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continuous attractor neural network

Experimental data have consistently revealed that the neuronal
connection weight, which models the efficacy of firing of a pre-
synaptic neuron in modulating the state of the post-synaptic
neuron, varies on short time scales, ranging from tens to thou-
sands of milliseconds (Markram and Tsodyks, 1996; Zucker and
Regehr, 2002). This is called short-term plasticity (STP). Two
types of STP, with opposite effects on the connection efficacy, have
been observed in experiments, which are known as short-term
depression (STD) and short-term facilitation (STF).

Computational studies have explored the impact of STP on
single neuron and network dynamics, and found that STP can
generate very rich intrinsic dynamical behaviors, including adap-
tation, temporal filtering, damped oscillation, state hopping with
transient population spike, traveling front and pulse, spiral wave,
rotating bump state, robust self-organized critical activity and
so on. These studies also strongly suggest that STP may play
many important roles in neural computation. For instances, STD
may generate a dynamic control mechanism that allows equal
fractional changes on rapidly and slowly firing afferents to pro-
duce post-synaptic responses, realizing Weber’s law (Abbott et al.,
1997); STD may generate a mechanism to close down network
activity naturally, achieving iconic sensory memory (Fung et al.,
2012); STD may provide a mechanism for memory searching by
destabilizing attractor states (Torres et al., 2007); and STF may
provide a mechanism for implementing work memory without
recruiting neural firing (Mongillo et al., 2008).

From the computational point of view, the time scale of STP
resides between fast neural signaling (on the order of millisec-
onds) and slow experience-induced learning (on the order of
minutes or above), and it is on the time order of many important
temporal processes occurring in our daily lives, such as motion
control, speech recognition and working memory. Thus, STP may

serve as a substrate for neural systems manipulating temporal
information on the relevant time scales.

This Research Topic presents new results in the study of
STP and summarizes some recent progress in the field. It
includes the works on analyzing the phenomenological models of
STP, the effects of STP on single neuron and network dynamics,
and the roles of STP in a number of neural information processes.
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Short term plasticity is a highly abundant form of rapid, activity-dependent modulation
of synaptic efficacy. A shared set of mechanisms can cause both depression and
enhancement of the postsynaptic response at different synapses, with important
consequences for information processing. Mathematical models have been extensively
used to study the mechanisms and roles of short term plasticity. This review provides
an overview of existing models and their biological basis, and of their main properties.
Special attention will be given to slow processes such as calcium channel inactivation and
the effect of activation of presynaptic autoreceptors.

Keywords: short term plasticity, synaptic transmission, mathematical model, synaptic depression, synaptic

facilitation

INTRODUCTION
Chemical synapses are highly specialized structures that enable
neurons to exchange signals, or to send signals to non-neural cells
such as muscle fibers. Even though there is a staggering diversity
of synapse morphologies and types in the brain, the fundamental
process of synaptic transmission is always the same. A presynap-
tic membrane potential depolarization, typically caused by the
arrival of an action potential, triggers the release of neurotrans-
mitter, which then binds to receptors that, in turn, generate a
response in the postsynaptic neuron.

A key quantity in neural circuits is the synaptic efficacy or
strength, which varies over time. Cellular processes such as long-
term potentiation and depression contribute to the patterning of
the nervous system during development, and are thought to con-
stitute the basis of learning and memory (Morris, 2003). Slow
and long-lasting homeostatic processes adjust synaptic strength
to maintain circuit activity within functional regimes (Turrigiano
and Nelson, 2004). In addition, a whole range of activity-
dependent processes exist that modulate synaptic efficacy con-
tinuously on very short time scales ranging from milliseconds to
minutes (for reviews, see Zucker and Regehr, 2002; Fioravante
and Regehr, 2011). Unlike long-term and homeostatic plasticity,
short term plasticity, the topic of this review, has a direct influence
on the computation performed by neural circuits as these dynam-
ics take place on the time scale of stimulus-driven activity, neural
computations and behavior.

Broadly, short term plasticity can be classified as synaptic
depression and facilitation. Depression refers to the progres-
sive reduction of the postsynaptic response during repetitive
presynaptic activity, while facilitation is an increase synaptic
efficacy. Each of these may be caused by a range of different
mechanisms with different time constants, and the two forms
are not mutually exclusive. For instance, a particularly well-
studied example of a strongly depressing synapse is the calyx
of Held, a giant synaptic terminal in the mammalian audi-
tory brainstem (Schneggenburger and Forsythe, 2006). A closer

look at the underlying mechanisms, however, reveals that the
response is also modulated by facilitation, which is however,
partially masked by depression. In fact, most synapses express
some combination of these two mechanisms, but with consid-
erable variability between different neuron types (Wang et al.,
2006).

The purpose of this review is to summaries models of short
term plasticity, to discuss their biological background and plausi-
bility, and to provide a guide for selecting an appropriate model
and level of detail. The focus here is on the mechanistic aspects of
these models, for a review of functional implications see Abbott
and Regehr (2004). The review begins with a reminder of the
main processes involved in synaptic transmission. Next, the vesi-
cle depletion model and its variants will be introduced as a
canonical model for short term plasticity. Finally, several addi-
tions to this class of models will be discussed that were required
to explain more recent experimental findings.

PRINCIPLES OF SYNAPTIC TRANSMISSION
Almost all factors contributing to short term plasticity are located
in the presynaptic terminal. To identify the relevant variables
required in models, we begin with a brief review of the main
events following the arrival of a presynaptic action potential
at a synapse, as illustrated in Figure 1. The site where synap-
tic transmission of neural activity is initiated is called the active
zone (AZ), a presynaptic morphological specialization where vesi-
cles containing neurotransmitter and proteins required for the
release process are clustered. The AZ is opposed by the postsy-
naptic density (PSD), an area that contains a large number of
different proteins implicated in synapse maintenance and plas-
ticity. In addition to a whole variety of structural and signaling
complexes, the PSD contains the bulk of the neurotransmitter
receptors mediating the postsynaptic response.

Neurotransmitter release from vesicles located at the AZ is
initiated by an elevation of the intracellular calcium concentra-
tion [Ca2+]i due to opening of voltage gated calcium channels
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Hennig Models of short term plasticity

FIGURE 1 | Schematic illustration of the main steps involved in

synaptic transmission, and of variables subject to use-dependent

modification. Symbols refer to quantities used in the model equations in
this review.

(VGCC). VGCCs are thought to be tightly co-localized with AZs,
such that the arrival of the presynaptic action potential causes an
increase of [Ca2+]i within a localized nanodomain from around
30 nM at rest to about 10–30 μM. This brief elevation of [Ca2+]i

increases the probability of vesicle fusion with the cell membrane
and subsequent release of transmitter into the synaptic cleft.
Hence the release probability p(t) is the first variable required
in a model of short term plasticity. Importantly, the relation-
ship between [Ca2+]i and release probability p is not linear, but
follows a steep power function relationship with an exponent
between three and four (Bollmann et al., 2000; Schneggenburger
and Neher, 2000; Lou et al., 2005). The release probability is often
modulated in an activity-dependent manner, hence it is expressed
as a function of time.

Electronmicrographs show that presynaptic terminals contain
vesicles filled with neurotransmitter. The release of a single vesi-
cle then constitutes the smallest signal (or quantum) that can be
transmitted to the postsynaptic neuron, which can be seen as
spontaneous miniature postsynaptic current at an unstimulated
synapse. Usually only a small fraction of the vesicles in the termi-
nal are located in close vicinity of the cell membrane at the AZ.
These vesicles are assumed to be release-ready or “primed,” while
the remaining are assumed to be on hold to replace empty vesi-
cles following transmitter release. The existence of anatomically
distinguishable vesicle populations has led to the concept of vesicle
pools: docked vesicles form the releasable pool and those in waiting
the reserve pool. The release process is termed excocytosis, which is
followed by the retrieval of empty vesicles through endocytosis,
and replenishment of vesicles on available release sites from the
reserve pool. There is evidence that more than two vesicle pools
may exist, which differ in release probability and retrieval rate
(Trommershäuser et al., 2003; Wölfel et al., 2007), which may be
due to their distance from VGCCs (Wadel et al., 2007). However,
the details of this matter are still debated and will not further
discussed here (for reviews, see Sudhof, 2004; Rizzoli and Betz,
2005).

Hence the second variable required in a synapse model is the
number of vesicles N(t) available for release. Again, as will be
discussed in more detail below, the number of release-ready vesi-
cles changes over time since the occupancy of the pool changes
during neural activity. Vesicle number and release probability
are the key ingredients for a model of presynaptic transmitter
release:

T(t) = p(t) · N(t) (1)

Here T(t) is the amount of transmitter released into the synaptic
cleft at time t. Simulating a highly realistic synapse model using
this expression would require a precise, time continuous model
of calcium influx and vesicle cycling. However, since the release
probability dramatically increases upon the arrival of a presy-
naptic action potential from a resting value of almost zero, it is
usually sufficient to update these quantities only once every time
a presynaptic action potential arrives.

Finally, the released transmitter diffuses through the synaptic
cleft and binds to receptors to generate a postsynaptic response,
the main quantity of interest in synapse models. Here, we focus
on the action of ionotropic receptors, which contain an ion chan-
nel that opens when transmitter is bound. The kinetics of such
a response is determined by the rates of transmitter binding and
unbinding and opening and closing of the channel, as well as tran-
sitions to and from desensitized states. The simplest model of this
process is when the postsynaptic conductance is proportional to
the amount of transmitter released:

g(t) = gmT(t) (2)

The peak conductance is denoted by gm. If the time course of
the response is relevant, for instance to distinguish between fast
AMPA receptor and slow NMDA receptor mediated transmission,
alpha functions, double exponential models, or simple kinetic
models are useful to model this process (Destexhe et al., 1994b;
Roth and Rossum, 2009).

Numerous studies have been devoted to assessing the release
probability and quantal content of synapses in various brain
areas and neurons types. As will be shown below, this is gen-
erally achieved through model-based analysis, which is possible
because the synapse models provide a good mapping between
experimental observables, usually the postsynaptic current and
its variance, and the underlying synaptic parameters. A com-
prehensive overview of parameters of a range of neuron types
assessed in this way can be found in a review by Branco and Staras
(2009).

THE VESICLE DEPLETION MODEL AND EXTENSIONS
VESICLE DEPLETION AS MAIN CAUSE OF SYNAPTIC DEPRESSION
The outline in the preceding section hints that presynaptic
vesicles are a limited resource, and that their depletion during
ongoing activity can lead to a suppression of the postsynap-
tic response. The first formal model of such a process was
published by Liley and North (1953), even before synaptic vesi-
cles were discovered by De Robertis and Bennett (1955). It
sought to explain synaptic depression during brief tetanic stim-
ulation of the rat neuromuscular junction, and was based on
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the assumption that releasable neurotransmitter is produced at
a limited rate. Tetanic stimulation was assumed to cause trans-
mitter depletion and a concomitant reduction in postsynaptic
response. This process is described by a simple first order kinetic
model:

dn(t)

dt
= 1 − n(t)

τr︸ ︷︷ ︸
replenishment

−
∑

j

δ(t − tj) · p · n(t)

︸ ︷︷ ︸
release

(3)

where n(t) is the occupancy of the release pool, bounded between
zero and one, τr the time constant of the vesicle replenishment,
and tj the presynaptic spike times. Note that in this and all follow-
ing equations, the dynamic quantity, here n(t), is evaluated before
the delta function [as in n(t − ε), here the ε is omitted for clarity].
The release term reduces the vesicle pool occupancy by T(t) =
p · n(t), which is proportional to the postsynaptic response (see
Equation 2). Experiments suggest that the recovery time con-
stant is typically in the order of seconds. Equation (3) describes
a continuous form of the model, which may be inappropriate for
synapses with a small number of releasable vesicles, as it is often
the case. Then a discrete form should be used where the release
pool occupancy n(t) is replaced by the vesicle number N(t). In
this case, a discrete form is also required to accurately model the
stochasticity of synapses.

This model predicts an exponential decay of the postsynap-
tic response during stimulation at a constant rate, and an inverse
relation between input frequency ν and steady state level of
depression n∞ = 1/(pντr + 1) (Figures 2A,E). It was found to
fit responses recorded from some depressing synapses very well
(Liley and North, 1953; Tsodyks and Markram, 1997), including
EPSCs during stimulation of the calyx of Held with in vivo-like
activity patterns (Hermann et al., 2009). However, often synapses
show substantial deviations. In particular, the steady state values
decrease more slowly with increasing frequency than the inverse
behavior predicted here.

SYNAPTIC FACILITATION
To explain such deviations from the deletion model, it was first
suggested by Betz (1970) to extend it by release probability facil-
itation that counteracts depression. Potential underlying mecha-
nism of facilitation are an accumulation of residual calcium in the
synaptic terminal (Atluri and Regehr, 1996; Blatow et al., 2003;
Felmy et al., 2003), which causes rapid VGCC facilitation (Katz
and Miledi, 1968; Borst and Sakmann, 1998; Cuttle et al., 1998;
Mochida et al., 2008). A simple phenomenological model of such
processes is to increase the release probability after each presynap-
tic spike (Betz, 1970; Varela et al., 1997; Markram et al., 1998):

dp(t)

dt
= p0 − p(t)

τf
+
∑

j

δ(t − tj) · af · (1 − p(t)) (4)

Here p0 is the baseline release probability, af the amount of facil-
itation per action potential and τf the recovery time constant.
The time constant is typically in the range of tens of milliseconds,
much faster than vesicle replenishment. Therefore, facilitation is

usually observed during more intense periods of activity. Steady-
state facilitation approaches p∞ = (p0 + νaf τf )/(1 + νaf τf ) for
a stimulus with constant frequency ν (Figure 2E).

The net effect of the combined model of facilitation and vesi-
cle depletion depends strongly on the basal release probability:
for a small p0, facilitation can have a substantial effect since it is
not masked by rapid vesicle pool depletion, and for large values
depression will dominate over depletion (Figure 2B). As a general
rule, it appears that synapses with a larger vesicle pool also tend
to have a higher release probability (Dobrunz and Stevens, 1997).
Hence facilitation is expected to be more dominant at “smaller”
synapses.

This extension of the depletion model can account quite well
for data where the simpler depletion model fails, in particu-
lar the relationship between stimulus frequency and steady-state
response amplitude (Varela et al., 1997; Markram et al., 1998). For
instance, a comprehensive survey of cells in the medial prefrontal
cortex has shown that this model can fit a wide range of different
behaviors encountered in such data sets, despite large variability
in the relative contribution of depression and facilitation (Wang
et al., 2006).

This depletion model with facilitation has become very popu-
lar as a canonical model for short term plasticity. It has, either in
the form given here (Equations 3, 4) or using a slightly different
set of equations as introduced by Tsodyks et al. (1998), been used
in many studies investigating the functional importance of short
term plasticity (see e.g., Abbott et al., 1997; Tsodyks et al., 1998;
Fuhrmann et al., 2002; Mongillo et al., 2008; Pfister et al., 2010).
As usual, however, a closer experimental investigation of synapses
has shown that this relatively simple and intuitive model lacks
potentially important detail, as will be discussed in the following
sections.

USE-DEPENDENT VESICLE REPLENISHMENT
An important observation at odds with the depletion model is
that vesicle replenishment can accelerate after intensive stimula-
tion. This effect was found to depend on an increase in intracel-
lular calcium concentration, and to occur in a physiological range
of input firing rates (Dittman and Regehr, 1998; Stevens and
Wesseling, 1998; Wang and Kaczmarek, 1998; Sakaba and Neher,
2001; Fuhrmann et al., 2004; Hosoi et al., 2007). Enhanced vesicle
replenishment can be included in the depletion model by adding
some form of activity-dependent component to Equation (3).
Two slightly different approaches have been proposed, both
capable of explaining the slow reduction in steady state depres-
sion for strong stimuli that the simple depletion model fails to
replicate.

The first model, introduced by Fuhrmann et al. (2004) to
reproduce depression at cortical synapses, was based on the idea
that presynaptic activity directly modulates the time constant τr

of vesicle replenishment in Equation (3) above:

dτr(t)

dt
= τr0 − τr(t)

τFDR
− aFDRτr(t) ·

∑
j

δ(t − tj) (5)

Here each presynaptic action potential reduces the time con-
stant by aFDRτr(t), which recovers to its resting value τr0 with
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A B C

D

GFE

FIGURE 2 | Summary of the key characteristics of the models discussed

in this review. (A–D) Postsynaptic response for the different models during
stimulation at different frequencies. (A) The vesicle depletion model
(Equation 3) predicts exponential decay of the response and an inverse
relation between stimulus frequency and steady-state amplitude. A higher
release probability causes faster and stronger depression [compare upper
and lower graph, see also panel (E)]. (B) The depletion model with facilitation
(Equations 3, 4) predict a transient response increase during high-frequency
stimulation. For a low basal release probability p0 the response remains
elevated (top graph), while for higher p0 vesicle depletion masks facilitation
[bottom graph, see also panel (E)]. (C) Use-dependent vesicle replenishment
(Equation 6) increases the steady-state response. (D) As panel (C), but with

added slow use-dependent suppression of release probability. Here the
postsynaptic response continues to slowly decay when the depletion model
reaches steady-state [compare (C) and (D)]. (E) Steady-state response
magnitude as a function of input frequency for the depletion model (circles)
and the depletion model with facilitation (dashed lines). (F) Same as (E), but
for the depletion model with use-dependent replenishment (UDE, circles) and
the UDE model with slow suppression of release probability (RS, dashed).
Note that the latter increases depression in particular at low frequencies. (G)

Occupancy of the releasable vesicle pool for the models in panel (F). It is less
depleted for the RS model as steady-state depression is mediated by the
reduction in release probability. Parameters: τr = 1 s, af = 0.3, τf = 0.2 s [no
facilitation in (C,D)], ae = 0.4, τe = 0.1 s, ai = 0.01, τi = 10 s.

a time constant τFDR in the order of hundreds of milliseconds.
A very similar model with a non-linear relation between intra-
cellular calcium concentration and recovery rate was proposed
to explain the different kinetics observed at hippocampal and
cerebellar synapses (Dittman and Regehr, 1998; Dittman et al.,
2000).

Alternatively, it may be assumed activity leads to a tempo-
rary enhancement of vesicle replenishment. This is based on the
observation that high-frequency stimulation causes a fast but
short-lived component of recovery from depression, which is
absent after weaker stimulation (Wang and Kaczmarek, 1998).

In these experiments, the recovery time course was fit by two
exponential functions, suggesting the combined action of at least
two processes. This can be modeled by augmenting a constant
background replenishment with a low rate (kr = 1

τr
) with an

activity-dependent component:

dke(t)

dt
= −ke(t)

τe
+ ae ·

∑
j

δ(t − tj) · (1 − ke(t)) (6)

This process is activated by presynaptic activity, leads to an incre-
ment ae of the replenishment rate for each action potential,
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and decays with a time constant τe in the range of 10–100 ms.
Equation (3) then becomes:

dn(t)

dt
= (kr + k̃eke(t))(1 − n(t))︸ ︷︷ ︸

rreplenishment

−
∑

j

δ(t − tj) · p(t) · n(t)

︸ ︷︷ ︸
release

(7)

where k̃e is the peak rate of activity-dependent vesicle replen-
ishment. This model predicts weaker steady-state depression at
high frequencies (Figures 2C,F), and has been shown to rather
accurately reproduce the vesicle pool kinetics (Hosoi et al., 2007)
and steady-state behavior at the calyx of Held (Wong et al., 2003;
Hennig et al., 2008).

The biophysical mechanism behind use-dependent vesicle
replenishment is still not well understood. It appears clear that it
depends on calcium influx (Wang and Kaczmarek, 1998; Sakaba
and Neher, 2001; Hosoi et al., 2007), but it has been diffi-
cult to experimentally disentangle the role of calcium-dependent
vesicle recruitment and calcium-dependent endocytosis, perhaps
because most studies so far used extremely strong and unphysio-
logical stimuli to deplete the vesicle pool. A recent study suggests
that these two processes may in fact be linked, and that perhaps
the speed at which release sites are made available by endocy-
tosis is an important rate limiting step during high frequency
transmission (Yao and Sakaba, 2012). Use-dependent replenish-
ment may then reflect faster recruitment due to more efficient
endocytosis.

A main function of this mechanism appears to maintain the
ability of a synapse to transmit during sustained periods of high
activity (Wong et al., 2003; Hosoi et al., 2007). It is as such an
important, and often overlooked component of short term plas-
ticity that has implications for transmission of varying firing
rates. In addition, it has been suggested to improve transmission
by broadening the range over which information about rate and
rate changes are reliably transmitted (Fuhrmann et al., 2004; Yang
et al., 2009). Which of the two models discussed here is more
appropriate is unclear. The difference between the two models
is that enhanced replenishment is unbounded in Equation (5),
but bounded in Equation (6). Hence the former predicts a faster
decrease of the steady state response amplitude with increasing
frequency, which more quickly settles to a constant value. It is
therefore possible that it underestimates the amount of depres-
sion at some synapses, but this would require a more exhaustive
comparison with data.

SLOW MODULATION OF RELEASE PROBABILITY
A further omission of the depletion model is that activity-
dependent release probability suppression may also contribute to
synaptic depression (Xu and Wu, 2005; Mochida et al., 2008).
Potential mechanisms include VGCC inactivation (Forsythe et al.,
1998; Patil et al., 1998) or activation of presynaptic autoreceptors
such as mGluRs or AMPARs, which in turn can cause a reduc-
tion of the release probability (Takahashi et al., 1996; Takago
et al., 2005). A possible molecular route of such effects is cal-
cium/calmodulin (Lee et al., 1999). Postsynaptic release of endo-
cannabinoids has also been shown to suppress synaptic strength

over short time scales, but the mechanisms are currently not well
understood (Brenowitz and Regehr, 2005). Overall, the degree to
which these mechanisms are relevant under physiological condi-
tions is still not fully understood. For instance, release probability
suppression has been reported to strongly contribute to synap-
tic depression during weak activity at the calyx of Held (Xu and
Wu, 2005), but this effect may be more pronounced at imma-
ture synapses were morphological development renders synaptic
transmission is less effective (Renden et al., 2005; Nakamura et al.,
2008).

A generic model incorporating both release probability
facilitation and depression can be constructed by extending
Equation (4) by an activity-dependent modulation of the baseline
release probability p0 (Billups et al., 2005; Hennig et al., 2008):

dp0(t)

dt
= − p̃0 − p0(t)

τi
−
∑

j

δ(t − tj) · ai · p0(t) (8)

Here the baseline release probability p0(t) is reduced by a constant
fraction ai after each spike, and recovers back to p̃0 with a time
constant τi in the order of several seconds. Then depression of
release probability is proportional to the incoming spike rate. An
alternative form, which models the activation of autoreceptors,
is to replace the term on the right-hand side with

∑
j δ(t − tj) ·

aa · p0(t) · p(t) · n(t). In this case, depression of release probabil-
ity is release-dependent. Combinations of both mechanisms are
also possible, as shown by Hennig et al. (2008). In combination
with the depletion model and facilitation (Equations 3 or 6, and
Equation 4), this model can account for a slow form of depres-
sion that follows initial rapid vesicle depletion (Figures 2D,F),
as observed at GABAergic synapses (Kraushaar and Jonas, 2000)
or the calyx of Held (Hennig et al., 2008) during prolonged
stimulation.

The analysis of the steady-state behavior the model reveals
an interesting further property (Hennig et al., 2007). If the
release probability is assumed to vary slowly compared to the
effective vesicle replenishment rate k̃e, the quasi-stationary solu-
tion of Equation (3) with use-dependent vesicle replenishment
(Equation 6) is n∞pc = k̃e(1 − n∞), where the index c indicates
that pc is constant over the time interval considered, and we
obtain n∞ = ke/(pc + ke). This solution is valid when all fast pro-
cesses (e.g., facilitation) have settled to their stationary values.
If the release probability is now changed by a small amount to
p

′
c = αpc , then the vesicle pool occupancy settles to a value that

differs by a factor of n
′
∞/n∞ = (pc + ke)/(αpc + ke).

Hence a slow reduction in release probability will not only
slowly depress the postsynaptic response, but also increase the
size of the releasable vesicle pool (Figure 2G). This corresponds
to a transfer of depression from vesicle depletion to a reduction
of release probability. The net effect is a decrease in postsynap-
tic response that is slower than the change in release probability,
and a concomitant refilling of the vesicle pool. Analysis of synap-
tic depression at the calyx of Held during prolonged stimulation
support this conclusion, and suggest that it is, in part, mediated
by mGluR autoreceptor activation (Billups et al., 2005; Hennig
et al., 2008).
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A CLOSER LOOK AT RELEASE PROBABILITY
A central variable in the models discussed is the release probabil-
ity, and so far the effect of activity was assumed to be linear. This
is however, incompatible with the steep non-linearity that couples
presynaptic calcium influx to release rate (Bollmann et al., 2000;
Schneggenburger and Neher, 2000; Lou et al., 2005). If we assume
that the effects of facilitation and depression discussed above such
as accumulation of residual calcium, channel facilitation or inac-
tivation, have a linear effect on the calcium concentration, this
non-linearity would predict a far more drastic effect on the release
rate. In fact, early studies already found that a third to fourth-
power relationship is a better model for facilitation than a linear
model (Zengel and Magleby, 1982).

An analysis of synaptic depression at the calyx of Held by
Xu and Wu (2005) further confirms this intuition. This study
suggested that depression during slow stimulation (in the range
between 1 and 10 Hz) is primarily mediated by a reduction
in calcium influx, while vesicle depletion is only effective at
higher frequencies. Interestingly the model presented in the pre-
ceding section qualitatively reproduces this effect. As shown in
Figure 2F, slow depression of release probability has a significant
effect at low frequencies when compared to an equivalent deple-
tion model, which becomes weaker with increasing frequency.
However, as shown above this model also predicts that the depres-
sion at higher frequencies is still due to reduced release proba-
bility, which replaces vesicle depletion during sustained activity.
There is some experimental evidence based on fluctuation analy-
sis in support of this hypothesis (Hennig et al., 2008), but it will
be interesting to see if alternative vesicle depletion models can also
account for these findings.

AUGMENTATION AND POST-TETANIC POTENTIATION
Augmentation and post-tetanic potentiation are two slowly devel-
oping and long-lasting forms of synaptic enhancement (Fisher,
1997; Zucker and Regehr, 2002). They are induced by prolonged
stimulation of the synapse, and vary in their activation and relax-
ation kinetics. The faster form, with time constants of seconds, is
typically referred to as augmentation, whereas post-tetanic poten-
tiation operates on time scales of tens of seconds. It appears that
these processes are caused by an increase in release probability,
which can be occluded by depression due to vesicle depletion dur-
ing ongoing stimulation (Habets and Borst, 2007). While early
studies proposed accumulation of residual calcium at the synap-
tic terminal as a primary mechanism (Zengel and Magleby, 1982;
Zucker and Lara-Estrella, 1983; Habets and Borst, 2007), more
recent work also implicated PKC activation (Korogod et al., 2007)
or calmodulin/CaM kinase II activity (Fiumara et al., 2007).

A model which could account for a range of findings in data
from the frog and toad neuromuscular junction was proposed by
Zengel and Magleby (1982). They proposed that facilitation (F),
augmentation (A) and post-tetanic potentiation (P) affect release
probability in a multiplicative manner:

P(t) ∝ F(t)A(t)P(t) (9)

Each process follows first order kinetics, and facilitation was best
captured by including a fast and a slow component (see also

Zucker and Lara-Estrella, 1983). While facilitation required
a fourth-power relationship between the corresponding state
variables and release rate, it was sufficient to assume a linear
dependence for augmentation and potentiation. This points to
different potential sites of action of these mechanisms as outlined
above. In addition, it was found that augmentation increases with
longer stimuli. This was modeled by including a time-dependent
increase in activation rate a = a0zνT (where ν is the stimulus
frequency, T is stimulus time and z a constant), but could also
indicate the presence of multiple first-order processes acting on
different time scales (Drew and Abbott, 2006; Hennig et al., 2008).
For instance, activation of presynaptic NMDA receptors has also
been shown to enhance release probability, with a time course in
the order of minutes (Duguid and Smart, 2004).

So far, few theoretical studies have investigated the implica-
tions of slow enhancement of release using detailed models. A
simple, phenomenological model based on Equation (4) above,
where time constants were chosen in the range of augmentation,
suggests a potential role in short term memory (Mongillo et al.,
2008).

THE OTHER SIDE: RECEPTOR DESENSITIZATION
The time course of the postsynaptic response depends not only
on the amount of released transmitter and its time course, but
also on the kinetics of the receptors. The interplay of these fac-
tors with synapse morphology has been investigated in great detail
with Monte Carlo simulations (Stiles et al., 1996; Franks et al.,
2003; Coggan et al., 2005; Postlethwaite et al., 2007), which are
in particular useful to understand the sources of variability at
synapses. The semi-quantitative models discussed in this review
cannot easily accommodate this level of detail, but can still be
extended to include salient aspects of the postsynaptic response
(Destexhe et al., 1994a; Roth and Rossum, 2009).

Apart from the response latency and duration, desensitiza-
tion is an important property of receptors which has been shown
to contribute to synaptic depression during physiological activ-
ity levels (Trussell et al., 1988, 1993; Jones and Westbrook, 1996;
Neher and Sakaba, 2001). A simple but effective approximation
of the state of the population of receptors D(t), can be modeled
using first order kinetics:

dD(t)

dt
= 1 − D(t)

τD
−
∑

j

δ(t − tj) · aD · p(t) · n(t) · D(t) (10)

The quantity D(t) represents the fraction of non-desensitized
receptors. Recovery from desensitization τD is typically in the
order of tens of milliseconds, such that it is only effective dur-
ing intense episodes of activity. The postsynaptic response is then
expressed as R(t) = gmD(t) · n(t) · p(t), where gm is the peak
conductance.

This basic model captures synaptic depression due to desensi-
tization well. In particular, simulations have shown that a main
effect is the masking of presynaptic facilitation at high stimu-
lus frequencies (Jones and Westbrook, 1996; Wong et al., 2003).
Yet in this form the model obviously neglects the time course
of the postsynaptic potential, which can also be affected by
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desensitization. To model this, it is possible to extend it by adding
more states, such as closed, open and desensitized, and to model
state transitions in a transmitter concentration-dependent man-
ner as a Markov process. Such models have been proposed to
better account for the kinetics of the postsynaptic response, in
particular for kinetics of different receptor subunit composition
(Destexhe et al., 1994a; Robert et al., 2005; Postlethwaite et al.,
2007). A drawback of this approach is that this also requires an
appropriate model of the time course of neurotransmitter seen
by the receptors, which has to be obtained by more detailed dif-
fusion models (see e.g., Franks et al., 2003; Postlethwaite et al.,
2007). Finally it is also worth mentioning that potentially other
postsynaptic mechanisms exist that contribute to short term
plasticity, which have not yet been investigated in models. For
instance, AMPA receptors can show an increased paired-pulse
facilitation during activity-dependent relief of polyamide block
(Rozov and Burnashev, 1999). This effect is potentially impor-
tant at immature synapses lacking the GluR2 AMPA receptor
subunit.

STOCHASTICITY OF SYNAPSES
Transmitter release is a stochastic process, and as a consequence
the magnitude of the postsynaptic current evoked by each presy-
naptic action potential fluctuates from time to time. Due to
the quantal nature of synaptic transmission, the variance of the
postsynaptic response is described by binomial statistics, with
a predicted variance of Var(g(t)) = gm · N(t) · p(t) · (1 − p(t))
(Del Castillo and Katz, 1954). This shows that changes in the
synaptic parameters due to short term plasticity will not only
cause changes in the average postsynaptic response, but also in
the magnitude of the fluctuations, as measured by the coefficient
of variation:

CV(g(t)) =
√

1 − p(t)

N(t)p(t)gm
(11)

This value is high when the release probability or the number
of release-ready vesicles is small, as, for instance, often found
for cortical neurons (Wang et al., 2006; Brémaud et al., 2007).
The expression also shows that stochastic effects are bound to be
more important when synaptic depression is dominated by vesi-
cle depletion. In addition, the entire vesicle cycle, which includes
vesicle replenishment, consists of stochastic events. In contrast,
the influx of calcium during an action potential, which triggers
transmitter release, is considered a much more salient event, and
is therefore expected to contribute much less to postsynaptic
response variability. To model the main sources of stochasticity
of synaptic, the models discussed above can be directly cast into a
stochastic form by simulating vesicle release and replenishment as
random events (see e.g., de la Rocha and Parga, 2005; Yang et al.,
2009; Rosenbaum et al., 2012).

Stochastic models are extremely useful for quantitative eval-
uation of models of synaptic transmission and plasticity, since
postulated changes in N and p have predictable effects on vari-
ability that can be directly tested experimentally (see e.g., Quastel,
1997; Scheuss and Neher, 2001; Brémaud et al., 2007). This type
of analysis requires a careful dissection of synaptic function, since

for instance conductance changes through receptor desensiti-
zation may be mistaken for presynaptic effects if not properly
controlled for. Recent work exploiting this approach provided
evidence for substantial variability of synaptic parameters for
synapses between cortical pyramidal neurons, the presence of
multi-quantal release (Loebel et al., 2009), and the coordina-
tion of pre-synaptic release probability and postsynaptic synaptic
strength (Hardingham et al., 2010).

Studies investigating stochastic synapse models have reported
several effects indicating that this also has important implications
for neural computations and network function. For instance, shot
noise due to stochastic release can increase the output firing
rate of a neuron operating in a fluctuation driven regime when
compared to deterministic dynamics (de la Rocha and Parga,
2005). The same study also showed that short term depression
in stochastic synapses causes a further, non-monotonic modula-
tion of output firing in presence of input correlations (see also
Rosenbaum et al., 2012). Such effects were further analyzed by
Rosenbaum et al. (2013), who showed that, unlike for a deter-
ministic model, a stochastic synapse with short term depression
can significantly de-correlate neural activity. Finally, an analysis
of stochastic models including slow release probability modula-
tion and activity-dependent vesicle replenishment suggested that
multiple mechanisms of short term plasticity may act synergis-
tically to maintain stable information transmission over a broad
range of input frequencies (Yang et al., 2009). Overall, however,
the models used so far to analyze stochastic effects were mostly
rather simple, typically only the depletion model was considered,
and assumed constant random inputs to the neuron (see Merkel
and Lindner, 2010, for an extension).

OUTLOOK
Theoretical models have contributed much to our understanding
of synaptic transmission and short term plasticity by providing
a framework to express conceptual models in rigorous terms, and
to derive quantitatively testable hypotheses. The models discussed
here capture the central biophysical processes involved in synap-
tic transmission in relatively simple mathematical form, such that
an exact or at least approximate analytical treatment is possible.
Moreover, key variables in these models have direct measurable
correlates. This supports analysis and comparison with data, as
often exploited for deriving synaptic parameters from experi-
mentally recorded synaptic currents. It is however not straight
forward to experimentally interfere with short term plasticity
in intact neural circuits in a targeted manner, for instance to
assess functional implications and consequences. Therefore, these
models are also a valuable tool that enables analysis beyond the
experimentally feasible.

The basic depletion model with facilitation has passed the test
of time, which nicely illustrates the success of simple, mathemat-
ically tractable phenomenological models in biology. However,
as shown here, short term plasticity can be more complicated.
In particular slow forms of synaptic depression and facilitation
merit more thorough investigation, both in terms of mechanisms
and their relevance for neural computations. While the deple-
tion model can very successfully replicate even synaptic responses
during in vivo-like activity patterns (Hermann et al., 2009),
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slow synaptic modulation may have important effects during
firing rate modulation on time scales of tens of seconds (see
e.g., Mongillo et al., 2008). A combination of slow facilitation
and depression has also been shown to support differential
responses to time varying stimuli (Barak and Tsodyks, 2007).
These studies show that these mechanisms certainly warrant
further investigation.

As shown in this review, even the extended and more complete
models of short term plasticity have a relatively simple mathemat-
ical form, which will greatly facilitate the understanding of their
effects in networks. Perhaps a central question in this context is
in how far the different mechanisms discussed here have direct
functional implications, or rather reflect the biophysical proper-
ties and limitations of chemical signaling between neurons. Some
of the studies touched upon above and in the previous section
suggest the former may be the case (for a more detailed discus-
sion, see e.g., Abbott and Regehr, 2004). On the other hand it is

equally plausible some aspects of short term plasticity may related
to homeostatic effects or metabolic efficacy of synapses, issues
that have received little attention so far and are now easily testable
in models. Addressing such questions may require the analysis
of the models under more physiologically relevant conditions.
For example, recent experiments indicate that unreliable synapses
with short term plasticity are particularly suited to transmit infor-
mation contained in brief bursts of activity typically observed in
hippocampus (Rotman et al., 2011). Therefore, modeling stud-
ies specifically investigating synapses in their “natural habitat” of
recurrent networks should allow us to refine and consolidate such
hypotheses, and to establish more of the much sought-after links
between neural biophysics and brain function and dysfunction.
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In this paper we review our research on the effect and computational role of dynamical
synapses on feed-forward and recurrent neural networks. Among others, we report on the
appearance of a new class of dynamical memories which result from the destabilization
of learned memory attractors. This has important consequences for dynamic information
processing allowing the system to sequentially access the information stored in the
memories under changing stimuli. Although storage capacity of stable memories also
decreases, our study demonstrated the positive effect of synaptic facilitation to recover
maximum storage capacity and to enlarge the capacity of the system for memory recall
in noisy conditions. Possibly, the new dynamical behavior can be associated with the
voltage transitions between up and down states observed in cortical areas in the brain.
We investigated the conditions for which the permanence times in the up state are
power-law distributed, which is a sign for criticality, and concluded that the experimentally
observed large variability of permanence times could be explained as the result of noisy
dynamic synapses with large recovery times. Finally, we report how short-term synaptic
processes can transmit weak signals throughout more than one frequency range in noisy
neural networks, displaying a kind of stochastic multi-resonance. This effect is due to
competition between activity-dependent synaptic fluctuations (due to dynamic synapses)
and the existence of neuron firing threshold which adapts to the incoming mean synaptic
input.

Keywords: short-term synaptic plasticity, emergence of dynamic memories, memory storage capacity, criticality

in up–down cortical transitions, neural stochastic multiresonances

1. INTRODUCTION
In the last decades many experimental studies have reported that
transmission of information through the synapses is strongly
influenced by the recent presynaptic activity in such a way that
the postsynaptic response can decrease (that is called synaptic
depression) or increase (or synaptic facilitation) at short time
scales under repeated stimulation (Abbott et al., 1997; Tsodyks
and Markram, 1997). In cortical synapses it was found that after
induction of long-term potentiation (LTP), the temporal synap-
tic response was not uniformly increased. Instead, the amplitude
of the initial postsynaptic potential was potentiated whereas the
steady-state synaptic response was unaffected by LTP (Markram
and Tsodyks, 1996).

From a biophysical point of view it is well accepted that
short-term synaptic plasticity including synaptic depression and
facilitation has its origin in the complex dynamics of release,
transmission and recycling of neurotransmitter vesicles at the
synaptic buttons (Pieribone et al., 1995). In fact, synaptic depres-
sion occurs when the arrival of presynaptic action potentials
(APs) at high frequency does not allow an efficient recovering
at short time scales of the available neurotransmitter vesicles to
be released near the cell membrane (Zucker, 1989; Pieribone
et al., 1995). This causes a decrease of the postsynaptic response
for successive APs. Other possible mechanisms responsible for

synaptic depression have been described including feedback acti-
vation of presynaptic receptors and from postsynaptic processes
such as receptor desensitization (Zucker and Regehr, 2002).
On the other hand, synaptic facilitation is a consequence of
residual cytosolic calcium—that remains inside the synaptic
buttons after the arrival of the firsts APs—which favors the
release of more neurotransmitter vesicles for the next arriv-
ing AP (Bertram et al., 1996). This increase in neurotrans-
mitters causes a potentiation of the postsynaptic response or
synaptic facilitation. It is clear that strong facilitation causes
a fast depletion of available vesicles so at the end it also
induces a strong depressing effect. Other possible mecha-
nisms responsible for short-term synaptic plasticity include,
for instance, glial-neuronal interactions (Zucker and Regehr,
2002).

In the two seminal papers (Tsodyks and Markram, 1997) and
(Abbott et al., 1997) a simple phenomenological model has been
proposed based in these biophysical principles which nicely fits
the evoked postsynaptic responses observed in cortical neurons.
The model is characterized by three variables xj(t), yj(t), zj(t) that
follow the dynamics

dxj(t)

dt
= zj(t)

τrec
− Uj · xj(t) · δ(t − t

j
sp)
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dyj(t)

dt
= −yj(t)

τin
+ Uj · xj(t) · δ(t − t

j
sp)

dzj(t)

dt
= yj(t)

τin
− zj(t)

τrec
(1)

where yj(t) is the fraction of neurotransmitters which is released

into the synaptic cleft after the arrival of an AP at time t
j
sp, xj(t)

is the fraction of neurotransmitters which is recovered after pre-
vious arrival of an AP near the cell membrane and zj(t) is the
fraction of inactive neurotransmitters. The model assumes con-
servation of the total number of neurotransmitter resources in
time so one has xj(t) + yj(t) + zj(t) = 1. The released neuro-
transmitter inactivates with time constant τin and the inactive
neurotransmitter recovers with time constant τrec. The synaptic
current received by a postsynaptic neuron from its neighbors is
then defined as Ii(t) = ∑

j Aijyj(t) where Aij represents the maxi-
mum synaptic current evoked in the postsynaptic neuron i by an
AP from presynaptic neuron j which in cortical neurons is around
40 pA (Tsodyks et al., 1998).

For constant release probability Uj, the model describes the
basic mechanism of synaptic depression. The model is com-
pleted to account for synaptic facilitation by considering that Uj

increases in time to its maximum value U as the consequence of
the residual cytosolic calcium that remains after the arrival of very
consecutive APs, and follows the dynamics

dUj(t)

dt
= [U − Uj(t)]

τfac
+ U · [1 − Uj(t)] · δ(t − t

j
sp). (2)

Short term synaptic plasticity has profound consequences on
information transmission by individual neurons as well as on net-
work functioning and behavior. Previous works have shown this
fact on both feed-forward and recurrent networks. For instance,
in feed-forward networks activity-dependent synapses act as non-
linear filters in supervised learning paradigms (Natschläger et al.,
2001), being able to extract statistically significant features from
noisy and variable temporal patterns (Liaw and Berger, 1996).

For recurrent networks, several studies revealed that popu-
lations of excitatory neurons with depressing synapses exhibit
complex regimes of activity (Senn et al., 1996; Tsodyks et al., 1998,
2000; Bressloff, 1999; Kistler and van Hemmen, 1999), such as
short intervals of highly synchronous activity (population bursts)
intermittent with long periods of asynchronous activity, as is
observed in neurons throughout the cortex (Tsodyks et al., 2000).
Related with this, it was proposed (Senn et al., 1996, 1998) that
synaptic depression may serve as a mechanism for rhythmic activ-
ity and central pattern generation. Also, recent studies on rate
models have reported the importance of dynamic synapses in the
emergence of persistent activity after removal of stimulus which
is the base of the so called working memories (Barak and Tsodyks,
2007), and in particular it has been also reported the relevant role
of synaptic facilitation, mediated by residual calcium, as the main
responsible for appearance of working memories (Mongillo et al.,
2008).

All these phenomena have stimulated much research to eluci-
date the effect and possible functional role of short term synaptic

plasticity. In this paper we review our own efforts over the last
decade in this research field. In particular, we have demon-
strated both theoretically and numerically the appearance of
different non-equilibrium phases in attractor networks as the
consequence of the underlying noisy activity in the network and
of the existence of synaptic plasticity (see section 2). The emer-
gent phenomenology in such networks includes a high sensitivity
of the network to changing stimuli and a new phase in which
dynamical attractors or dynamical memories appear with the pos-
sibility of regular and chaotic behavior and rapid “switching”
between different memories (Pantic et al., 2002; Cortes et al.,
2004, 2006; Torres et al., 2005, 2008; Marro et al., 2007). The ori-
gin of such new phases and the extraordinary sensibility of the
system to varying inputs—even in the memory phase—is pre-
cisely the “fatigue” of synapses due to heavy presynaptic activity
competing with different sources of noise which induces a desta-
bilization of the regular stable memory attractors. One of the
main consequences of this behavior is the strong influence of
short-term synaptic plasticity on storage capacity of such net-
works (Torres et al., 2002; Mejias and Torres, 2009) as we will
explain in section 3.

The switching behavior is characterized by a characteristic
time scale during which the memory is retained. The distribu-
tion of time scale depends in a complex way on the parameters of
the dynamical synapse model and is the result of a phase transi-
tion. We have investigated the conditions for the appearance of
power-law behavior in the probability distribution of the per-
manence times in the Up state, which is a sign for criticality
(see section 4). This dynamical behavior has been associated
(Holcman and Tsodyks, 2006) to the empirically observed tran-
sitions between states of high activity (Up states) and low activity
(Down states) in the mammalian cortex (Steriade et al., 1993a,b).

The enhanced sensibility of neural networks with dynamic
synapses to external stimuli could provide a mechanism to detect
relevant information in weak noisy external signals. This can be
viewed as a form of stochastic resonance (SR), which is the gen-
eral phenomenon that enhances the detection by a non-linear
dynamical system of weak signals in the presence of noise. Recent
experiments in auditory cortex have shown that synaptic depres-
sion improves the detection of weak signals through SR for a
larger noise range (Yasuda et al., 2008). In a feed-forward network
model of spiking neurons, we have modeled these experimental
findings (Mejias and Torres, 2011; Torres et al., 2011). We demon-
strated theoretically and numerically that, in fact, short-term
synaptic plasticity together with non-linear neuron excitability
induce a new type of SR where there are multiple noise lev-
els at which weak signals can be detected by the neuron. We
denoted this novel phenomenon by bimodal stochastic resonances
or stochastic multiresonances (see section 5) and, very recently, we
have proved that this intriguing phenomenon not only occurs
in feed-forward neural networks but also in recurrent attractor
networks (Pinamonti et al., 2012).

2. APPEARANCE OF DYNAMICAL MEMORIES
In this section we review our work on the appearance of dynam-
ical memories in attractor neural networks with dynamical
synapses as originally reported in (Pantic et al., 2002; Torres et al.,
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2002, 2008; Mejias and Torres, 2009). For simplicity and in order
to obtain straightforward mean-field derivations we have consid-
ered the case of a network of N binary neurons (Hopfield, 1982;
Amit, 1989). However, we emphasize that the same qualitative
behavior emerges in networks of integrate and fire (IF) neurons
(Pantic et al., 2002).

Each neuron in the network, whose state is si = 1, 0 depending
if the neuron is firing or not an AP, receives at time t from its
neighbor neurons a total synaptic current, or local field, given by

hi(t) =
∑

j

ωij(t)sj(t) (3)

where ωij(t) is the synaptic current received by the postsynap-
tic neuron i from the presynaptic neuron j when this fires an AP
(sj(t) = 1). If the synaptic current to neuron i, hi(t), is larger than
some neuron threshold value θi, neuron i fires an AP with a prob-
ability that depends on the intrinsic noise present in the network.
The noise is commonly modeled as a thermal bath at tempera-
ture T. We assume parallel dynamics (Little dynamics) using the
probabilistic rule

Prob(si(t + 1) = σ) = 1

2
+
(

σ − 1

2

)
tanh[2T−1(hi(t) − θi)]

(4)

with σ = 1, 0.

To account for short-term synaptic plasticity in the network
we consider

ωij(t) = ωijDj(t)Fj(t) (5)

where Dj(t) and Fj(t) are dynamical variables representing
synaptic depression and synaptic facilitation mechanisms. The
constants ωij denote static maximal synaptic conductances,
that contain information concerning a number P of random
patterns of neural activity, or memories, ξμ ≡ {ξμ

i = 1, 0; i =
1, . . . , N,μ = 1, . . . , P} previously learned and stored in the net-
work. Such static memories can be achieved in actual neural
systems by LTP or depression of the synapses due to network stim-
ulation with these memories. For concreteness, we assume here
that these weights are the result of a Hebbian-like learning pro-
cess that takes place on a time scale that is long compared to the
dynamical time scales of the neurons and the dynamical synapses.
The Hebbian learning takes the form

ωij = 1

Na(1 − a)

P∑
μ= 1

(ξ
μ

i − a)(ξ
μ

j − a) ωii = 0, (6)

also known as the covariance learning rule, with a = 〈ξμ

i 〉 repre-
senting the mean level of activity in the patterns. It is well-known
that a recurrent neural network with synapses (Equation 6) acts
as an associative memory (Amit, 1989). That is, the stored patterns
ξμ become local minima of the free-energy and within the basin
of attraction of each memory, the neural dynamics (Equation 4)
drives the network activity toward this memory. Thus, appropri-
ate stimulation of (a subset of) neurons that are active in the

stored pattern initiates a memory recall process in which the
network converges to the memory state.

To model the dynamics of the synaptic depression Dj(t) and
facilitation Fj(t), we simplify the phenomenological model of
dynamic synapses described by Equations (1, 2), taking into
account that in actual neural systems such as the cortex τin �
τrec, which implies that yi(t) = 0 for most of the time and only
at the exact point at which the AP arrives has a non-zero value
yj(tsp) = xj(tsp)Uj(tsp). Thus, the synaptic current evoked in the
postsynaptic neuron i by a presynaptic neuron j every time it

fires is approximatively Iij(t) = Aij xj(t
j
sp) Uj(t

j
sp) which has the

form given by Equation (5) with ωij = Aij, Dj(t) ≡ xj(t) and
Fj(t) ≡ Uj(t). We set U = 1 without loss of generality in order
to have Dj(t) = Fj(t) = 1∀j, t for τrec, τfac � 1, that corresponds
to the well know limit of static synapses without depressing and
facilitating mechanism. In this limit, in fact, one recover the clas-
sical Amari–Hopfield model of associative memory (Amari, 1972;
Hopfield, 1982) when one chooses the neuron thresholds as

θi = 1

2

∑
j

ωij. (7)

It is important to point out that due to the discrete nature of
the probabilistic neuron dynamics (Equation 4) together with the
approach τin � τrec, only discrete versions of the dynamics for
xi(t) and Ui(t) [see for instance (Tsodyks et al., 1998)] are needed
here, namely

xj(t + 1) = xj(t) + 1 − xj(t)

τrec
− Uj(t) · xj(t) · sj(t)

Uj(t + 1) = Uj(t) + [U − Uj(t)]
τfac

+ U · [1 − Uj(t)] · sj(t). (8)

Equations (4–8) completely define the dynamics of the network.
Note, that in the limit of τrec, fac → 0 the model reduces to the
standard Amari–Hopfield model with static synapses.

To numerically and analytically study the emergent behavior of
this attractor neural network with dynamical synapses, it is useful
to measure the degree of correlation between the current network
state s ≡ {si; i = 1, . . . , N} and each one of the stored patterns
ξμ by mean of the overlap function

mμ(s) = 1

N a(1 − a)

∑
i

(ξ
μ

i − a) si. (9)

Monte Carlo simulations of the network storing a small num-
ber of random patterns (loading parameter α ≡ P/N → 0),
each pattern having 50% active neurons (a = 0.5), no facilita-
tion (Uj(t) = 1) and an intermediate value of τrec is shown in
Figures 1A,B. It shows a new phase where dynamical memo-
ries characterized by quasi-periodic switching of the network
activity between pattern (ξμ) and anti-pattern (1 − ξμ) configu-
rations appear. For lower values of τrec the network reduces to the
attractor network with static synapses and shows the emergence
of the traditional ferromagnetic or associative memory phase at
relatively low T, where network activity reaches a steady state
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FIGURE 1 | Emergence of dynamic memories in attractor neural

networks. (A) Raster plots showing the switching behavior of the network
neural activity between one activity pattern and its anti-pattern for τrec = 26
and T = 0.025 (left) and for τrec = 50 and T = 0.025 (right), respectively.
(B) The behavior of the overlap function mμ(s) (thin red line), the mean
recovering variable xμ

+ of active neurons in the pattern (thick black line) and

the mean recovering variable xμ
− of not active neurons in the pattern (thick

gray line) are plotted for the two cases depicted in (A). (C) Raster plot that
shows the emergence of dynamic memories when 10 activity patterns are
stored in the synapses for τrec = 50. In all panels the firing threshold was
set to θi = 0, and the network size was N = 120 in (A) and (B) and
N = 100 in (C).

that is highly correlated with one of the stored patterns, and a
paramagnetic or no-memory phase at high T where the network
activity reaches a highly fluctuating disordered steady state.

The Figure 1C shows simulation results of a network with P =
10 patterns and a = 0.1, demonstrating that switching behavior
is also obtained for relatively large number of patterns and sparse
network activity. Figure 2B shows that the switching behavior is
not an artifact of the binary neuron dynamics and is also obtained
in a network of more realistic networks of spiking integrate-and-
fire neurons.

All time constants, such τrec or τfac are given in units of Monte
Carlo steps (MCS) a temporal unit that in actual systems can be
associated, for instance, with the duration of the refractory period
and therefore of order of 5 ms.

In the limit of N → ∞ (thermodynamic limit) and α → 0
(finite number of patterns) the emergent behavior of the model
can be analytically studied within a standard mean field approach
[see for details (Pantic et al., 2002; Torres et al., 2008)]. The
dynamics of the system then is described by a 6P-dimensional
discrete map

vt + 1 = F(vt) (10)

where F is a 6P-dimensional non-linear function of the order
parameters

vt ≡ {mμ
+(t), mμ

−(t), xμ
+(t), xμ

−(t), Uμ
+(t), Uμ

−(t);
μ = 1, . . . , P} (11)

that are averages of the microscopic dynamical variables over the
sites that are active and quiescent, respectively, in a given pattern
μ, that is

cμ
+(t) ≡ 1

N a

∑
i ∈ Act(μ)

ci(t),

cμ
−(t) ≡ 1

N(1 − a)

∑
i /∈ Act(μ)

ci(t), (12)

with ci(t) being mi(t), xi(t), and Ui(t), respectively.
Local stability analysis of the fixed point solutions of the

dynamics (Equation 10) shows that, similarly to the Amari–
Hopfield standard model and in agreement with Monte Carlo
simulations described above, the stored memories ξμ are stable
attractors in some regions of the space of relevant parameters,
such as T, U, τrec, and τfac. Varying these parameters, there are,
however, some critical values for which the memories destabilize
and an oscillatory regime, in which the network visits differ-
ent memories, can emerge. These critical values are depicted in
Figures 2A,C,D in the form of transition lines between phases or
dynamical behaviors in the system. For instance, for only depress-
ing synapses (τfac = 0, Uj(t) = 1), there is a critical monotonic
line τ∗

rec(T−1), as in a second order phase transition, separat-
ing the no-memory phase and the oscillatory phase (solid line in
Figure 2A) where oscillations start to appears with small ampli-
tude as in a supercritical Hopf bifurcation. Also there is a transi-
tion line τ∗∗

rec(T−1), also monotonic, between the oscillatory phase
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FIGURE 2 | (A) Phase diagram (τrec, β ≡ T−1) of an attractor binary neural
network with depressing synapses for α = 0. A new phase in which
dynamical memories appear—with the network activity switching
between the different memory attractors—emerges between the
traditional memory and no-memory phases that characterize the behavior
of attractors neural networks with static synapses. (B) The emergent
behavior depicted in (A) is robust when a more realistic attractor
network of IF neurons and more stored patterns are considered (5 in
this simulation). From top to bottom, the behavior of the network activity
for τrec = 0, 300, 800 and 3000 ms is depicted, respectively. For some
level of noise the network activity pass from the memory phase to the
dynamical phase and from this to the no-memory phase when τrec is
increased. (C) Phase diagram (T , τfac) for τrec = 3 and U = 0.1 of an

attractor binary neural network with short-term depression and facilitation
mechanisms in the synapses and α = 0. (D) Phase diagram (τrec, τfac) for
T = 0.1 and U = 0.1 in the same system than in (C). In both, (C,D), the
diagrams depict the appearance of the same memory, oscillatory and
no-memory phases than in the case of depressing synapses. The
transition lines between different phases, however, show here a clear
non-linear and non-monotonic dependence with relevant parameters
consequence of the non-trivial competition between depression and
facilitation mechanisms. This is very remarkable in (C) where for a given
level of noise, namely T = 0.22 (horizontal dotted line), the increase of
facilitation time constant τfac induces the transition of the activity of the
network from a no-memory state to a memory state, from this one to a
no-memory state again, and finally from this last to an oscillatory regime.

and the memory phase which occurs sharply as in a first order
phase transition (dashed line in Figure 2A). When facilitation is
included, the picture is more complex, although similar critical
and sharp transitions lines appear separating the same phases.
Now, however, the lines separating different phases are non-
monotonic and highly non-linear which shows the competition
between a priori opposite mechanisms, depressing and facilitat-
ing, as is depicted in Figures 2C,D. In fact, among other features,
synaptic depression induces fatigue at the synapses which destabi-
lizes the attractors, and synaptic facilitation allows a fast access to
the memory attractors and to stay there during a shorter period
of time (Torres et al., 2008). As in Figure 1, in all phase dia-
grams appearing in Figure 2, τrec and τfac are given in MCS units

(see above) with a value for that temporal unit of around the typ-
ical duration of the refractory period in actual neurons (∼5ms).

The attractor behavior of the recurrent neural network has
the important property to complete a memory based on par-
tial or noisy stimulus information. In this section we have seen
that memories that are stable with static synapses become meta-
stable with dynamical synapses, inducing a switching behavior
among memory patterns in the presence of noise. In this manner,
dynamic synapses provide the associative memory with a natu-
ral mechanism to dissociate from a memory in order to associate
with a new memory pattern. In contrast, with static synapses the
network would stay in the stable memory state forever, preventing
recall of new memories. Thus, dynamic synapses change stable
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memories into meta-stable memories for certain ranges of the
parameters.

3. STORAGE CAPACITY
It is important to analyze how short-term synaptic plasticity
affects the maximum number of patterns of neural activity the
system is able to store and efficiently recall, that is, the so called
maximum storage capacity. In a recent paper we have addressed
this important issue using a standard mean field approach in the
model described by Equations (3–8) when it stored P = αN activ-
ity random patterns with α > 0 and N → ∞, a = 1/2 and in
the absence of noise (T = 0). In fact, for very low temperature
(T � 1), redefining the overlaps as Mν ≡ mν − 1

N

∑
i(2ξν

i − 1)

≡ mν − Bν and assuming steady-state conditions in which there
is only one pattern (condensed pattern) with overlap M ≡ M1 ∼
O(1) and the remaining patters Mν ∼ O(1/

√
N), ν = 2, . . . , P,

it is straightforward (Hertz et al., 1991) to see that the steady state
of the system is described by the set of mean field equations

M = 1

N

∑
i

tanh

[
β

(
γ′

1 + γγ′ M + ζi

)]

q = 1

N

∑
i

tanh2
[
β

(
γ′

1 + γγ′ M + ζi

)]

r = q(
1 − β

γ′
1 + γγ′ (1 − q)

)2
(13)

where γ ≡ Uτrec, γ′ ≡ 1+τfac
1+Uτfac

, q ≡ 1
N

∑
i tanh2[2β(hi(t) − θi)]

is the spin-glass order parameter, r = 1
α

∑
ν �= 1(Mν)2 is the pat-

tern interference parameter and

ζi ≡
∑
ν �= 1

(2ξ1
i − 1)(2ξν

i − 1)

[
γ′

1 + γγ′ Mν +
(

1 − γ′

1 + γγ′

)
Bν

]
which in the limit of N → ∞ becomes a Gaussian variable

ζ ≈ γ′

1 + γγ′

(
αr + α

(
1 + γγ′ − γ′

γ′

)2
)1/2

z

where z is a random normal-distributed variable N[0, 1]—see
details in (Mejias and Torres, 2009). Then, the 1

N

∑
i appearing

in Equation (13) becomes an average over P(ζ). Using standard
techniques in the limit T = 0 (Hertz et al., 1991), the set of the
resulting three mean-field equations reduces to a single mean-
field equation which gives the maximum number of patterns that
the system is able to store and retrieve, namely (see mathematical
details in Mejias and Torres, 2009)

y

⎡⎣√2α

(
1 + γγ′ − γ′

γ′

)2

+ 2√
π

exp(−y2)

⎤⎦ = erf(y) (14)

where y ≡ M/

√(
2αr + 2α

(
1+γγ′−γ′

γ′
)2
)

with M being the over-

lap of the current state of the network activity with the pattern
that is being retrieved. The Equation (14) has a trivial solution
y = 0 (M = 0). Non-zero solutions (with non-zero overlap M)
exist for α less than some critical α, which defines the maximum
storage capacity of the system αc.

A complete study of the system by means of Monte Carlo
simulations (in a network with N = 3000 neurons) has demon-
strated the validity of this mean field result and is depicted
in Figure 3A. The figure shows the behavior of αc obtained
from Equation (14) (different solid lines), when some relevant
parameters of the synapse dynamics are varied, and it is com-
pared with the maximum storage capacity obtained from the
Monte Carlo simulations (different symbols). The most remark-
able feature is that in the absence of facilitation the storage
capacity decreases when the level of depression increases (that
is, large release probability U , or large recovering time τrec);
see black curves in the top and middle panels of Figure 3A.
This decrease is caused by the loss of stability of the mem-
ory fixed points of the network due to depression. Facilitation
(see dark and light gray curves) allows to recover the maxi-
mal storage capacity of static synapses, which is the well know
limit αc ≈ 0.14 (dotted horizontal line), in the presence of
some degree of synaptic depression. In general the competition
between synaptic depression and facilitation induces a com-
plex non-linear and non-monotonic behavior of αc for different
synaptic dynamics parameters as is shown in different panels
of Figure 3B. In general, large values of αc appear for moder-
ate values of U and τrec, and large values of τfac. These values
qualitatively agree with those described in facilitating synapses
in some cortical areas, where U is lower than in the case of
depressing synapses and τrec is several times lower than τfac

(Markram et al., 1998). Note that facilitation or depression never
increases the storage capacity of the network above the maximum
value αc ≈ 0.14.

4. CRITICALITY IN UP–DOWN TRANSITIONS
In a recent paper (Holcman and Tsodyks, 2006), the emer-
gent dynamic memories described in section 2 that result from
short-term plasticity have been related to the voltage transitions
observed in cortex between a high-activity state (the Up state) and
a low-activity state (the Down state). These transitions have been
observed in simultaneous individual single neuron recordings as
well as in local field measurements.

Using a simple but biologically plausible neuron and synapse
model similar to the models described in sections 1 and 2, we
have theoretically studied the conditions for the emergence of
this intriguing behavior, as well as their temporal features (Mejias
et al., 2010). The model consists of a simple stochastic bistable
rate model which mimics the average dynamics of a population of
interconnected excitatory neurons. The neural activity is summa-
rized by a single activity ν(t), whose dynamics follows a stochastic
mean field equation

τν
dν(t)

dt
= −ν(t) + νmS[ Jν(t)x(t) − θ] + ζ(t) (15)
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FIGURE 3 | Maximum storage capacity obtained in attractor neural

networks with dynamic synapses with both depressing and

facilitating mechanisms. (A) Behaviour of αc as a function of U, τrec

and τfac. The solid lines correspond the theoretical prediction from the
mean field Equation (14) and symbols are obtained from Monte Carlo
simulations. From top to bottom, it is shown αc(U) for τrec = 2 and
different values of τfac, αc(τrec) for U = 0.2 and different values of τfac

and αc(τfac) for U = 0.2 and different values of τrec, respectively. The

horizontal dotted lines correspond to the static synapses limit
αc ≈ 0.138. (B) Mean-field results from Equation (14) for the
dependence of αc for different combinations of relevant parameters.
This corresponds—from top to bottom—to the surfaces αc(U, τfac) for
τrec = 2, αc(U, τfac) for τrec = 50 and αc(τrec, τfac) for U = 0.02. In all
panels, τrec and τfac are given in MCS units that can be associated to
a value of 5 ms if one assumes that a MCS corresponds to the
duration of the refractory period in actual neurons.

where τν is the time constant for the neuron dynamics, νm is
the maximum synaptic input to the neuron population, J is the
(static) synaptic strength and θ is the neuron threshold. The func-
tion S[X] is a sigmoidal function which models the excitability of
neurons in the population.

The synaptic input from other neurons is modulated by a
short-term dynamic synaptic process x(t) which satisfies the
stochastic mean field equation

dx(t)

dt
= 1 − x(t)

τr
− U x(t)ν(t) + D

τr
ξ(t). (16)

The parameters τr , U and D are, respectively, the recovery time
constant for the stochastic short-term synaptic plasticity mech-
anism, a parameter related with the reliability of the synaptic
transmission (the average release probability in the population)

and the amplitude of this synaptic noise. The explanation of
each term appearing in the rhs of Equation (16) is the following:
the first term accounts for the slow recovery of neurotransmitter
resources, the second term represents a decrease of the available
neurotransmitter due to the level of activity in the population and
the third term is a noise term that accounts for all possible sources
of noise affecting transmission of information at the synapses of
the population and that remains at the mesoscopic level.

A complete analysis of this model, both theoretically and by
numerical simulations, shows the appearance of complex tran-
sitions between high (up) and low (down) neural activity states
driven by the synaptic noise x(t), with permanence times in the
up state distributed according to a power-law for some range of
the synaptic dynamic parameters. The main results of this study
are summarized in Figure 4. On Figure 4A, a typical time series
of the temporal behavior of the mean neural activity ν(t) of the
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FIGURE 4 | Criticality in up–down transitions. (A) Typical times series for the
neuron population rate variable ν(t) and the mean depression variable x(t) in
the neuron population when irregular up–down transitions emerge. Parameter
values were J = 1.2 V, τr = 1000 τν U = 0.6, D = 0, δ = 0.3, and νm = 5 · 10−3.

(B) Histogram of the same time series for ν(t) which presents bimodal features
corresponding to two different levels of activity. (C) Transitions from
exponential to power law behavior for the probability distribution for the
permanence time in the up or down state P(T ) when parameters D (left panel)

and τr (right panel) are varied. Model parameters were the same than in panel
(A) except that J = 1.1 V in the left panel and U = 0.04 and D/τr = 0.02/τν in
the right panel. (D) A variation of x(t) induces a change in the shape of the
potential function �—driving the dynamics of the rate variable ν(t)—which
causes transitions between the up and down states. Parameters were the
same than in panel (A) except that J = 1.1 V. (E) Complete phase diagram (D,

τr ), for the same set of parameters than in panel (D), where different phases
characterize different dynamics of ν(t), x(t) (see main text for the explanation).

system in the regime in which irregular up–down transitions occur
is depicted. In Figure 4B, the histogram of ν(t) for this time series
shows a clear bimodal shape corresponding to the two only pos-
sible states for ν(t). Figure 4C shows how the parameters τr and
D, that control the stochastic dynamics of x(t), also are relevant
for the appearance of power law distributions P(T) for the per-
manence time in the up or down state T. As is outlined in (Mejias
et al., 2010), the dynamics can be approximately described in an
adiabatic approximation, in which the neuron dynamics is sub-
ject to an effective potential �. Figure 4D shows how � changes
for different values of the mean synaptic depression x.

For relatively small x (orange and brown lines) all synapses in the
population have a strong degree of depression and the population
has a small level of activity, that is, the global minimum of the
potential function is the low-activity state (the down state). On the
other hand, when synapses are poorly depressed and x takes rela-
tively large values (dark and light green lines) the neuron activity
level is high and the potential function has its global minimum
in a high-activity state (up state). For intermediate values of x
(black line) the potential becomes bistable. Figure 4E shows the
complete phase diagram of the system and illustrates the regions
in the parameter space (D, τr) where different behaviors emerge.
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In the phase (P) no transition between a high-activity state and
low-activity state occurs. In phase (E) transitions between up and
down states are exponentially distributed. The phase (C) is char-
acterized by the emergence of power-law distributions P(T), and
therefore is the most intriguing phase since it could be associated
to a critical state. Finally, phase (S) is characterized by a highly
fluctuating behavior of both ν(t) and x(t). In fact, ν(t) is behaving
as a slave variable of x(t) and, therefore, it presents the dynamical
features of the dynamics (Equation 16), which has some similar-
ities with those of colored noise for U small. In fact for U = 0,
and making the change z(t) = x(t) − 1 the dynamics (Equation
16) transforms in that for an Ornstein–Uhlenbeck (OU) process
(van Kampen, 1990).

From these studies, we can conclude that the experimentally
observed large fluctuations in up and down permanence times
in the cortex can be explained as the result of sufficiently noisy
dynamical synapses (large D) with sufficiently large recovery
times (large τr). Static synapses (τr = 0) or dynamical synapses
in the absence of noise (D = 0) cannot account for this behavior,
and only exponential distributions for P(T) emerge in this case.

5. STOCHASTIC MULTIRESONANCE
In section 2 we mentioned that short-term synaptic plasticity
induces the appearance of dynamic memories as the consequence
of the destabilization of memory attractors due to synapse fatigue.
The synaptic fatigue in turn is due to strong neurotransmitter
vesicle depletion as the consequence of high frequency presynap-
tic activity and large neurotransmitter recovering times. Also, we
concluded that this fact induces a high sensitivity of the system
to respond to external stimuli, even if the stimulus is very weak
and in the presence of noise. The source of the noise can be due
to the neural dynamics as well as the synaptic transmission. It is
the combination of non-linear dynamics and noise that causes
the enhanced sensitivity to external stimuli. This general phe-
nomenon is the so called stochastic resonance (SR) (Benzi et al.,
1981; Longtin et al., 1991).

In a set of recent papers we have studied the emergence of SR in
feed-forward neural networks with dynamic synapses (Mejias and
Torres, 2011; Torres et al., 2011). We considered a post-synaptic
neuron which receives signals from a population of N presynap-
tic neurons through dynamic synapses modeled by Equations
(1, 2). Each one of these presynaptic neurons fires a train of
Poisson distributed APs with a given frequency fn. In addition
the postsynaptic neuron receives a weak signal S(t) which we can
assume sinusoidal. In addition, we assume a stationary regime,
where the dynamic synapses have reached their asymptotic values

u∞ = U+Uτfac fn
1+Uτfacfn

and x∞ = 1
1+u∞τrec fn

. If all presynaptic neurons

fire independently the total synaptic current is a noisy quantity
with mean ĪN and variance σ2

N given by

ĪN = NfnτinIp

σ2
N = 1

2
Nfnτin(Ip)

2
(17)

with Ip = A u∞x∞ and A the synaptic strength. To explore the
possibility of SR, we vary the firing frequency of the presynap-
tic population fn. The reason for this choice is that varying fn

changes the output variance σ2
N and fn can also be relatively easily

controlled in an experiment.
To quantify the amount of signal that is present in the out-

put rate we use the standard input–output cross-correlation or
power norm (Collins et al., 1995) during a time interval �t and
defined as:

C0 = 〈S(t)ν(t)〉 = 1

�t

∫ t+�t

t
S(t)ν(t)dt, (18)

where ν(t) is the firing rate of the post-synaptic neuron. The
behavior of C0 as a function of fn for static synapses is depicted in
Figure 5A which clearly shows a resonance peak at certain non-
zero input frequency fn. The output of the postsynaptic neuron
at the positions in the frequency domain labeled with “a,” “b,”
and “c” is illustrated in Figure 5B and compared with the weak
input signal. This shows how stochastic resonance emerges in this
system. For low firing frequency (case labeled with “a”) in the
presynaptic population the generated current is so small that the
postsynaptic neuron only has sub-threshold behavior weakly cor-
related with S(t). For very large fn (case labeled with “c”) both ĪN

and σ2
N are large and the postsynaptic neuron is firing all the time,

so it can not detect the temporal features of S(t). However, there
is an optimal value of fn at which the postsynaptic neuron fires
strongly correlated with S(t); in fact it fires several APs each time
a maximum in S(t) occurs (case labeled with “b”).

This behavior dramatically changes when dynamic synapses
are considered, as is depicted in Figures 5C,D. In fact, for
dynamic synapses there are two frequencies at which resonance
occurs. That is, short-term synaptic plasticity induces the appear-
ance of stochastic multi-resonances (SMR). Interestingly, the
position of the peaks is controlled by the parameters that control
the synapse dynamics. For instance, in Figure 5C it is shown how
for a fixed value of facilitation and increasing depression (increas-
ing τrec) the second resonance peak moves toward low values of fn
while the position of the first resonance peak remains unchanged.
On the other hand, for a given value of depression, the increase
of facilitation time constant τfac moves the first resonance peak
while the position of the second resonance peak is unaltered (see
Figure 5D). This clearly demonstrates that in actual neural sys-
tems synapses with different levels of depression and facilitation
can control the signal processing at different frequencies.

The appearance of SMR in neural media with dynamic
synapses is quite robust: SMR also appears when the post-synaptic
neuron is model with different types of spiking mechanisms, such
as the FitzHugh–Nagumo (FHN) model or the integrate and fire
model (IF) with an adaptive threshold dynamics (Mejias and
Torres, 2011). SMR also appears with more realistic stochastic
dynamic synapses and more realistic weak signals such as a train
of inputs with small amplitude and short durations distributed in
time according to a rate modulated Poisson process (Mejias and
Torres, 2011).

The physical mechanism behind the appearance of SMR is the
existence of a non-monotonic dependence of the synaptic cur-
rent fluctuations with fn—due to the dynamic synapses—together
with the existence of an adaptive threshold mechanism in the
postsynaptic neuron to the incoming synaptic current. In this
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FIGURE 5 | Appearance of stochastic multiresonances in feed forward

neural networks of spiking neurons with dynamic synapses. (A)

Behaviour of C0—defined in Equation (18)—as a function of fn for static
synapses showing the phenomenon of stochastic resonance. (B)

Temporal behavior for the response of the postsynaptic neuron at each
labeled position of the resonance curve in panel (A). (C) Resonance

curve for C0 when dynamic synapses are included. The most remarkable
feature is the appearance of a two-peak resonance in the frequency
domain, with the position of high frequency peak controlled by the
particular value of τrec. (D) The panel shows another interesting feature of
the two-peak resonance curve for C0, that is, the control of the position
of the low frequency peak by τfac.

way, the distance in voltage between the mean post-synaptic sub-
threshold voltage and the threshold for firing remains constant or
decreases very slowly for increasing presynaptic frequencies. This
implies the existence of two values of fn at which current fluctua-
tions are enough to induce firing in the post-synaptic neuron [see
Mejias and Torres (2011) for more details].

In light of these findings, we have reinterpreted recent SR
experimental data from psycho-physical experiments on human
blink reflex (Yasuda et al., 2008). In these experiments the neu-
rons responsible for the blink reflex receive inputs from neurons
in the auditory cortex, which are assumed to be uncorrelated due
to the action of some external source of white noise. The sub-
ject received in addition a weak signal in the form of a periodic
small air puff into the eyes. The authors measured the correlation
between the air puff signal and the blink reflex and their results
are plotted in Figure 6A (dark gray square error-bar symbols).
They used a feed-forward neural network with a postsynaptic
neuron with IF dynamics with fixed threshold to interpret their
findings (light-gray dashed line). With this model, only the high-
frequency correlation points can be fitted. Using instead a FHN
model or an IF with adaptive threshold dynamics, we were able

to fit all experimental data points (black solid line). The SMR is
also observed with more realistic rate-modulated weak Poisson
pulses (light-gray filled circles) instead of the sinusoidal input
(black solid line). Both model predictions are consistent with the
SMR that is observed in this experiments. In Figure 6B we sum-
marize the conditions that neurons and synapses must satisfy for
the emergence of SMR in a feed forward neural network.

6. RELATION WITH OTHER WORKS
The occurrence of non-fixed point behavior in recurrent neural
networks due to dynamic synapses has also been reported by oth-
ers (Senn et al., 1996; Tsodyks et al., 1998; Dror and Tsodyks,
2000). These studies differ from our work because one assumes
continuous deterministic neuron dynamics (instead of binary and
stochastic, as in our work). The oscillations observed in these net-
works do not have the rapid switching behavior as we observe
and seem unrelated to the metastability that we have found in our
work.

In addition, it has been reported that oscillations in the firing
rate can be chaotic (Senn et al., 1996; Dror and Tsodyks, 2000)
and present some intermittent behavior that resembles observed
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FIGURE 6 | (A) Appearance of stochastic multi-resonance in experiments in
the brain. Dark gray square symbols represent the values of C0 obtained in
the experiments performed in the human auditory cortex. Dashed light gray
line corresponds to best model prediction using a neuron with fixed
threshold (Yasuda et al., 2008). Solid black line correspond to our model
consisting of a FHN neuron and depressing synapses. Gray filled circle
symbols shows C0 when the weak signal is a train of (uncorrelated)
Poisson pulses instead of the sinusoidal input (solid line). (B) Schematic
overview showing the neuron and synapse mechanisms needed for the
appearance of stochastic multi-resonances in feed-forward neural
networks. (see (Torres et al., 2011) for more details).

patterns of EEG. The chaotic regime in these continuous models
seems unrelated to the existence of fixed point behavior and most
likely understood as a generic feature of non-linear dynamical
systems.

It is worth noting that for each neuron, the effect of dynamic
synapses is modeled through a single variable xi that multiplies
the synaptic strength wij for all synapses that connect to i. There
is one depression variable per neuron and not per connection. As
a result, one can obtain the same behavior of the network by inter-
preting xi as implementing a dynamic firing thresholds (Horn and
Usher, 1989) instead of a dynamic synapse.

The switching behavior that we described in this paper, is
somewhat similar to the neural network with chaotic neurons that
displays a self-organized chaotic transition between memories
(Tsuda et al., 1987; Tsuda, 1992).

The possible interpretation of the switching behavior as
up/down cortical transitions is controversial, because similar

cortical oscillations can be generated without synaptic dynam-
ics, where the up state is terminated because of hyperpolariz-
ing potassium ionic currents (Compte et al., 2003). However, a
very recent study has focused on the interplay between synap-
tic depression and these inhibitory currents and concludes that
synaptic depression is relevant for maintaining the up state
(Benita et al., 2012). The reason for that counterintuitive behavior
is that synaptic depression decreases the firing rate in the up state
which also decreases the effect of the hyper-polarizing potassium
currents and, as a consequence, the prolongation of the up state.

Related also is a recent study on the effect of dynamic synapses
on the emergence of a coherent periodic rhythm within the Up
state which results in the phenomenon of stochastic amplifica-
tion (Hidalgo et al., 2012). It has been shown that this rhythm
is an emergent or collective phenomenon given that individual
neurons in the up state are unlocked to such a rhythm.

The relation between dynamic synapses and storage capacity
has also been studied by others. For very sparse stored patterns
(a � 1) it has been shown that storage capacity decreases with
synaptic depression (Bibitchkov et al., 2002), in agreement with
our findings. On the other hand, it has been reported that the
basin of attraction of the memories are enlarged by synaptic
depression (Matsumoto et al., 2007) and these are even enlarged
more when synaptic facilitation is taken into account (Mejias and
Torres, 2009).

(Otsubo et al., 2011) reported a theoretical and numerical
study on the role of short-term depression on memory storage
capacity in the presence of noise, showing that noise reduces the
storage capacity (as is also the case for static synapses). (Mejias
et al., 2012) shows the important role of facilitation to enlarge the
regions for memory retrieval even in the presence of high noise.

In the last decade there has been some discussion whether
neural systems, or even the brain as a whole, can work in a criti-
cal state using the notion of self-organized criticality (Beggs and
Plenz, 2003; Tagliazucchi et al., 2012). As we stated in section 4,
the combination of colored synaptic noise and short-term depres-
sion can cause power-low distributed permanence times in the Up
and Down states, which is a signature of criticality. The emergence
of critical phenomena as a consequence of dynamic synapses has
also been explored by others (Levina et al., 2007, 2009; Bonachela
et al., 2010; Millman et al., 2010).

Finally, it is worth mentioning a recent work that has inves-
tigated the formation of spatio-temporal structures in an exci-
tatory neural network with depressing synapses (Kilpatrick and
Bressloff, 2010). As a result of dynamic synapses, robust complex
spatio-temporal structures, including different types of travelling
waves, appear in such a system.

7. CONCLUSIONS
It is well-known that during transmission of information,
synapses show a high variability with a diverse origin, such as the
stochastic release and transmission of neurotransmitter vesicles,
variations in the Glutamate concentration through synapses and
the spatial heterogeneity of the synaptic response in the dendrite
tree (Franks et al., 2003). The cooperative effect of all these mech-
anisms is a noisy post-synaptic response which depends on past
pre-synaptic activity. The strength of the postsynaptic response
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can decrease or increase and can be modeled as dynamical
synapses.

In a large number of papers, we have studied the effect of
dynamical synapses in recurrent an feed-forward networks, the
result of which we have summarized in this paper. The main
findings are the following:

Dynamic memories: Classical neural networks of the Hopfield
type, with symmetric connectivity, display attractor dynam-
ics. This means that these networks act as memories. A
specific set of memories can be stored as attractors by
Hebbian learning. The attractors are asymptotically stable
states. The effect of synaptic depression in these networks
is to make the attractors lose stability. Oscillatory modes
appear where the network rapidly switches between memo-
ries. Instead, the permanence time to stay in a memory can
have any positive value and becomes infinite in the regime
where memories are stable. Thus, the recurrent network
with dynamical synapses implements a form of dynamical
memory.

Input sensitivity: The classical Hopfield network is relatively
insensitive to external stimuli, once it has converged into
one of its stable memories. Synaptic depression improves the
sensitivity to external stimuli, because it destabilizes the mem-
ories. In addition, synaptic facilitation further improves the
sensitivity of the attractor network to external stimuli.

Storage capacity: The storage capacity of the attractor neu-
ral network, i.e., the maximum number of memories that
can be stored in a network, is proportional to the num-
ber of neurons N and scales as Pmax = αN with α = 0.138.
Synaptic depression causes a decrease of the maximum
storage capacity but facilitation allows to recover the
capacity of the network with static synapses under some
conditions.

Up and down states: The emergence of dynamic memories has
been related to the well-known up–down transitions observed
in local-field recording in the cortex. We demonstrated that the
observed distributions of permanence times can be explained
by a stochastic synaptic dynamics. Scale free permanence

time distributions could signal a critical state in the
brain.

Stochastic multiresonance: Whereas static synapses in a stochas-
tic network give rise to a single stochastic resonance peak,
dynamical synapses produce a double resonance. This phe-
nomenon is robust for different types of neurons and input
signals. Thus, dynamic synapses may explain recently observed
SMR in psychophysical experiments. SMR also seems to occur
in recurrent neural networks with dynamic synapses as it has
been recently reported (Pinamonti et al., 2012). This work
demonstrates the relevant role of short-term synaptic plastic-
ity for the appearance of the SMR phenomenon in recurrent
networks, although the exact underlying mechanism behind
it is slightly different than in the case described here, namely
feed-forward neural networks.

It is important to point out that although the phenomenology
reported in this review has been obtained using different mod-
els, all the reported phenomena can be also derived in a single
model consisting in a network of binary neurons with dynamic
synapses as described in section 1. The phenomena reported in
sections 2 and 3 have in fact been obtained using this model
and the phenomenon of stochastic multiresonance (section 5) has
been reported recently in such a model by Pinamonti et al. (2012).
The results on critical up and down states that are reported in
section 4 have been obtained in a mean-field model that can be
derived from the same binary model and by assuming in addition
sparse neural activity and sparse connectivity, which increases
the stochasticity in the synaptic transmission through the whole
network.

In addition, our studies show that the reported phenomena
are robust to detailed changes in the model, such as replacing the
binary neurons by graded response neurone or integrate-and-fire
neurone.
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The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential
(AP) at cortical synapses is known to be a stochastic process, as is the availability of
vesicles for release. These processes are known to also depend on the recent history
of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle
release. Mathematical models of such synaptic dynamics frequently are based only on the
mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are
sufficiently many vesicle sites, then variance is small. However, it has been shown recently
that variance across sites can be significant for neuron and network dynamics, and this
suggests the potential importance of studying short-term plasticity using simulations that
do generate trial-to-trial variability. Therefore, in this paper we study several well-known
conceptual models for stochastic availability and release. We state explicitly the random
variables that these models describe and propose efficient algorithms for accurately
implementing stochastic simulations of these random variables in software or hardware.
Our results are complemented by mathematical analysis and statement of pseudo-code
algorithms.

Keywords: short term synaptic dynamics, short term depression, facilitation, stochastic simulation, stochastic

synapse, vesicle site model, synaptic plasticity models, short term plasticity

1. INTRODUCTION
The release of vesicles following arrival of a pre-synaptic action
potential (AP) at a synapse is inherently probabilistic (Vere-Jones,
1966; Melkonian and Kostopoulos, 1996; Branco and Staras,
2009). The amount of neurotransmitter released by each AP can
also vary stochastically over time, in a manner dependent on the
timing of previously arriving APs (Dobrunz and Stevens, 1997).
These effects result in what is called short-term synaptic plastic-
ity (Zucker and Regehr, 2002; Klug et al., 2012; Regehr, 2012). It
has been suggested that the short term dynamics such plasticity
introduces may play an important role in information processing
in the cortex (Abbott and Regehr, 2004; Branco and Staras, 2009).
This has been demonstrated in studies of the influence of short-
term plasticity on: gain control (Abbott et al., 1997); coding and
detection mechanisms (Tsodyks and Markram, 1997; Maass and
Zador, 1999); filtering effects (Matveev and Wang, 2000a; Merkel
and Lindner, 2010; Rosenbaum et al., 2012); redundancy reduc-
tion (Goldman et al., 2002); information transmission (Goldman,
2004); membrane potential estimation (Pfister et al., 2010);
attractor networks (Fung et al., 2012); and correlations in neural
activity (Rosenbaum et al., 2013).

Popular mathematical models of short term synaptic plas-
ticity effects, such as depression and facilitation, typically are
expressed in term of differential equations that describe how the
mean number of available and/or released vesicles changes with
time in response to pre-synaptic spiking (Tsodyks and Markram,
1997; Tsodyks et al., 1998). The mean is an ensemble-average

over multiple repeats of the same pre-synaptic spike train, and
is often the focus of study because if the number of vesicles in the
model is large, the variance across trials is small and assumed to
be negligible in its impact. The consequence of this assumption
is that simulations of this type of model of short term plasticity
provides deterministic outcomes, in the sense that they do not
produce varying outcomes if repeated trials with identical initial
conditions are simulated.

However, variability in the number of vesicles avail-
able/released has also been studied mathematically (Vere-Jones,
1966), as has the covariance in the response to consecutive pre-
synaptic APs (Quastel, 1997). Recently, it has been shown math-
ematically that explicit inclusion of the variance in models of
short-term plasticity leads to significant differences in terms of
frequency-dependent information transmission, in comparison
with models that study only the mean (Rosenbaum et al., 2012).
This mathematical finding that variance can be influential is
consistent with previous simulation results (discussed in follow-
ing paragraphs) that found that the mean-model underestimates
post-synaptic firing rate (de la Rocha and Parga, 2005).

As well as mathematical analysis, the conceptual models of
stochastic vesicle availability and release that these models are
based on can also be studied by implementing stochastic simula-
tions. We use the term “stochastic simulation” to mean a software
(or, potentially, hardware) implementation that explicitly gener-
ates random or pseudo-random numbers for the purposes of sim-
ulating outcomes of a model’s random variables (Gillesple, 1977).
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By doing this, repeated runs with identical initial conditions and
identical external input to the model results in randomly varying
outcomes, i.e., trial-to-trial variability. Such simulations have, for
example, been used to study ion-channel noise and its impact on
AP generation (Faisal and Laughlin, 2007).

Although the mean model described above has been used fre-
quently, results based on stochastic simulations of short term
plasticity models have also been described previously (Melkonian
and Kostopoulos, 1996; Quastel, 1997; Matveev and Wang,
2000b,a; Fuhrmann et al., 2002; de la Rocha and Parga, 2005;
Loebel et al., 2009; Rosenbaum et al., 2012, 2013; Scott et al., 2012;
Reich and Rosenbaum, 2013) and comparisons between simula-
tions of the deterministic and stochastic models have been shown
to give rise to different outcomes in neural activity (de la Rocha
and Parga, 2005; Rosenbaum et al., 2012; Scott et al., 2012).

In general, it may be important to implement stochastic simu-
lations for synaptic connections where only a very small number
of vesicles are available for release, which is often the case (Branco
and Staras, 2009). In this case the mean model might be very
inaccurate in scenarios where ensemble averaging across mul-
tiple repeated trials is not possible, such as in large network
simulations.

As noted above, previous work has published results from
stochastic simulations as a complement to mathematical analysis.
However, as far as we are aware, the implementation details have
not been discussed at a level of detail that will enable researchers
whose primary expertise and experience is not in implementing
stochastic simulations, or who have little mathematical training,
to introduce trial-to-trial variation in simulations.

The primary aim of this paper is, therefore, to articulate pre-
cisely how to efficiently implement stochastic simulations that
accurately reflect several of the most well-known conceptual
models of vesicle availability and release processes. In our discus-
sion, and associated pseudo-code algorithms, we assume that the
algorithms would be applied under conditions where the number
of vesicles available may be small, and that therefore stochas-
tic simulation of all random variables in the conceptual models
may be important. We also aim to present mathematical descrip-
tions of key random variables that must be simulated in stochastic
models, as well as relating these descriptions to existing equations
describing mean numbers of vesicles. A secondary aim is to show
how existing algorithms may be made more efficient and general.

As well as the usual models of release dependent depression
and facilitation, the content of this paper is equally applicable
to the case of release-independent depression and associated fre-
quency dependent recovery (Fuhrmann et al., 2004; Scott et al.,
2012; Mohan et al., 2013).

The paper is organized as follows. In section 2, we review con-
ceptual models that we will use in this paper and in section 3
we mathematically introduce notation to describe the random
variables implied by each conceptual model. Next, section 4 con-
tains descriptions of correct and incorrect implementations of
stochastic simulations of the conceptual models, and relates these
to the random variables we described. Section 5 describes exam-
ple simulation results, and shows that incorrect implementations
can significantly miscalculate the number of vesicles that should
be released in response to sequences of pre-synaptic AP arrivals.

Finally, the conclusions drawn from our paper are summarized in
section 6.

2. CONCEPTUAL MODELS OF SHORT TERM PLASTICITY
The first step in computational modeling is to state a con-
ceptual model; once stated, a primary goal of computational
modeling is to faithfully implement simulations of the con-
ceptual model (Carnevale and Hines, 2005). We therefore first
clearly articulate conceptual stochastic models in this section, and
discuss algorithms for faithfully implementing stochastic simula-
tions of them in the following sections. Other conceptual models
exist, but the ones we consider serve to illustrate important
principles that should be reflected in stochastic simulations.

2.1. AVAILABILITY OF A SINGLE VESICLE FOLLOWING RELASE
In this paper we consider two conceptual “release-site” mod-
els (Sterratt et al., 2011) for short term synaptic depression, due
to stochastic unavailability of a vesicle:

• Availability Model 1: In this model it is assumed that once a
specific vesicle is released, the time at which it is next available
for release is a random variable that depends only on the time
since it was released. This random variable is not affected by
subsequent pre-synaptic spikes.

• Availability Model 2: Like Availability Model 1, it is also
assumed that after the vesicle is released, the time that passes
before it is next available for release is a random variable.
However, now if a pre-synaptic spike arrives before the vesicle
becomes available, the time before the unavailable vesicle then
becomes available is recalculated in a manner dependent only
on the time of the latest pre-synaptic spike.

Note that these models treat a single vesicle as if it is a conserved
object that switches between two states. Of course in reality the
vesicle is not conserved, and a more accurate description is to say
that a vesicle release site that can contain at most a single vesicle
either (1) does contain a vesicle, or (2) does not contain one.

Below we show that Availability Model 1 and Availability
Model 2 are mathematically equivalent, given an assumption that
the random variable describing availability times is exponential.
This is a standard assumption, because it provides good fits to
experimental data, and therefore underpins models developed in
conjunction with experimental data on short term depression (for
example, Tsodyks and Markram, 1997). However, it is feasible
that better fits to data might discard the exponential assumption,
and in that case it would be necessary to consider how stochastic
simulations need to differ for each model. As we show below for
a non-exponential example (Figure 6), the two models provide
significantly different outcomes.

2.2. RELEASE OF A SINGLE VESICLE UPON ARRIVAL OF A
PRE-SYNAPTIC SPIKE

In this paper we consider two conceptual models for the stochastic
release of a single vesicle upon arrival of a pre-synaptic spike:

• Release Model 1: In this model it is assumed that if the single
vesicle is available, then it is released with a constant probability

Frontiers in Computational Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 58 | 29

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


McDonnell et al. Stochastic simulations of short-term plasticity

upon arrival of a pre-synaptic spike, and this probability does
not change over time.

• Release Model 2: In this model it is assumed that if
the single vesicle is available, then it is released upon
arrival of a pre-synaptic spike with a certain time-varying
probability.

Release Model 1 is a classical model of probabilistic release (Vere-
Jones, 1966). Release Model 2 is appropriate when a synapse is
known to exhibit facilitation. Usually, based on experimental evi-
dence (see, for example, Markram et al., 1998), the change in
release probability (given availability) over time is modeled as
increasing by a percentage of the current probability of non-
release, whenever a pre-synaptic spike arrives (usually indepen-
dently of whether a vesicle is available or released) and then
decaying exponentially over time to a constant rest probability,
for as long as no more pre-synaptic APs arrive (Tsodyks et al.,
1998).

Release Model 2 is also appropriate when a synapse is known
to exhibit a different form of short term depression to that
modeled by the lack of vesicle availability. In this type of depres-
sion, known as “release-independent depression,” the probability
of vesicle release (given its availability) is reduced by arriv-
ing pre-synaptic spikes independently of whether the vesicle is
released, due to different mechanisms from those that cause
facilitation (Fuhrmann et al., 2004). In some models, facili-
tation and release-independent depression are assumed to be
present simultaneously (Graham and Stricker, 2008; Scott et al.,
2012).

2.3. COMBINING AVAILABILITY AND RELEASE
A single vesicle obviously cannot be released if it is not available,
but it is assumed that an available vesicle remains available until
released. This is the key feature of the conceptual models we study
where both availability and release are modeled as stochastic.

2.4. AVAILABILITY AND RELEASE FOR A POOL OF N VESICLES
In this paper, when we consider a conceptual model where there is
a pool consisting of at most N vesicle release sites, each containing
at most a single vesicle, we use the typical assumption that the
release and availability of each single vesicle occurs independently
of that in the other vesicle release sites. Note that although this
model is typical, it may not always be accurate (Quastel, 1997).

2.5. MULTIPLE TRIALS OF AVAILABILITY AND RELEASE
In this paper, when we consider a conceptual model where there
are N repeated trials for the same sequence of pre-synaptic
APs, and a single vesicle in a single release site, we assume that
the availability or release of the vesicle is independent for each
trial.

Note that the outcome for a model where there are N such
repeated trials is equivalent mathematically to a conceptual model
where there is a pool of N vesicle release sites with at most a single
vesicle available, for a single trial of the sequence of APs.

Since an experimental protocol is more amenable to studying
repeated trials for a single release site and the same sequence of
APs, we will refer to the case of N trials rather than N release sites.

2.6. VESICLE RELEASE SITES CONTAINING MULTIPLE VESICLES
The content of this paper regarding stochastic simulations can
be extended to a scenario where multiple vesicles are available
in a release site, and also where multiple such sites are available,
potentially each with different numbers of vesicles. However, we
do not discuss this further, as the most important observations
are relevant to sites containing single vesicles. Further discussion
of evidence for multiple release sites can be found in Loebel et al.
(2009).

3. RANDOM VARIABLES IMPLIED BY STOCHASTIC
CONCEPTUAL MODELS

The purpose of this section is to explicitly describe all ran-
dom variables inherent in the conceptual models we study, since
correct stochastic simulations of the models relies on correct
simulation of outcomes from these random variables.

3.1. AVAILABILITY MODELS
There is a specific random variable that exists in both conceptual
availability models: the time taken for vesicle to become available
following a successful release at time t = ts. We label this random
variable as Ta1 for Availability Model 1, and as Ta2 Availability
Model 2.

3.1.1. Availability model 1
In standard existing models, the random variable describing
the time until a release site contains an available vesicle, fol-
lowing release of its vesicle, is exponentially distributed with
a known mean, τa. In this section we generalize to arbitrary
positive and continuously valued distributions for the availabil-
ity time. We write the probability density function describing
the random variable Ta1 as fTa1 (Ta1 = x), and its cumulative
distribution function [describing Prob(Ta1 ≤ y)] as FTa1(y). We
introduce Pa,1(t|ts) to describe the probability of availability at
time t, given that the most recent successful release was at time ts.
We can write

Pa,1(t|ts) = FTa1(t − ts), t ≥ ts. (1)

Below, we note how this probability describes a distribution of
the potential times, immediately following a successful release at
t = ts, at which the released vesicle will next become available.
However, it is crucial to note that for a stochastic simulation
to be faithful to Availability Model 1, the released vesicle must
always be in one of two states (available or not available) and that
once it switches from not-available to available, it must stay avail-
able, until released again. Ignoring this fact can lead to incorrect
implementations of the conceptual model.

We now derive an expression for a conditional probability that
is potentially useful in some stochastic simulation implementa-
tions. Suppose a vesicle was released at the i–th AP. We introduce
notation for the time interval between APs, i and j as θi,j = tAP,j −
tAP,i > 0, where j may be any AP after the i–th one. The probabil-
ity that the vesicle becomes available by the j-th AP is Prob(Ta1 ≤
θi,j) = FTa1(θi,j), j = i + 1, i + 2, . . . . However, we also are inter-
ested in Prob(Ta1 ≤ θi,j|Ta1 > θi,j−1) j = i + 2, i + 3, . . . , which
is the probability that the vesicle does not become available before
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the j − 1–th AP, but does becomes available before the j–th AP. By
Bayes’ rule, this probability can be written as

Prob(Ta1 ≤ θi,j|Ta1 > θi,j − 1) = Prob(Ta1 ∈ [θi,j − 1, θi,j])
Prob(Ta1 > θi,j − 1)

= FTa1(θi,j) − FTa1(θi,j − 1)

1 − FTa1(θi,j − 1)
(2)

Special Case: For the case where FTa1(y) = 1 − exp (−y/τa),
i.e., Ta1 is exponentially distributed with mean equal to τa, it
is simple to derive Prob(Ta1 ≤ θi,j|Ta1 > θi,j−1) = FTa1 (tAP,j −
tAP,j−1). So, in this special case, the probability of a vesicle becom-
ing available after the j–th spike, given it wasn’t available at the
time of the j − 1–th spike, is independent of the time at which
the vesicle actually became unavailable in the first place. This
observation is actually a well known property of Poisson point
processes: events in every increment of time are independent of
the past history of the process. These processes have exponen-
tially distributed inter-event distributions, as we assumed in this
discussion.

3.1.2. Availability model 2
A direct translation of this conceptual model implies that a ran-
dom variable must be evaluated for every pre-synaptic AP that
arrives while a vesicle remains unavailable. We write the time
of the k–th pre-synaptic AP after the most recent release as
tAP,k, where k = 0, 1, 2, . . . , K, tAP,0 = ts is the time at which
the vesicle was previously released, and K is the number of AP
arrivals before the vesicle actually becomes available. We write the
random variable evaluated at the k–th AP as Ta2,k.

Under Availability Model 2, we can write that if the vesicle
did not become available by the k–th AP, then the conditional
probability that a vesicle is available by time t is

Pa,2(t|t > tAP,k) = Prob(tAP,k + Ta2,k ≤ t)

= FTa2(t − tAP,k), t ∈ (tAP,k, tAP,k+1], (3)

where it is assumed that each Ta2,k is drawn independently
from the same distribution with cumulative distribution function
FTa2(y).

For this model, the probability of availability by time t, given
only the most recent release time, ts is given by

Pa,2(t|ts) = 1 − (1 − FTa2(t − tAP,K ))

K−1∏
k = 0

×

(1 − FTa2(tAP,k + 1 − tAP,k)), (4)

which clearly in general is different from Pa,1(t|ts) for Availability
Model 1.

This direct translation of the conceptual model to obtain
Pa,2(t|t > tAP,k) suggests a stochastic simulation implementation
where a new random number is drawn for an unavailable vesicle,
upon every AP arrival. However, if we can derive the cumulative
distribution function of the total time to availability under this

release model, Ta2, a stochastic simulation that only draws a sin-
gle random number upon every vesicle release is feasible. Such
a random variable would have to produce Pa,2(t|ts) according
to the above expression, and in general such a random variable
is not readily obtainable. The following describes a special case
where it is.
Special case: For an exponential distribution of Ta we can easily
derive from Equation (4) that

Pa,2(t|ts) = 1 − exp (−(t − ts)/τa), t ≥ ts. (5)

Consequently, by inspection of Equation (1), Availability Model
1 is equivalent to Availability Model 2, for exponential avail-
ability times. This equivalence can also be seen by considering
Equation (2).

There are, of course, other possible models for the distribution
of the release time, such as a Rayleigh or lognormal model, and
it is feasible that such models may be a better fit to data than the
assumed exponential model. For example, more complex models
exist that describe the biophysics of vesicle generation, and how
release probability depends on calcium concentration (Meddis,
1986; Sumner et al., 2002; McDonnell et al., 2008). Discussing
the accuracy of simplifying such models to the phenomeno-
logical model used here is beyond the scope of this paper. In
general, however, any non-exponentially distributed Ta will not
lead to equivalence between Availability Model 1 and Availability
Model 2.

3.2. RELEASE MODELS
There is a specific random variable that exists in both conceptual
release models: the event that a vesicle is released, or not released,
upon arrival of the i–th pre-synaptic AP at time t = tAP,i. We label
this random variable as R(tAP,i). This random variable is binary, it
exists only at each AP time, it depends on the last time at which a
vesicle was released, ts, and we denote its outcomes as α if a vesicle
is released and as β if it is not. We denote the probability that the
event α occurs at time t, given the vesicle is available, as Pr|a(t).
The random variable has a probability mass function, and this is
given for Availability Model 1 by

Prob(R(tAP,i) = α|ts) = Pr|a(tAP,i)FTa(tAP,i − ts);
Prob(R(tAP,i) = β|ts) = 1 − Pr|a(tAP,i)FTa(tAP,i − ts), (6)

where tAP,i > ts, and for Availability Model 2 by

Prob(R(tAP,i) = α|ts) = Pr|a(tAP,i)Pa,2(tAP,i|ts);
Prob(R(tAP,i) = β|ts) = 1 − Pr|a(tAP,i)Pa,2(tAP,i|ts). (7)

Note that in Release Model 1, Pr|a has no time dependence
[i.e., Pr|a(tAP,i) = Pr|a], but this is the only difference in com-
parison with Release Model 2 (see Equation 1). Consequently,
provided the release probability has been calculated correctly at
each point in time during a simulation, there are no other differ-
ences in a stochastic simulation implementation in comparison
with Release Model 2.
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3.3. COMBINING AVAILABILITY AND RELEASE
A relevant binary-valued stochastic process can be stated based
on the random variables described above, namely, the process
describing whether a vesicle is available at any point in time. A
succinct description of this process is given in Loebel et al. (2009,
Equation 4), where it is expressed in terms of a differential equa-
tion. Following the notation used in that description, we label
the stochastic process as σ(t), and let σ(t) = 1 when the vesicle is
available and let σ(t) = 0 otherwise. The process is fully described
by the following equation:

dσ(t)

dt
= −σ(t−)R(t)δ(t − tAP,i)

+ (1 − σ(t−))δ(t − tAP,i − Ta), (8)

where the notation − in t− is used as shorthand to represent t− =
t − ε, where ε is a very short time period; thus when t = tAP,i

then t− is the time instant immediately prior to AP i arriving. We
have assigned α = 1 and β = 0 as the possible values of the ran-
dom variable R(t). During intervals of time for which σ(t) = 0,
the right hand side of Equation (8) is just δ(t − tAP,i − Ta), and
mathematically, the remaining terms in Equation (8) describe the
fact that σ(t) can jump from 0 to 1 only at the time t = tAP,i + Ta.
Similarly, Equation (8) is such that σ(t) can jump from 1 to
0 only when both R(t) = α = 1 and t = tAP,i, or equivalently,
R(tAP,i) = 1, which means a vesicle is released when AP i arrives.

Note that in Loebel et al. (2009), the event where σ(t) jumps
from 0 to 1 is stated to be modeled as a Poisson process. A Poisson
process has exponentially distributed times between events, and
therefore the conceptual model in Loebel et al. (2009) is in this
sense the same as our Availability Model 1 with exponentially
distributed Ta1, with mean τa. However, for an actual Poisson
process, events will continue to occur for all time, not just when
vesicles are currently unavailable, which is at odds with our stated
conceptual model. Nevertheless, it can be inferred that in Loebel
et al. (2009) that Poisson events are ignored when σ(t) = 1.

Does this mean that the distribution of times until a vesicle
becomes available is different in each conceptual model, since in
the Poisson process, the exponential time to arrival begins at the
time of the previous Poisson event, whereas in Availability Model
1 begins at the most recent release time? The answer is no, due to
the independence of events in Poisson processes (the same reason
that Availability Models 1 and 2 are equivalent for exponentially
distributed availability times). Therefore, there will be no differ-
ence when a stochastic simulation implementation of the Loebel
et al. (2009) conceptual model is carried out, compared with an
implementation of our Availability Model 1 with exponentially
distributed arrival times. However, if the arrival times are not
exponential, and the corresponding non-Poisson process replaces
the Poisson process in the Loebel et al. (2009) conceptual model,
the results will not be the same.

3.4. DETERMINISTIC MEAN MODELS FOR AVAILABILITY MODELS 1
AND 2

Differential equation notation is often used to express how the
mean fraction of available vesicles, Na(t), changes over time
in two ways: either upon a spike arrival, or between spike
arrivals (Tsodyks and Markram, 1997; Fuhrmann et al., 2002;

Scott et al., 2012). The typical form of such expressions is

dNa(t)

dt
= 1 − Na(t)

τa
− Nr|aNa(t−)

K∑
i = 1

δ(t − tAP,i),

where tAP,i is the arrival time of the i–th AP, out of a total of K,
and Nr|a is the mean fraction of available vesicles released by the
i–th AP. This differential equation can be easily solved in closed
form (e.g., Tsodyks and Markram, 1997) to get

Na(t) = 1, t < tAP,1,

Na(tAP,i) = (1 − Nr|a)Na(t−AP,i), t = tAP,i,

Na(t) = 1 − (1 − Na(tAP,i)) t ∈ [tAP,i, tAP,i + 1), (9)

exp
(−(t − tAP,i)/τa

)
where i = 1, . . . , K.

Note that the change over time in the fraction of trials in which
the vesicle is available clearly has a dependence on both (1) the
time since the most recent pre-synaptic AP and (2) on the fraction
of vesicles available at the time of the most-recent pre-synaptic
AP. Consequently, the deterministic mean model should be inter-
preted as explicitly solving for the conditional mean number of
vesicles released at each AP arrival, given the number that are
available for release.

Remark 1: It is clear that the mean model accurately reflects
Availability Model 2 generally, and in the specific case stated
above, assumes exponential availability times following each AP
arrival. Moreover, we have discussed that Availability Models 1
and 2 are equivalent for exponentially distributed availability
times, and hence the stated mean model also accurately reflects
Availability Model 1 for this specific case.

Remark 2: The deterministic mean model does not, however,
accurately reflect Availability Model 1 for non-exponentially dis-
tributed availability times, since under Availability Model 1, the
fraction of trials in which a vesicle should be released, given
that it is available, should be based on the trial-dependent time
since a vesicle was released, not solely on the time since the most
recent AP. Therefore, the right hand side of a differential equation
describing the mean number of trials in which a vesicle is avail-
able should have an additional term for each AP that occurs prior
to the current AP. Moreover, if each additional term describes the
mean number of trials in which vesicles have not become available
since the i–th AP, the results will potentially become increasingly
inaccurate with the time elapsed since the i–th AP.

One possibly useful element in any extension of mathemat-
ical analysis to this case of multiple trials might be an iterative
expression articulated in a different context by McDonnell et al.
(2002, 2008), that can be adapted to describe the conditional
probability that u vesicles are available across Z trials, even if the
time they were released differs. This approach does not suggest
a straightforward method for implementing a stochastic simula-
tion, but as described by McDonnell et al. (2002, 2008), there are
simple expressions for the conditional mean and variance, and
these could potentially be used within a deterministic equation
that describes how the mean number of trials in which a vesicle is
available changes with time.
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In section 5, we compare the results of stochastic simulations
with results for the mean obtained from Equation (9). We also use
a result for a scenario where pre-synaptic APs arrive at the synapse
periodically with frequency f Hz so that the AP times are tAP,i =
i/f , i = 1, 2, . . .. In this case, it is well known that the mean
fraction of vesicles available quickly decays to a constant steady
state value, N−

ss := Na(t−AP,i+1) = Na(t−AP,i). As shown in (Abbott
et al., 1997; Matveev and Wang, 2000b), this can be obtained from
Equation (9) (which hold for Availability Model 2 generally, and
for Availability Model 1 with exponentially distributed availabil-
ity times) to get the mean fraction of vesicles available for release
just prior to a pre-synaptic spike as

N−
ss = (1 − exp

(−1/(f τa)
)
)

1 − exp
(−1/(f τa)

)
(1 − Nr|a)

. (10)

4. CORRECT AND INCORRECT STOCHASTIC SIMULATIONS,
IN RESPONSE TO PRE-SYNAPTIC SPIKE TRAINS

We consider how a synaptic vesicle release site, containing at most
a single vesicle, responds over time (t ≥ 0), to a sequence of K
arriving pre-synaptic APs. A stochastic simulation implementa-
tion that is faithful to the conceptual models is one that accurately
produces vesicle releases that reflect the probabilities stated in
Equation (6) or in (7).

In order to carry this out, it is necessary at every time step of
the simulation to have a determined state of the availability of the
vesicle. In other words, the vesicle is either available or not avail-
able. It switches from available to not available in the event that
it is released, and it switches from not-available to available once,
and only once, in the time following its last release. Therefore,
once the vesicle becomes available according to the stochastic sim-
ulation, after a time T since the previous release, the probability
of availability that must be used within the simulation is given by

Pa,f(t|ts) = 1, t ≥ T

0, t < T. (11)

This holds for both Availability Model 1 and Availability Model 2.
There are a number of parameter values that are required to be

set in order to simulate a stochastic synapse model, as introduced
above. These are summarized in Table 1.

In implementations of stochastic simulations it is neces-
sary to generate random numbers from particular probability
distributions. If a uniform random number generator is available,
then its output, U ∈ (0, 1), represents a number drawn from

Table 1 | List of parameter notation for single-vesicle release models.

Parameter name Notation

Time-dependent probability of release,

given vesicle is available Pr|a(t)
Mean time to restore a released vesicle τa

Simulation duration T

Number of pre-synaptic spikes K

Time of arrival of each pre-synaptic

action potential (AP) tAP,i ∈ [0, T ], i = 1, 2, . . . , K

a continuous probability distribution. Random numbers from
many other distributions can be generated from uniform ran-
dom numbers. For example, exponentially distributed random
numbers can be obtained by the operation Ta = −τa ln (U).

In the pseudo-code below, we assume exponentially dis-
tributed availability times as our example, but if other distribu-
tions for this random variable are desirable, then the only change
required is to generate random numbers from that distribution
instead.

4.1. SINGLE VESICLE AVAILABILITY AND RELEASE: AVAILABILITY
MODEL 1

The following pseudo-code illustrates how simulations of the ran-
dom variables described above can be implemented in stochastic
simulations.

Correct Implementation 1, for AM1
Set: NextAvailabilityTime = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if t_i >= NextAvailabilityTime

//vesicle is available
if Pr_given_a(t_i) > unifrand()

//Release the vesicle
Set: LastReleaseTime = t_i
//reset the next availability

time, for
//exponentially distributed

availability times
NextAvailabilityTime = LastReleaseTime
+exprand(tau)

end
end

end
//unifrand() generates a uniformly

distributed random number between
0 and 1

//exprand() generates an exponentially
distributed random number with mean tau

The pseudo-code variable LastReleaseTime represents our math-
ematical variable, ts. A direct translation of this pseudo-code
into the probability that the vesicle will be released upon the
arrival of AP i, given ts, obtains Pr|a(tAP,i)Prob(tAP,i > ts +
Ta). This can be expressed as Pr|a(tAP,i)Prob(Ta < tAP,i − ts) =
Pr|a(tAP,i)FTa(tAP,i − ts), and thus exactly matches Equation (6),
as required.

There are also several ways in which the conceptual model
has been, or could be, erroneously translated into a stochastic
simulation, and these are described in the following subsections.

4.1.1. First incorrect implementation of availability Model 1
It is stated in Scott et al. (2012) that “Following successful vesicle
release, [the availability probability] is set to zero and relaxes back
to 1 . . .” The exact form of this time changing probability [which
we introduced above as Pa(t|ts)] is expressed in Scott et al. (2012,
Equation 14) as the solution to a differential equation, which has
an exact solution equivalent to stating that

Pa(t|ts) = 1 − exp (−(t − ts)/τa), t > ts, (12)
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where ts was the last successful release time. Clearly Equation (12)
is equivalent to Equation (1). However, it is also stated in Scott
et al. (2012) that in order to create a stochastic model, “. . . we
allowed vesicle release following comparison of” Pa(t|ts)Pr|a(t)
“with a random number between 0 and 1.”

The following pseudo-code illustrates how this statement
would be correctly implemented:

Incorrect Implementation 1.1, for AM1
For each pre-synaptic spike, i=1:K,

occurring at time t_i
Set: Pa = 1-exp(-(t_i-LastReleaseTime)/

tau_r)
if Pa*Pr_given_a(t_i) > unifrand()
//Release the vesicle
Set: LastReleaseTime = t_i

end
end

A direct translation of this pseudo-code into the probability that
the vesicle will be released upon the arrival of the first AP after
ts, at time tAP,j, given ts, obtains Pr|a(tAP,j)Pa(tAP,j|ts) which is
in agreement with the correct implementation. However, this
implementation also imposes a probability that the vesicle will be
released upon the arrival of the second AP after ts, at time tAP,j+1,
as (1 − Pr|a(tAP,j)Pa(tAP,j|ts)) × Pr|a(tAP,j+1)Pa(tAP,j+1|ts), which
is the product of the probabilities of non-release at the j–th AP,
and the calculated probability of release at the j + 1–th AP. This
is not in agreement with Equation (6). Similar holds for the case
where the vesicle is not released within the simulation after the
j + 2–th AP, the j + 3–th and so forth.

The reason that the implementation is incorrect is that it does
not take into account that the non-release at the j–th AP could
have been due to release failure for an available vesicle, and this
distorts the simulated probability of when the vesicle is released.

This fact might be more readily apparent by considering the
following different incorrect implementation that achieves equiv-
alent, but slightly less efficient, results:

Incorrect Implementation 1.2, for AM1
For each pre-synaptic spike, i=1:K,

occurring at time t_i
Set: Pa = 1-exp(-(t_i-LastReleaseTime)/

tau_r)
if Pa > unifrand1()

if Pr_given_a(t_i) > unifrand2()
//Release the vesicle
Set: LastReleaseTime = t_i

end
end

A direct translation of this pseudo-code into the probabil-
ity that the vesicle will be released upon the arrival of the
first AP after ts, at time tAP,j is also in agreement with
the correct implementation. However, the probability that
the vesicle will be released upon the arrival of the second
AP after ts, at time tAP,j+1, translates as [(1 − Pa(tAP,j|ts)) +
Pa(tAP,j|ts)(1 − Pr|a(tAP,j))] × Pr|a(tAP,j+1)Pa(tAP,j+1|ts), which is
also not in agreement with Equation (6). Rearranging this gives
(1 − Pr|a(tAP,j)Pa(tAP,j|ts)) × Pr|a(tAP,j+1)Pa(tAP,j+1|ts), which is
identical to the result for the first stated incorrect pseudo-code.

Both cases of incorrect pseudo-code are incorrect because, as
is clear in the second version, a random number can be drawn
that is less than the probability of availability, which represents
the vesicle being available. But the code does not take into account
that once this happens once, there should never be a failure of
availability before the vesicle is released.

The pseudo-code is equivalent to a different conceptual model
where the vesicle’s availability is reset to zero upon every spike
arrival, regardless of whether the vesicle is released or not.
Following this reset, the time until availability remains dependent
on the time since the last release. This is unlike Availability Model
2, in which the reset causes the time until availability to become
dependent on the time since the last spike arrival instead, and only
for vesicles that are unavailable.

4.1.2. Second incorrect implementation of availability model 1
A second possible incorrect implementation could result from
attempting to address the problem above by implementing the
following incorrect pseudo-code:

Incorrect Implementation 2, for AM1
Set: IsVesicleAvailable = 1
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if IsVesicleAvailable == 0

//vesicle is not available
Set: Pa = 1-exp(-(t_i-LastReleaseTime)/

tau_r)
if Pa > unifrand1()

//vesicle becomes available
IsVesicleAvailable = 1

end
end
if IsVesicleAvailable == 1

//vesicle is available
if Pr_given_a(t_i) > unifrand2()

//Release the vesicle
Set: IsVesicleAvailable = 0
Set: LastReleaseTime = t_i

end
end

A direct translation of this pseudo-code into the probability
that the vesicle will be released upon the arrival of the first
AP after ts, at time tAP,j is also in agreement with the cor-
rect implementation. However, the probability that the vesicle
will be released upon the arrival of the second AP after ts, at
time tAP,j+1, translates as Pr|a, if the vesicle was made avail-
able after the first spike, but not released, and as PaPr|a if it
became available after two spikes. When the probability of being
in each of these three states is taken into account, the over-
all probability that the vesicle will be released upon the arrival
of the second AP is Pr|a(tAP,j+1)[Pa(tAP,j)(1 − Pr|a(tAP,j)) + (1 −
Pa(tAP,j))Pa(tAP,j+1)].

As a concrete example of why this implementation is incorrect,
consider an example where immediately after a vesicle release, the
next arriving AP did not find a vesicle available. Suppose Pa = 0.4
at this time, and increases to Pa = 0.7 just before the next arriving
spike. We should have a vesicle available after the first spike in
40% of repeated trials, and a vesicle available in 70% of repeated
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trials after two spikes. However, in this implementation, when the
vesicle is not available after the first spike, we compare Pa = 0.7
with a random number, and 70% of the time for this case we then
say a vesicle will be available after two spikes. This is incorrect,
because we will have 40% of trials finding a vesicle on the first
spike arrival spike and therefore by comparing Pa with 0.7 we have
100 × (1 − 0.4) × 0.7 = 42% of trials finding a vesicle available
on the second spike arrival, but not the first. Thus, there are 40 +
42 = 82% of all trials finding a vesicle available after either the
first or second spike arrival. The latter value should, however, be
70%, not 82%, according to the conceptual model. Therefore, this
implementation causes too many vesicles to become available by
the time of the second spike arrival, if they were not available on
the first arrival. The correct number to compare with a random
variable upon the second spike arrival is 0.5, which would mean
30% of trials find a vesicle available on the second spike arrival,
but not the first.

4.1.3. Second correct implementation of availability model 1
Incorrect Implementation 2 can be corrected by changing the
calculation of Pa(t), based on Equation (2). For exponential avail-
ability times, the correction is a simple matter of replacing the
pseudo-code line

Set: Pa = 1-exp(-(t_i-LastReleaseTime)/
tau_r)

with

Set: Pa = 1-exp(-(t_i-t_(i-1))/tau_r)

For non-exponentially distributed arrival times, the required
change is more complex, but readily follows in a similar fashion,
from Equation (2).

4.1.4. Third correct implementation of availability model 1, for
exponential availability times

We stated above that for the special case of exponentially dis-
tributed times for a vesicle to become available, Availability
Model 1 is equivalent to a conceptual model where a vesicle
becomes available upon generation of the next event within a
Poisson process with rate 1/τa, following release, as in Loebel
et al. (2009). An implementation of this conceptual model is
illustrated in the following pseudo code, where it is assumed
that the Poisson events had previously been calculated, and that
NextPoissonTime(x) is a function that returns the time of
the Poisson event immediately following the time given by its
argument.

Correct Implementation 3, for AM1
Set: NextAvailabilityTime = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if t_i >= NextAvailabilityTime

//vesicle is available
if Pr_given_a(t_i) > unifrand()
//Release the vesicle
Set: NextAvailabilityTime

= NextPoissonTime(t_i)
end

end
end

4.2. SINGLE VESICLE AVAILABILITY AND RELEASE: AVAILABILITY
MODEL 2

The following pseudo-code illustrates how simulations of
Availability Model 2 can be implemented in stochastic simu-
lations. Note that the only difference in comparison with the
pseudo-code for Availability Model 1 is that the time of next avail-
ability (for unavailable vesicles only) is dependent only on the last
spike arrival time, not the last release time, in order to match the
conceptual model.

Correct Implementation 1 for AM2
Set: NextAvailabilityTime = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
if t_i >= NextAvailabilityTime

//vesicle is available
if Pr_given_a(t_i) > unifrand()

//Release the vesicle and reset the
next availability time, for

// exponentially distributed
availability times

NextAvailabilityTime = t_i
+exprand(tau)

end
else

//vesicle is unavailable; reset the
next availability time, for

//exponentially distributed
availability times

NextAvailabilityTime = t_i +exprand(tau)
end

end

A direct translation of this pseudo-code into the probabil-
ity that the vesicle will be released upon the arrival of AP i,
given that it was not released by the time of AP i − 1, obtains
Pr|a(tAP,i)Prob(tAP,i > tAP,i−1 + Ta). This can be expressed as
Pr|a(tAP,i)Prob(Ta < tAP,i − tAP,i−1), and thus exactly matches
Equation (7), as required, upon substitution of Equation (5).

It is possible to incorrectly implement Availability Model 2 in
a manner directly analogous to that in the first incorrect imple-
mentation of Availability Model 1. However, an implementation
analogous to the second incorrect implementation of Availability
Model 1, will actually be correct for Availability Model 2, since
now the probability of availability is dependent only on the last
AP arrival time.

4.3. MULTIPLE TRIALS OF SINGLE VESICLE AVAILABILITY AND
RELEASE

4.3.1. Availability model 1 with exponential availability times
For the special case of exponentially distributed availability times,
for each trial in which a vesicle is unavailable at the previous AP,
the probability of becoming available by the current one will be
identical for each trial (provided the input APs occur at the same
times in all trials). As a direct consequence of this, the proba-
bility that w trials result in a vesicle becoming available, out of
v in which a vesicle was not available at time tAP,i, is given by
the binomial distribution, as mentioned and studied numerous
times, e.g., (Vere-Jones, 1966; Melkonian and Kostopoulos, 1996;
Quastel, 1997; Matveev and Wang, 2000b; Pfister et al., 2010;
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Reich and Rosenbaum, 2013). We introduce a random variable,
W , to describe the number of unavailable vesicles that become
available. We have

Prob(W = w|v) = (v
w

)
(1 − Pa)

(v − w) (Pa)
w .

That this expression holds enables a stochastic simulation imple-
mentation that is far more efficient than repeating each of Z trials
independently, as described in the following pseudo-code.

Set: NumUnavailable = 0
For each pre-synaptic spike, i=1:K,

occurring at time t_i
//Calculate probability of availability

at t_i for any unavailable vesicles
Set: Pa = 1-exp(-(t_i-t_(i-1))/tau_r)
//calculate the number to become

available by t_i
Set: NumUnavailable = NumUnavailable

- binornd(NumUnavailable,Pa);
//calculate number to release at t_i
Set: NumUnavailable = NumUnAvailable

+ binornd(NumTrials-NumUnavailable,
Pr_given_a(t_i))

end
//binornd(v,w) calculates a binomially

distributed random number with
// a maximum value of v, and mean vw.

This algorithm is an extension of an algorithm presented
by Quastel (1997) (see also Pfister et al., 2010) for the case where
Pa is time-independent.

In the above pseudo-code, we have calculated two independent
binomially distributed random numbers for each pre-synaptic AP
arrival. The second random number describes the number of tri-
als in which an available vesicle is released. This is accurate with
respect to both Release Model 1 and Release Model 2 under the
assumptions of this paper, since the simulation calculated how
many trials have a vesicle available at each time tAP,i, and the
probability of release is independent and identical for all trials
in both release models. Mathematically, if we denote the random
variable describing the number of vesicles released as U , when s
are available, we have

Prob(U = u|s) = (s
u

)
(1 − Pr|a)(s − u)

(
Pr|a

)s
.

The use of binomially distributed random numbers in this way
will not be correct for a possible alternative release models where
the probability of release, given availability, depends on the his-
tory of vesicle release in each trial, because the refill events
are not independent in that case [see, e.g., Quastel (1997) for
mathematical analysis of this case].

4.3.2. Availability model 2 with exponential availability times
The binomial approach described above for the special expo-
nential case of Availability Model 1, will also correctly simulate
Availability Model 2 with exponential availability times, since, as
discussed above, the two models are equivalent under this special
case.

4.3.3. Availability models 1 and 2 with non-exponential availability
times

The algorithm above holds only for exponential availability
times, as it relies on the fact that in this case Pa,1(t|ts) = 1 −
exp (−(t − ts)/τa), t ≥ ts for all vesicles. For non-exponential
availability times, the number of vesicles unavailable due to
release from all previous spikes needs to be tracked, and conse-
quently many more binomial random numbers need to be gen-
erated following each AP. Moreover, Pa(t) needs to be calculated
using Equation (2).

4.4. COMPARISON OF ALGORITHM IMPLEMENTATION EFFICIENCIES
We have aimed in the pseudo-code implementations above to
describe computationally efficient algorithms that require as few
random numbers to be generated as possible.

We note that the implementation suggested, for example,
in Loebel et al. (2009) [see also Sterratt et al. (2011, p. 188)]
involves an accurate approximation of a true Poisson point pro-
cess, and this approximation is particularly relevant to any sim-
ulation in which time is discretised into uniform intervals of
Δt, such as in most simulations that involve numerical solu-
tion of differential equations. The well-known approximation
states that provided that Δt � τa, a Poisson point process event
occurs within any given time interval of duration Δt with
probability Δt

τa
.

A stochastic simulation based on this approximation requires
comparison of Δt

τa
with a uniform random number at every time

step of the simulation between times 0 and tK . It is possible to alter
the implementation so that the Poisson events are only calculated
during the simulation, rather than prior, where a comparison of
a uniform random number with Δt

τa
is carried out for every time

step following vesicle release, until a random number is generated
that is larger than Δt

τa
.

However, such implementations are potentially very ineffi-
cient, because many random numbers must usually be generated
for every unavailable vesicle, whereas only one random number
need be generated in, for example, Correct Implementation 1 for
AM1.

5. EXAMPLES: COMPARING STOCHASTIC SIMULATION
IMPLEMENTATIONS

5.1. ERRORS IN SIMULATING PROBABILITY OF RELEASE, AND MEAN
NUMBER OF RELEASES AFTER K SPIKE ARRIVALS, FOR
EXPONENTIAL AVAILABILITY TIMES

We consider a scenario where pre-synaptic APs arrive at a synapse
periodically with frequency f Hz. We consider Z repeated tri-
als following an initial condition where a vesicle is assumed to
have just been released, in all trials, at the start of our simula-
tions. We calculate the number of trials in which the next vesicle
release occurs after the first spike, the second spike and so forth.
We obtain results for f between 5 and 150 Hz, for Z = 100,000,
τa = 0.5 s and K = 50 pre-synaptic spikes (as a maximum; the
simulation stops when a vesicle is first released). Thus, the AP
times are tAP,i = i/f , i = 1, 2, . . . , 50.

We estimated the probability that the vesicle was next released
after i = 1, 2, . . . 20 APs following vesicle release at time t = 0,
by evaluating the fraction of trials in which the vesicle was first
released after the i–th spike. We then calculated the absolute value
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of the difference in the estimated probability for several correct
and incorrect implementations, and also the relative error, relative
to the correct version.

In order to clarify the significance of the values we obtained for
absolute and relative error, we also considered a simulation where
H = 100 spikes per trial periodically arrive with frequency f , and
for each implementation counted the total number of vesicles
released as a function of f . We then compared the mean num-
ber released after H spikes, calculated from Z = 10,000 repeats
of each implementation, as well as the maximum and minimum
numbers released.

Finally, in order to show that our simulations and mathemati-
cal analysis is correct for Availability Model 1 for both periodic
and non-periodic AP arrivals, we compare correct and incor-
rect implementations for each case with results predicted by the
Equations (9) and (10).

5.1.1. Results for availability models 1 and 2 with release model 1
We set the probability of release, given availability to Pr|a = 0.6.
Figure 1 shows the absolute error, and Figure 2 shows the rela-
tive error between the correct and incorrect implementations, for
Availability Model 1.

The absolute error, as predicted by the theory, is zero after the
first pre-synaptic spike, for all f . However, it is clear that the abso-
lute error can be as high as 10% for subsequent spikes, and is
highest for low frequencies. It is also clear that the relative error
can be very high for high frequencies. In these cases, the proba-
bility of release is relatively small for all subsequent spikes, and
hence the absolute error is low. Yet the relative error can be higher
than 500% at f = 150 Hz.

Figure 3 shows the absolute error between the correct and
incorrect implementation for Availability Model 2 (recall from
above that an implementation analogous to the second incorrect
implementation of Availability Model 1, is correct for Availability
Model 2). The incorrect implementation clearly shows a smaller
error than for Availability Model 1.

Results for the mean number of vesicles released after H = 100
spikes are shown in Figure 4. It is clear for Availability Model
1 that the mean number of vesicles released per trial of 100
spikes becomes more inaccurate for the incorrect models as f τr

increases. For example, at f τr > 10, the incorrect models can pro-
duce more than twice as many vesicles as the correct one. It is clear
for Availability Model 2 that the mean number of vesicles released
per trial of 100 spikes is inaccurate for the incorrect model,
similar to Availability Model 1. However, now the incorrect
model underestimates the number of vesicles released, whereas
for Availability Model 1, the incorrect models overestimated
this number.

The data in Figure 4 also shows that all models cor-
rectly produce a mean of Pr|a = 0.6 vesicles released at low
frequencies, where the availability always has time to recover to
close to 100%.

Figure 5 shows the fraction of 1000 trials in which vesi-
cles are released in response to a sequence of 20 periodically
arriving APs, with frequency 10 Hz, and to a sequence of 50
APs arriving at times corresponding to a Poisson point pro-
cess, with mean frequency 10 Hz. In this figure, the data for

A

B

FIGURE 1 | Absolute errors for incorrect implementation 1 (A) and

incorrect implementation 2 (B), for Availability Model 1, with

exponentially distributed availability times. The data was obtained by
empirically estimating the probability of release after i spikes, as a
function of the frequency of periodically arriving pre-synaptic action
potentials, by stochastically simulating Z = 100,000 trials for each
condition. The absolute error can be as high as 0.1, and higher errors
occur at low frequencies.

the Deterministic, and Steady state cases were obtained using
Equations (9) and (10), respectively (derived previously in the
literature, as stated and referenced above) and clearly match the
correct stochastic simulations.

5.1.2. Release model 2
In order to demonstrate how to incorporate a time dependent
release probability, we consider a standard model of facilitation
(see, e.g., Scott et al., 2012). The change in release probability can
be expressed as a differential equation, but it is clearer to write a
piecewise equation as follows:
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A

B

FIGURE 2 | Relative errors for incorrect implementation 1 (A) and

incorrect implementation 2 (B) for Availability Model 1, with

exponentially distributed availability times. The data was obtained by
empirically estimating the probability of release after i spikes, as a function
of the frequency of periodically arriving pre-synaptic action potentials, by
stochastically simulating Z = 100,000 trials for each condition. The largest
relative errors occur for higher frequencies.

Pr|a(t) = Q, t < tAP,1,

Pr|a(tAP,i) = Pr|a(t−AP,i) + S(1 − Pr|a(t−AP,i)), t = tAP,i,

Pr|a(t) = Q − (Q − Pr|a(tAP,i)) t ∈ [tAP,i, tAP,i + 1),

exp
(−(t − tAP,i)/τf

)
where Q is a parameter that describes the steady-state release
probability, when there have been no arriving APs for a long
time, and S is a parameter that describes the fractional increase
(relative to the maximum possible increase) in release probabil-
ity that occurs for every arriving pre-synaptic AP. We also have a

FIGURE 3 | Absolute error between correct and incorrect

implementation for Availability Model 2, with exponentially

distributed availability times. The data was obtained by empirically
estimating the probability of release after i spikes, as a function of the
frequency of periodically arriving pre-synaptic action potentials, by
stochastically simulating Z = 100,000 trials for each condition. The largest
error occurs for low frequencies, but is much smaller than for Availability
Model 1.

time constant of facilitation, τf, which determines how quickly the
release probability decays back to its resting value, Q. Examples of
appropriate parameters might be Q = 0.4, and S = 0.2, similar
to Scott et al. (2012).

Note that this particular function Pr|a(t) is determined entirely
once the sequence of pre-synaptic spikes is known, and conse-
quently it is easily incorporated into the stochastic simulation
algorithms described above, and we do not show example results
here.

The same observations hold for release-independent depres-
sion with frequency-dependent recovery, in which case τf can also
change with time (Fuhrmann et al., 2004; Scott et al., 2012).

5.2. COMPARISON OF AVAILABILITY MODELS 1 AND 2 FOR
NON-EXPONENTIAL AVAILABILITY TIMES

In order to demonstrate that a non-exponential availability model
provides different outcomes for Availability Models 1 and 2, we
consider the case of Rayleigh distributed availability times, with
mean τa = 0.5 s.

Figure 6 shows the fraction of 1000 trials in which vesicles are
released, for both availability models, in response to a sequence
of 20 periodically arriving APs, with frequency 10 Hz, and to a
sequence of 50 APs arriving at times corresponding to a Poisson
point process, with mean frequency 10 Hz.

The results shown in Figure 6 were obtained both by a direct
adaptation of the correct stated pseudo-code above to Rayleigh
distributed availability times, and also by direct adaption of the
binomial approaches described, for Availability Model 2. The
binomial results for Availability Model 1 required a more com-
plex algorithm, where the number of vesicles unavailable due to
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A

B

FIGURE 4 | Mean (solid traces) number of vesicles released in total

after 100 periodic pre-synaptic action potential arrivals for Availability

Model 1 (A) and Availability Model 2 (B). The minimum and maximum
number of vesicles released are shown with (dashed traces). For each
frequency f, all statistics are derived from 10,000 stochastic simulations.
Clearly the incorrect implementations can over or under estimate the
correct number of vesicles released.

release from all previous spikes needed to be tracked, and con-
sequently many more binomial random numbers generated than
for Availability Model 1. The data can be seen to match in either
implementation, but to be quite different for each Availability
Model.

6. CONCLUSIONS AND EXTENSIONS
6.1. CORRECT AND EFFICIENT STOCHASTIC SIMULATIONS OF

SHORT-TERM PLASTICITY
We have shown that various correct implementations of a stochas-
tic simulation of either Availability Model 1 or 2 are possible.

A

B

FIGURE 5 | Fraction of 1000 trials in which vesicles are released, for

each of a sequence of 20 periodic spikes (A), and 50 Poisson spikes (B),

and vesicles with exponentially distributed availability times. The
frequency in both cases is 10 Hz. The traces for Deterministic, and Steady

state were obtained using Equations (9) and (10). This data shows that the
incorrect implementations give markedly different outcomes to the correct
stochastic simulation implementations, and to the deterministic expression
for the mean number of trials in which vesicles are released.

However, it is also possible to incorrectly implement either model.
For Availability Model 1, two kinds of incorrect implementa-
tion result in more vesicle releases than should be the case. For
Availability Model 2, an incorrect implementation results in less
vesicle releases than should be the case.

We have also shown that some correct implementations are
more efficient than others. In particular, we first stated an
implementation that requires only a single random number to be
generated each time a vesicle is released. This is more efficient
than an implementation based on generation of a Poisson process
that determines availability times, and much more efficient than
generating a random number for every time step in a simulation.
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A

B

FIGURE 6 | Fraction of 1000 trials in which vesicles are released, for

each of a sequence of 20 periodic spikes (A), and 50 Poisson spikes (B),

and vesicles with Rayleigh distributed availability times. The frequency
in both cases is 10 Hz. This data shows that Availability Models 1 and 2
provide markedly different outcomes for Rayleigh distributed availability
times, unlike the identical outcomes for exponentially distributed times.
The data also shows that extension of the binomial approach matches the
data where each trial is individually simulated.

We also have shown that when multiple independent vesicle
releases are considered, the most efficient stochastic simulation
implementation can be achieved by generating binomial random
numbers.

6.2. CONSEQUENCES OF EQUIVALENCE OF AVAILABILITY MODELS
ONLY FOR EXPONENTIAL AVAILABILITY TIMES

We have discussed that the two availability conceptual mod-
els are equivalent when the availability times are exponen-
tially distributed, and this can be derived as a consequence
of a well known property of a homogeneous Poisson point
process. When the availability times are non-exponential, the
two availability conceptual models we consider are generally
non-equivalent.

As we have shown, these points are important in terms of their
consequences for the implementations that can be used to cor-
rectly simulate Availability Model 1. Another consequence is that
the popular differential equation approach to describing the mean
number of available vesicles could have analogous correct simple
forms for Availability Model 2, but not for Availability Model 1.

6.3. BINOMIAL-BASED STOCHASTIC SIMULATIONS FOR
NON-EXPONENTIAL AVAILABILITY TIMES

When Ta is not exponentially distributed, no simple adaptation of
the binomial approach will work for Availability Model 1, because
there is no simple procedure for calculating random numbers cor-
responding to the random variable W . However, it is possible to
keep track of how many vesicles were made unavailable by each
AP, and how many are restored by the time of each subsequent
AP, and perform a stochastic simulation that calculates as many
binomial random numbers as there have been prior APs for which
unavailable vesicles still exist. This procedure must make use of
Equation (2) to calculate the probability of availability by the time
of the next spike, using the time of the previous spike.

Such an algorithm may be more efficient than independently
simulating each trial, provided that APs arrive relatively slowly
compared with the mean time for a released vesicle to become
available. Figure 6 shows that an implementation of this approach
for Availability Model 1 and Rayleigh distributed available times
agrees with data from an approach that individually simulates
each trial.

For Availability Model 2, the binomial approach will work
for arbitrary FTa , since the probability of an unavailable vesicle
becoming available will be the same for all trials, as was the case
for the data in Figure 6. Moreover, only the cumulative distribu-
tion function of the availability times need be known to carry this
out, whereas Equation (2) needs to be computed for Availability
Model 2. Such an algorithm is a straightforward extension of an
algorithm described by Quastel (1997) for constant probabilities
for any released vesicle to be available by the next spike.

6.4. OTHER MODELS
We have considered only the simplest models in this paper.
Other more complex models of availability and release have
been proposed. For example, the mean times to availability for
a vesicle may change over time (Wong et al., 2003), vesicles may
also be released spontaneously in the absence of pre-synaptic
APs (Sterratt et al., 2011), and multiple vesicles may be readily
available for release at any site (although in this model only one
can be released per pre-synaptic spike) (de la Rocha and Parga,
2005). Stochastic simulations that faithfully reflect these models
can be readily devised by extension of the algorithms presented in
this paper.
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Critical behavior in neural networks is characterized by scale-free avalanche size
distributions and can be explained by self-regulatory mechanisms. Theoretical and
experimental evidence indicates that information storage capacity reaches its maximum
in the critical regime. We study the effect of structural connectivity formed by Hebbian
learning on the criticality of network dynamics. The network only endowed with Hebbian
learning does not allow for simultaneous information storage and criticality. However, the
critical regime can be stabilized by short-term synaptic dynamics in the form of synaptic
depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic
weights. We show that a heterogeneous distribution of maximal synaptic strengths does
not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics
recovery. We discuss the relevance of these findings for the flexibility of memory in aging
and with respect to the recent theory of synaptic plasticity.

Keywords: associative memory, dynamical synapses, SOC, Hebbian learning, homeostatic learning

1. INTRODUCTION
Critical dynamics in neural networks is an experimentally and
conceptually established phenomenon which has been shown to
be important for information processing in the brain. Critical
neural networks have optimal computational capabilities, infor-
mation transmission and capacity (Beggs and Plenz, 2003;
Haldeman and Beggs, 2005; Chialvo, 2006; Shew and Plenz,
2012). At the same time the theoretical understanding of neu-
ral avalanches has been developed starting from sandpile-like
systems (Herz and Hopfield, 1995) and homogeneous networks
(Eurich et al., 2002), but later also including particular struc-
tural connectivity (Lin and Chen, 2005; Teramae and Fukai, 2007;
Larremore et al., 2011). The network structure in the latter cases
was, however, chosen as to support or even to enable criticality,
which points obviously to one of the mechanisms criticality is
brought about in natural systems. There are, nevertheless, other
influences that shape the connectivity structure and weighting.
Most prominently, this includes Hebbian learning, but also home-
ostatic effects or pathological changes. Here we study how such
structural changes influence criticality in neural networks.

While homeostatic plasticity may well have a regulatory effect
that supports criticality, this cannot be said about Hebbian learn-
ing which essentially imprints structure from internally or exter-
nally caused activation patterns in the synaptic weighting of the
network increasing thus the probability of previous patterns to
reoccur. Unless the patterns are carefully chosen to produce crit-
ical behavior, these effects have a tendency to counteract critical
behavior, e.g., by introducing a particular scale that corrupts the
power-law distributions characteristic for critical behavior.

Little is known, in particular, about the influence of critical-
ity on associative memory neural networks. We have chosen this
paradigm of long-term memory as a basis for the present model
because it is very well understood and because it matches the

complexity of models that are typically considered in the study of
criticality. Associative memory networks are able to recall stored
patterns when a stimulus is presented, that is similar to one of the
stored patterns, thus providing a means to implement memory
into a neuronal population. If all goes well, the network state fol-
lows an attractor dynamics toward the correct memory item when
being initialized by a corrupted or incomplete variant of the item
as an associative key. Items are stored as activation patterns that
are implanted in the network by Hebbian learning. This leads to
an effective energy landscape, where the patterns are local minima
and as such attractors of the system dynamics (Hopfield, 1982;
Herz and Hopfield, 1995). We have studied earlier the effect of
dynamical synapses (Markram and Tsodyks, 1996) in associative
memory networks (Bibitchkov et al., 2002), now we are interested
in the criticalizing role of dynamical synapses.

Other work has shown (Levina et al., 2006, 2007b; Levina,
2008; Levina et al., 2009) that dynamical synapses play an impor-
tant role in the self-organization of critical neural dynamics.
Given the importance of the critical regime for information pro-
cessing in the brain and the substantial experimental evidence
that is available to date, there is a need to consider the compati-
bility of these two effects and to identify a way to obtain criticality
and memory storage simultaneously.

We will discuss here an algorithm to achieve compromise
between a critical dynamics that can be seen as exploring the
spaces of neural activation patterns, and the attractor dynamics
that we assume to underlay the retrieval of content from mem-
ory. The present paper continues upon earlier work (Schrobsdorff
et al., 2009; Dasgupta and Herrmann, 2011), where the prelim-
inary simulation results were discussed. In our study for the
first time conclusive numerical representations are presented, sev-
eral learning mechanisms are compared and the capacity limit is
considered.
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2. MATERIALS AND METHODS
2.1. NEURONAL ACTIVITY DYNAMICS IN THE CRITICAL REGIME
We consider a network of N integrate and fire neurons. The mem-
brane potential hi ∈ [0, θ] of a neuron i ∈ {1, . . . , N} is subject to
the dynamics

ḣi = Iextδ
(

t − ti
e

)
+ 1

N

N∑
j = 1

Jijδ
(

t − t
j
sp

)
. (1)

The first term on the right hand side of Equation 1 represents an
external excitatory input of size Iext affecting neuron i at time ti

e.

The second term describes a recurrent excitatory input, where t
j
sp

denotes the arrival time of a presynaptic action potential originat-
ing from neuron j and Jij is the strength (or weight) of the synapse
connecting j to i. Action potentials are generated and delivered
to all postsynaptic neurons when neuron i reaches the membrane
potential threshold θ. After this depolarization, the potential is
reset according to

hi

(
t+sp

)
= hi

(
tsp
)− θ. (2)

The activity dynamics in this model network depends on the
connectivity and the weight matrix J = {

Jij
}

. For a fully con-
nected network with equal weights the activity forms a series
of avalanches that are separated by longer periods of quiescence
(Eurich et al., 2002). An avalanche is triggered when external
input Iext causes a neuron to fire and consists of a number (the
avalanche size L) of successive depolarizations. Because some of
these activations may occur simultaneously, avalanches are also
characterized by their duration (D), i.e., the time from the start
of the avalanche to the firing time of the last neuron that was
activated in this way.

For neural networks of this type a critical synaptic weight
Jcr exists that leads to a scale-free avalanche size distribution
P(L) (Eurich et al., 2002). For more complex networks the crit-
ical value is usually not explicitly obtainable, except for random
(Levina et al., 2007b) or regularly coupled networks (Herz and
Hopfield, 1995). This problem can be circumvented by apply-
ing an adaptive algorithm that adjusts the weights toward their
critical values which do not need to be identical across neurons.
Such an adaptation toward criticality can be obtained in form of
a homeostatic learning rule (Levina et al., 2007a) which locally
regulates the flow of activity from a neuron to its postsynap-
tic partners. Within the branching process approximation (Otter,
1949; Beggs and Plenz, 2003; Levina et al., 2007a; Levina, 2008)
it can be shown that this homeostatic rule causes the network to
become critical such that the activity dynamics in the network
together with the homeostatic regulation forms a self-organized
critical system.

2.2. HOMEOSTATIC REGULATION
Self-organized criticality can be achieved by applying a homeo-
static learning rule at the beginning of each avalanche (Levina
et al., 2007a) according to

Jij = J0
ij + εhom

[
1 − � − N− 1

2

]
. (3)

Here, J0
ij denotes the synaptic weights at the time of avalanche

initiation, � is the number of active neurons in the second time
step of the avalanche, εhom is a learning rate and N− 1

2 a finite
size correction. According to Equation 3 in the limit N → ∞, the
synaptic weights will decrease if � > 1, and increase if � < 1. For
an infinitely large N a stable configuration is obviously obtained
as soon as the triggering neuron causes exactly one other neuron
to fire. This corresponds to a mathematical model of a critical
branching process, that is known to result in a power-law dis-
tribution of the avalanche size. A finite size correction is needed
because avalanches cannot spread to infinity but are rather lim-
ited to a system of N neurons. Such a learning rule resembles the
homeostatic regulation observed in cortical neurons (Abbott and
LeMasson, 1993; Turrigiano et al., 1998), with the important dif-
ference that the neuron does not keep stable its own firing rate,
but that of the postsynaptic population.

2.3. DYNAMICAL SYNAPSES
The empirical observation of criticality in networks of real neu-
rons has initiated a number of alternative explanations by regu-
latory processes interacting with the neuronal activity dynamics.
One mechanism relies on the short-term dynamics of synaptic
efficacies (Tsodyks and Markram, 1996, 1997). Given that synap-
tic resources are limited, high activity of presynaptic neurons will
lead to depletion of these resources and thus to a reduced synaptic
efficacy. In periods of silence or low activity, the synaptic effi-
cacy will then recover toward its maximum value Tmax

ij . We have
modeled this in the following way (Levina et al., 2007b),

Ṫij = 1

τJ

(
Tmax

ij − Tij

)
− uTijδ

(
t − t

j
sp

)
, (4)

where τJ sets the time scale of exponential recovery, t
j
sp is the

presynaptic spike time and u sets the relative amount of resources
used upon spike transmission (Markram and Tsodyks, 1996).
Note that the Tij are not the synaptic weights Jij used in the sense
of the previous section, but are related to Equation 3 by Jij = uTij.
The Tmax

ij can be considered to be equal for all the synapses in
the network and constant in time, but we will later relax this
condition by introducing learning effects on a short time scale.
Intuitively, the stabilizing effect of dynamical synapses in this
model can be understood in the following way: large avalanches
lead to depletion of synaptic resources and thus to series of
smaller events, whereas small avalanches lead to an increase of the
amount of resources in the synapses resulting in larger avalanches
again. Such activity dependent regulation allows for a power-law
distribution of avalanche sizes. A mathematical explanation for
the success of this model is provided by the fact that

〈
uTij

〉 → Jcr

for a wide range of Tmax, i.e., the time-averaged synaptic input
approaches the critical value Jcr of the network with static synap-
tic weights that was defined in section 2.1 (Eurich et al., 2002;
Levina et al., 2007b).

The arrival times ti
e of external inputs of strength Iext in

Equation 1 are determined by a random process that selects neu-
rons at a rate τ and increases their membrane potential. The
characteristic time scale of synaptic recovery τJ is related to the
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time scale of external input τ via τJ = τνN and 1 < ν � N.
Therefore, the synaptic dynamics of this model is composed of
two regimes. In the slow regime, neurons get loaded by exter-
nal input Iext and synaptic resources slowly recover toward their
maximum value Tmax

ij . The activation of a single neuron then
marks the transition to the fast “avalanche regime”, where the
redistribution of neuronal membrane potentials and depression
of resources Tij is so fast that we can safely assume external input
and synaptic recovery processes to be absent.

Irrespective of the particular recipe used to achieve self-
organized criticality in our simulations, we always record Aava

avalanches and calculate the mean squared deviation �γ between
the resulting avalanche size distribution P(L) and the best-
matching power law over the range 1 ≤ L ≤ N/2. Unless �γ is
not less than a specified threshold �γmax, we keep recording
Aava avalanches until the resulting size distribution has converged
toward a power law and this sets the end of the critical regime. The
resulting synaptic weight configuration

{
Jij
}

does then represent
a neural network operating at the critical point. For small net-
work sizes �γ was shown to be as informative about criticality in
the network as a Kolmogorov-Smirnov statistic with Monte-Carlo
generated p-value (Levina, 2008).

2.4. ASSOCIATIVE MEMORY MODEL
So far we have described the dynamics of the neural network in
the critical regime. We now equip the network with the ability to
store a set of patterns and to operate as an associative memory of
these patterns. The patterns are represented by differences among
the synaptic efficacies, and the retrieval of the pattern is under-
stood as an attractor dynamics from a cue toward the pattern.
The cue is a stimulus that causes a neuronal activity pattern near
one of the memorized patterns and once the stimulus has initi-
ated the attractor dynamics, it is expected that the current activity
approaches the memorized pattern even more closely.

Let {ξη}, η = 1, . . . , M, be a set of binary patterns consisting
of pixels ξ

η

i ∈ {0, 1}. The pattern ξη is retrieved if the firing rate of
the neurons with ξ

η

i = 1 is above and of the neurons with ξ
η

i = 0
is below a certain threshold.

We assume a sparse representation, i.e., only a fraction p of the
neurons in a pattern is assumed to be active such that for all η

1

N

N∑
i = 1

ξ
η

i = p. (5)

In order to imprint these M binary patterns on the network
connectivity, a matrix W = {

Wij
}

in a correlational form is
defined as

Wij = 1

p(1 − p) N C

M∑
η = 1

ξ
η

i ξ
η

j

(
1 − δij

)
, (6)

where C is an additional scaling factor which we choose such
that

∑
ij Wij = N. The structure of this matrix is fixed in time

and depends on the specific set of patterns. If we took the
synaptic weight matrix in the same way, i.e.,

{
Jij
} = {

Wij
}

, the

network would exhibit optimal retrieval quality for the stored pat-
terns η (Tsodyks and Feigel’man, 1988; Tsodyks, 1989). However,
this weight configuration cannot be expected to generate criti-
cal avalanche size distributions. In order to combine criticality
and memory, we therefore start with synaptic weights obtained by
homeostatic learning (or dynamical synapses) and then carefully
push the

{
Jij
}

toward the configuration
{

Wij
}

using the learning
rule

Jij(t + 1) = Jij(t) + εhebb
[
Wij − Jij(t)

]
. (7)

Here, Jij(t) and Jij(t + 1) are respectively the old and the new
synaptic strengths and εhebb � 1 is a learning rate. Note that we
do not apply Equation 7 synchronously for all the synapses but
rather in a stochastic manner with update probability p = 1/N
for each synapse

(
i, j
)
. This is done until the synaptic weight

configuration
{

Jij
}

allows for associative recall of the stored pat-
terns as specified below. We will refer to the episode during which
Equation 7 is applied as Hebbian learning.

A modified learning rule is implemented in the case of dynam-
ical synapses, which is given by

Tmax
ij (t + 1) = Tmax

ij (t) + εhebb

[
u−1Wij − Tmax

ij (t)
]
. (8)

Unlike before, Hebbian learning is not applied to the instanta-
neous values of synaptic efficacies

{
Tij
}

but rather to the maximal

efficacies
{

Tmax
ij

}
. Learning of instantaneous efficacies is not rea-

sonable here as the effect of learning would be erased during the
critical episode because the

{
Tij
}

tend to closely recover to their
maximum values and these do not contain information about the
stored patterns. If, however, the

{
Tmax

ij

}
are structured in a way

similar to the optimal memory configuration
{

Wij
}

, the instan-
taneous efficacies

{
Tij
}

will be affected in favor of the memory
configuration too because they recover during episodes of low

network activity toward the
{

Tmax
ij

}
.

Clearly, we need a criterion that sets the end of the Hebbian
learning episode. This criterion can only be based on the retrieval
quality of the current network state, which is discussed in the
following section.

2.5. RETRIEVAL QUALITY
In order to assess the retrieval (or memory) quality in the network
with the configuration of synaptic strengths

{
Jij(t)

}
, we construct

perturbed versions κη = Q ξη of the stored patterns. The operator
Q selects an active and an inactive neuron at random and swaps
their states, thereby keeping the total number of active neurons
unchanged. Ideally, the network will be able to reconstruct the
original ξη from the κη using the information that is implicitly
stored in the connections. Practically, we can only require that the
network produces a state that has less errors than κη, i.e., that is
closer to the stored pattern than the perturbed version.

In discussing these questions, we will use a simplified model
which was chosen mainly in order to be able to relate to results in
Levina et al. (2007b, 2009) as well as in Bibitchkov et al. (2002). In
addition to the use of binary patterns we will assume a noise-free
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dynamics during retrieval and a fixed threshold. The threshold is
optimized for achieving maximal overlap in the next state which,
however, does not imply an optimal retrieval in the convergent
phase (Bibitchkov et al., 2002). More specifically, upon presenting
a perturbed pattern κη, the network activity will switch to a new
configuration Sη given by

Sη

i

(
κη, �

) = sign

⎛⎝∑
j

Jijκ
η

j − �

⎞⎠, (9)

with � being some threshold. In what follows, we will refer to
Sη as the retrieved pattern. To quantify the overlap between two
binary patterns ξ and κ we use the correlational measure

o(ξ, κ) = 1

N

∑N
i = 1

[(
ξi − mξ

)
(κi − mκ)

]
σξσκ

, (10)

where mξ and mκ denote the mean activities and σξ and σκ are
the standard deviations, respectively. Perfect overlap is obtained
for identical patterns where we have o(ξ,κ) = 1, while we obtain
o(ξ,κ) = 0 for uncorrelated patterns. Thus, the observation that〈

o
(
Sη, ξη

)〉
ξ
− 〈

o
(
κη, ξη

)〉
ξ

> �, (11)

where � is a positive value that sets the minimum required
improvement in (average) overlap 〈o (Sη, ξη)〉ξ compared to the
perturbations, provides evidence that the weight configuration{

Jij
}

indeed contains information about the stored pattern ξη. If
the network realized, in contrast, an identical transformation it
would not achieve an improvement of the overlap, but it could
“remember” a pattern for a short time in a kind of short-term
memory. Typically, we will not only consider a single random
perturbation κη per pattern but many, so that Equation 11
becomes 〈〈

o
(
Sη, ξη

)〉
κ

〉
ξ
− 〈〈

o
(
κη, ξη

)〉
κ

〉
ξ

> �. (12)

In a spiking network also temporal averages need to be included in
order to obtain a consistent measurement of the retrieval quality.
According to the simplifying assumptions above, we will con-
sider only small perturbations which consist in the case of a
finite network in single bit swaps. This is done for two reasons.
First, such perturbations are used in order to concentrate on the
threshold-independent effects of the retrieval dynamics. A per-
turbed pattern cannot be corrected by the choice of a standard
threshold value. Second, near the critical capacity, it is sufficient
to study the ability of the network to correct a single error. This is
due to the reduction of the size of the basins of attraction of the
pattern-related attractor states. As soon as the attractor size has
reached zero even an almost correct pattern will typically deterio-
rate with the dynamics (Equation 9). A persistence of a fixed point
state beyond the capacity limit, but without a basin of attraction,
is easily achieved, e.g., by avoiding any update of the neurons
state, but is not interesting in the present context.

Two comments concerning the threshold � in Equation 9
seem to be in order here. First, we choose this threshold such
that the average overlap

〈〈o (Sη, ξη)〉κ
〉
ξ

is maximal. Second, �

may differ from the threshold θ that we use in the critical regime.
We assume that both thresholds are the result of a specific action
of inhibitory neurons, which we, however, do not model here
explicitly.

2.6. OPTIMIZATION TOWARD CONVERGED STATES
In the previous sections we have outlined how the synaptic
weights evolve during the critical and Hebbian learning episodes,
respectively. The critical episode ends as soon as the sampled
avalanche size distribution is close to a power law (see section
2.3), whereas the following phase of Hebbian learning is stopped
as soon as the network exhibits good retrieval quality of the
stored patterns, when perturbations of the latter are presented.
We measure the retrieval quality after each step of Hebbian learn-
ing and stop if the improvement in average overlap is at least
�hebb. For the sake of reduced numerical complexity, we only
consider one single perturbation for each stored pattern, i.e., we
use Equation 11 instead of Equation 12. After Hebbian learning
is over, the network is driven toward the critical regime again,
employing either homeostatic regulation of synaptic weights or
dynamical synapses, respectively. This alternation between the
two episodes may be interpreted as an optimization scheme and
the delicate question is if convergence toward a state is obtained in
the long run, in which the network is critical and retains an asso-
ciative memory of the stored patterns at the same time. In what
follows, we will refer to these states as converged states.

Whether the network is in a converged state is always checked
after the critical episode is finished and before the next round of
Hebbian learning is started. At this point we already know that
the system is operating at the critical point but we still need to
make sure, that the critical episode has not erased memory of the
stored patterns. We therefore rigorously test the retrieval qual-
ity of the network using Equation 12 with a minimum required
improvement of �conv and take the average over np (np 	 1)
perturbations per pattern. Note that in the case of dynamical
synapses, we assess the retrieval quality of Jij = uTmax

ij in the
Hebbian learning phase, whereas we take Jij = uTij to check for
convergence.

A sketch of the optimization strategy is shown in Figure 1 and
the most important steps are summarized in Algorithm 1 for the
case of homeostatic regulation.

Algorithm 1 | General steps of the optimization strategy for the case

of homeostatic regulation (see text for details).

1. Homeostatic learning of synaptic weights (Equation 3) based on TL

avalanches.

2. Recording of Aava avalanches and their sizes L.

3. Calculate mean squared deviation �γ of size distribution P(L) from
best-fit power law; if �γ < �γmax continue, otherwise restart at step 1.

4. Check for convergence using Equation 12 with � = �conv and
averaging over np (np 	 1) perturbations per pattern; if retrieved states
show large enough overlap with stored patterns, network has
converged; if not, continue with step 5.

5. Hebbian learning of synaptic weights using Equation 7; after each
learning step check retrieval quality according to Equation 11 with
� = �hebb; if retrieval quality good enough start at step 1.
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3. RESULTS
3.1. SPECIFICATIONS OF THE MODEL USED IN THE EXPERIMENTS
In this study we always simulate networks of N = 300 neurons.
Other parameters are summarized in Table 1.

At the beginning of each critical phase we sample A0

avalanches without taking them into account in the avalanche size
distribution P(L). This is done to ensure that the size distribution
is not affected by transient dynamics. The sampling of the distri-
bution is an important contribution to the total simulation time
and was the main limitation of the size of the network. Because
in larger networks also larger avalanches need to be considered,
the sampling time for given �γmax increases faster than quadratic
which was the main reason for our choice of the network size.
Smaller networks, however, are less suitable to store small activity
patterns, see section 3.2.

Apart from that, we consider several trials for each number of
patterns M stored in the network, where each trial uses a different
set of M patterns. Unless otherwise stated, data points are aver-
ages over 10 trials for each M and error bars indicate one standard

FIGURE 1 | Schematic representation of the dual optimization

algorithm.

deviation from the mean. Instead of the number M of stored pat-
terns in the network, we will typically use the load parameter,
defined as α : = M/N.

3.2. MEMORY NETWORK
Before we study networks that include mechanisms to bring about
criticality, we first test pure memory networks. We generate a set
of M random binary patterns, calculate the matrix

{
Wij
}

accord-
ing to Equation 6 and set the network connectivity to Jij = Wij.
The memory quality is then assessed by calculating the aver-
age overlap

〈〈o (Sη, ξη)〉κ
〉
ξ

between the retrieved patterns Sη and

the original patterns ξη (see section 2.5 for details). From here
on, we always take the average 〈.〉κ over np = 1000 randomly
generated perturbations κη of each of the M patterns ξη. The
average overlap is close to 1 up to load parameters α ≈ 0.07
(Figure 2A), indicating perfect retrieval quality of the networks.
Around α ≈ 0.11 it drops below 0.982, which marks the overlap
corresponding to an average deviation of one digit from the orig-
inal pattern. Finally, at α ≈ 0.13 and beyond the network does
not yield retrieved patterns anymore that are closer to the original
patterns than the perturbations.

In Figure 2B we show results of a criticality test for pure mem-
ory networks, where we record Aava avalanches and consider the
mean squared deviation �γ of the size distribution P(L) from the
best-fit power law. Although there is no mechanism in these net-
works to bring about criticality in a self-organized way, we always
choose the normalization C in Equation 6 such that 〈Wij〉 cor-
responds to the critical value of the model with fixed synaptic
weights [see section 2.1 and Eurich et al. (2002)]. We find that for
load parameters α � 0.6 the network is critical. Below this value
it is not critical because the coupling matrix

{
Wij
}

is too sparse,
i.e., many entries are 0. Thus, pure memory networks can become
critical but only in a range of load parameters where the quality
of retrieval or memory is already poor. In the following sections
we show that the critical regime and the memory regime can be
brought into agreement by employing the optimization strategy
described in section 2.6.

The simulation time depends essentially on the load of the net-
work, see Figures 3–5. The numerical complexity of an iteration
step depends linearly on M as all patterns are relearned, while the
other parameters on which it depends are kept fixed here.

3.3. COMBINED HOMEOSTATIC AND HEBBIAN LEARNING
We now consider simulations that include homeostatic regula-
tion as a means to bring about criticality in a self-organized way.

Table 1 | Parameters used in the numerical simulations.

General parameters

Parameter N θ p A0 Aava εhebb �γmax �hebb �conv np

Value 300 1.0 0.1 104 106 0.01 0.005 0.035 0.03 1000

Homeostatic plasticity Dynamical synapses

Parameter TL εhom Ie Parameter ν u Ie

Value 103 0.001 0.0067 Value 10 0.2 0.025
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At the beginning, the
{

Jij
}

are initialized by
{

Wij
}

but will be
modified in the course of the alternating episodes of homeo-
static and Hebbian learning, respectively. The most important
finding we arrive at is the existence of converged states in which
the networks are critical and associative memories of the stored
patterns at the same time. The total number of Hebbian learn-
ing steps needed to arrive at these states significantly increases
with load parameter α (Figure 3A), spanning about two orders

of magnitude. In contrast to the pure memory networks stud-
ied before, criticality is already achieved for small values of α

(Figure 3B).
The retrieval quality of the networks in the converged state is

again assessed by considering the average overlap
〈〈o (Sη, ξη)〉κ

〉
ξ

of the retrieved solutions Sη and the original patterns ξη

(Figure 4A). For small values of α the networks are able to recon-
struct the original patterns almost perfectly. However, the overlap

FIGURE 2 | Performance of pure memory networks in terms of retrieval

quality (left) and criticality (right) as a function of the load parameter α.

Synaptic weights are fixed and defined by
{
Wij

}
. There is neither

homeostatic learning nor activity dependent synapses adaptation. (A)

Average overlap between initially stored patterns and corresponding retrieved
patterns. Averages are taken over 10 trials for each α and error bars indicate

one standard deviation from the mean. (B) Mean squared deviation of
obtained avalanche size distributions from the best-fit power law. The blue
dashed line denotes the threshold �γmax = 0.005, below which avalanche
size distributions can be considered critical. The inset shows an example
avalanche size distribution P(L) obtained in the range of critical load
parameters, along with the slope of the best-fit power law (red dashed line).

FIGURE 3 | Results from networks including Hebbian and homeostatic

learning of synaptic weights, respectively, for different values of the

load parameter α. For each value of α data is taken from 10 trials and
error bars mark one standard deviation from the mean. (A) Total number
of steps in Hebbian learning needed to converge to a state that is
both critical and an associative memory of the stored patterns. The
discontinuity near α ≈ 0.03 appears to be due to the finite size of the
basins of attraction: while for low loading ratios α a basin of attraction of

several bits can be achieved, now only a single bit is corrected in the
course of the learning which is faster achievable than before. (B) Average
mean squared deviation �γ from the best-fit power law. Since all data
points lie below the threshold of �γmax = 0.005 (blue dashed line),
avalanche size distributions are critical over the whole range of α. An
example avalanche size distribution P(L) in the converged state is
illustrated in the inset (red dashed line indicates slope of the best-fit
power law).
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FIGURE 4 | Retrieval performance of networks including Hebbian and

homeostatic learning of synaptic weights, respectively, for different

load parameters α. For each α data is taken from 10 trials and error
bars mark one standard deviation from the mean. (A) Average overlap
between initially stored patterns and corresponding retrieved patterns.
Filled circles include results from converged simulations only, whereas
most simulations in the range of open circles did not converge. For

comparison, the overlaps corresponding to an average deviation of
two digits (dotted line) and one digit (dashed line) from the original
patterns are indicated. (B) Average fraction of patterns for which the
networks yield retrieved patterns with deviation less than one and two
digits, respectively. Filled markers again include converged simulations
only and open markers mainly have contributions from simulations that
did not converge.

is less than in case of the pure memory networks. Compared to
the latter, the decrease in retrieval quality also occurs for smaller
α and is more abrupt. The open circles mark the range of load
parameters, where the majority of simulations does not converge
anymore, because the required increase �hebb in overlap during
the Hebbian learning episode is not reached. Instead, the overlap
saturates so that we stop Hebbian learning, add one last excursion
toward the critical regime and finally finish the simulations after
measuring the retrieval quality.

Since
〈〈o (Sη, ξη)〉κ

〉
ξ

only measures the overlap averaged over

all the M patterns stored in a network, we also assess the over-
lap on the level of single patterns. For this reason we consider the
fraction of patterns stored in a network, that can be reconstructed
from perturbed states with a deviation less than a specified num-
ber of digits (Figure 4B). For the range of load parameters α

where the majority of simulations converge, more than 90% of
the retrieved patterns can be reconstructed with an average devi-
ation less than one digit. (Figure 4A). Also, there are practically
no patterns for which the retrieved states deviate more from
the original patterns, than the perturbations themselves. Even in
the range of load parameters where the average overlap strongly
decreases, there is still a small fraction of patterns which is well
“remembered” by the networks.

3.4. SYNAPTIC DEPRESSION
We now turn to the second synaptic regulatory mechanism that
brings about criticality in our networks (see section 2.3). All the
analysis in this part is done along the lines of the previous sec-
tion, so the only essential difference here is that we substitute
homeostatic learning as the mechanism that drives the network
into the critical regime by dynamical synapses. At the beginning

of the simulations, maximal synaptic resources
{

Tmax
ij

}
are set

equal to 1.4 (uN)−1. Due to Hebbian learning however, struc-
ture in the maximal resources will develop in the course of the
simulations.

Also the model networks considered here evolve toward con-
verged states that are critical and an associative memory at
the same time. While the total number of Hebbian learning
steps needed to converge (Figure 5A) is comparable to homeo-
static learning, the agreement of the avalanche size distributions
with scale-free distributions is better for dynamical synapses
(Figure 5B).

Figure 6 addresses the retrieval quality of the converged
network states for the stored patterns. The average overlap〈〈o (Sη, ξη)〉κ

〉
ξ

is again close to optimal for small values of α and

drops below the overlap of perturbed patterns 〈o (κη, ξη)〉ξ at
α ≈ 0.13 (Figure 6A). This is comparable to what was observed
for the pure memory networks in Bibitchkov et al. (2002) so that
the overlap decreases less quickly than for homeostatic regulation.
This might be attributed to the fact that the structure that was

learned into the maximal efficacies
{

Tmax
ij

}
during episodes of

Hebbian learning is not affected during the critical phase, where
only the

{
Tij
}

are changed. Thus, memory is safely stored within
maximal synaptic efficacies.

4. DISCUSSION
In this study we investigated the interplay between criticality and
memory in neural networks. We showed that Hebbian learning
alone destroys criticality even when the synaptic strength is prop-
erly scaled. Applying an optimization procedure that drives the
synaptic couplings either toward the critical regime or toward
the memory state in an alternating fashion, we finally arrive at
a configuration that is both critical and retains an associative
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FIGURE 5 | Results from networks that are influenced by Hebbian

learning and dynamical synapses, for different values of the load

parameter α. For each α data is taken from 10 trials and error
bars mark one standard deviation from the mean. (A) Total number
of steps in Hebbian learning needed to converge to a state that is
both critical and an associative memory of the stored patterns. (B)

Average mean squared deviation �γ from the best-fit power law.
Since all data points lie below the threshold of �γmax = 0.005 (blue
dashed line), avalanche size distributions are critical over the whole
range of α. The inset shows an example avalanche size distribution
P(L) in the converged state and the red dashed line marks the
slope of the best-fit power law.

FIGURE 6 | Retrieval performance of networks including Hebbian

learning and dynamical synapses for different load parameters α. For
each α data is taken from 10 trials and error bars mark one standard deviation
from the mean. (A) Average overlap between initially stored patterns and
corresponding retrieved patterns. Filled circles include results from converged
simulations only, whereas most simulations in the range of open circles did not

converge. For comparison, the overlaps corresponding to an average deviation
of two digits (dotted line) and one digit (dashed line) from the original patterns
are indicated. (B) Average fraction of patterns for which the networks yield
retrieved patterns with deviation less than one and two digits, respectively.
Filled markers again include converged simulations only and open markers
mainly have contributions from simulations that did not converge.

memory. In the following, we will discuss our findings and
possible implications in more detail.

4.1. QUALITY OF CRITICALITY
The mean squared deviation of the avalanche size distributions
obtained in the converged network states from their best-fit power
law was always smaller than the threshold �γmax = 0.005, pro-
viding evidence that the networks indeed operate at the finite-size
equivalent of a critical point (Levina et al., 2007b). Furthermore,
we did not observe oscillatory features in the avalanche size

distributions. This suggests that the network dynamics circum-
vents the attractors (the stored patterns) that were learned into
the network structure. The explanation of this observation is
probably twofold. First, the majority of activity in the networks
consists of small avalanches whose size is smaller than the total
activity in the stored patterns, so that there is not enough overlap
to be attracted toward the stored patterns. Second, even though
larger avalanches have generations of firing neurons with total
activity close to that of the stored patterns, the likelihood that
they come close enough is very small given the many possible
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configurations. Indeed, we found no evidence that avalanches or
their sub-generations come close to any of the stored patterns
at all during our simulations. There are nevertheless traces of
the pattern structures in the avalanches in the sense that a pair
of neurons that is active in the same pattern is also correlated
in the critical spontaneously active network. Likewise, we con-
sider elevated correlations also between subsequent avalanches.
Although these correlations are not unexpected it is interest-
ing that they do not interfere with the criticalization of the
network.

4.2. QUALITY OF MEMORY AND CAPACITY
To assess the (associative) memory quality in the converged state,
we presented perturbed versions of the initially stored patterns
to the networks which resulted in retrieved patterns. The latter
almost never deviate from the original patterns more than the
perturbed states themselves. More importantly, more than 90%
of the patterns are reconstructed with on average less than one
digit deviation from the original patterns. We may therefore con-
clude that the memory quality of the critical networks is very
good. However, a pure memory network which has couplings
equal to

{
Wij
}

and does not operate at the critical point, still per-
forms better in terms of reconstruction from perturbed patterns.
This might be attributed to the fact that the coupling matrices{

Jij
}

obtained in the converged states are not symmetric any-
more, as opposed to

{
Wij
}

. But symmetry of the coupling matrix
is a major prerequisite for good retrieval quality of traditional
Hopfield networks.

4.3. COMPARING HOMEOSTATIC LEARNING AND DYNAMICAL
SYNAPSES

We have considered two mechanisms that can regulate a neu-
ral network toward criticality (and thus making it truly self-
organized critical). Homeostatic learning regulates synaptic
weights until the branching ratio approaches the critical value.
Dynamical synapses on the other hand represent a biologically
more justified regulatory mechanism, where the critical branch-
ing ratio is reached through the interplay of synaptic depression
and recovery. In the latter model, we found that agreement
between criticality and memory can only be achieved if the
maximal synaptic weights are structured by Hebbian learning.
Homogeneous maximal weights in contrast lead to memory loss
during critical episodes because synaptic resources may recover
to their maximal values which carry no information of the stored
patterns anymore.

4.4. MEMORY STORAGE BY DYNAMICAL SYNAPSES
The apparent contradiction between the classical concept of
memory storage by fixed synaptic efficacies which are modifiable
only by persistent high-rate stimulation on the one hand, and the
realization of adaptive filters based on the short-term dynamics
of synaptic resources has been studied already in Tsodyks et al.
(1998), Bibitchkov et al. (2002), and in more realistic models
in Giudice and Mattia (2001) and Romani et al. (2006). While
initially the contradiction between the two modes of operation
has been studied in Bibitchkov et al. (2002), later the benefits
arising from the combination were uncovered. It is interesting

that the formation of memories which imply a strong structural
modification in the context of attractor networks, can even be
enhanced in accuracy if short-term synaptic plasticity is used in
the model. The finding of critical dynamics in such networks both
supports this view and expands it in the sense that a coexistence
of a retrieval state and a critical exploratory state becomes possi-
ble by dynamical synapses. This suggests a solution of one of the
main problems with attractor networks, namely the conditions
for the escape from attractors. While this can be achieved by an
additional dynamics (Horn and Usher, 1989; Treves, 2005), we
have here a form of dynamics that is purely input-driven when an
input is available, while it is exploratory if this is not the case. It
might be interesting to consider networks with correlated patterns
(see Herrmann et al., 1993) where the two effects can become
intertwined.

4.5. PATTERN-RELATED CORRELATIONS IN THE CRITICAL REGIME
One of the main points here is that the critical state serves as
a ground state of the system which is assumed in the absence
of specific external input. But it is, since the completely inactive
state is absorbing in our model, constantly fed by spatially and
temporally homogeneously distributed external noise. A specific
external input has a large overlap with one of the patterns and a
small overlap with all the other stored patterns. This is a neces-
sary condition of the model, which in order to be relaxed requires
a specific modification. We have dealt with such problems in our
previous papers, but assume here uncorrelated patterns. In this
way the overlap between any two patterns is negligible in theory.
In a finite network this is not necessarily the case, but for a limited
number of patterns the overlaps are smaller than the threshold for
the spill-over into any of the other patterns. In a memory network
below the capacity limit, the activity will therefore be confined to
the pattern which is indicated by the input. The dynamics will
thus not be critical. In a critical network on the other hand, we
conjecture that on short time scales avalanches will be correlated
to the existing patterns. Since, however, all neurons and thus all
patterns receive constantly external input now, the avalanches are
not confined to a pattern but will jump into other patterns on
medium time scales.

4.6. IMPLICATIONS FOR AGING AND MEMORY CONSOLIDATION
Although we have not made this explicit here, the memory
test can be formulated as an informational criterion (Rieke
et al., 1997). The evolution of a network state toward a pattern
decreases the distance and thus also the relative entropy as it is
not known which bits are wrong or missing. Interestingly, the
amount of information (however specified) does not improve
when approaching the critical regime. This is contrary to what
could be expected by considering the informational optimality of
critical neurodynamics (Shew and Plenz, 2012), although the sit-
uation there is not comparable to the present attractor dynamics.
The optimality concerns information capacity (Haldeman and
Beggs, 2005) in the sense that at criticality the entropy of the
state space is maximal (Ramo et al., 2007) with respect to a con-
trol parameter, i.e., the state of the network returns only rarely
to states visited earlier. Obviously, this property is detrimental
to the attractor dynamics of a Hopfield model, which pins the
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state near or at a certain memory state. In large networks, the
number of states far away from any memory state is very large
such that for moderate load a critical dynamics is possible. For
low memory load the dynamics stays preferentially inside the pat-
terns (Dasgupta and Herrmann, 2011) but is similarly expected
to have an entropy maximum near criticality in the absence of a
bias toward one of the patterns.

The network considered here can be characterized by the inter-
play between the attractor dynamics in memory retrieval and
critical dynamics that provides optimal exploration of the state
space. In a system like the human brain, where the number of
memories increases for a large part of the personal history, it
seems that there must be eventual a consequence for the flexi-
bility and the ability to explore new patterns (Schrobsdorff et al.,
2009). Considering, however, that the breakdown of memory at
the critical capacity is not likely to be realistic, the conclusion
that cognitive effects of aging can be explained by the effect of
memory-dependent structure in the network on critical dynam-
ics in the network does not immediately follow from the present
model.

Although we could show here that memory storage and crit-
icality are not irreconcilable, our results support a view that
has been adopted by an increasing number of researchers in
the last decade, namely that memory traces are not necessarily
point attractors but more general dynamics objects (Herrmann
et al., 1995; Natschlaeger et al., 2002; Rabinovich et al., 2008).
In these approaches stability of the memories leads to a reduc-
tion of the capacity, but there may be the possibility of an active
stabilization of the memories not necessarily different from the

regulatory mechanism involved in criticalization. The fact that
the mechanism for criticalization in the network needs to be
counterbalanced by a mechanism for consolidation of the memo-
ries, should thus not be surprising, but it would be interesting to
identify mechanisms that achieve both goals at the same time.

5. CONCLUDING REMARKS
We have demonstrated that criticality can be preserved in an
attractor network if both a memory consolidation process and a
mechanism for regulation toward criticality are present. Among
the different mechanisms for the maintenance of a critical regime,
we found that the dynamics of synaptic resources is both biolog-
ically realistic and effective for criticalization, while their effect
on memory capacity is moderate. Other mechanisms are possi-
ble, but are less easily biologically justifiable and have eventu-
ally a disastrous effect on the memory content unless actively
counteracted. It is necessary to consider the present results in
more realistic network models and under more general learn-
ing paradigms in order to understand better their significance
for the natural and pathological development of biological neural
systems.
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Competitive neural networks are often used to model the dynamics of perceptual
bistability. Switching between percepts can occur through fluctuations and/or a slow
adaptive process. Here, we analyze switching statistics in competitive networks with
short term synaptic depression and noise. We start by analyzing a ring model that yields
spatially structured solutions and complement this with a study of a space-free network
whose populations are coupled with mutual inhibition. Dominance times arising from
depression driven switching can be approximated using a separation of timescales in
the ring and space-free model. For purely noise-driven switching, we derive approximate
energy functions to justify how dominance times are exponentially related to input
strength. We also show that a combination of depression and noise generates realistic
distributions of dominance times. Unimodal functions of dominance times are more
easily told apart by sampling, so switches induced by synaptic depression induced
provide more information about stimuli than noise-driven switching. Finally, we analyze
a competitive network model of perceptual tristability, showing depression generates a
history-dependence in dominance switching.

Keywords: binocular rivalry, neural field, ring model, bump attractor, short term depression

INTRODUCTION
Ambiguous sensory stimuli with two interpretations can produce
perceptual rivalry (Blake and Logothetis, 2002). For instance,
presenting two orthogonal gratings to either eye results in
perception switching between gratings repetitively—binocular
rivalry (Leopold and Logothetis, 1996). Perceptual rivalry can
also be triggered by a single stimulus with two interpretations,
like the Necker cube (Orbach et al., 1963). The switching process
in perceptual rivalry is considerably stochastic—a histogram
of the dominance times of each percept spreads across a broad
range (Fox and Herrmann, 1967). Senses other than vision
also exhibit perceptual rivalry. When two different odorants
are presented to the two nostrils, a similar phenomenon occurs
with olfaction, termed “binaral” rivalry (Zhou and Chen, 2009).
Similar experiences have been evoked in the auditory (Deutsch,
1974; Pressnitzer and Hupé, 2006) and tactile (Carter et al., 2008)
system.

Several principles govern the relationship between the strength
of ambiguous stimuli and the mean switching statistics in percep-
tual rivalry (Levelt, 1965). “Levelt’s propositions” relate stimulus
contrast to the mean dominance times: (1) increasing the contrast
of one stimulus increases the proportion of time that stimulus
is dominant; (2) increasing the contrast of one stimulus does
not affect its average dominance time; (3) increasing the con-
trast of one stimulus increases the rivalry alternation rate; and (4)
increasing the contrast of both stimuli increases the rivalry alter-
nation rate. Properties of the input also affect the stochastic varia-
tion in the dominance times (Brascamp et al., 2006). For instance,
a histogram of dominance times is well fit by a gamma distri-
bution (Fox and Herrmann, 1967; Lehky, 1995; van Ee, 2009).

The fact that dominance times are not exponentially distributed
suggests some background slow adaptive process plays a role in
providing a non-zero peak in the dominance histograms (Shpiro
et al., 2009). Two commonly proposed mechanisms for this adap-
tation are spike frequency adaptation and short term synaptic
depression (Laing and Chow, 2002; Wilson, 2003; Shpiro et al.,
2007). A stronger case can be made for the existence of adaptation
in perceptual processing networks by examining results of exper-
iments on perceptual tristability (Hupe, 2010). Here, perception
alternates between three possible choices and subsequent switches
are determined by the previous switch (Naber et al., 2010). This
memory suggests switches in perceptual multistability are not
purely noise-driven (Moreno-Bote et al., 2007).

Most theoretical models of perceptual rivalry employ two
pools of neurons, each selective to one percept, coupled to one
another by mutual inhibition (Matsuoka, 1984; Laing and Chow,
2002; Shpiro et al., 2007; Seely and Chow, 2011). With no other
mechanisms at work, such architectures lead to winner-take-all
states, where one pool of neurons inhibits the other indefinitely
(Wang and Rinzel, 1992). However, switches between the domi-
nance of one pool and the other can be initiated with the inclusion
of fluctuations (Moreno-Bote et al., 2007) or an adaptive pro-
cess (Laing and Chow, 2002; Shpiro et al., 2007). Combining the
two mechanisms leads to dominance times that are distributed
according to the gamma distribution (Laing and Chow, 2002;
Shpiro et al., 2009; van Ee, 2009). Thus, slow adaptation and
noise allow sampling of the stimulus through changes in network
activity.

In light of these observations, we wish to consider the
role adaptive mechanisms play in properly sampling ambiguous
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stimuli in a mutual inhibitory network. Two stimuli of differ-
ent orientations are presented to the network (Levelt, 1965).
The network outputs a time-dependent, orientation-dependent
firing rate, whose peak switches between two locations deter-
mined by the two stimuli. We think of the information output
by the network as a series of dominance times. We will study
how well the relative strength of the two stimuli (information)
is encoded by the amount of time each subpopulation remains
active during a dominance period (Levelt, 1965; Moreno-Bote
et al., 2007). Purely fluctuation driven switching provides a noisy
sample of the two percepts, but adaptation driven switching pro-
vide an extremely reliable sampling of percept contrast (Shpiro
et al., 2009). As the level of adaptation is increased and noise is
decreased, mutual inhibitory networks encode information about
ambiguous stimuli better. We focus specifically on the adap-
tive mechanism of short term synaptic depression (Tsodyks and
Markram, 1997).

Using parameterized models, we will explore how synaptic
depression improves the ability of a network to extract stim-
ulus contrasts. First, we study how much information can be
determined about the contrast of each of the two percepts of
an ambiguous stimulus. In the case of a winner-take-all solution,
only information about a single percept can be known, since the
pool of neurons encoding the other percept is quiescent. We will
study this using an anatomically motivated neural field model
of an orientation column with synaptic depression (York and
van Rossum, 2009; Kilpatrick and Bressloff, 2010a). Increasing
the strength of synaptic depression leads to a bifurcation which
produces rivalrous oscillations. When rivalrous switching occurs
through a combination of depression and noise, we show stronger
depression improves the transfer of information. We also ana-
lyze a reduced network model with depression and noise to help
study the combined effects of noise and depression on perceptual
switching. Finally, we study perceptual tristability as oscillations
generated in a three population network, where each population
spends time in dominance. This shows depression generates a his-
tory dependence in switching that would not arise in the network
with purely noise-driven switching.

MATERIALS AND METHODS
RING MODEL WITH SYNAPTIC DEPRESSION
As a starting point, we consider a model for processing the
orientation of visual stimuli (Ben-Yishai et al., 1995; Bressloff
and Cowan, 2002) which also includes short term synap-
tic depression (York and van Rossum, 2009; Kilpatrick and
Bressloff, 2010a). Since GABAergic inhibition is much faster than
AMPA-mediated excitation (Kawaguchi and Kubota, 1997), we
assume that inhibition is slaved to excitation as in Amari (1977).
Reduction this disynaptic pathway and assuming depression
acts on excitation (Tsodyks and Markram, 1997), we then have
the model

τmu̇ = −u(x, t) + w ∗ (qf (u)) + I(x) + ξ(x, t), (1a)

τq̇ = 1 − q(x, t) − βq(x, t)f (u(x, t)). (1b)

Here u(x, t) measures the synaptic input to the neural population
with stimulus preference x ∈ [−π/2, π/2] at time t, evolving

on the timescale τm. Synaptic interactions are described by the
integral term

w ∗ (qf (u)) =
∫ π/2

−π/2
w(x − y)q(y, t)f (u(y, t))dy,

so w(x − y) describes the strength (amplitude of w) and net
polarity (sign of w) of synaptic interactions from neurons with
stimulus preference y to those with preference x. The modulation
of the synaptic strength is given by the cosine

w(x − y) = cos(2(x − y)), (2)

so neurons with similar orientation preference excite one another
and those with dissimilar orientation preference disynaptically
inhibit one another (Ben-Yishai et al., 1995; Ferster and Miller,
2000). The factor q(x, t) measures of the fraction of available
presynaptic resources, which are depleted at a rate βf (Tsodyks
and Markram, 1997), and are recovered on a timescale specified
by the time constant τ (Chance et al., 1998). Firing rates are given
by taking the gain function f (u) of the synaptic input, which we
usually proscribe to be (Wilson and Cowan, 1973)

f (u) = 1

1 + e−γ(u−κ)
, (3)

and often take the γ → ∞, so (Amari, 1977)

f (u) = H(u − κ) =
{

0 : u < κ,

1 : u ≥ κ.
(4)

External input, representing flow from upstream in the visual
system is prescribed by the time-independent function I(x)
(Ben-Yishai et al., 1995; Bressloff and Cowan, 2002). For the
majority of our study of Equation (1), we employ the bimodal
stimulus

I(x) = −I0 cos(4x) + Ia sin(2x), (5)

representing stimuli at the two orthogonal angles −π/4 and
π/4 and I0 controls the mean of each peak and Ia controls
the level of asymmetry between the peaks. Effects of noise are
described by the stochastic process 〈ξ(x, t)〉 with 〈ξ(x, t)〉 = 0
and 〈ξ(x, t)ξ(y, s)〉 = C(x − y)δ(t − s), and spatial correlations
are take to have a cosine profile C(x) = π cos(x).

We assume units of time t to be 10 ms each. Excitatory synap-
tic time constants are roughly 10 ms (Häusser and Roth, 1997),
so we set τm = 1 (10 ms). Experimental observations have shown
synaptic resources specified q are recovered on a timescale of 200–
800 ms (Tsodyks and Markram, 1997), so we require τ is between
20 and 80, usually setting it to be τ = 50. Our parameter β can
then be varied independently to adjust the effective depletion rate
of synaptic depression. In our numerical simulations, we typically
use the winner-take-all state as the initial condition.

IDEALIZED COMPETITIVE NEURAL NETWORK
We also study space-free competitive neural networks with
synaptic depression (Shpiro et al., 2007). As a general model of
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networks connected by mutual inhibition, we consider the system
(Laing and Chow, 2002; Moreno-Bote et al., 2007; Shpiro et al.,
2007)

u̇R = −uR(t) + f (IR − qL(t)uL(t)) + ξ1(t), (6a)

u̇L = −uL(t) + f (IL − qR(t)uR(t)) + ξ2(t), (6b)

τq̇R = 1 − qR(t) − βuR(t)qR(t), (6c)

τq̇L = 1 − qL(t) − βuL(t)qL(t), (6d)

where uj(t) represents the firing rate of the j = L, R population.
The resource usage rate by synapse projecting from population
j = L, R is specified by βujqj and the resource recovery timescale is
τ. Fluctuations are introduced into population j with the indepen-
dent white noise processes ξj with 〈xj(t)〉 = 0 and 〈ξj(t)ξj(s)〉 =
εδ(t − s). Units of time are taken to be 10 ms each. In numeri-
cal simulations, uj(0) are initialized by randomly drawing from a
uniform distribution on [0, 1]; qj(0) are initialized by randomly
drawing from a uniform distribution on [1/(1 + β), 1].
NUMERICAL SIMULATION OF STOCHASTIC DIFFERENTIAL EQUATIONS
The spatially extended model (Equation 1) is simulated using
an Euler–Maruyama method with a timestep dt = 10−4, using
Riemann integration on the convolution term with 2000 spatial
grid points. A population is considered dominant if the peak
of its activity bump is higher than the other; switches occur
when the other bump attains a higher peak. The reduced net-
work (Equation 6) was also simulated using Euler–Maruyama
with a timestep dt = 10−6. Population j is considered domi-
nant when uj > uk (j 	= k); switches occur when the inequality
switches direction. To generate histograms of dominance times,
we simulated systems for 20,000s.

FITTING DOMINANCE TIME DISTRIBUTIONS
To generate the theoretical curves presented for exponentially
distributed dominance times, we simply take the mean of
dominance times and use it as the scaling in the exponential
(Equation 28). For those densities that we presume are gamma
distributed, we solve a linear system to fit the constants c1, c2,
and c3 of

f (T) = ec1 Tc2e−c3T (7)

an alternate form of Equation (30). Upon taking the logarithm of
Equation (7), we have the linear sum

ln f (T) = c1 + c2 ln T − c3T. (8)

Then, we select three values of the numerically generated
distribution pn(Tn) along with its associated dominance
times: (Tn

1 , pn
1); (Tn

2 , pn
2); (Tn

3 , pn
3) where pn

j = pn(Tn
j ). We

always choose Tn
2 = arg maxT pn(T) as well as Tn

1 = Tn
2 /2 and

Tn
3 = 3Tn

2 /2. It is then straightforward to solve the linear system⎛⎝ 1 ln Tn
1 −Tn

1

1 ln Tn
2 −Tn

2

1 ln Tn
3 −Tn

3

⎞⎠⎛⎝ c1

c2

c3

⎞⎠ =
⎛⎝ ln pn

1

ln pn
2

ln pn
3

⎞⎠
using the\command in MATLAB.

RESULTS
We now present results that reveal the importance of synaptic
depression in preserving information about bimodal stimuli. No
previous work, to our knowledge, has studied how activity in a
ring model with depression (Equation 1) can be collapsed to a
low dimensional oscillation. The oscillation results from a com-
bination of depression and mutual inhibition, which produces
population dominance times and can thus be sampled to give
information about the strength of the stimulus that produced
them. Once noise is added to these low dimensional oscillations,
dominance time distributions still remain relatively tight, which
can be sampled to infer relative contrasts of each input. We con-
trast this with a previous cue orientation selective model which
used a heterogeneous population of spiking neurons with lat-
eral inhibition and slow adaptation, so chaos rather than noise
produced apparent stochasticity in dominance times (Laing and
Chow, 2002). We can use an energy function for a reduced system
to approximate the relative effect of depression and noise on dom-
inance times. These energy methods are also useful in the study of
perceptual tristability, where we also show depression introduces
a history dependence in dominance transitions.

DETERMINISTIC SWITCHING IN THE RING MODEL
To start we consider the ring model with depression (Equation 1)
in the absence of noise, so ξ ≡ 0. In previous work, noise-free
versions of Equation (1) have been analyzed to explore how
synaptic depression can generate traveling pulses (York and van
Rossum, 2009; Kilpatrick and Bressloff, 2010b), self-sustained
oscillations (Kilpatrick and Bressloff, 2010b), and spiral waves
in two-dimensions (Kilpatrick and Bressloff, 2010c). Here, we
will extend previous work that explored input-driven oscillations
in two-layer networks possessing statistics matching binocular
rivalry (Kilpatrick and Bressloff, 2010a). We think of Equation (1)
as a model of monocular rivalry, since oscillations can be due
to competition between representations in a single orientation
column (Ben-Yishai et al., 1995). Competition between ocular
dominance columns (Kilpatrick and Bressloff, 2010a) is not nec-
essary for our theory. For exposition, we will employ specific
functional forms: cosine weight (Equation 2); a Heaviside firing
rate function (Equation 4); and a bimodal input (Equation 5).

Winner take all state
We now look for winner-take-all solutions, as shown in
Figure 1A. These states consist of a single activity bump arising
in the network, representing only one of the two percepts con-
tained in the bimodal stimulus (Equation 5). These are station-
ary in time, so ut = qt = 0, implying u = U(x) and q = Q(x).
Also, they are single bump solutions, so there is a single region
x ∈ (π/4 − a,π/4 + a) that is superthreshold (U(x) > κ). The
parameter a is the half-width of the bump. We assume the right
stimulus is represented by a bump, although we can derive analo-
gous results when the left stimulus is represented. The steady state
solution is then determined

U(x) =
∫ π/4 + a

π/4 − a
cos(2(x − y))Q(y)dy − I0 cos(4x)

+ Ia sin(2x), (9)
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Q(x) = [1 + βH(U(x) − κ)]−1 , (10)

so by plugging Equation (10) into (9) and using cos(2(x − y)) =
cos(2x) cos(2y) + sin(2x) sin(2y) we have

U(x) = A cos(2x) + (B + Ia) sin(2x) − I0 cos(4x),

where the constants A, B can be computed

A = 1

1 + β

∫ π/4 + a

π/4 − a
cos(2x)dx = 0,

B = 1

1 + β

∫ π/4 + a

π/4 − a
sin(2x)dx = sin(2a)

1 + β
.

Therefore, by simplifying the threshold condition,
U(π/4 ± a) = κ, we have

U(π/4 ± a) = sin(4a)

2(1 + β)
+ I0 cos(4a) + Ia cos(2a) = κ. (11)

The implicit Equation (11) can be solved numerically using root
finding algorithms. For symmetric inputs (Ia = 0), we can solve
(Equation 11) explicitly

a = 1

2
tan−1

⎡⎣1 ±
√

1 + 4(1 + β)2(I2
0 − κ2)

2(1 + β)(I0 + κ)

⎤⎦ , (12)

and winner-take-all solutions take the form

U(x) = sin(2a)

1 + β
sin(2x) − I0 cos(4x) + Ia sin(2x). (13)

With this solution, we can relate the parameters of the model to
the existence of the winner-take-all state. To do so, we need to
look at a second condition that must be satisfied, U(x) < κ for
all x /∈ (π/4 − a,π/4 + a). Since the function (Equation 13) is
bimodal across (−π/2,π/2), we check the other possible local

maximum at x = −π/4 as

U(π/4) = I0 − Ia − sin(2a)

1 + β
< κ. (14)

At the point in parameter space where the Equation (14) is
violated, a bifurcation occurs, so the winner-take-all state
ceases to exist. This surface in parameter space is given by
the equation

I0 = κ + Ia + sin(2a)

1 + β
, (15)

along with the explicit formula for the bump half-width
(Equation 12). Beyond the bifurcation boundary (Equation 15),
one of two behaviors can occur. Either there is a symmetric two-
bump solution that exists, the fusion state (Wolfe, 1986; Blake,
1989; Shpiro et al., 2007), or rivalrous oscillations (Levelt, 1965;
Blake and Logothetis, 2002).

Fusion state
Experiments on ambiguous stimuli have shown sufficiently
strong contrast rivalrous stimuli can be perceived as a sin-
gle fused image (Blake, 1989; Buckthought et al., 2008). This
should not be surprising, considering stereoscopic vision and
audition behave in exactly this way (Wolfe, 1986). However, the
contrast necessary to evoke this state with dissimilar images is
much higher than with similar images (Blake and Logothetis,
2002). The fusion state (Figure 1C) is represented as two
disjoint bumps. Therefore

U(x) = 1

1 + β

[∫ −π/4 + b

−π/4 − b
+
∫ π/4 + a

π/4 − a

]
cos(2(x − y))dy

−I0 cos(4x) + Ia sin(2x).

Computing the integrals, we find

U(x) = S(x, a) − S(x, b)

1 + β
− I0 cos(4x) + Ia sin(2x), (16)

FIGURE 1 | Three possible active states of the noise-free stimulus

driven ring model with depression (Equation 1). (A) Winner take
all (I0 = 0.6) defined by the bump half-width a; (B) Rivalrous

oscillations (I0 = 0.84); (C) Fusion (I0 = 1), where initial condition is
(Equation 16). Other parameters are κ = 0.5, β = 1, and
τ = 50.
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where S(x, y) = sin2(x + y) − sin2(x − y). Requiring the thresh-
old conditions U(−π/4 ± b) = U(π/4 ± a) = κ are satisfied,

C(a, b)

1 + β
+ I0 cos(4a) + Ia cos(2a) = κ,

C(b, a)

1 + β
+ I0 cos(4b) − Ia cos(2b) = κ,

where C(x, y) = cos(2x)[sin(2x) − sin(2y)], which implicitly
relates parameters to the half-widths a, b of each bump. We will
now study rivalrous oscillations by simply constructing them
using a fast-slow analysis.

Rivalrous oscillations
Oscillations can occur, where the two bump locations trade dom-
inance successively (Figure 1B). We will show Levelt’s proposition
(i) holds; increasing the contrast of a stimulus (Figures 2A–C)
increases the proportion of time that stimulus is dominant
(Figures 2D–F). This information is not revealed when the sys-
tem is stuck in a winner-take-all state. Thus, synaptic depression
can unmask otherwise hidden stimuli. We will also examine how
well the noise-free version of Equation (1) recapitulates Levelt’s
other propositions concerning the mean dominance of percepts.

To study oscillations, we assume that the timescale of
synaptic depression τ � τm, is long enough that we can decom-
pose (Equation 1), with ξ ≡ 0, into a fast and slow system

FIGURE 2 | Dependence of rivalry dominance times on the amplitudes

of the bimodal input (Equation 5). (A–C) Various profiles of the
external input I(x), showing only positive part. Increasing I0 increases
both peaks; increasing Ia decreases the left and increases the right peak.
(D–F) Rivalrous oscillations in the neural activity u(x, t) corresponding to
the input in (A–C). Dominance times decrease from (D) to (E) since the
input amplitude increases from (A) to (B). (F) Dominance time of right
input (red bar : TR ≈ 0.9 s) is longer than left (blue bar : TL ≈ 0.6 s) for

asymmetric input in (C). (G) Increasing the strength of the symmetric
(Ia = 0) bimodal input (Equation 5) decreases the dominance time T of
both populations. Our theory (black) computed from fast-slow analysis
(Equation 19) fits results of numerical simulations (blue) well. (H) For
asymmetric inputs (Ia 	= 0), we find that varying IR = I0 + Ia while keeping
IL = I0 − Ia fixed changes the dominance times of the left percept TL

(blue) much more than that of the right percept TR (red). Other
parameters are κ = 0.5, β = 1, and τ = 50.

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 85 | 57

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kilpatrick Information transfer in perceptual multistability

(Laing and Chow, 2002; Kilpatrick and Bressloff, 2010a).
Synaptic input u then tracks the slowly varying state of the
synaptic scaling term q. We have also verified in simulations
q is essentially piecewise constant in space, in the case of the
Heaviside non-linearity (Equation 4), which yields

u(x, t) ≈
∫ π/2

−π/2
cos(2(x − y))q(y, t)H(u(y, t) − κ)dy

− I0 cos(4x), (17)

and q is governed by Equation (1b). To start, we will also assume a
symmetric bimodal input (Ia = 0). This way, we can simply track
q in the interior of one of the bumps, given qi(t) = q(π/4, t).
Solving the resulting piecewise system of differential equations,
we can derive an implicit formula for

q0 = 1

1 + β
+ β

1 + β
e−T/τ − (1 − q0)e−2T/τ, (18)

the value of the synaptic depression variable inside a bump just
prior to a switch. We can rearrange (Equation 18) to yield a
formula for the dominance time

T = τ ln

[
β +√

β2 − 4(1 + β)(1 − q0)[(1 + β)q0 − 1]
2(1 + β)q0 − 2

]
,

(19)

so that we now must specify the value q0. We can examine the fast
Equation (17), solving for the form of the slowly narrowing right
bump during its dominance phase

u(x, t) = qi(t)
[
sin2(x + a(t)) − sin2(x − a(t))

]
− I0 cos(4x). (20)

We solve for the slowly changing width a(t) by enforcing the
threshold condition u(π/4 ± a(t), t) = κ and using trigonomet-
ric identities to find

a(t) = 1

2
tan−1

⎡⎣qi(t) +
√

qi(t)2 + 4(I2
0 − κ2)

2(I0 + κ)

⎤⎦ . (21)

We can also identify the maximal value of qi(t) = q0 which still
leads to the right bump suppressing the left. Once qi(t) falls below
q0, the other bump escapes suppression, flipping the dominance
of the current bump. This is the point at which the other bump
of Equation (20) rises above threshold, as defined by the equation
I0 − q0 sin(2a0) = κ. Combining this with Equation (21) and
solving the resulting algebraic equation, we find

q0 = 2I0
√

(I0 − κ)(3I0 + κ)

3I0 + κ
. (22)

The amplitude of synaptic depression is excluded from
Equation (22), but we know q0 ∈ ([1 + β]−1, 1). This establishes
a bounded region of parameter space in which we can expect to
find rivalrous oscillations, which we use to construct a partition-
ing of parameter space in Figure 3. We can also now approximate
the dominance time using Equation (19) with (22), as shown in
Figure 2G.

In the case of an asymmetric bimodal input (Ia > 0), we can
also solve for explicit approximations to the dominance times
of the right TR and left TL populations. Following the same
formalism as for the symmetric input case

TR = τ ln

⎡⎣Q+ +
√

Q2+ − BR

2(1 + β)qR − 2

⎤⎦ , (23)

TL = τ ln

⎡⎣Q− +
√

Q2− − BL

2(1 + β)qL − 2

⎤⎦ , (24)

where Q± = β ± (1 + β)(qR − qL) and BR,L = 4(1 + β)(1 −
qL,R)[(1 + β)qR, L − 1], in terms of the local values qL and qR

of the synaptic scaling in the right and left bump immediately
prior to their suppression. Notice when qL = qR, then qd = 0
and Equations (23) and (24) reduce to Equation (19). We now
need to examine the fast Equation (17) to identify these two
values. This is done by generating two implicit equations for
the half-width of the right bump aR and qR at the time of a
switch

qR

2
sin(4aR) + I0 cos(4aR) + Ia cos(2aR) = κ,

I0 − Ia − qR sin(2aR) = κ,

FIGURE 3 | Partition of parameter space (β, I0) into various

stimulus-induced states of (Equation 1) when ξ ≡ 0, κ = 0.5, and

τ = 50.
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which we can solve explicitly for

aR = 1

2
cos−1

[
κ

2I0
+ 1

2

]
,

and

qR = 2I0(IL − κ)√
(3I0 + κ)(I0 − κ)

, (25)

where IL = I0 − Ia is the strength of input to the left side of the
network. Likewise, we can find the value of the synaptic scaling in
the left bump immediately prior to its suppression

qL = 2I0(IR − κ)√
(3I0 + κ)(I0 − κ)

, (26)

where IR = I0 + Ia is the strength of input to the right side of
the network. Using the expressions (25) and (26) we can now
compute the dominance time formulae (23) and (24), show-
ing the relationship between inputs and dominance times in
Figure 2H. Notice that all of Levelt’s propositions are essentially
satisfied. Changing the strength of the right stimulus IR has a
very weak effect on the dominance time of the right percept.
Thus, dominance times obey the classic description of Levelt’s
second proposition (Levelt, 1965). Recent evidence does suggest
this only holds at high contrast (Brascamp et al., 2006), and our
study is consistent with this since inputs are high contrast here,
since it lies just below a fusion state. This is characteristic of
competitive networks whose switches occur via an escape mecha-
nism (Wang and Rinzel, 1992; Shpiro et al., 2007), whereby the
suppressed population comes on and overtakes the previously
dominant population.

Finally, we demonstrate how the strength of a symmetric
input I0 and strength of depression β lead to different behaviors
of the network (Equation 1) in Figure 3. For weaker synap-
tic depression strength β, there is a narrower range of stim-
ulus strengths I0 for which rivalrous oscillations exist. When
synaptic depression is sufficiently strong, the range of I0 that
leads to a winner-take-all state narrows. For sufficiently strong
I0, increasing β leads to a network that reveals a piece of
the stimulus that would otherwise be kept hidden. As we
will show, synaptic depression helps the network reveal stim-
ulus information in a way that is much more reliable than
noise.

PURELY STOCHASTIC SWITCHING IN THE RING MODEL
We will now study rivalrous switching brought about by fluctua-
tions. In particular, we ignore depression and examine the noisy
system

u̇(x, t) = −u(x, t) + w ∗ f (u) + I(x) + ξ(x, t). (27)

where 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(y, s)〉 = εC(x − y)δ(t − s)
defines the spatiotemporal correlations of the system. Since
there is no synaptic depression in the model (Equation 27), no
deterministic mechanisms will generate switches between one

winner-take-all state and another. Thus, consider the effects
of introducing a small amount of noise (0 < ε � 1), reflec-
tive of synaptic fluctuations, with spatial correlation function
C(x) = cos(x). Noise generates switches in between the two
dominant states (Figure 4A). Activity of neurons not driven
by the stimulus remains close to zero even during dominance
switching. There will be no mixing of the two inputs in the
networks representation of the stimulus. Dominance switching
occurs via an escape mechanism (Wang and Rinzel, 1992),
whereby noise drives the suppressed population on, which
in turn suppresses the dominant population. As opposed to
depression-induced switching, there is an exponential spread
in the possible dominance times for a given set of parameters
(Figure 4B). By sampling two dominance times back to back, it
may be difficult to tell if the input strengths are roughly the same
or not.

We now explore the task of discerning the relative contrasts of
the two stimuli IR and IL based on samples of the dominance time
distributions. Notice in Figure 5 that the likelihood assigned to
IR > IL approaches 1/2 as the number of observations n increases.

FIGURE 4 | Noise-induced switching of dominance in the

depression-free ring model (Equation 27). (A) Numerical simulations of
the system for I0 = 0.9 and Ia = 0 in bimodal input (Equation 5). (B)

Distribution of dominance times computed numerically (blue bars) with the
exponential distribution (Equation 28) with numerically computed mean
〈T 〉 ≈ 0.70 s (red) superimposed for I0 = 0.9. Other parameters are κ = 0.5
and ε = 0.04.
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We compute p[IR > IL|T∗(n)], the predicted probability IR > IL

based on sampling dominance time pairs from n cycles T∗(n) =
{T(1)

R , T(1)
L ; T(2)

R , T(2)
L ; . . . ; T(n)

R , T(n)
L }. As n → ∞, the exponen-

tial distributions approximately defining the identical probability

FIGURE 5 | Predicted probability right input IR is higher than the left

input IL, based on the sampling n cycles (2n switches between

percepts), for symmetric inputs IL = IR = 0.9. After 2000 cycles,
p[IR > IL|T ∗(n)] ≈ 0.5. Other parameters are κ = 0.5 and ε = 0.04.

densities pR(TR) = pL(TL) = p(T) are fully sampled and p(IR >

IL|T∗(∞)) = 1/2, as in Figure 5.
We explore this further in the case of asymmetric inputs,

showing dominance times are still specified by exponential dis-
tributions as shown in Figure 6. Despite the fact IR > IL, the
exponential distributions p(TR) and p(TL) still have substantial
overlap, so sampling from these distributions can yield TR < TL.
Using such a sample to guess the ordering of amplitudes IR

and IL would yield IR < IL, rather than the correct IR > IL. In
terms of conditional probabilities, we expect situations where
p(IR > IL|T∗(n)) < 1/2 for finite n, even though IR > IL. We can
quantify this effect numerically, as shown in Figure 6B. Since the
marginal distributions are approximately exponential

pj(Tj) = e−Tj/〈Tj〉/〈Tj〉 j = L, R, (28)

we can approximate the conditional probability

p[IR > IL|T∗(∞)] =
∫ ∞

0

∫ x

0
pR(x)pL(y)dydx

= 〈TR〉
〈TR〉 + 〈TL〉 . (29)

Using Equation (29), we can estimate the limit p(IR > IL|T∗(∞))

(Figure 6B). Recent psychophysical experiments suggest humans

FIGURE 6 | Purely noise-induced switching in the stochastic neural field

(Equation 27). (A) Single realization of (Equation 27) with asymmetric inputs
IR = 0.92 and IL = 0.88, leads to longer dominance times for right percept
TR . (B) Likelihood p[IR > IR |T ∗(n)] that the right input IR is stronger than left
IL based on n comparisons of dominance times TR and TL sampled. Upper
gray line is theoretical prediction (Equation 29) of the limit n → ∞. (C)

Numerically computed dominance time distributions (blue bars) are well fit by

the exponential distribution (Equation 28) for the left (〈TL〉 ≈ 0.5 s) and right
(〈TR 〉 ≈ 1 s) percepts. (D) Dependence of mean dominance times 〈TR 〉 and
〈TL〉 on the strength of the right input IR when IL = 0.9. Black curves are best
fits to exponential functions of IR . (E) Expected likelihood p[IR > IL |T ∗(∞)]
right input IR is stronger than left IL in the limit of high sample number
n → ∞, as computed theoretically by Equation (29). Other parameters are
κ = 0.5, and ε = 0.04.
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would perform this task of contrast differentiation of bistable
images in this way (Moreno-Bote et al., 2011).

We also see the mean dominance times still obey Levelt’s
propositions (Figure 6D). Thus, comparing the mean dominance
times 〈TR〉 and 〈TL〉 provides very precise information about the
ordering of contrasts IR and IL. However, when comparing suc-
cessive dominance times, accurately discerning the relative input
contrasts is more difficult. This becomes more noticeable when
the input contrasts are quite close to one another, as in Figure 6E.
We will explore now how introducing depression along with noise
improves discernment of the input contrasts by an observer using
simple comparison of dominance times.

SWITCHING THROUGH COMBINED DEPRESSION AND NOISE
We now study the effects of combining noise and depression in
the full ring model of perceptual rivalry (Equation 1). Numerical
simulations of Equation (1) reveal that noise-induced switches
occur robustly, even in parameter regimes where the noise-free
system supports no rivalrous oscillations, as shown in Figure 7.
Rather than dominance times being distributed exponentially,
they roughly follow a gamma distribution (Fox and Herrmann,
1967; Lehky, 1995)

pj(Tj) = 1

σ k�(k)
Tk

j exp
[−Tj/σ

]
, k > 1, (30)

which is peaked away from zero at Tj = kσ , the mean of the dis-
tribution. We show two gamma distributions of dominance times
with different means can be more easily discerned than two expo-
nential distributions. Gamma distributions with different means
are better separated than two exponential distributions. We sum-
marize how this separation improves the inference of relative
contrast in Figure 8. As the strength β of depression is increased
discernment of relative contrast from sampling dominance time
distributions is improved. The likelihood assigned to IR being
greater than IL is a sigmoidal function of IR whose steepness
increases with β. For no noise, the likelihood function is simply
a step function H(IR > IL), implying perfect discernment.

ANALYZING SWITCHING IN A REDUCED MODEL
We now perform similar analysis on a reduced network model
(Equation 6) and extend some of the results for the ring model.
We can construct an energy function (Hopfield, 1984), which
provides us with intuition as to the exponential dependence of
mean dominance times on input strengths in the noise-driven
case. In particular, we analyze Equation (6) where the firing rate
function is Heaviside (Equation 4), starting with the case of no
noise

u̇R = −uR + H(IR − qLuL), (31a)

u̇L = −uL + H(IL − qRuR) (31b)

FIGURE 8 | Comparing the probability densities of dominance times in

the stochastic ring model with depression (Equation 1). Expected
likelihood p[IR > IR |T ∗(∞)] the right input IR is stronger than the left IL
based in the limit of an infinite number of samples of the dominance times
TR and TR for the parameters: β = 0, ε = 0.04 (pink); β = 0.2, ε = 0.01
(magenta); and β = 0.4 and ε = 0.0025 (red). Other parameters are τ = 50
and κ = 0.5.

FIGURE 7 | Switching in the stochastic ring model with depression

(Equation 1) with asymmetric inputs (Ia > 0). (A) Single realization for
asymmetric inputs with IR = 0.92 and IL = 0.88, which leads to right percept
dominating longer. (B) Distribution of left percept dominances times pL(TL)

over 1000 s is well fit by a gamma distribution (Equation 30). (C) Distribution
of right percept dominance times pR(TR) across 1000 s is well fit by a
gamma distribution (Equation 30). Other parameters are κ = 0.5, β = 0.2,
τ = 50, and ε = 0.01.
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τq̇R = 1 − qR − βuRqR, (31c)

τq̇L = 1 − qL − βuLqL. (31d)

First, we note Equation (31) has a stable winner-take-all solu-
tion in the jth population (j = R, L) for Ij > 0 and Ik < 1/(1 + β)

(k 	= j). Second, a stable fusion state exists when both IL, IR >

1/(1 + β). Coexistent with the fusion state, there may be rival-
rous oscillations, as we found in the spatially extended system
(Equation 1). To study these, we make a similar fast-slow decom-
position of the model (Equation 31), assuming τ � τm to find
uj’s possess the quasi-steady state

uR = H(IR − qLuL), uL = H(IL − qRuR). (32)

so we expect uj = 0 or 1 almost everywhere. Therefore, we can
estimate the dominance time of each stimulus using a piecewise
equation for the slow subsystem

τqj =
{

1 − qj − βqj : uj = 1,

1 − qj : uj = 0,
j = L, R. (33)

Combining the slow subsystem (Equation 33) with the quasi-
steady state (Equation 32), we can use self-consistency to solve for
the dominance times TR and TL of the right and left populations.
We simply note that switches will occur through escape, when
cross-inhibition is weakened enough by depression such that the
suppressed population’s (j) input becomes superthreshold, so Ij =
qk. Using Equation (33), we find

TR = τ ln

⎡⎣Q− +
√

Q2− − 4BR

2(1 + β)IL − 2

⎤⎦ , (34)

TL = τ ln

⎡⎣Q+ +
√

Q2+ − 4BL

2(1 + β)IR − 2

⎤⎦ , (35)

where Q± = β ± (1 + β)[IR − IL] and BR,L = (1 − IR,L)(1 +
β)[(1 + β)IL,R − 1]. For symmetric stimuli, IL = IR = I, both
Equations (34) and (35) reduce to

T = τ ln

[
β +√

β2 − 4(1 − I)(1 + β)[(1 + β)I − 1]
2(1 + β)I − 2

]
,(36)

using which we can solve for the critical input strength I above
which only the fusion state exists, I = (2 + β)/[2(1 + β)], in
the case of symmetric inputs. We show in Figure 9 that this
asymptotic approximations Equations (34) and (35) of the domi-
nance times match well with the results of numerical simulations,
recapitulating Levelt’s propositions.

Next, we show that the network with depression and noise gen-
erates activity oscillations with dominance times that are gamma
distributed (Fox and Herrmann, 1967; Lehky, 1995; Brascamp
et al., 2006). We now provide some analytic intuition as to how
gamma distributed dominance times may arise in the fast-slow
system. First, we display as single realization of the network

FIGURE 9 | Dominance times TL and TR as a function of right input IR
keeping IL = 0.8 fixed as computed by theory (curves) in Equations

(34) and (35) fits numerically computed (dots) very well. Other
parameters are β = 1 and τ = 50.

(Equation 6) in Figure 10A. An approximate energy function for
Equation (6) can be computed in the limit of slow depression
recovery time τ � τm by assuming we can augment the energy
of the depression-free (β = 0) network (Hopfield, 1984)

E[uR, uL] = H(IL − uR)H(IR − uL)

− ILH(IL − uR) − IRH(IR − uL),

by the synaptic scalings imposed by qR and qL (Mejias et al.,
2010), so

E[uR, uL, qR, qL] = H(IL − qRuR)H(IR − qLuL)

− IL

qR
H(IL − qRuR) − IR

qL
H(IR − qLuL).

A similar energy function was previously used in a model with
spike frequency adaptation (Moreno-Bote et al., 2007). Here,
we are able to derive the energy function from the model
(Equation 6). Therefore, the energy gap between a winner-
take-all state and the fusion state will be time-dependent,
varying as the synaptic scaling variables qR and qL change.
The energy difference between the right dominant state and
fusion is

�ER(t) = 1 − IL

qR(t)
, �EL(t) = 1 − IR

qL(t)
,

for the right and left population, respectively.
Notice that dominance times of stochastic switching

(Figures 10B,C) in Equation (6) are distributed roughly accord-
ing to a gamma distribution (Equation 30). Superimposing
the probability density of right (left) dominance times on
the left (right) probability density, we see they are reasonably
separated. Using the analysis we performed for the spatially
extended system, we could also show that depression improves
discernment of the input contrast difference. Mainly here, we
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FIGURE 10 | Switching induced by noise and depression. (A) Single
realization of the network (Equation 6) with depression and noise. Activity
variables uR (black) and uL (blue) stay close to attractors at 0 and 1, aside
from depression or noise induced switching. Depression variables qR (red)
and qL (green) slowly exponentially change in response to the states of uR

and uL. (B) Right and (C) left dominance time distributions fit with gamma
distributions (Equation 30), in the network (Equation 6) with depression and
noise in the case of asymmetric inputs IR = 0.82 and IL = 0.78, sampled over
1000 s. The right population has a longer mean dominance time. Other
parameters are β = 0.2, τ = 50, and ε = 0.036.

wanted to provide a justification as to the relationship between
input strength and mean dominance times. Using energy
arguments, we have provided reasoning behind why Levelt’s
propositions are still preserved in this model, when noise is
included, even when switches are noise-induced. Increasing
one input leads to a reduction in the energy barrier between
the other population’s winner-take-all state and the fusion
state. This leads to the other population’s dwell time being
shorter.

SWITCHING BETWEEN THREE PERCEPTS
Finally, we will compare the transfer of information in competi-
tive networks that process more than two inputs. Recently, exper-
iments have revealed that perceptual multistability can switch
between three or four different percepts (Fisher, 1968; Burton,
2002; Naber et al., 2010; Hupé and Pressnitzer, 2012). In partic-
ular, the work of Naber et al. (2010) characterized some of the
switching statistics during the oscillations of perceptual trista-
bility. Figure 11A shows an example of a tristable percept. Since
dominance times are gamma distributed and there is memory evi-
dent in the ordering of percepts (Naber et al., 2010), the process
is also likely governed by some slow adaptive process in addition
to fluctuations.

We study perceptual tristability in a competitive neural net-
work model with only depression, to start, with a Heaviside firing
rate (Equation 4), and symmetric inputs I1 = I2 = I3 = I, we
study the system

u̇1 = −u1 + H(I − q2u2 − q3u3), (37a)

u̇2 = −u2 + H(I − q1u1 − q3u3), (37b)

u̇3 = −u3 + H(I − q1u1 − q2u2), (37c)

τq̇j = 1 − qj − βujqj, j = 1, 2, 3. (37d)

We are interested in rivalrous oscillations, which do arise in
this network (Figure 11B). Once again, we can perform a fast-
slow decomposition of our system, assuming τ � τm to compute

the dominance time T of a population as it depends on input
strength I. We find

T = τ ln

[
B + √

B[3I(1 + β) + β − 3]
2[(1 + β)I − 1]

]
,

where B = (1 − I)(1 + β), which compares very well with
numerically computed dominance times in Figure 12. Recent
experimental observations have suggested relationships between
mean dominance time and input contrast in perceptual tristabil-
ity may be similar to the two percept case (Hupé and Pressnitzer,
2012). In our model, we see that as the input strength is
increased, dominance times decrease. One other important point
is that percept dominance occurs in the same order every time
(Figure 11B): one, two, three. There are no “switchbacks.” We
will show that switchbacks can occur in the noisy regime, which
degrades history dependence.

Now, we study how noise alters the switching behavior when
added to the deterministic network (Equation 37). Thus, we dis-
cuss the three population competitive network with noisy in
activity

u̇1 = −u1 + H(I − q2u2 − q3u3) + ξ1, (38a)

u̇2 = −u2 + H(I − q1u1 − q3u3) + ξ2, (38b)

u̇3 = −u3 + H(I − q1u1 − q2u2) + ξ3, (38c)

τq̇j = 1 − qj − βujqj, j = 1, 2, 3, (38d)

where ξj are identical independent white noise processes with
variance ε. In Figure 13, we show the noise in Equation (38)
degrades two pieces of information carried by dominance
switches: the switching time and the direction of switching.
Notice that adding noise spreads out the distribution of dom-
inance times (Figure 13B). Thus, there is a less precise charac-
terization of the input strength in the network. Concerning the
direction of switching, the introduction of noise makes “switch
backs” more likely. We define a “switch back” as a series of three
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percepts that contains the same percept twice (e.g., 1 → 3 → 1).
This is opposed to a “switch forward,” which contains all three
percepts (e.g., 1 → 3 → 2). Statistics like these were analyzed
from psychophysical experiments of perceptual tristability, using
an image like Figure 11A (Naber et al., 2010). The main finding
of Naber et al. (2010) concerning this property is that switch for-
wards occur more often than chance would suggest. Therefore,
they proposed that some slow process may be providing a mem-
ory of the previous image. Memory in perceptual rivalry has also
been observed in experiments where ambiguous stimuli are pre-
sented intermittently (Leopold et al., 2002; Pastukhov and Braun,
2008; Gigante et al., 2009). We suggest short term depression as
a candidate substrate for this memory. As seen in Figure 13B, the
bias in favor of switching forward persists even for non-zero levels
of noise. The idea of short term plasticity as a substrate of work-
ing memory was also recently proposed in Mongillo et al. (2008).

FIGURE 11 | Perceptual tristability. (A) Three overlapping grating stimuli,
which generates tristable perception. Redrawn with permission from Naber
et al. (2010). (B) Numerical simulation of Equation (37) showing the activity
variables u1, u2, u3 and the second synaptic scaling variable q2 (cyan) of the
three population network (Equation 37) driven by symmetric stimulus
I = 0.6. Other parameters are β = 1 and τ = 50.

Our results extend this idea, suggesting synaptic mechanisms of
working memory may be useful in visual perception tasks, such
as understanding ambiguous images. In Figure 14, we show that
the process of dominance switching becomes more Markovian,
less history dependent, as the level of noise

√
ε is increased. In

the limit of large noise, the likelihoods of “switch forwards” and
“switch backs” are the same, making the ordering of switching
purely Markovian.

DISCUSSION
Mechanisms underlying stochastic switching in perceptual rivalry
have been explored in a variety of psychophysical (Fox and
Herrmann, 1967; Lehky, 1995; Brascamp et al., 2006), physi-
ological (Leopold and Logothetis, 1996; Blake and Logothetis,
2002), and theoretical studies (Matsuoka, 1984; Laing and Chow,
2002; Moreno-Bote et al., 2007). Since psychophysical data is
widely accessible, it can be valuable to use the hallmarks of its
statistics as benchmarks for theoretical models. For instance,
the fact that dominance time distributions are unimodal func-
tions peaked away from zero suggests that some adaptive process
must underlie switching in addition to noise (Laing and Chow,
2002; Brascamp et al., 2006; Shpiro et al., 2009). In addition,
Moreno-Bote et al. (2011) information about bistable images
may be extracted by sampling a posterior distribution associ-
ated with the dominance fraction of each percept. This type of
sampling can be well modeled by attractor networks analogous
to those presented here (Moreno-Bote et al., 2007). Thus, many
dominance time statistics from perceptual rivalry experiments
can be employed as points of reference for physiologically based
models of visual perception. New data now exists concerning
tristable images showing this process also is likely guided by a
slow adaptive process in addition to fluctuations (Naber et al.,
2010).

We have studied various aspects of competitive neuronal net-
work models of perceptual multistability that include short term
synaptic depression. First, we were able to analyze the onset of

FIGURE 12 | Relationship between the strength of the stimulus I and

the dominance times T computed using fast-slow analysis (black) and

numerics (red dots) for a perceptually tristable stimulus. Other
parameters are β = 1 and τ = 50.
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FIGURE 13 | Noise degrades two sources of information provided by

dominance switches. (A) In the absence of noise, switches always move
“forward,” so that the previous percept perfectly predicts the subsequent
percept. Dominance times accumulate at a single value too. (B) For

non-zero noise (
√

ε = 0.003), “switch backs” can occur where the
subsequent percept is the same as the previous percept. Also, the
distribution of dominance times spreads. Other parameters are I = 0.6,
β = 1, and τ = 50.

FIGURE 14 | The probability pf of a switch being in the forward

direction in simulations of (Equation 38) as a function of the amplitude√
ε of noise. As

√
ε increases, network switches behave in more of a

Markovian way, not reflecting any memory of the previous percept.
Therefore, information of the previous percept is lost as soon as a switch
occurs.

rivalrous oscillations in a ring model with synaptic depression
(York and van Rossum, 2009; Kilpatrick and Bressloff, 2010a).
Stimulating the network with a bimodal input leads to winner-
take-all solutions, in the form of single bumps, in the absence

of synaptic depression. As the strength of synaptic depression
is increased, the network undergoes a bifurcation which leads
to slow oscillations whose timescale is set by that of synap-
tic depression. Each stimulus peak is represented in the net-
work by a bump whose dominance time is set by the height of
each peak. When noise is added, dominance time histograms
obey a gamma distribution. We considered the simple task of
an upstream network inferring the relative contrast of stim-
uli based on partial and whole observations of the dominance
time distribution. Thus, we study how well the dominance times
(information output) of the network reflect the relative stimulus
contrasts (information input). Sampling dominance times better
identifies contrast differences when switches are more depression-
driven and less noise-driven. Thus, short term depression
improves information transfer of networks that process ambigu-
ous images in multiple ways. To our knowledge, no previous
studies have explored how sampling dominance time distribu-
tions might be used by upstream neurons to infer relative stimulus
contrast.

We also used energy methods in reduced models to under-
stand how a combination of noise and depression interact to
produce switching. Using the energy function derived by Hopfield
(1984) for analog neural networks, we justify the exponential
dependence of dominance times upon input strength in purely
noise-driven switching. Studying an adiabatically derived energy
function for the case of slow depression, we also show how depres-
sion works to reduce the energy barrier between winner-take-all
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states, leading to the slow timescale that defines the peak in
depression-noise generated switches. Finally, using a three popu-
lation space-clamped neural network, we analyzed depression and
noise generated switching that may underlie perceptual trista-
bility. We found this network also sustained some of the same
relationships between input contrast and dominance times as
the two population network. When switches are generated by
depression there is an ordering to the population dominance
that is lost when switches are noise generated. This is due
to the memory generated by short term depression (Mongillo
et al., 2008), so the switching process is non-Markovian due
to the inherent slow timescale in the background. Dynamical
variability must be weak enough to not totally wash out the
non-Markovian character of switches. To our knowledge, nei-
ther short term depression or adaptation has been proposed
before as a mechanism for history dependence in the switch-
ing between tristable stimuli. Also, no previous authors have
used the history dependence of switching observed in Naber
et al. (2010) as a bench mark for a perceptually tristable net-
work model. As opposed to tristability, perceptual bistability
generally does not demonstrate strong history dependence in
dominance time statistics, behaving more as a renewal process
(Lehky, 1995; Laing and Chow, 2002). However, there is some
recent evidence that suggests there may be very minor serial cor-
relations in dominance times (van Ee, 2009), likely arising as
a signature of a slow adaptive process partially responsible for
switching.

Mutual inhibitory rate models with terms representing only
spike frequency adaptation (Wilson, 2003; Moreno-Bote et al.,
2007) or only short term depression (Kilpatrick and Bressloff,
2010b; Bressloff and Webber, 2012) or both adaptation and
depression (Laing and Chow, 2002; Shpiro et al., 2007; Seely and
Chow, 2011) have been analyzed in several previous studies. Both
mechanisms, when they are included in rate models, can generate
dominance time statistics that correspond well with the stimu-
lus contrast dependencies of Levelt (1965), if placed in the right
parameter regime. One subtle difference is that if the firing rate
function is steep enough in models with depression only, there
are no parameter regimes where dominance times increase with
contrast (Seely and Chow, 2011). Even if the firing rate function
is not very steep, rate models with only depression favor param-
eter regimes where dominance times decrease with contrast. The
effect is not seen in mutually inhibitory rate models with only
adaptation (Shpiro et al., 2007). Since Levelt (1965) observed that
dominance times decrease with contrast, this suggests depres-
sion may be a more suitable choice of slow negative feedback
in models of perceptual multistability. On the other hand, it has
been demonstrated that gamma distributed dominance time dis-
tributions also emerge in perceptual rivalry models with spike
frequency adaptation (Shpiro et al., 2009), so it seems the mod-
els may often yield similar results (see Shpiro et al., 2007). Note,
we have demonstrated a combination of mutual inhibition and
depression can generate ordered switching that may be a substrate
of perceptual tristability. We presume these results would also
extend to a model with mutual inhibition and spike frequency
adaptation.

Spatially extended neural field models are a useful tool
for understanding complex dynamics that emerge in networks
connected by synapses that are stimulus preference dependent
(Wilson and Cowan, 1973; Amari, 1977; Bressloff and Cowan,
2002). Processes underlying perceptual rivalry can evolve with
a characteristic spatiotemporal structure, as has been found in
experiments where observers report waves of visual dominance
sweeping one percept over another (Wilson et al., 2001). Bressloff
and Webber (2012) and Webber and Bressloff (2013) recently
modeled this using a two spatially extended populations coupled
to one another by mutual inhibition, where short term depression
leads to switches in the direction of activity wave propagation.
Our work is distinct from this in several ways. First, we are con-
cerned with non-propagating activity whose switches are abrupt,
not gradual as in Bressloff and Webber (2012). In addition, we
compute dominance time distributions whereas Bressloff and
Webber (2012) compute mean first passage time distributions for
their traveling wave. Finally, we have demonstrated phenomena
that only require a single cortical layer, and their results require
one layer for each percept.

Note to analytically study the relationship between domi-
nance times and input contrast in the noisy system, we resorted
to a simple space-clamped neural network. In future work,
we plan to develop energy methods for spatially extended sys-
tems like Equation (27). Such methods have seen success in
analyzing stochastic partial differential equation models such
as Ginzburg-Landau models (E et al., 2004). Energy functions
have recently been developed for neural field models, but have
mostly been studied as a means of determining global stability
in deterministic systems (Wu et al., 2002). The fact that pure
noise does lead to exponentially distributed dominance times
suggests it may be possible to develop a large deviations the-
ory for switching in the system (Equation 27), using techniques
like those of E et al. (2004). We propose that by deriving the
specific potential energy of spatially extended neural fields, it
may be possible to approximate the transition rates of solu-
tions from the vicinity of one attractor to another. In the system
(Equation 27), there should be some separatrix between the two
winner-take-all states that must be crossed in order for a transi-
tion to occur. The least action principle states that there is even
a specific point on this separatrix through which the dynam-
ics most likely flows (E et al., 2004). Finding this point using
an energy function would allow us to relate the parameters of
the model to the distribution of dominance times. This would
provide a theoretical framework for interpreting data concerning
rivalry of spatially extended images, such as those that produce
waves (Wilson et al., 2001). We could also extend this work
to analyze interocular grouping Lee and Blake (2004), the phe-
nomenon by which partial images split between either eye are
grouped together in perception and rival. Thus, we would need
to consider several orientation columns associated with each eye.
Columns driven by similarly oriented stimuli would excite one
another, overriding weak inhibition between columns in differ-
ent eyes. Our fast-slow analysis could be useful for analyzing
how system dynamics might collapse to group images together in
perception.
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Many of the synapses in the basal ganglia display short-term plasticity. Still, computational
models have not yet been used to investigate how this affects signaling. Here we use
a model of the basal ganglia network, constrained by available data, to quantitatively
investigate how synaptic short-term plasticity affects the substantia nigra reticulata (SNr),
the basal ganglia output nucleus. We find that SNr becomes particularly responsive to the
characteristic burst-like activity seen in both direct and indirect pathway striatal medium
spiny neurons (MSN). As expected by the standard model, direct pathway MSNs are
responsible for decreasing the activity in SNr. In particular, our simulations indicate that
bursting in only a few percent of the direct pathway MSNs is sufficient for completely
inhibiting SNr neuron activity. The standard model also suggests that SNr activity in the
indirect pathway is controlled by MSNs disinhibiting the subthalamic nucleus (STN) via the
globus pallidus externa (GPe). Our model rather indicates that SNr activity is controlled
by the direct GPe-SNr projections. This is partly because GPe strongly inhibits SNr but
also due to depressing STN-SNr synapses. Furthermore, depressing GPe-SNr synapses
allow the system to become sensitive to irregularly firing GPe subpopulations, as seen
in dopamine depleted conditions, even when the GPe mean firing rate does not change.
Similar to the direct pathway, simulations indicate that only a few percent of bursting
indirect pathway MSNs can significantly increase the activity in SNr. Finally, the model
predicts depressing STN-SNr synapses, since such an assumption explains experiments
showing that a brief transient activation of the hyperdirect pathway generates a tri-phasic
response in SNr, while a sustained STN activation has minor effects. This can be explained
if STN-SNr synapses are depressing such that their effects are counteracted by the
(known) depressing GPe-SNr inputs.

Keywords: substantia nigra pars reticulata, short-term plasticity, basal ganglia, network model, subthalamic

nucleus, globus pallidus, facilitation, depression

INTRODUCTION
An important question in neuroscience is to understand how
synaptic signaling contributes to network function in the brain.
The synapse, as a basic communication channel between neu-
rons, has classically been viewed as providing information of
whether a pre-synaptic neuron has spiked or not. However, the
effect of the synaptic signal varies with previous activity pattern
either at one or at both sides of the synapse, and these modifica-
tions include short-term- to long-term plasticities, which together
span from milliseconds up to months (Abbott and Regehr, 2004).
The activity history of the synapse thus becomes important in
determining its current function in neural circuits. The ability of
synapses to perform non-linear transformations of signals over
time makes them crucial components enabling a diverse set of
circuit functions in the nervous system such as gain control,
information filtering, coincident detection, short term- and long
term memory (Abbott and Regehr, 2004; Deng and Klyachko,
2011).

Synapses with short-term plasticity are frequent in the basal
ganglia, a group of subcortical nuclei involved in action selec-
tion and procedural learning (Mink, 1996; Redgrave et al., 1999;
Grillner et al., 2005), but still the functional role of these synapses
remains poorly understood. Synapses that undergo frequency
dependent facilitation and depression on the time scale of hun-
dred milliseconds can be found in several parts of the basal
ganglia (Hanson and Jaeger, 2002; Sims et al., 2008; Connelly
et al., 2010; Gittis et al., 2010; Planert et al., 2010). Many compu-
tational models of the basal ganglia exist. However, with regard
to how synaptic connectivity is represented they can roughly
be divided into two categories, those without synaptic plasticity
and those with long term synaptic plasticity (see, e.g., Bar-Gad
et al., 2000; Terman et al., 2002; Humphries et al., 2006; Leblois
et al., 2006; O’Reilly, 2006; Houk et al., 2007; Kumar et al., 2011).
Although synaptic short-term plasticity is prominent in the basal
ganglia, it has not been included in computational models of the
basal ganglia.
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The basal ganglia nuclei have been suggested to be involved
in action selection, working memory representation, sequence
learning, and reinforcement learning of appropriate actions
(Chakravarthy et al., 2010; Kamali Sarvestani et al., 2011). The
excitatory input to striatum, the basal ganglia main input stage,
arrives from nearly all parts of cerebral cortex (Gerfen and Bolam,
2010) as well as midline, intralaminar, mediodorsal and ven-
tral lateral, and anterior thalamus (Groenewegen, 1988; Smith
et al., 2004). The basal ganglia output targets are also mid-
line, intralaminar and mediodorsal thalamus as well as ventral
lateral thalamus, involved in cortical planning and execution
of motor behavior (Smith et al., 2004). Another major out-
put are areas in the brainstem such as the superior colliculus,
which generates eye and head movements, and pedunculopon-
tine nucleus, involved in orienting of body movements (Gerfen
and Bolam, 2010) and muscle tone control (Takakusaki et al.,
2004). A third important output from substantia nigra retic-
ulata (SNr) is to neighboring neurons in the substantia nigra
compacta (SNc) were SNr efficiently controls the activity of SNc
dopaminergic neurons (Tepper and Lee, 2007). Three major path-
ways, converging on the basal ganglia output stages have been
described, the direct, indirect and hyperdirect pathways (Nambu,
2008). Specifically the output nuclei receive inputs from stri-
atal medium spiny neurons expressing dopamine receptor D1
(MSN D1) in striatum (the direct pathway) and from MSNs
expressing dopamine receptor D2 (MSN D2) in striatum via
globus pallidus externa (GPe) and the subthalamic nucleus (STN)
(the indirect pathway), and directly from cortex via the STN
(the hyperdirect pathway). The temporal and spatial integra-
tion of these three pathways onto the output nuclei determine
the ultimate effect basal ganglia signaling has on the behavioral
response.

The relative contribution of signals from striatum, GPe and
STN to activity changes in basal ganglia output nuclei, such as
SNr, is not understood in detail, nor how changes in SNr activity
facilitates or inhibits spiking behavior in target areas. SNr has an
inhibitory control of thalamic and brainstem areas (Deniau et al.,
2007) and a standard view is that decreased SNr activity promote
actions whereas increase activity suppress actions (Mink, 1996;
Redgrave et al., 1999). Recent experimental data support this view
and show how SNr neurons increase and decrease their activity in
relation to actions (Fan et al., 2012). SNr activity can potentially
be decreased by either increased inputs from MSN D1 or GPe,
whereas the SNr activity can be increased either through disin-
hibition via GPe or by increased excitatory input from STN. It
still remains an open question which inputs are responsible for
the observed increases and decreases in activity in SNr seen in
experiments (Fan et al., 2012). Most of these inputs to SNr are in
addition displaying short term plasticity and are thus modulated
with activity over time.

Here we build a quantitative computational model of the
striatal, pallidal, and subthalamic inputs to the basal ganglia out-
put stage, SNr, assuming biologically plausible neuron dynamics,
synaptic conductances and projection patterns, as well as appro-
priate firing patterns in the pre-synaptic neurons. We quantify
the relative contribution of the direct, indirect and hyperdirect
pathways for increasing and decreasing the activity in SNr as

well as for the temporal integration of the inputs. We hypothe-
size that facilitating striato-nigral and depressing pallido-nigral-
and subthalamo-nigral synapses in a significant way determine
the relationship between timing and strength of input signals in
SNr. We find that the direct pathway is responsible for decreased
activity in SNr whereas pauses in GPe are preferentially respon-
sible for the increased activity in SNr neurons. By assuming that
STN synapses are depressing we can explain experiments showing
that STN input, on a slower time scale, act as less potent source for
changing activity in SNr compared to brief transient (ms) STN
activity. Simulations are used to investigate how the rate coding
may change with duration of the input signal and the proportion
of active neurons. We also show how facilitating and depress-
ing synapses buffer against fluctuations in input background
activity.

MATERIALS AND METHODS
NEURONAL FIRING RATES
The characteristic of MSN activity in vivo (in both anesthetized
and un-anesthetized preparations) is a low frequency firing
interrupted by bursts (Wilson, 1993). The basal firing rate for
MSNs ranged in simulations between 0.01 and 2.0 Hz while
spike frequency during the bursts ranged between 17 and 48 Hz
(Miller et al., 2008). The length of the burst was set to 500 ms
which is in line with experiments showing that MSNs usu-
ally burst for 100–1000 ms (Miller et al., 2008; Gage et al.,
2010).

GPe neurons fire tonically at high frequency, interrupted by
bursts and pauses (Jaeger and Kita, 2011; Kita and Kita, 2011) and
have been reported to fire, in vivo in rodents, at 17 Hz (Gage et al.,
2010), 26 Hz (Walters et al., 2007), 29 Hz (Kita and Kita, 2011),
32 Hz (Urbain et al., 2000), 36 Hz (Ruskin et al., 1999), and 52 Hz
(Celada et al., 1999). Here the GPe basal firing rate is required to
be around 30 Hz.

STN neurons were required to have a basal firing rate around
10 Hz which is in accordance with in vivo recordings in rat: 6 Hz
(Walters et al., 2007), 10 Hz (Farries et al., 2010), 11 Hz (Fujimoto
and Kita, 1993), and 13 Hz (Paz et al., 2005).

The basal firing rate of SNr neurons, with MSN input arriv-
ing at 0.1 Hz, GPe input arriving at around 30 Hz and an STN
background of 10 Hz, was required to be around 30 Hz which is
in the range of reported values from in vivo recordings in rat:
22 Hz (Zahr et al., 2004), 24 Hz (Walters et al., 2007), 24–27 Hz
(Maurice et al., 2003), and 29 Hz (Gernert et al., 2004).

NEURON MODELING APPROACH
To model the SNr, GPe, and STN neurons we have chosen
the adaptive exponential integrate and fire model (Brette and
Gerstner, 2005). It has few parameters, simplifying the estima-
tion of them from limited amount of experimental data, as
compared to more complicated biophysical models with up to
hundred or more parameters. The model can capture the spike
initiation and upstroke, as well as subthreshold resonance and
adaptation of neural activity. It can be tuned to reproduce sim-
ulated subthreshold and spiking behaviors that are very sim-
ilar to in vitro and in vivo neuronal voltage responses. The
model equations are explained below, where V is the membrane
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potential and w is the contribution of the neurons slow
currents:

C
dV

dt
= −gL(V − EL) + gL�T exp

(
V − VT

�T

)
− w + I

τw
dw

dt
= a(V − EL) − w (1)

if V > Vpeak then V = Vr and w = w + b

Here C is the capacitance, gL is the leak conductance, EL and
VT are the resting and threshold potentials, �T is the slope fac-
tor of the spike upstroke, I is a current source and represents
injected current Iinj and/or synaptic contributions Isyn, τw and
a are respectively the time constant and the subthreshold adap-
tation of the recovery current w. When the membrane potential
V reaches the cut off Vpeak it is reset to Vr and then the recovery
current w is increased with b.

SNr NEURON MODEL
Without any synaptic input SNr neurons fire tonically at mem-
brane potentials above −54 mV (Richards et al., 1997; Atherton
and Bevan, 2005; Chuhma et al., 2011). The autonomous firing is
caused by a sodium dependent TTX insensitive inward current
activated above −60 mV and a TTX sensitive current activated
close to spike threshold. It also has an outward SK channel medi-
ated current responsible for the spike afterhyperpolarization and
the precise regular autonomous spiking (Atherton and Bevan,
2005; Zhou et al., 2008). Below we list the quantitative properties
of the SNr neuron that are captured with the model:

1. Current voltage relation in the range −80 to −65 mV to
be compatible with an input resistance in the range of
80–400 M� (see Figure 1A; Nakanishi et al., 1997; Richards
et al., 1997; Lee and Tepper, 2007a,b; Chuhma et al., 2011).

2. Current frequency relation to be 0.08–0.2 Hz/pA in the range
of 0–300 pA (see Figure 1B; Nakanishi et al., 1987b; Richards
et al., 1997).

3. From holding potential at just below spike threshold, small
changes around 5 pA in injected current are sufficient to bring
the neuron from silent to repetitive firing (see Figure 1C;
Atherton and Bevan, 2005).

4. Silent below −54 mV (Richards et al., 1997; Atherton and
Bevan, 2005; Chuhma et al., 2011).

5. Rebound spike upon release from hyperpolarization (see
Figure 1C; Nakanishi et al., 1987b, 1997).

The resulting SNr neuron model parameters are listed in Table 1.
To capture the rebound spike induced after injection of a hyper-
polarizing current (Nakanishi et al., 1987b, 1997) the level of
subthreshold adaptation a was set to 3 nS and the time constant
τw to 20 ms. This also contributed to achieving a model with
characteristic afterhypolarization (Atherton and Bevan, 2005)
and a positive a ensured that the modeled SNr neuron went from
silent to spiking at above 1 Hz by a small change in injected cur-
rent (Atherton and Bevan, 2005). The SNr neuron’s steady-state
I–V relation was then produced by setting gL to 3 nS (Nakanishi
et al., 1987b; Richards et al., 1997; Atherton and Bevan, 2005;

Zhou et al., 2008). Near spike initiation the adaptive exponential
integrate and fire model can approximate the upstroke and thus
the voltage speed/acceleration of the action potential (Platkiewicz
and Brette, 2010). For the modeled SNr neuron to go from
silent to spiking at approximately −54 mV (Richards et al., 1997;
Atherton and Bevan, 2005; Chuhma et al., 2011) and having spike
threshold at −52 mV (Richards et al., 1997), defined as when the
rate of rise is 10.2 mV/ms, the resting and threshold potentials and
slope factor, EL, VT , and �T were respectively estimated to −55.8,
−55.2, and 1.8 mV. Note, the action potential threshold was mea-
sured when the rate of rise was 5% of max in Richards et al. (1997)
which we estimated to 10.2 mV/ms from a sigmoid fit of the
upstroke of an action potential. The capacitance C was set to 80 pF
(Nakanishi et al., 1997) and the summed recovery current contri-
bution, b, at spike reset was set to 200 pA to get the frequency
acceleration and the spike frequency adaptation (Nakanishi et al.,
1987b; Richards et al., 1997) of the SNr neuron. With the spike
voltage reset, Vr , at −65 mV and spike cut off, Vpeak, at 20 mV we
got an after hyperpolarization and spike amplitude in accordance
with literature (Lee and Tepper, 2007b). Iinj = Iin vitro was set to
15 pA to shift the current- voltage and frequency curves along
the current axis, such that the neuron fired without any synaptic
input around 14 Hz (see Figures 1A,B) which is in range of mea-
sured mean values in experiments with rat/mice slice preparations
7 Hz (Richards et al., 1997), 9–13 Hz (Atherton and Bevan, 2005),
16 Hz (Nakanishi et al., 1997), 16 Hz (Chuhma et al., 2011),
and 16–20 Hz (Lee and Tepper, 2007b). To obtain the current-
frequency and voltage curves in Figures 1A,B Iin vitro was succes-
sively changed. In the network simulations Iinj = Iin vivo was set
to 254 pA to obtain around 30 Hz base line firing rate with full
synaptic connectivity in the network model (see Figure 1F).

GPe NEURON MODEL
Several different types of neurons in GPe have been reported.
They have been classified into subgroups based on electrophys-
iological properties such as rebound firing, membrane resistance,
current-frequency relation, hyperpolarizing induced sag, and fir-
ing patterns (Kita and Kitai, 1991; Nambu and Llinaś, 1994;
Cooper and Stanford, 2000; Bugaysen et al., 2010). However, in
an exhaustive modeling and experimental study, it was showed
that the properties of the GPe neurons vary in a continuous space
without any clear division into subtypes (Günay et al., 2008).
Thus, it is not clear how to come up with one model of the GPe
neuron. Our approach was to create a GPe neuron model which
showed general dominant characteristics of GPe neurons stated
below:

1. Current voltage relation in the range −80 mV to −65 mV
to be compatible with an input resistance in the range
of 90–560 M� (see Figure 1A; Cooper and Stanford, 2000;
Bugaysen et al., 2010; Chuhma et al., 2011).

2. Current frequency relation to be 0.2–0.6 Hz/pA in the range
of 0–300 pA (see Figure 1B; Cooper and Stanford, 2000;
Bugaysen et al., 2010).

3. Membrane oscillations close to spike threshold causing irregu-
lar firing and regular firing at higher depolarizing currents (see
Figure 1D; Nambu and Llinaś, 1994; Cooper and Stanford,
2000).
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FIGURE 1 | Model properties. (A) Steady-state current voltage relationship
for SNr (blue), GPe (green) and STN (red). (B) Current frequency relation for
SNr (blue), GPe (green), and STN (red). (C) SNr neuron properties. Upper panel:
a difference of 5 pA in the injected hyperpolarizing current during the interval
250–750 ms can switch the SNr neuron from spiking above 1 Hz to silent.
Lower panel; rebound spike is triggered upon release of a hyperpolarizing
current provided for 200 ms. (D) GPe neuron properties. Membrane
oscillations/spikes are revealed close to threshold by added noise (first panel).
Current injection leads to regular high frequency spiking (second panel).
Hyperpolarization induced spike (third panel). (E) STN neuron properties. First
to third panel; increasing duration of −70 pA hyperpolariazing current (300,
450, and 600 ms) increases the length of the resulting burst. Fourth to sixth
panel; increased strength of 300 ms hyperpolarizing currents (−40, −70, and
−100 pA) lead to increased length of the hyperpolarization induced burst.
Seventh panel; the amplitude of a 500 ms duration depolarizing current pulse
has a linear relation to the afterhyperpolarization duration upon release of the
injected current, defined from the end of the current pulse to first spike. (F)

Basal firing rate for each population. The error bars show the standard
deviation of individual firing rates of neurons in the population. (G) Firing rate
change in SNr, GPe, and STN compared to basal rate (F) when removing GPe,
STN, MSN D1, or MSN D2 nuclei. Solid bars show the result for depressing
STN synapses in SNr and shaded bars the results using static STN synapses
in SNr. (H) Post-synaptic potential (PSP) in SNr for GPe refGPe

30 Hz (red), MSN D1

refMSND1
init (blue), MSN D1 refMSND1

max (green), and STN refSTN (black) synapses.
For further explanations see Materials and Methods. (I) Relation between
synaptic steady-state IPSP (Pss) amplitude in SNr and initial response (P1) for
different spike frequencies for refMSND1

init (blue), refMSND1
max (green), and facMSND1

(magenta) MSN D1 synapses in SNr. (J) Same as in (I) but for a refGPe
30 Hz (red)

and depGPe (cyan) GPe synapses in SNr. (K) Recovery from facilitation and
depression respectively for the MSN D1 and GPe synapse in SNr. (L)

Illustration of the complete network model, with emulated input from 15000
MSN D1 and 15000 MSN D2 as well as a summed backround input of 189 Hz
from cortex to STN neurons. In the illustration a subpopulation of MSN D1
bursts and this leads to a delayed decrease of activity in SNr.

4. Silent below −53 mV (Bugaysen et al., 2010; Chuhma et al.,
2011).

5. Rebound spike upon release from hyperpolarization (see
Figure 1D; Nambu and Llinaś, 1994; Cooper and Stanford,
2000).

The resulting GPe neuron model parameters are listed in Table 2.
The hyperpolarization triggered spike (Nambu and Llinaś, 1994;
Cooper and Stanford, 2000) was captured by setting the sub-
threshold adaptation a to 2.5 nS and the time constant τw to
20 ms. Steady-state current voltage relation of the GPe neuron
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Table 1 | SNr neuron model parameters.

Name Value Description

a 3 nS Subthreshold adaptation

b 200 pA Spike-triggered adaptation

C 80 pF Membrane capacitance

�T 1.8 ms Slope factor of spike upstroke

EL −55.8 mV Leak reversal potential

gL 3 nS Leak conductance

Iin vitro 15 pA Iinj to obtain in vitro firing rate without synaptic input

Iin vivo 254 pA Iinj to obtain in vivo firing rate with synaptic input

τw 20 ms Adaptation time constant

Vpeak 20 mV Spike cut off

Vr −65mV Spike reset

VT −55.2 mV Threshold potential

Table 2 | GPe neuron model parameters.

Name Value Description

a 2.5 nS Subthreshold adaptation

b 70 pA Spike-triggered adaptation

C 40 pF Membrane capacitance

�T 1.7 ms Slope factor of spike upstroke

EL −55.1 mV Leak reversal potential

gL 1 nS Leak conductance

Iin vitro 5 pA Iinj to obtain in vitro firing rate without synaptic input

Iin vivo 47 pA Iinj to obtain in vivo firing rate with synaptic input

τw 20 ms Adaptation time constant

Vpeak 15 mV Spike cut off

Vr −60 mV Spike reset

VT −54.7 mV Threshold potential

was then produced by letting gL be 1.0 nS (Cooper and Stanford,
2000; Bugaysen et al., 2010). The capacitance C was set to 40 pF
(Cooper and Stanford, 2000). Note that with these parameters a
GPe neuron exhibits subthreshold oscillations close to rheobase
current (the minimal current necessary to elicit a spike). Touboul
and Brette (2008) showed that whether an adaptive exponen-
tial integrate and fire neuron model exhibit oscillations close
to spike threshold depends on the parameters a, C, gL, and
τw and occurs when equations 2 and 3, with τm = C/gL, are
fulfilled. For the modeled GPe neuron to go from silent to spik-
ing at approximately −53 mV (Bugaysen et al., 2010; Chuhma
et al., 2011) and having a spike threshold at −43 mV (Bugaysen
et al., 2010), defined as when the acceleration of the membrane
potential reaches 50% of its max, estimated to 1270 mV/ms2

from Bugaysen et al. (2010), the resting and threshold poten-
tials and the slope factor, EL, VT and �T were set to respectively
−55.1, −54.7, and 1.7 mV. The summed recovery current con-
tribution, b, at spike reset was set to 70 pA, to mimick the
frequency acceleration and the spike frequency adaptation of the
GPe neuron (Nambu and Llinaś, 1994; Cooper and Stanford,
2000; Bugaysen et al., 2010). With the spike voltage reset, Vr , at
−60 mV and spike cut off, Vpeak, at 15 mV we got an after hyper-
polarization and spike amplitude in accordance with literature

(Cooper and Stanford, 2000). Iinj = Iin vitro was set to 5 pA to
move the current- voltage- and frequency-curves along the cur-
rent axis, such that the neuron fired around 15 Hz without any
synaptic input (see Figures 1A,B) which is in range of mea-
sured mean values in experiments with rate slice preparations
8–14 Hz (Cooper and Stanford, 2000) and 4–18 Hz (Bugaysen
et al., 2010). To get the current- frequency and voltage curves
in Figures 1A,B Iin vitro was successively changed. In the network
simulations Iinj = Iin vivo was set to 47 pA to obtain around 30 Hz
base line firing rate with full synaptic connectivity in the network
model (see Figure 1F).

0 >
τm

τw
− a

gL
(2)

0 >
τm

4τw

(
1 − τw

τm

)2

− a

gL
(3)

STN NEURON MODEL
The parameters for the model of the STN neuron were cho-
sen such that it got some of the characteristic properties of
STN neurons (Bevan and Wilson, 1999; Bevan et al., 2000). In
vitro and in the absence of synaptic input, STN neurons exhibit
autonomous rhythmic single-spike activity that is generated by
voltage-dependent Na (Nav) channels and can fire at 250 Hz fol-
lowing current injection (Bevan and Wilson, 1999). We requested
the following quantitative properties of the STN neurons:

1. Current voltage relation in the range −80 to −70 mV to
be compatible with an input resistance in the range of
150–250 M� (see Figure 1A; Nakanishi et al., 1987a; Beurrier
et al., 1999; Loucif et al., 2008).

2. Current frequency relation to be 0.4–0.8 Hz/pA in the range of
0–300 pA (see Figure 1B; Bevan and Wilson, 1999; Hallworth
et al., 2003).

3. Duration of afterhypolarization after a brief depolarization
around 500 ms should depend upon injected current strength
(see Figure 1E; Bevan and Wilson, 1999).

4. Silent below −64 mV (Kass and Mintz, 2006).
5. Depolarizing the neuron below −70 mV for a certain period

should lead to a rebound burst (Figure 1E; Bevan et al., 2000;
Hallworth et al., 2003).

The resulting STN neuron model parameters are listed in Table 3.
To account for the hyperpolarization activated inwards cur-
rent responsible for rebound bursts, the subthreshold adaptation
a was set to 0.3 nS below −70 mV with τw to 333 ms, such
that 333ẇ = 0.3 (V + 70) − w, and to get minimal spike fre-
quency adaptation (Bevan and Wilson, 1999) a was was set to
0 nS above −70 mV, such that 333ẇ = −w. The STN neuron’s
steady-state current-voltage relation was captured by setting gL

to 10.0 nS (Nakanishi et al., 1987a; Beurrier et al., 1999). To
get resting membrane potential at −64 mV (Kass and Mintz,
2006) and a spike threshold at −35 mV, when the acceleration
of membrane potential is 50 mV/ms2 (Farries et al., 2010), the
resting and threshold potentials, and the slope factor, EL, VT,

and �T were respectively set to −80.2, −64.0, and 16.2 mV. To
capture the characteristic delayed afterhypolarization caused by
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Table 3 | STN neuron model parameters.

Name Value Description

a 0.3 nS Subthreshold adaptation (below −70) otherwise

equal to 0

b 0.05 pA Spike-triggered adaptation

C 60 pF Membrane capacitance

�T 16.2 ms Slope factor of spike upstroke

EL −80.2 mV Leak reversal potential

gL 10 nS Leak conductance

Iin vitro 6 pA Iinj to obtain in vitro firing rate without synaptic input

Iin vivo 6 pA Iinj to obtain in vivo firing rate with synaptic input

τw 333 ms Adaptation time constant

Vpeak 15 mV Spike cut off

Vr −70 mV Spike reset

VT −64.0 mV Threshold potential

increased current injection (Bevan and Wilson, 1999) as well
as the spike frequency acceleration (Bevan and Wilson, 1999;
Hallworth et al., 2003) the capacitance, C,the summed recov-
ery current contribution, b, at spike reset and the spike voltage
reset, Vr , was respectively set to 60 pF, 0.05 pA, and −70 mV.
The hyperpolarization induced bursts (Figure 1E; Bevan et al.,
2000; Hallworth et al., 2003) were captured by resetting V fol-
lowing a spike to Vr + max(w × −10, 10) if w < 0 and else to
Vr . A similar modification to the spike reset point has been done
by Izhikevich (2003). With the spike cut off, Vpeak, at 15 mV
we got a spike amplitude in accordance with literature (Beurrier
et al., 1999). Iinj = Iin vitro was set to 6 pA to shift the current-
voltage and frequency curves along the current axis, such that
the neuron fired without any synaptic input around 10 Hz (see
Figures 1A,B) which is in range of measured mean values in
experiments with rate slice preparations, 6 Hz (Baufreton et al.,
2005), 8 Hz (Wilson et al., 2004), 8 Hz (Loucif et al., 2008), 10 Hz
(Farries et al., 2010) 12 Hz (Hallworth et al., 2003). To obtain
the current- frequency and voltage curves in Figures 1A,B Iin vitro

was successively changed. In the network simulations Iinj = Iin vivo

was also set to 6 pA to obtain around 10 Hz base line firing
rate with full synaptic connectivity in the network model (see
Figure 1F).

NETWORK MODEL
The model network consists of a population of SNr, GPe, and STN
neurons receiving emulated inhibitory synaptic inputs from MSN
D1, MSN D2 and cortex with a spike frequency as seen in exper-
iments. The temporal distribution of the spikes was assumed to
derive from an uncorrelated Poisson process. The synaptic inputs
and neuron population sizes used are listed in Table 4, and are
in accordance with experiments (Oorschot, 1996). To account for
variability in mean firing rate of neurons, seen in experiments,
the firing rate of neurons in SNr, GPe, and STN were Gaussian
distributed with a standard deviation of 0.2 of respectively each
nucleus mean in vitro firing rate. The distributions were cre-
ated by varying the injected current for each of the neurons in
a population.

Table 4 | Summary of network properties.

Name Value Description

NMSND1 15,000 Number of MSN D1 inputs

NMSND2 15,000 Number of MSN D2 inputs

NSNr 300 Size of SNr population

NGPe 300 Size of GPe population

NSTN 100 Size of STN population

vMSND1 0–47 Hz Firing rate interval of individual MSN D1
neurons

vMSND2 0–47 Hz Firing rate interval of individual MSN D2
neurons

vSTN 189 Hz Baser rate of external poisson type excitatory
input to STN

NMSND1−SNr 500 Number of MSN D1 connecting to each SNr
neuron

NGPe−SNr 32 Number of GPe connecting to each SNr neuron

NSTN−SNr 30 Number of STN connecting to each SNr neuron

NMSND2−GPe 500 Number of MSN D2 connecting to each GPe
neuron

NSTN−GPe 30 Number of STN connecting to each GPe
neuron

NGPe−GPe 30 Number of GPe reciprocal connections

NGPe−STN 30 Number of GPe connecting to each STN
neuron

CONNECTIVITY IN THE NETWORK
Synaptic parameters such as conductances and projection pat-
terns are constrained by experimental data (Tables 4, 5). Below we
first estimate the connectivity in the network starting with MSN
D1 to SNr.

1. Striatal fibers entering SNr follow the dendritic course of sin-
gle SNr neurons (Rinvik and Grofová, 1970; Schwyn and Fox,
1974; Tokuno et al., 1990) and the axons arborize in clusters
along the way (Wu et al., 2000). Based on Miller (2007) (pp
21–28) we assume that a single axon from an MSN makes 20
synaptic contacts upon a single SNr neuron, similarly as for
globus pallidus interna (GPi). We modeled this by assuming
that the synaptic efficacy of an MSN-SNr connection in the
model is the sum of the efficiency of all synaptic contacts that
a pre-synaptic neuron makes onto a post-synaptic neuron.

2. The upper bound of the number of synapses an MSN gives
off in SNr is 192 (Wu et al., 2000). By dividing 192 by 20,
which was the number of synaptic contacts upon one SNr,
we estimate that an MSN on average contacts around 10 SNr
neurons.

3. Striatum in rat contains 2.8 million MSNs (Oorschot, 1996)
and half of these, 1.4 million, belong to the direct pathway
and project to SNr (Gerfen et al., 1990) with a subpopulation
also sending collaterals to the much smaller endopeduncular
nucleus (EP) (homologous to GPi in rat) (Wu et al., 2000).

4. SNr contains 26,000 neurons and EP contains 3200 (Oorschot,
1996) and the ratio between number of MSNs and SNr
neurons becomes around 50 (divide 1.4 million by 26,000;
assuming EP only receives SNr collaterals)
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5. Combining the information in 2 and 4 suggests that each SNr
can receive input from up to 500 MSNs.

To estimate the connectivity between GPe and SNr we use the
following:

1. GPe axons form baskets around target SNr neurons giving
rise to multiple large synaptic boutons (Smith et al., 1998)
and activation of a single GPe neuron evokes large IPSPs
with a conductance estimated as 76 nS (Connelly et al., 2010).
This indicates that the GPe neurons exert a strong inhibitory
control over SNr neurons through multiple synaptic contacts
on the GPe neuron.

Table 5 | Basic synaptic model parameters.

Name Value Source

τ
MSND1−SNr
gaba 5.2 ms Connelly et al., 2010

gMSND1−SNr
0 2 nS constrained by Connelly et al. (2010)

tMSND1−SNr
delay 7 ms Connelly et al., 2010

EMSND1−SNr
rev −80 mV Connelly et al., 2010

τGPe−SNr
gaba 2.1 ms Connelly et al., 2010

gGPe−SNr
0 76 nS Connelly et al., 2010

tGPe−SNr
delay 3 ms Nakanishi et al., 1991

EGPe−SNr
rev −72 mV Connelly et al., 2010

τSTN−SNr
ampa 12 ms n.d. assume as for STN to GPe Hanson and

Jaeger (2002)

gSTN−SNr
0 0.91 nS fitted to model constrains and in range of Shen

and Johnson (2006)

tSTN−SNr
delay 4.5 ms Shen and Johnson (2006) and Ammari et al.

(2010)

ESTN−SNr
rev 0 mV n.d.

τ
MSND2−GPe
gaba 6 ms Shen et al., 2008

gMSND2−GPe
0 2 nS constrained by Shen et al. (2008)

tMSND2−GPe
delay 7 ms Park et al., 1982

EMSND2−GPe
rev −65 mV Rav-Acha et al., 2005

τSTN−GPe
ampa 12 ms Hanson and Jaeger, 2002

gSTN−GPe
0 0.35 nS fitted to model constrains and in range of

Hanson and Jaeger (2002)

tSTN−GPe
delay 5 ms Ammari et al., 2010

ESTN−GPe
rev 0 mV n.d.

τGPe−GPe
gaba 5 ms Shen et al., 2008

gGPe−GPe
0 1.3 nS fitted to model constrains and in range of

Hanson and Jaeger (2002)

tGPe−GPe
delay 1 ms n.d.

EGPe−GPe
rev −65 mV n.d. assumed as for MSN D1

τCTX−STN
ampa 4 ms Baufreton et al., 2005

gCTX−STN
0 0.25 nS n.d.

tCTX−STN
delay 2.5 ms Fujimoto and Kita, 1993

ECTX−STN
rev 0 mV n.d.

τGPe−STN
gaba 8 ms Baufreton et al., 2005

gGPe−STN
0 0.08 nS n.d. fitted to model constrains

tGPe−STN
delay 5 ms Baufreton et al., 2005

EGPe−STN
rev −84 mV Baufreton et al., 2009

2. Pharmacologically induced inhibition of GPe leads to a large
increase of firing rate at more than 300% of basal SNr activity
(Celada et al., 1999). We tuned the SNr neuron in the net-
work, by injecting current (254 pA) and adding STN input (at
10 Hz), to fire at above 300% of GPe base firing rate without
input from GPe. Note that STN activity have been reported to
increase to 20 Hz without GPe input (Farries et al., 2010), thus
maintaining STN at 10 Hz might seem to be the wrong thing
to do. However, experiments (Moran et al., 2011; Rosenbaum
et al., 2012a) and model predictions (see Results below) sug-
gest that the synapses between STN and SNr are depressing.
Thus, when tuning the model with static synapses between
STN and SNr we did not change the activity of STN in order
to avoid overestimating the effect of STN to SNr. We found
that emulated input from 32 GPe neurons, each with firing
frequency around 30 Hz and depressive synapses with 76 nS
(Connelly et al., 2010) as the max conductance strength, were
needed to decrease the firing rate of the SNr neuron close
to 30 Hz.

To estimate the connectivity between GPe and STN we use the
following:

1. GPe has sparse but selective connectivity with STN, with an
estimate of 300 synapses per GPe neuron (Baufreton et al.,
2009). It has also been estimated that single GPe axons make
multiple synaptic contacts with one STN cell (Smith et al.,
1990).

2. We assume that a single GPe makes on average 10 synaptic con-
tacts with each STN, then, given 1 above, we estimate that each
GPe makes 30 connections in STN.

3. STN neurons increase their firing rate with 100% when remov-
ing GPe input (Farries et al., 2010) whereas GPe firing rate
decrease with 50% when removing STN input (Féger and
Robledo, 1991). The synaptic weight between GPe and STN
was tuned such that this was fulfilled.

To estimate the connectivity between STN to GPe and SNr we use
the following:

1. STN terminals spread evenly over perikarya and dendrites of
GPe and SNr neurons (Smith et al., 1998), and have a synap-
tic conductance around 1 nS for GPe and SNr (Hanson and
Jaeger, 2002; Shen and Johnson, 2006).

2. STN fires at 10 Hz in vivo (Fujimoto and Kita, 1993; Paz et al.,
2005; Walters et al., 2007; Farries et al., 2010), and silencing
the nucleus leads to a 50% decrease of activity in GPe and SNr
(Féger and Robledo, 1991).

3. Assuming that STN neurons make 30 connections in GPe or
SNr we found that with the synaptic weights at 0.35 nS and
0.91 nS for respectively STN to GPe and STN to SNr connec-
tions we were in range of criteria 1 and fulfilled criteria 2.

The MSN D2 type makes synaptic contact preferentially on dis-
tal dendrites in GPe similarly to MSN D1 in SNr (Smith et al.,
1998). Given that MSNs innervate their target in a similar way we
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assumed that the number of connections between MSN D2 and
GPe equal the number of connection between MSN D1 and SNr.
Estimation of GPe collaterals:

1. GPe collaterals innervate the soma and proximal dendrites,
transmitting information reliably (Sadek et al., 2007; Sims
et al., 2008) with an estimate around 500 synapses per neuron
(Sadek et al., 2007).

2. We assume that a single GPe neuron makes on average 17
synaptic contacts with each GPe, then, given 1 above, we
estimate that each GPe neuron makes 30 connections in GPe.

3. GPe firing rate increases with 55% when the MSN and collat-
eral GPe inputs are removed (Celada et al., 1999).

4. We found that 3 was fulfilled with the conductance of pallidal
synapse set to 1.3 nS, which is in line with Sims et al. (2008).

Estimation of synaptic input rate between cortex and STN:

1. STN neurons fire at around 10 Hz in vitro (Fujimoto and Kita,
1993; Paz et al., 2005; Walters et al., 2007; Farries et al., 2010).

2. Without inhibitory input STN neurons fire at 20 Hz (Farries
et al., 2010).

3. Assuming a conductance of 0.25 nS we set the cortical input
rate to 189 Hz to fulfill 1 and 2.

The resulting connectivity parameters are listed in Table 4 and the
mentioned synaptic conductances in Table 5. See Figure 1G for
the effect on network base firing rate following different lesions.

SYNAPSE MODELS
In order to reveal how activity dependent synapses differentially
shape post-synaptic neuron firing frequencies, all simulation
results are also compared with the case when static reference (i.e.,
frequency independent) synapses are used instead. To model the
simpler static synapse, a standard conductance based exponential
decay model (Equation 4) is used.

dg

dt
= − g

τsyn
+ go × δ(t − tspike) (4)

Here g is the conductance, τsyn (syn = ampa/gaba) the synaptic
time constant, go the maximal conductance for a synaptic event,
tspike the time of the synaptic event and δ is the Dirac delta func-
tion. When a pre-synaptic spike arrives, the conductance g is
updated with g0 and then, in between the spikes, the conductance
decays toward zero with time constant τsyn. The post-synaptic
current is given by Isyn = g × (Erev − V).

To model a frequency dependent synapse, the Tsodyks model
(Tsodyks et al., 1998) was used (Equations 5 and 6) with the com-
mon FD formalism (Abbott et al., 1997; Dittman et al., 2000;
Abbott and Regehr, 2004; Puccini et al., 2007). The FD formalism
dictates that the synaptic strength is updated by the prod-
uct of facilitating (F) and depressing (D) variables/factors. This
description shows quantitatively good approximations of exper-
imentally measured synapse dynamics (Tsodyks and Markram,
1997; Markram et al., 1998; Planert et al., 2010; Klaus et al.,

2011). The model formalism assumes a finite pool of synap-
tic resources in active (y), inactive (z) and recovered (x) states.
At rest y and z are 0 and x is 1. Depression occurs because
some of the resources remain for a while in the inactive state
before entering the recovered state with a rate determined by
the recovery time constant τrec. The facilitation is modeled by
u which is a variable that is step-wise increased at each spike
with the product of the utilization factor U and 1 − u (U is
between 0 and 1) and decays exponentially toward 0 with time
constant τfac in between spikes (Equation 5). The resources in
the active state y are increased with the product of the variables
x and u (capturing depression and facilitation respectively) and
are then quickly inactivated by decaying toward zero with time
constant τsyn (Equation 6). The post-synaptic conductance is
proportional to the fraction of resources in the active state and
is given by g = g0 × y with the resulting post-synaptic current
Isyn = g × (Erev − V).

du

dt
= − u

τfac
+ U × (1 − u) × δ

(
t − tspike

)
(5)

dx

dt
= z

τrec
− u × x × δ(t − tspike)

dy

dt
= − y

τsyn
+ u × x × δ(t − tspike)

dz

dt
= y

τsyn
− z

τrec
(6)

The value and source of the basic synaptic parameters, τsyn (syn =
ampa/gaba), go, tdelay and Erev, for both plastic and static synapse
models are listed in Table 5. In simulations the synaptic weights
and delays were randomly drawn from a uniform interval ±50%
of peak conductances g0 and delays tdelay. We created two static
reference synapses from MSN D1 data; a weak static synapse
refMSND1

init representing the initial non-facilitated peak conduc-

tance, gMSND1−SNr
0 , and a strong static synapse refMSND1

max represent-

ing the maximally facilitated peak conductance, 4 × gMSND1−SNr
0 ,

during steady-state (see also Figure 1I). The unitary conduc-

tive strength gMSND1−SNr
0 of a striato-nigral synapse could not be

established by Connelly et al. (2010). From their data we how-
ever, estimate the conductance to 2 nS, assuming it to be 50%
of the measured mean conductance strength evoked by minimal
stimulation of MSNs inputs. The mean conductance was calcu-
lated by dividing the measured peak of the first inhibitory post-
synaptic current, 300 pA, with the driving force, 75 mV (GABA
high chloride reversal potential at 5 mV and holding potential is
at −70 mV). For GPe we have one reference synapse refGPe

30 Hz with
conductance 0.15 × gGPe−SNr

0 which is the steady-state strength
of the depressing synapse at 30 Hz activation (a typical in vivo fre-
quency). The unitary conductive strength of gGPe−SNr

0 was set to
76 nS as measured by Connelly et al. (2010). The static synapse
STN synapse in SNr was named ref STN and had the synaptic
strength gSTN−SNr

0 . In Figure 1H are the dynamics of the static
synapses onto SNr displayed.

For facilitating and depressing synapses in SNr we use two
data sets collected from the published material by Connelly
et al. (2010) for tuning of the synapse models. The first data
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set describes the relative synaptic current increase over 10 suc-
cessive spikes at 10, 50, and 100 Hz and the second data set
shows the relative size of a recovery spike after 5 pulses at 100 Hz
and measured after 60, 160, 560, 3000, and 9000 ms. For facil-
itating synapse in GPe we used one data set from Sims et al.
(2008) with the relative synaptic current increase over 10 suc-
cessive spikes at 20 and 50 Hz. We fitted parameters for the
Tsodyks synapse in Matlab using a least square method min-
imizing the squared error between experimental and model
current pair pulse data. To find the solution we used the fmin-
serach method in Matlab which implements the Nelder-Mead
Simplex method (Lagarias et al., 1998). The resulting parameters
for the facilitating MSN D1 synapse, facMSND1 , and depressing
GPe synapse, depGPe, in SNr, and facilitating MSN D2 synapse,
facMSND2, in GPe, are listed in Table 6 and the resulting behavior
of the dynamic synapses onto SNr, facMSND1and depGPe, are dis-
played in Figures 1I–K. The weights of the dynamical synapses
were tuned such that the conductance of the first spike equaled
gMSND1−SNr

0 and gMSND2−GPe
0 for the MSN synapses onto SNr or

GPe, and gGPe−SNr
o for the GPe depressing synapse onto SNr.

Finally Moran et al. (2011) and Rosenbaum et al. (2012b) suggest
that STN connects with depressing synapses to the basal ganglia
output nucleus SNr. For the STN synapse in SNr we assumed
standard depressing synaptic parameters (Tsodyks and Markram,
1996) with U = 0.35 and τref = 800, with a peak conductance
of 3.64 × gSTN−SNr

o . This ensured that the synaptic efficacy of
the depressing STN synapse, at 10 Hz activation, was equal to
gSTN−SNr

o .

DEFINITION OF “THRESHOLD CODING” AND “RATE CODING” IN SNr
USED IN THIS STUDY
Striatal MSNs show firing rate changes with respect to the behav-
ioral choice or according to the reward or the reward expectancy
for certain actions (Ito and Doya, 2009). SNr neurons likewise
change their activity and are modulated by duration and contin-
gency of actions (Fan et al., 2012). Neurons in SNr can potentially
code for action on/off or for a graded action-value/salience.
In tasks where the basal ganglia are assumed to be involved
in action selection (Albin et al., 1989; DeLong, 1990; Mink,
1996; Redgrave et al., 1999) an action is selected when a thresh-
old is passed and consequently an action is either on or off.
We call this “threshold coding” and in accordance with earlier
work, we define that an action is signaled/selected as the fir-
ing rate of an SNr neuron drops below 5 Hz (Chevalier and
Deniau, 1990; Humphries et al., 2006). Furthermore the basal
ganglia might play a role in coding for different action-values
(Samejima et al., 2005) or action saliences (Redgrave et al.,

Table 6 | Parameters for facilitating and depressing Tsodyks synapse

models.

Synapse U τrec (ms) τfac (ms)

facMSND1 0.0192 623 559

depGPe 0.196 969 0

facMSND2 0.24 11 73

depSTN 0.35 800 0

1999). Studies in monkeys suggest that action-value, indepen-
dent of resulting actions, is coded in the firing rate of striatal
neurons (Samejima et al., 2005; Lau and Glimcher, 2007, 2008;
Pasquereau et al., 2007). Also SNr neurons show graded increases
and decreases in firing rate in relation to action duration and
likelihood (Fan et al., 2012). We call this “rate coding” and we
thus also investigate how well changes in input rates, filtered
by activity dependent synapses, can be picked up in the output
nuclei.

IMPLEMENTATION
The simulations were run using the NEST simulator (Gewaltig
and Diesmann, 2007) and the network was built using PyNest
which is a Python-interface to the NEST simulator. Model fitting
of dynamical synapses were done in Matlab. The scripts necessary
to run the model are available for download at ModelDB (http://
senselab.med.yale.edu/ModelDB/).

RESULTS
CHARACTERISTICS OF THE DERIVED MODEL NEURONS AND THEIR
SYNAPTIC INPUTS
The SNr, GPe and STN neuron models were tuned to exhibit
properties that are characteristic of the firing of these neurons
in vitro, exhibiting realistic membrane resistances (Figure 1A)
and current frequency relationships (Figure 1B). The SNr neu-
ron model was tuned to exhibit a switch from silence to spiking
above 1 Hz at −54 mV (Figure 1C upper panel) and in addition
it showed hyperpolarization induced rebound spikes (Figure 1C
lower panel). The GPe neuron exhibited noise induced oscilla-
tions close to spike threshold (Figure 1D first trace), and then
fired regular at higher current input intensities (Figure 1D second
trace). It also showed rebound spikes upon release from hyperpo-
larization (Figure 1D third trace). The STN neuron model mim-
ics the characteristic hyperpolarization induced burst, where the
length of the burst depends both on the duration (Figure 1E first-
third trace) and the magnitude (Figure 1E fourth-sixth trace). It
also showed a dependency on time to first spike after a depolariz-
ing 500 ms current induced high frequency discharge (Figure 1E
seventh trace). To get the spontaneous activity seen in in vitro
experiments for the SNr (7–20 Hz), the GPe (7–17 Hz), and
the STN (8–12 Hz) neuron model, the parameter Iin vitro (see
Tables 1–3) was respectively set to 15, 5, and 6 pA.

Synaptic conductances in the model (Table 5) where picked
such that they would be in agreement with in vitro experiments.
A few of the parameters in the model were tuned (see Materials
and Methods) within biological realistic ranges, such that the
steady-state firing rate of SNR, GPe and STN populations in con-
trol and lesion experiments were in agreement with literature
(Figures 1F,G). The model of the facilitating striato-nigral and
striato-pallidal, and depressing pallido-nigral synapses are fitted
to data from in vitro experiments (Table 6). The dynamics of the
plastic synapse types onto SNr is shown in Figures 1I–K. The
facilitating MSN D1 to SNr synapse with peaking synaptic steady
state strength at 10 Hz is around four times the resting state (base)
conductance (Figure 1I), and a fast depressing GPe-SNr synapse
which at 30 Hz has a steady state conductance around 15% of the
resting state base line (Figure 1J). Depressing STN synapses in
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SNr were assumed to have standard depressing synaptic param-
eters (Tsodyks and Markram, 1996). Our full model constituted a
network of SNr, GPe, and STN neurons, with connection parame-
ters listed in Table 4, and the network was activated with emulated
patterns of activity from respectively MSN D1, MSN D2, and
Cortex (Figure 1L).

DELAYED SNr INHIBITION DUE TO SYNAPTIC FACILITATION IN THE
DIRECT PATHWAY
The presence of facilitating synapses in the striato-nigral path-
way can significantly delay the suppression of SNr firing following
activation of only a few pre-synaptic MSNs spiking at mod-
erate burst frequency. The decrease in the SNr firing rate and
the temporal changes during the burst period differ when the
input arrives through the static refMSND1

init , refMSND1
max vs. facMSND1

synapses (Figures 2A–C). In the example, 4% of the MSNs are
bursting at 20 Hz. If assuming threshold coding, the thresh-
old passing occurs in the simulations with the refMSND1

max and

facilitating synapse model, whereas with the refMSND1
init synapse

model the SNr neuron is not effectively suppressed. The facil-
itating synapse in the striato-nigral pathway needs, however,
about 200 ms before it reaches the same conductive strength as
when the refMSND1

max static synapse is used. Threshold passing is
thus delayed for 200 ms when only a few pre-synaptic MSNs
are active, showing that the communicated inhibitory signal is
successively increasing over time before it suppresses the SNr
neuron.

SYNAPTIC DEPRESSION IN THE INDIRECT PATHWAY ALLOWS
DETECTION OF IRREGULAR GPe ACTIVITY
A burst in MSN D2 subpopulations is most effective in dis-
inhibiting SNr when this leads to pauses in GPe subpopula-
tions (Figures 3A–C). GPe neurons have a peculiar firing pattern
in vivo. They fire tonically at high frequency around 30 Hz in vivo,
interrupted by bursts and pauses (Jaeger and Kita, 2011; Kita and
Kita, 2011). During dopamine depleted condition the number of
bursts and pauses increase, but still the same mean firing rate
is maintained. The increased irregular activity of GPe neurons
under dopamine depleted conditions have been hypothesized to
disturb the information processing in basal ganglia output nuclei
(Kita and Kita, 2011). Here we investigate how depressing GPe
synapses convey the irregular GPe activity to SNr. We test this
by setting up two scenarios. The first scenario is when both
the pre-synaptic bursting and non-bursting MSN D2 subpopu-
lations project in a diffuse way to all post-synaptic GPe neurons,
such that the population of GPe neurons only sense the aver-
age change of MSN input (Figure 3C). A burst in an MSN D2
subpopulation then leads to a minor homogenous decrease in
the GPe population. Simulations show that the resulting disin-
hibition in SNr will be stronger with static synapses, refGPe

30 Hz,
than with depressing, depGPe, synapses (Figure 3D) because the
depressing GPe synapses in SNr recover their inhibitory strength
over time as a result of the decreased GPe spike frequency, and
thus the firing rate in SNr is higher in the beginning of the
burst. Thus, in this scenario depressing synapses are responsi-
ble for producing a transient disinhibition of SNr following a
burst in MSN D2. The second scenario is when striatal bursting

and non-bursting MSN D2 project in a non-diffuse way (i.e.,
topographic) to post-synaptic GPe neurons. Here the GPe neu-
rons receiving input from the bursting pre-synaptic MSN D2
become almost silent and the GPe population receiving input
from the non-bursting pre-synaptic MSNs increase their firing
further (due to reduced inhibition from the directly inhibited GPe
neurons) (see Figure 3C). This situation is more effective in dis-
inhibiting SNr over the whole burst (Figure 3D), even though the
number of synaptic events/s from the total pool of pre-synaptic
GPe neurons are the same as above (Figure 3C solid magenta
vs. dotted blue line). The explanation is that the synapses of the
subpopulation of the already tonically firing GPe neurons, which
further increase their firing, become even more depressed and
therefore do not compensate for the removed inhibition from the
subpopulation which becomes quiet. Note that when the MSN D2
to GPe inhibition suddenly is released the synapses of the previ-
ously silenced GPe subpopulation have recovered in strength and
are responsible for a transient inhibitory response in SNr (see dis-
cussion for a hypothetical effect of this). The present simulations
thus indicate that irregular activity in GPe subpopulations leads to
increased spiking in SNr despite no change in GPe to SNr mean
synaptic activation frequency. This might contribute to the dis-
turbed signaling through the basal ganglia output nuclei during
Parkinson’s disease.

DETECTION OF MSN D1 BURSTING SUBPOPULATIONS IN THE DIRECT
PATHWAY
Facilitating synapses selectively enhance input arriving at high
frequency rates as in in vivo experiments. This is likely important
because the number of simultaneously bursting MSNs in striatum
is estimated to be low at any given time point (Wilson, 1993). The
activation of only a few percent of pre-synaptic direct pathway
MSNs, which burst with physiologically realistic burst frequen-
cies, 17–48 Hz (Miller et al., 2008), results in robust inhibition of
SNr during steady-state (Figure 4A). At lower MSN D1 spike fre-
quencies, action signaling, if assumed to require threshold coding,
becomes more resource demanding requiring activation of sig-
nificantly higher numbers of pre-synaptic MSNs. As indicated in
Figure 2 above, facilitation increases the response to pre-synaptic
signals over time, with the result that fewer neurons are required
to sustain the same amount of inhibition if the burst is sus-
tained a few 100 ms (Figure 4A). Synaptic facilitation thus enables
signal amplification of sustained bursts in the striato-nigral path-
way. Such amplification due to synaptic facilitation has also been
observed in hippocampus (Klyachko and Stevens, 2006), where
facilitating synapses enhance the input during epochs of high
frequency discharge associated with hippocampal place fields,
suggesting that this might be a general function of facilitating
synapses.

Facilitating synapses filter out low frequency input possibly
preventing unspecific modulation of SNr firing rate due to a fluc-
tuation in background MSN D1 activity. Facilitating synapses
stay weak (as for simulation with refMSND1

init ) when activated at
low input rates, limiting the inhibitory effect of such a sig-
nal (Figure 4B). Simulations suggest that threshold passing in
SNr is not occurring with an increase in background activity of
the whole pre-synaptic MSN D1 pool up to 1.2 Hz. Facilitating
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FIGURE 2 | The delayed effect of facilitating synapses on MSN D1 to SNr

inhibition. (A) Raster plot of the emulated activity of 15,000 pre-synaptic
MSNs with 4% of the neurons bursting (red) at 20 Hz for 500 ms and the rest
of the population (blue) firing at 0.1 Hz. (B) Firing frequency of pre-synaptic
MSNs shown in (A) averaged over the whole population (blue), and over the
bursting inputs (red) (triangular kernel window 100 ms used). (C) The

resulting inhibitory response in SNr over time. The facMSND1 synapses
(magenta) need time to be fully activated, delaying the threshold crossing for
200 ms here. With the refMSND1

init (blue) and refMSND1
max (green) synapses the

inhibitory effect appears immediately (triangular kernel window 100 ms). The
standard deviation of population activity between simulations is shown as
shaded areas around the mean (solid or dotted lines).

synapses thus disregard low frequency input and buffer effectively
against fluctuations in the basal activity.

Another way to quantify how the facilitating synapses can
detect high frequency input, but buffer against changes in back-
ground firing is illustrated in Figure 4C, where significantly
fewer synaptic events/s (400 compared to 600 synaptic events/s)
are required to suppress the SNr when the input is arriving
though pre-synaptic subpopulations with high frequency dis-
charge rather than an unspecific increase in MSN D1 firing rate
in the whole striatal pool (arrow indicates the intensity used in
Figure 2C).

The above results show that facilitating synapses enable the
post-synaptic neuron to differentiate between bursting- and
non-bursting MSN D1 activity patterns, even though there are
a constant number of pre-synaptic events. Increasing the number
of high frequency firing direct pathway MSNs, and at the same
time decreasing the background firing rate of the rest of the MSN
D1 pool, such that the number of synaptic events is kept constant
in post-synaptic SNr neurons will give a constant total inhibitory
effect if refMSND1

init or refMSND1
max static synapses are assumed (blue

and green Figure 4D). However, with facilitating synapses detec-
tion of the changed pre-synaptic firing pattern is seen as a
decrease in SNr firing rate with increasing contrast in spike fre-
quency between the pre-synaptic neurons (magenta Figure 4D).

EFFECTS OF DEPRESSING STN-SNr AND GPe-SNr SYNAPSES FOR
SIGNALING THROUGH THE INDIRECT AND HYPERDIRECT PATHWAYS
An increased activity of STN may excite SNr directly and/or
inhibit SNr through GPe. If both the GPe and STN synapses in
SNr were static one would expect that they counteract each other,
e.g., they might even cancel each other out such that increased
activity in STN only leads to very small activity changes in SNr
(Figure 5A, blue dotted line). But, since GPe synapses in SNr are
depressing (Connelly et al., 2010), the activity from STN would
come to dominate the response in SNr such that increased activ-
ity in STN leads to increased activity in SNr (Figure 5A, blue
solid). This happens since depressing synapses tend to converge
toward a constant post-synaptic current with increased firing rate
(Tsodyks and Markram, 1996), thus the effect of the inhibitory

signal through the depressing GPe-SNr synapses would saturate
while the excitatory input from STN would continue to increase
with frequency. Experimental studies in rat and monkey, how-
ever, contradict such scenarios, and rather suggest that increased
activity in STN will not lead to increases in the basal ganglia
output nuclei GPi, the analog to SNr (Maurice et al., 2003; Kita
et al., 2005; Moran et al., 2011). Such results are well explained
by published (Moran et al., 2011) and unpublished (Rosenbaum
et al., 2012b) work suggesting that STN is assumed to connect
to SNr with depressing synapses. With standard depressing STN-
SNr synaptic parameters (Tsodyks and Markram, 1996) (Table 6)
with U = 0.35, τfac = 0 and τrec = 800, our simulation results
are in accordance with experimental results, i.e., that the excita-
tory control of SNr by STN is weak (Figure 5A, solid green). This
suggests that STN is not a major contributor to increased activity
in SNr if the input is channeled in parallel via GPe.

In contrast with the above prediction that steady state activa-
tion of the hyperdirect pathway leads to only small effects in SNr,
the indirect pathway enhances SNr firing when activated from
MSN D2 populations (Figure 5B). SNr is disinhibited in a (sub)
linear fashion following sustained elevated MSN D2 background
activity. Increased MSN D2 inhibition of GPe will indirectly
increase STN firing through disinhibition, in turn increasing SNr
firing significantly if STN-SNr synapses are static (Figure 5B,
blue lines). When assuming depressing STN-SNr synapses a more
moderate disinhibition through the indirect pathway is seen
during steady state (Figure 5B, green curve).

From these results, achieved for steady-state activation of the
hyperdirect and indirect pathways, one would predict that mainly
the indirect pathway plays a significant role for controlling the
SNr activity level. However, if the temporal effects are considered
during e.g., different parts of a 500 ms burst, another scenario
emerges. If assuming non-depressing STN-GPe synapses the STN
input would indirectly excite SNr more and more during a 500 ms
burst because of the GPe-SNr synaptic depression (solid lines
in Figure 5C). We note, however, that with depressing synapses
between both STN and SNr (Rosenbaum et al., 2012b) as well
as between GPe and SNr the excitatory effect is not seen (dotted
lines Figure 5C). The explanation is that the excitatory effect of
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FIGURE 3 | The effect in SNr of depressing GPe to SNr synapses

following activation of the indirect pathway. (A) Raster plot of a
population of 15,000 MSN D2 with 5% neurons bursting (red) at 20 Hz for
500 ms and the remaining population (blue) firing at 0.1 Hz. (B) Firing
frequency of MSN D2 input populations bursting- (red) and total population
(blue) (triangular kernel window 100 ms). (C) Firing frequency of the GPe
population when they are assumed to be diffusely inhibited by the whole
pre-synaptic MSN D2 pool (magenta) and firing frequency of the GPe
population when a non-diffuse (topographic) MSN D2 to GPe projection is
assumed (blue). This results in some (almost) pausing GPe neurons and
some with increased firing. Note that together the GPe neurons have the
same average firing rate change as the diffusely inhibited population (blue
dotted) (triangular kernel window 100 ms used). The standard deviation of
population activity between simulations is shown as shaded areas around
the mean (solid or dotted lines). (D) Resulting disinhibition in SNr when the
pre-synaptic GPe neurons receive non-diffuse or diffuse inhibition from
MSN D2, magenta vs. blue in (C) for depressing (solid lines) and static
(dotted lines) synapses. When the pre-synaptic GPe neurons are diffusely
inhibited (magenta) the spike elevation in SNr is decreasing over time with
depressing GPe to SNr synapses (magenta solid line) in contrast to when
static synapses are used (magenta and blue dotted lines). The disinhibition
of SNr via the indirect pathway is most efficient when the GPe projections
are assumed to be non-diffusely inhibited such that the GPe has pausing
subpopulations (blue solid line) (triangular kernel window 100 ms). The
standard deviation of population activity between simulations is shown as
shaded areas around the mean (solid or dotted lines).

the STN-SNr pathway is balanced by the inhibitory effect of the
STN-GPe-SNr pathway.

To see an excitatory STN effect in the simulations when assum-
ing both depressing STN-SNr and GPe-SNr synapses one needs to
focus on an even finer time scale of a few tens of ms. The response
following a very brief activation of STN generates a fast increase
in activity followed by an inhibition and then a second increase

FIGURE 4 | Effects of synaptic facilitation in the direct pathway during

steady-state. (A) The number of MSN D1 bursting with a certain frequency
(7–48 Hz) which are needed for action selection, defined as decreasing SNr
firing under a certain threshold. If facilitated synapses are used (magenta),
only a few MSNs are needed when bursting in the interval 17–48 Hz, and
with performance closer to refMSND1

max (green) synapses than to refMSND1
init

(blue) synapses during the last 100 ms of the 500 ms burst. (B)

Steady-state firing rate in post-synaptic SNr cells when all pre-synaptic
MSN D1 successively increase their firing. Facilitating synapses (magenta)
allow background activity to increase up to 1.2 Hz before suppressing SNr
to action signal threshold. (C) SNr neuron activity when increasing the total
number of MSN D1-SNr synaptic events (#/s). Significantly fewer synaptic
events are necessary to bring SNr below threshold if the pre-synaptic
inputs come from a subpopulation of bursting MSN D1. Arrow corresponds
to the synaptic event intensity used in Figure 2C. (D) Example of SNr
activity as a function of number of bursting pre-synaptic MSN D1 when
keeping the total number of synaptic events constant (450 events/s). The
facilitating synapse (magenta) enables the SNr neuron to detect a change in
input patterns resulting from a few bursting MSN D1.

in SNr (Figure 5D). This is in accordance with experiments in
rat and monkey where such a triphasic response is evoked by a
short pulse directly in STN or in cortex (Maurice et al., 2003;
Kita et al., 2005; Jaeger and Kita, 2011). Note that in the sim-
ulations an activation of STN alone is sufficient to explain the
triphasic response, even though the recruitment of the direct and
indirect pathways are likely contributing during in vivo like condi-
tions when stimulating in cortex. The inhibitory response in SNr
following the brief STN activation can be extinguished by remov-
ing STN to GPe connections (Figure 5E), which also could be
interpreted as if GPe and STN do not converge on the same post-
synaptic SNr neurons and STN activation would excite those SNr
populations over a longer time. The result is supported by experi-
ments which show how application of Gabazine in GPi (homolog
to SNr) in monkeys extinguishes the inhibitory and late excitatory
response in GPi following cortical activation in vivo Tachibana
et al. (2008). As expected, STN will indirectly inhibit SNr via
GPe for a longer period when the connections between STN and
SNr instead are removed (Figure 5F). This is also supported by
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FIGURE 5 | Steady-state and temporal effects following activation of

the indirect and hyperdirect pathway. (A) Effects on SNr frequency when
increasing the total STN population activity for depGPe (solid) and refGPe

30 Hz
(dotted) GPe to SNr synapses, and with static (blue) and depressing (green)
STN-SNr synapses. (B) Effects on SNr frequency when increasing MSN D2
population activity for depGPe (solid) and refGPe

30 Hz (dotted) synapses. (C) SNr
activity in response to a 500 ms burst in STN during the first 100 ms (blue),
between 250 and 350 ms (green) and during the last 100 ms (red) using
depressing (solid) and static (dotted) STN synapses in SNr. (D) Rate in SNr
(blue), GPe (green) and STN (red) after a brief (3 ms) high frequency
excitatory pulse into STN. (E) Same as (D) but with STN to GPe lesioned.
(F) Same as (D) but with STN to SNr lesioned.

experiments where blocking AMPA receptors in GPi in monkeys
gives rise to a prolonged inhibition in GPi followed by a short
period of elevated activity Tachibana et al. (2008). Simulations
thus predict that for a brief activation of the hyperdirect path-
way, a tri-phasic excitation-inhibition-excitation response pattern
in SNr is seen if GPe and STN converge onto the SNr neurons. For
longer STN bursts synaptic depression in both STN-SNr and GPe-
SNr synapses prevents sustained effects in SNr. Thus, one could
say that the presence of depressing synapses explain the somewhat
puzzling experimental finding that STN for brief inputs excites
SNr, but for longer activation has no effect or even decreases the
firing rate in SNr (Maurice et al., 2003; Tachibana et al., 2008;
Moran et al., 2011). Note that a burst in STN can still have a
transient excitatory effect in SNr, controlled by the dynamics

of the depressing STN synapses, if STN-SNr and STN-GPe-SNr
pathways do not converge in SNr.

SYNAPTIC INTEGRATION AND NEURAL CODING IN SNr
Striatal MSNs show firing rate changes with respect to the behav-
ioral choice. Neurons which change firing rate according to
reward probability for action candidates, are present in basal gan-
glia (Ito and Doya, 2009). SNr neurons likewise change their
activity and are modulated by duration and contingency of
actions (Fan et al., 2012). Neurons in SNr can thus potentially
code for graded action-values/saliences (rate coding). To deter-
mine how synaptic facilitation and depression influence rate
coding we quantify this by measuring the slope (�SNr/�MSN)of
a linear fit to the frequency curves of MSN D1 or MSN D2 and
SNr, and for different numbers of bursting MSNs. The slope fac-
tor indicates how well MSN input rates are sensed in SNr. A small
slope factor shows that the activity level in SNr is only moderately
controlled by the burst frequency of MSNs, whereas a large slope
factor shows that MSN input frequencies are well represented
in SNr.

Facilitating synapses allow better detection of MSN D1 firing
rate changes in SNr during the first part of a burst (Figure 6A).
This is further illustrated in the bottom panel in Figure 6A where
the magnitude of the slope differ with a factor of 3 during the first
100 ms compared to the last 100 ms of a 500 ms burst. This result
suggests that an MSN D1 subpopulation better signal rate coded
action-values during an initial brief time window immediately
following striatal activation. This is explained by the shape of the
steady-steady activation curve of the facilitating MSN D1 synapse
(Figure 1I). At longer time intervals the effective inhibition on
SNr (spike frequency times the facilitation) levels off.

Depressing GPe-SNr synapses can enable rate coding of pre-
synaptic MSN D2 populations during the whole burst interval
(Figure 6B). The size of the pre-synaptic bursting MSN D2 pop-
ulation decides when such rate coding is most optimal. The
optimal size of the MSN D2 subpopulation for rate coding is
slightly increased over a 500 ms burst (Figure 6B, bottom panel).

CO-ACTIVATION OF THE DIRECT- AND INDIRECT- OR
HYPERDIRECT-PATHWAY
SNr neurons increase and decrease their activity in relation to
actions (Sato and Hikosaka, 2002; Basso and Sommer, 2011; Fan
et al., 2012). SNr receives input from MSN D1, GPe, and STN
and can potentially be decreased by either increased activity in
striatal MSN D1 input or by increased activity in GPe input,
whereas the activity in SNr can be increased either by disinhibi-
tion via GPe or by increased excitation from STN. It is not obvious
which input is responsible for increases and decreases in activ-
ity in SNr seen in behavioral experiments (Fan et al., 2012). Our
results suggest that it is the inhibitory input arriving from MSN
D1 that is responsible for inhibition in SNr whereas di-synaptic
input from STN through GPe only have a significant effect for
very brief inputs (compare Figure 5). Conversely we found that
MSN D2 can produce an increase in SNr activity through disinhi-
bition via GPe, and that STN has only little effects on SNr activity.
Combining inputs onto SNr we see how recruitment of MSN D2
can increase the activity in SNr, potentially suppressing an action
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FIGURE 6 | Rate coding in SNr during a sustained burst in striatal

populations. (A) Upper panel; effect on SNr firing rate if 2, 4, or 6% of the
pre-synaptic MSN D1 pool burst. The result is shown during the first
100 ms of a 500 ms long burst. Middle panel; same as upper panel but
during the last 100 ms of the burst. Lower panel shows the slope of linear
fits to traces such as in upper and middle panel for three intervals during a
500 ms burst: for the first 100 ms, between 250 and 350 ms and for the last
100 ms. The slope is plotted against the percent of bursting MSN D1. The
standard deviation is shown as shaded areas around the mean. (B) Upper
panel; effect on SNr firing rate if 3, 7, or 11% of the pre-synaptic MSN D2
pool is bursting. The result for the first 100 ms of a 500 ms long burst is
shown. Middle panel; Same as upper panel but during the last 100 ms of
the burst. Lower panel shows the slope of linear fits to traces such as in
upper and middle panel for three intervals: the first 100 ms (blue trace),
between 250 and 350 ms (green trace) and the last 100 ms (red trace). The
result is plotted against percent of bursting MSN D2 populations. Diffuse
MSN D2-GPe projections are assumed here (compare Figure 3). The
standard deviation is shown as shaded areas around the mean.

signal initiated via MSN D1, especially during its initial phase of
a 500 ms burst (Figure 7A, green line). Note that for a smaller
proportion of bursting MSN D2 we would maybe get a delayed
action signal when MSN D1-SNr synapses successively facilitate.
A similar observation holds when the hyperdirect pathway is
recruited. If the synapses between STN and SNr are assumed to
be static (Figure 7A; red line) they counteract (or delay) an action
selection signaling induced through the direct pathway. However,
following our prediction that STN-SNr synapses are depressing
then the excitatory control of SNr by STN is negligible (Figure 7A;
magenta line, compare also Figure 5 above). Finally we tested how
increased activity in STN influences SNr if GPe and STN do not
converge in SNr neurons. Now, when simulating with depressing

FIGURE 7 | The result of convergent and non-convergent striato-nigral,

pallido-nigral and subthalmo-nigral inputs. (A) Scenario when STN and
GPe converge onto SNr neurons. 500 ms 30 Hz bursts in 3% of the MSN
D1 pool: alone (blue), combined with 4% bursting MSN D2 (green),
combined with elevated STN input induced by doubling the backround
cortical drive to 2 × vSTN Hz and using static (red) or depressive STN to SNr
synapses (magenta). The standard deviation is shown as shaded areas
around the mean. (B) Scenario were STN and GPe do not converge in SNr.
GPe recieves independent poisson input, instead of input from STN
neurons, at 10 Hz. 500 ms 30 Hz bursts in 3% of the MSN D1 pool: alone
(blue), combined with elevated STN input induced by doubling the
backround cortical drive to 2 × vSTN Hz and using static (red) or depressive
STN to SNr synapses (magenta). In (B) it is assumed that the SNr neurons
measured from receive increased STN inputs in combination with a
constant basal level of GPe inhibition. The standard deviation is shown as
shaded areas around the mean.

STN-SNr synapses onto the SNr neurons, we see (Figure 7B;
magenta line) how STN can delay an action signal induced by
MSN D1 activity for a period of 100–200 ms, a delay directly
determined by the dynamics of the depressing synapses. Thus,
the patterns of convergence of the direct, indirect and hyperdi-
rect pathway determine the effect a signal though either of the
pathways can have.

HOW PARAMETER PERTUBATIONS INFLUENCE THE BASAL FIRING
RATES
Simulations predict that parameter changes in GPe-SNr and
STN-SNr connections affect the firing rate in SNr the most.
The model have many parameters and one natural question is
how robust the model behavior is to parameter changes. We
tried to address this by varying the conductances and num-
ber of incoming connections from each pre-synaptic neuron
with 20% up/down while measuring the change in the basal
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FIGURE 8 | Effect of increasing/decreasing parameter values on the

steady-state activity in SNr, GPe, and STN. Effects on firing rates in SNr,
GPe, and STN when changing the number of incoming connections from
each pre-synaptic neuron, N, or synaptic conductive strengths, go , in the
model. Here depressive STN-SNr synapses are assumed. Solid bars: the
effect of a 20% increase in the parameter value indicated under the graph.
Shaded bars: the effect of 20% decrease in the parameter values.

rates in SNr, GPe, and STN. We find that the rate in SNr
is most sensitive to parameter changes in the pallido-nigral
and subthalamo-nigral pathways (Figure 8) (gGPe−SNr

o , gSTN−SNr
0 ,

NGPe−SNr and NSTN−SNr). Specifically we see a superlinear change
in firing rate in SNr when changing the paramters in the pallido-
nigral pathway. The reason for the superlinear increase is the
high inhibitory influence GPe has on SNr at basal firing rate.
SNr neurons increases their firing rate with more than 300%
(see Materials and Methods) when removing GPe (i.e., decreas-
ing GPe activity with 100%), thus increasing the conductance
or number of connections between GPe and SNr will have a
strong effect. The firing rate in GPe and STN nuclei are sig-
nificantly less effected and are more robust against changes in
parameter values.

DISCUSSION
The present study has important implications for how to think
about the role of basal ganglia pathways, and further contributes
to the understanding of which combinations of pathways in basal
ganglia are responsible for the signaling in basal ganglia output
stages.

We have investigated how dynamical synapses in the direct,
indirect and hyperdirect pathways quantitatively shape the activ-
ity in SNr neurons over time. The frequency dependencies of
the synapses play a significant role in producing the response
of SNr neurons to characteristic in vivo spike patterns from
MSN D1, MSN D2, and cortex. Simulations predict that only
bursting activity in a few percent of the direct or indirect path-
ways MSNs are sufficient to respectively substantially decrease
or increase the activity in SNr. For the indirect pathways the
model predict that, due to depressing synapses, irregular activ-
ity in GPe is more effective in increasing the SNr activity. We
hypothesize that synapses between STN and SNr are depress-
ing and thus could explain experiments showing that prolonged
activation of STN has a weak effect on SNr firing rate whereas
a brief STN input leads to a tri-phasic response in SNr. The

prediction that STN-SNr synapses are depressing together with
the result that GPe has a strong inhibitory control of SNr suggest
that the signaling in the indirect pathway through either striatum-
GPe-SNr or striatum-GPe-STN-SNr is functionally dominated
by the former. Our findings further indicate that a rate code,
signaling action-values or saliences, in striato-nigral pathways is
optimal during the initial part of at 500 ms burst in a striatal
subpopulations. For the indirect pathway the simulation showed
that the input-output frequency separation could be obtained
during most parts of the burst. Simulations suggest that for
optimal rate coding only a low number of active pre-synaptic
MSNs (a few percent) need to be activated in the direct and
indirect pathways. We also show that facilitating MSN D1-SNr
synapses enhance action signaling caused by increased activity
in a small subpopulation of pre-synaptic MSN D1 and at the
same time the presence of facilitating synapses buffer against
non-specific action signaling due to fluctuation in striatal back-
ground activity. Likewise non-specific steady-state changes in
background activity in MSN D2 are ignored as a result of depress-
ing GPe-SNr synapses. In summary, the quantitative effects of
the frequency dependent synapses on basal ganglia output stages
seen in this study highlight the role of short term plasticity in
the basal ganglia for signaling, and ultimately, for control of
behavior.

In addition to controlling action selection, SNr also influences
SNc. SNc provides the main dopaminergic input to the stria-
tum and cerebral cortex. Loss of neurons in SNc is the major
pathology behind the Parkinson’s disease. Since a major source
of GABAergic control of SNc is the neighboring SNr (Tepper and
Lee, 2007), the temporal profile of activity in SNr, can effectively
shape the activity of SNc over time. For example, our results
suggest that when striatal inhibition is lifted from GPe, reacti-
vated GPe synapses can inhibit SNr for a short interval since
the GPe-SNr synapses are depressing. This transient inhibition
of SNr may result in a short excitation in SNc. The duration of
this activity (compare Figure 3D) in SNc (100–200 ms) is equal to
the reported phasic dopaminergic signals (Redgrave and Gurney,
2006). Whether this chain of influence is at all involved in the gen-
eration of phasic dopamine signals is, however, to be elucidated in
the future.

MODEL ASSUMPTIONS
The qualitative results of the model are more robust to param-
eter changes compared to the quantitative results. For example,
the finding that the detection of subpopulations of bursting or
pausing neurons in the basal ganglia nuclei occurs while changes
in background fluctuations are buffered against, are qualitative
phenomena enabled by short-time plasticity. They are not depen-
dent on the exact model connectivity or synaptic strength used.
This also applies to the result of how short term plasticity in the
pathways through the basal ganglia qualitatively shape the output
signal over time. However, changes in parameters will e.g., affect
the predicted proportion of striatal populations that need to be
activated to significantly affect the basal ganglia output stages.
Thus, to improve the quantitative properties of the model, it is
necessary to successively update model parameters based on new
data produced.
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We have included important aspects of the basal ganglia cir-
cuitry with regard to the output stage, but in the present model
the input from the striatum and cortex are emulated. By includ-
ing GPe and STN we have tried to account for their important
interactions. In future versions of the network it would be inter-
esting to incorporate a striatal module and its interactions with
GPe (Mallet et al., 2012).

Some recent papers have questioned the value of using a deter-
ministic synapse model, and instead argued for moving to models
which take into account the stochasticity of synaptic signaling (De
la Rocha and Parga, 2005; Merkel and Lindner, 2010; Rosenbaum
et al., 2012a). These studies showed that when one takes into
account the trial-to-trial variability in synaptic release events, the
resulting post-synaptic response can differ considerable on indi-
vidual trials. However, considering that it is probably a population
of neurons in basal ganglia output nuclei that are coding for a
specific message, then averaging over the population likely repre-
sent the outcome. One future direction could, however, be to use
a stochastic synaptic model and investigate how this affects the
variability of signaling.

THE ROLE OF STN IN BASAL GANGLIA
Several computational studies have tried to find the role for STN
in basal ganglia signaling. Frank (2006) suggests that STN reduces
premature behavioral responses by excitation of the basal gan-
glia output nuclei and thus dynamically adjusts the response
threshold there. In Leblois et al. (2006) loops though STN-
SNr/GPi-thalamus-cortex are assumed to compete with loops
though striatum-SNr/GPi-thalamus-cortex in SNr/GPi, allowing
the system to control action selection. In Humphries et al. (2006)
inputs to STN have an excitatory effect in basal ganglia output
nuclei setting an appropriate contrast level for action selection.
All these models assume that activating STN results in increased
activity in SNr. Experiments suggest that STN can control the
firing rate in SNr following brief synchronized inputs, but not
following prolonged activations. In reproducing these observa-
tions our simulations predict that STN makes depressing synapses
in SNr. Our results further suggest that the effect STN can have

on signaling in SNr depends on the convergence pattern of GPe
and the exact dynamics of the synaptic depressions in GPe-SNr
and STN-SNr synapses. We speculate that the hyperdirect path-
way filter incoming signals such that transient brief signals are let
through while longer sustained signals are disregarded. Brief exci-
tations of SNr by STN could then possibly signal start or stop of
actions. However, the role of such an STN filtering mechanism
has to be settled by future work.

Recent work by Mallet et al. (2012) provides an alternative
hypothesis for the role of STN in the basal ganglia network. Their
study suggests that a subset of neurons in GPe are driven by STN,
and each one of these GPe neurons in turn gives off over 10,000
GABAergic synapses in striatum and thus potentially have a sig-
nificant inhibitory control of striatum. Thus, STN could serve
an important role in regulating the activity of striatal neurons
and gate the cortical and thalamic input activity at the striatal
level. In line with the present study, such mechanisms of increas-
ing or decreasing the number of activated striatal MSNs might
significantly control signaling in basal ganglia output stages.
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Conventionally, information is represented by spike rates in the neural system. Here,
we consider the ability of temporally modulated activities in neuronal networks to carry
information extra to spike rates. These temporal modulations, commonly known as
population spikes, are due to the presence of synaptic depression in a neuronal network
model. We discuss its relevance to an experiment on transparent motions in macaque
monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too
close, the firing rate profile will be very similar to that with one direction. As the difference
in the moving directions of objects is large enough, the neuronal system would respond
in such a way that the network enhances the resolution in the moving directions of the
objects. In this paper, we propose that this behavior can be reproduced by neural networks
with dynamical synapses when there are multiple external inputs. We will demonstrate
how resolution enhancement can be achieved, and discuss the conditions under which
temporally modulated activities are able to enhance information processing performances
in general.

Keywords: continuous attractor neural network, neural field model, short-term synaptic depression, short-term

synaptic plasticity, transparent motion

1. INTRODUCTION
An important issue in computational neuroscience is how infor-
mation is represented in the neural system. It was widely accepted
that spike rates of neurons carry information. This notion was
further illustrated in population codes, in which the a group
of neurons encode information and even represent uncertain-
ties therein through their collective activities (Zemel and Dayan,
1999; Pouget et al., 2000). Consequently, population coding
has been successfully applied to describe the encoding of spa-
tial and directional information, such as orientation (Ben-Yishai
et al., 1995), head direction (Zhang, 1996), and spatial location
(Samsonovich and McNaughton, 1997). They are also used to
explain information processing in the recently discovered grid
cells (Fuhs and Touretzky, 2006).

An interesting question arises, namely, whether information
can be encoded in other aspects of population coding besides
spike rates. For example, can extra information be carried by the
coding if the spikes are modulated in time, so that different spike
trains modulated differently may convey different messages even
though their spike rates appear to be the same. Given this possi-
bility, the information content of population coding can be much
richer than its superficial appearance as spike rates.

In this paper, we will explore the ability of population spikes
to carry information extra to spike rates. Population spikes are
temporal modulations of the population neuronal activity, and
are also known as ensemble synchronizations, representing exten-
sively coordinated rises and falls in the discharge of many neurons
(Loebel and Tsodyks, 2002; Holcman and Tsodyks, 2006). The
population spikes are due to the presence of short-term depres-
sion (STD) of the synapses, referring to the reduction of synaptic
efficacy of a neuron after firing due to the depletion of neuro-
transmitters (Stevens and Wang, 1993; Markram and Tsodyks,
1996; Dayan and Abbott, 2001). This adds to a recently expanding
list of the roles played by STD in neural information processing.
For example, STD was recently suggested to be useful in expand-
ing the dynamic range of the system (Abbott et al., 1997; Tsodyks
and Markram, 1997), estimating the information of the pre-
synaptic membrane potential (Pfister et al., 2010), and stabilizing
the self-organized critical behavior for optimal computational
capabilities (Levine et al., 2007). STD was also found to be useful
in enhancing the mobility of the network state in tracking mov-
ing stimuli (Fung et al., 2012a), and hence was recently proposed
to be a foundation of a potential anticipation mechanism (Fung
et al., 2012b).
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Previously, population spikes were found to be global syn-
chronizations of neuronal activities. However, in order for them
to encode spatial information, the population spikes that will
be considered in this paper are localized ones. We will use the
case of transparent motion as an example. This example illus-
trates the possibility that the modulation by population spikes
enables the neural system to refine the resolution of direction
for multiple stimuli. The prediction by the proposed mechanism
has an excellent agreement with experimental results (Treue et al.,
2000).

Transparent motion is one of the most well-known experi-
ments in the psychophysical community. In the experiment, the
stimulus usually contains moving dots with different directions.
So, there are multiple moving directions transparently superim-
posed on one another. In the nervous system, the middle temporal
(MT) area was found to be responsible for detecting moving
directions of objects (Maunsell and Van Essen, 1983). Here, it
was recently found that the neurons are heterogeneous, with some
neurons responding to the pattern of moving stimuli, while oth-
ers responding to the components of composite moving patterns
(Rust et al., 2006). In 2000, Treue et al. found that if the direc-
tions of two groups of moving dots differ by an angle larger than
the tuning width of the neurons, the observed neuronal response
profile begins to split (Treue et al., 2000). However, subjects can
still distinguish the two directions if their difference is as small
as about 10◦ (Mather and Moulden, 1980), while the average
direction tuning width of neurons is about 96◦.

To resolve this paradox, Treue et al. proposed that when the
resultant neuronal response is too board for a single direction,
the perception can identify the two directions by considering
the resultant neuronal response as a superposition of two indi-
vidual neuronal responses of each direction. However, when the
two directions differ by an angle less than the tuning width,
it becomes difficult to resolve the peaks of the two superposed
responses, if the curvature of the average neural activity pro-
file is not taken into account This difficulty was also observed
in simulations with distributional population codes (Zemel and
Dayan, 1999). The mechanism of enhanced resolution remained
unknown, and coding by firing rates may not reveal the complete
picture.

In a recently proposed model on motion transparency, the
enhanced resolution was achieved (Raudies et al., 2011). Two
mechanisms held the key to this advance. First, as in standard
neural field models, there is a local center-surround competi-
tion in the space of motion directions. Although this is not
sufficient to explain the enhanced resolution, there is the sec-
ond mechanism, namely, the modulatory feedback signals from
higher stages of processing in the area medial superior temporal
(MST) area. Motion attraction (that is, under-estimation of the
directional difference) at small angular difference, and motion
repulsion (that is, over-estimation) at larger angles were suc-
cessfully explained. Perception repulsion can also be found in a
Bayesian inference explanation on identification of audiovisual
stimulus (Sato and Toyoizumi, 2007).

Here, we propose a novel mechanism for resolution enhance-
ment based on the temporal modulation inherent in population
coding. To focus on the generic issue of whether information

carried in the temporal modulation of population coding can
be usefully applied in a processing task, we consider a simplified
model of transparent motion. We assume that inputs from dif-
ferent locations of the receptive field have been integrated, the
directional information has been filtered, and the processing of
input information can proceed without the assistance of feed-
back modulations. Thus our working model reduces to a single
network. The working principle is a continuous attractor neural
network (CANN) with dynamical synapses. Continuous attractor
neural networks, also known as neural field models, are models
used for describing phenomena and features observed in some
brain regions where localized attractor neuronal responses are
used to represent continuous information. Due to short-range
excitatory interactions and long-range/global inhibitory interac-
tions, bump-shaped neuronal response profiles are attractors of
CANNs. Since the response profiles are easy to shift their posi-
tions in the space of continuous information, they are useful in
tracking moving stimuli (Amari, 1977; Ben-Yishai et al., 1995;
Wu et al., 2008; Fung et al., 2010) and their drifting behaviors
have been studied (Itskov et al., 2011). In contrast to these stud-
ies of tracking, we will focus on stationary stimuli and their
time-dependent neuronal responses.

Dynamical synapses are found to enrich the dynamical behav-
iors of CANNs (York and van Rossum, 2009; Fung et al., 2012a).
Short-term synaptic depression (STD) can degrade the synaptic
efficacies between neurons, depending temporally on the activ-
ity history of the presynaptic neuron (Tsodyks et al., 1998). In
the presence of an external stimulus, the bumps can remain
temporally stable if STD were absent. However, with STD, the
population activity may drop after it reaches a maximum, since
neurotransmitters have been consumed. After the drop, neuro-
transmitters are recovered and the neuronal population is ready
to respond to the external stimulus again. This results in peri-
odic bursts of local neuronal responses, referred to as population
spikes. As we shall see, the temporal modulation induced by STD,
together with input fluctuations, enable the system to reduce the
angle of resolution in transparent motion down to one-fourth to
one-third of the tuning width of the neuron.

In the rest of this paper, we will begin with an introduction
of the CANN model and its basic properties. After that, we will
discuss simulation results showing that our model is able to rep-
resent acute difference in transparent stimuli. At the end, there is
a discussion section concluding our proposed mechanism.

2. MODEL AND METHOD
In the continuous attractor neural network model, we specify the
dynamics and the state of the system by the neuronal current. For
neurons with preferred stimulus x in the range −L/2 ≤ x ≤ L/2,
its neuronal current is denoted by u(x, t). The dynamics of u(x, t)
is given by Fung et al. (2012a)

τs
du

dt
(x, t)=−u(x, t) + Iext(x, t) + ρ

∫
dx′J(x − x′)p(x′, t)r(x′, t).

(1)

τs is the timescale of u(x, t). It is usually of the order of the mag-
nitude of 1 ms. ρ is the density of neurons over the space spanned
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by {x}. J(x − x′) is a translational invariant excitatory coupling
given by

J(x − x′) = J0√
2πa

exp

(
−
∣∣x − x′∣∣2

2a2

)
, (2)

where a is the range of excitatory connection and J0 is the average
strength of the coupling. r(x, t) is the neural activity related to
u(x, t) by

r(x, t) = � [u(x, t)]
u(x, t)2

B(t)
. (3)

Here, � is a step function centered at 0. The denominator,
B(t) ≡ 1 + kρ

∫
dx′u(x′, t)2, in this formula is the global inhibi-

tion, controlled by the inhibition parameter k. This type of global
inhibition can be achieved by shunting inhibition (Heeger, 1992;
Hao et al., 2009). Iext(x, t) is the external input to the system,
which will be defined in the latter part of this section.

In the integral of Equation (1), p(x, t) is the avail-
able fraction of neurotransmitters of the presynaptic neurons.
Neurotransmitters are consumed when a neuron sends chemical
signals to its postsynaptic neurons. However, the recovery time of
the neurotransmitters is considerably longer than τs. This process
can be modeled by Tsodyks et al. (1998) and Fung et al. (2012a)

τd
dp

dt
(x, t) = −p(x, t) + 1 − τdβp(x, t)r(x, t). (4)

τd is the timescale of recovery process of neurotransmitters. The
recovery process usually takes 25–100 ms. Here, we choose τd =
50τs. These two differential equations, Equations (1) and (4), are
found to be consistent with the model proposed by Tsodyks et al.
(1998).

The stimulus fed to the system consists of n components,
each with a Gaussian profile and a time-dependent fluctuation
in strength. It is given by

Iext
0 (x, t) =

n∑
i = 1

[A0 + δAi(t)] exp

(
−|x − zi|2

2a2
I

)
. (5)

Here, zi’s are the peak positions of the components, and aI

is the width of the Gaussian profiles. If not specified, it was
assumed to be the same as the synaptic interaction range a used
in Equation (2). A0 is the average relative magnitude of one input
component, while δAi (t) is a random fluctuation with standard
deviation σA in amplitude of input components.

Note that when the Gaussian profiles have strong overlaps, the
components cannot be resolved, as illustrated in Figures 1A–C.
We consider the amplitude fluctuations of each component to
be independent of each other, i.e., 〈δAiδAj〉 = 0, where the aver-
age is over time. These fluctuations provide a cue for the system
to distinguish different components (Figure 1D). This is con-
sistent with the psychophysical experiment which showed that
spatial and temporal randomness is important for perception of
motion transparency (Qian et al., 1994). Since the fluctuations

FIGURE 1 | (A–C) The profile of two superposed Gaussian functions with the
same height. f (x) ≡ {exp[(x − �z/2)2/(2a2)] + exp[(x + �z/2)2/(2a2)]}/2.
Red solid line: y = f (x) with different �z. Dashed line: y = f (x) with �z = 0
as a reference. (A) �z = 0. (B) �z = tuning width = 2a. (C) �z = 110% tuning
width = 2.2a. (D) The profile of two superposed Gaussian functions with

different heights to illustrate how the amplitude fluctuations provide a cue to
distinguish the components. g(x) ≡ {A0 exp[(x − �z/2)2/(2a2)] + A1

exp[(x + �z/2)2/(2a2)]}. Dashed line: y = f (x) with �z = 0 as a reference.
Red solid line: y = g(x) with �z = tuning width, A0 = 0.4 and A1 = 0.6. Blue
solid line: y = g(x) with �z = tuning width, A0 = 0.6 and A1 = 0.4.
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vanish when averaged over time, a system responding only to
time-averaged inputs is unable be able to detect the components.
Here, the role of STD is to modulate the network state, so that it
responds to one input component once a time.

To model the situation that the maximum strength of the input
profile is invariant, we consider the input in Equation (1) to be

Iext(x, t) = A

maxx
[
Iext
0 (x, t)

] Iext
0 (x, t), (6)

where A is the fixed maximum magnitude of the external input.
As the external input profile is set to have a constant maximum,
only the ratio σA/A0, rather than the magnitudes of A0 and σA, is
relevant in our studies.

It is convenient to rescale the dynamical variables as fol-
lows. We first consider the case without STD when β = 0, and
the synaptic interaction range a 	 L. In this case, p(x, t) = 1
in Equation (1). For k ≤ kc ≡ ρJ2

0/
(
8
√

2πa
)
, the network holds

a continuous family of Gaussian-shaped stationary states when
Iext(x, t) = 0. These stationary states are

ũ(x) = ũ0 exp

(
−|x − z|2

4a2

)
, (7)

and

r̃(x) = r̃0 exp

(
−|x − z|2

2a2

)
. (8)

where ũ(x) is the rescaled variable ρJ0u(x), and ũ0 is the rescaled
bump height. The parameter z, i.e., the center of the bump, is
a free parameter, implying that the stationary state of the net-
work can be located anywhere in the space x. In this paper, we
assume that the variable is represented solely by the peak position
of the neural activity profile. This assumption is one of the most
direct ways to interpret the population code. However, there are
other ways to interpret population codes. For example, Treue et al.
(2000) proposed that the curvature of the average of the neural
activity carries information represented by the neural population
code, although the mechanism achieving this objective is not clear
(Treue et al., 2000). On the phenomenological level, distributional
population coding and double distributional population coding
were proposed to represent information in population coding
with more sophistication (Zemel and Dayan, 2000; Sahani and
Dayan, 2003).

The tuning width of a neuron, defined as the standard devia-
tion of the firing rate profile multiplied by 2, is therefore 2a. In
the present work, we rescale the neuronal current as ũ(x, t) ≡
ρJ0u(x, t), together with the corresponding rescaling of other
variables given by Ã ≡ ρJ0A, k̃ ≡ k/kc, β̃ ≡ τdβ/

(
ρ2J2

0

)
. By using

these rescaling rules, the dynamics of the system should only
depend on k̃, β̃, τd/τs, σA/A0, zi’s and Ã. Below, only these
parameters will be specified.

In each simulation, the variables u(x, t) are modeled to be
located at N discrete positions uniformly distributed in the space
of preferred stimuli {x}. To do massive simulations, all simula-
tion results are generated by using N = 80. We have verified that
the dynamics of the system is independent to N, and the num-
ber of neurons should not affect the conclusion. The boundary

condition of the space is periodic. The range of the network is
360◦ and the tuning width of the neurons is 96◦, following the
experimental estimates in Treue et al. (2000). To solve differen-
tial equations in Equations (1) and (4), we used the Runge-Kutta
Prince-Dormand (8,9) method provided by the GNU Scientific
Library. Initial conditions of u(x, t)’s is zero, while p(x, t)’s are
initially 1. The local error of each evolution step is less than 10−6.
The random number generator used to generate the Gaussian
random number is the generator proposed by Lüscher (1994).
The Gaussian fluctuation is updated every 50τs.

3. RESULTS
3.1. POPULATION SPIKES
We first consider the response of the network when the input
consists of one component. We explore the network behavior by
varying the parameters k̃, β̃, and Ã. We found a rich spectrum of
behaviors including population spikes, static bumps, and mov-
ing bumps. The full picture will be reported elsewhere. For the
purpose of the present paper, we fix k̃ and β̃ at a typical value
and consider the behavior when Ã increases. As shown in the top
panel of Figure 2, the network cannot be triggered to have sig-
nificant activities when the input is weak. In the bottom panel,
the input is so strong that the network response is stabilized to
a static bump with time-independent amplitude. An interesting
case arises in the middle panel for moderately strong input, where
population spikes can be observed. Population spikes are the con-
sequence of the presence of STD. They are caused by a rapid rise
of neuronal activity due to the external stimulus. Then in a time
of the order of τd, the neurotransmitters are consumed, leading
to a rapid drop in neuronal activity. When the neurotransmitters
recover, the neurons become ready for the next population spike,
resulting in the interesting periodic behavior. Population spikes
have been found before as synchronization of neuronal activities,
and their potential role in processing information was appreci-
ated, but no specific context of such applications was identified
(Loebel and Tsodyks, 2002), Here, we will present an example that
spatially localized population spikes endow the neural system a
capacity of reading-out input components.

3.2. NETWORK ACTIVITIES FOR TWO STIMULI
Next, we consider inputs with two components separated by
�z > 0 and study the network behavior when �z gradually
increases. Without loss of generality, we choose z1 = �z/2 and
z2 = −�z/2. The relative fluctuation is σA/A0 = 0.3.

When the separation is small, the positions of the population
spikes fluctuate around the mid-position of the two stimuli, as
illustrated in Figure 3A. The two components cannot be resolved.

When the separation increases to the extent that the two com-
ponents remain barely resolved, an interesting change in the
spiking pattern occurs as shown in Figure 3B. The positions of the
population spike peaks begin to center around the two input com-
ponents, although the shoulders of the population spikes remain
overlapping considerably. Note that in this regime, the profile of
the neuronal activities remain unresolved when they are averaged
over time. However, due to the presence of STD, it is likely that
a population spike is produced at the position of the component
which happens to be higher due to height fluctuations. Hence in

Frontiers in Computational Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 73 | 91

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Fung et al. Resolution enhancement with dynamical synapses

FIGURE 2 | Firing rates r̃(x, t) (A, D, and G), available fraction of neurotransmitters p(x, t) (B, E, and H) and corresponding input (C, F, and I) for various

magnitudesofsingle-peaked external inputs. (A–C) Ã = 0.4, (D–F) Ã = 0.8,and (G–I) Ã = 2.0.Otherparameters: k̃ = 0.5, β̃ = 0.24,a = 48π/180,andτd = 50τs .

FIGURE 3 | Raster plot of firing rates r̃ for (A) �z = 0.5, (B) �z = 1.0,

and (C) �z = 2.0. White dashed lines: positions of stimuli. Parameters:
other parameters: k̃ = 0.5, β̃ = 0.24, a = 48π/180, Ã = 0.8, σδAi /A0 = 0.3,
and τd = 50τs .

this regime, the population spike peaks are no longer aligned at
the center. Rather, they are arranged in two rows, each around
the two components. Furthermore, the two rows of population
spikes tend to fire alternately. This implies that although it is hard
to resolve the two components by considering the time-averaged
signals, the temporal modulation by the alternating population
spikes may be utilized for resolution enhancement.

When the separation increases further, the population spikes
form two groups clearly, as shown in Figure 3C. The two compo-
nents are clearly resolved.

To compare our model with experimental results, we measure
the time average of neuronal activities as a function of preferred
stimuli of neurons and the separation of the two stimuli, shown in
Figure 4A. We found that this result is very similar to the exper-
imental results reported by Treue et al. [Figure 2C in Treue et al.
(2000)]. The peak of the average profile of neuronal activities
splits near �z ∼ 1.0× tuning width. However, the time-averaged
data cannot explain why subjects can resolve separations much
less than the tuning width.

3.3. EXTRACTION OF MODULATED INFORMATION
To demonstrate that the neuronal activities carry the informa-
tion about two stimuli, we collect statistics on the peak positions
of the population spikes. Here the peak position is calculated
by max xr̃(x). In Figure 4C, we present the contour plot of the
distribution of peak positions in the space of the preferred stim-
uli of neurons and separation between the two stimuli in units
of the tuning width. To focus on peaks with significant infor-
mation only, we counted only population spikes with maximum
amplitudes above an appropriately chosen threshold. Each col-
umn in Figure 4C is a normalized histogram with 80 bins. In
order to obtain a relatively smooth distribution, the sampling
process lasted for 100,000 τs. The mean of the separation between
peak positions is plotted in Figure 5 as a function of �z. We
found that in this setting, the system can detect the input sepa-
ration down to one-fourth of the tuning width. We note that in
Figure 4C, when the difference between the components is too
small, �z � 1/4 tuning width, population spikes occur at the
middle of the net external input profile with a relatively small
variance. However, when the network starts to resolve the two
components, there are notable variances on positions of the pop-
ulation spikes in each component. The standard deviation of the
positions of the population spikes in each component is roughly
of the order of 0.1 times the tuning width, which is roughly 20◦,
as shown in Figure 5.

To investigate whether the statistics with long sampling period
is applicable to sampling periods in actual experiments, we have
also collected statistics for 500τs. (In the experiment done by
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FIGURE 4 | (A) Time average of firing rates r̃ as a function of the preferred
stimuli of neurons, x, and the separation between the two stimuli, �z.
Contour lines:

〈
r̃
〉
t = 1 (dotted-dashed line),

〈
r̃
〉
t = 2 (dashed line),

〈
r̃
〉
t = 3

(solid line),
〈
r̃
〉
t = 4 (dotted line). Parameters: same as Figure 3. (B) The

average neural activity recorded by Treue et al. (2000) (with license number

3125800919243 for the reuse purpose). (C) Contours of the distribution of
peak positions higher than 6.2 as a function of preferred stimuli, x, and the
separation between the two stimuli, �z. White dashed line: positions of the
two stimuli. L1, one-third of the tuning width. L2, tuning width. Parameters,
same as Figure 3.

Treue et al., subjects took 500 ms to perform the discriminational
task.) The result is shown in Figure A2A in Appendix. Although
the distribution is rougher because of the relatively small sam-
pling size, enhanced resolution down to 0.3 tuning width is still
visible.

Furthermore, when the separation between the two stimuli
lies between one-third and three-halves of the tuning width, the
system slightly overestimated the separation of the two profiles.
If we take the tuning width to be 96◦ (Treue et al., 2000), this
range will be approximately from 30◦ to 140◦. This is consistent
with the experimental results of Braddick et al. (2002), in which
subjects overestimated some moving direction difference in trans-
parent motion experiments. However, it was reported in Figure 4
in Treue et al. (2000) that the perceived separation of movement
direction starts to underestimate the truth when the stimulus sep-
aration increases above 40◦. Since the range corresponding to
“motion repulsion” reported by Braddick et al. (2002). is differ-
ent from that reported by Treue et al., it seems that the range of
differences between stimuli corresponding to “motion repulsion”
is different for different experimental settings.

We have also tested the effects of choosing the widths of exter-
nal input components to be different from the tuning width of the
neuronal response. We found that the results for different stimu-
lus strengths in Figure A1 in Appendix are qualitatively the same
as that in Figure 4C.

The result shown in Figure 4C is not particular for the cho-
sen set of parameters. In Figure 6, there is a phase diagram along
with some selected parameters. In Figure 6A, the colored region
is the region for population spikes with one stimulus. If Ã and β̃

are chosen from this region, as far as we have observed, similar

FIGURE 5 | The mean separation of peak positions of r(x, t) shown in

Figure 4C. Symbols, simulation. Dashed line, diagonal line representing
perfect distinguishability.

results can be obtained by choosing appropriate thresholds. If Ã
and β̃ are outside the colored region, no matter what the threshold
was, the result shown in Figure 4C cannot be reproduced. This
result suggests that population spikes are important to resolution
enhancement.

3.4. NETWORK RESPONSE WITH MULTIPLE STIMULI
We further test the response of our model to more than two stim-
uli. Figure 7 shows the case for three stimuli of equal amplitude,
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FIGURE 6 | (A) The phase diagram of population spikes over the
parameter space spanned by (Ã, β̃) with the parameter k̃ = 0.5 and
τd /τs = 50. (B–H) are distributions of the occurence of peak positions
as function of �z. The numbers at the top of (B–H) are thresholds

used to sample peak positions. Parameters: (B) Ã = 0.4 and β̃ = 0.35.
(C) Ã = 0.65 and β̃ = 0.35. (D) Ã = 0.9 and β̃ = 0.35. (E) Ã = 0.4 and
β̃ = 0.2. (F) Ã = 0.6 and β̃ = 0.2. (G) Ã = 0.7 and β̃ = 0.1. (H) Ã = 0.9
and β̃ = 0.2.

whose peak positions are labeled by the white dashed lines.
However, the contours of the distribution of population spikes are
double-peaked, similar to those in Figure 5. This result suggests
that, if there are three stimuli overlapped together, the network
response should give only two groups of neuronal responses.
Also, it predicts that peaks of population spikes should occur
at positions that underestimate the separation between the out-
ermost stimuli. A similar result for shorter sampling periods
comparable to actual experiments can be found in Figure A2B
in Appendix.

We found that the experimental result of multiple stimuli
reported by Treue et al. is consistent with this prediction. In their
paper, it was reported that, when there were three groups of mov-
ing dots moving at directions ±50◦ and 0◦, the subjects would

report that there were only two moving directions at ±40◦. This
consistency is shown in Figure 7, where the vertical dotted line L
labels the position that the outermost stimuli are directed at ±50◦
when the tuning width is 96◦, and the pair of horizontal dashed
lines labels ±40◦ correspondingly.

4. CONDITIONS FOR RESOLUTION ENHANCEMENT
We have demonstrated the phenomenon of resolution enhance-
ment due to modulations of population spikes. To see whether
this picture can be generalized to other cases and what alternative
models are to be excluded, we summarize the general conditions
of its occurrence. To appreciate the significance of each condi-
tion, we will consider the alternative scenarios in the presence and
absence of the various conditions.
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4.1. SHORT-TERM SYNAPTIC DEPRESSION

Without the STD, the steady state of the neuronal activity pro-
file becomes centered at either one of the two input stimuli. In
Figure 8A, when the difference between the input profiles is large,
�z/a = 3.7 for instance, the neuronal activity is trapped by the
input profile near x = 1.55. This case is not consistent with exper-
iments, because when the separation between the input profiles
is large enough, the neuronal activity should be able to identify
both stimuli. This shows that STD plays the following roles in this
phenomenon.

First, STD gives rise to the temporal modulation charac-
terized by the population spikes, in which rapid rises in pop-
ulation activities alternate periodically with drops due to the
consumption of neurotransmitters. Spiking activities enable the
activity profile to jump from one stimulus position to another
easily.

Second, the presence of STD enhances the mobility of the
activity profiles. Due to the consumption of neurotransmitters in
the active region, the profile tends to relocate itself to less active
regions. This is the cause of the increased mobility when the activ-
ity profile tracks the movement of external stimuli, as well as their
anticipatory tracking as a possible mechanism for delay com-
pensation (Fung et al., 2012a,b). In the parameter regime where
the stationary profile becomes unstable in its position, and pop-
ulation spikes become the attractor state, the network tends to
establish a population spike in new locations, preventing itself
from being trapped by one stimulus. This results in population
spikes centered at alternating stimuli and hence the temporal
modulation.

For example, if the two stimuli are strongly overlapped, the
average neuronal response concentrates at the in-between region
of the two stimuli, as shown in Figure 3B. In this case, the time-
average profile of the dynamical variable p(x, t) has a dip centered
at the midpoint between two stimuli, as shown in Figure 9.
Since, in our model, there are fluctuations of the magnitude of
each component of the external input, population spikes occur
near the positions of the stimuli, labeled by the blue lines in
Figure 9. Since the synaptic efficacies of the presynaptic neurons
are stronger in the side region further away from the other stim-
ulus, population spikes are more likely to happen in the outer
region rather than the inner region. So, the separation between
the two groups of population spikes can be larger than the separa-
tion between the two stimuli. This is also the reason why only two
groups of population spikes can be observed in the case with three
stimuli (Figure 7). STD also explains the slight over-estimation
of the perceived positions when the separation of the stimuli is
around the tuning width.

Third, when STD is not sufficiently strong, we observe that
sloshers rather than population spikes are formed (Folias, 2011).
These sloshers are bumps that oscillate back and forth around the
external stimuli, as shown in Figure 10. The height of the bumps
is highest when they slosh to the extreme positions, but due to
the weaker STD, the height variation in a cycle is not as extreme
as those in the population spikes. The positional extent of their
oscillations is mainly determined by the restoring attraction from
the external input, and is effectively insensitive to the stimulus
profile. Hence in the task of resolving the stimulus directions, the

FIGURE 7 | Contours of the distribution of peak positions higher than

6.2 as a function of preferred stimuli, x, and the separation between

the two outermost stimuli, �z, in the case of three equally strong

stimuli. White dashed line: positions of three stimuli. Horizontal dotted
line: the case comparable to the three-stimulus experiment reported by
Treue et al., 2000. Vertical dashed lines: perception (±40◦ ) reported by
subjects in the experiment in units of the tuning width (96◦). Parameters:
same as Figure 5.

performance is degraded by the very flat part of the curve of the
perceived separation when the stimuli have strong overlaps, as
shown in Figure 6G.

There are also other variants of the model that demonstrate the
significance of STD in similar ways. For example, in recurrent net-
works with local inhibition, we may replace B(t) in Equation (3)
by B′(x, t) given by

B′(x, t) = 1 + ρk

∫
dx′ exp

(
−
∣∣x − x′∣∣2

2b2

)
u
(
x′, t

)2
. (9)

To stabilize the neural activity, the range of the local inhibition,
b, has to be larger than the range of excitatory connection, a.
However, if a is as large as 48◦, this local inhibition can be fairly
replaced by B(t) with appropriate k̃. In the presence of STD, the
discrimination performance is comparable to that in Figure 5,
but the resolution is poor otherwise.

4.2. SUITABLY STRONG INPUT PROFILES
Suitably strong input magnitude is needed to produce the tem-
porally modulated patterns, as illustrated in Figure 6. First, when
the magnitude of the external input is too small, no significant
system-driven neuronal activity can be observed. Fluctuations
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FIGURE 8 | (A) Raster plot of firing rate r̃ of the network with two
stimuli and without STD. Parameters: k̃ = 0.5, β̃ = 0, Ã = 0.8,
a = 48π/180, σA/A0 = 0.3, and �z = 3.1. (B) Rastor plot of firing rate
r̃ of the network with two stimuli with weak net input profile.
Parameters: k̃ = 0.5, β̃ = 0.24, Ã = 0.4, a = 48π/180, σA/A0 = 0.3, and
�z = 2.5. (C) Rastor plot of firing rate r̃ of the network with two

stimuli without height fluctuations in the external input profile.
Parameters: k̃ = 0.5, β̃ = 0.24, Ã = 0.8, a = 48π/180, σA/A0 = 0, and
�z = 1.67. (D) Contours of the distribution of peak positions for all
peak heights. White dashed line: positions of the two stimulus
components. Parameters: k̃ = 0.5, β̃ = 0.24, Ã = 0.8, a = 48π/180,
σA/A0 = 0.3, and �z = 1.0.

FIGURE 9 | The time-averaged dynamical variable p(x, t). Symbols and
red line: measurement from the simulation. Blue lines: positions of two
stimuli. Parameters: k̃ = 0.5, β̃ = 0.24, a = 48π/180, τd /τs = 50, Ã = 0.8,
and �z = tuning width of attractor states.

of external input components cannot stimulate the population
spike, as the activation by input profiles was not strong enough.
Second, even when the magnitude of the external input is larger,
population spikes can be produced but the stimulus is too weak
to pin them at the position of the stimuli. Since the mobility
of the population spikes is enhanced by STD, moving popu-
lation spikes are formed, as illustrated in Figure 8B. Since the

population spikes move away from the stimulus positions after
their formation, they cannot be used to encode the stimulus posi-
tions and also become part of the noisy background affecting the
recognition of the stimulus positions. When the stimulus is too
strong, population spikes cannot be generated and the resolution
degrades.

4.3. FLUCTUATIONS IN INPUT PROFILES
Fluctuations on external input components is important to the
behavior in Figure 3. If there were no fluctuations in the input
profiles, the net input profile will have only one peak for �z < 2a.
As a result, there is effectively one bell-shaped input profile if
the difference between two stimuli is too small, and the net-
work response will also be single-peaked, as shown in Figure 8C.
Hence fluctuations in the external input play the role of ren-
dering the components distinguishable. As shown in Figure 11,
recognition of input location always follows a strong input on
the same side at the current step, and a strong input on the
other side in the previous step, suggesting that a sudden shift in
input bias provides condition for reliable recognition. In fact, the
noise fluctuations act as the signals themselves, without which the
single-peaked input provides little information about the com-
ponents. Results in Figure 11 also illustrate that, statistically, the
system is able to give valid responses to stimulus changes in a
single step. This explains why the network yields discrimination
performance equally well for short and long sampling periods, as
demonstrated in a comparison between Figures 4C, A2A.

The fluctuations may come from randomness in the inputs.
Psychophysical experiments show that spatial and temporal
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FIGURE 10 | Raster plot of firing rates r̃ at �z = 0.1, showing a slosher. White dashed lines: positions of the stimuli. Other parameters: k̃ = 0.5, β̃ = 0.1,
a = 48π/180, Ã = 0.8, σA/A0 = 0.2, and τd = 50τs.

FIGURE 11 | Population spikes’ positions conditional on input

fluctuations. One step refers to 50τs, which is the temporal interval
between every update in the Gaussian fluctuation δAi (t). Input bias
is defined as (δA1(t) − δA2(t))/ max(A0 + δA1(t), A0 + δA2(t)). The color
code indicates the average position of population spikes above

threshold within one step in unit of the tuning width (TW). Gray
color means the average position is within the true position of either
input ±0.01 TW. True positions of inputs: z1 = �z/2, z2 = −�z/2.
(A) �z = 0.33 TW. (B) �z = 0.40 TW. Parameters: same as
Figure 3.

randomness is important for perceptions of motion transparency.
For example, regularly spaced lines moving in opposite directions
do not give the perception of transparent motion, whereas ran-
domly spaced lines are able to do so (Qian et al., 1994). The input
signals come from different locations of the visual field, and fluc-
tuations arise when the perceived objects move from one location
to another. Fluctuations may also arise when feedback signals
from advanced stages of processing guide the system to shift its
attention from one specific component to another.

Functionally, fluctuations facilitate the resolution of the direc-
tional inputs in the following two aspects. Spatially, it breaks the
symmetry of the input profile. Temporally, it provides the time-
dependent signals that induce the population spikes centered at
the component that happens to be strengthened by fluctuations.
This enables the system to recognize the temporally modulated
inputs. On the other hand, for systems processing only time-
averaged inputs, the height fluctuations vanish when averaged
over time, so that the components cannot be detected.

4.4. THRESHOLDING
Even after temporal modulation, resolution based on the net-
work response can still carry large errors. As shown in Figure 3C,

there are obviously two groups centering around the positions
of the two components, but in between the two components,
there is a region with moderate neuronal activities. If the net-
work includes neuronal activities of all magnitudes, the errors in
estimating the component positions will be large, especially when
�z is small. Indeed, Figure 8D shows that without imposing any
thresholds on the neuronal activities, the network cannot resolve
the two components until the separation exceeds the tuning
width.

In order to solve this problem, we introduce a threshold on the
maximum firing rates. We collect statistics of the peak positions of
the firing rate profile when their height exceeds the threshold. The
result is shown in Figure 5, indicating a significant improvement
of resolution compared with Figure 8D. The effects of the thresh-
old value on the resolution performance are shown in Figure 12.
When the threshold is low, the components are not resolved even
at a separation of 0.5 times the tuning width. On the other hand,
when the threshold is too high, the statistics of peak positions
becomes too sparse to be reliable. In an intermediate range of
thresholds that is not too narrow, the resolution of the compo-
nents can be achieved down to separations of 0.3–0.4 times the
tuning width.
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FIGURE 12 | Effect of thresholding on the statistics of peak

positions. Distributions of peak positions higher than different
thresholds (shown on the left) when two stimuli are separated by �z
(shown at the bottom) are plotted in patches. The scales of all the

patches are the same, shown on the lower-left patch. Distributions are
normalized to the maximum value. Red bars mark the positions of two
stimuli. Other parameters: k̃ = 0.5, β̃ = 0.1, a = 48π/180, Ã = 0.8,
σA/A0 = 0.2, and τd = 50τs .

4.5. RECURRENT CONNECTIONS
Finally, we would like to stress the importance of recurrent
connections in achieving resolution enhancement. With no recur-
rence, population spikes cannot be generated and the amplifica-
tion of the difference between nearly overlapping inputs cannot
be achieved. Let us consider a purely feedforward network, with
weaker but spatially broader inhibition than excitation,

τs
du

dt
(x, t) = −u(x, t) + ρ

∫
dx′

[
JE exp

(
−
∣∣x − x′∣∣2

2a2

)

− JI exp

(
−
∣∣x − x′∣∣2

2b2

)]
p
(
x′, t

)
Iext(x′, t

)
(10)

τd
dp

dt
(x, t) = −p(x, t) + 1 − τdβp(x, t)Iext(x, t) (11)

r(x, t) = � [u(x, t)] u(x, t), (12)

where JE > JI and Iext(x, t) is the same as that in recurrent net-
work in Equation (6). Although in this feedforward network STD
can still modulate the synaptic efficacy so that neuronal activities
prefer the side region to the midpoint between two stimuli, tem-
poral modulation, which is essential to population spikes, cannot
be realized without feedback. As mentioned above, population
spikes make it easier for the activity profile to switch off on one

side and grow up on the other. As shown in Figure 13, the resolu-
tion enhancement in the purely feedforward network is poor. In
fact, the behavior is very similar to those in the non-spiking region
even when the architecture is recurrent, as shown in Figures 6A,E.

5. DISCUSSION
In this paper, we have demonstrated how STD plays the role of
generating population spikes that can carry information extra to
spike rates. We have used the example of resolving transparent
motion with two components in a continuous attractor neu-
ral network, and have shown that the temporal modulation of
the firing rates enables the network to enhance the resolution of
motion transparency, thereby providing a possible explanation to
the longstanding mystery of resolving separations narrower than
the tuning width of the neurons, and resulting in input-output
relations that can have excellent agreement with experimental
results (Treue et al., 2000). The role played by STD was further
clarified by comparison with alternate scenarios under 4 general
conditions.

First, the strength of STD should be sufficiently strong. Weaker
STD may result in the network response being pinned by one of
the two components, or slosher modes that span a range of posi-
tions effectively independent of the component separations. On
the other hand, sufficiently strong STD can give rise to popula-
tion spikes, endowing them the freedom to alternate between the
two components. Equally important is the provision of temporal
modulation by the population spikes, so that the firing patterns
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FIGURE 13 | (A) Raster plot of firing rate r for purely feedforward network.
�z = 0.5 TW. White dashed line: positions of the two stimuli. (B) Contours
of the distribution of peak positions higher than 0.45 as a function of

preferred stimuli,x, and the separation between the two stimuli, �z.
White dashed line: positions of the two stimuli. Parameters: JI = 0.3JE ,
b = 3a,τd β/ρJE = 0.2, ρJE A = 0.8, σδAi /A0 = 0.3, and τd = 50τs.

indeed contain information of the stimuli, even though the time-
averaged firing rate can only resolve separations larger than the
tuning width of neurons, as shown in Figure 4 and found exper-
imentally by Treue et al. (2000). The role played by temporally
modulated signals in transparent motions can be tested in future
experiments.

Second, the strength of the input should be sufficiently strong.
Otherwise, no population spikes can be produced. Even for mod-
erately strong input, the population spikes become moving ones,
and fail to represent the stimulus positions.

Third, fluctuations in the input profiles are also important.
They provide the temporally sensitive signals when the two com-
ponents cannot be resolved in the time-averaged input. They
correspond to the “unbalanced motion signals” in the detection of
transparent motion with opposite moving directions (Qian et al.,
1994).

Fourth, thresholds are needed to extract the information of
the stimuli contained in the firing patterns, since they are able to
truncate background activities that interfere the signals from the
two components.

Our proposed model is not the first model or mechanism to
explain the behavior of the discriminational task in transpar-
ent motion experiments. It was suggested that the curvature of
the average neural activity may provide information of multi-
ple stimuli, but the neural activity is wider than expected (Treue
et al., 2000). Other proposals require more complex structures to

achieve the task. For example, a population to encode uncertainty
is needed to differentiate between multiplicity and uncertainty
(Sahani and Dayan, 2003), and additional internal structures are
needed to provide feedback information (Raudies et al., 2011).
While admittedly involving additional structures and layers can
augment the functionality of the brain, our work shows that it
is possible to achieve with little additional structure the perfor-
mance consistent with experiments in Treue et al. (2000) and
Braddick et al. (2002). An interesting future direction is to con-
sider whether firing rates multiplexed with temporal modulations
can be an instrument to achieve the differentiation between
multiplicity and uncertainty posed in Sahani and Dayan (2003).

The ability of STD to generate temporally modulated response
is also applicable to other brain tasks, such as switching between
percepts in competitive neural networks (Kilpatrick, 2012).
Compared with other conventional neural network models pro-
cessing time-averaged or static neuronal response profiles, the
temporal component provides an extra dimension to encode
acute stimuli, so that information processing performance can be
significantly enhanced.
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APPENDIX

FIGURE A1 | Contours of the distribution of peak positions higher than (A) 6.2 and (B) 5.5 as a function of preferred stimuli, x, and the separation

between the two stimuli, �z. White dashed line: positions of two stimuli. Parameters: same as Figure 3, except aI = 0.95a for (A) and aI = 1.05a for (B).

FIGURE A2 | The population spike occurrence counted within 500τs, which is comparable to the timescale in typical experiments. (A) Situations that
there are two stimuli. (B) Situations with three stimuli. Other parameters: (A) same as Figure 4, (B) same as Figure 7.
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Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell
type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural
dynamics, this diversity suggests a specific and essential role in neural information
processing. Therefore, a correct characterization of short-term synaptic plasticity is an
important step towards understanding and modeling neural systems. Phenomenological
models have been developed, but they are usually fitted to experimental data using
least-mean-square methods. We demonstrate that for typical synaptic dynamics such
fitting may give unreliable results. As a solution, we introduce a Bayesian formulation,
which yields the posterior distribution over the model parameters given the data.
First, we show that common STP protocols yield broad distributions over some model
parameters. Using our result we propose a experimental protocol to more accurately
determine synaptic dynamics parameters. Next, we infer the model parameters using
experimental data from three different neocortical excitatory connection types. This
reveals connection-specific distributions, which we use to classify synaptic dynamics.
Our approach to demarcate connection-specific synaptic dynamics is an important
improvement on the state of the art and reveals novel features from existing data.

Keywords: short-term synaptic plasticity, probabilistic inference, neocortical circuits, experimental design,

parameter estimation

1. INTRODUCTION
Synaptic plasticity is thought to underlie learning and informa-
tion processing in the brain. Short-term plasticity (STP) refers
to transient changes in synaptic efficacy, in the range of tens
of milliseconds to several seconds or even minutes (Zucker and
Regehr, 2002). It is highly heterogeneous and is correlated with
developmental stage (Reyes and Sakmann, 1999), cortical layer
(Reyes and Sakmann, 1999), brain area (Wang et al., 2006;
Cheetham and Fox, 2010), and postsynaptic cell-type (Markram
et al., 1998; Reyes et al., 1998; Scanziani et al., 1998; Tóth and
McBain, 2000; Rozov et al., 2001; Sun and Dobrunz, 2006).
For instance, short-term depression predominates in the juve-
nile brain, whereas more mature circuits have a preponderance
for short-term facilitation (Pouzat and Hestrin, 1997; Reyes and
Sakmann, 1999). Similarly, synapses from neocortical pyramidal
cells (PCs) impinging on other PCs are depressing, whereas those
onto specific interneurons can be strongly facilitating (Markram
et al., 1998; Reyes et al., 1998).

STP has been proposed to shape information processing in
neural networks in multiple ways (Abbott and Regehr, 2004; Fung
et al., 2012), to enable cortical gain control (Abbott et al., 1997),
pattern discrimination (Carvalho and Buonomano, 2011), input
filtering (Markram et al., 1998), adaptation (van Rossum et al.,
2008), spike burst detection (Maass and Zador, 1999), synchro-
nization (Tsodyks et al., 2000), and to maintain the balance of
excitation and inhibition in local circuits (Galarreta and Hestrin,
1998).

To model short-term depression, Tsodyks and Markram
(1997) introduced a phenomenological model based on vesicle
depletion, here referred to as the Tsodyks–Markram (TM) model.
This model was later extended to include short-term facilitation
(Markram et al., 1998; Tsodyks et al., 1998). Although several
other STP models have been developed (Abbott et al., 1997; Varela
et al., 1997; Dittman et al., 2000; Loebel et al., 2009; Pan and
Zucker, 2009), the TM model has become particularly popu-
lar, probably because of its combination of appealing simplicity
and biophysically relevant parameters (Markram et al., 1998;
Richardson et al., 2005; Le Bé and Markram, 2006; Wang et al.,
2006; Rinaldi et al., 2008; Ramaswamy et al., 2012; Testa-Silva
et al., 2012; Romani et al., 2013).

Typically, STP models are numerically fitted to electrophysi-
ological data by least-mean-square algorithms, which yield the
parameter values that minimize the error between data and
model. However, such fitting algorithms can get stuck in local
optima and may provide little information about the certainty
of the parameter values. As shown below, such fits may produce
inaccurate results and may lead to unreliable clustering. Bayesian
inference is a natural alternative, because it yields a distribution of
parameter values rather than a single outcome. Bayesian inference
has recently been applied to neurophysiological data analysis.
McGuinness et al. (2010) used this to estimate large and small
action potential-evoked Ca2+ events, while Bhumbra and Beato
(2013) used a Bayesian framework of quantal analysis to estimate
synaptic parameters, which required far fewer trials compared to
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traditional methods. Here, we introduce a Bayesian approach to
obtain the posterior distribution of TM model parameters. This
enabled us to take into account the uncertainty inherent to exper-
imental data, which provided a more complete description of STP
data.

Our approach has several advantages. First, it allowed us
to infer the distribution of synaptic parameters for individual
connections and propose a better protocol to extract these param-
eters. Second, we found that parameter distributions extracted
from cortical data are specific to different connection types.
Third, we showed that we can automatically cluster the parame-
ters of synaptic dynamics to at least partially classify postsynaptic
cell types. We also performed model selection to determine which
variant of the TM model best captures the synaptic dynamics of
the connection type at hand.

2. MATERIALS AND METHODS
2.1. SHORT-TERM PLASTICITY PHENOMENOLOGICAL MODEL
The extended TM model (eTM) is a phenomenological model of
short-term plasticity defined by the following ODEs (Markram
et al., 1998; Tsodyks et al., 1998)

dR(t)

dt
= 1 − R(t)

D
− u(t−)R(t−)δ(t − tAP) (1)

du(t)

dt
= U − u(t)

F
+ f [1 − u(t−)]δ(t − tAP) (2)

The first equation models the vesicle depletion process, where the
number of vesicles R(t) is decreased with u(t)R(t) after release
due to a presynaptic spike at time tAP, modeled by a Dirac delta
distribution δ(t). Between spikes R(t) recovers to 1 with a depres-
sion timeconstant D. The second equation models the dynamics
of the release probability u(t) which increases with f [1 − u(t)]
after every presynaptic spike, decaying back to baseline release
probability U with a facilitation timeconstant F. The notation t−
indicates that these functions should be evaluated in the limit
approaching the time of the action potential from below (as
would be natural in forward Euler integration).

By varying the four parameters �θ = {D, F, U, f } one can
obtain depressing, combined facilitating-depressing and facili-
tating synaptic dynamics. We note that for some data a three
parameter model [setting f = U , denoted the TM with facili-
tation model] or even a two parameter depression model with
only Equation (1) [setting u(t) = U , denoted the TM model] is
sufficient. This, however, is not generally the case, as shown below.

To speed up the numerical implementation we integrated the
above equations between spikes n and n + 1, a time �tn apart,
yielding

Rn + 1 = 1 − [1 − Rn(1 − un)] exp

(
−�tn

D

)
(3)

un + 1 = U + [
un + f (1 − un) − U

]
exp

(
−�tn

F

)
(4)

As we assumed that at time zero the synapse has not been recently
activated, we set R0 = 1 and u0 = U .

The postsynaptic potential PSPn is given by

PSPn = ARnun (5)

where A is an amplitude factor that includes the number of release
sites, the properties and number of postsynaptic receptors, and
cable filtering.

The steady-state values R∞ and u∞ in response to prolonged
periodic stimulation with rate ρ are

R∞(ρ) =
1 − exp

(
− 1

ρD

)
1 − [1 − u∞(ρ)] exp

(
− 1

ρD

) (6)

u∞(ρ) =
U + (f − U) exp

(
− 1

ρF

)
1 − (1 − f ) exp

(
− 1

ρF

) (7)

2.2. SIMULATED DATA
For the simulated data we used five sets of STP parameters,
ranging from depression to facilitation, see Table 1.

As the commonly used paired-pulse ratio, PPR = PSP2/PSP1,
only takes the first two pulses into account, we introduce the
Every Pulse Ratio (EPR) as a more comprehensive measure of STP
dynamics. It is defined as

EPR = 1

(n − 1)

n − 1∑
i = 1

PSPi + 1

PSPi
(8)

This index measures the average amplitude change from the i
to the i + 1 response normalized to the i response in the train.
EPR is used in Table 1 and elsewhere to quantify the aver-
age degree of depression (EPR < 1) or facilitation (EPR > 1).
Using these parameters we calculated the synaptic responses
with Equations (3, 4) to a spike train of five pulses at 30 Hz
(Figures 2, 4).

2.3. BAYESIAN FORMULATION
The posterior distribution of the synaptic parameters follows
from Bayes’ theorem as P(�θ|�d) ∝ P(�θ)P(�d|�θ), where �d is a vec-
tor of mean postsynaptic potential peaks extracted from simu-
lated or experimental data and �θ is a vector encompassing the
model parameters. Many factors contribute to variability in the

Table 1 | The five parameter sets used for simulated data.

Synaptic dynamics regime D(s) F(s) U f EPR

Strong depression 1.70 0.02 0.7 0.05 0.45

Depression 0.50 0.05 0.5 0.05 0.64

Facilitation-depression 0.20 0.20 0.25 0.3 0.94

Facilitation 0.05 0.50 0.15 0.15 1.26

Strong facilitation 0.02 1.70 0.1 0.11 1.43

EPR was calculated by simulating the eTM model with 5 pulses at 30 Hz as

shown in Figure 2.
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measured EPSPs, including stochastic vesicle release and experi-
mental noise. A typical noise model of synaptic transmission is
a binomial distribution (Zucker and Regehr, 2002). However, we
found that our data is well described by a Gaussian noise model
(see below). Therefore, we write the likelihood of the data as

P(�d|�θ) =
N∏

i = 1

1√
2πσ2

i

exp

[
−
(

di − STP
(

PSPi|�θ
))2

/2σ2
i

]
(9)

where STP(PSPi|�θ) is the voltage response from the eTM model
for i = 1 . . . N runs over the data points in the pulse train. We
set the noise σi independently for each pulse. For the data we
extracted the CV for each pulse, while for the simulated data a
fixed coefficient of variation (CV = 0.5) was assumed, based on
Figure 1. Note that we did not include a model of stochastic vesi-
cle release. This would be a possible extension of our model. A
stochastic release model also leads to correlations between subse-
quent events, and Equations (4, 3) would thus have to be extended
to their history-dependent variances, which would complicate
our model. We did confirm that parameters from a simulated
stochastic release model, were inferred correctly using the above
noise model, although the posterior distributions were somewhat
widened.

The priors were modeled as independent non-informative flat
distributions over the model parameters

P(�θ) =
{

P(D) = P(F) = Uniform[0, 2]
P(U) = P(f ) = Uniform[0, 1] (10)

which limits the posterior distribution within reasonable values.
Bhumbra and Beato (2013) sampled their bidimensional pos-

terior probability using a brute-force grid search. For higher
dimensions this is computationally expensive. We therefore
inferred the posterior distribution by sampling using the Slice
Sampling Markov Chain Monte Carlo (MCMC) method (Neal,
2003). The width parameter w was set equal to the upper limit
of the flat prior distributions (i.e., �w = {2, 2, 1, 1}) and each
parameter is sampled sequentially in the four orthogonal direc-
tions. We discarded the first 2500 samples as burn-in and use
the last 7500. For the numerical implementation we use the log-
likelihood log P(�d|�θ). The convergence of the Markov chain to
the equilibrium distribution was assessed through the Gelman–
Rubin statistical method (Brooks and Gelman, 1998). However,
this diagnostic of convergence can indicate lack of convergence,
but does not confirm it. Therefore, in order to ensure conver-
gence, we used multiple chains (n = 3) starting at different initial
conditions to ensure that the outcome was independent on the
initial condition (Gelman and Shirley, 2011). The maximum a
posteriori (MAP) estimator of the synaptic parameters is given by

�θMAP = argmax�θP(�θ)P(�d|�θ) (11)

The MAP estimate was obtained by keeping the most likely sam-
ple from multiple MCMC chains. In addition we also ran an
optimizer to find the most precise MAP using the distribution

peak as a starting point. As both approaches gave equally good
fits for the sake of simplicity we decided to use the former.

We compared our estimation method with a standard stochas-
tic optimization method, simulation annealing (SA). The SA
method minimizes the RMSE

�θSA = argmin�θ

√√√√ 1

N

N∑
i = 1

[
di − STP

(
PSPi|�θ

)]2
(12)

while trying to avoid getting stuck in local minima. We ran the
SA algorithm 200 times and selected the estimate with lowest
RMSE. Using an objective function scaled by the variance gave
similar results when compared to the non-scaled version; thus
for the sake of comparison with previous literature, we used
the non-scaled version. To compare the goodness of fit of both
MAP and SA solutions with the data, we used the coefficient of
determination R2.

As the amplitude A is not relevant for the synaptic dynamics,
we set A = AMAP,

AMAP =
∑N

i = 1 dimi/σ
2
i∑N

i = 1 m2
i /σ

2
i

(13)

where mi = STP(PSPi|�θ). We used this value to normalize the
data. Its value does not affect the dynamics estimation, because
A only scales the responses.

To estimate the posterior probability distributions, we used
a kernel density estimation method (Ihler and Mandel, 2007).
Unless otherwise stated, the code was implemented in Matlab
(inference code is available online1).

2.3.1. Quantifying inference performance
To quantify which protocol allows for the most precise recovery of
the true parameters of simulated STP data (Figure 3A), we com-
puted the sample estimation error over N = 22,500 MCMC sam-
ples �θ to the true parameters �θ∗, as E = 〈∑4

i = 1[(θi − θ∗
i )/θ

∗
i ]2〉,

where the average is over all the runs and all five parameter sets
(Table 1). To achieve similar weighting, the parameters were nor-
malized to the true parameters. Alternatively, we normalized the
estimated parameters on the upper limit of their priors, or we
omitted normalization altogether. This yielded similar results.
Note that in probabilistic spirit, this error also quantifies the
spread in the distribution. A smaller E gives more peaked distri-
butions, which correspond to tighter parameter estimates. Note
that, although similar, this error measure does not follow the
standard bootstrap approach.

2.3.2. Model selection
For model selection, we used the Akaike Information Criterion
(AIC), which is a information-theoretic measure of the good-
ness of fit of a given statistical model. It is defined as AIC =
2k − log P(�θMAP|�d), where k is the number of estimable param-
eters in the model and log P(�θMAP|�d) the log-posterior of the
MAP estimate on the normalized data. The AIC evaluates models

1https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=149914
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according to their parsimonious description of the data, and is
particularly suitable for probabilistic inference. We used the evi-
dence ratio, which is a relative ranking of the Akaike weights,
to find the least complex model that best describes the data
(Turkheimer et al., 2003; Nakagawa and Hauber, 2011).

2.4. ELECTROPHYSIOLOGY
Quadruple whole-cell recordings and extracellular stimulation
were performed in acute visual cortex slices of young mice (P12–
P20) as previously described (Buchanan et al., 2012). The stim-
ulating electrode was positioned in layer 5 (L5). L5 Pyramidal
cells (PCs) were targeted based on their characteristic pyramidal
soma and thick apical dendrite. Basket cells (BCs) were targeted
in transgenic mice genetically tagged for parvalbumin, while
Martinotti cells (MCs) were targeted in mice genetically labeled
for somatostatin (Markram et al., 2004; Buchanan et al., 2012).
Cell identities were verified by cell morphology and rheobase fir-
ing pattern. Five spikes were elicited at 30 Hz using 5 ms long
current injections (0.7–1.4 nA) every 18 s in all neurons through-
out the experiment. Excitatory postsynaptic potentials (EPSPs)
were averaged from 20–40 sweeps.

For each connection, a histogram was built from the EPSP
amplitudes extracted with 1–2-ms window fixed approximately
on the peak depolarization. EPSP distributions were fit with a
Gaussian (Equation 9). Recordings with mean EPSPs smaller than

0.015 mV were discarded. Electrophysiological data analysis was
carried out in Igor Pro (WaveMetrics Inc., Lake Oswego, OR).

Figure 1 shows typical EPSP distributions for each of the three
neocortical excitatory connection types that we studied, PC–
PC, PC–BC, and PC–MC. We tested whether the Gaussian noise
model was a valid description of the data using the Kolmogorov–
Smirnov (KS) normality test, and we found that the null hypoth-
esis that samples were drawn from a normal distribution could
not be rejected for 160 out of 170 EPSP distributions, with no
connection-specific bias. This suggests that EPSPs were typically
normally distributed, consistent with previously published results
[e.g., Figure 5B in Markram et al. (1997)]. Due to noise, appar-
ently negative EPSPs (Figure 1) were occasionally recorded. These
are consistent with our Gaussian noise model and require no
special treatment.

2.5. CLUSTERING AND CLASSIFICATION
Distributional clustering was introduced by Pereira et al. (1993).
Here we applied a similar information-theoretic approach to clus-
ter P(�θ|�d). Instead of a “soft” clustering approach we used “hard”
clustering, due to its simplicity, computation speed and compar-
ison with standard clustering techniques. We used an agglomera-
tive method [unweighted average distance method, Sokal (1958)]
and an f-divergence metric. F-divergence metrics constitute a
family of functions that measure the difference between two
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FIGURE 1 | The experimental STP data was well described by a

Gaussian noise model. (A) Sample EPSP distributions for the three
connection types: PC–PC (top, red), PC–BC (middle, green), and PC–MC
(bottom, blue) with respective Gaussian fits (solid black line)—94% of the
EPSP distributions were not statistically significant different from a

Gaussian distribution (see main text for more details). (B) Coefficient of
variation analysis. While for facilitating synapses (PC–MC) it was more or
less constant, for depressing synapses (PC–PC and PC–BC) we observed
an approximately linear increase with EPSP amplitude. Error bars represent
standard error of the mean.
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probability distributions. Consider two discrete probability dis-
tributions P and Q both discretized into N bins. To compare any
given pair of distributions we used two f-divergence metrics: (i)
the symmetrized Kullback–Leibler divergence

KLs(P, Q) = KL(P, Q) + KL(Q, P)

2
(14)

with

KL(P, Q) =
N∑

i = 1

Pi(�θ|�d) log
Pi(�θ|�d)

Qi(�θ|�d)
(15)

and the (ii) Hellinger distance

HL(P, Q) = 1√
2

√√√√ N∑
i = 1

(√
Pi(�θ|�d) −

√
Qi(�θ|�d)

)2

(16)

Due to the high dimensionality of our problem, we approxi-
mated these two measures first marginalizing P(�θ|�d) over the
d = 4 dimensions and then computing the sKL and HL over the d
marginal probabilities. We compared our posterior-based cluster-
ing with clustering based on the SA estimates. Here, we used the
Euclidian distance on the z-scored parameters found with SA.

To estimate the number of clusters we used the Pseudo-F statis-
tic (Caliński and Harabasz, 1974). The Pseudo-F statistic captures
the tightness of clusters as the ratio of the mean sum of squares
between clusters to the mean sum of squares within cluster

Pseudo-F = (T − PG)/(G − 1)

PG/(n − G)
(17)

where T = ∑n
i = 1(Pi − P)2 is the total sum of squares, PG =∑G

i = 1

∑ni
j = 1(P

j
i − Pi)

2 is the within-cluster sum of squares, G
is the number of clusters, and n the total number of items. A
larger Pseudo-F usually indicates a better clustering solution. The
Pseudo-F statistic has been found to give best performance in sim-
ulation studies when compared with 30 other methods (Milligan
and Cooper, 1985).

To evaluate the clustering quality, we computed the dendro-
gram purity as described by Heller and Ghahramani (2005),
where we considered two classes according to EPR: class 1 for
EPR ≤ 1 and class 2 for EPR > 1. This threshold allows us
to separate mostly depressing from mostly facilitating synaptic
dynamics.

Finally, we also performed classification using the Naive Bayes
Classifier: P(C|�θ) ∝ P(C)P(�θ|C), where P(C) is the prior over the
different synapse types C and P(�θ|C) the likelihood for a given
class. Although information about connectivity rates could in
principle be incorporated in the prior, we used a uniform prior
over the classes. Our likelihood is given by the MCMC infer-
ence over the model parameters for a given training dataset dC

and synapse type C, i.e., P(�θ|C) = P(�θ|dC). As the Naive Bayes
Classifier assumes independence between the different classes,
we have one independent model per class with the maximum a
posterior decision rule argmax(c ∈ C)P(C = c)P(�θMAP|C = c). We

estimated the performance of our classifier with K-cross valida-
tion (K = 7, i.e., ∼80% for PC–PC (n = 9) and PC–MC (n = 9),
and ∼60% for PC–BC (n = 12)), where we sampled over K data
points (i.e., connections) for each synapse-type to obtain our like-
lihood model and then test the classifier with the remaining data
points. This process was repeated until all possible different K
partitions of the data have been used. Accuracy is defined as the
percentage of correct classifications for a given connection type.

3. RESULTS
3.1. PARAMETER INFERENCE CERTAINTY IS SYNAPTIC DYNAMICS

DEPENDENT
We first checked our method in extracting STP parameters from
simulated data with a standard stimulus train of five spikes at
30 Hz (see Materials and Methods). We simulated data with pre-
defined parameter sets ranging from strong depression to strong
facilitation. This was achieved by decreasing the baseline release
probability U and the depression timeconstant D, while increas-
ing the facilitation rate f and the facilitation timeconstant F
(see Materials and Methods, Table 1). The resulting dynamics are
shown in Figure 2A.

Figure 2B shows the inferred parameter distributions for the
various parameter settings. As the full posterior distribution is
four dimensional, we plotted the marginals only. The inferred
parameter distributions showed varying behavior: The distribu-
tions for U were well-tuned to values close to the true parameter
values. For the D parameter the shifts in the distributions fol-
lowed the changes in the true parameter, becoming broader for
depressing dynamics. Both F and f were not narrowly tuned to
the true parameter. Although f was tuned to small values for
facilitating synapses, its distribution became broader for depress-
ing synapses. The F parameter was not particularly tuned to any
value, being close to an uniform distribution for both depress-
ing and facilitating synapses. We explored the possibility that the
broadness of F depended on the prior boundary by extending
it to 5 s and 10 s. However, the distribution remained uniform
and merely grew wider, suggesting that the broad distribution
was not caused by an improper choice of prior. In summary, the
inference procedure shows that—depending on the dynamics—
the inferred parameter distributions can be narrow or broad and
that some parameters are much more tightly constrained than
others.

3.2. IMPROVING EXPERIMENTAL PROTOCOL FOR PARAMETER
INFERENCE

The fact that some of the inferred parameter distributions were
broad suggested that the five pulse protocol did not yield enough
information to reliably infer the true parameters. Therefore, we
used our probabilistic formulation to find an experimental pro-
tocol that improves the inference quality (Figure 3). To this end,
we compared the sample estimation error on the estimates (see
Materials and Methods) for different spike trains: (1) a periodic
train at 30 Hz, (2) a periodic train with recovery pulses, and (3) a
Poisson train of 30 Hz (Figure 3A). We also varied the number of
spikes in the train.

The widely used paired-pulse protocol to probe synaptic
dynamics gave poor estimates even when coupled with nine
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FIGURE 2 | Bayesian inference of short-term plasticity parameters

using simulated data. (A) Simulated PSPs (filled circles in response to
five pulses at 30 Hz) for five different synaptic parameter settings ranging
from strong depression (yellow) to strong facilitation (dark red). The MAP

solution of the inferred distribution is shown with diamonds. (B) Posterior
marginalized distributions of the model parameters for the data in (A). The
true parameters are shown as filled circles and the MAP solutions as
diamonds.

recovery pulses spaced exponentially across 4 s. Using five pulses
in the spike train improved the performance only moderately.
Some studies have inferred the TM model parameters with eight
spikes and a single recovery pulse after 500 ms (e.g., Wang et al.,
2006). This did not improve the recovery error when compared
to a periodic spike train alone. A Poisson spike train, however,
surpassed other protocols using only 20 spikes. Therefore, we
propose a Poisson spike train with 20. . .100 spikes as a better
protocol to obtain accurate estimates of the model parameters.
However, also a spike train with eight periodic pulses and nine
recovery pulses offers a good compromise, yielding a low recovery
error in a reasonably short duration (≈4.23 s). The distribu-
tions for these two protocols were more narrowly tuned to the
true parameters (Figures 3B,C) compared to a periodic spike
train without a full recovery phase (Figure 3B). Contrary to our
intuition, the distributions for D were more narrowly tuned for
facilitation (darker colors) than for depression (lighter colors).
Although for the sake of simplicity, we do not show the results
for a short periodic train followed by a Poisson train, such an
approach would combine the ability to compute standard STP
measures and recover information across frequencies. The rea-
son for the poor performance of periodic trains even with many
pulses is that the synapse quickly reaches steady-state, given by
Equations (6, 7). Hence additional pulses do not increase infor-
mation and the estimation error quickly reaches a plateau. In
contrast, a random Poisson train allows the inference process to
converge to the true parameter distributions in the limit of large
spike trains.

Note, that both in Figure 2B and Figures 3B,C, the MAP solu-
tion is not always at the peak of the marginal distributions. The
reason is that when there are dependencies in the parameters,
the peak in the full distribution P(�θ) does not need to coin-
cide with the peaks of the marginals. Indeed, when we compared
the log-posterior of the MAP estimate to the log-posterior of

the estimate given by the maximum of each marginal probabil-
ity alone, the MAP approach yielded a much better estimate:
log P(�θMAP|�d) = −0.0038, compared to the maximum of the
marginal probabilities, log P(�θmarginals|�d) = −0.6588.

3.3. PROBABILISTIC INFERENCE OF NEOCORTICAL DATA REVEALS
CONNECTION-SPECIFIC DISTRIBUTIONS

Next, we performed Bayesian inference of the eTM parameters
on experimental data from visual cortex L5. These data was
recorded earlier using a standard five-pulse protocol, instead of
the improved protocols suggested above. This means that the
parameters may not be optimally constrained, but the overall
findings should still hold. We inferred the posterior distributions
of the parameters U, D, F, and f from PC–PC, PC–MC, and
PC–BC connections (Figure 4A).

When comparing the Bayesian model inference of these three
different synapse types (Figure 4B), the most salient difference
was observed in the U parameter, i.e., the baseline probability
of release. PC–MC connections had a small U, D and f. PC–PC
connections had a medium U, medium to high D, a close to
uniform F and a broad f with a preference for smaller values. PC–
BC connections were similar to PC–PC connections, apart from
a larger U (PC–BC: 0.72 ± 0.04, n = 12; PC–PC: 0.53 ± 0.05,
n = 9; p < 0.01, Mann–Whitney test based on the MAP esti-
mates). This higher value of U indicates that PC–BC synapses
are generally more strongly depressing than PC–PC synapses.
However, the EPRs for these two connection types were indis-
tinguishable (PC–BC: 0.63 ± 0.04, n = 12; PC–PC: 0.69 ± 0.03,
n = 9; p = 0.21, Mann–Whitney test), suggesting that the model
inference is more sensitive than the EPR measure, and is there-
fore better suited for picking up connection-specific differences
in STP.

We next used our Bayesian approach for synapse classifi-
cation. We first clustered the data of the various connections
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FIGURE 3 | The performance of various stimulation protocols to infer

short-term plasticity parameters. (A) Comparison of mean sample
estimation error using different stimulation trains. Black arrow corresponds to
the protocol used in Figure 2. A periodic spike train at 30 Hz with eight
pulses and nine recovery pulses [green arrow, (B)] already provided a better
estimate of the STP parameters. However, a Poisson train provided a much

smaller error when using more than 20 spikes with a close to zero error for
1000 spikes [blue arrow, (C)]. (B) Posterior distribution for a periodic train with
nine recovery pulses (cf. Figure 2B). (C) Posterior distribution for a Poisson
train with 1000 pulses. The true parameters are shown as filled circles and
the MAP solutions as diamonds. For visualization the marginal probabilities
were scaled by their standard deviation.

based on the model parameters found by SA, Figure 5A. We
next clustered based on the marginalized posterior distribu-
tions, Figure 5B using the Hellinger distance (see Materials and
Methods). Clustering analysis showed that the Bayesian approach
improved the dendrogram purity (Figure 5C), as it split the data
into two distinct clusters as assessed by the Pseudo-F statistic
(Figures 5B,D).

With SA-based clustering, the Pseudo-F statistic suggested six
clusters (Figure 5D) with a lower dendrogram purity (Figure 5C,
0.89 purity level), which indicates that these six clusters are spu-
rious. Furthermore, with the Bayesian approach, the clusters map
better to the EPR measure (Figure 5B, inset bottom), indicating
that our approach captures the synaptic properties better than the

SA approach. The two clusters found by our approach correspond
to synapses that are either chiefly depressing or facilitating. Still,
the clusters did not correspond well to synapse type. In particular,
PC–PC and PC–BC synapses were classified as the same type.

In an alternative approach, we also clustered the Bayesian
posteriors using the symmetric KL-divergence (sKL). The sKL
achieved 0.78 dendrogram purity and three clusters according to
the Pseudo-F statistic; thus performing worse.

To determine how well the posterior distributions could be
classified in keeping with the three connection types, we per-
formed Naive Bayes classification with a 7-fold cross-validation
(Figure 5E). We obtained 100% accuracy in PC–MC connection
classification. Surprisingly, however, we also obtained a 72% and
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FIGURE 4 | Inference of short-term plasticity parameters from

experimental data from visual cortex. (A) Sample experimental STP traces
are shown for PC–PC (red), PC–BC (green), and for PC–MC (blue)
connections. (B) Marginalized posterior distributions obtained using slice

sampling from these three different excitatory connections suggest that
PC–MC (n = 9) connections are quite different from PC–PC (n = 9) and
PC–BC (n = 12) connections. Light colored lines show individual connections,
while dark colored lines correspond to their average.

75% classification accuracy for PC–PC and PC–BC connections,
respectively. These results suggest that each synapse type can be
to some extent separated from the other two types. The ability to
separate the different connection types is likely to be mostly due
to differences in the baseline release probability (cf. Figure 4B,
parameter U).

3.4. COMPARISON TO TRADITIONAL FITTING METHODS
Above we found that for both the simulated and the experimen-
tal data, the marginalized posterior of the F parameter resembles
an uniform distribution (Figures 2B, 4B). This suggests that stan-
dard fitting techniques might not perform well and may become
trapped in local minima, thus explaining why the SA-based clus-
tering is not able to separate the different synaptic dynamics as
well. To test this idea, we used SA on a depressing PC–PC con-
nection and we found that this was indeed the case (Figure 6).
Although the method found everytime good fits to the data
(Figure 6A), the fit parameters were highly variable from one run
to the next (Figure 6B). Although this variability could be used as
a proxy for the parameter variance, there is no principled way in
SA to estimate parameter variance. In contrast, with our Bayesian
approach, the variability and exact distribution is captured in the
posterior distribution. Similar observations were made by Varela

et al. (1997), who occasionally found an elongated error valley
when fitting their particular STP model.

3.5. FINDING THE BEST MODEL USING PROBABILISTIC INFERENCE
The Bayesian approach offers a natural way to examine which
model describes the data most parsimoniously. We performed
model selection to identify which formulation of the TM model
better described the data (see Materials and Methods). We com-
pared three formulations of the TM model: (1) with depression
only—only Equation (1) with D and U (two parameters)—, (2)
depression and facilitation—Equations (1, 2) with D, F and U
(three parameters)—and, (3) the full extended model used above.
Figure 7 shows that only the extended model is able to account
for all the data from the three connection types. In contrast to
Markram et al. (1998) and Richardson et al. (2005), we found
that the TM-with-facilitation model does not fit the PC–MC con-
nections well. Although for some recordings the three-parameter
model was sufficient, it failed to fit other recordings (Figure 7B).
This discrepancy might be due to experimental differences; our
dataset was recorded in mice visual cortex L5 and included extra-
cellular stimulation experiments, while Markram et al. (1998) and
Richardson et al. (2005) recorded in the somatosensory cortex of
the rat using paired recordings only.
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FIGURE 5 | Agglomerative clustering using posterior distributions

improves synaptic dynamics clustering. (A) Clustering based on the
synaptic parameters found by SA did not produce good clusters.
(B) Clustering of posterior distributions using the probabilistic approach
with the Hellinger distance gave rise to two clusters: one for short-term
depression and the other for short-term facilitation (cf. EPR, inset bottom),
with the first corresponding to both PC–PC and PC–BC connections, while
the other roughly mapped onto PC–MC synapses. (C) EPR-based

dendrogram purity with probability distribution-based clustering is higher
than the purity from SA-based clustering. (D) Maximal Pseudo-F statistic
suggests that the data contains two or six clusters when clustering the
posterior distributions or SA-based clustering, respectively (orange filled
circles). (E) A simple probabilistic classifier (Naive Bayes) achieved good
performance for all the connection types, in particular for PC–MC
connections (black dashed line represents chance level). Error bars
represent standard error of the mean.

4. DISCUSSION
Past studies characterizing short-term synaptic dynamics have
typically used traditional fitting methods. A Bayesian approach,
however, turns out to be particularly advantageous for this prob-
lem, because accurate estimation of synaptic parameters is com-
plicated. Here, we have shown that—depending on the synaptic
dynamics and experimental protocol—some parameters are not
narrowly tuned but broadly distributed. This insensitivity may
cause traditional least-mean-square methods to get stuck in local
minima.

When applied to experimental data, our method showed that
different connections have different distributions. Such synapse-
type specific plasticity supports the idea that different synapses
perform different computations and subserve different functional
roles in the local circuit. Our approach more robustly classifies
synapses according to their synaptic dynamics than does clus-
tering using simple point estimates of parameters obtained from
standard optimization techniques. Our method might thus enable
automatic and independent classification of synapses and cells
taking into account the natural variability in the data. Future
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types. Three formulations of the Tsodyks–Markram model were
compared—with only depression (TM, two parameters), with a degree of
facilitation (TM with facilitation, three parameters) and the extended
version with full facilitation (eTM, four parameters). Error bars represent

standard error of the mean. (B) Examples of normalized postsynaptic
peak responses that can only be accurately fitted by the eTM model.
Top: PC–PC recording with combined depression and facilitation. Bottom:

PC–MC recording with attenuating facilitation. The postsynaptic peak
responses (black filled circles) are given together with the MAP solutions
from the two, three, and four parameters model, from dark to light
green, respectively.

studies using larger datasets may better identify the synaptic
properties that are specific to individual clusters. Furthermore,
a model with a more detailed noise description could allow us
to also infer the quantal parameters, which could in principle

be combined with the Bayesian quantal analysis framework
(Bhumbra and Beato, 2013).

We found that inference of the model parameters can be
improved by having more pulses as well as by including a recovery
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phase. The data used here, however, was collected using a stan-
dard STP electrophysiology protocol with five pulses at 30 Hz,
which still enabled connection-specific clustering. To improve
parameter inference further, we propose a combination of a peri-
odic spike train and a Poisson spike train. More pulses add
more information, which has an unsurprising positive impact on
inference. Poisson trains cover the frequency space better with-
out requiring excessively long experimental recordings. Indeed,
Poisson trains add a considerable improvement as compared
to the more standard protocol of using fixed-frequency trains
(Markram and Tsodyks, 1996; Sjöström et al., 2003).

Experimentally STP has been observed to change with devel-
opment (Reyes and Sakmann, 1999), drug wash-in (Buchanan
et al., 2012), temperature changes (Klyachko and Stevens, 2006),
and plasticity (Markram and Tsodyks, 1996; Sjöström et al.,
2003). In such situations, it often becomes important to ascer-
tain the particular parameter changes that occur. The Bayesian
framework introduced here can be extended to elucidate which
components of STP are affected by integrating prior knowledge,
through an informative prior. For instance, inferred distributions
can be tracked across development.

Our work can also be applied in constructing computer net-
work models with STP using posterior distributions inferred from
actual biological data as a generative model. This would yield
models with richer dynamics without resorting to simplistic and
unrealistic ad-hoc approaches to generate synaptic variability that
are poorly grounded in biological data.

Our Bayesian approach promises improved computer models
as well as a better and more nuanced understanding of biologi-
cal data. Yet, this approach is not computationally intense, nor is
it difficult to implement. We therefore fully expect probabilistic
inference of STP parameters to become a widespread practice in
the immediate future.
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Randomly connected recurrent networks of excitatory groups of neurons can possess a
multitude of attractor states. When the internal excitatory synapses of these networks
are depressing, the attractor states can be destabilized with increasing input. This leads
to an itinerancy, where with either repeated transient stimuli, or increasing duration of
a single stimulus, the network activity advances through sequences of attractor states.
We find that the resulting network state, which persists beyond stimulus offset, can
encode the number of stimuli presented via a distributed representation of neural activity
with non-monotonic tuning curves for most neurons. Increased duration of a single
stimulus is encoded via different distributed representations, so unlike an integrator, the
network distinguishes separate successive presentations of a short stimulus from a single
presentation of a longer stimulus with equal total duration. Moreover, different amplitudes
of stimulus cause new, distinct activity patterns, such that changes in stimulus number,
duration and amplitude can be distinguished from each other. These properties of the
network depend on dynamic depressing synapses, as they disappear if synapses are
static. Thus, short-term synaptic depression allows a network to store separately the
different dynamic properties of a spatially constant stimulus.

Keywords: short-term plasticity, dynamic synapses, attractor networks, short-term memory, distributed coding,

high-dimensional representation

INTRODUCTION
Circuits of reciprocally connected neurons have been long consid-
ered as a basis for the maintenance of persistent activity (Lorente
de Nó, 1933). Such persistent neuronal firing that continues for
many seconds after a transient input can represent a short-term
memory of prior stimuli (Funahashi et al., 1991). Indeed, Hebb’s
famous postulate (Hebb, 1949) that causally correlated firing of
connected neurons could lead to a strengthening of the connec-
tion, was based on the suggestion that the correlated firing would
be maintained in a recurrently connected cell assembly beyond
the time of a transient stimulus (Hebb, 1949). Since then, ana-
lytic and computational models have demonstrated the ability
of such recurrent networks to produce multiple discrete attrac-
tor states (Brunel and Nadal, 1998), as in Hopfield networks
(Hopfield, 1982, 1984), or to be capable of integration over time
via a marginally stable network, often termed a line attractor
(Zhang, 1996; Compte et al., 2000). Much of the work on these
systems has assumed either static synapses, or considered changes
in synaptic strength via long-term plasticity occurring on a much
slower timescale than the dynamics of neuronal responses. Here
we add some new results pertaining to the less well-studied effects
of short-term plasticity—changes in synaptic strength that arise
on a timescale of seconds, the same timescale as that of persistent
activity—within recurrent discrete attractor networks.

The two long-established forms of short-term synaptic plas-
ticity affect all synapses of the presynaptic cell according to its
train of action potentials. Synaptic depression refers to a reduced

synaptic efficacy in the few hundreds of milliseconds following
a presynaptic spike, effectively weakening connections strengths
as presynaptic firing rate increases (Markram and Tsodyks, 1996;
Abbott et al., 1997). Such weakening of efficacy of the most
active connections has an unavoidable destabilizing effect on any
network state that depends on those active connections for its per-
sistence. Synaptic facilitation is the opposite effect—a temporary
enhancement of synaptic efficacy in the few hundreds of mil-
liseconds following each spike (Markram et al., 1998), effectively
strengthening connections to post-synaptic cells as presynaptic
firing rate increases.

More recently described and information-theoretically more
powerful than depression or facilitation, is an associative form
of short-term plasticity (A-STP), which depends on both pre-
and post-synaptic activity (Erickson et al., 2010). A-STP pro-
duces a temporary enhancement of synaptic efficacy between
neurons after a short period of strong coactivity. Being a form
of positive feedback, A-STP, like facilitation, is likely to sta-
bilize states of persistent activity, but may have the added
benefit of maintaining sequences of persistent firing states
(Miller and Wingfield, 2010).

In this paper, we focus on short-term synaptic depression
in randomly connected networks of discrete attractors (Rigotti
et al., 2010). The attractors are formed by coupling multiple
groups of neurons, each group rendered bistable through recur-
rent excitation. The destabilization of discrete attractor states
by short-term synaptic depression produces a rich repertoire
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of network responses, allowing it to encode and store multiple
stimulus features.

Short-term depression arises from vesicle depletion (von
Gersdorff and Matthews, 1997), which leads to a maximum, sat-
urating rate of synaptic transmission—dependent on the rate
of vesicle recycling. The temporary weakening of connection
strengths from active cells tends to reduce the stability of active
recurrent cell-groups. This can lead to more dynamic or itinerant
activity states in recurrent networks. Here we show that in a net-
work of randomly coupled cell-groups, the itinerancy produced
by synaptic depression can cause the network to reach a state
that depends on any of stimulus intensity, or stimulus duration
or the number of successive identical stimuli presented. In the
latter case, neurons can be tuned to a specific number of inputs,
similarly to those recorded in vivo.

Counting of stimuli can be achieved without dynamic synapses
in a network behaving as an integrator. Indeed, appropriate feed-
forward connections from an integrator can produce numerosity-
tuned neurons (Verguts and Fias, 2004), with similar tuning
curves to those found in vivo (Nieder and Miller, 2003; Tudusciuc
and Nieder, 2007; Merten and Nieder, 2009; Nieder, 2013).
However, an integrator, whether it arises from a finely tuned net-
work with a continuous, line attractor (Seung et al., 2000; Miller
et al., 2003; Machens et al., 2005), or more robustly from a series
of discrete attractor states (Koulakov et al., 2002; Goldman et al.,
2003), is not ideal as the input to a counter. While a perfect
integrator does indeed produce distinct responses to successive
identical stimuli, it conflates both amplitude and duration of the
stimulus, with the number of stimuli, into a single response that
only depends on the produce of these three quantities. Thus,
an integrator’s response to two stimuli of a given magnitude
and duration is identical to that of a single stimulus with either
twice the magnitude or twice the duration. Any non-linearities
would remove such perfect scaling [which is essential in sit-
uations requiring perfect integration, such as from velocity to
position (Zhang, 1996; Samsonovich and McNaughton, 1997;
Song and Wang, 2005)] but would not remove the conflation of
stimulus features, since an integrator’s activity is confined to a
one-dimensional surface—input amplitude, duration and num-
ber produce shifts along the same one-dimensional line. Thus, for
an integrator to act as a counter, its inputs must be first scaled to
a fixed duration and amplitude by upstream sensory processing.

Here we test whether any advantage over the integrator is
offered by the high-dimensional space of attractor states pro-
duced by randomly connected bistable groups of neurons (Rigotti
et al., 2010). In a group of cells with recurrent excitatory con-
nections, the excitability of the cell-group—its ability to become
rapidly active in response to input—increases with the effect
strength of the internal connections. In a network with many
such cell-groups, if they are predominantly coupled by cross-
inhibition, those cell-groups most excited by the stimulus and
activated most quickly, can suppress activity of other cell-groups.
Short-term synaptic depression reduces the effective connection
strengths between coactive neurons compared to those between
quiescent neurons. Since the amplitude of synaptic depres-
sion is firing-rate dependent, and since internal randomness
in the network causes cell-groups to respond with different

amplitude-dependences of their firing rates, stimuli of different
amplitudes are likely to affect the network differently. Moreover,
dynamical synapses cause the network’s response to depend on
the temporal profile of stimuli, not just its temporal integration,
so that two spaced stimuli could produce a different response
from a single stimulus of twice the duration.

Therefore, we will vary three stimulus properties—number,
duration and amplitude—both individually and together, to
assess whether a randomly connected network with dynamic
synapses, unlike an integrator, can dissociate these features. We
first assess whether, when a stimulus is repeated, cell-groups active
to its first presentation can be replaced by other active cell-groups
during its second and later presentations. We then uncover how
this process, in a randomly connected sparse recurrent network,
depends on different qualities of the stimulus, such as its dura-
tion and intensity. Finally, we show these qualities interact with
the number of stimuli in a non-trivial manner, often producing
unique patterns of persistent activity as a function of number,
duration and intensity of preceding stimuli.

METHODS
FIRING RATE MODEL WITH DEPRESSING SYNAPSES
To model the effects of synaptic depression in a network of
coupled cells, we employ a firing rate model, which treats the
mean input current, Ii(t), the mean firing rate ri(t), the mean
depression variable, Di(t) and the mean synaptic output, Si(t),
of individual groups of neurons, labeled i, as continuous, time-
dependent quantities. The formulation is appropriate for cells
with Poisson spike statistics, as at fixed firing rates the depression
variable and synaptic outputs approach the steady state values
produced by Poisson spike trains, though with appropriate rate-
dependent modifications to the effective time constants. Thus, the
dynamics of the system is described by a set of coupled first order
differential equations. The firing rate depends upon its input
current according to a sigmoidal f–I curve, as:

τr
dri

dt
= −ri(t) + rmax

i

exp {[�i − Ii(t)]/�i} (1)

where τr = 10 ms is the time constant for, rmax
i is the maximum

firing rate of that cell-group, �i is the threshold, namely the
level of input current required for half-maximal firing and �i

determines (with rmax
i ) the slope of the f–I curve.

The depression variable follows:

τDi
dDi

dt
= 1 − Di(t) − p0ri(t)τDiDi(t) (2)

where p0 is the fraction of docked vesicles released per spike
and τDi is the recovery time to regain maximum transmission.
Equation 2 is chosen so as to reach the steady state value produced
by a Poisson spike train (Dayan and Abbott, 2001) of rate ri:

Dss(ri) = 1

1 + p0riτDi
, (3)

if the rate were fixed, assuming each presynaptic spike
at time ts causes a reduction in the depression variable,
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Di
(
t+s
) = Di

(
t−s
)
(1 − p0), due to loss of a proportion, p0, of

docked vesicles.
The synaptic gating variable follows:

τs
dsi

dt
= −si(t) + α̃p0ri(t)τsDi(t)[1 − si(t)] (4)

where τs is the synaptic time constant for decay of si to zero
in the absence of synaptic transmission and α̃ is the fraction of
open receptors bound by maximal vesicle release—that is, the
fractional increase in s for a given presynaptic spike at time ts

is α̃p0Di(t−s )
[
1 − si(t−s )

]
. Equation (3) reaches the steady state

value for si produced by a Poisson train of releases with fixed Di,
at a rate ri:

τsS
ss (ri, Di) = α̃p0Diriτs

1 + α̃p0Diriτs
. (5)

The connectivity matrix, Wi → j describes the connection
strengths from each cell-group i to cell-group j, so determines the
input current to a cell-group j via:

Ij(t) =
∑

i

si(t)Wi → j + I
app
j (t) + ση(t) (6)

where I
app
j (t) is the stimulus-dependent external, applied cur-

rent to cell-group j and η(t) is a white noise term which con-
tributes fluctuations to each cell-groups current, with a standard
deviation σ.

Full details of the simulation parameters are given in Tables 1
and 2.

NETWORK PROPERTIES, STIMULATION PROTOCOLS AND
MEASUREMENTS
Our main results were achieved with a network of NE = 100 exci-
tatory cell-groups and a single inhibitory cell-group, though we
tested the effects of using from NE = 20 to NE = 400 excita-
tory cell-groups. The dominant connections within the network

Table 1 | Components of the network simulations (Nordlie et al.,

2009).

A. Model summary

Populations 100 excitatory (E), 1 inhibitory (I)

Connectivity E-to-E: all-to-all with random strength; high self-excitation

Neuron model Firing rate model with sigmoidal f–I curve

Synapse model Single exponential with depression or facilitation

Plasticity No long-term plasticity

Input Fixed current pulses to all populations

Measurements Persistent firing rates after current offset

B. Populations

Name Elements Size

Excitatory (E) Firing-rate model 1 for each of 100 model cell-populations

Inhibitory (I) Firing-rate model 1 for the single cell-population

(Continued)

Table 1 | Continued

C. Connectivity

Name Source Target Pattern

EE (S) E Same E Fixed at WEEs

EE (X) E All other E All-to-all with weight a random iid in
[0, 2WEEx]

EI E I Fixed, constant at WEI

IE I E Fixed, constant to all at WIE

II I I Not Present

D. Neuron and synapse model

Name Firing rate model with dynamical synapses

Type Dynamic leaky integrate-and-fire, exponential
conductance input

Input current Ij (t) =
∑

i

si (t)Wi→j + Iapp
j (t) + ση(t)

Firing rate τr
dri

dt
= −ri (t) + rmax

i

exp
{[

�i − Ii (t)
]
/�i

}
Depression variable τDi

dDi

dt
= 1 − Di (t) + p0ri (t)τDi Di (t)

Synaptic transmission τs
dsi

dt
= −si (t) + α̃p0ri (t)τsDi (t) [1 − si (t)]

E. Plasticity

No long-term plasticity present

F. Input

Type Description

Applied current Transient pulses of fixed current with number of
pulses, amplitude of pulse and length of pulse varied
across simulations. Current is identical to all
excitatory populations and scaled by a constant factor
to the inhibitory population

G. Measurements

Firing rates vectors Mean rate per cell 750–1500 ms after stimulus onset

Correlations Correlation between firing vectors for different stimuli

Confusability Proportion of trials that response to a test stimulus is
closer to the mean response produced by a target
stimulus than to the mean response of any other
target stimulus

were produced by strong self-excitation within each excitatory
cell-group and strong cross-inhibition between all excitatory cell-
groups via the inhibitory cell-group. The cell-groups were further
coupled by all-to-all excitatory connections, with connection
strength chosen randomly from a uniform distribution between
zero and the maximum value. Such random cross-connections,
even in sum, produced a weaker excitatory input than the within-
group connection.

More specifically, the connection matrix, Wi → j (Equation 6)
comprised four types of connection: fixed strength excitatory
connections within an excitatory cell-group (Wi → i = W0

EE for
1 ≤ i ≤ NE); random strength excitatory connections between
excitatory cell-groups (Wi → j = ξijWX

EE/(NE − 1), if i �= j and
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Table 2 | Network simulation model parameters.

A. Firing rate model and input current

Population τr rmax
i �i �i σ

Excitatory (E) 0.01 s 100 Hz [6.3–6.5] 1 0.002, 0.005

Inhibitory (I) 0.01 s 200 Hz 12 3 0.002, 0.005

B. Depression and synaptic transmission

Connection τD p0 τs α̃

EE (S), EE (X), EI 0.5 s 1 0.05 s 1

IE 0.5 s 0.1 0.005 s 1

C. Connection strengths

Connection W 0
EE W X

EE W EI W IE

Value 85 [0–0.4] 2.5 −300

D. Stimulus values

Property Nmax T I0 Interval

Value 10 (8, 6, 1) 0.1 s (0.01 s–1 s) 2 (0.5–3) 1.5 s (2 s)

1 ≤ i, j ≤ NE) and ηij is a random number selected from a uni-
form distribution (0 < ξij < 1); fixed strength excitatory connec-
tions to the inhibitory cell-group (Wi → j = WEI/(NE − 1) if 1 ≤
i ≤ NE and j = NE + 1); and fixed strength inhibitory connec-
tions to each excitatory cell-group (Wi → j = WIE if i = NE + 1
and 1 ≤ j ≤ NE). Values of these parameters are given in Table 2.
Different versions of a network with the same parameters were
generated by selecting a new set of random excitatory cross-
connections through a new generation of the random matrix, ξij.
In contrast, repeated trials with the same network were produced
with a fixed connection matrix, Wi→j, but with a new instanti-
ation of trial-specific random noise in the simulation, via η(t)
(Equation 6).

Stimuli were trains of transient current pulses, with each pulse
producing the same current input to all excitatory cell-groups,
as well as an input to the inhibitory cell-group. Depending on
the protocol, current pulses ranged in number from 1 to 10, in
duration from 10 ms to 1 s and in amplitude from 0.5 to 3 (in
units where the firing threshold was in the range 6.3–6.5 for
excitatory cells). Current pulses were delivered every 1.5 s in all
protocols, except for those with varying stimulus duration, in
which case delivery was every 2 s. While these current pulses could
evoke immense changes in network activity, even the strongest
inputs contributed only a small fraction of the total input to any
cell-group, as the network is dominated by feedback within the
circuit.

Mean network activity was calculated in all cases from at least
100 ms after stimulus offset until the onset of the subsequent
stimulus. In the standard protocol, with a stimulus of 250 ms,
rates of each cell were averaged from 375 to 1500 ms from stim-
ulus onset (i.e., 125–1250 ms from stimulus offset) to determine
the stimulus responses used in later analyses.

CONFUSABILITY MATRIX
To calculate a confusability matrix, we first simulated a set of
10 different random trials of the same network with different
instances of noise via η(t) (Equation 6). We used these initial
trials to obtain the mean response in the delay period following
each stimulus number or stimulus type, and defined these mean
responses as the “target response.” We then simulated a new set of
10 different random trials (“test trials”) of the same network, for
each test trial assessing which target response the delay activity
most closely resembled. The confusability matrix gives the frac-
tion of test trials, for which the response to one stimulus type and
number most closely resembles the “target response” of a given
stimulus type and number.

WEBER SCALING
To test for Weber’s law, we produced 10 distinct networks, with 25
target trials and 25 test trials in each network. Importantly, across
trials we allowed the level of noise to vary randomly, in this case
according to a uniform distribution over the range 0.0015 < σ <

0.0075. For each network, for a given test stimulus number, we
calculated the mean and standard deviation of the target stimulus
number the delayed activity most closely resembled. We then plot
the mean standard deviation across networks versus the mean
target reached in Figure 2C.

RESULTS
NUMEROSITY
Numerosity is the ability of a circuit to represent the number
of transient stimuli. In the first task, we simply applied, repeat-
edly, a constant transient stimulus current to all cell-groups
and assessed how reliably the resultant activity depended on the
number of stimuli to date. Given appropriate parameters—in
particular such that recurrent self-excitation within cell-groups
was sufficient to maintain activity beyond the time of the tran-
sient stimulus (Figure 1A), but not so strong that it could not
be suppressed by cross-inhibition arising from later activity in
other cell-groups—the network could switch through stable, dis-
tributed activity states as shown in Figure 1. Moreover, when
averaging single-cell responses during the delays between stim-
uli across 10 trials, many cells were tuned to individual num-
bers of stimuli (Figure 1B1). With increased noise, the observed
tuning was broader for neurons selective to higher numbers
(Figure 1B2). Similar tuning is seen in the neural activity of
numerosity-selective neurons in primates (Nieder and Miller,
2003; Tudusciuc and Nieder, 2007, 2009), neurons which also
respond to a temporal sequence of discrete stimuli (Nieder,
2012).

When analyzing the complete network response
(Figures 1C1,C2) one notices that the overall pattern of
activation is distributed: many cell-groups are active following
any particular number of stimuli and any one cell-group can be
active following multiply different stimuli. However, the activity
patterns following particular numbers of stimuli are distinct
from each other (Figures 2A1,A2). Indeed, the strongest effect
of depression is to decorrelate subsequent stimuli from each
other, so the lowest correlation is seen in a band surrounding
the diagonal in Figure 2A1. Such an effect can be understood as
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FIGURE 1 | Cell-group activity is tuned to the number of repeated

stimuli. (A1) Responses of two different cells to a series of 250 ms constant
inputs repeated every 1.5 s. (A2) Responses of two other cells to the same
sequence with increased noise in the network. (B1,B2) Tuning curves of
specific cell-groups in the network, each color represents a different cell,
whose firing rate is plotted as a function of the number of successive

identical stimuli. Colors matching those in (A1,A2) indicate the same cell.
(C1,C2) Mean delay activity of all cell-groups to a train of ten identical stimuli,
with color indicating firing rate. (A1,B1,C1) Internal noise, σ = 0.002.

(A2,B2,C2) Increased internal noise, σ = 0.005. All panels: Mean responses
averaged across ten trials of a single network, with error bars indicating
standard deviations.

depression ensuring a group of cells is least likely to be active if it
has just been active.

To assess how distinguishable were these different activity
patterns from each other, we produced a set of 20 trials by
using different instances of temporal noise. We took the mean
responses of the first 10 trials to produce “target” responses.
We then assessed for each of the next 10 “test” trials, which
“target” representation the persistent activity was most similar
to. If any two stimuli resulted in the same network response,
then the test stimuli would be as often as similar to one
as the other, producing a “confusability” of 0.5 to each pair.
However, as we see (Figure 2B1), in the low noise case, we
found 100% reproducibility of distinct activity patterns for
the first 9 of 10 stimulus types. With increased noise, while
the first three stimuli remained distinct with 100% reliabil-
ity, the confusability increased with increasing stimulus count
(Figure 2B2).

To quantify the variability in the response, in a separate exper-
iment we selected a different level of noise in each trial used to
simulate target responses then test responses. As in the calcula-
tion of the confusability matrix, for each stimulus number in a
test trial, we treated the network’s output as the stimulus num-
ber of the target response most correlated with the test response.
Across the 10 test trials we calculated the standard deviation of
these network outputs. We repeated across 10 different networks
to produce the curve in Figure 2C1. With noise in the low range
of 0.1 < σ < 0.3, the responses to the first three stimuli are always
precisely reproduced, so the variability is zero, but thereafter the
standard deviation in the networks’ responses increases linearly
with stimulus number.

While our standard network comprised 100 excitatory cell-
groups (NE = 100), the qualitative behavior did not depend on
this number. With increasing number of cell-groups, the effect
of noise was decreased, with an approximate noise-scaling factor
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FIGURE 2 | A randomly connected recurrent network with depressing

synapses counts identical stimuli. (A1,A2) Correlations between mean
post-stimulus firing rates of all cell-groups as a function of stimulus number.
(B1,B2) The confusability matrix indicates the probability of the network
activity being most like a given target template following a given number of
successive stimuli. Target position corresponds to each of the ten successive
stimuli whose mean network activity was evaluated on ten preliminary
trials. Recall position denotes each of ten successive stimuli on test
trials—following each stimulus, the network activity was measured and

compared with target stimuli. Mean of ten trials presented. Color scale:
red = 100% correct, green = 50% correct, blue = 0% correct. (A1,B1) Internal
noise, σ = 0.002. (A2,B2) Increased internal noise, σ = 0.005. (C1,C2)

Standard deviations in the target position as a function of test position. Ten
trials of each of ten networks, with different levels of noise, 0.1 < σ < 0.3 in
each trial. (C1) Network of 100 cell groups. Fitted line to points 3–8 is
y = 0.30x − 0.82. (C2) Network of 25 cells. Fitted line to all points
y = 0.24x − 0.04. (C1,C2) Straight line fits have higher adjusted r-square
values than polynomial fits to y(x) or x(y), suggesting Weber’s Law holds.

of 1/
√

NE. Similarly, near identical behavior was produced when
the number of cell-groups was reduced, given the appropriate
scaling of noise, so that a network with NE = 25 and σ = 0.001
produced as reliable behavior as a network with NE = 100 and
σ = 0.002. However, when the number of excitatory cell-groups
was reduced too much (for example, for NE < 15) then, with cur-
rent network parameters and random connections, the network

would cycle through a small number of 2–4 discrete states so its
ability to count inputs would be severely limited.

The effect of network size can be seen in Figure 2C2, in which
we reproduce the analyses leading to Figure 2C1, but with the
smaller network of 25 cell-groups. In this case, given the identical
range of noise used, more errors occur at any stimulus number,
so that even the response to the first stimulus is not completely
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reliable. The standard deviation of the outputs of 10 such net-
works is statistically indistinguishable from a straight line through
the origin, reproducing Weber’s Law of scaling (see Discussion).

STIMULUS DURATION
Our network is not an integrator, but relies upon synaptic depres-
sion, which has a fixed time constant, to reduce the stability of
active states. Therefore, it was not clear whether continuously
applied stimuli of fixed durations could have the same effect
on network activity as multiple, spaced individual stimuli. To
test whether the same network could be responsive to stimulus
duration, we reset the network following a range of stimuli of dif-
ferent durations then analyzed the resulting activity. The results
in Figure 3, demonstrate the ability of the network to produce
a response that is duration-dependent. Seven distinct states of
activity are produced in the example network displayed (six if
one excludes the unresponsive state following very short stimuli).
Interestingly, the tuning curves of individual neurons differ from
their tuning to numerosity—they are much broader and more of
them are monotonic (Figure 3B).

STIMULUS INTENSITY
We assessed whether the same random network could produce
resultant activity that depended on the strength of a fixed dura-
tion input current. Results of increasing stimulus strength are

similar to those of increased duration in that tuning curves
are broader and more monotonic. Interestingly, this is in line
with electrophysiological recordings of activities of numerosity-
tuned neurons in primates (Nieder and Merten, 2007). Given
the broader tuning curves, many pairs of stable activity states
were highly correlated (Figure 4C) but in the example shown,
all 9 distinct stimulus amplitudes, ranging over a factor of five,
were successfully encoded in distinct network states, with 100%
reliability (Figure 4D).

DIFFERENTIATING NUMBER, DURATION AND INTENSITY OF STIMULI
A perfect integrator would produce a network state-dependent
on the product of number, duration and intensity of stimuli.
Indeed, one could argue that a drawback to the applicability
of the perfect integrator to most sensory tasks is its inability,
in the absence of other feedback mechanisms (Machens et al.,
2005; Miller and Wang, 2006) to distinguish between number,
duration and intensity of stimuli. Moreover, such integrators,
as possessed by the head-direction system, or occulomotor sys-
tem, typically require networks with highly specified architectures
and often considerable fine-tuning of parameters. In our for-
malism, with randomly connected units, the network is robust,
because groups of cells are individually bistable. In this manner
the network resembles the discrete integrator (Koulakov et al.,
2002; Goldman et al., 2003). However, since the connections are

FIGURE 3 | A randomly connected network with depressing synapses

can encode stimulus duration. (A) Mean response for all cell-groups
following a single stimulus as a function of stimulus duration. Color indicates
firing rate. (B) Responses of four example cell-groups indicate broad tuning.

(C) Correlation between network firing rates of cell-groups to different
stimulus durations. (D) The confusability matrix (described in Figure 1)
indicates the network can differentiate stimulus duration into seven
completely distinct categories. Internal noise, σ = 0.002.
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FIGURE 4 | A randomly connected network with depressing

synapses can encode stimulus amplitude. (A) Mean response for all
cell-groups following a single stimulus as a function of stimulus
amplitude, ranging in steps of 0.5 from 1 to 5. Color indicates firing
rate. (B) Responses of four example cell-groups indicate broad tuning

to stimulus amplitude. (C) Correlation between network firing rates of
cell-groups to different stimulus amplitudes. (D) The confusability
matrix (described in Figure 1) indicates the network can differentiate
stimulus amplitude into nine completely distinct categories. Internal
noise, σ = 0.002.

random and not tuned to produce the one-dimensional line of
stable points typical of an integrator, the network is unlikely to
respond to changes in duration, amplitude and number of stim-
uli in qualitatively the same manner, as does an integrator. Rather,
the stable activity on the randomly connected network appears to
follow a high-dimensional, distributed representation—different
bistable groups can switch on or off with different combinations
of other bistable groups, without a systematic order to the switch-
ing. Therefore, it is plausible that multiple feature combinations
of the stimulus could be separately encoded.

To test the ability of the network to represent multiple stim-
ulus features, we first, within a single network, applied trains
of transient stimuli of varying durations and constant ampli-
tude. If the network were acting as an integrator, then it would
respond to total stimulus time, such that a doubling of the dura-
tion combined with halving of the number of stimuli would result
in the same network activity. However, we found this not to
be the case (Figures 5A,B). Indeed, we analyzed the network’s
activity following sequences of up to 8 identical transient stim-
uli, with six different stimulus durations ranging from 0.05 to
0.3 s. We found for the intermediate stimulus duration of 0.15 s
that not only was a unique, reliably different activity state pro-
duced following each of the eight successive stimuli, but also
all 8 states were uniquely produced by that particular stimulus

duration and distinct from any states produced by any num-
ber of successive stimuli with either longer or shorter durations
(Figure 6A).

An integrator would also respond to the product of amplitude
and number of stimuli, or amplitude and duration of a single
stimulus. However, the randomly coupled network produces dis-
tinct responses to trains of a few high-amplitude stimuli and
many low-amplitude stimuli, as well as to intermediate combina-
tions when all combinations have the same product of amplitude
and number (Figures 5C,D). Moreover, when analyzing the net-
work’s activity following sequences of up to eight transient stimuli
of constant duration, with seven different amplitudes (in the
range 0.5–2.0) we found a very low likelihood for sequences
with different amplitudes to be confused with each other and
all 8 states following stimuli of intermediate amplitudes to be 90
or 100% correctly identified by both number and amplitude of
stimuli (Figure 6B).

Figure 6C further indicates the distinctiveness of network
response to stimuli of different amplitudes versus of different
durations. Following a single transient stimulus, each of five dif-
ferent stimulus amplitudes in the range 1.0–2.0 produces either
3 or 4 different activity states that depend on stimulus duration.
These states are both distinct from each other and distinct from
any state produced by another stimulus amplitude (Figure 6C).
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FIGURE 5 | A randomly connected network with depressing synapses

produces distinctive responses to stimulus duration, amplitude and

number of repetitions. (A) Mean network response, with color indicating
firing rate of each cell-group, following the 6th of a series of 0.05 s
stimulations (row 1), the 3rd of a series of 0.1 s stimulations (row 2), the 2nd
of a series of 0.15 s stimulations (row 3) and a single 0.3 s stimulus, such that
all stimulus combinations produce 0.3 s of total current (amplitude 1.5,

σ = 0.002). (B) Confusability matrix between the four types of stimulus
combination of (A), indicating the network’s response is distinct to each
stimulus combination. (C) Mean network response as in (A) to series of 8, 6
4, and 4 stimuli respectively of different amplitudes 0.75, 1.0, 1.5, and 2.0
(such that the product is constant at 6.0). Each stimulus has duration of
0.25 s, σ = 0.002. (D) Confusability matrix between responses to the four
stimulus combinations of (C) demonstrates the responses are distinct.

We finally produced a 6 × 3 × 3 array of stimuli with any
combination of number (N = 1 − 6), duration (T = 0.1 s, 0.2 or
0.3 s) and intensity (I = 1, 2, or 3) of applied current pulses. We
assessed how network activity depended on these stimulus com-
binations. Figure 6D demonstrates that for a large number (27)
of these stimulus combinations, the network activity is reliably
propelled into a distinct state, unique to that single combination
of duration, amplitude and number of stimuli. Since the stimuli
are all constant, equal currents to all excitatory cell-groups in the
network, the evolution of activity states depends entirely on the
random cross-connections between cell-groups and the temporal
dynamics of intra-group and inter-group synaptic transmission.

NETWORKS WITHOUT DEPRESSING SYNAPSES
When synaptic depression is removed from these networks—and
static release probability is optimally tuned to allow for multi-
ple stable activity states—the counting behavior of the network
disappeared (Figures 7A,C). That is, successive stimuli simply
reproduced the same state. The number of states produced by
different durations and amplitudes of stimuli was reduced from
7–8 to 2–4 (Figures 7B,D). Also, under the same low-noise con-
ditions as the networks shown in Figures 1–6, the reliability
of responses to identical stimuli was greatly reduced. In fact,

with constant amplitude and varying duration, no states were
distinctly produced by a single subset of stimuli.

In summary, it is short-term depression in the recurrent
connections of bistable groups that produces itinerancy in the
network states. Such itinerancy with consecutive stimuli enables
the network to possess a counting behavior and to produce
numerosity-tuned cells. The same synaptic depression imparts a
preferred stimulus amplitude and duration for activation of a cell-
group, increasing the number and reliability of amplitude-specific
and duration-specific states.

DISCUSSION
Bistability relies upon positive feedback, which can arise from
cell-intrinsic currents (Hounsgaard et al., 1984; Rinzel, 1985;
Booth and Rinzel, 1995) or from network feedback (Kleinfeld
et al., 1990; Camperi and Wang, 1998; Wang, 1999, 2001;
Koulakov et al., 2002). Synaptic facilitation is a positive feedback
mechanism in circuits of reciprocally connected excitatory cells,
since the greater the mean firing rate, the greater the effective con-
nection strength, further amplifying the excitatory input beyond
that produced by the increased spike rate alone. This property
of synaptic facilitation enhances the stability of memory states
and renders them more robust to distractors (Itskov et al., 2011).
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FIGURE 6 | A randomly connected network with depressing synapses

produces distinct responses to multiple stimulus features.

(A) Confusability matrix between the network’s activity states following 1–8
transient stimuli of one of six durations from 0.05 s to 0.30 s (48 stimulus
combinations in total). 15 combinations are perfectly distinct.
(B) Confusability matrix between the network’s activity states following 1–8
transient stimuli of one of seven amplitudes from 0.5 to 2.0 (56 stimulus
combinations in total). 17 combinations are perfectly distinct.
(C) Confusability matrix between the network’s activity states following a

single transient stimulus of one of eight durations from 0.05 s to 0.4 s and
one of five amplitudes from 1.0 to 2.0 (32 stimulus combinations in total).
Although no individual combination is perfectly distinguished from all others,
18 distinct states are apparent, with the majority of states responding to a
single amplitude and two durations. (D) Confusability matrix between the
network’s activity states following 1–6 transient stimuli of one of three
durations (0.1 s, 0.2 s, 0.3 s) and one of three amplitudes (1.0, 1.5, 2.0). 23
stimulus combinations are perfectly distinguished and over 25 distinct activity
states are produced.

Other forms of positive feedback, such as depolarization-induced
suppression of inhibition (DSI), which depends on activity in the
post-synaptic cell, can similarly produce robustness in recurrent
memory networks (Carter and Wang, 2007).

Conversely, depressing synapses in a self-exciting circuit pro-
duce negative feedback, by reducing the effective synaptic strength
of the outputs of the most active cells. Such negative feedback
reduces the stability of the attractor states produced by positive
feedback. This effect has been demonstrated in a system known
as the ring attractor, an example of a perfect integrator (Song and
Wang, 2005), which in the absence of dynamic synapses can pro-
duce a “bump” of population activity in a marginal state. Once the
bump has formed at a given location on the “ring” it can remain at
that location so form the basis of a spatial memory. However, the
stationary “bump” can be rendered unstable by synaptic depres-
sion and be replaced by one of two possible moving “bump”
states with fixed velocity (York and van Rossum, 2009). Such an

effect is similar to that produced by intrinsic adaptation currents
within the excitatory neurons of the ring attractor, which result
in a pitchfork bifurcation as the single stationary state is replaced
by two oppositely directed constant velocity states, whose abso-
lute velocity increases as the underlying conductance increases
(Ben-Yishai et al., 1997; Hansel and Sompolinsky, 1998; Laing
and Longtin, 2001; Tegnèr et al., 2002).

In the randomly connected circuits that we simulate, synap-
tic depression in strong recurrent excitatory synapses also has
the same effect on these excitatory cells as an adaptation cur-
rent. Following the initial burst of excitatory input, the dynamic
weakening of synaptic strength while vesicles need to be replaced
causes a reduction in post-synaptic excitatory input, which affects
the post-synaptic cell just as would an activity-dependent intrin-
sic inhibitory current. Thus, it is possible that synaptic depression
could produce similar results to that of an adaptation current
in successful models of binocular rivalry based on bistability
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FIGURE 7 | A random recurrent network without depressing

synapses shows no counting behavior and weakly tuned amplitude

selectivity. (A,B) Post-stimulus firing rates of each group of neurons in
response to (A) repetitions of an optimal-strength stimulus and (B) a

single stimulus of varying amplitude. (C,D) Confusability matrix indicated
how distinguishable the network responses are for the successive
repetitions of the same stimulus (C) or for a single stimulus of
different amplitudes (D).

between groups of neurons (Moreno-Bote et al., 2007; Theodoni
et al., 2011).

A randomly connected network of bistable neurons was shown
to produce a diversity of neural responses (Rigotti et al., 2010)
with neurons possessing mixed selectivity to conjunctions of
stimulus features. In that work, different combinations of stim-
uli or inputs produced the different resulting distributions of
stable network activity, allowing for appropriate responses in cog-
nitive tasks. Here, we show that with the addition of depressing
synapses, a similar network produces a diversity of responses to
different dynamic features of a single stimulus of equal strength
to all cells.

The randomly connected network responds differently from
neural integrators, whether continuous (Seung, 1996; Miller et al.,
2003; Song and Wang, 2005) or discrete (Koulakov et al., 2002;
Goldman et al., 2003). For an integrator, increased signal ampli-
tude affects the system in qualitatively the same manner as
increased signal duration. The reason for the difference is that
integrators are designed to have a one-dimensional sequence of
stable fixed points—or a continuous line of fixed points repre-
senting a marginal phase (Ben-Yishai et al., 1995), sometimes
called a line attractor (Seung, 1996)—whereas the randomly con-
nected network is inherently of high dimensionality (Rigotti et al.,
2010). Thus, even when an integrator either inherently (Compte
et al., 2000; Song and Wang, 2005) or through its connections
to a second output layer (Verguts and Fias, 2004), produces

non-monotonic, “peaked” tuning curves, the responses to num-
ber, duration and stimulus amplitude are not separable. That is,
an integrator’s activity following a given number of counts of one
stimulus is identical to that following more counts of a weaker
stimulus, or of a shorter duration stimulus—of course, in many
situations other than counting, such integration is the desired
network response (Zhang, 1996; Samsonovich and McNaughton,
1997; Romo et al., 1999; Seung et al., 2000; Song and Wang, 2005).

In many experiments analyzing numerosity coding, both
behavioral (Merten and Nieder, 2009) and neural (Nieder and
Miller, 2003) responses produce two features suggestive of log-
arithmic coding. First, errors are skewed, with a longer tail
toward stimulus values higher than the stimulus producing peak
response. Second, the standard deviation of number estimates—
here calculated via the trial-to-trial variability in the network’s
estimate of stimulus number for each fixed actual number of
stimuli—scales linearly with number of stimuli, a scaling known
as Weber’s Law (Weber, 1851). Our network does not exhibit the
observed skew in neural responses, in particular because there is a
tendency when errors are made, for the random attractor states
visited to be more like the first attractor state (so an incorrect
response of “one” is the most common). However, if we incor-
porate trial-to-trial variability in the level of noise (Figure 2C)
then a Weber scaling is observed—errors become more likely, lin-
early with increasing number. Thus, the information pertaining
to the encoded number, as contained within the distributed
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representation of these networks, degrades in the expected man-
ner, but it is likely a separate “readout” network of cells is needed
to produce all the features observed in neural recordings. Such a
“readout” network could also combine the different representa-
tions of number arising from stimuli of different properties into
a single “pure number” representation—that is, it would produce
pattern completion after this initial step of pattern separation.

Recent experiments have demonstrated associative forms of
short-term plasticity (Brenowitz and Regehr, 2005; Erickson et al.,
2010), which is more powerful, since it can be synapse-specific
rather than cell-specific, so has greater information carrying
capacity. Such associative-STP has been shown to be capable of
temporarily coupling together specific pairs of bistable neural

groups, so could form the basis for memory of sequences of dis-
crete items (Botvinick and Watanabe, 2007; Miller and Wingfield,
2010).

In summary, we have shown that depression can destabilize
discrete activity states and in so doing enables the network activ-
ity to change through repetitions of identical stimuli. Therefore,
such networks could be of value in providing a basis for count-
ing and for memory of sequences (Botvinick and Plaut, 2006;
Botvinick and Watanabe, 2007). Indeed, our ongoing work sug-
gests that memories of discrete sequences could be maintained
in a network, which combines such effects of synaptic depression
(Figures 1–2) with associative short-term plasticity (Erickson
et al., 2010; Miller and Wingfield, 2010).
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Microsaccades during fixation have been suggested to counteract visual fading. Recent
experiments have also observed microsaccade-related neural responses from cellular
record, scalp electroencephalogram (EEG), and functional magnetic resonance imaging
(fMRI). The underlying mechanism, however, is not yet understood and highly debated.
It has been proposed that the neural activity of primary visual cortex (V1) is a crucial
component for counteracting visual adaptation. In this paper, we use computational
modeling to investigate how short-term depression (STD) in thalamocortical synapses
might affect the neural responses of V1 in the presence of microsaccades. Our model
not only gives a possible synaptic explanation for microsaccades in counteracting
visual fading, but also reproduces several features in experimental findings. These
modeling results suggest that STD in thalamocortical synapses plays an important role
in microsaccade-related neural responses and the model may be useful for further
investigation of behavioral properties and functional roles of microsaccades.

Keywords: short-term depression, microsaccades, feedforward network, visual fading, fixation

1. INTRODUCTION
When the eyes fixate at a stationary object, they are never
completely motionless, but perform involuntary, very small eye
movements. These fixational eye movements are composed of
three different types of movement: tremor, microsaccades, and
drift. Tremor is an aperiodic, high-frequency fixational eye
movement with the smallest amplitude of these three types of
fixational eye movements. Microsaccades are involuntary jerk-
like fixational eye movements. Drift is a typical fixational eye
movement taking place between microsaccades with the slow-
est velocity of all the three types. Microsaccades are the largest
and fastest fixational eye movements. It has been experimen-
tally observed that microsaccades cause more variability in
neuronal responses than both tremor and drift (Gur et al.,
1997; Martinez-Conde, 2006). The most prominent contribu-
tion to fixational eye movements is generated by microsac-
cades (Rolfs, 2009). Therefore, both experimental and theoretical
works have mainly focused on the role of microsaccades during
fixation.

Over the past decade, the behavioral properties and functional
roles of microsaccades have been widely investigated (for reviews,
see Martinez-Conde et al., 2004, 2009; Rolfs, 2009). Importantly,
it was found that the visual world quickly fades from view in the
absence of fixational eye movements (Ditchburn and Ginsborg,
1952; Riggs and Ratliff, 1952). This suggests that microsaccades
play an important functional role in counteracting visual fad-
ing during fixation (Ditchburn and Ginsborg, 1952; Martinez-
Conde, 2006). Recently, the mechanism of microsaccades for

counteracting perceptual fading has received much research inter-
est. Several studies have assumed that microsaccades refresh
retinal images by moving the receptive fields of less adapted pho-
toreceptors over stationary stimuli, thereby preventing perceptual
fading (Ditchburn and Ginsborg, 1952; Martinez-Conde, 2006).
However, the locus and properties of this retinal adaptation are
not well known.

Therefore, the mechanism of microsaccades for counter-
acting visual fading is not well understood. This is largely
because the neural correlates responsible for brain responses to
microsaccades are unknown. So far, the brain responses due to
microsaccades have been widely reported at different levels—
from neuronal activities (Bair and O’keefe, 1998; Leopold and
Logothetis, 1998; Martinez-Conde et al., 2002; Martinez-Conde,
2006) to electroencephalogram (EEG) (Yuval-Greenberg et al.,
2008; Dimigen et al., 2009) and functional magnetic resonance
imaging (fMRI) (Hsieh and Tse, 2009; Tse et al., 2010)—in a
number of brain areas. It’s mostly found that, microsaccades
enhance neuronal firing and therefore raise excitatory response
in early visual areas, such as lateral geniculate nucleus (LGN)
and primary visual cortex (V1) (Martinez-Conde et al., 2002).
Particularly, neural activity in V1 is crucial component for
the understanding of visual information processing related to
microsaccades.

Previous works (Riggs et al., 1953; Krauskopf, 1957; Sharpe,
1972; Engbert and Mergenthaler, 2006) have suggested that
retinal adaptation might be responsible for visual fading in
the absence of microsaccades during fixation. However, this
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suggestion has not yet been verified directly in experiments.
Moreover, the retinal adaptation in the absence of microsaccades
has not been successfully described by using physiologically real-
istic model (Donner and Hemilä, 2007). Although some studies
have found that microsaccades can increase the neural activity
in the retina (Armington and Bloom, 1974; Greschner et al.,
2002), the enhanced neural responses, which are the neural corre-
lates of the perception of visibility during fading, have been only
tested in LGN and V1 but not in the retina (Martinez-Conde et al.,
2002; Martinez-Conde, 2006). While retinal adaptation cannot be
excluded to contribute to visual fading in the absence of microsac-
cades, it is possible that the neural adaptation related to visual
fading may take place at some stage between retina and early
visual areas.

Over the past three decades, physiological studies have shown
adaptation phenomena affecting neural activity in V1. Carandini
et al. (2002) suggested three possible adaptation mechanisms:
synaptic depression, intracortical inhibition and intrinsic cellu-
lar mechanisms. Of these three mechanisms, synaptic depression
is well suited to explain the marked differences between the
responses to transient and consecutive stimuli (Chance et al.,
1998). Recently, a synaptic depression, short-term depression
(STD), has been extensively found at thalamocortical synapses
from LGN to V1 in vitro (Stratford et al., 1996; Bannister et al.,
2002) and in vivo (Boudreau and Ferster, 2005) in the cat.
Previously, network models of V1 neurons with the thalamocor-
tical synaptic depression have been used to successfully explain
some visual phenomena (Chance et al., 1998; Chance and Abbott,
2001; Carandini et al., 2002), including temporal phase shifts,
spatial-phase adaptation, contrast saturation, cross-orientation
suppression, and so on. However, the synaptic depression has not
yet been used in a thalamocortical network to investigate the roles
of microsaccades.

In this paper, we proposed an alternative explanation for visual
fading by introducing STD in the thalamocortical system, with-
out considering possible neural adaptation from retina. We used
a computational model to investigate how microsaccades might
induce neural responses in V1 by considering STD in thalamocor-
tical synapses from LGN to V1. The adapted synapses subjected
to STD can lead to response depression in V1, and induce visual
fading because of sustained depression. Therefore, it is possible
that the generation of microsaccades serves to counteract STD-
induced depression of neuronal activity in order to counteract
visual fading. Our model can reproduce several experimental
findings of microsaccade-related neural responses (Martinez-
Conde et al., 2002; Kagan et al., 2008). These results suggest
that STD from LGN to V1 might play an important role in
microsaccade-related neural responses, and provide theoretical
insight into the understanding of more behavioral properties and
functional roles of microsaccades.

2. MATERIALS AND METHODS
2.1. FEEDFORWARD MODEL
In sensory nervous system, substantial information processing
can be performed by feedforward networks without considering
recurrent connections, including perceptual learning (Tsodyks
and Gilbert, 2004). A well-known model of feedforward networks

is that proposed by Poggio et al. (1992) on visual hyperacuity.
In our work, extending this previous model, we constructed a
simple feedforward network model consisting of two layers corre-
sponding to LGN and V1 with STD in thalamocortical synapses,
as shown in Figure 1. To focus on the effects of synaptic depres-
sion during fixation with microsaccades, we kept our model very
simple, and did not consider corticocortical synaptic connections.
In visual systems, a neuron sees only a small portion of the visual
field. This small area is called the receptive field of the cell. This
receptive field leads to a Gaussian tuning function of the mean fir-
ing rate of the neurons with respect to the orientation of fixated
dot (Nelson et al., 1994; Ferster et al., 1996; Ferster and Miller,
2000; Seriès et al., 2004), which denotes the inputting orienta-
tion from fixated dot to the neurons by lateral synaptic inhibition
connections (Amari, 1977; Pinault and Deschênes, 1998; Yuan
et al., 2006, 2007). Since the input layer LGN consists of a num-
ber of Gaussian filters (receptive fields) as described by Poggio
et al. (1992) and Tsodyks and Gilbert (2004), the afferent stim-
uli evoked by the fixated dot are transformed into firing trains in
LGN neurons j, which can be described as Poisson spike trains
with a time-independent rate Rj following Gaussian profile G1 in
space (shown in Figure 1). For the output layer, each V1 neuron i
has connections coming from LGN relay neurons j (excitatory)
with weights Wij following Gaussian tuning curve G2 (explained

FIGURE 1 | The feedforward network model during fixation with

microsaccades. Neurons in LGN and V1 are labeled and arranged by the
center positions xj and xi of their receptive fields in the ranges from −L
to L, respectively. Gaussian filters (receptive fields) in LGN layer transform
the afferent stimuli evoked by fixated dot into the inputs with Gaussian
firing rate profile: Rj = G1(xj − xf ) = A exp−(xj −xf )

2/σ2
1 . A represents the

amplitude of a visual input at fixated-dot position xf and σ1 is the width of
the tuning curve, which denotes the width of the receptive fields. The
output layer V1 is connected to input layer LGN by thalamocortical
synapses with synaptic strengths Sj , which are subjected to the synaptic
modification: STD. These connecting weights Wij follow the Gaussian

tuning curve: Wij = G2(xj − xi ) = exp−(xj −xi )
2/σ2

2 , where xj − xi denotes the
position difference of receptive field centers between the input neuron j
and the output neuron i . The microsaccades during fixation can be regarded
as instantaneous relative movements of the fixated dot over LGN with
microsaccadic magnitude �M . In order to eliminate the effect of boundary
due to limited network scale, the G1 is extended to a period boundary
function, i.e., G1(xj − xf ) = A exp−(xj −xf )

2/σ2
1 for |xj − xf | < L; otherwise,

G1(xj − xf ) = A exp−(2L−|xj−xf |)2/σ2
1 .
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in the caption of Figure 1) (Poggio et al., 1992; Tsodyks and
Gilbert, 2004). The model is composed of Integrate-and-Fire
neurons with chemical couplings of δ function. The dynam-
ics of the membrane potential Vi of output neuron i in V1 is
described by

τm
dVi

dt
= V0 − Vi +

N∑
j = 1

gWijSj(t)(VE − Vi)δ(t − t
j
sp). (1)

Here, we adopted the same parameter values as those in Abbott
et al. (1997) and Chance et al. (1998), which model V1 cells
according to empirical observations (Varela et al., 1997). The
membrane time constant τm equals 30 ms, the resting potential
V0 is −70 mV, and the reversal potentials VE for all the excitatory
synapses are 0 mV. Each V1 neuron i integrates inputs coming

from LGN neurons j at spike time t
j
sp distributed as Poisson spike

trains. When the potential Vi reaches the threshold value −55 mV,
the neuron i emits a spike, and then the membrane potential
is reset to the relatively high value −58 mV (compared with the
resting potential V0 = −70 mV) in order to match experimental
recordings (Varela et al., 1997). The parameter g represents the
maximal synaptic conductance. The Sj(t) in the thalamocortical
synapses from LGN to V1 complies with STD plasticity, which
will be described in the following.

In simulations, N neurons in LGN and V1 are, respectively,
spread uniformly in the ranges from −L to L, which denote
the physical positions of receptive field centers of these neurons.
Compared with the responsive region of neurons induced by the
fixated dot, L should be large enough that the new place of fixated
dot after microsaccades is far from the boundary neurons. Here,
in order to shorten the simulating time, the region from −L to L
is chosen as a narrow region with finite L. Meanwhile, to elimi-
nate the effect of boundary due to the chosen narrow region, the
input tuning curve G1 is extended to a period boundary func-
tion (see the caption of Figure 1). In this way, the value of L does
not change qualitatively the results. In our simulation, microsac-
cades are modeled by instantaneous relative displacement �M of
the tuning curve G1. With suitable scale transformation, the size
L and displacement �M can be used to represent realistic range
of microsaccades (Martinez-Conde et al., 2009). Here, we take
N = 1000 neurons and L = 10. The main results, however, do not
depend on these parameters.

2.2. SHORT-TERM DEPRESSION (STD)
Biophysically, synaptic depression can be regarded as the interac-
tion between two processes, the activity-dependent depletion of
the transmitter resources of synaptic vesicles and the slow replen-
ishment of the resources. The depletion process means that the
available transmitter is diminished immediately after the presy-
naptic spike time owing to the release of transmitter. Thus, each
time a presynaptic spike arrives at synapse j, the synaptic strength
Sj decreases immediately after the spike due to the use of trans-
mitter resources. The depletion of a synapse is usually modeled by
a multiplicative factor f (Abbott et al., 1997; Chance et al., 1998;
Boudreau and Ferster, 2005):

Sj → fSj. (2)

The parameter f (0.0 < f < 1.0) denotes the ratio of the synap-
tic resources available immediately after release to those before
release, and thereby determines the amount of depression at
synapse j induced by each spike (the smaller the parameter f , the
stronger the depression). The slow replenishment process can be
modeled by exponential recovery from depression (Abbott et al.,
1997; Chance et al., 1998):

dSj

dt
= 1

τS
(1 − Sj). (3)

The constant parameter τS determines the depression recovery
time. Combining the Equations (2) and (3), the STD can be
described by

dSj

dt
= 1

τS
(1 − Sj) − (1 − f )Sjδ(t − t

j
sp). (4)

If the afferent neuron for the synapse j fires a Poisson spike
train at rate Rj, the synaptic strength will quickly decrease to the
approximate steady state (for a high rate) (Abbott et al., 1997):

Sj(ss) = 1

f + (1 − f )RjτS
, (5)

when the depletion and replenishment processes reach a balance.
According to the property of synaptic depression, it is obvious
that the microsaccade can increase the activity in the nearby V1
neurons that have the receptive field of the landing position in our
proposed feedforward network. This synaptic depression model
gives a good fit of experimental data (Abbott et al., 1997). The two
parameter values f and τS we used lie within the ranges indicated
in the experimental data (Carandini et al., 2002; Boudreau and
Ferster, 2005). In the following computations, we took f = 0.75
and τS = 200 ms. Choosing different parameter values does not
alter the qualitative results.

3. RESULTS
By using our feedforward model, we first describe the
microsaccade-induced excitatory activity in V1 neurons that
might contribute to counteract perceptual fading. Then, we will
show that our model can reproduce experimental observations
about V1 cortical responses after microsaccades as reported
by Martinez-Conde et al. (2000, 2002). Moreover, our model
can explain the saturation property of visual brain responses
for large microsaccadic magnitude and velocity, which has
been recently found by measuring scalp EEG (Dimigen et al.,
2009).

Since microsaccades are very fast movements (Martinez-
Conde et al., 2009), for simplicity, we ignored the time course of
microsaccades (Donner and Hemilä, 2007) in most of our simu-
lations, i.e., the displacement by microsaccade of magnitude �M

happens immediately. However, we also studied the impact of
velocity and showed that it also reproduces experimental findings.
Here, we counted the total number of spikes Nsp of the V1 neu-
rons in the model in a moving time bin (T = 50 ms) as a measure
of the neural response.
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3.1. EXCITATORY RESPONSES TO MICROSACCADES AND A POSSIBLE
EXPLANATION FOR COUNTERACTING VISUAL FADING

In these simulations, we showed that, STD in thalamocortical
synapses can provide a possible explanation for microsaccades
in counteracting visual fading. Here, we assumed that the fixa-
tion dot is the only relevant visual stimulus that generates the
visual signal. As shown in Figure 2A, in this model with STD,
neural activity in V1 begins to fade within several hundred mil-
liseconds after the start of fixation in the absence of fixational
eye movements (and head or body movements). If a microsac-
cade occurs, the neural excitation will return and persist for a few
hundred milliseconds. If there are no more microsaccades, the
neural activity in V1 will be fading completely in about 300 ms.
In Figures 2B–D, we propose an explanation of the responses
in terms of STD in thalamocortical synapses. During fixation
in the absence of microsaccades, the spike trains evoked by the
fixated dot with firing rates Rj in LGN persist in stimulating tha-
lamocortical synapses (Figure 2B, black line). Due to depressing
mechanism of STD in these synapses, the synaptic strengths will
quickly decrease to steady state values. The strengths Sj with larger
firing rate Rj will decrease to smaller steady state values Sj(ss)
(Figure 2B, blue line). The theoretical analysis (Abbott et al.,
1997) showed that the steady state strengths Sj(ss) are inversely
proportional to Rj for high firing rates (see Equation 5). When
there is a microsaccade, the network will generate a new neural
input to stimulate V1 neurons by moving the fixated dot over
the receptive fields of LGN neurons with less adapted thalamo-
cortical synapses (in the sense of relative movement; Figure 2B,

red line). Before the microsaccade, the input of each thalamo-
cortical synapse from LGN neuron j, which is proportional to
RjSj(ss) (Abbott et al., 1997), is rather small (Figure 2C, black
line), and does not induce firing of V1 neurons for the param-
eter we used (Figure 2D, black line). However, immediately after
the microsaccade, the new input of each thalamocortical synapse
with less adaptation becomes much larger (Figure 2C, red line)
due to the fast eye movement so that it can evoke spikes in V1
neurons (Figure 2D, red line). Afterwards, STD becomes effective
to reduce the synaptic strengths and the response fades out again.
These simulations indicate that, STD in thalamocortical synapses
can give a potentially valid explanation for microsaccades in
countering visual fading, which may suggest an important role
of STD in microsaccade-related neural responses during fixation.

Next, we investigate in more detail the effect of microsaccadic
frequency. As shown in Figure 3A, neural activity in V1 is sus-
tained and does not fade away if there are microsaccades with
high enough frequency. Here, we calculate the average neural
activity related to microsaccades during fixation as a function of
microsaccadic frequency F (Figure 3B). It is found that, the neu-
ral activity will start to increase obviously when microsaccadic
frequency increases to 3–4 Hz. We also quantify the sensitivity of
neuronal response to change of frequency F by an amount �F,
which is the slope of average neural activity curve as the func-
tion of F in Figure 3B. As shown in Figure 3C, the sensitivity
increases to high enough value when microsaccadic frequency
arrives to 3–4 Hz. These results indicate that, the neural activity
will be sustained and sensitive if the frequency of microsaccades

FIGURE 2 | The excitatory responses to microsaccades during fixation in

the feedforward network model. (A) The change of neuronal activity in V1
neurons before and after microsaccade. The signs “+” reflect the response
peaks. (B) The computer-generated input firing rates Rj in LGN neurons
before and after microsaccade, and the STD-modified steady states Sj (ss) of

synaptic strengthens before microsaccade. (C) The synaptic input Rj Sj (ss)

for each LGN neuron j before and after microsaccade. (D) The neuronal spike
number Nsp(i) per time bin (50 ms) of the output neuron i in V1 before and
after microsaccade. Here the parameters are g = 0.15, A = 50,
σ1 = σ2 = 1.5, and �M = 2.0.
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FIGURE 3 | Sustained responses in V1 neurons to microsaccades

with high enough frequency. (A) The sustaining neuronal activity
induced by periodic microsaccades with a frequency F = 4 Hz. The
average neuronal activity during fixation (B), and its responsive

sensitivity (C) correlated with random microsaccades (in Poisson trains)
as a function of microsaccadic frequency F for different microsaccadic
sizes �M . Here the parameters are g = 0.15, A = 50, and
σ1 = σ2 = 1.5. In (A), �M = 2.0 is chosen.

or macrosaccades is about 3–4 Hz, which is consistent with the
fact that microsaccades occur 3–4 times per second (Otero-Millan
et al., 2008; Martinez-Conde et al., 2009), though the real situa-
tion could be more complicated to involve other factors such as
the variable sizes and speeds of the microsaccades.

3.2. REPRODUCING EXPERIMENTAL OBSERVATIONS
3.2.1. Different responses to microsaccades with flashing and

stationary stimuli
Perceptual responses to flashed object have been experimen-
tally studied in the presence of microsaccades (Martinez-Conde
et al., 2002; Kagan et al., 2008) and saccade (Lappe et al., 2006).
Particularly, Martinez-Conde et al. (2002) has experimentally
compared neural activities in V1 induced by microsaccades with
flashing and stationary (non-flashing) stimulus bars, in order
to study how effective microsaccades are in generating neural
activity by comparing them with previously characterized and
well-known visual stimuli, flashing bars. In their experiment,
the stimulus bars were in the receptive fields of the recorded
V1 neuron both before and after the microsaccade. They used a
white bar on a black background for on cells, and a black bar
on a white background for off cells. Then, they calculated the
spike probability of neurons in V1 to reflect neural response.
As shown in Figure 4, the neural response after microsaccades
is stronger when a rhythmically flashing bar is on during fixa-
tion, as compared to a condition in which the stimulus bar is
always on (stationary). Here, our model can provide a possi-
ble understanding of this observation using STD. We considered

FIGURE 4 | Experimental data for probability of neural spikes in V1

when the fixated dot is stationary or flashing (on). [Adapted from
Martinez-Conde et al. (2002)].

that the fixated dot as stimulus can be flashing (on–off) or sta-
tionary (Figure 5A). As shown in Figure 5B, the baseline before
microsaccades and responsive peak after microsaccades when
the flashing dot is on are both higher than those when the
fixated dot is stationary, consistent with the experimental find-
ings by Martinez-Conde et al. (2002). The higher responses are
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FIGURE 5 | Comparison of model neural responses to microsaccades in

V1 when the fixated dot is stationary or flashing cyclically with Ton

and Toff as indicated by the blue rectangles. (A) Stimulus brightness A
(see Figure 1) of the fixated dot for a periodic flashing condition (blue;
Ton = 1 s, Toff = 1 s) and stationary presentation (red; constant A) in the
presence of microsaccades (black ticks, with fixed size �M ) in Poisson
trains (1.5 Hz, here we choose the smaller frequency of microsaccades
than the real microsaccadic frequency in order to avoid the correlated
neural activity from one microsaccade to another due to the Poisson
microsaccade trains in simulation). (B) Microsaccade increases neural
activity in V1 when the fixated dot is stationary, and further increases the
neural activity when it is flashing-on. “+”-signs denote the peaks of
microsaccade-related neural activities. The results are obtained by
averaging over all microsaccades in Poisson trains (1.5 Hz) during the
on-state. (C) The response peak (i.e., the second response peak in

Figure 2A) evoked by a microsaccade as a function of the interval tm − ton

between onset of microsaccade and onset of flashing-on state. The mean
values over all tm − ton from 0 to Ton (blue dashed line) and the baseline
of peak response (red dashed line) are approximately equal to the
response peaks “+” in (B). In addition, the response peak (the first
response peak in Figure 2A) induced by onset of stimulus is plotted (black
dashed line). Inset in (C): network-averaged synaptic strength 〈Sj 〉 as a
function of tm − ton. (D) Response peaks “+” in (B) as a function of the
off duration Toff of the flashing dot. The red • at Toff = 0 corresponds to
the stationary stimulus. (E) Phase diagram in Toff -Ton plane for the
response peak “+” in the flashing condition in (B). (F) As in (E), but for
the ratio of the two response peaks in (B) (flashing (on) to stationary
stimulus). Here, data are obtained from simulation for 1000 s in (B),
(D–F) and averaged over 20 realizations for (C). The other parameters are
g = 0.15, σ1 = σ2 = 1.5, and �M = 1.0.

expected because of the additional onset response when the flash-
ing bar is turned on. Namely, in our model, the observations
are expected to be due to smaller synaptic depression during the
shorter interval between the onset of the flashing-on and the
onset of a microsaccade. To further understand the mechanism,
we examined how the neural response Figure 5C) and network-
averaged synaptic strength 〈S(j)〉 (inset of Figure 5C) depend on
the time interval tm − ton between the onsets of microsaccade and
flashing-on. A smaller interval corresponds to a higher response
activity due to a larger synaptic strength. When the interval
tm − ton is larger, the neural response will decrease to a relatively
stable baseline (Figure 5C, red dashed line) due to the presence

of a large final stable synaptic depression after the larger inter-
val (Figure 5C, inset). This baseline is the approximate response
with the stationary stimulus since the synaptic strength for this
case decreases to the same stable value as that for stationary stim-
uli. Because the time interval between the onsets of microsaccade
and flashing-on is random (Martinez-Conde et al., 2002), the
average response to all the microsaccades during flashing-on is
approximately equal to the average activity over the whole possi-
ble intervals (i.e., 0 ≤ tm − ton ≤ Ton, where Ton is the duration
of flashing-on; Figure 5C, blue dashed line). Clearly, the interval-
averaged response (Figure 5C, blue dashed line) is larger than the
baseline, explaining that the microsaccade-related response with
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flashing (on) stimulus is higher than that with stationary stimu-
lus. Moreover, we compared the microsaccade-related responses
to the response after a flashing bar turns on. The response after
a flashing bar turns on (Figure 5C, black dashed line) is sev-
eral times larger than the two microsaccade-related responses
with flashing (Figure 5C, blue dashed line) and stationary stim-
uli (Figure 5C, red dashed line), consistent with the experimental
observations in Martinez-Conde et al. (2002) and Kagan et al.
(2008). Obviously, this is because the synaptic strengths with the
thorough recovery from STD within Toff = 1 s are involved in the
neural response after a flashing bar turns on, which is the same
as the response at the start of fixation (the first response peak in
Figure 2A).

To further study microsaccade-related neural responses due
to STD with a flashing stimulus, we investigated effects of the
flash-on duration Ton and the flash-off duration Toff (the time
that passed since the last flash onset or offset, respectively)
(Figures 5D–F). During the off state, the synaptic strengths will
recover from the depression, reaching larger synaptic strengths
with longer Toff till saturation. Thus, the microsaccade-related
neural response increases with increasing Toff and then reaches
saturation due to the thorough synaptic recovery for the larger
Toff (Figure 5D). For the effect of the on-duration Ton, we
can infer from Figure 5C that the neural response (Figure 5C,
blue dashed line) will become larger with the decrease of Ton.
Therefore, the ranges of the observed increase of microsaccade-
related neural response and of the increased ratio of the response
with flashing stimuli relative to stationary stimuli are in line with
large Toff and small Ton (Figures 5E and F).

3.2.2. Saturation of activity for large microsaccadic magnitude and
velocity

Dimigen et al. (2009) studied microsaccade-related brain activ-
ity in event-related brain potentials (ERP). ERP is the aver-
age of many epochs of EEG trials recorded from scalp for the
same task, synchronized to the same event such as the stim-
ulus onset or microsaccade onsets, yielding a clear pattern of
brain response to the external signal when compared to the base
line. (Picton et al., 2000; Handy, 2005; Ouyang et al., 2011).
Dimigen et al. (2009) found that the tiny eye movements by
microsaccades can generate sizable visual brain response in ERP
comparable to usual saccadic eye movements and responses cor-
related with microsaccades tend to saturate for large microsac-
cades (Figure 6A, red line). Our model can provide a possible
explanation for this phenomenon by the effect of microsaccade
magnitude on neural activity, shown in Figure 7. A response
peak appears soon after the microsaccade, and the value increases
with the microsaccade magnitude �M (Figure 7A). The increase
is almost linear for small microsaccades, consistent with the
finding by Dimigen et al. (2009). As the microsaccade magni-
tude increases further, the increasing response reaches saturation
(Figure 7B). This saturation can be explained as follows. As
shown in Figures 7B and C, the synaptic input RjSj increases
after a microsaccade by moving the fixated dot over the recep-
tive fields of LGN neurons with less adapted thalamocortical
synapses (in the sense of relative movement). But, when the
moving distance due to large microsaccade exceeds the region
with strong synapse-depression, the synaptic input will become

FIGURE 6 | Experimental data of EEG voltage at the occipital electrode

Oz (red) and the vertex Cz (orange) as a function of microsaccade

magnitude (A) and eye movement velocity (B). [Adapted from Dimigen
et al. (2009)]

independent of the microsaccade magnitude, leading to saturated
response.

So far, all the above simulations were done without considering
the finite velocity of microsaccade. In Figure 6B, a relationship
between instantaneous eye movement velocity (also including
periods of drift) and the amplitude of occipital EEG response
100 ms later was observed by Dimigen et al. (2009). Our model
can provide an understanding of this experimentally observed
relationship when microsaccadic velocity is taken into consid-
eration. In the simulation, we assume a constant velocity for
microsaccadic movements, with a fixed duration of 15 ms for
microsaccades of different sizes, following the experimental find-
ings that there are approximately fixed microsaccadic durations
(around 15 ms for human) for different microsaccadic velocities
(Troncoso et al., 2008; Dimigen et al., 2009). The results shown
in the inset of Figure 7B agree well with the pattern shown
in Figure 6B, experimentally found in Dimigen et al. (2009).
Though the analysis in Dimigen et al. (2009) included all sam-
ples of the eye movement trajectory, not only microsaccades, it
is reasonable to believe that most of the medium-velocity sam-
ples belong to microsaccades (Martinez-Conde et al., 2004, 2009).
From our model, we can understand that, at slow eye veloci-
ties, retinal displacements are small and the signal moves only
slightly and slowly away from the strongly depressed region, with-
out inducing strong neural response. This may be able to explain
that tremor and drift do not induce significant neural responses
(Gur et al., 1997; Martinez-Conde, 2006). With larger velocities,
the signal quickly moves to a much less depressed region and
induces sizable response.

4. DISCUSSION AND CONCLUSION
The prevailing theory suggests that visual fading in the absence
of microsaccades is caused by retinal adaptation. However, reti-
nal adaptation for visual fading has not been directly tested in
experiments. On the other hand, STD in thalamocortical systems
from LGN and V1 has been empirically confirmed and could play
an important functional role. Based on these considerations, we
have proposed an alternative potential biophysical foundation for
the explanation how microsaccades counteract visual fading, tha-
lamocortical STD. With a simple feedforward model, we showed
that, without considering possible retinal adaptation, STD from
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FIGURE 7 | (A) Microsaccade-induced neural activity for different
microsaccade magnitudes. After microsaccade, there is a
response peak. (B) Saturation of the response peak for large
microsaccades. The inset in (B): the effect of microsaccadic

velocity on response peak in Log-Linear scale for comparison
with Figure 6B, experimentally found in Dimigen et al. (2009).
Here g = 0.2, A = 100, and σ1 = σ2 = 1.5. Data are averaged
over 20 independent runs.

LGN to V1 alone can qualitatively reproduce several experimental
observations about microsaccade-induced brain responses.

However, it is important to note that these two possible mech-
anisms of retinal adaptation and STD are not mutually exclusive.
In fact, enhanced LGN activity by microsaccades as observed in
experiments Martinez-Conde et al. (2000, 2002) could be an indi-
cation of possible retinal adaptation. In the real visual systems, the
two possible mechanisms could yield different functional benefits
for visual information processing, which are yet unknown. If reti-
nal adaptation could be effectively described similar to STD and
retinal neurons can be described similarly as in LGN and V1, and
assuming that there is no STD in thalamocortical synapses, then
from the viewpoint of simplified feedforward neural model, the
response in V1 could be similar to what we described here for STD
from LGN to V1. Possibly different functional/behavioral effects
of the two mechanisms then would rely strongly on the biophys-
ical details. Perhaps the most interesting possibility is that these
two adaptation levels are actually arranged in a cascade. Such a
cascading of adaptation is expected to enhance the sensitivity of
adaptation, likely to sharpen the cortical neural responses to tiny
and fast eye movements (or equivalently tiny and fast movement
of the visual world). Further investigations are expected to reveal
more behavioral properties and functional roles of microsaccades
(for review, see Rolfs, 2009). The work presented in this paper will
serve as a foundation for future studies.

To sum up, we proposed an alternative synaptic explanation
for microsaccades in counteracting visual fading during fixation
by introducing STD in the thalamocortical system. Moreover, the
depression model can reproduce several experimental observa-
tions of microsaccade-related neural responses in V1. Our model
and results are expected to provide quantitative method and the-
oretical insight into the study of microsaccades. Generally, our
model may provide a useful tip for the understanding of visual
information adaptation and transmission, and give a starting
point for modeling visual process of microsaccades by consid-
ering more neurobiological ingredients, such as inhibitory con-
nections within V1 and from LGN, and other types of synaptic
plasticity and cascading with possible retinal adaptation.
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We investigated how the two properties short-term synaptic depression of afferent
input and postsynaptic firing dynamics combine to determine the operating mode
of a neuron. While several computational roles have been ascribed to either, their
interaction has not been studied. We considered two types of short-term synaptic
dynamics (release-dependent and release-independent depression) and two classes of
firing dynamics (regular firing and firing with spike-frequency adaptation). The input–output
transformation of the four possible combinations of pre- and post-synaptic dynamics
was characterized. Adapting neurons receiving input from release-dependent synapses
functioned largely as coincidence detectors. The other three configurations showed
properties consistent with integrators, each with distinct features. These results suggest
that the operating mode of a neuron is determined by both the pre- and post-synaptic
dynamics and that studying them together is necessary to understand emergent
properties and their implications for neuronal coding.

Keywords: short-term depression, operating modes, emergent properties, firing properties, synaptic integration

INTRODUCTION
Synapses exhibit a range of activity-dependent plasticities at var-
ious timescales (Dobrunz et al., 1997; Dittman et al., 2000;
Fuhrmann et al., 2004; Regehr, 2012). Short-term synaptic
plasticity is the change in efficacy of the postsynaptic poten-
tial/current upon repeated stimulation lasting for a few to hun-
dreds of milliseconds. Excitatory synapses in neocortex exhibit
short-term depression and recover at a rate of about 1 s.
Depression is dominant with minimal facilitation in layers 2/3, 4,
and 5 of rat barrel cortex (Cowan and Stricker, 2004; Fuhrmann
et al., 2004). However, the mechanisms underlying facilitation are
much less clear. Hence, we restrict our investigation to synaptic
depression and its role in encoding.

Functionally, these depressing synapses show two differ-
ent types of dynamics, defined here as type 1 or 2. Type 1
synapses show depression due to vesicle-depletion (VDD) that
reduces the probability of neurotransmitter release upon subse-
quent action potentials (Markram and Tsodyks, 1996; Markram
et al., 1997; Matveev and Wang, 2000; Regehr, 2012). At
these synapses, the recovery rate from depression is constant.
Type 1 synapses are capable of signaling a stimulus rate change
but not rate (Fuhrmann et al., 2004; Jedrzejewska-Szmek and
Zygierewicz, 2010). Type 2 synapses on the other hand exhibit
release-independent depression, i.e., they depress even when
no neurotransmitter has been released (Dobrunz et al., 1997;
Thomson, 1997; Brody and Yue, 2000; Cowan and Stricker,
2004; Fuhrmann et al., 2004; Muñoz-Cuevas et al., 2004; Regehr,
2012). Additionally, the recovery rate is frequency-dependent and
increases with higher stimulus frequencies (Cowan and Stricker,
2004; Fuhrmann et al., 2004). Type 2 synapses are capable of

relaying both information about the stimulus rate and its rate
change (Cowan and Stricker, 2004; Fuhrmann et al., 2004).

Previous work has largely focused on type 1 synapses that
might endow single neurons and neuronal networks with specific
capabilities. Type 1 synapses provide a gain control mechanism
resulting in improved sensitivity of neurons to small changes
in stimulus firing pattern (Abbott, 1997). Through simulations
of networks in primary visual cortex, type 1 dynamics of tha-
lamocortical synapses have been shown to precisely control the
oscillatory response (Paik and Glaser, 2010). These properties also
facilitate synchrony detection in a network (Senn et al., 1998). The
functional implications of type 2 synapses have not been widely
studied (but see Graham and Stricker, 2008; Scott et al., 2012).
Previous studies of synaptic dynamics have primarily focused on
its impact on information transfer in isolation, while neglecting
the postsynaptic dynamics in detail (London et al., 2008; Fung
et al., 2012).

As synaptic input is integrated at the postsynaptic side into a
sequence of action potentials, the variations in firing dynamics
also need consideration. The importance of studying both pre-
and post-synaptic dynamics together for a holistic understand-
ing of information processing has been recognized in the context
of the dynamics of long-term plasticity and intrinsic plasticity of
the postsynaptic membrane (Turrigiano et al., 1998; Xie et al.,
2006; Triesch, 2007). To address this issue, we adopt the simple
classification proposed by (Hodgkin, 1948)—class 1 and class 2
firing characteristics of a neuron (subsequently also called class
1 or 2 neuron). Class 1 firing is regular and there is a linear
relationship between injected current and firing rate. Class 2
firing on the other hand shows spike-frequency adaption and
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consequently a non-linear relationship between current and firing
rate. From a dynamical systems point of view, class 1 and class 2
neurons exhibit saddle node on a limit cycle and Hopf bifurca-
tions, respectively (Izhikevich, 2000). The rationale for adopting
this classification is similar to that for adopting a phenomeno-
logical description for modeling synaptic dynamics—the focus
is on functional dynamics without considering the physiological
mechanisms that define them.

Here, we consider all four combinations between types and
classes and study how pre- and post-synaptic properties together
determine whether the neuron functions as an integrator of
stimuli or a coincidence detector in the presence of synaptic
background noise. That the cell is quiescent with a stimulus gen-
erating sparse firing is supported by several experimental stud-
ies (Shadlen and Newsome, 1998; Brecht and Sakmann, 2002).
Further, we also study how each combination is affected by vari-
ations in noise properties and extent of depression exhibited by
synapses. This investigation is especially relevant in the context of
highly debated question of whether neurons use precise spike tim-
ings, thereby functioning as coincidence detectors or they work
more broadly using spike rates, thereby functioning as integra-
tors (Shadlen and Newsome, 1998; deCharms and Zador, 2000).
This question is also highly relevant to whether neurons are capa-
ble of acting as integrators in vivo where there is an increase in
background conductance due to synaptic activity (Rudolph and
Destexhe, 2001).

METHODS
STIMULUS
Each stimulus consisted of Ntot number of presynaptic spikes
delivered through Nsyn number of synapses (either type 1 or 2)
that relay excitatory postsynaptic potentials to the postsynaptic
neuron with either class 1 or 2 firing characteristics. As shown in
Figure 1, this stimulus was constructed as follows. Ntot Gaussian
random numbers were generated with the specified parameters.
Each of the generated numbers was assigned to a randomly
picked synapse. The sum of all synaptic stimulations, thus, had
a Gaussian distribution (in time). Simulations were performed
by repeated iterations using a Gaussian stimulus, which was com-
puted by distributing Ntot stimuli across Nsyn number of synapses
(see Figure 1A2). The timing of each presynaptic spike that com-
prises the stimulus was based on a Gaussian distribution with
the following two parameters, μstim and σstim where the former
is the mean of the stimulus distribution and the latter its stan-
dard deviation, subsequently also called dispersion. Specifically,
since presynaptic spike times are generated based on a Gaussian
distribution, this parameter signifies the time of stimulus peak.
Small values of σstim imply tightly synchronized presynaptic spike
arrivals while large values imply a less synchronized stimulus.

In order to facilitate comparison and interpretation of various
values, σstim and, in general, all values capturing a time quantity
were normalized by the membrane time constant τm. As an exam-
ple, if σstim = 0.1, dispersion of the stimulus is 10% of the time
constant. Since in a Gaussian distribution, 99.73% of all events
occur within three times the standard deviation on either side
of the mean, this implies that almost all presynaptic spikes arrive
within 60% of τm.

Synapse model
The phenomenological model used is an extension of that pro-
posed by Fuhrmann et al. (2004). Type 1 synapses show release-
dependent depression with a constant rate of recovery. Type 2
synapses show release-independent depression and a frequency-
dependent recovery rate. The model exhibits either type 1 or 2
dynamics depending on the parameter values.

The synaptic conductance (gs) due to a single synapse is
computed as:

gs(t) = USE(t) · Pv(t) · ASE

USE and PV represent the maximal response when all synapses
release their vesicles and probability of vesicle availability, respec-
tively. Their product corresponds to the fraction of available
vesicles that are released. ASE is the maximal conductance. The
variables in turn are governed by the following set of equations.
The first is,

dPV

dt
= 1 − PV

τVDD
− USE · PV ·

∑
Ntot

δ(t − tAP),

where τVDD is the time constant of the synaptic vesicle refilling
process, δ is the Dirac delta function and tAP is the time of arrival
of an action potential. The formulation of release-independent
depression is encapsulated with the variable USE being decre-
mented from an initial availability of U0 with a strength of SRID

followed by an exponential recovery with a characteristic time
constant τRID, i.e.,

dUSE

dt
= U0 − USE

τRID
− SRID · USE ·

∑
Ntot

δ(t − tAP).

In analogy, the frequency-dependent recovery of type 2 synapses
is captured by decrementing the recovery time constant with a
strength of SFDR upon the arrival of an action potential, i.e.,

dτRID

dt
= τ0 − τRID

τFDR
− SFDR · τRID ·

∑
Ntot

δ(t − tAP).

In other words, the recovery rate becomes faster following which
τRID approaches its original value with an exponential time
course governed by τFDR.

For excitatory synapses, typical model parameter values of
type 1 and 2 synapses were chosen based on parameter estimates
using experimental data of Fuhrmann et al. (2004).

The model has six parameters with values as specified in
Table 1.

Noise model
A noisy current IN , was injected into neurons and modeled as
an Ornstein–Uhlenbeck process (OUP) and approximated in dis-
crete time simulations using the method proposed by Gillespie
(1996), i.e.,

IN (n) =
(

1 − �t

τN

)
· IN (n − 1) +

(
σN

√
2�t

τN

)
G (0, 1),
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FIGURE 1 | (A1) Response of type 1 (top left) and type 2 (top right)
synapses to 30 Hz stimulation. For a current injection of 0.5 nA response
of class 1 (bottom left) and class 2 (bottom right) neurons are shown.
(A2) Illustration of stimulus. In the example, 1000 Gaussian-distributed
(in time) presynaptic spikes are relayed through 75 synapses.
(B) Synaptic conductance if synapses were static; σstim = 60 (B1) or
120 ms (B2). (C,F) Synaptic conductances with type 1 (C) synapses

and type 2 (F) synapses. (D,E) With type 1 synapses, raster of spiking
response over 1000 iterations for class 1 (D) and class 2 (E) neurons.
(G,H) With type 2 synapses, raster of spiking response over 1000
iterations for class 1 (G) and class 2 (H) neurons. Dashed line signifies
stimulus mean (μstim) while solid lines indicate response mean (μresp).
Gray boxes indicate ±0.5·σstim in (B,C, and F) and ±0.5 · σresp in
(D,E,G, and H).

where G(0,1) is a zero mean, unit variance Gaussian distributed
number. The sample time �τ was set to 0.2 ms. This noise is char-
acterized by the standard deviation (σN ) and the correlation time
(τN ) which indicates the time window within which correlations
in noise can be observed. As no two samples of white noise are
correlated, an increase in the correlation time window results in

greater “coloring” of white noise. τN was varied to study how it
interacted with short-term synaptic dynamics in shaping the neu-
ronal response properties. The standard deviation of the process
σN was set to a constant value of 50 pA and τN was varied in the
simulations. Action potentials generated were almost always due
to the stimulus and very rarely sole due to injected noise (<1%).
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Table 1 | Synapse parameters.

Parameter/Type Type 1 Type 2

U0 0.6 0.25

τVDD [s] 0.5 0.005

τFDR [s] 0.9 0.9

τ0 [s] 0.6 0.6

SRID 0 0.25

SFDR 0 0.30

ASE [nS] 1 1

RESPONSE
Each Gaussian stimulus comprising of several presynaptic spikes
was relayed to the postsynaptic neuron through dynamic
synapses. To explore the operating mode of the neuron, Nsyn

was varied between 75 and 125 in steps of 5 and the back-
ground noise correlation τn was varied between 50 and 100
in steps of 10. Ntot was set to 1000, unless mentioned other-
wise. For each parameter set, individual Gaussian stimuli were
repeated 5000 times and if the neuron spiked, the time of the
first action potential was recorded. Resulting peri-stimulus time
histograms (PSTHs) were characterized by a Gaussian distri-
bution of width σresp and with respect to the stimulus distri-
bution, shifted by a precession, tpre (see Figure 1). Timing of
only the first action potential was considered. While acknowl-
edging the potential of spike trains to encode information,
the focus of this study is on the encoding of stimulus infor-
mation in the timing, reliability, and dispersion of the first
action potential. Information encoded in repeated spiking is not
considered.

Neuron model
We used an adaptive integrate-and-fire model formulated by
Brette and Gerstner (2005); i.e.,

C
dV

dt
= f (V) − IW (t) − IN(t) − gS(t) · (V − Ee),

where V is membrane voltage, C is the membrane capacitance,
f (V) the function capturing the passive properties and the action
potential generation dynamics, Iw the adaptation current, IN the
injected noise, gS the synaptic conductance, and Ee the reversal
potential for excitatory synapses. f (V) is defined as:

f (V) = −gL · (V − EL) + gL · �T · exp

(
V − VT

�T

)
,

where gL is the leak conductance, EL the leak reversal, �T the
slope factor, and VT the spike threshold.

The adaptation current, IW , is generated as follows:

τW
dIW

dt
= a · (V − EL) − IW ,

where τw is the time constant determining the rate of spike fre-
quency adaptation. When an action potential is generated and the

Table 2 | Neuron parameters.

C [pF] 1000

gL [nS] 8

EL [mV] −70.6

VT [mV] −50.4

�T [mV] 2

τW [ms] 144

a [nS] 1 (class 1) or 8 (class 2)

b [nA] 0.0805

membrane potential (V) goes over the threshold (VT ):

V → EL

Iw → Iw + b

where b represents spike-triggered adaptation.
For class 1 neurons, the parameters were exactly those speci-

fied in Brette and Gerstner (2005), except that for class 1 and 2,
a was set to 1 and 8, respectively. The variable that mainly deter-
mines the class is the subthreshold adaptation variable a with the
spike-triggered adaptation variable b playing a more minor role
in our simulations (Touboul and Brette, 2008). See Table 2 for
parameter values of the neuron models.

Response characteristics
We define the following variables that capture the characteristics
of the spiking response, namely Niter as the total number of iter-
ations (set to 5000 in our simulations), Nresp as the number of
spikes evoked over all iterations, R as the reliability of spike gen-
eration, defined as the ratio of number of spikes evoked across all
iterations and the total number of iterations; i.e., R = Nresp/Niter,

tpre as the precession of the mean of response Gaussian distribu-
tion with respect to the stimulus distribution, normalized by the
membrane time constant τm, σresp as the width of the response
Gaussian distribution, again normalized by τm and ζ as the sharp-
ening of responses defined as the ratio between the stimulus and
response dispersions (σstim/σresp).

Definition of operating modes
We considered the two operating modes coincidence detector
and integrator. As an operational definition, we defined each
mode in terms of one or more response parameters. Coincidence
detectors were defined to be reliable (R > 0.75) only for tightly
synchronized stimuli (defined as, σstim/τm < 0.4) and other-
wise unreliable (R = 0.75). Thus, a coincidence detector is selec-
tively sensitive to synchronized inputs while failing to reliably
relay dispersed inputs. Integrators were defined as being reliable
over a range of stimulus synchronies (0.2 < σstim/τm < 1.2) but
requiring to exhibit a regular relationship between stimulus and
response dispersion. Thus, an integrator relays stimulus infor-
mation reliably with the response dispersion having a regular
relationship with stimulus dispersion.

Simulation
All simulations were done in Igor Pro 6.2 (WaveMetrics Inc.,
Lake Oswego, OR, USA) on a Windows 7 workstation. For the
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synapse model, the analytic solution was used instead of solv-
ing the differential equations (Scott et al., 2012). For the neuron
model, the differential equations were solved numerically using
a fourth order Runge–Kutta algorithm (Press et al., 2007). Five
thousand trials took approximately 1 h with a time step �τ =
0.2 ms. All analysis was done using custom routines written in
Igor Pro.

RESULTS
Type 1 synapses show release-dependent depression and constant
recovery rate while type 2 synapses show release-independent
depression with a faster recovery rate for higher presynaptic
spike rates. Figure 1A1 (top) shows these two examples stimu-
lated at 25 Hz. Type 1 synapses depress and rapidly reach the
steady state, the amplitude of which is inversely proportional to
the stimulus frequency (Cowan and Stricker, 2004; Fuhrmann
et al., 2004). Type 2 synapses on the other hand, depress but also
recover rapidly and hence exhibit a larger steady state response
the amplitude of which is more or less constant. Thus, it might
be expected that type 1 synapses are effective to relay low fre-
quency stimuli or high frequency stimuli that are highly syn-
chronous. Type 2 synapses might be expected to be able to relay
low and high frequency stimuli irrespective of the degree of
synchronization.

On the postsynaptic side, class 1 neurons fire regularly and
class 2 neurons show spike-frequency adaptation (see Figure 1A1;
bottom). The ability to generate the first action potential is higher
for class 2 neurons as the dynamics enables firing at arbitrarily low
frequencies. Thus, class 1 neurons might be expected to be able
to relay incoming stimuli irrespective of the degree of synchro-
nization. Class 2 neurons cannot relay highly synchronized (i.e.,
not dispersed) inputs because the latter cannot depolarize the
membrane sufficiently enough to counteract the hyperpolarizing
current present in class 2 neurons.

Both synaptic and postsynaptic dynamics have implications
in how presynaptic spike information is processed. This is illus-
trated in Figures 1C–H. As shown in Figure 1C, when a Gaussian
stimulus is transmitted through type 1 synapses, the peak of the
stimulus is shifted to the left (precession) in addition to a gen-
eral decrease in amplitude due to depression. No such precession
is observed with type 2 synapses (Figure 1F), which also depress
less. As a result, even if the stimulus arriving from presynaptic
neurons is the same, the response of class 1 differs depending on
whether the stimulus is transmitted through type 1 (Figure 1D)
or 2 synapses (Figure 1G). Similarly, the response of class 2 neu-
rons differs based on whether the stimulus is transmitted via
type 1 (Figure 1E) or 2 synapses (Figure 1H).

We systematically investigated the operating mode of a neu-
ron for all possible combinations between synaptic types (T) and
firing class (C); i.e., T1C1, T1C2, T2C1, and T2C2. In addition,
the impact of the number of synapses comprising the stimulus
and the injected background noise correlation was also studied.
The number of synapses was chosen as a parameter because the
extent of the number of synapses influences the amount of synap-
tic depression. The background noise correlation was included in
order to study the interaction with the time constants of synaptic
depression and recovery.

T1C2 ALLOWS FOR COINCIDENCE DETECTION
As predicted, the response of a neuron with class 2 firing receiv-
ing inputs through type 1 synapses is largely reliable for highly
synchronous stimuli (smaller σstim). A reliable response is, by def-
inition, when R > 0.75 (shaded regions in Figures 2A2 and 2B2).
As the stimulus becomes more dispersed (increasing σstim), reli-
ability decreases rapidly. This property is robust to variations in
noise correlation and number of synapses. Dispersion of stimulus
largely determines response precession (Figures 2A1 and 2B1).
This property is also robust to variations in noise correlation and
number of synapses for stimulus dispersion, σstim <0.8.

Varying the synapse number while keeping τn to 50 ms reveals
the extent to which presynaptic depression dynamics shape
the response properties of the neuron. For example, if Ntot =
Nsyn, each synapse will, on average contribute only one event
to the total stimulus. Since the first response of all synapses
is identical and depression is apparent only from the second
stimulus onwards, no effects of depression can be observed
in this case. As the value of Nsyn is decreased, each synapse
receives a greater number of presynaptic spikes to the total
stimulus and hence, the responses are subject to more depres-
sion. With changing synapse number, the ability for coinci-
dence detection of the T1C2 configuration remains unaltered.
Precession is largely determined by the stimulus dispersion
(Figure 2B1). However, reliability is dependent on the number
of synapses (Figure 2B2). A decrease in the number of synapses
(increase in number of presynaptic spikes delivered to each
synapse) results in greater overall depression and hence reduces
reliability.

REMAINDER OF THE CONFIGURATIONS ARE LARGELY INTEGRATORS
Responses were reliable (R > 0.75) through out the range of sim-
ulated stimulus dispersions (0.1–1.4) for T1C1, T2C1, and T2C2
configurations. For T1C1, the reliability was primarily deter-
mined by the stimulus dispersion when the noise correlation
was varied, keeping Nsyn = 1.0 (Figure 3A1). Moreover, relia-
bility did not decrease dramatically as demonstrated by T1C2
configuration, i.e., the coincidence detector. For varying number
of synapses (with τN = 50 ms), the reliability was determined by
the stimulus dispersion and the number of synapses. As might
be expected with an increasing number of synapses, reliabil-
ity drops slightly (Figure 3A2) due to increased depression of
type 1 synapses. Simultaneously increasing stimulus dispersion
also improves reliability of response.

For integrators, an increase in stimulus dispersion must result
in an increase in response jitter. We investigated this by comput-
ing the slope of this relation for various parameters. The relation
between stimulus dispersion and response jitter was always more
or less linear with varying slopes. For various values of noise
correlation and synapse number, we computed the slope and
plotted them against noise correlation (Figure 3D1) and num-
ber of synapses (Figure 3D2). T2C1 and T2C2 exhibited more
or less similar slopes. Given that type 1 synapses depress rapidly,
a surprising result was that the T1C1 configuration exhibited
the steepest slope. This suggests that both pre- and postsy-
naptic dynamics together determine the operating mode of the
neuron.
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FIGURE 2 | Cellular response with varying number of synapses and

background noise correlation. (A) Contour plots showing precession (A1)

and reliability (A2) of response Gaussian distribution with respect to the
stimulus distribution and changing background noise correlation (Nsyn set
to 100). Contour lines join points of equal value thus indicating regions in the
two-dimensional parameter space (stimulus synchrony vs. noise correlation)

in which an response characteristic of the system is similar even while
parameter values change. In addition, contour lines are useful in visualizing
regions which are lesser or greater than a specified value. (B) Contour plots
showing precession (B1) and reliability (B2) of response Gaussian
distribution with respect to the stimulus distribution and synapse number
(τN is set to 50 ms).

T1C1: PRESERVES SYNCHRONY MOST EFFECTIVELY
To study how the four configurations preserve stimulus syn-
chrony in their response jitter, we investigated the behavior of
response sharpening, ξ = σstim/σresp. Strictly speaking if ξ < 1,
the response of the neuron does not preserve stimulus syn-
chrony. Instead, the response jitter is more desynchronized than
the stimulus. If ξ = 1, stimulus synchrony is preserved. If ξ > 1,
response synchronization is greater than that of the stimulus;
i.e., synchrony is enhanced. We define the region 0.5 < ξ < 1.5
as preserving the stimulus synchrony in the response jitter. For
T1C1 configuration, this region is larger (Figures 4A1 and 4A2)
than for T2C1 (Figures 4B1 and 4B2) and T2C2 configurations

(Figures 4C1 and 4C2). For T2C1, the area is least com-
pared to the other two configurations. T2C2 shows the highest
sharpening, which is robust to variations in noise correlation
(Figure 4C1) and number of synapses (Figure 4C2). This is
consistent with previous work (Pinto et al., 1996; Marella and
Ermentrout, 2008), which suggests that class 2 neurons show
a greater tendency toward stochastic synchronization than class
1 neurons.

T1C1 neurons show the greatest preservation of stimulus syn-
chrony, especially as dispersion of stimulus increases. An increase
time constant of noise correlation results in an increase in the
preservation of synchrony (ξ tends toward 1 or lower).
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FIGURE 3 | Reliability of the cellular response with varying number of

synapses and background noise correlation. (A) Contour plots reliability
for varying noise correlation (A1) and number of synapses (A2) for class
1-type 1 configuration. (B) Contour plots showing reliability for varying

noise correlation (B1) and number of synapses (B2) for class 2-type 1
configuration. (C) Contour plots showing reliability for varying noise
correlation (C1) and number of synapses (C2) for class 2-type 2

(Continued)
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FIGURE 3 | Continued

configurations. In all of the above contour plots, when noise correlation is
varied, Nsyn is set to 1000 and when number of synapses is varied, τN is set
to 50 ms. (D) Analysis of the slope of relationship between stimulus
synchrony and response jitter. Graphs are plotted with the number of
synapses (D1) or the noise correlation (D2) systematically changing along the

abscissa with the corresponding slope plotted along the ordinate. (D1) For
Nsyn = 100 and τN = 50, plot showing the relationship between number of
synapses and ratio between response and stimulus dispersion. A straight line
was fit and the slope computed. This was repeated for all parameter values
to obtain relationship between number of synapses and the slope (D2) for
T1C1 (solid), T2C1 (dashed), and T2C2 (dotted).

In order to explore the preservation of stimulus disper-
sion by T1C1, we studied the behavior of response sharpen-
ing (ξ) for three different total numbers of presynaptic spikes,
Ntot = 500, 750, and 1000. As the total number of spikes
increases, the area under the contour indicating synchrony preser-
vation progressively decreases. For 500 stimuli, this area is
largest (Figures 5A1 and 5A2) with the area decreasing for 750
(Figures 5B1 and 5B2) and even more for 1000 (Figures 5C1
and 5C2). For highly synchronized stimuli (σstim/τm < 0.5),
synchrony preservation was primarily determined by noise cor-
relation and only to a much lesser extent by the number of
synapses comprising the total stimulus. Type 1 synapses depress
rapidly, especially when relaying highly synchronous stimuli at
a high frequency. Thus, the response to a change in stimulus
to the neuron after depression is minimal and hence it has lit-
tle effect on synchrony preservation. But for a less synchronous
stimulus, preservation of synchrony is dependent on the num-
ber of synapses. Type 1 synapses are in a less depressed state and
hence small changes in synchrony are relayed to the postsynap-
tic neuron. Note that even though the area indicating synchrony
preservation varies for different number of stimuli, the maximum
sharpening for highly synchronous stimuli remains roughly the
same (3.2–3.6). This suggests that for a small number of stim-
uli, synchrony preservation is more robust to variations in noise
correlations and number of synapses.

T2C1: MOST RELIABLE INTEGRATOR
For T2C1, responses were always reliable (R = 1) when either
noise correlation or number of synapses was varied (Figures 3B1
and 3B2). This is explained by the fact that type 2 depress
less than type 1 synapses. Moreover, they undergo frequency-
dependent recovery and hence are much more capable of reliably
relaying presynaptic spikes to the neuron. But this property is not
entirely dependent on synapse type alone. For T2C2, responses
were reliable (R > 0.75) when noise correlation or number of
synapses was varied (Figures 3C1 and 3C2). But reliability is
not as perfect as with class 1 neurons. This is because class 2
neurons have a hyperpolarizing current, which reduces the fir-
ing an action potential; i.e., reliability. Thus, while synapses with
smaller depression can influence a configuration to function as an
integrator, synapse type alone does not govern operating mode.
For example, class 2 neurons receiving type 1 synapses function
as coincidence detectors (see above), but when class 1 neurons
receive type 1 synapses, the operating mode is that of an integra-
tor. Thus, operating mode of a configuration is set synergistically
by both synaptic and neuronal dynamics.

T2C2: MAXIMUM RESPONSE SHARPENING
For T2C2, we studied the behavior of response sharpening (ξ)
for three different total numbers of presynaptic spikes, Ntot—500,

750, and 1000 (see Methods). For 500 stimuli, this area is small-
est (Figures 6A1 and 6A2) and increasing for 750 (Figures 6B1
and 6B2) and 1000 stimulus (Figures 6C1 and 6C2). For highly
synchronized stimuli (σstim/τm < 0.5), sharpening influenced by
both variations noise correlation and the number of synapses
comprising the total stimulus. This result is expected because with
a greater number of spikes, the reliability of responses increases
and resulting in a decrease in output dispersion.

DISCUSSION
In order to explore the interaction of short-term depression with
neuronal firing dynamics in setting the operating mode of the
neuron, we studied four canonical combinations of pre- and
postsynaptic dynamics. Type 1 synapses show release-dependent
depression and constant rate of recovery. They are capable of
encoding the stimulus rate change in the response amplitude.
Type 2 synapses, on the other hand show release-independent
depression, and recover faster at higher rates. They are capable of
maintaining substantial response amplitudes even at high stim-
ulus rates. For the postsynaptic dynamics, we considered class 1
neurons that fire regularly and class 2 neurons, which exhibit
spike-frequency adaptation. The first action potential response of
all four possible combinations (T1C1, T1C2, T2C1 and T2C2)
to a stimulus that was Gaussian distributed in time was charac-
terized. We also investigated the sensitivity of these responses to
correlations in background noise and to the number of synapses
comprising the stimulus.

We found that the combination T1C2 can be characterized
as a coincidence detector while the other three combinations
were integrators each with specific features: T2C1 was an inte-
grator with greatest reliability, T1C1 an integrator with greatest
preservation of synchrony and T2C2 and integrator with great-
est response sharpening. Specifically, the degree of reliability
and preservation of synchrony varied across these integrators.
The sensitivity to noise correlation and the extent of synaptic
depression were different.

Though the results are based on simulations using models
of dynamical synapses as well as neurons, we believe that our
results capture the interactions realistically for the following rea-
sons, Firstly, the synaptic dynamics are based on fitting the chosen
model to EPSCs recorded in pairs of neurons in vitro (Scott et al.,
2012). Individual EPSC peak conductances were set at 1 nS, a
value that has been determined experimentally and modeled as
alpha synapses with a decay time constant of 1 ms, which is sim-
ilar to experimentally measured values (Stricker et al., 1996). In
addition, varying the extents of type of classes did not system-
atically change the results in a qualitative sense (data not shown).
We tested if it was indeed the adaptation current in class 2 neurons
that produced the dynamics or whether an increased conductance
of class 1 neurons might be sufficient to reproduce the effect.
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FIGURE 4 | Sharpening of the cellular response with varying number of

synapses and background noise correlation. (A–C) Heat plots showing
response sharpening for varying noise correlation (A1) and number of
synapses (A2) for T1C1, T2C1, (B1 and B2), and T2C2 (C1 and C2)
configurations. In all of the above heat plots, when noise correlation is varied,

Nsyn is set to 100 and when number of synapses is varied, τN is set to 50 ms.
Scaling of the heat plot is linear from values of 0.5 to 8. The white line in
(A1,A2, and B1) is an isocline with a value of 1.5. The area circumscribed by
this isocline encompasses sharpening values less than or equal to 1.5. The
corresponding area in the other graphs is negligible.

Increasing the conductance of a class 1 neuron did not repro-
duce operating modes that were obtained with class 2 neurons but
produced responses that were qualitatively similar to those with
class 1 neurons (data not shown). This is consistent with existing

work that suggests that increase an in conductance converts
class 2 into class 1 (Stiefel et al., 2008, 2009). Consequently, we
think that our results robustly reflect the dynamics between type
and class.
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FIGURE 5 | Sharpening of the cellular response of T1C1 with varying

number of synapses and background noise correlation. (A–C) Heat plots
showing sharpening for varying noise correlation (A1) and number of
synapses (A2) when total number of presynaptic spikes (Ntot; see Methods)
was set to 500, 750 (B1 and B2), and 1000 (C1 and C2). In all of the above

heat plots, when noise correlation is varied, Nsyn is set to 100 and when
number of synapses is varied, τN is set to 50 ms. Scaling of the heat plot is
linear from values of 0.5 to 8. The white line in all the above graphs is an
isocline with a value of 1.5. The area circumscribed by this isocline
encompasses sharpening values less than or equal to 1.5.

Secondly, the postsynaptic neuron had an effective neuronal
time constant of 60 ms (in the presence of synaptic background
noise), which is similar to experimentally measured values both
in vitro and vivo (Destexhe et al., 2003). For the cell to fire a

first action potential, typically about 45 synaptic events required
to be activated within 10 ms. For class 2 neurons, the adapt-
ing current resembled a slow potassium conductance. There are
two ways to interpret times of individual events that comprise
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FIGURE 6 | Sharpening of the cellular response of T2C2 with varying

number of synapses and background noise correlation. (A–C) Heat plots
showing sharpening for varying noise correlation (A1) and number of
synapses (A2) when total number of presynaptic spikes (Ntot; see Methods)
was set to 500, 750, (B1 and B2) and 1000 (C1 and C2). In all of the above

heat plots, when noise correlation is varied, Nsyn is set to 100 and when
number of synapses is varied, τN is set to 50 ms. Scaling of the heat plot is
linear from values of 0.5 to 8. The white line in all the above graphs is an
isocline with a value of 3.0. The area circumscribed by this isocline
encompasses sharpening values less than or equal to 3.0.

the stimulus. The first is to consider them presynaptic spike
arrival times. The second is to consider them presynaptic spike
times. Propagation delays are not considered and hence, if the
second interpretation is followed, precessions reported might be

systematically overestimated. Timing of only the first spike was
considered. Thus, our results are applicable in a context when
the membrane potential of a class 1 or class 2 neuron is near
threshold and presynaptic spikes are delivered through type 1 or
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type 2 synapses. In this study, information encoded in repetitive
spiking is not considered as it is affected not only by incoming sig-
nal but also back-propagating action potentials and steady state
dynamics.

EMERGENT PROPERTIES THROUGH INTERACTION OF PRE- AND
POST-SYNAPTIC DYNAMICS
An important question to answer is if the properties observed
were largely the result of either pre- or post-synaptic dynam-
ics alone or if these combinations gave rise to emerging char-
acteristics. We think the latter is the case for the following
reasons. Considering presynaptic dynamics separately, the pre-
diction might be that T1C1 and T1C2 are coincidence detectors
while T2C1 and T2C2 are integrators. In addition, combina-
tions with type 1 synapses will have reliable responses only
when inputs are sufficiently synchronized and combinations
with type 2 synapses will have reliable responses over a much
higher range of stimulus dispersion. In contrast, considering
firing dynamics separately, the prediction might be that T1C1
and T2C1 are integrators and T1C2 and T2C2 are coinci-
dence detectors. Furthermore, combinations with class 1 neurons
exhibit reliable responses over a wide range of stimulus dis-
persion and those with class 2 neurons require synchronous
inputs. Since class 2 neurons have a slow hyperpolarizing con-
ductance, stimuli have to be sufficiently short and strong to
evoke a response before the slow conductance is activated and
decreases the probability of an action potential. However, only
some of these predictions are correct. For instance, T1C2 is
a coincidence detector, but T1C1 is an integrator with great-
est synchrony preservation, even though presynaptic dynamics
remain the same. All four configurations have unique proper-
ties and hence not considering the contribution of either result
in an incomplete view of neuronal encoding. Intuitively, T2C1
is expected to be the most effective integrator and it is indeed
from the standpoint of reliability. But T1C1 is a more effec-
tive integrator from the standpoint of the relation between
stimulus dispersion and response jitter. Stimulus dispersion is
more effectively captured by the response dispersion. This can
be viewed as a tradeoff between synchrony preservation and
reliability.

Both pre- and post-synaptic dynamics contribute for a specific
operating mode to emerge. Our results suggest that a complete
characterization of neuronal encoding can be obtained only by
considering both pre- and post-synaptic dynamics together.

There is evidence for matching of synapse type with
firing class in the literature. For example, synapses in
layer IV show target-specificity with spiny stellates receiv-
ing predominantly type 1 synapses and star pyramids and
pyramids receiving predominantly type 2 synapses (Cowan
and Stricker, 2004). Such specificity has also been reported
in the lobster pyloric network where a disruption of speci-
ficity results compromised function (Mamiya and Nadim,
2005). Since each combination performs specific stimulus to
response transformations, a slight change in either synapse
type or neuron class can cause significant changes in infor-
mation processing of individual neurons and within the
network.

IMPLICATIONS FOR SYNCHRONIZATION AND CODING
The background noise correlation was found to be a critical deter-
minant of response sharpening (ξ) as preservation of stimulus
synchrony or its enhancement would have important conse-
quences for processing at the network level. When ξ > 1, stimulus
synchrony is enhanced by postsynaptic neurons and, thus, the
firing becomes more synchronized as excitation is transmitted
through subsequent layers (Marsálek et al., 1997). The signal
becomes temporally sharpened while losing information about
the stimulus dispersion (Gerstein et al., 1989). From the per-
spective of single neuron oscillations, if ξ is taken to indicate
the relation between successive cycles of oscillation, discharges
of neurons might become more synchronized (ξ > 1), con-
serve synchrony (ξ = 1) or progressively lose synchrony (ξ < 1).
While previous studies have considered either synaptic dynamics
(Mamiya and Nadim, 2005; McDonnell et al., 2012) or neuronal
dynamics (Ermentrout, 1996, 1998; Marella and Ermentrout,
2008) in shaping oscillatory dynamics in networks, there was vir-
tually no study exploring how these properties might together
determine synchronization of individual neurons and conse-
quently the network. In fact, we show that the combination T1C1
is best suited for preserving input synchrony. In this context,
T1C1 might aid in the preservation of asynchrony in a net-
work and might aid in encoding of network information through
desynchronization (Hanslmayr et al., 2012). But, in general, net-
work effects of integrator configurations are much harder to
speculate about without performing detailed simulations since
the larger time window of summation (when compared with the
integrators) allows for possible interactions with feedback con-
nections of a recurrent network and the timing of the second
action potential might be modulated by network effects. Even so,
our results for integrators do have relevance for network pro-
cessing since sharpening (see T1C1: Preserves Synchrony Most
Effectively and T2C2: Maximum Response Sharpening) and delay
to fire first action potential (data not shown) will influence the
overall network encoding.

TYPE AND CLASS MIGHT ENHANCE INFORMATION PROCESSING
For the purpose of this paper, both synapse type and firing
class were taken to be discrete properties. However, experimental
evidence shows that type 1 and type 2 synapses exist along a con-
tinuum between release-dependence and release-independence
and various experimental conditions can alter the extent of the
release-dependence (Cowan and Stricker, 2004; Fuhrmann et al.,
2004). Likewise, postsynaptic firing can vary smoothly between
class 1 and class 2 properties (Stiefel et al., 2008, 2009). In addi-
tion, both the synapse type (unpublished data) and the firing
class (Stiefel et al., 2008) can be altered concomitantly by neu-
romodulators like noradrenaline, and, thus, can be converted into
each other. Further, there is intrinsic variability in firing dynamics
among neurons of the same type (Schulz et al., 2006) that might
be critical for maximizing information content (Padmanabhan
and Urban, 2010). Our results suggest that variability in synapse
type and firing class allows for specific neurons in the same net-
work to capture and thereby encode different aspects of the stimu-
lus. For instance, combinations with T1C2 properties would act as
coincidence detectors. Upon exposure to a neuromodulator like
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noradrenaline, both type and class are converted to become
more T2C1-“like” and as a consequence, the same node in
the network would act now as an integrator with greatest reli-
ability. Any partial conversion along type and/or class would
allow for other features about the stimulus to be encoded.
For instance, the combination of T1C2 (coincidence detec-
tor) might be converted to a reliable integrator (T2C1) by

concomitant conversion of type and class due to adrener-
gic modulation. For the same condition, T1C1 (integrator
with greatest synchrony preservation) would be converted to
T2C1, an integrator with improved reliability but loss of syn-
chrony preservation. Thus, neurons in a network might be
tuned to capture and encode various stimulus properties of
interest.
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The present study investigates a potential computational role of dynamical electrical
synapses in neural information process. Compared with chemical synapses, electrical
synapses are more efficient in modulating the concerted activity of neurons. Based on
the experimental data, we propose a phenomenological model for short-term facilitation
of electrical synapses. The model satisfactorily reproduces the phenomenon that the
neuronal correlation increases although the neuronal firing rates attenuate during the
luminance adaptation. We explore how the stimulus information is encoded in parallel by
firing rates and correlated activity of neurons, and find that dynamical electrical synapses
mediate a transition from the firing rate code to the correlation one during the luminance
adaptation. The latter encodes the stimulus information by using the concerted, but lower
neuronal firing rate, and hence is economically more efficient.

Keywords: electrical synapses, short-term plasticity, information processing, adaptation, dynamical encoding

INTRODUCTION
In the central nervous system, neurons communicate with each
other via two basic forms of synapse: chemical and electrical
synapses (Kandel et al., 2000). A chemical synapse is asymmetric
in structure, which passes information from a presynaptic neu-
ron to a postsynaptic one through neurotransmitters release, and
this occurs when the presynaptic neuron fires an action poten-
tial. An electrical synapse, on the other hand, is bidirectional,
which allows signal to be transmitted in both ways. Compared to
a chemical one, an electrical synapse is usually fast and under-
lies rapid communication among neighboring neurons of the
same type.

It is well known that the strength of a chemical synapse can
undergo a variety of short and long-term plasticity (Tsodyks and
Markram, 1996; Bi and Poo, 1998; Dan and Poo, 2006). It has also
been shown in experimental studies that the strength of an elec-
trical synapse can be modulated similarly as a chemical one. For
instances, it was found that titanic stimulation can lead to either
long- or short-term potentiation of electrical synapses in goldfish
(Yang et al., 1990; Pereda and Faber, 1996); in the rat thalamic
reticular nucleus, titanic stimulation can cause long-term depres-
sion in the electrical synapses (Landisman and Connors, 2005;
Haas et al., 2011); and in the vertebrate retina, electrical synapses
can be dynamically regulated by either ambient illumination or
circadian rhythms (Bloomfield and Volgyi, 2009).

Although a large volume of experimental data has revealed
the abundant existence and the plasticity of electrical synapses

in the neural system, their functional roles in neural information
processing remain largely unclear (Connors and Long, 2004). In
the thalamic reticular nucleus, electrical synapses may contribute
to the shift between arousal states (Haas et al., 2011). In the retina,
electrical synapses are sensitive to the background light condi-
tions (Bloomfield and Volgyi, 2009), and the synchronous activity
of electrically coupled ON direction-selective ganglion cells may
encode the direction information of a moving stimulus (Ackert
et al., 2006). It was also found that retinal ganglion cells (RGCs)
coupled with electrical synapses exhibit stronger concerted activ-
ity than connected (indirectly) with chemical synapses in a circuit
(Brivanlou et al., 1998; Jing et al., 2010).

In the present study, we investigate a potential role of electrical
synapses in processing stimulus information during luminance
adaptation. We first explore the effects of electrical and chemi-
cal synapses on generating neural correlation. We find that the
neuronal correlation strength is much more sensitive to the plas-
ticity of an electrical synapse than to the plasticity of a chemical
one, indicating the potential importance of electrical synapses in
modulating synchrony of neuronal activities. We then propose
a phenomenological model for short-term facilitation of electri-
cal synapses, based on the experimental finding that during the
luminance adaptation, the neuronal correlation strength increases
whereas the firing rates attenuate. The proposed model satisfac-
torily reproduces the experimental data. Finally, we explore the
computational role of dynamical electrical synapses, and find that
they contribute to generate a transition in encoding properties
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during the adaptation. The implication of this transition is
discussed.

MATERIALS AND METHODS
THE NEURON-PAIR MODELS
To investigate the effects of electrical and chemical synapses on
generating correlated neuronal responses, we construct neuron-
pair models coupled by either an electrical or a chemical synapse
as shown in Figures 1A,C.

For neurons coupled with an electrical synapse, the dynamics
of neurons are written as

C
dVi(t)

dt
= −gL[Vi(t) − V rest] + ges[Vj(t − des)

−Vi(t)] + Iext
i (t), i, j = 1, 2 (1)

where Vi is the membrane potential of the ith neuron, C the mem-
brane capacitance, gL the leaky conductance, V rest = −70 mV the
resting potential, and Iext

i the external input current. ges repre-
sents the conductance of the electrical synapse, which is a constant
unless the synapse is undergoing plasticity. des denotes the trans-
mission delay of the electrical synapse, which is in the range of
0.2–0.4 ms according to the experimental data (Brivanlou et al.,
1998; Li et al., 2012). The neuron fires when its membrane poten-
tial reaches to a threshold V th = −50 mV, and Vi is reset to be
V reset = −70 mV after firing.

For neurons connected by a chemical synapse, the dynamics of
neurons are written as

C
dVi(t)

dt
= −gL[Vi(t) − V rest] − gcs

ij (t − dcs)[Vi(t)

−V rev] + Iext
i (i), i, j = 1, 2 (2)

where V rev = 0 mV denotes the reversal potential. gcs
ij is the con-

ductance of the chemical synapse from the neuron j to i, whose
dynamics is given by

τs
dgcs

ij

dt
= −gcs

ij + u
∑

m

δ(t − tm
j ) (3)

where τs is the synaptic time constant, tm
j the moment when the

mth spike of the jth neuron is generated, and u the increment of
the chemical conductance due to a spike generation. dcs denotes
the transmission delay of the chemical synapse, which is in the
range of 2–3 ms.

The external inputs to the neurons are given by (see
Figures 1A,C)

Iext
i = μ(t) + σ[√1 − cξi(t) + √

cξc(t)], i = 1, 2 (4)

where μ(t) is the mean of the inputs. ξi(t) is Gaussian white
noise of zero mean and unit variance. Noise processes of the
two neurons are independent to each other, i.e., < ξi(t)ξj(t′)
> = δijδ(t − t′). ξc(t) denotes the common noise to both

FIGURE 1 | Neuronal circuitry with electrical and chemical synapses.

(A) A model of electrically coupled neurons (left panel) and examples of
simulated firing activities (right panel). Neurons receive external currents
with both common and independent components. (B) The cross
correlation function between electrically coupled neurons with bin size of
2 ms. Inset shows the cross correlation function with bin size of 0.1 ms.
(C) A model of chemically connected neurons (left panel) and examples of
simulated firing activities (right panel). Neurons receive external currents

with both common and independent components. (D) The cross
correlation function between chemically connected neurons with bin size
of 2 ms. Inset shows the cross correlation function with bin size of
0.1 ms. The parameters values for the two conditions have been chosen
to fit the two models to have similar behavior, which are: C = 0.5 nF,
gL = 0.025 μS, τs = 5 ms, μ = 0.62 nA , σ = 0.5 nA , ges = 0.025 μS,
u = 0.05 μS, c = 0 for the electrical synapse, c = 0.5 for the chemical
synapse, and simulation step size = 0.1 ms.
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neurons. σ is the noise strength. The parameter 0 ≤ c ≤ 1 deter-
mines the correlation strength between the inputs to the two
neurons.

MEASURING THE CORRELATION STRENGTH
To quantify the characteristics of neural response, we divided time
into small bins. A spike train is symbolized into “0” and “1”
within a time bin, where ri(t) = 1 means that the cell i fires in
the tth time bin and “0” means that it does not fire. We use cross-
correlation function (CCF) to measure the correlation strength
between neurons. The value of CCF between two spike trains is
calculated to be

CCF(�t) = N
∑N−|�t|

t = 1+|�t| r1(t)r2(t + �t)

(N − 2|�t|)
√∑N

t = 1 r1(t)2
∑N

t = 1 r2(t)2
(5)

where ri(t) = 0, 1, for i = 1, 2, denotes the spike train generated
by the ith neuron at the moment t and N indicates the length
of spike train. The peak value around zero lag of CCF is used to
represent the neuronal correlation strength.

THE EXPERIMENTAL DATA
In this study, we use two sets of experimental data. Both exper-
iments were performed on isolated bullfrog retinas, and the
experimental procedures and equipments have been described in
detail in (Li et al., 2012; Xiao et al., 2012). The previous works did
not study the model and the functional role of electrical synapses
presented in this paper.

In the first experiment (Li et al., 2012), the bullfrog retina
was exposed to flickering pseudo-random checker-boards for
100 s (frame refresh rate = 20 Hz), and a multi-electrode sys-
tem was used to record the responses of RGCs simultaneously.
Figures 4A,B present the experimental results. We use this set of
data to fit the phenomenological model for short-term facilita-
tion of electrical synapses during the luminance adaptation. The
model is then applied to interpret the neural data in the second
experiment.

In the second experiment (Xiao et al., 2012), the bullfrog retina
was exposed to flicking pseudo-random checker-boards for 15 s
followed by a sustained dark stimulation. The whole adaptation
process to the dark stimulus lasted for about 5 s. Figures 5A,B
present the experimental results. We use this set of data to explore
the potential functional role of dynamical electrical synapses.

Both experiments were strictly conformed to the humane
treatment and use of animals as prescribed by the Association for
Research in Vision and Ophthalmology, and were approved by the
Ethic Committee, School of Biomedical Engineering, Shanghai
Jiao Tong University.

MEASURING THE STIMULUS INFORMATION CARRIED BY FIRING RATE
AND CORRELATION
Denote p(r|s) the conditional probability of observing the neural
response r given the stimulus s. We regard the dark stimula-
tion and the random flicking check-boards as two stimuli, which
occur with equal probability, i.e., p(s) = 1/2. For two neurons,
r = {r1, r2}. The bin size is 5 ms, unless it is stated specifically. The
total amount of the stimulus information that can be extracted

from the neuronal data is given by the mutual information
(Shannon, 1948),

I = −
∫

drp(r) log2 p(r) +
∫

dr
∑

s

p(s)p(r|s) log2 p(r|s) (6)

To decompose the stimulus information into portions carried
by different features of neuronal activities, we choose to use the
information measure I∗, which is known to be directly linked to
the decoding error of maximum likelihood inference based on a
mismatched model (Wu et al., 2001; Oizumi et al., 2010). I∗ quan-
tifies the information gain when a mismatched neural encoding
model q(r|s) is applied, and is calculated as (Merhav, 1994),

I∗(q) = maxβ Ĩ(q, β) (7)

Ĩ(q, β) = −
∫

drp(r) log2

∑
s

p(s)q(r|s)β

+
∫

dr
∑

s

p(s)p(r|s) log2 q(r|s)β (8)

where β is a parameter to be optimized. This information mea-
sure has been applied recently for studying neural coding (Oizumi
et al., 2010). By choosing the form of q(r|s) properly, the amount
of the stimulus information contained in different features of
neural responses can be obtained.

When two spike trains (binary variables) are considered, the
joint probability of neural responses can be written as (Amari,
2001),

p(r|s) = 1

Z
exp

⎛⎝∑
i

θ1
i ri +

∑
i < j

θ2
ijrirj

⎞⎠ (9)

where Z is the normalization factor, and the parameters θ1
i is

related to the firing rate of the ith neuron, θ2
ij is related to the

correlation between the ith and jth neurons. The values of θ1 and
θ2 can be uniquely determined by matching p(r|s) with the real
distribution of the data.

Suppose we choose q(r|s) to be the probability distribution
which has the same firing rates as p(r|s) but with vanishing
correlation between neurons, i.e.,

q(r|s) = 1

Z1
exp

(∑
i

θ1
i ri

)
(10)

where Z1 is the normalization factor. The parameter θ1
i is deter-

mined by the requirement that the firing rates remain the same
for both distributions p and q. Thus, the value I∗(q), refer to as I1

hereafter, is the amount of the stimulus information contained in
the firing rates of neurons. Its discrepancy to the mutual infor-
mation, denoted as I2 = I − I1 hereafter, is the amount of the
stimulus information contained in the correlation. The relative
contributions of firing rate and correlation are measured by the
ratios, Ri = Ii/I, for i = 1, 2.
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RESULTS
NEURAL CORRELATIONS GENERATED BY ELECTRICAL
AND CHEMICAL SYNAPSES
Neurons can be connected by either electrical or chemical
synapses. We investigate how different forms of synapse affect
neuronal correlation. The neuron-pair models coupled by either
an electrical or a chemical synapse as shown in Figures 1A,C are
used (see Materials and Methods). The correlation strength is
measured by the CCF between the spike trains generated by two
neurons.

Figure 1B shows the CCF for the electrically coupled neurons.
We see that the CCF exhibits a narrow peak for the bin size of
2 ms, indicating that the two neurons’ responses are largely syn-
chronized. If the bin size is 0.1 ms, the CCF has dual peaks around
�t = 0 due to the transmission delay of the electrical synapse
(Figure 1B inset). These results agree with the experimental data
for electrically coupled RGCs in the bullfrog retina (Li et al.,
2012).

Figure 1D shows the CCF for the neurons connected via a
chemical synapse. We see that the CCF has a much broader distri-
bution than for the electrical synapse. This property is general and
reflects that a chemical synapse is slow and that the correlation it
generates is usually small.

Figure 2 displays how the synaptic strength affects the neu-
ronal correlation strength. For the electrical synapse, the cor-
relation strength varies significantly for different conductance
values of ges (Figure 2A). On the other hand, for the chem-
ical synapse, the correlation strength is rather insensitive to
the coupling parameter u (Figure 2B, the chemical conduc-
tance gcs increases with u). In the case of electrical synapse,
the neuronal correlation can be very strong even when the
input correlation is very small (for very small c-values); whereas,
in the case of chemical synapse, the neuronal correlation
can only be strong when the input correlation is sufficiently
large (for very large c-values). An intuitive justification for
this is that a chemical synapse is slow and its effect on
coordinating neuronal activities is diminished by input noises

and the resetting of the membrane potential after neural
firing.

We have only presented the result for the case that there is a
single excitatory chemical synapse from the neuron 1 to 2 (see
Figure 1B). For the case that there exists a reciprocal chemical
synapse from the neuron 2 to 1, the property about correlation
strength shown in Figure 2B still holds (data not shown).

In the present study, the membrane potential of a neu-
ron after firing was reset to be the resting value, i.e., V reset =
V rest = −70 mV. Alternatively, we could reset the neuron to be
hyperpolarized after firing, e.g., V reset = −85 mV. We found that
this did not change our results qualitatively, and that hyper-
polarization tended to increase the robustness of neural correla-
tion mediated by gap-junction to noises.

We further check for fixed synaptic strength, how the correla-
tion strength changes with the neuronal firing rates. As expected,
the correlation strength increases with the firing rates (Figure 3).
This is understandable, since larger firing rates enlarge the effects
of neuronal interaction via both forms of synapse.

A PHENOMENOLOGICAL MODEL FOR SHORT-TERM FACILITATION
OF ELECTRICAL SYNAPSE
We explore how an electrical synapse may vary with time dur-
ing the adaptation of neuronal responses. The experiment was
performed on an isolated bullfrog retina, which was exposed
to flickering pseudo-random checker-boards for 100 s (Li et al.,
2012; see Materials and Methods). A multi-electrode system was
used to record the responses of RGCs simultaneously.

As shown in Figure 4A, the responses of RGCs exhibits a clear
adaptive behavior, in terms of that the firing rates of RGCs first
increase quickly at the onset of the stimulation and then they
decrease gradually to a much lower value. We measure during this
adaptation process, how the correlation strength between neurons
coupled by an electrical synapse changes with time. The result is
presented in Figure 4B, which shows that the correlation strength
first increases with time in the first 20 s (Figure 4B inset) and then
decreases gradually.

FIGURE 2 | The effect of coupling strength on the correlation

strength between neurons. In the simulation, 10-s data is generated
and repeated for 10 times. Bin size is 2 ms, and error bars indicate

Mean ± s.e.m. (A) For the electrical synapse. (B) For the chemical
synapse. The parameters are the same as in Figure 1, but varying
parameter c.
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FIGURE 3 | Correlation strength vs. firing rate of neurons. The mean of
the inputs μ increases from 0.5 to 0.62 nA, and the step is 0.02 nA, and
σ = 0.5 nA. Other parameters are the same as in Figure 1. In the simulation,

10-s data is generated and repeated 10 times for each condition. Error bars
indicate Mean ± s.e.m. (A) For the neuron pair coupled by the electrical
synapse; (B) For the neuron pair connected by the chemical synapse.

The fact that the neuronal correlation increases whereas the
firing rates attenuate at the initial stage of the adaptation is
not a trivial property. According to the result in Figure 3, for
fixed synapse strength, the neuronal correlation should decrease
with the attenuation of firing rates. We therefore, suspect that
an enhancement of the neuronal interaction efficacy is going
on during the adaptation (see Discussion for alternative mech-
anisms). Furthermore, it has been shown that the plasticity of
a chemical synapse is insufficient to induce large change in the
correlation strength (Figure 2B). Thus, we propose that it is the
short-term facilitation of the electrical synapse leading to this
paradox phenomenon.

To describe the experimental data, we propose the follow-
ing phenomenological model for short-term facilitation of an
electrical synapse, which is given by

τf dges

dt
= − (ges − ges

0

)+ uf
(
ges

max − ges) exp

(− |�T|
τl

)
(11)

where τf is the time constant of short-term facilitation. ges
0 and

ges
max are the static and the maximum values of ges, respectively.

�T denotes the time difference between two adjacent spikes gen-
erated by the two neurons. τl determines the time window for
plasticity and uf the rate of facilitation. This plasticity rule states
that if two neurons fire strongly and synchronously in a short-
time window, their electrical synapse is temporally enhanced.
We fix the parameters in the model by the experimental data in
Figures 4A,B. Once their values are determined, the model will be
used to explain the results from another experimental data shown
in Figure 5.

To mimic the luminance adaptation condition, we set the
mean of the inputs to be μ(t) = 0.8e−t/a with t = 0 being the
moment of the stimulation onset. μ(t) decreases with time,
reflecting that the current from bipolar/amacrine cells to a RGC
attenuates during luminance adaptation (Baccus and Meister,
2002). We choose the parameter a = 20 s, so that the simulation
results match the experimental data.

Combining Equations (1) and (11), we simulate the neu-
ronal responses during the adaptation. Figure 4C displays how
the firing rate of a neuron changes over time, which reproduces
the adaption behavior observed in the experiment (Figure 4A).
Figure 4D displays how the correlation strength changes over
time, which reproduces the experimental observations shown in
Figure 4B, namely, the correlation strength increases in the first
20 s and then decreases gradually to a stable value. This incre-
ment is due to the short-term facilitation of the electrical synapse
in the first 20 s, as shown in Figure 4E. As a comparison, we
also simulate the change of correlation strength between neu-
rons when they are connected with constant electrical synapse
strength (Figure 4F). In this case, the correlation strength lin-
early decreased with time during the adaptation process (the first
20 s; inset of Figure 4F), and is unable to explain the experimental
observation.

COMPUTATIONAL ROLE OF DYNAMICAL ELECTRICAL SYNAPSES
In the above we have demonstrated that short-term facilitation of
electrical synapses can well justify the neuronal response proper-
ties during the adaptation. But, what is the functional meaning of
this short-term plasticity?

To answer this question, we analyzed another set of experi-
mental data in which the RGCs of a bullfrog retina were exposed
to a sustained dark stimulation after having responded to flick-
ing pseudo-random checker-boards for 15 s (see Materials and
Methods). The whole adaptation process to the dark stimulus
lasted for about 5 s. Figures 5A,B present the experimental
results, which show that the firing rates of RGCs attenu-
ated over time and that the neuronal correlation via electrical
synapses increased over time. Similar to the analysis in sec-
tion A Phenomenological Model for Short-Term Facilitation of
Electrical Synapse by considering short-term facilitation of elec-
trical synapses, our model, i.e., Equations (1 and 11), successfully
reproduces the experimental data (Figures 5C,D).

To ascertain the computational contribution of the enhanced
correlation and consequently the functional role of short-term
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FIGURE 4 | Experimental and simulated results about the change

of the correlation strength between two electrically coupled

neurons during the adaptation to 100-s flicking pseudo-random

checker-boards. (A) An example of retinal ganglion cell’s response to
100-s flicking pseudo-random checker-boards. The time window for
calculating firing rate is 1 s. (B) The change of the correlation strength
measured in the experiment. Inset highlights the change of the
correlation strength in the first 20-s (red box), fitted by a straight line.
n = 11 neuron pairs are used and error bars indicate Mean ± s.e.m.
(C) The simulated neural responses to 100-s flicking pseudo-random

checker-boards. (D) The change of the correlation strength based on the
short-term facilitation in Equation 6. Inset shows the change of
correlation strength in the first 20-s (red box). (E) The change of
electrical coupling strength due to the short-term facilitation during the
adaptation. (F) The change of the correlation strength during the
adaptation with a constant electrical coupling strength (ges = 0.025 μS).
Inset shows the change of correlation strength in the first 20-s (red
box). The simulation is repeated 10 times and error bars indicate
Mean ± s.e.m. The parameters τf = 10 s, τl = 50 ms, uf = 50 μS, and
other parameters are the same as in Figure 1.
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FIGURE 5 | Experimental and simulated results for the change of

the correlation strength between two electrically coupled neurons

during the adaptation to a sustained dark stimulation. (A) An
example of raster plots of a neuron’s response to 15-s flicking
pseudo-random checker-boards followed by 15-s darkness stimulation,
repeated 20 times. Bin size is 2 ms. (B) The change of the correlation

strength measured in the experiment during the adaptation to darkness
(red box in A). n = 20 neuron pairs are used. Error bars Mean ±
s.e.m. (C) and (D) Simulated results for the neuronal adaptive behavior
and the change of the correlation strength when the short-term
facilitation of electrical synapses is considered. The parameters are the
same as in Figure 4.

facilitation of electrical synapses, we analyze how the stimulation
information is encoded separately in the firing rates and the neu-
ral correlation during the adaptation. The information analysis
approach is introduced in Materials and Methods.

Figure 6 shows the results calculated by Equations (6–10)
based on the experimental data shown in Figure 5. We see that
during the adaptation, the stimulus information contained in the
firing rates decays dramatically with time, whereas, the stimu-
lus information contained in the correlation of electrical coupled
neurons tend to increase with time (Figure 6A). Their relative
contributions exhibit a very interesting behavior: at the begin-
ning of neuronal response to dark stimulation, more than 90% of
the stimulus information is encoded by the firing rates; whereas
after about 2 s, more than 50% of the stimulus information is
encoded in the correlation (Figure 6B). This result implies that
during the adaptation, there exists a transition in the encoding
strategies of the neural system, namely, from the firing rate code
to the correlation one, and a computational role of short-term

facilitation of electrical synapse is to implement this transition
operation.

DISCUSSIONS
In the present study we have investigated the potential computa-
tional roles of dynamical electrical synapses in neural information
processing. We find that electrical synapses are more efficient than
chemical synapses in modulating the concerted activity of neu-
rons. That is because an electrical synapse tends to equate the
sub-threshold membrane potentials of connected neurons and
hence is more efficient in controlling synchronous firing of neu-
rons. On the other hand, a chemical synapse only conveys signal
when a neuron fires, and its effect in coordinating synchronous
firing can be easily disturbed by fluctuations in sub-threshold
potentials of the neurons due to input noises.

Based on the experimental data, we propose a phenomenolog-
ical model for short-term facilitation of electrical synapses, which
successfully reproduces the seemingly paradox phenomenon that
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FIGURE 6 | Information entropy and information ratios carried by

firing rate and correlated activity during the luminance adaptation.

(A) Information carried by firing rate and correlation of electrically

coupled neurons during the adaptation to the dark stimulation. Bin size is
5 ms. (B) Information ratios carried by firing rate and correlation during
the adaptation. n = 20 neuron pairs are used. Error bars Mean ± s.e.m.

the increment of neural correlation is associated with the attenu-
ation of firing rates. In a recent work, Cortes et al. (2012). found
that chemical synapses with neuronal spike-frequency adapta-
tion can also generate this paradoxical behavior. Nevertheless,
for the particular neural data considered in this study, namely,
the responses of RGCs, we believe that short-term facilita-
tion of electrical synapses is a more plausible mechanism for
two reasons. First, RGCs are abundantly connected by electri-
cal synapses, and their interaction through chemical synapses
is indirect (mediated by bipolar and amacrine cells); and sec-
ondly, the CCF between RGCs measured in the experiment has
a very narrow peak and it exhibits dual peaks when the bin size
is sufficiently small, which are the typical syndromes of electrical
synapses.

We investigated how the stimulus information is encoded sep-
arately in the firing rates and the correlations of RGCs during the
luminance adaptation. We find that there exists a transition from
the firing rate code to the correlation one at the late stage of the
adaptation. The latter encodes the stimulus information by using

the concerted, but less active, firings of neurons, and hence is
economically more efficient. Our finding suggests that dynamical
electrical synapses can play profound roles in neural information
processing.
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The theta-gamma cross-frequency coupling (CFC) in hippocampus was reported to reflect
memory process. In this study, we measured the CFC of hippocampal local field potentials
(LFPs) in a two-vessel occlusion (2VO) rat model, combined with both amplitude and
phase properties and associated with short and long-term plasticity indicating the memory
function. Male Wistar rats were used and a 2VO model was established. STP and LTP were
recorded in hippocampal CA3-CA1 pathway after LFPs were collected in both CA3 and
CA1. Based on the data of relative power spectra and phase synchronization, it suggested
that both the amplitude and phase coupling of either theta or gamma rhythm were involved
in modulating the neural network in 2VO rats. In order to determine whether the CFC
was also implicated in neural impairment in 2VO rats, the coupling of CA3 theta–CA1
gamma was measured by both phase-phase coupling (n:m phase synchronization) and
phase-amplitude coupling. The attenuated CFC strength in 2VO rats implied the impaired
neural communication in the coordination of theta-gamma entraining process. Moreover,
compared with modulation index (MI) a novel algorithm named cross frequency conditional
mutual information (CF-CMI), was developed to focus on the coupling between theta
phase and the phase of gamma amplitude. The results suggest that the reduced CFC
strength probably attributed to the disruption of the phase of CA1 gamma envelop. In
conclusion, it implied that the phase coupling and CFC of hippocampal theta and gamma
played an important role in supporting functions of neural network. Furthermore, synaptic
plasticity on CA3-CA1 pathway was reduced in line with the decreased CFC strength
from CA3 to CA1. It partly supported our hypothesis that directional CFC indicator might
probably be used as a measure of synaptic plasticity.

Keywords: two-vessel occlusion, cross frequency conditional mutual information (CF-CMI), synaptic plasticity,

hippocampus, neural information flow (NIF)

INTRODUCTION
Hippocampus is known to be one of the most important brain
regions closely related to the learning and memory processes
with synaptic plasticity as the accepted cellular basis (Howland
and Wang, 2008; Shang et al., 2010; Sydow et al., 2011; Foster,
2012). One of the functional indices of synaptic plasticity is long
term potentiation (LTP) (Quan et al., 2010), which is a long last-
ing enhancement of synaptic strength induced by high-frequency
stimulating presynaptic neurons (Bliss and Lomo, 1973). In addi-
tion, the early transient potentiation phase of LTP lasting 10 min
or less is termed short-term potentiation (STP) and is considered
to be one candidate mechanism for short term memory (STM)
(Erickson et al., 2010).

Abbreviations: CFC, cross frequency coupling; CF-CMI, cross frequency condi-
tional mutual information; fEPSP, field excitatory postsynaptic potential; CMI,
conditional mutual information; LFP, local field potential; LTP, long term potenti-
ation; MWM, Morris water maze; MI, modulation index; NIF, neural information
flow; PAC, phase-amplitude coupling; PLV, phase locking value; STM, short term
memory; STP, short term potentiation; 2VO, two vessel occlusion.

Synchronized neural oscillations were supposed to facilitate
simultaneous firing of neural population and may be related
to cognitive processes (Basar et al., 2001; Ward, 2003; Zhang,
2011). Conventionally, neural oscillation is classified into five fre-
quency bands e.g., delta 1–4 Hz, theta 4–8 Hz, alpha 8–13 Hz,
beta 13–30 Hz, and gamma 30–150 Hz (Buzsaki and Draguhn,
2004), which are possibly associated with different brain status.
Among these rhythms, both theta and gamma rhythms in hip-
pocampus, modulated during perception and memory tasks, are
supposed to be most relevant to cognition (Kahana et al., 2001;
Behrendt, 2010). We previously utilized an approach of general
partial directed coherence (gPDC), which was one of directional
algorithms, to determine the directionality of neural informa-
tion flow (NIF) between CA3 and CA1 (Xu et al., 2012). It was
found that coupling directional index was significantly reduced
at either theta or gamma frequency bands between hippocam-
pal CA3 and CA1 regions in brain ischemic rats, which might be
associated with the alteration of LTP (Xu et al., 2012). In addi-
tion, a previous study showed that the coupling direction indices
from thalamus to medial prefrontal cortex were considerably
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decreased at the theta rhythm in the rat model of depression, and
increased after memantine treatment, which might be also asso-
ciated with the LTP alterations and cognitive impairment (Zhang
et al., 2011). However, so far the above NIF measurements of
directional index have only been performed in a same frequency
band rather than cross frequency bands. Accordingly, a question
has been raised as to whether there is a causality relationship
between rhythms, such as theta and gamma rhythms, between
two brain regions.

Recently, several studies reported that there were two forms
of cross frequency coupling (CFC) between theta and gamma
rhythms, namely n:m phase-phase coupling (Belluscio et al.,
2012) and phase-amplitude coupling(Canolty et al., 2006). It
suggested that the alterations of CFC were possibly involved in
the changes of cognitive function (Chrobak et al., 2000; Lisman,
2005; Sauseng et al., 2009). Modulation index approach (Canolty
et al., 2006) can be employed to measure phase-amplitude cou-
pling (PAC) between hippocampal CA3 and CA1. However,
the measurement of modulation index is affected by both the
amplitude and phase signals. Therefore, a novel measurement
is needed, which focuses on the coupling between theta phase
and the phase of gamma amplitude. In the present study, a novel
approach, named cross frequency mutual information (CF-CMI),
was developed based on conditional mutual information (Palus
et al., 2001; Palus and Stefanovska, 2003). In contrast to an
approach of MI, which transiently combines the amplitude enve-
lope of high-frequency with the phase of low frequency rhythm
into analytic signals, the approach of CF-CMI focuses on the
phase–phase coupling between two different rhythms. This novel
coupling measurement may provide an underlying indication of
the coupling strength possibly corresponding to the information
coding in hippocampus.

In this study, Male Wistar rats were used and the two ves-
sel occlusion (2VO) (Xu et al., 2012) model was successfully
established. Local field potentials were collected before STP and
LTP performed on hippocampal CA3 and CA1 pathway. The
phase locking value (PLV) measurement was used to measure
the phase synchronization between CA3 and CA1 regions over
a particular rhythm, such as theta or gamma rhythm. In order
to determine whether the CFC was also implicated in neural
impairment in 2VO rats, we examined the theta-gamma cou-
pling between CA3 and CA1 in hippocampus, which were done
by both phase-phase coupling (n:m phase synchronization) and
PAC. Furthermore, the CF-CMI was used to measure the coupling
strength between theta phase and the phase of gamma amplitude.
An issue was addressed as to whether such a directional index of
NIF between cross-frequency bands is able to reveal the variations
of hippocampal synaptic plasticity in brain ischemia, combin-
ing with the alterations of STP and LTP on CA3-to-CA1 neural
pathway.

MATERIALS AND METHODS
EXPERIMENTAL ANIMALS
Experiments were performed on male Wistar rats (280–300 g,
around 8-week old), which were provided from the Laboratory
Animal Center; Academy of Military Medical Science of People’s
Liberation Army, and reared in the animal house of Medical

School, Nankai University. Animals were housed in a 12 h
light/dark cycle with freely feed and water and randomly divided
into two groups (n = 12), namely Con group (n = 6) and 2VO
group (n = 6). A rat model of 2VO was established, which was as
same that in our previous reports (Li et al., 2011; Xu et al., 2012).
Rats were reared for 3 weeks since operation. All procedures were
carried out in accordance with the Ethical Commission at Nankai
University, China.

ELECTROPHYSIOLOGICAL EXPERIMENT
Rats was placed in a stereotaxic frame (Narishige, Japan) under
30% urethane anesthesia (4 ml/kg, i.p., Sigma-Aldrich, St. Louis,
MO, USA). The skull was opened and a small hole (2 mm in diam-
eter) in its left side was drilled. Two Stainless steel electrodes were
slowly implanted into CA3 and CA1 sites (CA3: 4.2 mm posterior
to the bregma, 3.5 mm lateral to midline, 2.5 mm ventral below
the dura; CA1: 3.5 mm posterior to the bregma, 2.5 mm lateral
to midline, 2.0 mm ventral below the dura), respectively. Ground
and reference electrodes were placed symmetrically over the two
hemispheres of the cerebellum. The signals of local field potential
were collected concurrently from the regions of CA3 and CA1 at
a sampling rate of 1000 Hz.

After LFPs were collected, STP and LTP recordings were per-
formed in the same brain regions. First, low-frequency stimula-
tions (0.05 Hz) for 20 min were delivered to Schaffer collateral
evoking a response of 50% of its maximum. And then tetanic
stimulation (10 pulses at 100 Hz for 2 s repeated 10 times) was
delivered and field excitatory postsynaptic potentials (fEPSPs)
were recorded at 20 kHz sampling rate every 20 s for 60 min. fEP-
SPs slope was used to measure synaptic efficacy (Li et al., 2011).
As the average responses, STP and LTP were measured at the first
10 min and between 50 min and 60 min after induction, respec-
tively. The initial data was analyzed by Clampfit 9.0 (Molecular
Devices, Sunnyvale, CA, USA).

PHASE LOCKING VALUE (PLV)
PLV is a widely used method to measure the strength of phase syn-
chronization within rhythms between brain regions (Rosenblum
et al., 1996). φa and φb signed the phase of the two signals and
PLV is defined as

PLV =
∣∣∣∣∣∣ 1

N

N∑
j = 1

exp(i[φa(j�t) − φb(j�t)])
∣∣∣∣∣∣

N stands for the length of the signal and 1
�t is the sampling fre-

quency. The value of PLV is within [0, 1] with 1 indicates fully
synch and 0 no syncing at all.

n:m PHASE SYNCHRONIZATION
Cross frequency phase-phase coupling between theta and gamma
rhythms was determined by n:m phase synchronization, where
the ration of n:m stood for stable n cycles of the gamma oscillator
for every m theta oscillator.

The radial distance (r) values, determined as: rn:m =∣∣∣ 1
N

∑N
t = 1 ei[m×φtheta(t)− n×φgamma(t)]

∣∣∣ were used to determine the

strength of cross frequency phase-phase coupling.
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The distribution of rn:m for different rations, e.g.,
1:1, 1:2, . . . , 1:10, etc. was calculated. A Larger value of r
indicated a more unimodal distribution of �ϕn:m(t) = m ×
φtheta(t) − n × φgamma(t), i.e., stronger phase coupling (Rayleigh
test for uniformity) (Tass et al., 1998; Belluscio et al., 2012).

PHASE AMPLITUDE COUPLING (PAC)
Modulation index (MI) was used to evaluate the cross frequency
PAC between CA3 and CA1 regions. The main idea of MI mea-
sure was to create a composite signal with amplitude envelope of
the high frequency (Afamp(t)) as its amplitude and instantaneous
phase of the low frequency (φfph(t)) as its phase.

Zfph, famp(t) = Afamp(t) × exp(i × φfph(t))

This composite signal created a joint probability density function
on the complex plane. The initial value of MI is calculated as the
absolute value of the average of the composite signal:

MIraw = abs (mean(Zfph,fam(t)))

For further processing, surrogate data need to be generated by
bringing a random time lag τ between φfph(t) and Afamp(t) :
Zsurr(t, τ) = Afamp(t + τ) × exp(i × φfph(t)).

Finally, MI is defined as MI = (MIraw − μ)/σ, where μ is the
mean of the surrogate lengths and σ is a standard deviation.

In this case, Morlet wavelets of the depth 7 were applied
to generate analytic representations with a frequency range of
1–20 Hz in CA3 and 30–80 Hz in CA1. And then Hilbert trans-
form was used to obtain CA3 φfph(t) and CA1 Afamp(t), respec-
tively. Finally, a window length of 40 s with 50% overlap and 100
trials of surrogate data were employed in the study.

PHASE-AMPLITUDE COUPLING BASED ON CONDITIONAL MUTUAL
INFORMATION
In order to measure the strength of directional CFC between
CA3 and CA1 regions, an improved algorithm named cross fre-
quency conditional mutual information (CF-CMI) was made.
Specifically, we firstly extracted the phase of broadband-filtered
theta rhythm (from 4 Hz to 8 Hz) in CA3 region (φtheta) and
the amplitude of the narrowband-filtered gamma rhythm (from
30 Hz to 80 Hz, step = 1 Hz) in CA1 region (ampgamma) by
Hilbert transformation. Since ampgamma did not vary very fast,
we band-filtered it from 1 Hz to 10 Hz. And then the phase
of ampgamma was extracted by a second Hilbert transforma-
tion signed as φampγ

. Finally, CMI (Palus et al., 2001; Palus
and Stefanovska, 2003) was applied to measure the directional
coupling between φtheta and φampγ

.
Briefly, supposing two processes {XCA3} and {XCA1} (from the

amplitude envelope of signals in CA1), their instantaneous phases
{ϕtheta} and

{
φampr

}
can be estimated by application of the dis-

crete Hilbert transform. Accordingly, the “net” information about
the τ − future of the process

{
φampr

}
contained in process {φtheta}

using C = I(φtheta;�τφampγ
|φampγ

).
To establish possible causality relations, we consider phase

increments,

�τφampγ
= |φampγ

(t + τ) − φampγ
(t)

Then the conditional mutual information is defined as,
I(φtheta; �τφampγ

|φampγ
) = H(φtheta|φampγ

) + H(�τφampγ
|

φampγ
) − H(φtheta,�τφampγ

|φampγ
).

DATA AND STATISTICAL ANALYSIS
All data were presented as mean ± SEM. Of the STP and LTP
test, field excitatory postsynaptic potentials (fEPSPs) slopes were
expressed as the percentage change of the baseline. Statistical
comparisons were made using the Wilcoxon rank sum test. The
analyses were performed using SPSS 17.0 software with the sig-
nificant level setting at P < 0.05.

RESULTS
Traces show representative sections of original neurograms
obtained from recordings of LFPs made one normal Wistar rat at
hippocampal CA1 region (black line in upper panel of Figure 1A)
and CA3 area (black line in upper panel of Figure 1C) as well
as a 2VO rat at CA1 (gray line in upper panel of Figure 1A)
and CA3 (gray line in upper panel of Figure 1C). The signals
were obtained at 1000 Hz sampling frequency and a 5 s sampling
period.

POWER SPECTRUM OF LFP
Digitized LFPs signals were subjected off-line to a fast Fourier
transformation to produce a power spectrum. Based on Wilcoxon
rank sum test, it shows that there is no significant differ-
ence of total power between Con group and 2VO group in
either theta frequency band (4–8 Hz) or slow gamma fre-
quency band (30–50 Hz) in CA1 region (Figure 1B). In addi-
tion, there are significant decreases of total power in both
theta and slow gamma frequency bands in 2VO group com-
pared to that in Con group in hippocampal CA3 region
(theta, F = −2.882, p = 0.004; gamma, F = −2.882, p = 0.004,
Figure 1D).

PHASE SYNCHRONIZATION
Figure 2A showed the phase synchronization analysis at theta and
slow gamma frequency bands for control and 2VO groups. The
original signals were filtered into 1–50 Hz range (bandwidth =
1 Hz, step = 1 Hz). Based on the Hilbert transform, the phases of
the filtered signals were generated and then used to compute the
PLV. It was found that PLVs at both theta and gamma frequency
bands were much lower in 2VO group compared to that in Con
group (theta: F = −2.882, p = 0.004; gamma: F = −2.562, p =
0.010, Figure 2A).

CROSS FREQUENCY PHASE–PHASE COUPLING
With the purpose of investigating the cross frequency theta-
gamma phase coupling quantitatively, the radial distance values
(r) of the circular distribution from the phase differences between
m × theta (CA3) and n × low gamma (CA1) phases for 15
ratios were calculated (Figure 2B). Rayleigh test showed that
there were a distinct peak at n:m = 1:8 ratio (p < 0.05) in Con
group and another peak at n:m = 1.7 (p < 0.05) in 2VO group.
Furthermore, Wilcoxon rank sum test showed that there was a
significant difference of 1:8 phase synchronization values between
these two groups (F = −2.882, p = 0.004). It implied that cross
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FIGURE 1 | Power spectral analysis in the two groups. (A)

Representative local field potential traces and corresponding power
spectra in hippocampal CA1 regions in one normal rat (black line)
and one 2VO rat (gray line). (B) Statistical analysis of relative

theta and gamma power spectra in CA1 region in the two
groups. (C) Same display as (A) in CA3 region. (D) Same display
as (B) in CA3 region. ∗∗∗p < 0.001 comparison between Con and
2VO groups.

FIGURE 2 | Phase synchronization index. (A) Phase locking value
(PLV) of LFPs between CA3 and CA1 at theta and gamma frequency
bands in Con and 2VO groups (n = 6). (B) Phase–phase (n:m) coupling
between theta and gamma oscillations. Mean radial distance values

(r values) from the distribution of the difference between m × theta
and n × gamma phases calculated for different ratios in these two
groups. *p < 0.05 and **p < 0.01 comparison between Con group and
2VO group.
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frequency phase–phase coupling might be weakened in brain
ischemia rats.

CROSS FREQUENCY PHASE-AMPLITUDE COUPLING
Figure 3 showed the mean modulation indices in both Con and
2VO groups, which reflected cross frequency PAC between CA3
phase sequences (1–20 Hz, step = 1 Hz) and CA1 amplitude
sequences (30–80 Hz, step = 1 Hz). Larger values of MI indicate
stronger cross frequency coupling. In normal animals, the maxi-
mal coupling was found at both 40 Hz of CA1 amplitude and 6 Hz
of CA3 phase (Figure 3A), while the strong PAC between CA3
and CA1 existed at slow gamma band (30–50Hz). However, this
cross frequency PAC was almost disappeared in brain ischemic
rats (Figure 3B).

REDUCED PHASE-AMPLITUDE DIRECTIONAL COUPLING ASSOCIATED
WITH IMPAIRED STP AND LTP
Stimulating Schaffer collateral evokes basal field excitatory post-
synaptic potentials (fEPSPs) in the hippocampal CA1 region.
Figure 4A shows the time courses of fEPSPs slopes normalized to
the 20 min baseline period. It can be seen that the fEPSPs slopes
are increased immediately after the high-frequency stimulation
and then stabilized to a level above the baseline period. The mean
fEPSP slopes of the first 10 min after HFS were examined as STP
results. Based on Wilcoxon rank sum test, it was found that the
mean fEPSPs slope was lower in 2VO group than that in control
group (113 ± 3.42% vs. 126 ± 1.51%, p < 0.001, Figure 4B-left).
Furthermore, LTP was measured as the mean fEPSP slopes in
45–60 min after HFS. It could be seen that the mean fEPSPs
slope was much lower in 2VO group than that in control group
(103 ± 2.65% vs. 118 ± 0.50%, p < 0.001, Figure 4B-right).

Figures 4C–E shows the data of statistical CFC analysis. It
was found that the value of MI was enormously lower in 2VO

group compared to that in control one (F = −2.882, p = 0.004,
Figure 4C). In order to measure the directional cross-frequency
coupling (CFC) between theta rhythm in CA3 and gamma
rhythm in CA1, LFP signals were filtered over 1–50 Hz with 1 Hz
bandwidth, using FIR band filter with hamming window (filter
order = 512). Two types of phase sequence were extracted by
means of Hilbert transform, one from original LFP signals within
theta frequency band and another from the amplitude of LFP
signals within gamma frequency band. And the novel algorithm
of CF-CMI was applied to determine the directionality of NIL
between these two areas. It can be seen that the value of CF-CMI
measurement is much lower in 2VO rats compared to that in con-
trol animals (F = −2.882, p = 0.004, Figure 4D). There was no
statistical difference of gamma power spectra in one theta circle
between these two groups (Figure 4D).

DISCUSSION
In this study, a 2VO rat model was employed with impairments
cognition functions (Li et al., 2011). In addition, a novel algo-
rithm was developed to measure the CFC directionality between
CA3 and CA1 regions in hippocampus. It was found that the CFC
directional index from CA3 theta rhythm to CA1 gamma rhythm
was significantly reduced, which was interestingly in line with the
alteration of STP and LTP in CA3-CA1 pathway in brain ischemic
state. The above result shows great promise for our hypothesis
that the CFC directionality could be an indicator of the synaptic
plasticity in hippocampal CA3-CA1 pathway.

Phase synchronization within both theta and gamma rhythms
was believed to be crucial to the cognitive behaviors (Basar-
Eroglu et al., 1992; Gallinat et al., 2006), while cognitive impair-
ment usually accompanied with reduced phase synchronization
(Yener et al., 2007; Ford et al., 2008). In the present study, it
was found that both theta and gamma synchronizations were

FIGURE 3 | The modulation index as a function of analytic amplitude

(30–80 Hz) in CA1 and analytic phase (1–20 Hz) in CA3. Larger MI value
indicates stronger cross frequency coupling. Strong phase-amplitude

coupling between CA3 and CA1 existed at CA1 slow gamma band
(30–50 Hz) in normal rats (panel A), however, almost disappeared in brain
ischemia rats (panel B).
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FIGURE 4 | The impaired synaptic plasticity in CA3-CA1 pathway

paralleling with the decreased directional CFC index between CA3 theta

rhythm and CA1 gamma rhythm in 2VO group. (A) STP and LTP were
elicited by the tetanic stimulation indicated by the arrow. The fEPSPs slope
was normalized to baseline. (B) Magnitudes of STP and LTP, determined as
responses between 0 and 10 min and between 50 and 60 min after tetanic
stimulation, were significantly smaller in 2VO rats. (C) CFC analysis

measured by MI method between CA3 theta and CA1 gamma rhythms in the
two groups. Considerably decreased MI values could be seen in 2VO group.
(D) Statistical results of CA3 gamma power spectra in one CA1 theta cycle
between the two groups. A difference that was no statistically significant
could be seen. (E) Directional CFC index from CA3 theta rhythm to CA1
gamma rhythm measured by CF-CMI was significantly reduced in 2VO rats.
∗∗p < 0.01 and ∗∗∗p < 0.001 comparison between Con and 2VO groups.

considerably decreased in 2VO group compared to that in Con
group (Figure 2A), implying that there was a disturbance of
neural synchronized coordination in brain ischemic state. The
fact that the reduction of phase synchronization was associ-
ated with cognitive deficits was in line with the findings in
Schizophrenia and Alzheimer subjects (Yener et al., 2007; Ford
et al., 2008). Moreover, the analysis of cross frequency phase
coupling (Belluscio et al., 2012) showed that the n:m (1:8) theta-
gamma rhythm coding in Con group was changed to the n:m
(1:7) in 2VO group (Figure 2B). Previous studies indicated that
in computational models, identical gamma cycles with an equal
number of spikes in each cycle were distributed across the entire
theta cycle to support a multi-item working memory buffer
(Lisman and Idiart, 1995; Jensen and Lisman, 1996). Each gamma
cycle contains a discrete item (or position in space), and approx-
imately seven gamma cycles could store 7 ± 2 sequential items.
Thus, the reduction of the ratio might imply the impairment of
memory capacity. However, the underlying physiological mech-
anism is still under further investigation. Our result of reduced
ratios between theta and gamma rhythms (from 8:1 to 7:1,

Figure 2B) in 2VO rats might indicate the impaired memory
capacity (Sauseng et al., 2009) induced by 2VO operation.

Another form of CFC is the amplitude of gamma rhythm
nesting in theta cycles, measured by modulation index (Bragin
et al., 1995; Lakatos et al., 2005; Mormann et al., 2005; Canolty
et al., 2006). One speculation of this coupling was that because
of relative long conduction delays, theta rhythm was well suited
to synchronize the networks over long distances while gamma
rhythm nested in the theta cycle to coordinate cell assemblies
involved in information dissemination process (von Stein and
Sarnthein, 2000). In this study, it was found that CA1 low
gamma rhythm, however not the high gamma rhythm, signif-
icantly nested in CA3 theta rhythm in Con rats (Figure 3A).
Theta-gamma coupling was supposed to be relevant to cogni-
tive function (Palva et al., 2005, 2010; Sauseng et al., 2008).
In addition, it was reported that the low gamma rhythm was
coherent between CA3 and CA1 in hippocampus, entrained
by theta phase (Colgin et al., 2009). Therefore, we focused on
the alteration of theta-gamma coupling in CA3-CA1 pathway
associated with the cognitive disorder by 2VO. interestingly,
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such coupling phenomenon disappeared in brain ischemic state
(Figure 3B), suggesting that the impaired cognitive function in
2VO rats was relevant to decreased theta-gamma coupling in
CA3-CA1 pathway. Meanwhile, we did not pay attention to
other neural pathways, such as cortico-hippocampal interactions
and/or hippocampal DG-CA3 interactions, at the present study.

It is well known that there is a directional alteration of
neural information flow, so as to measure directional CFC is
more important to explore the relationship between the patterns
of neural oscillation and cognitive functions. In our previous
study, the algorithm of general partial directed coherence was
utilized to determine the directionality of NIF between hip-
pocampal CA3 and CA1 over either theta or gamma frequency
band (Xu et al., 2012). We found that the coupling directional
index was considerably decreased in the above two frequency
bands in brain ischemic state, respectively. It was indicating
that the strength of CA3 driving CA1 was significantly reduced.
Subsequently, a hypothesis was raised that there was causal-
ity relationship in cross-frequency between hippocampal CA3
and CA1. MI algorithm has been used to measure CFC. From
its formula, it can be seen that there are two factors affect-
ing MI measurement. One is the cross phase coupling between
these two frequency bands, and another is the amplitude of
the high frequency band. Obviously, it will be better if we can
distinguish between these two factors during the measurement
of CFC.

In the present study, a novel algorithm CF-CMI is focused
on measuring the coupling between theta phase and phase of
gamma amplitude. Given that conditional mutual information
is a directional algorithm over an identical frequency band, the
developed CF-CMI should be a unidirectional coupling measure-
ment across different frequency bands between two brain regions.
Our data showed that there were no significant differences of
the gamma power spectra in one theta circle between the two

groups (Figure 4E). However, CF-CMI measurement presented
that the value of directional CFC was much lower in 2VO group
than that in Con group (Figure 4D), indicating that it was the
phase information of signals rather than the amplitude of signal,
which played an essential role in changing STP and LTP on CA3-
CA1 pathway in brain ischemic rats (Figure 4B). The data further
implied that the decreased information transmission along the
CA3-CA1 pathway in cross-frequency of theta and slow gamma
rhythms might be related to the impairment of STP and LTP in
2VO rats.

Taken together, our findings suggest that cognitive deficits
caused by brain ischemia, such as learning and memory dys-
function, are implicated in the alteration of phase-phase cou-
pling strength in theta and gamma oscillations. Moreover, the
CA3-CA1 synaptic plasticity is impaired, which is in line with
the decreased directional CFC from CA3 theta rhythm to CA1
gamma rhythm. It suggests that the modifications of diverse brain
rhythms and their interaction, such as theta and gamma, are
involved in regulating the behavioral functions. In addition, com-
bining the impaired synaptic plasticity and reduced values of
directional CFC, we would be able to understand that the direc-
tional CFC is likely to be another indicator of synaptic plasticity
compared to that of NIF directionality obtained from same oscil-
latory rhythm. However, studying the relationship between the
directional CFC and synaptic plasticity is still at an early stage of
development. It remains open issues as to if there are other brain
rhythms involved, which may indicate an alteration of cognitive
functions.
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We investigate the dynamical properties of an associative memory network consisting
of stochastic neurons and dynamic synapses that show short-term depression and
facilitation. In the stochastic neuron model used in this study, the efficacy of the synaptic
transmission changes according to the short-term depression or facilitation mechanism.
We derive a macroscopic mean field model that captures the overall dynamical properties
of the stochastic model. We analyze the stability and bifurcation structure of the mean
field model, and show the dependence of the memory retrieval performance on the noise
intensity and parameters that determine the properties of the dynamic synapses, i.e.,
time constants for depressing and facilitating processes. The associative memory network
exhibits a variety of dynamical states, including the memory and pseudo-memory states,
as well as oscillatory states among memory patterns. This study provides comprehensive
insight into the dynamical properties of the associative memory network with dynamic
synapses.

Keywords: dynamic synapse, short-term plasticity, neural network, associative memory network, mean field

model, bifurcation analysis

1. INTRODUCTION
Dynamic synapses change their transmission efficacy depending
on the activity of the presynaptic neuron, and the postsynaptic
response can be decreased (short-term depression) or increased
(short-term facilitation) (Markram and Tsodyks, 1996; Tsodyks
and Markram, 1997; Markram et al., 1998; Thomson, 2000; Wang
et al., 2006). Synaptic transmission is carried out by the flow and
diffusion of chemical components. Activation of a presynaptic
neuron and generation of an action potential causes influx of cal-
cium ions into the presynaptic membrane. A chemical reaction
with the calcium ions triggers the release of the neurotransmitters
and induces the post synaptic current. If many action potentials
are generated in a short period of time, the calcium concentration
and the fraction of releasable neurotransmitters change, and the
transmission efficacy increases or decreases transiently. Change in
the transmission efficacy is modeled by variables that represent
the releasable neurotransmitters and the utilization parameter
that defines the fraction of the neurotransmitter release by each
action potential, reflecting the calcium concentration.

Stochastic neuron models with dynamic synapses and the cor-
responding mean field models have been proposed in previous
studies, and their dynamical properties and possible roles of the
dynamic synapses have been intensively investigated (Igarashi
et al., 2010; Otsubo et al., 2010; Katori et al., 2012). Synaptic
depression is known to enable neuronal gain control (Abbott
et al., 1997), and to contribute to the destabilization of the net-
work activity and generation of an oscillatory state (Pantic et al.,
2002; Melamed et al., 2008; Otsubo et al., 2010). Synaptic facil-
itation is believed to enhance the working memory function in

the prefrontal cortex (Mongillo et al., 2008). Furthermore, in a
network with both depression and facilitation synapses, changes
in the efficacy of dynamic synapses are suggested to reorganize
the effective network structure, thereby contributing to flexible
information processing in the prefrontal cortex (Katori et al.,
2011).

An associative memory network retrieves a memory pattern
according to their network dynamics in which the memory pat-
terns are stored in their synaptic connections. Associative mem-
ory networks have also been well investigated (Anderson and
Bower, 1972; Nakano, 1972; Amari, 1977; Hopfield, 1982; Adachi
and Aihara, 1997). Dynamics of memory retrieval can be char-
acterized as the convergence of the state of the network to a
fixed-point attractor that corresponds to a stored memory pat-
tern (Hopfield, 1982). In this type of conventional model of an
associative memory network, the state of the network usually
remains in the attractor. In contrast to this, in an associative mem-
ory network with the depression synapses, the memory retrieved
state can be destabilized and the state of the network can move
to another attractor that corresponds to another memory pat-
tern. Such transitive dynamics among several memory patterns
has been also investigated (Tsuda et al., 1987; Adachi and Aihara,
1997; Kanamaru et al., 2013). Although stochastic neural net-
works with depression and facilitation synapses have been studied
(Torres et al., 2007; Mejias and Torres, 2009), a comprehensive
understanding of the dynamics of associative memory networks
with dynamic synapses has not yet been achieved.

In the present study, we focus on the associative mem-
ory network with stochastic neurons and dynamic synapses.
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In particular, we target stability analysis on the associative mem-
ory network with correlated memory patterns. The properties of
the dynamic synapses are characterized by parameters that specify
the time constants of recovery from an active state to a rest-
ing state of synapses. In the models of short-term plasticity the
difference between depression and facilitation can be specified
using theses parameters. We investigate how the dynamics of the
associative memory network depends on these parameters.

In the following sections, first, we explain the model of
a stochastic neural network with dynamic synapses. Next we
derive the corresponding macroscopic mean field models that
approximate the dynamical properties of the stochastic model.
Furthermore, we analyze structural details of the dynamical sys-
tem in the macroscopic mean field model, and we show how
the network behavior and the memory-retrieval performance are
influenced by noise intensity and the properties of the dynamic
synapses. Finally, we discuss the results of the analyses from a
viewpoint of neuroscience as well as possible future studies.

2. MATERIALS AND METHODS
2.1. ASSOCIATIVE MEMORY NETWORK WITH STOCHASTIC NEURONS

AND DYNAMIC SYNAPSES
In this study, we use an associative memory network comprising
N binary neurons. The state of the neuron is determined stochas-
tically depending on inputs to the neuron. The state of the ith
binary neuron at time t is denoted by the variable si(t), which
represents a resting state [si(t) = 0] or an active state [si(t) = 1]
of the neuron. The state of the neuron changes according to the
following probabilistic dynamics (Amit et al., 1985; Mejias and
Torres, 2009):

Prob[si(t + 1) = 1] = gβ(hi(t)), (1)

gβ(hi(t)) = 1

2
(1 + tanh[βhi(t)]) , (2)

where gβ(h) is a neural response function with the noise intensity
1/β = T. The noise intensity T determines the smoothness of the
response function; for T → +0 the model becomes deterministic.
Note that we use {0, 1} to represent the neural activity in si(t),
whereas we use {−1, 1} to represent the memory patterns as we
describe later. The equation

hi(t) =
N∑

j �= i

Jij[2sj(t)xj(t)uj(t)/Use − 1] (3)

represents the total input to the ith neuron. The quantity Jij rep-
resents the absolute strength of the synaptic connection from the
jth to ith neuron. Use represents the fraction of released neuro-
transmitters in absence of depression and facilitation, and is the
steady state value of the variable ui(t).

The properties of dynamic synapses activated by the jth neu-
ron are modeled using the variables xj and uj, which represent
the fraction of releasable neurotransmitters and the utilization
parameter, respectively (Tsodyks et al., 1998). The releasable neu-
rotransmitters xj decreases with activation of the synapse, which
is triggered by the presynaptic neural activation. If there is no

presynaptic activation, xj recovers its steady state xj = 1 with time
constant τR. The utilization parameter uj increases with the acti-
vation of the synapse and recovers its steady state uj = Use with
time constant τF . This dynamics can be described by the following
equations (Tsodyks and Markram, 1997; Tsodyks et al., 1998):

xj(t + 1) = xj(t) + 1 − xj(t)

τR
− sj(t)xj(t)uj(t), (4)

uj(t + 1) = uj(t) + Use − uj(t)

τF
+ Use(1 − uj(t))sj(t). (5)

The efficacy of synaptic transmission is determined by the
product of xj(t) and uj(t); the efficacy decreases (short-term
depression) or increases (short-term facilitation) according to the
parameters τR, τF , and Use.

Associative memory networks work well if the memory pat-
terns are mutually orthogonal, but otherwise it does not necessar-
ily work well. Moreover, in the associative memory network with
depression synapses, the appearance of the oscillatory states is
influenced by the similarity among the memory patterns (Otsubo
et al., 2010). To evaluate the influence of the similarity among
memory patterns in the network with both depression and facil-
itation synapses, we construct the associative memory network
with correlated memory patterns by considering a parent mem-
ory pattern ξ and p child patterns ξμ (Amari, 1977; Toya et al.,
2000) as follows:

ξ = (ξ1, . . . , ξN), (6)

ξμ = (ξ
μ
1 , . . . , ξ

μ
N),μ = 1, . . . , p. (7)

Note that here we use the {−1, 1} to represents the memory pat-
terns. A schematic of the relationship between these patterns for
p = 3 is shown in Figure 1. Elements of the memory patterns are
randomly generated according to the probability

Prob[ξi = ±1] = 1

2
, (8)

Prob[ξμ

i = ±1] = 1 ± bξi

2
, (9)

where b is the correlation level among memory patterns and takes
values in the interval [0, 1]. For b = 0, child patterns are mutu-
ally orthogonal for N → ∞; for b = 1, the child patterns are
the same as the parent pattern. Here we use the child patterns
as the memory patterns. The direction cosine between memory
patterns can described as cos θ0 = 1

N

∑N
i = 1 ξiξ

μ

i = b and cos θ =
1
N

∑N
i = 1 ξ

μ

i ξν
i = b2, where μ �= ν (Otsubo et al., 2010).

According to the Hebbian rule, we use the following absolute
strength of synaptic connection Jij:

Jij = 1

N

p∑
μ

ξ
μ

i ξ
μ

j , (10)

where the self-recurrent connection does not exist (i.e., Jii = 0).
The absolute strength represents the synaptic response on the
connected neurons when the synapses do not undergo any
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FIGURE 1 | Schematic of correlated memory patterns for p = 3. The
direction cosine between the parent pattern ξ and a memory pattern ξμ is
cos θ0 = b. The direction cosine between two memory patterns is cos
θ = b2.

depression and facilitation. The connections with positive or neg-
ative values of the absolute strength correspond to excitatory or
inhibitory synaptic connections, respectively.

2.2. MEAN FIELD THEORY
To analyze the macroscopic properties of the associative memory
network with stochastic neurons, we consider dynamical mean
field theory with the sublattice method (Coolen, 2001; Otsubo
et al., 2010), which allows us to analyze the mean field model
with the non-homogeneous network structure of the associative
memory network.

First, we derive the microscopic mean field model by taking
the noise average of each variable in the stochastic neural network
model. We get the following equations from Equations (1) to (3):

〈si(t + 1)〉 = gβ(〈hi(t)〉), (11)

〈hi(t)〉 =
N∑

j �= i

Jij[2〈sj(t)xj(t)uj(j)〉/Use − 1]. (12)

Because of the non-convexity of the response function gβ and the
excitatory feedback connection, the network can stabilize the self-
sustained active states (Barbieri and Brunel, 2007). Similarly to
Equation (11), we obtain the following equations corresponding
to Equations (4) and (5):

〈xj(t+1)〉= 〈xj(t)〉+ 1 − 〈xj(t)〉
τR

− 〈sj(t)xj(t)uj(t)〉, (13)

〈uj(t+1)〉= 〈uj(t)〉+ Use − 〈uj(t)〉
τF

+ Use〈(1 − uj(t))sj(t)〉. (14)

Here, we assume that the correlations among variables sj(t), xj(t),
and uj(t) are negligible on the basis of the following considera-
tions. The correlations among the variables sj(t), xj(t), and uj(t)

can be separated into three pairs. The state of sj(t) is determined
by the state of other neurons in the previous time step, and the
state of xj(t) and uj(t) are determined by the state of each vari-
able in the previous time step. Thus, the correlation between sj(t)
and xj(t) is of the order 1/N, and this correlation disappears as
N → ∞ (Igarashi et al., 2010). Similarly, the correlation between
sj(t) and uj(t) also disappears as N → ∞. Accordingly, we assume
the following independent relations between variables:

〈sj(t)xj(t)uj(t)〉 = 〈sj(t)〉〈xj(t)〉〈uj(t)〉, (15)

〈sj(t)uj(t)〉 = 〈sj(t)〉〈uj(t)〉. (16)

Note that the independency between xj(t) and uj(t) is reported
to hold if there is no facilitation (Tsodyks et al., 1998). Thus, we
evaluate the validity of this assumption by comparison between
the simulation and the mean field model derived by this assump-
tion. As we show in “Results” section, the mean field model shows
good approximations. By using these relations (15) and (16), the
microscopic mean field model is derived as

mi(t+1)= gβ

⎡⎣ N∑
j �= i

Jij
(
2mj(t)Xj(t)Uj(t)/Use − 1

)⎤⎦ , (17)

Xi(t+1)= Xi(t) + 1 − Xi(t)

τR
− mi(t)Xi(t)Ui(t), (18)

Ui(t+1)= Ui(t) + Use − Ui(t)

τF
+ Use(1 − Ui(t))mi(t), (19)

where mi(t) ≡ 〈si(t)〉, Xi(t) ≡ 〈xi(t)〉, and Ui(t) ≡ 〈ui(t)〉.
We now derive the mean field model that describes the

macroscopic dynamical properties of the associative memory net-
work. Here we use the sublattice method (Coolen, 2001) with
p-dimensional pattern vectors η = (η1, . . . ,ηp)T ∈ {−1, 1}p. A
set of neurons {1, . . . , N} is divided into 2p groups on the
basis of these pattern vectors. Suppose that ξ̄i = (ξ1

i , . . . , ξ
p
i )

T ∈
{−1, 1}p, a sublattice is defined as a set of neurons belonging to
a given pattern vector. The sublattice belonging to the pattern
vector η is defined as

Iη = {i|ξ̄i = η}, (20)

{1, . . . , N} =
⋃
η

Iη, (21)

where Iη is called a sublattice.
The absolute strength of synaptic connection (Equation 10)

can be rewritten with the expression of the sublattice as follows:

Jij = 1

N

p∑
μ= 1

ημη′μ = 1

N
η · η′, (22)

for i ∈ Iη, and j ∈ Iη′ .

We assumed that neurons within the same sublattice Iη follow the
same dynamics and that the variables in the microscopic mean
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field model (Equations 17–19) can be described as

mi(t) = mη(t), Xi(t) = Xη, and Ui(t) = Uη for i ∈ Iη. (23)

With these assumptions, we obtain the following macroscopic
mean field model of the associative memory network:

mη(t + 1) = Fmη({mη(t)}, {Xη(t)}, {Uη(t)}), (24)

Xη(t + 1) = FXη({mη(t)}, {Xη(t)}, {Uη(t)}), (25)

Uη(t + 1) = FUη({mη(t)}, {Xη(t)}, {Uη(t)}), (26)

where

Fmη({mη(t)}, {Xη(t)}, {Uη(t)})

= gβ

⎛⎝∑
η′

pη′η · η′ (2mη′(t)Xη′(t)Uη′(t)/Use − 1
)⎞⎠, (27)

FXη({mη(t)}, {Xη(t)}, {Uη(t)})

= Xη(t) + 1 − Xη(t)

τR
− mη(t)Xη(t)Uη(t), (28)

FUη({mη(t)}, {Xη(t)}, {Uη(t)})

= Uη(t) + Use − Uη(t)

τF
+ Use(1 − Uη(t))mη(t), (29)

where pη = |Iη|/N denotes the relative sublattice size.
We represent the steady state for the macroscopic mean

field model by m̄η, X̄η, and Ūη. The steady state for the
Equations (24–26) with (t → ∞) is given by the following self-
consistent equations:

m̄η = gβ

⎛⎜⎜⎜⎝∑
η′

pη′η · η′

⎛⎜⎜⎜⎝ 2m̄η′(1 + τFm̄η′)

1 + (τF + τR)Usem̄η′
+ UseτFτRm̄2

η′

− 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠, (30)

X̄η = 1

1 + τRŪηm̄η

, (31)

Ūη = Use(1 + τFm̄η)

1 + τFUsem̄η

. (32)

To investigate the stability of the system given by Equations
(24–26) around the steady state given by Equations (30–32), we
consider the locally linearized equations with small perturbations
δmη(t), δXη(t), and δUη(t) around the steady state as follows:

mη(t) = m̄η + δmη(t), (33)

Xη(t) = X̄η + δXη(t), (34)

Uη(t) = Ūη + δUη(t). (35)

We obtain the following locally linearized equations on the small
perturbations around the steady state with Jacobian matrix K.

⎛⎝ δmη(t + 1)

δXη(t + 1)

δUη(t + 1)

⎞⎠ = K

⎛⎝ δmη(t)
δXη(t)
δUη(t)

⎞⎠ . (36)

The stability of the system can be determined by the eigenvalues
of the Jacobian matrix on the steady state; the stability is distin-
guished by the absolute value of the eigenvalues. Elements on the
Jacobian matrix K are given as

∂Fmη

∂mη′
= g ′

β(h)pη′η · η′(2Xη′ (t)Uη′(t)/Use), (37)

∂Fmη

∂Xη′
= g ′

β(h)pη′η · η′(2mη′(t)Uη′(t)/Use), (38)

∂FUη

∂Uη′
= g ′

β(h)pη′η · η′(2mη′(t)Xη′(t)/Use), (39)

where

g ′
β(h) = β

2

(
1 − tanh2(βh)

)
, (40)

h =
∑
η′

pη′η · η′ (2mη′Xη′ Uη′/Use − 1
)
. (41)

Furthermore, the remaining matrix elements are given by

∂FXη

∂mη′
= −UηXηδη,η′ , (42)

∂FXη

∂Xη′
=
((

1 − 1

τR

)
− mηUη

)
δη,η′ , (43)

∂FXη

∂Uη′
= −mηXηδη,η′ , (44)

∂FUη

∂mη′
= Use(1 − Uη)δη,η′ , (45)

∂FUη

∂Xη′
= 0, (46)

∂FUη

∂Uη′
=
((

1 − 1

τF

)
− Usemη

)
δη,η′ , (47)

where δη,η′ is Kronecker’s delta, namely, δη,η′ is 1 if the η = η′,
and 0 otherwise. By using this Jacobian matrix, we analyze the
stability of the steady states in the following section.

In the following analysis, we fix the number of stored pat-
tern to be p = 3. In this case, neurons can be divided into eight
sublattices with the following combination of η:

η ∈ {(1,1,1)T, (1,1, −1)T, (1,−1,1)T, (1,−1,−1)T,

(−1,1,1)T, (−1,1,−1)T, (−1,−1,1)T, (−1,−1, −1)T}. (48)
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Since the memory patterns are provided by Equations (8) and (9),
the number of neurons |Iη| in the sublattice Iη is given as follows
(Otsubo et al., 2010):

|Iη|=
{

N(1 + 3b2)/8, if η = (1, 1, 1)T, (−1,−1,−1)T,

N(1 − b2)/8, otherwise.
(49)

The model with p = 3 is composed of 24 variables in total.

3. RESULTS
In this section, we present the results of simulation in the stochas-
tic model and of analyses of the macroscopic behavior in the
associative memory model with dynamic synapses. In particu-
lar, we analyze the changes in the structure of the dynamics,
depending on the parameters T, τF , τR, and Use.

To quantify the similarity between the state of the network s(t)
and the μth memory pattern ξμ, we use an overlap given by

Mμ(t) = 1

N

N∑
i = 1

ξ
μ

i [2si(t) − 1]. (50)

In the Equation (50), if 2si(t) − 1 is equal to ξ
μ

i , ∀i, then Mμ(t) =
1. This means that if the state of neurons completely matches the
μth memory pattern, the overlap becomes unity. In the formula-
tion of the macroscopic mean field model, the above equation can
be rewritten as follows:

Mμ(t) =
∑
η′

pη′η′μ[2mη′(t) − 1]. (51)

Furthermore, the state of the network is classified according to
the symmetry of the overlaps by using the effective dimension
(ED) which is defined in the following. We consider only the
case with p = 3. If the values of three overlaps at time t are
equal or nearly equal, namely, if they satisfy |Mμ(t) − Mν(t)| <

ε, ∀(μ, ν) ∈ {(1, 2), (2, 3), (3, 1)}, then ED(t) = 1, where ε =
10−5. If the values of all the overlaps are different i.e., if they sat-
isfy |Mμ(t) − Mν(t)| > ε,∀(μ, ν) ∈ {(1, 2), (2, 3), (3, 1)}, then
ED(t) = 3. Otherwise, namely, if the values of two of three over-
laps are equivalent, ED(t) = 2. The mean effective dimension
(MED) is defined as MED = ∑L

t = 1 ED(t)/L, where L is the
length of a given time course.

We classified the state of the network according to the overlaps
and the ED. There are four different types of steady state (fixed
point), described as follows. In the memory state (MEM), one of
the memory patterns or inverted memory patterns is retrieved.
In the symmetric (asymmetric) mixed state [SMIX(AMIX)], one
of the symmetric (asymmetric) mixture of the memory patterns
is retrieved. In the paramagnetic state (PARA), the network does
not retrieve any patterns and the state of each neuron is random.
The oscillatory states have been classified according to the ED of
the macroscopic mean field model giving rise to three oscillatory
regimes: OS1, OS2, and OS3 states, which satisfy MED = 1, 1 <

MED ≤ 2, and 2 < MED ≤ 3, respectively.
Figure 2 shows typical time courses indicating that the state

of the network converges to the steady states. The top panels in

each subfigure in Figure 2 show a raster plot; the dots indicate
the active state of the neuron with si(t) = 1. The initial states of
the simulation in the stochastic model are xi(t) = 1, ui(t) = Use,
and si(t) are set to be 0 or 1 randomly so that the overlaps are
almost zero in the initial state. We used N = 104 neurons in the
simulation. The bottom panels show overlaps M1(t), M2(t), and
M3(t) of the stochastic model (solid curves) and its correspond-
ing steady states in the macroscopic mean field model (dashed
lines). Appearance of the steady states of the stochastic model is
consistent with the corresponding macroscopic mean field model.

In the MEM state (Figure 2A), one of the memory patterns
or inverted memory patterns is retrieved. The state of the net-
work converges to a steady state, which corresponds to a stable
fixed point in the macroscopic mean field model. The steady state
can be represented with the overlaps as e.g., (M1, M2, M3) =
(M, M∗, M∗), where M and M∗ satisfy M > M∗ > 0, and the
corresponding memory pattern is ξ1. There are six possible MEM
states: the states obtained by the permutations on the three mem-
ory patterns and its inversion. Figure 2A shows a typical time
course of the process of convergence to the MEM state (to the
memory pattern ξ3 in the Figure 2A ) in the stochastic model.

In the SMIX state (Figure 2B), the mixture of the memory
patterns or the inverted memory patterns is retrieved. There
are two possible SMIX states; the SMIX states are represented
as (M1, M2, M3) = (M̄, M̄, M̄) for the mixture of the stored
patterns and (M1, M2, M3) = (−M̄, −M̄,−M̄) for its inverse,
where M̄ > 0. The corresponding memory patterns are sgn(ξ 1 +
ξ 2 + ξ3) and −sgn(ξ1 + ξ2 + ξ3), respectively. Figure 2B shows a
typical time course that the network converges to the SMIX state
[to the mixture of the stored patterns sgn(ξ 1 + ξ 2 + ξ 3) in the
Figure 2B].

In the AMIX state (Figure 2C), one of the asymmetric mixture
of the memory patterns is retrieved. The AMIX state can be rep-
resented as e.g., (M1, M2, M3) = (−M′′, M′, M′), where M′ >

M′′ > 0, and the corresponding memory pattern is sgn(−ξ 1 +
ξ 2 + ξ3). There are six possible AMIX states: the states obtained
by the permutations on the three memory patterns and its inver-
sion. Figure 2C shows a typical time course of the state of the net-
work when the state converges to the AMIX state that corresponds
to the pattern sgn(ξ 1 − ξ 2 + ξ 3).

In the PARA state, the state of each neuron is random.
Thus, the PARA state is represented as (M1, M2, M3) = (0, 0, 0).
Figure 2D shows that the network stays on the PARA state.

Figure 3 shows typical time courses of the oscillatory states in
the stochastic model with N = 104 and the corresponding macro-
scopic mean field model. Dynamics of the mean field model is
shown in the third panel in each subfigure and is consistent with
that of the corresponding stochastic model.

In the OS1 state shown in Figure 3A, the network oscillates
between the mixed state and the inverse of the mixed state; thus,
the overlaps M1, M2, and M3 oscillate in phase and the ED = 1.
The time course of overlaps in the macroscopic mean field model
is shown in the third panel in Figure 3A.

In the OS2 state shown in Figure 3B, the network oscillates
between one of the memory patterns and its inverse pattern; one
of the overlap (M1 in the Figure 3B) oscillates with larger ampli-
tude than others. The remaining two overlaps oscillate in phase.
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FIGURE 2 | Transient processes in the simulation where the associative

network converges to the steady state with Use = 0.1, b = 0.2, τR = 4,

and τF = 2. The initial states si (0) of the simulation are set randomly so that
the overlaps are almost zero in the initial state. (A) Memory state (T = 1.0).
(B) Symmetric mixed state (T = 0.2). (C) Asymmetric mixed state (T = 0.2).
(D) Paramagnetic state (T = 1.6). In the top panel of each subfigure, dots
indicate the active state of the neurons [si (t) = 1]. 96 of 104 neurons are

displayed. The indices of the neurons on the vertical axis are sorted according
to the stored memory patterns. The black and white striped pattern indicates
the stored memory pattern. Each black and white indicate 1 and 0,
respectively. In the second panel of each subfigure, the overlaps between
M1, M2, and M3 are indicated by red, green, and blue curves, respectively.
The solid curves are the simulation in the stochastic model and dashed lines
indicate the steady state in the macroscopic mean field model.

Because the model is symmetric, three possible patterns of oscil-
lation exist and the realization of the oscillatory pattern depends
on the initial state of the network.

In the OS3 state shown in Figures 3C,D, there are two sub-
modes of oscillatory states. The first mode oscillates symmetri-
cally between one of memory patterns and its inverted patterns,
and appearance of the oscillation circulate among the three mem-
ory patterns (see Figure 3C ). The order of the three memory
pattern randomly changes in the stochastic model. In the macro-
scopic mean field model, the oscillatory pattern with the orders
M1 → M2 → M3 and M3 → M2 → M1 coexist (the oscilla-
tory pattern with the order M1 → M2 → M3 is shown in the
third panel of Figure 3C). The second mode shows asymmet-
ric oscillation among three memory patterns (see Figure 3D) or
among three inverted patterns. The order of circulation in the
three memory (or inverted-memory) patterns is random in the
simulation.

Figure 4 shows the qualitative difference in the bifurcation
diagrams with respect to the noise intensity T in three differ-
ent parameter regions: the pseudo-constant region (τR = 4 and
τF = 2), the depression-dominant region (τR = 10 and τF = 2),
and the facilitation-dominant region (τR = 4 and τF = 24). Here,
we set b = 0.2 and Use = 0.1.

In the pseudo-constant region (Figure 4A), the time constants
τR and τF are relatively small, then the effect of the short-term
plasticity quickly disappears, and the transmission efficacy of
the dynamic synapses remains nearby its steady state. Figure 4A
shows the bifurcation diagram with respect to the noise intensity
T in the pseudo-constant region with τR = 4 and τF = 2. In the
relatively low noise range with T < 0.4, AMIX, SMIX, and MEM
states coexist as the stable fixed points. The absolute values of the
overlaps decreased with T. As T increases, the fixed points that
correspond to the AMIX states are destabilized via the saddle-
node (SN) bifurcation at T = 0.429. Each of two SMIX states
intersects with three unstable fixed points and becomes unstable
at T = 0.781 via the transcritical (TC) bifurcation, which is sta-
bilized again at T = 1.161 via another TC bifurcation. The two
SMIX states disappear by coalescing with an unstable fixed point
at T = 1.488 via the pitchfork (PF) bifurcation, and the stable
fixed point that corresponds to the PARA state emerges. All six
MEM states disappear at T = 1.248 via the SN bifurcation.

In the depression-dominant region (Figure 4B), τR is relatively
large, and the effect of decreases in the releasable neurotransmit-
ters remains long. In this region, the position of the fixed point
shrink to the low-noise side and quasi-periodic circles that corre-
spond to oscillatory states appear. As T increases, AMIX, SMIX,
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FIGURE 3 | Oscillatory states of the associative network with

Use = 0.1, b = 0.2, and τF = 2. The first and second panels of each
subfigure are the simulation results in the same format as in Figure 2.
The third panel of each subfigure shows the time course of the overlaps
in the macroscopic mean field model. Subfigures (A–D) display the

different modes of oscillation. (A) Oscillatory state with MED = 1 (OS1).
(B) Oscillatory state with 1 < MED ≤ 2 (OS2). (C) Oscillatory state
showing the symmetric oscillatory pattern with 2 < MED ≤ 3 (OS3).
(D) Oscillatory state showing the asymmetric oscillatory pattern with
2 < MED ≤ 3 (OS3).

and MEM states are destabilized via the Neimark-Sacker (NS)
bifurcations at T = 0.212, T = 0.311, and T = 0.576, respec-
tively. The oscillatory states appear at T = 0.569 and exhibit
quasi-periodic oscillation on an invariant circle. There exists a
multi-stable state of the stable fixed point and quasi-periodic
states on the range from T = 0.569 to T = 0.576. As T increases,
OS2, OS3, and OS1 appear in this order. The oscillatory states
disappear via the NS bifurcation at T = 1.180.

In the facilitation-dominant region (Figure 4C), τF is rela-
tively large, and the effect of increase in the utilization parameter
remains long. In this region, the range of the fixed points that
correspond to the MEM, SMIX, and AMIX is expanded. The over-
all bifurcation structure is similar to that of the pseudo-constant
region, but the SMIX state is destabilized at T = 1.845 via the NS
bifurcation. Furthermore, the OS1 state appear at T = 1.811 and
disappear at T = 1.964 via the NS bifurcation.

Figure 5A shows a bifurcation diagram for comparison
between the macroscopic mean field model and the simulation
when we set Use = 0.1, τR = 10, τF = 2, b = 0.2, and N = 104

with several initial values. The simulation shows good agree-
ment with the corresponding macroscopic mean field model.
Figure 5B shows an orbit of an OS3 state for Use = 0.1, τR = 6.5,
τF = 2, b = 0.2, and T = 0.91 in the simulation with N = 104

(red dots) and in the macroscopic mean field model (the blue
solid curve). The quasi-periodic orbit in the macroscopic mean
field model also shows good agreement with the simulation. We
have confirmed that the simulation result becomes closer to the
macroscopic mean field model when N is increased.

The phase diagrams in Figures 6, 7 show sets of bifurcation
points that switch the stability of the fixed points and the distribu-
tion of the oscillatory states obtained by the brute-force methods.
We calculated the time evolution of the macroscopic mean field

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 6 | 173

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Katori et al. Associative memory with dynamic synapses

FIGURE 4 | Continued
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FIGURE 4 | Bifurcation diagrams with respect to T show changes in

dynamical structure of the macroscopic mean field model with

Use = 0.1 and b = 0.2. (A) In the pseudo-constant region the effects
of dynamic synapses are relatively small (τR = 4 and τF = 2). Three
overlaps (M1, M2, M3) on the steady state are represented by positive
real numbers that satisfy M > M∗ > 0, M′ > M′′ > 0, M̄ > 0.
(B) The depression-dominant region (τR = 10 and τF = 2). (C) The
facilitation-dominant region (τR = 4 and τF = 24). The red and blue curves

indicate the fixed point where the ED is 1 and 2, respectively. The solid
and dashed curves indicate stable and unstable fixed points, respectively.
The orange, green, magenta, and cyan filled circles indicate the
saddle-node (SN), Neimark–Sacker (NS), transcritical (TC), and pitchfork
(PF) bifurcations, respectively. The cyan, magenta, and orange open circles
indicate the maximum and minimum values of the oscillatory states OS1,
OS2, and OS3, respectively. The gray dots indicate the orbit of the
oscillatory state.

FIGURE 5 | Comparison between the stochastic model (N = 104) and

the macroscopic mean field model. (A) A bifurcation diagram (Use = 0.1,
τR = 10, τF = 2, and b = 0.2). The blue curves, dots, and circles indicate
the fixed points, orbits, and maximal or minimal values of the orbit in the
macroscopic mean field model, respectively. The red crosses and squares
indicate the corresponding simulation results. (B) Distribution of the orbits
(Use = 0.1, τR = 6.5, τF = 2, T = 0.91, and b = 0.2). The simulation result
is indicated by red dots. The invariant circle in the macroscopic mean field
model is indicated by the blue solid curve.

model on each parameter points; the parameter points where the
orbit converges to the oscillatory states are indicated by colored
dots in Figures 6, 7. In the higher-noise boundary of the oscilla-
tory state, the oscillatory states are separated by the supercritical
type of the NS bifurcation; the region of the oscillatory states is
well separated by the sets of the NS bifurcation. On the other
hand, the oscillatory states appear with the subcritical type of
NS bifurcation in the lower-noise boundary. Thus, the oscillatory
states and the steady states coexist as multi-stable states in this
region. Similar bifurcation structure is found in the uniformly
connected network (Katori et al., 2012).

The (T, τR) phase diagram in Figure 6A shows changes in the
dynamical properties of the network from the pseudo-constant
region to the depression-dominant region. As τR increases, the
regions of the stable fixed point of MEM, SMIX, and AMIX
shrink, while the regions of the PARA state and the oscillatory
states expand. The (T, τF) phase diagram shown in Figure 6B
illustrates the dynamical properties from the pseudo-constant
region to the facilitation-dominant region. As τF increase, the
regions of MEM, SMIX, and AMIX expand, while the region
of the PARA state shrinks. Furthermore, the oscillatory states
appear. As τF increases from the depression-dominant region
(Figure 6C), the regions of the oscillatory states expand. As Use

increases, the region of the PARA state expands, while regions of
other states shrink.

The (T, b) phase diagrams in Figure 7 show that the dynamical
properties of the network depend on the correlation level between
the memory patterns. As b increases, the region of the SMIX
state expands, while regions of the other states shrink. In the
depression-dominant range (Figure 7B), as the correlation level b
increases, the region of the OS3 state shrinks but that of OS1 state
remain, which corresponds to the oscillatory state between SMIX
states. In the facilitation-dominant range (Figure 7C), the over-
all bifurcation structure is similar to that of the pseudo-constant
range, but the region of MEM states expands.

4. DISCUSSION
In this study, we investigated the dynamical properties of an asso-
ciative memory network composed of a stochastic neural network
with both short-term depression and facilitation synapses on the
basis of the macroscopic mean field model. We analyzed the
behavior of the network in broad ranges of parameters that spec-
ify the noise intensity and the properties of the dynamic synapses.
We found that the associative memory network exhibits the vari-
ety of dynamics, including the memory state, SMIX and AMIX,
and several modes of the oscillatory states, and that its properties
change with various types of bifurcations.

The performance of the memory retrieval can be character-
ized by the appearance of the MEM state in which the state
of the network successfully converges to one of the memory
patterns. In addition to the MEM state, in the relatively-low-
noise range, there exists SMIX and AMIX states that corre-
spond to pseudo-memory patterns. In this parameter range, the
retrieval of the memory pattern is not assured and depends
on the initial state of the network. In the high-noise range,
the network tends to the PARA state, which corresponds to
the state in which the pattern of neural activity is disrupted
and randomized because of the noise. We classified the oscil-
latory states into three modes according to the ED. The OS1
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FIGURE 6 | Phase diagrams with respect to parameters that specify the

properties of dynamic synapses. (A) (τR, T ) phase diagram. (B,C) (τF , T )
phase diagrams. (D) (Use, T ) phase diagram. The orange, green, magenta,
and cyan curves indicate the sets of saddle-node (SN), Neimark–Sacker (NS),

transcritical (TC), and pitchfork (PF) bifurcation points, respectively. The cyan,
magenta, and orange dots indicate the oscillatory states OS1, OS2, and OS3,
respectively. The dotted lines indicate the parameter points we used in
Figure 4.

state corresponds to oscillation between the pseudo-memory pat-
terns, and it appears in the relatively high noise range. The
OS2 state is the oscillation between one of the memory pat-
terns and its inverse pattern, and it appears next to the MEM
state. The OS3 state is the transitive state between memory
patterns and their inverse patterns. Such transitive dynamics is
related to the itinerant dynamics in terms of chaotic dynamics
(Tsuda et al., 1987; Adachi and Aihara, 1997; Kanamaru et al.,
2013).

The appearance of the above mentioned states of the network
depends on the properties of the dynamic synapses (Figure 6)
and on the correlation level between memory patterns (Figure 7).
In the pseudo-constant region (Figure 4A), the state of the
network converges to one of the fixed points like the conven-
tional associative memory model (Anderson and Bower, 1972;

Nakano, 1972; Hopfield, 1982). In the depression-dominant
region, which is archived by increasing the recovery time con-
stant τR from the pseudo-constant region, the area of successful
memory retrieval shrinks, whereas the oscillatory states appear as
shown in Figure 6A. Increase in the fraction of neurotransmitter-
release Use intensifies the influence of the depression. As Use

increase, the area of the PARA state expands, whereas the areas
of other states shrink (Figure 6D). In the facilitation-dominant
region, which is archived by increasing the time constant τF from
the pseudo-constant region, the area of the memory retrieval
expands (Figures 6B, 7C), which suggests that the facilitation
synapses contribute to the memory retrieval (Mongillo et al.,
2008). As the correlation level among memory patterns increases
(Figure 7), the network loses the ability to retrieve the mem-
ory pattern, and the state of the network tends to become the
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FIGURE 7 | (b, T) phase diagrams in (A) the pseudo-constant, (B)

depression-dominant, and (C) facilitation-dominant ranges. The format
is the same as in Figure 6.

pseudo-memory pattern. In the region of the oscillatory states,
the oscillatory state among the memory patterns shrinks, whereas
the oscillatory state between pseudo-memory patterns remains
(Figure 7B).

These results have implications regarding brain functions. The
distribution of facilitation and depression synapses in the brain
varies according to the region of the brain. Many facilitation
synapses exist in the prefrontal lobe and, whereas many depres-
sion synapses appear in the parietal lobe (Wang et al., 2006).
The facilitation synapses may form a synaptic working mem-
ory and contribute to the prefrontal function, which requires a
flexible executive function. Conversely, the depression synapses
might be involved in memory search or mental rotation, which
requires to imagine to handle an object in the parietal cor-
tex (Tagaris et al., 1996). The oscillatory states OS3 observed
in the present model correspond to the states that the neu-
ral network sequentially retrieves stored memory patterns. The
oscillatory state appears with the incorporation of depression
synapses. Furthermore, the area of the oscillatory state expands
with increase in the time constant of the facilitation process.
These findings imply that the depression and facilitation synapses
contribute to various brain functions e.g., a generation of sequen-
tial actions or the flexible information representation (Katori
et al., 2011).

The main findings of this work are consistent with previ-
ously reported studies on associative memory networks, and we
revealed further details of the network dynamics. In the previous
study on the associative memory network with both depression
and facilitation synapses by Torres et al. (2007), the mean activi-
ties with active and inert neurons are considered to construct the
mean field model, in which the number of the variables in the
model is on the order of p. On the other hand, in our present
study, we constructed the mean field model formulated with the
sublattice method that enables to analyze the non-homogeneous
network structure of the associative memory network; the num-
ber of the variables is on the order of 2p. In the case with p = 1,
these two mean field models are equivalent, whereas these are
differences in cases with p ≥ 2. Here we discussed the case with
p = 3 and reported that the associative memory network exhibits
a variety of dynamical states, including the memory and pseudo-
memory states, as well as several oscillatory states among memory
patterns. Furthermore, we reported the dependency of these states
on the noise level and the parameters that specify the prop-
erties of the dynamic synapses, including details of bifurcation
structure.

Although, we have considered the properties of the steady
state and the oscillatory state as the attractors in the present
study, properties of a transient process of memory retrieval
should be evaluated. The relation between the stability of the
memory retrieved states and irregularity of the neural activ-
ity (Mongillo et al., 2012) remains to be further investigated.
In the present study, we used a simple neuron model, namely
the discrete-time and binary neuron model. Meanwhile, the
behavior observed in the present model should be qualitatively
and/or quantitatively evaluated in more realistic neuron mod-
els e.g., integrate-and-fire or Hodgkin–Huxley model in the
future.
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