more than 25% of adults aged 50–75 years,
the high-risk group, never participated for CRC screening in
United States (Centers for Disease Control and Prevention,
2018). A recent survey in China showed a more serious screening
situation, only 14% of high risk people evaluated by a score
system finally undertaking colonoscopy screening (Chen H. et al.,
2018). Home-based fecal occult blood tests (FOBT) have low
sensitivity in colorectal adenoma (CRA) or pre-cancers (Hundt
et al., 2009), and are used less frequently. Thus, development
of non-invasive and sensitive early diagnosis tests for CRC or
precancerous lesions are in urgent need for improving the patient
participation rate.

In the past years, numerous studies using mouse models or
case-control designs have shown the effects of both individual
gut microbes (Goodwin et al., 2011; Rubinstein et al., 2013; Abed
et al., 2016) and the overall community (Baxter et al., 2014;
Zackular et al., 2016) in disease progression of CRA and CRC.
The roles of gut microbiota hypothesized in tumorigenesis, acting
as environmental factors, also accord with the sporadic nature of
CRC and CRA. Therefore, extensive efforts have been put into
identify microbiota-associated biomarkers for colorectal tumors
(Ahn et al., 2013; Zeller et al., 2014; Baxter et al., 2016; Yu
et al., 2017; Flemer et al., 2018). Although some taxa, including
Fusobacterium, Peptostreptococcus, and Porphyromonas, were
consistently reported to be enriched in CRC, unifying signal
taxa were not defined. Moreover, most studies focused on CRC,
but attention to CRA is factually in great clinical need to
facilitate early detection of the tumors. Recently, there were
two meta-analyses based on 16S rRNA gene sequences, which
were helpful for distilling possible biomarkers and classifying
patients with adenoma or carcinoma. However, the aggregate
number of samples was smaller (n = 509) (Shah et al., 2018),
and sequencing depths of some studies included were quite low
(Shah et al., 2018; Sze and Schloss, 2018). Furthermore, several
case-control studies with higher depths have been reported since
the publication of these two meta-analyses. Therefore, it is
meaningful and urgent to update the analysis to facilitate the
development of non-invasive diagnosis tests for colorectal tumors
based on fecal microbiota.

In this study, we updated meta-analysis using fecal 16S rRNA
gene sequence data from 7 studies with a relatively higher
sequencing depth (more than 5000 reads/sample). By the most
frequently used methods, we sought to determine the bacterial
variation among studies, the differences in fecal bacteria diversity
and communities in patients with colorectal tumors, and identify
a universal set of microbial markers to predict/diagnose the
presence of colorectal cancer.

MATERIALS AND METHODS

Datasets
The studies included in this meta-analysis were screened from
two sources: systematic Pubmed search with colorectal (colon)
cancer (CRC) or adenoma (CRA) and gut microbiota in the
past 10 years, and the recently published reviews and meta-
analyses. Studies were excluded if (1) samples were not from
feces, (2) samples were not sequenced by NGS for 16S rRNA
gene, (3) sequences, barcodes, or metadata were not publicly
available or not provided by authors until Sep 20, 2018 after
requests by emails, (4) the sequencing depth was lower than
5000 raw reads. At last, we obtained sequence datasets and
metadata from 7 studies with CRC and/or CRA (Zeller et al.,
2014; Baxter et al., 2016; Flemer et al., 2017; Hale et al., 2017;
Deng et al., 2018; Flemer et al., 2018; Mori et al., 2018), additional
12 studies associated gut microbiota of colorectal lesions were
excluded due to lower sequencing depth, incomplete information
of sequences, barcodes, or metadata (Sobhani et al., 2011; Chen
et al., 2012; Wang et al., 2012; Ahn et al., 2013; Brim et al., 2013;
Chen et al., 2013; Weir et al., 2013; Wu et al., 2013; Goedert
et al., 2015; Mira-Pascual et al., 2015; Ai et al., 2017; Zhang
et al., 2018). In summary, all 7 studies had CRC samples, 4
studies had advanced adenoma (Adv_adenoma, >10 mm in size)
samples, and 4 studies had samples with adenoma smaller than
10 mm (Table 1).

Sequence Processing
Paired-end reads were assembled using FLASH by default
parameters, except with -x 0.2 and -M 200 for V3-V4 /-M 250
for V3-V5 /-M 150 for V4 region. The assembled sequences were
quality filtered with a minimum quality score of 25. To assign
de novo OTUs, we removed chimeric sequences and clustered
sequences with 97% similarity and using Usearch (Edgar, 2013)
for individual study. The representative sequences of OTUs were
aligned to the SILVA database for taxonomic classification by
RDP Classifier (Wang et al., 2007) and aggregate to various
taxonomic levels.

Community Analyses
The alpha-diversity metrics, including observed OTUs (Obs),
Shannon, and Pielou’s evenness (J), were calculated based on
OTU table evenly rarefied to the lowest sequencing depth within
each study. The differences between individual with normal
colon, adenoma, or CRC were further tested by Wilcoxon test
for significance. We also calculated the ORs of these metrics by
assigning any value above the median of the metric within the
study as positive. The beta diversity based on Bray-Curtis distance
was measured within each study, and the differences between
groups were determined using permutational analysis of variance
(PERMANOVA) with 9999 permutations. In terms of genera, the
differences between groups were examined using Wilcoxon test
within each study, and the ORs were determined in the same
manner as alpha diversity metrics. Finally, both random effects
(RE) model and fixed effects (FE) model were used to obtain the
change summary estimates.
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Classification by Random Forest
To estimate the predictive power of gut microbiota for classifying
individuals with normal colon and colorectal tumors, the most
widely used and robust random forest models were selected
and built for each study based on all OTUs, all genera, and
the common genera that were detected in every study. RF
model based on all studies and n-1 (leave-one-study-out) studies
were also built to further assess the classifier performance of
the common genera and the weight of particular study to the
overall performance, respectively. To test the generalizability,
we built RF model based on the common genera from
one study and validated it in the other studies, and also

performed leave-one-study-out analyses by setting the study
left out as the test dataset. All the models were built using a
10-fold cross-validation with ten repeats and the number of
features (mtry) was set to the square root of total number of
microbial features.

Statistical Analyses and Visualization
All statistical analyses were conducted in R-3.4.1 (R Core Team,
2017). The alpha-diversity metrics, Bray-Curtis distances by
vegdist function, and PERMANOVA by adonis function were
all performed in vegan (Oksanen et al., 2015). The ORs were
analyzed using epiR (Stevenson et al., 2018) and meta for

TABLE 1 | characteristics of the fecal 16S rDNA sequencing studies included in the meta-analysis.

No. Author,
year

Country Source∗ Health Polyps Adenoma
(<1 cm)

Adv_adenoma
(>1 cm)

CRC DNA extraction Region Seq
platform

1 Deng et al.,
2018

China SRA 33 0 0 0 17 GenElute Stool DNA
isolation Kit

V3-V4 HiSeq

2 Flemer
et al., 2018

Ireland Author 62 0 22 0 69 Allprep DNA/RNA
kit-Qiagen

V3-V4 MiSeq

3 Mori et al.,
2018

Italy Author 18 14 18 21 8 QIAamp DNA stool kit V4 Miseq

4 Flemer
et al., 2017

Ireland Author 36 0 0 0 42 Allprep DNA/RNA
kit-Qiagen

V3-V4 MiSeq

5 Hale et al.,
2017

United States Author 475 0 0 203 34 Chemagic DNA
Blood Special Kit

V3-V5 MiSeq

6 Baxter
et al., 2016

United States+
Canada

SRA 172 0 88 108 119 PowerSoil V4 MiSeq

7 Zeller et al.,
2014

France SRA 50 0 13 25 41 GNOME DNA
Isolation Kit(MP)

V4 Miseq

8 Zhang
et al., 2018

China NA 130 30 32 88 130 OMEGA-soil DNA kit V3-V4 MiSeq

9 Ai et al.,
2017

China NA 52 0 47 42 E.Z.N.A. Stool DNA
Kit

V1-V3 454

10 Goedert
et al., 2015

China NA 24 9 0 20 2 – V3-V4 MiSeq

11 Mira-
Pascual
et al., 2015

Spain NA 10 0 11 7 Macherey–Nagel V1-V3 454

12 Ahn et al.,
2013

United States NA 94 0 0 0 47 PowerSoil V3-V4 454

13 Brim et al.,
2013

United States SRA 6 6 0 0 0 QIAamp Stool DNA V1-V3 454

14 Chen et al.,
2013

China NA 47 0 0 47 0 Bead beating
methods and
phenol-chloroform

V1-V3 454

15 Weir et al.,
2013

United States NA 8 0 0 0 7 MoBio Powersoil V4 454

16 Wu et al.,
2013

China NA 20 0 0 0 19 QIAamp Stool DNA V3 454

17 Chen et al.,
2012

China NA 21 0 0 0 22 QIAamp DNA Mini Kit V1-V3 454

18 Wang et al.,
2012

China NA 56 0 0 0 46 Bead-beating
extraction and
phenol–chloroform

V3 454

19 Sobhani
et al., 2011

France NA 6 0 0 0 6 GNOME DNA
Isolation Kit(MP)

V3-V4 454

∗NA indicates studies were not included in the analysis, either due to the datasets not available, without barcode sequences to splits the datasets, or low
sequencing depth/sample.
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(Viechtbauer, 2017) with significance testing utilized the chi-
square test. In addition, the RF, SVM, KNN, and Adaboost
models were built using caret (Kuhn et al., 2017) and random
Forest (Breiman et al., 2015) by default parameters, and the
test cohorts were predicted using the pROC (Robin et al.,
2017). The random effects model and fixed effects model were
conducted in metaphor (Viechtbauer, 2017). All figures were
plotted using ggplot2-v3.0.0 (Wickham et al., 2017) and gridExtra
(Auguie and Antonov, 2016).

RESULTS

Sample Variation
We included 16S rRNA gene sequencing data from 7 fecal
studies with diseases of CRC, adv_adenoma and adenoma
(Table 1). A total of 1674 samples from 7 countries were retained
after quality filtering, including 330 CRC, 357 Adv_adenomas,
141 adenoma, and 846 controls. At the beginning, we tried
to combine all samples together by closed_reference OTU
assignment strategy for compatibility with differential sequencing
regions, but found samples clustered primarily by individual
studies due to the extra strong variables of DNA extraction
methods, PCR amplification conditions, sequencing platforms
adopted by individual study (Figure 1). Therefore, we processed
each study separately using the same parameters in the
following analyses.

Alpha-Diversity Differences
To compare the alpha-diversity between different disease stages,
we considered the microbial richness (Observed OTUs, Obs),
Shannon diversity, and evenness J. We found significant higher
richness and Shannon diversity in normal colon than CRC in
2 of 7 studies and significant higher microbial evenness in
normal colon in 1 of 7 studies (Supplementary Table S1). For
comparisons in adenoma vs. normal colon and adv_adenoma vs.
normal colon, only one study was significantly different among
the richness and evenness. Due to the inconsistent results, we also
calculated the odds ratios (ORs). The ORs for Shannon diversity
were significantly higher than 1.0 for CRC (OR = 1.48, CI in 1.04
to 2.10) (Figure 2) in both RE model and FE model with low
heterogeneity (Supplementary Table S1), indicating significant
lower microbial Shannon diversity in CRC than the normal
colon group. While The ORs for J, Obs, and Shannon were not
significantly greater than 1.0 for adenoma and adv_adenoma in
the random effects model with higher heterogeneity, even with
the trend (Figure 2).

Beta-Diversity Differences
To measure the entire community differences between different
individuals with colorectal tumors and with normal colon,
we calculated a Bray-Curtis distance matrix for each data
set and tested the significance by PERMANOVA. We found
significantly different community structure in the CRC relative
to normal colons in 6 of 7 studies (Supplementary Table S2 and

FIGURE 1 | The principal coordinates analysis depicting the great microbial variations from different studies with variables of DNA extraction methods, PCR
amplification conditions, sequencing platforms, etc. The points represent samples, shapes represent the different diagnosis, and the colors represent the
different study.
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FIGURE 2 | Forest plot of the alpha diversity metrics for (A) adenoma, (B) advance adenoma, and (C) colorectal cancer. The length of the error bar represents the
95% confidence interval. The left of dashed lines depicts that the metric of the case is higher than the control. And the right of dashed lines depicts that the metric of
the case is lower than the control. It shows that there were significantly difference between the cases and the control, if there was no overlap between the dashed
lines and the error bar.

Supplementary Figure S1). However, we only found significant
community differences in adv_adenoma vs. normal in 1 of 4
studies and in adenoma vs. normal in 1 of 4 studies. Again,
by calculating the ORs based on the Bray-Curtis metric in each
study, we found the significant bacterial community differences
between CRC and normal colons in both RE models with high
heterogeneity (Supplementary Table S2), but not significant
differences in comparisons of adv_adenoma or adenoma with
individuals with normal colons (Figure 3). These results showed
that there were dependable and significant community-wide
changes in the bacterial community structures of CRC patients.

Different Taxa
With the altered overall community differences, we tried to
identify the significantly different taxa between subjects with
colorectal tumors and the normal. However, the results were not
consistent by Wilcoxon tests (Supplementary Tables S3–S5). By

quantifying the ORs, a total of 13 genera were identified to be
associated with CRC (Supplementary Figure S2). Five genera
had significant ORs lower than 1.0 for presence of CRC in RE and
FE models (Supplementary Table S6), including Fusobacterium,
Lachnospiraceae_UCG-010, Mogibacterium, Oscillibacter,
Prevotella_7. Eight genera possessed significant ORs higher
than 1.0 for the absence of CRC, most of which were thought
to be beneficial for butyrate production in intestines, including
Anaerostipes, Butyricicoccus, Coprococcus_2, Roseburia. Besides,
a total of 10 genera had significant ORs for the adenoma, and 6
genera had significant ORs for adv_adenoma.

Development of Fecal
Bacteria-Based Classifier
Since the gut microbial communities were greatly shifted
with colorectal tumors, especially in CRC compared to
the normal, it is meaningful and profound to identify

Frontiers in Genetics | www.frontiersin.org 5 May 2019 | Volume 10 | Article 447332

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00447 May 25, 2019 Time: 16:29 # 6

Zhang et al. Predicting Colorectal Tumors

FIGURE 3 | Forest plot of the Bray-Cutris distances between the individual with colorectal tumors and the normal colons. (A) Adenomas vs. normal colons; (B)
Adv_adenomas vs. normal colons; (C) CRC vs. normal colons. The error bar depicts the 95% confidence interval. The left-hand side (minus value) of the dashed line
depicts that distances between the case and the normal are higher than the distances between the subjects of control. The right-hand side of the dashed line
depicts that distances between the case and the normal are lower than the distances between the control. There were significantly difference between the case and
the control, if there was no cross between the dashed line and the error bar.

FIGURE 4 | The ROC curves of the each study based on the matrix of the total OTUs (A–C) and the matrix of the total genera (D–F). The gray lines represent the
random predictors. The other lines depict the ROC curves of each study using the cross-validation with ten repeats.

microbial biomarkers for development of invasive diagnosis
methods. With this purpose, – we built RF models based
on OTU abundance (finer-level) and genus abundance (more
general) to classify/predict colorectal tumor and controls
within each study.

We found that the RF models using all OTUs did a good
job in classifying CRC and individuals with normal colons
[median AUC = 0.765, ranging in (0.531, 0.8757)] (Figure 4C).
As expected, the RF models based on the genera also showed
comparable performance in differentiating CRC and the normal
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FIGURE 5 | The ROC curves based on the matrix of the common genera. The gray lines represent the random predictors. The other lines depict the ROC curve of
each study using the cross-validation with ten repeats (A–C). The black lines represent the curves of the models built using the total studies data sets with
cross-validation, and the colorful lines represent the curves of the models using the combined studies data sets with minus a specific study (D–F).

[median AUC = 0.755, ranging in [0.533, 0.977)] (Figure 4F).
However, the performances of RF models differentiating
adv_adenoma or adenoma and the normal colons were
unsatisfactory, just a slightly better than the random predictor
in both OTU level [adv_adenoma: median AUC = 0.568,
ranging in (0.514, 0.898), adenoma: median AUC = 0.589,
ranging in (0.524, 0.721)] (Figures 4A,B) and genus level
[adv_adenoma: median AUC = 0.650, ranging in (0.515, 0.99);
adenoma: median AUC = 0.598, ranging in (0.515, 0.650)]
(Figures 4D,E).

Due to the separate clustering for each study, the above
RF models based on all OTUs and all genera were not
universal for each other. Therefore, we tried to build the models
based on the common genera that detected in every study.
Surprisingly, the performance of the models for distinguishing
the CRC and individuals with normal colons were good
[median AUC = 0.735, ranging in (0.5258, 0.888)] (Figure 5C),
while the models for adv_adenoma or adenoma were still
weak [adv_adenoma: median AUC = 0.632, ranging in (0.520,
0.693); adenoma: median AUC = 0.603, ranging in (0.521,
0.700)] (Figures 5A,B). When combined all samples and all
studies together, RF model returned an AUC of 0.835 for
CRC vs. the normal (Figure 5F), which is better than the
medium AUC of RF models based on single study, although
the prediction of Adv_adenoma or adenoma with the normal
was still not good (Figures 5D,E). To test whether particular
study weight the performance, we re-built RF models based on

n-1 studies (leave-one-study-out), and found the performances
were not affected too much (Figures 5D–F), indicating the
stability of RF model for CRC based on all 7 studies and
the common genera.

To further test the generalizability of models based on
common genera, we evaluated how well the models would
perform when given data from a different cohort. First,
we used one study as training data and the other single
studies as test data. We found that the performances of the
models were different among the training cohorts, probably
associated with the sample size (Figure 6). In addition, the
performances of the models for CRC were better than the
adv_adenoma and adenoma. Within Adv_adenoma, models
based on studies of Baxter_16 and Hale_17 were better than
other two (Figure 6C). Second, we tested the leave-one-
study-out analysis again. As expected, the performances of
models were still good for CRC [median AUC = 0.754,
ranging in (0.569, 0.916)] (Figure 7C), even still weak for
adv_adenoma [median AUC = 0.550, ranging in (0.496,
0.578)] and for adenoma [median AUC = 0.539, rang in
(0.494, 0.684)] (Figures 7A,B).

Important Microbial Taxa as
Potential Biomarkers
By looking deeper into the microbial features selected for the
RF model for CRC based on all studies, we obtained the
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FIGURE 6 | The performances of models to classify the case and the normal. (A) CRC vs. normal colons; (B) Adenoma vs. normal colons; (C) Adv_adenoma vs.
normal colons. The horizontal ordinates depict the studies used as the training data set. The vertical coordinates depicts the AUC of the specific test study. The
black line represent the median of AUC of all test AUCs for a specific model. The dashed gray lines represent the AUC at 0.5 with random predictors.

FIGURE 7 | The ROC curves of the models built using the matrix of the common genera and n-1 studies (leave-one-study-out) and validated in the specific study.
(A) Adenoma vs. normal colons; (B) Adv_Adenoma vs. normal colons; (C) CRC vs. normal colons.

12 important distinguishing taxa based on the mean decrease
Gini value (Table 2). Indeed, all these genera were frequently
detected in human fecal samples and were previously reported

to be harmful to human health, such as the Fusobacterium,
Escherichia_Shigella, and Streptococcus with higher abundance in
CRC group. Besides, some genera selected by RF model were
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TABLE 2 | Importance, odd ration, heterogeneity, and relative abundance of the 9 common genera selected for the RF model for CRC based on all samples.

Genera Mean
decrease Gini

Odd ratio CI_lb CI_ub P-value I2 Abundance (%)
in CRC

Abundance (%) in
the normal

Bifidobacterium 15.72 1.34 0.85 2.12 0.2 36.78 1.087 ± 1.019 1.23 ± 0.87

[Eubacterium]_hallii_group 13.43 1.76 1.17 2.65 0.01 27.3 0.979 ± 0.846 1.417 ± 1.024

Streptococcus 12.9 1.17 0.87 1.58 0.31 0 1.365 ± 0.726 1.136 ± 1.239

Fusobacterium 10.75 0.34 0.24 0.48 0 0 0.791 ± 1.444 0.106 ± 0.125

Escherichia.Shigella 10.13 0.63 0.37 1.09 0.1 61.3 2.565 ± 1.431 1.368 ± 0.898

Akkermansia 8.7 1.01 0.69 1.47 0.97 21.65 1.915 ± 1.681 2.055 ± 1.769

Lachnospira 8.11 1.65 1.14 2.4 0.01 31.98 0.379 ± 0.382 0.509 ± 0.376

Faecalibacterium 8.09 1.01 0.63 1.63 0.95 55.87 6.69 ± 3.042 6.624 ± 2.294

un_f__Lachnospiraceae 7.54 1.48 1.03 2.11 0.03 27.84 1.406 ± 0.968 1.703 ± 1.307

Prevotella_7 6.86 0.54 0.38 0.75 0 0 0.522 ± 0.421 0.169 ± 0.129

Roseburia 6.78 1.59 1.2 2.12 0 0 1.122 ± 0.329 1.418 ± 0.564

Lachnospiraceae_UCG.010 6.62 0.65 0.49 0.87 0 0 0.256 ± 0.209 0.093 ± 0.046

CI_lb, confidence interval_lower bound; CI_ub, confidence interval_upper bound; I2, heterogeneity measure.

found to be beneficial with higher abundance in individuals
with normal colons, including Bifidobacterium, Lachnospira.
Furthermore, 4 genera were also overlapped with the significant
OR taxa by RE model. In short, the microbial features selected for
RF model coincided with their abundance and might reflect their
physiological effects.

DISCUSSION

In this study, we conducted a comprehensive meta-analysis
on a diverse collection of 16S rDNA sequencing studies
with relatively higher sequencing depth from 6 countries to
reveal the great differences in fecal bacterial communities in
individuals with colorectal tumors and normal colons. By
analyzing all datasets in a uniform manner, we further identified
and validated fecal bacterial biomarkers and their important
roles in classifying subjects with colorectal tumors, especially
the CRC and the normal control. The good performance of
common bacterial genera-based RF model demonstrated the
great clinical significance and feasibility of development of
invasive screening or diagnosis method for CRC by detection of
fecal bacterial communities.

Although there were great heterogeneity associated with
each original study, the RF model we built for predicting
CRC and the normal still returned a good performance with
AUC of 0.835. Our model outperformed or were comparable
with results in two recently published meta-analyses based on
both 16S rRNA sequencing with smaller sample size (Shah
et al., 2018) and metagenomic data (Dai et al., 2018), as
well as some independent studies based on microbiota (Zeller
et al., 2014; Baxter et al., 2016; Flemer et al., 2018) and
other non-invasive procedures (FOBT and fecal Immunological
test) (Zeller et al., 2014; Liang et al., 2017). Unexpectedly,
the models for predicting adv_adenoma or adenoma from
the normal were poor, which is consistent with results in
the previous meta-analysis studies (Shah et al., 2018; Sze
and Schloss, 2018). However, some studies did report better
prediction for adenoma (Goedert et al., 2015; Baxter et al.,

2016; Hale et al., 2017). Two potential reasons might explain
the inconsistence between results from meta-analysis and the
independent studies. Usually samples included in individual
studies met consistent criterions, were treated by the same
experimental and optimal analyzing protocols, and could be
analyzed with more clinical data (e.g., FIT) to improve the
model performances (Baxter et al., 2016). In contrast, there were
great variations in these aspectsin the meta-analysis. Besides,
the study number and sample size in our meta-analysis for
adv_adenoma and adenoma were limited. Therefore, we are
looking forward to more studies on adenoma to validate the
potential of fecal bacteria in classifying adenoma from the
individual with normal colon.

We also found that the RF model constructed using
the common genera performed comparably with models
based on the entire communities of total genera and even
total OTUs, which means the fine level (OTU at 97%
similarity) did not further improve the classification model.
This phenomenon was also reported in a previous meta-
analysis (Sze and Schloss, 2018) and individual study (Hannigan
et al., 2018). The “patchy” hypothesis can be used to
explain it (Sze and Schloss, 2018). As microbial distribution
between individuals was patchy, the classification based on
common genera will pool the fine-level diversity, and reduce
the variations in the microbial features. Finally, Twelve
common genera were identified as the most important features
for distinguishing the CRC and the normal colon, 4 of
which possessed significant ORs. Fusobacterium, one of the
most frequently reported bacteria in CRC studies (Rubinstein
et al., 2013; Yu et al., 2017), was enriched in CRC case
relative control, as well as other pernicious genera, including
Escherichia _Shigella, Streptococcus. We also identified the
depletion of potentially beneficial microbes, such as the
butyrate-producting Anaerostipes Faecalibacterium, Lachnospira,
Coprococcus (Rivière et al., 2016; Vital et al., 2017). These genera
could also be used for further validation by qPCR for more
efficient diagnosis.

Even with best efforts, there were limitations in this study. We
did not conduct further analyses to improve the RF model and
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for more subgroups, since we were unable to collect sufficient
information regarding demographic data (age, gender, BMI etc.)
and clinical data (FIT, FOBT, cancer stage, tumor location,
adenoma growth patterns etc). Given this, we appeal researchers
to share their sequencing and meta data associated to profoundly
facilitate the research with larger sample size and more complete
meta information (Quince et al., 2017). Moreover, it is expected
to make better RF models for early screening and diagnosis
by considering both microbial features and other metadata
(including clinical data) (Baxter et al., 2016; Liang et al.,
2017). An advantage in this study was that we obtained the
tumor size, and tried to split adenoma samples into small
adenoma and advanced adenoma, which was not provided in the
previous meta-analyses.

In summary, our study uniformly analyzed a diverse collection
of fecal 16S rDNA sequencing datasets and suggests the strong
association between fecal bacterial community and colorectal
tumors. By revealing the significant differences in diversity,
identifying key taxa, and building RF model, we provide evidence
for the use of fecal bacterial biomarkers to development of
non-invasive diagnostic methods for the colorectal tumors,
especially the CRC.
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Atrial fibrillation (AF) is the most common irregular heart rhythm which influence
approximately 1–2% of the general population. As a potential factor for ischemic stroke,
AF could also cause heart failure. The mechanisms behind AF pathogenesis is complex
and remains elusive. As a new category of non-coding RNAs (ncRNAs), circular RNAs
(circRNAs) have been known as the key of developmental processes, regulation of
cell function, pathogenesis of heart diseases and pathological responses which could
provide novel sight into the pathogenesis of AF. circRNAs function as modulators of
microRNAs in cardiac disease. To investigate the regulatory mechanism of circRNA
in AF, especially the complex interactions among circRNA, microRNA and mRNA,
we collected the heart tissues from three AF patients and three healthy controls and
profiled their circRNA expressions with circRNA Microarray. The differentially expressed
circRNAs were identified and the biological functions of their interaction microRNAs
and mRNAs were analyzed. Our results provided novel insights of the circRNA
roles in AF and proposed highly possible interaction mechanisms among circRNAs,
microRNAs, and mRNAs.

Keywords: atrial fibrillation, non-coding RNA, circular RNA, microRNA, mRNA

INTRODUCTION

Atrial fibrillation (AF) is the most common irregular heart rhythm which influence approximately
1–2% of the general population (Graham et al., 2015; Wang, 2018). Several important factors may
increase the risk of developing AF, including age, sex, obesity, excessive alcohol consumption,
hypertension, abnormal heart valves and lung diseases (Dagres and Anastasiou-Nana, 2010;
Soliman et al., 2014). As a potential factor for ischemic stroke, AF could also cause hospitalization
for heart failure, and death which is associated with high mortality, morbidity, and socioeconomic
burden (Voukalis et al., 2016). However, current treatment of AF still lacks enough utility and
efficacy which may have possibly adverse effects (Vallabhajosyula et al., 2016; Wan et al., 2016).
The mechanisms behind AF pathogenesis are complex and remains elusive. Further study of the
potential mechanisms of AF could provide novel treatment which could alternate current therapy
effectively (Ogawa et al., 2017).
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As we all know, Non-coding RNAs (ncRNAs) play important
roles in regulating gene expression. The main groups of
ncRNAs include long non-coding RNAs (lncRNAs), micro-RNAs
(miRNAs), and circular RNAs (circRNAs) (McMullen and Ooi,
2017). As a new category of ncRNAs, circRNAs have been known
as the key of developmental processes, regulation of cell function,
pathogenesis of heart diseases and pathological responses which
could provide novel sight into the pathogenesis of AF (Zhang
et al., 2018). Unlike linear RNAs terminated with 5′caps and
3′tails, circRNAs are characterized by covalently closed loop
structures which are presumably more stable and conserved, and
may play important roles in many pathophysiological processes
(Wang et al., 2016). Recently the role of circRNAs in cardiac
disease conditions demonstrated their important functions as
modulators of miRNA levels (Stepien et al., 2018). circRNAs may
be a new kind of potential biomarkers and therapeutic targets,
and their role in heart disease is becoming increasingly obvious.

To investigate the regulatory mechanism of circRNA in AF,
especially the complex interactions among circRNA, microRNA
and mRNA, we collected the heart tissues from three AF patients
and three healthy controls and profiled their circRNA expressions
with circRNA Microarray. The differentially expressed circRNAs
were identified and the biological functions of their interaction
microRNAs and mRNAs were analyzed. Our results provided
novel insights of the circRNA roles in AF and proposed
highly possible interaction mechanisms among circRNAs,
microRNAs and mRNAs.

MATERIALS AND METHODS

The circRNA Expression Profiles of Atrial
Fibrillation Patients
We collected the heart tissues from three AF patients and three
healthy controls. The clinical information of these six samples
were given in Table 1. The circRNA expression profiles of
these samples were measured with Arraystar Human circRNA
Array V2 (8 × 15K, Arraystar). The arrays were scanned by
the Agilent Scanner G2505C and analyzed with Agilent Feature
Extraction software (version 11.0.1.1). The circRNAs presented in
at least 3 out of 6 samples were retained. Finally, the expression
levels of 12,515 circRNA probes were log2 transformed and
quantile normalized. The circRNA expression profiles was given
in Supplementary Table S1 and uploaded onto GEO (Gene
Expression Omnibus) under accession number of GSE129409.

Written informed consent was obtained from patients
before collection of the abandoned left atrial appendages. All
experimental procedures were conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Committee
of Shanghai East Hospital (approval no. 040-2017).

Identify the Differentially Expressed
circRNAs Between Atrial Fibrillation
Patients and Healthy Controls
The statistical significance of differential expression between two
groups was estimated with t-test using the R software limma

package and further filtered with fold change. CircRNAs with
t-test p-value smaller than 0.05 and fold change greater than 2
were considered as significant differentially expressed circRNAs.

Construct the Integrative Regulatory
Network of circRNAs, microRNAs, and
mRNAs
The interactions between circRNAs and microRNAs play
important roles for disease regulation (Ghosal et al., 2013). Some
circRNAs contain microRNA sites and act as an endogenous
microRNA “sponge” to adsorb and quench the normal biological
functions of the microRNA (Lukiw, 2013). To discover such
circRNA-microRNA interactions, we applied the TargetScan
(Enright et al., 2003) and miRanda (Pasquinelli, 2012) to
predict the microRNA targets within circRNAs. What’s more,
we predicted the microRNA targets in mRNAs. At last, we
constructed the genome wide integrative regulatory network of
circRNAs, microRNAs and mRNAs.

Analyze the Biological Functions of
circRNAs, microRNAs, and mRNAs in
Atrial Fibrillation
Since the functions of circRNAs are still poorly annotated,
we investigated the functions of microRNAs interacted with
differentially expressed circRNAs. These microRNAs may reflect
the functions of differentially expressed circRNAs. We extracted
92 AF related microRNAs from HMDD (the Human microRNA
Disease Database) v3.0 (Huang et al., 2018). These 92 AF related
microRNAs were listed in Supplementary Table S2. If a circRNA
interact with these microRNAs, it may be also related to AF.
A complete interaction module of circRNAs, microRNAs and
mRNAs with strong literature support from each angle will be a
promising regulatory model for AF.

RESULTS

The Differentially Expressed circRNAs
Between Atrial Fibrillation Patients and
Healthy Controls
If the t-test p-value was smaller than 0.05 and the fold change
was greater than 2, a circRNA was considered as differentially
expressed between AF patients and healthy controls. With these
criteria, there were 537 up-regulated circRNAs and 199 down-
regulated circRNAs in AF patients. These differentially expressed
circRNAs between AF patients and healthy controls were listed
in Supplementary Table S3. Since the sample size of the AF
patients and healthy controls was too small, we did not use the
FDR (False Discovery Rate) cutoff to identify the differentially
expressed genes. But we still calculated the FDRs and the FDR
was 0.556. We also calculated the mean and standard deviation
(SD) of AF patients and healthy controls. For 537 up-regulated
circRNAs, MeanAF − SDAF was always greater than MeanControl
+ SDControl; for 199 down-regulated circRNAs, MeanAF + SDAF
was always smaller than MeanControl – SDControl. Such mean
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TABLE 1 | Demographic characteristics of patients.

No. Age (years) Gender NYHA Coronary angiography Complicated diseases Duration of AF (years) Operation

1 68 Male II Negative Hypertension, cerebral infarction 3 Surgical AF ablation

2 75 Male II Negative Hypertension, cerebral infarction 5 Surgical AF ablation

3 73 Male II Negative Hypertension, cerebral infarction 4 Surgical AF ablation

4 35 Male I Negative Negative 0 Healthy organ donors

5 35 Male I Negative Negative 0 Healthy organ donors

6 40 Male I Negative Negative 0 Healthy organ donors

NYHA, New York heart association; INR, international normalized ratio; AF, atrial fibrillation.

and SD results confirmed that there was difference between AF
patients and healthy controls and the difference was greater
than their variance.

We calculated the frequencies of microRNAs that targeted
these up and down-regulated circRNAs, respectively. The top
three most frequent microRNAs for up-regulated circRNAs were
hsa-miR-597-3p that interacted with 18 up-regulated circRNAs,
hsa-miR-136-5p that interacted with 16 up-regulated circRNAs
and hsa-miR-103a-2-5p that interacted with 15 up-regulated
circRNAs while the top three most frequent microRNAs
for down-regulated circRNAs were hsa-miR-103a-2-5p that
interacted with 11 down-regulated circRNAs, hsa-miR-4739
that interacted with 8 down-regulated circRNAs and hsa-
miR-627-3p that interacted with 8 down-regulated circRNAs.
These microRNAs may be the associated with the differentially
expression pattern of circRNAs in AF.

The circRNA–microRNA Interactions in
Atrial Fibrillation
We extracted 92 AF related microRNAs from HMDD (the
Human microRNA Disease Database) v3.0 (Huang et al., 2018).
If the differentially expressed circRNAs we identified interact
with these reported AF related microRNAs, they were more
likely to be AF associated circRNAs. Therefore, we highlighted
the differentially expressed circRNAs that interact with AF
related microRNAs.

There were eight up-regulated and two down-regulated
circRNAs interact with AF related microRNAs. Figures 1, 2
plotted the expression pattern of these eight up-regulated
circRNAs and these two down-regulated circRNAs, respectively.

Within the eight up-regulated circRNAs, five of them
interacted with hsa-miR-892a, three of them interacted with hsa-
miR-3149, two of them interacted with hsa-miR-3171. Within
the two down-regulated circRNAs, one of them interacted with
hsa-miR-892a while another interacted with hsa-miR-133b.

hsa-miR-892a interacted with both up-regulated and down-
regulated circRNAs. A large number of differentially expressed
circRNAs interact with hsa-miR-892a. Xu et al. (2016) reported
that the expression level of has-miR-892a increased significantly
from the early stage to the end stage of AF and it can be used as
early diagnosis biomarker of AF.

has-miR-3149 had similar expression pattern with hsa-miR-
892a and its expression level also increased in AF (Xu et al., 2016).

But hsa-miR-3171 had opposite expression pattern, its
expression level decreased in AF (Xu et al., 2016).

The associations of hsa-miR-133b and AF has been reported
by several studies but different expression patterns were
observed. da Silva et al. found that hsa-miR-133b was up-
regulated in acute new-onset AF patients with a 1.4-fold increased
expression compared with well-controlled AF patients and
control patients (da Silva et al., 2018). Li et al. (2012) reported that
miR-133 was down-regulated in chronic AF canines. It was not
clear whether such difference was cased by species or miR-133b
functions differently at different stages of AF.

DISCUSSION

The Potential Roles of
has_circRNA_100612, has-miR-133b, and
KCNIP1/JPH2/ADRB1 in Atrial Fibrillation
circRNA is a member of ncRNA family which could capture other
RNA molecules and have recently shown as regulators of other
proteins or RNAs including miRNAs. Recent studies have focused
more attention on the potential of circRNAs to contribute toward
disease etiology. And the expression pattern of circRNAs vary
widely on different organism and cell types. Several recent studies
have suggested that circRNAs may play essential roles in the
initiation and development of cardiovascular diseases (Li et al.,
2017). And miRNAs could regulate cardiac function through
regulating the proliferation, migration, apoptosis, differentiation
of cells during the progression of disease. A large number of
literatures has reported association between miRNAs and AF
related to remodel processes, and miRNAs might have important
roles in signaling during the pathogenesis of AF (Flemming, 2014;
Danielson et al., 2018). It has been shown that circRNAs may
act as endogenous sponge RNAs to interact with miRNAs and
influence the expression of miRNA target genes.

In our research, we found that circRNA_100612 which located
on chromosome 10 could lead to AF by interacting with miR-
133b. One of the target gene of miR-133b, KCNIP1, is a member
of the family of cytosolic voltage-gated potassium (Kv) channel-
interacting proteins and related to cardiac conduction pathway.
In zebrafish, overexpression of KCNIP1 could lead to inducible
AF. Genome-wide approach show a common 4,470 bp CNV
in most AF patients indicated that KCNIP1 could be a genetic
predictor of AF risk (Tsai et al., 2016).

Another important downstream target gene of miR-133b is
JPH2 which have an important role in sarcoplasmic reticulum
Ca2+ handling and modulation of ryanodine receptor Ca2+
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FIGURE 1 | The expression pattern of the eight up-regulated circRNAs that interact with atrial fibrillation related microRNAs. (A) The expression pattern of
up-regulated hsa_circRNA_008132 that interact with has-miR-892a; (B) The expression pattern of up-regulated hsa_circRNA_104052 that interact with
has-miR-892a; (C) The expression pattern of up-regulated hsa_circRNA_101021 that interact with has-miR-892a; (D) The expression pattern of up-regulated
hsa_circRNA_101020 that interact with has-miR-892a; (E) The expression pattern of up-regulated hsa_circRNA_404737 that interact with has-miR-3171 and
has-miR-3149; (F) The expression pattern of up-regulated hsa_circRNA_002641 that interact with has-miR-3171 and has-miR-3149; (G) The expression pattern of
up-regulated hsa_circRNA_079477 that interact with has-miR-3149; (H) The expression pattern of up-regulated hsa_circRNA_102341 that interact with
has-miR-892a.

channels. Knockdown JPH2 in mice was related to loss of
junctional membrane complexes numbers, reduced Ca2+-
induced Ca2+ release, and acute heart failure (van Oort
et al., 2011). Mutation E169K in JPH2 could result in AF
because of defective RyR2-mediated SR Ca2+ release events

that representing a potential novel therapeutic target for AF
(Beavers et al., 2013).

miR-133b could affect ADRB1 which is a member of the
superfamily of cell surface receptors and has a great effect on
the myocardium (Cresci, 2012; Pasquier et al., 2016). ADRB1 is
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FIGURE 2 | The expression pattern of the two down-regulated circRNAs that interact with atrial fibrillation related microRNAs. (A) The expression pattern of
down-regulated hsa_circRNA_100612 that interact with has-miR-133b; (B) The expression pattern of down-regulated hsa_circRNA_405917 that interact with
has-miR-892a.

FIGURE 3 | An integrative regulatory network model of circRNAs, microRNAs and target mRNAs in atrial fibrillation. The blue nodes were atrial fibrillation related
microRNAs. The pink and green nodes were up and down-regulated circRNAs, respectively. The gray nodes were target mRNAs.

also an effective target for pharmacotherapy in cardiovascular
diseases, and β-blocking medications are acknowledged as first
line agents for ventricular rate control in patients with AF (Chen
et al., 2003; McMurray and van Veldhuisen, 2014).

The Potential Roles of Differentially
Expressed circRNAs, has-miR-892b, and
GJA1 in Atrial Fibrillation
has-miR-892b interact with down-regulated
has_circRNA_405917 and up-regulated hsa_circRNA_008132,
hsa_circRNA_104052, hsa_circRNA_101021,
hsa_circRNA_101020, hsa_circRNA_102341.

One important target gene of miR-892b is GJA1 which
encodes the gap junction protein connexin 43 on chromosome
6q22.31 (Van Norstrand et al., 2012). A recent study using
large-scale genotyping reported novel AF risk loci at or near

GJA1. They found that SNPs associated with AF could influence
the transcription of GJA1 in both left atrial tissue and whole heart
(Thibodeau et al., 2010; Sinner et al., 2014).

CONCLUSION

As the most common irregular heart rhythm disease, AF
influence approximately 1–2% of the general population. The
mechanisms behind AF pathogenesis are complex and remains
elusive. circRNAs have been known as the key of developmental
processes, regulation of cell function, pathogenesis of heart
diseases and pathological responses which could provide novel
sight into the pathogenesis of AF. By analyzing the circRNA
expression profiles in AF patients and healthy controls, we
identified 537 up-regulated circRNAs and 199 down-regulated
circRNAs in AF patients. We investigated the interactions
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between these differentially expressed circRNAs and reported
AF microRNAs. There were eight up-regulated and two
down-regulated circRNAs interact with AF related microRNAs.
By analyzing the functional interactions among circRNAs,
microRNAs and target mRNAs, we proposed an integrative
regulatory network model of circRNAs, microRNAs and target
mRNAs for AF as shown in Figure 3. Our results provided novel
insights of how circRNAs and microRNAs function in AF and
the proposed regulatory network model of circRNAs, microRNAs
and target mRNAs worth to be further studied and validated.
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As large amounts of heterogeneous biomedical data become available, numerous 
methods for integrating such datasets have been developed to extract complementary 
knowledge from multiple domains of sources. Recently, a deep learning approach has 
shown promising results in a variety of research areas. However, applying the deep 
learning approach requires expertise for constructing a deep architecture that can take 
multimodal longitudinal data. Thus, in this paper, a deep learning-based python package 
for data integration is developed. The python package deep learning-based multimodal 
longitudinal data integration framework (MildInt) provides the preconstructed deep learning 
architecture for a classification task. MildInt contains two learning phases: learning feature 
representation from each modality of data and training a classifier for the final decision. 
Adopting deep architecture in the first phase leads to learning more task-relevant feature 
representation than a linear model. In the second phase, linear regression classifier is used 
for detecting and investigating biomarkers from multimodal data. Thus, by combining the 
linear model and the deep learning model, higher accuracy and better interpretability can 
be achieved. We validated the performance of our package using simulation data and real 
data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging 
datasets in Alzheimer’s disease to predict the disease progression. MildInt is capable of 
integrating multiple forms of numerical data including time series and non-time series data 
for extracting complementary features from the multimodal dataset. 

Keywords: multimodal deep learning, data integration, gated recurrent unit, Alzheimer’s disease, python package

INTRODUCTION

As the amount of biomedical datasets grows exponentially, the development of relevant data 
integration methods that can extract biological insight by incorporating heterogeneous data 
is required (Larranaga et al., 2006). Recently, deep learning approaches have shown promising 
results in numerous applications such as natural language processing, computer vision, and speech 
recognition. In addition, in the field of translational research, deep learning-based predictive 
models have shown comparable results (Chaudhary et al., 2017; Choi et al., 2017; Lu et al., 
2018; Lee et al., 2019). In previous studies, they integrated multiple domains of data using deep 
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learning models to discover integrative features that cannot be 
explained by a single domain of data. For example, multimodal 
neuroimaging dataset is combined in (Lu et al., 2018) using 
deep learning-based framework for discriminating cognitively 
normal with Alzheimer’s disease (AD), which resulted in 
considerable performance improvement. For the multi-omics 
data integration, RNA-seq, miRNA-seq, and methylation data 
from The Cancer Genome Atlas (TCGA) are incorporated using 
auto-encoder for predicting hepatocellular carcinoma survival 
(Chaudhary et al., 2018). Furthermore, in (Lee et al., 2019), 
multimodal gated recurrent unit (GRU) is used to integrate 
cognitive performance, cerebrospinal fluid (CSF), demographic 
data, and neuroimaging data to predict AD progression. 
Data integration is believed to help improve the classification 
performance by extracting complementary information from 
each domain of source.

However, integrating heterogeneous data is a challenging 
task. First of all, multimodal data might hinder learning 
complementary feature representation due to the presence of 
mutually exclusive data, that is, a useful feature representation 
of the data might not be learned well since the task-irrelevant 
portion of the data could interfere with the task-relevant portion. 
In addition, dealing with datasets that consist of multiple time 
points is another issue for data integration. Time series data 
include multiple time points of data, whose length is varied over 
samples, while non-time series consists of a single time point of 
data. Thus, additional transformation steps for time series dataset 

should be preceded to convert the variable-length sequence 
data into fixed-size representations without losing information. 
Finally, most commonly, the more various datasets are used, the 
less sample size is available. Traditional data integration methods 
use only samples overlapped by all modalities. Since only a few 
samples contain all modalities of data, it is inevitable to use a 
small portion of the samples, even though abundant samples 
are available.

In this paper, we provide a deep learning-based python 
package for heterogeneous data integration. The most significant 
advantage of our package is the flexibility in which irregular time 
series data are processed. As the main component of our package, 
we combine multiple GRUs with simple concatenation-based 
vector integration, which makes it possible to incorporate any 
number of modalities. Furthermore, nonoverlapping samples, as 
well as overlapping samples, can be used for training a classifier. To 
demonstrate the validity of our package, we conduct experiments 
on simulation data and real data. For simulation data, we generate 
multimodal time series data using the autoregressive model and 
solve a binary classification task. For the real data, as a pilot test, 
patients with mild cognitive impairment (MCI) is used to predict 
AD progression.

Methods
As shown in Figure 1, MildInt comprise two learning phases: 
1) feature extraction from each modality of data and 2) learning 

FIGURE 1 | Longitudinal total intracranial volume, hippocampal volume, and entorhinal cortex thickness from brain imaging data, genomic data, cognitive 
assessment, and any forms of numerical data that can be taken using our framework. In phase 1 (blue-dashed rectangle), each modality of data is separately 
processed for learning feature representation. Both time series and non-time series data can be accepted to produce fixed-size feature vectors using a gated 
recurrent unit (GRU) component (green-dashed rectangle). Then, the learned representations (rectangles colored by red, green, and yellow) are simply concatenated 
to form an input for logistic regression (LR) classifier in phase 2 (red-dashed rectangle).
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the integrative feature representation to make the final prediction. 
In phase 1, time series data from a single domain is transformed 
into a fixed-size vector. Then, vectors from each modality of data 
are integrated and fed to logistic regression (LR) classifier for 
the final decision making in phase 2. We use GRU as our main 
component for learning feature representation from the time 
series data. Additionally, we apply the concatenation-based data 
integration method to integrate multiple sources of data into a 
single vector.

PHASE 1: FEATURE EXTRACTION FROM 
EACH SINGLE MODAL TIME SERIES DATA

Recurrent Neural Network
Recurrent neural network (RNN) is a class of deep learning 
architecture composed of multiple recurring processing layers 
to learn a representation of sequential data (LeCun et al., 2015). 
An RNN processes an input sequence one element at a time and 
updates its memory state that implicitly contains information 
about the history of all the past elements of the sequence. The 
memory state is represented as a Euclidean vector (i.e., a sequence 
of real numbers) and is updated recursively from the input at the 
given step and the value of the previous memory state. Given a 
sequence X = {x1,x2,…,xt…,xT} memory state and output at each 
time step are computed as follows:

 st = tanh (U(s)xt + W(s)st−1 (1)

 ot = softmax(V(o)st) (2)

where U, W, and V are parameters to be learned for computing 
input, memory state, and output, respectively. Output is 
resulted from softmax function whose role is to convert the 
vector of hidden state into a probability vector via the following 
operation:

 

σ ( )u e

e
i

u

u

k

i

k
=

∑  (3)

where ui is the i-th element of the vector u and k is the number 
of labels. Finally, loss function is defined with cross-entropy to 
quantify the distance between true label and estimated one. In 
our package, only the last output oT is picked and used for the 
estimate because the output is regarded to carry the past features 
relevant to estimation.

In natural language processing, speech recognition, and 
anomaly detection in time series, RNN is popularly used for 
analyzing the sequence of words and time series data (Deng et al., 
2013). One of the main advantages of using RNN is that variable 
length of time series data can be processed. This advantage is a 
critical part of our framework that is capable of accepting any 
variable length of time series data. However, extracting features 
in a long sequence of data is hard for RNN, which is known as a 
long-term dependency problem (Bengio et al., 1994). To handle 

this problem, long short-term memory (LSTM) and GRU have 
been developed and practically used. 

Learning Feature Representation Using 
Gated Recurrent Unit
GRU and LSTM are the extension of RNN in which additional 
parameters regulate the memory state, making it possible to 
“forget” irrelevant, outdated past information. Although both 
LSTM and GRU can handle long-term dependency problem, we 
selected GRU as the main component of MildInt. Since GRU has 
fewer parameters than LSTM, it is expected that GRU is easier for 
training in the field of translational informatics where only a few 
samples are available. 

Regulating long-term information is handled by reset 
and update gates. Parameters for both gates are learned for 
determining how xt is processed [equation (4)–(7)]. Update 
gate decides how amount of the previous memory value st−1 is 
passed on. Suppose zt is computed as 1 by equation (4), then 
only the previous memory is passed on, while newly computed 
hidden value ht will be forgotten [equation (7)]. On the other 
hand, reset gate manipulates the computation between previous 
memory st−1  and the current input xt. In equation (6), reset gate 
determines the amount of previous memory value st−1. Note 
that GRU is a general case of RNN because setting rt to 1 and 
zt to 0 for t = 1,2, … , T leads GRU to functioning exactly the 
same as RNN.

 z x s Wt t t
z= + −σ ( )( )U (z)

1  (4)

 r U x s Wt
r

t t
r= + −σ ( )( ) ( )

1  (5)

 h U x s r Wt
k

t t t
h= + −tanh ( ( ) )( ) ( )

1  (6)

 s st t t= − −( )1 1z z h +t t  (7)

In Figure 1, xm
t  represents m-th modality of data at t time 

point. Tm is the maximum time length of m-th modality. A 
single GRU takes each modality of time series data separately 
for learning fixed-length representation in the first phase. Note 
that every modality of data is assumed to be a time series data in 
our package. For the single time point modalities, they are also 
considered as length-1 time series data for ease of integration. 
Without multiple time points of input data, GRU is only a fully 
connected network with a prior hidden state. Thus, the GRU 
component is able to take not only time series data but also non-
time series data as well. The feature representations learned in the 
first phase are optimized only by a single modality of data. Thus, 
phase 1 can be used for a feature learning phase from a single 
domain of source. 

PHASE 2: FINAL CLASSIFICATION

In the second phase, integration of multiple domains of data 
takes place. The feature representations are learned separately in 
the first phase. Thus, a vector produced from a GRU component 

348

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Deep Learning-Based MildIntLee et al.

4 June 2019 | Volume 10 | Article 617Frontiers in Genetics | www.frontiersin.org

contains only the information of a single modality. For learning 
integrative feature representation in the second phase, vectors 
are simply concatenated (Figure 1). Based on the concatenated 
vector, any classification algorithm can be used in phase 2. In our 
package, we provide LR because it yields good interpretability by 
analyzing beta coefficients of the trained classifier. Also, in the 
experiments with real data and simulation data, an LR model was 
used for the final decision.

LR is a classification algorithm in which the outcome is the 
probability of binary classes. Sigmoid function transforms the 
linear combination of the input features into probability values 
that can be mapped to the binary class. We apply l1-regularized 
LR for the classification. A python library Sklearn (Bengio et al., 
1994) is used for LR in our package. 

RESULTS

To validate the performance of our package, experiments on 
simulation data and real data are conducted. In the experiment 
with simulation data, multimodal time series data are 
generated and tested for binary classification. The classification 
performance of our package is compared with other well-known 
methods such as logistic regression (LR), random forest (RF), 
and support vector machine (SVM). In the experiment with real 
data, four modalities of datasets, such as cognitive performance, 
cerebrospinal fluid (CSF), demographic data, and MRI data of 
patients in Alzheimer’s disease, are used for MCI conversion 
prediction that is also set to binary classification.

CLASSIFICATION TASK ON THE 
SIMULATION DATA

In this section, we demonstrate the performance improvement 
using multimodal data and time series data. In the first 
experiment, only a single time point of data is used to evaluate 
the performance improvement of MildInt over other prominent 
classification algorithms such as SVM, LR, and RF. In the 
following experiment, the performance of using time series data 
is observed to evaluate the effectiveness of applying additional 
time points of data.

To generate time series data for binary classification, we apply 
the autoregressive model. First two underlying networks A0 and 
A1 are generated for the parameters in the autoregressive model. 
It is assumed that individual record is generated based on the 
underlying network in which 0-labeled data are generated from 
network A0 while 1-labeled data from A1. The underlying network 
A0 is built in which edges are randomly selected as either 0 or 1, 
and a network A1 against A0 is built with a distance d ranging 
from 0 to 1 in equation (8) where A

ij0  is an element of the i-th 
row and the j-th column in the network A0 whose size is n × n.

 A A d for i j n
ij ij1 0 1= − ≤ ≤, ,  (8)

The distance d is a value for how likely two matrices A0 and 
A1 are distinguishable. For example, if d = 1, then A0 and A1 are 

opposite matrices where edges in A0 are not in A1 while edges 
in A1 are not in A0. On the other hand, if d = 0, A0 and A1 are 
exactly the same. Thus, dataset generated with higher d is easier 
to be separated. Second, we pick up sets of nodes from the 
underlying network to make subnetworks. Each subnetwork is 
considered as each modality of data because each modality of 
data is assumed to have a part of information for understanding 
entire networks. Finally, time series data are generated using the 
nonlinear autoregressive model in equation (9) where M is a 
subnetwork and ε is an error term with 0 mean and 0.1 variance.

 
x Mxt t= −σ ( ), ~ ( , . )1 0 0 1+ ε ε   (9)

 x0 1 1~ ( , ) −  

We generated 1,000 samples whose length of time points is 10. 
Among 1,000 samples, only 500 samples contain all modalities 
of data, while the rest of them have only a part of all modalities. 
For evaluation, we ran fivefold cross-validation 10 times in which 
every fold has the same ratio of positive and negative samples.

In Figure 2, we only used a single time point of data to compare 
the classification performance depending on modality. Figure 2A 
shows inconsistent accuracies of SVM, RF, LR, and MildInt over 
distances since single modality of data does not contain enough 
information for understanding whole underlying networks. 
Thus, the performance becomes more affected by the error term. 
Contrary to the performance with single modality, performance 
using multi-modality of data is less affected by error term. As 
shown in Figure 2B, accuracy is improved consistently over 
distances from 0.5 to 1.0. In particular, the performance of MildInt 
shows 1.0 accuracy over distances from 0.8 to 1.0 since MildInt 
can take non-overlapping as well as overlapping samples on input, 
while SVM, RF, and LR can only use overlapping samples.

From Figure 3, we can see the effectiveness of using time series 
data. As increasing the number of time points, the performance 
using single modality is consistently increased (Figure 3A). 
Using multi-modality of time series data whose length is more 
than 6, two sets of data are perfectly classified from the distance 
0.5 to 1.0 as seen in Figure 3B. Intuitively, data from multiple 
time points have more information than data at a single time 
point. Thus, MildInt can exploit temporal changes in time series 
data for the correct classification.

CLASSIFICATION TASK ON THE REAL 
DATASET

For the experiment with real data, we used 865 subjects in MCI 
obtained from Alzheimer’s disease neuroimaging initiative cohort 
(ADNI) for predicting AD progression. The overall objective of 
ADNI is to test whether neuroimaging, biological markers, clinical, 
neuropsychological assessment could be combined to measure the 
AD progression. We downloaded four modalities of data including 
cognitive performance, CSF, magnetic resonance imaging (MRI), 
and demographic information; each of which has 802, 601, 865, and 
865 samples, respectively, from the ADNI data repository (http://
adni.loni.usc.edu). Informed consent was obtained for all subjects, 
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and the study was approved by the relevant institutional review 
board at each data acquisition site (for up-to-date information, see 
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/
documents/policy/ADNI_Acknowledgement_List%205-29-18.
pdf). All methods were performed in accordance with the relevant 
guidelines and regulations. Among the four modalities of samples, 
601 overlapping samples are available with 200 MCI converter and 
401 MCI non-converter samples. Cognitive performance and CSF 
are time series data with lengths of 4.05 and 1.69 on average. MRI 
and demographic information are considered as length-1 time 
series data in our package. Note that all modalities are given in 
numerical vector forms. For example, we extracted gender, age, 
level of education, and cognitive assessment from patients’ record. 
Especially for MRI data, a preprocessing was performed to extract 
features, such as total intracranial volume, hippocampal volume, 
and entorhinal cortex thickness, which are relevant to predicting 
MCI conversion. Recent methods (Lama et al., 2017; Sandeep et al., 
2017) that extract features also can be used before running our 
package. The summary statistics of samples and hyperparameters 
are shown in Table 1.

Figure 4 shows the accuracies of our package using time 
series data. We removed the accuracy from the model with 
demographic data because the prediction performance was 
too low. The performance improvement using time series data 
is marginal due to the sparsity of time points. More than half 

of the samples contain missing values, and even the length 
of time points is short. Furthermore, we have longitudinal 
samples for only two modalities of data (cognitive performance 
and CSF). Thus, it is hardly expected that the performance is 
enhanced using longitudinal data. However, classification 
accuracy was improved using multiple domains of data. As seen 
in Figure 4, integrating four sources of data shows the best 
predictive performance compared with the performance with 
single modalities. Finally, we compared the performance of 
MildInt with previously developed methods for MCI conversion 
prediction. As observed in Table 2, MildInt showed comparable 
prediction results.

FIGURE 2 | Classification performances of test set with MildInt, SVM, random forest, and logistic regression using single modality of data (A) and multi-modality of 
data (B).

FIGURE 3 | Classification performances using time series data with single modality (A) and multimodality (B).

TABLE 1 | Summary statistics for data and hyperparameters in the experiment 
with real data.

#Features Hidden 
dimension

Time length 
(avg)

Time length 
(sd)

Cognitive 
performance

2 3 4.05 1.71

Demographic 
information

4 5 1 0

CSF 5 6 1.69 0.95
MRI 3 4 1 0

CSF, cerebrospinal fluid; MRI, magnetic resonance imaging.

350

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf


Deep Learning-Based MildIntLee et al.

6 June 2019 | Volume 10 | Article 617Frontiers in Genetics | www.frontiersin.org

CONCLUSION

MildInt provides multimodal GRU for heterogeneous data 
integration. The main advantage of our framework is that variable-
length time series data and multimodal data can be processed. 
In addition, every available sample from all modalities including 
non-overlapping samples can be used for training classifier. The 
performance of MildInt is evaluated with simulation data and real 
data. In the experiment with simulation data, it showed the best 
performance when multimodal data and time series data were 
integrated. Additionally, in the experiment with real data, integrating 
cognitive performance, demographic information, CSF, and MRI 
imaging data show the best performance for MCI conversion 
prediction. Also, any numerical form of data such as gene expression, 
methylation, and single nucleotide polymorphism data can be 
combined in our package. MildInt is suitable to use in cases where 
time series data such as multiple time points of methylation data and 
non-time series data such as single nucleotide polymorphism should 
be incorporated for learning integrative feature representation. 
Furthermore, compared with previously developed methods, MildInt 
showed comparable prediction ability that can efficiently incorporate 
multiple domains of resources.

REQUIREMENTS

This package works on python 2.7.x in platforms such as Mac 
OS X, Windows, and Linux. MildInt requires python packages 

such as Pandas, Numpy, Tensorflow, and Sklearn to be installed 
independently. To make MildInt fully functioning, Tensorflow 
with graphics processing units (GPU) from NVIDIA should 
be equipped. The GPU-enabled version of Tensorflow has 
requirements such as 64-bit Linux, NVIDIA CUDA 7.5 (CUDA 
8.0 required for Pascal GPUs), and NVIDIA, cuDNN v4.0 
(minimum) or v5.1 (recommended).
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FIGURE 4 | Predictive performances using multi-modality and single modality of data.

TABLE 2 | A list of previous models that train classifiers mainly with mild cognitive impairment (MCI) samples. 

Method Subjects
(MCI-C/MCI-NC)

Data source ACC SEN SPE

SVM (Zhang and Shen, 2012a) 43/48 MRI, PET, CSF 0.73 0.68 0.73
SVM (Cheng et al., 2012) 43/56 MRI, FDG-PET, CSF 0.79 0.84 0.72
SVM (Zhang and Shen, 2012b) 35/50 MRI, PET, cognitive score 0.78 0.79 0.78
Gaussian process (Young et al., 2013) 47/96 MRI, PET, CSF, APOE genotype 0.68 0.90 0.52
Hierarchical ensemble (Huang et al., 2017) 70/61 MRI 0.79 0.86 0.78
Deep neural network (Lu et al., 2018) 235/409 MRI, PET 0.82 0.79 0.83
MildInt 163/376 Cognitive score, neuroimaging data, 

CSF biomarker, demographic data
0.79 0.83 0.77

MCI-C, MCI-Converter; MCI-NC, MCI-NonConverter; ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; APOE, Apolipoprotein E; FDG; Fluorodeoxyglucose.
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Ventricular septal defect (VSD) is a fatal congenital heart disease showing severe 
consequence in affected infants. Early diagnosis plays an important role, particularly 
through genetic variants. Existing panel-based approaches of variants mining suffer 
from shortage of large panels, costly sequencing, and missing rare variants. Although 
a trio-based method alleviates these limitations to some extent, it is agnostic to novel 
mutations and computational intensive. Considering these limitations, we are studying a 
novel variants mining algorithm from trio-based sequencing data and apply it on a VSD 
trio to identify associated mutations. Our approach starts with irrelevant k-mer filtering 
from sequences of a trio via a newly conceived coupled Bloom Filter, then corrects 
sequencing errors by using a statistical approach and extends kept k-mers into long 
sequences. These extended sequences are used as input for variants needed. Later, 
the obtained variants are comprehensively analyzed against existing databases to mine 
VSD-related mutations. Experiments show that our trio-based algorithm narrows down 
candidate coding genes and lncRNAs by about 10- and 5-folds comparing with single 
sequence-based approaches, respectively. Meanwhile, our algorithm is 10 times faster 
and 2 magnitudes memory-frugal compared with existing state-of-the-art approach. 
By applying our approach to a VSD trio, we fish out an unreported gene—CD80, a 
combination of two genes—MYBPC3 and TRDN and a lncRNA—NONHSAT096266.2, 
which are highly likely to be VSD-related.

Keywords: trio-sequencing, k-mer filtering, variant calling, ventricular septal defect, association study, long 
non-coding RNA

INTRODUCTION

Ventricular septal defect (VSD) is a major kind of congenital heart disease (CHD), constituting 
about 20% of all CHD cases (Spicer et al., 2014). By taking conservative treatment, mortality is 
around 90% to 95%, whereas via surgery, this rate reduces to 19% to 60% (Serpytis et al., 2015). Very 
often, diagnosis of a VSD patient is at its late stage due to the obvious communication obstacles in 
infants; this poses a need for early diagnosis, particularly through genetic variants.

Mining genetic variants and associating them with diseases is a hot topic, by which thousands of 
disease-associated variants have been identified (The International HapMap 3 Consortium, 2010; 
The 1000 Genomes Project Consortium et al., 2015). Obtaining these findings usually starts with a 
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panel containing hundreds to thousands of patients diagnosed as 
having the same specific disease; later their genetic materials are 
extracted and sequenced. This is followed by disease-associated 
variants mining through a series of analytic procedures. Using 
this protocol, 89,251 single-nucleotide polymorphism (SNP) 
trait associations have been successfully pinpointed according 
to genome-wide association study (GWAS) catalog (MacArthur 
et al., 2017), including more than 400 CHD-related genes (Jin 
et al., 2017a). Although an association study is fruitful and 
promising, many issues weaken its applicability. First, panel-
based association studies only identify common variants, and 
rare variants are overlooked due to low statistical significance. 
Thus, it requires large number of samples to be collected, i.e., 
hundreds, even thousands of cases. Second, almost all existing 
studies mine a one-to-one correspondence between genes and 
diseases rather than a many-to-many scheme, which is pretty 
challenging. Unfortunately, majority of diseases are caused by 
many mutations of genes. For instance, more than 400 genes have 
been discovered to be associated with CHD (Jin et al., 2017a), 
and more than 700 genes are involved in adult height (Wood 
et al., 2014), and even much more (Marouli et al., 2017). Third, 
it is costly to obtain the whole DNA (deoxyribonucleic acid) 
sequence of a sample. Although the ever increasing throughput 
and decreasing cost have made whole-genome sequencing 
possible for general research, it still costs a few hundreds to a 
thousand dollars for a single genome. To partially overcome the 
aforementioned limitations from single sequencing (SS) data, 
trio-based sequencing emerges.

Typically, a trio usually contains two parents and one child. 
This trio-based approach is effective for identifying disease-
associated genes according to the basic rule of inheritance. It 
is also powerful to pinpoint de novo mutations without a large 
panel. Various studies have been conducted to identify disease-
associated genes by using trio-sequencing (TS). For instance, 
a trio-based exome sequencing is used to identify de novo 
mutations in early-onset high myopia (Jin et al., 2017b), and 
~440 CHD-related genes have been discovered based on 2,645 
trios (Jin et al., 2017a). The typical procedure of using trios to 
identify variants is mapping-calling-filtering, i.e., mapping all 
sequences of each individual from a trio to a reference genome, 
calling variants based on mapped sequences, and filtering out 
variants shared by members of the trio. Intuitively, this protocol 
is inefficient to identify de novo mutations from child sequences. 
Obviously, a large portion of sequences have no contribution to 
variant calling, which have been considered during the whole 
processes for all samples within the trio. To solve this problem, 
we propose a novel idea of calling de novo variants from a trio 
and have applied it to identified VSD-related genetic variants, 
including coding genes and long non-coding RNAs (lncRNAs).

Our approach starts from a trio with a child diagnosed as 
having VSD but with healthy parents. Later, unique k-mers 
(k-length consecutive bases from a genomic sequence) belonging 
to the child only are fished out through a newly proposed 
counted k-mer-encoding algorithm. This is followed by sequence 
error correction and k-mer extension before mapping to a 
reference genome. Finally, variants are fished out and analyzed 

against existing databases to mine VSD-related coding genes and 
lncRNAs.

METHODS

Our approach is composed of two major parts: TS-based variant 
mining and VSD-related variant filtering.

Variant Mining
Unlike conventional mapping-calling-filtering approach of 
variant identification, e.g., SAMtools (Li et al., 2009) and GATK 
(DePristo et al., 2011), we conceive a novel idea of de novo 
variants identification algorithm from a trio achieving good 
computation efficiency. Our approach contains four steps: k-mer 
filtering, k-mer extension, and variant identification. Details are 
shown below.

k-mer Filtering
Let a trio be Rf, Rm, Rc, representing the reads of the father (Rf), the 
reads of the mother (Rm), and the reads of the child (Rc, suppose 
only one child is available); the set of k-mers contained in a sample 
is Kf, Km, and Kc for father, mother, and child, respectively. Herein, 
we mean each k-mer having its count (the times it appears within 
the sequenced data) available, i.e., a k-mer, say κ, is a touple (sκ, 
fκ), where sκ is the k-length string of κ, and fκ is its count. To fish 
out de novo mutations from Kc, we go through all the k-mers of Kc 
and check them with Kf and Km. In case the count ratio of a k-mer 
between both parents and the child is less than a threshold (τ0), 
the k-mer is kept as a variant-containing candidate.

It seems trivial to filter out large amount of k-mers shared 
between Kf/Km and Kc. However, the number of k-mers obtained 
from a whole human genome sequencing reads is usually too 
large to fit into a main memory, not to mention putting them 
together. For instance, the 31-mers having a count larger than 
one of the HapMap sample NA12878 ((https://www.ncbi.nlm.
nih.gov/sra/ERR091571/)) take 90-Gb space on disk. To solve 
this problem, we have designed a novel coupled Bloom Filter-
based algorithm achieving high memory saving ratio and good 
retrieval efficiency (Jiang et al., 2019). Let fmax be the maximum 
frequency in K, which can be represented by at most h bits (in 
binary). We take the following steps to represent K:

1. Create a hash function vector H containing h hash functions, 
say 〈H0 (·), H1 (·), ⋯, Hh−1(·)〉.

2. Allocate a coupled Bloom Filter B = (B+, B–) having m bits. 
m is computed as m

n p= −
( )

ln

ln2
2

 with the target false-positive 

rate p and number of k-mers n = |K|; cf. Bloom (1970).
3. For a k-mer κ in K, set the corresponding bits of B indexed by 

H as

B H s i h

B H s

i

i

+

−

( )  = ∈ −( )
( )  =

κ

κ

1 0 1 1, , , , ,

Binaryy f i i h
h
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where binary (fκ)h is the binary representation of fκ via h bits, and 
binary (fκ)h[i] returns the value of the ith bit.
4. Repeat Step 3 above until all k-mers are inserted.

Based on the above steps, Kf, Km, and Kc can be saved into Bf, 
Bm, and Bc economically; more details are shown in Jiang et al. 
(2019).

Based on above algorithm, we are able to store Kf, Km, and 
Kc within a memory simultaneously and compute the ratio of a 
k-mer between a parent and the child efficiently. Note that, the 
time efficiency of k-mer retrieval from a coupled Bloom Filter 
mainly comes from the hash operation, which is in O(1) time 
complexity.

Due to sequencing bias, the k-mers are error-prone. To mitigate 
the impact of errors on variants identification, we perform error 
correction before further analysis (Zhao et al., 2018). For a k-mer 
κ in Kx, we search its neighbors Nκ from Bx, where x ∈{f, m, c}. A 
neighbor of κ is defined as the one having edit distance of 1 from 
κ. Later, a z-score zκ is calculated from ′ ∪=N Nκ κ κ{ } , where 
zκ = (fκ – μ)/σ, μ is mean frequency of k-mers in ′Nκ , and σ is 
their standard deviation. We consider κ is error-free when zκ > 
z0 and fκ > f0. In this study, z0 = 0.8 and f0 = 4. More details are 
presented in Zhao et al. (2018).

ALGORITHM 1: k-mer filtering.

Data: (Kf, Km, Kc), k-mers of a trio; H, a hash function vector
Result: ′K

c
, mutation-contained k-mers of a child

begin
 for x in {f, m, c} do
  Bx = Encoding(Kx, H)
 for κ in Kc do
  νf ← Decoding(Bf, H, sκ)
  νm ← Decoding(Bm, H, sκ)
  νc ← Decoding(Bc, H, sκ)
  if uf/νc < τ0 and um/νc < τ0 then
 ′K

c
 ← Correction(Bc, H, ′K

c
)

 return ′K
c

//Details of Encoding, Decoding and Correction are shown in Appendix A.

k-mer Extension
A k-mer is usually not long enough to uniquely map to a specific 
location of a reference genome. Hence, extending a k-mer 
into a long sequence is necessary before mapping. To this end, 
we take a candidate variation-containing k-mer as seed, and 
elongate the k-mer to both side. Taking right-hand extension, 
each time one base is attached to the right of the current string 
s, i.e., sʹ = s ⋅ x, x ∈{A, C, G, T}, and the k length suffix of sʹ, 
i.e., suffix ′( ) = ′ − −( ) 

s sk l k l1 : , is checked against Bc. In case the 
suffix is absent, the extension will be altered by another base, 
or terminated if all alternatives have failed. The left-hand 
side extension is similar to the right-hand extension but with 
opposite direction. An extension will be terminated in case the 
length limitation is reached or multiple extensions are available. 
We set the length limitation to 1,000 in this study. Extension 
details are shown in Algorithm 2.

ALGORITHM 2: k-mer extension.

Data: Bc, child k-mers; H, a hash function vector; ′K
c
, kept k-mers; maxLen: 

maximum length
Result: S, set of variant-containing sequences
begin
 for κ in ′K

c
 do

  hasBranch ← 0
  s′ ← sκ

  repeat
   c ← 0, e ← ‘‘
   for x in {A, C, G, T} do
    s″ ← suffix(s′, k – 1) · x
    val ← Decoding(Bc, H, s″)
    if val > 0 then
     c ← c + 1, e ← x
   if c > 1 then
    hasBranch ← 1
   else
    s′ ← s′ · e
  until hasBranch or |s′| > maxLen
  hasBranch ← 0
  repeat
   c ← 0, e ← ‘‘
   for x in {A, C, G, T} do
    s″ ← x · prefix(s′, k – 1)
    val ← Decoding(Bc, H, s″)
    if val > 0 then
     c ← c + 1, e ← x
   if c > 1 then
    hasBranch ← 1
   else
    s′ ← e · s′
  until hasBranch or |s′| > maxLen
  S S← ∪ ′{ }s
return S

Variant Identification
All extended k-mers are mapped to GRCh38/hg38 by BWA 
(Li and Durbin, 2009), and variants as well as their position 
are pinpointed by using SAMtools (Li et al., 2009) and the best 
practice of GATK (DePristo et al., 2011). Unlike most existing 
approach that uses read coverage to filter out low confidence 
variants, we use previously identified variant-containing k-mers 
(from the first step and with count included) to refine the 
obtained variants. More precisely, a variant is kept if it satisfies 
the following criteria: 1) a k-mer (formed by the reference 
genome and the variant jointly) containing the variant can be 
found from the set of kept k-mers obtained from the first step; 
2) the sum of the count of all k-mer covering the variant is not 
less than 3. Note that the first criterion is necessary because 
extended k-mers introduce additional variants that are not 
unique to the child.

Variant Filtering
We focus on VSD-related variants; thus, those obtained from the 
previous step undergo filtering to fish out VSD-related variants. 
Two types of variants are considered, viz., contained in coding 
and non-coding regions. For affected non-coding genes, we pay 
special attention on long non-coding RNAs.
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Identifying VSD-Related Variants
Only a tiny portion of variants obtained from GATK could be 
VSD-related. To obtain these variants, we first filter out irrelevant 
ones by GATK built-in modules with various parameters, 
including “QD < 2.0,” “QUAL < 30.0,” “SOR > 3.0,” “FS > 60.0,” 
“MQ < 40.0,” “MQRankSum<-12.5,” and “ReadPosRankSum<-8.0” 
for SNPs and “QD < 2.0,” “QUAL < 30.0,” “FS > 200.0,” and 
“ReadPosRankSum<-20.0” for indels (insertions and deletions). 
This step is followed by using ANNOVAR (Wang et al., 2010) to 
filter out variants presented in known individuals with minor 
allele  frequency (MAF) of 0.01. Reference databases used in 
this stage are the phase 3 of 1000 Genomes Project (The 1000 
Genomes  Project Consortium et al., 2015), ExAC (Lek et al., 
2016),  ESP (Exome Variant Server, 2019), and gnomAD (Lek 
et  al.,  2016). That is, a variant that appears in these databases 
having MAF no less than 0.01 is excluded.

After filtering, we use DAVID (Huang et al., 2009) to analyze 
functions of remaining variants. These variants are also validated 
by using Gene Ontology (GO) (The Gene Ontology Consortium, 
2017), Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(Kanehisa et al., 2018), the Online Mendelian Inheritance in 
Man (OMIM) (Hamosh et al., 2005), and the Human Gene 
Mutation Database (HGMD) (Stenson et al., 2017). Functions 
and pathways of coding genes can be easily obtained by using 
DAVID, whereas they are unable to be obtained directly for non-
coding transcripts. Hence, we handle them separately; see below.

Fishing Out Coding Genes
Taking the results generated by ANNOVAR, we select the variants 
having consequence of “Nonsense_Mutation,” “Frame_Shift_
Ins,” “Frame_Shift_Del,” “Translation_Start_Site,” “Splice_Site,” 
“In_Frame_Ins,” “In_Frame_Del,” and “Missense_Mutation.” In 
addition, variants having SIFT score (Sim et al., 2012) larger than 
0.05 and PolyPhen-2 index (Adzhubei et al., 2010) smaller than 
0.446 are further filtered out. The remaining genes are input into 
DAVID to analyze gene-disease association, gene-annotation 
enrichment analysis, pathway mapping, and so on. Those genes 
related to cardiovascular diseases are fished out. In addition, 
the neurodegenerative diseases-related genes are also obtained 
because many studies have shown that these two diseases are 
closely related (Jin et al., 2017a).

The pinpointed genes are also checked with GO, OMIM, 
HGMD, and KEGG to verify their functions if available.

Pinpointing Out lncRNAs
A lncRNA does not translate proteins; however, it possesses 
many roles in gene transcription regulation, post-transcriptional 
regulation, epigenetic regulation, aging, and so on (Marchese 
et al., 2017). Hence, mutations occurred in lncRNAs may affect 
the downstream products. To identify the VSD-related variant-
containing lncRNAs within the child, we extend the VSD-related 
genes (listed in Jin et al., 2017a) to upstream and downstream by 
100, 200, 500, and 1,000 bp. A variant is considered as a candidate 
if it is within the extension region and overlaps with lncRNAs 
shown in LNCipedia (Volders et al., 2018) or NONCODE (Zhao 
et al., 2016). Note that this protocol approaches the VSD-related 
lncRNAs approximately but not directly. The rationale is that 

regulatory elements within proximity usually play a role together 
(Razin et al., 2013; Andrey and Mundlos, 2017).

Functions of identified lncRNAs are fully explored by using 
LNCipedia and NONCODE.

RESULTS

Data Preparation
A trio containing a 3-year-old boy diagnosed as having typical 
VSD and a couple of healthy parents is collected. The DNA of 
each individual is extracted from 5-ml venous blood and is 
sequenced by an Illumina HiSeq X Ten platform having coverage 
of 30× and read length of 151 bp. All DNA sequences of the three 
samples are obtained from one batch. As a result, 356,781,358 
paired-end reads are obtained from the child, and 368,280,232 
and 330,790,178 paired-end reads are obtained from his father 
and mother, respectively.

Before the sample collection, a written informed consent is 
obtained from the parents of the child.

TS-Based Variants
Based on the TS data, we obtained 2,585,348 variants by using 
GATK (DePristo et al., 2011) with default settings. These variants are 
further divided into two types, i.e., protein coding and non-coding. 
For the non-coding variants, we focus on the regions transcribed 
into lncRNAs. Variants associated with both cardiovascular and 
neurodegenerative diseases are explored because they usually occur 
together (Jin et al., 2017a). Details are shown below.

Coding Genes Related to VSD
From the 2,585,348 variants, 193 within exonic regions and 
6 from splicing regions pass various filtering criteria that are 
obtained by using ANNOVAR (Wang et al., 2010). The 193 
variants are associated with 61 unique genes, whereas the 6 are 
involved in 8 genes; see more details in the Supplementary File.

Taking the 61 genes as input, we identify 14 genes related to 
cardiovascular diseases, including RASA1, CNOT2, MICALCL, 
MDFIC, PRDM7, ATXN1, CSGALNACT1, DYSF, GJB2, KRT35, 
MUC16, P2RX6, ZNF618, and CD80, and 5 genes related to 
neurodegenerative diseases, which are ATXN1, EPB41L1, 
PNPLA6, SYN2, and ERO1B (see Figure 1 and Table 1). Among 
the 18 genes (ATXN1 appears in both categories), 5 of them 
have been confirmed by OMIM and GAD (Genetic Association 
Database) (Becker et al., 2004), of which 2 (RASA1 and ATXN1) 
are cardiovascular disease-related and 4 are neurodegenerative 
disease-related (ATXN1, EPB41L1, PNPLA6, SYN2), whereas 
the rest only appear in one database. Compared with all the 457 
VSD-related genes shown in Jin et al. (2017a), we found that 
MUC16 is common for both data.

We also performed pathway enrichment test for the identified 
genes; however, no significant cardiovascular-related pathway 
can be identified. We found that only five genes overlap with the 
genes saved in KEGG.

After careful investigation of the 14 cardiovascular disease-
related genes via literature review, we found 13 of them have 
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literature support that are associated with CHD (VSD is the most 
common type of CHD), while CD80 has no explicit support. 
Hence, we take further effort to explore the possible roles of 
CD80 in VSD development.

CD80 is well known in providing co-stimulatory signal 
necessary for T-cell activation and survival, which has been 
found on dendritic cells, activated B cells, and monocytes 
(Peach et al., 1995). To our knowledge, no study shows direct 
relation between CD80 and CHD. However, Kallikourdis et al. 
(2017) have reported that CD80 involved in T-cell costimulation 
complex contributes to a heart failure, suggesting that mutated 
CD80 has impact on heart defect. Hence, we carefully explored 
the role of CD80 with VSD computationally.

To examine whether the mutated CD80 has a connection 
with VSD as shown in this study, we retrieved all cardiovascular-
related genes from GO, OMIM, and HGMD, and built 
connections between these genes and CD80 by using the 
STRING database (Szklarczyk et al., 2017). Results show that 
31 genes in GO and 18 genes in OMIM have connections with 
CD80 (in protein association, including known interactions, 
predicted interactions, co-expression, etc.). In total, 41 genes have 
connection with CD80. The details are shown in Table 2. Among 
these 41 genes, 7 of them are known interactions (experimentally 
determined or curated from databases, shown in italic in Table 
2; see Figure 1B). Among these genes, AKT1, PDPK1, CDC42, 
AKT3, and PIK3CA have concrete evidences shown in relation 

FIGURE 1 | Variant-containing coding genes obtained from the trio that are associated with cardiovascular and neurodegenerative diseases. Panel (A) shows the 18 
genes attached to the two categories [generated by using the STRING database (Szklarczyk et al., 2017)], panel (B) presents the connections between CD80- and 
CHD-related genes, and panel (C) illustrates the 3D structure of the mutated CD80 (PDB ID: 1I8L) discovered in this study. The 18 genes are fished out by using 
DAVID from OMIM and GAD databases, genes identified by OMIM are shaded by a polygon. Note that, all the genes identified by OMIM have also been confirmed 
by GAD.

TABLE 1 | Details of the 16 variant-containing coding genes identified from the trio.

Disease Gene Chr. Pos. Reference Alt. Varianta |Transcript|b Coveragec MAFd

DYSF 2 71665193 C T MM 14 36 0.52
MUC16 19 8888863 T C MM 4 55 0.52
P2RX6 22 21023596 C T NM 4 33 0.54
ZNF618 9 114050108 C T MM 4 35 0.57
CD80 3 119537362 T — FSD 3 39 0.56
CNOT2 12 70353914 A — IFD 3 15 0.40

Cardiovascular ATXN1 6 16327634 TGCTGC — IFD 2 16 0.31
RASA1 5 87383769 A G MM 2 21 0.57
MDFIC 7 114922989 C G MM 2 18 0.66
CSGALNACT1 8 19458429 A T MM 2 27 0.62
PRDM7 16 90058384 G — FSD 1 37 0.64
MICALCL 11 12294797 — CTCCTC IFI 1 11 0.36
GJB2 13 20189347 G — FSD 1 33 0.39
KRT35 17 41477614 C T MM 1 31 0.41

Neurodegenerative PNPLA6 19 7556658 C A MM 5 26 0.46
EPB41L1 20 36209768 C T MM 4 35 0.62
SYN2 3 12004751 — GCCCGCGCCGCA IFI 2 6 0.33
ATXN1 6 16327634 TGCTGC — IFD 2 20 0.31
ERO1B 1 236235819 G A MM 1 21 0.52

aVariant classes include MM (missense mutation), NM (nonsense mutation), FSD (frame shift deletion), IFD (in frame deletion), IFI (in frame insertion), IFD (in frame deletion); baffected 
number of transcripts, creads coverage, and dmutant allele frequency.
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with congenital heart disease; even two of them (AKT1, CDC42) 
have explicit association with VSD (Chang et al., 2010; Liu et al., 
2017).

Regarding the mutated CD80 in this study, it has a “T” 
deletion on the reverse strand at chr3:119537362, leading to a 
frame shift at position 159 of the translated protein (cf. Figure 
1C). As a result, the protein is no longer able to insert into the 
membrane of a cardiac myocyte; see Figure 1C. Therefore, the 
downstream pathway will be affected.

Regarding the eight variants that reside in the splicing region, 
we found only one (MROH5) that is related to cardiovascular 
disease.

LncRNAs Related to VSD
Other than fishing out candidate VSD-related genes from variants 
directly, we use known VSD-associated genes as a seed, and then 
pinpoint lncRNAs having variants near these seeds. A set of 457 
known VSD-related genes are obtained from Jin et al. (2017a), 
whereas the whole set of lncRNAs are retrieved from LNCipedia 
and NONCODE. A variant-containing lncRNA is considered to 
be VSD-related if it is within a certain distance of a known VSD-
related gene. Other than using a single distance, we use various 
distances, which are 100, 200, 500, and 1,000 bp.

We identified 6, 7, 27, and 49 lncRNAs from LNCipedia 
having distance of 100, 200, 500, and 1,000 bp, respectively, 
whereas these numbers are 6, 8, 32, and 57 when checked against 
NONCODE. Details are shown in the Supplementary File. 
To examine whether these lncRNAs have a potential effect to 
VSD, we carefully studied their expression in different tissues, 

particularly in the heart. We found that among all the lncRNAs 
(both from LNCipedia and NONCODE), 29 of them present 
in the heart, especially NONHSAT096266.2 (NONCODE ID), 
which is highly and uniquely expressed in the heart, having a 
FPKM score of 13.97. More interestingly, this lncRNA is very 
close to NFXL1, which has been identified as a VSD-associated 
gene (Jin et al., 2017a). See Table 3.

Results Comparison
We use TrioDeNovo (Wei et al., 2015) with default settings 
(depth of coverage equals 5) to call de novo variants from the 
trio and compare results with that of our approach. As a result, 
TrioDeNovo identifies 79,082 variants contained in 357 genes. 
After filtering out common variants with MAF of 0.01, 51 
variants located in 25 genes are obtained. Among these genes, 21 
overlap with our findings. Regarding lncRNAs, no variant can be 
found within 1,000 bp of known VSD-related genes.

SS-Based Variants
Intuitively a TS-based approach is able to significantly narrow 
down candidate genes; however, it is hard to speculate to 
what extent the improvement is. Hence, we have conducted 
experiments on the sequences of the VSD sample (the child) only 
with the same protocols as the TS-based experiments.

Based on the single-sequencing (SS) data, we have obtained 
4,826,899 variants by using GATK (DePristo et al., 2011). Similar 
as trio-sequencing (TS) data analysis, we divide them into protein 
coding and non-coding variants.

TABLE 2 | CD80 interacting genes in GO and OMIM that are associated with cardiovascular diseases.

AKT1 PDPK1 CDC42 PIK3R3 AKT3 PIK3CA PIK3CB TGFB1

CD80-GO PTEN IL8 CXCL10 IL10 CCL2 CCR2 THY1 ERBB2
PIK3CG TLR3 IL1B CD34 ANPEP STAT3 FASLG VEGFA

JUN IL18 NRP1 IL6 STAT1 CD40 CXCR3

CD80-OMIM AKT2 ICAM1 ITIH4 PIK3CG CD36 CD40LG NRP1 IL10
IL6 CD40 SCARB1 INS IFNA1 LMNA IL4 VEGFA
IL18 PTEN

Genes in italic are experimentally determined that have interactions with CD80, whereas the rest are computationally predicted.

TABLE 3 | The top 10 lncRNAs obtained from the trio that have potential relation with VSD.

 NONCODE ID Chr. Pos. Ref. Alt. FPKM Dis.(bp)

 NONHSAT096266.2 4 47846448 C T 13.97 1000
NONHSAT232531.1 12 131923913 G A 2.08 1000
NONHSAT001273.2 1 19074132 T C 1.99 1000
NONHSAT180457.1 19 44259481 T C 1.54 1000
NONHSAT235401.1 15 66701900 G A 1.49 1000
NONHSAT244710.1 22 19179167 A G 1.15 1000
NONHSAT010771.2 1 247332298 AC A 0.89 1000
NONHSAT022678.2 11 71452973 T C 0.37 1000
NONHSAT229850.1 11 64779243 GAAAAAA G 0.32 1000
NONHSAT246250.1 3 9396926 G A 0.22 1000

FPKM: fragments per kilobase of exon per million reads mapped (Mortazavi et al., 2008).
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Coding Genes Related to VSD
After annotation and filtering by using ANNOVAR, we obtained 
1,552 variants contained in 436 genes. Among these genes, 424 
have exonic variations and the other 12 have splicing variations. 
For the 424 genes, we identified MYBPC3 (Chr11:47342683, C/T, 
missense mutation, p.G507R) and TRDN (Chr6:123571021, C/A, 
missense mutation, p.S45I), which are highly related to ventricles, 
by using DAVID based on OMIM. More details are shown in the 
Supplementary File. Unfortunately, these two genes cannot be 
identified based on the trio. Further investigation has shown that 
the variation in MYBPC3 is inherited from the father, whereas the 
variation in TRDN is inherited from the mother. Considering 
the truth that both the father and mother are healthy, but the 
child has VSD, we speculate that the combination of mutated 
MYBPC3 and TRDN may have noteworthy contribution to VSD. 
Regarding the 12 genes having variants in splicing regions, we 
have not found cardiovascular- or neurodegenerative-related 
genes.

The genes identified by GAD are excluded for the child sample 
analysis. This is because more than 60 genes can be found, and 
the significance of relations between these variants and VSD can 
be hardly determined.

LncRNAs Related to VSD
Similar to TS-based lncRNA identification, we carried out the 
same experiments on the VSD patient only. Unlike the results 
obtained from coding genes that are about 10 times larger, 
candidates are selected from the SS-based data than the TS-based 
data; we get five times larger number of lncRNA variants between 
the SS-based data and the TS-based data.

The numbers of lncRNAs having variants close to VSD-related 
genes are 37, 60, 129, and 197 for distances of 100, 200, 500, and 
1,000 bp, respectively. Among all these lncRNAs, only 97 are present 
in heart cells, of which 23 are highly expressed having FPKM score 
larger than 1. Details are shown in the Supplementary File. For 
instance, the lncRNA NONHSAT181468.1 (Chr2:27217145, 
CT/C), which has the highest FPKM score of the identified 
lncRNAs, is highly expressed in the heart having FPKM of 31.7. 
This lncRNA is within the first intron of SLC5A6, which has been 
confirmed as a VSD-associated gene.

Variants Profile of the Trio
We use the ratio of k-mers between the parents and child to 
reflect their genetic variations. Figure 2 shows the detailed ratio 
distribution. It is clear that only a small portion of k-mers have ratio 
of 0 (see Figure 2A, C). That having been said, among the k-mers 
of the child, only 0.442% contains de novo mutations compared 
with his father, and this value is 0.438% compared with his mother. 
After combining them together, 0.43% are unique k-mers.

The ratio of k-mers may be affected by sequencing errors. 
To alleviate this impact, we include k-mers having small ratio 
(less than 0.3) except the ones having a ratio of 0. Generally, the 
number of k-mers having a ratio of 0 is four to five magnitudes 
larger than those non-zero ones (see Figure 2C). In case these 
k-mers contain mutations, they will be fished out during the 
downstream variant calling.

Unlike the distribution of k-mer count for all k-mers 
(approximate normal), the k-mers having mutations follow a 
Poisson distribution (see Figure 2D). The k-mers having counted 
smaller than 20 forms 97.97% of all k-mers having ratio less than 
0.3. The distribution breakdowns of these k-mers are shown in 
Figure 2B.

Run-Time Analysis
Our experiments are conducted on a computer having 128G 
RAM and two E5-2683V4 CPUs (32 cores in total), installed 
with CentOS 7.0. Throughout the entire experiments, we use 24 
threads as default if applicable.

Other than existing approaches that filter out irrelevant 
variants from trios after mapping, e.g., TrioDeNovo (Wei et al., 
2015), we conduct filtering before mapping. This small change 
is not trivial since the input data are usually very large. For 
instance, the input size of the VSD sample used in this study is 
242 Gb in fastq format, and the total size is over 700 Gb for the 
trio. To solve this problem, we have conceived a novel coupled 
Bloom Filter-based k-mer encoding algorithm. This algorithm 
achieves a compression ratio of 12 under default settings. That 
having been said, a typical set of k-mers obtained from a human 
genome (usually around 120Gb) can be compressed into 10 Gb. 
Using this approach, we are able to handle a trio within a main 
memory.

Experiments show that the total memory used to encode 
counted k-mers obtained from the trio is 31.7 Gb. Based on the 
encoded k-mers having count available, we calculate count ratio 
of all k-mers between the parents and the child. Mathematically, 
suppose the count of a k-mer κ from the child is fc

κ , and the 
count is f f

κ  and fm
κ  for his father and mother, respectively; then, 

the count ratio is r f ff c f c/
κ κ κ=  between his father and himself. 

Analogously, the count ratio between his mother and himself is 
r f fm c m c/

κ κ κ= . If both rf c/
κ  and rm c/

κ  are smaller than the threshold 
r0, then, κ is kept, where r0 is set as 0.3 in this study. Results show 
that k-mer counting takes 129 min, k-mer encoding takes 175 
min, and k-mer filtering takes 20.3 s. As a result, 3.9% k-mers are 
left for further analysis.

Because there exist sequencing errors, we perform error 
correction on the remained k-mers (Zhao et al., 2017). It takes 
1.7  s and 0.12-Gb RAM to correct 93.7% errors of the kept k-mers. 
As a result, 293.2M k-mers are left for variants identification.

Before mapping variant-containing k-mers to a reference 
genome, we have also conducted k-mer extension to avoid multi-
mapping problem caused by short input sequence, e.g., k-mer. 
An extension takes a k-mer as seed, and extends the k-mer to 
both sides based on the reads in which the k-mer is contained. 
Finally, we mapped extended sequences to the reference genome 
GRCh38/h38 via BWA (Li and Durbin, 2009), which takes 52 min 
to finish. This is followed by variants calling through SAMtools Li 
et al. (2009) and GATK (DePristo et al., 2011) jointly. It takes 50 
min to finish the above mentioned steps.

Regarding TrioDeNovo, it takes 572 min to get the sorted sam 
file from a raw fastq file and uses 8,179 min to merge and generate 
the final vcf file by using GATK and TrioDeNovo. Compared 
with our approach, TrioDenovo is 10 times (= (8179 + 572*3)/
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((129 + 175)*3+102)) slower than ours. Besides, the maximum 
RAM required by our approach is two magnitudes smaller.

CONCLUSIONS

As the most common CHD, VSD affects a noteworthy portion of 
newborns, leading to a high mortality. Unveiling the biological 
mechanism, particularly the underpinning genetic variants, is 
essential for both early diagnosis and clinical treatment. Existing 
approaches of mining genetic variants rely on large panels, which 
is challenging in cost and sample collection. It is also prone to 
overlooking rare variants and hard to handle multiple variants. 
We designed a novel algorithm for identifying variants from a 
trio and associate them with VSD. Experiments show that trio-
sequencing-based approach is able to narrow down VSD-related 
candidates by about 10 times in coding genes and 5 times in 

lncRNAs; meanwhile our approach is 10 times faster than existing 
state-of-the-art approach. Applying our method to a VSD trio, 
we fish out 14 coding genes closely correlated to cardiovascular 
diseases and 5 coding genes associated with neurodegenerative 
diseases. Among them, CD80 has not been reported yet. More 
promisingly, results show that the combination of MYBPC3 and 
TRDN has high possibility to be VSD-related. Analysis on lncRNA 
shows that six are highly expressed in heart that are within 1,000 
bp to VSD-related genes, particularly NONHSAT096266.2, 
which has a FPKM socre of 13.97 and is uniquely expressed 
in heart.
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APPENDIX A

The procedure of Encoding, Decoding and error Correction are 
shown below.

Function Encoding (K, H):
 B = Ø, fmax ← max (F(K)), h ← |Binary (fmax)|
 while K ≠ Ø do
  initialize new B+, B– and Kʹ
  for κ in K do
   flag ← False, freq ← Binary(fκ )
 *  Roll-back point
   for i ← 0 to h – 1 do
    j ← Hi (sκ )
    if B+[ j ] = = 1 and B–[ j ] ≠ freq[i] then
     flag ← True
     Kʹ ← Kʹ ∪{κ}
    else
     B+ [ j ] ← 1, B– [ j ] ← freq[i]
    If flag = = True then
     roll back B to the point *
     break;
  B ← B ∪ {(B+, B–)}, K ← Kʹ
 return B
Function Decoding (B, H, sκ ):
 h ← |H|
 for i ← 0 to h – 1 do
  if B+[Hi (sκ )] = = 0 then
   return False
 for i ← 0 to h – 1 do
  bi ← B– [Hi(sκ)]
  val ← Denary (b0b1⋯b(h–1))
 return val
Function Correction (B, H, Kʹ):
 For κ in Kʹ do
  uκ ← Decoding (B, H, κ)
  Nκ ← {νκ }
  for i ← 1 to k do
   for x in {A, C, G, T } do
    if sκ [i] ≠ x then
     sκʹ ← sκ [1:(i – 1)]·x·sκ[(i + 1): k]

     νκʹ ← Decoding (B, H, sκʹ)
  zκ ← (νκ – mean (Nκ ))/std(Nκ )
  if not zκ > z0 and νκ < f0 then
  ′ ← ′ −K Kc c κ
 return ′Kc
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Integration of distinct biological data types could provide a comprehensive view of 
biological processes or complex diseases. The combinations of molecules responsible 
for different phenotypes form multiple embedded (expression) subspaces, thus 
identifying the intrinsic data structure is challenging by regular integration methods. In 
this paper, we propose a novel framework of “Multi-view Subspace Clustering Analysis 
(MSCA),” which could measure the local similarities of samples in the same subspace 
and obtain the global consensus sample patterns (structures) for multiple data types, 
thereby comprehensively capturing the underlying heterogeneity of samples. Applied 
to various synthetic datasets, MSCA performs effectively to recognize the predefined 
sample patterns, and is robust to data noises. Given a real biological dataset, i.e., 
Cancer Cell Line Encyclopedia (CCLE) data, MSCA successfully identifies cell clusters 
of common aberrations across cancer types. A remarkable superiority over the state-of-
the-art methods, such as iClusterPlus, SNF, and ANF, has also been demonstrated in 
our simulation and case studies.

Keywords: multi-view subspace clustering analysis, data integration, heterogeneity, low-rank representation, 
graph diffusion

INTRODUCTION

The rapid advance of high throughput technologies makes large amounts of various omics data 
available to study biological problems (Schuster, 2008). While, different types of data could provide 
complementary or common information to each other since a biological system consists of a series 
of highly ordered molecular and cellular events (Wang et al., 2014; Ma and Zhang, 2017; Shi et al., 
2017a). Thus, compared to single data types (e.g., gene expression), the integration of multiple omics 
data is more likely to completely understand the molecular mechanisms underlying particular 
biological processes or complex diseases, and therefore offers more opportunities to better address 
biological or medical issues, e.g., to identify cancer subtypes with different biological or clinical 
outcomes (Xiong et al., 2012; Chen and Zhang, 2016; Shi et al., 2017a).

So far, quite a lot of data-integration methods have been proposed and they can be briefly summarized 
into two main categories: firstly, to extract signals from each data type; secondly, to acquire comprehensive 
information by a sample-centric integration (Arneson et al., 2017; Zhang et al., 2017a). In addition, these 
data integration methods mainly depend on two strategies, one is space projection method (Fan et al., 

364

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00744
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00744&domain=pdf&date_stamp=2019-08-20
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:qqshi@mail.hzau.edu.cn
mailto:chaozhangchuan@163.com
https://doi.org/10.3389/fgene.2019.00744
https://www.frontiersin.org/article/10.3389/fgene.2019.00744/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00744/full
https://www.frontiersin.org/article/10.3389/fgene.2019.00744/full
https://loop.frontiersin.org/people/660872
https://loop.frontiersin.org/people/551210
https://loop.frontiersin.org/people/552744
https://loop.frontiersin.org/people/781057


Multi-view Subspace Clustering AnalysisShi et al.

2 August 2019 | Volume 10 | Article 744Frontiers in Genetics | www.frontiersin.org

2016), and the other one is metric (similarity measures) fusion 
technique (Wang et al., 2014). These ideas match the nonlinear 
characteristics of biological systems and should really work when 
capturing the whole phenotype landscape.

However, their solutions to obtain the sample or gene patterns 
from multiple data domains are really distinct from each other. The 
earliest proposed methods identify multi-dimensional genomic 
modules (e.g., mRNA-miRNA functional pairs) (Ghazalpour et al., 
2006; Kutalik et al., 2008; Li et al., 2012; Zhang et al., 2012; Chen 
and Zhang, 2016), which present high correlations over the samples 
in data sets. Such “co-modules” can only uncover common sample 
structures across data types and likely lead to biased clustering because 
much phenotype-associated differential information is missing. 
Later, Mo et al. developed a method, iClusterPlus (Mo et al., 2013), 
which considers different properties of omics data (e.g., continuous, 
count or binary valued variables) through corresponding linear 
regression models. However, some assumptions held by this method 
are too strong for heterogeneous tumor samples, and may also lose 
biologically meaningful information. As a nearly assumption-free and 
fast approach, SNF (Wang et al., 2014) (similarity network fusion) can 
overcome such issues and it uses local structure preservation method 
(i.e., K-nearest neighbors) to adjust sample similarity networks 
for each data type. But, SNF can only characterize pair-wise Euclidean 
(or other) distances in the sample neighborhoods, and is sensitive to 
local data noises or outliers. Recently, Ma and Zhang proposed ANF, 
an “update” of SNF, which incorporates weights of views for each 
data type (Ma and Zhang, 2017). ANF presents more general and 
interpretable power than SNF, but it still reserves the unstable nature of 
pair-wise clustering. Notably, increasing biological evidence suggests 
that distinct regulatory mechanisms preside over physiological 
phenotypes (e.g., Waddington’s canalization) or even the tumor cell 
states (Mark and Aviv, 2002). Cell types or patients present extremely 
strong heterogeneity due to the different master gene sets, implying 
that these individuals are scattered in multiple biological states (feature 
subspaces) even at a single data level (Shi et al., 2017b; Haghverdi et al., 
2018). That means the pair-wise similarity measurement (e.g., in SNF) 
can’t capture the true heterogeneity spanning in different subspaces, 
further leading to inaccurate integrative clustering. Thus, the more 
effective integration approach is still lacking.

Motivated by above requirements from methodology and 
biology study, we propose a novel framework called “Multi-view 
Subspace Clustering Analysis (MSCA)” by using representation-
based methods (e.g., low-rank representation, namely LRR) (Lin 
et al., 2011; Liu et al., 2013). LRR or relevant subspace clustering 
algorithms are originally developed and applied in image recognition 
(Zhang et al.; Cao et al., 2015; Gao et al., 2016; Brbić and Kopriva, 
2017; Zhang et al., 2017b). These methods enable to recover the 
signal spaces of the images, providing a better description of the 
visual patterns. Furthermore, they generate a block-diagonal 
representation graph of samples, which measures sample similarities 
by linear combinations of the remaining samples, presenting more 
robust than pair-wise clustering. However, when applied to highly 
heterogenous data, such as biological omics profiles, these methods 
are often fragile since they assume linear embedded structures 
underlie the original data and can’t exploit the local geometric 
relationships of objects (Zhuang et al., 2015). Hence, we should 
improve the utility of subspace clustering to be more appropriated for 

biological cases. In our proposed MSCA model, we incorporate the 
advantage of local structure preservation to force the representations 
to be locally linear at each data type, and capture the integrative 
clustering pattern by fusing the multiple informative graphs from 
local sample representations. In particular, MSCA implements 
two steps of nonlinear pattern identification for different omics 
data during pattern fusion, where the multi-view is able to recover 
more details of systems’ complexity and heterogeneity. To validate 
the effectiveness of our method, we firstly applied MSCA to various 
synthetic datasets, and found that MSCA not only successfully 
recognizes the predefined subgroups with a better performance than 
several state-of-the-art methods, but also shows great robustness on 
different parameters’ variation. In addition, MSCA has demonstrated 
a good ability to yield biologically relevant subgroups of tumor cells 
of multiple origins in CCLE (Barretina et al., 2012) data set.

METHODS

Method Overview
MSCA takes two steps as schematically shown in  
Figure 1: i) Construction of sample representation matrix from 
each type of genomic profiles by a subspace clustering algorithm  
(Figures 1A, B); ii) Graph diffusion process of sample similarity 
matrices, which are derived from the representation matrices 
corresponding to all data types (Figure 1C). MSCA was 
implemented as a Matlab package and is freely available at https://
github.com/ZCCQQWork/MSCA.

The representation graph Z of step (i) presents each single 
sample as a linear combination of the remaining ones in the same 
subspace/cluster, and therefore it can be shown as a block-diagonal 
and sparse matrix. Such low-rank characteristic of Z makes it 
more robust to data outliers and capable to retain more structural 
information of data, thus paving a good way for the next integrative. 
After that, MSCA implements the graph diffusion step (ii). It makes 
information propagate across multiple graphs in an iteration way. 
And this could fuse biological signals from the involved genomic 
data. After a few iterations, MSCA converges to the optimal graph 
(Figure 1D), as a multi-view similarity measurement, revealing the 
underlying relationship of samples. Note that both the steps follow 
nonlinear criteria, to maximize the chance of characterizing the true 
complexity and heterogeneity of data, and especially the common 
information will strengthen the supported sample patterns whereas 
discordant local structures will weaken their similarities.

Extracting the Sample Representation 
Graph From Each Data Type
Suppose we describe a genomic profile (e.g., mRNA expression) with 
h biological measurements and n samples as a data matrix X = [x1 ,x2, 
… ,xn], xi and xj correspond to two samples; then the representation 
relationships of all samples can be calculated as follows:
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where Z = [z1, z2, … ,zn] is a n × n matrix containing all 
the coefficient measurements  between pairs of samples  
xi(1 ≤ i ≤ n), and zi is a coefficient vector of sample i. ||Z||* 
represents the nuclear norm of Z, i.e., the sum of all singular 

values of Z; E eij
i

h

j

n

2 1
2

1
, = ( )∑∑ =

and is l2,1-norm of the error 

matrix E, where eij is the (i,j)-th entry of matrix E.
Note that, in the first constraint condition, the linear 

representation of samples can capture the global structure in 
data, thus a large similarity coefficient means the two samples 
are spatially close. Next in the second constraint condition, 1, 
as an all-one vector, is used to normalize Z that ∑iZij = 1. And in 
the third constraint condition, Ω denotes as the complement of 
Ω, where Ω is a set of edges between the samples in a predefined 
adjacency graph. For example, if xi and xj are not graph 
neighbors, we have   Ωi j,( ) ∈ . In this work, we use K-nearest 
neighbors to predetermine the sample local structure in terms 
of pair-wise Euclidean distances. Then, the tuning parameter 
λ is used to balance the two optimization terms, which could 
be selected according to their respective properties, or tuned 
empirically. For the selection of parameters K and λ, the 
section Evaluation of MSCA on Synthetic Examples has more 
detailed discussions. Given solving problem (1), we obtain the 
optimal solution Z*, which is block-diagonal indicating that 
samples in the same subspace are clustered together due to the 
comprehensive considerations/constraints of global and local 
data structures. The corresponding sample affinity matrix W is 
obtained by W Z Z T= +( )* * / 2, which can be passed on to the 
next step integration.

In fact, the optimization problem (1) can be solved via 
ADMM (alternating direction method of multipliers) algorithm 
(Lin et al., 2010) as below. Firstly, this problem can be converted 
to an equivalent problem:
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( ) ,

,
L
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E
J E

X XZ E
Z
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And its augmented Lagrangian function is:
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where μ is a penalty parameter larger than 0. ||*||F denotes the 
Frobenious norm, and Y1, Y2 and Y3 are Lagrangian multipliers 
corresponding to three constraints in equation (2) respectively; 
L ZΩ( ) = 0 corresponds to the third constraint condition in original 
optimization equation (1). As known, the above problem can be 
minimized orderly to update the variables Z, J, E by fixing the other 
variables, respectively, according to ADMM.

Suppose at k times of updates, we acquire Z J E Y Yk k k k k, , , ,1 2  
and Y k

3 , and the alternate process with update functions can be 
summarized in below:

Firstly, assuming all the other five matrices are fixed, we can 
compute Jk+1:
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 (4)

FIGURE 1 | Overview of Multi-view Subspace Clustering Analysis (MSCA). (A) Different biological data types for the same set of samples. (B) Sample representation 
matrices for each data type. Coefficients are represented by dots, and bigger redder ones mean larger values. (C) Cross-graph diffusion process to integrate 
multiple similarity matrices, updating aggregated information iteratively. (D) Final integrative result when step in (C) reaches convergence. Color of square in graphs 
indicates sample-to-sample similarities. X denotes as each omic data matrix, and Z presents the representation matrix. E is the error matrix (see Methods).
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Secondly, assuming Jk+1, Zk, Y
k

1  are fixed, we can compute Ek+1:
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Thirdly, assuming Jk+1, Ek+1, Y k
1 , Y k

2  and Y k
3  are fixed, we can 

compute the updated Z from following optimization problem:
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In fact, this problem is equivalent to
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Then, it can be further linearized with respect to Z at Zk based 
on LADMAP (linearized alternating direction method with 
adaptive penalty) algorithm (Lin et al., 2011):
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where η = + +X T
2

2

2

2
11 .

In the end, we obtain Zk+1 according to the following 
updating rule:
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where 
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Fourthly, assuming that Ek+1, Zk+1 and Jk+1 are fixed, we can 
calculate simultaneously:

 Y Y X XZ Ek k k k k
1

1
1

1 1+ + += + − −µ ( )  (10)

 Y Y Zk k k T T k
2

1
2

1+ += + −µ ( )1 1  (11)

 Y Y Z Jk k k k k
3

1
3

1 1+ + += + −µ ( )  (12)

All the above subproblems can form a closed loop until 
convergence, and the whole step to derive the graph weight 
matrix W can be briefly summarized in Algorithm 1.

ALGORITHM 1 Algorithm to extract the sample representation matrix for each 
data type.

Input: the profile of ith data type, i.e. X x x xi i i
n
i=  1 2, , ..., , tuning parameter λ, 

and nearset neighbors parameter K.
Output: the sample representation matrix Wi of ith data type.
1. Obtain neighbors in data Xi using K-nearset neighbour method, and assign the 
parameter Ω

2. Solve the equation (1) by updating (4), (5), (9)-(12) until the iteration converges 
and obtain the optimal Z*

3: Construct the sample similarity matrix WI by W Z Zi T= +( )* * / 2

Capturing Multi-View Graph From Various 
Omics Data
Given m different genomics data types, we could obtain respective 
affinity matrices Wi, i = 1, 2, …, m as nonlinear similarity 
measurements of all samples by above Algorithm 1. This step would 
fuse individual affinity graphs to a systematic one. The graph diffusion 
process is implemented like SNF ever does (Wang et al., 2014). In 
this step, we continue to take advantage of locality-preserving 
strategy and define a kernel matrix, S, to ensure samples in the same 
neighborhood still stay close across data sources. Simultaneously, we 
normalized the raw affinity matrix W to a new status matrix P, which 
keeps the original information and reduces the scale bias. Note that 
matrix P still carries the full information about the similarity of each 
sample to all others whereas matrix S only encodes the similarity to 
the local neighborhoods for each sample.

For the m different biological data types, matrices Pi and Si of the 
i-th data type are obtained by equations (13) and (14) based on (Wi, 
i = 1, 2, …, m).
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where Ni is the K nearest neighbors of the sample xi based on Wi.
The key step of MSCA is to iteratively update status matrix in 

graph diffusion across data types as follows:

 

P S
P

m
S

P S
P

t

t
k

k T

t
i i t

+
≠

+

= ×
−















×

= ×

∑
1

1 1 1 1

1

1
( )

...
kk

k i i T

t
m m t

k

k m

m
S

P S
P

m

≠

+
≠

∑

∑

−















×

= ×
−





1

11

( )

...











× ( )Sm T  (15)

where Pt
i
+1 is the status matrix of i-th data type after t + 1 iterations 

and P Pi i
1 =  represent the initial status matrix at t = 1.

The equation (15) updates the status matrices each time 
generating m parallel interchanging diffusion processes. After 
t steps, the overall status matrix or multi-view matrix W# is 
computed as: 

 
W

P

m

t
i

i

m

# = =
∑

1
 (16)

Iterative Updating Process and Clustering 
Method
Given a series of sample representation matrices generated by 
Algorithm 1, the iterative integration process is summarized as 
Algorithm 2.

ALGORITHM 2 The Iterative Updating Process for MSCA.

Input: The profile of the m data types, i.e., X X X Xm=[ , ,..., ]1 2 , tuning 
parameter λ, and nearset neighbors parameter K.
Output: The multi-view similarity matrix W# across m data types
1. Computing the representation matrix Wi (i = 1,2,..m) of each data type 
according to Algorithm 1

2. Updating the status matrix Pi (i = 1,2...m) of each data  type by the equation 
(15) until the process reaches convergence
3. Capturing the multi-view similarity matrix W# by the equation (16)

Therefore, the final undirected graph W#, involving multi-layer 
signals, i.e., local and global information, is capable to present the 
intrinsic complexity of data. The multi-view fused matrix can be 
applied into spectral clustering algorithm [e.g., Ratio Cuts (Ding 
et al., 2013)] to identify the meaningful groups of samples, e.g., 
prognostic different subtypes, or other potential applications.

RESULTS

Evaluation of MSCA on Synthetic Examples
To demonstrate the ability of MSCA on multi-view subgroups 
identification, simulation experiments are conducted, with 
comparison to the above mentioned methods (Mo et al., 2013; 
Wang et al., 2014; Cao et al., 2015; Brbić and Kopriva, 2017; 
Ma  and Zhang, 2017; Zhang et al., 2017b). In addition, the 
selection of parameters in MSCA has also been discussed in 
these synthetic examples.

Synthetic Data
Two categories of numeric data sets have been considered for 
a complete evaluation. Each contains two types of data and 90 
samples underlying predefined sample structures by singular value 
decomposition (Meng et al., 2015). To preserve feature characteristics 
(e.g., amount, diversity and variance) of biological data types (e.g., 
gene expression and methylation profiles), the two data types in 
synthetic examples are directly generated from real data sets (i.e., 
GSE49278 and GSE49277) (Assié et al., 2014) (Supplementary 
Information). And each data type could provide partial but effective 
information to describe the whole sample patterns (e.g., type 1 and 
type 2 in Figure 2A and Supplementary Figure S1A). We called the 
“weak heterogeneity” numeric example as simData1 where samples 
are distributed in a single subspace and the “strong heterogeneity” 
one as simData2 where different manifold subspaces exist. Briefly, 
the 90 samples with three established clusters (namely, 1-30, 31-60, 
61-90) in simData1 and simData2 are randomly selected from real 
data, where samples 31-90 present similar distributions from data 
type 1; and 1-60 appear close from data type 2. But the samples 
in 31-90 and 1-60 would have different embedded structures or 
manifold subspaces. Note that the true clusters cannot be recovered 
by any single data type in both synthetic examples (Figure 2A and 
Supplementary Figure S1A).

Evaluation and Comparison Based on Cluster 
Identification
We first applied MSCA and the other methods to the generated 
data sets (i.e., simData1 and simData2) with predetermined 
clustering structures. To avoid accidental events, both the 
data sets were randomly repeated 500 times under different 
systematic conditions (i.e., low: 0% extra noises; moderate: 
10% extra noises; high: 30% extra noises), respectively. And 
the performance of each algorithm was measured by adjusted 
Rand index (ARI) (Santos and Embrechts, 2009), and a high 
value indicates an identical clustering. According to all the 
results, MSCA always succeeded to piece the information 
of each data type together, brilliantly distinguishing the 
pre-designed three clusters (Figure  2B and Supplementary 
Figure S1B). Given simData1 of less heterogeneity, all of the 
compared methods almost perform excellent (Supplementary 
Figure S1B). However, when complexity increases, a great 
performance difference among different methods comes out. 
Our MSCA model still performed accurately and robustly to 
identify sample patterns, even across varying noise strengths 
(Figure 2B). But the pair-wise clustering-based methods, 
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i.e., SNF and ANF, obviously can’t recognize the multiple 
manifolds embedded in high-dimensional space. Even for 
those subspace clustering algorithms, they didn’t perform that 
well when integrating data sets with biological characteristics 
(Supplementary Figure S2), thus highlighting the feasibility 
of MSCA for biological cases. While, iClusterPlus performed 
the second best on accuracy, but the accuracy ranges 
manifested “long-tail” to expose the unstable nature of 
iClusterPlus. It’s probably because iClusterPlus uses random 
sampling procedure to solve equations (Mo et al., 2013), and 
is sensitive to data noises. In all, the novel nonlinear similarity 
measurement in MSCA is demonstrated to be robust to data 
noises and heterogeneity, which helps provide a more accurate 
multi-view for sample patterns in multi-level dataset.

Robustness Analysis of MSCA Under Different 
Parameters
There are two parameters, i.e., λ and K (see Methods), in MSCA 
model, thus it is crucially important to examine their effects on the 
MSCA performance. In particular, the parameter K determines 
the predefined neighborhoods, which constrains the solutions of 
sample representation matrices. Under different selections of K or λ, 
we use simData2 to test the robustness of MSCA. To avoid results 
by chance, we repeated 1,000 times and take the average ARI values 
as evaluation measurement. According to all the results (Figure 3), 
MSCA performs stable and accurate in a wide range of K and λ. 
Once again, the advantage of combining low-rank presentation and 
local preservation makes MSCA more parameter-independent, 

and brings a novel light on developing new bioinformatic tools for 
integrating heterogeneous biological data.

Study on CCLE Data
To demonstrate the effectiveness of MSCA to address practical 
issues, we have applied MSCA to CCLE datasets (Barretina et al., 
2012) with the matched mRNA expression profiles by Affymetrix 
Human Genome U133 Plus 2.0 array and copy number data by 
Affymetrix SNP Array 6.0. Though it contains thousands of cell 
lines, we only kept 415 cell lines, whereby more than 25 cells have 
the same tissues of origin (Supplementary Table  S1). For each 
tissue, we obtained its specific expressed genes from two databases: 
The Human Protein Atlas (Uhlen et al., 2015) and PaGenBase (Pan 
et al., 2013). Several organs belong to upper aerodigestive tract 
cancer (UADT), including tongue, trachea and esophagus etc., 
thus, all their gene sets were treated as UADT specific genes. While 
tumor associated genes were collected from GeneCards (Safran 
et  al., 2010) and top 100 by the provided relevance scores were 
selected to illustrate corresponding aberration patterns among 
different subgroups. We adopted one-sided Wilcoxon signed-rank 
test to identify the tissue-specific genes between one of the clusters 
and all the remaining ones. More highly expressed genes with P < 
0.05 (adjusted by FDR) indicate the cluster strongly correlated with 
a certain tissue of origin. Similarly, differential expression or copy 
number was calculated using two-sided Wilcoxon signed-rank test 
for each single gene. A significant P-value shows gene expression 
or copy number in one group dominates the other cell lines and we 

FIGURE 2 | A simulation study on simData2. (A) 3D Illustration of sample patterns in different feature spaces. Data points, i.e., samples, are colored and shaped by 
their true cluster labels. Clean cluster boundaries only can be seen in an integrative affine space. Points in two clusters may be mislabeled in a single coordinated 
space, i.e., Cluster 2 and Cluster 3 for data type 1, Cluster 1 and Cluster 2 for type 2. (B) The clustering accuracy comparison among MSCA, SNF, ANF and 
iClusterPlus under different noise conditions, measures their effectiveness on detecting integrated sample-patterns.
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regard those differential genes with P < 0.05 (after FDR correction) 
as cluster markable features. Though clusters may share markable 
features, we count the number of shared clusters to measure the 
inter-cluster heterogeneity.

Firstly, we used the silhouette score (Rousseeuw, 1999) to 
evaluate how coherent the identified clusters are, and then we 
assigned the cell lines into nine clusters (Supplementary Figure 
S3). Among the compared methods, we observed MSCA had a 
better silhouette score, indicating superior subgroup identification 
for CCLE samples (Figure 4A). Then, we compared the 
integrative clusters with the original tissue groups (Figure 4B), 

and found some cell lines still manifest high lineage dependency 
(Pearson correlation 0.42). For example, all the AML or M. 
myeloma cell lines are assigned to single clusters (i.e., cluster1 
and cluster5, respectively), separating from other solid tumor 
ones. Accordingly, the cluster1 preserves about 77% blood genes 
and cluster5 holds 85% lymph associated genes (Supplementary 
Figure S4). Besides, the characteristic preservation of tissue 
specificity for some clusters can explain their homogeneity in turn. 
But beyond all that, we can see different histological cancer cell 
lines are grouped into the same integrative clusters because they 
share gene alterations (Supplementary Figures S5, S6). Notably, 

FIGURE 3 | Performance of MSCA under different parameters. Varying selected nearest neighbor number K or the tuning parameter λ, MSCA identifies the 
predefined clusters in simData2.
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the markable features between clusters, especially those copy 
number variants (Figure 4C), tend to be held by only few clusters, 
revealing strong heterogeneity between MSCA identified clusters 
(P-value < 10−12 and < 10−23 for expression and copy number data 
respectively, identified by sample shifting test for 5,000 times). 
Thus, the integrated pan-cancer analysis by MSCA may challenge 
the tissue original separation and indicate the common molecular 
aberrations across tumor types.

DISCUSSION

It’s widely acceptable that integration of distinct types of 
biological data could provide more complete information 
to understand system complexity and disease heterogeneity 
(Ghazalpour et  al., 2006; Kutalik et al., 2008; Li et al., 2012; 
Zhang et al., 2012; Zhang et al., 2017c). Over the past decades, 
the integration methods have progressed to get closer to 

biological details, from focusing on common information to 
specific signals, from critical hypothesis to assumption-free, 
and from linear models to nonlinear methods, etc. However, it 
is still a challenging task for bioinformatics to more accurately 
capture the underlying sample/gene structures from multiple 
omics data.

Here, we propose the MSCA model with the capacity to 
identify precise manifolds of samples in data space. In fact, 
our MSCA method is very similar to a previously published 
method, SNF (and ANF), which attempts to recognize 
sample patterns based on cross-view diffusion. However, the 
biggest difference is that SNF regards all the samples in the 
same feature space, nevertheless MSCA considers therein 
embedded multiple subspaces, i.e., different functional 
molecule sets. We carried out both synthetic examples and a 
real cancer dataset to demonstrate the capacities of MSCA. In 
the in silico studies, MSCA effectively fused the concordant 

FIGURE 4 | A case study on CCLE dataset. (A) Comparison of the integrative clustering results obtained by MSCA, SNF, ANF and iClusterPlus. Note that the 
number of clusters is the same, i.e., 9 for the four methods. (B) Illustration of associations between histological origins (i.e., rows) and integrated cell clusters 
(i.e., columns). Sum of each row equals 1. (C) A brief summary of remarkable features across clusters. x-axis indicates the number of shared groups. Breast, 
breast cancer; CNS, central nervous systems; AML, acute myelocytic leukemia; M.myeloma, multiple myeloma; Colorectal, colorectal cancer; LUAD, lung 
adenocarcinoma; SCLC, small cell lung cancer; LUSC, lung squamous cell carcinoma; Pancreas, pancreas cancer; UADT, upper aerodigestive tract cancer.
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information associated in certain sample subgroups and 
outperformed several state-of-the-art integrative methods, 
in terms of clustering accuracy and robustness. In real case 
study, the sample patterns derived by MSCA correspond to 
biological differences using independent knowledge and 
analytic methods. Beyond that, we believe it can also help 
other studies which need integration of various data sources, 
in addition to complex diseases.

Though MSCA implements two nonlinear steps, proven to 
be effective in theory and practice, the problem of over-learning 
might still exist because we use the local similarities twice (see 
Methods). Such design may lead to bias when data types contain 
a lot of shared noises, which is worth careful consideration and 
improvement. Furthermore, MSCA has currently dealt with 
continuous data types (e.g., mRNA expression, copy number 
variant), the effectiveness on other forms of data, e.g., binary 
data (somatic mutation), category data (clinical covariates), 
still needs to be continuously improved.
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Function annotation efforts provide a foundation to our understanding of cellular processes 
and the functioning of the living cell. This motivates high-throughput computational 
methods to characterize new protein members of a particular function. Research work 
has focused on discriminative machine-learning methods, which promise to make efficient, 
de novo predictions of protein function. Furthermore, available function annotation exists 
predominantly for individual proteins rather than residues of which only a subset is necessary 
for the conveyance of a particular function. This limits discriminative approaches to predicting 
functions for which there is sufficient residue-level annotation, e.g., identification of DNA-
binding proteins or where an excellent global representation can be divined. Complete 
understanding of the various functions of proteins requires discovery and functional 
annotation at the residue level. Herein, we cast this problem into the setting of multiple-
instance learning, which only requires knowledge of the protein’s function yet identifies 
functionally relevant residues and need not rely on homology. We developed a new multiple-
instance leaning algorithm derived from AdaBoost and benchmarked this algorithm against 
two well-studied protein function prediction tasks: annotating proteins that bind DNA and 
RNA. This algorithm outperforms certain previous approaches in annotating protein function 
while identifying functionally relevant residues involved in binding both DNA and RNA, and 
on one protein-DNA benchmark, it achieves near perfect classification.

Keywords: machine learning, protein sequence and structural analysis, multiple-instance learning, decision trees, 
semi supervised learning, protein function annotation, DNA binding proteins, RNA binding proteins

INTRODUCTION

Computational tools have become indispensable in guiding, analyzing, and simulating the 
mechanistic details underlying experimental studies. Recent innovations in high-throughput 
experiments for function discovery have provided sufficient data to model and understand the 
characteristics that govern specific function using machine-learning methods. Such methods have 
been used to address biological problems ranging from microarray analysis and its application 
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in diagnosis, therapy decisions, and clinical testing (Juneau 
et  al., 2014; Peterson et al., 2015; Shen et al., 2018); inter-
disease relationships and similarities (Carson et al., 2017; Qin 
and Lu, 2018) image-based diagnostics (Mehta et al., 2017); 
predicting protein structural characteristics (Langlois and Lu, 
2010a; Abbass and Nebel, 2015; Andreeva, 2016; Kashani-Amin 
et al., 2018) or clinically relevant discovery enabled by next-
generation sequencing data of genomes and transcriptomes of 
diseased and normal cells (Gunaratne et al., 2012; Hayes and 
Kim, 2015; Gu et al., 2017; Liu et al., 2017; Gong et al., 2018; 
Liu et al., 2018).

High-throughput sequence and structural genomics projects 
have continued to outpace corresponding functional discovery 
projects producing a deluge of protein data, with only a fraction 
having some functional annotation. This annotation typically 
provides an indication of the general function but rarely, and 
when available—less reliably—provides mechanistic detail for 
a particular function. Systems biology research has focused on 
analyzing and predicting known interactions between proteins 
whereas pharmaceutical research requires greater knowledge in 
the mechanistic details of molecular function. Both efforts would 
benefit from machine-learning methods that can accurately 
classify protein function using the limited amount of training 
data available.

There are two approaches to the classification problem motivated 
by different statistical views: generative and discriminative 
learning. On one hand, the generative approach attempts to solve 
a more general problem i.e., modeling [p(x,y)] providing greater 
flexibility at the cost of computational complexity. In order to 
design an efficient generative algorithm, strong assumptions must 
be made; e.g., in sequence alignment, one makes the assumption 
that sequence similarity equals function similarity. On the other 
hand, discriminative classifiers attempt to find a direct mapping 
between the class label (y) and the input vectors (x). Since this 
approach solves the specific problem at hand, rather than a more 
general problem, discriminative approaches should be preferred 
to generative ones (Libbrecht and Noble, 2015). However, the fact 
remains that generative, sequence alignment techniques remain 
predominant in the face of recently developed discriminative 
approaches. So, why have these discriminative techniques not 
been more successful? The fundamental problem seems to be that 
research has focused on a single type of discriminate method, 
classification, which requires labeled training examples. Since 
protein function annotation data is limited, only a few functional 
groups such as nucleic acid–binding proteins provide sufficient 
labeled training data.

A number of discriminative techniques have been developed 
to deal with incomplete knowledge of the training data such as: 
semi-supervised learning (Chapelle et al., 2010), active learning 
(Reker and Schneider, 2015), positive and unlabeled learning 
(Bhardwaj et al., 2010), and multiple-instance learning (MIL) 
(Carbonneau et al., 2018). While the first three approaches have 
demonstrated that unlabeled training data can be used to improve 
learning, the last approach leverages additional information, i.e., 
labeled groupings of unlabeled data. In MIL, examples (also 
referred to as instances) are organized into groups called bags. 
The class label is associated with the bag rather than the instance; 

the bag is labeled positive if at least one instance in the bag is 
labeled positive; otherwise, the bag is labeled negative. Consider 
the functional site discovery problem: functional data usually 
pertains to the protein rather than to specific functional sites. 
Hence, in the MIL formulation, the protein is a labeled bag and 
the residues (or motifs or pockets) are the instances belonging to 
that protein/bag.

MIL was originally developed for handwritten digit recognition 
by Keeler et al. (1990) and was later popularized by Dietterich 
et al. (1997) to predict drug activity. It has subsequently been 
applied to a number of problem domains including context-based 
image retrieval (Maron and Lozano-Perez, 1998; Andrews et al., 
2003a), protein super-family annotation (TrX proteins) (Scott 
et al.), and text categorization (Ray and Craven, 2005). A number 
of algorithms have been developed to solve MIL including 
convolutional neural networks (Keeler et al., 1990), axis parallel 
(Dietterich et al., 1997), support-vector machines (Doran and 
Ray, 2014), diverse density (Maron and Lozano-Perez, 1998), and 
standard binary classifiers (Ray and Craven, 2005). 

MIL algorithm–based approaches have recently found 
increased use in the diagnosis of cancer (Li et al., 2015; Mercan 
et al., 2018; Yousefi et al., 2018), application in neurology for 
classification of brain abnormalities (Tong et al., 2014), and the 
prediction of phenotype from metagenomics data (Rahman 
et al., 2017) to name a few. Recent work has utilized MIL-based 
methods to predict major histocompatibility complex class II 
(MHC-II)–binding peptides (Xu et al., 2014) and transcription 
factor-DNA interaction (Gao et al., 2015; Gao and Ruan, 2017).

The boosting framework has also been conscripted to 
solve MIL problems. These approaches fall into two groups: 
modify the weak learner or modify the boosting cost function. 
That is,  Auer and Ortner (2004) took the first approach by 
boosting a weak MIL-algorithm based on hyper-balls. Other 
algorithms have been developed using the second approach. For 
example, Andrews and Hofmann (2003b) used disjunctive logic 
programming (Lee and Grossmann, 2000) to create a boosting 
algorithm that achieves a large margin for at least one instance 
in each bag. Likewise, other groups (Xu and Frank, 2004; Viola 
et al., 2006) have used a derivation of the AnyBoost framework 
(Mason et al., 1999) to design an MIL cost function, which can be 
solved by numerical optimization.

Our work herein formulates the function prediction 
problem in the setting of MIL. In our approach, the function 
of a protein is identified through the discovery of key residue 
microenvironments that strongly signal the existence of a 
particular functional site. This method requires only two sets 
of example sequences or structures: one that has the function of 
interest and another that does not. We do not require knowledge 
of the functional sites yet this method automatically discovers 
such sites in order to predict the function of the protein. In the 
formulation of this approach, we predict function rather than 
superfamily assignment of a protein; moreover, we represent the 
protein by each residue’s microenvironment rather than by pre-
calculated conserved motifs.

To solve this problem, we developed a novel boosting algorithm 
(Langlois, 2008) derived from the AdaBoost framework (Schapire 
and Singer, 1999) that efficiently and accurately identifies residue 

375

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Function Site DiscoveryWang et al.

3 August 2019 | Volume 10 | Article 729Frontiers in Genetics | www.frontiersin.org

microenvironments that correspond to functional sites. We then 
benchmark this approach on two protein function assignment 
problems: the identification of DNA- and RNA-binding proteins. 
These proteins play an essential role in nearly every cellular 
process. A number of experimental (Cajone et al., 1989; Freeman 
et al., 1995; Chou et al., 2003; Buck and Lieb, 2004; Nutiu et al., 
2011; Gordan et al., 2013) and computational (Bhardwaj et al., 
2005; Szilagyi and Skolnick, 2006; Bhardwaj and Lu, 2007; 
Langlois et al., 2007; Tjong and Zhou, 2007; Gao and Skolnick, 
2009; Langlois and Lu, 2010b; Weirauch et al., 2013; Xu et al., 
2015) approaches have been developed to identify these proteins 
and their functional sites. Since DNA- and RNA-binding proteins 
provide a substantial number of labeled examples, e.g., residues 
known to bind DNA or RNA, these problems have been studied 
extensively thus presenting an excellent proof of concept for our 
approach. 

RESULTS

We demonstrate the ability of an MIL algorithm to accurately 
predict the function of a protein using its constituent residues 
with two benchmark nucleic-acid binding datasets: DNA- and 
RNA-binding proteins. The characteristics of each dataset are 
summarized in Table 1. Both datasets have been used in previous 
studies to identify residues that bind DNA (Szilagyi and Skolnick, 
2006; Langlois et al., 2007) and RNA (Terribilini et al., 2006; 
Langlois et al., 2007; Kumar et al., 2008). During training, each 
residue in a DNA-binding protein is considered DNA-binding 
and in a non-DNA-binding protein non-binding during training 
and cross-validation. Nevertheless, these residue-level labels are 
used for later evaluation of the algorithm on the residue level.

Protein Function Annotation
We compare two learning algorithms to solve the MIL problem: 
AdaBoost and AdaBoost.C2MIL on decision trees. The first 
algorithm, AdaBoost on decision trees is a classification algorithm, 
which views MIL as a classification problem with positive class 
noise (Blum, 1998). While other classifiers have been extensively 

tested on MIL problems (Ray and Craven, 2005), AdaBoost on 
decision trees has not; this is due to its past poor performance 
on problems with mislabeled data (Schapire, 1999). The second 
algorithm AdaBoost.C2MIL is a modification of the original 
AdaBoost algorithm we developed specifically to handle MIL, 
which gives special treatment to instances (residues) in a positive 
bag (DNA-binding protein).

Table 2 summarizes the performance of each algorithm in 
terms of area under the receiver operating characteristic (ROC) 
curve on the protein-level (first column), residue-level over the 
entire dataset (second column), and over just the DNA-binding 
proteins (third column). The protein-level results demonstrate 
the effectiveness of the proposed C2MIL variant over the standard 
AdaBoost algorithm where C2MIL outperforms AdaBoost by 5% 
on the DNA-binding task and by 6% on the RNA-binding task. 
The residue-level performance over the entire dataset is worse in 
both cases. However, this is due to the inclusion of residues from 
non-binding proteins, which skew the results. When considering 
the more pertinent case of only nucleic acid–binding proteins, 
the C2MIL algorithm outperforms AdaBoost in both cases: 
by almost 9% for the DNA-binding task and 3% for the RNA-
binding task.

The performance over the DNA-binding set on the protein-
level exceeds several previously published works. First, the 
performance of the C2MIL algorithm achieves 95.8% area 
under the ROC whereas the best previous result was 93% 
(Szilagyi and Skolnick, 2006) and 91.0% (Langlois and Lu, 
2010b). At 85.0% specificity, C2MIL achieves 94.4% sensitivity 
compared to 89.0% (Szilagyi and Skolnick, 2006). At 95.0% 
specificity, Stawiski et al. (Stawiski et al., 2003) achieved 81.0% 
sensitivity while C2MIL 86.1% sensitivity. Finally, at 98% 
specificity, Langlois and Lu (Langlois and Lu, 2010b) achieved 
48.1% sensitivity and C2MIL 70.8% sensitivity. Overall, C2MIL 
shows marked improvement in accurately predicting whether 
a protein binds DNA.

Functional Site Prediction
Since no residue-level labels were given during training, i.e., the 
algorithm does not know which residues bind DNA or RNA, 

TABLE 1 | Tabulates the number of proteins in both the DNA and RNA datasets.

Total Protein
Positive

Negative Total Residue
Positive

Negative

DNA 310 60 250 109,826 2,505 107,321
RNA 304 80 224 91,538 3,235 88,303

TABLE 2 | Performance of algorithms in the multiple-instance learning (MIL) function prediction task—area under the receiver operating characteristic (ROC) curve.

Protein Residue (All) Residue (-NA)

DNA binding AdaBoost 90.3 84.4 63.2
AdaBoost.C2MIL 95.8 82.7 72.1

RNA binding AdaBoost 84.1 79.4 65.6
AdaBoost.C2MIL 90.2 74.5 68.7
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the performance of C2MIL is significantly less than the current 
best: 72% (Table 1) versus 83% (Langlois et al., 2007) in terms 
of area under the ROC. At the same time, the performance over 
the full dataset (both DNA-binding and non-binding proteins) 
is significantly better than over just the DNA-binding proteins: 
82.7% area under the ROC (Table 1). This seems to indicate that 
non-binding residue environments or substructures on non-NA-
binding proteins are easier to predict than corresponding ones 
on NA-binding proteins.

The ROC plots in Figure 1 and Figure 2 compare the 
performance of C2MIL with the standard AdaBoost algorithm 
over the DNA-binding dataset. In Figure 1A, both algorithms cross 
several times with no clear winner. However, at low false-positive 
rates (Figure 1B), C2MIL dominates the standard AdaBoost 
providing an explanation for C2MIL’s better performance on the 
protein level. Since only a single residue predicted positive means 
the entire bag is positive, this is the important region on the 
residue-level ROC curve.

The ROC plots in Figure 2 compare the performance of 
C2MIL with the standard AdaBoost algorithm over the residues 
from only DNA-binding proteins. This evaluation follows that of 
other DNA-binding papers (Langlois et al., 2007). On this task, 
C2MIL dominates the standard AdaBoost algorithm over the 
entire range of the ROC plot. As the protein-level results indicate, 
C2MIL finds at least one residue microenvironment that strongly 
indicates a given protein is DNA binding. Moreover, these 
instance-level results demonstrate that not many residues fit the 
bill given the rather low sensitivity at low false-positive rates.

Trends in Residue-Level Prediction
To better understand the residue microenvironments that 
characterize NA-binding proteins, we plot each type of residue 
which has been correctly predicted DNA binding in terms of 
recall and precision (Figure 3). Precision measures the fraction 
of residues predicted NA binding that are actually DNA binding 

FIGURE 1 | Comparison of learning tasks and algorithms on the residue-level over the entire dataset using a receiver operating characteristic curve: (A) entire curve 
and (B) zoomed on the 99% specificity.

FIGURE 2 | Comparison of learning tasks and algorithms on the residue-level over only DNA-binding proteins using a receiver operating characteristic curve: (A) 
entire curve and (B) zoomed on the 99% specificity.
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(in blue) and RNA binding (in red). Recall measures the fraction 
of NA-binding residues correctly predicted NA binding.

The first trend evident in Figure 3 is that far more residues 
can be used to predict a protein RNA binding (red) as opposed 
to DNA binding (blue). This suggests that more residues are 
involved in protein-RNA interactions than protein-DNA. 
Second, arginine is unsurprising the dominant residue predicted 
for both NA-binding proteins. 

Third, DNA-binding proteins can unexpectedly be well 
characterized by microenvironments centered on either serine 
(S) or glycine (G) with a precision of 1.0; e.g., every serine 
predicted as DNA binding actually was DNA binding. While 
previous works have suggested glycine (specifically its content) 
as more correlated with the non-binding set (Bhardwaj et al., 
2005; Szilagyi and Skolnick, 2006; Langlois et al., 2007), it has 
been observed that glycine can make non-specific interactions 
with DNA (Luscombe and Thornton, 2002) and that glycine-
rich linkers are critical to regulatory protein function (Singh 
et al., 2014). 

Fourth, a set of RNA-binding proteins can be accurately 
characterized by microenvironment centered on either valine (V) 
or methionine (M) with a precision of 1.0. These residues as well as 
histidine and threonine have been found important experimentally. 
Threonine has been shown to make specific interactions with 
both splice sites (Colwill et al., 1996; Zhang and Fuller, 2003) and 
rRNA (Clemens et al., 1993). Likewise, histidine has been found 
important for specificity (Hake et al., 1998) and valine makes 
unique interactions with viral RNA (Pinck et al., 1970).

Note that, in proteins predicted DNA/RNA binding, these 
four residues (V, M, S, and G) provide a rough location the 
NA-binding site each protein. This demonstrates that the 

MIL-algorithm identifies DNA-/RNA-binding proteins based on 
residue important to their function.

DISCUSSION

Conventional approaches that apply machine learning to function 
prediction have relied on a global representation of the sequence 
or structure, or a local representation of a residue’s environment 
on a target protein. In the first case, only examples of known 
proteins with a particular function are required whereas the 
second case requires knowing the location of the active sites. Our 
proposed approach is similar to sequence alignment techniques 
in that we require only knowing the function of a particular 
protein and not the functional residues. Moreover, similar to 
sequence analysis techniques, it identifies a subset of probable 
functional residues. Nevertheless, our proposed algorithm does 
not require sequence similarity or homology to be effective 
(unlike sequence analysis techniques).

In this work, we demonstrate the ability of our MIL algorithm–
based approach to identify potential binding sites and, through 
the presence of such a site, the function of the protein. This is 
done without knowledge of the binding sites during the training 
process. Essentially, one can both identify the function of and 
locate a binding site on a test protein without knowing, during 
the training process, the location of such sites. One can view MIL 
over structure-based features as sub-structure analysis where 
were consider a sliding window along the amino acid chain 
throughout the structure. Thus, a user only requires knowledge 
of the protein function, not the particular site, yet the resulting 
learning algorithm can predict both. 

FIGURE 3 | Precision and recall for each nucleic acid (NA)-binding protein residue type.
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The proposed approach also has several advantages over 
traditional homology-based methods:

• Does not rely on finding a similar structure/sequence
• Discovers functional sites with little prior knowledge

Our method does not require homologous sequences or 
structures; instead, it relies on physio-chemical characteristics in 
combination with (when available) structural features. It can also 
be applied to problems where knowledge of the functional site 
is limited. We also provide an analysis of MIL algorithms on the 
instance level. In some previously published MIL works, the authors 
evaluate their algorithms on the bag-level since instance-level labels 
are either unavailable or unreasonably expensive to obtain.

This works establishes the ability of our MIL algorithm–
based method to outperform classification in discriminating 
RNA- or DNA-binding proteins from non-binding proteins. The 
success of this approach relies on the better representation of 
function permitted by the MIL problem formulation. Instead of 
representing the protein sequence or structure by some global 
representation, the MIL approach allows the entire protein to 
be decomposed into potential functional units and discovers 
which unit actually performs the function. Developing a feature 
encoding for a single functional unit is far easier than for the 
entire protein sequence or structure.

While multiple-instance (MI) learning has several advantages 
over classification, it remains a harder learning problem in that the 
learning algorithm does not have access to instance-level labels. 

FIGURE 4 | Overall framework the proposed AdaBoost.C2MIL method and feature extraction.
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Nevertheless, the experiments clearly show that the proposed MI 
learner does not perform substantially worse when identifying 
residues that bind DNA or RNA. Indeed, these results compare 
favorably with the current state-of-the-art in residue classification.

There are several limitations to the present work. First, we do 
not limit the algorithm to only sequence information; yet, this will 
provide the primary source of data for this application. Second, 
this work does not consider open conformations, e.g., proteins 
not in complex with DNA. Since the current set of features 
does not require the exact residue orientation, this may not be 
a significant limitation. Third, it does not incorporate known 
binding residues; such residues can provide more information 
regarding these residues. This problem can be remedied through 
the application of active MIL (Zhang et al., 2008). Fourth, 
this algorithm would utilize and would benefit from far larger 
datasets such as sequences in the UniProt (Leinonen et al., 2004) 
database. Finally, the analysis of the important residues was just a 
first-order approximation to the potential wealth of information 
this technique can glean from both sequence and structural data.

MATERIALS AND METHODS

Dataset
There are two stringent benchmark datasets used for DNA- and 
RNA-binding protein prediction tasks. The first set is 60 DNA-
binding proteins and 250 non-DNA-binding proteins derived 
by Liu et al. (2014) and later used by Shen et al. (2017) and Wei 
et al. (2017) (Supplementary Table 1). The second set is 80 RNA-
binding proteins and 224 non-RNA-binding proteins used by 
Miao and Westhof (Miao and Westhof, 2015) and Paz et al. (2016) 
(Supplementary Table 2). The two datasets are both acquired 
from the Protein Data Bank, and short sequences (less than 50 
amino acids) and sequences containing the consecutive character 
“X” have been removed. To eliminate the redundancy and 
homology bias that likely leads to overestimated performance, it 
removes sequences with ≥25% pairwise sequence identity to any 
other sequences in the dataset using the program CD-HIT.

Each residue in the protein is represented using the following 
features (feature count within parenthesis) (Figure 4):

• Residue identity (Bhardwaj et al., 2010)
• Secondary structure (Shen et al., 2018)
• Structure neighbors (Bhardwaj et al., 2010)
• PSSM for residue at that position (Bhardwaj et al., 2010)
• BLOSUM for positions $-3…3$ (140)
• Properties: Charge, Surface Area (Juneau et al., 2014)

The residue identifier is a 20-dimensional vector where the residue 
type is indicated by a non-zero value in the corresponding column. 
Likewise, there is a corresponding secondary structure identifier 
feature vector. The structure neighbors count the frequency of each 
residue type within 3 Å (measured heavy atom to heavy atom). The 
PSSM feature scores the conservation of this residue position. The 
BLOSUM window also estimates the residue conservation within a 
window around the specific residue. Finally, the properties of charge 
and surface area are estimated for each residue. For more details 
concerning the feature representation, see Langlois et al. (2007).

Algorithm
The Adaptive Boosting (AdaBoost) algorithm transforms a weak 
classifier L(·) into a strong ensemble classifier H(·)(44). AdaBoost 
proves most effective with decision trees as the weak classifier 
(often referred to as “the best off-the-shelf classifier”) and has one 
tunable parameter: the number of boosting iterations (T). Rather 
than the general boosting framework as in prior work (Mason 
et al., 1999), we propose to modify the AdaBoost algorithm itself 
to reduce MIL to importance-weighted classification.

EQUATION 1 | Proposed AdaBoost.C2MIL Algorithm
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The proposed algorithm, AdaBoost.C2MIL, is outlined in 
Equation 1. The first step in the algorithm is to set up the dataset. It 
starts by reorganizing the dataset such that each negative instance 
becomes its own bag while the positive instances remain grouped 
in their original bags. Note that, since we know each instance in a 
negative bag must be negative, this step does not disregard useful 
information. It then sets up a uniform weighted distribution on 
the bag level. Since each negative instance is a bag, it has its own 
weight whereas instances in a positive bag share a single weight. 

The second step, within the for loop, starts by mapping the 
MIL dataset to a classification dataset where every instance in a 
positive bag is labeled positive, and the weight is split uniformly 
among the instances. Next, the algorithm trains a weak classifier 
(L) over the current distribution of the dataset, which gives 
confidence-rated hypothesis ĥt. The confidence-rated prediction 
follows (Schapire and Singer, 1999) and can be converted to a 
probability using the sigmoid function. Finally, for positive bags 
(and negative bags during evaluation), the bag-level prediction is 
a summation of the instance-level predictions (step 5). 
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The rest of the algorithm follows AdaBoost on the bag level. 
First, the algorithm estimates the bag-level error and then calculates 
the step size α. This step size is then used to increase the weight on 
incorrectly predicted bags and decrease on correctly predicted. 

The output of the ensemble multiple-instance learner acts on 
both the bag and instance level. Each classifier contributes to 
the prediction of an instance whereas the bag-level prediction is 
made by the equation in step 5.

Experiments
The overall framework of our experiment is represented in 
Figure 4. The AdaBoost algorithm requires a weak learner and, 
as a weak learner, the decision tree works well across the board; 
we use a custom implementation with a top-down (Kearns and 
Mansour, 1996) impurity function for confidence-rated boosting. 
The algorithms, metrics, and graphs used in this work were 
generated using python. The performance is measured using 
5-fold stratified cross-validation. And code is available at https://
github.com/WintrumWang/AdaBoost.C2MIL.
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Worldwide, especially in China, lung cancer accounts to a major cause of mortality related 
to cancer. Treatment decisions mainly depend on oncogenic driver mutations, which offer 
novel therapeutic targets for anticancer therapy. However, studies of genomic profiling 
of driver gene mutations in mainland China are rare. Hence, this is an extensive study of 
these mutations in Non-small-cell lung cancer (NSCLC) Chinese patients. Comparison 
of driver gene mutations of lung adenocarcinoma with other races showed that the 
mutational frequencies were similar within the different East Asian populations, while there 
were differences between East Asian and non-Asian populations. Further, four promising 
candidates for druggable mutations of epidermal growth factor receptor (EGFR) were 
revealed that open up avenues to develop and design personal therapeutic approaches 
for patients harboring mutations. These results will help to develop personalized therapy 
targeting NSCLC.

Keywords: lung cancer, driver mutations, epidemiology, EGFR, personalized medicine

INTRODUCTION

Globally, lung cancer is the most frequent cause the mortality compared to other cancer types. 
Non-small-cell lung cancer (NSCLC) accounts for close to 85% to 90% of all lung cancer cases 
(Planchard et al., 2018). There are three types of NSCLC based on histopathology, including 
adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large cell carcinoma (LCC) (Travis 
et al., 2015). Treatment strategies for NSCLC have been revolutionized since the identification of 
epidermal growth factor receptor (EGFR) activating mutations which predict response to EGFR 
tyrosine kinase inhibitors (TKIs) in 2004 (Lynch et al., 2004; Paez et al., 2004). Examples of such 
drugs are erlotinib and gefitinib that have been instrumental in patients in terms of the response 
and survival without a relapse (Mitsudomi et al., 2010; Rosell et al., 2012). Guidelines from clinical 
practice offer recommendations of an analysis of mutations in EGFR before the start of therapy 
of advanced NSCLC (D’Addario et al., 2009; Azzoli et al., 2010; Ettinger et al., 2018). To date, at 
least nine important driver mutations causing NSCLC have been described and several markers are 
already used for best treatment strategy selection. In this context, the pervasiveness and occurrence 
of these mutations are different across populations such as that of East Asians and the white with 
more mutations in EGFR and lesser mutations in Kirsten Rat Sarcoma Viral Proto-Oncogene 
(KRAS) (Kohno et al., 2015). With very little data in this regard from mainland China, a study that 
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describes the pattern of driver mutations will facilitate personal 
medicine for NSCLC and on the design of clinical trials.

The identification of these mutations has been facilitated 
by the use of three-dimensional (3D) protein structures to 
analyze interactions between proteins found more in mutations 
associated with cancer as used by (Porta-Pardo et al., 2015) and 
(Engin et al., 2016). Hotspot3D (Niu et al., 2016) is another tool 
that analyzed 3D structures for spatial clusters or hotspots to later 
study putative variants and their functions. Such studies have 
shown the potential function and relevance of driver mutations 
in a clinical scenario.

The current work reports an inclusive set of driver mutations in 
a large set of probable NSCLC patients of Chinese origin. Several 
rarely reported mutations, including EGFR mutations (V742I, 
I789M, N842H) related with erlotinib, gefitinib, lapatinib, and 
EGFR mutation (S811C) related with afatinib were discovered.

MaTERIaLS aND METhODS

Patient and Sample Collection
From July 2016 to October 2018, 5,003 patients with lung 
adenocarcinoma (3,243 tumor tissues and 1,760 blood 
samples) and 230 patients with lung squamous cell carcinoma 
(134 tumor tissue samples and 96 blood samples) from 
Harbin Medical University Cancer Hospital were subjected to 
enrollment in this work. Specimens from surgery or biopsies 
were fixed in formalin and embedded in paraffin (FFPE) to 
generate samples, while blood samples were collected in 10 
ml cell-free DNA BCT tubes (Streck, Inc). While an informed 
consent in a written format following the Declaration of 
Helsinki was collected from all patients, all protocols were 
within the recommendations and framework of the Ethics 
Committee of the aforementioned hospital.

DNa Extraction From Tumor Tissue  
and Plasma
GeneRead DNA FFPE Kit (Qiagen) was used for DNA extraction 
from the FFPE samples. In parallel, plasma was extracted by 
centrifugation in accordance with previous work (Diehl et al., 
2008; Madic et al., 2012). Briefly, Streck tubes were centrifuged 
at 1,600 g for 10 min at 4°C within 3 h of the blood draw. 
Supernatants were further centrifuged at 16,000 g for 10 min at 
4°C to remove debris. Plasma was harvested and stored at -80°C 
until use. QIAamp Circulating Nucleic Acid kit (Qiagen) was 
used to isolate circulating DNA. Quantification of DNA from 
both sets of samples was done using Qubit (Life Technologies) in 
accordance with instructions from the manufacturer.

Screening Mutations
Screening of mutations was performed by targeted 
sequencing using the Lung Cancer Ten Genes Panel (Geneis 
Co.Ltd) along with the Accel-NGS 2S Plus DNA Library Kit 
(Swift Biosciences) and NextSeq CN500 Personal Genome 
Machine (Illumina). Lung Cancer Ten Genes Panel (Geneis 
Co.Ltd) was used to test mutations in the EGFR kinase 

domain, KRAS, NRAS, PIK3CA, HER2 kinase, BRAF, as 
well as fusions of ALK, ROS1, RET along with Mesenchymal 
Epithelial Transition Proto-Oncogene (MET) amplifications.  
The average sequencing depth of 500X for tissue and 1,000X 
for blood samples was considered reliable. DNA samples were 
normalized to yield 100–250 ng input. Accel-NGS 2S Plus 
DNA Library Kit (Swift Biosciences) was used to prepare 
whole genome libraries and through a series steps including 
covaris shearing (ctDNA can skip this step), end-repair, A-base 
addition, barcoded adapter ligation, and PCR amplification. 
Qubit dsDNA HS Kit (Invitrogen) was used to quantify the 
libraries while 2100 (Agilent) was used to assess quality in 
accordance with instructions from the manufacturer. Capture 
probes with 5’ biotin were used to cause a specific pull-down of 
library samples with target sequences to achieve enrichment. 
The kits previously mentioned above were used to quantify 
and check the quality of the captured library while sequencing 
of templates was done on NextSeq CN500 in accordance to 
instructions from the manufacturer.

Mutation and Statistical analysis
Variant calling was done on the Lung Cancer Ten Genes Panel 
(Geneis Co. Ltd) from NextSeq CN500 sequencing was the 
BWA and FreeBayes software. The common clinical databases 
were used in this study, including PharmGKB, the Human 
Gene Mutation Database (HGMD), Clinvar, Cosmic, SNPedia, 
1000genome, and dbSNP. A blinded approach was followed using 
the frequency threshold of ≥0.4% and ≥1% to call a mutation for 
ctDNA samples and tumor tissues analyzed, respectively.

Mutational Data Collection and  
hotspot3D Processing
More than 800 promising candidates were predicted by mutation-
drug cluster and network analysis for druggable mutations by 
Hotspot3D (Niu et al., 2016). Here, the 3,243 tissues data of lung 
adenocarcinoma patients in China were collected and several 
rare mutations were then found by filtered in 800 potential 
druggable mutations of Hotspot3D. Droplet digital PCR was 
used to validate these potential driver gene mutations in our 
clinical cases.

RESULTS

Distribution of Oncogenic Driver 
Mutations in Lung adenocarcinoma 
Tissue Samples
Sequencing of 3,243 tissues between July 2016 and October 
2018 for oncogenic driver mutations was carried out. The 
distribution is as followed: mutations in EGFR kinase: 55.9%, 
KRAS: 11.7%, NRAS: 0.7%, PIK3CA: 2.9%, HER2 (the analysis 
involved insertions in exon 20): 2.1%, BRAF: 1.6%. The next set 
are fusions of ALK: 2.8%, ROS1: 0.6%, RET: 0.6%, while that of 
MET amplifications was 1.3% (Table 1). As shown in Figure 1, 
55.9% patients showed EGFR mutations, while the highest 
frequency of L858R was observed in 28.1% of the patients, 
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followed by exon 19 deletion (20.6%). KRAS mutations were 
detected in 11.7% patients, with most of these were located in 
codon 12 (9.4%).

Of the 3,243 lung adenocarcinoma cases, 901 (901 out of 
3,243, 27.8%) were negative, 2,185 (2,185 out of 3,243, 67.4%) 
harbored single mutations, and 157 (157 out of 3,243, 4.8%) 
were found to have multiple mutations. Mutations in ALK, 
KRAS, BRAF, and EGFR were studied. Thirteen patients 
coexisted EGFR+KRAS mutations; Three patients carried 
EGFR+BRAF mutations. However, EGFR and ALK mutations, 
KRAS and BRAF mutations, KRAS and ALK mutations, and 

BRAF and ALK mutations were mutually exclusive in our study 
(Figure 2). In addition, one patient carried a triple mutation: 
EGFR L858R + EGFR T790M + KRAS G12D, which was still 
rarely reported at present.

Comparison of Driver Gene Mutations of 
Lung adenocarcinoma With Other Races
Current research indicates that race plays a role in the genomics 
of NSCLC. To compare the frequency of driver mutations of lung 
adenocarcinoma with other races, we obtained the available data 
from several related studies (Serizawa et al., 2014; George et al., 
2015; Yeung et al., 2015; Campbell et al., 2017). These results 
are summarized in Table 2. First, we found that the mutational 
frequencies were similar for black and white groups, but there 
were big differences between East Asian populations and non-
Asian populations. Specifically, we found that EGFR was mutated 
at a much higher frequency in East Asian populations than in 
non-Asian populations (35.0-55.9% vs 11.6-14.4%). And it was 
the same for the most common mutations exon 19 deletions 
and exon 21 L858R. Another notable difference was that 33.5-
34.2% of non-Asian patients had a KRAS mutation and this 
was significantly higher than the rate of 8.5-11.7% found for 
East Asians. In addition, ALK translocations are also important 
oncogenic drivers of NSCLC. It seems that ALK was mutated at 
a little higher frequency in East Asian populations than in non-
Asian populations as presented in Table 2. But data from previous 
reports showed that ALK mutation frequencies were similar (3-5% 
vs 3-6%) between patients in East Asia (Japan, Korea, and China) 
and from those of European descent (Kohno et al., 2015). Further, 
overall mutational frequencies and copy number changes were 
not significantly different between mainland China (this study), 
Hong Kong, and Japan populations in lung adenocarcinoma. And 
no significant difference was observed in BRAF, HER2, MET, 
PIK3CA, NRAS, RET, and ROS1 mutation status.

TaBLE 1 | Frequency of mutations in lung adenocarcinoma histologic subtypes.

Gene alteration Frequency in 
NSCLC

Total frequency 
in NSCLC
(n = 3243)

ALK Rearrangement 2.8% 2.8%
BRAF V600E 1.3% 1.6%
EGFR Exon19del 20.6% 55.9%

G719A/C/S 2.4%
L858R 28.1%
L861Q 1.1%
T790M 2.1%
S768I 1.1%

HER2 Exon 20ins 2.1% 2.1%
KRAS G12C/R/S/A/D/V 9.4% 11.7%

G13C/R/S/A/D/V 1.1%
Q61K/L/R/H 1.0%

MET Amplification 1.1% 1.3%
PIK3CA E542K 0.7% 2.9%

E545K/Q 1.4%
H1047L/R 0.8%

NRAS G12C/R/S/A/D/V 0.3% 0.7%
G13C/R/S/A/D/V 0.1%

Q61K/L/R/H 0.3%
RET Rearrangement 0.6% 0.6%
ROS1 Rearrangement 0.6% 0.6%

FIGURE 1 | (a), The mutation sites and frequency of EGFR and (B) KRAS in 3,423 patients with lung adenocarcinoma.
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Distribution of Oncogenic Driver 
Mutations in Blood Samples of Patients
Sequencing of 1,760 blood samples (from July 2016 to 
October 2018) of patients revealed the following distribution: 
Mutations in EGFR: 32.6% patients, KRAS: 11.2% patients, 
NRAS: 1.0% patients, PIK3CA mutations: 2.9%, HER2 kinase 
domain mutations: 0.9%, BRAF: 2.9% patients while MET 
amplifications were 0.7% (Table 3). It is noteworthy that the 
frequency of drug sensitive mutations, such as EGFR exon 
19del and L858R, was reduced when compared with tissues 
(10.8% in blood and 20.6% in tissues for Exon 19del; 13.1% 
in blood and 28.1% in tissues for L858R). However, the 
frequency of drug resistant mutations, such as EGFR T790M, 
was increased when compared with tissues (5.1% in blood and 
2.1% in tissues).

Frequency of Oncogenic Driver Mutations 
in Squamous Cell Carcinoma of Lung
Targeted DNA sequencing of 230 lung squamous cell carcinoma 
Chinese patient samples was done. Among those, there were 134 
tissue samples and 96 blood samples, and 107(107 out of 134, 
79.9%) and 74 (74 out of 96, 77.1%) were negative, respectively. 
In 134 lung squamous cell carcinoma tissue samples, there were 
7 (5.2%) EGFR mutations, 6 (4.5%) KRAS mutations, 12 (9.0%) 
PIK3CA mutations, 1 (0.7%) BRAF mutations and 1 (0.7%) 
MET amplifications. In 96 lung squamous cell carcinoma blood 
samples, there were 8 (8.3%) EGFR mutations, 7 (7.3%) KRAS 
mutations, 6 (6.3%) PIK3CA mutations and 1 (1.0%) BRAF 
mutations. No MET amplifications were detected (Table 4). Our 
data adds confirmation with earlier work that lung squamous cell 
carcinoma shows a rare presence of two ubiquitous mutations 

FIGURE 2 | Four-set venn-diagram of single and multiple mutation panoramagram for lung adenocarcinoma tissue samples.

TaBLE 2 | Comparison of driver gene mutations of lung adenocarcinoma between mainland China (this study), Hong Kong (Diehl et al., 2008), Japan (Madic et al., 
2012), Black, and White (George et al., 2015).

Mainland China
(3243)

hong Kong
(149)

Japan (411) Black
(146)

White
(167)

Mutant
(%)

Mutant
(%)

Mutant
(%)

Mutant
(%)

Mutant
(%)

ALK Rearrangement 2.8% 6.0% 5.0% 0.7% 0%
BRAF V600E 1.3% 1.3% 0.7% 0.7% 1.2%

Exon19del 20.6% 22.8% –a 6.8% 6.0%
EGFR L858R 28.1% 16.8% –a 3.4% 4.2%

Total 55.9% 43.0% 35.0% 11.6% 14.4%
HER2 Exon 20ins 2.1% 0.7% 1.7% 1.4% 0.6%
KRAS G12/G13/Q61 11.7% 11.4% 8.5% 34.2% 33.5%
MET Amplification 1.1% 1.3% 2.2% 2.1% 2.4%
PIK3CA E542K/E545K/Q

H1047L/R
2.9% 0.7% 2.7% 2% 2%

NRAS G12/G13/Q61 0.7% 0.7% 0.5% 0% 1.2%
RET Rearrangement 0.6% – 1.1% 0% 1.2%
ROS1 Rearrangement 0.6% 2.0% 0.5% 0.7% 0%

aThe mutation frequency was not mentioned in the related study.
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seen in lung adenocarcinomas, KRAS and EGFR, are rare in lung 
squamous cell carcinoma (Ding et al., 2008). It is noteworthy 
that the rate of mutation of PIK3CA in these samples is relatively 
higher when compared with lung adenocarcinoma.

EGFR Candidate Druggable Mutations Were 
Discovered by Filtered in hotspot3D Results
We first collected the 3,243 tumors data of lung adenocarcinoma 
patients in China and several rarely reported mutations, including 
EGFR mutations (V742I, I789M, N842H) related with erlotinib, 
gefitinib, lapatinib, and EGFR mutations (S811C) related with 
afatinib were discovered (Table 5, Figure 3) by filtered in 800 
potential druggable mutations of Hotspot3D. Droplet digital PCR 
was used to validate these EGFR variants in our clinical cases. We 
noticed that these EGFR rare variants always coexist with some 
common mutations, which showed poor prognosis in previous 
studies. The mechanism is still unclear. Functional verification 
of these EGFR druggable mutations will be performed in 
subsequent work.

DISCUSSION

Identification of oncogenic driver mutations in NSCLC has greatly 
promoted clinical use and development of targeted drugs. Previous 
genomic studies of Chinese lung adenocarcinoma have not adequately 
represented patients. The current work involved a sizeable Chinese 
NSCLC patient sample set subjected to comprehensive investigation 
for driver mutations described as oncogenic. Our results were 
comparable with that detected in previous studies in Chinese lung 
adenocarcinoma (Gou and Wu, 2014), while the difference is mainly 
manifested in the different detection frequencies of several fusion 
genes. We suspected that was mainly due to the different platforms 
and detection methods. Comparison of driver gene mutations of 
lung adenocarcinoma with other races showed that the mutational 
frequencies were similar between mainland China (this study), 
Hong Kong, and Japan populations. But there were big differences 
between East Asian populations and non-Asian populations. 
Similar to Western population, the two most ubiquitous mutations 
were those in EGFR and KRAS in the case of lung adenocarcinoma 
samples. However, the EGFR mutation frequencies in East Asian 
lung adenocarcinoma were higher than previously reported in USA/
Europe patients, whereas the overall frequency of KRAS mutations 
was much lower than in the West instead (D’Angelo et al., 2011; 
Smits et al., 2012; Kohno et al., 2015). A previous study found that 
Asians had the highest proportion of patients with mutations at 
81% and the highest percentage of patients treated with targeted 
therapies (51%), while African Americans patients were the least 
likely to harbor mutations and to receive targeted therapy. However, 
there were no significant differences in overall survival between the 
four race groups (Steuer et al., 2016). A large dataset is still needed to 
verify this conclusion.

Although the EGFR S768I mutation is considered to be a very 
rare mutation, we detected a total of 1.1% patients with lung 
adenocarcinoma harboring this mutation. Due to its rarity and the 
variability of responses of treated cases, its exact function in TKI 
therapy is still not fully understood (Asahina et al., 2007; Masago 
et al., 2010). Subjects carried BRAF mutations with percent of 
1.6%, and most of them were a V600E mutation. In addition, our 
data showed that KRAS and BRAF V600E mutations are mutually 
exclusive, which is in lieu of previous studies (Rajagopalan et al., 
2002; De Roock et al., 2010). The stimulus to cancer development 

TaBLE 3 | Frequency of mutations in lung adenocarcinoma blood samples.

Gene alteration Frequency in 
NSCLC

Total frequency 
in NSCLC
(n = 1760)

BRAF V600E 1.0% 1.4%
EGFR Exon 19del 10.8% 32.6%

G719A/C/S 1.4%
L858R 13.1%
L861Q 0.9%
T790M 5.1%
S768I 0.7%

HER2 Exon 20ins 0.9% 0.9%
KRAS G12C/R/S/A/D/V 5.9% 11.2%

G13C/R/S/A/D/V 1.4%
Q61K/L/R/H 1.6%

MET Amplification 0.5% 0.7%
PIK3CA E542K 0.8% 2.9%

E545K/Q 1.2%
H1047L/R 0.9%

NRAS G12C/R/S/A/D/V 0.2% 1.0%
G13C/R/S/A/D/V 0.3%

Q61K/L/R/H 0.5%

TaBLE 4 | Frequency of mutations in lung squamous cell carcinoma samples.

Gene alteration Frequency in SCC tissues Total frequency in SCC 
tissues

(n = 134)

Frequency in SCC 
blood

Total frequency in 
SCC blood

(n = 96)

BRAF V600E 0.7% (1/134) 0.7% 1.0% (1/96) 1.0%
EGFR Exon 19del 1.5% (2/134) 5.2% 2.1%(2/96) 8.3%

L858R 3.7% (5/134) 6.3% (6/96)
KRAS K117N 0.7% (1/134) 4.5% / 7.3%

G12C/D/V 3.0% (4/134) 3.1% (3/96)
Q61H / 1.0% (1/96)

A146T/P 0.7% (1/134) 3.1% (3/96)
MET Amplification 0.7% (1/134) 0.7% / /
PIK3CA E542K 2.2% (3/134) 9.0% 1.0% (1/96) 6.3%

E545Q/K 6.0% (8/134) 5.2% (5/96)
H1047R 0.7% (1/134) /
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from both these genes is termed as, equivalent or at least 
redundant. In addition, EGFR and ALK mutations, KRAS and ALK 
mutations, and BRAF and ALK mutations were mutually exclusive 
in our study. Previous studies showed that KRAS mutations seem 
to be incompatible with EGFR mutations, but 13 cases of KRAS 
and EGFR coexisting mutations were found in our study, which 
means that the therapeutic effect of EGFR-TKIs in these samples 
would be ineffective. We also found three cases of simultaneous 
mutations of EGFR along with BRAF, which was first found in 
Li ‘study (Li et al., 2014). Interestingly, a triple mutation EGFR 
L858R+EGFR T790M+KRAS G12D was identified in our study, 
which was rarely reported at present. Clinical follow up was 
necessary for future researches.

1,760 lung adenocarcinoma patient blood samples were 
tested for analyzing mutations in EGFR, KRAS, NRAS, 
PIK3CA, HER2, BRAF and MET in cfDNA. The distribution 
of drug sensitive mutations, such as EGFR exon19del as well 
as, L858R, was decreased in comparison with these mutation 
in tissues, while the frequency of drug resistant mutations, 
such as EGFR T790M, was increased. It is speculated that 
may be related to the patient population. The majority of the 
patients analyzed with tumor tissues were to find targeted 
agents for the first time, while some of the patients analyzed 
with blood samples showed the presence of resistance 
developed towards EGFR-TKIs. It can be seen from the 

mutation frequency of EGFR T790M (2.1%), which was close 
to the de novo T790M frequency reported in the literature 
(Su et al., 2012). Almost all NSCLC patients administered 
therapy using EGFR-TKIs gradually manifest resistance. It 
is a recommendation nowadays to analyze such samples to 
check for the reason behind the resistance in these patients. 
Yet, a challenge here is mutations that underlie the disease in 
the case of advanced stages may not be entirely reflected in 
one sample biopsy particularly if the cancer is heterogeneous. 
Analysis of cfDNA or fragments of DNA minus cells can be an 
alternative to tissue samples as these fragments are released 
by apoptotic or necrotic cells with the level of these molecules 
correlated with the stage of the tumor and its prognosis (Diaz 
and Bardelli, 2014).

Studies have mainly involved adenocarcinoma in the case of 
NSCLC with molecular profiling of tumors capable of improving 
the outcome if therapies are targeted. However, such an approach 
fails in the case of SCC’s accounting for approximately 30% of all 
NSCLC. Here, we screened 230 Chinese patient samples of lung 
SCC and reported the rarity of two most ubiquitous mutations in 
KRAS and EGFR seen in lung adenocarcinoma, while PIK3CA 
mutations were relatively high when compared with lung 
adenocarcinoma. Most of the mutations are unknown in lung 
SCCs and it needs further research.

Besides this, we made a profound analysis of the 3,243 
tumors data of lung adenocarcinoma patients in China, then 
three EGFR mutations (V742I, I789M, N842H) related with 
erlotinib, gefitinib, lapatinib, and one EGFR mutation (S811C) 
related with afatinib were discovered by filtered in Hotspot3D 
results. Next, we will continue to validate the function of the 
four EGFR rare druggable mutations by the following methods: 
(i) to predict of drug interaction based on protein structures; 
(ii) to perform biological validation in cultured cells; (iii) to 
establish the feasibility evaluation of clinical significance of 

TaBLE 5 | Several new EGFR druggable mutations were discovered by 
Hotspot3D in patients with lung adenocarcinoma.

Gene Related drugs alterations

EGFR erlotinib; gefitinib; lapatinib p.V742I c.G2224A
erlotinib; gefitinib; lapatinib p.I789M c.C2367G
erlotinib; gefitinib; lapatinib p.N842H c.A2524C

afatinib p.S811C c.C2432G

FIGURE 3 | Three-dimensionional (3D) models of (a) the EGFRQ. kinase domain-Gefitinib complex structure (PDB: 2ITY), (B) the EGFR kinase domain-Afatinib 
complex structure (PDB: 4G5J). Gefitinib and Afatinib are shown as sticks. Residues at the mutation site of the EGFR kinase domains (V742, I789, N842 and S811) 
are shown with arrows.
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these mutations by follow-up patients had these four EGFR 
rare mutations. Interestingly, we found that these EGFR rare 
variants always coexist with some common activating mutations 
in clinical samples. Whether this phenomenon has specific 
clinical significance needs to be further analyzed. Our analysis 
lends weight to novel approaches to address the use of personal 
medicine in patients with particular genetics.

In conclusion, we present a clear panoramagram of mutation 
frequencies of driver mutations in a sizeable population of 
NSCLC patients from China. There was an identification of 
four rare mutations in EGFR in these patients, such results can 
raise new possibilities for designing personalized treatments for 
patients carrying these mutations.

CONCLUSION

Genomic profiling of driver gene mutations of a sizeable 
Chinese patient set with NSCLC was performed. Four 
promising candidates for druggable mutations of EGFR were 
revealed, which opens up new avenues in the development of 
therapies that target individual patients carrying such genetic 
alterations. These results will help to develop personalized 
therapy targeting NSCLC.
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