About this Research Topic
Research on fish vaccines has improved our understanding of the mechanisms of antigen uptake, processing and presentation to cells of the adaptive immune system. In this sense, for example, the characterization of fish T-cell receptor (TCR) chains that bind to MHC ligands on antigen presenting cells (APCs) suggests that the mechanism of activation of naïve CD8 T-cells is conserved across the vertebrate taxa. Moreover, ‘killing’ of infected cells by cytotoxic T-lymphocytes (CTLs) has been demonstrated in vaccinated fish. Recent studies on the kinetics of various transcription factors and cytokines that specify the differentiation of naïve CD4 cells into various T-helper (Th) subtypes has shown that cytokine signatures expressed by APCs are predictive of humoral and CMI polarization. Overall, these advances in the field of fish immunology mean that we are better positioned to design new fish vaccines and to evaluate their efficacy.
While a good understanding of the expression patterns of signature cytokines and immunomodulatory factors during immunization has been achieved thus far, less is known whether so-called immunostimulants (e.g. adjuvants) can be utilized to skew vaccine-induced responses into desired directions. Similarly, immunostimulants may also (without vaccine antigens) induce certain cytokine expression patterns that may further condition a posterior antigen-induced response.Finally, the compartmentalization of fish immunoglobulins has also raised great interest in the field over the last decade, as IgT has been postulated as a gate keeper at portals of pathogen entry through mucosal surfaces while IgM responses seemed mostly centered on preventing pathogen dissemination and disease establishment in vaccinated fish at a systemic level.
Taken together, the aforementioned considerations warrant collaborative efforts between studies focused on fish immunology (host immune responses) and those focused on vaccinology (antigens plus adjuvant/immunostimulant formulations) with the goal to define the immunological mechanisms through which vaccines confer protection in fish. As an initiative to foster this collaborative research, in this Research Topic, we welcome the the submission of articles that cover the following sub-topics:
1. Design and testing of different immunostimulants and vaccine formulations in fish.
2. Application of various recombinant technologies such as DNA and subunit vaccines (use of plants, microalgae, viral and bacterial vector systems for expression vaccine antigens).
3. Application of various attenuation strategies to develop live vaccines.
4. Prime-boost vaccination strategies and their protective role in vaccinated fish.
5. Mechanisms of molecular adjuvants, immunostimulants (β-glucan, Poly(I:C), LPS, etc.) and feed formulation in enhancing defense mechanisms and protective immunity in fish.
6. Studies on mechanisms of antigen uptake, processing and presentation in various fish species.
7. Studies on protective mechanisms of cell-mediated and humoral immunity in fish.
8. Characterization and profiling immune response genes by gene expression, cloning and omics technologies (e.g. RNA-seq).
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.